
Springer Texts in Statistics 

Advisors: 
Stephen Fienberg Ingram Olkin 



Springer Texts in Statistics 

Al/red 

Berger 

Biom 

Chow and Teicher 

Christensen 

Christensen 

Christensen 

du Toit, Steyn and 
Stumpf 

Finkelstein and Levin 

JObSOfl 

Jobson 

Kalbfleisch 

Kalbfleisch 

Elements of Statistics 
for the Life and Social Sciences 

An Introduction to Probability 
and Stochastic Processes 

Probability and Statistics: 
Theory and Applications 

Probability Theory: Independence, 
Interchangeability , Martingales 
Second Edition 

Plane Answers to Complex Questions: 
The Theory of Linear Models 

Linear Models for Multivariate, Time 
Series, and Spatial Data 

Log-Linear Models 

Graphical Exploratory Data Analysis 

Statistics for Lawyers 

Applied Multivariate Data Analysis, 
Volume I: Regression and Experimental 
Design 

Applied Multivariate Data Analysis, 
Volume 11: Categorical and Multivariate 
Methods 

Probability and Statistical Inference: 
Volume 1: Probability 
Second Edition 

Probability and Statistical Inference: 
Volume 2: Statistical Inference 
Second Edition 

(continued after index) 



J.D. Jobson 

Applied Multivariate 
Data Analysis 
Volume II: Categorical and Multivariate Methods 

With 85 illustrations in 108 parts 

Springer Science+Business Media, LLC 



J.D. Jobson 
Faculty of Business 
University of Alberta 
Edmonton, Alberta T6G 2R6 
Canada 

Editorial Board 
Stephen Fienberg 
Office of the Vice President 
York University 
North York, Ontario M3J IP3 
Canada 

Ingram OJkin 
Department of Statistics 
Stanford University 
Stanford, CA 94305 
USA 

Mathematics Subject Classification: 62-07, 62J05, 62JlO, 62KlO, 62K15 

Library of Congress Cataloging-in-Publication Data 
Jobson, J.D. 

Applied multi variate data analysis. 
(Springer texts in statistics) 
System requirements for disk: IBM PC. 
Includes bibliographical references and indexes. 
Contents: v. 1. Regression and experimental 

design v. 2. Categorical and multivariate methods. 
1. Multivariate analysis. 1. Title. II. Series. 

QA278.J58 1991 519.5 91-221219 
ISBN 978-1-4612-6947-2 ISBN 978-1-4612-0921-8 (eBook) 
DOI 10.1007/978-1-4612-0921-8 

Printed on acid-free paper. 

© 1992 Springer Science+Business Media New York 
OriginaJIy published by Springer-Verlag New York, lnc. in 1992 
Softcover reprint of the hardcover lst edition 1992 
AII rights reserved. This work may not be translated or copied in whole or in part without 
the written permission ofthe publisher Springer Science+Business Media, LLC, 
except for brief excerpts in connection with reviews or 
scholarly analysis. Use in connection with any form of information storage and retrieval, 
electronic adaptat ion, computer software, or by similar or dissimilar methodology now 
known or hereafter developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, 
even if the former are not especially identified, is not to be taken as a sign that such names, 
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used 
freely by anyone. 

Production managed by Karen PhilJipsj manufacturing supervised by Robert Paella. 
Photocomposed pages prepared from the author's TEX file. 

Additional material to this book can be downloaded from http://extras.springer.com. 

987654321 

ISBN 978-1-4612-6947-2 



To Leslie and H eather 



Some Quotations From Early Statisticians 

All sciences of observation follow the same course. One 
begins by observing a phenomenon, then studies all associated 
circumstances, and finally, if the results of observation can be 
expressed numerically [Quetelet's italics], estimates the inten­
sity of the causes that have concurred in its formation. This 
course has been followed in studying purely material phenom­
ena in physics and astronomYi it will likely also be the course 
followed in the study of phenomena dealing with moral behav­
ior and the intelligence of man. Statistics begins with the gath­
ering of numbersj these numbers, collected on a large scale with 
care and prudence, have revealed interesting facts and have 
led to the conjecture of laws ruling the moral and intellectual 
world, much like those that govern the material world. It is 
the whole of these laws that appears to me to constitute social 
physics, a science which, while still in its infancy, becomes in­
contestably more important each day and will eventually rank 
among those sciences most beneficial to man. (Quetelet, 1837) 

The investigation of causal relations between economic phe­
nomena presents many problems of peculiar difficulty, and of­
fers many opportunities for fallacious conclusions. Since the 
statistician can seldom or never make experiments for himself, 
he has to accept the data of daily experience, and discuss as 
best he can the relations of a whole group of changesj he can­
not, like the physicist, narrow down the issue to the effect of 
one variation at a time. The problems of statistics are in this 
sense far more complex than the problems of physics. (Yule, 
1897) 

Some people hate the very name of statistics, but I find 
them full of beauty and interest. Whenever they are not bru­
talized, but delicately handled by the higher methods, and are 
warily interpreted, their power of dealing with complicated 
phenomena is extraordinary. They are the only tools by which 
~ opening can be cut through the formidable thicket of diffi­
culties that bars the path of those who pursue the Science of 
man. (Galton, 1908) 



Preface 

A Second Course in Statistics 

The past decade has seen a tremendous increase in the use of statistical data 
analysis and in the availability of both computers and statistical software. 
Business and government professionals, as well as academic researchers, 
are now regularly employing techniques that go far beyond the standard 
two-semester, introductory course in statistics. Even though for this group 
of users shorl courses in various specialized topics are often available, there 
is a need to improve the statistics training of future users of statistics 
while they are still at colleges and universities. In addition, there is a need 
for a survey reference text for the many practitioners who cannot obtain 
specialized courses. 

With the exception of the statistics major, most university students do 
not have sufficient time in their programs to enroll in a variety of specialized 
one-semester courses, such as data analysis, linear models, experimental de­
sign, multivariate methods, contingency tables, logistic regression, and so 
on. There is a need for a second survey course that covers a wide variety of 
these techniques in an integrated fashion. It is also important that this sec­
ond course combine an overview of theory with an opportunity to practice, 
including the use of statistical software and the interpretation of results 
obtained from real däta. 

Topics 

This two-volume survey is designed to provide a second two-semester course 
in statistics. The first volume outlines univariate data analysis and provides 
an extensive overview of regression models. The first volume also surveys 
the methods of analysis of variance and experimental design including their 
relationship to the regression model. The second volume begins with a 
survey of techniques for analyzing multidimensional contingency tables and 
then outlines the traditional topics of multivariate methods. It also includes 
discussions of logistic regression, cluster analysis, multidimensional scaling 
and correspondence analysis, which are not always included in surveys of 
multivariate methods. In each volume an appendix is provided to review 
the basic concepts of linear and matrix algebra. The appendix also includes 
aseries of exercises in linear algebra for student practice. 
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Mathematics Background 

The text 88Sumes a background equivalent to one semester ea.ch of linear 
algebra and calculus, as weIl as the standard two-semester introductory 
course in statistics. Calculus is almost never used in the text other than in 
the theoretical quest ions at the end of each chapter. The one semester of 
calculus is an indication of the ideal mathematics comfort level. The linear 
algebra background is needed primarily to understand the presentation of 
formulae. Competence with linear algebra however is required to complete 
many of the theoretical questions at the end of each chapter. These back­
ground prerequisites would seem to be a pra.ctical compromise given the 
wide variety of potential users. 

Examples and Exercises 

In addition to an overview of theory, the text also includes a large number 
of examples based on actual research data. Not onlyare numerical results 
given for the examples but interpretations for the results are also discussed. 
The text also provides data analysis exercises and theoretical questions for 
student practice. The data analysis exercises are based on real data which 
is also provided with the text. The student is therefore able to improve by 
''working out" on the favorite local software. The theoretical quest ions can 
be used to raise the theoreticallevel of the course or can be omitted without 
any loss of the applied aspects of the course. The theoretical questions 
provide useful training for those who plan to take additional courses in 
statistics. 

Use as a Text 

The two volumes can be used independently for two separate courses. Vol­
ume I can be used for a course in regression and design, and Volume 11 
can be used for a course in categorical and multivariate methods. A quick 
review of multiple regression and analysis of variance may be required if 
the second volume is to be used without the first. If the entire text is to 
be used in two semesters some material in each chapter can be omitted. A 
number of sections can be left for the student to read or for the student's 
future reference. Large portions of most chapters and/or entire topics can 
be omitted without affecting the understanding of other topics discussed 
later in the text. A course in applied multivariate data analysis for gradu­
ate students in a particular field of specialization can be derived from the 
text by concentrating on a particular selection of topics. 

This two-volume survey should be useful for a second course in statistics 
for most college juniors or seniors. Also, for the undergraduate statistics ma­
jor, this text provides a useful second course, which can be combined with 
other specialized courses in time series, stochastic processes, sampling the­
ory, nonparametric statistics and mathematical statistics. Because the text 
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includes the topics normally found in traditional second courses, such as 
regression analysis or multivariate methods, this course provides a broader 
substitute by also including other topics such as data analysis, multidimen­
sional contingency tables, logistic regression, correspondence analysis and 
multidimensional scaling. The set of theoretical quest ions in the book can 
provide useful practice for statistics majors who have already been exposed 
to mathematical statistics. 

For graduate students in business and the social and biological sciences, 
this survey of applied multivariate data analysis is a useful first year gradu­
ate course, which could then be followed by other more specialized courses, 
such as econometrics, structural equation models, time series analysis or 
stochastic processes. By obtaining this background early in the graduate 
program the student is then weIl prepared to read the research literature 
in the chosen discipline and at a later stage to analyze research data. This 
course is also useful if taken concurrently with a course in the research 
methodology of the chosen discipline. I have found the first year of the 
Ph.D. program to be the ideal time for this course, since later in their 
programs Ph.D. students are too often preoccupied with their own area of 
specialization and research tasks. 

Author's Motivation and Use 0/ Text 

The author's motivation for writing this text was to provide a two-semester 
overview of applied multivariate data analysis for beginning Ph.D. students 
in the Faculty of Business at the University of Alberta. The quantita­
tive background assumed for the business Ph.D. student using this text 
is equivalent to what is required in most undergraduate business programs 
in North America - one semester each of linear algebra and calculus and 
a two-semester introduction to statistics. Many entering Ph.D. students 
have more mathematics background but do not usually have more statis­
tics background. A selection of topics from the text has also been used 
for an elective course in applied multivariate data analysis for second year 
MBA students. For the MBA elective course much less emphasis is placed 
on the underlying theory. 

Because of the many different fields of interest within business Ph.D. 
programs - Accounting, Finance, Marketing, Organization Analysis and 
Industrial Relations - the topical needs, interests and level of mathemati­
cal sophistication of the graduate students differ greatly. Some will pursue 
a strong statistics minor, whereas others will take very little statistics train­
ing beyond this course. 

In my Ph.D. class the wide variety of needs are handled simultaneously 
by assigning portfolios of theoretical questions to the statistics minor stu­
dent, while the less theoretically oriented students are assigned a paper. 
The paper topic may involve a discussion of the application of one or more 
of the statistical techniques to a particular field or an overview of tech-
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niques not discussed in the text. A small number of classes are devoted 
exclusively to the discussion of the theory questions. For the theory classes 
only the ''theory folk" need attend. All students are required to complete 
data analysis exercises and to provide written discussions of the results. 
For the data analysis exercises great emphasis is placed on the quality of 
the interpretation of the results. Graduate students often have greater dif­
ficulty with the interpretation of results than with the understanding of 
the principles. 

Quotations 

The quotations by Quetelet (1837) and Yule (1897) were obtained from 
pages 193 and 348, respectively, of The History 0/ Statistics: The Mea­
surement 0/ Uncertainty Be/ore: 1900, by Stephen Stigler, published by 
Harvard University Press, Cambridge, MA, 1986. 

The quotation by Galton (1908) was obtained from An Introduction to 
Mathematical Statistics and its Applications, Second Edition, by Richard 
J. Larsen and Morris L. Marx, published by Prentice-Hall, 1986. 
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6 

Contingency Tables 

This chapter begins with an introduction for Volume II and then presents a 
survey of the techniques available for analyzing contingency tables. The in­
troduction consists of a discussion of data matrices measurement scales and 
an outline of techniques presented in Volume II. The discussion of contin­
gency tables begins in the second section with a review of bivariate analysis 
for two categorical random variables and includes a discussion of inference 
techniques for two-dimensional tables. The discussion of two-dimensional 
tables also includes an introduction to the use of loglinear models. The 
third section presents a discussion of the application of loglinear models 
to multidimensional tables based on the maximum likelihood approach to 
estimation. The logit model is also introduced as a special case of the log­
linear model. The last section of the chapter outlines the weighted least 
squares approach to modeling categorical data. The weighted least squares 
approach affords a greater variety of models than the maximum likelihood 
method. 

6.1 Multivariate Data Analysis, Data Matrices 
and Measurement Scales 

The past decade has seen tremendous growth in the availability of both 
computer hardware and statistical software. As a result, the use of mul­
tivariate statistical techniques has increased to include most fields of sci­
entific research and many areas of business and public management. In 
both research and management domains there is increasing recognition of 
the need to analyze data in a manner that takes into account the inter­
relationships among variables. Multivariate data analysis refers to a wide 
assortment of such descriptive and inferential techniques. In contrast to 
univariate statistics, we are concerned with the jointness of the measure­
ments. Multivariate analysis is concerned with the relationships among the 
measurements across a sampie of individuals, items or objects. 



2 6. Contingency Tables 

6.1.1 DATA MATRICES 

The raw input to multivariate statistics procedures is usually an n x p 
(n rows by p columns) rectangular array of real numbers called a data 
matrix. The data matrix summarizes observations made on n objects. Each 
of the n objects is characterized with respect to p variables. The values 
attained by the variables may represent the measurement of a quantity or 
a numerical code for a classification scheme. The term object may mean 
an individual or a unit, whereas the term variable is synonomous with 
attribute, characteristic, response or item. The data matrix is denoted by 
the n x p matrix X, and the column vectors of the matrix are denoted by 
Xt,X2, ... ,xp for the p variables. The elements of X are denoted by Xii' 

i = 1,2, ... , nj j = 1,2, ... ,po 

Data Matrix 

Variables 
Xl X2 X3 Xp Objects 
Xn Xl2 Xl3 Xlp 1 

X= X21 X22 X23 X2p 2 
X31 X32 X33 X3p 3 

X n l Xn 2 Xn 3 xnp n 

The following four examples of data matrices are designed to show the 
variety of data types that can be encountered. 

Example 1. The bus driver absentee records for a large city transit system 
were sampled in four different months of a calendar year. The purpose of the 
study was to determine a model to predict absenteeism. For each absentee 
record, the variables month, day, bus garage, shift type, scheduled off days, 
seniority, sex and time lost were recorded. Table 6.1 shows the obervations 
for 10 records. 

Example 2. The top 500 companies in Canada ranked by sales dollars 
in 1985 were compared using information on percent change in sales, net 
income, rank on net income, percent change in net income, percent return 
on equity, value of total assets, rank on total assets, ratio of current assets 
to current liabilities (current ratio) and number of employees. Table 6.2 
contains the data for the top ten companies. In this study the researcher 
was interested in the properties of the distributions of various quantities. 

Example 3. A sampie of police officers were asked to respond to questions 
regarding the amount of stress they encounter in performing their regular 
duties. The officers also responded to quest ions seeking personal informa­
tion such as age, education, rank and years of experience. The purpose of 
the analysis was to identify the dimensions of stress. 
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TABLE 6.1. SampIe From Bus Driver Absenteeism Survey 

Month Day Garage Shift Days Off Seniority Sex Time Lost 

1 5 3 6 5 0 7.5 
1 2 5 13 1 9 1 7.5 
4 6 3 9 2 8 0 7.5 
2 3 3 7 3 7 1 7.5 
3 5 3 7 8 0 2.5 

1 4 3 1 10 0 4.2 
7 5 6 5 0 7.5 

2 6 5 13 1 2 0 7.5 
3 7 5 10 4 5 0 7.5 
4 3 9 2 6 1 7.5 

The data in Table 6.3 are a sampie of responses obtained for 18 stress 
items and the personal variables age, edueation, rank and years of experi­
enee. 

The 18 stress variables are measures of stress due to 1. insufficient re­
sourees, 2. unclear job responsibilities, 3. personality conflicts, 4. investiga­
tion where there is serious injury or fatality, 5. dealing with obnoxious or 
intoxicated people, 6. having to use firearms, 7. notifying relatives about 
death or serious injury, 8. tolerating verbal abuse in publie, 9. unsuccessful 
attempts to solve aseries of offences, 10. lack of availability of ambulances, 
doctors, and so on, 11. poor presentation of a ease by the prosecutor re­
sulting in dismissal of the charge, 12. heavy workload, 13. not getting along 
with unit commander, 14. many frivolous complaints lodged against mem­
bers of the public, 15. engaging in high-speed chases, 16. becoming involved 
in physical violence with an offender , 17. investigating domestic quarrels, 
18. having to break up fights or quarrels in bars and cocktail lounges. 

Example 4. Real estate sales data pertaining to a sampie of three bed­
room homes sold in a calendar year in a particular area within a city were 
collected. The variables recorded were list price, sales price, square feet, 
number of rooms, number of bedrooms, garage capacity, bathroom capac­
ity, extras, chattels, age, month sold, days to seIl, listing broker, selling 
broker and lot type. Table 6.4 shows a sampie of 12 observations, one for 
each month. The purpose of the study was to determine factors that influ­
ence selling price. 

The four examples outlined above illustrate the variety of data matrices 
that may be eneountered in practice. Before discussing techniques of mul­
tivariate analysis it will be useful to outline a system of classification for 
variables. We shall see later that the variable types influence the method 
of analysis that can be performed on the data. The next section outlines 
some terminology that is commonly applied to classify variables. 
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6.1.2 MEASUREMENT SCALES 

Variables can be classified as being quantitative or qualitative. A quantita­
tive variable is one in which the variates differ in magnitude, for example, 
income, age, weight and GNP. A qualitative variable is one in which the 
variates differ in kind rather than in magnitude, for example, marital sta­
tus, sex, nationality and hair colour. 

Quantitative Scales 

Obtaining values for a quantitative variable involves measurement along a 
scale and a unit of measure. A unit of measure may be infinitely divisible 
(eg., kilometres, metres, centimetres, millimetres) or indivisible (eg., family 
size). When the units of measure are infinitely divisible the variable is said 
to be continuous. In the case of an indivisible unit of measure the variable 
is said to be discrete. A continuous variable (theoretically) can always be 
measured in finer unitsj hence, actual measures obtained for such a variable 
are always approximate in that they are rounded. 

Analysis with discrete variables often results in summary measures or 
parameters taking on values that are not consistent with the scale of mea­
surement (eg., 1.7 children per household). Some variables which are in­
trinsically continuous are difficult to measure and hence are often measured 
on a discrete scale. For example, the stress variable discussed in Example 3 
is an intrinsically continuous variable. 

Scales of measurement can also be classified on the basis of the relations 
among the elements composing the scale. A mtio scale is the most versatile 
scale of measurement in that it has the following properties: (a) Any two 
values along the scale may be expressed meaningfully as a ratio, (b) the 
distance between items on the scale is meaningful and (c) the elements 
along the scale can be ordered from low to high (eg., weight is usually 
measured on a ratio scale). 

An interval scale, unlike a ratio scale, does not have a fixed originj for 
example, elevation and temperature are measured relative to a fixed point 
(sea level or freezing point of water). The ratio between 20°C and lOoC 
is not preserved when these temperatures are converted to Fahrenheit. An 
interval scale has only properties (b) and (c) above. 

An ordinal scale is one in which only property (c) is satisfiedj for example, 
the grades A, B, C, D, can be ordered from highest to lowest, but we cannot 
say that the difference between A and B is equivalent to the difference 
between B and C, nor can we say that the ratio AIC is equivalent to the 
ratio BID. 

Qualitative Scales 

The fourth type of scale, nominal, corresponds to qualitative data. An 
example would be the variable marital status which has the categories 
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married, single, divorced, widowed and separated. The five categories can 
be assigned coded values such as 1, 2, 3, 4, or 5. Although these coded 
values are numerical, they must not be treated as quantitative. None of the 
three properties listed above can be applied to the coded data. 

On occasion, quantitative variables are treated in an analysis as if they 
were nominal. In general, we use the term categorical to denote a variable 
that is used as if it were nominal. The variable age for example can be 
divided into six levels and coded 1, 2, 3, 4, 5, and 6. 

Measurement Scales and Analysis 

We shall see throughout the remainder of this text that the scale of mea­
surement used to measure a variable will influence the type of analysis 
used. The body of statistical techniques that are specially designed for or­
dinal data are often outlined in texts on nonparametrie statistics. Variables 
that are measured on ordinal scales can often be handled using techniques 
designed for nominal data or interval data. The categories on the ordinal 
scale can be treated as the categories of a nominal scale by ignoring the 
fact that they can be ordered. 

The variables in the data matrix represent the attempt by a researcher 
to operationalize various dimensions that are believed to be important in 
the research study. For dimensions such as intelligence, stress and job sat­
isfaction, appropriate dimensions are difficult to define and measure. If 
there are no appropriate units of measure, dimensions are sometimes oper­
ationalized by using other variables as surrogates for direct measurement. 
The surrogate variable is usually an accessible and dependable correlate of 
the dimension in questionj for example, a surrogate variable can be mea­
sured and is believed to be strongly correlated with the required dimension. 
Because surrogate variables are not in general perfectly correlated with the 
required dimension, a number of them are often used to measure the same 
dimension. The effectiveness with which a variable operationalizes a dimen­
sion is also called its validity. The measurement of validity in practice is 
usually complex and inadequate. 

6.1.3 DATA COLLECTION AND STATISTICAL INFERENCE 

Having decided upon the variables to be measured, an experimental de­
sign must be formulated which outlines how the data are to be obtained. 
The techniques for this are usually found under the theory and practice 
of suruey sampling and the theory and practice of experimental design. In 
addition, texts on research methodology also discuss the issues of designs 
for obtaining the data. One characteristic of the quality of a research design 
is the reliability of the data that are obtained. The reliability of the design 
refers to the consistency of the data when the same cases are measured at 
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some other time or by other equivalent variables, or when other sampies of 
cases are used. from the same population. 

Probability Sam pies and Random Sampies 

The majority of multivariate techniques, generally employed to analyze 
data matrices, assume that the objects selected for the data matrix rep­
resent a mndom sampie from some well-defined population of objects. A 
random sampie is a special esse of a probability sampie. In a probability 
sampling process the probability of occurrence for all possible sampies is 
known. In some cases the sampie may not be a probability sampie in that 
the probability that any panicular object will be chosen for the sampie caD­

not be determined. Haphazard sampies such as volunteers, representative 
sampies as judged by an expert and quota sampies where the objective is 
to meet certain quotas are examples of nonprobability sampies that are Ire­
quently used. On occasion the data set may represent the entire population 
(a census). 

It is important to remember that without probability sampling, probabil­
ity statements cannot be made about the outcomes from the multivariate 
analysis procedures. Since many research data sets are not obtained from 
probability sampies, it is important to note that inference results should 
be stated as being conditional on the assumption of a probability sampie. 

In addition to the simple random sampie there are alternative probabil­
ity sampling methods that are commonly used.. Cluster sampling, stratified 
sampling, systematic sampling and multiphsse sampling are examples of 
more sophisticated methods which are usually used. to reduce cost and 
improve reliability. Whenever simple random sampling is not used, adjust­
ments have to be made to the standard inference procedures. Probability 
sampies that are not simple random sampies are called complex sampies. AI­
though modifications to some multivariate techniques have been developed 
for complex sampies, they will not be discussed here. Random sampling is 
discussed in Chapter 1 of Volume I. 

Explomtory and Conjirmatory Analysis 

The statistical techniques outlined in this text include both exploratory 
analysis and confirmatory analysis. In explomtory analysis, the objective is 
to describe the behavior of the variables in the data matrix, and to search 
for patterns and relationships that are not attributable to chance. Ex­
ploratory analysis includes analyses devoted to data reduction and matrix 
approximation. Data reduction techniques attempt to replace the existing 
columns or rows of the data matrix by a much smaller number of new val­
ues that are representative of the original data. Data reduction and matrix 
approximation are essentially the same process. In conjirmatory analysis, 
certain hypotheses or models that have been prespecified are to be tested to 
determine whether the data supports the model. The quality of the model 
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is often measured using a goodness 0/ fit criterion. In large data sets the 
use of goodness of fit criteria often results in the model being overfittedj 
that is a less complex model than the fitted one is sufficient to explain 
the variation. The use of cross validation techniques to further confirm the 
model is recommended. Cross validation involves checking the fitted model 
on a second data matrix that comes from the same population but was not 
used to estimate the model. 

6.1.4 AN OUTLINE OF THE TECHNIQUES TO BE STUDIED 

There is no widely accepted system for classifying multivariate techniques, 
nor is there a standard or accepted order in which the subject is presented. 
One useful classification is according to the number and types of variables 
being used, and also according to whether the focus is a comparison of 
means or a study of the nature of the covariance structure. Some multi­
variate techniques are concerned with data analysis and data reduction, 
whereas others are concerned with models relating various parameters. The 
presentation of topics in the two volumes of this text is governed by the 
following: 

1. What topics can be assumed to be known from a typical introductory 
course in statistical inference? 

2. How many variables in the data matrix are involved in the analysis? 

3. What types of variables are involved in the analysis? 

4. Is the technique a data reduction procedure? 

For the most part the techniques to be studied are designed for continu­
ous and/or categorical data. Quantitative variables, with discrete scales or 
ordinal scales, will sometimes be treated as if they have continuous scales, 
and in other cases they may be treated as categorical. For the purpose 
of outlining the techniques, variables are classified as either quantitative 
or categorical. Occasionally ordinal data techniques will be introduced to 
present alternative but similar procedures. 

The topics in this text are split into two volumes. Volume I is primarily 
devoted to procedures for linear models. In addition to the linear regression 
model, this volume also includes univariate data analysis, bivariate data 
analysis, analysis of variance and partial correlation. Volume 11 is designed 
to provide an overview of techniques for categorical data analysis and mul­
tivariate methods. The second volume also includes the topics of logistic 
regression, cluster analysis, multidimensional scaling and correspondence 
analysis. 
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Topics in Volume II 

The topics in Volume 11 can be classified using the categories exploratory 
or confirmatory and can also be classified according to the types of mea­
surement scales used for the variables involved. The topics in the first three 
chapters (6, 7 and 8) are primarily confirmatory in the sense that the tech­
niques are usually concerned with making inferences about models and 
distribution parameters. In Chapter 7 however there is some discussion of 
data analysis techniques for multivariate sampies. The last two chapters 
(9 and 10) are for the most part exploratory and are generally concerned 
with data reduction and data matrix approximation. In Chapter 9 there is 
some discussion of inference with respect to the factor analysis model ho­
ever the emphasis in the chapter is data reduction. In Chapter 10 the topics 
presented are solely concerned with data reduction, matrix approximation 
and exploratory analysis. 

The techniques presented in Chapter 6 are intended for multidimen­
sional contingency tables and hence would be classified as categorical. In 
Chapter 7 the techniques presented are designed for studying relationships 
among variables assumed to be distributed as multivariate normal and 
hence must be continuous. In Chapter 8 the models studied are concerned 
with relationships between categorical and continuous variables. In particu­
lar the concern is whether the relationships among the continuous variables 
are the same for all categories defined by the categorical variables. In Chap­
ter 9 the topics of principal components and factor analysis are primarily 
designed for data matrices of continuous variables, whereas correspondence 
analysis is designed for categorical data. In Chapter 10, cluster analysis is 
presented for both types of data, whereas multidimensional scaling is con­
cerned with the determination of continuous scales based on ordinal or 
interval input data. 

6.2 Two-Dimensional Contingency Tables 

This section presents a discussion of bivariate distributions for categorical 
random variables and includes an outline of various commonly used sam­
pling models. For inference purposes a sampie of n observations is simul­
taneously cross-classified with respect to the two categorical random vari­
ables. The resulting joint frequencies are summarized in a two-dimensional 
contingency table. The section also surveys procedures for making infer­
ences regarding the relationship between the two variables. 
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TABLE 6.5. Joint Density for X and Y 

y 

1 2 3 ... c Total 

1 111 112 112 ... l1e 11. 

2 121 122 123 ... he h 

x 3 131 132 133 ... 13e h 

... 
r Ir1 Ir2 Ir3 ... Ire Ir. 

Total h /.2 f.3 ... I·e 1.00 

6.2.1 BIVARIATE DISTRIBUTIONS FOR CATEGORICAL 

DATA 

Joint Density Table 

The joint distribution for a pair of categorical random variables can be illus­
trated in a two-dimensional table such as Table 6.5. The random variable 
X is assumed to have a range of values consisting of r categories, whereas 
the variable Y is assumed to have c categories. The cell density or joint 
density for cell (i,j) is denoted by !ij, i = 1,2, ... , r; j = 1,2, ... , c; 
where it is understood that the first subscript refers to the row and the 
second subscript to the column. The marginal densities are denoted by k 
and f.j for the row and column variables respectively. The conditional den­
sities for the rows given column j will be denoted by k (i I j) and for the 
columns given row i by f.j(j I i). 

Independence 

The random variables X and Y are independent if the joint density !ij can 
be expressed as the product of the corresponding marginal densities k and 
f.j for every cell (i,j). Independence can also be defined in terms of the 
conditional densities and the marginal densities. X and Y are independent 
if the conditional density for each row is equal to the marginal density for 
Y or equivalently if the conditional density for each column is equal to the 
marginal density for X. 

Example 

The example presented in Table 6.6 illustrates a joint density function 
for two random variables X and Y. The observations were obtained from 
a large population of taxpayers in a large number of municipalities. The 
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TABLE 6.6. Population Joint Density Age versus Opinion on 
Crime Situation 

Opinion Regarding Crime Situation 

Not Slightly Moderately Very 
Age Level Serious SerioUB SerioUB Serious Totals 

Under 30 0.015 0.076 0.121 0.055 0.267 

30 to 39 0.017 0.117 0.111 0.037 0.282 

40 to 49 0.012 0.074 0.104 0.032 0.222 

50 to 59 0.007 0.034 0.072 0.020 0.133 
60 and over 0.001 0.027 0.038 0.030 0.096 

Totals 0.052 0.328 0.446 0.174 1.000 

TABLE 6.7. Conditional Density for Opinion at Various Levels 

Not Slightly Moderately Very 
Level j Serious Serious Serious Serious Totals 

1 2 3 4 5 

1 Under 30 f.j(j 11) 0.056 0.285 0.453 0.206 1.000 
2 30 to 39 f.j(j 1 2) 0.060 0.415 0.394 0.131 1.000 

3 40 to 49 f.j(j 1 3) 0.054 0.333 0.469 0.144 1.000 
4 50 to 59 f.j(j 14) 0.053 0.256 0.541 0.150 1.000 
5 60 & over f.j(j 15) 0.010 0.281 0.396 0.313 1.000 
Marginal density 

for opinion f.j 0.052 0.328 0.446 0.174 1.000 

densities in the table are assumed to be the population densities. Each 
taxpayer was asked to respond to a question regarding the seriousness of 
the crime situation in the neighborhood. The taxpayers were also asked to 
give their ages. 

The column totals and row totals in Table 6.6 provide the marginal 
densities for crime opinion and age. A comparison of the joint densities 
fij with the products of the corresponding marginals k and f.j suggests 
that the two variables are not independent. The departure from indepen­
dence is more easily observed from a comparison of the conditional densities 
f.j(j I i) for opinion at each age level. These conditional densities are shown 
in Table 6.7. 
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TABLE 6.8. Age versus Opinion on Crime Situation 

Row and Column Proportions· 
Opinion Regarding Crime Situation 

Not Slightly Moderately Very Row Total 
Age Level Serious Serious Serious Serious Proportion 

1 2 3 4 5 

1 Under 30 0.056/0.288 0.285/0.232 0.453/0.271 0.206/0.318 0.267 
2 30 to 39 0.060/0.322 0.415/0.357 0.394/0.248 0.131/0.210 0.281 
3 40 to 49 0.054/0.237 0.333/0.225 0.469/0.234 0.144/0.185 0.223 
4 50 to 59 0.053/0.136 0.256/0.104 0.541/0.162 0.150/0.113 0.133 
5 60 & over 0.010/0.017 0.281/0.082 0.396/0.085 0.313/0.174 0.096 
Column total 

proportion 0.052 0.328 0.446 0.174 1.000 

·The number on the left in each cell is the row proportion and the number on the right is 
the column proportion. 

Row and Column Proportions 

A comparison of the conditional densities /.j (j I i) for opinion on crime 
given age in Table 6.7, to the marginal density for opinion on crime /.j in 
Table 6.7, reveals that the opinion very serious (j = 4) is more common 
among the 60 and over (i = 5) and the under 30 (i = 1) levels than among 
the middle three levels (i = 2,3,4). We can also see that for the 30-39 
age group the most likely choice is slightly serious, whereas for the age 
groups 40 to 49 and 50 to 59 the most likely choice is moderately serious. 
The variation in the behavior of the conditional densities over the five 
age categories suggests an interaction between the rows and columns. The 
conditional densities /.j (j I i) are often referred to as row proportions, and 
the marginal density /.j is called the column total proportion. In a similar 
fashion the column proportions A (i I j) can be compared to the row total 
proportions A as shown in Table 6.8. The row proportions and column 
total proportions are also shown in Table 6.8. 

Row and Column Profiles 

The row and column proportions are also commonly referred to as rowand 
column profiles. The term profile is often used in connection with graphical 
displays of relationships in a contingency table. 

Figures 6.1 and 6.2 display the row and column profiles for the crime 
opinion table. The figures also contain a plot of the marginal densities 
(broken line) for the column and row densities respectively. A comparison 
of the marginal density to the profile can be used to determine the nature 
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FIGURE 6.1. Row Profiles for Crime Opinion Data 

of any departures from independenee. For the row profiles in Figure 6.1 we 
ean see that the 60 and over age group has the greatest departure from 
independenee, while the 50-59 and 30-39 age group profiles also display 
some differences from the eolumn marginal densities. Figure 6.2 shows the 
eolumn profiles eompared to the row marginal densities. The greatest de­
parture from independence oeeurs in the very serious eategory. Profile plots 
are also useful in eorrespondenee analysis to be diseussed in Chapter 9. 
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FIGURE 6.2. Column Profiles for Crime Opinion Data 

Odds Ratios 

The joint distribution can also be studied by examining the odds ratios. 
The ratio !ij / fis measures the odds of being in column j relative to col­
umn s given row i. The ratio ftj / fts measures the odds for column j versus 
column s given row t. The odds ratio is the ratio of the two sets of odds 
and is given by 

!ij / ftj = !ijfts. 
!is fts fis ftj 

The odds ratio is necessarily 1 if the independence assumption holds. Under 
independence, the odds of being in column j relative to column s do not 
depend on the row. 



6.2 Two-Dimensional Contingency Thbles 17 

TABLE 6.9. Two-Dimensional Contingency Thble 

Y Categories 

1 2 3 ... c Total 

1 nll n12 n13 ... nie ni· 

2 n2i n22 n23 ... n2e n2· 

X Categories 3 n3i n32 n33 ... n3e n3· 

... 
r nri n r 2 n r 3 ... n re n r · 

Total n·i n.2 n.3 ... n' e n 

Example 

For the crime opinion distribution in Table 6.6, the odds for the category 
very serious relative to the category not serious in the under 30 age group 
is 0.055/0.015 = 3.67, whereas for the 60 and over age group this ratio is 
0.030/0.001 = 30.0. The ratio ofthe two odds ratios is therefore 3.67/30.0 = 
0.12 which indicates that the odds of very serious relative to not serious are 
much higher for the 60 and over age group than for the under 30 age group. 
Since this odds ratio is not 1, crime opinion and age are not independent. 

6.2.2 STATISTICAL INFERENCE IN Two-DIMENSIONAL 

TABLES 

The Two-Dimensional Contingency Table 

A two-dimensional contingency table is produced when a sampie of n ob­
servations is simultaneously cross-classified with respect to two categorical 
random variables. The notation for a two-dimensional contingency table is 
shown in Table 6.9. The contingency table is similar to the joint density ta­
ble shown in Table 6.5, except that the joint densities fij are replaced by the 
observed frequencies or cell frequencies nij, i = 1,2, ... , Tj j = 1,2, ... ,c. 
A contingency table with T rows and c columns is called an T x c contingency 
table. 

The contingency table provides a summary of the sampie joint frequency 
distribution. Dividing the sampie frequencies by n yields a table of sam­
pie joint densities. The row and column totals for the contingency table 
represent the sample marginal frequency distributions for the two random 
variables. 
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TABLE 6.10. Observed Frequencies: Driver Injury Level 
versus Seatbelt Usage 

Driver Injury Level 
Seatbelt 
Usage None Minimal Minor Major/Fatal Total 

Yes 12,813 647 359 42 13,861 
No 65,963 4,000 2,642 303 72,908 

Total 78,776 4,647 3,001 345 86,769 

Example 

An example of a two-dimensional contingency table is given in Table 6.10. 
Prior to the enactment of seatbelt legislation in the province of Alberta, 
a study was carried out to determine the usefulness of seatbelts for the 
prevention of injury. A sampie of 86,769 automobile accident reports were 
studied. For each accident report, the injury level for the driver was das­
sified into one of four categories, none, minimal, minor and major/fatal. 
Each driver was also classified as to seatbelt usage, yes or no. Table 6.10 
displays the 2 x 4 contingency table produced from this sampie. This con­
tingency table will be used to illustrate the inference techniques presented 
throughout this section. 

Sampling Models for Contingency Tables 

There are a variety of sampling models that can be used to describe the pro­
cess that yielded the (r x c) contingency table of n observations. The most 
common models are the multinomial, hyperyeometric, Poisson and prod­
uct multinomial. The most obvious extension of the simple random sampie 
assumed for quantitative bivariate analysis is the multinomial distribution. 

Multinomial 

For the multinomial distribution, a random sampie of n observations is 
selected from an infinite population. The observations are then classified 
into one of the rc cells of the table. The joint density for the sampie cell 
frequencies is given by 

n! 
f(nu,n12, ... ,nrc ) = -r--c--

TI TI nij! 
i=lj=l 

r c 

rrrr 
i=lj=l 
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where L;=1L;=1nij = n. The means, variances, and covariances for the 
nij are given by 

V[nij] = n!ij(l- !ij) i = 1,2, ... , Tj 

j = 1,2, ... ,Cj 

i =1= k, j =1= f 
i, k = 1,2, ... , Tj 

j, f = 1,2, ... , c. 

The maximum likelihood estimators of the cell density parameters !ii are 
the corresponding sampie proportions nii / n. A useful property of the multi­
nomial is that sums of multinomial random variables are also multinomial. 
The parameters are also summed to get the corresponding parameters for 
the distribution of the sums. A special case of the multinomial is the bi­
nomial where C = 2 and T = 1. In this case there are only two possible 
cells. 

Hypergeometric 

If the population is finite with known population cell frequencies Nii , i = 
1,2, ... ,T, j = 1,2, ... ,c, the density of the cell frequencies nii obtained 
from a random sampie of n observations is given by the hypergeometric 
density 

r C N .. ' N' 
!(nu,n12, ... ,nrc )=IIII .. '(N.·'~ .. )'/ '(N~ )'. . . n" . " n.,. n. n . 

• =1,=1 

The means, variances, and covariances are given by 

E[nij] = n!ij, 

V[nii] (~ = ~) n!ii(l- !ii)' 

Cov(nii,nkl) = -(~ = ~) n!ijlk/. 

where!ij = Nij/N, i = 1,2, ... , Tj j = 1,2, ... , c. In the case oflarge finite 
populations the hypergeometric can be approximated by the multinomial, 
provided each Nii is large. 

Poisson 

In the multinomial and hypergeometrie densities the total sampie size n 
is fixed. An alternative assumption is to allow n to be a random variable 
as well. A useful distribution in this case is the Poisson distribution. The 
distributions of the cell frequencies nij are assumed to be mutually inde­
pendently distributed as Poisson with parameters Pij = E[nij]. In this 
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case the total sampie size n also has a Poisson distribution with parameter 
F.. = E[n] = L:=lL~=lFij. The variance V[nij] is also given by Fij . The 
joint density in this case is given by 

r c 
f( ) II II Fni; -F"j , nll, n12,' .. , nrc = ij e "nij" 

i=lj=l 

Since the cell frequencies are assumed to be mutually independent, Cov( nij, 
nkt) = 0, i =1= k, j =1= i, i, k = 1,2, ... , Tj j, i = 1,2, ... , c. The maxi­
mum likelihood estimators of the parameters Fij are the sampie frequen­
cies nij. A useful property of the mutually independent Poisson assumption 
in contingency tables is that the conditional distribution of the nij, given 
a fixed n, is a multinomial distribution. 

Product Multinomial 

The product multinomial distribution arises from the joint distribution of 
two or more independent multinomial distributions. In the two-dimensional 
contingency table, the row sample sizesor row marginals, ni., i = 1,2, ... , T, 

may be fixed. In this case the density for the cell frequencies in each row 
is given by the multinomial. Each row of the table is referred to as a sub­
population. The joint density for all T rows is given by the product of 
the individual row densities and hence the term product multinomial. The 
product multinomial density for an T x c contingency table is given by the 
product of the T multinomial densities corresponding to the rows and hence 

The product multinomial can therefore be derived from the multinomial by 
conditioning on the row sampie sizes ni .. A product multinomial can also 
be obtained by fixing the column marginals or column sample sizes, n'j, 
instead of the row sampie sizes. 

Example 

To characterize the differences among the sampling models, consider the 
collection of questionnaire returns from a population of taxpayers. Each 
questionnaire provides information regarding two categorical random vari­
ables, X and Y say, state of residence and income category. The entire 
collection of returned questionnaires, N, is assumed to be a population. 
The responses generate a two-dimensional table with Nij in the cell (i,j). 

A random selection of n questionnaires from this population can be aB­

sumed to yield a multinomial or hypergeometrie distribution depending on 
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the magnitudes of the population quantities Nij . If the Nij are relatively 
large, then the multinomial distribution can be assumed. 

Suppose that over a fixed time period of two days questionnaires are 
drawn randomly from the population. The sampie size n is not fixed. The 
number of questionnaires obtained in each cell can be assumed to be Pois­
son independent of the other cells. The conditional distribution of the cell 
frequencies given the total sampie n in this case is then multinomial. 

A third possible sampling scheme first divides the population of ques­
tionnaires with respect to the categories of one of the random variables, 
say state of residence. Random sampies of predetermined sizes are then se­
lected from each subpopulation or state. The distribution in this case is a 
product multinomial or product hypergeometric. This distribution can be 
obtained from the multinomial or hypergeometric scheme by conditioning 
on the subpopulation sampie sizes. 

Test o/Independence 

A common test of independence between the two categorical random vari­
ables X and Y in contingency tables is the Pearson X2 test. The random 
sampie is assumed to have been drawn from a multinomial population. 
If X and Y are independent, we would expect that the sampie densities 
nij/n should be similar to the product of the sampie marginal densities 
(ni-/n)(n.j/n) , and hence the estimated expected frequencies under inde­
pendence are (ni. n.j ) / n. If this hypothesis of independence is true, in large 
sampies the Pearson statistic 

G2 = tt (nij - ni.n .j/n)2 

. l' 1 ni.n'J-!n .= J= 

has a X2 distribu.tion with (r - l)(c - 1) degrees of freedom. Large values 
of G2 reflect large differences between nij/n and the product (ni-/n)(n.j), 
and therefore the independence hypothesis is rejected if G2 is too large. 

The Pearson X2 statistic is based on the assumption of a multinomial 
population with rc cells. In large sampies, the sampie proportions ni-/n and 
n.j/n are assumed to be normally distributed. The Pearson X2 is obtained 
from the distribution of the sums of squares of standardized normal random 
variables. 

An alternative X2 statistic to G2 is obtainable using the likelihood ratio 
approach. Again assuming a multinomial population, in large sampies the 
statistic 

r c 

H 2 = 2LLnij In (:'i~n.) 
i=lj=l •. 'J 

has a X2 distribution with (r -1) (c -1) degrees of freedom if the hypothesis 
of independence holds. In large sampies the two X2 statistics are usually 
quite comparable. 
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TABLE 6.11. Driver Injury versus Seatbelt Usage Level 

Obaerved and Expected Frequencies under Independence 
Driver IDjury Level 

Seatbelt 
Usage None Minimal Minor Major/Fatal Total 

Yes Observed 12,813 647 359 42 13,861 
Frequency 
Expected 12,584.2 742.3 479.4 55.1 
Frequency 

No Observed 65,963 4,000 2,642 303 72,908 
Frequency 
Expected 66,191.8 3,904.7 2,521.6 289.9 
Frequency 

Totals 78,776 4,647 3,001 345 86,769 

Example 

For the example relating seatbelt usage to driver injury level in automobile 
accidents, the value of the Pearson X2 for the independence hypothesis 
is G2 = 59.224. This chi square statistic has three degrees of freedom 
and is significant at the 0.000 level. The likelihood ratio statistic has the 
value H 2 = 42.9690 and a corresponding p-value of 0.000. Generally, the 
two goodness of fit statistics have similar values. There appears to be a 
relationship between seatbelt usage and driver injury level. 

Table 6.11 compares the observed frequencies to the expected frequencies 
under independence. A comparison of the numbers in each cell shows the 
nature of the departure from independence. The frequency of injury for all 
types of injury for drivers wearing seatbelts is less than expected under 
independence. 

Sampling Model Assumptions 

Our test for independence in contingency tables outlined above assumed 
that the data were obtained as a random sampie of size n from a multi­
nomial population. The population units were divided among TC cells with 
the probability of a unit occuring in cell (i, j) being denoted by fij where 
~;=l~j=dij = 1. The marginal densities for the rows are given by A, 
where A = ~j=dij, i = 1,2, ... , T. Similarly the marginal densities for 
the columns are given by f.j, where f.j = ~;=dij, j = 1,2, ... , c. The 
sampie estimates of fij, A and f.j are given by nij/n, ni-/n and n.j/n re-
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spectively. These estimators are the maximum likelihood estimators under 
the multinomial sampling assumption. 

Poisson Distribution 

As discussed earlier in this section, two commonly used alternative sampling 
models lead to the same maximum likelihood estimators as the multinomial. 
If there is no restrietion placed on the total sampIe size, the cell frequencies 
nij may be viewed as random variables with expectation E[nij] = Fij . If 
each of the nij are assumed to have an independent Poisson distribution, 
the maximum likelihood estimators for E[nij] are given by (ni.n-j)/n. For 
the Poisson assumption the total sampIe size n is not fixed. If the sampling 
is carried out for a fixed period of time and then stopped, the total sampIe 
size n acquired up to that point is also a random variable. The conditional 
distribution of the nij, given fixed n in this case, is a multinomial distribu­
tion; hence, the above procedures can be applied to the Poisson sampling. 
The independence hypothesis in the Poisson case implies that the true cell 
means E[nij] satisfy the independence hypothesis given by 

p. = E[ .. ] = E[ni.]E[n.j] E[ ] = E[ndE[n-j] 
') n.) E[n]E[n] n E[n]' 

Product Multinomial Distribution 

A second alternative to the multinomial population is called the product 
multinomial. In the product multinomial, additional restrietions are placed 
on the sampIe. Either the row totals ni. or the column totals n.j are fixed in 
advance. In this case the sampIe is restricted to contain a specific number 
of observations from each category of one of the variables. The maximum 
likelihood estimators of the unrestricted marginals, either k or f.j, are 
given by ni.jn or n.j/n respectively. The expected cell frequencies under 
independence are estimated by (ni.n.j)/n as in the two previous cases. In 
this case the test is often referred to as a test of homogeneity of row or 
column proportions. 

If the marginals ni. are fixed, then we are sampling independently from 
the r row subpopulations. In this case, the independence hypothesis lij = 
kf.j is written in the alternative form !ij/k = f.j, which states that 
the conditional densities for each level of j in each row i are equivalent 
to the marginal densities at each level of j. The estimated expected cell 
proportions under this model are obtained by rewriting nij = (ni.n.j)/n in 
the form nij/ni' = n.j/n. The estimated expected row proportions nij/ni' 
for each level of j in each row are expected to be homogeneous over the r 
rows. Similarly in the case of fixed column marginals the estimated expected 
column proportions should be homogeneous over the columns. 

All three sampling models for the r x c contingency table yield the same 
estimates for the expected frequencies under independence. The likelihood 
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ratio X2 statistic H2 given above is tberefore identica1 for all three sampling 
models. 

Standardized Residuals 

A useful way of comparing tbe observed and expected frequencies is to 
determine tbe standardized residuals for each cello Tbe components of the 
Pearson X2 statistic provide information about wbich cells make tbe largest 
contribution to X2 • Tbe square roots of each of the terms in tbe Pearson 
X2 statistic are commonly called the standardized residuals. For cell (i, j) 
the standardized residual is given by 

rlij = (~j - ni.n.j/n) / V(n,.n.j)/n. 

An alternative method of standardizing the residuals is to use tbe Freeman­
Thkey deviations given by 

r2ij = ..;n;; + Jnij + 1- V(4n,.n.j/n) + 1 . 

For tbe observed and expected frequencies in Table 6.11, tbe standardized 
residuals are given by 2.0, -3.5, -5.5 and -1.8 for yes and -0.9, 1.5, 2.4 
and 0.8 for no. Tbe Freeman-Tukey deviations are 2.0, -3.6, -5.9 and -1.8 
for yes and -0.9, 1.5, 2.4 and 0.8 for no. Tbe two methods of determining 
residuals produce very similar results in botb caseS. 

CO'T'7"espondence Analysis 

An alternative approach to the study of relationships in a two-dimensional 
contingency table is based on a singular value decomposition of the two 
matrices of row and column proportions or profiles. In this method the de­
partures from independence for the row profiles are characterized in terms 
of two orthogonal dimensions determined from the singular value decompo­
sition of the row profile deviations from independence. The row categories 
can then be plotted on the two-dimensional grapb to show the departure 
from independence. A similar plot can be obtained for the column profile 
deviations from independence. The two pairs of dimensions (one pair for 
tbe row profiles, one pair for the column profiles) can be viewed as a scaling 
of the row and column categories. Thus two scales are derived for each of 
tbe two sets of profiles. Tbe scales are determined in such a way that the 
amount of variation explained among profile deviations is maximized. 

This topic will be discussed more extensively in Chapter 9. 

6.2.3 MEASURES OF ASSOCIATION 

If the. independence model does not hold it is sometimes of interest to 
measure the degree of association between the row and column categories. 
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A useful approach to the measurement of association uses the concept of the 
proportional reduetion in error achieved through knowledge of one variable 
when predicting the other variable. 

Goodman and Kruskal's Lambda 

For an individual drawn at random from the population, if no information 
is available about which row or column the individual belongs to, the best 
prediction for the celliocation would be the one corresponding to the largest 
row and column population marginal densities. We denote the maximum 
row and column maryinal densities by Im. and f.m respectively. Clearly, 
the probabilities of making an error in each case are (1- Im.) and (1- f.m) 
respectively. 

If the column category for the individual is known, the best prediction for 
the unknown row category is the one corresponding to the largest density in 
the given column. Given column j we denote the maximum density by Imj. 
The probability of making an error in this column is therefore f.j - Imj 
and over all columns the probability of making an error is 1 - 'L'j=dmj. 

The difference between the two error probabilities is given by 

After dividing this expression by the probability of error in predicting the 
row with no information, Goodman and Kruskal's Lambda is obtained. This 
ratio is given by 

c 

Am. = (Llmj - Im.) /(1- Im.). 
j=l 

The measure of association Am. therefore denotes the proportional reduetion 
in error for row predictions when the column is known. Similarly, the pro­
portional reduction in error for column predictions given the row is defined 
by 

r 

A.m = (I)im - f.m) / (1 - f.m). 
i=1 

The above two measures of association are said to be asymmetrie in that 
one of the two variables is being predicted using the other. Asymmetrie 
measure 01 association that combines the logic used above is given by 

1 c 1 r 1 1 
A = {[2Llmj + 2Llim] - 2[f.m - Im.]} /[1- 2[f.m + Im.]]. 

j=1 i=1 
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Example 

For the erime opinion population described in Table 6.6, the lambda mea­
sures of association are given by 

_ (0.121 + 0.117 + 0.104 + 0.072 + 0.038) - 0.446 
Am. - 1 _ 0.446 = 0.01 

_ (0.017 + 0.117 + 0.121 + 0.055) - 0.282 
A.m - 1 - 0.282 = 0.039 

_ !(0.452) + !(O.31O) - !(O.282) - HO.446) 
- 1 - !<0.282) - !(O.446) 

=0.027. 

All three measures of predictive association indicate that the association is 
extremely weak. 

Inference for Lambda 

A eontingency table ean be used to make inferenees about the population 
measure of association defined above. A sample estimator for the Goodman­
Kruskal measure of association can be used for this purpose. Replacing 
the true densities k and f.j by sample densities derived from the eell 
frequencies, nij, the estimators for the Goodman-Kruskal measures ean be 
obtained. To measure the predictability of the column given the row, the 
estimator is given by 

r 

im = [E~m - n.m]j[n - n.m], 
i=1 

where ~m denotes the largest value of nij in row i, and n.m denotes the 
largest value of the marginal totals n.j. 

In large samples the statistie z = (im -A.m)/U>'.m has a standard normal 
distribution. The estimator u>'.m is given by 

r 

u~.m = (n- L:nim)(L:nim+n.m-2n~m)/(n-n.m)3, 
i=1 

where n:m denotes the sum of the nij in the same eolumn as n.m. This 
statistie eannot be applied if im = 0 or im = 1. The hypotheses Ho: A.m = 
o and Ho: A.m = 1 are rejected unless im = 0 or im = 1 respectively. 

In a similar fashion the measure of predietability for the row given the 
columns ~m. is given by 

c 

~m. = [L:nmj -nm.]/[n-nm.]i 
j=1 

where nmj denotes the largest value of nij in eolumn j and nm. denotes 
the largest value of the marginal totals ni .. 
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Example 

For the sampie data presented in Table 6.10, the two measures of association 
im and ).m. are zero. The n~seatbelt category dominates the seatbelt 
category for every injury level and the n~injury category dominates the 
other injury categories for both seatbelts and no seatbelts. 

6.2.4 MODELS FOR Two-DIMENSIONAL TABLES 

Up to this point in our study of the joint distribution for qualitative bi­
variate random variables, the departure from independence was charac­
terized by examining the behavior of row and column proportions and/or 
by the measurement of association between rows and columns. Although 
such techniques are usually sufficient for characterizing the behavior in tw~ 
dimensional tables, higher dimensional tables are more easily studied using 
models that relate cell frequencies. Before discussing multidimensional ta­
bles it will be useful to introduce cell frequency models for t~dimensional 
tables. 

The bivariate distribution can also be characterized in terms of proba­
bility models relating cell probabilities or densities. In the previous section 
the independence model was evaluated using a X2 test. This model is given 
by 

i = 1,2, ... ,Tj j = 1,2, ... ,c. 

In addition to the independence model, there are simpler models that could 
also be used. 

Equal Gell Probability Model 

The simplest model for a two dimensional table is the equal cell probability 
model 

/ij = I/re, i = 1,2, ... , rj j = 1,2, ... , c 

implying that all rc possible events are equally likely. 

Gonstant Row or Golumn Densities 

Models that assume constant densities across rows or constant densities 
down columns are also possible and are given respectively by 

fij = {l/c)Ji. and hence constant column densities f.j = l/c 

and 
fij = {l/r)f.j and hence constant row densities Ji. = l/T. 

In the constant column density model the marginal density in each column 
is l/c whereas for the constant row density model the marginal density in 
each row is l/r. In each case the rows and columns are independent and, in 
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addition, one of the marginals is constant. In the constant column density 
model the column conditionals are given by f.j{j I i) = l/c. Similarly, for 
the constant row density model fi.(i I j) = l/r. An examination of the 
joint densities in Table 6.6 reveals that none of these simple probability 
models would adequately describe the behavior of the cell densities. 

The Independence Model aB a Composite 01 Three Simple Models 

The independence model may be viewed as a less restrictive model than 
the constant row density and constant column density models, in that the 
marginal densities are no longer constant. Under independence the condi­
tional densities are given by 

fi.{ilj)=fi. 

and 
f.j{j I i) = f.j. 

The conditional densities are therefore equal to the marginal densities. In 
the independence model the row conditionals are the same for each column 
and the column conditionals are the same for each row. Unlike the constant 
row or column density models described above under independence the 
marginal densities are not constant. 

The independence model introduced in Section 6.2.1 may also be written 
in terms of the three simpler models by writing it in the form 

!ij = [l/rc][rfi.][cf.j] 
= [l/rcHfi./{l/r)][f.j/{l/c)], i = 1,2, ... , r, 

j = 1,2, ... ,co 

The first term of the product represents the density for cell (i, j) under the 
constant cell density model. The second term represents the ratio of the 
marginal density for row i to the marginal density under the constant row 
marginal model. The third term represents the ratio of the marginal density 
for column j to the marginal density under the constant column marginal 
model. In comparison to the three simple models, the independence model 
may be viewed as the product of an avemge eJJect [l/rc], a row eJJect [r fi.], 
and a column eJJect [cf.j]. 

Example 

For the crime opinion distribution introduced in Table 6.6 the average effect 
is I/re = 0.0050. The row effects are 1.337, 1.404, 1.110, 0.663 and 0.481 
respectively, and the column effects are 0.210, 1.308, 1. 786 and 0.695. The 
row effects indicate that larger than average proportions of the population 
fall into the younger age categories, whereas the column effects indicate that 
larger than average proportions of the population prefer the two moderate 
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TABLE 6.12. Interactions Between Age and Crime 
Opinion 

Opinion Regarding Crime Situation 
Not Slightly Moderately Very 

Age Level Serious Serious Serious Serious 

Under 30 1.08 0.87 1.01 1.19 
30 to 39 1.14 1.27 0.88 0.75 
40 to 49 1.07 1.01 1.05 0.83 
50 to 59 1.03 0.78 1.22 0.85 
60 & over 0.18 0.85 0.89 1.81 

views of the crime situation. Under the independence model, therefore, 
the row effects and column effects account for all the variation in the cell 
densities. 

The Saturated Model 

If the independence model does not hold, the joint density may be expressed 
as a product of the above effects and a residual. The model is given by 

The fourth term 
h;/Af.; 

is the added residual term. This residual term guarantees that the equation 
holds for all joint densities. This model is called a saturated model because 
it fits the table perfectly. This last term is called the interaction term be­
cause it measures the interaction between rows and columns. The degree of 
departure of the interaction term from the value 1 indicates the magnitude 
and direction of the departure from independence. 

Example 

Table 6.12 presents the magnitudes ofthe interactions for the crime opinion 
example. A quick perusal of the table reveals the pattern of departures 
from independence. The largest and smallest values of the interaction term 
are in the highest age category. Relatively few people in the 60 and over 
category view the crime situation as not serious, whereas a relatively large 
number view the situation as very serious. For the age category 30-39, fewer 
individuals view the crime situation as very serious than would be expected 
by chance under independence. 



30 6. Contingeney Thbles 

Loglinear Charaeterization for Gell Densities 

The above method of modeling the joint distribution employed ratios to 
column and row marginals that were determined from arithmetie means of 
row and column densities. Given that we are attempting to model densities 
that are proportions, the use of geometrie means rather than arithmetic 
means may be preferable. The reader may recall that geometrie means are 
usually preferable to arithmetie means when averaging ratios. 

The geometrie mean of the TC cell densities is given by !. where 

_ 1 c r 

Inl .. = - LLInlij. 
rc j=li=l 

The geometrie means of the densities in row i and column j are given 
respectively by h. and Ij where 

1 c 

= - LInli; 
e. 1 J= 

1 r 

In I; = - LIn/i;. 
ri=l 

A Loglinear Model for Independenee 

Under the independenee assumption we may write a loglinear model as 

ln/ij = ln!. + [Inh. -ln!.] + [Inlj -ln!.] 

and henee 

/ij = !. [ ~. ][ ~j ] 
/ .. / .. 

if independenee holds. Onee again this produet of three terms may be 
viewed as an average term multiplied by a row effeet and a eolumn effect. 
The row effect is obtained from the ratio of the geometrie mean of the 
densities in row i, h., to the overall geometrie mean of eell densities, I .. 
Similarly the eolumn effect is obtained from the ratio of the geometrie 
mean of the densities in eolumn j, I j , to the overall geometrie mean of 
all eell densities, !.. The row and eolumn effects therefore are now ratios 
of geometrie means of eell densities. 
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Parameters lor the Loglinear Model 

From the definitions of the terms in the loglinear model, the terms may be 
viewed as means. New parameters J.I., J.l.1(i) and J.l.2(j) may be defined as 

J.I. 

J.l.1(i) 

J.l.2(;) 

1 r c 
= rc ~ ~ ln/i; 

i=1;=1 
1 c -= c ~ lnh; -lni .. 

;=1 
1 r -= r ~ ln/i; -lni .. 

i=1 

= ln/. 

= [lnA -ln/.] 

= [In!; -ln!.]. 

The parameter J.I. is therefore the logarithm of the overall geometrie mean 
of the densities. The parameter J.l.1(i) represents the logarithm of the ratio 
of the geometrie mean of the densities in row i to the overall geomet­
rie mea.n. Similarly, the parameter J.l.2(;) is the logarithm of the ratio of 
the geometrie mean of the densities in eolumn j to the overall geometrie 
mean. The parameters J.l.1(i) and J.l.2(j) have the properties ~r=1J.1.1(i) = 0 
and ~j=1J.1.2(;) = O. These parameters therefore are similar to the effect 
parameters used in analysis of variance. 

Under independenee the model then becomes 

lnh; = J.I. + J.l.1(i) + J.l.2(j)· 

This is commonly called the loglinear model for independence in a two­
dimensional table. The form of this model is similar to the models used in 
analysis of variance. 

The Loglinear Model with Interaction 

If the independence model does not hold, an intera.ction term can be deter­
mined that represents the departure from independence. The density can 
be expressed in the form 

- - - - - [li;/.] li; = / .. [k / / .. Hf.; / / .. ] -::-:;- . 
kf.; 

As in the previous models the interaction term (/i;/.)/(/;.1;) measures 
the ratio of the true density to the density suggested by the independence 
model. 

If independence does not hold, the loglinear form of the model can be 
written as 

ln li; = J.I. + J.l.1(i) + J.l.2(;) + J.l.12(i;) 

where the interaction parameter 1-'12(i;) is given by 

J.l.12(ij) = ln/i; + ln/. -lnA -ln!;. 
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TABLE 6.13. Age versus Opinion on Crime Situation, Logarithms of Cell 
Densities 

Opinion Regarding Crime Situation 
Age Not Slightly Moderately Very Row Row 
Level Serious Serious Serious Serious Totals Average 

Under 30 --4.200 -2.577 -2.112 -2.900 -11.789 -2.947 
30 to 39 --4.075 -2.146 -2.198 -3.297 -11.716 -2.929 
40 to 49 --4.423 -2.604 -2.263 -3.442 -12.732 -3.183 
50 to 59 --4.962 -3.381 -2.631 -3.912 -14.886 -3.722 
60 & over ~.908 -3.612 -3.270 -3.507 -17.297 --4.324 
Column 
totals -24.568 -14.320 -12.474 -17.058 ~8.420 

Column 
averages --4.914 -2.864 -2.495 -3.412 -3.421 

The interaction parameters have the properties that E~=IJtI2(ij) = 0 and 
E~=IJtI2(ij) = O. This model is eommonly referred to as the saturated 
loglinear model sinee it deseribes the densities precisely without any re­
strictions. 

Example 

For the erime opinion population discussed above, the logarithms of the cell 
densities are shown in '!'able 6.13. The logarithms of the various geometrie 
means ean be obtained from the row and coIumn averages in this tabie. The 
Iogarithm of the geometrie mean, In!., ean be obtained from the average 
of In /ij over the entire tabie. These averages are also shown in Table 6.13. 

The Iogarithms of the various geometrie means are given by the row and 
eolumn averages shown in Table 6.13. 

In/. = -3.421, In!1 = -4.914, In!2 = -2.864, 

In!3 = -2.495, In!4 = -3.412, 

Init. = -2.947, Ini2. = -2.929, Ini3. = -3.183, 

In h = -3.722, In i5. = -4.324. 

The loglinear model parameter for the overall mean is given by Jt = In /. = 
-3.421. The row and eolumn effects are obtained by subtracting In /. from 
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the row and column averages and are given by 

J.t2(1) = -1.493, J.t2(2) = 0.557, J.t2(3) = 0.926, J.t2(4) = 0.009 

J.tl(l) = 0.474, J.tl(2) = 0.492, J.tl(3) = 0.238, 

J.tl(4) = -0.301, J.tl(5) = -0.903. 

The reader should note that both the row effects and column effects sepa­
rately sum to zero. These effects therefore can be compared to zero in order 
to provide interpretation. 

From the column parameters J.t2(j) determined above, we can conclude 
that there are relatively more individuals in the columns corresponding 
to slightly serious (J.t2(2») and moderately serious (J.t2(3»), whereas for the 
opinion not serious (J.t2(l)) there are relatively few indivduals. The row 
parameters J.tl(i) indicate that there are relatively more individuals in the 
first three age categories and relatively fewer in the last two age categories. 

Under independence the logarithm of the cell densities, In /ij, as shown in 
Table 6.13 should be equal to the overall average J.t plus the corresponding 
row and column effects J.tl(i) and J.t2(j) as determined above. The difference 
between In !ij and the SUffi of the three parameters represents the departure 
from independence. 

The departure from independence can be shown using the interaction 
parameters J.t12(ij), which are obtained by subtracting the overall mean J.t 

and the row and column effects J.tl(i) and J.t2(j) from the logarithm of each 
cell frequency as given in Table 6.13. These interaction terms are 

J.t12(1l) = 0.253, 
J.t12(14) = 0.038 
J.t12(23) = -0.200, 
J.t12(32) = 0.011, 
J.t12(41) = 0.277, 
J.t12(44) = -0.220 
J.t12(53) = 0.157, 

J.t12(12) = -0.193, 
J.t12(21) = 0.355, 
J.t12(24) = -0.385 
J.t12(33) = -0.021, 
J.t12(42) = -0.220, 
J.t12(51) = -1.173, 
J.t12(54) = 0.844. 

J.t12(13) = -0.098, 
J.t12(22) = 0.230, 
J.t12(31) = 0.287, 
J.t12(34) = -0.277 
J.t12(43) = 0.161, 
J.t12(52) = 0.172, 

The reader should note that the interaction parameters necessarily sum 
to zero across each row and down each column. Under independence each 
of the above interaction parameters would be zero. By comparing the pa­
rameter values J.t12(ij) to zero, we can determine that for the opinion not 
serious, the oldest age category is underrepresented [see J.t12(51)] while the 
remaining age categories are overrepresented. For the opinion very serious, 
the oldest age category is overrepresented [see J.t12(54)] and for ages 30 to 59 
this opinion is relatively scarce [see J.t12(44)]' Thus in comparison to other 
age groups individuals in the oldest age category are more likely to choose 
the opinion very serious and less likely to choose the opinion not serious. 
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Matrix Notation lor Loglinear Model 

Tbe loglinear model outlined above can also be sbown in matrix notation 
in a similar fashion to analysis of variance models. Tbe model is given by 

Inf=Xß+E, 

wbere 

ln lu 
1 1 0 0 1 0 0 

lnhl 
1 1 0 0 0 1 0 

ln/rl 
1 1 0 0 0 0 1 
1 0 1 0 1 0 0 

lnh2 1 0 1 0 0 1 0 
lnh2 

lnf= X= 

ln/r2 
1 0 1 0 0 0 1 

ln he 1 0 1 1 0 0 
1 0 1 0 1 

ln Ire 0 0 1 0 0 1 

eu 

e21 

J.I. 
J.l.1(1) er1 

J.l.1(2) el2 

e22 

13= J.l.1(r) E= 
J.l.2(1) er2 

J.l.2(2) 

Cle 

J.l.2(e) C2e 

Crc 

This matrix notation is useful for multidimensional tables and is sometimes 
used wben employing statistical software. 

Tbe loglinear model is a useful approach for characterizing variation in 
a contingency table. It is very useful for tbe multidimensional tables wbich 
will be studied in Section 6.3. 
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6.2.5 STATISTICAL INFERENCE FOR LOGLINEAR MODELS 

Given a two-dimensional contingency table, the loglinear model parameters 
can be estimated using the sampie cell frequencies. Inferences regarding the 
model parameters can be made using both the Pearson and likelihood ratio 
X2 statistics. This section outlines the approach using the seatbelt data in 
Table 6.10. 

For the loglinear model introduced above, the independence model is 
written 

lnfij = J1. + P,l(i) + P,2(j), i = 1,2, ... , Ti j = 1,2, ... , c, 

where 

P,2(j) = 

H the independence model does not hold, the intera.ctions, J1.12(ij), can be 
determined from the loglinear model residuals 

P,12(ij) = In lij - P, - P,l(i) - P,2(j), i = 1,2, ... , Ti j = 1,2, ... , c, 

hence 

In fij = P, + P,l(i) + P,2(j) + 1-'12(ij), i = 1,2, ... ,Tj j = 1,2, ... , c, 

which must fit the data perfectly. 

The Loglinear Model Defined in Tenns of Cell Frequencies 

When fitting loglinear models to contingency tables, it is more common to 
express the loglinear model in terms of the cell frequencies rather than the 
cell densities. We shall denote the expected cell frequencies for a sampie of 
size n by Fij = nfij, i = 1,2, ... ,Ti j = 1,2, ... , c. The loglinear model is 
then written 

ln Fij = J1. + P,l(i) + P,2(j) + P,12(ij), i = 1,2, ... ,Ti j = 1,2, ... ,c, 

where 
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111(i) = 

112(j) 

J..L12(ij) 

Multiplicative Form of the Loglinear Model 

Using the antilogarithms of the parameters the loglinear model can be 
expressed in multiplicative form as 

F ij = ßoßl(i)ß2(j)ß12(ij) , 

where ßo = eJ.l, ßl(i) = eJ.ll(i) , ß2(j) = eJ.l2(j) and ß12(ij) = eJ.l12(ij) • 

Estimation for the Loglinear Model 

Estimated theoretical frequencies Eij are determined from the observed 
frequencies nij' The parameter estimates are then determined by replacing 
the F ij by the E ij in the above definitions. These estimators are maximum 
likelihood estimators under the sampling model assumptions introduced 
above. The parameter estimates are given by 

tL = 
1 r c 

rcLLlnEij 
i=lj=l 

1 c 

- LlnEij -tL 
cj=l 

1 r 

= - LlnEij - tL· 
Ti=l 

For the independence model E ij = ni. n.j In, while for the saturated model 
the F ij are estimated using E ij = nij' 

Computer Software 

The BMDP software will be used to fit the loglinear model in this section. 

Example 

The logarithms of the expected frequencies for the independence model for 
the driver injury data of Table 6.10 are shown in Table 6.14. The parameter 
estimates from this table are given by 

tL = 7.3880, tLl(l) = -0.8301, tLl(2) = 0.8301, tL2(1) = 2.8823, 

tL2(2) = 0.0518, tL2(3) = -0.3854, tL2(4) = -2.5487. 
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TABLE 6.14. Logarithms of Expected Frequencies Driver In­
jury Level versus Seatbelt Usage 

Seatbelt Driver Injury Level 
US&ge None Minimal Minor Major/Fatal Total 

Yes 9.4402 6.6098 6.1725 4.0091 26.2316 
No 11.1003 8.2699 7.8326 5.6695 32.8723 

Total 20.5405 14.8797 14.0051 9.6786 59.1039 

TABLE 6.15. Logarithms of Observed Frequencies Driver In-
jury versus Seatbelt Usage 

Seatbelt Driver Injury Level 
Usage None Minimal Minor Major/Fatal Total 

Yes 9.4582 6.4723 5.8833 3.7377 6.3879 
No 11.0968 8.2940 7.8793 5.7137 8.2460 

Total 10.2775 7.3832 6.8813 4.7257 7.3169 

The reader should note how the row effects and column effects separately 
sum to zero. Under the independence hypothesis, these parameter estimates 
indicate that the frequencies in the seatbelt row are relatively low and in 
the no seatbelt row they are consequently very high. The column or injury 
level parameters indicate that the no injury category has a relatively large 
frequency and the major/fatal category has a relatively low frequency. We 
have already seen from the X2 test of independence in Section 6.2.2 that 
the independence model does not fit the data in the table. The values for 
both the Pearson and likelihod ratio X2 statistics were significant at the 
0.000 level. Therefore the saturated model must be used to describe the 
variation in the table. 

The logarithms of observed frequencies are presented in Table 6.15. The 
parameter estimates for the saturated model are obtained by using the 
observed frequencies nij for the estimated expected frequencies Eij in the 
estimation equations above. The interaction parameters are given by 

fJ,12(ij) = In nij - fJ, - fJ,1(i) - fJ,2(j) , i = 1,2, ... ,Tj j = 1,2, ... ,c. 

The reader should note that these parameter estimates are different than 
those obtained for the independence model. In this case Eij has the value 
nij, whereas for the independence model Eij = ni.n.j/n. 
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For the observed frequeneies in Table 6.15 the parameter estimates are 

fJ. = 7.3169, 
fJ.2(1) = 2.9606, 
fJ.2(4) = -2.5913, 
fJ.12(13) = -0.0689, 
fJ.12(22) = -0.0182, 

fJ.l(l) = -0.9290, 
fJ.2(2) = 0.0663, 
fJ.12(1l) = 0.1097, 
fJ.12(14) = -0.0590, 
fJ.12(23) = 0.0689, 

fJ.l(2) = 0.9290 
fJ.2(3) = -0.4356, 
fJ.12(12) = 0.0182, 
fJ.12(21) = -0.1097, 
fJ.12(24) = 0.0590. 

The reader should note how the row effects and eolumn effects sum to 
zero and how the interaction effects separately sum to zero in each row 
and column. The estimates of the interaction parameters indieate that for 
individuals who wore seatbelts, the frequeney of minimal, minor and ma­
jor/fatal injuries is lower than for those who did not wear seatbelts. An 
individual in a ear accident who wears a seatbelt therefore is more likely 
to be in the no injury eategory and less likely to be in the minimal or 
major/fatal eategory than for individuals who do not wear seatbelts. 

The antilogarithms of these parameter estimates ean be used to express 
the parameters in terms of the geometrie mean and ratios of geometrie 
means. The antilogarithms are given by 

efJ. = 1505.530, 
efJ.2(1) = 19.310, 
e{J.2(4) = 0.075, 
e{J.12(13) = 0.933, 
efJ.12(22) = 0.982, 

efJ.l(l) = 0.395, 
efJ.2(2) = 1.0685, 
efJ.12(1l) = 1.116, 
efJ.12(14) = 0.943, 
efJ.12(23) = 1.071, 

efJ.l(2) = 2.532, 
efJ.2(3) = 0.647, 
efJ.12(12) = 1.018, 
efJ.12(21) = 0.896, 
efJ.12(24) = 1.061. 

Each of the estimated expected frequencies ean be written as a produet of 
the appropriate multiplieative parameters 

From the antilogarithms of the parameter estimates we ean draw eonclu­
sions about the eell frequencies. The geometrie mean of the cell frequencies 
is 1505.530. The ratio of the geometrie mean of the eell frequencies relative 
to the overall geometrie mean for seatbelt users is 0.395 whereas for seat­
belt nonusers this ratio is the inverse of 0.395 = 2.532. Thus a relatively 
large proportion of the drivers did not wear seatbelts. 

The ratios to the overall geometrie mean of the geometrie means for the 
injury eategories suggest that a large proportion of the frequeney did not 
sustain any injury whereas only a very small proportion obtained a ma­
jor/fatal injury. For the minimal eategory the geometrie mean was slightly 
!arger than the overall geometrie mean, whereas for the minor eategory the 
geometrie mean was a little below the overall average. 

The interaction terms suggest that seatbelt users are less likely to sustain 
major/fatal or minor injury than seatbelt nonusers. Similarly the minimal 
injury eategory and the no injury eategory are more likely for seatbelt users 
than for seatbelt nonusers. 
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Standardized Estimates of Loglinear Parameters 

In order to compare the magnitudes of the various parameter estimates, 
standardized estimates should be obtained by dividing the estimates by the 
standard errors. For the parameter estimates fl, fl1(i) , fl2(j) and fl12(ij) 

the asymptotic variances are given by 

12r eIl CJ LL(;~-~J - ~' 
i=1j=1 '3 

Var(fl) = 

1 2 r c 1 r-l c 1 CJ LL(~)+(~)L(~)' 
i=lj=1 '3 j=1 '3 

1 2 r c 1 e-l r 1 CJ LL(~) + (--;:2 )L(~)' 
i=1 j=1 '3 i=1 '3 

12r cl r-l cl CJ LL(~)+(~)L(~) 
i=1j=1 '3 j=1 '3 

+(~)~(~) + (c - l)(r - 1) (~). 
cr2 L...J n·· re n" i=1 Z3 '3 

The square roots of these quantities provide the standard errors. 
For the driver injury data of Table 6.10, the parameter estimates, stan­

dard errors and standardized estimates are shown in Table 6.16. In large 
sampies these standardized estimates can be treated as standard normal 
deviates for the purpose of judging significance. From the standardized es­
timates we can conclude that the interactions corresponding to the minimal 
and major/fatal categories are not significant. 

A Loglinear Representation for Some Simpler Models 

In Section 6.2.4 several simple models for the two-dimensional contingency 
table were introduced. The simplest model is given by 

!ij = I/re i = 1,2, ... ,r; j = 1,2, ... , c, 

which indicates that the cell probabilities are equal. For a sampie of size n 
in this case we would expect 

Fij = n/re, 

and hence we would estimate the Fij by Eij = n/re. 
A model which assumes constant column probabilities is given by 

!ij = k/e; 
hence the cell densities in any row are uniform over the c columns. Similarly 
the constant row probability model is given by 

!ij = lj/r. 
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TABLE 6.16. Standardized Parameter Esti-
mates for Saturated Model 

Standard Standardized 
Parameter Estimate Error Estimate 

1-'1(1) -{).9290 0.0224 --41.443 

1-'1(2) 0.9290 0.0224 41.443 

1-'2(1) 2.9606 0.0227 130.562 

1-'2(2) 0.0663 0.0046 2.458 

1-'2(3) -{).4356 0.1772 -14.537 

1-'2(4) -2.5913 0.0624 --41.539 

1-'12(11) 0.1097 0.0227 4.839 

1-'12(12) 0.0182 0.0079 0.675 

1-'12(13) -{).0689 0.1020 -2.300 

1-'12(14) -{).0590 0.0624 -{).945 

1-'12(21) -{).1097 0.0227 --4.839 

1-'12(22) -{).0182 0.0079 -{).675 

1-'12(23) 0.0689 0.1020 2.300 

1-'12(24) 0.0590 0.0624 0.945 

For a sampie of size n, the expected frequencies for these two models are 
given by Fij = Fi-/c and Fij = F.j/r respectively. The expected cell fre­
quencies Fij for the two models are estimated using the sampie cell frequen­
cies nij and are denoted by Eij = n.j/r for the constant row probability 
model and by Eij = ni. / c for the constant column probability model. 

The loglinear models for the three simple models would be given respec­
tively by 

lnFij = JL, 

lnFij = JL + JL1(i), 

lnFij = JL + JL2(j)· 

Inference Procedures for the Three Simple Models 

For each model the appropriate Eij values are used to determine the pa­
rameter estimates using the following equations 
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TABLE 6.17. Comparison of Fitted Frequencies for the Simple Models 

Seatbelt Driver Injury Level 
Usage Model None Minimal Minor Major/Fatal Totals 

Yes Actual 12,813 647 359 42 13,861 
Constant 10,846.1 10,846.1 10,846.1 10,846.1 43,384.4 
Constant 39,388.0 2,323.5 1,500.5 172.5 43,384.5 
Row Prob. 
Constant 3,465.2 3,465.2 3,465.2 3,465.2 13,861 
Column Prob. 

No Actual 65,963 4,000 2,642 303 72,908 
Constant 10,846.1 10,846.1 10,846.1 10,846.1 43,384.4 
Constant 39,388.0 2,323.5 1,500.5 172.5 43,384.5 
Row Prob. 
Constant 18,227 18,227 18,227 18,227 72,907.9 
Column Prob. 

Total Actual 78,776 4,647 3,001 345 86,769 
Constant 78,775.9 4,647.0 3,001.0 345.0 
Row Prob. 
Constant 21,692.2 21,692.2 21,692.2 21,692.2 
Column Prob. 

The two X2 statistics, G2 and H2, can also be used to test null hypotheses 
for these models. The two statistics are given by 

G2 = tt (nij -.~ij)2 
i=1j=1 E'1 

and 

H2 = 2ttnij In [;i.j) 
i=1j=1 11 

These X2 statistics have (TC - 1 - k) degrees of freedom, where k equals 
the number of parameters estimated from the sampie. For the constant 
cell probability model, k = 0, whereas for the constant column and row 
probability models, k = (T - 1) and k = (c - 1) respectively. For the 
independence model k = (r - 1) + (c - 1). 

Example 

For the seatbelt data in Table 6.10, the parameter estimates for the three 
simple models are [J, = 9.2916 for the constant cell probability model, 
[J, = 7.3169, [J,1(1) = -0.929, and [J,1(2) = 0.929 for the constant col­
umn probability model, and [J, = 7.6990, [J,2(1) = 2.882, [J,2(2) = 0.052, 
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A2(3) = -0.385 and A2(4) = -2.549 for the constant row probability model. 
The estimated frequencies using the three fitted models are summarized in 
Table 6.17. In the esse of the constant row probability model, the eolumn 
totals are preserved, whereas in the constant column probability model the 
row totals are preserved. By comparing the actual frequencies to the fitted 
frequencies one can observe the goodness of fit for the three models. In 
each ease we ean see from Table 6.17 that the models do not fit the table. 

6.2.6 AN ADDITIVE CHARACTERIZATION FOR CELL 

DENSITIES 

To this point the models introdueed for contingency table densities were 
designed to characterize departures from the independence model. An al­
ternative approach ean be obtained using an additive model with deviations 
from the grand mean and from row and column means as measures of row 
and column effects. 

Each eell density li; can be expressed as a linear model comparable to 
analysis of variance models. The density li; ean be written as 

li; = f.. + (/i. - f..) + (I.; - f..) + (li; - /i. - f.; + I .. ) 
= I' + Cli + P; + Ci;, 

where I' = f.., Cl; = (/i. - f..), P; = (I.; - f..) and ci; = (li; - /i. - f.;+ f..). 
The grand mean is denoted by 1', the row effeet by Cli and the column effect 
by Pj. The term eij is an interaction term. 

As in the ease of analysis of variance, matrix notation can be used to 
represent the model for an rc eells. 

f= Xß+e 

where the f(rc xl), X[rc x (r + c + 1)], ß[(r + c + 1) xl], e(rc x 1) are 
given by 

lu cu 
121 c21 

Ir1 cr1 
112 c12 
122 c22 

f= , e= 
Ir2 cr2 

he c1e 

he c2e 

Ire cre 



and 

X= 
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110 
1 1 0 

1 1 0 
101 
101 

1 0 1 

010 
001 

o 
o 

o 0 
o 0 0 .. 0 1 
o 1 0 0 
001 

o 0 
o 0 0 .. 0 1 

1 0 0 .. 0 1 1 0 0.. 0 
1 0 0 .. 0 1 0 1 0 .. 

o 0 
100 o 1 0 .. 0 1 

ß = [I-' al a2 ... a r PI P2 ... Pe]. 

This matrix notation is similar to the notation introduced for the log­
linear model above. The additive model introduced here will be used in 
the weighted least squares approach to be outlined in Section 6.3. In Sec­
tion 6.3 the theoretical cell densities will be replaced by row densities Pi; 

where Ei=l Pi; = 1. 

Example 

For the example given by Table 6.6, the values of the parameters are given 
by 

J1, = I/re = 1/20 = 0.05, 
al = 0.01675, a2 = 0.0205, Q3 = 0.0055, 

a4 = -0.01675, a5 = -0.026, 
PI = -0.0396, P2 = 0.0156, Pa = 0.0392, P4 = -0.0152. 

The interaction parameters are summarized in Table 6.18. AB can be seen 
from the table, the row and column totals for the interactions are zero. In 
comparison to the previous analyses of this table, the additive interaction 
effects provide much the same information regarding the departure from 
independence. 

6.2.7 Two-DIMENSIONAL CONTINGENCY TABLES IN A 

MULTIVARIATE SETTING 

In this section, we assume that we are primarily interested in the relation­
ship between two categorical variables X and Y, but that a third categor­
ical variable Z is also related to both X and Y. Assume that the variable 
Z has l categories. The three-way cross-cIassification using X, Y and Z 
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TABLE 6.18. Additive Model Interaction Effects 

Opinion Regarding Crime Situation 
Not Slightly Moderately Very 

Age Level Serious Serious Serious Serious 

Under 30 -0.01215 -0.00635 0.01505 0.00345 
30 to 39 -0.01390 0.03090 0.00130 -0.01830 
40 to 49 -0.00390 0.00290 0.00930 -0.00830 
50 to 59 0.01335 -0.01485 -0.00045 0.00195 
60 & over 0.01660 -0.01260 -0.02520 0.02120 

yields a three-dimensional contingency table with rel cells. Given a sampie 
of n observations, allocation to the rel cells yields cell frequencies nijk, 
i = 1,2, ... , rj j = 1,2, ... , Cj k = 1,2, ... , i. The important quest ions 
are: How does the variable Z affect the relationship between X and Y? 
When can the variable Z be ignored? 

One possible approach to the problem is to carry out an analysis relating 
X and Y at each level of Z. Thus a total of i contingency tables must be 
analyzed. If i is large, the number of analyses will also be large, and in some 
cases the cell frequencies for each level of Z may be quite small. In the next 
section the loglinear model approach will be used to relate X and Y and 
control simultaneously for Z. If the sampie size is small, the table can be 
collapsed over the categories of Zj however, the collapsing of contingency 
tables can lead to unusual results, as demonstrated below. 

Simpson's Paradox 

The importance of controlling for other variables is best illustrated by an 
example that demonstrates how the relationship between X and Y can 
be opposite depending on whether Z is controlled or not controlled. Such 
reversals or contradictions are commonly referred to as Simpson's paradox. 
This paradox is illustrated by the following example. 

Example 

Consider the following fictitious study relating age, smoking and heart dis­
ease. The study shows the cell frequencies in Table 6.19. 

In the age 65 and over category, the probability of heart disease for 
smokers is 95%, and for nonsmokers it is 90%. In the age 40-64 category, 
the probability of heart disease for smokers is 50% and for nonsmokers 
is 5%. Thus, in each age category smokers are more likely to have heart 
disease than nonsmokers. 

Collapsing the table over age yields Table 6.20. According to the col­
lapsed table, the probability of heart disease for smokers is 54% whereas 
for nonsmokers it is 89%. Simpson's Paradox has occurred in that the effect 
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TABLE 6.19. Contingency Tables Showing Relationships Between Age, Heart 
Disease and Smoking 

Age 65 & over Age 40-64 

Smoker Nonsmoker Smoker Nonsmoker 
Heart 950 9000 Heart 5000 5 
Disease Disease 
No Heart 50 1000 NoHeart 5000 95 
Disease Disease 
Proportion Proportion 
with Heart 0.95 0.90 with Heart 0.50 0.05 

Disease Disease 

TABLE 6.20. Contingency Table Showing Relationship Be­
tween Heart Disease and Smoking After Collapsing on Age 

Smoker Nonsmoker 
Heart 5950 9005 
Disease 
NoHeart 5050 1095 
Disease 
Proportion 
with Heart 0.54 0.89 
Disease 

of smoking on the incidence of heart disease seems to have been reversed 
from what was obtained when the variable age was controlled. Hone were 
to look at the data by collapsing on heart disease, the reason for the para­
dox becomes dear. For individuals 40-46, 99% are smokers, whereas for 
those aged 65 and over, only 9% are smokers. The incidence of heart dis­
ease increases with age whereas the tendency to smoke decreases with age, 
ignoring the effect of age, therefore, produees the paradoxical results. 

Example 

A second example of Simpson's Paradox is provided by the following ficti­
tious tables of admission statistics for two university faculties. Table 6.21 
shows the proportion of male and female applicants admitted to the Facul­
ties of Engineering and Business. The table demonstrates that the overall 
proportion of female applicants admitted is lower than the overall propor­
tion of male applicants admitted, although for each of the faculties taken 
separately the reverse is true. Onee again collapsing on the faculty variable 
hides the fact that the number of applications by sex varies considerably 
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TABLE 6.21. Relationships Between Sex 
and Admission Status 

Facultr of Business 
No. of Applicants 160 60 
No. of Admissions 40 12 
Proportion Admitted 0.25 0.20 

Facultr of Engineering 
No. of Applicants 40 140 
No. of Admissions 26 84 
Proportion Admitted 0.65 0.60 

Combined Faculties 
No. of Applicants 200 200 
No. of Admissions 66 96 
Proportion Admitted 0.33 0.48 

between the two faculties. Because the admission rates also vary between 
the two faculties a lower overall rate of admission for females occurs. 

Other examples of Simpson's Paradox commonly occur in practice. Ex­
amples showing employment inequity can show opposite results depending 
on what other variables are included. The effects of collapsing contingency 
tables is discussed further in Section 6.3. To avoid collapsing tables, mul­
tidimensional models can be used to describe the variation in the tables 
controlling for other effects. 

6.2.8 ÜTHER SOURCES OF INFORMATION 

More extensive discussions of statistical techniques for two-dimensional ta­
bles are available in Everitt (1977), Reynolds (1977) and Upton (1978). 
Extensive discussions on testing for independence and the measurement of 
association can be found in both Reynolds (1977) and Upton (1978). Sam­
pling models and loglinear models for two-dimensional tables are discussed 
in Bishop, Fienberg and Holland (1975), Andersen (1980) and Freeman 
(1987). 

6.3 Multidimensional Contingency Tables 

This section is concerned with statistical inference in multidimensional con­
tingency tables. The section begins with an outline of techniques for ana­
lyzing a three-dimensional contingency table. These techniques are then 
extended to higher-dimensional tables. The loglinear model introduced in 
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Section 6.2 is used to describe the interactions in the multidimensional 
table. The parameters of the loglinear model are estimated using maxi­
mum likelihood estimators that are usually functions of the observed cell 
frequencies. 

6.3.1 THE THREE-DIMENSIONAL CONTINGENCY TABLE 

The three-dimensional contingency table arises from the cross-classification 
of the categories associated with three qualitative random variables. Ge­
ometrically the table may be viewed as having rows, columns and layers. 
The subscripts for the rows, columns and layers will be denoted by i, j and 
k respectively. The number of rows, columns and layers will be denoted by 
r, c and i respectively. The probability density for cell (i,j, k) will be de­
noted by /ijk and the theoretical cell frequency by Fijk = n!ijk for a total 
table frequency of n. The allocation of a sampie of size n to the total of rel 
cells yields cell frequencies nijk. Table 6.22 shows the nijk for a sampie of 
size n. 

Various marginal totals will be denoted using dots to indicate which sub­
scripts have been summed. For the three possible two-dimensional tables, 
the cell frequencies are denoted by the marginals nij., ni.k and n.jk. For 
each of the three variables the univariate marginals are given by nh n-j. 

and n .. k. 

Example 

An example of a three-dimensional table is presented in Table 6.23. For the 
auto accident data described in Section 6.2, the three-way table shows the 
relationships between extent of injury, seatbelt usage and driver condition. 

Figure 6.3 shows row profiles relating the three injury levels to seatbelt 
usage (ignoring driver condition) in panel (a), to driver condition (ignoring 
seatbelt usage) in panel (b) and finally to the four categories of seatbelt 
usage crossed with driver condition in panel (c). For simplicity the no injury 
category has been omitted. From the profile plots we can see that the driver 
condition effect is stronger than the seatbelt effect and that there is some 
interaction between the two effects. In the case of interaction we can see 
that the seatbelt effect is more pronounced for drinking drivers than for 
non-drinking drivers. 

Models for Three- Way Tables 

The models introduced in Section 6.2 for two-dimensional contingency ta­
bles can be viewed as special cases of the set of all possible models for 
the three-dimensional table. We begin here with the independence model 
for the three-way table. The independence model requires that the joint 
density /ijk in cell (i,j, k) be equal to the product of the three univariate 
marginal densities fijk = h./.j./..k' The theoretical frequency for a total 
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TABLE 6.22. A Three-Dimensional Contin-
gency Table 

Layers 

1 

2 

l 

frequency of n is given by 

Rows 

1 
2 

r 

1 

2 

r 

1 

2 

r 

Columns 
1 2 

nUl n121 

n2U n221 

nru n r 21 

nU2 n122 

n212 n222 

n r 12 n r 22 

nUt n12t 

n21t n22t 

Fijk = n/ijk = K.F. j .F.'k/n2 

where Fi .. = nfi,., P j . = nf.j. and F..k = nf..k' 

Inference fOT the Independence Model 

c 

nlcl 

n2cl 

nrcl 

nlc2 

n2c2 

ß rc2 

Given a sampie of size n, the maximum likelihood estimators of the ex­
pected cell frequencies under the independence assumption are given by 

i = 1,2, ... ,Tj 

j = 1,2, ... ,Cj 

k = 1,2, ... ,t. 

As in the case of the two-dimensional contingency table, the fitted cell 
frequencies depend only on the row, column and layer marginals. Using the 
estimated expected frequencies Eijk, the X2 tests of goodness of fit for the 
independence model are carried out using 

i=l j=l k=l 
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TABLE 6.23. Frequency Thble - Driver Injury Level versus Seatbelt 
Usage and Driver Condition 

Driver Injury Level 
Driver Seatbelt Major/ 
Condition Usage None Minimal Minor Fatal Total 

Normal Yes 12500 604 344 38 13486 
(11817.8) (697.1) (450.2) (51.8) 

No 61971 3519 2272 237 67999 
(62161.0) (3666.9) (2368.0) (272.2) 

Totals 74471 4123 2616 275 81485 

Been Yes 313 43 15 4 375 
Drinking (766.3) (45.2) (29.2) (3.4) 

No 3992 481 370 66 4909 
(4030.9) (283.0) (153.6) (17.7) 

Totals 4305 524 385 70 5284 

Total both conditions 78776 4647 3001 345 86769 

and 
r c t 

H 2 = 2L L Lnijk{lnnijk -lnEijk ), 
i=l ;=1 k=l 

both of which are asymptotically X2 with (rcl- r -l- c + 2) degrees of 
freedom if the independence hypothesis holds. 

Example 

The X2 test of independence for Table 6.23 yields 1057.47 and 939.90 for 
the Pearson and likelihood ratio statistics respectively. Both of these X2 

statistics have 10 degrees of freedom and are significant at the 0.000 level. 
The expected frequencies under the independence model are shown in Ta­
ble 6.23 in brackets. A comparison of the observed and expected frequencies 
in the table permits us to conclude the following: 

1. For seatbelt users who appeared normal, the number of accidents 
resulting in no injury was larger than expected, whereas the number 
who sustained any injury was smaller than could be expected under 
independence. 

2. For seatbelt users who bad been drinking, the number of accidents 
resulting in no injury was less than half the number that could be 
expected under independence. Also, in the minor injury category, 
there were fewer cases than expected. 
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FIGURE 6.3. Profiles Relating Injury Level to Seatbelt Usage and Driver Con­
dition 

3. For non-users of seatbelts who appeared normal, the number of acci­
dents in an injury categories was less than could be expected under 
independence. 

4. For non-users of seatbelts who had been drinking, the number of 
accidents resulting in no injury was less than expected. For the three 
injury categories, the number of accidents was much larger than could 
be expected under independence. 

Drivers who wore seatbelts and appeared normal sustained fewer injuries 
than expected, whereas drivers who did not wear seatbelts and had been 
drinking suffered more injuries than expected under independence. For the 
remaining two categories, the difference between the observed and expected 
frequencies seems less obvious. A loglinear model representation for this ta­
ble will be used below to provide a more systematic approach for identifying 
the interactions among the three variables. Before attempting to model the 
variation in the table, a discussion of various model types is required. 

Other Models for Three- Way Tables 

For the remainder of this section the sampling model assumed is either 
multinomial or independent Poisson. As in the case of the two-dimensional 

Major 
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table, the two distributions are equivalent if the sampie size n is fixed. 
Because the produet multinomial places additional restrietions on some 
marginals, additional requirements must be adhered to in order to obtain 
maximum likelihood estimates. These requirements will be outlined later 
in this section. 

If the independenee model does not fit the three-dimensional table it 
is often of value to determine if a less restrietive model ean be used. A 
system of models that permits various levels of dependence among the 
three variables is outlined next. 

Partial Independence 

Sinee there are three variables in the table, it is possible to have two vari­
ables related to each other that are both independent of a third variable. 
This model is ealled the partial independence model and is given by 

In this ease, the third variable with subscript k is independent of the re­
maining two variables with subseripts i and j. The theoretieal frequeney is 
given by 

and is estimated by 
Eijk = nij.n"k/n . 

The two-dimensional marginals nij' are being fitted sinee Eij . = nij .. The 
X? goodness of fit statistie in this ease has (TC -1 ) (i-I) degrees of freedom. 

An example of a partial independence relationship would exist if in Ta­
ble 6.23 seatbelt usage were independent ofboth driver condition and driver 
injury level, but at the same time driver condition and injury level were 
related. 

Conditional Independence 

A conditional independence model permits two variables to be independent 
after controlling for a third variable. An example of such a model is provided 
by 

fijk = kkf.jk/ f..k 

where the variables with subscripts i and j are independent at every level 
of the variable with subscript k. The theoretical frequency is given by 

Fijk = KkF.jk/ F..k 

and the maximum likelihood estimator is given by 
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For this model the two-dimensional marginals flj.1c and n.jlc are being fitted 
since Ei.1c = flj.1c and E.jlc = n.jlc. The X 2 goodness of fit statistic has 
l(r - 1)(c - 1) degrees of freedom. 

An example of a conditional independence model in Table 6.23 would 
occur if, for each of the two driver conditions, driver injury level is in­
dependent of seatbelt usage. In this case driver injury level is related to 
seatbelt usage through the variable driver condition, but if driver condition 
is held fixed then seatbelt usage and driver injury level are independent. 
In other words, any relationship between driver injury level and seatbelt 
usage is due to the relation between driver condition and each of the other 
two variables. This result is similar to obtaining a zero first-order partial 
correlation coefficient with three quantitative variables. 

No Three- Way Interaction 

The next step in moving to less restrictive models is to assume that each 
pair of variables is related, but that the relation between any pair of vari­
ables does not depend on the level of the third. This model is usually 
referred to as the no three-way interaction modeL It is not possible to give 
an expression for fijlc or for Fijlc that would permit us to determine the es­
timators Eijlc directly. For this model the Eijlc are obtained by a procedure 
known as iterative proportional fitting. 

Since the model to be fitted assumes that all possible pairs are related 
but that there is no thr~way interaction, we need only fit a model that 
preserves the three sets of two-dimensional marginal totals nij., n.jlc and 
ni.k. The steps for iterative proportional fitting proceed as folIows: 

Step 1. Compute the observed marginal totals nij., n.jk, ni.k. 

Step 2. Assign the initial value 1 to every estimated cell frequency, that 
• E(O) 1 I: all" k IS, ijk = ,lor 'I"J" 

Step 3. Compute new estimates of the Eijk so that they sum to the 
marginal totals nij. using 

E (I) E(O) [nij.] I: all" k 
ijlc = ijlc ---co> lor 't,J,. 

E .. 
'3' 

Step 4. Compute new estimates of the Eijlc so that they sum to the 
marginal totals ni'lc using 

E (2) E(I) [ ni,lc ] I: all" k 
ijlc = ijlc W lor 't,J,. 

Ei .1c 
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Step 5. Compute new estimates of the Eijk so that they sum to the 
marginal totals n.jk using 

E (3) E(2) [n. jk ] r all" k 
ijk = ijk ---'(2) lor "',),. 

E 'k ., 

Step 6 and subsequent steps. Repeat the cycle given by Steps 3, 4 and 5 
until the changes in the Eijk are smaller than some preassigned number. 

For the fitted model the three two-dimensional marginals E ij., E.jk and 
Ei.k will be very dose to their observed counterparts nij., n.jk and ~.k' 
The number of degrees of freedom for a X2 goodness of fit test would in 
this case be (r - l)(k - l)(c - 1). 

A no three-way interaction model implies that the interaction between 
any pair does not depend on the third variable. For the data in Table 6.23 
a no three-way interaction model would imply that the interaction between 
seatbelt usage and driver injury level does not depend on driver condition. 
Similarly, the interaction between driver injury level and driver condition 
does not depend on seatbelt usage, and the interaction between seatbelt 
usage and driver condition does not depend on driver injury level. 

Saturated Model 

As in the case of the two-way contingency table, the most general model for 
the three-way contingency table is the saturated model that fits the data 
perfectly. The saturated model for the three-way table indudes a three-way 
interaction that allows the two-way interaction between any pair to vary at 
each level of the third variable. This model will be discussed further with 
the introduction of the loglinear model for three-way tables below. 

Loglinear Models for Three- Way Tables 

We begin our discussion of the loglinear model for three-way tables by 
extending the definitions of the J.I. parameters introduced in Section 6.2 for 
the two-way table. The saturated model for the three-way table is given by 

InFijk = J.I. + J.l.l(i) + J.l.2(j) + J.l.3(k) + J.l.12(ij) + J.l.13(ik) + J.l.23(jk) + J.l.123(ijk) , 

i = 1,2, ... , rj j = 1,2, ... , Cj k = 1,2, ... ,ij 

where Fijk = true frequency in cell (i,j, k) and 
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1 r l 

1-'2(j) = - L ~)nF."k -It rl '3' 
i=1 k=1 

1 r c 

1t3(k) = - L LInFijk -It, 
rc i=1 j=1 

1 l 

1t12(ij) = l L In Fijk - Itl(i) - 1t2(j) - It, 
k=1 

1 c 

1t13(ik) = - L In Fijk - Itl(i) - 1t3(k) - It, 
C. 1 3= 

1 r 

1t23(jk) = - LInFijk -1t2(j) -1t3(k) -It, 
r i=1 

1t123(ijk) = In F ijk - Itl(i) - 1t2(j) - 1t3(k) - 1t12(ij), 

-1t23(jk) - 1t13(ik) -It· 

The following conditions follow from these definitions 

r c l 

E Itl(i) = E 1t2(j) = E 1t3(k) = 0, 
i=1 j=1 k=1 

r c r l c l 

E E 1t12(ij) = E E 1t13(ik) = E E 1t23(jk) = 0, 
i=1 j=1 i=1 k=1 j=1 k=1 

r c l 

E :L :L 1t123(ijk) = O. 
i=1 j=1 k=1 

In comparison to the saturated loglinear model for the two-way table 
the saturated model now contains a total of four interaction terms. Three 
of the interaction terms are two-way interactions, whereas the remaining 
term is a three-way interaction. For a two-way interaction, the interaction 
is independent of the third variable, but for a three-way interaction the two­
way interaction varies over the categories of the third variable. When both 
two-way and three-way interactions are induded, the two-way interaction is 
an average over the eategories of the third variable, whereas the three-way 
interaction measures departures or residuals from this average. 

Definitions 0/ Parameters in Terms 0/ Gell Frequencies 

The It parameters are funetions of various marginal totals in the table 
of logarithms of the theoretical frequencies, InFijk . As in the case of the 
two-dimensional table diseussed in Section 6.2, the It parameters are also 
functions of the logarithms of various geometrie means of the freque~cies. 
The expressions for the It parameters may also be written as It = In F. .. , 

- -
Itl(i) = InFi .. -InF. .. , 

- -
1t2(j) = InF.j . -InF. .. , 
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- -
J.l.3(k) = lnF..k -lnF ... , 

1-'12(ij) = lnPij. -InPi .. -lnF.j . + lnF. .. , 
- - - -

1-'13(ik) = lnKk -InFi .. -lnF..k + InF. .. , 

J.l.23(jk) = InP.jk -InF.j . -InF..k + InF. .. , 
- - -

J.l.123(ijk) = In Fijk -lnFij . -lnFi-k -lnF.jk, 
- - - -+ In Fi .. + lnF.j . + InF..k -lnF. .. , 

where 
F. .. is the overall geometrie mean of all the frequencies Fijkj 

Pi .. is the geometrie mean of all the frequencies Fijk holding i fixedj 
F. j . is the geometrie mean of all the frequencies F ijk holding j fixedj 
F.' k is the geometrie mean of all the frequencies Fijk holding k fixedj 
P ij . is the geometrie mean of all the frequencies Fijk holding i, j fixedj 
P.jk is the geometrie mean of all the frequencies F ijk holding j, k fixedj 
P i .k is the geometrie mean of all the frequencies Fijk holding i, k fixed. 

For each of the models introdueed above for three-way tables the cell 
frequencies Fijk have different properties. These properties imply that some 
of the J.I. parameters are zero. These models ean be related to the loglinear 
model parameters as outlined below. 

Independence Model 

In the ease of the independenee model, Fijk = (K.F. j .F.'k}Jn2 implies that 
ln Fijk = J.I. + J.l.l(i) + 1-'2(j) + J.l.3(k) with all remaining J.I. parameters zero. 

Partial Independence Model 

For the partial independenee model the two-way interaction between i and 
j results in J.l.12(ij) being non-zero. The other possible interactions are zero. 
The loglinear model for this partieular partial independence model is there­
fore given by 

In Fijk = J.I. + J.l.l(i) + J.l.2(j) + J.l.3(k) + J.l.12(ij)· 

If the table is eollapsed over k, the resulting two-dimensional table is fitted 
exact1y. There are two other possible partial independence models that 
eontain only one two-way interaction term. 

Conditional Independence Model 

In the eonditional independenee model, the relationship between i and k is 
captured by 1-'13(ik), and the relationship between j and k is eaptured by 
J.l.23(jk)' Sinee i and j are independent at every level of k, J.l.12(ij) = O. The 
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loglinear model in this case is 

10 F ij1c = I' + 1'1(i) + 1'2(j) + 1'3(1c) + 1'13(i1c) + 1'23(j1c)' 

If the table is collapsed over i or over j, the resulting two-dimensional tables 
are fitted exactly. There are two other possible cooditional independence 
models, one for each possible omitted two-way interactioo. 

No Three-way Interaction Model 

In the no three-way interaction model all pairs are related, but these reIa,.. 
tionships are independent of the third variable. Qnly the term 1'123(ij1c) is 
zero. The loglinear model is given by 

10 F ij1c = I' + 1'1(i) + 1'2(j) + 1'3(1c) + 1'12(ij) + 1'13(i1c) + 1'23(j1c)' 

In this case the three two-dimensional tables obtained by collapsing the 
fitted table on the third variable have cell frequencies identical to the ob­
served two-dimensional tables. This is precisely what is accomplished by 
the iterative proportional fitting algorithm. 

Saturated Model 

The saturated model given at the beginning of this section fits the three­
dimensional table perfectly. Although this model is not needed to determine 
expected frequencies, it is often useful for characterizing the interactions 
in a three-way table. The estimated intera.ctioo parameters provide a sys­
tematic way of studying the relationships among the variables. 

Multiplicative Form 0/ the Loglinear Model 

Taking the antilogarithm of both sides of the loglinear model yields a mul­
tiplicative model for the cell frequency Fij1c. The equation becomes 

F ij1c = ßoß1(i)ß2(j)ß3(1c)ß12(ij)ß13(i1c)ß23(j1c)ß123(ij1c)' 

The beta parameters are sometimes useful for characterizing the variation 
in the table. The beta parameters are defined by 

ßo = elJ, ß1(i) = el'l(') , ß2(j) = e1'2(i) , ß3(1c) = eI'3(Ic), 

ß12(ij) = eI'12(';), ß13(i1c) = eI'13('Ic), ß23(j1c) = eI'23(;Ic), 

ß123(ij1c) = eI'123(';Ic). 

Hierarchical Mode18 

The above collection of models does not include all possible variants using 
the parameters specified by the saturated model. Such models as 

10 Fij1c = I' + 1'1(i) + 1'2(j) + 1'12(ij) + 1'23(j1c) + 1'13(i1c) 
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and 
lnFi;k = J.t + J.tl(i) + J.t2(;) + J.t3(k) + J.t123(i;k) 

have not been considered. In order to maintain the practice of defining 
higher order terms using deviations of lower order terms, the hiemrchy 
principle is followed. This principle requires that, if a given term is fitted, 
alilower order terms involving those variables must also be included. The 
above two models do not satisfy this hierarchy principle. The main difficulty 
with non-hiemrchical models is the interpretation of the fitted parameters. 
An additional problem, however, is that the iterative proportional fitting 
procedure cannot be used to fit the model without some transformation of 
the model being carried out ftrst. Qnly models that satisfy the hierarchy 
principle will be discussed in this text. 

Notation for Loglinear Models 

To simplify the notation for the remainder of this chapter, the various 
models in the hierarchical system will be denoted by symbols such as [1], 
[23] and [123]. Qnly the symbols for the highest order interaction for each 
variable will be used. All lower order terms containing that variable are 
automatically incIuded in the hierarchical system. The model [12], [3], for 
instance, implies that the terms [1] and [2] are also present, whereas the 
parameters corresponding to [13] and [23] are not present. The saturated 
model is denoted by [123] and implies that alilower order terms are present. 

Model Selection 

Given a three-dimensional table of observed cell frequencies ~;k, a variety 
of models in the hierarchical system can be fitted by replacing Fi;k by Ei;k 

in the above formuIae for the loglinear model parameters. The expression 
for Ei;k depends on the model being fitted. The various formulae for Eijk 

for the various models have been outlined above. The goodness of fit of 
a panicular model can be judged using the X2 goodness of fit statistics 
G2 and H2. A probability level of 0.15 to 0.25 is usually required to con­
firm that the model adequately represents the interactions in the table. In 
practice we seek to fit the simplest model while maintaining a reasonable 
fit. 

In addition to the overall measure of goodness of fit, the likelihood ra­
tio statistic H2 has the advantage that it can be used to compare nested 
models in the hierarchical system. Let Hf and H~ denote two likelihood 
chi-square statistics for two alternative models and assume that model 2 
is the larger model which contains all the parameters of model 1. The 
conditional likelihood chi-square statistic H~'l = (Hf - Hn can be used 
to determine whether model 2 is superior to modell. Under the null hy­
pothesis that modell is equally as good as model 2, the statistic H~.l 
is asymptotically a X2 distribution with degrees of freedom equal to the 
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difference (d.f. modell - d.f. model 2). An example of such a test might 
involve a comparison of the model [13] [2] to the model [12] [13] [23]. The 
null hypothesis would be that the terms [12] and [23] are superfluous. 

Standardized Estimates and Standardized Residuals 

Expressions for the asymptotic variances of the loglinear model parameters 
can be obtained using expressions similar to those given in Section 6.2.2 
for the two-dimensional table. The expressions can be generated using the 
theory presented in Bishop, Fienberg and Holland (1974). 

The concept of standardized residuals introduced in Section 6.2.2 for the 
two-dimensional table can be extended to higher-dimensional tables and 
also to models other than the independence model. For each cell (i,j, k) in 
the table, the component of the Pearson X2 given by (nijk - E ijk )2 j Eijk 

provides the standardized residual rlijk = (nijk - Eijk)j ..jEijk . 

The Freeman-Tukey standardized residuals introduced in Section 6.2.2 
can also be extended to multidimensional tables using the expression 

r2ijk = ynijk + ..jnijk + 1 - ..j4Eijk + 1. 

These residuals are useful for examining the quality of the fitted model on 
a cell by cell basis and also for detecting outliers. 

Summary 0/ Loglinear Model Fitting Procedure 

The system of fitting loglinear models for the purpose of explaining in­
teraction in a multidimensional contingency table is demonstrated by the 
diagram in Figure 6.4. It is useful to note that the estimates of Fijk depend 
on the model being fitted. 

For the three-dimensional table the simplest loglinear model is the con­
stant cell density model that contains only one parameter 11-. In this case 
the Eijk are all equal to njrc. The next three models in the hierarchy are 
the single effect models that fit the marginal frequencies for one variable 
and restrict the remaining two variables to constant marginal frequencies. 
The three models (11- + 11-1(i»)' (11- + 11-2(j») and (11- + 11-3(k») fit the theoret­
ical marginal frequencies so that Ei .. = nh E-j. = n.j. and E .. k = n .. k 

respectively. Similarly for the loglinear models which contain two of the 
three main effects two of the three sets of theoretical marginals, Eh E.j­
and E..k, are set equal to two of the three corresponding sampie marginals, 
nh n.j. and n .. k. Finally the independence model which contains all three 
main effects requires that Ei .. = ni .. , E. j . = n.j. and E .. k = n .. k. 

For each inter action term that is fitted a set of two-dimensional marginals 
are fitted. If the parameter 11-12( ij) is included then E ij . = nij' Similarly for 
11-23(jk) and 11-13(ik) the corresponding theoretical two-dimensional marginals 
are given by E.jk = n.jk and Ei-k = ni-k respectively. For the no three-way 
interaction model an three sets of two-dimensional marginals are fitted as 
outlined in the iterative proportional fitting algorithm discussed above. 
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FIGURE 6.4. System for Fitting and Using Loglinear Models 

Product Multinomial Sampling 

In product multinomial sampling, certain marginals are held fixed. In the 
three dimensional table we consider the two cases corresponding to the 
fixing of the marginals for one or two of the three variables. If the marginals 
are fixed for the first variable, then the loglinear model must contain the 
term J.tl(i)' This will ensure that the fitted marginals Ei .. are equal to the 
observed marginals ni .. ' Similarly, if the marginals for both variables 1 and 2 
are fixed, then the model must contain the parameters J.tl(i), J.t2(j) and 
J.t12(ij). In this case the fitted marginals Eh E.j . and E ij . are equivalent 
to the sampie marginals ni .. , n.j. and nij .. 

In product multinomial sampling some of the variables can be viewed as 
response variables, whereas the remainder can be viewed as fixed or con­
trolled. The control variables have the fixed marginals, and the marginals 
for the response variables are viewed as an outcome of the sampling pro­
cess. The weighted least squares approach in Section 6.4 assumes product 
multinomial sampling. 

Computer Software 

The statistical software package BMDP will be used throughout Section 6.3 
to perform the calculations. 
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6.3.2 SOME EXAMPLES 

Accident Data 

For the example presented in Table 6.23, the entire set of loglinear models 
was fitted using the maximum likelihood estimators Eijk defined above and 
in Section 6.2. Table 6.24 summarizes the X2 goodness of fit statistics for the 
various models. The first three lines in the table present the goodness of fit 
statistics for the three single-effect models. In the model [2], for instanee, 
the marginals for seatbelt usage are permitted to be different, but the 
marginals for driver eondition and injury level are foreed to have equal 
frequencies in all eategories. Similarly in [1], only the marginal for driver 
eondition is permitted to vary, whereas for [3] only the marginal for injury 
level is not eonstant. 

The next three rows of Table 6.24 present the three possible models 
that fit two effeets holding the third effect fixed. The seventh row is the 
independenee model which permits all three marginals to vary but eontains 
no inter action. 

Rows 8, 9 and 10 of Table 6.24 summarize the results of fitting a satu­
rated model to a marginal two-dimensional table while restrieting the third 
variable to a eonstant marginal. Rows 11, 12 and 13 show the results for 
the fitting of the three possible partial independenee models. In row 11 
the model [2], [13] allows variables 1 and 3 to be related, but both are 
assumed to be independent of variable 2. Similarly, in row 12 variables 2 
and 3 are independent of 1, and in row 13 variables 1 and 2 are independent 
of variable 3. 

The three eonditional independenee models are shown in rows 14, 15 
and 16. In row 14 the model [12], [23] requires that 1 and 3 be independent 
at each level of variable 2. Similarly, in row 15 variables 1 and 2 are inde­
pendent at each level of 3, and in row 16 variables 2 and 3 are independent 
at each level of 1. The no three-way interaction model is fitted in the last 
row. In this model all two-way interactions among the three variables are 
assumed to explain all the interactions in the table. 

An examination of the X2 goodness of fit statisties reveals that the no 
three-way interaction model ean be used to explain the interactions among 
the three variables. Both the Pearson and likelihood X2 statisties show a 
p-value of 0.1705. The fitted parameters for this model are summarized in 
Table 6.25. The ratios of the loglinear model parameter estimates to their 
standard errors are also shown (with brackets) for seleeted parameters. 
Plots of the values of the parameter estimates are shown in Figure 6.5. The 
loglinear model being fitted is given by 

lnFijk = J.t + J.tl(i) + J.t2(j) + J.t3(k) + J.t12(ij) + J.t13(ik) + J.t23(jk)· 

From the fitted parameters in Table 6.25 the logarithm of the geomet­
rie mean of the expeeted frequencies is 6.002. Very few of the parameter 
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TABLE 6.24. Summary of X2 Goodness of Fit Statistics for System 
of Hierarchica.l Models* 

Model d.f. Likelihood Prob Pearson Prob 

1. [2] 14 25550.38 0.0000 428867.25 0.0000 
2. [1] 14 219138.75 0.0000 332231.00 0.0000 
3. [3] 12 125473.63 0.0000 136095.75 0.0000 
4. [1] [2] 13 175077.63 0.0000 201950.81 0.0000 
5. [1] [3] 11 45001.13 0.0000 41474.70 0.0000 
6. [2] [3] 11 81412.63 0.0000 67216.56 0.0000 
7. [1] [2] [3] 10 940.02 0.0000 1057.47 0.0000 
8. [12] 12 174680.25 0.0000 201019.50 0.0000 
9. [23] 8 81349.75 0.0000 67141.44 0.0000 

10. [13] 8 44505.84 0.0000 40381.77 0.0000 
11. [2] [13] 7 444.85 0.0000 372.21 0.0000 
12. [1] [23] 7 877.16 0.0000 967.92 0.0000 
13. [3] [12] 9 542.50 0.0000 682.37 0.0000 
14. [12] [23] 6 479.69 0.0000 610.75 0.0000 
15. [13] [23] 4 382.02 0.0000 317.32 0.0000 
16. [13] [12] 6 47.34 0.0000 44.51 0.0000 
17. [12] [13] [23] 3 5.02 0.1705 5.02 0.1705 

*[2] = seatbelt usage, [1] = driver condition, [3] = injury level 

estimates are not significantly different from zero. The driver condition ef­
feets indicate that the normal condition is much more frequent than the 
been drinking condition. The seatbelt usage effeets indicate that many more 
drivers were not wearing seatbelts than were wearing them. The injury level 
parameters indicate that the large majority of drivers were not injured and 
that very few drivers sustained major or fatal injuries. The graph of the 
logarithms of the fitted frequencies shown in Figure 6.5 illustrates that at 
each injury level the frequencies are highest for the normal-no seatbelt 
category and lowest for the drinking-seatbelt category. 

The interaction effects in Table 6.25 suggest that normal condition drivers 
were more likely to be wearing seatbelts than drivers who had been drink­
ing. The driver condition-injury level interactions indicate that, in com­
parison to drivers who had been drinking, a larger proportion of drivers in 
the normal category bad no injury and a smaller proportion of the normal 
category drivers were in the major or fatal injury category. For the mini­
mal category, the interaction term was quite weak. The interaction between 
driver injury level and driver condition therefore seems to primarily affect 
only the two extremes of the injury level range. The seatbelt usage-injury 
level interaction appears to be relatively weak. There is some tendency, 
however, for seatbelt users to be over-represented in the ncrinjury category 
and under-represented in the minor injury category. The minimal injury 



62 6. Contingency Tables 

Log(freq) 

12 

10 

o.~ 

0.' 

0.3 

0.2 

0.1 

-0.1 

-0.2 

-0.5 

-0.4 

-0.5 

\ 
Il ~o,m,,-
0.. ' No .eeLbel\. 

, 
DrinkiRl- \ 
No seaL elt~ ..... ~ ... ~ D 

"- '~ 
"--~ 

... 
Normal-
Sealbelt 

Drtnktng-SeillllbeU.~ 

none minimal minor major/lalal 

Injury Level 

Interoclion Parameters 

\ " \ / 

\ J 
Normal \ ../' ~;rnking 
/~ 

/ \ 
/ \ 

j b 

none mtnunal rrunor major II.tal 

Injury Level 

Inleraclion Parameters 
o . • 
o. 3 

0.2 '\ " 
o. 1 \ / 

Normal ~ IDeen 
\/ Drinkinc 

-0. 1 /\ 
-0.2 

/ \ 
;{ b 

-0.3 

-0.4 

v .. No 

Seatbell Usage 

Interaction Parameten 
0.09 r---=-------.., 

0.061---\-----1'--'----1 

-0.031--_--;_-\-_---,1''---( 

-0.061---+--~.-r----( 

-0.09 L--"--_-'-_-'------'--,--~ 
none miDimel mhlor mejor Itotal 

Injury Level 

FIGURE 6.5. Parameter Estimates for Loglinear Model for Accident Data 

category and the major/fatal category show only slight interactions with 
seatbelt usage. These interactions can also be seen in Figure 6.5. 

In conc1usion, we could say that a large majority of drivers appeared 
normal, had not been wearing seatbelts, and were not injured. For drivers 
wearing seatbelts, there were proportionately fewer who sustained an injury 
and proportionately more were in normal condition than for non-seat belt 
users. Among those who had been drinking, proportionately more sustained 
a minor or major/fatal injury than among those who appeared normal. 

A comparison of the observed frequencies to the expected frequencies UD­

der the no three-way interaction fitted model is shown in Table 6.26. The 
expected frequencies are shown in round brackets under the correspond­
ing observed frequencies. The fit seems to be excellent with only minor 
differences in the minimal and minor categories for drivers who had been 
drinking and were wearing seatbelts. The values of the standardized resid­
uals are shown in square brackets for each cello The largest standardized 
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TABLE 6.25. Fitted Parameters for No Three-Way Interaction Loglinear Model 

Overall Mean 

Driver Condition Effects 

Seatbelt Usa.ge Effects 

Injury Level Effects 

• 2.626 
1'3(1) = (97.270) 

0.072 
il3(2) = (2.152) 

p = 6.002 

P1(l) = 1.212 

P2(l) = -1.119 

-0.376 
113(3) = (-10.315) 

Driver Condition - Seatbelt Usage Intere.ction 

• 0.234 
1'12(11) = (17.147) il12(12) = -0.234 1112(21) == -0.234 

Driver Condition - Injury Level Intere.ction 

• 0.392. 0.006 
1'13(11) = (19.698) 1'13(12) = (0.219) 

-0.061 
1113(13) == (-2.249) 

1113(21) == -0.392 1113(22) = -0.006 1113(23) == 0.061 

Seatbelt Usage - Injury Level Intere.ction 

• 0.085. 0.013 
1'23(11) == (3.714) 1'23(12) = (0.490) 

-0.069 
1123(13) = (-2.286) 

1123(21) = -0.085 1123(22) = -0.013 il23(23) = 0.069 

-1.212 
111(2) = (-53.906) 

1.119 
112(2) = (43.938) 

-2.322 
113(4) = (-32.387) 

1112(22) = 0.234 

-0.337 
P13(14) = (-6.578) 

1113(24) = 0.337 

-0.029 
1123(14) == (-0.465) 

1123(24) == 0.029 

residuals occurred in the minimal and minor categories for drivers who had 
been drinking. These residuals, however, were quite small indicating an ex­
cellent fit. In these two columns the frequencies are relatively small and 
hence the prediction errors are proportionately larger. 

The fitted parameters in Table 6.25 were converted to multiplicative 
parameters and are summarized in Table 6.27. The multiplicative form of 
the fitted model is given by the equation 

Fijk = ßoßl(i)ß2(j}ß3(k)ß12(ij)ß13(ik}ß23(jk}' 

The magnitudes of these multiplicative effects can be compared to 1.0 in 
order to interpret direction. The resulting interpretations will be the same 
as the interpretations derived from Table 6.25. 

Three- Way Interaction 

When a saturated model is required in order to obtain a good fit for a 
three-way table, the three-way interaction 1-'123(ijk} is said to be signifi-
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TABLE 6.26. Comparison of Observed and Expected Frequencies 

Driver Injury Level 
Driver Seatbelt 
Condition Usage None Minimal Minor Major/Fatal 

Yes 12500 604 344 38 
(12497.0) (613.3) (337.8) (37.9) 

[0.0] [-0.4] [0.3] [0.0] 
Normal 

No 61971 3519 2272 237 
(61974.0) (3509.7) (2278.2) (237.1) 

[0.0] [0.2] [-0.1] [0.0] 

Yes 313 43 15 4 
(316.0) (33.7) (21.2) (4.1) 
[-0.2] [1.6] [-1.3] [-0.1] 

Been Drinking 
No 3992 481 370 66 

(3989.0) (490.3) (363.8) (65.9) 
[0.0] [-0.4] [0.3] [0.0] 

cant. The presence of such an interaction indicates that each of the three 
two-way interactions cannot be assumed to be constant over the various 
levels of the third variable. As an eXaIllple, consider the two-way interac­
tion J.L12(ij)' This paraIlleter measures the interaction between variables 1 
and 2 and is estimated using the marginal table obtained after summing 
over the subscript k. The two-way interaction J.L12(ij) therefore represents 
an average relationship between variables 1 and 2 summed over the cate­
gories of the third variable. The fact that J.L123(ijk) is nonzero indicates that 
the interaction between variables 1 and 2 varies over the levels of variable 3. 

Example 

To provide an eXaIllple interpretation for three-way interaction paraIlleters, 
the estimates ft123(ijk) for the data in Table 6.23 are shown in Table 6.28. 
Although these estimates are not significant they will be interpreted as if 
they were. The largest paraIlleter estimate of 0.086 for the minor injury 
category allows us to conc1ude the following: 

1. The two-way interaction between seatbelt usage and injury level in­
dicates that the probability of a minor injury is greater for a seat­
belt nonuser than for a seatbelt user. The three-way interaction with 
driver condition suggests that this two-way interaction in the case of 
drinking drivers is less pronounced, whereas for normal drivers it is 
stronger. In other words, the marginal effect of driver condition on 
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TABLE 6.27. Multiplicative Parameters for No Three-Way Inter­
action Model 

Geometrie Mean 

Driver Condition Effects 

Seatbelt US&ge Effects 

Injury Level Effects 

ß3(l) = 13.824 ß3(2) = 1.074 

ß =404.362 

ßl(l) = 3.361 

~(l) = 0.237 

ß3(3) = 0.687 

Driver Condition - Seatbelt Usage Interaction 

ßl(2) = 0.298 

~(2) = 3.061 

ß3(4) = 0.098 

ßl2(1l) = 1.263 ßl2(l2) = 0.792 ßl2(2l) = 0.792 ß12(22) = 1.263 

Driver Condition - Injury LevelInteraction 

ßl3(1l) = 1.481 ßl3(l2) = 1.006 ßl3(l3) = 0.941 ßl3(l4) = 0.714 

ß13(2l) = 0.675 ßl3(22) = 0.994 ß13(23) = 1.063 ßl3(24) = 1.401 

Seatbelt Usage - Injury LevelInteraction 

~3(1l) = 1.088 ~3(l2) = 1.013 ~3(l3) = 0.934 ß23(l4) = 0.971 

~3(21) = 0.919 ß23(22) = 0.987 ß23(23) = 1.071 ~3(24) = 1.030 

the likelihood of minor injury is less for seatbelt nonusers than for 
seatbelt users. 

2. The two-way interaction between driver condition and injury level 
indicates that the probability of a minor injury is greater for a driver 
who ha.s been drinking than for anormal condition driver. The three­
way interaction with seatbelt usage suggests that this t~way inter­
action in the case of seatbelt nonusers is less pronounced whereas for 
seatbelt users it is stronger. In other words, the marginal effect of 
seatbelt usage on the likelihood of minor injury is less for drinking 
drivers than for normal condition drivers. 

3. The two-way interaction between seatbelt usage and driver condition 
indicates that the probability of seatbelt usage is greater for normal 
condition drivers than for drinking drivers. The three-way interaction 
with injury level suggests that for the minor injury category this 
interaction is less pronounced. In other words, among drivers who 
sustained a minor injury the relation between seatbelt usage and 
driver condition is different than when injury level is ignored. 

Without the three-way interactions the two-way interactions are additive. 
With the three-way interactions included a correction is made for the fact 
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TABLE 6.28. Three-Way Interaction Terms from Saturated 
Model 

Driver 
Condition 

Normal 

Been Drinking 

Seatbelt 
Usage 

Yes 
No 

Yes 
No 

Driver Injury Level 
None Minimal Minor Major 

-0.007 --{).080 +0.086 0.000 
+0.007 +0.080 --{).086 0.000 

+0.007 +0.080 -0.086 0.000 
-0.007 -0.080 +0.086 0.000 

that the two-way interactions are not additive. In this example the seatbelt 
and driver condition interactions are not additive. The combined effect in 
the minor category is less than the sumo The reader is left to provide an 
interpretation for the minimal injury category. 

Bus Driver Data 

This example is based on a study of bus driver absenteeism in the transit 
system for the City of Edmonton, Alberta. The data is based on a survey 
of all shifts over a two-week period in each of four seasons of a calendar 
year. From this study, Table 6.29 relating Attendance (1), Day ofWeek (2) 
and Shift Type (3) was obtained. The frequencies in the table represent the 
total number of shifts in the cells. A swing shift is one that involves driving 
on the weekend, and a split shift implies that the seven hour driving day 
is split into two parts with several hours time off in between parts (Le., 
morning rush period and evening rush period). 

The X2 goodness of fit statistics are shown in Table 6.30 for all models of 
complexity greater than the independence model. The table shows that two 
models fit the data reasonably weH: the conditional independence model 
[13] [23] and the no three-way interaction model [12] [13] [23]. The X2 ~ 
values for the conditional independence model are 0.3882 for H 2 = 43.97 
and 0.3103 for G2 = 45.91. For the no three-way interaction model the 
X2 ~values are 0.5200 for H2 = 34.92 and 0.3737 for G2 = 38.11. Since 
the conditional independence model is less complex, it is usually the pre­
ferred model. Comparing the two models, H2-l = 43.97 - 34.92 = 9.05 
which has 42 - 36 = 6 d.f. This X2 value is not significant at conventional 
probability values and hence we would conclude that the conditional inde­
pendence model is as good a fit as the no three-way interaction model. We 
can conclude, therefore, that after controlling for type of shift there is no 
interaction between attendance and day of the week. Thus, for instance, 
after controlling for type of shift there is no tendency for drivers to be 
absent on Fridays or Mondays. 
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TABLE 6.29. Attendance versus Day of Week and Type of Shift 

Type of Shift (3) 

Attendance Day A.M. Noon P.M. Swing A Split A Split B Split 

(1) (2) /Swing /Swing 

Sun 9 13 18 31 39 23 38 
Mon 99 31 67 34 252 27 43 

Tues 117 32 88 18 291 19 43 

Absent Wed 13 39 96 13 290 24 50 
Thur 101 38 91 19 320 13 48 

Fri 91 34 82 19 292 16 47 

Sat 24 21 49 26 115 30 61 

Sun 135 59 230 409 393 273 458 
Mon 1029 361 605 2156 389 389 445 

Tues 1099 416 712 150 2293 221 445 

Present Wed 1103 409 704 155 2302 208 438 
Thur 1083 370 677 253 2264 227 440 
Fri 1093 374 662 253 2292 224 465 
Sat 264 123 399 414 821 386 659 

TABLE 6.30. Goodness of Fit Statistics for Absenteeism by Day by 
Shift 

Model d.f. H 2 Prob a2 Prob R 2 A 

[1] [2] [3] 84 3360.92 0.0000 3756.49 0.0000 0 3431 
[1] [23] 48 132.42 0.0000 129.34 0.0000 0.961 130 
[2] [13] 78 3272.65 0.0000 3643.53 0.0000 0.027 3331 

[3] [12] 78 3343.08 0.0000 3720.47 0.0000 0.005 3401 
[13] [23] 42 43.97 0.3882 45.91 0.3103 0.987 30 
[13] [12] 72 3254.61 0.0000 3625.02 0.0000 0.032 3300 
[12] [23] 42 114.41 0.0000 112.98 0.0000 0.966 100 
[12] [13] [23] 36 34.92 0.5200 38.11 0.3737 0.990 9 

The fitted parameters for the conditional independence model are sum­
marized in Table 6.31. The numbers in brackets indicate the standardized 
values of the estimated parameters and hence can be compared to the stan­
dard normal to determine significance. The attendance parameters indicate 
that a large proportion of the drivers are not normally absent. The day ef­
feets indicate that the number of drivers required is lower on Saturday and 
much lower on Sunday than the other five days of the week. The shift ef­
feets indicate how the number of employees required per shift varies. The 
order from largest to smallest is A Split, A.M., P.M., B Split/Swing, Noon, 
Swing and A Split/Swing. The attendance by shift effects are relatively 
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weakj however, there is some evidence that the P.M. and A Split shifts see 
somewhat smaller rates of absenteeism while the Swing and A SplitjSwing 
shifts see somewhat larger rates of absenteeism. For the parameters that 
measure the interaction between day of the week and type of shift, we can 
conclude that in comparison to weekdays on the weekends relatively few 
drivers are on the A.M., Noon, P.M. and A Split shifts whereas a relatively 
large number of drivers are on the Swing, A SplitjSwing and B SplitjSwing 
shifts. During weekdays the opposite effects seem to occur. The large nega­
tive interaction parameters for the swing shift on Tuesdays and Wednesdays 
suggest that these days are the most common days off for the swing shift 
drivers who work on weekends. 

Goodness of Fit and Model Selection 

A measure of goodness of fit comparable to R2 in multiple linear regression 
is given by 

R2 = 1- H2jH~, 

where H6 is the value of the likelihood ratio X2 statistic for the indepen­
dence model, and H2 is the likelihood ratio X2 statistic for the model of 
interest. 

An adjusted R 2 measure comparable to the adjusted R 2 in multiple linear 
regression is given by 

R/2 = 1 _ H2 j(q - r) , 
H6I(q - ro) 

where q = number of cells in the contingency table, and r and ro are 
the degrees of freedom associated with the models yielding H2 and H6 
respectively. 

An alternative approach to model comparison is provided by Akaike's 
information criterion. This criterion recommends choosing the model that 
minimizes the value of 

A = H2 - (q - 2r), 

where H2 is the likelihood ratio X2 statistic for the model, r is the number of 
degrees of freedom, and q is the number of cells in the table. The subtraction 
of the term (q - 2r) is a method of compensating for the overfitting that 
can occur when the number of cells is relatively large. 

Example 

The values of the criteria R2 and A for the bus data contingency table 
are shown in Table 6.30. The R2 values for the models [1][23], [13][23], 
[12] [23] and [12] [13] [23] are 0.961, 0.987, 0.966 and 0.990. For the Akaike 
criterion the values of A for these four models are 130, 30, 100 and 9 
respectively. Although the maximum R2 and minimum A correspond to 
the model [12] [13] [23] we have already seen from the likelihood ratio test 
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TABLE 6.31. Estimated Parameters for Conditional Independence Model 
for Absenteeism by Day by Shift 

Mean 4.981 

Attendance Effects [1] 
Absent Present 

-1.159 1.159 
(-97.978) 

Day Effects [2] 
Sun Mon Thes Wed Thurs Fri Sat 

-0.690 0.280 0.129 0.124 0.175 0.177 -0.195 

(-29.103) (18.471) (7.441) (7.162) (10.611) (10.768) (-10.547) 

Shift Effects [3] 
A Split B Split 

A.M. Noon P.M. Swing A Split ISwing ISwing 
0.328 -0.598 0.249 -0.655 1.317 -0.664 0.022 

(13.327) (-16.812) (10.275) (-17.429) (75.445) (-17.491) (0.793) 

Attendance by Shift Effects [13] 

Present -0.016 0.000 0.111 -0.114 0.130 -0.111 0.000 
Absent 0.016 0.000 -0.111 0.114 -0.130 0.111 0.000 

(0.716) (0.000) (-4.758) (3.108) (-7.962) (2.968) (0.000) 

Day by Shift Effects [23] 
Sun -0.915 -0.669 -0.190 1.103 -0.688 0.718 0.642 

(-13.917) (-7.421) (-3.584) (24.049) (-16.131) (13.937) (15.171) 
Mon 0.174 0.055 -0.163 0.132 0.059 0.088 -0.345 

(5.798) (1.234) (-4.760) (3.144) (2.607) (2.051) (-8.988) 
Thes 0.400 0.340 0.162 -0.679 0.281 -0.311 -0.194 

(13.096) (7.771) (4.838) (-11.140) (11.728) (-5.891) (-4.930) 
Wed 0.404 0.345 0.176 -0.675 0.289 -0.341 -0.189 

(13.225) (7.868) (4.965) (-11.065) (12.025) (-6.364) (-4.814) 
Thurs 0.327 0.201 0.076 -0.243 0.235 -0.357 -0.239 

(10.824) (4.492) (2.258) (-4.838) (10.074) (-6.794) (-6.154) 
Fri 0.325 0.199 0.042 -0.246 0.233 -0.359 -0.194 

(10752) (4.441) (1.230) (-4.885) (9.981) (-6.839) (-5.064) 
Sat -0.716 -0.471 -0.093 0.608 -0.410 0.563 0.519 

(-14.846) (-7.125) (-2.285) (14.008) (-13.195) (12.804) (14.698) 

that this model is not a significant improvement over the model [13][23]. 
This latter model has the second best values of the two goodness of fit 
criteria. 
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6.3.3 FOUR-DIMENSIONAL CONTINGENCY TABLES AND 

STEPWISE FITTING PROCEDURES 

For a four-dimensional contingency table the independence model has the 
form 

InFijkh = I-" + 1-"1(i) + 1-"2(j) + 1-"3(k) + 1-"4(h) , 

and the saturated model has the form 

In Fijkh = I-" + 1-"1(i) + 1-"2(j) + 1-"3(k) + 1-"4(h) 

+1-"12(ij) + 1-"13(ik) + 1-"14(ih) + 1-"23(jk) + 1-"24(jh) + 1-"34(kh) 

+1-"124(ijh) + 1-"123(ijk) + 1-"134(ikh) + 1-"234(jkh) + 1-"1234(ijkh)· 

Between these two models there are over 100 possible models within the 
hierarchical system. Fitting all possible models to determine the simplest 
model that fits the data can therefore be an expensive and time-consuming 
process. For dimensions higher than four, the number of possible models is 
mind expanding. For four and higher-dimensional tables, therefore, stepwise 
search procedures are often used for selecting a suitable model. 

Stepwise Model Selection 

The stepwise approach to choosing a model begins with a particular model 
and either adds terms (forward) or deletes terms (backward) one at a time 
until the simplest model that fits the data is obtained. Since the stepwise 
procedure begins with a starting model, this model must be selected in a 
suitable manner. 

A common approach to selecting a starting point is to fit all models of a 
uniform order. The uniform order models for a four-dimensional table are 
given below. 

Order 1 
Order 2 
Order 3 
Order 4 

[1] [2] [3] [4] 
[12] [13] [14] [23] [24] [34] 
[123] [234] [134] [124] 
[1234] 

The simplest uniform order model that fits the table weIl makes an exceIlent 
upper bound. UsuaIly, if a particular uniform order model fits the data weIl, 
all higher order models will also fit the data. A lower bound for a stepwise 
process would be the highest uniform order model that does not fit the 
table. Usually the upper and lower bounds differ by only one or two orders. 

To describe the stepwise procedures, we denote the order of the upper 
bound by q and the lower bound by r. The forward procedure begins with 
the r uniform order model and adds terms one at a time in such a way that 
the change in the likelihood ratio statistic is maximized. Terms are added 
as long as the increase in the likelihood chi-square statistic is significant. 
For the backward procedure, terms are removed one at a time beginning 
with the q uniform order model. At each step, the term removed is the 
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TABLE 6.32. Observed Frequencies Injury Level, Condition of 
Driver, Seatbelt Usage and Sex of Driver 

Var (4) 
Var (1) Var (2) Var (3) Driver Condition 

Injury Level Seatbelt Usage Sex Normal Been Drinking 

None Yes Male 8312 263 
Female 4188 50 

No Male 42476 3440 
Female 19495 552 

Minimal Yes Male 313 37 
Female 291 6 

No Male 1841 383 
Female 1678 98 

Minor Yes Male 189 12 
Female 155 3 

No Male 1214 290 
Female 1058 80 

Major/Fatal Yes Male 24 3 
Female 14 1 

No Male 146 51 
Female 91 15 

one that yields the smallest change in the likelihood chi-square statistic. 
Terms are removed as long as they are not considered to be significant. 
These stepwise procedures are illustrated below using the auto accident 
data introduced earlier in this chapter. 

Example 

The four-dimensional table showing the relationship between injury level, 
condition of driver, seatbelt usage and sex of driver for a large number of 
auto accidents is shown in Table 6.32. The goodness of fit statistics for the 
uniform order models for q = 1, 2 and 3 are shown in Table 6.33. From the 
X2 goodness of fit statistics it would appear that we should seek a model 
between orders 1 and 3. The order 2 model seems to fit the data (p = 0.30); 
however, we would like to determine other models in the neighborhood of 
this one for comparison purposes. 

The results of a forward stepwise procedure are shown in Table 6.34. 
Beginning with the uniform first-order model, the procedure adds first­
order interaction terms one at a time. A good fit of the table is not achieved 
until the uniform second-order model is reached in Step 6. The goodness 
of fit X2 has a p-value of 0.3025 for this model. The last term added before 
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TABLE 6.33. Goodness of Fit Statistics for Uniform Order 
Models 

Likelihood 
Model d.f. Ratio X2 Prob Pearson X2 Prob 

[1) [2) [3) [4) 25 2448.86 0.0000 2498.04 0.0000 

[12) [13) [14) 
[23) [24) [34) 13 15.24 0.3024 15.70 0.2656 

[123) [234) 
[124) [134) 3 1.39 0.7081 1.31 0.7258 

TABLE 6.34. Results of Forward Stepwise Procedure 

Added Likelihood 
Step Model Fitted Effect d.f. Ratio X? Prob 

0 [1) [2) [3) [4) 25 2448.86 0.0000 
1 [1) [2) [34) 24 1628.81 0.0000 

[34) 1 820.05 0.0000 
2 [1) [24) [34) 23 1236.61 0.0000 

[24) 392.20 0.0000 
3 [13) [24) [34) 20 698.46 0.0000 

[13) 3 538.15 0.0000 
4 [13) [14) [24) [34) 17 73.78 0.0000 

[14) 3 624.68 0.0000 
5 [12) (13) [14) [24) (34) 14 33.23 0.0027 

[12) 3 40.55 0.0000 
6 [12) [13) [14) [23) [24) [34) 13 15.08 0.3025 

[23) 1 18.15 0.0000 
7 [134) [12) [23) [24) 10 8.98 0.5340 

[134) 3 6.10 0.1069 
8 [134) [124) [23) 7 4.12 0.7662 

[124) 3 4.86 0.1821 
9 [134) [124) [123) 4 1.32 0.8587 

[123) 3 2.80 0.4232 
10 [134) [124) [123) [234) 3 1.32 0.7246 

[234) 0.00 1.0 

this model was reached, [23], was significant at the 0.0000 level. The first 
term added beyond the uniform second-order model was [134] which was 
significant at the 0.1069 level. A reasonable conclusion, therefore, is that 
the uniform second-order model provides a good fit to the table. The model 
cannot be simplified without deleting a significant second-order interaction, 
and adding a third-order interaction does not significantly improve the fit. 
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TABLE 6.35. Results of Backward Stepwise Procedure 

Deleted Likelihood 
Step Model Fitted Effect d.f. Ratio x.2 Prob 

0 [123] [124] [134] [234] 3 1.32 0.7246 
1 [123] [124] [134] 4 1.32 0.8587 

[234] 1 0.00 1.0 
2 [124] [134] [23] 7 4.12 0.7662 

[123] 3 2.80 0.4232 
3 [134] [124] [24] [23] 10 8.98 0.5340 

[124] 3 4.86 0.1821 
4 [12] [13] [14] [23] [24] [34] [134] 3 6.10 0.1069 

For comparison, the results obtained from using the backward procedure 
between the second and third orders is shown in Table 6.35. The results 
are simply the reverse of the forward procedure results in Table 6.34. 

Tests 01 Partial and Marginal Association 

Two additional procedures that can provide insight in model selection are 
tests of partial and marginal association. In partial association the partial 
significance of an effect is determined by comparing the uniform model of 
the same order to the model from which the effect in question has been 
removed. In the second order uniform model [12] [13] [14] [23] [24] [34], the 
test of partial association for [23] involves comparing the uniform second­
order model to the model with [23] removed, given by [12] [13] [14] [24] 
[34]. The difference of the two likelihood ratio X2 statistics provides a test 
statistic for this partial association. 

Example 

From the results of the forward stepwise procedure in Table 6.34, we can 
conelude that the term [23] is significant at the 0.0000 level (see step 6). 
Thus we would conelude that, after fitting a1l other first-order intera.ctions, 
the intera.ction [23] is significant. A second example is provided by step 10 
in the same table. Removing [234] from the uniform third-order model does 
not result in any loss in the quality of the fit. 

Marginal Association 

A test of marginal association seeks to determine the importance of an 
effect by collapsing the table over a1l other effects and then determining 
whether the effect of interest is required to model the collapsed table. In 
the four-dimensional table a test for the marginal association of [123] is 
obtained by collapsing the table on variable 4 and then fitting the model 
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[12J [13J [23J to the coHapsed table. If it fits the data weH, then the effect 
[123J is not required. A difficulty with the test of marginal association is 
the potential problem of coHapsibility. This topic is discussed in the next 
section. 

Example 

For the auto accident data, the three-dimensional table for variables 1, 2 
and 4 was studied in Section 6.3.2. The model [12J [14] [24] was found to 
provide an adequate fit for this table. A test for the marginal association 
for the effect [124J would conelude that this effect is not important. 

Estimated Parameters for the Four-Dimensional Auto Accident Table 

The estimated parameters for the log linear model [12] [13J [14J [23J [24] 
[34] for the auto accident data are summarized in Table 6.36. The ratio 
of the parameter estimates to the standard errors is also shown for some 
of the parameters. The remaining ratios can be determined by symmetry. 
The main effect parameters indicate that the majority of the drivers were 
in normal condition and that more were male drivers than female drivers. 
A majority of the drivers were not wearing seatbelts. A large majority of 
the drivers were not injured and very few sustained major or fatal injuries. 

The sex by driver condition interaction indicates that, in comparison to 
females, a larger proportion of male drivers had been drinking. The sex by 
seatbelt usage interaction indicates that males are less likely to be wearing 
seatbelts than females. The sex by injury level interaction suggests that, 
with the exception of the major/fatal category, females were more likely 
to sustain an injury (minimal or minor) than were males under the same 
conditions. 

The seatbelt usage by driver condition interaction shows that drivers 
who had been drinking were less likely to be wearing seatbelts than normal 
condition drivers. The injury level by driver condition interaction indicates 
that drivers who had been drinking were more likely to sustain all levels of 
injury than normal condition drivers. For the injury level by seatbelt usage 
interaction the estimated parameters suggest that seatbelt wearers were 
less likely to have sustained minor or major/fatal injuries than seatbelt 
nonusers. 

The expected frequencies for the fitted log linear model are displayed 
in Table 6.37. A comparison of the expected frequencies to the observed 
frequencies in Table 6.32 shows that the model fits the table very weH. As 
in the case of the three-way table fitted in Section 6.3.2, the minimal and 
minor categories seem to be the most difficult to fit. 
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TABLE 6.36. Estimated Parameters for Loglinear Model 

Overall Mean 

Driver Condition 

Sex of Driver 

Seatbelt Usage 

Injury Level 

Sex by Driver Condition 

Normal 
Been Drinking 

5.1806 

Normal 
1.320 

Male 
0.436 

Yes 
-1.110 

None 
2.540 

(91.425) 

Male 
-0.270 
0.270 

Seatbelt Usage by Driver Condition 
Yes 

Normal 0.229 
Been Drinking -0.229 

Seatbelt Usage by Sex 
Male 

Yes -0.021 
No 0.021 

Injury Level by Driver Condition 
Normal 

None 0.435 
Minimal -0.022 
Minor -0.084 
Major/Fatal -0.329 

Injury Level by Sex 
Male 

None 0.201 
Minimal -0.127 
Minor -0.106 
Major/Fatal 0.032 

Injury Level by Seatbelt 
Yes 

None 0.088 
Minimal 0.010 
Minor -0.071 

Major/Fatal -0.026 

Been Drinking 
-1.320 (-56.323) 

Female 
-0.436 (-24.229) 

No 
1.110 (43.499) 

Minimal 
0.119 

(3.522) 

Female 
0.270 (27.426) 

-0.270 

No 
-0.229 (-16.801) 

0.229 

Female 
0.021 (4.258) 

-0.021 

Been Drinking 
-0.435 (-21.431) 

0.022 (0.861) 
0.084 (3.034) 
0.329 (6.31) 

Female 
-0.201 (-12.685) 

0.127 (6.767) 
0.106 (5.203) 

-0.032 (-0.748) 

No 
-0.088 (-3.842) 
-0.010 (-0.368) 
0.071 (2.374) 
0.026 (0.418) 

Minor Major/Fatal 
-0.334 -2.325 

(-8.979) (-31.479) 
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TABLE 6.37. Expected Frequencies Based on Uniform Sec-
ond-Order Model 

Driver Condition 
Injury Level Seatbelt Usage Sex Normal Been Drinking 

None Yes Male 8328.1 270.3 
Female 4168.8 45.9 

No Male 42442.6 3450.1 
Female 19531.5 538.8 

Minimal Yes Male 312.2 25.3 
Female 301.3 8.3 

No Male 1859.7 376.9 
Female 1650.0 113.5 

Minor Yes Male 175.5 16.1 
Female 162.4 5.0 

No Male 1231.1 282.3 
Female 1047.1 81.5 

Major/Fatal Yes Male 22.3 3.3 
Female 15.6 0.8 

No Male 144.3 54.1 
Female 92.8 11.8 

An Example with a Fitted Three- Way Intemction 

To provide an example with a fitted three-way interaction, the previous 
example table will be fitted with the model [134] [12] [23] [24]. This model 
W88 the next model to be fitted in Table 6.34 (see step 7), immediately 
after the uniform second-order model [12] [13] [14] [23] [24] [34] described 
in Table 6.36. For the model containing the parameters Jll34(ikl), the esti­
mates of these parameters are summarized in Table 6.38. The remaining 
parameter estimates for this model are very similar to those given in Ta­
ble 6.36. The ratios of the parameter estimates to the standard errors are 
shown in brackets. These ratios generally indicate that the estimates are 
not significant. In order to illustrate how to interpret three-way interactions 
we shall proceed as if the parameter estimates are significant. 

The two-way interaction between driver condition and injury level in­
dicates that for drivers who have been drinking the probability of a min­
imal injury is greater than for drivers who are in normal condition. The 
three-way intera.ction with sex indicates that for females the driver condi­
tion effect on minimal injury is less pronounced while for males the driver 
condition effect on minimal injury is stronger. Altematively the two-way 
interaction between sex and injury level indicates that in comparison to 
males, female drivers are more likely to be in the minimal and minor in-
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TABLE 6.38. Three-Way Interaction Parameter 
Estimates 

Driver Condition 
Injury Level Sex Normal Been Drinklng 

None Male -0.002 0.002 (0.066) 
Female 0.002 -0.002 

Minimal Male -0.063 0.063 (2.043) 
Female 0.063 -0.063 

Minor Male -0.023 0.023 (0.677) 
Female 0.023 -0.023 

Major/Fatal Male 0.088 -0.088 
Female -0.088 0.088 (1.378) 

jury categories and less likely to be in the no injury category. The three­
way interaction parameter suggests that this difference between males and 
famales is less pronounced for drinking drivers and more pronounced for 
normal condition drivers. Finally although the two-way interaction between 
sex and driver condition indicates that male drivers are less likely to be in 
the normal category than female drivers, the three-way interaction with 
injury level reduces these sex differences in the minimal and minor injury 
categories. 

6.3.4 THE EFFECTS OF COLLAPSING A CONTINGENCY 
TABLE AND STRUCTURAL ZEROES 

Collapsing Contingency Tables 

It is often the case in practice that the number of variables being studied is 
less than the number of explanatory variables that actually have an impact 
on the dependent variables of interest. In some cases variables cannot be 
measured and in other cases variables are omitted to avoid complexity or 
due to small sampie size. The contingency table being analyzed should in 
general be viewed as a collapsed table in that the cell frequencies in the table 
represent sums of frequencies over the categories of the omitted variables. 
In our study of two-dimensional tables in Section 6.2 it was demonstrated 
that a Simpson's Paradox phenomenon can result from collapsing a table, 
altering interactions among variables considerably. The important question, 
therefore, is when maya table be collapsed over a particular variable? 

In a three-dimensional table with variables A, B and C, the table may 
be collapsed over the variable C if Cisindependent of at least one of the 
variables A and B. If the model [AC] [AB] fits the table, then, since variable 
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TABLE 6.39. Observed Frequency Attendance by Sex by Type of Shift 

[1) [2) [3) 
Shift A A Split B Split 

Attendance Sex A.M. Noon P.M. Swing Split /Swing /Swing 

Absent Male 545 183 347 133 1244 129 240 
Female 8 25 128 26 282 5 67 

Present Male 5735 2137 3653 1747 1116 1617 2720 
Female 32 55 272 294 1158 195 413 

Cisindependent of B, the table may be collapsed over C and may also be 
collapsed over B. In this C88e, the interaction between A and B can be 
studied independently of C and similarly, the interaction between A and C 
can be studied independently of B. If, however, the three-dimensional table 
requires the more complex model [AB] [AC] [BC], then the table cannot 
be collapsed over any of the variables without changing the measurement 
of the interaction between any pair. 

For a four-dimensional table with variables A, B, C and D, the table 
may be collapsed over D if the true model is [ABC] [AD]. Recall that this 
model contains the interactions [AB], [AC], [BC] as weIl as [AD]. Since D 
is independent of both B and C, none of the interactions among A, B and 
C will be affected by collapsing on D. Collapsing the table with respect to 
tbe variable C, however, will affect tbe interactions [ABC], [AC] [AB] and 
[BC]. 

If the true model is [AB] [AC] [BC] [AD] [BD], then the table cannot 
be collapsed on any of the variables. While collapsing on D will not affect 
[AC], [AB] will be affected. If the true model is [AB] [AC] [BC] [AD] [BD] 
[CD], then collapsing on any variable will affect all other interactions. The 
collapsibility of a contingency table therefore involves two considerations, 
the variable to be collapsed and the interaction to be studied. 

Example 

To illustrate the problem of collapsibility, we analyze a three-dimensional 
contingency table based on the bus data introduced in Section 6.3.2. A 
three-dimensional table relating attendance, sex and type of shift is shown 
in Table 6.39. A saturated loglinear model is required to explain the interac­
tions as demonstrated by the goodness of fit statistics shown in Table 6.40. 
The estimated loglinear parameters for the saturated model are displayed 
in Table 6.41. From these parameter estimates we can obtain information 
about the interaction among the three variables. 
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TABLE 6.40. Goodness of Fit Statistics for Attendance by 
Sex by Type of Shift 

Likelihood 
Model d.f. Ratio X2 Prob Pearson X2 Prob 

[1] [2] [3] 19 1602.39 0.0000 1430.39 0.0000 
[12] [3] 18 1377.91 0.0000 1073.14 0.0000 
[13] [2] 13 1517.17 0.0000 1303.71 0.0000 
[23] [1] 13 400.90 0.0000 515.67 0.0000 
[13] [23] 7 315.50 0.0000 408.07 0.0000 

[12] [13] 12 1292.51 0.0000 989.57 0.0000 

[12] [23] 12 176.21 0.0000 163.36 0.0000 

[12] [13] [23] 6 92.63 0.0000 88.82 0.0000 

Since this model contains a fitted second-order or three-way interaction 
term, we can interpret the first-order interactions as partial interactions be­
tween two variables while controlling for a third variable. The attendance by 
sex interaction parameters indicate that, after controlling for shift, the rate 
of absenteeism for females is greater than for males. From the attendance 
by shift interactions we can conelude that, after controlling for sex, the rate 
of absenteeism seems to be lowest for the Swing and A Split/Swing shifts 
and greatest for the Noon and P.M. shifts. From the sex by shift interaction 
we can conelude that there are proportionately more males on the A.M. 
shift and proportionately more females on the P.M., Swing, A Split/Swing 
and B Split/Swing shifts than one would expect under independence. 

The second-order interaction parameters can be used to indicate how 
the first-order interactions are affected by the third variable. From the 
first-order interactions relating attendance to shift we found that certain 
shifts have higher rates of absenteeism. From the second-order interactions 
we have an indication of how this first order interaction differs by sex. For 
males, the rate of absenteeism of the A.M., P.M. and Noon shifts should be 
adjusted downward, whereas for the A Split/Swing shift the absenteeism 
must be adjusted upward. The opposite is true for females. 

To examine the effects of collapsing a table when a second order inter­
action is present, we shall analyze the two-dimensional table Attendance 
by Type of Shift. The observed frequencies presented in Table 6.42 are ob­
tained by collapsing on the sex variable. The independence model produces 
likelihood ratio and Pearson X2 values of 85.385 and 82.545 respectively, 
and so a saturated model is required to describe the interaction in the 
table. The estimated parameters are shown in Table 6.43. Based on a com­
parison of Tables 6.41 and 6.43 we can conelude that the main effects for 
attendance are similar, however for the shift effects there are a number of 
large differences. The A.M. effect changes from positive to negative whereas 
the B Split/Swing changes from negative to positive. In addition the Noon, 
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TABLE 6.41. Estimates of Loglinear Parameters for Saturated Model for 
Attendance by Sex by Type of Shift 

Mean 5.655 

Absent Present 
Attendance Effects -1.042 -1.042 

Male Female 
Sex Effects 1.228 -1.228 

A A Split B Split 
A.M. Noon P.M. Swing Split ~ ISwing 

Shift Effects -0.530 -0.629 0.473 -0.330 1.630 -0.864 0.250 

Attendance by Sex Male Female 
Absent -0.167 0.167 
Present 0.167 -0.167 

A A Split B Split 
Attendance by Shift A.M. Noon P.M. §:!'!!!!g ISplit ISwing Swing 
Absent 0.107 0.230 0.265 -0.208 0.141 -0.514 -0.020 
Present -0.lO7 -0.230 -0.265 0.208 -0.141 0.514 0.020 

A A Split B Split 
Sex by Shift A.M. Noon P.M. Swing Split ISwing ISwing 
Male 1.125 0.185 -0.329 -0.374 -0.291 0.122 -0.437 
Female -1.125 -0.185 0.329 0.374 0.291 -0.122 0.437 

Attendance by Sex by Shift 
A A Split B Split 

A.M. Noon P.M. Swing SpUt /Swing /Swing 
Absent Male -0.075 -0.250 -0.233 0.129 -0.028 0.442 0.015 

Female 0.075 0.250 0.233 -0.129 0.028 -0.442 -0.015 
Present Male 0.075 0.250 0.233 -0.129 0.028 -0.442 -0.015 

Female -0.075 -0.250 -0.233 0.129 -0.028 0.442 0.015 

P.M. and Swing effects also change in magnitude. Thus collapsing the table 
on the sex variable causes a number of changes in the shift effects. 

From the estimated loglinear parameters for the interaction between at­
tendance and shift in Table 6.43 we conclude that absenteeism is relatively 
high for the P.M. and A Split shifts and relatively low for the Swing and 
A SplitjSwing shifts. This measure of interaction does not take into ac­
count the differences in the rates of absenteeism between the sexes, nor 
does it take into account the differences in proportions of females assigned 
to the different shifts. Comparing the attendance by shift parameter esti­
mates in Table 6.43 to the same parameters in Table 6.41 shows that by 
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TABLE 6.42. Observed Frequencies Attendance by Type of Shift 

Type of Shift 

A A Split B Split 

Attendance A.M. Noon P.M. Swing Split jSwing jSwing 

Absent 553 208 475 159 1526 139 307 

Present 5767 2192 3925 2041 2274 1812 3133 

TABLE 6.43. Estimated Log-Linear Parameters for Saturated Model 
Attendance by Shift 

Absent Present 

Attendance Effects -1.172 1.172 

A A Split B Split 
A.M. Noon P.M. Swing Split ISwing /Swing 

Shift Effects 0.482 -0.491 0.213 -0.661 1.367 -0.791 -0.118 

A A Split B Split 
Attendance by Shift A.M. Noon P.M. Swing Split /Swing /Swing 
Absent 0.0000 -0.006 0.116 -0.104 0.129 -0.145 0.010 
Present 0.0000 0.006 -0.116 0.104 -0.129 0.145 -0.010 

not controlling for sex the estimates change. Although the directions of the 
attendance by shift parameter estimates did not change, the magnitudes 
changed by more than a factor of 2 in most of the categories. By omitting 
the sex effect the attendance by shift interactions became weaker. Thus the 
interaction between attendance and shift depends on whether the sex fac­
tor has been fitted. The estimated parameters of this two-dimensional table 
relating attendance to shift cannot be used to predict rate of attendance 
if the male-female ratio or the distribution of males and females over the 
various shifts were changed. The two-dimensional model has not controlled 
for potential changes in the sex variable. The fitted model assumes that 
the inter action between absenteeism and shift type will not be affected by 
the sex of the driver. 

Random Zeroes, Structural Zeroes and Incomplete Tables 

An observation of zero in the cell of a contingency table may be due to 
chance (random zero) or it may be because it is impossible for that cell to 
occur (a structural zero). For example, suppose in a study of automobile 
accidents drivers were classified according to whether they appeared to have 
been drinking, whether they were later convicted, and also by level of injury. 
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For those drivers who were killed in the accident the cell corresponding to 
later conviction and fatal injury must be a structural zero. Our study of 
contingency tables thus far has ignored the possibility of such structural 
zeroes. Any cell zeroes were treated as random zeroes and were assumed 
to have positive theoretical frequencies. 

In !arge contingency tables with many ceIls it is often the case that 
there are many sampling or random zeroes. Depending on the distribution 
of the zeroes throughout the table, it is possible to have zero marginals 
resulting in undefined or negative expected cell frequencies. One approach 
to this problem is to set the expected cell frequencies to zero and fit the 
remainder of the table. The degrees of freedom must also be adjusted for 
the cells fitted by zeroes. A contingency table with structural zeroes is 
called an incomplete table if the ceIls with structural zeroes are removed 
from the table. Under certain conditions a loglinear model may be fitted 
to the incomplete table using the methods described above. A discussion 
of structural and random zeroes is given in Fienberg (1980). 

Quasi-Ioglinear Models Jor Incomplete Tables 

A quasi-loglinear model for an incomplete table is a loglinear model which 
is only defined over the ceIls of the table that do not contain structural 
zeros. For a three-dimensional table, an indicator variable 6ijk is defined 
for each cell (i,j, k), and hence 6ijk = 1 if cell (i,j, k) is not a structural zero 
and 6ijk = 0 if cell (i,j, k) is a structural zero. For each cell, the observed 
frequencies nijk and expected frequencies Fijk are repla.ced by the product 
quantities 6i;knijk and 6i;kFi;k respectively. The parameters and estimators 
can then be defined using these product quantities in place of the former 
quantities. If iterative proportional fitting is used, the starting estimate for 
each ceIl is 6ijk which is either 0 or 1. 8ince the iterative proportional fitting 
algorithm uses ratios to revise the ceIl estimates, a starting value of zero 
for ceIls with structural zeros guarantees that these ceIls remain zero. 

6.3.5 LOGIT MODELS FOR RESPONSE VARIABLES 

Up to this point our discussion of modeling techniques for categorical data 
has not included the consideration of adependent variable or response 
variable. If one of the variables in a contingency table can be regarded as a 
dependent variable, it is possible to construct a model for this dependent 
variable in terms of the remaining variables using the estimated loglinear 
model. 

The Logit FUnction 

Assume that adependent variable is dichotomous and that, for given levels 
of the other variables, the probabilities for the two categories are p and 
(1 - p). The function lnfp/(l - p)] of the probabilities p and (1 - p) is 
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called a lagit function and will serve as a convenient dependent variable. 
In a loglinear model for categorical data, it is easy to rewrite the model so 
that the left hand side is the logit function of a dichotomous response vari­
able. To demonstrate, consider the saturated model for a three-dimensional 
contingency table. 

In Fijk = p, + P,l(i) + P,2(j) + P,3(k) 

+P,12(ij) + P,13(ik) + P,23(jk) + P,123(ijk), 

i = 1,2, ... ,T; j=1,2, ... ,c; k=1,2, •.. ,i. 

Assuming that the first variable is dichotomous i = 1,2, the difference 
between the equations for the two values of i may be written as 

F 2 ·k (F2 ·k ) (P'k) lnF2jk-lnFljk=ln F] =ln F 'p. =10 l' , 
Ijk -jk - 2jk - Pjk 

where F.jk = (F1jk + F2jk) is the total frequency in category (j, k) and Pjk 

is the probability of an observation in category (j, k) when i = 2. The right 
hand side of this model is given by 

[P,1(2) - P,l(l)] + [p,12(2j) - P,12(lj)] + [P,13(2k) - P,13(lk)] 
+ [p,123(2jk) - P,123(ljk)]' 

Since the pairs of parameters in brackets in the above expression must sum 
to zero, the two parameters in each bracket are equal in magnitude and 
opposite in sign. The right hand side therefore becomes 

= 2P,1(2) + 2P,12(2j) + 2P,13(2k) + 2P,123(2jk) 

= L + L2(j) + L3(k) + L23(jk), 

where L = 2P,1(2)' L2(j) = 2P,12(2j), L3(k) = 2P,13(2k) and L23(jk) = 

2P,123(2jk) . 

Fitting a Logit Model 

A fit ted loglinear model can be used to fit a logit model provided certain 
terms are included in the loglinear model. We can see from the above exam­
pIe that in the logit model all the terms involving variable 1 are necessary 
but that all variables excluding 1 disappeared. The use of the logit model 
to explain the variation in the response variable therefore omits the interac­
tion effects among the explanatory variables themselves. These interaction 
terms disappear by subtraction when the logit model is constructed from 
the loglinear model. In the logit model the primary purpose is to study the 
impact of the explanatory variables on the response variable. 

Although the parameters in the model that do not contain the response 
variable do not appear in the final logit model, they may have to be in­
cluded in the loglinear model being fitted. By including these parameters, 
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TABLE 6.44. Attendance by Garage by Type of Shift* 

Shift 
A A Split B Split 

Atteod. Garage A.M. Nooo P.M. Swing Split /Swing /Swiog Total 

Preseot A 2471 984 1702 920 4428 784 1614 12903 
B 1795 533 1146 552 4220 580 791 9617 
C 1500 675 1061 568 3593 484 745 8626 

Total 5766 2192 3909 2040 12241 1848 3150 31246 

Abseot A 289 96 258 80 612 56 106 1497 
B 125 67 134 48 500 60 129 1063 
C 140 45 99 32 487 36 95 934 

Total 554 208 491 160 1599 152 330 3494 

TOTALS 6320 2400 4400 2200 18340 2000 3480 34520 

*[1) = Atteodance, [2) = Garage, [3) = Type of Shift 

the associated marginals are fitted to the sampie marginals. Recall that if 
the sampling scheme is product multinomial and the explanatory variables 
are control variables, the fitted marginals must be equal to the sampie 
marginals. For explanatory variables that are not control variables and do 
not contain response variables if they are not significant, they can be omit­
ted from the fitted loglinear model. In Section 6.4, logit models will be 
fitted to multidimensional contingency tables using weighted least squares 
assuming product multinomial sampling. 

Ezample 

The bus data introduced earlier in this chapter provides an example. From 
the bus data, the observed relationship between attendance, garage and 
type of shift is summarized in Table 6.44. 

A saturated model was fit to this three-dimensional table. The estimates 
of the parameters for the logit model for attendance are obtained by dou­
bling the parameter estimates for JL1(2) , JL12(2j) , JL13(2k) and JL23(2jk) given 
in Table 6.45. The estimates for the model 

P"k 
In (1 J ) = L + L2(j) + L3(k) + L23(jk) 

- Pjk 

are summarized in Table 6.46. 
The ratio p/(1 - p) measures the ratio of the probability of Present to 

the probability of Absent. The estimate for the constant term, L, indicates 
that the category present is much more likely to occur than the category 
absent. From the parameter estimates in Table 4.46 we can conelude that 
the probability of Present is higher in Garage ethan in Garages A and B. 
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TABLE 6.45. Fitted Parameters for Loglinear Model 

Mean 5.891 

Absent Present 
Attendance Effects -1.159 1.159 

[1J 

A !!. Q 
Garage 0.301 -0.071 -0.230 

[2J 

A A Split B Split 

Shift A.M. P.M. Noon Swing Split /Swing /Swing 

[3J 0.451 -0.514 0.192 -0.691 1.401 -0.739 -0.099 

A A Split B Split 
A.M. P.M. Noon Swing Split /Swing /Swing 

Garage by A 0.096 0.050 0.113 0.103 -0.186 -0.108 -0.068 

Shift B -0.111 -0.064 -0.041 -0.037 0.060 0.147 0.046 

[23J C 0.015 0.014 -0.072 -0.066 0.126 -0.039 0.022 

A A Split B Split 
A.M. P.M. Noon Swing Split /Swing ~ 

Attendance Absent -0.038 -0.026 0.091 -0.135 0.149 -0.092 0.059 
by Shift Present 0.038 0.026 -0.091 0.135 -0.149 0.092 -0.059 

[13J 

A !!. Q 
Attendance Absent 0.006 0.049 -0.055 
by Garage Present -0.006 -0.049 0.055 

[12J 

Attendance by Garage by Shift A A Split B Split 
[123J A.M. P.M. Noon Swing Split /Swing ISwing 

A 0.118 0.016 0.118 0.067 0.023 -0.074 -0.268 
Absent B -0.184 0.099 -0.054 0.024 -0.097 0.068 0.144 

C 0.066 -0.115 -0.064 -0.090 0.074 0.006 0.124 

A -0.118 -0.016 -0.118 -0.067 -0.023 0.074 0.268 
Present B 0.184 -0.099 0.054 -0.024 0.097 -0.068 -0.144 

C -0.066 0.115 0.064 0.090 -0.074 -0.006 -0.124 

Prom the shift parameter estimates we can conclude that the probability of 
Present is relatively high for Swing and A SplitjSwing and relatively low 
for B SplitjSwing, A Split and P.M. For the interaction between Garage 
and Shift we can conclude that, in Garage A, shifts B SplitjSwing and 
A SplitjSwing have better attendance records than in Garages B and C. 



86 6. Contingency Thbles 

TABLE 6.46. Logit Model Parameter Estimates 

L = 21'1(2} 2.318 

L 2(;} = 21'12(2;} -0.012 -0.098 0.110 

A A Split B Split 
A.M. P.M. Noon Swing Split ISwing ISwing 

L 3(1c} = 21'13(2lc} 0.076 0.052 -0.182 0.270 -0.280 0.184 -0.118 

A A Split B Split 
A.M. P.M. Noon Swing Split ISwing ISwing 

L23 = 21'23(2;lc} A -0.236 -0.032 -0.236 -0.134 -0.046 0.148 0.536 

B 0.368 -0.198 0.108 -0.048 0.194 -0.136 -0.288 
C -0.132 0.230 0.128 0.180 -0.148 -0.012 -0.248 

For the P.M. shift, the opposite is true. For the A Split and A.M. shifts, 
Garage B has the superior attendance to A and C. For the Noon and Swing 
shifts, Garage Cissuperior in attendance to A or B. 

Relationship to Logistic Regression 

In Chapter 8 the logit function will be introduced in connection with logistic 
regression. In the logistic regression model the logit function is expressed 
as a function of a set of explanatory variables that may be interval scaled 
variables or dummy variables. In this section, the logit function has been 
expressed as a function of the cell frequencies of a contingency table. In 
the case of the contingency table model, a sampie measure of goodness of 
fit based on a X2 statistic is available that is often not available for the 
logistic regression model because, with interval data, the cell frequencies 
are usually very small and often equal to one. 

Polychotomous Response Variables 

If the response variable has r, (r > 2) categories, there are a variety of 
ways for constructing a set of logit models. If one category is a logical base 
case, a total of (r - 1) models can be constructed by comparing the other 
categories to the base case. The logit functions would be given by ln(pi/Pr), 
i = 1,2, ... , r - 1 where the base case is denoted by i = r. In this case it 
should be noted that subtraction of the loglinear models does not result in 
the factor of 2 as was the case for the dichotomous model above. 
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If there is a natural order for the eategories, a second alternative would 
be to use the logit function 

ln [ r
Pi l' i = 1,2, ... , r. 

E Pj 
j=i+l 

The ratio pi/ Ej=i+l Pj is ealled a continuation ratio. The advantage of 
the continuation ratio approach is that the likelihood X2 statistics for each 
fitted model ean be added together to get an overall goodness of fit statistie 
for the complete set of (r-l) models. Continuation ratios will be employed 
in Section 6.4 for the weighted least squares approach. This topic will also 
be discussed in connection with the logistic regression model in Chapter 8. 

6.3.6 OTHER SOURCES OF INFORMATION 

Extensive discussion of loglinear model techniques for three-dimensional 
tables are available in Andersen (1980, 1990), Fienberg (1980), Bishop, 
Fienberg and Holland (1975), Christensen (1991), Santner and Duffy (1989) 
and Reynolds (1977). Discussion of stepwise procedures, incomplete tables 
and struetural zeroes is available in Fienberg (1980), Bishop, Fienberg and 
Holland (1975) and Christensen (1991). Logit response models are outlined 
in Fienberg (1980). Techniques available for ordinal variables are outlined 
in Agresti (1984). 

6.4 The Weighted Least Squares Approach 

So far our approach to modeling the variation among eell frequencies in 
multidimensional eontingeney tables has been restricted to logarithms of 
frequeneies. In addition, the method used for estimation so far has been 
the maximum likelihood approach. It is possible to define ANOVA type 
models that do not involve the logarithms of the frequencies, and it is 
also possible to obtain estimators of model parameters by an alternative 
method ealled weighted least squares. This approach permits much more 
ßexibility in both defining models and in the types of hypotheses that ean 
be tested. This seetion provides an overview of this weighted least squares 
methodology. 

6.4.1 THE WEIGHTED LEAST SQUARES THEORY 

In the weighted least squares approach, the variables that eombine to form 
the multidimensional contingency table are first c1assified into two eate­
gories, response variables and lactor or explanatory variables. The cross-
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TABLE 6.47. Contingency Table Showing 
Cross-Classification of Sampie Frequency by Re­
sponse Category and Subpopulation 

Response Levels 

Subpopulations 1 2 c Totals 

1 RU Rl2 Rle RI· 

2 R21 R22 R2e R2· 

r Rrl R r 2 R re R r · 

R 

classification of the entire set of factor variables yields a set of categories 
called subpopulations. Similarly, the cross-classification of the complete set 
of response variables produces a set of categories called response levels. 
Thus, regardless of the number of underlying variables, the multidimen­
sional contingency table can be represented as a two-dimensional array 
representing the cross-classification of the response levels with the subpop­
ulations. 

Table 6.47 illustrates the allocation of a sampie of size n to the rc cells. 
The number of response levels is c and the number of subpopulations is r. 
The cell frequency is denoted by ni; for response level j and subpopula­
tion ij i = 1,2, ... ,rj j = 1,2, ... ,c. The row totals ni., i = 1,2, ... ,r, 
represent the sampIe sizes for the r subpopulations. 

The Product Multinomial Distribution Assumption 

The underlying sampling distribution is assumed to be product multino­
mial. For each of the r subpopulations, the sampling process is multinomial 
and the r sampies are assumed to be mutually independent. The theoret­
ical cell densities for each subpopulation are shown in Table 6.48 and are 
denoted by Pi;, i = 1,2, ... , rj j = 1,2, ... , c. These distribution parame­
ters satisfy the condition E;=lPi; = 1 and hence the row totals are unity. 
For each subpopulation the multinomial density is given by 

c 

IIp~p i = 1,2, ... ,r. 
;=1 
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TABLE 6.48. Population Densities for 
the Independent Multinomial Compo­
nents of the Product Multinomial 

Response Levels 

Subpopulations 1 2 e 

1 P11 P12 Pie 

2 1121 1122 P2e 

r Prl Pr2 Pre 

The corresponding product multinomial density is therefore given by 

The (re x 1) vector of densities Pij, i = 1,2, ... , rj j = 1,2, ... , c, will be 
denoted by p = [PU,P12,'" ,Ple,P21,P22,'" ,P2e,·· . ,Prl,Pr2,· .• ,Prcl. In 
comparison to the two-dimensional contingency table discussed in Section 
6.2 the densities Pij are given by Pij = lij / A. 

Example 

The three-dimensional contingency table relating driver injury level to both 
seatbelt usage and driver condition first presented in Table 6.23 will be 
used in this section to provide an example for the weighted least squares 
approach. Table 6.49 contains both the cell frequencies and the correspond­
ing row proportions. The response variable is driver injury level, which has 
four levels, and the cross-classification of the variables driver condition and 
seatbelt usage provide the four subpopulations. A comparison of the row 
proportions over the four subpopulations seems to suggest that the pro­
portions are not homogeneous. We shall use the weighted least squares 
methodology to model the variation in row proportions. 

Sampling Properties 01 the Row Proportions 

The sampie proportions nij/ni' which can be obtained from Table 6.47, 
provide estimators of the parameters Pij' Under the product multinomial 
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TABLE 6.49. Driver Injury Level Response to Seatbelt Usage and 
Driver Condition - Cell Frequencies and Row Proportions 

Subl!ol!u1atioDS 
Driver Seatbelt 
Condition US&ge 

Normal Yes 

No 

Been Yes 
Drinking 

No 

assumption we have that 

E[ni;/nd = Pi;, 

Cov [~, !!ü.] = 0, nj. nt. 

None 
12500 

0.9269 

61911 
0.9114 

313 
0.8347 

3992 
0.8132 

Resl!onse Levels 
Driver Iojury Level 

Minimal Minor Major/Fatal Totals 
604 344 38 13486 

0.0448 0.0255 0.0028 

3519 2272 237 67999 
0.0518 0.0334 0.0035 

43 15 4 375 
0.1146 0.0400 0.0107 

481 370 66 4909 
0.0980 0.0754 0.0134 

i = 1,2, ... ,rj j = 1,2, ... , C, 

i = 1,2, ... ,rj j = 1,2, ... , C, 

i = 1,2, ... , rj j = 1,2, ... , C, 

i ::f: l i = 1,2, ... ,rj j = 1,2, ... , c. 

The (rc xl) vector of estimators ni;/~' will be denoted by 

and the individual elements by Pi; = ni;/ni" 

Example 

The vector of observed proportions based on Table 6.49 is given by 

p' = [0.9269,0.0448,0.0255,0.0028,0.9114,0.0518,0.0334,0.0035, 

0.8347,0.1146,0.0400,0.0107,0.8132,0.0980,0.0754,0.0134]. 

Determining Linear F'unctions Among the Row Proportions 

The weighted least squares approach is used to estimate relationships among 
linear functions of the elements of p. A set of m linear functions of the el-



6.4 Tbe Weighted Least Squares Approach 91 

ements of p are given by a system of equations 

91 = a1l1Pll + a1l2P12 + ... a1rcPrc 

92 = a211Pll + a212P12 + ... a2rcPrc 

9m amllPll + a m 12P12 + ... amrcPrc· 

In matrix notation the system is given by g = Ap where g is the (m xl) 
vector of elements 9k, k = 1,2, ... , mj Ais the (m x rc) matrix of elements 
akij, k = 1,2, ... ,mj i = 1,2, ... ,rj j = 1,2, ... ,cj and p is the (rc xl) 
vector of cell densities. 

Since the proportions in each row of Table 6.48 add to unity, we need only 
use (c - 1) relations among the proportions in a given row. One common 
approach is simply to omit one of the c columns so that the matrix A 
simply removes these elements from p to get g. An alternative approach 
is to compare (c - 1) of the column proportions to a particular column 
proportion using the differences Pij - Pik, j::l k, j = 1,2, ... , c. A third 
alternative would be to compute a score for each row based on a weighted 
sum of the Pij values in each row such as Si = L~=1 WjPij. A simple case 
would be the mean scores with Wj = l/c, j = 1,2, ... , c. 

Example 

For the accident data in Table 6.49, a useful way of comparing the four 
subpopulations would be to use contrasts between the no injury level and 
the three injury levels. The g vector therefore contains 12 differences. The 
A matrix and g vector for the equation g = Ap in this case are given by 

Pll - P12 

P21 - P22 
P31 - P32 

P41 - P42 

Pll - P13 

g= P21 - P23 

P31 - P33 

P41 - P43 

Pll - P14 

P21 - P24 

P31 - P34 

P41 - P44 
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Pu 
P12 

1 -1 0 00 0 0 00 0 0 00 0 0 0 P13 
0 0 0 01-1 0 00 0 0 00 0 0 0 P14 
0 0 0 00 0 0 01-1 0 00 0 0 0 P21 
0 0 0 00 0 0 00 0 0 01-1 0 0 P22 
1 0-1 00 0 0 00 0 0 00 0 0 0 P23 

Ap= 
0 0 0 o 1 0-1 00 0 0 00 0 0 0 P24 
0 0 0 00 0 0 o 1 0-1 00 0 0 0 P31 
0 0 0 00 0 0 00 0 0 o 1 0-1 0 P32 
1 0 0-10 0 0 00 0 0 00 0 0 0 P33 
0 0 0 o 1 0 0-10 0 0 00 0 0 0 P34 
0 0 0 00 0 0 o 1 0 0-10 0 0 0 P41 

0 0 0 00 0 0 00 0 0 o 1 0 0-1 P42 

P43 

P44 

For each of the four no injury proportions each of the three injury pro-
portions is subtracted to provide a contrast. 

The Linear Model to Be Estimated 

The vector g of linear functions is assumed to satisfy the linear model 

g=X/3 

where X (m x s) is a specified design matrix and /3 (s xl) is an unknown 
parameter vector. 

Computer Software 

The statistical software package SAS, procedure CATMOD is used to per­
form the analyses in Section 6.4. 

Example 

For the example, a convenient model that can be used to describe the differ­
ences among the row proportions as a function of seatbelt usage and driver 
condition would be an ANOVA type model. Using effect coding the design 
matrix for a driver condition effect, a seatbelt effect and an interaction 
effect for each response is given by 

[
1 1 1 1] 1 1 -1 -1 
1 -1 1 -1 . 
1 -1 -1 1 
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TABLE 6.50. Parameter Definitions for Model 

Overall Mean 

Driver Condition 

Seatbelt Usage 

Seatbelt Usage by 
Driver Condition 

1-'; 

Normal 
CI; 

Yes 
..,; 

Normal 
Yes (CI..,); 
No -(CI..,); 

Been Drin!9!!g 
-CI; 

No 
-..,; 

Been Drinking 

-(CI"'); 
(CI..,); 

The first column of the design matrix generates the mean, the second col­
umn yields the driver condition effect, the third column measures the seat­
belt usage effect and the last column represents the interaction. This design 
matrix is repeated for each of the three response functions (corresponding 
to the three injury categories) in a block diagonal fashion to get the overall 
design matrix X. 

The parameter vector ß contains three sets of four parameters. For the 
jth response function the elements of ß are JLj, aj. 'Yj and (a7)j, j = 2,3 
and 4. For the jth response function (j = 2,3,4) we have the four equations 
corresponding to the four subpopulations generated by the two seatbelt 
categories and the two driver conditions. The equations are given by 

[

PU - Plj 1 
1121 - 112j 
P31 - pgj 
P41 - P4j 

= 

[! ! -! -! 1 [ ~~ 1 1 -1 1 -1 'Y" 
1 -1 -1 1 (a~)j 

JLj + aj + 'Yj + (a'Y)j 
JLj + aj - 'Yj - (a'Y)j 
JLj - aj + 'Yj - (a'Y)j 

(6.1) 

JLj - aj - 'Yj - (a'Y)j 

These parameter estimates can also be summarized in tabular form as 
shown in Table 6.50. The parameters in each of the three categories sum 
to zero as is the case with ANOVA models. 

Determining the Weighted Least Squares Estimator 

Since the vector g is a function of the true proportions, it is not observable; 
we therefore replace g by g where g = Ap, and p is the corresponding 
vector of sampie proportions. Defining the error vector u (m xl) by u = 
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g - g, we have the linear model 

g=X,ß+u. 

If the covariance matrix of u is denoted by E[uu'J = H, then from linear 
model theory the weighted least squares estimator of ,ß is given by 

The covariance matrix H is defined by H = AnA' where n is the 
covariance matrix of p. 

The covariance matrix n is block diagonal with block components ni , 

i = 1,2, ... ,r, 

The block matrices ni , i = 1,2, ... , r are functions of the Pij, j = 
1,2, ... ,c. The c diagonal elements of ni are given by Pij(l- Pij)/ni., 
j = 1,2, ... , Cj and the off-diagonal elements by -PijPik/ni" j =f: k, j, k = 
1,2, ... ,Co 

This covariance matrix is estimated by replacing the elements of p by the 
elements of p. The resulting estimator is denoted by n and the estimator 
of H by H = AnA'. The weighted least squares estimator of,ß therefore 
becomes 

A ~-l ~-l 

,ß = (X'H X)-l(X'H g). (6.2) 

Example 

Continuing the above example for the accident data, the value of g is given 
by [0.8821, 0.8596, 0.7200, 0.7152, 0.9014, 0.8779, 0.7947, 0.7378, 0.9241, 
0.9079, 0.8240, 0.7998J. These values are plotted in Figure 6.6 in such a 
way that the interaction between seatbelt usage and driver condition can 
be observed. As can be seen from the figure the greatest departure from two 
parallellines occurs in the middle panel, which is concerned with the minor 
injury category. The bottom panel displays an almost parallel relationship. 
The resulting weighted least squares estimates for the two-way ANOVA 
model outlined above are given by 

[ 
0.7942] 

jJ, = 0.8280 , 
0.8639 

[ 
0.0766] 

0: = 0.0617 , 
0.0520 

[ 
0.0068] 

l' = 0.0200 , 
0.0101 

[ 
-0.0044] 

(&1') = 0.0083. 
0.0020 



6.4 The Weighted Least Squares Approach 95 

P{no lnjury)-P(miminal injury) 

0.9i-",,==;':::::;:::=:{io-i 
Norma.l 

0.81-----------1 
Been drinkine 

0.7 I---~====~~----l 

0.61-----------1 

0.5 '-----::,-L--------:'---' 
yes 00 

Seatbelt U sage 

P(no Injury)-P(minor Injury) 

Q... Normal 0.9 --., 
0.8 

'" Seen drinkina """"6 
0.7 

0.6 

0.5 yes DO 

Seatbelt Usage 

P(no injury)-P(major/lalal) 

ß. Normal 
0.9 !--~======-Q,----l 

Been drinkinl 
0.8f--~===~='""'---l 

0.71------------1 

0.61-----------1 

0.5 '-----::,-L--------:'---' 
ye. 

Seatbelt Usage 

FIGURE 6.6. Relationship Between Injury Level Response and the Factors Seat­
belt Usage 

These three estimated models fit the contingency table perfectly since the 
model is a saturated model. In tabular form the parameter estimates are 
shown in Table 6.51. From the parameter estimates, we can conelude that 
the proportion of individuals in each injury category increases relative to 
the no injury category if the individual has been drinking and also if the 
individual was not wearing a seatbelt. The driver condition effects have 
larger magnitudes than the seatbelt usage effects. The interaction effects 
suggest that in the minor and major categories the effect is more pro­
nounced if both are present, whereas in the minimal category the reverse 
is true. These effects are relatively weak. 
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TABLE 6.51. Estimates for Two-Way Model for Accident Data 

(Pi! - Pi2) (Pi! - Pi3) (Pi! - Pi4) 

Overall Mean 0.7942 0.8280 0.8639 

Driver Condition Normal 0.0766 0.0617 0.0520 
Been Drinking -0.0766 -0.0617 -0.0520 

Seatbelt Usage Yes 0.0068 0.0200 0.0101 
No -0.0068 -0.0200 -0.0101 

Driver Condition Normal Yes -0.0044 0.0083 0.0020 
by Normal No 0.0044 -0.0083 -0.0020 

Seatbelt Usage 
Been Drinking Yes 0.0044 -0.0083 -0.0020 
Been Drinking No -0.0044 0.0083 0.0020 

6.4.2 STATISTICAL INFERENCE FOR THE WEIGHTED 

LEAST SQUARES PROCEDURE 

Having obtained the weighted least squares estimator given by (6.2), a test 
of goodness of fit can be carried out using the chi-square test statistic given 
by 

~-1 ~, ----I ~ 
g'H g - ß (X'H X)ß. 

In large sampies this statistic has a X2 distribution with (m - s) degrees of 
freedom if the model fits the data. [Recall that X is (m x s).] This statistic 
is sometimes referr~d-\o as a Wald statistic. This statistic is !he minimum 
value of (g - Xß)'H (g - Xß), which is minimum at ß = ß. 

If the model fits the data, hypotheses regarding linear functions of the 
parameter vector ß can also be tested. Denoting the linear functions by 
Cß where C is (q x s), the test statistic 

(C,ß)'[C(X'Ü-1X)-IC']-I(C,ß) 

has a X2 distribution with q degrees of freedom in large sampies if Ho: Cß = 
o is true. 

Example 

In the previous section a saturated model was fit to the accident data and 
hence the X2 goodness of fit test yields a X2 value of 0.0. The individual 
parameters in the model and the various effects can be tested using various 
forms of the matrix C in the test statistic for Ho: Cß = O. Using this 
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TABLE 6.52. Analysis of Variance Table for Effects 

Source d.f. ,,2 p-Value 

Intercepts 3 39371.44 0.0001 

Seat Belts 3 16.31 0.0010 

Driver Condition 3 91.42 0.0001 
Interactions 3 7.93 0.0474 
Residual 0 0 1.000 

TABLE 6.53. Significance for Individual Parameter Estimates 

Parameter Estimate ,,2 p-Value 

/J2 0.7942 8,085.8 0.0001 

/J3 0.8280 14,993.9 0.0001 

/J4 0.8639 24,437.2 0.0001 

0<2 0.0068 0.60 0.4400 

0<3 0.0201 8.81 0.0030 

0<4 0.0101 3.35 0.0673 

'Y2 0.0766 75.25 0.0001 

'Y3 0.0617 83.28 0.0001 

'Y4 0.0520 88.69 0.0001 

(0<'Yl2 -0.0044 0.25 0.6161 

(O<'Yls 0.0083 1.52 0.2169 

(0<'Y)4 0.0020 0.13 0.7160 

procedure, the X2 statistics and p-values shown in Tables 6.52 and 6.53 
can be produced. The ANOVA table suggests that all effects including the 
interaction are significant at the 0.05 level. The table, which summarizes 
the significance levels for the individual parameters, indicates that each 
of the interaction parameters is not significant at the margin. In other 
words, if any two of the interaction parameters are included, the third 
parameter does not contribute significantly to the overall goodness of fit. An 
examination of the significance of the individual parameter estimates for the 
main effects in Table 6.53 reveals that 02 is not significant. It would appear 
that seatbelts on average do not affect the difference in proportions between 
no injury and minimal injury after controlling for driver condition effects. It 
would also appear that after controlling for driver condition, seatbelt usage 
had little impact on the difference for the major/fatal category (see 04). 

When the interaction terms are omitted from the model, the ANOVA 
table and parameter estimates for this reduced model are summarized in 
Tables 6.54 and 6.55. As can be seen from the table of parameter estimates, 
some changes occur in the estimates of the main effects. In general the 
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TABLE 6.54. Analysis of Variance Table for Effects 

Source d.f. x? p-Value 

Intercepts 3 112727.68 0.0001 
Seat Belts 3 46.42 0.0001 
Driver Condition 3 320.59 0.0001 
Residual 3 7.93 0.0474 

TABLE 6.55. Significance for Individual Parameter Estimates 

Parameter Estimate x? p-Value 

112 0.7987 28,962.3 0.0001 

113 0.8225 38,125.2 0.0001 

114 0.8631 75,358.2 0.0001 

0<2 0.0112 28.98 0.0001 

0<3 0.0121 46.17 0.0001 

0<4 0.0082 39.61 0.0001 

'Y2 0.0721 264.10 0.0001 

'Y3 0.0674 280.44 0.0001 

'Y4 0.0530 312.51 0.0001 

main effects appear to be stronger when the interaction is omitted. From 
the ANOVA table we can see that the residual X2 statistic is simply the X2 

statistic for interaction observed in Table 6.52 since the former model was 
a saturated model. 

6.4.3 SOME ALTERNATIVE ANALYSES 

The previous discussion of the impact of seatbelt usage and driver condition 
on driver injury level focused on the comparison between the no injury level 
and each of the three levels of injury. Given that there are four response 
levels, it is possible to define a variety of other response functions using 
alternative linear transformation matrices A. Up to three linearly indepen­
dent response functions can be defined. In this section several alternative 
analyses will be carried out using different transformations. 

Maryinal Analysis 

Perhaps the simplest type of analysis that can be performed is to model 
all but one of the response proportions directly. In this case the response 
functions are called maryinal response functions. The A matrix for this 



6.4 Tbe Weighted Least Squares Approach 99 

TABLE 6.56. Significance for Individual Parameter Estimates for Marginal 
Analysis 

Parameter Estimate ,,2 ~Value 

/12 0.0723 1064.78 0.000 

/lS 0.0486 680.83 0.000 

/14 0.0080 98.11 0.000 

Q2 0.0033 11.57 0.000 

QS 0.0042 31.27 0.000 

Q4 0.0000 1.82 0.1769 

1'2 0.0239 130.89 0.000 

1'S 0.0193 115.76 0.000 

1'4 0.0049 38.24 0.000 

case contains rows witb a single entry of 1 and tbe remaining entries O. 
To illustrate using tbe accident data, tbe no injury level was omitted and 
tbe remaining three injury levels were related to seatbelt usage and driver 
condition using a two-way ANOVA model. 

Even tbough tbe A matrix bas changed, tbe overall signifieance levels for 
tbe effects are tbe same as in tbe analysis in Section 6.4.2. Tbe individual 
effect parameters, bowever, now measure tbe impact of tbe factors on tbe 
injury level proportions ratber tban on tbe differences of tbe proportions 
from tbe no injury level. Tbe equations are now 

P1j = I'j + Clj + 'Yj + (Cl'Y)j, 

'P2j = J.Lj + Clj - 'Yj - (Cl'Y)j, 

PSj = I'j - Clj + 'Yj - (Cl'Y)j, j = 2,3,4; 

P4j = I'j - Clj - 'Yj + (Cl'Y)j, 

for tbe three injury levels. (Recall that Cl measures seatbelt effects and 'Y 
measures driver eondition effects.) Notiee tbat tbe design matrix is iden­
tieal to (6.1). In this analysis we ean determine bow each proportion eor­
responding to a given injury level varies aceording to seatbelt usage and 
driver eondition. 

Tbe results of tbis analysis are sbown in Table 6.56. Tbe model witbout 
tbe interaction term was fitted because oftbe marginal signifieanee (0.0474) 
of tbis term. From this table it would appear tbat tbe two main effects are 
signifieant in tbe anticipated directions exeept for tbe seatbelt usage for 
tbe major/fatal level. In this esse seatbelt usage does not bave a signifieant 
effect on tbe proportion in this injury eategory. 
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No 
Injury 
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Minor 
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Major/ 
Fatal 

FIGURE 6.7. Three Partitions of Four Injury Level Groups 

Continuation Differences 

Since in the accident data example the four levels of injury are ordinal, 
it also makes sense to study the response probabilities using continuation 
differences. In this ease the proportions are eompared by dividing the four 
levels into two groups in three different ways by ehanging the line of division 
along the eontinuum from none to major/fatal. Figure 6.7 shows three 
partitions of the four groups. 

In Figure 6.7 the three dotted vertical lines divide the four levels into 
two groups in three different ways. The division 1 eompares the no injury 
eategory to the other three, and division 2 eompares the two lower injury 
levels to the two higher injury levels. The final division 3 eompares the 
major/fatal level to the other three. 

As above, the overall signifieance of the effects is the same. The parameter 
estimates, however, provide an alternative way of measuring the effects. The 
three response functions in this ease are given by (3Pil - Pi2 - Pi3 - Pi4) , 
(Pil + Pi2 - Pi3 - Pi4) and (Pil + Pi2 + Pi3 - 3Pi4). In each ease, the right 
hand side has the same form as (6.1) for i = 1,2,3,4. 

The main effeet parameter estimates obtained using a no interaction 
model are shown in Table 6.57. Onee again all the main effects are sig­
nifieant exeept for the seatbelt usage effeet in the major/fatal eategory. It 
would appear that the usage of a seatbelt in the major/fatal eategory does 
not yield a differenee in proportion relative to the other three eategories. 

A veraging or Summing Response Functions 

When there are two or more eategories for the response variable, it is also 
possible to use a single response function based on a weighted average or 
weighted sum of the proportions. The resultant average response funetion 
or sum 0/ responses is then related to the explanatory factors. In the ease 
of the accident data, it would seem reasonable to use the sum of the three 
injury eategories ignoring the no injury eategory. The response function 
would therefore refieet the injury proportion. The model would be given 
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TABLE 6.57. Significance for Individual Parameter Estimates for Continua­
tion Differences 

Parameter 

11-2 

11-3 

11-4 

°2 

°3 

°4 
')'2 

')'3 

')'4 

by 

Estimate 

2.4842 
0.8867 
0.9678 
0.0316 
0.0091 
0.0014 
0.1925 
0.0484 
0.0196 

(P21 + P31 + P41) 

(P22 + P32 + P42) 

(P23 + P33 + P43) 

(P24 + P34 + P44) 

x2 

47482.9 
48676.4 
88771.1 

40.75 
33.02 

1.82 
316.00 
155.92 
38.24 

J.t + 0 + 7 + (07) 

= J.t + 0 - 7 - (07) 

= J.t - 0 + 7 - (07) 

J.t - 0 - 7 + (07)· 

p-Value 

0.000 
0.000 
0.000 
0.000 
0.000 
0.1769 
0.000 
0.000 
0.000 

For the accident data the estimates of the parameters for the model above 
are jJ, = 0.1297, 0: = 0.0078 and i' = 0.0488, all of which are significant at 
the 0.000 level. The interaction term was not significant and was omitted 
from the fit. We can conclude, therefore, that the proportion of drivers who 
sustain any level of injury is increased when a seatbelt is not used and also 
if the driver has been drinking. The impact of driver condition on injury 
level seems to be much greater than the impact of seatbelt usage. 

Weighted Sums fOT Ordinal Responses 

When the response levels are ordinal, weighted averages or sums of the 
response junctions can be based on values that are attached to the levels. 
A common technique is simply to use integer values for the levels that 
reflect the rank order of the levels. In the case of the injury data, one may 
wish to attach weights that reflect the cast of the various injury levels. To 
provide an example we will use the weights 0, 5, 10 and 100 for the four 
injury levels. The model is given by (5Pi2 + lOpi3 + 100Pi4). The right hand 
side of the model has the same form as (6.1). 

For the accident data the estimated parameters for the model that ex­
cludes the interaction term are jJ, = 1.6572, 0: = 0.0920 and i' = 0.8070. All 
three estimates were significant at the 0.000 level. A comparison of these 
results to the results obtained using the unweighted sum suggests that the 
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magnitude of the driver condition parameter relative to the seatbelt us­
age parameter increases when higher values are placed on the more serious 
levels of injury. 

6.4.4 WEIGHTED LEAST SQUARES ESTIMATION FOR 

LOGIT MODELS 

The Logit Model as a Special Gase 0/ a Weighted Least Squares Model 

The weighted least squares approach can also be used to estimate loglinear 
models based on the cell proportions. Since the transformation of the p 
vector is no longer linear in this case, the covariance matrix for the error 
term must be determined in an alternate manner. 

We begin by denoting the vector containing the logarithms of the ele­
ments of p by In p, and hence In p has the elements In Pij, i = 1, 2, ... , r, 
j = 1,2, ... , c. In a similar fashion the vector of elements InPij will be 
denoted by Inp. 

A covariance matrix for the vector In p is required in order to perform the 
weighted least squares procedure. To determine the covariance matrix for 
In p, a Taylor Series expansion is used which yields the covariance matrix 
n-1 un-1, where n is the diagonal matrix with the elements of p on 
the diagonal and U is the covariance matrix for p defined in Section 6.4.1. 
Using the elements of p as estimators of p, the estimated covariance matrix 

--1---1 
of lnp is given by n un . 

A logit response model can be written as a linear transformation of the 
vector In p so that we have the same form as in the case of linear response 
models 

g = AInp. 

When we relate the logit responses to the explanatory factors, the model 
becomes g = Xß. Replacing g by g when p replaces p, we obtain the linear 
model 

g=Xß+u 
and the weighted least squares estimator 

.-. --1---1 I 
where H L = An un A. 

The inference procedures for this model are identical to those outlined in 
Section 6.4.2. 

Example 

The accident data table introduced in Section 6.4.1 is used here to illus­
trate the use of logit models. Two different types of response models are 
estimated. The logit model relating the no injury category to the remain­
ing three injury categories has the three response functions InPil - Inpi2, 
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TABLE 6.58. Analysis of Variance for Logit Model 

Source d.f. x? p-Value 

Intercepts 3 15427.26 0.000 
Seat Belts 3 39.13 0.000 
Driver Condition 3 561.73 0.000 
Residual 3 4.96 0.1756 

TABLE 6.59. Weighted Least Squares Parameter Estimates for 
Logit Model 

Parameter Estimate x2 p-Value 

1-'2 2.5534 7390.75 0.000 
1-'3 3.0000 6572.24 0.000 
1-'4 4.9515 2727.31 0.000 
0<2 0.0707 10.51 0.001 
0<3 0.1522 28.17 0.000 
0<4 0.1168 1.99 0.159 
"12 0.3887 251.30 0.000 
"13 0.4559 255.33 0.000 
"14 0.7311 116.54 0.000 

Inpi1 -lnpi3, and lnpil -lnpi4. To relate these logits to the seatbelt usage 
and driver condition factors, a two-way ANOVA model is used. In this case 
the interaction term was not significant (p = 0.1746) and so the model was 
fitted without an interaction term. The analysis of variance results and 
parameter estimates are summarized in Tables 6.58 and 6.59 respectively. 
From the two tables we find that the main effects are significant in the ex­
pected direction and that only in the case of major/fatal was the seatbelt 
usage not significant. 

The estimated logit model obtained above, using weighted least squares, 
can be compared to the estimated logit model, using maximum likelihood, 
by using the estimates given in Table 6.25 in Section 6.3.2. The estimates 
can be obtained as shown in Section 6.3.5. The resulting parameter esti­
mates are summarized in Table 6.60. Comparison of Tables 6.60 and 6.59 
shows that the parameter estimates obtained are virtually identical. 

Continuation Ratios 

In a manner similar to the continuation differences introduced above, the 
continuation differences based on In Pij are logarithms of ratios and are 
usually called continuation ratios. For the accident data, the parameter es­
timates for the continuation ratio response models are shown in Table 6.61. 
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TABLE 6.60. Parameter Esti­
mates for Logit Model Based on 
Maximum Likelihood Estimates 
of the Loglinear Model 

Parameter 

"'2 2.626 - 0.072 = 2.554 

"'3 2.626 + 0.376 = 3.002 

"'4 2.626 + 2.322 = 4.948 
Q2 0.085 - 0.013 = 0.072 
Q3 0.085 + 0.069 = 0.154 
Q4 0.085 + 0.029 = 0.114 

'Y2 0.392 - 0.006 = 0.386 

'Y3 0.392 + 0.061 = 0.453 

'Y4 0.392 + 0.337 = 0.729 

TABLE 6.61. Weighted Least Squares Parameter Estimates for Logit Model 
Using Continuation Ratios 

Parameter Estimate ,,2 p-Value 

"'2 2.0020 7405.13 0.000 

"'3 2.9458 7281.99 0.000 

"'4 5.0838 2878.63 0.000 

Q2 O.lO30 35.31 0.000 
Q3 0.1450 28.51 0.000 
Q4 0.lO77 1.69 0.1937 

'Y2 0.4318 526.18 0.000 

'Y3 0.4590 302.05 0.000 

'Y4 0.6793 lOO.84 0.000 

The first function compares the no injury case (numerator) to the three in­
jury levels (denominator), the second function compares the no injury and 
minimal injury categories (numerator) to the minor and major/fatal cat­
egories (denominator). The third function compares the major/fatal cate­
gory (denominator) to the other three categories (numerator). The fitted 
model in each case excludes the interaction term that is not significant. 

6.4.5 Two OR MORE RESPONSE VARIABLES 

Defining Response FUnctions 

When there are two or more response variables, there are a variety of ways 
of defining response functions. We begin by examining the general case 
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of two response variables. We then look at some specialized models for 
repeated measures designs. 

If there are two response variables, with a and b levels respectively, the 
cross-classification of the two variables yields a total of c = ab response 
categories. The cross-classification can now be viewed as a single response 
variable with c levels, and the weighted least squares methodology can be 
applied as outlined in Sections 6.4.1 and 6.4.2. Since the derived response 
variable represents a cross-classification of two variables, it is usually of 
interest to define the transformation matrix A in such a way that the 
response functions g represent separate effects for each of the two response 
variables, as wen as interactions between the two sets of effects. The impact 
of the factor variables on the response variable main effects and interactions 
can then be measured by the model. 

Example 

For the accident data, both the injury level variable and seatbelt usage 
variable are treated as response variables, whereas the driver condition 
variable will be the only factor variable. The p vector now contains elements 
Pij, i = 1,2; j = 1,2, ... ,8. We assume that j = 1,3,5,7 corresponds to 
seatbelt usage = yes, and j = 2,4, 6, 8 corresponds to seatbelt usage = no. 
The four levels of injury are none, minimal, minor and major/fatal, in that 
order. 

The A matrix below uses effect coding to generate seven response func­
tions for each of the two driver conditions. These response functions mea­
sure a seatbelt usage effect, three injury level effects, and the three in­
teractions between these two sets of effects. The p vector is also shown 
below. 

1 -1 1 -1 1 -1 1 -1 0 0 0 0 0 0 0 0 
Pu 
Pl2 

-1-1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Pl3 
-1-1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Pl4 
-1-1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 Pl5 
-1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 Pl6 
-1 1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 Pl7 

A= -1 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 Pl8 
0 0 0 0 0 0 0 0 1 -1 1 -1 1 -1 1-1 P2l 
0 0 0 0 0 0 0 0-1-1 1 1 0 0 0 0 P22 
0 0 0 0 0 0 0 0-1-1 0 0 1 1 0 0 P23 
0 0 0 0 0 0 0 0-1-1 0 0 0 0 1 1 P24 
0 0 0 0 0 0 0 0-1 1 1 -1 0 0 0 0 P25 
0 0 0 0 0 0 0 0-1 1 0 0 1 -1 0 0 P26 
0 0 0 0 0 0 0 0-1 1 0 0 0 0 1-1 P27 

P28 

The first and eighth rows of A derive the response function for seatbelt 
usage whereas rows 2, 3, 4 and 9, 10, 11 represent the three injury level 
effects. The remaining six rows represent the three interaction effects. These 
rows can be seen to be obtained by taking the products of elements in 
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row 1 with each of rows 2, 3 and 4 and row 8 with each of rows 9, 10 
and 11. On the right-hand side of the model, a design matrix is required 
to measure driver condition effects. For each response function the design 

matrix is [~ _ ~ ]. Denoting th~ parameter vector for response function 

i by [ ~: ], the right-hand side has the form (I'i +Qi) for normal condition 

drivers and (I'i - Qi) for been drinking drivers. The I'i parameter measures 
the category mean, and the Qi parameter measures the driver condition 
effect. The driver condition parameter is preceded by a positive sign for 
normal condition drivers and by a negative sign for been drinking drivers. 

The equations for the normal condition drivers can be expressed by 
(PYes - PNo)Normal = 1'1 + Ql 

All Injury Levels 

WMinimal- PNone)Normal= 1'2 + Q2 
Both Seatbelt Usages 

WMinor - PNone)Normal = 1'3 + Q3 
Both Seatbelt Usages 

WMajor - PNone)Normal = 1'4 + Q4 

Both Seatbelt Usages 

WMinimal - PNone)Normal- WMinimal - PNone)Normal 
Seatbelt Yes Seatbelt No 

(PYes - PNo)Normal 
Minimal Injury 

or 
- (PYes - PNo)Normal 
No Injury 

WMinor - PNone)Normal- WMinor - PNone)Normal 
Seatbelt Yes Seatbelt No 

or = J.t6 + Q6 

(PYes - PNo)Normal - (PYes - PNo)Normal 
Minor Injury No Injury 

WMajor - PNone)Normal- WMajor - PNone)Normal 
Seatbelt Yes Seatbelt No 

(PYes - PNo)Normal 
Major/Fatal Injury 

or 
- (PYes - PNo)Normal 
No Injury 

For the been drinking drivers the equations are the same as above ex­
cept the signs in front of the Q parameters are all negative. Combining 
the equations for normal and been drinking drivers yields the parameter 
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relationships summarized below. 

2al = (PYes - PNo)Normal - (PYes - PNo)Drinking 

All Injury Levels 

- a positive al therefore implies that normal condition drivers have a 
greater tendency to wear seatbelts. 

2a2 = ~inimal - PNone)Normal - ~inimal - PNone)Drinking 
Both Seatbelt Usages 

20:3 (PMinor - PNone)Normal - (PMinor - PNone)Drinking 

Both Seatbelt Usages 

20:4 = (PMajor - PNone)Normal - (PMajor - PNone)Drinking 

Both Seatbelt Usages 

- negative values of 0:2, 0:3 and 0:4 imply that normal condition drivers tend 
to have less injuries than drinking drivers. 

20:5 = {(PMinimal - PNone)Normal - ~inimal - PNone)Drinking} 

Seatbelt Yes 

{(PMinimal - PNone)Normal - (PMinimal - PNone)Drinking} 
Seatbelts No 

or 

= {(Pyes - PNo)Normal - (PYes - PNo)Drinking} 
Minimal Injury 

- {(Pyes - PNo)Normal - (Pyes - PNo)Drinking} 
No Injury 

20:6 = {(PMinor - PNone)Normal - (PMinor - PNone)Drinking} 

Seatbelts Yes 

{~inor - PNone)Normal - (PMinor - PNone)Drinking} 
Seatbelts No 

or 

{(Pyes - PNo)Normal - (PYes - PNo)Drinking} 
Minor Injury 

{(Pyes - PNo)Normal - (PYes - PNo)Drinking} 
No Injury 



108 6. Contingency Tables 

207 = {~ajor - PNone)Normal - (PMajor - PNone)Drinking} 

Seatbelts Yes 

{~ajor - PNone)Normal - ~ajor - PNone)Drinking} 
Seatbelts No 

or 

= {(Pyes - PNo)Normal - (Pyes - PNo)Drinking} 

Major/Fatal Injury 

{(Pyes - PNo)Normal - (Pyes - PNo)Drinking} 

No Injury 

- negative values of 05,06 and 07 imply that the impact of driver condition 
on injury level is less pronounced among non-seatbelt users than among 
seatbelt users or, equivalently, the impact of driver condition on the level 
of seatbelt usage is less pronounced in the injury categories than in the no 
injury category. 

The weighted least squares estimates for the resulting model are shown 
in Table 6.62. From the intercept parameter (J.L parameter) estimates we 
can conclude that after averaging over the driver condition categories: 

(a) a smaller proportion of the drivers wore seatbelts, 

(b) for each of the three injury categories the proportions in the injury 
categories were much smaller than the proportion in the no injury 
category, 

(c) the difference between the proportion of non-seatbelt wearers and 
seatbelt wearers is much larger in the no injury category than in the 
three injury categories. The magnitude of the parameter increases as 
the severity of injury increases reflecting the smaller proportion of 
injuries in the more serious injury categories. 

The driver condition effects indicate how the intercept parameter re­
sponses are influenced by driver condition. 

(a) The seatbelt usage response parameter indicates that for normal con­
dition drivers the proportion wearing seatbelts tends to be higher 
than for drinking drivers. 

(b) The injury level parameters indicate that for the three injury cat­
egories the proportions of normal drivers who incur injuries is less 
than the proportion of drinking drivers who incur injuries. 
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TABLE 6.62. Parameter Estimates for the Two-Response 
Model 

Interceet Parameters Estimate x: p-Value 

(1) Seat belt U sage -0.7635 41133.8 0.000 
(2) Minimal vs No lnjury -0.7894 31657.8 0.000 

(3) Minor vs No lnjury -0.8118 40013.0 0.000 

(4) Major/Fatal vs No lnjury -0.8560 80948.2 0.000 

(5) Interaction (1) & (2) 0.5924 12807.5 0.000 

(6) Interaction (1) & (3) 0.6063 14626.7 0.000 

(7) Interaction (1) & (4) 0.6446 22223.2 0.000 

Driver Condition Effects 
(1) Seatbelt Usage 0.0945 630.6 0.000 

(2) Minimal vs No lnjury -0.0739 277.3 0.000 

(3) Minor vs No lnjury -0.0700 297.3 0.000 

(4) Major/Fatal VB No Injury -0.0545 328.6 0.000 

(5) Interaction (1) & (2) -0.0210 16.10 0.000 
(6) Interaction (1) & (3) -0.0228 20.70 0.000 

(7) Interaction (1) & (4) -0.0399 85.2 0.000 

( c ) The interaction response parameters suggest that the difference in the 
proportion of seatbelt wearers between normal and drinking drivers 
is less at each of the injury levels than it is at the no injury level. The 
seatbelt response and injury level response are therefore not simply 
additive. 

Example Using Logs 

The above analysis can also be carried out using the log form In Pij in place 
of Pij' When the analysis is carried out for the accident data, the interaction 
terms are not significant. This result is consistent with the loglinear model 
results summarized in Tables 6.24 and 6.25. The three-way interaction term 
had a p-value of 0.17 and was omitted from the model. It would seem that 
modeling the logarithm of the proportions yields different results from the 
model for the proportions. 

Repeated Measurement Designs 

In analysis of variance, the repeated measures design is commonly used. In 
the repeated measures design, more than one observation is obtained from 
each experimental unit. The multiple observations on each experimental 
unit may represent a variety of experimental conditions, such as treat­
ments, or may represent responses to different items on a questionnaire. 
In such circumstances it is not only the interaction between the response 
variables that is of interest but also the symmetry among the response 
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distributions for the response variables. The repeated measures design will 
also be discussed in Chapters 7 and 8. In this section we examine some 
alternative models that can be used for tests of symmetry. Such tests are 
also referred to as tests of marginal homogeneity. 

We assume that there are a total of r subpopulations of subjects and 
that the subjects in these subpopulations are observed on a total of d 
different measurement conditions. Each measurement or experimental con­
dition yields a response on any one of b levels. The total number of response 
categories is therefore c = db. In place of the notation Pij, i = 1,2, ... , Tj 

j = 1,2, ... ,Cj used above for cell probabilities, it will be more convenient to 
use qikl to denote these cell probabilities where k denotes the experimental 
condition and l denotes the response level, k = 1,2, ... ,dj l = 1,2, ... , b. 

One hypothesis of interest is the total symmetry hypothesis given by 

H1:qlkl = q2kl = ... = qrkl, k = 1,2, ... ,d, l = 1,2, ... ,b, 

which indicates that there are no differences between the r subpopulations 
with respect to the response probabilities in each of the C = db cells. The 
distribution of the probability over the C cells is therefore assumed to be 
the same for all r subpopulations. A second hypothesis of interest is the 
marginal symmetry or marginal homogeneity hypothesis given by 

H2: qill = qi2l = ... = qidl, i = 1,2, ... ,T, l = 1,2, ... ,b, 

which suggests that for a given subpopulation and a given response level, 
the cell probabilities are identical for all experimental conditions or re­
sponse variables. 

The two hypotheses are useful for comparing subpopulations and also for 
comparing experimental conditions. These two hypotheses will be tested by 
fitting a model to the cell proportions in such a way that the model param­
eters measure departures from the two hypotheses. For H 1 the parameters 
are similar to those used above to represent the variation in the factor vari­
ables that define the T subpopulations. For H2 the parameters are designed 
to compare the degree of homogeneity among the distributions of the re­
sponse variables. It is this latter hypothesis that requires a different type 
of model than those already discussed. An example will be used below to 
illustrate the procedure. 

Example 

To provide an example for the repeated measures case, the contingency 
table shown in Table 6.63 will be used. The contingency table is based 
on a sampie of 1250 individuals who were asked to respond to a ques­
tionnaire dealing with the evaluation of police services. The two response 
variables CRlME 1 and CRlME 2 pertain to the individual perceptions 
of their safety while walking in their neighborhood at night (CRlME 1) 
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TABLE 6.63. Contingency Table Relating Crime 
Perceptions to Education Level 

EDUC 
CRlME 1 CRIME 2 2 3 TOTAL 

71 81 83 235 
2 32 54 56 142 
3 5 8 6 19 

Total 108 143 145 396 
1 7 3 5 15 

2 2 172 138 98 408 
3 66 48 33 147 

Total 245 189 136 570 
1 0 2 0 2 

3 2 15 13 10 38 
3 119 79 46 244 

Total 134 94 56 284 
1250 

and in the downtown region at night (CRIME 2). The codes 1, 2, and 3 
refer to the three opinions very safe, somewhat safe and unsafe. The fac­
tor variable EDUC represents level of education and is coded 1, 2, or 3. 
Level 1 corresponds to those with at most a high school diploma, level 2 
corresponds to those who have some post secondary training, and level 3 
corresponds to those who have a university degree. The A matrix used to 
create 12 response functions for the cell probabilities is shown below. For 
each of the two response variables there are two response probabilities to 
model since there are three levels of response (three probabilities must sum 
to one). Since there are three education subpopulations the total number 
of response functions is (3)(2)(2) = 12. 

The response functions are given by g = Ap. The A matrix is given by 

1 1 1 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 
000 1 1 1 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 
100 1 0 0 1 000 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 
o 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 

000 0 0 0 0 001 1 1 000 0 0 0 0 000 0 0 0 0 0 
000 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 000 0 0 0 0 0 
000 0 0 0 0 0 0 100 100 1 000 000 0 0 0 0 0 
000 0 0 0 0 000 1 001 0 0 1 0 0 000 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 000 0 0 0 0 000 0 1 1 1 000 
o 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 1 0 0 100 100 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 

This A matrix consists of three sections of four rows each corresponding 
to the three education subpopulations. The four rows in each section gener-
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ate the four response functions corresponding to the two response variables. 
The first row of A determines the probability for CRlME 1 = 1, and the 
second row of A determines the probability for CRlME 1 = 2. Similarly the 
third and fourth rows of A determine the probabilities for CRlME 2 = 1 
and CRlME 2 = 2 respectively. The CRlME 1 = 3 and CRlME 2 = 3 eate­
gories are omitted since the proportions must sum to one for each variable. 
The same pattern is repeated in the four rows corresponding to each of the 
second and third subpopulations. 

The design matrix, X, for the model g = Xß to be fitted is shown 
below. The parameter vector ß is also shown. The X matrix contains three 
horizontal blocks corresponding to the three education subpopulations. 

1 0 1 0 0 0 1 0 
0 1 0 1 0 0 0 1 
1 0 1 0 0 0 -1 0 
0 1 0 1 0 0 0 -1 J.tl 

J.t2 
1 0 0 0 1 0 1 0 an 

X= 0 1 0 0 0 1 0 1 ß= a12 
1 0 0 0 1 0 -1 0 

, 
a21 

0 1 0 0 0 1 0 -1 a22 
'Yl 

1 0 -1 0 -1 0 1 0 'Y2 
0 1 0 -1 0 -1 0 1 
1 0 -1 0 -1 0 -1 0 
0 1 0 -1 0 -1 0 -1 

In the ß parameter vector there are two sets of parameters eorresponding 
to the two levels of each response variable being modelled. Effect eoding 
has been used to aceount for EDUC effects and the effeets due to difference 
between CRlME 1 and CRlME 2. For the first level of the response variables 
(odd numbered rows of A) the eell probabilities are described by (J.tl +an + 
'Yl), (J.tl +an-'Yl), (J.tl +aI2+'Yl), (J.tl +aI2-'Yl), (J.tl- an-a I2+'Yl) 
and (J.tl - an - a12 - 'Yt), and similarly the second level of response by 
(J.t2 + a21 + 'Y2), (J.t2 + a21 - 'Y2), (J.t2 + a22 + 'Y2), (J.t2 + a22 - 'Y2), 
(J.t2 -a21 - a22 +'Y2) and (J.t2 - a21 -a22 - 'Y2) (even numbered rows of A). 
The parameters an, a12, a21 and a22 represent the effects of EDUC while 
the parameters 'Yl and 'Y2 account for differences between CRlME 1 and 
CRlME2. 

The analysis of variance table and parameter estimates are shown in 
Tables 6.64 and 6.65 respectively. From the analysis of variance table we can 
conclude that both the EDUC effects and the CRlME effects are signifieant. 
Since the EDUC effects are significant, the total symmetry hypothesis Hl 
can be rejected, and hence the distribution of eell probabilities differs with 
respect to the three levels of EDUC. Similarly, since the CRlME effects 
are significant, the hypothesis of marginal symmetry H2 must be rejected 



6.4 The Weighted Least Squares Approach 113 

TABLE 6.64. Analysis of Variance for Model Relating CRIME 1 and 
CRIME 2 to EDUC 

Source d.f. x2 p-Value 

Intercepts 2 4313.19 0.000 

EDUC 4 27.35 0.000 
CRIME 2 184.86 0.000 
Residual 4 22.68 0.000 

TABLE 6.65. Parameter Estimates and ~ Values 

Parameter Estimate x2 p-Value 

1'1 0.2653 546.53 0.000 

1'2 0.4607 1457.83 0.000 

etll -0.0636 9.32 0.000 

et12 0.0142 0.78 0.392 

et21 -0.0043 0.08 0.781 

et22 -0.0021 0.01 0.903 

1'1 0.0511 111.56 0.000 

1'2 -0.0014 0.04 0.844 

and therefore the distribution of probabilities over the response levels of 
CRlME 1 is different from the distribution of these probabilities over the 
levels of CRlME 2. The parameter estimates in Table 6.65 suggest that, at 
the margin, some of the parameter estimates are not significantly different 
from zero. It would appear that for the first response level of the two 
crime variables the proportion is lower in the first education category. Thus 
individuals from the lowest education category feel less safe in general. 
Outside of the first response category and the first education category there 
does not appear to be any other differences. Also, for the first levels of 
CRlME 1 and CRlME 2 the cell probability is higher for CRlME 1 than 
for CRlME 2. This indicates that at night a larger proportion of people 
tend to feel very safe in their neighborhood than in the downtown region. 
For the somewhat safe category the proportions are about the same for 
both crime variables. The parameters J.l.1 and J.l.2 indicate that on average 
26.5% of the respondents choose the first response whereas 46% choose the 
second response. 

Adding Interaction Effects 

The analysis of variance shown in Table 6.64 suggests that the residual 
is significant and hence that the fitted model does not fit the data weH. 
To obtain a better fit we consider the impact of adding interaction ef-
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TABLE 6.66. Analysis of Variance 

Source d.f. ')(2 p-Value 

Intercepts 2 4333.32 0.000 
EDUC 4 37.00 0.000 
CRlME 2 203.29 0.000 
CRlME-EDUC Interaction 4 22.68 0.000 
Residual 0 0 1.000 

TABLE 6.67. Parameter Estimates and p-Values 

Parameter Estimate ')(2 p-Value 

PI 0.2658 557.52 0.000 

P2 0.4613 1461.30 0.000 

°ll -0.0775 27.36 0.000 

°12 0.0151 0.83 0.363 

°21 0.0000 0.00 0.985 

°22 0.0011 0.00 0.947 

'Yl 0.0608 131.58 0.000 

'Y2 -0.0112 2.21 0.137 

(Oll'Yl) -0.0300 20.94 0.000 

(olnd 0.0379 14.60 0.000 

(021 'Y2) 0.0061 0.68 0.409 

(022'Y2) -0.0076 0.52 0.472 

feets between the EDUC levels and the CRlME effeets. Columns can be 
added to the X matrix to account for the interaction between CRlME 
and EDUC. Since there are two EDUC parameters and one CRlME pa­
rameter in each equation, there are two interaction parameters for each 
equation. The columns corresponding to these interaction parameters can 
be obtained by taking the product of corresponding elements in the wain 
effect columns. Tables 6.66 and 6.67 summarize the results obtained from 
fitting the model which includes the interaction terms. 

From Table 6.67 we can conclude that fitting the interaction parameters 
leaves the main effect parameters virtually unchanged. Two significant in­
teraction parameters are also obtained for CRlME response levell. The 
interaction between the first level of EDUC and CRlME response level 1 
is negative, and between EDUC level 2 and CRlME response level 1 the 
interaction is positive. We can conclude, therefore, that the difference in 
cell proportions between CRlME 1 and CRlME 2 for levell depends on the 
level of EDUC. At EDUC level 1 it would seem that there is less difference 
between the two crime variables than for EDUC level 2. 



6.4 The Weighted Least Squares Approach 115 

6.4.6 OTHER SOURCES OF INFORMATION 

The most comprehensive outline of the weighted least squares methodology 
is contained in Forthofer and Lehnen (1981). This methodology is also 
discussed in Reynolds (1977) and Freeman (1987). A number of papers by 
Koch and others can also be used to gain further understanding. References 
to these papers can be found in the three texts listed above. Two useful 
papers are Grizzle, Starmer and Koch (1969) and Koch, Landis, Freeman, 
Freeman and Lehnen (1977). 
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Exercises Für Chapter 6 

1. This exercise is based on the Bus Data in Table VI in the Data 
Appendix. 

(a) Using the three three-dimensional tables determine the three 
tw~dimensional tables relating the variable ATTEND to each 
ofthe variables SEX, DAY and GARAGE. For each ofthe three 
tables analyze the relationships and discuss the results. 

(b) For the three three-dimensional tables construct tw~dimensional 
tables that relate SEX and DAY, SEX and GARAGE, and DAY 
and GARAGE. For each of the tables analyze the relationships 
and discuss the results. 

( c ) For each of the three three-dimensional tables use the maxi­
mum likelihood approach to determine a loglinear model that 
adequately fits the table. Are the findings consistent with the 
results obtained in (a) and (b). Discuss the fitted model in each 
case. Include graphs of the interaction effects as part of your 
discussion. 

(d) For each of the three three-dimensional tables in (c) use the 
fitted saturated model to determine a logit model relating the 
dependent variable ATTEND to the remaining two variables. 
Discuss and interpret the results. 

(e) A four-dimensional table relating ATTEND, SEX, DAY and 
GARAGE could not be obtained from company records. As­
suming that the loglinear model for this table does not require 
interaction terms with the variable ATTEND of greater than 
second order (three-way) a logit model for ATTEND can be es­
timated using the three logit models estimated in (d). Write out 
the saturated versions of the three logit models corresponding 
to the three tables and add the right hand side terms together 
to produce a logit model for ATTEND for the four dimensional 
table. In cases where the same term appears in more than one 
model the terms can be replaced by a simple average. Estimate 
the three saturated models for the three tables and combine the 
estimates to obtain an estimate for the four dimensional table 
logit model for ATTEND. Use the fitted logit model to obtain 
a table giving P[ATTEND] for each of the 2 x 7 x 3 = 42 cells. 
Explain how this table could be used by the bus company man­
agement to plan staff requirements. 

(f) In parts (a) and (b) collapsed tables were used to relate the 
four variables two at a time. In part (c) the four variables were 
studied three at a time. Did collapsing the tables change the 
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conclusions about the relationships? Examine the collapsibility 
conditions given in the text and comment on the results. 

(g) Use weighted least squares to fit logit models for the variable 
ATTEND to each of the three three-dimensional tables and com­
pare the results to (d). 

(h) Use weighted least squares to fit a model to each of the three 
tables using P[ATTEND] as the dependent variable. In this case 
model the proportions rather than the logarithms of the propor­
tions as in (g). Interpret the results in each case and compare 
to the logit model results in (g). 

2. This exercise is based on the Accident Data in Table V2 of the Data 
Appendix. Because of empty cells you should combine the DRIVER 
INJURY categories for MINOR and MAJFAT when using weighted 
least squares. 

(a) Table V2 contains a four-dimensional contingency table relat­
ing SEATBELT, DRIVER INJURY LEVEL, DRIVER CON­
DITION and POINT OF IMPACT. Determine the three three­
dimensional tables relating DRIVER INJURY LEVEL with two 
other variables. The three-dimensional table relating DRIVER 
INJURY LEVEL to DRIVER CONDITION and SEATBELT is 
identical to Table 6.23 discussed in the text. Fit loglinear models 
to each of the three tables using maximum likelihood. In each 
case obtain the fitted parameters and discuss the results. Include 
graphs of the interaction effects as part of your discussion. 

(b) Fit a loglinear model to the four-dimensional table which in­
cludes all three-way interaction terms using maximum likeli­
hood. Discuss the results. Compare the results to (a). Did col­
lapsing the table have any effect? 

(c) Use maximum likelihood stepwise methods to fit a model to the 
four dimensional table. Estimate the fitted model and discuss 
the results. Compare the results to the results obtained in (a) 
for the three collapsed tables. Did the collapsing of the table 
change the results? 

(d) Using the fitted model in (b) determine logit models relating 
INJURY LEVEL to the other three variables. Compare each 
INJURY category to the NO INJURY category. Discuss the fit­
ted models. 

(e) Use weighted least squares to fit logit models relating INJURY 
LEVEL to NO INJURY for the four-dimensional table. Compare 
the results to the results obtained in (d). 

(f) Repeat the analysis in (e) using continuation ratios as outlined 
in the text. 
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(g) Use weighted least squares to fit a model that relates the differ­
ences between injury level proportions and the no injury propor­
tion to the other three variables. Discuss the results and compare 
to the logit model results in (e). 

(h) Repeat the analysis in (g) using continuation differences as out­
lined in the text. Compare the results to the results in (f). 

(i) Use weighted least squares to relate a weighted sum of two in­
jury category proportions to the other three variables. Use the 
weights for the three injury categories 1 (minimal) and 10 (mi­
nor). Discuss the results. 

(j) Use weighted least squares to fit a model that combines the 
INJURY LEVEL and SEATBELT variables into one dependent 
variable and relate to the other two variables. Use models based 
on proportions and on log proportions. Is there any interaction 
between INJURY LEVEL and SEATBELT usage? Discuss the 
results. 

3. This exercise is based on the Accident Data in Table V3 of the Data 
Appendix. 

( a) Table V3 contains a four-dimensional contingency table relat­
ing SEATBELT, DRIVER INJURY LEVEL, DRIVER CONDI­
TrON and SPEED LIMIT. Determine the three three-dimensional 
tables relating DRIVER INJURY LEVEL with two other vari­
ables. The three-dimensional table relating DRIVER INJURY 
LEVEL to DRIVER CONDITION and SEATBELT is identical 
to Table 6.23 discussed in the text. Fit loglinear models to each 
of the three tables using maximum likelihood. In each case ob­
tain the fitted parameters and discuss the results. Include graphs 
of the inter action effects as part of your discussion. 

(b) Fit a loglinear model to the four-dimensional table which in­
cludes all three-way interaction terms using maximum likeli­
hood. Discuss the results. Compare the results to (a). Did col­
lapsing the table have any effect? 

(c) Use maximum likelihood stepwise methods to fit a model to the 
four-dimensional table. Estimate the fitted model and discuss 
the results. Compare the results to the results obtained in (a) 
for the three collapsed tables. Did the collapsing of the table 
change the results? 

(d) Using the fitted model in (b) determine logit models relating 
INJURY LEVEL to the other three variables. Compare each 
INJURY category to the NO INJURY category. Discuss the fit­
ted models. 
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(e) Use weighted least squares to fit logit models relating INJURY 
LEVEL to NO INJURY for the four-dimensional table. Compare 
the results to the results in (d). 

(f) Repeat the analysis in (e) using continuation ratios as outlined 
in the text. 

(g) Use weighted least squares to fit a model that relates the differ­
ences between injury level proportions and the no injury propor­
tion. Discuss the results and compare to the logit model results 
in (e). 

(h) Repeat the analysis in (g) using continuation differences as out­
lined in the text. Compare the results to the results in (f). 

(i) Use weighted least squares to relate a weighted sum of three 
injury category proportions to the other three variables. Use the 
weights for the three injury categories 1 (minimal), 10 (minor) 
and 100 (major/fatal). Discuss the results. 

(j) Use weighted least squares to fit a model that combines the 
INJURY LEVEL and SEATBELT variables into one dependent 
variable and relate to the other two variables. Use models based 
on proportions and on log proportions. Is there any interaction 
between INJURY LEVEL and SEATBELT usage? Discuss the 
results. 
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Questions for Chapter 6 

1. (a) Given that nl and n2 are independent Poisson random variables 
with densities 

I( .) - T.mi -Fi/n·I n, - ri e ,., i = 1,2, 

show that the joint density of nl, n2 is given by 

I(nl, n2) = F~l F:2 e-(Fl+F2) /nl!n2!. 

(b) Show that the probability P[nl = a, n2 = s - a] is given by 
FfFJs-a)e-(Fl+F2) /a!(s - a)!. 

(c) Show that the density of n = (ni + n2) is given by a Poisson 
distribution with mean parameter F = (F1 +F2 ) by determining 
P[n = s]. (HINT: use (b) and sum the expression from a = 0 to 
a = Sj also recall from the binomial theorem that (X + y)n = 
E;=o ( ; )xryn-r). 

(d) The conditional density of nl = a and n2 = (s - a) given n = 
(ni +n2) = s can be obtained by combining the results in (b) and 
(c). Recall that a conditional density is obtained by dividing the 
joint density by a marginal density. Show that the conditional 
density for nl = a, n2 = (s - a) given (ni + n2) = s is given by 

What is the density called? 

(e) Generalize the result obtained in (d) to an (r x c) contingency 
table by writing an expression for the conditional density of the 
nij given the total n = E;=1 Ej=1 nij is fixed. Show that the 
resulting density is the multinomial given in Chapter 6. Begin 
by writing the joint density for the nij as a product of Poisson 
densities, and repeat the steps in (a) through (d). (HINT: Use 
the result from (b) and (c) that the sum of independent Poisson 
random variables is also Poisson.) 

2. (a) Assume that in a 2 x 2 contingency table the cell frequencies 
nij, i = 1,2, j = 1,2, satisfy the multinomial with fixed n = 
(nu + n12 + n21 + n22). Show that the density is given by 

I( ) n! Inll In12 f.n 21 f.n22 n11,nI2,n21,n22 = I I I I 11 12 21 22 
nl1·nI2·n21·n22· 

where 111,112,121 and 122 are the theoretical probabilities for 
the four cells respectively. 
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(b) Assume that the 2 x 2 contingency table is collapsed over the 
columns and let n1. = (nu + n12) and n2. = (n21 + n22). Show 
that the multinomial density for (n1.,n2') for fixed n = (n1. + 
n2') is given by 

where A = (1u + ft2) and h = (121 + 122)' 

(c) Use the marginal density in (b) and the joint density in (a) to 
show that the conditional density for (nU,n12,n21,n22) given 
(n1., n2.) is given by the product multinomial 

!(nu, n12, n21, n22/nt-, n2') = 
,n1.:n2." , (!u )nll (ft2) n12 (121 )n2I (122 )n22 . 

nU·n12·n21·n22· A A f.2 /.2 

(HINT: Joint density = marginal density x conditional density.) 

(d) Generalize the result in (c) to an (r x c) contingency table and 
give the multinomial density for the nij, the marginal density 
for the ni. and the conditional density for the nij given the ni.' 
Check that the latter density is the product multinomial given 
in Chapter 6. 

3. (a) Show that the multinomial density for the (r x c) contingency 
table given in Section 6.2.2 can be written as 

r c II II en;j In f;j • 

i=1j=1 

(HINT: a = elna .) 

(b) Show that the logarithm of the density in (a) is given by 

[ , 1 r c In! = In r ~. + L L nij ln/ij. 
TI TI nij! i=1 j=1 
i=l j=1 

(c) Given that the logarithm of the density is equivalent to the log­
arithm of the likelihood as given in (b) show that the maximum 
likelihood estimator for /ij is nij/n. Use a Lagrange multiplier 
and the condition E~=1E;=dij = 1. 
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(d) Show that the logarithm of the likelihood function in (c) evalu­
ated at fij = nijln is given by 

(e) The maximum likelihood estimator of a function of parameters 
can be obtained by evaluating the function with the parameters 
replaced by their maximum likelihood estimators. Given that 
the maximum likelihood estimator of fij obtained in (c) is given 
by n;j In show that the maximum likelihood estimators of k 
and f.j are given by ni-/n and n.jln. 

(f) Show that the maximum likelihood function evaluated under the 
independence model assumption (fij = kf.j) is given by 

(g) The likelihood ratio test for the independence model compares 
the likelihood in (f) with the likelihood in (d). In !arge sampies 
the logarithm ofthe likelihood ratio multiplied by (-2) has a X2 

distribution. Show that the likelihood ratio statistic in this case 
is given by 2~~=1~j=1nij ln[(nnij)lni.n.j]. 

(h) The number of degrees of freedom for the X2 distribution is 
(q - p - 1), where q is the number of cells in the table and p is 
the number of independent parameters estimated in the fitted 
model. Show that (q - p -1) = (r -1)(c -1) for the X2 test in 
(g). 

4. (a) Show that the Poisson joint density for the r x c contingency 
table given in Section 6.2.2 can be written as 

r c 

f( ) 11 II[ -Fe'1 '][ n .. 1nFii] nn,n12, ... ,nij, ... ,nrc = e" nij. e" . 
i=1j=1 

(HINT: a = e1na .) 
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(b) Given that the logarithm of the joint density is the logarithm of 
the likelihood show that the log likelihood for (a) is given by 

r c r c 

lnL = LL[-lnnijl-Fij]+ LLnijlnFij 
i=lj=1 i=lj=1 

r c r c r c 

= LLnijlnFij - LLlnn;jl - LLFij. 
i=lj=1 ;=lj=1 i=lj=1 

(c) Show using (b) that the maximum likelihood estimator of Fij is 
n;j. 

(d) Show that the logarithm of the likelihood function in (b) evalu­
ated at Fij = nij is given by 

r c r c 

lnL = LLnij lnnij - LLlnn;jl - n. 
i=lj=1 i=lj=1 

(e) The maximum likelihood estimator of a function of parameters 
can be obtained by evaluating the function with the parameters 
replaced by their maximum likelihood estimators. Given that the 
maximum likelihood estimator of Fij obtained in (c) is given by 
n;j show that the maximum likelihood estimators for Fi. and 
F. j are given by ni. and n'j, and also that F.. is estimated by n. 

(f) Show that the maximum likelihood function evaluated under the 
independence model assumption is given by 

(g) The likelihood ratio test for the independence model compares 
the likelihood in (f) with the likelihood in (d). In !arge sampies 
the logarithm of the likelihood ratio multiplied by (-2) has a X2 

distribution. Show that this likelihood ratio statistic is given by 

(h) The number of degrees of freedom for the X2 distribution is 
(q - p - 1), where p is the number of independent parameters 
estimated in the fitted model and q is the number of ceIls in the 
table. Show that (q - p - 1) = (r - l)(c - 1) for the X2 test in 
(g). Note that in this case the total sampie size n is not fixed. 

5. In a two-dimensional contingency table denote the true cell frequency 
by F i;, i = 1,2, ... , r, j = 1,2, ... ,c. 
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(a) Let F.. denote the geometrie mean of the TC eell frequencies and 
show that 

_ 1 r c 

InF.. = - LLInFi;. 
TC. l' 1 1= 3= 

(b) Let Fi . and F.; denote the geometrie means of the eell frequencies 
in row i and column j respectively and show that 

In Pt. 
1 c 

= - LlnFi; 
C;=1 

1 r 

InF.; = - LlnFi;. 
Ti=l 

(e) Let Pt. and F.; denote the row and eolumn total frequencies and 
denote the geom~trie me!DS of the row totals and eolumn totals 
respectively by Fo. and F.o. Show that 

1 r 

InF.o = -LInFi. 
T i=1 

1 c 
InFo. = - LInF.;. 

C. 
3=1 

(d) Given that the independenee model ean be written as Fi; = 
(Pt.)(F.;)/n show that 

InFij = In Pt. + InF.; -Inn (1) 

and that after summing over i and j and dividing by TC 

- - -InF .. = InF.o + inFo. -lnn; (2) 

henee show that 
F .. = PoFo./n. 

(e) Show that by summing over the subseript j and dividing by C 

in equation (1) yields 

- -InFi. = InFi. + InF.o -Inn (3) 

and similarly by summing over the subseript i and dividing by 
Tin equation (1) yields 

- -InF-j = InFo. + InF.; -In n. (4) 
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(f) Combine equations (2), (3) and (4) to show that 

[lnK + InF.j] = InFi . + InFj -InF,. + Inn. 

and then use the independence result (1) to obtain 

- - -InFij = InK + InF.j -InF.. 

and hence 
Fij = Fi.F,j/F. 

(g) Use the result in (f) to show that under independence 

- [K] [F. j ] Fij = F.. =- -=-, 
F.. F.. 

and give a verbal description of the three terms on the right 
hand side. 

(h) If independence does not hold show that the following equation 
holds 

InFij = [InF.] + [InFi . -InF.] + [InF,j -InF.] 

+[lnFij -InFi . -InF,j + InF.] 

and provide an interpretation for the last term. 

6. (a) Construct an example of Simpson's Paradox with different num­
bers and different variables than the examples in Chapter 6. 

(b) For the contingency tables shown below derive a set of conditions 
that would represent Simpson's Paradox. 

A B 
al a2 bl b2 

Xl nUI nU2 nu· Xl n2U n212 n21· 
X 

X2 nl21 nl22 n12· X2 n221 n222 n22· 

nl·l nl·2 n2·1 n2·2 

[A+B] 

aI/bI a2/~ 

Xl n·u n·12 n·l· 

X2 n·21 n·22 n·2· 

n .. l n .. 2 

(c) Use your result to explain why Simpson's Paradox occurs. 
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7. For the three-dimensional contingency table the observed cell fre­
quencies are denoted by nijk and the theoretical cell frequencies are 
denoted by F ijk , i = 1,2, ... ,r, j = 1,2, ... ,c, k = 1,2, ... ,l. If 
the maximum likelihood estimators of the Fijk are given by the nijk 

show that the maximum likelihood estimators for the functions 

(a) Fijk = K.F. j .F.k /n2, 

(b) Fijk = Fij.F..k/n, 

(c) Fijk = KkFjk/F .. k, 

are given respectively by 

(d) Eijk = ni .. n.j.n .. k/n2, 

(e) Eijk = nij.n .. k/n, 

(f) E ijk = ni.kn.jk/n .. k. 

(HINT: Use the fact that maximum likelihood estimators of func­
tions of parameters are the functions of the maximum likelihood 
estimators of the parameters.) 

8. The saturated loglinear model for a three-dimensional contingency 
table is given by 

In F ijk = I" + I"I(i) + 1"2(j) + 1"3(k) + 1"12(ij) + 1"13(ik) 

+JL23(jk) + 1"123(ijk), 

i = 1,2, ... ,r, j = 1,2, ... ,c, k = 1,2, ... , l, 

where Fijk = true frequency in cell (i,j, k) and 

1 r c I. 

JL = rei L L LInFijk' 
i=1 j=1 k=1 

1 c I. 

JLl( i) = eiL LlnFijk - JL, 
j=1 k=1 

1 r t 
JL2(j) = i L L1nFijk - JL, 

r i=1 k=1 

1 r c 

1"3(k) = - L LlnFijk -1", 
rc i=1 j=1 

1 I. 

1"12(ij) = i L In Fijk - I"I(i) - 1"2(j) - 1", 
k=1 

1 c 

1"13(ik) = - L In Fijk - I"I(i) - 1"3(k) - 1", 
C j =1 
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Jl.23(jk) 

Jl.123(ijk) 

1 r 

= - L In Fijk - Jl.2(j) - Jl.3(k) - Jl., 
T i =1 

= In F ijk - Jl.1(i) - Jl.2U) - Jl.3(k) - Jl.12(ij), 

-Jl.23(jk) - Jl.13(ik) - Jl.. 

(a) Show that the properties below follow from these definitions 

r c l 

E Jl.1(i) = E Jl.2(j) = E Jl.3(k) = 0, 
i=1 j=1 k=1 

r c r l c l 

E E Jl.12(ij) = E E Jl.13(ik) = E E Jl.23(jk) = 0, 
i=1 j=1 i=1 k=1 j=1 k=1 

r c l 

E E E Jl.123(ijk) = 0. 
i=1 j=1 k=1 

(b) Given the following notation for various geometrie means based 
on the Fijk determine expressions for the logarithms of these 
quantities in terms of summations of In Fijk. 

F. .. is the overall geometrie mean of all the frequencies Fijk; 

FL is the geometrie mean of all the frequencies Fijk holding 
i fixed; 

F.j . is the geometrie mean of all the frequeneies Fijk holding 
j fixedj 
F..k is the geometrie mean of all the frequencies Fijk holding 
k fixed; 
Pij . is the geometrie mean of all the frequencies Fijk holding 
i,j fixed; 
P.jk is the geometrie mean of all the frequencies F ijk holding 
j,k fixed; 
Pi-k is the geometrie mean of all the frequencies Fijk holding 
i,k fixed; 

(e) Use the expressions derived in (b) and the parameter definitions 
to show that the following expressions hold. 

p. = InF. .. , - -
Jl.1(i) = InFi .. -InF. .. , - -
Jl.2(j) = InF.j . -InF. .. 

Jl.3(k) lnP.'k -lnP. .. 

Jl.12(ij) = InPij. -InPi .. -lnP.j. + InP. .. 

Jl.13(ik) = InPi-k -InPi .. -InP..k + InP. .. 



1l-23(jk) 

1l-123(ijk) 
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-- --- - -InF.jk -lnF.j . -lnF .. k + InP .. 
-- - - -.; 

ln Fijk -lnFij. -lnPjk -lnFi-k 
-- -- -- .-

+lnFi .. +lnPj. +lnF .. k -lnF .... 

9. (a) Using the saturated loglinear model for a three-dimensional ta­
ble derive the expression for the logit model assuming one of the 
variables is a response variable (see Section 6.3.5). Assume that 
the response variable has only two categories. 

(b) Repeat the exercise in (a) assuming the response variable has 
three categories. Obtain expressions for ln(pi/pj) for all possible 
pairs. 

(c) Repeat the exercise in (b) using continuation ratios for the logit 
model. (HINT: Sum the frequencies over two of the three cate­
gories and then repeat the steps in (a)). 

(d) Assume that the logit model derived in (a) pertains to the cate­
gories Present and Absent. Use the model to derive an expression 
for the probability of Present. 

10. (a) In the weighted least squares approach to fitting contingency 
tables the covariance matrix for the sampie proportions is block 
diagonal as outlined in Section 6.4.1. Use the expressions for the 
covariances among the elements of p given in Section 6.4.1 to 
show that the covariance matrix of p given by n in Section 6.4.1 
is block diagonal. 

(b) Given that g = Ap as in Section 6.4.1 show that the covariance 
matrix for the elements of g is given by AnA', where n is given 
in (a). 

(c) Review your knowledge of the weighted least squares estimator 
in linear models and discuss the rationale for the weighted least 
squares estimator given by (6.2). 

(d) Assume H = H and show that the covariance matrix for ß given 
~-l 

by (6.2) is (X'H X)-l. 

(e) Use the result in (d) to show that the covariance matrix for Cß 
is given by 

A ~-l ~-l 

(f) Show that if ß = (X'H X)-l(X'H g) minimizes the quadratic 
~-l 

form (g-Xß)'H (g-Xß) with respect to ß then the quadratic 
,~-l A' ,~-l A 

form has the value g H g - ß (X H X)ß. 
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M ultivariate Distributions, 
Inference, Regression and 
Canonical Correlation 

Before we introduce additional techniques for multivariate analysis, it is 
necessary to explain notation for multivariate random variables and sam­
pIes. Since many multivariate inference procedures require a multivariate 
normal distribution assumption, an introduction to this distribution is also 
provided here. In addition, the chapter includes an outline of inference pm .. 
cedures for the mean vector and covariance matrix. In same applications 
multivariate random variables are partitioned into two or more subsets. 
The relationship between the variables in different sets is often of interest. 
In the last section of this chapter we outline the techniques of multivari­
ate regression and canonical correlation in order to study the relationships 
between subsets of random variables. 

7.1 Multivariate Random Variables and SampIes 

The (n x p) data matrix X is viewed aB a sampie of n observations on each 
of the p random variables Xii X 2 , • .• , X p • The X matrix therefore contains 
the p (n x 1) observation vectors XilX2, .... ,xP ' where 

Xlj 

X2j 

Xj = , j = 1,2, ... ,p, and X = [Xii X2, ... , xp ]. 

Xnj 

Thus each column of Xis a (n x 1) vector of observations on one of the p 
variables. 

Each row of X contains observations on the p variables, Xii X2, ... , X p , 

corresponding to a particular individual or object. The p random variables 
together form a (p xl) vector mndom variable X, where 
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x=[1J 
The X matrix therefore consists of n observations on the multivariate ran­
dom variable x, denoted by Xl. X2, ••• ,Xn and hence 

x= 

X' 1 
X' 2 

~ 

The vector Xi therefore will be used to denote an (n xl) vector of observa.­
tions on the variable Xi or a (p xl) vector of observations on the variables 
Xl. X2 , ••• ,X, for individual i. The choice between these two possibilities 
will usually be dear from the context. An outline of properties for multi­
variate random variables and multivariate sampies is provided in the next 
section. 

Examples 

Two examples of data matrices are shown in Tables 7.1 and 7.2. Table 7.1 
contains 50 weekly return observations (in percents) on each of ten stock 
portfolios. The portfolios were constructed from stocks on the Toronto 
Stock Exchange from 1982. Each portfolio is an equal weight average of 
50 stocks. For all practical purposes, weekly stock returns can be assumed 
to be independent over time. Table 7.2 contains the responses of 50 police 
officers to eight questions regarding the stress they feIt in various work 
situations. The stress is measured on a five-point scale with the value 1 
indicating low stress and the value 5 indicating high stress. These two data 
matrices will be used in this chapter to illustrate various types of analysis. 

7.1.1 MULTIVARIATE DISTRIBUTIONS AND MULTIVARIATE 

RANDOM VARIABLES 

Joint Distribution 

The joint distribution function for the (p xl) vector random variable X is 
denoted by Fx(x*), where 

Fx(x*) = FX (x;:,x2"" ,x;) = P[x ~ x*] 
= P[X1 ~ xi, X 2 ~ X2"" ,X, ~ x;]. 

The joint density function for X is denoted by 
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-0.56 
1.73 
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1.15 
1.41 
1.81 

-0.32 
2.51 

-0.66 
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--0.30 
-2.58 

1.24 
--0.18 

0.31 
-0.01 

1.89 
-1.37 
--0.43 
-2.68 
-1.02 

0.05 
-1.54 
-2.66 
-1.17 

0.50 
-1.09 

0.33 
5.00 

-0.50 
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TABLE 7.1. Portfolio Returns 

6.94 
13.68 
9.30 

-1.66 

1.34 
1.24 
3.00 
1.98 

-4.84 

-0.42 
0.55 

-1.77 
2.84 
0.52 

-0.38 
2.10 

5.38 
-0.83 

4.32 
5.52 

1.55 
2.54 
0.75 
0.89 
0.76 

-1.20 

-0.54 
-0.08 
-0.07 

2.40 
-0.54 
-2.12 
-0.16 

0.60 
0.76 
2.43 

-0.78 
-0.74 
-0.52 
-3.22 

-2.55 
0.35 

-3.30 
-1.70 
-2.30 

0.59 
-0.49 
-2.84 

4.42 
-3.15 

X5 

6.51 
15.00 
15.19 

1.89 
3.89 
7.32 
0.28 

-0.14 
-6.54 

1.93 
-1.54 

-0.52 
0.39 
1.81 
0.54 
1.74 
0.29 

-2.21 

8.66 
3.94 
0.27 
4.12 

0.57 
-0.39 

0.64 
-2.88 

1.18 
1.52 

-1.31 

0.75 
-1.11 

0.37 
-2.23 

4.35 
-1.15 

4.46 
-3.34 
-3.90 

0.34 
-3.32 

0.17 
-3.29 
-3.90 
-3.80 

1.01 
4.43 

-2.20 
-2.31 

3.30 
1.72 

9.91 
18.35 
11.67 

3.72 
2.91 
5.59 

-0.44 
-2.10 
-5.16 

1.71 
-1.90 
-2.14 

0.34 
-0.31 

0.15 
5.20 

-1.34 

3.29 
6.15 
0.38 

0.56 
4.17 

1.15 
1.81 

-0.12 
-1.79 
-0.26 
-0.32 
-1.10 

4.21 
-2.50 
-2.45 
-3.74 

0.96 
3.61 

-0.82 
1.30 

-5.26 
-1.60 
-1.80 

1.76 
-0.23 
-4.67 
~.79 

-1.28 
-1.96 

2.31 
-3.43 

2.45 
-1.43 

12.71 
19.23 
20.20 

3.27 
7.37 
0.96 

1.55 
-2.42 
-5.87 

1.80 
-2.09 

-4.05 
0.01 
1.63 
2.77 
1.13 

--0.78 
2.57 
8.24 
4.34 

1.42 
-1.17 

1.19 
-1.19 

1.07 
-4.56 
-3.02 

--0.41 
-0.29 

0.78 
2.13 

-0.77 
1.79 

-0.25 
0.78 
4.71 

-1.35 
-5.53 
-3.25 
-2.95 

1.93 
-2.07 
-4.93 
-4.75 
-2.14 

1.57 
8.88 

-2.41 

4.50 
-1.86 

Xs 

8.57 
18.93 
20.59 

3.38 
8.19 

-0.12 
-1.57 

2.09 
-4.49 

1.15 
-0.30 
-5.60 

-0.72 
2.63 

-1.85 
5.48 
4.74 

-0.21 
11.14 

2.72 
-2.46 

4.68 

0.43 
-1.23 

0.49 
-3.02 
-2.56 
-0.59 

3.66 

-0.65 
6.39 

-3.79 
-1.03 
-1.32 
-2.15 

2.41 
-1.20 
-2.55 
-4.34 
-3.32 

1.14 
-0.11 
-3.26 
-1.45 
-3.00 

1.91 
-0.89 
-3.96 
10.86 
-4.43 

X9 

9.27 
17.13 
22.49 

8.60 
11.57 

0.17 
0.65 

-1.01 
-5.43 

4.11 
3.01 

-3.50 

1.93 
4.78 
0.16 
2.38 

-3.04 
-2.69 

7.67 
5.64 

--0.67 
1.59 

-0.62 
1.68 
1.37 

-4.81 

--0.67 
2.27 

-2.75 

-1.51 
1.16 

-3.77 
2.09 
1.36 

-0.16 
4.67 

--0.20 
-5.19 
-5.17 
-4.10 

-0.11 
-5.92 
-3.85 
-4.63 
-2.50 

1.01 
-0.82 
-1.88 

4.57 
-3.05 

7.67 
16.88 
30.52 

3.27 
41.35 

6.98 
5.62 

--0.02 
-5.04 

10.89 
176.80 
-2.77 
-1.72 

-0.74 
-2.01 

2.31 
0.28 
5.54 
7.11 
8.37 
0.89 
1.63 

0.07 
-2.46 

1.46 
-5.11 

-0.18 
24.86 
-2.54 

1.19 
1.01 

-2.85 
--0.37 
-2.31 
-1.42 

3.54 
-0.74 
-0.59 
-1.76 
-2.34 
-4.09 

1.62 
-4.06 
-3.40 
16.03 

1.36 
0.85 

-2.63 
-3.31 
-4.87 
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TABLE 7.2. Police Officer Stress Data 
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Variable Descriptions 

3 

2 

4 

3 

3 
2 

1 
1 

3 
2 

4 

5 

1 

1 

1 

2 

3 

3 

2 

4 

2 

3 

4 
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3 
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4 
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3 
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5 

1 

3 

4 
4 

1 

3 

4 

4 

4 

2 

5 

3 

4 

Xl Handling an investigation where there is serious injury or fatality. 
X2 DeaJing with obnoxious or intoxicated people. 
X3 Tolerating verbal abuse in public. 
X4 Being unable to solve a continuing series of serious offences. 

5 4 

1 2 
5 3 
3 2 
5 4 
5 2 
2 1 
5 2 
4 3 
4 4 
3 3 

5 4 

3 3 
5 1 
4 2 
3 3 
3 4 
4 4 
4 2 

4 2 

4 3 

3 3 
4 3 

5 1 
4 3 

Xs Resources such as doctors, ambulances etc. not being available when needed. 
X6 Poor presentation of a case by the prosecutor leading to dismissal of charge. 
X7 Unit members not getting aJong with unit commander. 

Xs Investigating domestic quarrels. 

fx{x*) = fx{xi,x;, ... ,X;)' 

where 

lX~ IX; IX; 
Fx{x*) = -00 -00'" -00 fx{x*)dx 1dx2 ., • dxp • 

Partitioning the Random Variable 

The random variable x can be partitioned into two mutually exclusive 
subsets, where 
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x = [ :~ ], Xl is (q xl), x2 is (8 X 1) and p = (q + 8). 

Thus Xl and X2 are also vector random variables but of lower dimension 
than x. The joint distribution function FX1 (xi) for Xl can be obtained 
from Fx(x*) by integrating the joint density fx(x*) over the entire range 
of the variables in X2. Denoting the joint density by fX(Xl,X2), the joint 
distribution function FX1 (xi) is given by 

where fXl (xt) is the joint density of Xl' The joint density for Xl is obtained 
from the joint density for X by integrating fx(x) over the range of the 
variables in X2. 

A special case of the distribution for Xl occurs when q = 1. In this case 

Xl is equivalent to the scalar random variable Xl and the distribution is 
called the marginal distribution of Xl. 

Conditional Distributions and Independence 

The conditional distribution for X2 given Xl is obtained from fx(x) by 
determining 

where fXl (xi) is the joint density for Xl evaluated at xi 
The two vector random variables Xl and X2 are independent if and only 

if 
fX21x l (X2 I Xl = xi) = fX2{X2) for all xi and all X2, 

or equivalently fx{x) = fXl (Xt}fX2(X2) for all x. A special case of this 
result for bivariate independence is given by fzy(x, y) = fz(x)fy(y). 

Mean Vector and Covariance Matrix 

The mean vector p. corresponding to the (p x 1) random variable X is 
the (p x 1) vector of elements p.j = E[Xj ], j = 1,2, ... ,p, and we write 
p. = E[x]. The covariance matrixfor X is the (pxp) matrix E with diagonal 
elements 0'1 = V[Xj], j = 1,2, ... ,p, and off diagonal elements (fjle = 
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COV(Xj,Xk), j 1= k, j,k = 1,2, .. . ,p. The mean vector I-' and covariance 
matrix E are given by 

~- [: l' 

O'~ 0'12 0'13 

0'12 0'2 0'23 2 

E= 0'2 
3 

O'lp 0'2p 

The covariance matrix E can also be expressed as 

E[(x - I-')(x - 1-')'] = E. 

Correlation Matrix 

The correlation matrix p is obtained from the elements of the covariance 
matrix E by determining the off diagonal elements from 

Pjk = O'jk/ JO'JO'~, j 1= k, j, k = 1,2, ... ,po 

The matrix p is given by 

1 P12 P13 P1p 

P12 1 P23 P2p 

p= 
1 

P1p P2p 1 

The covariance matrix E can also be expressed as 

E= 

7.1.2 MULTIVARIATE SAMPLES 

The data matrix X represents a sampie of n observations on x from the 
multivariate population and is called a multivariate sampie. 

Sampie Mean Vector and Covariance Matrix 

Each row of the (n x p) data matrix X represents an observation on the 
(px 1) random vector x. For row i the (1 xp) observation vector is denoted 
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by x~. The (p xl) 8ample mean vector is denoted by x and is defined by 
x = ~:=1Xi/n. The elements of the (p x 1) vector x are the individual 
sample means for each variable 

x= 
1 n 

where x.j = - LXij, j = 1,2, ... ,po 
n i =1 

The 8ample covariance matrix is denoted by S where S = ~:=1 (Xi -X)(Xi­
x)' /(n-l). The diagonal elements are given by 8~ = ~:=1 (Xij _x.,)2 /(n-
1), j = 1,2, ... ,p, and the off-diagonal elements have the form 8jk = 
~:=1(Xij -X.j)(Xik -x.k)/(n-l), j i= k, j,k = 1,2, ... ,p. The matrix 
(n - I)S therefore has the form 

.. .. 
~(Xil - X.I)(Xi2 - X.2)'" ~(Xi1 - X.1)(Xi" - x.,,) 

i=1 i=1 i=1 .. .. .. 
~(Xil - X.1)(Xi2 - X.2) ~(Xi2 - X.2)2 ... ~(Xi2 - X.2)(Xi" - x.,,) 
i=1 i=1 i=1 

.. .. .. 
~(Xi1 - X.1)(Xi" - x.,,) ~(Xi2 - X.2)(X,,, - x.,,) ... ~(x,,, - X.,,)2 
~1 ~1 i=1 

which can be written as X*'X* where X* is the mean-corrected or mean­
centered X matrix given by 

X*= 

Xll - X·1 X12 - X·2 
X21 - X·1 X22 - X·2 

Sampie Correlation Matrix 

X1p - :t.p 

X2p - x.p 

The sampie correlations among the p variables are given by 

Tjk = Sjk/ J 8~S~ = Sjk/8j8k, j, k = 1,2, ... ,po 

The correlation matrix that summarizes the correlations is given by 
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TABLE 7.3. Portfolio Data - Mean Vector, Covariance and Correlation 
Matrices 

Mean Covariance and Correlation Matrices 
Vector X2 X4 X5 X6 X7 Xs Xg XlO 

0.93 1.68 2.27 2.54 2.95 2.99 3.13 2.72 3.76 
0.74 4.65 5.07 5.19 5.81 4.95 4.80 
0.65 6.46 7.30 8.06 9.39 8.60 2.52 
0.81 0.59 11.14 13.90 14.78 13.64 12.53 
1.05 0.52 0.62 18.31 18.18 19.61 12.84 
0.77 0.58 0.65 0.71 18.04 18.61 10.02 
1.09 0.48 0.54 0.64 0.78 26.34 17.97 
1.18 0.49 0.60 0.73 0.82 22.48 
1.06 0.42 0.50 0.66 0.74 0.83 41.52 
6.41 0.12 0.10 0.04 0.14 0.11 0.08 0.12 686.59 

1 r12 r13 

r12 1 r23 

r13 r23 1 
R= 

r1p r2p r3p 1 

Example 

The sample mean vectors, covariance matrices and correlation matrices for 
the data matrices in Table 7.1 and 7.2 are shown in Tables 7.3 and 7.4. 
The correlation coefficients are shown in the lower left triangle and the 
covariance matrix in the upper right including the diagonal. 

Sums 0/ Squares and Cross Product Matrices 

The matrices S and R are both examples of sums 01 squares and cross 
product matrices. As indicated above, S = X*'X* I(n -1) where X* is the 
matrix of mean corrected X values given above. The correlation matrix R -,- -
can be written as X XI (n - 1) where X is the n x p matrix of standardized 
observations 
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TABLE 7.4. Stress Data - Mean Vector, Covariance and Correlation 
Matrices 

Mean Covariance and Correlation Matrices 
Vector Xl X2 X3 X4 X5 X6 X7 Xs 

Xl 2.12 1.33 0.59 0.42 0.42 0.32 0.30 0.61 

X2 2.32 0.19 0.28 -0.06 0.23 0.34 

X3 2.30 0.19 0.31 0.24 0.40 

X4 3.54 0.36 0.41 0.24 0.51 

X5 3.38 0.31 0.19 0.28 0.37 

X6 3.50 0.25 -0.04 0.25 

X7 3.52 0.24 0.17 0.20 0.22 

Xs 2.62 0.46 0.23 0.31 0.44 0.27 

Xll - X.1 X12 - X.2 
81 82 

X21 - X.I X22 - X.2 
81 82 

x= 

X n l - X.l Xn 2 - X.2 
81 82 

The correlation matrix can be written 88 

R = D-1/ 2SD-1/ 2 

where D is the diagonal matrix containing the diagonal elements of S. 
A third type of sums of squares and cross products matrix is given 

by X'X. This matrix contains the raw sums 0/ squares and cross prod­
ucts given by 

X'X= 

n 

L: X~l 
i=l 

n 

L: Xi1 X i2 
i=l 

n 

L: Xi1 X i2 
i=l 

n 

L: X~2 
i=l 

n 

L: Xi1 X ip 
i=l 

n 

L: Xi2 X ip 
i=l 

This matrix will be referred to 88 the sums of squares and cross products 
matrix and will sometimes be abbreviated by SSCP. 
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Mwtivariate Centml Limit Theorem 

H the rows of the data matrix X denoted by x~, ~, ... , x~ represent a 
multivariate random sampie from a multivariate distribution with E[x] = ,." 
and Cov(x) = E, then the asymptotic distribution of x = E~=lXiln is 
multivariate normal with mean vector ,." and covariance matrix Ein. In 
other words, in !arge sampies y'n(x -,.,,) is multivariate normal with mean 
o and covariance matrix E. 

The mwtivariate centml limit theorem also applies to the elements Sij 

of S. The elements of y'n[S - E] converge in distribution to a multivariate 
normal with mean 0 and covariance matrix H where a typical element 
of H is given by COV[y'n{Sij - O'ij), y'n{Slct - O'lct)] = O'ilcO'jt + O'jIcO'U, 

i = 1,2, ... ,p. 

7.1.3 GEOMETRIe INTERPRETATIONS FOR DATA 

MATRICES 

Geometrie interpretations can be applied to multivariate sampies in two 
different ways. The columns of X generate a p-dimensional space and the 
rows of X generate a n-dimensional space. 

p-Dimensional Space 

The most common geometrie interpretation for the data matrix X is to 
regard each row as a point in a p-dimensional space. Thus the (n x p) 
matrix X summarizes the coordinates of n points in a p-dimensional space. 
The amount of scatter among the n points depends on the interrelationship 
among the p variables and on the mean and variance of the variables. 
Depending on the scatter it may be possible to find a smaller number of 
axes or dimensions « p) that could be used to locate the n points with 
fewer than p coordinates; for example, for three variables Xl, X2 and Xa, 
it may be possible to represent the points adequately in a two-dimensional 
plane given by Xa = aXl + bX2 • Most readers will be familiar with the 
tw~dimensional scatterplot (p = 2) used in simple linear regression and 
correlation. 

n-Dimensional Space 

An alternative geometrical interpretation can be obtained by viewing the 
p columns of X as coordinates of p points in an n-dimensional space. Each 
of the p variables can be represented by a vector drawn from the origin to 
the point denoted by the values of the neoordinates. If the p variables have 
mean zero, the angle between any two variables is related to the correlation 
between the variables. The strength of linear association between any two 
mean zero variables is measured by the eosine of the angle between the two 
vectors. 



7.1 Multivariate Random Variables and Sampies 141 

Mahalanobis Distance and Generalized Variance 

In the discussion of bivariate sampies the quantity 

[ 2 ]-1 SI S12 

S12 s~ 

is often used to describe the locus of an ellipse in two-dimensional space 
with centre (X.lIX.2). This quantity also measures the square of the Ma­
halanobis distance between the point (Xl, X2) and the centre (X.lI X.2). 
All points on this ellipse have the same distance m2 from (X.lI X.2). This 
squared distance m2 is the square of the radius of the circle that would be 
obtained after transforming Xl and X 2 into new variables Zl and Z2 with 
zero means, unit variances and zero correlation. The Mahalanobis distance 
therefore takes into account the variances and covariances. In comparison, 
the Euclidean distance is given by d, where 

An alternative way to view the Mahalanobis distance is to begin with the 
circle located at the origin and given by Z? + Z~ = m2 • If the variables Zl 
and Z2 are transformed using linear combinations Xl = (al Zl + bl Z2 + Cl) 
and X 2 = (a2Zl + ~Z2 + C2), the value of 

will still be m 2 • The mean vector and covariance matrix corresponding to 

[ XXI ] is denoted by [ :.1 ] and [s~ st;]. 
2 X·2 S12 S2 

p-Dimensional Ellipsoid 

For multivariate sampies the Mahalanobis distance of x' = (Xl, X2, .•. , xp ) 

from the mean X' = (xo1, X02, . .. ,xop ) is given by m, where m2 = (x­
X)'S-I(X - X), which describes an ellipsoid in p-dimensional space. The 
sampie squared Mahalanobis distance from the mean for each of the obser­
vations for the data matrix in Table 7.1 is shown in Table 7.5. These values 
can be used to indicate the distance of each sampie observation from the 
centre of the data. Thus observation 11 in the table appears to be furthest 
from the centre of the data while observation 43 is closest to the centre. 

Generalized Variance 

The volume of the sampie ellipsoid defined above is given by mP ISl l / 2C(p), 
where C(p) is a constant that depends on the number of variables p and 
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TABLE 7.5. Squared Mahalanobis Distances for Portfolio Data 

Squared Squared Squared Squared 
Obs. Mahalanobis Obs. Mahalanobis Obs. Mahalanobis Obs. Mahalanobis 
No. Distance No. Distance No. Distance No. Distance 

1 7.72 14 5.41 26 4.73 38 6.20 
2 19.16 15 6.67 27 4.13 39 7.09 
3 20.33 16 9.63 28 6.69 40 5.21 
4 14.67 17 18.28 29 11.20 41 6.41 
5 10.67 18 8.81 30 7.12 42 8.79 
6 13.40 19 9.48 31 9.30 43 3.62 
7 8.62 20 10.08 32 5.57 44 7.06 
8 5.08 21 5.86 33 10.71 45 4.26 
9 13.25 22 11.28 34 5.06 46 10.44 

10 9.17 23 7.00 35 5.80 47 21.41 
11 44.86 24 8.60 36 8.26 48 5.65 
12 8.09 25 12.19 37 8.59 49 10.69 
13 8.58 50 9.13 

ISI denotes the determinant of S. From this expression we can see that 
for given values of p and m2 the volume of the ellipsoid depends on ISI. 
The quantity ISI is usually called the genemlized variance since it is related 
to the overall variation among the p variables. For the portfolio data the 
generalized variance is 18992767. 

If the n-dimensional geometrical representation for the sampie is used, 
the columns of X· /vn - 1, where S = X·/X· /(n - 1), are represented 
by mean corrected vectors (Xj - x.je)/...;n=T, j = 1,2, ... ,p, eminating 
from the origin. The p vectors can be used to generate a p-dimensional 
trapezoid or a parallepiped. The volume of the p-dimensional figure is given 
by (n - l)p/2ISI1/ 2. Thus the volume is influenced by the lengths of the 
vectors in X· and the angles among them. This provides an alternative 
characterization for the generalized variance ISI. The generalized variance 
increases if the magnitudes of the elements of X· increase and/or if the 
columns of X· become less collinear. Obviously, if the columns of X· are 
linearly dependent, ISI = o. If the columns are almost collinear, ISI will be 
very small. 

'Irace Measure 0/ Ovemll Variance 

An alternative measure of overall variance is the sum of the diagonal ele­
ments of S, tr S. This measure is simply the total of the variances for the p 
random variables. Unlike ISI, this measure is not sensitive to the degree of 
collinearity among the columns of X·. The trace of the portfolio covariance 
matrix is 833.824. 
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Generalized Variance for Correlation Matrices 

The generalized variance determined from the sampie correlation matrix is 
given by IRI. Because the variables are standardized, this quantity is not 
influenced by the magnitudes of the sampie variances s~, s~, ... ,s~. The 
diagonal elements of Rare necessarily 1, and the off-diagonal elements of 
R must lie in the interval ( -1, 1). If all of the off-diagonal elements are zero, 
the variables are mutually uncorrelated and IRI = 1. AB the off-diagonal 
elements increase in absolute value away from zero, the magnitude of IRI 
decreases. If any one of the off-diagonal elements is close to 1 or -1, then 
IRI will be negligible. The generalized variance based on IRI is therefore 
a measure of the lack of correlation among the variables. The generalized 
variance for the portfolio correlation matrix is 0.0000125. 

The quantity IRI can be related to the volume generated in n space by 
the standardized variables vectors. The volume is given by (n - 1 )p/2IRI1/2 
as in the case of 181 above. This volume is a function of the angles among the 
p vectors. The quantity IRI can be related to 181 using IRI = 181/s1s2 ... sp 

and hence 181 also includes the impact of scale given by St, ... , sp. 

Eigenvalues and Eigenvectors for Sums of Squares and Cross Product 
Matrices 

In Chapter 9 the eigenvectors and eigenvalues of matrices of the form X'X 
will be used to achieve dimension reduction by defining new variables called 
principal components. The principal components are linear transformations 
of the form Y = AX, with the transformation matrix A provided by the 
matrix of eigenvectors of X'X. The principal components are designed to 
retain most of the variation described by X'X, while reducing the number of 
dimensions or variables. The eigenvalues and eigenvectors of X'X therefore 
provide important information about the structure of X'X. 

The matrix 8 is a special case of a matrix of the form X'X and hence 
the eigenvalues and eigenvectors provide important information about the 
structure of 8. As outlined in the Appendix, the eigenvectors and eigenval­
ues of X'X satisfy the equations 

In this case since X'X is positive definite and symmetrie, the eigenvec­
tors v j are mutually orthogonal and are usually scaled so that vj v j = 1. 
The eigenvalues Aj, j = 1,2, ... ,p satisfy the properties II~=1Aj = IX'XI 
and tr(X'X) = E~=1 Aj. Sinee IX'XI and tr(X'X) are measures of overall 
variation, the eigenvalues ean be seen to represent such information. The 
arithmetic mean of the eigenvalues represents the average of the diagonal 
elements of X'X (or varianees if 8 = X'X). The geometrie mean of the 
eigenvalues of X'X reflects the pth root of the generalized varianee of X'X. 
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TABLE 7.6. Eigenvalues for Portfolio Covariance Matrix 

Eigenvalue No. 1 2 3 4 5 6 7 8 9 10 

Eigenvalue 691.75 117.57 7.07 5.99 4.17 2.59 2.49 1.32 0.55 0.27 

Arithmetic Mean 83.38 Geometrie Mean 5.34 

The eigenvalues for the portfolio return covarianee matrix are summa­
rized in Table 7.6. The arithmetie and geometrie means of the eigenvalues 
are also shown in Table 7.6. 

7.1.4 OTHER SOURCES OF INFORMATION 

More extensive eoverage of the topics in Section 7.1 is available in Mardia, 
Kent and Bibby (1979), Johnson and Wiehern (1988) and Kryzanowski 
(1988). 

7.2 The Multivariate Normal Distribution 

The univariate and bivariate normal distributions play an important role 
in statistical inference. For multivariate random variables, the multivariate 
normal distribution is a convenient and easy generalization of these two 
distributions. As in the univariate and bivariate normal distributions, the 
multivariate normal is eompletely defined by its first and second moments. 
The marginal distribution of any one variable from the multivariate normal 
random variable is univariate normal, and the joint distribution of any pair 
of variables from the multivariate normal is bivariate normal. Therefore 
the equivalence between independenee and zero eorrelation for bivariate 
normal random variables holds for all pairs of multivariate normal random 
variables. More generally, any subset of q variables in a p-dimensional mul­
tivariate normal, q < p, has a q-dimensional multivariate normal distribu­
tion. Also, a linear combination of the variables from a multivariate normal 
is univariate normal. Finally, many proeedures based on the assumption of 
multivariate normality are robust to departures from normality, and many 
multivariate statistics used in practice eonverge in distribution to a multi­
variate normal (multivariate eentrallimit theorem). 

In this section we introduee the multivariate normal distribution. Infer­
ence techniques for the mean vector p. and the eovarianee matrix E will 
be introduced in Section 7.4. 
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7.2.1 THE MULTIVARIATE NORMAL 

Mtdtivariate Normal Density 

The random vector x (p xl) haB a p-dimensional multivariate normal dis­
tribution if its density is given by 

where the elements of x are in the range (-00, 00) and E is of rank p. The 
mean of xis given by E[x] = ,.,., and the covariance matrix for x is given 
by E[ (x - ,.,. )(x -,.,. )'] = E. The correlation matrix p relating the variables 
in x is given by 

P = D-1/ 2 ED-1/ 2 
u u' 

where Du is the diagonal matrix of elements (1~,(1~, ••• ,(1~. The density is 
usually denoted by Np ("", E). 

The elements of ,.,. and E are denoted by 

,.,. = [:] , and 

(1~ (112 (11p (12 
1 P12 (11 (12 Plp(11(1p 

(112 (1~ (12p P12(11(12 (1~ P2p(12(1p 

E = = 

(11p (12p u2 
P PlpU I Up u2 

P 

Constant Probability Density Contour 

The quantity (x -,.,.), E-1(x -,.,.) = Cl, which is the squared Mahalanobis 
distance between x and ,.,., describes the surface of an ellipsoid centered 
at ,.,.. The density of x is therefore a constant over the ellipsoidal surface 
(x-,.,.)' E-1(x-,.,.) = Cl. This surface is called a constant probability density 
contour. As in the case of the univariate normal, the density is maximum 
at x =,.,.. 
Linear Transformations 

A linear combination of the p variables given by y = c'x, c (p xl), haB a uni­
variate normal distribution with mean 1'" = c',.,. and variance (1; = c' Ec, 
hence y '" N(c',.,., c' Ec). Similarly, if C is a (q x p) linear transforma­
tion matrix, the random variable y = Cx haB a q-dimensional multivariate 
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normal distribution with mean vector I-'y = CI-' and covariance matrix 
E y = CEC', hence y'" Nq(CI-', CEC'). 

Distribution 0/ Probability Density Contour 

A useful property of the multivariate normal is that, for a random observa­
tion x from Np(l-', E), the quantity (x-I-')' E-l(x-I-') has a X2 distribution 
with p degrees of freedom. Since (x - 1-')' E- l (x - 1-') describes an ellipsoid 
with center 1-', the probability is a that a random x will be outside the el­
lipsoid (x -I-')' E-l (x -I-') = X~jp. In Section 7.3 this property will be used 
to check for normal goodness of fit and outliers for multivariate sampies. 

7.2.2 PARTITIONING THE NORMAL 

The multivariate random variable x (p x 1) can be partitioned into two 

subvectors x = [ ~~ ], where Xl denotes the first q elements of x, and X2 

denotes the last 8 = (p - q) elements of x. The corresponding partitions of 
I-' and E are given by 

where 1-'1 is (q x 1), 1-'2 is (8 x 1), Eu is (q x q), E 22 is (8 x 8), E 12 is 
(q x 8), and E 21 = E~2. 

Marginal Distributions 

The marginal distribution for Xl is Nq(l-'l' Eu), and the marginal distri­
bution for X2 is N. (1-'2 , E 22 ). If E l2 = E 21 = 0, then the elements of 
the vector Xl are uncorrelated with the elements of X2, and hence under 
multivariate normality Xl and X2 are independent. 

Conditional Distributions 

The conditional density of the random variable X2 given Xl = xi is normal 
with mean vector 

and covariance matrix 

Therefore the conditional mean vector is a function of xi, but the covariance 
matrix of the conditional distribution is independent of xi. The conditional 
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density of X2 given xl = xi is given by 

Multivariate Regression Jilunction 

The conditional mean vector 1'2.1 is called the multivariate regression func­
tion for X2 on Xl. If q = (p - 1), then s = (p - q) = 1, and X2 = X2 is a 
univariate random variable. In this case L'21 is a [(p-1) x 1J vector, say U2. 
The conditional mean of X2 given Xl is given by 

1'2-1(xd = (1'2-L'21 L'ill'l)+L'2l L'i"lXl = (JL2-u~L'ill'l)+U~E:llxl 

and is called the regression function of X2 on Xl. For the regression of 
X2 on Xl. the true intercept and slope parameters ßo and ß* are given 
by (JL2 - u~L'lll'l) and u~L'll respectively. The variance of X2 can be 
partitioned into two terms, 17;2 = (17;2 - u~L'll(2) + u~L'llu2' The 
first term is the residual variance, and the second term is the variance 
of X2 explained by the regression relationship with Xl. The coefficient 0/ 
determination is given by R 2 = u~L'llu2/u;2' which is the square of the 
multiple correlation between X2 and Xl. 

If s ~ 2 and each of the elements of X2 is regressed on Xl, the set of 
regression coefficients of Xl is given by the (s x q) matrix L'2l L'll, with 
the (s x 1) intercept vector (1'2 - L'2l L'lll'l)' The intercept vector and 
matrix of regression coefficients will be referred to later in this chapter 
as the multivariate regression coefficients for the multivariate regression 
of X2 on Xl. The intercept vector will be denoted by ßo and the matrix of 
regression coefficients by B'·. The combined pammeter matrix [s x (q + l)J 
is given by B' = [ßo B/·J. 

Partial Correlation 

The conditional covariance matrix L'22-1 = (L'22 - L'21 L'll L'12) contains 
the elements necessary to construct the matrix of partial correlations be­
tween the variables in X2 controlling for the variables in Xl. The partial 
correlation matrix is given by 

0 -l/2( ~ ~ ~-l ~ )0-1/2 
"'2.1 ~22 - ~2l~11 ~l2 "'2.1' 

where 0"'2-1 denotes the diagonal matrix containing the diagonal elements 
of (L'22 - L'21 L'll L'12). The elements of the conditional covariance matrix 
L'22.1 are usually denoted by 

Uij'l,2,,,.,q' where i,j = 1,2, ... , s. 

The elements of the partial correlation matrix are given by 
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Pij·l,2, ... ,q = Uij.l,2, ... ,q/ ";Uii.l,2, ... ,q JUjj.l,2, ... ,q, 
i,j = 1,2, ... ,8, 

which are usually referred to as qth order partial correlations. 
For the first-order partial q = 1, recall that 

Pij - PUPjl 

Pij.l = ~ V1 -pJl' 

The higher order partial correlations can be obtained in a recursive manner 
using the relationship 

Pij.l,2, ... ,q-l - Piq.l,2, ... ,q-l pjq.l,2, ... ,q-l 
Pij.l,2, ... ,q = V V . 

1 -l1q.l,2, ... ,q-l 1 - pJq.l,2, ... ,q-l 

7.3 Testing for Normality, Outliers and Robust 
Estimation 

The multivariate normal distribution has the property that, for all sub­
sets of variables, multivariate normality holdsj however, the converse is not 
necessarily true. Ensuring univariate normality for all individual variables 
and/or ensuring bivariate normality for all possible pairs does not there­
fore guarantee multivariate normality. Tests for multivariate normality are 
discussed in this section. 

The detection of univariate outliers is relatively straightforward in the 
sense that outliers are generally observations that are somewhat distant 
from the remainder of the data. To guard against the effects of outliers, 
robust estimators can be obtained by trimming extreme observations. For 
the bivariate distribution case, scatterplots, regression residuals and mea­
sures of inHuence can be used for both detecting and measuring the impact 
of outliers. Robust estimators for covariances, correlations and regression 
parameters are also available. In this section techniques are discussed for 
detecting outliers in multivariate distributions. In addition, the robust es­
timation of the mean vector and covariance matrix is also studied. 

7.3.1 TESTING FOR NORMALITY 

Mahalanobis Distances from the Sampie Mean 

For a bivariate distribution with random variables (X, Y), in !arge sampies 
the ordered distances m~,), i = 1,2, ... ,n, can be compared to the X2 

distribution, X~l-Qi)j2' where (1- ll:,) = (i - .5)/n. The distance m~ is the 
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squared Mahalanobis distance between (Xi, Yi) and (X, y) given by 

m~ = 1 [(Xi - X)2 + (Yi - y)2 _ 2r(Xi - X)(Yi - Y)]. 
, (1 - r 2 ) S~ S~ SzSy 

A plot of the points [m~i)' X~1-Qi);2] should yield a straight line. 
This plotting technique ean be extended to the multivariate normal by 

computing the squared Mahalanobis distanees 

2 ( -)'S-1( -) mi = Xi-x Xi-x 

for the n multivariate observations i = 1,2, ... , n. The ordered distances 
m~i) are plotted against the X2 distribution percentiles, X~1-Qi);P where 
(1 - O!i) = (i - .5)/n, i = 1,2, ... ,n. 

Multivariate Skewness and K urtosis 

Tests for multivariate normality can also be based on measures of mul­
tivariate skewness and kurtosis. The Mardia (1970) sampie measures of 
multivariate skewness and kurtosis are given by 

where 

1 n n 

"hp = - " "m~. n2 ~ ~ '1 
i=1 j=1 

d ~ 1 ~ 4 
an 'Y2p=-~mi' 

n i=1 

m~ = (Xi - x)'S-1(Xi - x) and 

mij = (Xi - x)'S-1(Xj - x). 

In large samples from a multivariate normal, n"Ylp/6 has a X2 distribution 
with p(p + 1)(P + 2)/6 degrees of freedom, and "Y2p is normally distributed 
with mean p(p + 2) and variance 8p(p + 2)/n. 

For the multivariate normal population, the Mardia (1970) measures of 
skewness and kurtosis are 

'Y1,p = E[(x - 1')' ,E-1(y - 1')]3 and 

")'2,p E[(x - 1')' ,E-1(x - 1')]2, 

where X and y are independently distributed with mean vector I' and 
covarianee matrix ,E. 

Example 

Table 7.7 eontains the squared Mahalanobis distanees for the fifty ob­
servations on the ten portfolios. Table 7.7 also contains the X2 distribu­
tion (1 - p)-values based on 10 degrees of freedom, and also the values 
of (i - 0.5)/n for i = 1,2, ... , n. Since the values of X2 eorresponding to 
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(i - 0.5)jn are diffieult to obtain, they do not appear in the table. A com­
parison of the (1 - p)-values to (i - 0.5)jn would suggest that there are 
generally fewer observations in both tails of the distribution of m2 than 
could be expected for a theoretieal X2 • There also appear to be a few out­
liers with relatively !arge values of m2 , which is confirmed later on in this 
section. 

The values of the measures of multivariate skewness and multivariate 
kurtosis were determined to be 'Yt = 58.49 and 1'2 = 137.34 respeetively. 
The value of n'Ytj6 = 487.49 when compared to a 220 degree of freedom 
X2 yielded a p-value less than 0.0000. For 1'2 the Z value was determined 
to be 3.96, once again suggesting an extremely small p-value. The two 
measures therefore suggest that the multivariate normality assumption is 
questionable. 

H each of the ten individual portfolio distributions is tested for normality, 
all but the first two result in rejection of the univariate normality hypothesis 
at p-values less than 0.01. 

H the observation corresponding to m2 = 44.86 (observation 11) in Ta­
ble 7.7 is removed from the data set, the values of the skewness and kurtosis 
statisties are reduced to 1'1 = 33.45 and 1'2 = 117.69. The test statisties 
in this ease yield p-values of 0.0084 for 1'1 and greater than 0.5000 for 1'2. 
Removal of this potential outlier results in a considerable reduetion in both 
skewness and kurtosis. The detection of outliers is discussed below. 

'I'ransforming to Normality 

A variety of procedures are available for transforming univariate random 
variables to normality. For multivariate random variables the simplest pro­
eedure is to transform each random variable using the appropriate uni­
variate technique. Although this approach does not guarantee multivariate 
normaIity, it is usually good enough in practiee. 

7.3.2 MULTIVARIATE OUTLIERS 

The proeedures eommonly available for deteeting ouliers in univariate and 
bivariate distributions should be used as a preliminary step to identifying 
potential outliers for multivariate data. Sinee it is possible for a multivari­
ate outlier not to be an outlier with respect to any one of the underlying 
univariate distributions, the detection of extreme observations in multivari­
ate distributions is more diffieult. A more general approach for detecting 
multivariate outliers is discussed here. 

Multivariate Outliers and Mahalanobis Distance 

A useful way of detecting multivariate outliers is to measure the distance 
of each observation from the eentre of the data using the Mahalanobis 
distanee. Each observation Xi ean be ordered or ranked in terms of its 
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TABLE 7.7. Ma.ha.la.nobis Distances and Chi Square ~Values 

m2 (1 - p)-Value (i - 0.5)jn 

3.624 0.037 0.01 
4.135 0.058 0.03 
4.264 0.065 0.05 
4.736 0.091 0.07 
5.068 0.113 0.09 
5.080 0.114 0.11 
5.210 0.123 0.13 
5.414 0.138 0.15 
5.570 0.150 0.17 
5.656 0.156 0.19 
5.806 0.168 0.21 
5.869 0.173 0.23 
6.206 0.202 0.25 
6.411 0.220 0.27 
6.669 0.243 0.29 
6.696 0.246 0.31 
7.001 0.274 0.33 
7.066 0.280 0.35 
7.091 0.283 0.37 
7.126 0.286 0.39 
7.720 0.343 0.41 
8.094 0.380 0.43 
8.264 0.397 0.45 
8.583 0.427 0.47 
8.589 0.428 0.49 
8.604 0.429 0.51 
8.623 0.431 0.53 
8.793 0.448 0.55 
8.818 0.450 0.57 
9.133 0.480 0.59 
9.169 0.483 0.61 
9.296 0.495 0.63 
9.481 0.512 0.65 
9.634 0.526 0.67 

10.083 0.566 0.69 
10.446 0.597 0.71 
10.674 0.616 0.73 
10.690 0.617 0.75 
10.709 0.619 0.77 
11.202 0.658 0.79 
11.284 0.664 0.81 
12.191 0.727 0.83 
13.257 0.790 0.85 
13.402 0.797 0.87 
14.470 0.847 0.89 
18.288 0.949 0.91 
19.168 0.961 0.93 
20.339 0.973 0.95 
21.411 0.981 0.97 
44.867 1.000 0.99 
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value of m1 = (Xi -X)'S-l(Xi -x) which is the equation of a p-dimensional 
ellipsoid. An equivalent procedure is to compute the ratio of the generalized 
variance rl = IS(i)I/ISI, where Sei) denotes the sampie covariance matrix 
with Xi omitted. A relatively small value of rl would indicate that Xi is a 
potential outlier. Since rl = 1-nm1/(n - 1), the two methods of ordering 
extreme observations are equivalent. Recall from Section 7.1 that both of 
these measures can be related to the volume of a p-dimensional ellipsoid. 

Although the measure ml is relatively easy to use, in practice it is worth 
pointing out that this measure is related to the measure 

b~ = (Xi - X(i»)'S~:(Xi - XCi»~ 

where XCi) denotes the sampie mean vector with Xi omitted. The relation­
ship between m1 and b1 is given by m1 = (n-l)3b1![n2(n-2)+(n-l)b1]. 
Ordering based on m1 is therefore equivalent to ordering based on b1. The 
presence of a single oultier in the calculation of x and S does not therefore 
affect the ordering. 

Testing for Multivariate Outliers 

Under the assumption of multivariate normality and the null hypothesis 
that XI; '" Np ("", X), k = 1,2, ... , n, the statistic given by b~ above, is 
related to the two-sample Hotelling T2 statistic for testing the null hy­
pothesis against the alternative HA: Xi '" Np(""i' X), XI; '" Np("", X), 
k ::f i, k = 1,2, ... , n. Hotelling's T 2 will be discussed in Section 7.4. The al­
ternative hypothesis permits a single mean shift. (This test is a special case 
of the test for equality of means across 9 groups to be discussed in Chapter 8 
in MANOVA.) The Hotelling T2 statistic is given by (n -1)b~/n = Tl. 

The largest value of Tl over the sampie is given by T~ax which can 
be used to test for the presence of a single outlier. This test statistic is 
also useful in testing the null hypothesis against the alternative HA: Xi '" 
Np ("", CiX), XI; '" Np {"", X), k::f i, k = 1,2, ... , n. In other words the 
outlier is obtained from a multivariate normal distribution with a different 
mean ,.,. (mean shift) or a different covariance matrix X (scate shift). The 
statistic {n - p - 1)1i2 /{n - 2)p is distributed as an F distribution with p 
and (n - p-l) degrees of freedom if the value of Xi corresponding to max 1i2 

has the same multivariate normal distribution as the remaining (n-l) ob­
servations. The computation of Tl can be carried out more simply using the 
relationship of Tl to the squared Mahalanobis distance m1 discussed above. 
The F-test statistic can be written as m~(n - p - 1)/p[(n - 1) - mn 

Multiple Outliers 

The identification of subsets of outliers is a more diHicult problem. If the 
subset cannot be prespecified independently of the data, there is no in­
ference procedure for detection. For any prespecified subset believed to 
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contain outliers, however, the two-sample T2 test cen be used. Similarly, 
for groups of observations believed to have different means, the techniques 
of multivariate ANOVA to be discussed in Chapter 8 can be used. 

The measure r~ introduced above for single outliers can be extended 
for multiple outliers. We denote by Sei) the covariance matrix without 
the t observations XiI, Xi2, •.• , Xit, where i denotes the vector of subscripts 
(il, i2, ... ,it). The critical ratio r~ is given by IS(i) I/ISI. A subset of obser-
vations for which r~ is relatively small is an indication that outliers may 
be present. 

The F-test statistic based on the Mahalanobis distance given above can 
be used to detect multiple outliers. Although the F distribution only applies 
to the maximum value of m~ if very small ~values are used and if F is com­
puted recursively, other ouliers Can be detected. Beginning with the entire 
sampie, the observation yielding the largest value of m~ is removed from 
the sampie if the corresponding F-statistic is considered significant. The 
values of m~ are then recomputed and a new maximum value of m~ is com­
pared to F. By restricting the significance level to very low ~values such as 
0.000, this process can provide some evidence of multivariate outliers over 
and above the outliers detected by univariate and bivariate methods. 

Example 

Table 7.8 contains the squared Mahalanobis distances, F-values and ~ 
values for the successive application of the T2 max procedure applied to 
the portfolio data of Table 7.1. The table presents the results for five inter­
ations of this procedure. For step 1, observation 11 yields the largest m 2 , 

a value of 44.8673, and a corresponding ~value of 0.0000. After removing 
observation 11, the m2-values are computed again in step 2. Observation 5 
has the largest value of m2 (26.0082) in step 2 even though its value of m2 

in step 1 was relatively small. This suggests that removal of observation 11 
in step 1 moved the centre of the data away from observation 5. In step 3, 
observation 3 yields the largest value of m2 (24.9623). This observation 
had a relatively large value of m2 in all three steps. The ~value for this 
m2 is 0.0000. In step 4, after the removal of observations 3, 5 and 11, the 
largest value of m2 occurs for observation 28 (m2 = 24.1450, p = 0.0000). 
It is interesting to note that once again an observation with the largest 
m2 did not have a relatively large m2 in the first step. This phenomenon 
occurs again in step 5 where observation 45 yields the largest m2-value 
(23.0393). Up until step 5, observation 45 had had relatively smaIl m2 val­
ues. The ~value for observation 45 in step 5 was 0.0000. In step 6 (not 
shown) observation 45 was deleted. The smallest ~values in step 6 were in 
the neighborhood of 0.0002. 
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7.3.3 ROBUST ESTIMATION 

To obtain a robust estimator of a mean vector, it is a simple matter to 
employ a vector of univariate robust estimators for the vector components. 
For the covarianee matrix and correlation matrix (p > 2), however, us­
ing individual robust estimators for the parameters of the matrix will not 
guarantee that the matrix of estimators is positive definite. 

Obtaining Robust Estimators of Covariance and Correlation Matrices 

H the correlation matrix is not positive definite, adjustments can be made 
to malre the matrix positive definite. The approach is to shrink the absolute 
magnitude of the off-diagonal elements relative to the diagonal elements. A 
method proposed by Devlin et al. (1975) is to compute revised estimates of 
each correlation coefficient using the Fiaher Z -transformation 8S outlined 
below. For a given positive constant a compute 

Zij = ~ ln G ~ ;:~) + aj 
= Iln(~+rij) -a. 2 - rij , 

=0 

if~lnG~;:~) <-a, i,j=I,2, ... ,p, 

if I ln (~ + Tij) > a 2 - Tij , 

otherwise. 

Then determine Tij from the inverse Fisher transformation of Zij. A ro­
bust positive definite estimate of the covarianee matrix can be obtained 

. - - - h -2 -2 b t t· t f 2 2 ect· 1 usmg Tij8iSj, w ere Si' Sj are ro us es lDla ors 0 (Ti' (Tj resp Ive y, 
i,j = 1,2, ... ,p. 

Multivariate Trimming 

An alternative multivariate approach to obtaining a robust estimator of the 
covarianee matrix is called multivariate trimming. The Mahalanobis metric 
is used to identify the 1000% extreme observations that are to be trimmed. 
The calculation is done iteratively each time determining the proportion 
o of extreme observations. Beginning with the conventional estimators x 
and S for each observation Xi, i = 1,2, ... , n, the distance m~ = (Xi -
X)'S-l(Xi-X) is computed. For a given 0 the observations corresponding to 
the largest proportion 0 of the values of m~ are determined. New trimmed 
estimators x* and S* of p. and E are then determined using the remaining 
observations. 

Onee again for all n observations Xi the distances m~ = (Xi-X*)'S*-l(Xi­
x*), i = 1,2, ... , n, are determined and a proportion 0 of the largest m~ are 
trimmed. The remaining observations are used to recompute the trimmed 
estimators x* and S*. As long 8S the number of observations remaining 
after trimming exceeds p, the dimension of the vector x, the estimator S* 
determined by multivariate trimming will be positive definite. A robust 
estimator of the correlation matrix is obtained using the elements of S*. 
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Example 

The largest outlier for the portfolio data in Table 7.8 was observation 11. 
Removal of this observation results in a reduetion in the mean and vari­
anee for portfolio 10 from X 10 = 6.41, s~o = 686.59 to X 10 = 2.93 and 
s~o = 83.74. With the exeeption of some ehanges in the eovarianees be­
tween portfolio 10 and the remaining portfolios, only very minor ehanges 
in the remaining elements of the mean vector and eovarianee matrix oe­
eurred after trimming observation 11. A perusal of the original data shows 
that for portfolio 10 observation 11 was extremely large in eomparison to 
the remaining observations. 

7.3.4 ÜTHER SOURCES OF INFORMATION 

More extensive eoverage of the topies in this section ean be found in 
Hawkins (1980), Gnanadesikan (1977) and Mardia, Kent and Bibby (1979). 

7.4 Inference for the Multivariate Normal 

The purpose of this section is to outline a variety of inferenee proeedures 
for the mean vector p. and eovarianee matrix IJ for a multivariate normal 
distribution. We assume that a random sampie of size n from a multivariate 
normal has been obtained and is given by the n x p data matrix X. The 
sampie mean vector and eovarianee matrix were defined in Seetion 7.1 and 
denoted by x and S respeetively. 

7.4.1 INFERENCE PROCEDURES FOR THE MEAN VECTOR 

Sample Likelihood Function 

The likelihood function for a random sampie of size n from a multivariate 
normal is given by the produet of the densities evaluated at each of the 
n observations (XI, X2, ... ,xn ). Using the expression for the multivariate 
normal density given by (7.1) the likelihood function is therefore given by 

n 1 n 

L = IIf(xi) = (27r)-np /2IIJI-n/2 exp [ - 2~)Xi - p.)'IJ- 1(Xi - p.)]. 
i=1 i=1 

Maximizing this likelihood function with respeet to p. and IJ yields the 
maximum likelihood estimators of p. and IJ given respeetively by x and (n­
I)Sjn. This likelihood function will be the basis for many test procedures 
in this chapter. 

If x is obtained from a multivariate normal random sampie, then x rv 

Np (p., IJ j n). The statistic n( x - p.)' IJ- 1 (x - p.) therefore has a X2 distribu­
tion with p degrees of freedom and can be used to make inferenees about p.. 
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Given a sampie mean vector x, the equation n(x -IJ)' E-1(x -IJ) = X~;p 
describes an ellipsoid with center at x. This equation provides a 100(1-0:)% 
confidence ellipsoid /or IJ. 

Hotelling's T2 

If E is unknown, we can replace E by S and use the fact that 

is distributed as (n - l)pFp,(n_p)/(n - p), where Fp,n-p denotes an F dis­
tribution with p and (n - p) degrees of freedom. The quantity T2 is usually 
referred to as Hotelling's T2. Therefore, the statistic (n-p)T2/(n -l)p has 
an F distribution withp and (n-p) d.f. The elliposid n(x-IJ)'S-l(x-IJ) = 
(n - l)pFa ;p,(n_p)/(n-p) provides a 100(1-0:)% confidence ellipsoid/or IJ. 

In/erence 

The confidence ellipsoids for IJ given above can also be used to test hy­
potheses regarding IJ. To test Ho: IJ = 1J0, we can use one of the test 
statistics 

n(x -1Jo)' E-1(x - 1J0) or 

n(x _1Jo)'S-l(X -lJo) 

depending on whether E is known or unknown. For an 0: level test of Ho, the 
critical values of the test statistics are X~;p and (n - l)pFa;p,(n_p)/(n - p) 
respectively. These two tests are equivalent to the tests that would be 
obtained using a likelihood ratio approach. 

Example 

For the portfolio returns given in Table 7.1, a test of the null hypothesis 
that the mean return vector is the zero vector requires the test statistic 
(n - p)nx'S-lx /(n - l)p, which has an F distribution with p and (n - p) 
degrees of freedom if the null hypothesis is true. For the portfolio data, 
F = 0.9850 which has a p-value of 0.472 for F with 10 and 40 degrees of 
freedom. We therefore cannot reject the hypothesis that the mean vector 
is zero. 

For the police officer stress data of Table 7.2, a test of the null hypoth­
esis that the elements of the mean return vector are all three requires the 
test statistic (n - p)n(x - 3i)'S-1(X - 3i)/(n - l)p where i is a vector of 
unities. This statistic has the value 2.603 for the stress data and has an F 
distribution with 8 and 42 degrees of freedom if the null hypothesis is true. 
The p-value in this case is 0.021. It is therefore difficult to accept the null 
hypothesis that the elements of the mean vector are all 3. 
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Simwtaneous Confidence Regions 

Given that x '" Np(p., E/n), the distribution of I!x where i (p x 1) is 
a vector of constants is N(I! p.,1! Ei/n). An important property of the 
Hotelling T2 statistic is that, simultaneously for All linear combinations of 
the vector x, say I!x, where i (p xl), the probability is (1 - a) that the 
interval 

i '­x-
p(n-l) , 
n(n _ p) FQjp,(n_p)i Si, I!x+ 

p(n -1) , 
n(n _ p) FQjp,(n_p)i Si 

contains I! p.. In addition to making comparisons among elements of p., 
this result can be used to give individual confidence intervals for the ele­
ments of p.. By choosing i to contain only one nonzero element, a unity 
corresponding to j, a (1 - a) probability interval for J.tj is given by 

p( n - 1) r::2t:. 
Xj ± (n _ p) FQjp,(n-p) V sj/n. 

As in the case of ScheJJe's multiple comparison procedure in ANOVA, this 
procedure is a conservative approach to comparing means. The experimen­
twise error rate a is preserved over an possible linear combinations I! p.. 

Examples 

For the ten portfolios in Table 7.1, a single portfolio was constructed using 
the weights I! = [5,4,3,2,1,0, -2, -3, -4, -51. (Note that the weights must 
add to one for a portfolio.) The estimated variance is given by I!Si = 
20022.8. A 95% confidence interval for the mean of this portfolio is given 
by -29.83 ± 108.05. The mean of this portfolio is therefore not significantly 
different from zero. 

For the eight stress indicators in Table 7.2 a weight vector indicating the 
frequency of occurrence is given by i' = [0.20,0.20,0.15,0.05, 0.10, 0.05, 
0.10,0.151. The estimated weighted average stress is given by I!x = 2.668 
and the estimated variance is given by I!Si = 0.4805. A 95% confidence 
interval for the average stress measure is given by 2.668±0.487. The interval 
(2.181, 3.155) therefore contains the true average stress measure with a 
probability of 0.95. 

Inferences For Linear Functions 

It is sometimes of interest to make inferences about a linear transformation 
y = Cx, which we have already indicated is multivariate normal with mean 
Cp. and covariance matrix CEC', where C is (q xp). Confidence ellipsoids 
and tests of hypotheses regarding Cp. can therefore be obtained using the 
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fact that 

n(Cx - CI')'(CEC')-l(CX - CI') is distributed as X~ (7.2) 

and 

n(Cx - CI')'(CSC')-l(CX - CI') is distributed as ~: -=-1~} Fq,(n-q). 

(7.3) 

Examples 

The four stress indicators X 1,X2 ,X3 and Xs are related to direct dealings 
with the public, whereas the four stress indicators X4 , X5 , X6 and X7 are 
related to the structure of the organization. The two sets of stress indicators 
can be used to form two indices of stress, one for public stress and one for 
organizational stress. The two different indices of stress can be constructed 
using the transformation matrix 

C _ [0.25 0.25 0.25 0.0 0.0 0.0 0.0 0.25] 
- 0.0 0.0 0.0 0.25 0.25 0.25 0.25 0.0 . 

To test the hypothesis that CI' = [~:~] the sampie value is Cx = 

[ ~:~~ ]. The test statistic value is given by 2.547 which is distributed as 

(2)(49)F2,4S/(48). The value of F2,48 is therefore 1.248 which has a p-value 
of 0.296. The null hypothesis therefore cannot be rejected. 

7.4.2 REPEATED MEASURES COMPARISONS 

Repeated Measurements on a Single Variable 

An important application of the linear function property discussed in the 
previous section is the repeated measurements comparison. In this appli­
cation we assume that the same n individuals or objects are measured on 
a particular response variable (i.e., some measure of performance) under 
a variety of p conditions or treatments (i.e., p different time periods). We 
denote the response vector for each individual over the p conditions by 
x (p x 1) and assume that x f'V Np (l', E). It is often of interest in such 
situations to determine if J.Ll = J.L2 = ... = J.Lp and hence that the mean 
level of performance over the n individuals is the same for the p conditions. 
Testing the hypothesis Ho: J.Ll = J.L2 = ... = J.Lp is equivalent to testing 
Ho: (J.L2 - J.Ld = (J.L3 - J.L2) = ... = (J.Lp - J.Lp-l) = O. Using the transformed 
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I'oj 

2 3 4 5 

FIGURE 7.1. Profile Plot for Five Variables 

vector random variable Cx, where C is the (p - 1) x p matrix given by 

C= 

-1 1 0 o 0 

o -1 1 o 0 

o 0 -1 0 0 

000 

000 

1 0 

-1 1 

the test statistic given by (7.2) or (7.3) can be used to test Ho. 

(7.4) 

An alternative approach to computing the test statistic (7.3) is available 
using the expressions jetS-Ix, x'S-li and i'S-li, where i is a (px 1) vector 
of unities. The statistic (7.3) can be written as 

(7.5) 

Profile Characterization 

A plot of the components of p. in order from 1 to p is called a profile, as 
illustrated in Figure 7.1, for a mean vector with five components. Sometimes 
adjacent points are joined to show the changes in level among the elements 
of p.. 

Examples 

For the officer stress data of Table 7.2, the test statistic (7.5) has the value 
131.35, which has a p-value of 0.0000 when compared to an F distribution 
with 7 and 43 degrees of freedom. The hypothesis of equal stress means is 
therefore rejected at conventional levels. 
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An alternative application of this test is given by the comparison of the 
mean returns on p securities over n time periods. Weekly security returns 
can usually be assumed to be independent over time, but the covariance 
between the returns on any two securities in a given time period is usually 
nonzero. Denoting the vector of returns on the p securities in a given time 
period by x, we assume that x '" Np{J.L, I). It is sometimes of interest to 
test the hypothesis that the mean returns on the p securities are equal. 
The test statistic is agam given by (7.3) with C defined above and with 
q = (P-l). 

For the ten portfolios in Table 7.1 the test statistic for the hypothesis 
of equal mean returns is given by 8.8429. Under the null hypothesis this 
statistic has an F distribution with 9 and 41 degrees of freedom and hence 
has a p-value of 0.0000. We cannot, therefore, accept the hypothesis of 
equal portfolio mean returns. It is interesting to note that earlier we could 
not reject the hypothesis that the mean vector was the zero vector. 

Repeated Measures in a Randomized Block Design 

In analysis of variance the repeated measures experiment is often applied as 
a special case of a randomized block design. Since in the repeated measures 
experiment the same experimental unit (block) is used for each treatment, 
the responses in each block may no longer be independent. As outlined 
above, the covariance matrix for treatment responses could be assumed to 
be some arbitrary E. If E does not have the form 0"2 I, as assumed in 
the randomized block design, then the conventional F-test for equality of 
means may no longer be valid. 

The conventional ANOVA F-statistic can be used for the repeated mea­
sures, randomized block experiment for some E structures other than 0"2 I. 
The most commonly used assumption is that E has an equal variance-equal 
covariance structure given by 

1 P P P 
P 1 P P 

E=0"2 

P ... p . .. 1 

Necessary and Sufficient Conditions /or Validity 0/ Univariate F Test 

Although the equal variance-equal covariance structure is sufficient for the 
F-statistic to be valid, it is not necessary. Necessary and sufficient condi­
tions are that the elements of E satisfy 
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j = 1,2, ... ,p, 

j", k, j, k = 1,2, ... ,p, 

or 
E = ,Xi' + i'x' + aI, (7.6) 

where ,X = {Aj}, j = 1, 2, ... ,p, is a vector of constants, and i (p X 1) is 
a vector of unities. This variance-covariance structure is commonly called 
the Huynh-Feldt pattern (1970) and is equivalent to the condition that the 
differences between all pairs of responses (Xj - Xk) have the same variance 
and the same covariances. 

The variance-covariance structure given by (7.6) is equivalent to the con­
dition c = 1 in the expression 

c= p , 

(p - 1) ( S - 2p L äl + p2ä~ ) 
k=1 

where S denotes the sum of squares of the elements of E, ä d is the mean 
of the diagonal elements of E = {ajk}, ä.k is the mean of the elements 
in row k, and ä .. is the mean of all p2 elements of E. This constant lies in 
the range (p - 1) -1 < c ~ 1 and can be estimated using the elements of 
the sampie covariance matrix S. The Geisser-Greenhouse procedure (1958) 
for the repeated measurements design consists of adjusting the degrees 
of freedom for the conventional ANOVA F test to take into account the 
departure of c from 1. The adjusted degrees of freedom are e(p - 1) and 
e(p - 1)(n - 1) instead of the usual (p - 1) and (p - 1)(n - 1). e is the 
estimate of c obtained by replacing the elements of E by the elements of S 
in the above expression for c. This procedure is meant as a substitute for 
the more general multivariate approach outlined above. The multivariate 
procedure is more reliable but has less power than the Geisser-Greenhouse 
procedure. 

7.4.3 MAHALANOBIS DISTANCE OF THE MEAN VECTOR 

FROM THE ÜRIGIN 

Mahalanobis Distance 0/ Mean Vector from the Origin 

A measure of the distance from the origin in a p-dimensional space for 
the mean vector I-' (p x 1) is provided by the Mahalanobis distance given 
by 1-" E-1 1-'. The equation 1-" E-1 I-' = k describes an ellipsoid centered 
at the origin. For a subset of the elements of I-' denoted by 1-'1 (q X 1), 
q < p, with corresponding covariance matrix Eu (q x q), we can compute 
I-'i Ej} 1-'1 which is the Mahalanobis distance from the origin in a reduced 
q-dimensional space. If 1-" E-1 I-' = I-'i Ej} 1-'1' then 1-'2 = E 21 Ej} 1-'1 and 
hence the distance of I-' from the origin can be captured by the distance of 
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1-'1 from the origin. The remaining (p - q) dimensions are not required to 
describe the distance. 

Application to Financial Port/olios 

An example of an application of this measure comes from the evaluation of 
financial portfolios. Let Xt denote the returns on p financial assets earned in 
time period t, where Xt ,..., Np(l-', E), and where the Xt are independent over 
time. The return on a portfolio of these assets at time is given by Yt = C'Xt 

(where Ef=l Ci = 1). The mean and variance of the portfolio return Yt are 
1''11 = C' I-' and O'~ = c' Ec. If the performance of the portfolio is measured 

using JL~I O'~, then the maximum value of this measure is given by 1-" ~r11-', 
which is the Mahalanobis distance from the origin. For a subset of q assets 
with return vector zt = C~X1t, JLz = C~l-'l and O'~ = C~EC1, the maximum 
value of JL~I O'~ is given by I-'~ E"]11-'1' If 1-" E-11-' = I-'~ E-11-'1' then there 
is no improvement in performance to be a.chieved by adding the s = (p-q) 
additional assets to the portfolio. 

Given a random sampie of observations on x with sampie mean re­
turn vector x and COV8.11.anCe matrix S, a test statistic for the hypothesis 
H O:I-"E-11-' = l-'iE"]11-'1 is provided by 

(n - p) [-'S-I- -, S-I- ]/[1 + -, S-l- ] X X - X.l 11 X·l X.l 11 X·l • 
8 

(7.7) 

The quantities X.1 and S11 denote the portions of the sampie mean vector 
x and the sampie covariance matrix S corresponding to 1'1 and Eu· If Ho 
is true, this statistic has an F distribution with s and (n - p) degrees of 
freedom. 

It can be shown that if (1-" E-ll-'-I-'~E"]11'1) = 0 then (1'2- E 21 E ,} pd 
= 0 and hence the test Ho: 1-" E-11' = I'~ Eii 1-'1 is equivalent to Ho: (1-'2 -
E 21 E 111-'1) = O. As we shall see later in this chapter, this test is equivalent 
to a test for zero intercept vector in the multivariate regression of X2 on Xl. 

A more detailed discussion of this applicatoin is available in Jobson and 
Korkie (1982, 1989). 

Example 

For the portfolio data, the value of jc'S-lx for all ten portfolios is 1.0416. 
For the subset of five portfolios 1, 2, 3, 6 and 9, the value of x~ Si"lx1 is 
0.9880. The value of the test statistic (7.7) is therefore 0.2157. In compari­
son to an F random variable with 5 and 40 degrees of freedom, the p-value 
is 0.9538. There is very little improvement in performance to be a.chieved 
by adding the remaining five portfolios to the first subset of five. 
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7.4.4 INFERENCE FOR THE COVARIANCE AND 

CORRELATION MATRICES 

Wishart Distribution 

If X (n x p) is a data matrix obtained as a random sampie from Np(O, E), 
then X'X has a p-dimensional Wishart distribution Wp(E,n) with n de­
grees of freedom. The sampie covariance matrix S multiplied by (n - 1) has 
the Wishart distribution Wp [E, (n - 1)]. The Wishart distribution can be 
used to make inferences about E. 

Sphericity Test and Test for Independence 

If the eovarianee matrix E for the multivariate normal has the form E = 
0'21, then the p random variables in x are mutually independent with com­
mon varianee 0'2. In this ease, the multivariate distribution is said to be 
spherical sinee the ellipsoid of eonstant density (x - p.y E-1 (x - p.) = Cl­
is equivalent to (x - p. y (x - p.) = 0'2 c2, which is the equation of a p­
dimensional sphere eentered at p.. 

A test statistic for testing the null hypothesis Ho: E = 0'21 is given by 

np In[A/B], whereA = E~=lAi/pandB = [II~=lAi]l/P are thearithmetie 
and geometrie means of the eigenvalues Al, A2,"" Ap of S respectively. If 
Ho is true, the statistic has a X2 distribution with !(p - 1)(P + 2) dJ. in 
large sampies. 

Example 

For the portfolio data of Table 7.1, the eigenvalues are shown in Table 7.6. 
The arithmetic mean and geometrie mean for the ten eigenvalues are also 
shown in Table 7.6. Using these two means the test statistie for testing 
sphericity is given by (50)(1O) ln[83.382/5.344] = 164.85. Under the null 
hypothesis of sphericity, the test statistic has a X2 distribution with ! (p -
1)(P + 2) = 54 degrees of freedom. The p-value for 164.85 is therefore 
0.0000. In the ease of the portfolio data, the sphericity hypothesis for the 
eovarianee matrix eannot be justified. 

A Test for Zero Correlation 

For the eorrelation matrix R, if R = 1 the eovarianee matrix E is diagonal. 
To test Ho: R = I, in large sampies, the test statistic -ln - (1/6)(2p + 
l1)]E~=llnAi has a X2 distribution with (1/2)p(P-l) d.f. if Ho is true. In 
this ease the Ai' j = 1,2, ... ,p are the eigenvalues of the sampie eorrelation 
matrix R. 
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Example 

For the stress data the eight eigenvalues of the correlation matrix are given 
by 2.8959, 1.2741, 0.9853, 0.8156, 0.6516, 0.5694, 0.4427 and 0.3655. The 
test statistic for testing Ho: R = I has the value 77.3823 which when com­
pared to a X2 distribution with 45 degrees of freedom has a p-value of 
0.0019. It is therefore very unlikely that the correlation matrix for the 
eight stress variables is an identity matrix. 

Test Statistics for Repeated Measures Designs 

In the discussion of the repeated measures experiment in Section 7.4.2, two 
special variance-covariance structures were found to be useful in permitting 
the more powerful F -test used for the univariate ANOVA randomized block 
design. Test statistics for the equal variance-equal covariance structure and 
the Huynh-Feldt pattern are outlined below. 

Test for Equal Variance-Equal Covariance Structure 

For the equal variance-equal covariance structure, shown in Section 7.4.2, 
the test statistic 

_ [(n -1) _ p(p + 1)2(2p - 3) ] InL 
6(P-l)(P2 +p - 4) 

in large sampies is approximately distributed as X2 with ~p(P + 1) - 2 
degrees of freedom, if the equal variance-equal covariance hypothesis holds. 
The likelihood ratio statistic L is given by 

L = ISI/(s2)P(1 - 1')p-l[1 + (P - 1)1'], 

-2 P 2 - 1 P P -2 
where s = ~j=ISj/P and r = (1J -1) ~ ~ Sjk/S • 

P j=1 k=l 
j# 

Test for the Hyunh-Feldt Pattern 

For the Hyunh-Feldt pattern the test statistic is given by 

_ [( _ 1) _ 2p2 - 3p + 3] I W 
n 6(P-l) n, 

where W = (P-l)P-1ICSC'I/(trCSC')P-1, and where C (P-l) x pisa 
matrix of rows that are mutually orthogonal and are also orthogonal to the 
row vector of unities i', and whose elements sum to one. The matrix C is 
a submatrix of the Helmert matrix which is given by H' = [i' / v'P Cl. The 
rows of C have the same structure as the contrast coefficients in analysis 
of variance. In large sampies the test statistic has a X2 distribution with 
~p(P - 1) degrees of freedom if the hypothesized Huynh-Feldt pattern is 
true. 
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Example 

For the stress data in Table 7.2 the equal variance-equal covariance statis­
tic has a value of 35.6982. In comparison to a X2 distribution with 34 de­
grees of freedom, the p-value is 0.3885. The stress data covariance matrix 
therefore seems to be consistent with an equal variance-equal covariance 
structure. The test statistie for the Huynh-Feldt structure has a value of 
31.4994. A comparison of this value to a X2 distribution with 28 degrees of 
freedom yields the p-value of 0.2954. Since the equal variance-equal covari­
anee structure implies the Huynh-Feldt structure, the test for Huynh-Feldt 
structure was not necessary, given that the first test did not reject the equal 
variance-covariance strueture. 

The above two tests for strueture when carried out for the portfolio data 
yield extremely large values of the X2 test statistics and henee are not 
reported here. The lack of homogeneity among the sample variances in this 
case is a major eontributor to the magnitude of the test statistics. 

Equal Correlation Structure 

A very useful additional test for covariance matrix structure is provided by 
the test for equal correlation structure. In this ease the correlation matrix 
is given by 

1 P P P 
P 1 P P 

p = (1 - p)I + pii' = 

p 

p ... ... P 1 

The covarianee matrix is given by 

E = D!f2[(I- p)I + pii'jD!!2 = 

where Du is the diagonal matrix of varianees 0'1, j = 1,2, ... ,p. 
U sing the off-diagonal elements of the sample eorrelation matrix R = 

{rjk} j, k = 1,2, ... ,p, the test statistic is given by 
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where 

and 

( )[ pp p 1 n-1 1 -2 --2 
(1- r)2 "2 ~ t;(rjk - r) - qt;(rk - r) , 

#k 

1 P P 

r= (P-1)L Lrjk 
p j=l k=l 

(P - 1)2[1 - (1 - r)2] 
q = p - (P - 2)(1 - r)2 . 

j# 

Under the null hypothesis of equal correlation structure, this statistic has 
a X2 distribution with (p + 1)(P - 2)/2 degrees of freedom. 

Example 

For the police officer stress data the value of the above test statistic is 
21.4303. For the X2 distribution with 27 degrees of freedom the p-value 
is 0.7657. The null hypothesis of equal correlation therefore cannot be re­
jected. 

Independent Blocks 

For the partitioned model of Section 7.2 with 

it is sometimes of interest to test for independence between the two subsets, 
Ho: .E12 = O. Using the notation of Section 7.2, we assume Xl (q X 1) and 
X2 (s xl) where (q + s) = p. The mean vector J.L and covariance matrix .E 
are partitioned accordingly. 

The likelihood ratio test of Ho is based on the statistic 

- [n - ~(q + s + 3)] In 1I - 822182181/8121 

which has a X2 distribution with sq degrees of freedom in large sampies. 
The sampie covariance matrix 8 has been partitioned to conform to the 
partitioning of x. This test will also be used in canonical correlation in 
Section 7.5 and will be exemplified there. 

Partial and Multiple Correlation 

The maximum likelihood estimators of the partial correlation coefficients 
are obtained by replacing the elements of .E by the elements of 8 in the 
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definitions of Section 7.2. The matrix of sampie partial correlation coeffi-
. t· . b R D- l/2S D- l /2 h D . th di nal clen s IS gIven ;Y 22.1 = 22-1 22.1 22.1 W ere 22.1 IS e ago 

matrix containing the diagonal elements of S22-1. Inferences for the ele­
ments of P22.l can be made using the conventional Fisher transformation 
for zero-order correlations. The transformation is given by 

z = (~) In ( 1 + r ij ' 1,2, ... ,q) , 
2 1 - rij.l,2, ... ,q 

where rij.l,2, ... ,q is the partial correlation between variables i and j control­
ling for the variables 1,2, ... ,q. 

The sampie multiple correlation coefficient ..fii2 relating a single variable 
X2 and a vector of variables Xl is commonly used in a multiple regression 
model. If the true multiple correlation coefficient is zero, then the statistic 
(n - p - I)R2/(1 - R2)(P - 1) has an F distribution with (P - 1) and 
(n - p - 1) degrees of freedom. 

7.4.5 OTHER SOURCES OF INFORMATION 

More extensive coverage of the multivariate normal distribution and infer­
ence for the multivariate normal can be found in Anderson (1984), Seber 
(1984), Morrison (1976), Mardia, Kent and Bibby (1979), Johnson and 
Wiehern (1988) and Stevens (1986). 

7.5 Multivariate Regression and Canonical 
Correlation 

In Section 7.2, the multivariate normal random vector X was partitioned 
into two subvectors Xl (q X 1) and X2 (s xl), where p = (q + s). The 
conditional distribution of X2 given Xl was introduced to measure the re­
lationship between the two random vectors. The mean of this conditional 
distribution was called the multivariate regression function of X2 on Xl. 
This function gives the mean value of X2 at specific values of Xl. In this 
section we are concerned with the use of random sampIes to make inferences 
about the multivariate regression relationship between X2 and Xl. AB out­
lined below, the estimators involved are simple extensions of the ordinary 
least squares estimators used for multiple linear regression. 

The relationship between the two vector random variables Xl and X2 
depends on the elements ofthe covariance matrix E 12 and their magnitudes 
relative to the elements of E 11 and E 22 . If E 12 = 0, then the two random 
vectors are uncorrelated and hence under the normality assumption would 
be independent. If, however, the elements of E 12 are relatively large, it may 
be of interest to determine relationships between the two random vectors 
Xl and x2. The multivariate regression model determines linear functions 
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of the variables in Xl that are related to each of the variables in X2 (one 
linear function for each variable in X2). An alternative approach to relating 
the two vectors, is to determine a linear function of the variables of X2 
and a linear function of the variables of Xl in such a way that the two 
linear functions are strongly related. This technique is commonly called 
canonical con-elation. Canonical correlation is discussed in the latter part 
of this section. 

7.5.1 MULTIVARIATE REGRESSION 

The Multivariate Regression Function 

In Section 7.2 the multivariate regression function relating X2 (8 xl) to Xl 
(q xl), p = 8+q, was given by the (8 xl) vector E[X21 Xl] = P2.l, where 

P~.l = (P2 - E 21 E I1pd +x~Ell E 12· 

The intercept vector ß~ (1 x 8) and the matrix of slope coefficients B * (q x 8), 
were given by (,-'2 - E 21 E I1 PI)' and E I1 E 12 respectively with 

To relate this to the conventional regression notation, we denote the 

(8 x 1) vector X2 by y and the [(q + 1) x 1] vector [ ~1 ] by x. The 

multivariate regression relationship relating y to X is therefore given by 

y' = x'B+ u', (7.8) 

where u' = y' - P~.1' and P~.1 = [ ~1 ]' B. In Section 7.2 the conditional 

covariance matrix for u was given by E 22.1 = (E22 - E 21 E I1 E 12 ), or 
equivalently in oUf alternate notation E YY.X1 = (Eyy-EYXl EX~Xl E X1Y). 
This covariance matrix is also denoted by r later in this section. 

Estimation 0/ the Multivariate Regression Model 

Given a random sampie of n observations on y and x, the maximum 
likelihood estimators of ß~, B* and E YY.X1 are given by ß~ = y' -
:i:~1Sx~X1SX1Y' ö* = SX~X1SX1Y and SYY.Xl = [Syy-SYX1SX~X1SX1Y]· 

~ ..... * 
The elements of the estimator ßo and the rows of the estimator B are 
equivalent to the maximum likelihood estimators of the intercept and slope 
coefficients in the multiple regression model relating each element of y sep-
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arately to the vector x. The elements of ßo are given by 

j = 1,2, ... ,s, 
....... 

and the columns of B by 

j = 1,2, ... ,So 

These estimators are equivalent to the ordinary least squares estimators for 
the univariate multiple regression model Yj = Xß j + Uj, j = 1,2, ... , s, 

given by.B, ~ (X'X)-l X'y;, where.B; ~ [ ~; l The [n x (q+1)[ matrix 

X denotes the n observations on the (q + 1) x 1 vector X. 

Relationship to Ordinary Least Squares 

For the multivariate regression model involving s univariate multiple re­
gressions, we can write the model for all n observations as 

Y=XB+U, (7.9) 

where Y is (n x s), Xis [n x (q + 1)], B = [ ~~ ] is [(q + 1) x s], and 

U is (n x s). The ordinary least squares estimator given by 

(7.10) 

is an unbiased estimator of B. The columns of B are equivalent to the s uni­
variate ordinary least squares estimators ßj , j = 1,2, ... , s, corresponding 
to the s univariate multiple regressions. This ordinary least squares esti­
mator can also be written as 

and is therefore equivalent to the maximum likelihood estimator. 

Residuals, Inftuence, Outliers and Cross Validation 

As outlined above the multivariate regression model can be estimated using 
the ordinary least squares estimator for univariate multiple regression mod­
els. Therefore, the procedures available for the study of residuals, detection 
of outliers and the measurement of influence available in multiple linear re­
gression can be employed in multivariate linear regression. Similarly the 
techniques available for cross validation in multiple linear regression can 
also be extended. 
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Estimation oj the Error Covariance Matrix 

The maximum likelihood estimator (n - 1)(8yy - 8YX1Si~X18xlyJ/n 
of E YY'X1 is related to the multivariate residual sum-oj-squares matrix 
(Y - XB) and is given by 

(Y - XB)'(Y - XB)/n. 

An unbiased estimator of r = E yy.X1 ' however, is given by 

r = (Y - XB)'(Y - XB)/(n - q -1). 

Relationship to Multiple Linear Regression 

For each of the dependent or response variables Yl , Y2 , ••• , y;, a multiple 
linear regression model is given by 

Yj=Xßj+Uj, j=1,2, ... ,s, 

where Yj is (n x 1), X is [n x (q + 1)], ßj is [(q + 1) xl], Uj is (n x 1) 
and E[ujuj] = "Y;I. The ordinary least squares estimator is given by ßj = 

(X'X)-l X'Yj and the residuals are given by ej = (Yj -Xßj)' The variance 

"Y; is estimated using 1'1 = (Yj - Xßj)'(Yj - Xßj)/(n - q - 1). 
The multivariate regression model combines the s multiple regression 

models into a single model 

Y=XB+U, 

where Y = [YlY2'" Y s], B = [,8lß2'" ßs] and U = [Ul U2 ... u s ]. In 
addition to E[ujuj] = "Y;I we also have a relationship between error terms 
from different multiple regression, E[uju~] = "Yjlel, j :f:. k, j, k = 1,2, ... , s. 
The (s x s) matrix of elements "Y;, "Yjle is denoted by r and represents the 
covariance matrix among the error terms for individuals. 

The residuals are denoted by (Y - XB) and the covariance matrix r is 
estimated by r = (Y - XB)' (Y - XB) / (n - q - 1). The diagonal elements 
of rare equivalent to the 1; obtained from the multiple regression for Yj' 
The off-diagonal elements are equivalent to ejele/(n - q -1), where ej and 
ele are obtained from the multiple regressions for Yj and Yle' 

The important distinction between the set of single multiple regressions 
and multivariate regression is that in the multivariate regression model 
there are nonzero correlations among error terms from the different multiple 
regression models. If joint inferences are required involving two or more 
of the multiple regression models these correlations must be taken into 
account. These joint inference procedures are discussed next. 



7.5 Multivariate Regression and Canonical Correlation 173 

Testing the Hypothesis that Some CoejJicients are Zero 

As in the case of univariate regression, it is sometimes useful to be able to 
test the null hypothesis that a subset of the columns of X is superfluous. 
A reduced model is given by 

where Xv is [n x (v+l)], B v is [(v+l) x s] and v = (q+l-r). The matrices 

Band X are partitioned as [ :: ] and [Xr Xv] respectively where Xr is 

(n x r) and B r is (r x s). We therefore require a test of Ho: B r = 0 and 
hence that the first r X variables are superfluous. 

For the fuH or comPlete model;.,. we denote the residual sum 0/ squares 
matrix by E = (Y - XB)' (Y - XB). For the reduced model corresponding 
to B r = 0, the least squares estimator Bv = (X~Xv) -1 X~ Y is determined, 
and the residual sum of squares matrix is given by Eo = (Y - XvBv)'(Y -
XvBv). The likelihood mtio criterion is a function of the ratio given by A = 
IEI/IEol which is called Wilk's Lambda and has parameters [s, r, (n-q-l)]. 
The dimension s refers to Y, the dimension r reflects the number of X 
variables deleted if Ho is true and (n - q - 1) refers to the degrees of 
freedom for E. 

If Ho is true, then in large sampies the distribution of A can be approx­
imated by the statistic m2(1- A1/V)/m1A1/v which has an F distribution 
with m1 and m2 degrees of freedom, where 

1/= 

and 
1 sr 

m2 = 1/[(n - q - 1) - "2(s - r + 1)]- 2 + l. 

This F approximation is often referred to as Rao's F. If s = 1 or 2 or if 
r = 1 or 2 this F distribution is exact. 

Other Tests 

An alternative large sampie statistic for Ho is based on the X2 distribution. 
In large sampies the statistic -In - q - 1 - ~(s - r + l)]lnA has a X2 

distribution with sr degrees of freedom. 
There are several asymptotic tests available that are not based on the 

likelihood ratio criterion. These statistics are based on such measures as 
tr[E(Eo-E)-1] (Lawley-Hotelling), tr[EEö1] (Pillai) and the largest eigen­
value ofE(Eo-E)-l (Roy) all ofwhich require special tables. Monte Carlo 
studies have shown that none of these alternative criteria is uniformly supe­
rior to the likelihood ratio criterion. Throughout the text only the likelihood 
ratio criterion will be used for the multivariate linear model. 



174 7. Multivariate Distributions, Regression and Correlation 

Inferences for Linear FUnctions 

The condition B r = 0 discussed above is a special case of a more general set 
of constraints on the coefficient matrix B given by AB = K, where A is a 
[a x (q + 1)] matrix of known constants of rank a and K is an (a x s) matrix 
of known constants. The 1"estricted least squares estimator of B subject to 
AB = K is given by 

BA = B - (X'X)-l A'[A(X'X)-l A']-I(AB - K). 

The likelihood ratio test of the hypothesis Ho: AB = K is carried out by 
using the Wilk's Lambda statistic A = IEI/IEol with parameters [s, a, (n­
q -1)] where Eo = (Y - XBA),(Y - XBA) and E = (Y - XB)'(Y - XB). 
Using Rao's F approximation if Ho is true then, in large sampies, the 
statistic 

1 - Al/li m2 
Al/li ml (7.11) 

has an F distribution with ml and m2 degrees of freedom where 

11= 

m2 = lI[n - q -1- ~(s - a + 1)]- ~ + 1. 

For the multivariate linear model 

Y=XB+U 

a more general hypothesis is given by Ho: ABM = K where A [a x (q+ 1)], 
M (s x b), and K (a x b) are matrices of specified constants. The relationship 
to be tested can be converted to the form of the previous test by writing 

YM=XBM+UM 

or 
Y*=XB*+U*, 

and hence we wish to test Ho: AB* = K. This hypothesis can be tested 
using the statistic given by (7.11) by revising ml, m2 and r accordingly. 

Computer Software 

The calculations for the examples in this section were performed using SAS 
PROC REG. 
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Example 

The data in Table 7.9, which provide an example for Section 7.5, represent 
observations on 100 bank employees on each of six variables. Two variables 
are the logarithm of two salary variables LCURRENT = ln( CURRENT 
SALARY) and LSTART = In(STARTING SALARY). The remaining four 
variables are background variables consisting of EDUC = level of education 
in years, AGE, EXPER = years of relevant work experience at time of 
hiring, and SENIOR = level of seniority with the bank. The two salary 
variables are the dependent variables, and the four background variables 
are explanatory variables. 

The multivariate linear regression model is denoted by 

LCURRENT ßo + ßl EDUC + ß2 AGE 

+ß3 EXPER + ß4 SENIOR + Ul 

LSTART = 0:0 + 0:1 EDUC + 0:2 AGE 

+0:3 EXPER + 0:4 SENIOR + U2' 

In matrix notation the model is given by 

y' =x'B+u, 

where 

ßo 
ßl 

y' [LCURRENT LSTART], u= [UI,U2]' B= 
ß2 

= 

ß3 

ß4 

x = [1 EDUC AGE EXPER SENIOR]. 

0:0 

0:1 

0:2 

0:3 

0:4 

With no restrictions the estimated regression relationships are given by 

LCURRENT = 8.699 + 0.083 EDUC - 0.015 AGE + 0.016 EXPER 
(0.000) (0.000) (0.000) (0.001) 

- 0.002 SENIOR R2 = 0.528 and 
(0.487) 

LSTART = 8.285 + 0.081 EDUC - 0.010 AGE + 0.016 EXPER 
(0.000) (0.000) (0.003) (0.000) 

- 0.003 SENIOR R2 = 0.543. 
(0.202) 

The p-values for the coefficients appear in brackets below the coefficient 
estimates. These p-values are based on the usual multiple linear regression 
statistics. 
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To structure several hypotheses to be tested using this data, the notation 
Ho: ABM = K is used. To test the null hypothesis that the coefficient of 
SENIOR is zero in both equations the relationship for Ho is given by 

ßo ao 
ß1 a1 

[00001] ß2 a2 = [0 0]. 
ßa aa 

ß4 a4 

Therefore, A = [0 0 0 0 1], K = [0 0] and M = I. The F-statistic with 
2 and 94 degrees of freedom derived from Wilks' Lambda has a value of 
4.795 and a p-value of 0.0104. Thus, at best, Ho can only be weakly rejected. 
The variable SENIOR seems to be of only minor importance after the other 
three explanatory variables. 

To test the null hypothesis that the coefficients ofthe EDUC and EXPER 
variables are the same in both equations, the relationship ABM = K is 
given by 

ßo ao 
ß1 a1 

p 1 0 0 

~ 1 
ß2 a2 

0 0 1 
ßa aa 

ß4 a4 

or equivalently ß1 - a1 = 0 and ßa - aa = O. The F -statistic with 2 and 
95 degrees of freedom derived from Wilks' Lambda has a value of 0.048 
and a p-value of 0.9531. The hypothesis that the coefficients of EDUC and 
EXPER are equal in both equations is therefore consistent with the data. 

If the variable SENIOR is omitted from both equations, the unrestricted 
ordinary least squares estimation yields 

LCURRENT = 8.854 +0.084 EDUC - 0.015 AGE 
(0.000) (0.000) (0.000) 

+0.016 EXPER R2 = 0.526 and 
(0.001) 

LSTART = 8.031 +0.081 EDUC - 0.011 AGE 
(0.000) (0.000) (0.002) 

+0.016 EXPER R2 = 0.535. 
(0.000) 

A test of the hypothesis that the coefficients of the three explanatory vari­
ables are equal yields an F-statistic of 2.551. Comparing this statistic to an 
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F distribution with 3 and 96 degrees of freedom yields a p-value of 0.0601. 
U sing the same estimated coeflicients for the three variables in both regres­
sions is therefore a reasonable procedure for the sampled population. 

Relationship to Generalized Least Squares 

An alternative way of writing equation (7.9) is given by 

y* =X*ß* +u*, (7.12) 

where y*, ß* and u* are the vectors formed by stacking the columns of Y, 
Band U, and where X* is the block diagonal matrix formed by repeating 
the matrix X. The quantities are defined by 

y* (ns x 1) = 

Ys 

where Yj (n x 1), j = 1,2, ... ,s, 
denotes the jth column of Y, 

ß* [s(q + 1) x 1] = 
where ßj [(q+ 1) x 1], j = 1,2, ... ,S, 
denotes the jth column of B, 

and 

u* (ns xl) = 

x 0 0 
o X 0 

X* = 

o 0 X 

where Uj, j = 1,2, ... , S, 

denotes the jth column of U, 

where X [n x (q + 1)] 

= [I ® X] the direct product of the identity matrix 
x I s (s x s) with X (see Appendix). 

The covariance matrix for the error term u* is given by the direct product 
n = [r®ln ], where r = .E22.1 = {-yjk}, j, k = 1,2, ... ,s, is the covariance 
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matrix for Uj, j = 1,2, ... ,8, 

'YlIn 'Y12In 'YlBIn 

(1= 
'Y12In 'Y~In 'Y2sIn 

'YlBIn 'Y2sIn 'Y:In 

and In is the (n X n) identity matrix. 
From the theory of the general linear model, the generalized least squares 

estimator for ß* is given by 

il = (X*(1-1X*)-1(X*(1-1y*), 

which can be simplified in this case to 

il = [I(q+l) ® (X'X)-lX']y*. 

(7.13) 

(7.14) 

From (7.14) we can see the matrix pre-multiplying y* is block diagonal and 
hence that ß* is simply the stacked vector of columns of B, which are the 
ordinary least squares estimators of the ß j in the 8 models y j = Xj {3 j + Uj, 
j = 1,2, ... ,8. The generalized least squares estimator and the ordinary 
least squares estimator are therefore equivalent for the multivariate regres­
sion model. 

Zellner's Seemingly Unrelated Regression Model 

The multivariate regression model (7.9) written in the form of (7.12) repre­
sents 8 separate univariate regression models all having the same X matrix. 
The models are related in that the error vectors Uj, j = 1,2, ... , s, are mu­
tually correlated. Even though the Uj vectors are correlated, the individual 
equation ordinary least squares estimators are equivalent to the system or­
dinary least squares estimator given by (7.10) and also to the generalized 
least squares estimator given by (7.13). 

A more generalized multivariate regression model allows the individual 
equation X matrices to be different, say Xj, j = 1,2, ... ,8. In this case 
X* has the block diagonal form with distinct block diagonal elements Xj , 
j = 1,2, ... ,8. Thus X* can no longer be written in the simplified form 
of [Ia ® X]. As a result, the generalized least squares estimator (7.13) is 
no longer equivalent to the ordinary least squares estimator B in (7.10). 
This type of model has appeared in the economies literature and is usually 
referred to as Zellner's Seemingly Unrelated Regression Model (1962). The 
name "seemingly unrelated" is derived from the property that the equations 
in the model are only related through the error terms Uj, j = 1,2, ... ,8. 

To obtain an estimator for this model, a feasible generalized least squares 
procedure is used. H r, the covariance matrix for Uj, is unknown, it can be 
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estimated using the residuals from the multivariate ordinary least ~uares 
estimated model U = Y - XB. In this ease l' = (Y - XB)' (Y - XB) In = 
Ein, where E is defined in the expression for Wilk's Lambda in multivariate 
regression. This estimator of r is consistent and henee ean be used to yield 
the feasible generalized least squares estimator 

jl = (x*n-1x*)-1(x*n-1y*), 

where n = [1' ® In]. 
-* The feasible generalized least squares estimator ß is consistent, and, 

under the assumption of multivariate normality, inferences for ß* can be 
made using the fact that the expression 

(tl - ß*)'(X* n-1x*)-1(jl - ß*) 

has a X2 distribution with 8 degrees of freedom in large sampies. 

7.5.2 CANONICAL CORRELATION 

Given two random variable vectors y (8 X 1) and x (q x 1), we have already 
studied two ways of relating the variable elements of y to the variable ele­
ments of x. One way is to examine the degree of linear association between 
all possible pairs eonsisting of one element of y and one element of x using 
the eovarianee matrix E xy or the eorresponding eorrelation matrix PxY' 
Alternatively, multivariate regression ean be used to relate each element of 
y to an the elements of x and vice versa. The multivariate linear regression 
model determines linear eombinations of the x variables that are maxi­
mally correlated with a partieular y variable. In this section, we introduee 
canonical correlation, whieh is used to find linear combinations of both sets 
of variables y and x that are maximally correlated. Often in practiee one 
vector of variables is a eriterion set and the other vector of variables is a 
predictor set. The objeetive in canonieal correlation analysis is to determine 
simultaneous relationships between the two sets of variables. 

Derivation 0/ Canonical Relationship8 

As in multivariate regression, we begin with the two random variable 
veetors y (8 X 1) and x (q x 1) which have zero-valued mean vectors 

Py ~ Px ~ 0 and oovariance matrix E ~ [~~ ~:]. In this case 

there is no intereept term because the variables are assumed to have zero 
means. 

Let W = ß' x and Z = o.'y denote linear eombinations of the x and 
y variables respeetively. For each single variable in y, say Y;, we ean use 
multiple regression to determine the veetor ß that maximizes the eorrela­
tion between Y; and W. Similarly, for any single variable in x, say Xk, we 
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can use multiple regression to determine the vector a that maximizes the 
correlation between X/c and Z. In canonical correlation we simultaneously 
determine the vectors a and 13 in such a way that the correlation between 
the two linear combinations Z and W is maximized. 

The covariance between Z and W is given by a' Eyxß, and the vari­
ances of Z and W are given by a' Eyya and 13' Exxß respectively. The 
correlation between Z and W is therefore given by 

To determine unique values of a and 13 in order to maximize r zw, side 
conditions on the seales of Z and W must also be included. It is convenient 
to use the conditions a' Eyya = 13' Exxß = 1. 

An Eigenvalue Problem 

To maximize rzw subject to a' Eyya = 13' Exxß = 1 we require solutions 
to the two systems 0/ homogenoous equations 

(EyjrEyxExiExy - AaIa)a = 0, 

where Ib (q X q) and I a (s x s) are identity matrices. The solution is obtained 
by determining the eigenvalues and eigenvectors of the matrices 

ExiExyEyjrEyx and EyjrEyxExiExy. (7.15) 

The eigenvalues of the two matrices are identical, Aa = Ab = A, and the 
number of positive eigenvalues is t, where t = min(s, q) is the rank of the 
two matrices in (7.15). Corresponding to each eigenvalue, A, is a unique 
pair of eigenvectors a and ß. Denoting by Al> A2,"" At the eigenvalues in 
order of magnitude from largest to smallest, the corresponding eigenvectors 
are denoted by ab a2, ... ,at and 131 ,132 , ••• ,ßt . The correlation between 
the two corresponding linear functions ajy and ßjx is given by A, j = 
1,2, ... ,t. 

The maximum correlation solution corresponds to Al, the largest eigen­
value, and hence the correlation is maximized by using Zl = aiY and W1 = 
ß~x. The remaining linear combinations for x given by W2 , Wa, ... , Wt are 
mutually uncorrelated and uncorrelated with W1• Similarly, the remaining 
linear combinations for y given by Z2, Za, ... , Zt are also mutually uncorre­
lated and uncorrelated with Zl' In addition, non-corresponding members of 
the two sets are uncorrelatedj that is, Zj is uncorrelated with W/c, k"# j, k, 
j = 1,2, ... , t. 
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The Canonical Variables 

AB a result of determining the eigenvalues and eigenvectors of 

EriExyEyj.Eyx and 

Eyj.EyxEriExy, 

we have t pairs of canonical variables (Zj, W j ) with correlations ..j>:j, 
j = 1,2, ... , t. Each successive pair of canonical variables maximizes the 
correlation subject to being uncorrelated with the previously determined 
pairs. In practice all but a small number of pairs usually have negligible 
correlations. Typically the eigenvalues Aj, j = 1,2, ... , t decline in a rapid 
geometric fashion. 

The canonical variables Z and W have been derived using the covariance 
matrices and the expressions for Z and W are in terms of the variables 
y and x respectively. If the correlation matrices Pyy, Pxx and Pyx are 
used, the same eigenvalues would be obtained. If, however, the correlation 
matrices are used, the canonical variables are expressed as functions of the 
standardized variables. The eigenvectors are not the same, therefore, when 
standardized data are used. 

Sample Canonical Correlation Analysis 

The canonical variates can be estimated using the sampie covariance or cor­
relation matrices Sxx, Syy, Sxy and Syx, or Rxx, Ryy, Rxy and Ryx 
respectively. We assume in this discussion that the correlation matrices are 
used. The sampie eigenvalues and eigenvectors are therefore determined 
from the matrices RriRxyRy~Ryx and Ryj.RyxRriRxy and are de­
noted by Al. A2,' .. ,At, b1. b2, ... , b t , and ab a2, ... ,at, respectively. 

Canonical Weights and Canonical Variables 

The eigenvectors aj and b j are usually referred to as the canonical weights. 
These weights can be used to determine the values of the canonical vari­
ates Zj and Wj , where Zj = ajy, and Wj = bjx. The n values of the 
two new variables (Zj, Wj) corresponding to the n observations are called 
the canonical variate scores. The canonical weights can also be used to in­
terpret the canonical variables and the relationship between the canonical 
variables. The canonical variables are interpreted like regression functions. 
Each canonical weight gives the marginal impact of that variable on the 
canonical variable holding the other variables in the equation fixed. After 
each canonical variable of the pair is interpreted, the relationship between 
the pair is interpreted. 
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Inference For Canonical Correlation 

Under the assumption that the X s and Y s are multivarite normal, we can 
test the hypothesis that the correlations between the canonical variates 
are not significantly different from zero. To test the hypothesis that none 
of the Ai are significantly different from zero, we use the test statistic 
X2 = -[n- n)(s+q+3)]logA, which has approximately a X2 distribution 
with sq d.f. if the null hypothesis is true. The statistic A which is given by 
A = II}=I(1 - Ai) is called Wilk's Lambda. This statistic is equivalent to 
the statistic used to test the independence between two sets of variables 
introduced in Section 7.4. If the first hypothesis is rejected, we remove Ab 
the largest eigenvalue from A and compute Al = II}=2(1 - Ai)' We then 
test the hypothesis that all remaining Ai are not significantly different from 
zero, using the test statistic X2 = -ln - (~)(s + q + 3)]logAI which has a 
X2 distribution with (s - 1) (q - 1) d.f. if the null hypothesis is true. To test 
the hypothesis that all remaining Ai after the first k are not significantly 
different from zero, we compute Ak = II}=(k+1)(1 - Ai) where X2 now 
has (s - k) (q - k) d.f. This process continues until the null hypothesis· is 
accepted. 

An Alternative Test Statistic 

An alternative large sampie approximation for the distribution of Wilk's 
Lamda under the hypothesis of independence is based on Rao's F used 
in multivariate regression above. The statistic is given by F = m2k(1 -

Ak)l/v/c /mlkAk/v/c where 

(s - k)2(q - k)2 - 4 
(s - k)2 + (q - k)2 - 5 

= (s - k)(q - k) 
1 (s - k) (q - k) = vk [n- 2(s+q+3)]- 2 +1, 

which has mlk and m2k degrees of freedom if all but the first k eigenvectors 
are zero. Some computer software for canonical correlation analysis uses 
this F -approximation claiming that it is superior to the X2 approximation 
in small sampies. 

Computer Software 

The calculations for the example in this section were performed using SAS 
PROC CANCORR. 

Example 

Using the bank salary data from Table 7.9, a canonical correlation anal­
ysis was carried out to relate the two salary variables LCURRENT and 
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TABLE 7.10. Correlation Matrix for Bank Data 

LCURRENT LSTART EDUC AGE EXPER SENIOR 

LCURRENT 1.000 0.889 0.666 -{).333 -0.099 0.050 
LSTART 0.889 1.000 0.673 --{).003 --{).080 -{).234 
EDUC 0.666 0.673 1.000 -{).294 -0.254 0.054 
AGE -{).333 --{).003 -0.294 1.000 0.730 0.070 
EXPER --{).099 -0.080 -{).254 0.730 1.000 -0.013 
SENIOR 0.050 -0.234 0.054 0.070 -0.013 1.000 

LSTART to the four background variables EDUC, AGE, EXPER and SE­
NIOR. The correlation matrix for the six variables is shown in Table 7.10. 

The two eigenvalues obtained from the canonical correlation analysis are 
Al = 0.559 and A2 = 0.142. The correlations between the two correspond­
ing canonical functions, which are the square roots of the eigenvalues, are 
therefore 0.748 and 0.377 respectively. The values of Rao's F likelihood 
ratio statistic are 14.71 with 8 and 188 degrees of freedom and 5.26 with 
3 and 95 degrees of freedom. The resulting p-values are 0.000 and 0.002 
respectively. 

The two pairs of canonical functions using standardized coefficients are 
given by 

Zl = 0.43 LCURRENT + 0.60 LSTART 

W1 = 0.91 EDUC + 0.54 EXPER - 0.50 AGE - 0.04 SENIOR 

Z2 = -2.14 LCURRENT + 2.10 LSTART 

W2 0.22 EDUC + 0.16 EXPER + 0.59 AGE - 0.78 SENIOR. 

The first canonical function Zl for the salary variables almost represents a 
simple average of the two salary variables and hence is a measure of salary 
level. The first canonical function W 1 for the background variables contains 
relatively large positive coefficients for EDUC and EXPER and a relatively 
large negative coefficient for AGE. The function W1 therefore measures a 
contrast between the variables EDUC and EXPER and the variable AGE. 
Therefore, from the canonical correlation relationship the higher the values 
of EDUC and EXPER relative to AGE, the greater the value of W1 • The 
positive correlation between Zl and W1 therefore suggests that salary level 
is higher when EDUC and EXPER are large relative to AGE. 

The second canonical function Z2 for the salary data measures a contrast 
between LSTART and LCURRENT. The value of Z2 increases as LSTART 
increases relative to LCURRENT. The second canonical function W2 for 
the background variables is primarily a function of the variables AGE and 
SENIOR. As AGE increases relative to SENIOR, the function W2 increases. 
The positive correlation between Z2 and W2 suggests therefore that, as 
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TABLE 7.11. Correlations Betweeo Canooi-
cal Fuoctions and Original Variables 

Zl Z2 Wl W2 

LCURRENT 0.96 -0.27 0.72 -0.10 
LSTART 0.98 0.20 0.73 0.07 
EDUC 0.69 -0.01 0.92 -0.03 
AGE -0.28 0.22 -0.38 0.59 
EXPER -0.04 0.21 -0.06 0.55 
SENIOR -0.03 -0.28 -0.04 -0.73 

seniority with the bank increases relative to AGE, current salary increases 
relative to beginning salary. From the two estimated canonical relationships 
we have determined that salary level is high when education and experience 
are large relative to age and that salary growth is large when seniority with 
the bank is large relative to age. 

Structure Correlations or Canonical Loadings 

It is also useful to determine the correlation coefticients between the canoni­
cal variables and each of the constituent variables used to define the canoni­
cal variable. These correlations are called structure correlations or canonical 
loadings. By examining these canonicalloadings the canonical variate can 
also be interpreted. The matrix of structure correlations between the x vari­
ables and the canonical variates Wb W2, ... , Wt is given by Rxw = RxxB, 
and similarly for the y variables and the canonical variates ZI, Z2,"" Zt 
the matrix of structure correlations is given by Ryz = RyyA. The matri­
ces B and A contain the columns of eigenvectors bj , j = 1,2, ... , t and aj, 
j = 1,2, ... , t respectively. Figure 7.2 illustrates the relationships among 
the various correlation matrices. 

Example 

The correlations between the canonical functions and the original variables 
are shown in Table 7.11. For the first salary canonical function Zl, a very 
strong positive correlation exists with both salary variables. The correlation 
between Zl and the background variables shows a relatively strong positive 
correlation with EDUe and a weak negative correlation with AGE. Thus, as 
EDUe increases, salary level tends to increase as weIl. For the second salary 
canonical function Z2, the correlation with the two salary variables are quite 
weak. This results because the function Z2 measures the difference between 
the two salary variables. The correlation between Z2 and the background 
variables indicates weak positive correlations with AGE and EXPER and 
a weak negative correlation with SENIOR. 
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FIGURE 7.2. Summary of Canonical Correlation Terminology 

For the background variables, the first canonical function W1 is strongly 
positively correlated with the two salary variables and the variable EDUC 
and weakly negatively related to the variable AGE. For the second canon­
ical function W2 , the correlations with the two salary variables are negli­
gible. For the background variables, W2 is positively related to AGE and 
EXPER and negatively related to SENIOR. 

Redundancy Analysis and Proportion 01 Variance Explained 

The square of any element of a structure correlation matrix gives the pro­
portion of the variance of an original variable explained by a canonical 
variate. The sum of the squares in any column of a structure correlation 
matrix gives the total variation in the original variables explained by the 
canonical variate. For the jth column of Rxw the sum of squares of the 
elements gives the total of the proportions of variance explained by Wj . For 
a correlation matrix this total divided by q is the proportion of the total 
variation in the x variables explained by Wj (and is denoted by R~x). See 

3 
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Figure 7.2. Similarly, the total of the elements squared in the jth column 
of Ryz divided by 8 denoted by R~j"Y gives the proportion of the total 
variation in the y variables explained by Zj. 

Redundancy Measure for a Given Canonical Variate 

It is possible for the canonical correlation A to be relatively large, even 
though the proportion of variance of the underlying variables explained 
by the canonical variates Zj and Wj is relatively small. Thus Aj does not 
measure the strength of the correlation between the canonical variables Zj 
and Wj and the underlying variables. The eigenvalue Aj gives the propor­
tion of variation in Wj explained by Zj, and R~ .. x gives the proportion of 

3 

variance in the x variables explained by Wj . The product AjR~. there-
fore gives the proportion of the variation in x variables explain~ by the 
canonical variate Zj. This product is called the redundancy measure and 
measures the quality of Zj as a predictor of the x variables. Similarly, the 
redundancy measure Aj R~. y gives the proportion of the variation in the 
y variables explained by tte canonical variate Wj. The relationships are 
shown in Figure 7.2. 

Total Redundancy 

A measure of total redundancy of the x battery given the y battery is 
given by the total E~=l AjR~j"x' and similarly a measure of the total 

redundancy for the y battery given the x battery is E~=l AjR~j"Y (see 
Figure 7.2). It is possible for one of these totals to be high and the other 
low. A set of macroeconomic variables might be excellent predictors of 
certain microeconomic variables in a particular sector of the economy, but 
the reverse may not be so. Another example might be provided by student 
grades in a set of courses and a set of scores on an aptitude test. The grades 
may be more predictable from the aptitude scores than the reverse. 

Relation to Multiple Regression 

If each element of the y vector variable, say lj, is regressed separatelyon 
the x vector variable, R} .. x gives the proportion of the variation in lj, 

3 

explained by the x set. If these R2 values are averaged over all y variables, 
the result is equivalent to the total redundancy measure of the y battery 
given the x batteryj thus 

t r 

LAjR~j"Y = LR~.x/r. 
j=1 ;=1 

Similarly, the total redundancy measure of the x battery given the y battery 
is given by 
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t q 

LAjR~j"x = LR~j"y/q, 
j=l j=l 

which is the average of the squared multiple correlations relating each of 
the X variables to the Y set. 

Example 

A redWldancy analysis can be carried out using the eigenvalues determined 
above and the correlations in Table 7.11. For the canonical function Zt, 
the cumulative proportion of variance explained by the salary variables is 
(!)[(0.96)2 + (0.98)2] = 0.94 and, after multiplying by Al = 0.56, the re­
dundancy measure is (0.94)(0.56) = 0.53. For the second function Z2, the 
variance explained is (~)[(-0.27)2 + (0.20)2] = 0.06 and, on multiplication 
by A2 = 0.14, the redundancy measure is (0.06)(0.14) = 0.01. The propor­
tion of variation in the salary variables explained by the canonical functions 
of the four backgrOWld variables W1 and W2 is 0.53 + 0.01 = 0.54. 

For the two canonical functions W1 and W2 , the redWldancy measures 
are 

(~)[(0.92)2 + (-0.38)2 + (-0.06)2 + (0.04)2](0.56) = 0.14 and 

(~)[(-0.03)2 + (0.59)2 + (0.55)2 + (-0.73)2](0.14) = 0.04 

and hence a total of 0.18. The two canonical functions Zl and Z2 based 
on the salary variables explain a proportion 0.18 of the variation in the 
background variables. Thus the redWldancy analysis indicates that the 
backgroWld variables explain a large portion of the variation in the salary 
variables but that the reverse is not true. 

Residuals, Inftuence, Outliers and Cross Validation 

The techniques available for studying residuals, detecting outliers and mea­
suring influence in multiple linear regression can be used in canonical corre­
lation analyses. By relating each variable in one grOUp to all of the variables 
in the other grOUP using multiple linear regression, conventional regression 
software can be used. 

A cross validation can be carried out by splitting the sample randomly 
into 9 mutually exclusive groups. Leaving out one grOUp at a time a canoni­
cal correlation is carried out using the combined data for the (g -1) groups. 
The canonical weights obtained are then applied to the omitted group and 
the correlations determined. The correlations should be similar to the corre­
lations determined in the canonical correlation analysis based on the (g -1 ) 
groups. This procedure is repeated for each grOUp as an omitted group. 
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7.5.3 OTHER SOURCES OF INFORMATION 

More extensive discussion of the topics of Section 7.5 can be found in 
Anderson (1984), Seber (1984), Mardia, Kent and Bibby (1979) and Press 
(1972). 
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Exercises for Chapter 7 

1. This exercise is based on the Real Estate Data in Table V 4 of the 
Data Appendix. 

(a) Estimate the multivariate regression model with the two equa­
tions given below. Discuss the results of the analysis. 

LISTP = ßo + ß1SQF + ß2AGE + ßsROOM + ß4BATH 

+ßsEXTRAS + ,ßsGARAGE + ßrCHATTELS 

+ßsBEDR + ßgSELLDAYS 

SELLP = 00 + olSQF + 02AGE + osROOM + 04BATH 

+05EXTRAS + 06GARAGE + 07CHATTELS 

+osBEDR + 09SELLDAYS. 

(b) Carry out a test of the hypothesis 

O!j = ßj, j = 1,2, ... ,9, for each variable separately. 

Discuss the outcome of the test. 

( c) Carry out a test of the hypothesis 

O!j = ßj = 0, j = 1,2, ... ,9, for each variable separately. 

Discuss the outcome of the test. 

(d) If you were to estimate a reduced model what variables would 
you include? Estimate the reduced model and compare it to the 
complete model using a test statistic. 

( e) Carry out a canonical correlation analysis relating the two price 
variables to the nine explanatory variables and discuss the re­
sults. Also provide an interpretation for each of the canonical 
functions using both the canonical function coefficients and the 
correlations between the canonical functions and the original 
variables. Also discuss the results of a redundancy analysis. 

2. This exercise is based on the Automobile Data in Table V5 of the 
Data Appendix. 

(a) Estimate the multivariate regression model with the two equa­
tions given below. Discuss the results of the analysis. 

URBRATE = ßo + ß1ENGSIZE + ß2 WEIGHT + ,BsFOR 

+ß4AUTOMAT + ß5FWEIGHT + ,ßsAWEIGHT 

+ß7FENGSIZE + ßsAENGSIZE 
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HWRATE = 00 + olENGSIZE + 02 WEIGHT + 03FOR 

+04AUTOMAT + osFWEIGHT + 06AWEIGHT 

+07FENGSIZE + 08AENGSIZE 

(b) Carry out a test of the hypothesis 

o'j = ßj, j = 1, 2, ... ,8, for each variable separately. 

Discuss the outcome of the test. 

(c) Carry out a test of the hypothesis 

o'j = ßj = 0, j = 1,2, ... ,8, for each variable separately. 

(d) If you were to estimate a reduced model what variables would 
you include? Estimate the reduced model and compare it to the 
full model using a test statistic. 

( e) Carry out a canonical correlation analysis relating the two rate 
variables to the nine explanatory variables and discuss the re­
sults. Also provide an interpretation of the canonical functions 
using both the canonical function coefficients and the correla­
tions between the canonical functions and the original variables. 
Also discuss the results of a redundancy analysis. 
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Questions for Chapter 7 

1. Let the joint density of the random variables Xl, X2 and Xa be given 
by 

f(xI, X2, xa) = 2/3(X1 + X2 + xa), 0::; XI, X2, xa ::; 1 

= 0 otherwise. 

(a) Show that f(X1,X2,Xa) is a density by showing that 

11 11 11 
2/3(X1 + X2 + xa)dx1dx2dxa = 1. 

(b) Show that the distribution function is given by 

F(xI, X2, xa) = 1/3[x~x2xa + X1X~Xa + X1X2X~]. 
Use this function to determine P[X1 ::; ~, X2 ::; ~, Xa ::; ~]. 

(c) Show that the marginal density of Xl is given by 

f(X1) = 11 11 
2/3(X1 + X2 + xa)dx2dxa = (~)(X1 + 1). 

Plot the density for Xl. 

(d) Show that the conditional density for X2,Xa given Xl = Xl is 
given by 

fX2,XsIX1 (X2, Xa I Xl = Xl) = (Xl + X2 + Xa)/(X1 + 1) 

and show that 

1111 
(Xl + X2 + XS)/(Xl + 1)dx2dxs = 1. 

Is Xl independent of X2 and Xs? 

(e) Show that E[X11 = 1-'1 is given by 

[1 2 5 
E[X11 = 10 (3)(X1 + I)X1dx1 = (9)· 

What are the values of E[X21 and E[Xa]? 
(f) Show that 

= [111 (Xl + X2 + xa) dx dx 
E[X2/X1 = Xl] 10 0 (Xl + 1) . X2 2 a 

1 = ("2)(X1 + 7/6)/(X1 + 1). 

Use this function to evaluate E[X2 I Xl = H Is the regression 
function for X2 on Xl linear? 
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2. Given 

(a) Let 

Cov(x) = 

Zl = anXl + a12X2 + a13x 3 

Z2 = a21Xl + a22X2 + a23X3, 

and show that z = Ax, where z = [ ~~ ], 
A = [an a12 a 13 ] • 

~l a22 a23 

(b) Show that E[z] = Ap. and Cov(z) = AEA'. 

(c) Given that E (p x p) is the covariance matrix for x (p x 1) and 
that p (p x p) is the corresponding correlation matrix show that 

where (j is a diagonal matrix whose diagonal elements are equal 
to the diagonal elements of E. 

3. Given that the sampie covariance matrix is given by S = E~l (Xi -
x)(Xi - x)' /(n -1), show that S = [X'X - nü']/(n -1) where X is 
the (n x p) data matrix and x (p xl) is the vector of sampie means. 

4. (a) Show that 

( _ 1)S-1 = (X'X)-l n(X'X)-lü'(X'X)-l 
n + 1- n:i:'(X'X)-lX 

using the identity 

(b) Use the result in (a) to show that 

(n - 1)X'S-lX = x'(X'X)-lx/[1 - n:i:'(X'X)-lX]. 
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5. Let (Xi -X)'S-l(Xi -x) denote the square ofthe sampie Mahalanobis 
distance from Xi to x where x and S are the sampie mean vector and 
covariance matrix. U se the fact that for a (p xl) and A (p x p) the 
sealar a' Aa can be expressed as a' Aa = tra' Aa = tr Aa' a to show 
that E~=l (Xi - X)'S-l(Xi - x) = (n - l)p. NOTE: S = E~=l (Xi -
X)(Xi - x)' /(n - 1). 

6. (a) Let Zi = D-1/ 2 (Xi -x), i = 1,2, ... ,n, denote a transformation 

of X where D is the diagonal matrix W[h~ ldiagonal elements are 

the diagonal elements of S. H Z ~ 1 deno'" an (n X p) 

matrix of transformed observations show that Z'Z/(n - 1) is 
the sampie correlation matrix R. The transformed variables are 
the standardized variables. In what way are the new variables 
standardized? 

(b) (b) Let Wi = S-1/2(Xi - x) denote a transformation of Xi and 

let W ~ [ : 1 denote the (n x p) matrix of transformed ob­

servations. Show that W'W /(n - 1) = I (the identity matrix). 
What is the covariance matrix for the variables in W? 

7. Let X(n) denote the data matrix X with the nth row x~ deleted. 
Show that 

(a) X'X = X'(n)X(n) + x..x~j 
(b) x(n) = (n~1) [nx - xn ], where x(n) denotes the sampie mean 

vector based on the first (n - 1) rows of X. 

(c) Use the relationships (n - I)S = X'X - nxx', (n - 2)S(n) = 
X'(n)X(n) - (n - l)x(n)x'(n) and results (a) and (b) to show 

that S(n) = f:=;~ S - (n-1Ün-2) (xn - x)(xn - x)' where S(n) 
denotes the sampie covariance matrix based on the first (n - 1) 
rows of X. What can you conclude about the difference between 
S(n) and S if X n is an outlier which is large relative to x. 

(d) Show that 

-1 (n - 2) -1 (t~)Js-1(x.. - x)(x.. - X)'S-1 
S (n) = S + ~----'---------:----=-

(n - 1) [1 - (n~1)2 (x.. - X)'S-l(x.. - x)] 

by using the relation 
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[A - dd't1 = A -1 + A -ldd' A -1 /(1 - d' A -ld). 

What ean you conelude about the differenee between S-l(n) 
and S-l if Jen is an outlier which is large relative to x? 

8. Partition the random variable x into x = [ :~ ] and let the corre­

sponding partitions for the eovariance matrix E and the mean vector I' be denoted by 

and I'=[:~]. 
(a) Use the formula for the inverse of a partitioned matrix to show 

that 

where 

8 11 = EIl + E 11 E 12 [E22 - E 21 E1l E 12t 1 E 21 E 11 
8 12 = -E11 E 12 [E22 - E 21 E 11 E 12t 1 

8 22 = [E22 - E 21E 11 E 12t 1. 

Recall (see Appendix) the formula for the inverse of a partitioned 
symmetrie matrix is given by 

where 

[ AB ]-1 [Q ß] 
B' D = ß' -y , 

Q = A -lB'[D - B' A -lBtlBA -1 + A-1 

ß = -A-1B'[D-B'A-1Bt1 

-y = [D - B'A -lBt1. 

(b) Use the expression for the inverse of the partitioned matrix E 
to show that 

(x -1')' E-1(x - 1') = (Xl -I'd Ei8x1 -1'1) 

+[(X2 -1'2) - E 21 E 1l(Xl -1'1)]' 

X [E22 - E 21 E 11 E 12]-1[(X2 -1'2) - E 21 Eil(Xl -1'1)]· 

(c) Use the result in (b) and the fact that lEI = IEul IE22 -
E 21 E 1l E 12 1 to show that the multivariate normal density for 
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x can be expressed as 

(21r)-q/2/Ell /-1/2exp [ - (~)(X1 -l'dE1l(xl -1'1)] 

X (21r)-(P-q)/2/E22 - E 21 E 1l E 12 /-1/2 

X exp { - (~)[(X2 -1'2) - E 21 E 1l(Xl -1'1)]' 

X [E22 - E 21 E 1l E 12t 1[(X2 -1'2) - E 21 E 1l(xl -l'dJ} 

and hence that f(x) = h(X1)/2(X2 / Xl)' 

9. If X (p xl) has a multivariate normal distribution with mean vector 
I' and covariance matrix Ethen the new random variable y( q xl) = 
Ax has a multivariate normal with mean vector AI' and covariance 
matrix AEA', where A (q x p) has rank q. 

(a) Partition X into [ :~ ] where X2 is (q x 1) and define y = 

E 12E 2lx2 where E 12 , E 22 are the partitions of E correspond­

ing to [ :~ ]. Show that y is multivariate normal with mean 

vector E 12E 2h.I.2 and covariance matrix E 12E 2l E 21 . 

(b) Given that y = Ax the covariance matrix Cov(y,x) is given by 
AE whereas the covariance matrix Cov(x,y) is given by EA'. 
Show that COV(y,X2) and COV(X2,Y) for y given in (a) are E 12 
and E 21 respectively. 

(c) Given that y = Ax2, the covariance Cov(y,xt} is given by 
A.E21 whereas the eovariance matrix Cov(Xll y) is given by 
.E12A'. Show that Cov(y, Xl) and COV(XI,y) for y given in (a) 
is .E12E 2l E 2l in each ease. 

(d) Define z = Xl - E 12 E 2lx2 and use (b) and (e) to show that 
COV(X2,Z) = 0 and COV(XI,Z) = Eu - E 12E 2l E 21 . 

(e) Reeognizing that Xl = Y + z, where y is defined in (a) and z is 
defined in (d) use the results in (b), (c) and (d) to show that y 
and z divide Xl into two components such that z is uncorrelated 
with X2. 

(f) Relate the variables E12E2ilx2 and (Xl - E12E2lx2) to the 
multivariate regression of Xl on x2. 

10. In the Appendix, it is shown that if E (p x p) is a full rank symmetrie 
matrix then E can be written as E = V AV' where A is a diagonal 
matrix of eigenvalues of E and V is the corresponding orthogonal 
matrix of eigenvectors (V' = V-I). 
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(a) Use this result to show that Q = (x -Px)' E-l(x - /Jx) can 
be written as Q = (y - /Jy)' A. -1 (y - /Jy) where y = V' x and 

/Jy = V'Px· 

(b) Show that Q in (a) can be written as Ef=l (Yi - 1''11,)2 />.t where 
Yi, I'y, and >.t are elements of y, /Jy and A. respectively. 

(c) H x I'V N(/J, E) and y = A'x with A (p x p) of rank p then 
y I'V N(A/J, A' EA). Use this result to show that y = V'x 
defined in (a) is a normal distribution with mean vector V' /J 
and diagonal covariance matrix A.. Why are the elements of y 
statistically independent? 

(d) Given that the sum of squares of p mutually independent stan­
dard normal random variables has a X2 distribution with p de­
grees of freedom, show that Q in (a) and (b) has a X2 distribution 
with p degrees of freedom. 

11. The density of the multivariate normal random variable is given by 

!(Xi) = 121l' EI-l/2 exp[-!(Xi - /J)' E-l(Xi - /J)]. 
2 

(a) Show that the joint density and hence the likelihood function 
for the random sampie Xl, X2, ... ,Jen is given by 

(b) Show that the logarithm of the likelihood function in (a) is given 
by 

(c) Show that E~=l (Xi - /J)' E-l(Xi - /J) can be written as 

n 

~)Xi - x)' E-l(Xi - x) + n(x - /J)' E-l(x - /J). 
i=l 

(HINT: Use the fact that E~=l (Xi - x) = 0.) 
(d) Use the fact that tr(Xi-x)' E-l(Xi-x) = trE-l(Xi-x)(Xi-X)' 

to show that E~=l(Xi - x)'E-l(Xi - x) = trE-1S*n, where 
S* = (n - l)S/n. 

(e) Use the results of (c) and (d) to show that lnL in (b) can be 
written as 

lnL = -~ ln[l21l'EIl- ~trE-1S* - ~(x - /J)' E-l(x - /J). 
2 2 2 
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(f) Since the only term of In L in (e) that depends on IJ is the last 
term, show that In L is maximized with respect to IJ if IJ = x 
and hence that the maximum likelihood estimator of IJ is x. 

(g) For any fixed matrix S* the function -j In [I EI] - !trE-1S* 
is maximized with respect to E if E = S*. Use this result to 
obtain that the maximum likelihood estimator of Ein (e) is S*. 

(h) Show that the value of the likelihood function evaluated at IJ = x 
and E = S* is given by InL = -j In[l211"S*I]- npj2. 

12. The maximum likelihood estimator of E given IJ = 1J0 is given by 

1 n 

S = - ~)Xi - 1J0)(Xi - 1-'0)" 
n i=1 

(a) Show that this expression for S can be written as S = S* + (x­
I-'o)(x - 1-'0)' where S* = (n - l)Sjn. 

(b) Use the fact that \S* + (x - I-'o)(x - 1-'0)'\ = \S*\\l + (x -
I-'O)'S*-I(X - 1-'0)\ to show that the value of the logarithm of 
the likelihood function of 11 (b) in this case is given by 

InL = - np In211"-~ In \S*\- np -~ In[l+(x-I-'O)'S*-I(X-I-'O)] 
2 2 2 2 . 

(c) The logarithm of the likelihood ratio test for testing Ho: I-' = 1-'0 
is obtained from the difference of the logarithms of the likeli­
hoods in 12(b) and l1(h). Show that the difference is given by 

-i In[l + (x - I-'O)'S*-I(X - 1-'0)] 

and hence that the test of Ho: I-' = 1-'0 depends on 

(x - I-'O)'S·-I(X - 1-'0) 

which is proportional to Hotelling's T2. 

13. In the multivariate normal distribution x "" N(I-', E), the distribution 
is partitioned so that 

x = [ ~~ ], I-' = [ ~~] and E = [i~~ i~:]· 
(a) Use the formula for the inverse of a partitioned matrix (see Ques­

tion 8) to show that 

[I-" E-1 I-' - I-'~ E 11 1-'1] 

= [1J2 - E 21Eill-'I][E22 - E 21 E 11 E 12t 1 

X [1-'2 - E 21 Eill-'I]' 
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(b) Use the result in (a) to show that if the intercept is 0 in the 
. f d th ' 'E"-l , 'E"-l regresslon 0 X2 an Xl en I-' ~ I-' = I-'1~1l 1-'1' 

14. The equal varianct7equal covariance structure covariance matrix is 
given by 

E(n x n) = q2 

1 p p p 
p 1 p 

p 

p 

P 1 

(a) Show that this can be written as q2pii' +q2(1-p)I, where i(nx 1) 
is a vector of unities. 

(b) Use the formula for the inverse ofthe matrix [A+aa'] given by 
A -1 - A -laa'A -1/(1 + a'A -la) to show that 

1 .. 1 

E-1 = 1- P 11 
q2(1 - p) q2(1 - p) [1 + p(n - 1)]' 

(c) Show that for X(n x p) and y(n x 1) 

1 X'X _ p (X'i) (i'X) 
q2(1 - p) q2(1 - p) [1 + p(n - 1)] 

= q2(1 _ p)(X'X)-l 

p(1- p)q2(X'X)-lX'ii'X(X'X)-1 
+ [1 + p(n -1) - pi'X(X'X)-lX'il 

1 X' p X'ii'y y-
q2(1 - p) q2(1 - p) [1 + p(n - 1)1' 

(d) Assume that the first column of X contains the vector of unities, 
i, and recall that, for any xi in X, X(X'X)-lX'Xi = xi and 
hence X(X'X)-lX'i = i. Use this property to show that 

(e) For the regression of y on X if the conditional covariance of y 
given X is given by E, the generalized least squares estimator 
of the regression parameters is given by the left hand side of 
the equation in (d). What does the equation in (d) say about 
the property of this estimator if E has the equal variance-equal 
covariance structure? 
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15. In the multivariate regression model Y = XB + U, Y (n [x ~i delnotes 

y~ 
n observations on Ihe (, x 1) ,andom vecto, y, y ~ ~n and 

:::1: :1:1 ::::h:1 ::~:~ n [OllilODS ~: I~: : : 
1 x~ 

matrix U denotes the matrix of unobserved error terms and the (q + 
1) x 8 matrix B denotes the unknown parameters. The i-th row ofU, 
u~ is assumed to be multivariate normal with mean 0 and covariance 
matrix r (8 x 8) where u~ = y~ - [1 x~lB. 

( a) Show that the log likelihood for the n independent u~, i 
1,2, ... ,n, is given by 

-i In(127rrl) - (~)tr(Y - XB)r- 1(y - XB)'. 

HINT: See the multivariate normal likelihood function in Ques­
tion 1l. 

(b) Let B = (X'X)-lX'Y denote the ordinary least squares esti­
mator of B and denote by U = Y - XB the matrix of resid--. ........ -1-
uals. Show that if B is substituted for B and r = U U jn is 
substituted for r, then the likelihood function in (a) becomes 
-~ In(127rrl)-~ns, which has the same form as the sampie value 
of the likelihood function in l1(h). HINT: Use the relationship 

-. --1 ........ --1 - -. 
tr(Y -XB)r (Y -XB)' = trr (Y -XB)(Y -XB)' = n8. 

16. Given [ ~ ], y( 8 xl), x( q xl) and E [ ~ ] = [ ~ J. Cov ( ~ ) = 

[~~~ ~:] let z = a'y and w = b'x denote linear transforma­

tions of y and x respectively. The steps outlined below are designed 
to derive the canonical correlation results of Section 7.5.2. 

(a) Show that the correlation between z and w is given by rzw = 
a'.Eyxbj(b'.Exxb) 1/2 (a'.Eyya) 1/2. 

(b) To determine the values of a and b such that r zw is maximized 
subject to the conditions a'.Eyya = 1 and b'.Exxb = 1, the 
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Lagrangian expression is given by 

S = a' Eyxb - Ul (a' Eyya - 1) - u2(b' Exxb - 1). 

Use differentiation of S with respect to a and b to obtain the 
equations 

Eyxb-2uIEyya = 0 

Exya - 2U2EXXb = O. 

(1) 
(2) 

NOTE: Formulae for differentiation of matrix expressions are 
given in the Appendix. 

(c) Multiply through (1) bya' and (2) by b' and use the conditions 
a' Eyya = 1, b' Exxb = 1 to show that Ul = U2 = a' Eyxb/2 
is the correlation between z and w. 

(d) Letting 2Ul = 2U2 = )..1/2 and solving (1) for a and (2) for b, 
show by substitution that (1) and (2) can be expressed as 

(EyxEriExy - )"Eyy)a 

(ExyEri-Eyx - )"Exx)b 

(e) Rewriting (3) and (4) as 

(Eri-EyxEriExy - )..I)a 

(EriExyEyy.Eyx - )"I)b 

= 
= 

= 

0 

O. 

0 

0, 

(3) 

(4) 

(5) 

(6) 

use the theory of eigenvectors and eigenvalues given in the Ap­
pendix to obtain that a and b are eigenvectors of 

Eri-EyxEriExy and 

Eri E xy Eri-Eyx 

respectively and that ).. the corresponding eigenvalue is common 
to both equations. 

(f) Given that the matrices 

Eri-EyxEriExy and 

EriExyEri-Eyx 

are both positive definite of rank t = min( 8, q) use the theory of 
eigenvalues and eigenvectors to establish that there are two sets 
of canonical functions Zi = ~y, i = 1,2, ... , t, and Wi = b~x, 
i = 1,2, ... , t, where Bi and bi satisfy (3) and (4) respectively. 
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(g) Use equations (5) and (6) to obtain the four characteristic equa­
tions for Ili, aj and bi, bj and show that by premultiplication 
and subtraction 

(Ai - Aj)~Eyyaj = 0 

and (Ai - Aj)b~Exxbj = 0, 

and hence that the Zi are mutually uncorrelated and the wi are 
mutually uncorrelated. 

(h) Using two of the four characteristic equations determined in 
16(g) premultiply by bjExy and ~Eyx and subtract to get 
that (Ai - Aj)bjExylli = O. What property does this result 
establish? 

(i) Use equation (1) or (2) to show that if 2U1 = 2U2 = A1/2 then 
A1/2 = Tzw and hence Tzw is maximized if Ais the largest eigen­
value. 

17. Let x*(q x 1) = Ax + g and y*(s x 1) = By + h, where A(q x q) 
and B(s x s) are nonsingular matrices and g(q xl) and h(s x 1) are 
constant vectors. Denote the covariance matrix for 

[ ;:] by E* = [~~ ~~] 
and for 

[ ; ] b ~ _ [Exx E XY ] y ~- E E . yx yy 

Use the fact that AExxA' = Eicx, BEyyB' = Ehr, AExyB = 
E~y and BEyxA = E Yx to show that 

(E* E*-1 E* b AE* b) - 0 xy yy yx - xx -

yields the same solution as 

and 
(E;XE;(X1 E~ya - AEhra) = 0 

yields the same solution as 

(EyxEricExya - AEyya) = O. 

What does this result imply about the relationship between the canon­
ical correlation analysis for x* and y* and the canonical correlation 
analysis for x and y. 
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18. For the multivariate regression model Y = XB + U where Y(n x 8), 
X[n x (q+ 1)], B[(q+ 1) x 8] and U(n x 8) the least squares estimator 
ofB is given by B = (X'X)-lX'Y. 

(a) Show that Y = XB and (Y - Y) can be written as HY and 
(I - H)Y respectively, where H = X(X'X)-l X' and 1 is the 
identity matrix. 

-I - - -(b) Show that B X'XB and (Y - V)' (Y - Y) are given by y'HY 
and y' (I - H)Y respectively using the fact that H' = H, HH = 
H, (I - H)' = (I - H) and (I - H)(I - H) = (I - H), which 
are properties of idempotent matrices. 

(c) Show that Y'Y = y'HY + Y'(I - H)Y and hence that Y'Y = 
-I - - -B X'XB + (Y - XB)'(Y - XB) using (b). 

(d) Partition the multivariate regression model as 

Y = X1B1 +X2B2 + U = [X1X2] [ :~ ] + U, 

where Xl [n x (v + 1)], X2 (n x r) and q = (v + r). Let B1 
denote the least squares estimator for the reduced model Y = 
X1B1 + U, B1 = (X~X1)-lX~Y and show that 

Y'Y = Y'H1 Y + y' (I - HdY 
-, , - - , -= B1X1X1B1 + (Y - X1B1) (Y - X1Bt}, 

where H1 = X1(X~Xt}-lX~ and 1 (nxn) is an identity matrix. 

(e) Show that Y'(I - H1)Y = Y'(I - H)Y + Y'(H - H1)Y and 
hence show that 

(Y - X1Bt}'(Y - X1B1) 
..... , , ..... -', -= (Y - XB)'(Y - XB) + B X XB - B1X1X1B1. 

(f) The Wilk's Lambda test statistic for testing Ho: B2 = 0 in the 
model 

Y = X1B1 + X2B2 + U 

is given by A = IEI/IEol, where E = (Y - XB)'(Y - XB) and 
Eo = (Y - X1Bd'(Y - X1Bt). Use the result of (e) to show 

-I , - -I I -
that A = IEI/IE + GI, where G = (B X XB - B1X1X1Bt). 
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19. For the multivariate regression model Y = XB + U assume 

ßol ßo2 ßo3 
ßll ß12 ß13 

B= ß21 ß22 ß23 
ß31 ß32 ß33 

ß41 ß42 ß43 

For each of the hypotheses of the form Ho: ABM = 0 given below 
explain what is being tested and the practical significance in each 
case. 

[0 1 o 0 0] o 0 100 
(a) 0 0 o lOB = O. 

o 0 001 

(h) B [ -i ~ 1 ~o. 
-1 

[ j 
-1 0 0 j] (c) 

0 -1 0 
B=O. 0 0 -1 

0 0 0 

(d) [j 
-1 0 0 j] B [ -i _ n ~ o. 

0 -1 0 
0 0 -1 
0 0 0 
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MANOVA, Discriminant 
Analysis and Qualitative 
Response Models 

The first part of this chapter extends Chapter 7 by specializing the multi­
variate linear regression model to the ease where the explanatory variables 
represent design variables. In the same manner that ANOVA is a special 
ease of multiple regression, we see here that multivariate analysis of vari­
anee (MANOVA) ean be viewed as a special ease of multivariate linear 
regression. 

A special ease of eanonieal eorrelation diseussed in Chapter 7 oecurs if 
one of the two sets of variables are dummy variables. This specialized tech­
nique is ealled diseriminant analysis and is useful for eharacterizing group 
differences obtained from a significant MANOVA. Diseriminant analysis is 
also useful as a technique for classifying unknowns. 

If in a multivariate regression model the dependent variables are categor­
ical, the model is said to be a qualitative response model. The qualitative 
response model, like diseriminant analysis, ean also be used to characterize 
group differenees and classify unknowns. Special eases of this type of model 
presented in this chapter are ealled logistie regression, probit analysis and 
multinomiallogit. 

This ehapter presents a summary of MANOVA, diseriminant analysis, 
and qualitative response models. 

8.1 Multivariate Analysis of Variance 

8.1.1 ÜNE-WAY MULTIVARIATE ANALYSIS OF VARIANCE 

Comparison to Univariate Analysis oi Variance 

Multivariate analysis oi variance (MANOVA) is an extension ofthe concept 
of analysis of variance to the case of more than one dependent variable. 
Given 9 groups of individuals, a set of p variables Xl, X 2 , . .• ,Xp , denoted 
by the (p xl) veetor x, is observed in each group rather than a single 
variable X as in ANOVA. In ANOVA, the mean of X in group k was 
denoted by J.Lk, k = 1,2, ... ,g, whereas in MANOVA the mean vector for 
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FIGURE 8.1. Comparison of Three Univariate Normal Distributions with Same 
Variance 

x in each group is denoted by the vector I-'/c' k = 1,2, ... , g. In ANOVA 
we are interested in testing the null hypothesis of equality of means on the 
single variable X, HOl: 1'1 = 1'2 = ... = I'g, whereas in MANOVA we wish 
to test the null hypothesis that for the random vector x the mean vectors 
are equal, Hol': 1-'1 = 1-'2 = ... = I-'g. Thus aceeptanee of Hol' in MANOVA 
implies acceptanee of HOl in ANOVA for each of the p eomponents of x 
separately. 

Graphieally, a one-way ANOVA on a variable X over three groups is a 
comparison of the loeation of several normal distributions with common 
variance as in Figure 8.1. In eomparison, a one-way MANOVA over three 
groups for p = 2 ean be viewed in two-dimensional space as a eomparison of 
the eentroids of three ellipsoids with equal dimensions but possibly different 
centres (see Figure 8.2.). In Figure 8.2, the major axes ofthe three ellipsoids 
are parallel, which follows if the eovarianee strueture for the three groups is 
the same. A fundamental assumption of MANOVA is that the eovarianee 
matrices are equal. 

In univariate analysis of varianee, a random sampie of n/c individuals is 
selected from group k, k = 1,2, ... ,g and observations are obtained on X 
for each individual in the sampie. The variation of individuals around the 
grand mean is then divided into two portions: SSA, the variation among 
groups and SSW, the variation within groups. The mean squares MSA and 
MSW derived from these sums of squares are then eompared using an F 
test. Large values of MSA relative to MSW indicate large differenees among 
the group sampie means and henee a large value of F and rejeetion of HOl. 
In multivariate analysis of varianee, sums of squares are eomputed as ma­
trices. Multivariate analysis of varianee is based on a eomparison of these 
sums of squares matriees. Before outlining the MANOVA methodology a 
data example is introduced. 

Example 

The data matrix in Table 8.1 is used to provide an example for multivari­
ate analysis of variance. The 100 observations represent a sampie of 25 
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~23·~------------~----~--~ 

~22 

L-------------~--~------~---Xl 
~12 ~1l ~13 

FIGURE 8.2. Comparison of Three Bivariate Normal Ellipsoids 

observations from each of four different communities served by different 
administrative units of the Royal Canadian Mounted Police (R.C.M.P). 
The 100 individuals were asked to respond to six different questions re­
garding how safe they feIt in their community. The individuals were asked 
to respond using one of six responses from 1 = very safe to 6 = very unsafe. 

The six items are 

Xl: How safe do you feel in your town as a whole? 

X2: How safe do you feel in your home? 

X3: How safe do you feel walking alone in your neighborhood during the 
day? 

X4: How safe do you feel walking in your neighborhood at night? 

X5: How safe do you feel in downtown during the day? 

X6: How safe do you feel in downtown at night? 

A MANOVA will be used to compare the means on the six variables over 
the four groups (administrative units). The observations on the variables 
INC and EDCAT will be used later in this section. Before discussing the 
MANOVA technique additional notation is required. 
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TABLE 8.1. Observations From Public Safety Questionnaire 

Variables Variables 
Community Xl X2 X3 X4 X5 X6 INC EDCAT Community Xl X2 X3 X4 X5 X6 INC EDCAT 

1 31121675 3 42123545 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2212139 5 3 1111119 5 
21111295 3 21122495 

1111 95 3 32345585 
22142585 34212495 
22222494 31111244 
53262684 3 21221294 
2 2 2 3 2 4 
3 1 2 2 2 3 
5 2 2 3 2 4 
322 5 2 5 
3 4 2 5 2 5 

2 2 2 5 3 5 
444 5 2 6 
2 224 2 6 
5 2 2 6 2 6 
4 2 2 4 2 5 
2 2 2 3 3 4 
4 1 3 4 3 4 
4 4 3 6 3 6 
5 6 244 5 
2 3 2 4 2 5 
3 1 2 5 2 5 
4 2 2 4 2 4 
2 2 2 4 3 4 
2 2 2 2 
2 1 

22222 2 
2 2 3 2 3 
1 1 
1 2 2 
2 1 144 
2 2 2 2 2 3 
1 1 1 1 2 
1 1 1 1 1 
1 1 122 
1 1 1 1 
2 1 1 212 
2 2 1 2 1 2 
1 2 1 2 3 
1 1 1 1 1 
1 111 1 1 
2 2 1 2 1 2 
1 2 1 2 1 1 
2 2 2 2 

2 2 
2 1 

2 

2 

1 1 

2 2 2 2 

2 

5 
9 

9 
6 
5 
6 
8 

9 

7 
6 
9 
3 
9 
4 
9 

7 
9 
6 
6 
8 

6 

7 
7 
7 
9 
6 

6 
8 

9 

9 

6 
7 
6 

5 

6 
9 
6 

6 
7 
7 
7 
6 

4 

4 
4 
3 
3 
3 
3 
3 
2 

2 

2 
2 

2 

1 

1 

1 

1 

1 

5 

5 

5 

5 

5 
4 
4 

4 
4 

4 

3 
3 
3 

3 
3 

2 

2 

2 

2 

2 

1 

1 

3 

3 
3 
3 
3 

3 
3 

3 
3 

3 
3 

3 
3 
3 
3 

3 
3 
3 
4 

4 
4 

4 

4 
4 

4 

4 
4 

4 

4 

4 
4 

4 
4 

4 

4 

4 
4 

4 

4 

4 

4 

4 

4 

3 2 1 4 1 6 
3 3 2 4 2 4 
2 2 2 4 2 6 
2 224 3 6 
2 1 213 
2 346 5 6 

1 2 2 

112 
2 1 224 
2 1 224 
4 2 1 325 
2 2 2 3 2 4 
5 2 136 
4 2 3 2 2 4 
5 2 3 5 2 5 
3 3 3 434 
6 5 3 6 4 6 
4 3 3 4 3 4 
1 1 1 1 

1 1 1 1 
221 2 1 2 
2 2 1 2 1 2 

1 1 1 1 1 
2 2 123 
111 

1 1 1 1 1 
1 1 1 

1 1 1 1 
1 1 1 

1 1 
212 
1 1 1 1 
2 1 112 
3 2 2 4 1 3 
1 111 1 1 
3 1 3 3 1 4 
2 1 1 2 2 3 

1 

1 

111 

1 1 

1 

1 

1 

1 

2 

2 1 122 
2 2 142 

6 

4 

1 

7 
2 

3 

7 
7 
6 

9 

5 

5 
4 

6 

8 
9 

2 

4 
9 

6 
1 

6 

9 
5 
6 
3 
9 
8 

8 
4 
6 

8 

6 

6 

9 

7 
7 
6 

7 
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Notation for Several Multivariate Populations 

Let the (p xl) random vector Xk denote a vector of observations on the p 
variables for group k which is one of 9 groups, 

[ 
Xu ] X2k 

Xk = . 

Xpk 

k = 1,2, ... ,g. 

Mean Vector for Group k and Common Covariance Matrix 

[ 
Jl.lk 1 

Denote the mean vector for group k by I'k = : , k = 1,2, ... , g, and 

Jl.pk 

assume the covariance matrix is the same for all groups k = 1,2, ... , g, and 
is given by 

[ 

O'~ 0'12 

0'12 O'~ 
E= . . 

O'~p O'~p 

Grand Mean Vector 

Tb. grnnd mean vector over aIl grouJlll is given by ,. - [I]. H th. 

groups are ignored, the expected value of a vector of observations x ob­
tained at random from the entire population of 9 groups is given by E[x] = 
1'. 

Notation for Sam pies 

Given a random sampie of nk observations from group k, we denote the 
vector of observations on individual i for group k by 

[ 

Xilk ] 
Xi2k 

Xik = . , 

Xipk 

i = 1,2, ... ,nk. 
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Sam pie Mean Vector and Sam pie Covariance Matrix !or Group k 

The sampie mean vector !or group k is denoted by 

where 

nlo 

X.jk = L Xijk/nk, 
i=1 

j = 1,2, ... ,p 

k = 1,2, ... ,9, 

and the sampie covariance matrix by Sk = L~~1 (Xik-X.k)(Xik-X.k)' /(nk-
1). 

Sam pie Grand Mean Vector 

The sampie grand mean vector over all 9 groups is given by 

[ ~.l·l X·2· 
x= . 

x.p• 

where 

9 n" 9 

x.j. = L L Xijk/Lnk, j = 1,2, ... ,p, 
k=1 i=1 k=l 

9 9 

= Lnkx.jk/n where n = L nk· 
k=1 k=1 

Figure 8.3 illustrates the notation. 

The Multivariate Analysis 0/ Variance Model 

The MANOVA model is a generalization of the univariate analysis of vari­
ance model and is given by 

[ 
Xiik 1 [ J.L1 1 [J.L1k - J.L1 1 [Xilk - J.L1k 1 xi2k J.L2 P,2k - J.L2 Xi2k - J.L2k 
· = . + . + . , · . . . · . . . 

Xipk J.Lp J.Lpk - J.Lp Xipk - J.Lpk 

i = 1,2, ... , nk, 
k = 1,2, ... ,9; 
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Parameters 

Sampie 

Mean Vector 

Covariance 
Matrix 

Group 1 Group 2 Group 9 

1-'1' Ej 

FIGURE 8.3. Notation for Group Parameters and SampIe Statistics 

or Xik = I-' + (lk + Eik, where Xik, 1-', (lk and Eik are the (p x 1) vectors 
illustrated above. The hypothesis of equality of mean vectors, Hop: 1-'1 = 
1-'2 = ... = I-'g, is equivalent to the hypothesis Hop: (l1 = (l2 = ... = (lg = 
O. 

As in the univariate ease we may write Xik = X + (X.k - x) + (Xik - X.k) 
as an estimate of the model. 

Within Group Sum 0/ Squares Matrix 

The within group sum 0/ squares matrix is defined as 

9 n" 
W = L L(Xik - X.k)(Xik - X.k)'. 

k=l i=l 

This matrix can also be expressed as a weighted sum of the individual 
group covarianee matrices 

W = (nI - 1)81 + (n2 - 1)82 + ... + (nk - 1)8k' 

The matrix S = W / (n- g) provides an estimator of the common covariance 
matrix E under the homogeneity of covariance matrix assumption. 

Among Group Sum 0/ Squares Matrix 

The among group sum 0/ squares matrix is defined as 

9 n" 9 

G = L L(X.k - X)(X.k - x)' = Lnk(X.k - X)(X.k - x)'. 
k=l i=l k=l 

Total Sum 0/ Squares Matrix 

The total sum 0/ squares matrixis given by T = L:~=1 L:~~1 (Xik-X)(Xik­
x)' andT=G+W. 
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Computer Software 

The calculations for the examples in this section were performed using SAS 
PROC GLM and SAS PROC REG. 

Example 

For the public safety data in Table 8.1, the mean vector and sum of squares 
and cross products matrices are shown in Table 8.2. The p-values for the 
univariate ANOVA F statistics are also shown in this table. In all cases 
the means on the six items are significantly different over the four different 
communities. Table 8.3 shows the correlations among the six variables for 
the combined sampie of 100. The p-values for the null hypothesis of zero 
correlation are also shown in Table 8.3. From the correlation coefficients 
and p-values we see that the correlations are strongly positive and signif­
icantly different from zero. Because of the strong correlations among the 
six variables any joint inferences regarding the six means should be made 
by using multivariate methods. The simplest joint inference procedure re­
garding the mean vector is the MANOVA procedure discussed below. 

Statistical Inference for MANOVA 

For statistical inference purposes we assume that for each group k, the 
random vector Xk has a multivariate normal distribution with mean vector 
I'k and covariance matrix E, Xk '" Np(I'k' E), k = 1,2, ... ,g. Note that 
we are assuming a homogeneous covariance matrix E over the 9 groups. 

Wilk's Lambda Likelihood Ratio F-Statistic 

A likelihood ratio test of the hypothesis Bop: 1'1 = 1'2 = ... = I'g' or 
equivalently Bop: (tl = (t2 = ... = (tg = 0 is a function of Wilk's Lambda 
which was introduced in Chapter 7. The statistic is given by 

A = IWI/IW + GI. (8.1) 

In this case A has parameters p, (g-l) and (n-g) referring to the dimension 
of x and the degrees of freedom for G and W respectively. 

In large sampies if Bop is true, the test statistic 

F = (1- y) m2 

y ml 

has an F distribution with ml and m2 degrees of freedom, where 
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TABLE 8.2. Mean Vector and Sum of Squares Matrices 

Sample Means 
Group Size Xl X2 X3 X4 X5 X6 

1 25 3.04 2.24 1.96 3.76 2.12 4.52 
2 25 1.52 1.40 1.16 1.72 1.12 1.80 
3 25 2.80 1.92 1.80 3.00 2.12 4.16 
4 25 1.48 1.20 1.12 1.52 1.04 1.64 

Univariate F Stat. 
ANOVA p Value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Among Sum of Squares Matrix 
Xl X2 X3 X4 X5 X6 

Xl 51.15 28.75 26.77 64.86 36.96 94.17 
X2 28.75 16.99 15.17 37.86 20.48 52.93 
X3 26.77 15.17 14.03 34.18 19.28 49.27 
X4 64.86 37.86 34.18 85.16 45.96 119.10 
X5 36.96 20.48 19.28 45.96 27.12 68.28 
X6 94.17 52.93 49.27 119.10 68.28 173.55 

Within Sum of Squares Matrix 
Xl X2 X3 X4 X5 X6 

Xl 97.44 42.76 26.52 63.64 20.44 65.20 
X2 42.76 66.40 24.64 55.64 29.12 43.00 
X3 26.52 24.64 40.96 46.32 29.12 30.20 
X4 63.64 55.64 46.32 135.84 44.04 100.40 
X5 20.44 29.12 29.12 44.04 50.88 34.92 
X6 65.20 43.00 30.20 100.40 34.92 127.36 

and n = Lt=l nk. This approximation is usually referred to as Rao's F. If 
p = 1, this statistic is equivalent to the F-statistic used in ANOVA which 

TABLE 8.3. Correlation Matrix and Associated 
trValues* 

Xl X2 X3 X4 X5 X6 

Xl 1.000 0.642 0.590 0.709 0.533 0.754 
X2 0.000 1.000 0.588 0.689 0.615 0.606 
X3 0.000 0.000 1.000 0.730 0.739 0.618 
X4 0.000 0.000 0.000 1.000 0.685 0.851 
X5 0.000 0.000 0.000 0.000 1.000 0.674 
X6 0.000 0.000 0.000 0.000 0.000 1.000 

·Correlations upper right, p-values lower left 
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is an exact F distribution. It is also true that if p = 2 the F -statistic has 
an exact F distribution under Hop for all 9 ~ 2. In the special cases that 
(g - 1) = 1 for all p and (g - 1) = 2 for all p, the F -statistic is also exact 
under Hop. In all other cases for p and (g - 1), the F distribution is only 
approximate. 

An Alternative Test Statistic 

An alternative approximation to the distribution of A is Bartlett 's X2 

statistic. If Hop is true, then in large sampies the statistic -[(n - 1) -
(p + g)/2] InA has a X2 distribution with p(g -1) degrees of freedom. The 
F approximation is preferred to the X2 approximation when gissmall. 

Example 

For the public safety data, the likelihood ratio test of equality of mean 
vectors yields a Wilks' Lambda of 0.3597. Rao's F approximation is given 
by 6.24 and has 18 and 257.9 degrees of freedom. The p-value for this 
statistic is 0.0001, and hence the four (6x 1) mean vectors would be dec!ared 
significantly different at conventionallevels. The four groups therefore seem 
to differ with respect to the average values of the six public safety measures. 
A quick perusal of Table 8.2 suggests that groups 1 and 3 tend to have 
higher means than groups 2 and 4. Additional comparisons among the four 
groups will be made later in this section. 

Correlation Ratio 

In multiple regression and in univariate analysis of variance, a useful mea­
sure of strength of relationship is R2 where R2 = I-SSW ISST or SSR/SST. 
An extension of this measure to MANOVA is provided by (1 - A) where 
A = IWI/IW + GI. The ratio A may be interpreted as the ratio of the 
generalized within sum of squares to the generalized total sum of squares. 
The !arger the ratio (1- A), the greater the proportion of generalized vari­
ance that can be attributed to the variation among groups. This measure of 
strength of association is strongly positively biased. A much less biased al­
ternative is given by I-nA/[(n-g)+AJ = w2 • An approximately unbiased 
measure [see Tatsuoka (1988)J of the criterion is given by 

w~ = w2 _ p2 + ~n -1)2 (1- w2 ). 

Using the Wilks' Lambda value obtained above for the public safety 
data, (1 - A) is given by 0.6403. The less biased versions of the R2 type 
measure are w2 = 0.6267 and w~ = 0.5707. We can conclude, therefore, 
that approximately 60% of the total variation among the observations is 
due to the variation among the four mean vectors. 
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The Special Gase 0/ Two Groups 

If there are only two groups, 9 = 2, the MAN OVA can be simplified consid­
erably. Since x '" Np (1'1 , E) for group 1 and x '" Np (1'2 , E) for group 2, we 
may write (X'1 - X.2) '" Np [1'1 - 1'2' (~1 + ~2 )E]. A test of the hypothesis 
Hop: (1'1 - 1'2) = 0 can therefore be carried out using the Hotelling's T 2 
procedure for testing Ho: I' = 0 introduced in Section 7.3. In this case the 
test statistic is given by 

where S is the estimator of the common E given by 

If Hop is true, the statistic (n1 + n2 - P - I)T2/(n1 + n2 - 2)p has an F 
distribution with p and (n1 + n2 - P - 1) degrees of freedom. The F-test 
statistic given above may also be used to test the hypothesis that the 
squared Mahalanobis distance between the two groups is zero (under the 
assumption of common covariance matrix). The true squared Mahalanobis 
distance (1'1 - 1'2)' E-1 (1'1 - 1'2) is estimated by (X'1 - X.2)'S-1(X.1 -X.2), 
which is proportional to T2. This test is the basis for the test for outliers 
discussed in Section 7.3.2. 

The Hotelling's T2 statistic can also be used to provide a simultaneous 
confidence interval for the elements of (1'1 - 1'2)' An important property of 
Hotelling's T2 statistic is that a (l-a) probability interval can be expressed 
for All linear combinations t'(X.1 - X.2) of (X.1 - X.2) where t is a (p x 1) 
vector of constants. The interval is given by 

t'(X.l - X.2) ± cJl'Sl(l/nl + 1/n2) 

where 
2 (n1 + n2 - 2)p 

c- = ( 1) Fa ;p,(nl+n 2-p-1)' n1 +n2 -p-

The probability is (1 - a) that this interval covers t'(1'1 - 1'2) simultane­
ously for all possible t. 

This property can be used to get confidence interval estimates for the 
individual elements of (1'1 - 1'2)' For the jth component of (1'1 - 1'2) we 

have the interval (X.j1 - X.j2) ± c(8~j(l/n1 + l/n2))1/2 where 8~j is the 

jth diagonal element of S. As in the case of the Scheffe multiple compari­
son procedure used in ANOVA, this confidence interval procedure is very 
conservative. 
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A BonfefTOni Approximation 

An alternative approach involves the Bonferroni approximation 

(X.jl - X.j2) ± ta*,(nl+n2-p-l) V8Jj (1/nl + 1/n2) , 

where 0* = 0/2p and t a*,(nl+n2-p-l) denotes the 0* critical value of the 
t distribution for (nI + n2 - P - 1) degrees of freedom. The Bonferroni 
intervals are shorter than those based on TA; particularly for larger values. 

Multiple Comparison Procedures Based on Two Group Comparisons 

H the null hypothesis HOp: ~1 = ~2 = ... = ~g is rejected, there is usually 
a need to obtain additional information about the nature of the departure 
from equality. A useful first step is to use a two independent group com­
parison procedure to compare all possible group pairs. For each pair the 
Hotelling's TA test can be used to compare the vector means. To compare 
the means for groups r and 8 the statistic 

(_ _ ),--1(_ _) ( nrns ) (nr + ns - p - 1) 
X·r - X·s S X·r - X·s ( 2) 

nr + n s nr + n s - p 

is compared to Fa*;p,(n.+nr -p-l), where 

S = (nr - 1)Sr + (ns - 1)Ss 
(nr +ns - 2) 

and 0* = 20/g(g - 1) is the Bonferroni approximate critical value for an 
o level test over the g(g - 1)/2 comparisons. 

For pairs in which the mean vectors are declared to be significantly differ­
ent, a comparison of the component means can be carried out using the uni­
variate multiple comparison procedures from ANOVA. A simple t-statistic 
procedure with a Bonferroni approximation for multiple comparisons would 
involve the intervals 

1 1 
(x.jr - x.js) ± ta**;(n-g) 8Jj (- + -) , 

nr n s 

where 0** = 0* /p, 8Jj is the jth diagonal element of 

S = (nI - 1)SI + (n2 - 1)S2 + ... + (ng - 1)Sg , 

(n- g) 

and to**;(n-g) is the 0** critical value of the t-distribution for (n - g) 
degrees of freedom. Other procedures such as Tukey's method for multiple 
comparisons could also be used. 

In Section 8.2 we introduce a multivariate approach to group comparisons 
called discriminant analysis. This technique seeks to find linear functions of 
the p-dimensional vector random variable x that highlight the differences 
&mong the groups. 
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Testing /or the Equality 0/ Covariance Matrices 

The assumption of equality for the covariance matrices for the 9 groups 
can be crltical, particularly if the group sampie sizes nAl! k = 1,2, ... ,g, 
are radically different. It is therefore of value to test the null hypothesis 

Ho:1:h = E 2 = ... = E g , 

given that Xk is normally distributed, N(l'k' Ek), k = 1,2, ... ,g. 
We define the quantity M 88 follows 

9 

M= [II ISkl(nt -1)/2]/ISI(n-g)/2, 
k=l 

where Sk is the sampie covariance matrix for group k, and S = L~=l (nk­
I)Sk/(n - g) and n = L~=l nk· 

There are two asymptotic approximations to the distribution of M. 

1. -2(1-ct} lnM is approximately X2 with (~)p(P+l)(g-l) d.f. where 

(2~+3p-l) ( 9 1 1) 
Cl = 6(p + l)(g - 1) L (nk - 1) - (n - g) . 

k=l 

2. -2blogM is approximately distributed as an F distribution with VI 

and V2 degrees of freedom where 

H C2 - ci < 0, then v~~~~~!:~n~ is approximately distributed 88 an F dis­
tribution with VI and V2 d.f. where b1 = 1-ct -(2!v2 ). The F approximation 

V2 

is usually better than the X2 approximation. 

Example 

For the public safety data, a test of the equality of the four group covariance 
matrices was carried out using the x2-test. The X2_value obtained was 
273.23 with 63 degrees of freedom. The p-value of this statistic is 0.0001. 
An examination of the elements of the four covariance matrices (not shown 
here) reveals that the elements for the covariance matrices for groups 1 
and 3 are much larger than the elements in the covariance matrices for 
groups 2 and 4. 
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8.1.2 INDICATOR VARIABLES, MULTIVARIATE REGRESSION 

AND ANALYSIS OF COVARIANCE 

Analysis of varianee ean be viewed as a special ease of multiple linear regres­
sion. The explanatory variables are indieator variables which are usually 
derived from dummy coding or effect coding for the various eategories. The 
resulting matrix of explanatory variables is eaIled the design matrix. In a 
similar fashion, multivariate analysis of variance is a special ease of multi­
variate regression with the explanatory variables provided by the identieal 
design matrix patterns used in ANOVA. The design matrices and corre­
sponding parameter matriees for both dummy eoding and effect coding are 
illustrated in Figures 8.4 and 8.5 respectively. 

For the multivariate regression model discussed in Section 7.5, the de­
pendent variables are denoted by X and the explanatory variables by the 
design matrix D. The design matrix D eontains observations on indica­
tor variables Dt.D2, ... ,Dg-l. The eolumn vectors in D are denoted by 
d l , d 2, ••• , dg-t. and the observations on Dl , D2, . .. , Dg- l are denoted by 
dt. d2, ... , dg- l . The multivariate regression likelihood ratio test of the hy­
pothesis tbat the (g - 1) indieator variables are superftuous is equivalent to 
the MANOVA procedure outlined above. More eomplex MANOVA models 
ean also be analyzed using multivariate regression with indieator variables. 

Example 

For the publie safety data, a multivariate regression of the six safety vari­
ables on three group dummy variables plus an intereept would be equivalent 
to the MANOVA analysis discussed above. Using dummy variables for the 
first three groups, the model is given by 

X=DB+U (8.2) 

where X is the (100 x 6) data matrix, D (100 x 4) is the matrix D = 
[i d l d2da] eontaining i, a vector of unities, plus the three dummy variable 
vectors dt.d2 and da, B (4 x 6) is the matrix of regression eoefficient 
veetors ßl , ß2 , ••• , ß6 , and U (100 x 6) is the error matrix. Ea.ch regres­
sion eoefficient vector ß j eontains an intereept element ßjO representing 
the mean JLj4 for group 4 and three dummy eoefficients ßjb ßj2 and ßja 
denoting the mean differenees (JLjl - JLj4), (JLj2 - JLj4) and (JLja - JLj4). 

The multivariate regression yields the six equations 

Xl = 1.48 + 1.56dl + 0.04d2 + 1.32da 

X2 = 1.20 + 1.04dl + 0.20d2 + 0.72da 

xa = 1.12 + 0.84dl + 0.04d2 + 0.68da 

X4 = 1.52 + 2.24dl + 0.20d2 + 1.48da 

X5 = 1.04 + 1.08d1 + 0.08d2 + 1.08da 

X6 = 1.64 + 2.88d1 + O.16d2 + 2.52da. 
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J.Llg 
(J.Lu - J.Llg) 
(J.L12 - J.Llg) 

B 
J.L2g 

(J.L21 - J.L2g) 
(J.L22 - J.L2g) 

J.Lpg 
(J.Lpl - J.Lpg) 
(J.Lp2 - J.Lpg) 

(J.Ll(g-l) - J.Llg} (J.L2(g-1) - J.L2g} ••. (J.Lp(g-l) - J.Lpg} 

FIGURE 8.4. Dummy Coding 

The p-values for the coefficients of d2 vary from 0.9 to 0.4, and hence we can 
conclude that groups 2 and 4 have mean vectors that are not significantly 
different. The p-values for al1 remaining coefficients are 1ess than 0.00, and 
hence the mean vectors for groups 1 and 3 are significantly different from 
group 4, and also the elements of the mean vector for group 4 are signifi­
cantly different from zero. Changing the base case to group 1 shows that 
groups 1 and 3 are not significantly different but that groups 2 and 4 are 
significantly different from 1 (not shown here). 

Some Relationships to the Multivariate Regression Test fOT Ho: ABM = 0 

It is also possible to use multivariate regression to test hypotheses regard­
ing relationships among the means. Using the multivariate test procedures 

:: : :ha:.: 7::, t: t:~ :::7:: :e~M[A~7 t'flop::~ : 
000 1 

is the coefficient matrix given in the multivariate regression with indicator 
variables. If this hypothesis is true, the coefficients for all three indicator 
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D 
1 1 0 0 0 
1 1 0 0 0 

1 1 0 0 0 
1 0 1 0 0 
1 0 1 0 0 

B 
fit. {t2. {tp. 

1 0 1 0 0 (J.tll - {tl.) (J.t2l - {t2.) (J.tPl - {tp.) 
(J.tl2 - {tl.) (J.t22 - {t2.) (J.tp2 - {tp.) 

1 0 0 0 1 
1 0 0 0 1 (J.tl(g-l) - {td (J.t2(g-l) - {t2.) ... (J.tp(g-l) - {tp.) 

1 0 0 0 1 
1 -1 -1 ... -1 -1 
1 -1 -1 -1 -1 

1 -1 -1 -1 -1 

FIGURE 8.5. Effect Coding 

variables in an equations are zero. This approach is illustrated next using 
the previous example. 

Example 

The multivariate regression results above suggest that the mean vectors 
for groups 1 and 3 are similar and the mean vectors for groups 2 and 4 
are similar. A test of the null hypothesis Ho: Pl = P3; P2 = P4 can be 

carried out using Ho: AB = 0 where A = [~ ~ ~ ~1] and B is 

given in (8.2). For each of the six equations, the null hypothesis is that the 
coefficient of d3 is zero and that the coefficients of d2 and d4 are equal. The 
F-value for this test is 0.723, which has ap-value ofO.728 when compared to 
an F-distribution with 12 and 182 degrees of freedom. The null hypothesis 
Ho therefore cannot be rejected. 

An interesting alternative test is to determine whether the four coeffi­
cients in the six equations in (8.2) are equal. The null hypothesis is given 



by Ho: BM = 0 where 

M= 
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1 1 
-1 0 
o -1 
o 0 
o 0 
o 0 

111 
000 
000 

-1 0 0 
o -1 0 
o 0-1 

In this case, the null hypothesis is that the four coefficients in the first 
equation are equal to the four coefficients in each of the five remaining 
equations. For the public safety data this test yields an F-value of 9.303 
with 20 and 306.1 degrees of freedom. The p-value of this statistic is 0.0001; 
hence we cannot assume the same equation for an six variables. In this case 
the hypothesis being tested is that for each group the components of the 
mean vector are equal but that the magnitudes of the means can vary across 
the groups. We see later in Section 8.1.3 that this test is useful in profile 
analysis for repeated measurement designs and is equivalent to a test for 
horizontal profiles. In the context of the example the hypothesis implies 
that in each community the average response on each of the six items is 
the same. Comparing across communities however, differences in average 
response are permitted. 

From this example we can see that the elements in a given column of 
B correspond to a given variable and that each row of B corresponds to a 
group. The matrix Ais used to obtain comparisons among groups (within 
an equation), and the matrix M is used to obtain comparisons among 
variables (across equations). 

Gell Parameter Goding 

With dummy coding and effect coding the design matrix D contains a 
column of unities i (n x 1) and indicator variables for an but one of the 
9 groups. The group without the indicator variable is usually referred to 
as the base case. Since many statistical software packages now permit in­
ference procedures for functions of model parameters it is also possible to 
use cell parameter coding. With this approach the column of unities i is 
eliminated from the design matrix, and a dummy variable is used for all 9 
groups. In this case the design matrix and parameter vector are illustrated 
in Figure 8.6. 

In the previous example involving six variables and four groups a test of 
Ho: 1-'1 = 1-'2 = 1-'3 = 1-'4 can be carried out using a test of Ho: AB = 0, 
where 

-~ -~ ~ ]. 
o 0-1 
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D 
1 0 0 0 
1 0 0 0 

1 0 0 0 
0 1 0 0 
0 1 0 0 

B 
J.l.ll J.l.12 J.l.13 J.l.lp 

0 1 0 0 J.l.21 J.l.22 J.l.23 J.l.2p 

0 0 1 0 J.l.31 J.l.32 J.l.33 J.l.3p 
0 0 1 0 

J.l.gl J.l.g2 J.l.g3 J.l.gp 

0 0 1 0 

0 0 0 1 
0 0 0 1 

0 0 0 1 

FIGURE 8.6. Cell Parameter Coding 

A test of equality for the four coefficients across the six equations could be 
carried out by testing Ho: BM = 0 where 

1 1 1 1 1 
-1 0 0 0 0 

M= 
0 -1 0 0 0 
0 0 -1 0 0 
0 0 0 -1 0 
0 0 0 0 -1 

This test is equivalent to a test of equal means for the six variables within 
each group. The four groups are permitted to differ with respect to the 
overall level of the means. 

The Non-Jilull Rank Design Matrix 

The group effects form of the MANOVA model given in Section 8.1.1 can 
also be written as a multivariate regression model with a design matrix D 
of indicator variables that is no longer of full rank. The model is given by 

X=DB+V 



D= 

1 1 0 ... 0 
110 

1 1 0 
101 

o 1 

o 
o 

1 0 1 0 

1 0 0 1 
1 

1 0 0 1 
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Ou 012 

B = 021 022 

FIGURE 8.7. Group Effects Parameter Coding 

where the group eJJects design matrix D and the corresponding parameter 
matrix B are shown in Figure 8.7. In this model the design matrix D 
contains an additional column (g + 1 columns) compared to the dummy 
coding and effect coding versions of D shown in Figures 8.4 and 8.5. To 
test the hypothesis Hop: Q1 = Q2 = ... = Qg = 0 that is equivalent 
to Hop: 1'1 = 1'2 = ... = I'g in the multivariate linear model, a test of 

Ho: [ ~~ ] = [ ~~ ] is required where b~ denotes the first row of B, and 

B1 denotes the remainder of B. The test of Hop is equivalent to the test 
discussed in Section 8.1.1. 

As described above for dummy and effect coding other tests can be car­
ried out for the general form Ho: ABM = o. In this case, however, the 
matrices A and M must be adjusted to reßect the group effects model. To 
test the hypothesis that 1'1 = 1'3 and 1'2 = 1'4 when 9 = 4 the matrix 

[ 01010] . A has the form A = 0 0 1 0 1 . To test the hypothes1s that the 

group effects are identical for all p = 6 variables the M matrix is defined 
by 

0 
1 

-1 

M= 
0 

0 

0 
1 
0 

-1 

0 

0 

o 
1 
o 

o 
-1 
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The matrices A and M illustrated above can sometimes be employed with 
MANOVA software. This approach is an alternative to the multivariate 
regression approach discussed above for use with dummy and effect coding. 

A summary of the various types of coding and corresponding design 
matrices is provided in Volume I, Chapters 4 and 5. 

Multivariate Analysis 0/ Govariance 

For the multivariate analysis of covariance the inference theory for multi­
variate regression can be used. The D matrix now consists of the column of 
unities, (g - 1) indicator variables D I , D2 , ••• , Dg- I and, in addition, the 
columns corresponding to a set of b concomittant variables Zb Z2, ... , Zb. 
Thus the D matrix is given by D = [i d ld2 ... dg-l, zlz2 ... Zb], where 
i (n x 1) is a column of unities, d b d2, ... , dg- l are columns of indicator 
variables corresponding to (g - 1) of the 9 groups, and Zb Z2, ... , Zb are 
the columns corresponding to the covariates. The test procedure outlined 
in 7.5 for Ho: ABM = K can be used to carry out various test procedures 
for the analysis of covariance. 

Example 

To provide an example for MANOVA with a covariate, the variable!NC was 
added to the right hand side of the multivariate regression model discussed 
above. The income variable is a measure of family income and uses nine 
categories coded from 1 to 9. The observations are shown in Table 8.1. The 
income variable will be treated as an interval scaled variable. A test of the 
hypothesis that the coefficient of IN Ciszero in all six equations yields 
an F-statistic of 2.1956 with 6 and 90 degrees of freedom. The p-value for 
this test result was 0.051. For the six individual regression equations the 
coefficient of!NC was negative in each case and for X2, X4 and X6 the 
regression coefficient was significant at the 0.02 level. It would appear that 
individuals with higher income feel more safe in their homes and at night 
than those with less income. 

A comparison of the regression coefficients with and without the income 
variable is shown in Table 8.4. In general, the addition of the income vari­
able tended to increase the other coefficients. In particular, group 4 (see 
intercept) had large changes in the means after the adjustment for INC. 
Since the intercepts also reflect the overall levels, this result suggests that 
the increases in the elements of the mean vector are fairly uniform over 
the four groups. A variety of comparisons can be carried out using the 
multivariate regression test Ho: ABM = K. 
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TABLE 8.4. Comparison of Multivarite Regression Coefficients for Models With 
and Without Income 

Intercel!t D1 D2 D3 
Dependent Without With Without With Without With Without With 

Variable Income Income Income Income Income Income Income Income 

Xl 1.48 1.82 1.56 1.61 0.04 0.07 1.32 1.29 
X2 1.20 1.96 1.04 1.15 0.20 0.26 0.72 0.66 
X3 1.12 1.40 0.84 0.88 0.04 0.06 0.68 0.66 
X4 1.52 2.44 2.24 2.37 0.20 0.28 1.48 1.41 
X5 1.04 1.31 1.08 1.12 0.08 0.10 1.08 1.06 
X6 1.64 2.58 2.88 3.01 0.16 0.24 2.52 2.45 

8.1.3 PROFILE ANALYSIS WITH REPEATED 

MEASUREMENTS 

In the MANOVA discussed in Section 8.1.1, the observations on the 'Ir 
dimensional random vector x may actually represent repeated observa­
tions on the same individual or object under p different conditions. In each 
group j, j = 1,2, ... ,9, a total of nj individuals are observed on each of 
the p different conditions. In this repeated measurements environment, it 
is usually of interest to compare the means on the p conditions over the 9 
groups as weH as the means over the 9 groups on the p conditions. In each 
group the variation in the p means is usually characterized by the profile. 
The comparison of group means and condition means is equivalent to a 
comparison of profile shapes. 

In Seetion 7.4.2 the repeated measurements comparison was introduced 
for a single group of n individuals observed under each of p conditions. The 
test of Ho: f.L1 = f.L2 = ... = f.Lp was of interest to determine whether the 
p condition means are equal and hence a horizontal profile. Figure 7.1 in 
Chapter 7 shows an example profile based on the means of n objects over 
five conditions. Thus in Chapter 7 we were concerned with the shape of a 
single profile (a within subjects comparison). In the case of 9 groups here, 
we are also concerned with a comparison of the profiles across groups (a 
between groups comparison). 

Comparing Profiles 

H the repeated measures experiment is carried out for a set of 9 different 
groups, there are a total of 9 profiles to be analyzed. H the 9 profiles are 
horizontal, there are no condition effects, whereas if the 9 profiles are equal, 
there are no group effects. H the 9 profiles are neither horizontal nor equal, 
they may still be parallel, which is an indication that there is no interaction 
between the group effects and the condition effects. 
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FIGURE 8.8. Comparison of Three Group Profiles Over Five Conditions 

The hypothesis of equality of mean vectors in MANOVA given by HOp :""1 

= ""2 = ... = ""g is also a test for equality of the 9 profiles. This test, 
however, is not concemed with the profile shape. H this hypothesis is true 
it may also be of interest to know if the profiles are horizontal. H the 
hypothesis HOp is rejected indicating that there are group effects, it may still 
be true that the profiles are parallel and also perhaps horizontal. Figure 8.8 
shows profiles for three groups over five conditions. Profiles 1 and 2 are 
parallel whereas profiles 1 and 3 have the same average level. A variety of 
test procedures for the study of profiles is outlined next. 

Pamllel Profiles 

H the 9 profiles being compared in Hop are not equal, they may still be 
parallel. This weaker hypothesis is given by 

HOl: [JL(j+l)1 - JLj1] = !JL(j+l)2 - JLj2] 

= ... [JL(j+l)g - JLjg], 

j = 1,2, ... , (p - 1). 

This hypothesis cau be tested by defining the (p - 1) x p transformation 
matrix C where 

-1 1 0 0 0 
0 -1 1 0 0 
0 0 -1 0 0 

C= 

0 0 0 1 0 
0 0 0 -1 1 
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which is equal to the matrix C used in Section 7.4.2. This test for parallel 
profiles is equivalent to a test for no interaction between the groups and 
the conditions. In this case the test is given by 

HOl: CJ.l.l = CJ.l.2 = ... = CJ.l.g. 

This test can be carried out by applying the Wilk's Lambda procedure 
of Section 8.1.1 to the transformed variables y = Cx to test HOl: J.l.lI1 = 
J.l.lI2 = ... = J.l.lIg , where J.l.y denotes the mean vector for the transformed 
variable y. 

Alternatively, the multivariate regression approach outlined in Section 
8.1.2 can be applied using matrices A and M and testing HOl: ABM = O. 
The matrices A and M are given by 

0 1 0 0 0 
0 0 1 0 0 

A(g-l)Xg = 0 0 0 1 

0 
0 0 0 1 

1 1 1 1 
-1 0 0 0 

MpX(p-l) = 0 -1 0 0 

0 0 ... 0 -1 

whereas the matrix B is either the dummy coding matrix in Figure 8.4 or 
the effect coding matrix in Figure 8.5. 

Example 

We use the public safety data and the dummy variable multivariate regres­
sion to demonstrate the tests outlined above. Figure 8.9 shows a comparison 
of the four profiles. It would appear that groups 1 and 3 and groups 2 and 4 
have similar profiles. To test the hypothesis HOl that the 9 profiles are par­
allel we use the dummy variables defined in Section 8.1.2. The matrices A 
and M are given by 

1 1 1 1 1 

A=U 
1 0 

~l 
-1 0 0 0 0 

0 1 and M= 
0 -1 0 0 0 
0 0 -1 0 0 

0 0 
0 0 0 -1 0 
0 0 0 0 -1 

Thus HOl: ABM = 0 implies that the coefficients for the dummy vari­
ables D1, D2 and D3 in the equations for X2 through X6 are identical 
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FIGURE 8.9. Profile Analysis for Public Safety Data 

to the coefficients for these dummy variables in the equation for Xl. We 
are allowing the overall mean level to be different for each variable, but 
the differences between the profile points in each group must be the same. 
For the public safety data, the F-statistic has a value of 5.334 with 15 and 
254.4 degrees of freedom. The p-value of this statistic is less than 0.0001 
and hence we cannot assume that the profiles are parallel. 

Equal Profiles Given Parallel Profiles 

If the hypothesis HOl of parallel profiles is true, then the hypothesis Hop of 
equal profiles is equivalent to the hypothesis Hop: i' 1'1 = i' 1'2 = ... = i' I'g' 
where i(p xl) is a vector of unities. This hypothesis indicates that the 
average profiles for each of the 9 groups are equal. If the hypothesis HOl 
is not true, then the hypothesis Hop is usually of little value. Using the 
multivariate regression model, a test of Hop is given by Hop: ABM = 0 
where M(p x 1) is given by M' = [1 1 1 ... 1], A is identical to the A 
matrix used in the multivariate regression test for parallel profiles, and B 
is one of the two design matrices shown in Figures 8.4 and 8.5. 
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Horizontal Profiles Given Parallel Profiles 

If the hypothesis HOl of parallel profiles is true, then the hypothesis of 
horizontal profiles is equivalent to the hypothesis of equal means for the p 
conditioDS given by Hoe: fi,l. = fi,2. = ... = fi,p .• This test can be carried out 
using the multivariate regression model by defining A and M as follows: 

1 1 1 1 
-1 0 0 0 

A = [g 1 1. .. 1]; M = 0 -1 0 

0 
0 0 0 -1 

The test of Hoe: ABM = 0 is carried out by employing one of the B 
matrices given in Figures 8.4 and 8.5. 

Horizontal Profiles 

The hypothesis of horizontal profiles can also be tested without regard to 
HOl. This hypothesis is given by 

HOH: [JL(j+1)l - I-'jl] = [1-'(;+1)2 - I-'j2] = ... 
= [1-'(;+1)g - I-'jg] = 0, 

j = 1,2, ... , (p - 1) 

and can also be tested using the multivariate regression test HOH: BM = O. 
The M matrix is given by 

-1 0 0 0 0 
1 -1 0 0 0 

M= 
0 1 -1 

-1 0 
0 0 0 1 -1 
0 0 0 0 1 

Example 

For the public safety data a test of the hypothesis that the average of 
the six variables is the same for each group is a test for equal profiles if 
the profiles are known to be parallel. Since the parallel profile hypothesis 
has already been rejected, this test cannot be used in this case to test for 
equal profiles. The test is carried out here for illustrative purposes even 
though it has no practicaI value. The test statistic is determined from the 
multivariate regression test Hop: ABM = 0, where A is equivalent to the 
A matrix used for the above test for parallel profiles and M is given by 
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M' = [111111]. The regression therefore becomes a univariate multiple 
regression, and the hypothesis Hop is tested by using the conventional F­
test for the significance of all explanatory variables. For the public safety 
data, the F-statistic is given by 31.392, which has 3 and 96 d.f. and a 
p-value of 0.0001. 

The test that the average of the elements of the mean vector over the 9 
groups is the same for all six variables is a test for horizontal profiles if the 
profiles are parallel. If however the profiles are not parallel this hypothesis 
simply indicates that the average profile is horizontal. This test allows 
variation among the four groups over the six variables provided that the 
overall average is the same for each of the variables. Using the multivariate 
regression approach, the A and M matrices for this test are given by 

1 1 1 1 1 
-1 0 0 0 0 

A = [4111], M= 
0 -1 0 0 0 
0 0 -1 0 0 
0 0 0 -1 0 
0 0 0 0 -1 

The F-value for this test is 42.522 which has a p-value less than 0.0001 at 5 
and 92 degrees of freedom. We cannot conclude therefore that the average 
profile is horizontal. As can be seen from Figure 8.9, variables 1, 4 and 6 
tend to have larger values than variables 2,3 and 5. 

8.1.4 BALANCED TWO-WAY MANOVA 

The Model 

The procedures for one-way MANOVA can be easily extended to the case of 
two-way MANOVA. We assume that individuaIs are classified according to 
two different classification variables. As in the case of ANOVA, we assume 
that the classifications are based on 9 groups and b blocks. The cross­
classification by group and block produces a total of bg ceIls. A total of c 
observations of the (p xl) multivariate vector x are obtained from each 
cell (k,f). The multivariate linear model relating x to both the group and 
block effects is given by 

Xki = I' + ak + ßI. + (aß)ki + €kl., k = 1,2, ... ,g, 

f = 1,2, ... ,b. 

The (p x 1) vectors 1', ak, ßb (aß)kl denote the grand mean vector, the 
group effects vector, the block effects vector and the interaction effects 
vector. The effects vectors satisfy Ef=l ak = E~=l ß l = Ef=l (aß)kl = 

E~=l(aß)kl = O. The (p xl) vector €kl is the residual vector. 
The complete data matrix X (n x p) consists of n observations on p 

variables where n = cgb. Each element of the data matrix is denoted by 
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Xijki, i=1,2, ... ,cj j=1,2, ... ,pj k=1,2, ... ,gj l=1,2, ... ,b.The 
subscript j denotes the column of X, whereas the subscripts i, k, l combine 
to denote the row of X. For each combination of k and l, there are a total 
of C rows of X observations for cell (k, l). 

Sum of Squares Matrices 

Denoting the (p xl) sampie grand mean vector by x the total sum of 
squares matrix is given by 

b 9 c 

T = L L L(Xikl- X)(Xiki - x)'. 
l=l k=l i=l 

As in the case of univariate two-way ANOVA, this sum of squares can be 
decomposed into parts representing groups, blocks, interaction and error. 
The sum of squares matrices are given by 

9 

G = L bC(X.k. - X)(X.k. - x)' for groups, 
k=l 

b 

B = L gC(X .. i - X)(X .. l - x)' for blocks, 
i=l 

9 b 

W L L C(X.kl - X.k. - X .. i + X)(X.kl - X.k. - X .. i + x)' 
k=l l=l 

for inter action, and 
b 9 c 

E = L L L(Xikl - X.kl)(Xikl - X.kt)' for error. 
l=l k=l i=l 

The cell mean vectors are denoted by X.kl, whereas the group and block 
mean vectors are denoted by X.k. and X .. i respectively. The sum of squares 
matrices have the property that 

T=G+B+W+E. 

Inference 

To test the hypothesis of zero inter action 

Ho: (aß)kl =0, k=1,2, ... ,g, l=1,2, ... ,b, 

the Wilk's Lambda statistic is given by 

Aaß = IEI/IE + WI, 
with bg(c - 1) degrees of freedom for E and (b - l)(g - 1) degrees of 
freedom for W. Tests for main effects can also be carried out for groups 
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Ho: Qk = 0, k = 1,2, ... ,g, and for blocks Ho: ßl = 0, l = 1,2, ... ,b. The 
corresponding Wilk's Lambda statistics for groups and blocks are given by 

Aa = IEIIIG + EI with bg(c -1) degrees of freedom for E 
and (g - 1) degrees of freedom for G and 

Aß = IEI/IB + EI bg(c -1) degrees of freedom for E 
and (b - 1) degrees of freedom for B. 

Either the F or X2 approximations to the distribution of Wilk's Lambda 
can be used to test these hypotheses. 

Example 

For the public safety data introduced in Table 8.1, an additional categorical 
variable was generated by dividing the individuals into five education cate­
gories. This variable is denoted by EDCAT. Using the four COMMUNITY 
classifications and the five EDCAT classifications, a total of 20 cells were 
generated. The total of 100 observations were distributed equally over the 
20 cells yielding a balanced two-way design with five observations per cello 
The cell means are ShOWIl in Table 8.5. The results for the six univariate 
ANOVAs and the MANOVA are ShOWIl in Tables 8.6 and 8.7. 

In Table 8.6 it can be seen that for an six variables the COMMUNITY 
effects and EDCAT effects are significant at the 0.000 level whereas the 
intera.ction is significant at the 0.04 level or lower. From the MANOVA 
results in Table 8.7 we can see that the two main effects and the interaction 
are significant at 0.000 level. 

Graphs showing the relationships between the cell means and the levels 
of EDCAT and COMMUNITY for each of the six variables are ShOWIl in 
Figure 8.10. From the graphs, it is easily seen that the levels of unsafe are 
higher in communities 1 and 3, and that the relationship between unsafe 
and education level is downward sloping. The nonzero intera.ction in each 
case is due primarily to the larger negative slopes for communities 1 and 3. 
It would appear that the variation in the unsafe variables could be cap­
tured by a dummy variable that distinguishes communities 2 and 4 from 
communities 1 and 3. Treating EDCAT as an interval variable and using 
a slope shifter also appears to be reasonable. Using this latter approach, 
the error sums of squares for the six variables are (50.7, 36.5, 22.8, 44.9, 
30.1 and 56.3). By comparison to the error column in Table 8.6, we can 
conclude that in each case there is some 1088 of information; however, the 
proportion lost is quite small. The EDCAT variable could also have been 
introduced as a covariate in the MANOVA as in the case of INC in Section 
8.1.2. 
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TABLE 8.5. Cell Means for Public Safety Data 

COMMUNITY EDCAT Xl X2 X3 X4 X5 X6 

1 4.6 3.8 2.6 5.4 2.6 5.8 
2 3.2 2.2 2.2 4.6 2.4 4.8 
3 3.2 2.0 2.0 4.0 2.0 4.8 
4 2.0 2.0 1.8 3.2 2.4 4.2 
5 2.2 1.2 1.2 1.6 1.2 3.0 

1 2.0 1.6 1.6 3.6 1.6 2.8 
2 1.8 2.0 1.2 2.0 1.0 2.0 

2 3 1.6 1.4 1.0 1.6 1.0 1.8 
4 1.2 1.0 1.0 1.4 1.0 1.4 
5 1.0 1.0 1.0 1.0 1.0 1.0 

1 4.0 3.0 3.2 5.0 3.8 5.2 
2 3.0 2.4 2.0 3.8 2.2 5.2 

3 3 3.4 2.0 1.6 2.8 2.0 4.8 
4 2.4 1.2 1.0 2.0 1.6 3.8 
5 1.2 1.0 1.2 1.4 1.0 1.8 

2.4 1.6 1.6 3.0 1.2 3.0 
2 2.0 1.4 1.0 1.6 1.0 2.0 

4 3 1.0 1.0 1.0 1.0 1.0 1.2 
4 1.0 1.0 1.0 1.0 1.0 1.0 
5 1.0 1.0 1.0 1.0 1.0 1.0 

The Multivariate Paired Comparison Test 

A random sampie of n individuals is observed on the random vector x (px 1) 
under two different conditions or regimes. The vector x is assumed to be 
distributed as a multivariate normal with means 1'1 and 1'2 respectively for 
the two regimes. A test of equality of means in this case is a special case 
of the balanced two-way MANOVA with two blocks. 

Denoting the two observation vectors by Xl and X2, the difference be­
tween the two vectors is given by d = (X1-X2) and between the correspond­
ing means by D = (1'1 - 1'2)' Thus if Cov(d) = E d then d '" N(D, E d). 

For a sampie of n observations on Xl and X2 given by Xl (n x p) and 
X 2 (n x p), the sampie statistics are given by 

n 

cl = (X.1 - X.2) and Sd = ~)di - cl)(di - cl)' j(n - 1). 
i=l 

Under Ho: D = 0, the statistic T2 ncl'S;t1d is distributed as 
(n - l)pFp;(n_p)j(n - p). A 100(1 - a)% confidence interval for D is given 
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TABLE 8.6. ANOVA Results for Public Safety Data 

Variable Community Education Interaction Error Total 

Sumof 51.15 44.54 12.10 40.8 148.59 
Squares 

Xl F-Ratio 33.43 21.83 1.98 
p-Value (0.000) (0.000) (0.037) 

Sum of 16.99 26.44 10.76 29.20 83.39 
Squares 

X2 F-Ratio 15.52 18.11 2.46 
p-Value (0.000) (0.000) (0.009) 

Sumof 14.03 16.64 6.72 17.60 54.99 
Squares 

X3 F-Ratio 21.26 18.91 2.55 
p-Value (0.000) (0.000) (0.007) 

Sumof 85.16 88.90 16.94 30.00 221.00 
Squares 

X4 F-Ratio 75.70 59.27 3.76 
p-Value (0.000) (0.000) (0.000) 

Sum of 27.12 16.30 13.38 21.20 78.00 
Squares 

Xs F-Ratio 34.11 15.38 4.21 
p-Value (0.000) (0.000) (0.000) 

Sumof 173.55 71.16 15.40 40.80 300.91 
Squares 

Xa F-Ratio 113.43 34.88 2.52 
p-Value (0.000) (0.000) (0.007) 

TABLE 8.7. MANOVA Results for Public 
Safety Data 

Effect Wilk's Lambda F p Value 

Community 0.0728 18.02 0.000 
Education 0.0889 10.96 0.000 
Interaction 0.1620 2.28 0.000 

by a ± q where the elements of q are given by 

(n - l)p F. (S~i) 
(n - p) p,(n-p) n 

and where S~i is the ith diagonal element of the covariance matrix Sd. 
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FIGURE 8.10. Variation Among Means for Public Safety Data 

8.1.5 AN UNBALANCED MANOVA WITH COVARIATE 

In this section, an example is used to illustrate how the multivariate linear 
regression model can be used to analyze data derived from unbalanced de­
signs. Indicator variables are defined to represent the levels of the factors, 
and interaction variables are then derived from the cross product of the 
nonrelated indicator variables. Since the design is unbalanced, the various 
effects are no longer orthogonal, and hence significance tests must be car-
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FIGURE 8.10. Variation Among Means for Public Safety Data (continued) 

ried out in a conventional manner 88 in regression analysis. A two-factor 
MANOVA model with a covariate is used in this section to illustrate the 
analysis. 

For the bank employee salary data introduced in Table 7.9 of Chapter 7, 
information on two additional variables SEX (0 = male, 1 = female) and 
RACE (0 = white, 1 = nonwhite) was added to the variables LCURRENT, 
LSTART and EDUC to provide an example. The data in Table 7.9 in Chap-



8.1 Multivariate Analysis of Variance 241 

ter 7 is arranged so that observations 1-37 are RACE = 0, SEX = 0; obser­
vations 38-68 are RACE = 0, SEX = 1; observations 69--89 are RACE = 1, 
SEX = 0; and observations 90--100 are RACE = 1 and SEX = 1. Since the 
data is unbalanced (unequal observations in the four sex-race categories), 
a multivariate regression model is used to analyze the data. 

Using effect coding the variables SX and RC are defined by 

SX = 1 
SX = -1 

females 
males 

RC = 1 
RC = -1 

nonwhite 
white. 

Interaction variables SXRC, SXED, RCED and SXRCED are defined as 

SXRC = SX*RC, 
and 

SXED = SX*EDUC, RCED = RC*EDUC 
SXRCED = SX*RC*EDUC. 

Table 8.8 illustrates the results of multivariate tests for various effects. 
Row 1 of the table indicates that at least some of the effects are requiredj 
whereas row 2 shows that at least one of the SEX and RACE effects is 
required. Rows 3 and 4 suggest that the various interactions are not signifi­
cant. Rows 5 and 7 show that the SEX effect is important and rows 6 and 8 
show that the RACE effect is marginal. Row 9 illustrates that the EDUC 
effect is significant. It would appear that the variables SX and EDUC are 
sufficient to explain the variation in LCURRENT and LSTART. The vari­
able RC does add marginally to the variation explained as shown in the 
results of row 6. 

To demonstrate the marginal impact of the various effects on the depen­
dent variables LCURRENT and LSTART, Tables 8.9 and 8.10 show the 
results of a variety of regression models. The p-values for the coefficients 
in the rows of the two tables illustrate that, when the interaction terms 
are present, the SX and RC variables are not significant. The R2 values 
in rows 7 and 9 in both tables illustrate that omission of the sex effect 
reduces R2 considerably. Row 8 of both tables shows that the variation in 
both LCURRENT and LSTART can be explained adequately by the vari­
ables RC, SX and EDUC. In both cases the interactions are not significant 
over and above these main effects. From the coefficients shown in row 8, it 
would appear that average salaries are lower for females and for nonwhites 
even after controlling for the level of education. 

8.1.6 OTHER SOURCES OF INFORMATION 

Additional information on MANOVA can be found in Anderson (1984), 
Seber (1984), Press (1972), Morrison (1976), Johnson and Wiehern (1988) 
and Stevens (1986). 
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TABLE 8.8. Results of Various Multivariate Regression Tests for Effects* 

Wilk's 
Effects SX RC SXRC SXED RCED SXRCED EDUC Lambda F p-Value d.f. 

14 
1. All X X X X X X X 12.088 0.000 and 

182 
12 

2. Sex and Race X X X X X X 6.049 0.000 and 
182 
8 

3. All X X X X 1.283 0.255 and 
InteractioDS 182 

6 
4. Interaction X X X 1.394 0.219 and 
with EDUC 182 

10 
5. Interaction X X X X X 6.973 0.000 and 
plus Sex 182 

10 
6. Interaction X X X X X 1.730 0.077 and 
plus Race 182 

8 
7. Sex Effect X X X X 6.880 0.000 and 

182 
8 

8. Race Effect X X X X 1.520 0.153 and 
182 
8 

9. EDUC Effect X X X X 11.331 0.000 and 
182 

·Crosses show which terms are omitted from the full model for the test. 

8.2 Discriminant Analysis 

H the hypothesis of equality of mean vectors Hop: 1'1 = 1'2 = ... = I'g is 
rejected in MANOVA, it is usually of interest to characterize the differ­
ences among the mean vectors over the 9 groups. Discriminant analysis is 
useful for highlighting such group differences. It can also be used to assist 
in classifying observations whose group membership is unknown. Discrim­
inant analysis can therefore be used both aB a descriptive tool and aB a 
classification tool. We first discuss discriminant analysis aB a descriptive 
device. 
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TABLE 8.9. Relationships Between LSTART and Various Explana.­
tory Variables 

Intercept SX RC SXRC SXED RCED SXRCED EDUC R2 

1 7.977 0.001 0.148 -0.038 -0.014 -0.017 0.000 0.057 0.693 
(0.000) (0.995) (0.257) (0.773) (0.160) (0.090) (0.971) (0.000) 

2 8.016 -0.002 0.167 -0.013 -0.018 0.054 0.688 

(0.000) (0.986) (0.134) (0.106) (0.035) (0.000) 

3 7.824 -0.198 -0.076 -0.032 0.070 0.672 
(0.000) (0.000) (0.006) (0.243) (0.000) 

4 7.913 -0.051 -0.063 -0.010 0.064 0.673 
(0.000) (0.634) (0.023) (0.200) (0.000) 

5 7.940 -0.173 0.130 -0.016 0.060 0.680 
(0.000) (0.000) (0.236) (0.061) (0.000) 

6 7.890 0.011 -0.015 0.067 0.655 
(0.000) (0.915) (0.072) (0.000) 

7 7.956 0.360 -0.033 0.061 0.514 
(0.000) (0.006) (0.002) (0.000) 

8 7.861 -0.186 -0.071 0.068 0.668 
(0.000) (0.000) (0.009) (0.000) 

9 7.786 -0.041 0.077 0.461 
(0.000) (0.225) (0.000) 

lO 7.809 -0.177 0.074 0.643 
(0.000) (0.000) (0.000) 

Example 

The data in Table 8.11 will be analyzed to provide an example of discrimi­
nant analysis as a descriptive too1. The data was obtained from a sample of 
100 avid readers of mystery novels who were asked to respond to a number 
of questions regarding their preferences for style of novel. The responses to 
ten items are shown in Table 8.11. The ten quest ions are also summarized 
in the table. The respondents were asked to rate the importance of each of 
ten characteristics on a scale from 0 to 20. The sex of the respondent and 
the responses to the variable, level of education (high school diploma or 
less, some post high school training, undergraduate university degree and 
advanced university degree) were used to define a classification variable 
SEXED with eight categories. For the four levels of education for males, 
SEXED was coded 1 to 4, and for the four levels of education for females, 
SEXED was coded 5 to 8. The codes for the variable SEXED are also shown 
in Table 8.11. 

For the mystery data in Table 8.11, the MANOVA comparison ofthe ten 
mean vectors across the eight SEXED groups yielded a Wilk's Lambda of 
0.2418 which yields an F-statistic of 1.932. Comparison of the F-statistic 
to an F distribution with 70 and 490.8 degrees of freedom yields a p­
value of 0.0001. We can therefore conclude that the eight mean vectors are 
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TABLE 8.10. Relationships Between LCURRENT and Various Ex­
planatory Variables 

Intercept SX RC SXRC SXED RCED SXRCED EDUC R 2 

1 8.534 --{J.132 0.204 0.001 --{J.006 --{J.021 --{J.003 0.068 0.668 
(0.000) (0.381) (0.177) (0.994) (0.637) (0.077) (0.802) (0.000) 

2 8.558 --{J.159 0.202 --{J.002 --{J.020 0.066 0.663 
(0.000) (0.204) (0.115) (0.807) (0.043) 

3 8.399 --{J.219 --{J.057 --{).041 0.080 0.654 
(0.000) (0.000) (0.065) (0.187) (0.000) 

4 8.444 --{J.213 --{J.051 0.0007 0.077 0.648 
(0.000) (0.087) (0.105) (0.941) 

5 8.545 --{J.188 0.196 --{J.020 0.067 0.663 
(0.000) (0.000) (0.112) (0.043) (0.000) 

6 8.426 --{J.162 --{J.003 0.079 0.638 
(0.000) (0.181) (0.765) (0.000) 

7 8.562 0.446 --{J.038 0.068 0.503 
(0.000) (0.002) (0.001) (0.000) 

8 8.448 --{J.204 --{J.050 0.076 0.648 
(0.000) (0.000) (0.098) (0.000) 

9 8.366 --{).017 0.086 0.445 
(0.000) (0.641) (0.000) 

10 8.411 --{J.197 0.081 0.638 
(0.000) (0.000) (0.000) 

significantly different. The individual mean values for each of the ten items 
are summarized for the eight groups in Table 8.12. This table also provides 
the univariate ANOVA results for each of the items. From this table, we 
can see that item CIO yields the largest difference in means among the 
eight groups whereas item C7 yields the least differences. Five of the ten 
items have univariate F-statistics with p-values less than 0.05. Discriminant 
analysis will now be used to characterize the differences among the eight 
groups. The theory of discriminant analysis is presented first. 

8.2.1 FISHER'S DISCRIMINANT CRITERION AND 
CANONICAL DISCRIMINANT ANALYSIS 

Fisher's Discriminant Criterion 

H the outcome of a MANOVA suggests that the means on the vector x 
differ over the 9 groups, it is valuable to examine the variation over the 
9 groups for linear combinations of x given by y = b' x. In particular we 
might ask if there is a linear combination y that emphasizes the differences 
among the groups with respect to elements of 1'. Since the new variable y 
is a univariate random variable, we may compare the means on y over the 
9 groups J..tyl' J.tY2' ••• ,J.tYg using univariate ANOVA. 
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TABLE 8.11. Mystery Novel Preference Data 

Cl C2 C3 C4 C5 C6 C7 C8 C9 ClO SEXED 

12 6 11 12 12 6 13 16 20 17 7 

19 3 10 3 3 3 11 11 4 11 5 

15 12 15 15 12 14 11 11 12 13 3 

14 4 11 17 10 9 9 20 20 9 8 

12 7 12 12 11 11 11 11 15 13 7 

12 12 18 18 18 5 16 18 11 19 6 

12 12 18 18 18 5 16 18 11 19 6 

12 12 19 19 19 12 12 14 19 12 8 

16 11 18 3 11 10 15 15 20 2 8 

13 7 19 16 13 11 11 18 17 14 1 

11 12 3 6 11 16 14 16 19 15 8 

11 4 10 18 10 10 10 10 18 10 8 

12 8 9 10 9 10 10 17 16 16 7 

12 12 11 11 11 11 11 11 11 11 5 
11 4 17 17 3 4 5 17 18 17 6 

11 411111111111111 11 7 

12 5 13 13 13 12 20 20 12 13 

12 4 18 18 12 11 11 18 18 17 

11 10 20 18 8 20 16 20 17 8 

11 11 14 13 13 12 11 13 14 11 

16 4 15 15 4 7 11 17 17 14 

11 10 18 15 10 13 19 20 18 13 

11 11 17 13 11 12 14 14 18 11 

11 11 17 15 16 11 11 17 14 11 

11 3 18 11 11 11 11 18 11 3 

12 12 12 20 12 20 12 12 12 20 

4 1 20 1 1 10 1 11 1 20 

12 5 13 12 12 12 13 12 13 13 

11 4 10 10 3 9 9 17 17 9 

12 11 19 11 12 19 10 19 11 19 
8 2 12 9 11 3 14 18 18 15 

14 3 3 9 3 10 3 18 13 10 

8 

6 

7 
8 

6 
6 
4 

8 

5 

6 

6 

5 

8 

7 
8 

7 

4 1 8 1 1 1 11 15 20 11 6 

12 9 12 12 13 12 12 13 13 13 8 
11 11 11 11 11 11 11 11 11 14 7 

11 3 11 16 10 11 11 8 18 8 3 

7 3 20 8 10 10 10 12 20 12 7 

12 10 19 19 11 13 10 17 14 10 4 

12 9 12 10 10 11 10 14 15 11 8 

12 1 13 11 2 15 11 17 20 11 7 

18 11 6 11 6 6 11 19 19 19 7 

9 9 4 12 12 11 14 8 14 11 8 

11 6 16 15 10 10 15 18 14 10 8 

16 15 15 15 11 11 11 16 17 16 3 

17 13 16 15 7 13 10 11 15 12 3 

11 12 12 13 13 14 14 14 15 15 6 

11 16 17 14 10 10 10 10 14 10 

13 16 17 11 17 10 9 15 15 8 4 

19 19 19 11 11 4 11 4 4 19 5 

How important are each of the following 
Cl: More than one murder or crime 
C2: Mouthy, obstinate detective 
C3: Powerful Opponents 
C4: Detective gets into impossible 

jam 
C5: Large amounts of money in­

volved in the crime 
C6: Detective is a loner 
C7: Murder by non physical means 

such as poisoning 
C8: Many possible suspects 
C9: Puzzle is "fair play" in that 

elues are given 
C10: Suspects appear to be average 

people 



246 8. MANOVA, Discriminant Analysis and Qualitative Response Models 

TABLE 8.11. Mystery Novel Preference Data (continued) 

01 02 03 04 05 06 07 08 09 010 SEXED 

19 6 12 6 13 13 13 20 20 20 7 
12 12 15 13 13 14 14 14 14 14 7 
19 12 12 12 12 11 11 11 11 11 7 
12 8 15 15 10 11 6 14 15 9 7 
10 11 11 11 8 13 10 13 17 10 8 
11 14 20 1 20 15 12 20 17 1 2 

12 12 19 19 11 11 11 19 11 11 7 
14 2 18 13 7 11 14 19 14 6 4 
11 7 15 14 9 11 16 15 17 16 8 
16 10 15 12 14 9 14 7 9 5 5 
19 19 11 5 12 5 12 18 5 12 2 
11 11 18 15 16 11 13 17 11 10 2 
12 1 10 6 12 11 10 15 7 10 5 
12 4 14 7 3 19 16 18 16 14 7 
11 16 7 6 18 17 3 3 1 3 8 
12 17 17 15 12 14 10 15 16 18 7 
16 5 11 14 11 9 11 13 19 16 7 
11 8 17 9 10 12 12 16 11 18 7 
11 11 12 12 12 12 12 12 12 12 6 
11 3 19 19 3 11 11 19 11 11 6 
11 20 20 19 4 11 11 18 20 20 7 
11 11 19 3 9 9 18 18 18 19 7 
13 8 8 5 7 15 11 14 16 14 5 
11 6 18 10 10 17 3 8 17 8 4 
11 5 11 8 2 14 10 10 10 10 8 
12 15 15 12 12 12 12 15 15 12 7 
18 16 16 16 11 15 15 15 15 10 3 
12 4 11 20 11 19 12 20 19 11 8 
17 17 16 14 4 10 10 18 12 13 4 
12 19 19 12 12 19 12 12 12 13 3 
5 18 0 18 4 11 11 11 19 18 8 

12 2 11 11 10 19 10 19 19 10 8 
15 4 16 15 7 11 11 17 20 16 3 
17 4 16 11 9 11 11 12 11 15 7 
12 19 19 12 12 13 13 13 13 13 7 
11 3 3 3 5 10 15 10 10 15 8 
11 1 17 11 6 11 11 20 11 17 6 
12 3 17 17 11 10 16 18 19 10 8 
12 14 19 12 12 12 12 20 20 8 3 
11 16 16 15 8 6 17 15 3 7 8 
111120201111102020107 
11 1 16 10 10 10 10 14 18 10 6 

11 4 16 11 11 17 10 18 18 20 2 
12 7 9 10 7 9 9 13 14 15 3 
11 1 15 14 10 17 10 19 15 18 8 
11 5 13 7 12 11 10 14 15 13 8 
11 1 6 14 9 10 10 15 10 11 5 
11 3 15 11 7 13 10 10 17 12 3 

9 17 17 15 4 11 4 7 17 15 3 

How important are each of the following 
01: More than one murder or crime 
02: Mouthy, obstinate detective 
03: Powerful Opponents 
04: Detective gets into impossible 

jam 
05: Large amounts of money in­

volved in the crime 
06: Detective is a loner 
07: Murder by non physical means 

such as poi80ning 
08: Many p08sible suspects 
09: Puzzle Is "fair play" in that 

clues are given 
010: Suspects appear to be average 

peopJe 
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TABLE 8.12. Summary of Item Means by Group with Univariate ANOVA 
Statistics 

Group Means 

Variable 1 2 3 4 5 6 7 8 F p-Value 

Cl 11.66 13.00 13.45 12.85 13.50 10.53 12.73 11.11 2.24 0.037 

C2 8.33 12.00 11.27 10.57 6.80 5.84 9.23 7.69 1.73 0.111 

C3 14.33 14.75 15.27 16.71 11.90 15.53 14.46 11.57 2.32 0.031 

C4 13.33 8.00 13.81 13.14 9.20 13.07 11.96 12.11 1.54 0.162 

C5 11.00 14.75 9.09 10.28 10.00 8.07 9.50 10.38 1.57 0.152 

C6 10.00 12.00 12.63 13.14 9.40 9.92 11.92 11.76 1.29 0.261 

C7 11.66 11.75 10.54 10.28 11.20 11.07 11.38 12.15 0.48 0.844 

C8 13.66 18.25 12.72 14.71 12.00 15.92 15.65 14.61 2.26 0.036 

C9 12.66 12.75 16.09 14.57 9.60 14.00 15.50 15.03 2.66 0.014 

ClO 11.66 10.75 12.63 9.71 10.80 15.07 14.23 11.26 2.96 0.007 

To compare the means on y over the 9 groups we require the F ratio 

Fy = (n - g)SSAy/SSWy(g -1), 

where SSAy and SSW y denote the sums of squares among the groups and 
within the groups for the variable y. If Fy is sufficiently large, we reject the 
hypothesis of equality of means J-LYl , J-LY2' ••• , J-Lyg. The sums of squares are 
given by 

SSAy = b' Gb and SSW y = b'Wb, 

and hence 
Fy = (n - g)b'Gb/b'Wb(g -1). 

To determine a variable y that should characterize differences among 
groups, we determine the values of the elements of the vector b that max­
imize Fy. Ignoring the constant (n - g) / (g - 1), we need to determine b to 
maximize the ratio criterion b'Gb/b'Wb. This criterion is usually called 
Fisher's discriminant criterion. Since the solution involves the eigenvalue 
problem the reader may wish to review the theory in Section 3 of the Ap­
pendix. 

An Eigenvalue Problem 

Determination of the vector b that maximizes Fisher's criterion involves 
solving the system of equations given by 

(G - '\W)b = 0 

or equivalently (W-1G - '\I)b = O. 

(8.3) 
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The solution requires the eigenvalues and eigenvectors of the matrix 
W-1G. Denoting the rank ofW-1G by r = min[(g-I),p], the r eigenval­
ues are denoted by "\1, "\2, ... , ..\r in decreasing order of magnitude. The cor­
responding eigenvectors are denoted by b1, b2 , ••• , b r respectively. These 
eigenvectors are mutually orthogonal. 

From (8.3) we can see that the largest eigenvalue..\1 maximizes the ratio 
..\ = b'Gb/b'Wb. Since the eigenvalue/eigenvector solution is only unique 
up to a constant, it is customary to choose b so that b'Wb = 1. This con­
dition is convenient in that ..\ = b'Gb, and hence the eigenvalue measures 
the among group suro of squares for the variable y = b' x. 

Canonical Discriminant Jilunctions 

Corresponding to the r eigenvectors bt. b2 , •.• ,br are the r variables, 
Yl, Y2,···, Yr, which have unit variances since bjWb; = 1, j = 1,2, ... ,r, 
and which are mutually orthogonal. These variables are usually called the 
canonical discriminant functions. 

The suro of squares and cross product matrices for the r canonical dis­
criminant functions are given by 

Gy = B'GB, W y = B'WB and Ty = Gy + W y 

where B is the (p x r) matrix of eigenvectors b1 , b2 , .•. , b r . Since the 
eigenvectors are orthogonal, the matrices W y and Gy are diagonal with 
diagonal elements 1 and ..\;, j = 1,2, ... , r respectively. The total suro of 
squares and cross products matrix T y is therefore diagonal with elements 
(l+..\j), j = 1,2, ... ,r. The sum ofthediagonal elements ofGy is Ej=l"\j 
and hence the ratio ..\j I Ej=l"\j denotes the proportion of among group 
sum of squares accounted for by the discriminant function Y;. 

Inferences for Canonical Discriminant Jilunctions 

Bartlett's Test 
The eigenvalues for the canonical discriminant functions can be related to 
the Wilk's Lambda ratio for MANOVA. For A = IWIIITI it can be shown 
that A-l = nj=l(I+"\j), and hence Bartlett's X2 statistic given in Section 
8.1.1 can be written as 

r 

[n - 1 - (p + g)/2] I)n(1 + ..\;), 
j=1 

which has a X2 distribution with p(g -1) degrees of freedom if Hop is true. 
The test of Hop : 1-'1 = 1-'2 = ... = 1-'9 is equivalent to the test HO:..\1 = 
..\2 = ... = ..\r = o. Rejection of Hop suggests, therefore, that at least one 
of the r eigenvalues, namely "\1, is positive and hence that at least one of 
the discriminant functions will be significant. 
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If Ho is rejected, then, ignoring Al, an approximate test of HOl: A2 = 
... = Ar = 0 can be carried out using the revised test statistic 

r 

[n - 1- (p + g)/2] ~)n(1 + Ai), 
i=2 

which has a X2 distribution with (p - 1)(g - 2) degrees of freedom. If HOl 

is rejected, A2 can be dropped from HOb and a revised test statistic can be 
computed to test Ho2 : As = ... = Ar = O. 

After a rejection of the hypothesis that the first k eigenvaIues are zero, 
the null hypothesis becomes HOk: Ak+l = ... = Ar = 0, which is tested 
using the test statistic 

r 

[n - 1- (p + g)/2] L 1n(1 + Ai)· 
i=(k+l) 

This statistic has a X2 distribution with (p - k)(g - k - 1) d.f. if HOk is 
true. 

An Alternative Test Statistic - F 

As in Section 7.5 the F approximation to the distribution ofWilk's Lambda 
can also be used. A test of HOk is carried out using 

1 AI/1l1c 

F = - k . m2k where IIk = 
AI / 1l1c mlk 

(p - k)2(g - k - 1)2 - 4 

(p - k)2 + (q - k)2 - 5 ' 
Ie 

1 (p - k)(g - k - 1) 
mll" = (p-k)(g-k-l), m2k = IIk[n-l-'2(p+g)]- 2 +1, 

r 

Ak = L 1n(1 + Ai)· 
i=k+l 

In large sampies the statistic has an F distribution with mlk and m2k d.f. 
if HOle is true. 

Interpretation 0/ the Discriminant Analysis Solution 

Given a set of r canonical discriminant functions Yb Y2, ... ,Yr, the func­
tions can be interpreted in two ways. The function coefficients given by the 
eigenvectors b l , b 2 , ••• , b r are the "raw" discriminant function coefficients. 
If the variables were not standardized before the analysis, then the "raw" 
coefficients can be standardized by multiplying by the variable standard 
deviations. The diagonal elements of the matrix W divided by (n - g), 
S = W / (n - g), represent unbiased estimators of the common covariance 
matrix E. Let F denote the diagonal matrix of elements that are the square 
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TABLE 8.13. Standardized Coefficients for First Three Discriminant 
Functions 

Cl C2 C3 C4 C5 C6 C7 C8 C9 ClO 

Yl 0.388 0.436 0.556 0.070 -0.530 0.351 -0.270 -0.323 0.652 0.202 

Y2 0.415 0.487 -0.305 -0.378 0.284 0.299 -0.142 0.080 0.203 -0.592 

Y3 -0.199 0.312 0.122 -0.486 0.406 0.006 -0.343 0.980 -0.059 0.359 

roots of the diagonal elements of S. The standardized coefficients are given 
by b* = Fb. 

The discriminant function usually contains both positive and negative 
coefficients and hence for interpretation purposes it is best to group the 
coefficients into the positive group and the negative group. As in multiple 
regression analysis each coefficient bj should be interpreted as the marginal 
impact of Xj on the function y holding the other variables fixed. 

Interpretation Using Correlations 

An alternative approach to interpretation uses the eorrelation coefficients 
between the canonical discriminant functions and the original variables. In 
this ease the eorrelations measure how the variables relate jointly rather 
than marginally. Thus, given a strong positive correlation between the dis­
criminant funetion y and the variable Xj, we can conelude that the function 
y and Xj tend to move together. 

Regardless of the approach used, it should be noted that like regression 
analysis the coefficients have been determined to maximize the sampie rela­
tionship between the funetions and the groups. Large sampies are required 
therefore to insure the stability of the eoefficients over different sampIes. 

Computer Software 

The ealculations for discriminant analysis required for the examples in this 
section were performed using SAS PROC CANDISC, SAS PROC DIS­
CRIM, SAS PROC STEPDISC and SAS PROC NEIGHBOR. 

Example 

Using Fisher's criterion, a discriminant analysis was carried out for the data 
in Table 8.11. The standardized coefficients for the first three discriminant 
functions are summarized in Table 8.13. The results for the suecessive like­
lihood ratio tests for significance of the eigenvalues is shown in Table 8.14. 
From Table 8.14 the first three discriminant functions have p-values of 
0.000,0.004 and 0.056 respectively. The remaining four discriminant fune­
tions have p-values that exeeed 0.4. 
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TABLE 8.14. Sequential Likelihood Ratio Test for Significance of Discriminant 
Functions 

Likelihood 
Ratio 0.242 0.385 0.542 0.723 0.904 0.984 0.998 

F 1.932 1.649 1.410 1.045 0.500 0.145 0.041 
Numerator d.f. 70 54 40 28 18 10 4 
Denominator d.f. 490.8 432.9 373.5 311.5 246.6 176 89 

rrValue 0.0001 0.0039 0.0560 0.4066 0.9568 0.9990 0.9968 

The first three discriminant functions contrast various groups of vari­
ables. The first discriminant function is given by 

Y1 = O.388C1 + 0.436C2 + O.556C3 + O.351C6 + O.652C9 + O.202ClO 
-O.530C5 - O.270C7 - O.323C8 

with C4 omitted because of the small standardized coefficient. The function 
Y1 contrasts the two sets of variables A and B below: 

A 

more than one murder 
mouthy, obstinate detective 
powerful opponents 
detective is a loner 
clues are given 
suspects are average people 

B 

large amount of money involved 
murder by nonphysical means 
many possible suspects 

The items in Arefleet adesire for complexity with fair clues and a deteetive 
who has eertain eharacteristics. The items in B refleet items that make the 
story more complex or interesting. The discriminant function Y1 therefore 
tends to have a high value when the items in A are more important than 
the elements in B. 

The second and third diseriminant functions are given by 

Y2 = 0.415C1 + 0.487C2 + O.284C5 + O.299C6 + O.203C9 

-O.305C3 - O.378C4 - O.592C10 and 

Y3 O.312C2 + 0.406C5 + O.980C8 + O.359CIO - O.199Cl 

-0.486C4 - O.343C7. 

In Y2 items C7 and C8 with small coefficients were omitted while in Y3 
items C6 and C9 were omitted due to small coefficients. The function Y2 

tends to increase if there is more than one murder , money is involved and if 
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FIGURE 8.11. Variation of Group Means for Two Canonical Discriminant Func­
tions 

many clues are given. }2 also tenels to ineresse if the detective is an unusual 
character. }2 decreases if the erime is diffieult to solve and if the suspects 
are average people. 

The value of Y3 is relatively large partieularly if there are many sus­
pects. Ya will also be relatively large if the detective is mouthy and if large 
amounts of money are involved. On the negative side Y3 tenels to decresse 
if there is more than one murder, if the detective gets into an impossible 
jam, or if the murder is by nonphysieal means. 

Graphical Approach to Group Characterization 

Two-dimensional graphs are useful for relating the eanonieal discriminant 
funetions to the original groups. For each group, the group mean is deter­
mined on each of the diseriminant funetions. For various pairs of discrimi­
nant funetions, the group means ean be plotted to determine the pattern of 
variation of the group means over the two funetions. Figure 8.11 illustrates 
how such a graph may appear for the means of Yl and Y2 over 14 groups 
labeled A through P. 

Having obtained interpretations for Yl and Y2, we can characterize group 
differences with respect to these two dimensions. From the Figure 8.11, it 
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TABLE 8.15. Discriminant Function Means by SEXED Category Group 
Means 

Disc. Function 1 2 3 4 5 6 7 8 

Yl -0.555 -0.860 1.362 0.728 -1.057 -0.139 0.487 -0.587 

Y2 -0.266 1.403 0.299 0.660 0.245 -1.353 -0.068 0.161 

Y3 -0.352 1.909 -0.617 -0.066 -0.734 0.297 0.386 -0.226 

would appear that groups A, M and D tend to have relatively high values of 
Yl whereas groups F, K, L and G have relatively low values of Yl. Similarly, 
Y2 separates J, K and N from E, A, B and G along the dimension Y2. 
Groups P, C and H have middle-of-the-road values along both dimensions. 

Example 

The means on the three discriminant functions over the eight SEXED 
groups can be studied to determine the relationship between the ten vari­
ables and the SEXED categories. The means are summarized in Table 8.15. 
A useful way to examine the relationship is to plot the category means on 
a two-dimensional graph as illustrated in Figure 8.12. The two axes cor­
respond to discriminant functions Y1 and Y2 • From the graph, we can see 
that the eight groups are weH dispersed with respect to the two character­
istics Y1 and Y2 • Some interesting comparisons can be made using the two 
dimensions provided by Y1 and Y2 . 

The two groups defined by SEXED = 2 and SEXED = 6 correspond 
to males and females with some post high school education. The males on 
average tend to have very high values of Y2 whereas the females have very 
low values of Y2 • It would appear that for this education group females had 
a relatively high preference for mysteries characterized by suspects who 
are average people, and detectives who encounter much difficulty. Males on 
the other hand seem to be more concerned with mysteries involving many 
murders, money, a mouthy obstinate detective and lots of clues. 

For males and females with university degrees, the two sexes also seem 
to differ in the same way with respect to Y2 , but the difference is less 
pronounced than above. For SEXED groups 3 and 4 the values of Y2 are 
larger than for SEXED groups 7 and 8. The two different education groups 
can also be compared in this case. It would seem that the two groups 
having the most education have lower values of Y1 than their less educated 
counterparts. Thus group 4 has a lower value of Y1 than group 3, and 
group 8 has a lower value of Y1 than group 7. In addition with the exception 
of groups 2 and 6 the female groups tend to be lower on Y1 than the 
corresponding male groups. 
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FIGURE 8.12. Location of Group Means with Respect to Discriminant Functions 

The interpretation of the remaining graphs in Figure 8.12 is left as an 
exercise for the reader. 

Comparison 0/ Correlation Coefficients and Discriminant Function 
Coefficients 

It is useful to compare the matrix of correlations between the original vari­
ables and the discriminant functions to the matrix of discriminant function 
coefficients. If there is a strong correlation between two of the original vari­
ables, we can expect that for at least some of the discriminant functions the 
coefficients corresponding to the two correlated variables will be similar in 
sign and magnitude. In some situations it is possible for the coefficients to 
be opposite in sign even though the correlation is strongly positive. This is 
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particularly true if there are several significant discriminant functions. This 
result can occur if there are observations that are not consistent with the 
underlying correlation structure and if these observations tend to belong 
to a particular group. 

Effect 0/ Correlation Structure on Discriminant Analysis 

In Figure 8.13 scatterplots are shown indicating various types of relation­
ships between two hypothetical variables Xl and X 2 • In panel (a) the cen­
tres of the four ellipses are positioned in such a way that two orthogonal 
dimensions are required to identify the four points. In this case we might 
expect one discriminant function to have two coefficients of the same sign 
and the second discriminant function to have two coefficients of opposite 
sign. In panel (b) the centres of the four ellipses lie along a line and hence 
a single discriminant function with the same sign coefficients would be suf­
ficient. 

Panels (c) and (d) are designed to shown the impact of outliers on the 
discriminant function coefficients. In panel (c) there are a small number 
of outliers that are not consistent with the overall correlation structure. If 
the points to the left of the ellipse all belong to a particular group and the 
points to the right all belong to another group, a discriminant function can 
be based on the contrast between X2 and Xl' In panel (d) the outliers are 
responsible for a strong correlation between Xl and X 2 • If these outliers 
are ignored, the correlation between Xl and X2 disappears. If the outliers 
belong to two groups such that the high values are in one group and the 
low values in another group, we would expect one discriminant function 
to show coefficents of the same size and sign for Xl and X 2 , whereas the 
remaining discriminant function coefficients for Xl and X2 would tend to 
reßect a zero correlation between Xl and X 2 • 

Discriminant Analysis and Canonical Correlation 

We have already indicated that MANOVA can be viewed as a special case 
of multivariate regression with dummy type explanatory variables. In a 
similar fashion, discriminant analysis can be viewed as a special case of 
canonical correlation. If dummy variables are defined for the groups say 
Dl, D2,"" Dg-t. the canonical correlation analysis between the X vari­
ables and the dummy variables is equivalent to the discriminant analysis 
obtained by the Fisher criterion. The canonical correlations are given by 
>"j / (1 + >"j) for the eigenvalues >"j, j = 1, 2, ... , r, from discriminant anal­
ysis. This relationship between the Fisher criterion discriminant analysis 
and canonical correlation led to the term canonical discriminant function 
introduced earlier. 
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FIGURE 8.13. Some Bivariate Populations 

Discriminant Analysis and Dimension Reduction 

We have already introduced an inference procedure for selecting a subset of 
"significant" diseriminant funetions from the total of r available. Retaining 
only those, say /, significant functions, it is of interest to determine if they 
ean be used to correctly classify the n individuals into the 9 groups. To 
claBsify the n observations using the / discriminant funetions, a useful rule 
is to place an individual in the group that is closest aB meaBured by the 
Mahalanobis distance from the individual to the group mean. Since the 
functions have variance 1 and are mutually uncorrelated, these distanees 
are also Euclidean distances. To ev&luate the quality of such a diseriminant 
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procedure the proportion of observations misclassified by this approach 
can be determined. The proportion misclassified can be compa.red to what 
might be misclassified just by chance using random allocation. 

To place observation i, let Yi1, Yi2, ... , Yi/ denote the values ofthe canon­
ical discriminant functions. Since the discriminant functions are mutually 
uncorrelated, the Euclidean distance from individual i to group k is given 
by 

/ / 
6~k = ~)Yi; - y~»2 = ~)bj(Xi - Xk)]2 

;=1 ;=1 

where Y~) is the mean of discriminant function Y; for group k. Thus if 
6lm = mink 6lk , then observation i is closest to group m. If all r discriminant 
functions are used, the distance 6lk can also be written as the Mahalanobis 
distance between Xi and the mean for group k, Xk, given by 

Note that this allocation method does not employ any assumptions about 
prior probabilities on group membership. The use of discriminant analysis 
to classify objects is discussed in the next section. 

Example 

Table 8.16 shows the Mahalanobis distance among the eight groups based 
on all seven discriminant functions. The distances are given to the right 
of the main diagonal. The Jrvalues associated with Hotelling's T2 test of 
equality of means are shown to the left of the main diagonal. Group 1 seems 
to represent a middle-of-the-road group in that its Mahalanobis distance 
from all other groups is not significant. Groups 2, 5 and 6 are signmcantly 
different from all other groups except group 1. An examination of the data 
matrix reveals that there are only two observations for group 1. This re­
sults in some difficulty in discriminating between group 1 and the remaining 
groups. Comparing the male groups to the corresponding female groups at 
the same education level, it would appear that groups 2 and 6 are sig­
nificantly different (p = 0.003) but that groups 3 and 7 (p = 0.193) and 
groups 4 and 8 (p = 0.102) are less so. 

For groups with university degrees a comparison of groups 3 and 4 shows 
a Jrvalue of 0.783 whereas a comparison of groups 7 and 8 yields a Jr 
value of 0.010. Comparing group 7 to groups 3 and 4 yields Jrvalues of 
0.193 and 0.459 respectively. For the four groups with university degrees 
it would appear that the females with advanced degrees are different from 
the remaining three groups. 

The use of discriminant analysis to classify unknowns and the use of 
prior probabilities is discussed in the next section. 
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TABLE 8.16. Mahalanobis Distances Between Groups (upper 
right) and Associated F-Test p-Values (lower left) 

1 2 3 4 5 6 7 8 

1 2.870 2.099 1.786 1.429 1.434 1.560 1.125 
2 0.258 3.562 2.747 2.987 3.287 2.584 2.711 
3 0.504 0.001 1.280 2.615 2.433 1.419 2.124 
4 0.806 0.087 0.783 2.333 2.298 1.410 1.832 
5 0.931 0.020 0.002 0.041 2.318 2.159 1.820 
6 0.916 0.003 0.002 0.028 0.006 1.534 1.868 
7 0.817 0.034 0.193 0.459 0.003 0.066 1.478 
8 0.978 0.020 0.002 0.102 0.029 0.006 0.010 

8.2.2 DISCRIMINANT FUNCTIONS AND CLASSIFICATION 

Our discussion of discriminant analysis has thus far been concerned with 
its use as a descriptive device in characterizing differences among groups 
with respect to a vector of p random variables x. An alternative use for 
discriminant analysis is in the classification of an observation of unknown 
origin into one of several possible groups. 

For example, a banker measures a number of variables in order to decide 
whether a client should be given a loan. On the basis of the observations the 
banker classifies the client as either a safe loan prospect or not. A doctor 
observes the results of severallaboratory tests on a patient and then decides 
whether or not the patient requires surgery for the detection and removal 
of cancer. 

Discriminant analysis can be used to develop decision criteria for the aB­

signment of unknowns to one of several possible groups. The determination 
of the discriminant criterion requires that the function either be known or 
estimated on the basis of a prior sampie of "knowns". Initially, we assume 
that the population group mean vectors and covariance matrices are known. 
Our concern here is in using this information to classify unknowns. We be­
gin with a discussion of the two group problem with known parameters. 

Discrimination Between Two G-roups With Pammeters Known 

Assume that the population is divided into two groups and that the dis­
tributions of the random variable x in the two groups are N(JJ.1' E) and 
N(JJ.2' E) respectively. For two groups the Fisher discriminant criterion is 
equivalent to 

max[b' 1.1.1 - b' 1.1.2]2 /b' Eb. 
b 

In this case the solution vector b is given by 
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where k is an arbitrary constant. Using the condition b' Xb = 1 employed 
earlier in this section, the constant k is given by 

k = [(#.1.1 - 1'2)' X- 1(I'1 - I'2)t 1/2. 

The discriminant function is therefore given by 

x'b = x' X-I (1'1 - 1'2)/ [(1'1 - 1'2)' x-1(I'1 - 1'2)] 1/2. 

The means of the discriminant functions in the two groups are given by 

and 
I'~b=I'~X-l(I'I-I'2)/[(I'I-I'2)'X-l(I'I-I'2)]1/2 

respectively. 

Classijication 01 an Unknown 

Given an observation x whose group membership is unknown, an approach 
to dassification would be to place x in the dosest group. The midpoint 
between b' 1'1 and b' 1'2 is 

c (b' 1'1 + b' 1'2)/2 

= ~(I'1 +I'2)X-1(I'1 -I'2)/[(I'I-I'2)'X-1(I'I-I'2)]1/2. 

Since from the definition of b, (b' 1'1 - b' 1'2) = [(1'1 - 1'2)' X- 1(I'1 -
1'2)]1/2 > 0, b' 1'1 must be greater than b' 1'2' Therefore we would place x 
in group 1 if b' x > c. Thus the discriminant criterion becomes 

if x' E-1(I'1 - 1'2) > 1/2(1'1 + 1'2)' E-1(I'1 -1-'2)' then x in group 1 
and 
if x' E-1(I'1 - 1'2) < 1/2(1'1 + 1'2)' E- 1(I'1 - 1'2)' then x in group 2. 

Fisher Griterion and Mahalanobis Distance 

The difIerence between the means on the discriminant function for the two 
groups is 

(b' 1'1 - b' 1'2) = [(1'1 - 1'2)' X-I (1'1 - I'2)Jl/2, 

which is the Mahalanobis distance between the two groups. Thus, using 
the Fisher criterion, an observation whose group membership is unknown 
is placed in the group whose Mahalanobis distance from the observation 
is smallest. It can be shown that under the assumption of multivariate 
normality with common covariance matrix, this criterion is equivalent to 
the criterion that assigns x to group 1 if !t (x)/ h(x) > 1 and otherwise 
to group 2 where !t (x) and h(x) are the multivariate normal densities for 
groups 1 and 2 respectively. 
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FIGURE 8.14. Discriminant Function for Bivariate Normal- Two Groups 

Example 

A numerical example with two variables is useful for showing the discrim­
inant function solution graphically. For the two populations assume 

~ = [1 0.5] 
~ 0.5 1 . 

The discriminant function Y = kx' E-I(p.l - 1'2) is obtained from 

yielding Y = k[2XI - 2X2]. Figure 8.14 shows confidence ellipsoids for the 
two populations as weH as the discriminant function Y. The value of Y at 
the group 1 centroid is J.tYl = 2k and at the group 2 centroid J.tY2 = -2k. 
The midpoint between the two centroids is therefore Y = O. We therefore 
choose group 1 if Y > 0 and group 2 if Y < O. The discriminant function 
contrasts the observations on Xl and X2. If Xl is large relative to X2 then 
the observation is more likely to be from group I, whereas if Xl is small 
relative to X 2 the observation is more likely to be from group 2. 
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Maximum Likelihood Criterion 

An alternative criterion for allocating x to one of two groups is the max­
imum likelihood criterion. The likelihood function for x is determined for 
each group assuming 1-'1,1-'2 and E are known. The unclassified observation 
is then assigned to the group with the larger of the two likelihoods. Under 
the assumption of multivariate normality with common covariance matrix, 
this criterion is equivalent to the Fisher criterion outlined above. 

Minimum Total Probability 0/ Misclassification Criterion 

Both the Fisher and maximum likelihood criteria assume no prior informa­
tion about the distribution of the population between the two groups. A 
useful criterion for choosing between two groups is to minimize the over­
all probability of misclassification. Suppose that PI and P2 = (1 - PI) are 
known to be the proportions of the population that are in groups 1 and 2 
respectively and let !t(x) and h(x) denote the respective densities. The 
minimum total probability of misclassification criterion assigns x to group 1 
if !t (x) / h (x) > P2 / PI. Under multivariate normality with common covari­
ance matrix this criterion becomes assign x to group 1 if 

If the priors are equal, P2 = PI, this classification criterion is equivalent to 
both the Fisher and maximum likelihood criteria. 

Bayes Theorem Criterion 

Bayes theorem can also be used to obtain a classification criterion. Let PI 
and (1- PI) = P2 denote the prior probabilities for group membership. Let 
h(x) and h(x) denote the densities for the two groups. The probabilities 
(posterior) for membership in the two groups are given by 

P[Group 11 x] = Pl!t(X)/[Pl!t(X) + P2h(x)] and 

P[Group 21 x] = P2h(x)/[Pdl(X) + P2h(x)], 

and x is assigned to the group with the maximum posterior probability. 
Therefore, x is assigned to group 1 if !t(x)/h(x) > P2/Pl. Assigning an 
observation on the basis of the larger of the two posterior probabilities is 
therefore equivalent to the minimum total probability of misclassification 
rule given above. 

Minimax Criterion 

In classification we may be concerned with the probability of misclassifica­
tion for a group which has low probability (e.g., a rare disease). Minimizing 
the total probability of misclassification approach may not be ideal in the 
case of such a rare group. An alternative rule is the minimax criterion which 
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minimizes the maximum probability of misclassification. In the case of nor­
mal distributions with common covariance matrix, this rule is equivalent to 
the maximum likelihood criterion and hence also to the Fisher discriminant 
criterion. Given x, assign it to group 1 if ft(x)/ h(x) > 1; otherwise, assign 
it to group 2. 

Minimum Cost Criterion 

In some instances the costs of misclassification are not equal for both errors. 
In this case a minimum total cost of misclassification criterion is in order. 
This criterion results in the rule "assign x to group 1" if 

where W2 = C2P2/[ClPl + C2P2], Wl = ClPt![ClPl + C2P2], Cl = cost of 
misclassifying a unit of group 1 and C2 = cost of misclassifying a unit of 
group 2. This criterion can be stated as assign x to group 1 if ft(x)/ h(x) > 
C2P2/ClPl otherwise to group 2. Notice that the cost factors result in an 
adjustment to the effective priors for the two groups. 

Summary 

Ignoring costs, we can conclude from the above outline of discriminant 
criteria that there are two different approaches to classification. One ap­
proach does not involve prior probabilities of group membership and the 
other does. The approach that is based on knowledge of priors is equivalent 
to the approach that does not use priors when the two prior probabilities 
are equal. 

In summary, we may say that the discriminant criteria are based on a 
comparison of the two quantities 

for group 1 and 
(8.4) 

for group 2. 

The observation x is classified into the group corresponding to the largest of 
the two quantities. The Fisher and maximum likelihood criteria employ the 
assumption that the priors are equal. If the costs Cl and C2 are unequal, 
the priors Pl and P2 in the above expressions are replaced by ClPl and 
C2P2. Equivalently, the classification of the unknown x is based on the ratio 
ft(x)/ h(x).1f ft (x)/ h(x) > C2P2/CIPI, then assign x to group 10therwise 
to group 2. 

Quadratic Discriminant F'unction and Unequal Covariance Matrices 

Under the normality assumption, if the covariance matrices are not equal, 
EI =I E 2 , the optimal classification rule is the quadratic discriminant 
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function 
Q(x) > InP2/p!, 

where 

Q(x) = ~ In(IE21/ll~'t1) - ~(x - I-'d E 11(x - 1-'1) 

+~(x - 1-'2)' E2'I(X - 1-'2)' 

An unknown is classified into group 1 if ~x' E 11x + x' E 111-'1 + In IE11-
InP1 exceeds ~x' E2'lx + x' E2'l 1-'2 + In IE21-InP2. This function is called 
quadratic because ofthe terms in x' E 11x and x' E2'lx which are quadratic 
forms in x. 

Classijication in Practice 

The above outline of classification procedures presumes that the distribu­
tions are multivariate normal with known parameters 1-'1' 1-'2 and known 
common covariance matrix E. The prior probabilities of group member­
ship are also assumed known in some cases. In practice the true parameters 
are rarely known and hence are usually replaced by the conventional unbi­
ased estimators, x.!, X.2 and S. The sampie versions of (8.4) are then used 
for classification. 

In some applications the assumption of multivariate normality is not ten­
able. The discriminant criteria outlined above do not generally perform weH 
in the absence of normality. For discrete data in small sampies, however, 
the discriminant criteria perform as weH or better than methods based on 
various discrete distributions. For continuous data, transformations to nor­
mality do not in general result in improved classification error rates and in 
some cases the error rates are larger than for the nontransformed data. One 
important reason for the poor performance of the transformation approach 
is that the covariance matrices rarely remain equal. 

In the case of unequal covariance matrices the use of the quadratic 
discriminant criterion is not robust to departures from normality. The 
quadratic function is particularly usesful when the covariance matrices are 
radically different and when sampie sizes are large. In the case of small 
differences among covariance matrices the usual linear function is satisfac­
tory. 

Evaluation 0/ a Discriminant Function as a Classijication Mechanism 

The usefulness of a discriminant function as a classification tool can be 
assessed by estimating the error rate or misclassification probability. The 
sampie discriminant function can be used to determine the apparent er­
ror rate, which is the fraction of the sampie observations that would be 
misclassified by the sampie discriminant function. The number of observa­
tions correctly classified for each group is usually reported in a confusion 
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matrix. Figure 8.15 gives the eonfusion matrix for a two group case that 
illustrates the caleulation. The probability of misclassifieation for the sam­
pIe is (n12 + n2t}/n. For eonfusion matriees determined from the same 
sampie data used to estimate the discriminant eriterion, the apparent error 
rate tends to underestimate the true error rate. The data used to evaluate 
the discriminant eriterion should not be the same data that was used to 
estimate the eriterion. 

Split Sample 

An alternative estimate of the error rate ean be determined by splitting the 
sampie into two parts. The first part of the sampie is used to estimate the 
diseriminant funetion which is then applied to dassify the second part of 
the data. The proportion of misclassified observations for the second part 
provides an estimate of the error rate. The two roles ean then be reversed 
by using the seeond part to prediet the first part. This technique requires 
a !arge sampie in order that the two subsamples be representative of the 
entire sampie. 

Jackknije Procedure 

A more labor-intensive technique is to use a jackknife proeedure that re­
moves only one observation and uses the remaining (n - 1) observations to 
determine the diseriminant funetion. The estimated discriminant function 
is then used to elassify the omitted observation. This process is repeated 
(n - 1) times so that each observation is left out onee. The misclassifiea­
tion error rate obtained from tbis proeess is a nearly unbiased estimate of 
the expected error rate from sampies with nl and n2 observations from 
groups 1 and 2 respectively. 

Example 

In this example the shape of the yield eurve for interest rates is related 
to a set of macroeconomie variables. At any given point in time, the term 
strueture of interest rates is described by a yield eurve that shows tbe 
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relationship between yield to maturity on the vertical weis and term to 
maturity on the horizontal axis. In most periods, the yield curve is upward 
sloping indicating that yield to maturity increases with increases in the 
term to maturity of the debt instrument. Occasionally the yield curve is 
humped or downward sloping. A humped or downward sloping yield curve 
is an indication that future interest rates are expected to fall, which is 
believed to be an indication of a recession or a decline in economic growth. 
The shape of the yield curve therefore should be related to other economic 
variables. In this example the slope of the yield curve will be related to 
several economic variables using a discriminant analysis. 

For the eighty quarters from Q3 1968 to Q2 1988, the yield curve was 
determined for Canadian government bonds using the yields on T-bills, 1-
3 year bonds, 3-5 year bonds, 5-10 year bonds, and bonds whose maturity 
is greater than 10 years. For the 80 yield curves, 44 were elassified as upward 
sloping, 34 were elassified as humped, and 2 were elassified as downward 
sloping. For this analysis two groups will be defined: upward sloping and 
non-upward sloping. 

The quantities unemployment rate (UNEMPLR), unemployment rate for 
males in the age group 25-54 (UNEMPLRM), gross domestic product in 
1981 prices (GOP), Bank of Canada rate (BANKRT), industrial capacity 
utilization (CAPUTIL), and gross business investment in 1981 prices (BUS­
INV) were used as explanatory variables. The data was obtained from the 
CANSIM data tape produced by Statistics Canada. Monthly figures were 
averaged over three months to get quarterly data. The data is displayed in 
Table 8.17. 

A random selection of 65 of the 80 observations was used to obtain a 
discriminant function under the assumption of equal priors. Table 8.17 in­
dicates which observations were used for estimation. The 65 observations 
used for estimation are dassified as prediction dass 1, and the 15 observa­
tions used for the holdout sampie are elassified as prediction elass 2. 

The discriminant function has an eigenvalue of 0.71294, a canonical cor­
relation of 0.645, and a Wilk's Lambda value of 0.584 with 6 d.f. The 
discriminant function has a p-value of less than 0.000. The discriminant 
function with standardized coefficients is given by 

Y = 5.81 UNEMPLR + 3.41 BUSINV + 1.54 CAPUTIL 

-0.83 BANKRT - 3.72 UNEMPLRM - 3.76 GOP. 

The discriminant function if evaluated at the group means has the value 
0.75 for upward-sloping yield curves and -0.93 for non-upward-sloping yield 
curves. From the coefficients in Y we can conelude that the yield curve tends 
to be upward sloping when the unemployment rate for males is low relative 
to the overall unemployment rate and when the level of business investment 
and capacity utilization are relatively high. In addition, an upward sloping 
curve is more likely when the bank rate is relatively low and when GOP is 
relatively low. 
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TABLE 8.17. Yield Curve Data 

Yield 
Prediction Curve CAP- BUS-

Class Class BANKRT UNEMPLR UNEMPLRM UTIL GDP INV 

1 2 6.33 4.53 3.10 88.90 205088 8592 
1 6.17 4.47 3.20 89.60 209076 8768 
1 2 6.67 4.27 2.93 90.50 210604 9228 
1 2 7.17 4.37 3.03 89.60 211748 9288 
1 2 8.00 4.40 3.07 88.30 214584 9520 

1 2 8.00 4.60 3.13 88.20 218848 9740 
2 2 8.00 4.87 3.37 88.80 218504 9696 
1 2 7.50 5.77 4.07 85.20 217400 9588 
1 6.83 6.17 4.23 84.70 221176 9880 
1 6.17 6.10 4.17 85.40 220912 9464 
1 5.50 6.23 4.20 83.40 222884 9380 
2 5.25 6.27 4.23 83.30 229796 9784 

1 5.25 6.10 4.07 85.10 236684 9996 

2 4.75 6.13 4.03 85.30 239184 10536 

2 4.75 5.97 3.77 86.30 238420 10600 

2 4.75 6.07 3.93 87.80 244928 1076 ... 

1 1 4.75 6.37 4.20 88.70 245864 10700 

4.75 6.47 4.13 92.00 252552 10776 

1 4.75 5.87 3.57 94.40 260360 12052 
5.75 5.40 3.17 95.60 262716 12604 
6.75 5.40 3.23 94.50 263604 13328 

1 1 7.25 5.53 3.27 94.50 270796 14352 

1 1 7.25 5.23 3.30 94.90 273488 14700 

1 1 8.58 5.20 3.17 93.20 275072 14436 
2 2 9.25 5.27 2.90 90.90 276736 14452 
1 2 8.92 5.67 3.47 87.30 278728 14572 
1 2 8.25 6.70 4.30 83.10 278432 15172 

1 8.25 6.83 4.13 80.00 281048 15428 
8.50 7.00 4.23 81.50 285228 15772 
9.00 7.13 4.40 80.90 288040 14984 

2 2 9.17 6.87 4.17 81.90 294624 15344 

1 2 9.50 6.97 4.20 84.60 301344 16120 
2 9.50 7.20 4.30 84.10 303416 15736 

1 2 9.00 7.43 4.77 84.40 303168 16732 
2 2 8.17 7.90 4.93 85.60 308204 16508 
2 2 7.67 7.90 5.00 85.40 309360 15716 

1 7.50 8.23 5.00 84.80 311344 16252 
7.50 8.40 4.97 84.70 317108 15696 

7.67 8.40 5.23 83.40 320172 15968 

8.50 8.43 5.40 83.30 324836 17092 

To evaluate the discriminant function as a predictor of yield curve type, 
the function Y was determined for all 65 observations used to estimate 
the function. Using the estimated function, 30 of the 36 upward-sloping 
curves were predicted, while for the non-upward-sloping curves 23 of 29 
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TABLE 8.17. Yield Curve Data (continued) 

Yield 
Prediction Curve CAP- GDP BUS-

Clus Clus BANKRT Ui-lEMPLR UNEMPLRM UTIL GDP INV 

1 2 9.17 8.43 5.37 83.10 327040 17928 
1 2 10.58 8.10 5.03 86.30 330956 18396 

1 1 11.25 7.87 4.93 88.10 334800 18768 
2 1 11.25 7.57 4.63 89.30 336708 19044 
1 2 11.92 7.10 4.30 89.90 340096 21036 
1 1 14.00 7.20 4.43 87.30 341844 21768 

2 2 14.26 7.53 4.93 85.10 342776 22552 

1 2 12.72 7.70 4.97 80.70 342264 23232 

1 2 10.55 7.40 4.93 79.50 340716 25484 

1 2 14.03 7.17 4.80 80.80 347780 26544 
2 16.91 7.23 4.57 79.90 354836 28088 

1 2 18.51 7.13 4.70 80.90 359352 29452 
1 2 20.18 7.47 5.13 78.40 356152 29264 

2 2 16.12 8.33 5.73 75.60 353636 28676 

1 2 14.86 8.83 6.33 73.00 349568 26952 
1 2 15.74 10.43 7.83 69.60 345284 24964 
1 2 14.35 12.00 9.33 68.20 343028 23896 
1 2 10.89 12.63 10.53 67.60 340292 23528 
1 2 9.55 12.57 10.33 69.50 346072 23176 
2 1 9.42 12.20 9.87 72.10 353860 23116 
2 1 9.53 11.50 9.23 75.30 359544 24028 

1 1 9.71 11.07 8.87 77.50 362304 24928 
1 1 10.26 11.27 9.47 79.20 368280 25072 
1 1 11.47 11.40 9.47 82.40 376768 24868 
1 2 12.64 11.17 9.17 83.50 381016 25156 
1 1 10.88 11.07 9.07 83.90 385396 25404 
1 1 10.60 11.00 9.17 85.20 390240 26860 
1 1 9.64 10.57 8.50 85.70 391580 27704 
1 1 9.27 10.17 8.10 86.40 396384 28968 
1 1 9.08 10.10 8.00 87.10 405308 29296 
1 2 10.87 9.63 7.57 85.90 405680 30524 
1 2 8.85 9.53 7.77 84.50 408116 31544 
1 2 8.61 9.53 7.80 82.80 409160 31700 
1 1 8.53 9.40 7.73 82.90 409616 32720 
1 1 7.49 9.50 7.70 84.10 416484 33676 
1 1 8.46 9.03 7.27 84.70 422916 35524 
2 1 9.19 8.67 7.00 86.40 429980 37536 
1 1 8.47 8.13 6.47 87.50 436264 40764 
1 1 8.66 7.83 6.10 87.60 440592 42412 
1 9.21 7.67 6.07 88.00 446680 45668 

were correctly predicted. The overall success rate was therefore 81.5%. For 
the holdout sampie of 15 observations the function correctly predicted all 
eight upward sloping curves and in addition correctly predicted five of the 
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seven non-upward sloping curves. The success rate for the holdout sampie 
was 86.7%. 

Multiple Group Classijication 

The general criterion (8.4) used to compare two groups can be easily ex­
tended to the case of g groups. For a given observation x the criterion 

E ' ~-1 1, ~-1 In (8 ) 
Ie = X ~ Pie - 2PIe~ Pie + Pie .5 

is computed for all groups k = 1,2, ... , g. The observation x is then 
classified into the group m corresponding to the maximum value of Eie, 
Em = maxEIe . Since in practice the values of Pie and E are usually un-

Ie 
known, these parameters are replaced by the sample mean vector Xle and 
the within group covariance matrix 8 = W /(n - g). The prior proba­
bilities Pl,P2, ... ,Pg can be replaced by the observed proportions nle/n, 
k = 1,2, ... ,g. 

AB in the case of two groups, the Fisher criterion assumes that the priors 
are equal and hence the classification is based on a comparison of 

k = 1,2, ... ,go 

This criterion is equivalent to a comparison of the squared Mahalanobis 
distances from x to Pie 

d2 = (x - pSE-1(x - P/c)' k = 1,2, ... ,go 

The Fisher criterion is also equivalent to the criterion that uses the r 
canonical discriminant functions and places x in the group whose centroid 
(b~Pl' b~P2" .. , b~Pr) is closest to the discriminant function value of the 
observation (b~x, b~x, ... , b~x). 

Bias When Parameters Are Unknown 

The optimal classification rule for unknown x assumes that E and Iloj' 
j = 1,2, ... ,g, are known. If Pj and E are replaced by the estimators 
8 and Xj, j = 1,2, ... ,g, then the misclassification probabilities are no 
longer minimized. One approach to obtaining improved classification results 
is to replace 8-1 by [8 + kI]-1 in the classification rule. The value of the 
constant k can be determined from the calibration sample using a trial and 
error process. The value of k that minimizes the number of misclassified 
observations is chosen. Alternatively, the optimum k can be determined 
using a jackknife procedure by omitting one observation at a time and 
using the remaining observations to determine 8 and Xj. The range of 
optimum values of k can then be used to determine an average k value. An 
alternative rule to choosing k to minimize the misclassification error is to 
choose k in a range where the discriminant coefficients are stable. 
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Example 

An application of discriminant analysis that has been used frequently is 
the classification of corporate bonds into various bond rating categories. 
Bond ratings have an impact on the cost of borrowing and on the com­
pany's ability to borrow. Bond ratings are used by investors as measures 
of the financial health of the corporation. Various financial ratios deter­
mined from corporate annual reports are often used to help determine a 
company's bond rating. A sampie of 95 companies was selected from the 
COMPUSTAT financial data tapes. For ea.ch company selected, the 1979 
value for the financial ratios listed below were obtained. To obtain variables 
whose distributions were more normal-like, the logarithmic transformation 
was used in all but one case. Only the variable LTDCAP did not require the 
transformation. The bond ratings were obtained from Moody's Bond Rat­
ings (June 1980). The data is summarized in Table 8.18. The ten variables 
are labeled as follows: 

OPMAR= 
FIXCHAR= 
LTDCAP = 
GEARRAT= 
LEVER = 
CASHLTD = 
ACIDRAT = 
CURRAT= 

operating margin 
pretax fixed charge coverage 
long-term debt to capitalization 
totallong-term debtftotal equity 
leverage 
cashflow to long-term debt 
acid test ratio 
current assets to current liabilities 

RECTURN = receivable turnover 
ASSLTD = net tangible assets to long-term debt. 

The data shown in Table 8.18 is the transformed data and hence the vari­
able names begin with 'L'. 

The bond rating data in Table 8.18 will be used to provide an example 
of discriminant analysis as a classification technique. To provide a hold out 
sampie of unknowns, the last two observations in ea.ch rating category (14 in 
total) were omitted from the determination of the discriminant functions. 
For the remaining 81 observations, the sequential F-test applied to the 
six discriminant functions showed the first three to be significant at the 
0.10 level. The Mahalanobis distances between classes and the associated 
F statistic p-values are summarized in Table 8.19. Table 8.20 contains the 
standardized discriminant function coeflicients. These functions are left to 
the reader for interpretation. 

An examination of the Mahalanobis distances (upper right) and their 
p-values (lower left) in Table 8.19 gives some indication of how different 
the seven ratings are with respect to the ten financial ratios. In general 
the distances are consistent with the order of the ratings. It would appear 
that ratings B and C are definitely below the other five ratings. For the 
first five ratings, adjacent ratings are not generally significantly different. 
It may therefore be very difficult to classify companies precisely. 
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TABLE 8.19. Mahalanobis Distance Between Bond Rating Classes 
(upper right) and Associated F Statistic p-Values (lower left) 

AAA AA A BAA BA B C 

AAA 1.6570 1.9551 2.0331 1.9017 3.2990 3.4616 

AA 0.2589 1.2275 1.6030 1.4460 3.0064 3.4564 

A 0.0934 0.6052 1.5188 1.3717 2.6035 2.6932 

BAA 0.0565 0.1722 0.2691 1.8749 3.1254 3.4425 

BA 0.1024 0.3117 0.4278 0.0467 2.5443 2.8917 
B 0.0001 0.0001 0.0012 0.0001 0.0013 1.6181 

C 0.0001 0.0001 0.0005 0.0001 0.0002 0.3047 

TABLE 8.20. Standardized Discriminant F\mction Coeffi-
cients for Bond Data 

Standardized Coeflicients 
Variable 01 02 03 04 05 06 

LOPMAR 0.41 1.60 0.56 0.60 -0.01 -0.56 
LFIXCHAR -0.25 0.73 -1.51 -0.09 -0.40 0.32 
LGEARRAT -1.40 8.98 -2.26 20.48 12.87 -5.69 
LTOCAP -3.76 -2.14 -0.26 -4.10 0.10 3.07 
LLEVER 2.15 -1.87 1.94 -5.76 -5.12 1.81 
LCASHLTO 0.55 -2.46 0.44 -0.99 1.58 1.41 
LACIDRAT 0.10 1.11 0.21 -0.05 0.16 -0.31 
LCURRAT 0.53 -0.53 0.31 0.40 -0.71 0.87 
LRECTURN 0.60 1.20 0.33 0.42 0.35 -0.47 
LASSLTO -2.58 7.15 -0.28 12.77 7.97 -2.68 

For the 81 observations used in the discriminant analysis, the observa.­
tions were classified using the criterion given by (8.5) using equal priors. 
This classification is equivalent to using the Mahalanobis distances. The 
confusion matrix for this classification is shown in Table 8.21. The propor­
tion ofmisclassified observations is 30/81 = 0.37. Using priors proportional 
to the group sample sizes yields an almost identical result since in this case 
the group sample sizes were almost identical. An examination of Table 8.21 
reveals that the proportion 15/81 = 0.185 ofthe observations were misclas­
sified outside a category adja.cent to the correct category. 

The discriminant functions determined above were used to classify the 
holdout sample of 14 companies. The results of this classification for the 
equal prior assumption are shown in Table 8.22. Of the 14 observations, 
9 were classified incorrectly. Using random allocation under equal priors, 
we would expect 12 of the 14 observations to be classified incorrectly. It is 
interesting to determine from Table 8.22 the frequency of misclassification 
beyond one rating class from the correct class. In this case only 5 of the 14 



274 8. MANOVA, Discriminant Analysis and Qualitative Response Models 

TABLE 8.21. Confusion Matrix for Training Sampie 

Predicted Rating 
Actual Rating AAA AA A BAA BA B C Total 

AAA 5 2 0 1 0 1 0 9 
AA 1 7 1 2 2 0 0 13 
A 0 3 6 2 1 0 0 12 
BAA 0 1 0 11 1 0 0 13 
BA 2 0 2 8 0 0 13 
B 1 0 0 0 1 8 1 11 
C 0 0 2 1 0 6 10 

Total 9 14 9 19 13 10 7 81 

TABLE 8.22. Confusion Matrix for Holdout Sampie 

Predicted Rating 
Actual Rating AAA AA A BAA BA B C Total 

AAA 0 1 0 0 1 0 0 2 
AA 1 0 1 0 0 0 0 2 
A 0 0 2 0 0 0 0 2 
BAA 0 0 0 0 1 0 2 
BA 0 0 0 0 2 0 0 2 
B 0 0 1 1 0 0 0 2 

C 0 0 1 0 0 0 1 2 

Total 1 5 4 0 2 14 

companies were incorrectly classified into a rating class beyond a class that 
is adjacent to the correct class. Using a jackknife procedure to estimate 
the true classification probabilities 27 of the 81 observations were correctly 
classified. A total of 57 of the 81 observations were correctly placed within 
one class of the correct class. 

8.2.3 TESTS OF SUFFICIENCY AND VARIABLE SELECTION 

Given the sampie of n observations on x, an important question is whether 
an variables are necessary to provide good discrimination. If the function 
is going to be used as a classification device in the future, the cost will be 
affected by the number of variables employed. In addition, the greater the 
number of variables the greater must be the sampie size in order to acbieve 
the same level of precision. In the two grOUp case, a statistical test can 
be employed to test the hypothesis that the Mahalanobis distance between 
the two groups is the same for a subset of q < p of the variables as it is for 
the full set of p variables. 
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Two Groups 

Partitioning the variables into two sets we have 

where PI is (q x 1), P2 is [(p - q) x 1] and :E is partitioned to conform. 
For the two groups we have mean vectors PI' P2 and assume a common 
covariance matrix :E. 

The squared Mahalanobis distance between the two groups is 

based on all p variables, and 

6~ = (Pu - P2d' :E11 (Pu - P21) 

if based on the first q variables. To test Ho: 6~ = 6~ we have a test statistic 

(nl+n2-p-1) (t:t;-d~) 
(p- q) v+~ 

where v = (nI + n2)(nl + n2 - 2)/(nIn2) and t:t; and ~ are obtained 
by replacing the true parameters by their maximum likelihood estimators 
in the expressions for 6~ and 6~. If Ho is true, this statistic has an F 
distribution with (p - q) and (nI + n2 - P - 1) degrees of freedom. 

This test is equivalent to a test that the coefficients are zero for a subset 
of the X variables in a discriminant function. This statistic can be used 
to provide a criterion for entry and exit in a stepwise discriminant proce­
dure. As in the case of multiple regression, a forward selection or backward 
elimination method can be developed using this F -statistic. If p is not too 
large, an aH possible subsets variable selection approach is preferable. 

More than Two Groups 

If there are more than two groups, say 9 > 2, with nl, n2, ... , n g obser-
vations respectively and total observations n = ni + n2 + ... + ng , the 
stepwise process can be extended by using Wilk's Lambda. Denoting by Aj 

the value of Wilk's Lambda for MANOVA based on the first j variables, a 
test statistic for the value of the (j + 1 )th variable is given by 

(n - 9 - j) (~ _ 1) 
(g - 1) Aj+1 ' 

which in large sampies has an F distribution with (g - 1) and (n - 9 -
j) degrees of freedom if the (j + 1 )th variable does not bring about a 
significant improvement in discrimination among the groups. Unlike the 
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TABLE 8.23. Results of Forward Selection Procedure 

p-Values for Entry 
Variable Step #1 Step #2 Step #3 Step #4 Step #5 

LOPMAR 0.3574 0.4559 0.4989 0.5428 0.5763 
LFIXCHAR 0.0001 0.0628 0.0461 
LGEARRAT 0.0001 0.0565 
LTDCAP 0.0001 
LLEVER 0.0001 0.4781 0.4915 0.3777 0.6821 
LCASHLTD 0.0001 0.2094 0.1854 0.0830 
LACIDRAT 0.7976 0.8144 0.8242 0.8796 0.9280 
LCURRAT 01636 0.4123 0.3778 0.3767 0.5796 
LRECTURN 0.1534 0.5389 0.6606 0.7301 0.6611 
LASSLTD 0.0001 0.1501 0.5939 0.4710 0.6790 

two group case, a disadvantage of this F -statistic is its tendency to favor the 
increased separation of well-separated groups rather than the improvement 
in separation for poorly separated groups. A comparison of all possible 
subsets of variables approach is better if p is not too large. 

Example 

The results of forward selection and backward elimination procedures are 
shown in Tables 8.23 and 8.24 respectively. In both cases the ~values for 
entry or exit were 0.15. For the forward selection procedure only four of 
the variables, LTDCAP, LGEARBAT, LFIXCHAR and LCASHLTD were 
entered before all of the ~values were above 0.15. Thus, after these four 
variables are included in the discriminant analysis, the addition of any one 
of the remaining six variables does not provide a significant improvement 
in the discrimination. For the backward elimination procedure, after the 
variables LACIDRAT and LCASHLTD are removed, the remaining eight 
variables have ~values less than 0.15. In this case, removal of any one of 
the eight variables will result in a significant 1088 in discrimination. 

The two stepwise discriminant functions were evaluated by classifying 
both the 81 observations used to develop the function and also the 14 
test observations. The forward stepwise solution misclassified 41 of the 81 
observations, whereas the backward solution misclassified 40 of these ob­
servations. For the test sampie the forward solution correctly classified 4 
of the 14 observations whereas the backward solution classified only two 
observations correctly. It is interesting to note that the two stepwise dis­
criminant functions only agreed on 6 of the 14 test observations, and only 
one of these was the correct classification. 
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TABLE 8.24. Results of Backward Elimina­
tion Procudure 

po Values in the Equation 
Variable Step #1 Step #2 Step #3 

LOPMAR 0.0260 0.1418 0.0741 
LFIXCHAR 0.0368 0.0273 0.0525 
LGEARRAT 0.1253 0.1277 0.1301 
LTDCAP 0.0117 0.0117 0.0091 
LLEVER 0.0700 0.0556 0.0587 
LCASHLTD 0.1170 0.2466 
LACIDRAT 0.2119 
LCURRAT 0.1346 0.0929 0.0777 
LRECTURN 0.0450 0.2047 0.1179 
LASSLTD 0.0698 0.0729 0.0823 

8.2.4 DISCRIMINATION WITHOUT NORMALITY 

Throughout our discussion of discriminant analysis it has been assumed 
that the distribution of x is multivariate normal. In addition we have usu­
ally assumed that the covariance matrices in each group are homogeneous. 
H these assumptions do not hold, other discrimination techniques may be 
preferable. The logistic regression model and the probit model described in 
Section 8.3 below are generally superior to discriminant analysis when the 
multivariate normality assumption does not hold. 

In the absence of any assumptions about the underlying density nonpara­
metric methods of discrimination can be used. In this section the nearest 
neighbor approach and a method based on ranks are presented. 

Discrimination Using Ranks 

In the absence of multivarite normality it is possible to use the discriminant 
analysis methods discussed above after replacing the original observations 
by their ranks. For each univariate random variable Xj, j = 1,2, ... ,p 
[or component of x (p x I)], the observed data is ranked from smallest to 
largest over all groups simultaneously. The discriminant criterion is then 
computed using the sampie mean vector and covariance matrix derived 
from the ranked data. To classify an unknown observation vector x, the 
rank position of each component of x is determined by interpolation with 
the rank transformation already determined for the original data. 

Example 

For the bond rating data the 95 observations on the ten variables were 
rank ordered and the ranks were used in place of the original data. Once 
again the last two observations in each rating class were omitted from the 
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discriminant analysis. The classification with equal priors for the 81 training 
sampie points yielded 43 misclassifications; for the 14 holdout companies 
11 were misclassified. Using the jackknife procedure an almost unbiased 
estimate of the misclassification rate is 61 out of 81. In comparison to the 
nonranked data, the classification performance using ranks for this example 
is much inferior. 

Nearest Neighbor Method 

We have already seen that for the multivariate normal distribution classifi­
cation using the Fisher discriminant criterion is equivalent to classification 
using the Mahalanobis distance. Each observation is classified into the clos­
est group where the Mahalanobis distance is used to measure "closeness". 

The nearest neighbor classification rule classifies unknowns into the clos­
est group where closeness is measured using Euclidean distance. The square 
of the Euclidean distance between xi and group k is given by (Xi -Xk)' (xi­
Xk). Thus, in comparison to the Mahalanobis distance, the Euclidean dis­
tance makes no allowance for the covariance structure. In this case, there­
fore, random variables with large variances dominate the distance measure. 
The nearest neighbor concept will be discussed more fully in Chapter 10 
under cluster analysis. 

Example 

The nearest neighbor method with Euclidean distance was used to classify 
the companies into bond rating classes. For the first 81 observations all 
but 17 observations were misclassified, and for the holdout sampie of 14, 
11 observations were misclassified. For this example, the nearest neighbor 
method is much inferior to the Fisher discriminant criterion. It would seem 
that the two methods that do not take into account the variance of the 
ten variables are much less reliable than the Mahalanobis distance type 
criterion which standardizes the variables. 

8.2.5 ÜTHER SOURCES OF INFORMATION 

Extensive discussions of discriminant analysis are available in Lachenbruch 
(1975) and Seber (1984). 

8.3 Qualitative Response Regression Models and 
Logistic Regression 

As outlined above, discriminant analysis can be used to determine the 
relationship between a categorical variable and a set of interval scaled vari-
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ables. In this section we eonsider the use of a regression model to relate a 
eategorieal response variable to the explanatory variables. 

In the multiple linear regression model the dependent variable Y is al­
ways assumed to have an interval scale. The explanatory variables in x, 
however, ean be either interval sealed or eategorical. If the explanatory 
variables are eategorieal they are usually eonstrueted using dummy eoding 
or effect eoding. If the dependent variable is eategorieal, then the multi­
ple regression-type linear model is ealled a qualitative response regression 
model. This section begins with the simple ease of a binary response model 
and then extends the techniques to the polychotomous ease. The seetion is 
devoted mainly to variations of the logit model, although probit analysis 
is also be introdueed. An example is introdueed next before outlining the 
theory. 

Example 

To provide examples for the diseussion of qualitative response regression 
models the data summarized in Table 8.24 is used. The data represents a 
sampie of 100 observations on married women selected from the Michigan 
Panel Study of Ineome Dynamies. The variables THISYR and LASTYR are 
indicator variables for whether the wife worked (=1) or did not work (=0) in 
the eurrent year and the previous year respeetively. The variables CHILD1, 
CIDLD2, and BLACK are dummy variables indieating whether the wife has 
children under 2 (CIDLD1), ehildren between age 2 and age 6 (CIDLD2) 
or is BLACK respeetively. Finally the three variables AGE, EDUC and 
HUBINC are measures of the years of age and years of edueation of the 
wife and the ineome of the husband, respeetively. The variables THISYR 
and LASTYR will be used as response variables and the remaining variables 
will be used as explanatory variables. 

8.3.1 THE DICHOTOMOUS RESPONSE MODEL 

The Point Binomial 

We assume that individuals or objeets ean be classified into one of two 
mutually exclusive categories A or B, and that the probabilities associated 
with these two eategories are p and (l-p) respeetively. As an example, the 
eategories A and B might represent the events that a business firm will or 
will not go bankrupt in the next year. 

We define the dummy random variable Y to indicate the two eategories 
by letting Y = 1 for eategory A and Y = 0 for category B. The probability 
density for Y given the parameter p is therefore given by 

f(Y I p) = pY (1 - p)(l-Y) 

which is the density of a point binominal. 
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TABLE 8.25. Full-Time Work Outside the Home for Married Women 

OBS LASTYR THISYR CHILD1 CHILD2 BLACK HUBINC EDUC AGE 
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4.340 
13.648 

4.973 
8.427 

18.320 
7.680 

5.612 
13.554 

5.329 
10.511 
10.486 
14.071 
9.024 

14.329 
5.118 
3.044 
2.640 
2.050 
6.750 
3.383 
6.630 
7.000 
8.815 
3.450 

12.031 
6.144 

11.513 
12.167 
9.968 
5.888 

10.232 
8.017 

11.686 
28.363 
4.343 

10.554 
2.484 
5.672 

13.319 
7.678 

7.162 
7.804 

13.648 
9.311 

27.938 
6.704 
7.711 
8.576 
7.223 

11.259 

12 42 
12 31 

10 38 
12 46 
18 46 
10 29 
12 25 

12 32 
12 26 
12 29 
12 34 
16 38 
12 32 
12 36 
18 28 
12 37 

7 38 
7 43 

12 23 
12 24 
12 40 
12 46 
12 42 
12 46 

12 42 
12 31 
12 39 
12 46 
16 28 
12 23 
12 32 
12 40 
12 45 
12 31 

7 46 
12 38 
10 29 
12 44 
18 31 
18 35 
12 24 
12 34 
16 28 
12 27 
12 46 
12 27 
12 32 
16 38 
16 26 
16 31 
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TABLE 8.25. Full-Time Work Outside the Home for Married Women 
(continued) 

OBS LASTYR THISYR CHILD1 CHILD2 BLACK HUBINC EDUC AGE 
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26.063 
11.776 
12.793 
11.080 

7.074 

6.679 
15.868 

7.972 
0.000 
3.030 
2.970 
9.305 

8.125 
13.033 
0.000 
2.781 
3.010 

26.056 
5.795 
0.000 
2.639 
9.087 

12.312 
7.325 

3.517 
17.140 

24.054 
6.144 

13.211 
9.309 
3.135 
2.935 
9.607 

10.629 
8.207 
9.772 
8.955 
6.204 
9.378 

54.281 
7.525 

11.504 

5.763 
5.683 

10.937 
9.361 
6.342 
7.160 
7.788 
2.402 

12 30 
12 42 
18 46 
12 44 
12 31 
12 36 
12 45 
16 42 
12 29 
10 43 
16 27 
12 40 

12 30 
10 29 
12 39 
12 30 
12 35 

12 40 
12 46 

12 36 
12 28 
12 24 
12 34 
12 33 
10 26 
12 35 
12 40 
12 42 
12 34 
12 45 
10 40 
10 45 
12 41 
12 44 
12 24 
12 42 
12 46 
10 46 
12 32 
12 45 
12 31 

12 32 
12 42 
12 32 
12 40 
12 45 
12 35 
10 31 
12 31 
10 25 
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Probability as a Function 01 Other Variables 

To continue the example of business firms and bankruptcy, we assume that 
the probability of bankruptcy depends on a measure of financial health D, 
where D is a linear function given by D = ßo + ß1X and where X is a 
measure of a company's ability to repay its debts, such as debt-equity ratio. 
In other words the probability of bankruptcy is a function of D and will 
be denoted by p(D). For an individual firm i with debt-equity ratio Xi, the 
firms value of Dis given by di = ßo + ßIXi and the conditional probability 
density for Yi given p(~) has the form 

For a random sampie of n firms we have (db da, ... , dn ), and the joint 
conditional density for (Yb Y2, ... , Yn) given [P(d1),p(d2), ... ,p(dn)] has the 
form 

I(Yl, Y2,···, Yn I p(dt},p(d2), . .. ,p(dn») 
= [P(dd]1I1 [1 - p(dl )](I-lId [P(da)]112 [1 - p(d2)] (1-112) 

... [P(dn )]I1"[l- p(dn )](I-II") 

n 

= II[p(~)]lIi [1 - p(di )] (l-lIi) . 
i=l 

Note here that the parameters ßo and ßl are assumed to be constant across 
the complete sampie. 

Alternative Response Functions 

To be able to relate the value Y of the response variable Y to the value d of 
the variable D, a more specific assumption about the form of the function 
p( d) is required. Three alternatives for p( d) are discussed below. These are 

1. the linear probability model: 

p(d) = ao + a1d 
=0 

da ~ d ~ dl 

d< da 
=1 

2. the probit model: 

p(d) = F(d) 

d> dl . 

-00 ~ d :::; 00 where F(d) is 

the distribution function 

for the normal density. 
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p 

------~--------

o d 

FIGURE 8.16. Linear Probability Model 

3. the logistic or logit model: 

p(d) = G(d) -00 :s d :s 00 where G(d) is 

the distribution function 

for the logistic density. 

For the linear probability model the relationship between p( d) and d is 
given in Figure 8.16. The linear probability model is usually estimated by 
defining a dummy variable for the dependent variable and using ordinary 
least squares. In this case heteroscedasticity exists since the variance at each 
point d is a function of p( d). If p( d) can be estimated reliably a weighted 
least squares estimator can then be constructed. The ordinary least squares 
estimator can be used as a preliminary estimator for the required weights. 
To obtain a reliable estimator of p( d) before using weighted least squares 
several observations are required at each value of d. Unfortunately in many 
applications only one observation is available at each value of d. A weighted 
least squares procedure is discussed in Section 8.3.4. The ordinary least 
squares estimator of p( d) can also be used as a preliminary estimator, 
which is required for the logistic and probit models discussed below. The 
ordinary least squares estimator of p( d) can result in estimates outside the 
interval (0,1). Although the linear probability model is simple to handle 
mathematically, it is difficult to justify the "kinks" or discontinuities at 
p(do) = 0 and p(d1 ) = 1 in Figure 8.16. 

A more realistic shape for p( d) is the normal distribution function shown 
in Figure 8.17. In this case the function p( d) is not truncated but instead 
can converge to its upper and lower limits as d becomes very small or very 
large. The function p( d) in this case is called the pro bit transformation and 
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p 

1 --------------- -------~-;=-----

o d 

FIGURE 8.17. Shape of Normal and Logistic Distribution Functions 

is given by 

p(d) = fd _1_ e-w2/2dw. 
Loo V2i 

The model in this case is commonly called a probit model. Unfortunately, 
unlike the linear probability model, in the normal distribution case p( d) 
cannot be written explicitly as a function of d. The probit model will be 
discussed more extensively in Section 8.3.2. 

The third alternative for p(d) given by (3) above is called the logistic 
transformation. In this case 

which is the logistic distribution function. The shape of p( d) for the logistic 
is quite similar to the shape for the normal given in Figure 8.17. As we 
outline next, the logistic transformation lends itself to a useful explicit 
functional relationship between p( d) and d. 

The standardized logistic density is given by 

and the mean and variance of this density are 0 and 1["2/3 respectively. The 
standard normal and standardized logistic distribution yield very similar 
shaped densities and distribution functions. Like the standard normal den­
sity, the standardized logistic density has a median and mode of zero and a 
skewness of zero. The kurtosis of the logistic density is 4.2, which indicates 
fatter tails than the normal, which has a kurtosis of 3. The standardized 
logistic distribution with w" = w / J 1["2/3 has slightly heavier tails than the 
standard normal distribution. 
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An important advantage of the logistic distribution in this context is that 
the logit transformation ln[p/(l - p)] has the form 

ln[ p(d) ] =ln[ed/(l+ed)] =d. 
1 - p{d) 1/{1 + ed ) 

Therefore, if dis assumed to be a linear function of x, d = a+ßx, the logit 
has the familiar linear model form. This logit model is usually referred to 
as the logistic regression model. Like the multiple linear regression model 
the x observation is fixed. The logistic regression model is based on the 
conditional distribution of Y given x. 

Logistic Regression With c Explanatory Variables 

The logistic regression model can be extended to include c explanatory vari­
ables. In this case it is assumed that p = p(d), where d = ßo+ Ej=lßjXj, is 
a linear function of observations (Xl. X2, . .. , xc) on c explanatory variables 
(Xl, X2, .. " Xc). Thus for the bankruptcy example we assume that there 
are a total of c variables that are related to the probability of bankruptcy. 

The logit of p is given by 
c 

ln[p/{l - p)] = d = ßo + LßjXj 
j=l 

which has the form of a multiple linear regression model. The estimation 
of the parameters ßo, ßl. ... ,ßc is discussed next. 

Maximum Likelihood Estimation for Dichotomous Logistic Regression 

Given a random sampie of n observations from the population, a dummy 
variable Y, (Y = 0 or 1), is used to indicate to which group each observation 
belongs. Thus we observe Yi = Oor 1 for i = 1,2, ... , n. The observations on 
the corresponding c explanatory variables are denoted by (Xii, Xi2, '" Xic). 
Given these x observations, the likelihood for the ith observation can be 
expressed by 

pfi[l- Pi] (1-11i) = [P(di ))1Ii[l- p(~W-Yi, 

where ~ = ßo + Ej=lßjXij = x~ß and where ß' = (ßo,ßl,'" ,ßc) and 
x~ = (1, Xii, Xi2,.' ., Xic). 

For the entire sampie, the likelihood function conditional on Xi, i = 
1,2, ... , n, is given by 

n 

L = II [P(X~ß)]Yi [1 - p(X~ßW-Yi , 
i=1 

and the logarithm of the likelihood by 
n 

ln L = L {Yi In[p(x~ß)] + (1 - Yi) In[l - p(~ß)}· 
i=1 
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Newton-Raphson Procedure 

The maximum Iikelihood estimator ß of ß is determined by maximizi~ 
In L with respect to ß. Unfortunately there is no analytical solution for ß. 
The Newton-Raphson iterative procedure can be used to obtain ß based 
on a preliminary estimator, say ß. This procedure will converge to the 
maximum likelihood estimator regardless of the choice of the preliminary 
estimator. A common choice for the preliminary estimator is the ordinary 
least squares estimator ß = (X'X)-1 X'y where y is the vector of Yi values, 
i = 1,2, ... ,n, and X(n x c) is the matrix of X observations. The Newton­
Raphson procedure is outlined in Judge et al. (1985, pp. 955-958). 

The maximum likelihood estimator for ß in the logistic regression model 
is obtained by solving the system of (c + 1) equations given by 

n n 

DiXi= LYiXi 
i=1 ;=1 

where Pi = ex~ß /(1 + ex~ß). The solutions :0 these ~ations given by ß 
can be used to obtain the estimator Pi = ex~ß / (1 + ex~ß) for each of the n 
observations and hence the fitted sum I:~=1 PiXi is equal to the observed 
sum I:~=1 YiXi· 

Inference for the Dichotomous Logistic Regression Model 

The dichotomous logistic regression model assumes that the logit func­
tion In[pj(l - p)] can be modeled as a linear function of a set of explana­
tory variables ßo + I:j=IXjßj. Given a random sampie of observations 

(Yi, Xii, Xi2,' .• , Xic), i = 1,2, ... , n, the maximum likelihood estimator ß 
can be obtained as outlined above. In comparison to the multiple linear 
regression model, the coefficient vector ß in this case must be interpreted 
differently. A marginal one unit increase in Xj brings about an increase in 
In[pj(1-p)] ofthe amount ßj. The magnitude ofthe increase inp, however, 
depends on the initial value of p. 

Comparing Nested Models and Inference for Coefficients 

Inferences regarding the coefficients in the logistic regression model can be 
made by comparing models and submodels using a likelihood ratio test. 
To compare a full model with c explanatory variables plus an intercept to 
a reduced model with (c - q) explanatory variables plus an intercept, the 
logarithm ofthe likelihood ratio yields the statistic -2[lnLI -InL2], which 
has a X2 distribution with q degrees of freedom if the q deleted variables 
are superHuous. L 2 is the likelihood function for the full model, and LI is 
the likelihood function for the reduced model. 

The reader may recall that this approach was also used for loglinear 
models in Chapter 6. In Chapter 6 the likelihood ratios were determined 



8.3 Qualitative Response Regression Models and Logistic Regression 287 

with reference to a multinomial distribution with no explanatory variables. 
The likelihood ratio X2 statistic H2 of Chapter 6 can be written as H2 = 
-2[lnLI -lnL], where L is the likelihood of the saturated model and LI 
is the likelihood for the simpler model. 

Computer Software 

The calculations for the logistic regression examples in this section were 
carried out using the program BMDP LR and the program SAS LOGISTIC. 

Example 

To examine the bivariate relationships in Table 8.25 between TmSYR and 
LASTYR and each of the six explanatory variables, single variable logis­
tic regression models were estimated. The results are summarized in Ta­
ble 8.26. The p-values for the coefficients are shown in brackets undemeath 
the coefficient estimates. 

To illustrate the information contained in Table 8.26, we examine in 
detail the relationship between THISYR and each of the interval scaled 
variable HUBINC and the categorical variable CHILDl. For the variable 
HUBINC the fitted logistic regression model has the equation 

ln[p/(l - p)] = 1.6001 - 0.0675 HUBINC 

where p is the probability that the wife will choose to work THISYR. The 
log of the likelihood ratio for the model is given by ln L2 = -56.982 whereas 
the log of the likelihood ratio with HUBINC omitted is lnL l = -59.295. 
The likelihood ratio X2 statistic is therefore -2 [ln LI -lnL2 ] = 4.62 which 
has a p-value of 0.0315 for a 1 dJ. X2 • The fitted equation indicates that 
as HUBINC decreases the value of p increases. The wife is therefore less 
likely to work if her husband's income is relatively high. From Table 8.25 
the range of HUBINC is 0 to 54.3 and hence the value of the logit varies 
from +1.6001 to -2.0652. The range of values for pis therefore given by 

p = exp[+1.6001)/(l + exp[+1.6001]) = 0.83 and 

p = exp[-2.06521/(l + exp[-2.0652]) = 0.11. 

Thus for wives whose husband's income is zero the probability that the 
wife chooses to work is 0.83, whereas at the other extreme for wives whose 
husband's income was in the highest category the probability that the wife 
chooses to work is only 0.11. 

For the variable CHILD1 the fitted model is given by 

In[P/(l - p)) = 1.1272 - 2.7366 CHILDl. 

The probability that the woman chooses to work therefore is either p = 
exp[1.1272]/(1+exp[1.1272]) = 0.76 for CHILDI = 0 or p = exp[-1.6094)/ 
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(1 +exp[-1.6094]) = 0.17 for CHILDI = 1. Tbis logistic regression model is 
equivalent to the logit model that would be derived from fitting a saturated 
loglinear model to the two-way contingency table as discussed in Chapter 6. 
The significance of the coefficient of CHILDI is obtained from -2[InLl -

InL2] = -2[-59.295-( -55.006}] = 8.58 which has ap-value ofO.OO34 for a 
1 dJ. X2 • The fact that CHILDI is significant in the prediction of THISYR 
is equivalent to the statement that the hypothesis of independence between 
the two variables is rejected. The X2 value for CHILDI here is equal to the 
likelihood ratio X2 in the test of independence discussed in Chapter 6. 

An examination of the coefficient p-values in Table 8.26 reveals that the 
most important variables in predicting whether a woman will choose to 
work THISYR are AGE, HUBINC, CHILD2 and CHILD1. The coefficients 
of these variables indicate that p tends to be larger if AGE is large, HUBINC 
is small, CHILDI = 0 and CHILD2 = o. For the variable LASTYR the most 
significant explanatory variables are HUBINC, CHILDI and CHILD2. The 
coefficients in these three models indicate that p increases with decreasing 
HUBINC, and that p is larger if CHILDI = 0 and if CHILD2 = o. 

Goodness 0/ Fit 

The goodness of fit X2 statistics introduced in Chapter 6 for loglinear mod­
els cannot usually be used in logistic regression models containing interval 
scale explanatory variables. Because the observations are almost all unique 
the asymptotic distribution properties of the two statistics cannot be ex­
pected to hold with only one observation per cello In Section 8.3.4 the 
explanatory variables are assumed to be design variables and multiple ob­
servations are assumed for each design combination. In that case the X2 

goodness of fit tests can be used. For the more general case other measures 
have been developed to measure goodness of fit. 

A pseudo-measure of goodness of fit is given by 

R2 = 1- (lnL/lnLa) 
where La denotes the likelihood function value when all variables are ex­
cluded except the constant term ßo. Thus the sampie value of Lö is the 
value of L evaluated using the sampie proportion for the maximum likeli­
hood estimator of p. This R2 measures the proportion of uncertainty in the 
data that is explained by the model. If the fuH model is a perfect indicator, 
then L = 1, InL = 0, and R2 = 1. If the reduced model yields the same 
likelihood as the fuH model, then In L = In La and R2 = O. In this case the 
explanatory variables contribute nothing to the likelihood. 

Hosmer-Lemeshow Goodness 0/ Fit Test 

Since in many applications a large majority of the observations (Yi, Xii, Xi2, 

... , Xic), i = 1,2, ... , n, are unique in the sense that in general no two 
observations yield identical values on all variables, the fitted model cannot 
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be evaluated using the X2 goodness of fit tests introduced in Chapter 6. To 
obtain a goodness of fit test, Hosmer and Lemeshow (1980) suggest that 
the range of p [O,IJ be divided ioto 8 mutually exclusive categories and 
then a comparison of the observed and predicted frequencies be carried 
out using a X2 statistic. The categories can be determined by ranking the 
n p..values and then dividing them into 8 equal groups or by dividing the 
range of p into 8 equal intervals. 

We denote the actual frequency in group j by Oj, the predicted fre­
quency by nj, and the average value of p in group j by Pj. The statistic 
LJ=1 (Oj - njpj)2 /njpj(l- Pj) is approximately X2 with (8 - 2) degrees 
of freedom if the fitted logistic regression model is correct. 

Example 

For the fitted bivariate relationships in Table 8.26 the R2 measure can be 
determined from the loglikelihood information given in the table. For the 
relationship between THISYR and HUBINC, R2 is given by 1- (-56.982) / 
(-59.295) = 0.40. For the CHILDI variable R2 is given by 1 - (-55.006)/ 
(-59.295) = 0.072. For a logistic regression model with only a single ex­
planatoryvariable, if this variable is a dummy variable the fitted model 
is equivalent to the saturated loglinear model for a (2 x 2) contingency 
table. The fit is therefore perfect (see Chapter 6). In the case of the non­
categorical variables HUBINC, AGE and EDUC the Hosmer-Lemeshow 
goodness of fit p-values are shown in Table 8.26. 

Covariance Matrix for Estimated Coefficients 

The variance-covariance matrix for the estimated regression coefficients ß is 
obtained from the expression [X'WXJ -1, where W is the (n X n) diagonal 
matrix with diagonal elements Pi(l - Pi) determined from the estimates 
of Pi, i = 1,2, ... , n, and X is the (n x c) matrix of observations with 
n rows given by x~, i = 1,2, ... , n. The (j, k)th element of [X'WXJ is 
therefore given by 

n n _ _ 

Di(l- Pi)XijXik = L[XijXikex:ß /{1 + eX:ß )2]. 
i=1 i=1 

The square roots of the diagonal elements of this covariance matrix can be 
used to provide approximate standard errors for the regression coefficients. 

Example - Logistic Regression With Multiple Explanatory Variables 

To determine how the explanatory variables together predict p, a logistic 
regression model was fitted using all six explanatory variables. The fitted 



8.3 Qualitative Response Regression Models and Logistic Regression 291 

models for THISYR and LASTYR are given by 

THISYR 

In[pj(1 - p)] = 6.0624 - 0.1079 HUBINC + 0.4777 EDUC 
(0.0472) (0.0040) (0.0148) 

+ 0.0773 AGE + 1.5451 BLACK 

LASTYR 

ln[pj(1 - p)] = + 

(0.0765) (0.0708) 

4.5179 CHILD1 - 1.1238 CHILD2, 
(0.0003) (0.0621) 

6.3641 - 0.0799 HUBINC - 0.0911 EDUC 
(0.0076) (0.0257) (0.4638) 

0.0870 AGE - 0.0879 BLACK 
(0.0423) (0.8937) 

3.6948 CHILD1 - 1.6928 CHILD2. 
(0.0008) (0.0057) 

The p-values for the coefficients are shown in brackets. The p-values were 
obtained using the differences of loglikelihood ratios. 

The fitted logistic regression model for THISYR indicates that at the 
margin the probability that a woman will choose to work increases with 
decreases in HUBINC, but decreases with decreases in AGE and EDUC. 
For the dummy variables, a woman of the black race is more likely to 
work, whereas if children are present the woman is less likely to work. For 
the variable LASTYR the variables HUBINC, CHILD1 and CHILD2 have 
the same impact as in the case of THISYRj the remaining variables are 
insignificant. 

The log likelihoods for the two models are -44.044 and -53.314 for 
THISYR and LASTYR respectively. Excluding all six variables yields log 
likelihoods of -59.295 and -64.745. The likelihood ratio X2 statistics for 
the significance of all six variables are given by -2[-59.295 - (-44.044)] = 
30.502 and -2[-64.745 - (-53.314)] = 22.862 which have p-values of 0.000 
and 0.001 when compared to a X2 distribution with 6 dJ. The pseudo R2 

values are given by [1 - 44.044/59.295] = 0.26 and [1 - 53.314/64.745] = 
0.18, respectively. The Hosmer-Lemeshow X2 p-values are 0.55 and 0.26 for 
the variables THISYR and LASTYR respectively. 

The Role 0/ the Intercept and Categorical Variables 

Before the addition of any explanatory variables, the logistic regression 
model has the form In[pj(l- p)] = ßo. The maximum likelihood estimator 
of the probability p is the sampie proportion ß = mjn, where m is the 
number of observations corresponding to Y = 1 and (n - m) is the number 
of observations in the category corresponding to Y = O. The likelihood 
function in this case is given by L = mm(n - m)n-m jnn and the logarithm 
by InL = mln(m) + (n - m) In(n - m) - nln(n). 
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If p = 0.5, then ßo = 0 and the likelihood function is given by (0.5)m X 

(O.5)R-m. The logarithm of the likelihood is given by lnLo = nln(0.5). 
The likelihood ratio X2 statistic for testing Ho: ßo = 0 is therefore given by 
2[lnL -lnLo] which is given by +2mln[m/n] + 2(n - m) ln[(n - m)/n]-
2n ln(O.5). If Ho: ßo = 0 is true, this statistic has a X2 distribution with 1 
degree of freedom in large sampies. This test is equivalent to a test of equal 
proportions. 

If a categorical variable Z is included as the only explanatory variable, 
then the logistic regression model is equivalent to the loglinear model for 
a 2 x 2 contingency table discussed in Chapter 6. If the variable Z is a 
dummy variable and hence takes on the values 0 or 1, the sampie can be 
summarized in a two-dimensional table as follows. 

Z 
o 1 Totals 

y 0 nu n12 nl· 
1 n21 n22 n2· 

Totals n·l n·2 n 

The logistic regression model in this case has the form 

lnfp/(l - p)] = ßo + ß1Z = ßo + ßl 
=ßo 

if Z = 1 
if Z = O. 

Recalling that the maximumlikelihood estimators are given by n21/n.l for 
p when Z = 0 and n22/n.2 for p when Z = 1, we have that 

ln[n2dn ul = ßo + ßl and In[~2/n121 = 130. 
The likelihood function for this fitted model has the value 

(n21) R21 (nu) RU (n22) R22 (n12) ß12 , 
n.l n.l n.2 n·2 

with the logarithm given by 

LI = n21 ln(n2d + nuln(nu) + n22ln(n22) 

+ n12ln(n12) - n.lln(n.l) - n.2ln(n.2) . 

The likelihood ratio test of Ho: ßl = 0 involves the difference between 
In Lo and ln LI, where ln Lo refers to the likelihood function when only the 
intercept is fitted. The likelihood ratio statistic is given by 

2[lnL1 -lnLo] = 

and has a X2 distribution with one degree of freedom if Ho is true. This 
statistic is equivalent to the likelihood ratio X2 used for testing indepen­
dence in a two-by-two contingency table discussed in Chapter 6. 
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Testing for Zero Intercept 

A test for zero intereept term ßo = 0 in the logistic regression model is not 
usually of practical value. If the explanatory variable Z is a classifieation 
variable, the interpretation of this test depends on the type of coding used 
for Z. If ßo = 0 and Z is eoded 0 or 1, then the logistie regression model is 
given by 

ln[P/(1 - p)] = ß1Z = ßl 
=0 

if Z = 1 
if Z = o. 

The eondition ßo = 0 therefore implies that p = 0.5 when Z = 0, whereas 
pis free to vary when Z = 1. If, however, Z is eoded using effect coding, 
-1 and +1, then the model is given by 

ln[p/(1 - p)] = ß1Z = ßl 
= -ßl 

if Z = 1 
ifZ=-1. 

In this ease the restrietion ßo = 0 implies that the value of p when Z = 1 
is equal to the value of (l-p) when Z = -1. Although these two forms of 
the hypothesis Ho: ßo = 0 may have partieular specialized uses this test is 
not in general useful. 

If an explanatory variable, say X, is interval scaled, the restriction ßo = 0 
implies that In[P/(I-p)] = ß1X. In this ease the value of pis very sensitive 
to X and at X = 0, p = 0.5. As in the ease of the simple linear regression 
model, the intereept term simply loeates the value of the function when 
X = O. The intereept is only zero if p = 0.5 at X = 0, which is similar 
to the zero intereept linear regression model that has the value 0 when 
X = o. Omitting the intereept in a logistic regression model is therefore 
only done when the partieular situation suggests that p = 0.5 when X = 0 
(see Example below). 

If the logistic regression model includes a classifieation variable Z, as 
well as an interval sealed variable X, then the eondition ßo = 0 can have 
a variety of different implieations depending on the eoding used for the 
eategorieal variable. When the interval sealed variable X has the value 0, 
the logistie regression model has the form ln[p/(I-p)] = ßo+ß1Z +ß2X = 
ßo + ßl Z. The eondition ßo = 0 has an impact therefore on the point where 
the funetion erosses the p axis. For instanee, suppose Z is eoded 0 or 1; 
then p = 0.5 for Z = 0 and X = 0, whereas for Z = 1, p may have any 
value at X = O. Or suppose Z is eoded -1 or +1; then at X = 0 the value 
of p at Z = +1 is equal to the value of (1- p) at Z = -1. Onee again such 
restrictions are only of value in specialized situations and henee in general 
the intereept should be retained. 

Example 

A eomparison of the intereepts in the estimated models for THISYR and 
LASTYR reveals a startling differenee in that they are almost equal in 
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magnitude but opposite in sign. An explanation for this difference can be 
explained by substituting the mean values for HUBINC, AGE and EDUC 
into the two models and evaluating the terms. The sums of the three terms 
are 7.3815 and -4.7301 for THISYR and LASTYR respectively. Adding 
these values to the intercepts yields new intercepts of 1.3191 and 1.6341 
respectively. Therefore we can conclude that for points near the average 
values of the three interval variables the two functions are similar in value. 
This example helps to illustrate that the intercept itself is simply an 00-
justment to the scale. In this case the intercept represents a point which is 
a large distance away from the observed data. By comparing the two func­
tions in the centre of the data we can obtain a more meaningful interpreta­
tion. As we shall see below in the discussion of DFBETA the coefficient of 
EDUC in the equation for THISYR is unusually large due to one particular 
observation. The intercept provides the necessary scale OOjustment. 

Dummy Variables as Explanatory Variables - A Caution 

In logistic regression analysis one or more of the explanatory variables can 
be dummy variables. Usually such dummy variables have several "I" obser­
vations and the remaining observations are zero. In order for the coefficient 
of the dummy variable to be defined in logistic regression, at least two of 
the "I" observations must correspond to opposites. In other words, when 
the dummy variable has the value "1", at least one of the Y values must 
be 0 and at least one of the Y values must be 1. A special case of this is 
the observation specific dummy, where all but one of the observations yield 
a dummy variable value of 0 and only one observation yields a dummy 
variable value of 1. In the case of several observations with the dummy 
variable 1, it may happen that all such individuals have the same value 
of Y. For example, if 1 indicates a medical doctor and Y = 1 for employed, 
it may be that all individuals in the sampie who are medical doctors have 
the value of Y = 1. In such circumstances the parameter estimate obtained 
from a computer program for the coefficient of the dummy will tend to be 
large. Removing this dummy from the model will not affect the remainder 
of the parameter estimates. 

The Fitted Model and Classijication 

The fitted logistic regression model can be used to obtain the value of Pi 
for each observation by determining the value of ln[Pi/(l - Pi)] = ßo + 
Ej=l ßjXij and then solving for Pi. The value of Pi is given by Pi = 
ex:'ß /(1 + eX;,ß). Assume that the observation is placed in the category 
Y = 0 if Pi < 0.50, and otherwise the observation is placed in the category 
Y = 1. A prediction success matrix or confusion matrix in this case can be 
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constructed as shown below. 

Pi< 0.50 

P ~ 0.50 

True Category 
Y=O Y=1 

nOO 

nl1 

n = (noo + nOl + nlQnll) 

This table shows the distribution of the predictions for each of the two 
categories. The proportion of correctly classified observations is given by 
(1100 + nl1) / n. The logistic regression model therefore provides a discrimi­
nant function which can be used to classify unknowns. 

A Jackknife Approach 

In Section 8.2.2 a jackknife procedure was outlined for obtaining a nearly 
unbiased estimator of the true prediction probabilities. This procedure 
omits one observation at a time and uses the remaining (n-l) observations 
to fit the model and classify the one omitted observation. The process is 
repeated for all n observations. 

Example 

It is of interest to examine the abilities of the two fitted models to pre­
dict the values of THISYR and LASTYR. If no explanatory variables are 
included in the model, the probabilities based on the observations are 
p[THISYR = 1] = 0.72 and p[LASTYR = 1] = 0.65. Prediction success 
tables based on these probabilities are therefore given by 

Predicted Predicted 
THISYR LASTYR 
0 1 0 1 

THISYR LASTYR 

0 

~ 
28 0 6E8B 35 

1 20 52 72 1 23 42 65 

28 72 35 65 

We would therefore expect to predict correctly 60% of the values of THISYR 
and 54% of the values of LASTYR. An equal priors model would only be 
expected to predict 50% correctly. 

To determine the predictions based on the fitted logistic models, values of 
P were determined for both models for all 100 observations. If P < 0.50 for 
a particular individual, then that individual was placed in the ''not work" 
categoryj otherwise the individual was placed in the ''work'' category. The 
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prediction success tables are shown below. 

THISYR 

Predicted 
THISYR 
o 1 

o ~28 
1 ~72 

18 82 

LASTYR 

Predicted 
LASTYR 
o 1 

o ~35 
1 ~65 

22 78 

For the variable THISYR, the use of the fitted logistic regression model 
results in a correct classification for 80% of the cases, whereas for the vari­
able LASTYR, use of the fitted model results in a correct classification for 
71 %. The increases in percentage correctly classified as a result of the fitted 
logistic regression model are 20% and 17% respectively. In other words, in 
the case of THISYR an additional 20 of the 100 cases were correctly classi­
fied, whereas for LASTYR an additional 17 of the 100 cases were correctly 
classified. 

Using the jackknife approach for the variable THISYR 11 of the 28 were 
correctly coded ''0'' and 65 of the 72 were correctly coded "1". For the 
variable LASTYR 14 of the 35 were correctly coded "0" and 56 of the 65 
were correctly coded "1". These estimates of classification success are only 
slighly smaller than those obtained above using all n observations. In a later 
section of this chapter a multivariate qualitative response model will be 
used to predict both the variables LASTYR and THISYR simultaneously. 

Stepwise Logistic Regression 

As in the case of multiple linear regression and discriminant analysis, it is 
possible to use variable selection methods to choose a subset of explanatory 
variables in logistic regression. A forward, backward or stepwise approach 
can be used by calculating the chi-square statistic -2[lnLo -lnL1l at each 
step. For the variable LASTYR, a forward selection procedure is illustrated 
below. 

Table 8.27 shows the results of successive steps of the forward procedure 
applied to the model for LASTYR. In comparison to the full model fitted 
for LASTYR above, at step 4 of the forward procedure, the variables that 
are significant at the 0.05 level in the full model are the ones included in 
this model. Some of the coefficients however are quite different. Excluding 
two variables seems to have an impact on the estimated coefficients. 

Inftuence Diagnostics 

The Chi Statistic 
Given that the observed values of the dependent variable are denoted by 

Yi (Oor 1), and the fitted values are denoted by Pi = ex;ß /(1 + eX:ß), the 
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TABLE 8.27. Forward Selection Process for LASTYR Model 

Variable Step 0 Step 1 Step 2 Step 3 Step 4 

INTER- +0.6190 +1.4264 +0.3672 +0.0159 +2.3766 
CEPT IN (0.0025) IN (0.0001) IN (0.5861) IN (0.9789) IN (0.0913) 

AGE -0.0823 
OUT (0.6123) OUT (0.9718) OUT (0.4156) OUT (0.0479) IN (0.0479) 

EDUC 
OUT (0.1209) OUT (0.2591) OUT (0.7011) OUT (0.5953) OUT (0.4713) 

RUBINC -0.0855 -0.0965 -0.0974 -0.0861 
OUT (0.0096) IN (0.0096) IN (0.0046) IN (0.0043) IN (0.0135) 

BLACK 
OUT (0.3693) OUT (0.7960) OUT (0.8548) OUT (0.7960) OUT (1.0000) 

CRILDl -1.3254 -1.4785 -1.9093 
OUT (0.0117) OUT (0.0056) IN (0.0056) IN (0.0022) IN (0.0003) 

CRILD2 -0.5098 -0.8163 
OUT (0.1205) OUT (0.1256) OUT (0.0449) IN (0.0449) IN (0.0070) 

logistic regression model residuals are given by ei = (Yi -Pi) i = 1,2, ... ,n. 
Recalling that the variance of Pi is given by Pi(l - Pi), a goodness of fit 
statistic is given by L:~=1 e~ /[Pi(l - Pi)]. If the model is adequate, then 
this statistic has a X2 distribution with (n - c) degrees of freedom. Bach 
component of this statistic eil y'Pi(l - Pi) can be used as an indicator of 
lack of fit for each observation. This statistic is called the chi statistic. 

The Deviance Statistic 

An alternative residual measure is based on the likelihood ratio goodness 
of fit statistic defined in Chapter 6. Comparing the likelihood of the fitted 
model to the likelihood based on fitting each point exactly, the value of 
2 [ln L - In Lo] is given by 

m n-m 

where m is the frequency for the event (Yi = 1). Bach component of this 
goodness of fit statistic can be used to indicate a lack of fit for each observa­
tion. The resulting deviance residual is therefore given by {2[Yi In(Yi/pi)]}I/2 
or {2[(1 - Yi) In[(l - Yi)/(l - Pi)]P/2 depending on whether Yi = 1 or 0 
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respectively. The deviance statistie is usually preferred as a measure of 
goodness of fit because it tends to have greater power against alternative 
models. 

Levemge 

8ince the covariance matrix for ß in the logistic regression model is given 
by (X'WX)-1, a measure analogous to the 'hat' matrix used to measure 
levemge in multiple regression is given by 

-1/2 - -1/2 
H* = W X(X'WX)-1X'W . 

The diagonal elements of H*, hii , i = 1,2, ... , n, lie in the interval [0,1], 
and the average of the diagonal elements is ein. These diagonal elements 
are often useful for detecting influential observations. Unlike the linear 
model, however, the "hat" values depend on the Pi as weH as on x. In the 
case of one observation at each x, hii is less than or equal to 1, otherwise 
hii ~ I/mi, where mi is t~e frequency of Xi. The matrix W denotes the 
estimator of W based on ß, and W is the diagonal matrix with diagonal 
elements Pi(1 - Pi), i = 1,2, ... ,n. 

Inftuence 

In the linear regression model, the Cook's D measure of inftuence is related 
to a confidence ellipsoid for ß based on ß(i) and the F-statistic, where ß(i) 

denotes the estimator of ß obtained after deleting observation i. In the 
case of logistic regression the statistic is based on X2 and a comparison of 
likelihood ratios. The inftuenee statistie is given by 

e~ "--1 
( _ h2 )Xi(X WX) Xi 

e 1 ii 

As in the case of the linear regression model this influence statistic is a 
function of the residual measure and the leverage measure. 

The DFBETA Measure 

The DFBETA measure is designed to reftect the inftuence that individ­
ual observations have on particular regression coefficients. This measure 
was introduced in Volume I in the context of linear regression models. 
For the coefficient ßj the DFBETA value for observation i is given by 
(13j - 13j(i»)/S(13j), where 13j and 13j(i) denote elements of ß and ß(i) and 
s(13j) denotes the standard error of 13j. A value of DFBETA which is rel­
atively large in absolute value would indicate that observation i infiuences 
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the estimate of ßj. Observations corresponding to DFBETA values which 
exceed 0.5 in absolute value should be examined to determine the reason 
for the unusuallevel of influence. 

Example 

The residual statistics and influence diagnostic statistics for the logistic 
regression model for THISYR are summarized in Table 8.28. The residual 
statistics CHI and DEVIANCE show three relatively large values (3.40, 
2.25), (3.42,2.26) and (3.67, 2.31) corresponding to observations 1, 38 and 
69 respectively. From Table 8.25, we can see that observation 1 corresponds 
to a married woman who did not choose to work, who had no children, and 
whose husband's income was relatively low. Observations 38 and 69 also 
have these same characteristics. According to the logistic regression model 
such married women tend to choose to work. A perusal of the INFLUENCE 
measure in Table 8.28 reveals two values that exceed 0.40. Corresponding 
to observation 15, this measure is 1.63, while for observation 19 this mea­
sure is 0.71. For observation 19 the residual statistics are moderately large 
(1.77,1.68) and the LEVERAGE value is also moderately large (0.16). Ob­
servation 15 has the largest LEVERAGE value (0.40) while the residual is 
also moderately large (-1.20, -1.34). In addition to observation 15, there 
are two observations having LEVERAGE values that exceed 0.19. These 
are 0.36 and 0.22 corresponding to observations 59 and 90 respectively. 
Neither ofthese observations, however, has a large enough residual to yield 
a very large measure of INFLUENCE. 

The DFBETA values for observations 15 and 19 (not shown) in Table 8.28 
reveal values of 0.59 for CHILDI on observation 15 and -0.67 and 0.48 for 
BLACK and EDUC respectively on observation 19. An examination of 
the data in Table 8.25 indicates that observation 15 is the only instance in 
which both CHILDI = 1 and THISYR = 1. The positive value ofDFBETA 
suggests that omitting observation 15 results in a larger negative coefficient 
for CHILD1. For observation 19 THISYR = 0, BLACK = 1 and EDUC 
= 12. The DFBETA values suggest that omitting observation 19 would 
result in a larger positive coefficient for BLACK and smaller positive or 
negative coefficient for EDUC. Thus omitting observation 19 would result 
in a model in which a black woman is more likely to work outside the horne. 
In the case of the EDUC coefficient its significance may be reduced as a 
result of omitting observation 19. 

8.3.2 THE PROBIT MODEL 

Given a random sampie of n observations on the point binomial random 
variable Yi (Yi = 0 or 1), the joint density is given by rrf=lPfi (1- pd1- Y,), 

where Pi = P[Yi = 1] and (I-pi) = P[Yi = 0]. In 8.6.1 the logistic regression 
model was derived from the assumption that Pi = ex :ß /[1 + ex :ß], where 
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TABLE 8.28. Residuals and Influence Diagnostics 

OBS THISYR CHI DEVIANCE LEVERAGE INFLUENCE 

1 0 3.40 2.25 0.02 0.28 
2 0 0.77 0.96 0.06 0.04 

3 1 -0.46 -0.62 0.11 0.03 
4 1 -0.31 -0.43 0.03 0.00 
5 1 -0.13 -0.18 0.04 0.00 
6 1 -0.76 -0.95 0.15 0.12 
7 1 -1.07 -1.23 0.08 0.10 
8 0 0.80 1.00 0.06 0.04 

9 0 1.74 1.67 0.06 0.21 
10 1 -0.68 -0.87 0.05 0.03 
11 1 -0.56 -0.74 0.02 0.01 
12 1 -0.22 -0.31 0.05 0.00 

13 1 -0.56 -0.74 0.03 0.01 
14 1 -1.11 -1.27 0.07 0.10 

15 1 -1.20 -1.34 0.40 1.63 

16 1 -0.15 -0.22 0.02 0.00 
17 1 -0.48 -0.64 0.15 0.05 
18 1 -0.38 -0.52 0.12 0.02 
19 0 1.77 1.68 0.16 0.71 
20 0 1.79 1.69 0.08 0.29 
21 1 -0.36 -0.49 0.02 0.00 
22 1 -0.29 -0.40 0.03 0.00 
23 1 -0.37 -0.51 0.03 0.00 

24 1 -0.24 -0.33 0.03 0.00 

25 0 2.25 1.90 0.03 0.14 
26 1 -0.23 -0.32 0.05 0.00 
27 0 1.17 1.32 0.08 0.12 
28 1 -0.67 -0.87 0.12 0.07 
29 0 0.40 0.54 0.17 0.04 
30 0 0.16 0.22 0.06 0.00 
31 1 -0.59 -0.78 0.03 0.01 
32 1 -0.39 -0.53 0.02 0.00 
33 1 -0.39 -0.53 0.03 0.01 
34 0 0.35 0.48 0.09 0.01 

35 1 -0.38 -0.52 0.12 0.02 

36 1 -0.48 -0.64 0.02 0.01 
37 1 -1.24 -1.37 0.13 0.25 
38 0 3.42 2.26 0.02 0.30 

39 1 -0.08 -0.11 0.03 0.00 
40 1 -0.05 -0.07 0.01 0.00 
41 1 -0.69 -0.88 0.09 0.05 

42 0 2.07 1.83 0.02 0.10 

43 1 -0.56 -0.74 0.16 0.07 

44 0 0.83 1.02 0.06 0.05 
45 1 -0.90 -1.09 0.28 0.21 
46 1 -1.05 -1.22 0.07 0.08 
47 1 -0.52 -0.69 0.03 0.01 
48 1 -0.17 -0.23 0.03 0.00 
49 1 -0.43 -0.58 0.13 0.03 
50 0 0.42 0.56 0.18 0.05 



8.3 Qualitative Response Regression Models and Logistic Regression 301 

TABLE 8.28. Residuals and Influence Diagn08tics (continued) 

OBS TWSYR CHI DEVIANCE LEVERAGE INFLUENCE 

51 0 0.38 0.52 0.09 0.01 
52 1 -0.44 -0.59 0.03 0.01 
53 1 -0.09 -0.13 0.02 0.00 
54 1 -0.39 -0.53 0.03 0.00 
55 1 -0.52 -0.69 0.03 0.01 
56 1 -0.74 -0.93 0.06 0.04 
57 1 -0.49 -0.65 0.04 0.01 
58 1 -0.14 -0.19 0.02 0.00 

59 0 0.59 0.77 0.36 0.30 
50 1 -0.42 -0.58 0.06 0.01 
61 1 -0.19 -0.26 0.04 0.00 
62 1 -0.42 -0.56 0.02 0.00 
63 1 -0.57 -0.75 0.04 0.01 
64 0 0.99 1.17 0.19 0.28 
65 1 -0.12 -0.17 0.02 0.00 
66 1 -0.35 -0.48 0.08 0.01 
67 1 -0.17 -0.23 0.03 0.00 
68 0 0.98 1.16 0.14 0.18 
69 0 3.67 2.31 0.03 0.38 
70 1 -0.51 -0.69 0.08 0.02 
71 1 -0.81 -1.00 0.07 0.06 
72 1 -0.76 -0.96 0.09 0.07 
73 0 1.62 1.61 0.03 0.08 
74 0 2.05 1.81 0.02 0.11 
75 1 -0.84 -1.03 0.13 0.12 
76 -0.77 -0.96 0.05 0.04 
77 1 -0.92 -1.11 0.11 0.12 
78 1 -0.15 -0.21 0.02 0.00 
79 1 -0.30 -0.41 0.07 0.01 
80 1 -0.34 -0.47 0.03 0.00 
81 1 -0.48 -0.64 0.06 0.01 
82 1 -0.39 -0.53 0.06 0.01 
83 -0.39 -0.54 0.02 0.00 
84 1 -0.38 -0.52 0.03 0.00 
85 1 -0.73 -0.92 0.09 0.06 
86 -0.39 -0.54 0.02 0.00 
87 1 -0.32 -0.45 0.03 0.00 
88 1 -0.45 -0.61 0.06 0.01 
89 1 -0.26 -0.36 0.06 0.00 
90 0 0.26 0.36 0.22 0.02 
91 1 -0.94 -1.12 0.06 0.05 
92 0 0.16 0.23 0.06 0.00 
93 -0.32 -0.44 0.02 0.00 
94 0 1.23 1.35 0.06 0.10 
95 1 -0.45 -0.61 0.02 0.01 
96 1 -0.34 -0.47 0.03 0.00 
97 0 1.33 1.43 0.06 0.12 
98 0 1.18 1.32 0.09 0.15 
99 0 1.05 1.22 0.06 0.07 

100 -0.38 -0.52 0.12 0.02 
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Xi [( c + 1) X 1] denotes a vector of observations on a set of c explanatory 
variables. Rather than the logistic density assumption, a similar shaped 
TImction for Pi is provided by the pro bit model given by 

x;ß 
Pi = F(x~ß) = 100 f(z)dz, 

where f(z) denotes the standard normal density. Denoting the cumulative 
standard normal density by F(x~ß) and the standard normal density by 
f(x~ß), the derivative of the log of the likelihood function 

n 

lnL = I)Yi In[F(x~ß)] + (1 - Yi) ln[l - F(~ß)]}, 
i=1 

is given by 

Setting this derivative equal to zero yields the equations for the maximum 
likelihood estimator. As in the case of the logistic regression model the 
estimator is usually obtained by the Newton-Raphson interative procedure. 
This procedure necessarily converges to the maximum regardless of the 
initial starting estimate of ß. 

Given the function x' ß, the probability that the standard normal random 
variable is less than or equal to x'ß is given by F(x'ß). Since P = F(x'ß), 
then for a given x the probability that the individual belongs to the Y = 1 
category is given by F(x' ß). 

Computer Software 

The calculations for the probit analysis example were carried out using the 
SPSSX program PROBIT and the SAS program PROBIT. 

Example 

For the labor force participation example discussed in Section 8.3.1 the 
probit models for THISYR and LASTYR were estimated. The estimated 
linear model obtained for THISYR is given by 

A [ THISYR ] 
P = 1 = 2.616 - 0.062 HUBINC + 0.025 AGE + 0.242 EDUC 

(.077) (.026) (.284) (.020) 

-0.085 BLACK - 1.370 CHILDI - 1.033 CHILD2 
(.841) (.037) (.001) 

where the p-values appear in brackets under the coefficients. The p-values 
were obtained by dividing the coefficients by their standard errors, and by 
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using the two tails of the standard normal distribution. We can conclude 
from the model that the probability that the wife will choose to work 
THISYR increases with AGE and EDUC and decreases with HUBINC. 
Also, if there are pre-school children, then the probability that she chooses 
to work THISYR also decreases. 

For the dependent variable LASTYR, the estimated probit model is given 
by 

A [ LASTYR ] 
p = 1 3.092 - 0.062 HUBINC + 0.014 AGE + 0.209 EDUC 

(.019) (.031) (.53) (.029) 

+0.289 BLACK - 0.678 CHILDI - 0.556 CHILD2 
(.262) (.073) (.029) 

where the p-values appear brackets under the coefficients. 
The prediction success tables for the two models are shown below. 

THISYR 

Predicted 
THISYR 
o 1 

LASTYR 

Predicted 
LASTYR 
o 1 

o ~28 o ~28 
1 ~72 1 ~72 

32 68 26 74 

For the variable THISYR, 80% were correctly classified, whereas for the 
variable LASTYR, 68% were correctly classified. For the logistic regres­
sion model fitted in Section 8.3.1 these percentages were 80% and 71% 
respectively. 

8.3.3 LOGISTIC REGRESSION AND PROBIT ANALYSIS: A 

SECOND EXAMPLE 

A second example for logistic regression and probit analysis is provided by 
the yield curve data analyzed using discriminant analysis in Section 8.2.2. 
Using all 80 cases, the logistic regression and probit analysis models are 
given below. The p-values for the coefficients are shown in brackets. 

Logistic Regression 

1n[p/(1 - ß)] = 56.040 - 9.052 BANKRT + 29.822 UNEMPLR 
(0.368) (0.004) (0.038) 

-11.062 UNEMPLRM + 39.319 CAPUTIL 
(0.110) (0.015) 

-37.522 GDP + 16.385 BUSINV 
(0.133) (0.114) 
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Probit Analysis 

-14.947- 0.404 BANKRT+ 2.566 UNEMPLR 
(0.03S) (0.001) (0.016) 

p = 
-1.565 UNEMPLRM + 0.271 CAPUTIL 

(0.040) (0.006) 

-0.00006 GDP + 0.00039 BUSINV 
(0.085) (0.077) 

In comparison to the discriminant function obtained in Section 8.2.2, the 
signs of the coefficients in all three models are the same. All three models 
therefore provide the same characterization for the two different types of 
yield curve. 

A comparison of the prediction successes of the two models is provided 
below. For the probit analysis the prediction success is 86.3%, whereas for 
the logistic regression it is 80.0%. In comparison, the discriminant analysis 
model showed success rates of 81.5% and 86.7% for the estimation and 
holdout sampie respectively. 

Probit Anal;y:sis 
Actual Predicted 

Not 
Upward Upward Totals 

Upward 39 6 44 

Not Upward 6 30 36 

Totals 45 36 80 

LOg!stic Regression 
Actual Predicted 

Not 
Upward Upward Totals 

Upward 37 7 44 

Not Upward 9 27 36 

Totals 46 34 80 

8.3.4 MULTIPLE OBSERVATIONS AND DESIGN VARIABLES 

The Model and Maximum Likelihood Estimation 

In some applications all of the explanatory variables are categorical (as in 
Chapter 6), and/or the X variables are preselected design variables that 
are used for multiple observations on Y. In this case the number of cells is 
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fixed, say i = 1,2, ... ,8, mi is the number of observations in the ith cell 
for which Y = 1, ni is the total number of observations from the ith cello 
The binomial density for the ith cell is given by 

f(mi I Pi, nil = ( :::i )(pi)mi(1- Pi)(ni-mi), 

where Pi is the probability that Y = 1 in cell i. The likelihood function for 
the sampie of n = L:=l ~ is therefore given by 

8 

L = II ( ~i. )(Pi)mi (1 - Pi)(ni-mi). 

i=l • 

In this case we assume that 8 is fixed, and the asymptotic properties are 
derived by assuming that as the ni become large, mi/ni converges to Pi. 

For the logistic regression model, the probabilities Pi are assumed to 
satisfy the logistic model 

Pi (Xi! 13) = ex:ß /(1 + ex:ß) 

where 13 (c x 1) is a vector of unknown parameters and Xi is the (c x 1) 
vector of explanatory variables. 

The likelihood function is given by 

and the log of the likelihood by 
8 

lnL = L [ln ( ~i. ) + mix~ß - ni In(1 + ex :ß )]. 
i=l ' 

Once again the Newton-Rae.hson method can be used to compute the max­
imum likE!!ihood estimator ß. 

Given 13, the maximum likelihood estimator of 13, the maximum likeli­
hood estimator of Pi is given by 

- -
Pi = ex:ß /(1 + ex:ß), 

and this maximum likelihood estimator Pi of Pi satisfies 
8 8 

LmiXi = LniPiXi. 
i=l i=l 

Under the assumption of fixed 8, the X2 goodness of fit test statistics can 
be used to evaluate the model. The Pearson and likelihood ratio statistics 
respectively are given by 

8 

L[mi - niPi] 2 /niPi(1 - Pi), 
i=l 
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and 

both of which are distributed as X2 with (s - c) degrees of freedom if the 
model is correct. 

The Chi and Deviance Statistics 

In the case of multiple observations, the chi and deviance statistics intro­
duced in 8.3.1 are given by (mi-niPi)/[niPi(1-Pi)j1/2 and [2{mi In(mi/niPi)} 

+ 2{(ni - mi)1n[(ni - mi)/nä(l- Pi)]}] 1/2 respectively. 

Weighted Least Squares or Minimum Logit Chi-Square Estimation 

When the number of cells is fixed, the weighted least squares type estimator 
discussed in Chapter 6 can also be employed. 

In practice the empiricallogits are usually defined by In[(mi + 1/2)/(ni­
mi + 1/2)] = li' i = 1,2, ... , s. The weighted least squares estimator 
minimizes 

8 

L niPi(l- Pi)[li - X~ß]2 
i=1 

and hence is often called the minimum logit chi-square estimator. 

8.3.5 OTHER SOURCES OF INFORMATION 

Summaries of logistic regression can be found in Andersen (1990), Mc­
Cullagh and NeIder (1989), Fomby, Hill and Johnson (1984), Judge et al. 
(1985), Santner and Duffy (1989), Fienberg (1980), Fox (1984) and Hosmer 
and Lemeshow (1989). Probit analysis is discussed in Fomby et al. (1984) 
and Judge et al. (1985). 

8.3.6 THE MULTINOMIAL LOGIT MODEL 

In the previous section the logistic regression model and the probit model 
were introduced as techniques for modeling a dichotomous response vari­
able. In this section we extend the logit model to the case of dependent 
variables with more than two categories. This model is commonly referred 
to as a multinomial logit model. The corporate bond classification example 
discussed in Section 8.2.2 will be used as an example for multinomiallogit 
models. 
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Pammeterization 0/ the Model 

If the categorical dependent variable has more than two possible categories, 
then the logistic regression model introduced in Section 8.3.1 could be 
employed by comparing each category to an of the remaining categories. If 
there are 9 categories, we could estimate the 9 models 

j = 1,2, ... ,g, 

separately using logistic regression. As in Section 8.3.1 we assume that x 
and ßj are (c+ 1) x 1 vectors. 

Since the probabilities Pj must satisfy L~=lPj = 1, however, it is neces­
sary to estimate these models subject to this condition. A more appropriate 
method would be to incorporate this condition by re-parameterization. 

For the binary dependent variable, the probabilities for the two categories 
Y = 0 and Y = 1 were given by 

p[Y=1] 

p[Y=O] 

p/(1- p) = 

P = ex'ß /(1 + eX'ß) 

(1- p) = 1/(1 + ex'ß) and 

x'ß e . 

Similarly, for the case of 9 categories, we define dummy variables Yj, 
j = 1,2, ... ,g, where Yj = 1 if the observation is in category j, and Yj = 0 
otherwise. We define conditional probabilities PbP2,P3, . .. ,Pg, where 

'ß ( (g-l) 'ß) p[Yj = 1] = Pj = eX j / 1 + ~ eX j , 

3=1 
j = 1,2, ... , (g - 1) 

( (g-l) 'ß) 
p[Yg = 1] = Pg = 1/ 1 + ~ eX ; , 

3=1 
j =g. 

Thus L~=l Pj = 1. In this case the Pi, j = 1,2, ... ,g satisfy a multivariate 
logistic distribution function. 

Comparisons of various categories are conveniently carried out as follows: 

Pr/Ps = ex'ßr /ex'ß. = eX'(ßr-ß.) 

and hence 
(eH) 

In[pr/Ps] = L Xk(ßrk - ßsk), T,8 #- g. 
k=l 

For T or 8 = 9 only one ß vector appears in the above expressions. We can 
also write 

Pr/(Pr + Ps) = ex'ßr /(ex'ßr + ex'ß.) = eX'(ßr-ß.) /(1 + eX'(ßr-ß.») 

Ps/(Pr + Ps) ex'ß. /(ex'ßr + ex'ß.) = 1/{1 + eX'(ßr-ß.»). 
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Thus any two eategories ean be compared as in the binary C88e. 

These equations indicate that the ratio of any pair of eategory probabili­
ties is independent of the parameters pertaining to the other eategories. In 
some applieations this property is unaceeptable. In the theory of consumer 
choiee this property has been ealled the independence of irrelevant alter­
natives. It therefore does not matter what other eategories are included in 
the model sinee the parameters eorresponding to these eategories do not 
affect the probability ratio of the pair being studied. An extension of the 
probit model ealled the multinomial probit model ean be used to avoid this 
property (see Maddala 1983). 

Inference for the Multinomial Logit 

The likelihood function for a random sampie of n observations is given by 

n 

L = I1p~ilp~i2 p,!i9 
d ,2··· 'g 

i=1 

where Yi; denotes the value of Yj for observation i, and Pi; denotes the value 
of P; for observations i, i = 1,2, ... , n. The logarithm of this likelihood 
function is given by 

n 9 

InL = L LYi; InPi; 
i=1 ;=1 

n (g-l) (g-l) 

= L[ L Yi; In[ex~ß; /( 1 + L ex~ß;)] 
i=1 ;=1 ;=1 

(g-l) 

+YigIn [1/(1 + L ex~ßj )], 
;=1 

n g-1 9 (g-l) 

= L[LYi;lnex~ßj - LYi;In (1 + L ex:ßj )]. 
i=1 ;=1 ;=1 ;=1 

The vectors Xi and ß; are (c+ 1) x l. 
The first derivative of the log likelihood ean be expressed as 

k = 1,2, ... ,g, 

which is a simple extension of the equation obtained for the maximum 
likelihood estimator in the dichotomous logit or logistie regression model 
in Section 8.3.l. 

As in the ease of the logistie regression model, Newton-Raphson pro­
eedures must be used to approximate the maximum likelihood solution. 
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The properties of the estimators obtained in this fashion are similar to the 
properties outlined in Section 8.3.1. 

A common multiple equation approach is to estimate models for the 
logits 

ln[Pij/Pig] = x~ßj' j = 1,2, ... , (g -1), i = 1,2, ... , n, 

and hence each category j is compared to the last category j = g. Any 
other pair of categories can then be compared using 

i = 1,2, ... ,no 

Computer Software 

The calculations for the examples in this section were performed using SAS 
PROC CATMOD. 

Example 

The bond classification data of Table 8.18 in Section 8.2 is used here to 
provide an example. To demonstrate the simultaneous equation estimation 
for a multinomiallogit model, we use only two explanatory variables LFIX­
CHAR and LASSLTD. Table 8.29 shows the estimated coefficients for the 
six logit models based on the base case category 7. The dependent variables 
are therefore ln[pj /P7], j = 1,2, ... ,6. In all six equations, the coefficients 
of LFIXCHAR and LASSLTD are positive, indicating that larger values 
of both of these explanatory variables increase the likelihood of categories 
other than 7 and decrease the likelihood of category 7. In the case of cat­
egory 6, however, the two coefficients were not significant at conventional 
levels. 

Table 8.30 shows the overall significance of the variables to the simulta­
neous system. Each chi-square statistic is based on the value of the statistic 
-2[ln Lo-ln LI] outlined in Section 8.3.1. From this table we can determine 
the overall importance of the variables to the system. The overalllikelihood 
ratio in Table 8.30 has a value of Lo = 251.83 with [(81)(6) - (6)(3)] = 468 
degrees of freedom. 

The estimated coefficients shown in Table 8.29 can be used to deter­
mine estimated coefficients for other logits. As an example, the model for 
ln [PdP2] is given by 

ln [PdP2] = ln[PdP71 -lnlP2/P7] 

= -0.97 - 0.92 LFIXCHAR + 1.25 LASSLTD. 

To determine the significance of the derived coefficients, the covariance 
matrix for the estimated coefficients shown in Table 8.31 can be used. Using 
the fact that V(ßl -!h) = V(ßl) + V(!h) - 2Cov(ßt,!h), the variances of 
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TABLE 8.29. Simultaneous Logit Model Estimates 

Equation 
Number Logit INTERCEPT LFIXCHAR LASSLTD 

1 Pl/P7 -10.84 1.37 7.08 
(0.00) (0.31) (0.00) 

2 P2/P7 -9.87 2.29 5.83 
(0.00) (0.08) (0.02) 

3 P3/P7 -9.60 2.14 5.79 
(0.00) (0.10) (0.02) 

4 P4/P7 -10.08 0.24 7.81 
(0.00) (0.85) (0.00) 

5 P5/P7 -7.48 2.96 3.62 
(0.00) (0.02) (0.14) 

6 PS/P7 -1.21 1.46 0.19 
(0.54) (0.20) (0.93) 

TABLE 8.30. Significance of Marginal 
Likelihood Ratios 

Variable d.f. X2 p-Value 

INTERCEPT 6 18.63 0.0048 
LFIXCHAR 6 11.61 0.0713 
LASSLTD 6 16.58 0.0110 

LikeJihood Ratio 468 251.83 

the three derived coefficients are given by 

8.02 + 7.47 - 2(6.35) = 2.79 

1.82 + 1.70 - 2(1.34) = 0.84 

6.35 + 6.05 - 2(5.34) = 1.72. 

The asymptotic ''t'' values for the three coefficients are given by 

-0.97 
V2.79 = -0.58 

-0.92 
VO.84 = -1.00 

1.25 
VI. 72 = 0.95 
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TABLE 8.31. Covanance Matrices for Logit 
Model Coefficients 

INTERCEPTS 
1 2 3 4 5 6 

1 8.02 6.35 6.26 6.22 5.67 2.57 
2 6.35 7.47 6.22 6.11 5.70 2.58 
3 6.26 6.22 7.51 6.06 5.67 2.57 
4 6.22 6.11 6.06 7.57 5.53 2.56 
5 5.67 5.70 5.67 5.53 7.16 2.59 
6 2.57 2.58 2.57 2.56 2.59 3.97 

Coefficient of LFIXCHAR 
1 2 3 4 5 6 

1.82 1.34 1.33 1.34 1.27 0.92 
2 1.34 1.70 1.33 1.30 1.30 0.93 
3 1.33 1.33 1.70 1.30 1.29 0.93 
4 1.34 1.30 1.30 1.72 1.24 0.91 
5 1.27 1.29 1.29 1.24 1.71 0.94 

6 0.92 0.93 0.93 0.91 0.94 1.31 

Coefficient of LASSLTD 
1 2 3 4 5 6 

6.35 5.34 5.31 5.38 4.96 2.97 
2 5.34 6.05 5.29 5.28 4.99 2.98 

3 5.31 5.29 6.09 5.25 4.97 2.98 
4 5.38 5.28 5.25 6.18 4.90 2.96 
5 4.96 4.99 4.97 4.90 6.07 3.01 
6 2.97 2.98 2.98 2.96 3.01 4.66 

and hence none of the three derived coefficients are considered significant 
at conventional levels. It would appear therefore that the two variables 
LFIXCHAR and LASSLTD cannot be used to distinguish between the first 
two bond categories. 

Using Multinomial Logit Models 

As in the case of the dichotomous logit model discussed above, the multi­
nomial logit model may also be used for prediction. After obtaining the 
estimated coefficients for the logistic regression models for In[pr/Pg]' r = 
1,2, ... ,g-I, we can solve the estimated equations for Pr, r = 1,2, ... , (g­
I) and Pg = (1- L;:~Pr)' The resulting g equations, one for each Pr, 
r = 1,2, ... , g, can then be used to determine the values of Pr for each 
unknown. The unknown is then placed in the category corresponding to 
the largest value of Pr obtained. 
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Example 

For the purpose of comparison to the discriminant analysis example in Sec­
tion 8.2, the system ofsix logit model equations was estimated for ln [Pr/P,] , 
r =F 8, r = 1,2, ... , 7, for all different bases, 8 = 1,2, ... , 7. In this case all 
ten variables are used. The 21 different equations are shown in Table 8.32. 
Coefficients with a p-value < 0.10 appear with an * in the table. The sig­
nificance level is shown under each coefficient. The interpretation of each 
equation will not be discussed here. 

The significance of each of the variables is summarized in Table 8.33. The 
overall likelihood ratio of 133.66 has [(6)(81) - (6)(11)] = 420 degrees of 
freedom. The incrementallikelihood ratios yield the X2_values and p-values 
shown in the table. All ten explanatory variables are significant at the 0.10 
level. 

The estimated values of the probabilities Pr, r = 1,2, ... , 7, were da­
termined for the 81 observations used to estimate the models. The values 
of Pr are summarized in Table 8.34. This table also contains the correct 
group elassification. The largest value of Pr for each observation is under­
lined in the table, and an indication of whether the elassification is correct 
is provided in the last column of the table. Table 8.35 uses Table 8.34 to 
obtain a confusion or prediction success matrix. From this matrix we can 
conelude that 51 of the 81 observations were correctly cIassified using the 
logit models. In addition we can conelude that an additional 13 of the 
81 observations were misclassified into an adjacent elass. In discriminant 
analysis in Section 8.2 we also found that 51 of the 81 observations were 
correctly classified and that an additional 15 were misclassified into an ad­
jacent elass. A comparison of the two confusion matrices reveals an almost 
identical pattern. 

Since the bond data example employs explanatory variables which are 
approximately normally distributed, it is perhaps not surprising that the 
two techniques yield similar results. Logit models tend to be superior when 
the set of explanatory variables does not satisfy the normality assumption, 
particularly if the sampie size used for estimation is relatively large. 

Estimation Using Single Equation Meth0d8 

The maximum likelihood estimators defined above require the solution of a 
more complex equation than the equation solved in the binary case. If the 
software is not available for the multinomial logit model but is available 
for the logistic regression model, it is possible to estimate the multinomial 
logit model using one equation at a time. The binary logits may be defined 
in such a way that the likelihood for the multinomial logit model can be 
written as the product of the (g -1) likelihoods corresponding to the (g -1) 
binary logit models. The binary logits are obtained from a nested sequence 
0/ partitions of the 9 categories. 
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TABLE 8.32. Simultaneous Logit Model Estimates 

Logit INTERCEPT LOPMAR LFIXCHAR LGEARRAT LTDCAP LLEVER 

PI/P7 -148.52 24.74* -1.41 17.41 101.80 -29.95 

(0.44) (0.00) (0.73) (0.84) (0.78) (0.49) 

P2/P7 -103.33 6.96* 1.55 -23.97 136.45 -11.90 
(0.60) (0.10) (0.67) (0.80) (0.72) (0.69) 

P3/P7 -124.17 1.91 1.12 -54.90 229.30 -5.26 
(0.52) (0.62) (0.75) (0.55) (0.52) (0.85) 

P4/P7 3.61 -11.77 -1.15 -118.40 92.34 42.75 

(0.99) (0.11) (0.76) (0.22) (0.81) (0.19) 

P5/P7 -119.29 5.95* 6.74* -134.27 236.90 40.88 
(0.54) (0.10) (0.07) (0.16) (0.52) (0.19) 

P6/P7 -194.31 4.26 5.36 14.92 256.15 -55.47* 
(0.34) (0.20) (0.17) (0.85) (0.48) (0.06) 

Pl!P6 45.79 20.48* -6.77* 2.49 -154.35* 35.52 
(0.12) (0.01) (0.05) (0.96) (0.01) (0.17) 

P2/P6 90.97* 2.70 -3.80 -38.88 -119.70 43.57 
(0.05) (0.53) (0.15) (0.43) (0.14) (0.13) 

P3/P6 70.14* -2.35 -4.23* -69.81 -26.84 50.21 * 
(0.02) (0.56) (0.10) (0.14) (0.57) (0.06) 

P4/P6 197.92* -16.03* -6.50* -133.31 * -163.80 
(0.00) (0.03) (0.02) (0.01) (0.12) (0.00) 

PS/P6 75.02* 1.69 1.39 -149.19* -19.24 96.35* 
(0.01) (0.64) (0.59) (0.01) (0.70) (0.00) 

Pl!P5 -29.23 18.79* -8.15* 151.68* -135.11 * -60.83* 
(0.22) (0.01) (0.01) (0.00) (0.01) (0.02) 

P2/P5 15.95 1.01 -5.19* 110.31* -100.45 -52.78* 
(0.69) (0.72) (0.00) (0.02) (0.17) (0.04) 

P3/P5 -4.88 -4.04 -5.62* 79.37* -7.60 -46.14* 
(0.82) (0.19) (0.00) (0.09) (0.83) (0.06) 

P4/P5 122.90* -17.73* -7.89* 15.87 -144.56 1.87 
(0.03) (0.01) (0.00) (0.76) (0.15) (0.94) 

PI/P4 -152.13 36.52* -0.26 135.81* 9.45 -62.70* 
(0.01) (0.00) (0.92) (0.00) (0.93) (0.01) 

P2/P4 -106.95* 18.73* 2.70 94.43* 44.11 -54.64* 
(0.09) (0.01) (0.13) (0.02) (0.69) (0.02) 

P3/P4 -127.78* 13.69* 2.27 63.50* 136.96 -48.00* 
(0.03) (0.05) (0.23) (0.10) (0.15) (0.03) 

PI/P3 -24.35 22.83* - 2.53 72.31 * -127.51 * -14.69 
(0.26) (0.00) (0.33) (0.07) (0.00) (0.43) 

P2/P3 20.83 5.05 0.43 30.93 -92.85 -6.64 
(0.58) (0.14) (0.75) (0.33) (0.18) (0.70) 

Pl!P2 -45.18 17.78* -2.96 41.37 -34.65 -8.05 
(0.25) (0.01) (0.25) (0.31) (0.67) (0.68) 
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TABLE 8.32. Simultaneous Logit Model Estimates (continued) 

Logit LCASHLTD LACIDRAT LCURRAT LRECTURN LASSLTD 

PI/P7 -11.51 10.78* 6.80 19.20* 86.88* 
(0.17) (0.03) (0.31) (0.00) (0.08) 

P2/P7 1.13 1.27 4.18 9.82* 25.32 
(0.87) (0.79) (0.50) (0.03) (0.60) 

P3/P7 4.49 -2.45 4.87 4.03 6.51 
(0.49) (0.59) (0.35) (0.35) (0.88) 

P4/P7 12.69 -22.69* 26.89* -10.47 -87.37 
(0.17) (0.02) (0.01) (0.16) (0.12) 

P5/P7 -14.25* 3.33 2.54 5.88 -51.15 
(0.05) (0.39) (0.67) (0.14) (0.31) 

P6/P7 -10.06 1.74 -4.11 1.73 81.74* 
(0.18) (0.64) (0.47) (0.49) (0.07) 

PI/P6 -1.46 9.03* 10.91 17.47* 5.14 
(0.84) (0.07) (0.11) (0.00) (0.90) 

P2/P6 11.19 -0.47 8.29 8.09* -56.42 
(0.11) (0.92) (0.22) (0.08) (0.20) 

P3/P6 14.55* -4.19 8.98 2.29 -75.23* 
(0.03) (0.39) (0.15) (0.61) (0.07) 

P4/P6 22.75* -24.43* 31.00* -12.20 -169.10* 
(0.01) (0.01) (0.00) (0.11) (0.00) 

P5/P6 -4.19 1.58 6.65 4.15 -132.88* 

(0.50) (0.68) (0.31) (0.32) (0.00) 

PI/P5 2.74 7.45* 4.26 13.32* 138.03* 
(0.60) (0.07) (0.40) (0.00) (0.00) 

P2/P5 15.38* -2.05 1.64 3.94 76.47* 
(0.00) (0.56) (0.72) (0.14) (0.07) 

P3/P5 18.74* -5.78 2.33 -1.85 57.65 

(0.00) (0.15) (0.61) (0.59) (0.15) 

P4/P5 26.94* -26.02* 24.35* -16.35* -36.22 
(0.00) (0.01) (0.01) (0.02) (0.46) 

PI/P4 -24.20* 33.46* -20.09* 29.67* 174.24* 

(0.01) (0.00) (0.02) (0.00) (0.00) 

P2/P4 -11.56 23.96* -22.71 * 20.29* 112.68* 

(0.12) (0.01) (0.00) (0.00) (0.01) 

P3/P4 -8.20 20.24* -22.02* 14.50* 93.87* 
(0.26) (0.03) (0.01) (0.03) (0.03) 

PI/P3 -16.00* 13.22* -0.69 15.17* 80.37* 
(0.01) (0.02) (0.87) (0.00) (0.03) 

P2/P3 -3.36 3.72 22.02* 5.80* 18.81 

(0.43) (0.36) (0.01) (0.09) (0.51) 

PI/P2 -12.64 9.51* 2.62 9.38* 61.56* 
(0.04) (0.07) (0.62) (0.03) (0.10) 
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TABLE 8.33. Significance of Marginal 
Likelihood Ratios 

Variable df x.2 p-Value 

INTERCEPT 6 11.89 0.0646 
LOPMAR 6 14.63 0.0233 
LFIXCHAR 6 15.37 0.0176 
LGEARRAT 6 15.07 0.0198 
LTDCAP 6 12.33 0.0549 
LLEVER 6 15.43 0.0171 
LCASHLTD 6 16.70 0.0104 
LACIDRAT 6 12.53 0.0512 
LCURRAT 6 10.77 0.0956 
LRECTURN 6 16.13 0.0131 
LASSLTD 6 17.60 0.0073 

Overall 
Likelihood Ratio 420 133.66 

Note: 486 = 420 + 66 +- 11(6) 
486 = 6(81) 

(i 6 equations, 81 cells) 

Continuation Ratios 

A special case of such a nested sequence is provided by the set of contin­
uation ratios. The first Iogit compares category j = 1 to the remaining 

categories using In [pd 2:J=2 pj]. Thus the first partition consists of the 

first category in the first set and the remaining categories in the second 
set. The second logit then compares the category j = 2 to the remaining 
categories from the second set of the first partition. Thus the second logit 

is given by In [P2/ 2:J=3 pj]. The second logit uses a partition of the sec­
ond set obtained from the first partition. The second partition therefore 
consists of the second category in the first set and the remaining categories 
from the second set of the first partition in the second set. This process is 
repeated each time comparing one category to a steadily decreasing set of 
remaining categories. The diagram beiow illustrates the pattern for a total 
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TABLE 8.34. Estimated Values of Pr for Observed Data 

Group P1 P2 P3 P4 P5 

1 0.67 0.00 0.00 0.11 0.31 

2 0.28 0.00 0.02 0.00 0.00 

3 0.93 0.05 0.02 0.00 0.00 

4 0.32 0.54 0.01 0.00 0.13 

5 0.07 0.52 0.05 0.00 0.35 

6 0.62 0.00 0.00 0.00 0.38 
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TABLE 8.34. Estimated Values of pr for Observed Oata (continued) 

Oorrect 
Group Pt P2 P3 P4 P5 P6 PT 01888 

50 
51 
52 
53 
54 
55 
56 
57 
58 

59 
60 
61 
62 
63 

64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 

77 
78 
79 
80 
81 
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5 
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6 
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6 

6 
6 
6 

6 
6 
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7 
7 
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7 
7 

7 
7 
7 
7 
7 

0.22 0.01 0.03 
0.70 0.00 0.00 
0.00 0.03 0.03 
0.00 0.00 0.00 
0.00 0.29 0.14 
0.00 0.02 0.03 
0.00 0.00 0.01 
0.00 0.09 0.12 
0.00 0.13 0.49 
0.00 0.60 0.22 

0.01 0.32 0.21 
0.00 0.00 0.00 
0.27 0.00 0.00 
0.00 0.00 0.06 
0.00 0.00 0.00 

0.00 0.00 0.06 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.55 0.21 0.11 
0.00 0.02 0.04 
0.00 0.00 0.00 
0.00 0.00 0.01 
0.00 0.02 0.14 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.01 0.56 
0.00 0.00 0.00 

0.00 0.00 0.00 
0.00 0.06 0.41 
0.02 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.02 

0.00 0.50 0.05 0.20 
0.00 0.30 0.00 0.00 
0.14 0.74 0.06 0.00 
0.06 0.91 0.04 0.00 
0.00 0.57 0.00 0.00 
0.01 0.60 0.32 0.00 
0.01 0.85 0.01 0.12 
0.00 0.67 0.11 0.00 
0.08 0.18 0.07 0.06 

0.01 0.15 0.00 0.00 
0.05 0.41 0.00 0.00 
0.00 0.00 0.09 0.91 
0.00 0.00 0.72 0.00 
0.00 0.00 0.45 0.49 
0.00 0.00 1.00 0.00 
0.00 0.00 0.57 0.36 
0.00 0.00 1.00 0.00 
0.00 0.00 0.39 0.61 
0.02 0.17 0.10 0.00 
0.06 0.67 0.20 0.00 
0.00 0.00 0.98 0.02 
0.00 0.00 0.79 0.20 
0.38 0.04 0.16 0.26 
0.00 0.00 0.09 0.91 
0.00 0.00 0.28 0.72 
0.00 0.00 0.01 0.41 
0.00 0.00 0.14 0.86 

0.00 0.00 0.92 0.08 
0.00 0.18 0.03 0.32 
0.00 0.24 0.09 0.65 
0.00 0.00 0.21 0.78 
0.00 0.00 0.19 0.79 

of five categories. The four logit comparisons are shown as 

Logit 1 

1 vs (2, 3, 4, 5) 

Logit 2 

2 vs (3, 4, 5) 
Logit 3 

3vs (4, 5) 
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TABLE 8.35. Confusion Matrix for Logistic Regression 
Model Predictions 

Actual Predicted Classification 

CI88Bification 1 2 3 4 5 6 7 Total 

1 6 2 0 0 0 0 1 9 

2 2 8 1 1 1 0 0 13 

3 0 4 5 0 2 1 0 12 

4 0 1 0 11 1 0 0 13 

5 1 1 2 0 9 0 0 13 

6 1 0 0 0 1 6 3 11 

7 0 0 2 1 0 1 6 10 

Total 10 16 10 13 14 8 10 81 

The logit for the jth equation is given by 

9 

In [Pi/ ~::>h]' j = 1,2, ... , (g - 1). 
h>i 

This nested sequence is useful when the categories have been arranged in 
some meaningful order. 

Other Nested Partitions 

Any system of nested partitions can be used. An alternative sequence for 
five categories is shown in Figure 8.18. In this case the first logit model 
compares the group consisting of categories 1 and 2 to the group consisting 
of categories 3, 4 and 5. The second logit model compares categories 1 
and 2. The third logit model compares categories 3 and 4 to category 5 
and the fourth logit model compares categories 3 and 4. 

Example 

To exemplify the use of this single equation approach to the estimation of 
the simultaneous system, we shall employ a particular hierarchical system 
to estimate a model for the bond data. We also use a backward elimination 
procedure for each single equation estimation. The hierarchy to be used is 
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3 

4 

FIGURE 8.18. Example of a Nested Partition of Models 

given by the following sequence of six single equations. 

No. 1 

I [1,2,3,4,5] vs [6,7]1 

No. 3 No. 2 

I [1,2,3] vs [4,5]1 1[6] vs [7]1 

No. 5 No. 4 

1 [1] vs [2,3]1 1[4] vs [5]1 

No. 6 

1[2] vs [3]1 

Table 8.36 summarizes the estimated models obtained from a backward 
elimination procedure applied to each model separately. In the backward 
elimination process, variables that were not significant at the 0.15 level 
were eliminated. 

It is important to note that only equation 1 uses the entire data set 
for estimation. Equation 2 uses only the observations corresponding to 
categories 6 and 7, and equation 3 uses only the observations corresponding 
to categories 1 to 5. In equation 2, therefore, the probabilities in the logit 
function are more correctly represented by the conditional probabilities 
p[6 I [6,7]] and p[7 I [6,7]] respectively. Having determined p[6,7] from 
equation 1, equation 2 can be used to determine p[61 [6,7]] and p[71 [6,7]] 
and hence 

p[6] = p[6, 7]p[6 I [6,7]] p[7] = p[6, 7]p[71 [6,7]]. 
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In a similar fashion p[l, 2,3] and p[4, 5] can be determined using p[l, 2, 3, 4, 5], 
p[l, 2, 31 [1,2,3,4,5]], and p[4, 5 1 [1,2,3,4,5]]. 

8.3.7 OTHER SOURCES OF INFORMATION 

Additional discussion of tbe multinomiallogit model is available in Maddala 
(1983), Fienberg (1980) and McCullagb and NeIder (1989). 

8.3.8 THE CONDITIONAL LOGIT MODEL AND CONSUMER 

CHOICE 

In the study of consumer choice the dependent variable in a logistic re­
gression can represent a variety of choices. In such analyses the potential 
explanatory variables not only vary across consumers but also vary across 
alternative choices for each consumer. Variables designed to measure con­
sumers' preference for a variety of alternatives are examples. For a particu­
lar alternative each consumer assigns a value to each explanatory variable. 
For anotber alternative, the same consumer assigns values to tbe explana­
tory variables, which are not necessarily tbe same as for otber alternatives. 
The values assigned to tbese explanatory variables could represent costs or 
values of the alternative. A logit model that assumes tbat the X variables 
vary by category as weH as by individual is given by tbe conditional logit 
model 

Pr/Ps = ex~ß /ex~ß = e(X~-X~)ß r,8 = 1,2, ... ,l, r =f 8 

X' ß/ ",t X' ß Pr = e r LJh=l eh. 

Thus, the purpose of the conditional logit model is to obtain estimates 
of Pik, the probabilities of selection of the kth possible choice by the ith 
consumer given the values of X' denoted by x~k' Note that the parameter 
vector ß is assumed to be constant across categories, which contrasts with 
the multinomiallogit model discussed in Section 8.3.5. 

A more general model that combines the multinomial logit model and 
the conditional logit model is given by 

l 
Pr = ex~ß+Z' Or / ~)ex~ß+Z' Oh], r = 1,2, ... ,l, 

h=l 

where the vector Z denotes observations which are specific to the individual 
but are constant across choice categories as in the multinomiallogit model. 
The constant variables across alternative choices for a given consumer could 
include age, income and education. Therefore, tbe conditional probability 
tbat tbe observation is from category k = r given tbat tbe observation 
is from one of tbe two categories k = r or k = 8 is assumed to bave 
the same logistic distribution shape as in the binary case. An examination 
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of the ratio for Pr/Ps reveals that this ratio does not depend on any of 
the other categories. Therefore, regardless of the number of categories, the 
ratio of the two probabilities remains constant. As mentioned earlier in this 
section, in the application of this model to consumer choice behavior, this 
property is referred to as "independence 0/ irrelevant alternatives" and in 
some applications is viewed as a serious wealmess of the multinomiallogit 
model. 

More generally, the model can be written as 

l 

Pr = eW~"'Yr/Lew~"'Yr, 
h=l 

where W r and "'Yr now combine the previous variables x,., Z and the previous 
parameters ß and Qr. 

The maximum likelihood estimators ofthe vectors "'Yr , r = 1,2, ... ,l, are 
obtained from the logarithm of the likelihood function using the Newton­
Raphson method as in the case of the dichotomous logit model. The obser­
vations on the dependent variable are defined in terms of l dummy variables 
as follows: 

. = {I if observation i is in category k, k = 1,2, ... , l 
y,k 0 otherwise. 

The conditionallogit model can be obtained from the multinomiallogit 
model by defining a sequence of stacked vectors. To obtain x~ß for the 
conditionallogit model from Z' Qr of the multinomiallogit model, we define 

Q~ = (O', .. ·,ß', .. ·,O'). 

Similarly to obtain the multinomiallogit model from the conditional logit 
model, we define 

x~ = (0', ... , Z', ... ,0'), 

Additional discussion of consumer choice models can be found in Ben-Akiva 
and Lerman (1985) and Maddala (1983). 

8.3.9 MULTIVARIATE QUALITATIVE RESPONSE MODELS 

Up to this point our discussion of qualitative response models has been re­
stricted to the case of one dependent variable with two or more categories. 
If there are two qualtitative dependent variables, then a single dependent 
variable can always be constructed using the cross-classification of the two 
sets of categories. Although this approach is useful for determining the sys­
tem of linear relationships, it is also of interest to look at certain relation­
ships among the category probabilities of the dependent variable because 
of the underlying multivariate nature of this variable. 
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Example 

To illustrate this coneept we use the panel data introduced in Table 8.25. 
For the data in Table 8.25 two dependent variables, TffiSYR and LASTYR, 
were related to the explanatory variables AGE, EDUC, HUBINC, BLACK, 
CffiLD1, and CffiLD2. In this section we estimate a model that eombines 
the two dependent variables into one dependent variable with four eate­
gories of (TffiSYR, LASTYR) given by (O,O), (0,1), (1,0) and (1,1). 

For the data in Table 8.25 the tW<rdimensional eontingeney table for the 
100 observations is given by 

° TffiSYR 

1 

LASTYR 

° 1 

~ 
~ 

A X2 test of independence rejects the independence hypothesis at the 0.000 
level. The observed frequencies on the main diagonal are much larger than 
the expected frequencies (9.8, 46.8) under independence. There is a ten­
deney, therefore, for married women to remain in the same work eategory 
in both years. Of interest to us now is whether these probabilities ean be 
related to the set of explanatory variables. In partieular we might wish to 
determine how the intera.ction is related to the explanatory variables. 

Loglinear Models for Dependent Variables 

In Chapter 6 the loglinear model was used to represent the variation in the 
eell frequencies in eontingeney tables. Using the fact that the cell proportion 
ean be obtained from the eell frequencies by dividing by a constant, the 
saturated loglinear model for a two dimensional (r xc) table is given by 

lnpij = J.L + J.Ll(i) + J.L2(j) + J.L12(ij), 

where 

J.L2(j) 
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For a 2 x 2 table tbese equations can be simplified to become 

1 
I-' = 4[lnP11 + lnP12 + lnP21 + lnP22] , 

1 
1-'1(1) = 4 [1n(P11/P21) + ln(P12/P22)}, 1-'1(2) = -1-'1(1), 

1 
1-'2(1) = 4 [1n(P11/pI2) + ln<P2dP22)], 1-'2(2) = -1-'2(1), 

1-'12(11) = ~ In [P11P22] , 1-'12(12) = -1-'12(11) = 1-'12(21) = -1-'12(22), 
4 P21P12 

= 1 [ODDS] 4ln RATIO . 

Tbe row effect parameter 1-'1(1) measures tbe propensity to be in row 1 
ratber tban row 2, wbereas 1-'2(1) measures tbe tendency to be in column 1 
ratber tban column 2. Tbe interaction parameter 1-'12(11) indicates tbe ten­
dency for tbe row effect to differ in each column, or equivalently for tbe 
column effect to differ in each row. Altematively, if tbe probabilities in 
tbe main diagonal are higb relative to tbe off diagonal probabilities, tben 
1-'12(11) will tend to be large. 

The two main effects 1-'1(1), 1-'2(1) and the interaction 1-'12(11) can be ex­
pressed in terms of logits of the form ln[Pi;/Pkz]. These parameters can 
therefore be related to the set of explanatory variables by using a system 
of logit models to relate the cells of the dependent variable to the expIana­
tory variables. 

Relation Between Loglinear Parameters and Logits 

If we assume tbat P22 is used as tbe base ceH, for the dependent variable, 
tbe system of multinomial logit models used to relate to tbe explanatory 
variables is given by 

ln[P11/P22] 
ln[P12/P22] = 

ln lP2dP22] = 

xßA , 

xßB and 

xßc • 

Tbe effect parameters can therefore be defined as 

1-'1(1) = [XßA+XßB-xßcl, 

1-'2(1) = [xß A - xß B + xßcl, 

and 1-'12(11) = [xßA - xßB - xßcl· 
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The reader should note that for convenience the fraction (1/4) has been 
omitted from these definitions. In a similar fashion, relationships ean be 
established between loglinear model parameters and logit model parameters 
for (r xc) contingeney tables. 

Example 

For the data in Table 8.25 a system of three logit models was estimated 
using the category (THISYR, LASTYR) = (1,1) as the base eategory. The 
four probabilities are defined by 

o 
THISYR 

1 

LASTYR 
o 1 

Pu P12 

P21 P22 

The estimated logit models are summarized in Table 8.37. The table also 
contains the model eoefficients for the roweffect (THISYR), the column 
effect (LASTYR) and the interaction effect. From the equation for 1'1(1) 

we ean conelude that individuals are less likely to work THISYR when 
AGE and EDUC are relatively low, when HUBINC is relatively high, when 
the individual is not BLACK, and if there are preschool children. From 
the 1'2(1) equation it would appear that a1l the variables, exeluding the 
intereept, infiuenee the decision to work in the same way. The reader should 
eonfirm the similarity of these conelusions to those obtained previously for 
the models for THISYR and LASTYR using dichotomous response models. 
From the interaction parameter equation for 1'12(U) we ean conelude that 
individuals are more likely to have the same choice in both periods (positive 
interaction) if HUBINC is relatively high, if EDUC is relatively lowj if they 
do not have young preschool children, and if they are not BLACK. 

A Conditional Probability Approach 

In the previous analysis the relationship between the two dependent vari­
ables THISYR and LASTYR was studied using a loglinear model that 
treats the variables as joint covariates. It is also possible to view the two 
variables in a manner which permits one to be dependent on the other. 
In other words, given the outcome for LASTYR, what is likely to oceur 
THISYR? For each of the two categories for LASTYR separate logit mod­
els ean be estimated for the dichotomous response variable THISYR. The 
two logit models are fit to the two parts of the table separately. 
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TABLE 8.37. Logistic Regression Model Estimates for 2 x 2 Contingency 
Thble Parameters 

Dependent 
Variable INTERCEPT AGE HUBINC EDUC BLACK CHILD1 CHILD2 

In[p11/P221 -0.06 0.03 0.15 -0.36 -1.26 5.58 2.21 
(0.99) (0.64) (0.01) (0.17) (0.28) (0.00) (0.01) 

In[p12/P221 12.65 -0.22 0.18 -0.76 1.56 -12.64 0.40 
(0.05) (0.01) (0.02) (0.10) (0.28) (0.99) (0.66) 

InlP2t1P221 -9.23 0.11 0.10 0.20 0.64 -13.40 1.51 
(0.01) (0.09) (0.10) (0.16) (0.44) (0.99) (0.09) 

/41(1) 21.82 -0.30 0.23 -1.32 -0.34 6.34 1.10 
(Raw) 

/42(1) -21.94 0.36 0.07 0.60 -2.18 4.82 3.32 
(Column) 

/412(11) -3.48 0.14 -0.13 0.20 -3.46 31.62 0.30 
(Interaction ) 

For the case LASTYR = 0, the estimated logit model is given by 

In [p[THISYR = 0 I LASTYR = 0]] 
p[THISYR = 1 I LASTYR = 0] 

= -35.93 + 0.37 AGE - 0.06 HUBINC + 1.75 EDUC 
(0.00) (0.01) (0.22) (0.00) 

-12.00 CHILD1- 0.28 CHlLD2 + 7.36 BLACK. 
(0.01) (0.86) (0.00) 

Similarly, for the case LASTYR = 1, the estimated logit model is given by 

I [p[THISYR = 0 I LASTYR = 1]] 
n p[THISYR = 1 I LASTYR = 1] 
= - 9.96 + 0.22 AGE - 0.16 HUBINC + 0.53 EDUC 

(0.06) (0.00) (0.04) (0.18) 

+ 5.34 CHlLDI - 0.29 CHILD2 + 0.82 BLACK. 
(0.90) (0.76) (0.57) 

From the above two equations, we can conclude that individuals who 
chose not to work LASTYR are less likely to work THISYR if AGE and 
EDUC are relatively high, if they are BLACK, and if there are no children 
under age 2. Individuals who did work LASTYR are more likely to work 
THISYR if HUBINC is relatively high and AGE is relatively low. 
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Exercises for Chapter 8 

1. This exercise is based on the Mystery Data in Table VlO in the Data 
Appendix. The data is a subset of the mystery data in Table 8.11. Ta­
ble V10 exc1udes the variables C2, C4, C5, C6 and C7. A comparison 
ofthe means across the eight SEXED groups (see Table 8.12) showed 
that the means on the variables Cl, C3, C8, C9 and ClO differed. 

(a) For the five variables use multivariate regression with indicator 
variables to compare the eight group means for each variable. 
You will have to use several different indicator variable schemes 
to obtain a variety of comparisons. Use both dummy coding and 
effect coding design matrices. 

(b) Use the dummy variable approach in (a) to test the hypothe­
sis that for each education group there is no difference between 
males and females. Carry out the test separately for each vari­
able and simultaneously for an five variables. 

( c) Repeat the steps in (b) to test the hypothesis that there are no 
differences among the education categories for each sex. 

(d) Repeat the tests in (b) and (c) using cell parameter coding. 

(e) Repeat the tests in (b) and (c) using the non-full-rank group 
effects design matrix. 

(f) What can you conc1ude about the differences among the eight 
SEXED groups for the five variables? 

2. This exercise is based on the R.C.M.P. Officer Data in Table V9 in 
the Data Appendix. The data pertains to the job satisfaction of police 
officers in ten different municipal detachments. The four satisfaction 
factors are to be compared over the ten detachments. 

(a) Perform a MANOVA to compare the means on the four factors 
over the ten detachments. Perform various multiple comparisons 
to compare the means. 

(b) Perform a test for parallel profiles. 

(c) Test the hypothesis that detachments 1, 4, 9 and 10 have equal 
profiles using a multivariate regression approach. 

(d) Test the hypothesis that detachments 2, 3 and 7 have equal 
profiles using a multivariate regression approach. 

(e) Test the hypothesis that detachments 5, 6 and 8 have equal 
profiles using a multivariate regression approach. 

(f) Carry out a simultaneous test of all three hypotheses in (c), (d) 
and (e). 
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(g) What conclusions can you draw regarding the variation in officer 
job satisfaction over the ten detachments? 

3. This exercise is based on the Shopping Attitude Data in Table VB in 
the Data Appendix. The data set contains 200 observations regarding 
attitudes of female clothing shoppers. In addition to seven attitude 
variables the respondents age and work status are also included. 

(a) Use MANOVA to test the hypothesis that the vector of means 
on the variables Al to A7 are the same for the two WORK 
categories. Also use ANOVA to compare the means for each 
variable separately. Discuss the results. 

(b) For the comparison in (a) perform a test for parallel profiles. 

(c) Repeat the tests in (a) and (b) using a multivariate regression 
approach with indieator variables. 

(d) Repeat the analyses in (a), (b) and (c) adding the variable AGE 
as a covariate. What impact does the addition of AGE have on 
the earlier results? 

(e) Divide the data into two sets of 100 observations each and per­
form a discriminant analysis of the attitude variables with re­
spect to the two WORK categories for each data set and com­
pare. 

(f) Use the results for one data set in (e) to prediet the WORK 
category for the other data set and evaluate the discriminant 
function as a prediction device. 

(g) Repeat the steps in (e) and (f) for the AGE categories. 

(h) As in (e) divide the data set into two groups and use logistic 
regression to relate WORK to the seven attitude variables for 
each group. Fit two different regressions with and without AGE 
as an explanatory variable. Discuss the results. 

(i) Use the results in one data set in (h) to predict the WORK cate­
gories for the other data set and evaluate the logistie regression 
model as a prediction deviee. Does the variable AGE make a 
difference? 

(j) Repeat the steps in (h) and (i) by determining multinomiallogit 
models to relate the AGE categories to the seven attitude vari­
ables. Evaluate the fitted models as a predictive device by using 
the fitted model for one set to predict the other set. Fit models 
with and without the variable WORK as an explanatory vari­
able. 

(k) Summarize the analyses and discuss the relationship between 
shopping attitudes and the variables WORK and AGE. 
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4. This exercise is based on the Bank Employee Data contained in Ta­
bles Vll and V12 in the Data Appendix. 

(a) Using the data in Table Vll use discriminant analysis to re­
late the variable SEX to the variables LCURRENT, LSTART, 
EDUC, AGE, SENIOR, and EXPER. Also, examine the one­
way ANOVA analyses for each of the six variables. Discuss the 
relationship between the variable SEX and the explanatory vari­
ables. 

(b) U sing the discriminant functions obtained in (a) predict the SEX 
variable in Table V12 and evaluate the model as a prediction 
tool. 

( c) Repeat steps (a) and (b) by interchanging the roles of Tables VII 
and 12. 

(d) Repeat the steps in (a), (b) and (c) using the variable RACE 
instead of SEX. 

(e) Combine the variables SEX and RACE to form a new variable 
SEXRACE and repeat the steps in (a), (b) and (c). 

(f) Write a summary discussing the relationship between SEX, RACE 
and the six variables. 

(g) Repeat the steps in (a), (b) and (c) using the variable JOBCAT 
instead of SEX. 

(h) Write a summary discussing the relationship between job cate­
gory and the six variables. 

5. This exercise is based on the Bank Employee Data contained in Ta­
bles Vll and V12 in the Data Appendix. 

(a) Combine the two tables into one data set of 200 observations. 

(b) Use a single explanatory variable logistic regression model to 
relate the dependent variable SEX to each of the explanatory 
variables LCURRENT, LSTART, EDUC, SENIOR, AGE and 
EXPER. Discuss the set of bivariate relationships studied. 

( c ) Carry out a logistic regression relating SEX to all six explanatory 
variables simultaneously. Discuss the results and compare them 
to the results in (b). Select a prediction model. 

(d) For the prediction model selected in (c), evaluate the model by 
constructing a confusion matrix based on the 200 observations. 

(e) Repeat steps (a) through (d) using the dependent variable RACE. 

(f) Determine a new variable SEXRACE with four categories that 
combine the variables SEX and RACE (SEXRACE = SEX + 2 * 
RACE). Repeat steps (a) through (d) and discuss the results. Is 
there a predictable interaction effect between SEX and RACE? 
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(g) Repeat steps (a) through (e) using probit analysis. 

(h) Write a summary outlining the relationship between SEX and 
RACE and the six variables. 

6. This exercise is based on the bank employee data contained in Tar 
bles V11 and V12 in the Data Appendix. 

(a) Combine the two tables into one data set of 200 observations. 
Collapse the categories of the variable JOBCAT by combining 
categories JOBCAT = 1 and JOBCAT = 2 and also by combin­
ing the categories JOBCAT = 4 and JOBCAT = 5. Your new 
JOBCAT variable should have three categories. 

(b) Use a single explanatory variable multiple logit model to re­
late the variable JOBCAT to each of the explanatory variables 
LCURRENT, LSTART, EDUC, SENIOR, AGE and EXPER. 
Discuss the set of bivariate relationships studied. 

(c) Estimate multiple logit models relating JOBCAT to an six ex­
planatory variables simultaneously. Discuss the results and com­
pare them to the results in (b). Select a prediction model. 

(d) For the prediction model selected in (c) evaluate the model by 
constructing a confusion matrix based on the 200 observations. 

(e) Repeat steps (a) through (d) using an alternative base case (eg. 
change from base category 3 to base category 1 for JOBCAT). 

7. This exercise is based on the Panel Study Data summarized in Tar 
ble V13 in the Data Appendix. The first 100 observations in the table 
are different observations than the ones shown in Table 8.25. The last 
100 observations are identical to the observations in Table 8.25. 

(a) Use the first 100 observations to repeat the logistic regression 
analyses based on Table 8.25 carried out in Chapter 8. Compare 
your results to the results in the chapter. Select a prediction 
model for both LASTYR and THISYR. 

(b) Evaluate the selected prediction models in (a) by using the mod­
els to predict the outcomes for LASTYR and THISYR in the 
latter half of Table V13 (also Table 8.25). Discuss your results. 

(c) Use fitted logistic regression models for LASTYR and THISYR 
given in Chapter 8 to predict the first 100 observations of LASTYR 
and THISYR in Table V13. Discuss the results. 

(d) Using the first 100 observations in Table V13 repeat the logistic 
regression analyses carried out in Chapter 8 to predict the in­
teraction between LASTYR and THISYR. Discuss your results 
and compare to the results obtained in Chapter 8. 
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(e) Repeat steps (a) through (c) using probit analysis in place of 
logistic regression. 

(f) Write a summary discussing the relationship between LASTYR, 
THISYR and the six variables. 
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Questions for Chapter 8 

1. The mean vector 1-'(5 x 1) on a random vector x(5 x 1) is to be 
compared across two groups. Denote the mean vectors in the two 
groups by 

1'11 1'12 
1'21 1'22 

1-'1= 1'31 and 1-'2 = 1'32 
1'41 1'42 
1'51 1'52 

The measurements in x denote measurements on the same individual 
under five different circumstances. 

(a) Use a comparison of profiles approach to explain what is being 
tested in the following hypotheses. 

i. Ho : 1-'1 = 1-'2' 
ii. Ho : (1'11 -1'12) = (1'21 -1'22) = (1'31 -1'32) = (1'41 -1'42) = 

(1'51 - 1'52). 

iii. Ho : 1'1j = 1'2j = 1'3j = 1'4j = 1'5j, j = 1,2. 
iv. Ho : i' 1-'1 = i' 1-'2 where i a vector of unities. 

(b) Assume that you are required to use a multivariate regression 
program to carry out various hypothesis tests in multivariate 
analysis of variance. Assume that you are using effect coding for 
the design matrix with the second group coded -1 and the first 
group coded +1. Give the parameter matrix B that corresponds 
to the problem in (a). 

(c) For each of the hypotheses outlined in (a) give the matrices A 
and M required for the test Ho: ABM = O. 

2. The design matrix used in the one-way univariate ANOVA model can 
also be used for the MANOVA model. In ANOVA, the design matrix 
appears on the right-hand side of a multiple regression whereas in 
MANOVA the design matrix appears on the right-hand side of a 
multivariate regression. Using dummy coding the design matrix for a 
one-way analysis with 9 groups is given by Z below. The number of 
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observations in group j is denoted by nj, j = 1,2, ... ,9, n L1=1 nj. 

Z= 

1 1 0 0 0 
1 1 0 0 0 

1 1 0 0 0 
1 0 1 0 0 

1 0 1 0 

1 0 1 0 
100 1 

100 1 

100 1 

100 0 

100 0 

100 0 
100 0 

100 0 

100 0 

o 

o 
o 
o 

o 

1 

1 

1 
o 
o 

o 

}~ 

} n.-l 

}~ 
(a) Show that the matrices Z'Z and Z'X are given by 

Z'Z= 

Z'X= 

ng-l 0 
o 

o ng-l 

X·I(g-l) X.2(g-l) X·3(g-l) 

= [n n'] 
n N ' 

X.p(g-l) 

where n' = (nI, n2, ..• , ng-l), N is a diagonal matrix of ele­
ments nl, n2, ... , ng-l, and X is the (n x p) matrix of elements 



336 8. MANOVA, Discriminant Analysis and Qualitative Response Models 

Xijk where i = 1,2, ... ,nkj k = 1,2, ... ,gj andj = 1,2, ... ,p. 
The order of the rows of X conform to those of Z and the dot 
notation for Xijk is used to denote sums over the dotted sub­
script. 

(b) Show that (Z'Z)-l can be written as (Z'Z)-l = [: ~], 
where a = l/ng, b' = -[Jg Jg ... Jg], 

C= 

1 
n1 

1 
n2 

1 
ng-1 

1 .. , +-11 
n ' 9 

where i is a column of unities. HINT: Use the formula for the 
inverse of a partitioned matrix. 

(c) Show that B = (Z'Z)-lZ'X yields the matrix of estimators 

X.1g X.2g x.pg 

(X'l1 - X.1g) (X.21 - X.2g) (X,p1 - x.pg) 

B= 
(X~12 - X.1g) (X'22 - X.2g) 

(X.1(g-1) - X.1g) (X.2(g-1) - X.2g) ... (X.p(g-l) - x.pg ) 

3. Given a random SaDlple of n1 observations on x(p xl) from popula­
tion 1 and n2 observations from population 2 denote the n = (nI +n2) 
observations on x by X(n x p). Define y = 1 for population 1 and 
y = 0 for population 2 and denote the n y observations by the vec­
tor y. Consider the regression model y = Xß1 +ißo+u, where X does 
not contain the column of unities i. The least squares estimators of 

ß1 and ßo are given by ß1 = S;; Sxy and ßo = fj - ß~ x, where Sxx is 
the sampie covariance matrix for x and Sxy is the sampie covariance 
between y and x, x is the vector of means for x and fj is the mean 
for y. 

(a) ShowthatSxy = [X'y-nXfj]/(n-l)canbewrittenasn1n2(x.1-
x.2)/n(n-l) where Xl and X2 are the SaDlple means on x in the 
two populations. Also show that ß1 = n1n2S;;(X.1 -x'2)/n(n-

1) and ßo = nl/n - n1n2(x.1 - X.2)'S;;x/n(n - 1). 

(b) Show that for a given observation x, y is given by y = ßo+x' ß1 = 
nl/n + n1n2(x - x)'S;;(X.1 - x'2)/n(n -1). 
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(e) Show that if x = X.ll then y is given by 

A ni n1n2 (- -)'S-l(- -) YI = - + ( 1) X·I - X xx X·1 - X·2 n nn-

and if x = X.2 then y is given by 

A n1 n1n2 (- -)'S-l(- -) Y2 = - + ( 1) X·2 - X xx X·1 - X.2 . n n n-

Also show that 

(
A A )/2 • n1 n1n 2(n2 - n1) (- - )'S-l(- -) 
Y1 +Y2 = Y = -;+ 2n2(n -1) X·1-X·2 xx X·1- X·2 . 

(d) Show that a decision rule that places x in population 1 if Y ~ y. 
is given by the rule which places x in population 1 if 

, -1 _ _ 1 _ - -1 - -
x Sxx (X'l - X.2) ~ 2(x.1 + X.2)Sxx (X'l - X.2). 

(e) Compare the rule given in (d) to the Fisher Criterion given in 
Section 8.2. Reca1l that for x f"V N(p., lJ), 

fex) = [l27rEIl-p/2 exp[-1/2(X - p.)' lJ-1(X - p.)]. 

4. In discriminant analysis for two groups the minimum total probability 
of misclassifieation eriterion and the Bayes eriterion both assign x to 
population 1 if !t (x) I h (x) > P2IPll where P2 and PI are the prior 
probabilities of membership in groups 2 and 1 respeetively. 

(a) Show that if the two densities are x f"V N(l'l' lJ) and x '" 
N (1-'2, lJ) then this rule is equivalent to 

x' lJ-1(1'1 - 1'2) > ~(1'1 + 1'2)' lJ-1(1'1 -1'2) + ln(P2lp1)' 

(b) Suppose the two densities are univariate Poisson with parame­
ters Al and A2 respectively. Show that the above rule suggests 
that X is assigned to group 1 if 

Recall that the Poisson density with parameter A is given by 
fex) = e->' AX Ix!. 

5. If A(p x p) is a symmetrie matrix and x is a nonzero vector then the 
maximum value of the expression x' Ax/x'x is All where Al is the 
largest eigenvalue of A and the maximum value is attained at x = VI, 
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where vI is the corresponding eigenvector of A. Use this result to 
show that the maximum value of b'Gb/b'Wb is Al! where Al is 
the largest eigenvalue of W-lG and that the maximum is attained 
at b = VI, where VI is the corresponding eigenvector. HINT: Let 
b = W- l / 2X and use the fact that the eigenvalues and eigenvectors 
of DC are equal to the eigenvalues and eigenvectors of CD, where 
D = W- l / 2G and C = W- l / 2. 

6. A random variable x is known to have been selected from one of two 
populations where the populations are N(I-'l' E) and N(I-'2' E). Su~ 
pose that x is placed in the population whose squared Mahalanobis 
distance from x is the smallest. Show that this criterion is equivalent 
to the Fisher criterion, which places x in group 1 if 

7. Two bivariate normal populations are defined by 1-'1 = [ Jl.n ], 1-'2 = 
Jl.21 

[ Jl.12 ] and common covariance matrix E = [ O'~ 0'10'2P ]. 
~ ~~ ~ 

(a) Show that the squared Mahalanobis distance between the two 
populations is given by 

d2 = (1'11 -1'2d20'~ + (1'12 - 1'22)20'~ - 20'10'2P(1'12 - 1'22)(1'11 - 1'21) 
0'~0'~(1 - r) 

(b) Show that ,p in (a) can be written as 

d?- = A~ + A~ - 2pA1A2 

(1 - p2) 

where 1\ _ (JLn - 1'21) 1\ _ (1'21 - Jl.22) 
~1 - 0'1 ,~2 - 0'2 • 

( C ) The larger the value of d2 the better the ability to classify the 
unknown x correctly. For what values of p is ,p larger than the 
value of,p corresponding to p = 0 given by ~ = A~+A~? What 
conditions are necessary on Al and A2 for the discrimination to 
be improved? Interpret this graphically. 

(d) For what value of pis ,p a maximum? Interpret the answer in 
terms of the parameters 1-'1' Jl.2 and p. 

8. A logistic regression model is given by lnfp/(l-p)] = ßO+ß1X, where 
Xis a dummy variable and pis the probability that Y = 0 and (l-p) 
is the probability that Y = 1. Express p as a function of X and show 
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that the probabilities for the (2 x 2) table for the conditional density 
of Y given X are as given below. 

x 
o 
1 

o 
Y 

1 

(a) Explain in words what the quantities in each of the four cells 
represent. 

(b) Let the theoretical joint probabilities be denoted by lij as shown 
below and relate the logits ln[/u/ !t2] and ln[hd h2] to the 
parameters ßo and ßl in (a). 

x 
o 
1 

Y 
o 1 

lu 

(c) Show that ßo = In[/ll/ !t2] and ßl = ln[(hd h2)/(fll/ !t2)] and 
interpret the parameters ßo and ßl. 

(d) Recall from Chapter 6 that for the loglinear model 

In lij = I' + J.L1(i) + 1'2(;) + J.L12(ij) i = 1,2; j = 1,2, 

1'1(1) = -1'1(2); 1'2(1) = -1'2(2); J.LI2(U) = -1'12(12) = 1'12(22) = 
-1'12(21)' Show that ßo = 21'2(1) + 2J.LI2(U), ß1 = 41'12(12)' 

9. Suppose that Yi is distributed as point binomial with density I(Yi) = 
pf' (1 - Pi)(I-Yi ). 

(a) Show that for the random sampie Yb Y2, ... , Yn the likelihood 
function is given by 

n 

L = IIpfi(l- Pi)1-Yi 
i=1 

and the log of the likelihood by 
n 

In L = L[Yi lnPi + (1 - Yi) ln(l - Pi)]' 

i=1 

(b) Assurne the x~ are fixed and ß[ (c+ 1) x 1] is a vector of unknown 
parameters. Define Pi = ex~ß /[1 + ex~ß] and hence 1 - Pi = 

1/[1 + ex~ß], i = 1,2, ... ,n and show that In L = 2:~=IYi~ß-
2:~=lln(l + ex~ß). 
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(c) Show that the derivative of ln L with respect to ß is given by 
8lnL/8ß = X'y - X'p, where X(n x (c + 1)) is the matrix of 
fixed X values JG, i = 1,2, ... ,n, p(n xl) is the vector of 
Pi values i = 1,2, ... , n and y(n x 1) is the vector of Yi values 
i = 1,2, ... ,n. 

(d) Show that the matrix of second derivatives of ln L( [J2ln L / 8ßj 8ßk)j,k 
with respect to the elements of ß is given by - X'WX where W 
is the diagonal matrix of elements Pi(1 - Pi), i = 1,2, ... , n. 

(e) The Newton-Raphson procedure for approximating the maxi­
mum of the function G(y,X,ß) = lnL with respect to ß de­
termines a sequence of values ßn such that G(y, X, ßn+1) > 
G(y,X,ßn)' The method employs the inverse of the Hessian 
matrix given by 

[ 82G ]-1 
H n = 8ßj 8ßk ß=ßn 

and the vector of first derivatives given by 

determined from ßn+1 = ßn - Hndn· Show that ßn+1 is given 
by 

ßn+1 = ßn + (X'WX)ß~ßn (X'y - X'Pn) 

where Pn denotes the vector P of Pi values evaluated at ßn' 

10. Given the observations Y and X below, the logistic regression model 
lnfpi/(1 - Pi)] = ßo + ßIX is to be estimated. 

(a) Obtain preliminary estimates of Pi using the simple least squares 

estimators in the model Yi = (Xo +(XI Xi + u; given by 

where fi = E~=IYi/n and x = E~=lxdn. Determine the values 
of Pi = &0 + &lXi' Plot the values of Pi VB Xi. Compute the sums 
E~=IPi and E~IXiPi and compare to E~=IYi and E~=IXiYi' 
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(b) Determine the average value of x, Xl for Y = 0 and the average 
value of x, X2 for y = 1 and obtain estimates fit and Pa at Xl 
and X2 respectively using the estimated model obtained in (a). 
Use the relationships 

In[pj/{l- Pj)] = ßo + filXj, j = 1,2 

to determine estimates of ßo and ßl using fit, Xl, Pa and X2· 
Use the estimates of ßo and ßl to determine new estimates of 
Pi, Pi, using 

i = 1,2,3,4,5,6, 

for the Xi data values given in (a). Compare the newestimates 
Pi to the Pi values obtained in (a). Also compute ~:=lPi and 
~~lXiPi and compare to ~:=lYi and ~:=lXiYi as in (a). Plot 
the Pi values against Xi and compare the plot to the plot ob­
tained in (a). 

( c ) U sing the estimates of Pi from (b) determine the diagonal ele­
ments Pi{l- Pi) of the diagonal matrix W and compute X'WX 
where X(6 x 2) is the matrix containing a column of unities and 
the X values given in (a). 

(d) Determine new estimators of ßo and ßl using the first iteration 
of the Newton-Raphson procedure 

[ ~~ ] = [ ~ ] + (X'WX)-l[X'y - X'p], 

where ßo, 131 are the estimates determined in (b) and p(6 x 1) 
is the vector of estimates of p(6 x 1) determined in (b). 

11. Given the dummy variable Y = Oor 1 and the interval variable X, the 
linear model Y = ßo + ß1X + U is called a linear probability model. 
Assume X is fixed and that U is independent of X with E[U] = O. 

(a) Let Pi = P[Yi = 1] and 1 - Pi = P[Yi = 0] and show that 
E[Yi] = Pi = ßo + ß1 Xi. 

(b) Since 0 ~ Pi ~ 1 assume Pi = ßo + ß1Xi when 0 ~ ßo + ßlXi ~ 1 
and Pi = 1 if ßo + ßlXi > 1 and Pi = 0 if ßo + ßlXi < O. Plot Pi 
as a function of Xi. Can you guarantee that the ordinary least 
squares estimators of Pi are necessarily in the range 0 ~ Pi ~ 1. 

(c) Show that E[u~] = Pi(l - Pi) = (ßo + ßlxi)(l - ßo - ßlXi)' 
What standard assumption about linear models does this result 
contradict? 
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(d) Suppose you have a1rea.dy obtained the simple least squares es­
timates Pi of the Pi. Use these estimates to obtain a second 
estimator of Pi that takes into account the result in (c). Show 
that the estimator is given by ß = (X'DX)-I(X'Dy), where D 
is a diagonal matrix with diagonal elements l/pi(l- Pi). 

(e) c~ you guarantee in (d) that the new estimates of Pi given by 
Xß are in the range 0 ~ Pi ~ 11 

12. The logarithm of the likeIihood for the multinomial logit model is 
given by 

n 9 

lnL = EEYij lnPij, 
i=lj=1 

where 

(g-l) 

Pij = ex~ß; / [1+ E ex~ß;], 
j=1 

i = 1,2, ... , n, j = 1,2, ... , (g-I), 

and 
(g-l) 

Pig=I/[I+ E ex~ß;], i = 1,2, ... ,n, 
j=1 

and Xi and ß j are (c xl) vectors. 

(a) Show that 

{)Pi· 7fil; = Pij(1 - Pij)Xi, j, k = 1,2, ... , (g - 1), i = 1,2, ... , n, 

(b)" Using the expression lnL = E~=IEJ=IYij lnpij and the deriva­
tive expressions in (a) show that 

n 9 

= E[Yik(l- Pik) + EYij(-Pik)]Xi 
i=1 j=1 

#k 
n 

= E(Yik - Pik)Xi 
i=1 
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(c) Differentiate the expression in (b) to obtain 

82 1nL 

8ßk8ß~ 

82lnL 

8ßk8ß~ 

n 

- V ik (1 - Pik)XiX~ 
i=l 

n 

VikPilXiX~ . 
i=l 

(d) Let ß denote the c(g -1) x 1 vector containing the components 
ßj , j = 1,2, ... , (g-I). Let H-1 [c(g-l) x (c(g-l)l denote the 
matrix with diagonal blocks given by 82 In L / 8ß k8ß~ and off­
diagonal blocks by 82lnL/8ßk8ß~. Let d denote the c(g-l) x 1 

vector with (g - 1) component vectors 8Jß;, k = 1,2, ... , (g -

1). Write an equation for the Newton-Raphson procedure for 
estimating ß as in Question 9( e). 

13. Recall that the joint density for a random sample Yb Y2, . .. , Yn from 
the point binomial is given by L = IIf=lPr; (1 - Pi)(l-y;). For a given 
explanatory variable Xi the probit model assumes that Pi = F(ßo + 
ß1Xi) where F is the distribution function for the standard normal 
density 

Pi = F(zd = [Z~ f(z)dz, 

and where f(z) is the standard normal density. 
Suppose that the explanatory variable Xi is a dummy variable (Xi = 0 
or 1) and consider the conditional probability table p[Y I Xl given 
below 

Use the fact that 

X 
o 
1 

p[z:::; zol 

p[z:::; zol 

Y 
o 1 

0.20 0.80 

0.60 0.40 

1 

1 

0.20 ::::} Zo = -0.84 

0.60 ::::} Zo = 0.25 

to show that ßo = -0.84 and ßl = 1.09 in the expression Zi = 
ßo + ß1Xi. 

14. (a) For the data set given in Question 10 for (x, y), complete lO(a) 
to obtain estimates Pi of Pi· 



344 8. MANOVA, Discriminant Analysis and Qualitative Response Models 

(b) As in lO(b) compute Xl and X2 and obtain estimates PI and P2 
of Pi at Xl and X2 using the estimated model in lO(a). Now use 
the probit model to determine z for 

i~ j(z)dz = Pj, j = 1,2, 

and solve for ßo and ßl in the model 

j = 1,2. 

(c) Use the estimates of ßo and ßl determined in (b) to generate 
Zi values for each of the six Xi values and determine the corre­
sponding estimates Pi of Pi using the normal density 

Compare the new estimates of Pi, Pi, to the estimates determined 
from ordinary least squares as in 10(a) and compare I:Pi and 
I:XiPi to I:Yi and I:xiYi respectively. 

(d) Finish this like lO(c) and lO(d). 

(e) Compare the results obtained using the probit model to the 
estimates obtained for the logit model in 10(d). 



9 

Principal Components, Factors 
and Correspondence Analysis 

In exploratory studies, researchers often include as many variables as pos­
sible to ensure that no relevant variables will be omitted. The resulting 
data matrices can sometimes be large and difficult to analyze, particularly 
if the level of correlation among the variables is high. In techniques such 
as multiple regression and discriminant analysis, variable selection proce­
dures can be employed as a data reduction technique; however this method 
can result in the loss of one or more important dimensions. An alterna­
tive approach is to use all of the variables in X to obtain a smaller set of 
new variables that can be used to approximate X. The new variables are 
called principal components or factors and are designed to carry most of 
the information in the columns of X. The higher the level of correlation 
among the columns of X the fewer the number of new variables required. 
The techniques of principal components analysis and factor analysis are 
examples of data reduction techniques. 

Principal components analysis and factor analysis operate by replacing 
the original data matrix X by an estimate composed of the product of 
two matrices. The left matrix in the product contains a small number of 
columns corresponding to the factors or components, whereas the right 
matrix of the product provides the information that relates the components 
to the original variables. A scatterplot based on the left matrix is useful for 
relating the n objects of X with respect to the new factors. A plot based 
on the rows of the right matrix can be used to relate the components to the 
original variables. The decomposition of X into a product of two matrices 
is a special case of a matrix approximation procedure called a singular 
value decomposition. A two-dimensional plot based on this approximation 
is called abiplot. 

A singular value decomposition can also be applied to the (r x c) matrix 
formed by an (r xc) contingency table. This application of the singular 
value decomposition is called correspondence analysis. A correspondence 
analysis produces a simultaneous plot locating row and column categories 
with respect to underlying row and column factors. In correspondence anal­
ysis, the underlying row and column factors attach interval scales to the 
row and column categories, and hence the technique can also be referred 
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to 88 dual scaling. The extension of the technique to multidimensional con­
tingency tables is called multiple correspondence analysis. 

This chapter begins with a discussion of principal components analysis 
in Section 9.1 followed by an outline of factor analysis in Section 9.2. Sec­
tion 9.3 describes the singular value decomposition and the biplot. The 
theory of correspondence analysis is surveyed in Section 9.4. 

9.1 Principal Components 

Given a set of n observations on p observed variables, the purpose of prin­
cipal components analysis is to determine r new variables, where r is small 
relative to p. The r new variables called principal components must to­
gether account for most of the variation in the p original variables. The 
components are linear transformations of the original variables and are 
mutually orthogonal. The principal components can be used to provide an 
approximation for the data matrix X. An example from economics involves 
a summary of the time series behavior of macro-economic variables for a 
variety of countries. One component could be representative of the "stock 
variables" and a second component might represent ''ßow variables." A sec­
ond example from zoology involves the me88urement of various body parts 
for various species of birds. The components might represent overall body 
size, wing span, head size, and so on. 

9.1.1 A CLASSIC EXAMPLE 

A classic example, which motivates the use of dimension reduction tech­
niques, occurred early in the twentieth century with the attempt to char­
acterize criminals on the b88is of a set of body me88urements. MacDonell 
(1902) obtained a correlation matrix relating seven body me88urements for 
a sampie of 3000 criminals. The body me88urements used were left finger 
length, left forearm length, left foot length, head length, head breadth, face 
breadth, and height. 

In a principal components analysis outlined in Maxwell (1977), three 
interesting uncorrelated components were determined from these me88ure­
ments. The three components together accounted for 84% of the total vari­
ation among the seven variables. Each of the components is a linear combi­
nation of the original seven variables. The first component which accounts 
for 54% of the total variance, is a me88ure of overall size, and the second 
component which accounts for 21% of the variance represents a contr88t 
between head size and the size of the remainder of the body. The third 
component contr88ts head length and head breadth and carries 9% of the 
variation. The coefficients for the three components are summarized in 
Table 9.1. These three components define three uncorrelated me88ures of 
human body characteristics. 
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TABLE 9.1. Summary of Coefficients for 
Principal Components of Body Measure­
ments 

Coefficients 
Variables First Second Third 

Head length 0.538 -0.447 -0.712 
Head breadth 0.413 -0.784 0.206 

Face breadth 0.575 -0.628 0.309 
Left finger length 0.853 0.288 0.056 
Left forearm length 0.888 0.339 0.030 

Left foot 0.878 0.219 0.048 
Height 0.849 0.220 0.005 

One might imagine scanning a large group of individuals and noticing 
that individual differences are characterized in terms of overall body size, 
head size relative to body size and finally the shape of the head. It is in­
teresting to note also that these three derived dimensions are mutually 
uncorrelated. Perhaps there are additional components or body charac­
teristics that could be obtained from measurements derived from the feet, 
thighs, legs and waist. The belief that characteristics of body size and shape 
could be used to distinguish criminals from the remainder of the popula­
tion motivated some of the earliest applications of multivariate statistical 
analysis. 

9.1.2 AN AD Hoc ApPROACH 

To provide an initial example, ten observations on each of the variables 
SMEAN, PMEAN, PER WH and PM2 shown in Table 9.2 are used. These 
data are derived from a much larger sampie of measurements taken on a 
large number of American cities. The variables measure annual mean of 
biweekly sulplate readings (SMEAN), annual mean of suspended particu­
late readings (PMEAN), percent of whites in the population (PERWH), 
and population density per square mile (PM2). This data is available in 
Gibbons, McDonald and Gunst (1987). A larger portion of this data set is 
used later in this section. 

The graphs in Figure 9.1 can be used to study the variation in each ofthe 
four variables over the ten cities. To understand the principal components 
analysis problem, the reader should try to imagine replacing the four vari­
ables in Figure 9.1 by a single index variable in such a way that the index 
variable accounts for most of the variation in the four variables over the 
ten cities. In this section an ad hoc approach based on the simple average 
of the four variables is used to illustrate the problem. 
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TABLE 9.2. Air Pollution Data 

SMEAN PMEAN PERWH PM2 

37 108 96.8 49.3 
80 112 87.3 52.4 
50 244 96.7 22.5 
56 78 63.5 22.9 

119 92 93.3 32.1 
69 125 82.4 26.6 

128 114 95.3 93.2 
60 99 70.7 19.6 
47 76 83.4 25.7 
41 81 92.5 51.1 

250 

225 1\ 
200 / \PMEAN 

175 / \ 
150 \ 
125 ~ 
100 

75 

50 

25 \.- ---" 
O. 

i i i i i i i i 
2 3 4 5 6 7 B 9 10 

Obs 

FIGURE 9.1. Variation in Four Variables Over the First Ten Observations 

Our objective is to replace the four variables by a single variable, say 
Z, such that the original observations on the four variables can be ap­
proximated by multiplying the single variable Z by appropriate constants 
ab a2, a3 and a4 respectively. In other words, the variation over the ten 
cities is summarized by the variation in Z. The estimate for each of the 
original variables is simply a constant multiple of this index. The estimators 
are given by 

SMEANH = alZ 

PMEANH = a2Z 

PERWHH = a3Z 

PM2H = a4Z. 
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TABLE 9.3. Means, Standard Deviations and Component 
Coefficients for Air Pollution Data 

No.of Standard Components 
Variable Observations Mean Deviation Coefficient 

PERWH 10 86.19 11.42 1.12 
SMEAN 10 68.70 31.63 0.89 
PMEAN 10 112.90 48.97 1.47 
PM2 10 39.54 22.74 0.51 

Grand Mean 76.83 

The variables SMEANH, PMEANH, PERWHH and PM2H are the cor­
responding estimators of SMEAN, PMEAN, PERWH and PM2 obtained 
from the index variable Z. 

Since the four variables are to be replaced by a single variable, a reason­
able candidate for Z would be a simple average of the four variables given 
by 

Z = (SMEAN + PMEAN + PERWH + PM2)/4. 

The variation in Z over the ten observations is therefore an average of the 
variation in the four variables. To obtain reasonable values of the coeffi.­
dents ab a2, a3 and a4, we use the ratios of the variable averages to the 
overall mean of the four variables, given by 

al = SMEAN/Z, 

a2 PMEAN/Z, 

a3 = PERWH/Z, 

a4 = PM2/Z, 

where the bar notation denotes an average taken over the ten observations. 
Table 9.3 presents the means and standard deviations for the four variables 
and the values of the coefficients, ab a2, a3 and a4. 

The approximations to the ten observations for the four variables are 
shown in Table 9.4. These results are shown graphically in Figure 9.2. In 
Table 9.4, values of the variables which are approximately two standard 
deviations from the mean or more, have been underlined. The impact on Z 
of these more extreme observations can also be seen in the table. The mean 
of Z is relatively large for observations 3 and 7 and is relatively small for 
observation 4. The large values of Z correspond to the relatively large value 
of PMEAN for observation 3 and the relatively large values of SMEAN and 
PM2 for observation 7. The relatively small value of Z for observation 4 is 
due to the relatively small value of PERWH. 

The variation in Z over the ten observations is also displayed in Fig­
ure 9.2. The estimates for each of the variables can be seen to be constant 
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TABLE 9.4. Estimates of the FOUl Variables Derived from the Means 

088 SMEAN SMEANH PMEAN PMEANH PERWH PERWHH PM2 PM2H ZMEAN 

1 37 65.1 108 106.9 96.8 80.9 49.3 37.5 72.8 
2 80 74.1 112 121.8 87.3 92.2 52.4 42.7 82.9 
3 50 92.4 lli 151.7 96.7 114.9 22.5 53.2 103.3 
4 56 49.3 78 80.9 63.5 61.3 22.9 28.4 55.1 
5 119 75.2 92 123.5 93.3 93.5 32.1 43.3 84.1 
6 69 67.7 125 111.3 82.4 84.2 26.6 39.0 75.8 
7 128 96.2 114 158.1 95.3 119.7 93.2 55.4 107.7 
8 60 55.7 99 91.6 70.7 69.3 19.6 32.1 62.3 
9 47 51.9 76 85.2 83.4 64.5 25.7 29.9 58.0 

10 41 59.4 81 97.5 92.5 73.8 51.1 34.2 66.4 

Means 68.7 68.7 112.9 112.9 86.2 86.2 39.5 39.5 76.8 
St.Dev. 31.6 16.1 49.0 26.4 11.4 20.0 22.7 9.2 18.0 

proportions ofthe value of Z (labeled MEAN). The impact ofthe relatively 
large and small values on the four estimates can also be seen in this fig­
ure. A comparison of the variable values to the estimates shows that some 
differences are due to relatively large or small values of Z whereas others 
are due to relatively large or small values of the variable. For observation 1 
the difference between SMEAN and SMEANH (37 - 65.1) is due to the 
relatively low value of SMEAN. For observation 3, the relatively large dif­
ference between PM2 and PM2H (22.5 - 53.2) is due primarily to the large 
value of Z. 

From Table 9.4 it can be seen that the standard deviations of the esti­
mates SMEANH, PMEANH, and PM2H are lower than the corresponding 
standard deviations of the observed values SMEAN, PMEAN and PM2. 
For PERWHH the reverse is true. The standard deviation of Z is relatively 
lowat 18.0. 

Although this ad hoc method is simple and intuitive, the question arises 
as to whether a better approximation method exists. The principal compo­
nents approach to the problem is outlined below. This approach attempts 
to find an index Z that minimizes the Euclidean distance between the 
original observations and the resulting estimates. 

9.1.3 THE PRINCIPAL COMPONENTS ApPROACH 

Characterizing the First Principal Component 

To introduce the principal components method it will be convenient to 
employ a more general notation. Given a data matrix X representing n 
observations on each of p variables, Xl, X 2 , • •• ,Xp , the purpose of principal 
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FIGURE 9.2. Approximations to Four Variables Compared to Original Variables 
andZ 

components analysis is to determine a new variable Zl that can be used 
to account for the variation in the p X variables. The result can be used 
to provide a matrix approximation for X. The principal component Zl is 
given by a linear combination of the p X variables as 
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The approximations for the X variables derived from this principal com­
ponent are then given by 

Xl = allZl 

X2 a21 Z 1 

Xp = a p1Z 1. 

If the principal component Zl captures most of the variation in the X 
variables, then the X approximations Xj should be similar to Xj, j = 
1,2, ... ,po 

The principal components approach to determining Zl involves mini­
mizing the sum of squared deviations L~=l L~=l (Xij - Xij)2, where Zil = 
L~=lVj1Xij and Xij = ajlzil. The Xij, i = 1,2, ... , nj j = 1,2, .. . p, denote 
the observations in X. In matrix notation an equivalent approach is to de­
termine (p x 1) vectors V1 and aI, where Zl (n x 1) = XV1 and X = zlai 
such that tr(X - X)'(X - X) is minimized. The problem can therefore be 
stated as mintr(X - X)'(X - X) subject to X = zlai and Zl = XV1' The 
reader should recall that the trace of a matrix is simply the sum of the 
diagonal elements. 

The Eigenvalue Problem 

The solution to this problem involves solving the eigenvalue-eigenvector 
problem given by 

(X'X - )'I)v = O. 

Since the magnitude of v is arbitrary, the customary restriction ViV = 1 
is employed. The solutions to the problem are the eigenvalues )'j, j = 
1,2, ... , s, and the corresponding eigenvectors Vj, j = 1,2, ... , s, where 
the number of solutions s corresponds to the rank of X'X. The reader 
who is unfamiliar with eigenvalues and eigenvectors should review these 
concepts in the Appendix. 

The s eigenvectors and corresponding eigenvalues provide s solutions for 
the desired principal component Zl' The solution which corresponds to the 
required minimum employs the largest eigenvalue ),1 and the correspond­
ing eigenvector v1. This principal component is called the first principal 
component. Without loss of generality we assume that the s eigenvalues 
have been ordered from largest to smallest as )'1, )'2, ... ,),s and the corre­
sponding eigenvectors are denoted by VI, V2, ... , Vs' The observations on 
the principal com]>onent Zl are therefore given by Zl = XVI' Given ZI, 
the vector a1 in X = zlai that minimizes the sum of squared deviations 
is given by a1 = V1 and hence X = Zl vi. The eigenvector VI therefore 
provides both Zl and X. The quantity tr(X - X)'(X - X) has the value 
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TABLE 9.5. Estimates Using First Principal Component 

Obs SMEAN SMEANH PMEAN PMEANH PER WH PERWHH PM2 PM2H Zl 

37 63.8 108 109.7 96.8 78.5 49.3 36.6 153.7 
2 80 70.7 112 121.6 87.3 87.0 52.4 40.5 170.3 
3 50 103.6 244 178.3 96.7 127.6 22.5 59.4 249.7 
4 56 48.5 78 83.4 63.5 59.7 22.9 27.8 116.8 
5 119 70.7 92 121.7 93.3 87.1 32.1 40.6 170.4 
6 69 69.0 125 118.8 82.4 85.0 26.6 39.6 166.3 
7 128 85.3 114 146.7 95.3 105.0 93.2 48.9 205.4 
8 60 56.6 99 97.4 70.7 69.7 19.6 32.5 136.4 
9 47 50.8 76 87.5 83.4 62.6 25.7 29.2 122.5 
10 41 55.7 81 95.9 92.5 68.6 51.1 32.0 134.3 

Mean 68.7 67.5 112.9 116.1 86.2 83.1 39.5 38.7 162.6 

Standard 
Deviation 31.6 16.8 49.0 29.0 11.4 20.7 22.7 9.7 40.6 

trX'X - Al' Since trX'X = E;=l Aj, where 8 = rank(X'X), E;=2 Aj is 
the required minimum. 

Computer Software 

The principal component calculations for this section were carried out using 
SAS PRINCOMP. 

Example 

For the air pollution data in Table 9.2 the first principal component is given 
by 

Zl = 0.41 SMEAN + 0.71 PMEAN + 0.51 PERWH + 0.24 PM2. 

In comparison to the ad hoc procedure which employed a simple average, 
we can see that the first principal component places greater emphasis on 
PMEAN and less emphasis on PM2. In addition the sum of the weights is 
1.87 rat her than 1.0 in the case of a simple average. The X approximations 
ZI ai = Zl vi are summarized in Table 9.5. In Figure 9.3 the approximations 
are plotted along with the original values of the four variables and the values 
of the principal component ZI. The estimates for the variables can be seen 
to be related to the value of Zl through multiplication by a constant. The 
variation in the resulting estimate should be similar to the variation in the 
original variable. 

In Table 9.5, the standard deviation for the first principal component 
Zl is 40.6, which is more than twice the standard deviation (18.0) for the 
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FIGURE 9.3. Approximations to Four Variables Based on the First Principal 
Component 

mean, Z, used in Table 9.4. Most of this increase is due to an overall 
increase in the magnitude of Zl in comparison to Z. The mean of Zl 
(162.6) is a factor (2.12) larger than the mean of Z (76.8). The increase in 
the standard deviation in the Zl variable carries over to provide increases 
in the standard deviations of the four sets of estimates. We can conclude 
that the first principal component is more responsive to the variation in the 
original variables. In particular, the first principal component is much more 
sensitive to the large value of PMEAN in observation 3. The relatively large 
coefficient (0.71) for PMEAN results in an index that is more sensitive to 
the variation in this variable. The sum-of-squared deviations between the 
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40 original observations and the 40 estimates is 21,809, which is marginally 
less than the value of 23,419 obtained by using the mean, Z, in the ad hoc 
approach of Table 9.4. 

Since the four variables in this example measure quite different quanti­
ties, there is no reason to believe that the variation of a1l four variables over 
the ten cities should be related to the variation in a single index variable. 
The purpose of this example was to illustrate the characteristics of a sin­
gle principal component. The principal components analysis technique is 
extended below to obtain additional indices or components to improve the 
characterization of the variation of the four variables over the ten cities. 
We shall see that by using additional indices the approximation can be 
improved. 

Generalization to r Principal Components 

For the matrix X'X, each of the eigenvalues Ak and the corresponding 
eigenvectors Vk, k = 1,2, ... , r, where r ~ 8 = rank(X'X), can be used to 
generate components Zk = XVk. The resulting r principal components are 
given by 

Zl = VllXI + V2lX2 + ... + VplXp 

Z2 = Vl2X I + V22X2 + ... + Vp2X p 

The observations on the r components are defined by Zk = XVk. The entire 
(n x r) matrix Z of observations on the r components is given by Z = XV, 
where V contains r columns corresponding to the first r eigenvectors of 
X'X. 

The X approximations can be improved by using the additional compo­
nents defined above. For the p X variables, the approximations are given 
by 

Xl VllZl + V12 Z 2 + ... + VlrZr 

X2 = V2l Z I + V22 Z 2 + ... + V2r Z r 

Xp = Vp1Zl + Vp2Z2 + ... + vprZr. 

In matrix notation the approximation X of the matrix X is given by 
X = ZV', where Z is the (n x r) matrix of observations on the first r 
principal components, and V (p x r) is the matrix whose columns are the 
first r eigenvectors of X'X. For the approximations to Xj, the jth column 
of X, the equation is given by Xj = Zvj, where vj is the jth column of V'. 
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8ince the eigenvectors Vk are mutually orthogonal, the principal compo­
nents are also mutually orthogonal. The matrix Z'Z = A, where A is the 
diagonal matrix of r eigenvalues Ak, k = 1,2, ... , r. The sum of squares 
and cross products matrix for the principal components is therefore a di­
agonal matrix with diagonal elements Ak, that decline in magnitude. The 
eigenvalues Ak are given by ~~=lzlk = Ak, k = 1,2, ... ,r. The sum of 
squares for each principal component is therefore given by the correspond­
ing eigenvalue. 

The quantity to be minimized is given by 

r 

tr(X - X)'(X - X) = trX'X - L Ak 
k=l 

and hence if r = 8 (the rank of X'X), then this expression has the value 
zero. The rank of X'X is usually 8 = p, where p is the number of variables 
or columns in X. 

Each of the eigenvectors generates a portion of the total variation (or sum 
of squares) in X as measured by tr(X'X). The contribution to ~~=l Ak 
provided by Zt = Zyt is ZiZl = At. The proportion of the total varia­
tion measured by tr(X'X), accounted for by the component Zt, is given by 
At! ~~=l Ak. The number of components actually used for the approxima­
tion of X can be guided by the measure 

t B 

L Ak/ L Ak, where l ~ 8. 

k=l k=l 

In practice, this ratio can be relatively dose to 1 even though l is much 
less than 8. The number of components required to account dose to 1. 

Spectml Decomposition 

If the rank of XiX is 8, then X'X can be written in terms of the eigenvalues 
Ak and corresponding eigenvectors Vk, k = 1,2, ... , s, 

B 

X'X = LAkvkv~, 
k=l 

which is called the spectml decomposition of XiX (see Appendix). 8ince 
the magnitudes of the eigenvalues decline exponentially, the terms in the 
spectral decomposition also decline exponentially. A small number of terms 
is therefore usually suflicient to approximate X'X. (Recall that the mag­
nitudes of the elements of Vk are limited since v'k Vk = 1.) 

The FUll Rank Gase 

If the rank of X (n x p) is P < n, then there are p positive eigenvalues 
Ab A2,"" Ap of XiX with corresponding eigenvectors Vb V2,.'" vp • In 
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TABLE 9.6. Estimates Using First Two Principal Components 

OBS SMEAN SMEANH PMEAN PMEANH PER WH PERWHH PM2 PM2H 

1 37 58.9 108 114.6 96.8 77.1 49.3 33.6 
2 80 81.3 112 110.9 87.3 90.1 52.4 47.1 
3 50 42.2 244 239.4 96.7 109.8 22.5 21.4 
4 56 52.9 78 79.0 63.5 61.0 22.9 30.6 
5 119 101.0 92 91.6 93.3 95.8 32.1 59.3 
6 69 62.9 125 124.9 82.4 83.2 26.6 35.8 
7 128 125.9 114 106.2 95.3 116.8 93.2 74.0 

8 50 54.2 99 99.8 70.7 69.0 19.6 31.0 
9 47 55.5 76 82.9 83.4 64.0 25.7 32.0 

10 41 63.4 81 88.3 92.5 70.9 51.1 36.7 

this case X can be written precisely aB X = ZV', where V is the matrix 
whose columns are the eigenvectors VI, V2, ••• , Vp and VV' = I. The rank 
of X'X is p and hence trX'X = E1=1 Ak and the spectral decomposition 
is given by X'X = E1=1 AkVkVA,. 

Example 

For the air pollution data of Table 9.2, the X matrix approximations pro­
vided by the first two principal components Zl and Z2 are shown in Ta­
ble 9.6 and Figure 9.4. In comparison to Table 9.5 and Figure 9.3, we can 
see that the use of the first two principal components improves the ap­
proximations. The quantity tr X'X in this case is 301,003 whereas the first 
two eigenvalues are Al = 279, 194 and A2 = 16,261. The proportion of the 
total variation in the X values explained by the first two components is 
therefore 0.98. The sum-of-squared deviations between the 40 observations 
and the corresponding estimates is 301,003 - 279,194 -16,261 = 5548. The 
addition of the second component results in a reduction in the error sum 
of squares by 16,261. 

In Figure 9.4 it can be seen that the approximation for PMEAN is ex­
tremely good even though this variable showed the greatest variance. This 
result illustrates how the principal component approach is inßuenced by 
the variance of the variables. In comparison, the error deviations for PM2 
do not seem to have changed between Figures 9.3 and 9.4. 

Alternative Characterizations and Geometry 

The principal components derived in this section were determined to min­
imize the sum-of-squared deviations between the actual observations and 
the approximations based on a small number of components. The princi­
pal components can also be obtained using an alternative criterion. Each 
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FIGURE 9.4. Approximations to Four Variables Provided by the First Two Prin­
cipal Components 

principal component Z is a linear combination of the p X variables, Z = 
E~=l VjXj , such that the sum ofthe squared coefficients, E~=l vJ, is unity. 
The first principal component can be shown to be the unique linear combi­
nation that maximizes the sum-of-squared elements E~=l z~k = >'k. In other 
words, the first eigenvalue >'1 yields the largest possible value of E?=l Z~k 
subject to Zk = X Vk and V~ vk = 1. In a similar fashion the second principal 
component corresponding to >'2 and v2 represents the largest possible value 
ofE~=lZ~k subject to Zk = XVk, V~Vk = 1 and E~=lZikZi1 = 0, where the 
Zi1 denotes values of the first principal component. Finally the rth principal 
component represents the linear combination of the original X values that 
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maximizes the sum-of-squared elements ~~=l z~r' subject to being orthog­
onal to the first (r-l) principal components Z~Zk = 0, k = 1,2, ... , (r-l) 
and subject to Zr = XVr , where V~ Vr = 1, k = 1,2, ... , (r - 1). 

AB discussed in Chapter 7, geometrically the X matrix defines n points in 
a p-dimensional space defined by the p axes Xl, X 2 , ••• ,Xp • In the fuH rank 
case the orthogonal transformation defined by the matrix V replaces the p 
X axes by p Z axes which can be viewed as a rigid rotation of the X axes 
in the p-dimensional space. The first principal component Zl represents 
the single axis which most closely approximates the n data points. The 
estimates Xl based on Zl are the projections of the n observations onto 
the Zl axis. In other words, Xl minimizes the sum of squared deviations 
between X and X = Zl ~. Similarly, the second principal component axis 
Z2 is an axis orthogonal to Zl that most closely approximates the residuals 
from Zl. The remaining principal components can similarly be defined 
as a sequence of mutually orthogonal axes each designed to most closely 
approximate the observation residuals from the previous components. 

In Figure 9.5 two principal components Zl and Z2 are shown corre­
sponding to observations on the two X variables Xl and X2. The axis 
corresponding to Zl should appear as the axis that minimizes the sum of 
perpendicular distances like AM. The angle of rotation relative to the axis 
Xl is measured by f), the angle between Zl and Xl. The point (Xil,Xi2) 
denotes the approximation for (Xii, Xi2) based on Zl. 

Principal Components and Multivariate Random Variables 

For the (p xl) multivariate random variable x with mean vector I' (p xl) 
and covariance matrix E (p x p) of rank p, there is an orthogonal matrix 
T (p x p), T'T = I, such that T' ET = A where A is a diagonal matrix 
of positive elements )'1, A2,' .. , Ap called the eigenvalues of E. The rows 
of T' are the eigenvectors of E and the vector y = T'(x - 1') yields the 
principal components of x. The covariance matrix for y is the diagonal 
matrix A. The p-dimensional ellipsoid x' E-Ix can be expressed as y' A -ly 
where variables in y are defined to be the principal axes of the ellipsoid. 
These principal axes are mutually orthogonal in p-dimensional space. The 
first principal axis YI corresponding to the largest eigenvalue Al defines the 
direction of maximum variance. The second principal axis Y2 corresponding 
to the second largest eigevalue A2 defines the direction of maximum variance 
subject to being orthogonal to the first principal axis. Each succeeding 
principal axis determines a direction of maximum variance subject to being 
orthogonal to the previous principal axes. 

Example 

For the remainder of the discussion of principal components analysis, we 
shall employ a larger set of 40 observations on each of eleven variables 
obtained from the same source as in Table 9.2. This (40 x 11) data matrix 
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FIGURE 9.5. Geometry of Principal Components 

is summarized in Table 9.7 and will be referred to as the a.ir pollution data. 
The sum of squares and cross products matrix XiX corresponding to this 
data is summarized in Table 9.8. The variable TMR in Table 9.7 is used in 
Section 9.1.5. This data set was also used in Volume I to provide examples 
for multiple regression. 

For the a.ir pollution data the complete set of 11 eigenvalues and eigenvec­
tors for the matrix XiX a.re shown in Table 9.9. Ea.ch eigenvector column 
Vk provides the coeflicients for the principal component Zk, Zk = XVk, 
k = 1,2, ... ,11. Ea.ch of the eigenvalues ),1, )'2, ... ,),u in the table indi­
cates the sum of squares explained by the respective component. The table 
also gives the cumulative proportion of the total sum of squares explained 
after adding successive components. 

The first eigenvector shows that the first principal component Zl is pri­
marily a function of PMAX. and SMAX. We can conclude, therefore, that 
cities with large values of Zl should tend to indicate high values of the 
maximum pollution readings PMAX and SMAX. 

The second eigenvector shows that the second principal component Z2 
is strongly positively related to SMAX and strongly negatively related 
to PMAX. This bipolar component therefore contrasts the pollution from 
SMAX with the pollution from PMAX. Cities with relatively large values of 
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TABLE 9.7. Air Pollution Data 

SMIN SMEAN SMAX PMIN PMEAN PMAX 

21 37 105 50 108 302 
29 80 313 42 112 343 
2 50 91 61 244 646 

37 56 152 35 78 233 
73 119 220 50 92 189 
51 69 212 39 125 285 
28 128 344 53 114 241 
34 60 145 28 99 160 
21 47 106 23 76 164 
22 41 147 22 81 149 
87 229 620 70 160 342 
51 124 210 76 135 242 
23 69 202 43 100 231 
25 123 280 50 156 344 
38 60 71 28 60 94 
46 66 133 23 106 193 
39 65 166 30 83 215 
57 228 445 99 221 403 
36 126 264 46 143 347 

112 153 365 75 215 537 
189 273 399 81 175 323 
46 92 139 46 112 236 
24 165 414 48 148 495 
28 75 212 21 70 185 
37 162 396 24 77 182 
27 79 260 47 121 309 
23 54 139 22 102 174 
59 81 351 37 144 417 
82 100 225 42 86 163 
30 42 70 26 62 157 
28 77 149 34 81 166 
46 72 251 28 74 135 
61 81 203 39 121 260 

152 194 437 74 198 444 
16 68 233 50 124 296 
45 125 194 63 145 316 
33 51 107 42 101 202 
27 58 113 57 125 352 
60 228 531 79 162 270 
58 73 212 39 111 255 

Note: Variable definitions can be found in the introduc-
tion to the Data Set V7 given in the Data Appendix. 

Z2 will tend to have relatively high values of the pollution variable SMAX 
and relatively low values of the pollution variable PMAX. 
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TABLE 9.7. Air Pollution Data (continued) 

PM2 GE65 PERWH NONPOOR LPOP TMR 

49.3 70 96.8 89.8 58.0775 664 
52.4 89 87.3 78.0 52.0086 929 
22.5 47 96.7 84.7 54.1863 621 
22.9 48 63.5 67.3 53.3522 825 
32.1 98 93.3 86.0 55.3791 1008 
26.6 62 82.4 73.6 53.2176 829 
93.2 91 95.3 91.3 58.3857 899 
19.6 49 70.7 69.0 53.3843 721 
25.7 92 83.4 76.1 55.0309 828 
51.1 69 92.5 89.7 57.0138 810 

122.4 91 84.3 87.0 66.3778 1029 
134.8 62 75.1 89.5 63.0144 780 

70.2 92 98.2 89.9 61.7086 876 
139.3 89 91.2 87.6 68.2883 869 
37.9 61 79.1 79.4 53.9185 747 
58.6 62 76.6 77.6 56.5840 863 
18.6 82 98.8 87.2 55.4654 734 
46.5 77 87.6 87.9 55.6367 910 
19.2 94 94.9 83.3 55.0730 943 
51.7 119 99.6 78.3 53.7020 1400 
59.4 95 94.6 86.8 55.3192 964 
59.0 65 77.2 79.2 60.0740 823 
95.6 76 77.8 85.5 62.3730 978 
22.5 113 97.0 85.2 59.1482 1037 
46.4 105 97.0 87.7 57.2639 996 
50.1 70 98.6 88.2 55.8324 682 
34.4 67 93.6 86.9 55.3559 690 
43.9 72 94.3 88.0 53.3746 821 
42.3 71 94.7 87.0 52.9902 776 
21.4 71 61.7 68.9 52.2843 908 
24.3 73 94.5 84.9 60.1410 737 
3.6 114 99.2 81.9 54.4185 1117 

38.9 111 99.7 75.2 55.4029 1282 
20.1 122 97.6 77.8 52.7953 1210 
55.1 68 93.1 72.8 58.3705 734 

146.8 96 87.9 85.1 60.3004 1039 
23.5 79 90.0 85.7 52.8047 854 
49.8 52 68.2 78.1 53.6184 706 

497.7 97 88.0 86.8 70.2917 1046 
32.7 101 90.6 84.0 51.1873 978 

Note: Variable definitions can be found in the Introduction 
to the Data Set V7 given in the Data Appendix. 

The first two principal components together can be used to define two 
orthogonal dimensions, one which measures overall level of pollution and 
one that measures a contrast between SMAX and PMAX. The rational 
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for the importance of these two variables can be seen in Table 9.8. The 
diagonal elements corresponding to SMAX and PMAX account for 70% of 
the sum of the diagonal elements. 

The third principal component, Z3, is dominated by the variable PM2 
and the fourth component, Z4, is dominated by the variables PERWH, 
NONPOOR and GE65. Relatively high values of Z3 suggest high values of 
PM2, whereas high values of Z4 suggest relatively high values of PERWH, 
NONPOOR and GE65. 

It is interesting to note that the first four principal components, which 
together account for 99% of the total sum of squares for the eleven vari­
ables, are primarily concerned with measuring variation in the six variables 
PMAX, SMAX, GE65, NONPOOR, PM2 and PERWH. 

Plots of pairs of eigenvectors in a two-dimensional space can also be used 
to interpret the principal components. The two panels of Figure 9.6 show 
the relationships between the original variables and the first four compo­
nents. The first plot relates the variables to Z1 and Z2, whereas the second 
plot relates the variables to Z3 and Z4. The points corresponding to the 
eleven variables can be viewed as the tips of vectors drawn from the origin. 
Arrows representing the vectors have been omitted to simplify the presen­
tation. In panel (a) it can be seen that PMAX and SMAX dominate the 
first two components. In panel (b) PM2 dominates the third component, 
whereas the fourth component represents the variables PERWH, NON­
POOR and GE65. 

Principal Component Scores 

Using the relationships Z = XV, the values of Z for a given set of obser­
vations X can be determined using the matrix of eigenvectors V. The Z 
values are called the principal component scores. In some applications, the 
standardized scores are determined using Zoo = ZA -1/2 reflecting the fact 
that Z'Z = A and hence ZOO'ZOO = I. 

Example Continued 

Using the principal components solution given by the eigenvalues and eigen­
vectors in Table 9.9, the standardized principal component scores for the 
first four components are summarized in Table 9.10. By examining the 
scores for the various cities, we can characterize the cities with respect to 
the various dimensions determined by the principal components. A scat­
terplot for the first two components is displayed in panel (a) of Figure 9.7. 
The abbreviation for each of the 40 cities used in the figure is provided in 
Table 9.10. From the figure we can see that using the Z1 dimension SC, 
BA, WH, WI, PH and NY have relatively high values of SMAX and PMAX 
while MO and GB have relatively low values. Using the Z2 dimension, we 
can determine that for PH and NY the values of SMAX are large relative 
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to PMAX while for AL the reverse is true. From the Z2 dimension we can 
see that very few eities contribute to the variance along this dimension. 

A second scatterplot is shown in panel (b) of Figure 9.7 relating the eities 
with respect to the third and fourth components. From this scatterplot we 
can see that NY is an outlier with respect to Z3 indicating that NY has 
a relatively large population density PM2. The fourth dimension does not 
show any isolated points. From these two scatter plots we can see how 
prineipal components can be used to provide spatial representations of the 
eities with respect to the most important dimensions. 

9.1.4 THE VARIOUS FORMS OF XiX AND PRINCIPAL 

COMPONENTS 

The fact that the magnitudes of the diagonal elements of the sum of squares 
and cross products matrix (SSCP) inßuence the nature of the prineipal 
components suggests that changes in scales of measurement can infiuence 
the prineipal components solution. For this reason it is more common in 
practice to use standardized variables. The XiX matrix based on standard­
ized variables is proportional to a correlation matrix. The covariance matrix 
can be viewed as a partial step between the SSCP and the correlation ma­
trix. Since the covariance matrix removes the mean of the observations, it 
corrects the magnitudes of the elements of the SSCP for the overall level. 
It does not, however, correct for differences in the variances among the 
variables. 

As outlined above the error sum of squares that results from the ap­
proximation of X by the first r prineipal components is given above by 
(trX/X - E;=1 Aj), or equivalently (Ei=1 E~=1X~j - E;=1 Aj). In ad­
dition, if all components are used, the error sum of squares is zero and 
hence 2:~=1 2::=1 X~j = 2:~=1 Aj. The ratio 2:;=1 Aj / 2:~=1 Aj therefore 
was used above to measure the proportion of the total sum of squares of 
the variables that is accounted for by the first r prineipal components. H 
the matrix X'X is a covariance matrix, then tr X'X = 2:~=1 S~j denotes 
the sum of the variances. H X'X is a correlation matrix, then tr X'X = P 
since the diagonal elements of a correlation matrix are unity. In general, 
therefore, each prineipal component Z" accounts for a portion At! 2:~=1 Aj 
of the total variation in the X s. The variation is measured in one of three 
ways depending on which type of SSCP matrix is used for X'X. The ex­
ample below will be used to demonstrate how the prineipal components 
solution is affected by the form of X'X. 

Example 

We now study the prineipal components solutions for both the covariance 
matrix and the correlation matrix for the air pollution data. The covariance 
and correlation matrices are shown in Tables 9.11 and 9.12. 
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TABLE 9.10. Data for Plot of Component Scores 

City Abbreviation Zl Z2 Za Z4 

San Jose SJ 0.763 -1.200 0.758 0.778 
Roanoke RO 1.098 -0.169 -0.266 -0.462 
Albuquerque AL 1.276 -3.580 1.507 -1.465 
Charleston CH 0.681 -0.496 -0.078 0.148 
Harrisburg HA 0.799 0.295 -0.672 1.113 
Greenville GR 0.880 -0.503 -0.243 0.019 
Hartford HT 1.050 0.842 -0.167 0.281 
Columbus CO 0.589 -0.146 -0.236 0.719 

Orlando OR 0.548 -0.376 0.011 1.444 

Sacramento SO 0.586 -0.007 0.160 1.415 
Philadelphia PH 1.629 2.087 -1.188 -1.540 
Washington WA 0.903 0.231 1.106 0.493 
Minneapolis MI 0.814 -0.085 0.290 1.009 
Los Angeles LA 1.145 -0.024 1.099 -0.026 
Greensboro GB 0.404 -0.049 0.146 1.724 
Jacksonville JA 0.651 -0.263 0.368 0.905 
Madison MA 0.714 -0.343 -0.337 1.060 
Wilmington WM 1.501 0.378 -1.000 -1.353 
Tacoma TA 1.085 -0.522 -0.530 -0.113 
Scranton SC 1.566 -0.960 -0.370 -1.258 
Canton CA 1.372 0.904 -1.378 -0.311 
Atlanta AT 0.742 -0.434 0.423 0.688 

Baltimore BA 1.504 -0.210 0.127 -1.914 
Portland PO 0.735 0.139 -0.628 1.287 
Springfield, MA SP 1.015 1.454 -1.376 0.411 
Salt Lake SL 0.993 -0.301 -0.065 0.038 
Wichita WI 0.623 -0.257 0.033 1.247 
Lorain LO 1.268 -0.461 -0.441 -0.985 
Hamilton HM 0.751 0.479 -0.592 1.039 
Montgomery MO 0.471 -0.532 0.135 1.150 
San Diego SD 0.627 -0.103 -0.251 1.296 
Duluth DU 0.715 0.580 -1.244 1.417 
Wilkes Barre WB 0.872 -0.329 -0.225 0.882 
Wheeling WH 1.539 0.020 -1.598 -1.025 
San Antonio SA 0.931 -0.383 0.174 0.026 
Cincinnati CI 1.004 -0.266 1.483 0.503 
Saginaw SG 0.624 -0.633 0.078 1.285 
Baton Rouge BR 0.841 -1.396 0.855 -0.152 
New York NY 1.544 3.336 4.309 -0.338 
Springfield, OH SF 0.858 -0.277 -0.338 0.734 

The principal components solution based on the covariance matrix and 
correlation matrix are shown in Tables 9.13 and 9.14 respectively. Each 
table contains the eigenvalues and eigenvectors. For the covariance m~ 
trix solution, the first principal component is dominated by SMAX and 
PMAX, and the second component represents a contrast between SMAX 
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and PMAX. From the diagonal elements of the covariance matrix in Ta­
ble 9.11, we can see that together the variances of PMAX and SMAX 
represent about 50% of the trace of the covariance matrix. As a result, the 
first principal component is dominated by these two variables. Thus even 
after removing the mean of the variables, PMAX and SMAX still dominate 
the first two principal components. 

For the correlation matrix, the first eigenvector is positively related to 
all eleven variables. The first component therefore measures overall air pol­
lution and is also related positively to the demographic variables PERWH, 
NONPOOR, GE65, LPOP and PM2. The first component is therefore an 
index measuring the impact of all eleven variables. Since in a correlation 
matrix all variables account for the same proportion of the variance, the 
weights for the first component tend to be equal. The second component 
seems to contrast the nonpollution variables NONPOOR, PM2 and LPOP 
with the pollution variables SMIN, PMEAN and PMAX. 

Interpretation Using Correlations 

A useful way of interpreting the principal components is to examine the 
correlations between the principal components and the original variables. 
The correlations are shown in Table 9.15 for the correlation matrix solution. 
As can be seen from Table 9.15 the correlations display the same pattern 
ofvariation as the eigenvectors in Table 9.14. The difference in magnitudes 
between comparable columns is a constant of proportionality equal to A, 
where Aj is the eigenvalue corresponding to the eigenvector v j in column j. 
The matrix of correlations is therefore given by VA 1/2. 

Example 

The squares ofthe correlation coefficients in Table 9.15 describe the portion 
of the total variance in the X variable that is explained by that component. 
For the variable SMAX the first component accounts for 74.5% [(0.863)2 = 
0.745] of the total variation in SMAX. [Recall that each X variable has 
a variance of 1 for a correlation matrix.] For the variable PMAX the first 
two components account for 64.7% [(0.606)2 = 0.367 and (0.529)2 = 0.280] 
of the variation. These two portions can be added together because the 
principal components are mutually uncorrelated. 

Standardized Principal Components 

We have seen that the principal components solution for the matrix X is 
not the same for the three types of X'X matrices. In practice the most 
frequent starting point for principal components analysis is the correla­
tion matrix and hence the X variables are standardized. In such cases it 
is customary also to standardize the resulting principal components. Since 
the variances of the principal components ZI, Z2,"" Zp are given by the 
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corresponding eigenvalues >'1, A2, .. . ,Ap; the standardized principal com­
ponents are given by Zi = ZI/V>:i, Z; = Z2/..;>:2, ... , Z; = Zp/.[>;,. 
From the relationships X = ZY' and Z = XV, we have X = Z· A1/ 2y' 
and the standardized components are given by Z· = XYA-1/ 2 • We de­
note Y A 1/2 as y· and write X = Z·y·' to relate the original variables to 
the standardized components. The elements of the matrix y· = Y A -1/2 

are usually referred to as standardized scoring coefficients and are used to 
obtain the component scores from the original data. The matrix of stan­
dardized scoring coefficients for the correlation matrix of the example is 
shown in Table 9.16. 

The correlation matrix between X and Z· is given by X'Z· = YA1/ 2 = 
Y·, and hence the new coefficients relating Z· to X are equivalent to 
the correlations between the X s and the standardized components. These 
correlations are also equal to the correlations between the X s and the 
components. In our earlier discussion of the principal components analysis 
example, the correlations between the X variables and the components were 
useful for interpretation. It is common to use the correlation matrix y· to 
interpret the principal components. The y· matrix corresponding to the 
pollution data correlation matrix is equivalent to the matrix in Table 9.15. 

Communality or Variance Explained 

If only the first r principal components are to be retained, it is of interest 
to determine how much of the variation in each individual X variable is 
explained by the approximation. If all components are used, the expression 
for the variance of xi is obtained from X'X = YAY' = Y·Y·', and hence 
xjXj = vj'vj = (vjA1/ 2)(A1/ 2Vj) where Vj denotes the jth column of V'. 
The expression for xjXj can be recognized as the sum of squares in the ith 

row of the correlation matrix Y A 1/2, which is the matrix of correlations 
between X and the principal components. The sum of squares of the ele­
ments of the jth row of y· therefore gives the variance of Xi. If only the 
first r components are used, then the sum of squares of the jth row denotes 
the part of the variance of Xi explained by the first r components. In the 
case of the correlation matrix, the variances of the X s are unity, and hence 
the variance explained by the first r components is also the proportion of 
the total variance. This proportion is referred to as the communality of the 
variable Xi. 

Example 

Using only the first four components, the communalities for the eleven 
variables can be obtained by summing the squared correlations in each row 
for the first four columns in Table 9.15. These communalities are SMIN 
(0.84), SMEAN (0.92), SMAX (0.80), PMIN (0.84), PMEAN (0.96), PMAX 
(0.90), PM2 (0.82), PERWH (0.91), NONPOOR (0.77), GE65 (0.78), and 
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LPOP (0.87). Thus 96% of the variation in PMEAN is explained by the 
first four components, whereas for NONPOOR this percentage is 77. 

How Many Prineipal Components? 

Recall that one of the objectives in principal components analysis was to 
replace the set of p original variables with a small subset of r principal 
components. The assumption was that because of the covariance relation­
ships among the variables a small value of r would usually be sufficient to 
retain most of the variation. The sum of squared deviations between the 
original matrix X and the estimated values based on the first r compo­
nents is given by trX'X - Ej=l Aj = Ej=r+1 Aj and hence the proportion 
of the total sum of squares accounted for by the first r components is given 
by Ej=l Aj / Ej=l Aj . Some cut-off proportion, therefore, ean be used to 
determine the number of eomponents to retain. 

Average Criterion 

Sinee the total variation is given by Ej=l Ai, where Aj is the varianee of 
Zj, a possible rule of thumb is to retain those eomponents whose variance 
exeeeds the average X = Ej=l Aj /p. In other words, retain Zi if Ai > X. For 
eorrelation matriees, Ej=l Ai = p and henee X = 1. This eriterion becomes 
the eigenvalue-one-eriterion, whieh is eommonly used in factor analysis and 
will be diseussed in Seetion 9.2. 

Example 

For the SSCP matrix X'X of the example, the average eigenvalue eriterion 
requires that eigenvalues above 833,794 be retained, and henee only the 
first eomponent representing 91% of the varianee would be retained. For 
the eovarianee matrix the eriterion suggests that eigenvalues above 4084 
correspond to factors that should be retained. Thus the first three com­
ponents representing 95% of the varianee should be retained. For the cor­
relation matrix the eigenvalue-one-criterion suggests the retention of four 
eomponents. The first four eomponents aceount for 86% of the variation 
for the eorrelation matrix. 

Geometrie Mean Criterion 

An alternative eriterion based on the eigenvalues is the generalized vari­
anee. Sinee IX'XI = IIj'=lAj , we have that IX'XI1/p = [IIj'=lAjjl/P = the 
geometrie mean, Xm , of the eigenvalues. The average generalized variance 
is given by the geometrie mean of the eigenvalues, Xm and hence the cri­
terion retain Zj if Aj > Xm • Recall that the geometrie mean is useful for 
averaging a set of numbers eontaining a few extremes. 
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Example 

For SSCP matriees and eovariance matrices, the geometrie mean provides 
a more useful criterion than the one based on the sumo For the SSCP 
matrix, the geometrie mean of the eigenvalues is 23,247 and hence the first 
five factors should be retained. These factors jointly account for 99.7% 
of the variation. For the eovarlance matrix, the geometrie mean of the 
eigenvalues is 347 and henee the first five eomponents should be retained. 
These five factors jointly account for 98.7% of the variation. All eomponents 
corresponding to the later eigenvalues are ignored. 

A Test for Equality of Eigenvalues in Covariance Matrices 

Sinee the eigenvalues decline in a geometrie fashion, it ean often be argued 
that the last (p-r) eigenvalues are primarily due to "noise" . In such eases it 
is of interest to test the null hypothesis that the last (p - r) eigenvalues are 
equal. Under the assumption that the X observations have been sampled 
from a multivariate normal distribution, the test statistie is given by 

p 

[n - (2p + 11}/6] [(p - r) ln'xp-r - L lnAj] 
j=r+l 

where Aj, j = 1,2, ... ,p are the eigenvalues of the eovariance matrix and 
where 'xp-r = E~=r+l Aj/(p-r}. Ifthe null hypothesis is true, this statistie 
has a X2 distribution with !(p-r+2}(p-r-1) degrees offreedom. A special 
ease of this hypothesis was diseussed as a test of sphericity in Chapter 7. 
Later in this chapter, in factor analysis, the seree test will also be eoneerned 
with the equality of the latter eigenvalues of the eorrelation matrix. 

A Cross Validation Approach 

For large data sets the data ean be divided into 9 mutually exclusive sub­
sets. A principal eomponents solution is determined using all data excluding 
one of the groups. The principal components solution is used to prediet the 
observations in the omitted group. The goodness of fit is evaluated using 

Tj(r} = tr[X(j} - X(j}]'[X(j) - X(j}], 

where j denotes the groups omitted. For each value r of the number of 
eomponents each group is omitted onee and is predieted by the remaining 
group. The total measure of error T(r} = E~=l Tj(r} over the 9 groups is 
determined. As the number of principal eomponents r inereases, the total 
error T(r} decreases. When the relative change in total error as measured 
by [T(r} - T(r -l}J/T(r -I} is eonsidered small it is not neeessary to add 
additional principal eomponents. 

Other approaches to cross validation based on the likelihood function 
will be introdueed in the section on factor analysis. 
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Should All the Variables be Retained? 

If only a small number of components are required to retain most of the 
variation among the variables, it may be possible to eliminate some of the 
variables without affecting the components. Depending on the application, 
it may be useful to use principal components analysis to determine if some 
variables can be discarded. If a principal component has negligible varia­
tion and is dominated by a particular variable, then it may be possible to 
eliminate this variable. 

Example 

For the SSCP matrix the variation accounted for by the last few princi­
pal components is negligible. The last component is dominated by LPOP 
and NONPOOR (see Table 9.9) whereas the second last component is 
dominated by LPOP and PER WH. The variables LPOP, NONPOOR and 
PER WH, therefore, are much less important when it comes to account­
ing for the variation among the raw X variables. For the covariance ma­
trix, the last two components are negligible and also correspond to LPOP, 
NONPOOR and PER WH. For the correlation matrix, there is not a sin­
gle dominant variable for the latter components. For the variable SMEAN, 
components 10 and 11 ofthe correlation matrix explain aportion (0.565)2+ 
(0.546)2 = 0.617 of the variance, and since these components are negligible, 
perhaps SMEAN could be deleted. A similar argument could also be applied 
to PMEAN, which has the portion (0.526)2 + (0.573)2 = 0.605 accounted 
for by the last two components. We see below in the application of princi­
pal components analysis to multiple regression that negligible components 
can sometimes be useful and therefore should not always be discarded. As 
we see below variables that dominate the latter principal components may 
indicate outliers. 

9.1.5 PRINCIPAL COMPONENTS, MULTIPLE REGRESSION 

AND SUPPLEMENTARY POINTS 

Multiple Regression 

A useful alternative to a variable selection procedure in multiple regression 
is provided by the use of a subset of the principal components obtained 
from the set of all explanatory variables. By using a small subset of the 
components as explanatory variables, the number of explanatory variables 
can often be reduced considerably. A second advantage of the components 
is that they are mutually uncorrelated, and hence the variation in the 
dependent variable explained by each component can be determined in­
dependently of the other components. Since the components are mutually 
uncorrelated, the presence of any one component does not affect the re­
gression coefficients of the other components. 
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Example 

To illustrate the application of this technique the air pollution data given 
in Table 9.7 is be used. The dependent variable TMR (total mortality rate) 
will be the dependent variable. The explanatory variables are the eleven 
standardized principal components derived from the correlation matrix as 
defined in Table 9.16. A forward stepwise regression yields the equation 

TMR = 891.575 + 86.355 Zi + 66.646 Z; - 70.767 Z~ 
(.000) (.000) (.000) 

+ 78.198 Z; + 22.371 Z; - 25.608 Z; + 25.149 Z9' 
(.000) (.054) (.029) (.031) 

which has an R2 of 0.862. The remaining components were not significant at 
the 0.10 level. The contributions to R2 from each of the above components 
are 

Zi(0.259) , Z;(O.l54), Z:(0.174), Z5 * (0.212), 
Z;(0.017), Zs(0.023), Zg(0.022). 

From this equation we can see that not all of the major components, but 
three of the minor components, are related to TMR. The components Z;, 
Zs and Zg account for the proportions 0.021, 0.017 and 0.013 of the total 
variance respectively. The components Z;, Z6' Zio and Zi1 were not in­
cluded in the regression. Examining the eigenvectors in Table 9.14, we can 
conclude that the seventh component measures a contrast between LPOP 
and PM2, and the eighth component measures a contrast between the vari­
ables GE65 and PMIN and the variables SMIN and LPOP. The ninth 
component contrasts NONPOOR and PMAX with PMIN and PERWH. 
This example illustrates that if the underlying purpose of the principal 
components analysis is a multiple regression, it may not be wise to drop 
the minor principal components before the regression. 

If the relationships between the standardized principal components and 
the original variables are taken into account, the multiple regression can be 
expressed in terms of the original variables. Using the matrix of standard­
ized scoring coefficients given in Table 9.16 of Section 9.1.5, substitution 
for Zi, Z;, Z:, Z;, Z;, Zs and Zg in the regression equation was carried 
out. Table 9.17 shows how the seven components contribute to the coeffi­
cients of the eleven variables. The last column of this table shows the sums 
of the rows that are the regression coefficients for the original variables. 
The numbers in the columns for each component are obtained by multi­
plying the corresponding column of scoring coefficients by the regression 
coefficient. The resulting equation is given by 

TMR = 891.575 + 13.846 SMIN + 10.976 SMEAN + 11.922 SMAX 

-14.604 PMIN - 7.357 PMEAN + 33.572 PMAX + 5.825 PM2 

-40.787PERWH - 28.781 NONPOOR + 157.327GE65 + 6.279 LPOP. 
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TABLE 9.17. Calculation of Standardized Regression Coefficients from Equa-
tion Based on Principal Components 

Contributions from Components 
Variable Z· 1 Z· 3 Z· 4 Z· 5 Z· 7 Z· 8 Z· 9 Sum 

SMIN 11.079 13.011 28.869 -36.517 1.504 -27.149 23.049 13.846 
SMEAN 16.685 -.623 18.100 -19.772 3.064 2.490 -8.967 10.976 
SMAX 15.894 1.830 12.559 11.892 -17.065 -0.913 -12.276 11.922 
PMIN 15.595 -9.461 -3.110 -23.969 9.967 26.495 -30.121 -14.604 
PMEAN 14.289 -7.070 -18.566 10.329 1.851 -6.229 -1.968 -7.357 
PMAX 11.163 -5.922 -27.392 31.950 -0.669 -4.654 29.095 33.572 
PM2 9.938 -19.519 7.855 19.933 -27.052 2.673 12.006 5.825 
PERWH 6.699 28.707 -24.674 10.378 -9.329 -22.627 -29.941 -40.787 
NONPOOR 8.022 8.967 -27.835 -58.810 -0.521 14.619 26.776 -28.781 
GE65 8.987 25.834 14.122 53.216 13.382 25.753 16.034 157.327 
LPOP 8.717 -17.294 -2.096 16.176 28.001 -25.493 -1. 732 6.279 

Sinee the eorrelation matrix has been used, the explanatory variables are 
standardized, and henee the magnitudes of the regression eoefficients ean 
be eompared. The most important variables are therefore GE65, PERWH, 
PMAX and NONPOOR. 

The multiple regression of TMR on all eleven explanatory variables yields 
the standardized regression coefficients: SMIN (26.134), SMEAN (-31.564), 
SMAX (23.928), PMIN (-14.764), PMEAN (47.177), PMAX (-2.036), PM2 
(4.921), PERWH (-53.116), NONPOOR (-24.437), GE65 (166.136) and 
LPOP (4.073). Comparing these coefficients to those obtained from the 
principal eomponents, we can see that the major differences are in the coef­
ficients of the pollution variables SMIN, SMEAN, SMAX, PMIN, PMEAN 
and PMAX. This is to be expected because these six variables represent 
two groups of three variables that are mutually correlated. The average 
eorrelation coefficient among the three S variables is 0.69 and among the 
three P variables is 0.78. The eoefficients for the demographie variables 
GE65, NONPOOR, PERWH and LPOP are remarkably similar in both 
regressions. 

Supplementary Dimensions and Points 

The variable TMR in the above analysis can be viewed as a supplemen­
tary dimension in that it was not used to determine the original principal 
components. The regression of TMR onto the 11 components is the pro­
jection of a new vector (TMR) onto the space generated by the original 
eleven variables. The resultant regression estimator TMR is a supplemen­
tary dimension which ean also be plotted in a manner similar to the plots 
in Figure 9.6. 
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In a similar fashion, a new city that was not used in the original data 
matrix can also be located in the space generated by the principal compo­
nents. Using the vector of X values for the new city, say Xl (P X 1), the 
principal component scores are given by Zl (P x 1) where z~ = x~V. The 
coordinates of the new city with respect to the p principal components are 
given by the elements of Zt. The point corresponding to the new city is 
called a supplementary point. This point could be plotted as in Figure 9.7. 

9.1.6 OUTLIERS AND ROBUST PRINCIPAL COMPONENTS 

ANALYSIS 

Identification o/Outliers 

Principal components analysis can be used to identify multivariate out­
liers. For each of the original observations the principal component scores 
can be examined for outliers using techniques available for univariate and 
bivariate analysis. By comparing standardized principal component scores 
to the standard normal distribution, upper and lower extremes for each 
component are easily identified. 

Since the first few unstandardized principal components have large vari­
ances, these components tend to be strongly related to variables that have 
relatively large variances and covariances. Observations which are outliers 
with respect to the first few components usually correspond therefore to 
outIiers on one or more of the original variables. These outliers are therefore 
usually detectable by studying the frequency distributions of the original 
variables. The last few unstandardized principal components represent lin­
ear functions of the original variables with minimal variance. These latter 
components are sensitive to observations that are inconsistent with the 
correlation structure of the data but are not outliers with respect to the 
original variables. These outliers are usually detectable using a bivariate 
scatter plot. In Figure 9.8 Point A corresponds to an observation that is 
an outlier in both the Xl domain and the X2 domain. It is not, however, 
an outlier with respect to the correlation structure. This observation would 
therefore appear as an outlier on one of the first few principal components. 
Observation B in the figure is not an outlier with respect to the domains 
of the two variables but is inconsistent with the correlation structure. This 
observation should appear as a large value for one of the last principal 
components but should not appear as an outlier on the first few principal 
components. 

If the number of original variables is large, there may be outliers that are 
not detectable using univariate or bivariate analyses. This point was dis­
cussed in Chapter 7 in connection with the study of outliers in multivariate 
distributions. Large values of observations on the minor components can 
reflect such multivariate outliers. Scatterplots of the standardized minor 
principal components can also be used to identify potential outliers. 
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A 
B 

. ' . 
. ' . 

FIGURE 9.8. Scatterplot Showing Two Types of Outliers 

In addition to scatterplots, it is also possible to identify outliers us­
ing functions of the component scores. For each observation i, the sum of 
squares LJ=l z;/ represents the sum of squares of the standardized com­
ponent values. This sum is equivalent to the Mahalanobis distance of ob­
servation i from the mean for the sampIe. In Chapter 7 this distance was 
used for the identification of outliers. 

An examination of the partial sum LJ=l z;/' which is the sum of squares 
for the last (p - f + 1) components, is useful to determine how much of the 
variation in observation i is distributed over these latter components. If 
the last few components contain most of the variation in a particular ob­
servation, this could be an indication that this observation is an outlier 
with respect to the structure correlation. If the variation in an observa­
tion is dominated by the latter components, this is an indication that this 
observation is different from the majority of the data. By examining val­
ues of the ratio LJ=l z:l/ LJ=l z;l for each observation i, the relative 
importance of the last (p - f + 1) components can be determined. The com­
plete sum LJ=l z;l over all standardized components is equivalent to the 
Mahalanobis distance of the observation from the centre of the data. An 
alternative statistic based on the same principle is to determine m~ Izijl 

l5.J5.p 
for each observation i = 1, 2, ... , n. 

Example 

For the air pollution data discussed in this chapter, the principal compo­
nent analysis of the correlation matrix was summarized in Table 9.14. The 
standardized values of the principal components for the forty observations 
are shown in Table 9.18. Component values that exceed 2 in absolute value 
have been highlighted with an asterisk. Observations that have relatively 
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large values of principal components are New York (components 1, 2, 3, 6 
and 7), Canton (1 and 5), Baltimore (6, 9 and 11), Wilmington (8 and 9), 
Albuquerque (4), Philadelphia (6), Los Angeles (7), Springfield (6), San 
Antonio (9), and Lorain (7). The sums of squares of these principal compo­
nent values are summarized in Table 9.19. This value is equivalent to the 
Mahalanobis distance of the observation from the mean for all 40 obser­
vations. From this column one can determine that the cities farthest from 
the centre of the data are New York (34.709), Wilmington (26.183), Can­
ton (24.314) and Albuquerque (23.103). All four of these cities have large 
values of at least one of the principal components. 

For the eleventh component, the largest absolute value corresponds to 
Baltimore. From the eigenvector corresponding to this component, we ob­
serve that this component contrasts PMEAN with SMEAN and PMAX. 
This would suggest that the scatterplots relating PMEAN with SMEAN 
and PMEAN with PMAX could show an outlier for Baltimore. An ordi­
nary least squares fit for the regression of PMAX on PMEAN yields a 
studentized residual of 2.931 for Baltimore. The Cook's D value for this 
observation is 0.153. These two statistics together indicate that Baltimore 
is an outlier with respect to the correlation structure between PMAX and 
PMEAN similar to B in Figure 9.8. 

The sum of squares for the last four principal components (INDEX 1) 
and the sum of squares for the last seven components (INDEX 2) are also 
shown in Table 9.19. The ratios of these two indices to the Mahalanobis 
distance are shown in the columns INDEX IR, and INDEX 2R respectively. 
Using the values of INDEX IR we observe that for the cities San Antonio 
(0.851), Jacksonville (0.798) and Springfield (0.729) the value ofINDEX IR 
is relatively high. For San Antonio, most of this sum of squares is due to 
principal component 9 (-3.285), which is a contrast between PMAX and 
NONPOOR and the variables PMIN and PERWH. Scatterplots relating 
PMAX and NONPOOR to PMIN and PERWH should reveal an anomaly. 
The ordinary least squares fit of NONPOOR on PERWH shows a studen­
tized residual of (2.22) for this city whereas the Cook's D value is only 
0.076. This indicates that San Antonio is located weIl above the OLS line 
but is in the middle of the range of values of PERWH. In other words, 
PERWH is average but NONPOOR is large relative to PERWH. 

The city of Jacksonville has moderately large values of all of the last 
four components but none of these values is larger than 1.5 in absolute 
value. An examination of the eigenvector for the last four components seems 
to suggest that the relationship among the six variables SMIN, SMEAN, 
SMAX, PMIN, PMAX and PMEAN is different for Jacksonville than for 
other cities. The Jacksonville values are compared to the average values for 
these variables in Table 9.20. 

Relative to the average for the S variables, Jacksonville has a relatively 
low SMEAN value even though its SMIN and SMAX values are similar to 
the average. For the P variables, Jacksonville has relatively low PMIN and 
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TABLE 9.18. Standardized Principal Component Scores 
For Air Pollution Data 

Z· 1 Z· 2 Z· 3 Z· 4 Z· 5 Z· 6 

San Jose -0.363 0.502 0.059 1.635 -0.642 1.004 
Roanoke -0.194 -0.588 0.220 -0.060 1.232 -0.828 
Albuquerque 0.261 -1.948 -0.946 3.703* 0.513 0.690 
Charleston -1.342 -1.208 -1.524 -1.413 0.202 -0.647 
Harrisburg 0.042 0.305 1.011 -0.552 -0.804 0.529 
Greenville -0.587 -1.073 -0.435 -0.369 0.273 -0.132 
Hartford 0.465 1.021 0.335 0.458 -0.410 -0.682 
Columbus -1.337 -0.915 -1.121 -1.175 0.054 -0.402 
Orlando -1.143 0.203 0.279 -0.613 1.136 0.304 
Sacramento -0.879 1.120 0.314 0.671 -0.910 -0.064 
Philadelphia 1.912 0.604 -0.732 -0.998 -0.239 -2.485* 
Washington 0.479 0.576 -1.647 0.043 -1.829 0.859 
Minneapolis -0.052 1.337 0.406 0.877 0.135 0.365 
Los Angeles 0.786 1.278 -0.881 0.836 1.026 -0.045 
Greensboro -1.331 0.211 -0.270 -0.787 -1.054 0.493 
J acksonville -0.911 -0.103 -0.717 -0.617 -0.147 0.053 
Madison -0.609 0.423 1.080 0.549 -0.558 0.104 
Wilmington 1.736 -1.202 -0.549 0.555 -1.393 -1.081 
Tacoma 0.248 -0.352 0.604 0.536 0.610 -0.620 
Scranton 1.609 -1.864 1.035 0.086 1.572 1.083 
Canton 2.001 * -1.151 1.042 -1.684 -2.630* 0.784 
Atlanta -0.414 -0.020 -1.023 -0.391 -0.361 0.363 
Baltimore 0.829 -0.029 -1.293 0.500 0.770 -2.782* 
Portland -0.466 1.266 1.285 -0.086 1.131 -0.466 
Springfield, MA 0.144 1.247 1.241 -0.584 0.249 -2.236* 
SaltLake -0.018 0.227 0.272 1.217 0.496 -0.355 
Wichita -0.843 0.596 0.353 0.720 -0.692 -0.064 
Lorain 0.252 -0.517 0.422 1.005 -0.311 -1.240 
Hamilton -0.258 0.168 0.817 -0.373 -1.905 0.410 
Montgomery -1.616 -0.822 -0.970 -1.663 0.631 0.058 
San Diego -0.610 0.942 0.218 0.321 -0.487 -0.016 
Duluth -0.490 0.650 1.753 -0.598 0.853 -0.101 
Wilkes Barre -0.094 -0.242 1.169 -0.435 1.815 1.213 
Wheeling 1.737 -1.924 1.514 -1.139 0.595 0.517 
San Antonio -0.317 -0.319 -0.568 0.305 1.382 0.179 
Cincinnati 0.599 0.416 -0.460 0.191 0.464 1.537 
Saginaw -0.703 0.029 0.479 0.478 -0.724 0.832 
Baton Rouge -0.655 -1.195 -1.567 0.212 -0.492 0.265 
New York 2.391* 2.568* -2.271* -1.220 1.294 2.168* 

Springfield, OH -0.257 -0.278 1.064 -0.141 0.147 0.432 

PMAX valuesj however, its PMEAN value is much closer to average. The 
profile for Jacksonville on these six variables seems to be different than the 
means for the other cities. For Springfield the reason for the moderately 
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TABLE 9.18. Standardized Principa.1 Component 
Scores For Air Pollution Data (continued) 

z· 7 Z· 8 z· 9 zio Zil 
San Jose 0.501 -0.001 0.021 1.933 0.198 

Roanoke -1.537 -1.329 -0.063 1.221 0.483 
Albuquerque -0.335 0.863 0.300 -1.669 0.390 
Charleston -0.227 0.227 -0.236 1.335 1.110 
Harrisburg 0.612 -0.770 -0.047 0.492 0.844 

Greenville -0.817 1.080 -0.662 0.278 -0.602 

Hartford -0.483 -1.406 -0.675 0.165 -0.300 
Columbus -0.494 0.934 -1.164 -1.096 -1.060 
Orlando 0.625 -0.630 0.209 -0.803 0.018 

Sacramento -0.572 0.598 0.633 -0.311 -1.400 
Philadelphia 0.943 0.925 -0.341 1.351 -1.874 
Washington 1.516 -1.018 0.268 1.051 -1.151 
Minneapolis 1.143 0.038 -0.098 1.057 -0.429 
Los Angeles 2.032* 1.265 0.560 -0.636 -0.849 
Greensboro -0.263 0.000 -0.119 -0.592 0.880 
J acksonville -0.087 1.380 1.123 -1.498 -1.255 

Madison -0.774 0.117 0.129 0.164 1.097 

Wilmington 0.289 -2.517* -2.729* -1.755 -1.022 

Tacoma 0.204 -0.596 -0.323 -1.482 1.010 
Scranton 0.266 0.018 0.653 0.591 -0.396 
Canton 0.396 1.599 0.627 -0.932 1.883 
Atlanta 1.494 0.739 0.174 -0.033 0.255 
Baltimore 0.426 -0.064 2.013* 0.011 2.158* 

Portland 1.261 -0.114 0.697 -0.092 0.262 
Springfield, MA -0.652 -0.339 -0.170 -1.655 1.533 
Salt Lake -1.048 0.184 -0.850 0.988 0.283 
Wichita -0.761 0.856 0.081 -1.691 -1.207 
Lorain -2.087* 0.995 1.782 1.211 -1.287 
Hamilton -1.319 0.720 -0.221 0.813 0.419 
Montgomery 0.480 -1.327 1.007 -0.566 -0.391 
San Diego 1.123 1.228 -1.127 0.087 1.009 
Duluth 0.165 -0.589 -0.116 0.336 -1.140 
Wilkes Barre 0.453 0.649 -0.815 -0.166 0.015-
Wheeling 0.387 0.535 0.406 0.544 -0.903 
San Antonio -0.007 1.265 -3.285* 1.269 0.806 
Cincinnati 0.868 -1.164 0.670 -0.665 0.814 
Saginaw -0.147 -1.240 0.082 -0.091 -0.596 
Baton Rouge 0.104 -1.559 0.899 1.111 0.621 
New York -2.995* -0.072 -0.019 -0.507 0.357 
Springfield, OH -0.684 -1.477 1.312 0.052 -1.186 

large values of the components 8, 9 and 11 would appear to be relatively 
large values of SMAX and GE65. 
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TABLE 9.19. Sums of Squares and Partial Sums of Squares of Standardized 
Principal Components 

Total 
Sum of Squares 

Mahalanobis 
City Distanee INDEX 2 INDEX 2R INDEX 1 INDEX IR 

San Jose 9.112 6.050 0.663 4.375 0.480 
Roanoke 8.504 8.067 0.948 3.498 0.411 
Albuquerque 23.103 4.628 0.200 3.775 0.163 
Charleston 11.220 3.636 0.324 3.125 0.278 
Harrisburg 4.276 2.853 0.667 1.551 0.362 
Greenville 4.632 2.807 0.606 2.046 0.441 
Hartford 5.004 3.421 0.683 2.552 0.509 

Columbus 10.229 4.966 0.485 4.556 0.445 
Orlando 4.664 2.862 0.613 1.087 0.233 
Sacramentp 6.555 3.977 0.606 2.816 0.429 
Philadelphia 18.993 13.435 0.707 6.312 0.332 

Washington 13.217 9.938 0.751 3.552 0.268 
Minneapolis 5.500 2.774 0.504 1.313 0.238 
Los Angeles 11.958 8.226 0.687 3.039 0.254 
Greensboro 5.076 2.564 0.505 1.140 0.224 
Jaeksonville 8.759 7.002 0.801 6.990 0.798 
Madison 4.203 2.185 0.519 1.262 0.300 
Wilmington 26.182 21.112 0.806 17.916 0.684 

Tacoma 5.317 4.478 0.842 3.678 0.691 
Seranton 11.798 4.653 0.394 0.934 0.079 

Canton 24.314 15.059 0.619 7.368 0.303 
Atlanta 4.513 3.140 0.695 0.643 0.142 
Baltimore 19.846 17.234 0.868 8.718 0.439 
Portland 7.147 3.667 0.513 0.576 0.080 
Springfield, MA 14.186 10.726 0.756 5.238 0.369 

Salt Lake 4.893 3.285 0.671 1.814 0.370 
Wiehita 7.834 6.123 0.781 5.060 0.645 

Lorain 14.957 13.436 0.898 7.444 0.497 

Hamilton 7.849 6.946 0.884 1.404 0.178 

Montgomert 10.882 3.884 0.356 3.251 0.298 

San Diego 6.718 5.305 0.789 3.806 0.566 

Duluth 7.138 3.040 0.425 2.274 0.318 
Wilkes Barre 7.712 6.087 0.789 1.115 0.144 

Wheeling 12.650 2.336 0.184 1.564 0.123 

San Antonio 17.219 16.600 0.964 14.656 0.851 

Cincinnati 7.030 6.248 0.888 2.913 0.414 

Saginaw 4.102 3.147 0.767 1.908 0.465 

Baton Rouge 9.690 5.329 0.549 5.006 0.516 

New York 34.709 15.742 0.453 0.391 0.011 

Springfield, OH 7.289 5.991 0.822 5.315 0.729 
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TABLE 9.20. Comparison of Jack­
sonville to Other Cities 

Mean for All 
JacksonvilJe 40 Cities 

SMIN 46 47.6 
SMEAN 66 101.9 
SMAX 133 130.7 
PMIN 23 46.1 
PMEAN 106 121.4 
PMAX 193 274.9 

The measurement of the inftuence that an observation has on the estima­
tors of regression coefficients can be obtained from closed form expressions 
(see Chapter 3 of Volume I). For principal components analysis, however, 
there are no simple expressions available for the measurement of influence. 
For observations believed to be outliers or that have a major impact, the 
principal components analysis should be determined for a reduced sampie 
excluding these observations. By comparing the solution for the complete 
sampie to the solution from the reduced sampie, we can determine the 
impact of the omitted observations. 

Robust Principal Components Analysis 

Ai?, outlined above, outliers can sometimes bring about large increases in 
variances, covariances and correlations. The relative magnitude of these 
measures of variation and covariation has an important impact on the 
principal components solution particularly for the first few components. 
For this reason, if outliers are believed to be present, it is of value to begin 
a principal components analysis with a robust estimator of the covariance 
matrix or correlation matrix. A comparison of the robust solution with the 
conventional solution should be made to determine the effects of the out­
liers. The iterative procedure outlined in Chapter 7 for robust estimation 
of covariance and correlation matrices could also be applied to obtain an 
iterative procedure for principal components analysis. 

Rank Correlation and Robust Principal Components Analysis 

The original data matrix X can be transformed to a matrix of column ranks 
XR before performing a principal components analysis. This procedure is 
useful when the original variables have very different scales of measurement 
and/or when there are outliers present. 



388 9. Principal Components, Factors and Correspondence Analysis 

9.1.7 OTHER SOURCES OF INFORMATION 

Extensive discussion of principal components analysis can be found in Jol­
liffe (1986). This topic is also outlined in Seber (1984) and Jackson (1990). 

9.2 The Exploratory Factor Analysis Model 

Like principal components analysis, the essential purpose of factor analysis 
is to describe the variation among many variables in terms of a few un­
derlying but unobservable random variables called factors. Unlike principal 
components analysis, the underlying model in factor analysis specifies a 
small number of common factors. All the covariances or correlations are 
explained by the common factors. Any portion of the variance unexplained 
by the common factors is assigned to residual error terms which are called 
unique factors. The unique factors are assumed to be mutually uncorre­
lated. The factor analysis model therefore assumes that the covariance ma­
trix or correlation matrix can be divided into two parts. The first part of 
the matrix is generated by the common factors and the second part is gen­
erated by the errors or unique factors. The error portion of the matrix is 
diagonal. Although principal components analysis is primarily concerned 
with explaining the variance of the variables, factor analysis is concerned 
with explaining the covariance. Factor analysis can also be viewed as asta­
tistical procedure for grouping variables into subsets such that the variables 
within each set are mutually highly correlated, whereas at the same time 
variables in different subsets are relatively uncorrelated. 

Much of the early development of factor analysis was done near the 
beginning of the twentieth century by psychologists seeking a better un­
derstanding of the dimensions of human intelligence. Later in this section 
an example application of factor analysis is provided based on a study of 
job related stress for police officers. A random sampie of officers was asked 
to respond to a variety of questions regarding the amount of stress they 
experience from various work situations. Analysis of the correlation matrix 
obtained from the sampie yields several underlying components of stress 
such as workload stress, stress due to risk of injury, stress from organiza­
tional factors, and stress from uncooperative people and unpleasant duties. 
Thus factor analysis allows the many real life situations contributing to 
stress to be summarized by a small number of underlying factors. These 
factors can then be used to study the relationship between stress and other 
variables such as type of neighborhood, type of supervision, type of police 
duty and police officer personality characteristics. 
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9.2.1 THE FACTOR ANALYSIS MODEL AND ESTIMATION 

The Model 

The model known as common lactor analysis is composed of three sets of 
variables: a set of p observed variables Xl. X 2 , • •• , Xp with mean vector I-' 
(p x 1) and covariance matrix X (p x P)i a set of r unobserved variables called 
common factors Fl , F2, ... , Fr, where r ~ P, and a set of P unique but 
unobserved factors Ul. U2 , ••• , Up • The model is given by the P equations 

(Xl - 1-'1) = aUFl + a12F2 + ... + alrFr + Ul 

(X2 - 1-'2) a21 Fl + a22F2 + ... + a2rFr + U2 

(Xp - I-'p) = ap1Fl + ap2F2 + ... + aprFr + Up 

or equivalently in matrix notation 

where (x -I-') is the p x 1 vector of elements Xi - I-'i, i = 1,2, .. 0 ,Pi 

f is the r x 1 vector of linearly independent 

common factors, Fj , j = 1,2, 0 0 0' ri 

A is the p x r lactor pattern matrix (consisting 

of the unknown lactor loadings) ~j, 

i=1,2,o.o,p; j=1,2,oo.,r; 

and u is the p x 1 vector of unique factors Ui , i = 1,2, 0 0 0 ,po 
The factors Fb F2, 0 0 0 , Fr are common to all p X variables, whereas the 

error or unique factor Ui is unique to Xi. The common factors are assumed 
to have mean 0 and variance 1 and are mutually uncorrelatedo The unique 
factors are assumed to have mean 0 and variance O'~i' i = 1, 2, 0 0 0 , po In 
addition, it is assumed that all of the common factors are uncorrelated 
with the unique factors. Given these assumptions, we may express the X 
covariance matrix X in the form 

X= AA' +;p 

where E[(x -I-')(x -1-')'] = X the (p x p) covariance matrix; 

E[~ = E[u] = 0; 

E[tT] = I, a (r x r) identity matrix; 

E[uu'] = ;p, a (p x p) diagonal matrix with diagonal elements O'~i' 

i=1,2,.o.,p; 

E[ut] = 0, no correlation between unique factors 

and common factors; 
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and where the factor structure matrix, which is equivalent to the factor 
pattern matrix, is given by Cov(x, fj = A. If the X variables are standard­
ized, the elements of A represent correlations between the X variables and 
the factors. 

The variance of each variable Xi can be written as 

and hence the variance is divided into two parts. The first part L:;=1 a~j 
is the variance explained by the common factors and is usually referred 
to as the communality. The second term (T~i is called the unique variance 
or specific variance. The entire covariance between Xi and X k is given by 
L:;=1 aijakj· 

Factor Analysis Using the Correlation Matrix 

Usually in practice, the X variables are assumed to be standardized and 
hence p. = 0 and E is a correlation matrix. In that case, (Tl = 1, and 
L:;=1 a~j represents the proportion of the Xi variance explained by the 
common factors. The factor loadings in this case are correlations between 
the factors and the X variables. For the remainder of the discussion of 
factor analysis, we assume that the variables are standardized and hence 
p. = 0 and E is the correlation matrix p. The equations for the factor 
analysis model, therefore, become 

x Af+u 
and p = AA' + w. 

Indeterminacy 

A major problem in the estimation of the factor model is the fact that 
the relationship p = AA' + q; is indeterminate. The indeterminacy arises 
from several sources. The number of parameters to be estimated are the pr 
elements of A and the p diagonal elements of q; yielding a total of p( r + 1) 
parameters. The correlation matrix contains p(p + 1) /2 unique elements 
and hence p(p+ 1)/2 should exceed p(r + 1). Even if this condition is satis­
fied, the elements of A are only unique up to an orthogonal transformation, 
B = AT, since for any orthogonal matrix T, BB' = ATT' A' = AA' since 
TT' = I. Such orthogonal transformations or rigid rotations are studied 
later in Section 9.2.2. In addition, if r is prespecified, it may not be pos­
sible to determine r linearly independent factors from a given correlation 
matrix. The indeterminacy problem, however, has not deterred the use of 
factor analysis in sodal science research. This indeterminacy has permitted 
the examination of a variety of solutions for the purpose of selecting the 
most useful. Factor analysis is used in general to obtain a relatively small 
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number of fa.ctors from a large number of variables in such a way that the 
communalities are dose to 1 and the fa.ctors are easily interpreted. It should 
therefore be viewed as a data reduction technique rather than a method 
for deriving True fa.ctors. 

Estimation 0/ the Factor Model Using Principal Components 

Given an observed data matrix X (n x p), the fa.ctor analysis model can be 
expressed as 

X=FA'+U, 

where 

F( n x r) is the unobserved matrix of values of the r common 
fa.ctors for the n observational unitsj 

A' is the (r x p) unknown factor pattern or loading matrixj and 

U is the (n x p) matrix of unobserved errors or values of unique 
fa.ctors for the n observational units. 

Thus unlike a multiple linear regression model the entire right-hand side of 
the model is unobserved. 

For a given value of r, principal components analysis can be used to 
estimate the matrices A and lJi in the relation p = AA' + tJi. From 
Section 9.1 the principal components analysis model can be written as 
X = ZV', where V is the matrix of eigenvectors of X'X. By writing 
X = (ZA-1/ 2)(A I / 2V'), we can obtain an expression for X in terms of 
new components ZA-1/ 2 , which have unit variances. Therefore, we may 

let F = ZA- I / 2 and A' = A I / 2V' to estimate the fa.ctor model. The prin­
cipal component equations are given by Xi = VilZI + Vi2Z2 + ... + VipZp, 
i = 1,2, ... ,p, and in terms of standardized variables are given by 

Xi = (VilVft)(},) +(Vi2~)(~) + ... +(ViPA)(~) 
i = 1,2, ... ,po 

We now have a model that conforms to a common fa.ctor analysis model 
with r = p fa.ctors. 

Since the number of fa.ctors r is usually considerably less than p, we can 
modify the above by retaining only the first r components. Partition the 
matrices Z, V', and A as follows: 

Z = (Zl Z2), V' = [ ~~] and A = [~l 12 ], 

where Zl is n x r, V~ is r x p and Al is r x r. The remaining matrices are 
Z2 [n x (p - r)], V~ (p - r) x p and A2 (p - r) x (p - r). 
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The model can now be written 

x = ZlV; + Z2V~ 
= (ZlA~1/2)(A~/2VD + Z2 V~ 

...... .-..1 .-.. 

= FA +U 

..... -1/2 ..... , 1/2 I ..... I 
where F = ZlA1 ,A = Al V1 and U = Z2V2. 

The principal component analysis solution is only an approximation since 
..... 1 ..... 

the resulting U U will not in general be a diagonal matrix. It is hoped that 
..... 1 ..... 

the off-diagonal elements of U U are negligible. This assumption character-
izes the difference between principal component analysis and factor anal­
ysis. Principal component analysis is concerned with capturing the bulk 
of the variance whereas factor analysis is concerned with explaining an 
the covariance. The last (p - r) terms in the principal component model 
equations are dropped and replaced by the error term U. 

As we see later, one advantage of the principal components method of 
estimating the factor analysis model is that the matrix of the estimated 
factor scores F can be obtained direct1y from Zl and Al by computing 
F = XVlA~l/2. The factor score coefficient matrix is therefore given by 
V lA~1/2. With other factor solution methods, it is not always possible 
to obtain the factor scores in such a simple fashion, and in some cases 
regression analysis must be used to obtain an estimator F of the factor 
scores F. 

Example 

For the air pollution data example of Section 9.1, Table 9.15 shows the 
correlations between the components and the original variables. These cor­
relations are the required factor loadings A' = Al / 2V. This matrix offactor 
loadings is often called the factor pattern matrix. A four-factor solution is 
provided by the first four columns of this table. From the eigenvalues shown 
earlier in Table 9.14 we can conc1ude that the eigenvalue-one-criterion yields 
four factors. These four factors account for 85.6% of the variation. The cor­
relation matrix in Table 9.21 shows the correlations among the X residuals 
after removing the four factors. The diagonal elements of this matrix rep­
resent the specific variances for each variable. Subtracting these variances 
from one yields the communalities. Recall that the off-diagonal elements of 
this matrix are assumed to be zero. For the most part the correlations are 
less than 0.10 in absolute value. 

Estimation 0/ the Common Factor Model 

As shown above for a given r, principal components analysis can be used 
to estimate the common factor model. An alternative tradition in psychol-
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ogy involves estimation of the communalities and r before determining the 
factors. 

Estimation of the model begins with the sampie correlation matrix R. For 
--I -. -.-.1-. 

the sampie data we write R = AA +!P, where AA and!P are estimates 
of AA' and !. The first ste,P in the common factor model is to determine 
an estimate !P of!P. Given !P, the second step is to determine the number 
of factors r and the matrix estimate A. Since ~ is a diagonal matrix, the 
matrix (R -~) is a correlation matrix with the 1s in the diagonal replaced 
by estimates of the communalities. 

The estimation of!P must take into account that AA' = (E - !li) is 
positive definite. Given R and an estimator ~ of!li, if the elements of it --I -. 
are too large, the matrix AA = R - !li could become negative definite. A 

~~, 

common approach is to minimize r, the rank of AA , and at the same time --I -. 
insure that AA is positive definite. Thus, if the elements of!li are too small, --I _ 
the rank of AA may be too large, whereas if the diagonal elements of!li are 

~~, 

too large, the matrix AA could become negative definite. One estimate of 
!li is given by ~ I, where ~ I is a diagonal matrix of diagonal elements dli = 
(1 - R~), i = 1,2, ... ,p, and where ~ is the largest correlation between 
Xi and the remaining variables Xl,'" ,Xp • An alternative estimate of!li is 

given by ~2' where ~2 is a diagonal matrix of elements d2i , i = 1,2, ... ,p, 
with d2i = (1 - R~) and where R~ is the square of the multiple correlation 
between Xi and the remaining X variables. A commonly used method 
known as the principal lactor method uses either of these two methods to 

~~, 

determine AA . 

Determination 01 the Number 01 Factors 

The most important step in the estimation of the factor analysis model is 
the estimation of r, the number of factors. If r is too large, some of the 
residual or error factors will be mixed in with the common factors, and 
if r is too small, important common factors will be omitted. Three lower 
bounds derived by Guttman for the value of r are available. The most 
commonly used lower bound is where r is at least as large as the number 
of eigenvalues in R that exceed 1 (eigenvalue 1 criterion). This is the most 
commonly used criterion. This criterion was introduced in Section 9.1 for 
principal component analysis. The eigenvalue of 1 is the arithmetic mean of 
the eigenvalues of a correlation matrix. The value of 1 is also the variance 
of each of the X variables, and hence the eigenvalue-one-criterion suggests 
that a factor be retained if it explains at least as much as a single variable. 

Two additional criteria involving lower bounds are based on the estima­
tion of the communalities using (R-~). The number of positive eigenvalues 
of (R - ~ 1) and the number of positive eigenvalues of (R - it 2) are lower 
bounds to the value of r. The estimators it1 and it2 of ~ were defined 
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above. For the air pollution data discussed in Section 9.1, the eigenvalue 
one criterion would suggest r = 4 factors. 

A Useful Preliminary Test 

In Chapter 7 a test for zero correlation was introduced for sampie cor­
relation matrices. If the true correlation matrix is diagonal there are no 
common factors and hence r = O. This test should be carried out first to 
ensure that the factor analysis being carried out is meaningful. Chance 
correlations can be used to generate chance factors. 

Scree Test 

A popular alternative approach to the determination of the number of fac­
tors is the scree test. This procedure employs a graph of the eigenvalues 
(vertical) versus the eigenvalue number (horizontal). Since the eigenvalues 
are ordered from largest to smallest, this graph yields a downward slop­
ing and usually exponential shaped curve. The typical shape of a scree 
gmph consists of two parts: a rapidly downward sloping first part with an 
exponential shape followed by a second part which is almost a horizontal 
line. The typical shape is therefore similar to a scythe or hockey stick. The 
almost horizontal part is viewed as random variation around a constant 
ordered from largest to smallest. This part is referred to as the scree, since 
it resembles a scree of rock debris at the foot of a mountain. These small 
eigenvalues correspond to the unique factors or error terms, which are not 
required to explain the correlations among the variables. The large eigen­
values represent variation explained by the common factors. The correct 
number of factors r corresponds to the eigenvalue number to the immediate 
left of the beginning of the scree called the elbow. 

Example 

A plot of the eigenvalues for the air pollution data correlation matrix is 
shown in Figure 9.9. From this plot it would appear that the scree begins 
at the fifth component and hence four factors should be used. In Figure 9.9 
an almost horizontalline could be fitted by eye to the last seven eigenvalues. 
In this case the scree test and the eigenvalue-one-criterion agree on r = 4 
factors. The two criteria, however, do not always agree. 

The Broken Stick Model 

An interesting way to examine the distribution of eigenvalues is by the bro­
ken stick model. Suppose we have a stick of length one unit which is broken 
at random into p pieces. The expected length of the kth longest segment is 
given by (l/p) ~j=k 1/ j = ~k. The sum of the eigenvalues for a correlation 
matrix is unity and hence the eigenvalues can be compared to the expected 
lengths for the broken stick segments. If the proportion of the variance ac-
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EIGENVALUES 
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EIGENVALUE NUMBER 

FIGURE 9.9. Eigenvalues from Air Pollution Data Correlation Matrix 

counted for by the kth largest eigenvalue exceeds this amount, then that 
component should be retained. All components corresponding to eigenval­
ues below the expected length are discarded. This model is discussed in 
Jolliffe (1986). 

Example 

For 11 variables the values of ak are given by: 

k 1 2 3 4 5 6 7 8 9 10 11 

ak 0.2750.1840.138 0.108 0.085 0.067 0.052 0.039 0.027 0.017 0.008 

For the air pollution example, the proportion of variance accounted for 
by the eleven eigenvalues are 0.426,0.163,0.155,0.112,0.052,0.032,0.021, 
0.017, 0.013, 0.006, 0.003, which suggests that after the first eigenvalue the 
remaining eigenvalues may simply be random variation comparable to the 
broken stick model. In Figure 9.9 it could also be argued that there is only 
one fador and that the scree begins at eigenvalue 2. 
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Equal Correlation Structure and the Number 0/ Factors 

In Chapter 7 a procedure was presented for testing the null hypothesis of 
equal off-diagonal elements in a correlation matrix. It can be shown that 
for a (p x p) correlation matrix with equal off-diagonal elements given by p, 
the first eigenvalue is given by [1 + p(p - 1)]. The remaining eigenvalues 
are equal and are given by (1 - p). This correlation structure is therefore 
consistent with a single factor model. If the hypothesis of zero correlation 
is rejected this test for equal correlation structure provides a useful follow­
up test. For the air pollution example the critical X2 value for the equal 
correlation structure is 208 with 54 degrees of freedom. The Jrvalue for the 
test is therefore less than 0.0000. 

Principal Factor Approach 

The principal component analysis solution to the factor model discussed 
above begins with a specified r and simultaneously determines estimates of 
the communalities and the elements of the factor pattern matrix A using 
the first r eigenvectors of R. A variation of this approach is to estimate 
both the communalities and r using the second or third lower bound ap­
proach outlined above. This method is commonly called the principal factor --I .-
approach. The eigenvectors of AA = (R -,p) corresponding to the pos-
itive eigenvalues of AA' are then used to determine Al as in the case of 
principal component analysis. If desired, the estimate Al of A can then 

~ ~, 

be used to determine new communalities AIAI, which are then used to 
obtain new eigenvectors. The process can be iterated until the change in 
the communality estimates is minimal. 

Computer Software 

The calculations required for the factor analysis examples in this section 
were performed using SAS PROC FACTOR. 

Example 

Using the third lower bound or squared multiple correlation R~ to estimate 
the communality for Xi, a principal factor approach was applied to the air 
pollution data correlation matrix. The factor pattern matrix and eigenval­
ues for the first four factors are given in Table 9.22. The prior communality 
estimates (squared multiple correlations) and final communalities are also 
shown in Table 9.22. A comparison of this factor pattern matrix to the first 
four factors for the principal component solution shows that the two solu­
tions are very similar. The communality estimates based on the first four 
principal components are also shown in the table. The principal component 
communalities are in general marginally higher than the principal factor 
squared multiple correlations. When the principal component communali-
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ties are higher than the principal factor communalities, this is often due to 
artificially high communalities in the principal component method. Using 
prior communalities of unity can result in some of the error variation being 
included in the common factors. 

9.2.2 FACTOR ROTATION 

As suggested in Section 9.2.1, there is no unique solution to the factor 
analysis model. In this section factor rotation will be introduced as a means 
of obtaining factors that are more easily interpretable. 

The Theory of Rigid Rotation 

In the factor analysis model presented in Section 9.2.1 given by 

X=FA'+U, 

the factors F are not unique. By introducing an orthogonal transformation 
matrix T, T'T = TT' = I, new factors G = FT may be defined that 
also satisfy the factor analysis model. The factor loading matrix becomes 
B' = T' A' and the model is given by 

x = FTT'A' + U 

= GB'+U. 

The orthogonal transformation is a rigid rotation of the r axes in a ~ 
dimensional space. Since there are infinitely many factor solutions that 
yield the same correlation matrix, the question arises as to whether there 
is an optimum set of factors. 

The most common criterion applied to factor rotation is known as simple 
structure, first advocated by Thurstone in bis pioneering work in factor 
analysis. In his characterization of simple structure, Thurstone used five 
criteria to describe the numerical properties of the factor loading matrix A. 
The essence of these criteria is that the observed variables should fall into 
mutually exclusive categories in such a way that the variables in a given 
category exhibit loadings that are high on the same single factor, moderate 
to low on a very few factors and negligible on the remaining factors. Simple 
structure does not allow for the possibility of a "general factor" which was 
the subject of much debate among psychometricians in the first half of this 
century. 

Since the description of simple structure is qualitative, it is necessary to 
determine a quantitative description that can be used generally to deter­
mine an objective rather than a subjective solution. In order to define such 
quantitative criteria, the notation given in Figure 9.10 is required. This fig­
ure illustrates the factor loading matrix for the new factors Gb G2 , ••• , Gr . 
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GI G2 G3 Gr q 
r 

Xl bll bl2 bl3 blr ~l1. 
. I ) )= 
r 

X 2 ~l ~2 ~~. 
. I ) )= 

r 
X p bpl bp2 bpa bpr ~~j 

j=l 

FIGURE 9.10. Factor Loading Matrix Based on New Factors 

Varimax 

Simple structure suggests that we design a B' matrix in such a way that 
only one of the elements {bij } is elose to 1 in each row and that most el­
ements in a row are elose to zero. The communality of the variable Xi is 
given by q = ~j=l bJi' Since not all variables will have the same commu­
nality, each row of B' can be normalized by dividing through by Ci. 

The method of rotation, called nonnalized l1arimax rotation is commonly 
used to achieve simple structure. This method maximizes the quantity 

which is the sum of the variances of each b~j / Cf over each j. For each 
factor j, the variance of b~j / q is maximized, which tends to force the 
quantity to zero or 1 since Ibij/Cil < 1. The dividing by Cf normalizes the 
values of ~j taking into account the differences in the communalities. (The 
reader should replace (b~j/q) by Xi in the above expression to recognize 
the conventional expression for a sampie variance.) 

The varimax method is by far the most commonly used method of rota­
tion. It is ideal for producing orthogonal factors that approach the simple 
structure objective. Beyond this it is also commonly used as a starting 
point for oblique methods of rotation to be discussed later in this section. 

The process of computing the coefficients for the rotation is an iterative 
procedure. Factors are typically rotated in pairs until the quantity defined 
above is maximized. Graphically, this can be viewed as a rigid rotation of 
perpendicular axes in such a way that the new axes tend to pass through 
the data points. In other words' one of the two coordinates or loadings is 
forced to zero or 1. The geometry of rotation will be discussed later in this 
section. 
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Example 

For the air pollution data correlation matrix introduced in Section 9.1, 
the first four principal components were rotated using varimax rotation. 
Table 9.23 shows the factor loadings for the rotated factors. For each vari­
able, the largest factor loading is underlined. By concentrating on factor 
loadings that exceed 0.5, the four factors can be seen to represent the 
four clusters of variables given by (1) PMIN, PMEAN, PMAXj (2) SMIN, 
SMEAN, SMAX, GE65j (3) PM2, LPOPj (4) PERWH, NONPOOR, GE65. 
The first factor therefore measures the particulate levels, and the second 
factor measures the sulfate levels as weH as the fraction of the population 
over age 65. (For some reason cities with high sulphate readings also tend 
to have a larger proportion of aged people.) The third factor measures 
population level and densitYj the fourth factor decreases with increases in 
percent white, percent above poverty level, and percent over age 65. Since 
without loss of generality the factor loading signs can all be changed by 
multiplying by -1, it would be more convenient to change all the signs 
for factor four. With the sign change, the fourth factor nOw represents a 
demographie variable strongly related to percent white and percent above 
poverty and also related to the percent of the population over age 65. 

The communalities column in Table 9.23 indicates that the variances 
in the original X variables explained by the four factors varies from 0.77 
for NONPOOR to 0.96 for PMEAN. These communalities are identical to 
the variances explained by the first four unrotated principal components in 
Table 9.15. The communalities are therefore not changed by rotation. The 
variances explained by each factor are shown at the bottom of Table 9.23. 
These individual variances are not the same as the variances explained 
by the first four principal components in Table 9.14 (see eigenvalues at the 
bottom of the table). The total variance explained by the first four principal 
components (85.6%) given in Table 9.14 does not change after rotation. 

For comparison purposes, the varimax rotated solution for five factors is 
shown in Table 9.24. The first three factors remain essentially unchanged 
from the four factor solution except that the second factor now has a higher 
correlation with PMIN and a lower correlation with GE65. The fourth 
factor measures a contrast between GE65 and PERWH and the fifth factor 
represents PERWH and NONPOOR. The lowest communality is now .81 
whereas most communalities are above 0.88. The sum of the variances 
explained is 9.99, which is 90.8% of the total of 11. The five-component 
solution seems to provide a very good summary of the variation carried by 
the 11 variables. 

A varimax rotation was also carried out for the four factor solution ob­
tained using the principal factor method shown in Table 9.22. The factor 
loadings are shown in Table 9.25. The factor pattern obtained is very similar 
to the rotated principal components solution in Table 9.23. In addition, the 
five factor varimax rotated solution was also obtained using the principal 
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TABLE 9.23. Factor Loading Matrix After Varimax Rotation 
of First Four Principal Components 

Fl F2 F3 F4 Communalities 

SMIN 0.236 0.877 -0.116 0.042 0.84 

SMEAN 0.406 0.744 0.444 -0.066 0.92 
SMAX 0.358 0.669 0.441 -0.186 0.80 
PMIN Q,ill 0.397 0.337 0.008 0.84 
PMEAN 0.943 0.223 0.106 -0.071 0.96 
PMAX 0.940 0.038 -0.042 -0.102 0.90 
PM2 0.110 0.145 0.886 0.037 0.82 
PERWH 0.087 0.197 -0.130 -0.922 0.91 
NONPOOR 0.117 -0.044 0.400 -0.774 0.77 
GE65 -0.117 0.704 -0.001 -0.520 0.78 
LPOP 0.044 -0.007 0.919 -0.147 0.87 

Variance Explained 2.743 2.537 2.338 1.798 
by Rotated 
Components 

TABLE 9.24. Factor Loading Matrix After Varimax Rotation of 
First Five Principal Components 

Fl F2 F3 F4 Fs Communalities 

SMIN 0.129 0.913 -0.154 0.196 -0.029 .91 
SMEAN 0.313 0.796 0.410 0.168 0.115 .94 
SMAX 0.329 0.601 0.455 0.357 0.086 .81 
PMIN 0.664 0.567 0.288 -0.098 0.143 .88 
PMEAN 0.923 0.303 0.113 0.028 0.070 .96 
PMAX 0.971 0.056 -0.001 0.080 0.011 .95 
PM2 0.097 0.154 0.899 -0.006 0.018 .84 
PERWH 0.149 -0.008 -0.134 0.690 0.634 .92 
NONPOOR 0.048 0.076 0.262 0.094 0.936 .96 
GE65 -0.030 0.336 0.092 0.898 0.059 .93 

LPOP 0.044 -0.004 0.916 0.020 0.204 .88 

Variance 
Explained 2.495 2.386 2.236 1.503 1.371 
by Rotated 
Components 

factor method. The resultant factor loadings are shown in Table 9.26. Onee 
again the five-factor rotated solution for the principal factors is similar to 
the rotated five-factor solution for the principal eomponents. 
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TABLE 9.25. Varimax Rotated Factors For Four Factor Principal 
Factor Analysis of Air Pollution Correlation Matrix 

Prior Final 
Communality Communality 

Fl F2 Fa F4 Estimates Estimates 

SMIN 0.213 0.816 -0.109 -0.023 0.724 0.750 
SMEAN 0.360 0.776 0.449 -0.085 0.928 0.950 
SMAX 0.323 0.664 0.441 -0.214 0.854 0.822 
PMIN 0.703 0.427 0.345 0.003 0.827 0.841 
PMEAN 0.932 0.247 0.122 -0.071 0.928 0.950 
PMAX 0.918 0.062 -0.019 -0.096 0.878 0.894 
PM2 0.110 0.147 0.794 0.018 0.642 0.672 
PERWH 0.089 0.154 -0.091 -0.870 0.741 0.798 
NONPOOR 0.097 -0.013 0.393 -0.653 0.638 0.667 

GE65 -0.069 0.578 0.012 -0.518 0.641 0.664 
LPOP 0.047 0.007 0.846 -0.125 0.680 0.741 

Variance 
Explained 2.524 2.340 2.056 1.537 

Other Rotation Methods 

Although the varimax method of rotation is by far the most commonly used, 
there are several other methods commonly available in statistics computer 
software. Abrief outline appears below. 

Quarlimax Criterion 

A second method of rotation, quarlimax, maximizes the sum of the vari­
ances of the b~j over the entire loading matrix. Hence the quantity 

is maximized. This is equivalent to maximizing the quantity ~j=1 ~f=1 btj • 

This method of rotation usually produces a general factor since the vari­
ance is computed over the entire matrix, not just in each column as in the 
case of varimax rotation. After the first general factor the loadings on the 
remaining factors tend to be lower than for varimax rotation. 

Orlhomax 

A general class of orthogonal rotation criteria can be constructed using a 
weighted average of the raw varimax and quartimax criteria. The orthomax 
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TABLE 9.26. Varimax Rotated Factors for Five Factor Principal Factor 
Analysis of Air Pollution Correlation Matrix 

Prior Final 
Communality Communality 

Fl F2 F3 F4 FI) Eetimatea Estimatea 

SMIN 0.164 0.823 -0.111 -0.019 0.178 0.724 0.756 
SMEAN 0.310 0.784 0.448 -0.104 0.162 0.928 0.964 
SMAX 0.326 0.564 0.472 -0.121 0.399 0.854 0.869 
PMIN 0.638 0.545 0.323 -0.103 -0.141 0.827 0.853 
PMEAN 0.912 0.306 0.126 -0.089 -0.007 0.928 0.957 
PMAX 0.937 0.061 0.005 -0.044 0.093 0.878 0.898 
PM2 0.099 0.140 0.801 -0.011 0.008 0.642 0.693 
PERWH 0.109 0.069 -0.112 -0.776 0.407 0.741 0.802 
NONPOOR 0.060 0.051 0.332 -0.741 -0.025 0.638 0.678 
GE65 -0.032 0.391 0.042 -0.333 0.629 0.641 0.682 
LPOP 0.043 -0.004 0.844 -0.158 0.012 0.680 0.743 

Variance 
Explained 2.377 2.188 2.037 1.335 0.809 

criterion maximizes the quantity 

r P P 2 

L [Lbt; - :r(Lb~;) ] 
j=l i=l P i=l 

where 0 ~ 'Y ~ 1. For 'Y = 0, this criterion becomes the quartimax, but for 
'Y = 1 this criterion becomes the raw varimax. For 'Y = 0.5 the criterion is 
sometimes referred to as the biquartimax and for 'Y = r /2 it is equivalent 
to the equamax criterion. 

Example 

For comparison purposes four factor rotations using the criteria quartimax, 
orthomax with 'Y = 0.5 (biquartimax) and 'Y = r/2 (equamax) are com­
pared in Table 9.27. For each variable the highest factor loading is under­
lined. A comparison of the three methods reveals essentially no difference 
among the solutions. In every case the highest loading for any variable 
appears on the same factor. A comparison of these three solutions to the 
varimax rotated solution in Table 9.23 also shows that for this example 
there is virtually no difference between the varimax solution and the solu­
tions in Table 9.27. 
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Oblique Rotation 

In some applications it is preferable to permit a minor amount of correlation 
among fadors. Rotation methods that permit the factors to be correlated 
are called oblique. There does not seem to be one single popular method 
for oblique rotation, and the use of nonorthogonal rotation requires consid­
erable expertise. As this topic is not discussed here, the interested reader 
is referred to more specialized texts on fador analysis, such as Harman 
(1976) and Gorsuch (1983). 

Procrustes Rotation 

If a hypothesized factor pattern is to be tested, or if two factor analysis 
solutions are to be compared, a procrustes rotation can be used. In this 
technique the rotation is carried out to obtain a solution that is as dose as 
possible to some hypothesized factor pattern or to a previous solution. The 
previous solution may arise from the same data but a different technique, 
or may be from a different sampie on the same variables. Beginning with an 
orthogonal solution, the researcher may choose to reduce the low loadings 
to zero and then use the procrustes method to obtain a new solution, which 
most dosely approximates the new target. Interested readers should consult 
the two factor analysis textbooks listed in the previous paragraph. 

The Geometry 0/ Factor Analysis 

The term rigid rotation, used to label the orthogonal transformation pro­
cess described above, is derived from the geometry associated with the 
transformation. The p X variables can be used to generate a p-dimensional 
vector space and the r factors can be viewed as linear transformations of the 
p X variables. Since the variables and factors have mean 0 and variance 1, 
the correlation between any pair of vectors is equivalent to the cosine of 
the angle between them, and the length of any vector is 1. 

In panel (a) of Figure 9.11 the relationship between Xi and Fj is shown. 
The correlation between the two variables is cos (J and the projection of 
Xi onto Fj is given by X ij , which lies along Fj with Xij = Xi cos (J = 
aij. Recall that aij is the factor loading for Xi on Fj . In panel (b) of 
Figure 9.11 the projection of Xi onto the plane of Fj..,?Jld Fk is shown. 
The projection onto this plane is given by the vector Xijk, which makes 
an angle of (J with Fj and (900 - (J) with Fk. The coordinates of Xijk are 
giv~n by (aij, aUe) where aij = Xi cos (J and aik = Xi sin (J. The coordinates 
of X ijk are therefore the factor loadings, and hence the factor loadings aij 
and aik are the coordinates of Xi in the projection of Xi onto the plane 
formed by Fj and Fk. 

The characterization of the factors Fj and Fk relative to Xi depend on 
the magnitudes of aij and aik respectively. The closer these correlations 
are to 1 in a.bsolute value the more important is the variable Xi in the 
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FIGDRE 9.11. Geometry of Factor Analysis 

characterization of these two factors. In the extreme case that aij = 1, 
F j is considered to be equivalent to Xi, whereas if aij = 0, then F j is 
unrelated to Xi' 

For any given pair of factors Fj and Fk, the entire set of loadings for all p 
random variables can be plotted in the two-dimensional space generated by 
Fj and Fk. Figure 9.12 shows an example consisting of 14 such variables. 
The coordinates of the 14 variables with respect to the two factors Fj and 
Fk indicate the magnitudes of the correlations of the variables with the two 
factors. From the figure, it would appear that variables 1, 7, 9 and 13 move 
in the same direction as Fk and Fj , whereas variables 5 and 10 move in 
a direction opposite to Fj and Fk. For variables 2, 6 and 12 the direction 
is positive for Fk and negative for Fj and for variables 8, 11 and 14 the 
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FIGURE 9.12. Geometry of Factor Rotation 

opposite is true. Variable 3 is strongly related to Fj and very weakly related 
to Fk ; for variable 4 the reverse is true. It can be seen from this figure that 
a rigid rotation ofthe factors through an angle () to obtain the new that Gm 
and G 8 will yield correlations (loadings ) with respect to the new factors 
that have a tendency to be dose to zero on one factor and elose to one on 
the other factor. Exceptions to this are the variables 3 and 4, which are 
now more equally correlated with both new factors. 

Example 

Figures 9.13 and 9.14 contain plots showing the loadings for the first two 
factors of the four-factor principal component solutions before and after 
rotation. In Figure 9.13 the loadings plotted are before rotation whereas 
in Figure 9.14 the loadings plotted are after rotation. In Figure 9.13 many 
of the loadings are in the middle of the range (0,1) and hence many of 
the points are in the middle of one of the four quadrants. In Figure 9.13 
the first factor shows moderate to high loadings for all variables, but in 
Figure 9.14 the first factor displays high loadings for only three variables. 
Similar results can be seen for the second factor. 
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9.2.3 FACTOR SCORES 

Factor analysis is often used as a preliminary data reduction step forming 
a part of a larger analysis. In later analyses the factors obtained are often 
used in place of the original variables from which they were derived. An 
example of such a process is provided by the multiple regression example 
in Section 9.1.6 which employed the principal components as explanatory 
variables. In order to use the derived factors, observations on the factors 
must be generated for the n rows of the original X matrix. These factor 
values are caIled factor scores. 

If the unrotated factors have been obtained using principal components 
or the principal factor method, then the unrotated factor score can be 

.... .... f 

obtained using the eigenvectors and eigenvalues of AA . As outlined in 
9.2.4 the factors can be expressed in terms of X and the eigenvectors and 

..... ..... f 

eigenvalues of AA . The rotated factor scores can then be obtained using 
the orthogonal transformation matrix T used for the rotation. 

If some other technique is used to obtain A and ~, then weighted least 
squares is often used to obtain the estimated factor scores, F. Given A 

-. -. ....... .-./--1...... -1--1 
and.p, F is given by F = (A.p A)-l A.p X. The matrix required to 
obtain F from X is often labeled the factor score coefficient matrix. 

Factor Score Example 

Table 9.28 summarizes the factor scores for the 40 cities on the first four 
factors of the varimax rotated, five factor principal component solution 
summarized in Table 9.24. A scatterplot of the 40 cities based on the first 
two factors is shown in Figure 9.15. The abbreviations for the 40 cities 
are also shown in Table 9.28. From Figure 9.15 we can see that AL has a 
large positive value of F l and a smaIl positive value of F2 • The city of AI­
buquerque therefore has relatively high particulate readings and relatively 
low sulphate readings. For Canton (CA) the value of F l is near zero and F2 

is relatively large and hence Canton has relatively high sulplate readings. 
The cities of Greensboro (GB) and Scranton (SC) are near zero on F2 but 
are at opposite ends ofthe scale on Fl . A second scatterplot in Figure 9.15 
plots the cities with respect to the third and fourth factors. From the sec­
ond scatterplot we can conc1ude that NY is an outlier with respect to the 
dimension of the third factor, whereas WA is unusual with respect to the 
fourth factor. Since F3 is a population size and density factor NY is not an 
unexpected outlier. F4 is an indicator of a large proportion of white peo­
pIe and of people over age 65. Washington therefore has a relatively large 
nonwhite population with relatively few over age 65. 
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TABLE 9.28. Data for Plot of Factor Scores 

City Abbreviation Fl F2 F3 F4 

San Joee SJ 0.215 -1.036 -0.198 -0.447 
Roanoke RO 0.408 -0.460 -0.304 0.756 
Albuquerque AL 3.493 -2.082 -0.943 -0.846 
Charleston CH -0.435 -0.019 -0.309 -1.480 
Harrisburg HA -0.843 0.817 -0.470 0.313 
Greenville GR 0.229 -0.089 -0.608 -0.487 
Hartford HT -0.231 0.017 0.536 0.283 
Columbus CO -0.595 -0.094 -0.402 1.242 
Orlando OR -0.889 -0.805 -0.187 0.651 
Sacramento SO -1.039 -0.726 -0.109 -0.407 
Philadelphia PH 0.336 1.618 1.697 0.034 
Washington WA -0.056 0.673 1.085 -2.056 
Minneapolis MI -0.373 -0.845 0.556 0.567 
Los Angeles LA 0.603 -0.905 1.814 0.437 
Greensboro GB -1.453 0.058 -0.437 -1.133 
Jacksonville JA -0.649 -0.197 -0.022 -0.837 
Madison MA -0.661 -0.371 -0.784 0.298 
Wilmington WM 1.751 1.477 -0.113 -1.031 
Tacoma TA 0.614 -0.275 -0.384 0.778 
Seranton SC 2.099 0.784 -0.756 1.789 
Canton CA 0.062 3.801 -0.884 -0.476 
Atlanta AT -0.274 -0.011 0.343 -1.044 
Baltimore BA 1.180 -0.364 1.224 -0.223 
Portland PO -1.050 -0.782 0.177 1.728 
Springfield, MA SP -1.142 0.273 0.309 1.341 
SaltLake SL 0.327 -0.544 -0.266 -0.142 
Wichita WI -0.664 -0.712 -0.415 -0.338 
Lorain LO 0.789 -0.150 -0.655 0.021 
Hamilton HM -1.045 1.007 -0.855 -0.627 
Montgomery MO -0.965 -0.209 -0.358 -0.811 
San Diega SO -0.856 -0.513 0.082 -0.153 
Duluth DU -1.160 -0.154 -0.505 1.786 
Wilkes Barre WB -0.009 -0.344 -0.388 1.902 
Wheeling WH 1.236 2.133 -1.091 1.608 
San Antonio SA 0.594 -1.009 0.254 0.292 
Cincinnati CI 0.416 -0.124 0.876 0.201 
Saginaw SG -0.433 -0.326 -0.776 -0.327 
Baton Rouge BR 0.650 -0.309 -0.326 -1.834 
New Vork NY 0.095 0.703 4.436 0.427 
Springfield, OH SF -0.275 0.099 -0.841 0.724 

Regression Example 

To provide an example, the five rotated factors of Table 9.24 are used aB ex­
planatory variables in a multiple regression model with dependent variable 
TMR. This example follows the example in Section 9.1.5 where principal 
components were used aB explanatory variables. Using the factor scores ob-
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tained from the five rotated principal components shown in Table 9.24, the 
estimated multiple regression relationship with TMR is given by 

TMR = 981.575 + 19.752 F l + 73.957 F2 + 19.237 F3 
(.135) (.000) (.145) 

+ 121.250 F4 + 46.918 Fs. 
(.000) (.001) 

The contributions to R2 were Fl (0.014), F2 (0.190), F3 (0.013), F4 (0.511) 
and Fs (0.076) and hence the overall R2 value was 0.804. Since the factors 
are standardized, we can compare the magnitudes of the coefficients. The 
factor F4 , which reflects the negative of NONPOOR and PERWH, was the 
most important, accounting for 51% of the variation in TMR. The first 
and third factors F l and F3 seem to contribute little to the explanation of 
TMR. The first factor measures PMIN, PMEAN and PMAX whereas the 
third factor measures PM2 and LPOP. The second factor F2 accounts for 
19% of the variation in TMR and is primarily a measure of SMIN, SMEAN, 
SMAX and PMIN. The fifth factor Fs accounts for 7.6% of the variation 
in TMR and is a measure of PERWH and GE65. 

For comparison, a multiple regression of TMR on PMIN, SMAX, GE65, 
NONPOOR and PERWH produced an R2 of 0.87. The reader may recall 
from the results of Section 9.1.5 that some of the minor principal compo­
nents were related to TMR. Since the factor analysis only retained the first 
five factors some of the information from the later components has been 
omitted. 

9.2.4 THE MAXIMUM LIKELIHOOD ESTIMATION METHOD 

The Maximum Likelihood Approach 

Under the assumption of multivariate normality, the maximum likelihood 
estimators for A and lP in the factor analysis model are obtained by max:-
imizing 

-~(n - 1) [ln IEI- trE-lS] 
2 

subject to E = AA' +lP. To get a unique solution it is customary to require 
also that A'lP- l A be diagonal. Since maximum likelihood estimators are 
scale invariant, it does not matter whether E is a covariance matrix or 
a correlation matrix. If E is a covariance matrix, the correlation matrix 
is given by p = D-l ED-l , where D is the diagonal matrix of standard 
deviations. 

p = D-l AA'D- l + D-llPD-l = A * A *, + q;*. 

The two solutions can therefore be related using the maximum likelihood 
estimators of the standard deviations. 

The equation for the maximum likelihood estimators does not have an 
analytical solution and hence must be solved iteratively. Unfortunately the 
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solution does not necessarily converge. Improper solutions with negative 
diagonal elements of i' can occur and hence additional constraints requir­
ing positive diagonal elements for i' must be imposed. Cases of negative 
residual variances (and hence communalities that exceed 1) are commonly 
called Heywood cases. 

Goodness 0/ Fit 

An advantage of the maximum likelihood approach is that a goodness of fit 
test can be carried out for the model E = AA' + q;. Given the maximum 
likelihood solution, A and ~, the maximum likelihood estimator of E under 

...... .-. ...... 1 ...... 
the model is given by E = AA + q;. A test of goodness of fit is carried out 

by comparing E to (n;; 1) S which is the maximum likelihood estimator of 
E under no restrictions. The test statistic, including Bartlett's correction, 
is given by 

[n_(2P +1l)_2r]ln ~ 
6 3 (n-l)S 

n 

which in large sampies has a X2 distribution with ~[(P - r)2 - (p + r)] 
degrees of freedom if the model is correct. This test is related to the test 
for sphericity discussed in Chapter 7. In the test introduced here the null 
hypothesis is that the residual covariance matrix is diagonal after removing 
the r common factors defined by A. 

This test statistic is only valid if AA' has full rank r. If r is too large, the 
test statistic is not reliable. A common approach to maximum likelihood 
factor analysis is to begin with the solution r = 1 and then to continue 
increasing r by inerements of 1 until the goodness of fit criterion is satisfied 
or until the degrees of freedom are negative. 

Example 

For the air pollution data covarianee matrix, a maximum likelihood factor 
analysis was carried out. The squared multiple correlation was used to 
estimate the eommunalities. For values of r (the number of factors) varying 
from 1 to 6, the maximum likelihood solution yielded the X2 goodness of fit 
values and p-values summarized in Table 9.29. From the p-values shown in 
the table it would appear that a five-factor solution provides an adequate 
fit for the data. 

The factor pattern matrix for the five-factor varimax rotated solution is 
given in Table 9.30. The first two factors appear to represent the PMIN, 
PMEAN, PMAX group and the SMIN, SMEAN, SMAX group respectively. 
The third factor is dominated by PM2 and LPOP whereas the fifth factor 
is dominated by SMAX. The fourth factor represents a demographie fac­
tor eonsisting of the variables PERWH and NONPOOR and the variable 
GE65. In comparison to the five-factor solution derived from the principal 
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TABLE 9.29. Chi-Square Goodness of Fit Test for Number of 
Factors 

No. of Factors 1 2 3 4 5 6 

CHI Square 190.712 108.486 72.430 28.571 13.270 3.849 
d.f. 44 34 25 17 10 4 
p value 0.0001 0.0001 0.0001 0.0387 0.2089 0.4268 

factor method shown in Table 9.26, the first three factors are very sim­
ilar. The variances explained by the three factors in each case are also 
similar. For the maximum likelihood approach, the fourth factor repre-­
sents a demographie factor eonsisting of PERWH, NONPOOR and GE65 
whereas for the principal factor method the fourth factor represents only 
two demographie variables PERWH and NONPOOR. The fifth factor for 
the principal factor method primarily represents GE65, but for the maxi­
mum llkelihood method the fifth factor represents SMAX. The fifth factor 
for the principal factor method does however have a weak eorrelation with 
PERWH. A eomparison of the final communality estimates in Tables 9.26 
and 9.30 also indicates some differenees between the two solutions. 

Cross Validation 

A disadvantage of the X2 goodness of fit test is that it tends to overestimate 
the number of factors, r. A useful procedure is to divide the sample into 
two halves and to obtain the maximum likelihood solution for the two 
samples separately. Denoting the two sets of sample estimators by i; 1, 

i;2' (n1 -1)Sdn1' and (n2 -1)S2/n2 respectively, the goodness offit ean 
be evaluated by determining the likelihood statistics 

ln 1i;11-ln IS2 (n2n~ 1) 1+ tr [(n2n~ 1) s2i;~1] - p and 

ln 1i;21-ln IS1 (n1n~ 1) I + tr [(n1n~ 1) s1i;;1] - p. 

The value of r that minimizes these statistics is an estimate of the required 
number of factors. 

In the absenee of normality the models ean be evaluated using the dis­
erepancy functions 

1. Ordinary Least Squares 

LL(Sjk - ajk)2, 
j<k 

where Sjk and ajk are elements of 
(n:1) S and i; respeetively. 
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2. Generalized Least Squares 

1 {[(n-l) ~][ (n-l)]-1}2 -tr --8 -.E 8-- . 
2 n n 

Akaike and Schwartz Griteria 

In small sampies, dividing the sampie in half may not be advantageous. In 
such circumstances two other goodness of fit criteria that can be used are 
the Akaike criterion and the Schwartz criterion. Denoting the value of the 
log likelihood statistic above by L, the Akaike goodness of fit criterion is 
given by (L+2q) where q = p(r+l) -r(r-l)/2 for the rfactor model. The 
Schwartz criterion is given by (L + q ln n*) where n* is Bartlett's correction 
given by n* = [n - (2p + 4r + 11)/6]. The number of factors r is chosen 
to minimize the value of the criterion. These two criteria seek to insure 
that decreases in L due to fitting additional factors are sufficiently large 
to justify the additional factors. A major difficulty with the X2 goodness 
of fit test is that in small sampies many competing models are equally sat­
isfactory. Large sampies, however, tend to reject all models. The difficulty 
with large sampies is that more complex models are obtained that attempt 
to explain residuals that are negligible for practical purposes. These good­
ness of fit criteria tend to guard against the overfitting of large models to 
explain negligible residuals. Application of cross validation techniques to 
the determination of factors in capital asset pricing models is discussed in 
Conwayand Reinganum (1988) and Jobson (1988). 

Example 

The Akaike and Schwartz criteria were used to evaluate the maximum like­
lihood factor analyses for various numbers of factors for the air pollution 
data. For each value of r = number of factors, the values of the criteria 
are given in the Table 9.31. Using the Schwartz criterion the minimum 
value occurs at four factors whereas the Akaike criterion is minimized at 
five factors. Since the Schwartz criterion suggests that the four-factor so­
lution should be sufficient, the four-factor maximum likelihood solution is 
presented in Table 9.32. A comparison of this four-factor solution with the 
principal four-factor solution reveals that the two sets of factors are remark­
ably similar. It would seem that in stretching to extract the unnecessary 
fifth factor the two methods obtained different results. 

9.2.5 RESULTS FROM A SIMULATION STUDY 

In a simulation study carried out by Hakistan, Rogers and Cattell (1982), 
the eigenvalue-one, scree test and maximum likelihood X2 test procedures 
for estimating the number of factors were compared. For a correlation ma­
trix derived from a factor model consisting of r factors and p variables, 
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TABLE 9.31. Values for Akaike and Schwartz Criteria 

No. of Factors 1 2 3 4 5 6 

AKAIKE 269.47 194.84 171.14 133.90 129.03 129.05 
SCHWARTZ 153.31 124.44 120.19 108.33 111.80 116.88 

TABLE 9.32. Varimax Rotated Factors for Four-Factor 
Maximum Likelihood Factor Analysis of Air Pollution 
Oata 

Final 
Communality 

Fl F2 F3 F4 Estimates 

SMIN 0.199 0.788 -0.158 -0.106 0.697 
SMEAN 0.309 0.858 0.393 -0.120 1.000 
SMAX 0.269 0.710 0.394 -0.237 0.788 
PMIN 0.683 0.491 0.293 -0.010 0.793 
PMEAN 0.951 0.278 0.115 -0.074 1.000 
PMAX 0.904 0.092 0.006 -0.057 0.829 
PM2 0.130 0.151 0.770 0.002 0.632 
PERWH -0.129 -0.044 0.095 0.986 1.000 
NONPOOR -0.046 -0.086 -0.377 0.614 0.528 
GE65 -0.056 0.447 0.020 -0.587 0.547 
LPOP 0.044 -0.028 0.933 -0.111 0.886 

Variance 
Explained 2.435 2.421 2.049 1.800 

sampie correlation matrices were generated. A variety of factor models 
were employed in order to provide variation with respect to the following: 

1. Ratio of r I p. 

2. Complexity of the factors in terms of degree of departure of factor 
loadings from the extremes 0 or 1. 

3. Sampie size n. 

4. Level of communalities. 

5. Number of variables, p. 

6. Existence of minor factors. 

The results of the study indicate that the estimate of the number of 
major factors is more reliable with low values of rlp, less complex factors, 
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large sampie size, high communalities, large numbers of variables, and no 
minor factors. 

For the eigenvalue-one criterion, if the value of r Ip was low, the estimated 
number of factors tended to be correct unless the communalities were low, in 
which case the estimated number of factors was too large. Complex factors 
and high values of r / P tended to produce underestimates of the number of 
factors especially for high communalities. Larger sampies generally produce 
better results than smaller sampies. The addition of minor factors did not 
in general reduce the reliability of the estimates. 

For the scree test, high communalities yielded more reliable estimates, 
whereas low communalities tended to produce large overestimates of the 
number of factors. Overestimates also tended to be produced with a large 
number of factors, p, with increased factor complexity, and with lower sam­
pIe size. The ratio rlp, however, did not seem to have an impact. The ex­
istence of minor factors tended in general to increase the magnitude and 
frequency of the overestimates. 

For the likelihood ratio test, the estimates were more precise with high 
communalities. For low communalities the estimates tended to be low. Un­
derestimation of the number of factors was more frequent with larger p 
and with large values of rlp. Factorial complexity did not seem to have 
an effect on the reliability. The degree of error was markedly reduced by 
large sampies. The presence of minor factors tended to result in the over­
estimation of the number of major factors; was much more pronounced in 
large sampies than in small ones, and when the ratio rlp was low. The 
degree of overestimation in the presence of minor factors was larger than 
the degree of underestimation when minor factors were not present. 

A comparison of the three criteria showed that the eigenvalue one cri­
terion was less inßuenced by the presence of minor factors than the other 
two. In addition, tbe magnitude of overestimation for likelihood ratio and 
scree is much larger in this case than when no minor factors are present. 

In the absence of minor factors, high communalities in general yielded 
reliable estimates for the scree and likelihood ratio tests. For the eigenvalue­
one-criterion it was also necessary to have low values of rlp in order to 
obtain reliable results. When communalities were low, the likelihood ratio 
test tended to underestimate and the scree test tended to overestimate. 
The performance of the eigenvalue one criterion, however, also depended 
on the ratio r I p. For small values of r I p, the eigenvalue one criterion tends 
to overestimate the number of factors whereas for high values of rlp the 
tendency is to underestimate. 

9.2.6 A SECOND EXAMPLE 

In a survey of R.C.M.P. (Royal Canadian Mounted Police) officers, re­
sponses were obtained for eighteen stress items. The 18 stress variables 
are measures of stress due to (1) insufficient resources, (2) unclear job 
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responsibilities, (3) personality eonflicts, (4) investigation where there is 
serioUB injury or fatality, (5) dealing with obnoxioUB or intoxieated people, 
(6) having to use firearms, (7) notifying relatives about death or serioUB 
injury, (8) tolerating verbal abuse in publie, (9) unsuecessful attempts to 
solve aseries of offenees, (10) lack of availability of ambulances, doetors, 
and so on, (11) poor presentation of a ease by the prosecutor resulting in 
dismissal of the charge, (12) heavy workload, (13) not getting along with 
unit commander, (14) many frivoloUB eomplaints lodged against offieers 
by the publie, (15) engaging in high speed chases, (16) becoming involved 
in physical violence with an offender , (17) investigating domestic quarrels, 
(18) having to break up fights or quarrels in bars and eocktail lounges. 
Additional background on this survey is available in Jobson and Schneck 
(1982). 

Each of the 18 stress variables represents a eomposite scale derived from 
two questions. Each officer was asked how stressful (1 = very little to 
5 = very much) he or she found each situation and also how often (1 = never 
to 5 = always) this type of situation oeeurred on the unit. The eomposite 
scale was determined by subtracting 1 from the frequency seale and then 
multiplying it by the stress scale to obtain an index of stress (0 to 20) for 
each offieer on each of the 18 types of stress. 

The responses from 56 offieers for the eighteen stress items are displayed 
in Table 9.33. The means, standard deviations, and correlation matrix are 
shown in Table 9.34. The variables are labeled STR1 through STR18. The 
eigenvalues of the eorrelation matrix are also shown in Table 9.34. 

Using an eigenvalue-one-criterion, the number of factors should be 5. The 
fifth eigenvalue, however, is only 1.026. The maximum likelihood goodness 
of fit statistics are shown in Table 9.35. The X2 test of goodness of fit test 
suggests three or at most four factors and the Akaike eriterion also suggests 
four factors. The Schwartz eriterion, however, seems to suggest that two 
factors are sufficient. 

The scree plot for the eigenvalues of the eorrelation matrix is shown in 
Figure 9.16. The scree part of the plot seems to have two parts with two 
eigenvalues to the left of the longest scree. The next three eigenvalues to the 
right may represent sampling error and/or several minor factors. Depend­
ing on the choice of seree, a two-factor or six-factor solution is suggested. 
Using the eigenvalue-one-eriterion a five-factor solution is suggested. For 
simplicity a four-factor solution using variOUB approaches is now presented. 
Table 9.36 eontains the factor pattern matrix for the veetor varimax rotated 
solution for the principal eomponent, principal factor, and maximum like­
lihood methods. A eomparison of the factor loadings reveals the solutions 
to be very similar. The first factor eould be labeled organizational stress 
since the highest loadings are for organizational characteristies such as lack 
of resourees, unclear job responsibility, personality eonfiicts, and poor pre­
sentation of eases by prosecutors. The seeond factor is labeled stress from 
unpleasant duties such as use of firearms, investigation and notifieation of 
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TABLE 9.33. R.C.M.P. Stress Data 

STR1 STR2 STR3 STR4 STR5 STR6 STR7 STRS STR9 
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TABLE 9.33. R.C.M.P. Stress Data (continued) 

STRI0 STRll STR12 STR13 STR14 STR15 STR16 STR17 STR18 

4 6 3 3 6 8 8 8 6 
6 5 15 5 3 10 4 10 4 

10 8 6 4 8 2 2 2 1 
4 15 9 3 10 3 6 4 5 
5 10 8 4 10 8 8 8 12 
5 10 20 4 5 10 8 15 15 
3 12 2 3 2 2 4 9 4 

10 15 6 8 4 1 3 6 2 
4 4 6 0 2 8 8 2 8 
0 2 0 0 2 4 6 4 4 
3 2 2 0 2 6 9 4 6 
4 10 4 0 0 2 8 3 4 
2 8 2 2 1 1 4 1 6 
3 9 6 1 6 6 1 2 6 
3 4 3 0 8 10 8 10 8 
3 8 2 0 3 2 2 2 4 
4 8 4 4 6 6 8 9 8 
5 4 4 0 3 3 4 6 6 
3 6 4 0 4 2 6 6 9 
3 2 3 0 2 2 2 4 4 
4 6 3 0 3 6 6 4 4 
2 2 3 3 0 3 6 9 6 
4 8 3 3 6 4 2 4 2 

12 12 3 0 0 10 12 9 4 
2 6 4 1 1 2 2 3 2 
4 9 4 5 4 5 8 12 12 
4 9 3 0 3 3 4 4 6 
8 12 8 5 10 10 8 9 8 
2 2 12 6 4 2 3 6 2 

20 15 15 15 12 12 20 16 16 
12 6 8 5 6 4 6 6 8 

3 3 1 2 12 2 2 2 2 
6 6 9 8 9 6 6 9 6 
1 3 15 4 2 4 12 12 4 
0 4 8 6 4 6 6 6 4 
5 10 10 15 6 10 15 12 8 
2 1 6 0 4 2 4 9 9 
0 2 6 0 9 2 2 3 6 
6 8 6 4 12 9 9 6 4 
5 1 12 6 4 5 10 8 4 
4 3 8 4 6 8 8 8 8 
9 8 12 8 12 8 12 6 15 
4 4 10 4 8 4 4 9 9 
2 4 12 6 6 4 6 6 6 
6 15 9 8 10 5 2 6 2 
2 9 4 15 6 4 4 2 4 
8 8 3 12 10 3 6 9 3 
4 6 4 9 9 4 4 9 6 

12 9 6 8 12 3 6 9 8 
6 8 3 3 3 3 3 3 4 

12 12 8 12 12 6 8 4 12 
3 6 6 4 8 6 3 6 4 
2 6 6 5 9 4 8 6 2 
0 8 3 0 6 6 4 2 
5 6 0 0 9 6 6 9 15 
4 6 4 4 2 4 1 4 4 
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TABLE 9.35. Goodness of Fit Statis-
tics For Maximum Likelihood Solution 
R.C.M.P. Stress Data 

Factors X2 Prob. Akaike Schwartz 

1 238.258 0.0001 352.893 212.903 
2 159.642 0.0064 296.889 202.116 
3 119.376 0.1151 282.803 211.276 
4 86.873 0.4836 274.921 222.525 
5 65.218 0.7300 277.462 237.973 
6 49.470 0.8320 284.725 254.769 

EIGENVALUES 
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FIGURE 9.16. Scree Plot for Eigenvalues of Stress Stress Data Correlation Matrix 

relatives of a serious injury or a fatality, verbal abuse from the public, and 
high-speed chases. The third factor refiects workload stress and insufficient 
resources. The fourth factor is labeled stress due to risk of injury. This fac­
tor is related to stress from dealing with obnoxious and intoxicated people, 
physical violence, domestic quarrels and fights in bars and cocktail lounges. 

The final communalities are similar for the three methods with the prin­
cipal component communalities generally larger. The final communalities 
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are also similar to the prior communalities obtained from the squared mul­
tiple correlations. The weakest communalities are for STR4, STR8, and 
STR14 around 40%. The majority of the principal component communal­
ities are over 60%. The principal component method accounts for 64% of 
the variance whereas the principal factor and maximum likelihood methods 
account for 56% of the variance. 

From the scree plot it is apparent that a two factor model may also 
be sufficient to account for the correlation among the stress items. The 
Schwartz goodness of fit criterion also indicated two factors. The varimax 
rotated factor pattern matrix for the maximum likelihood solution for two 
factors is shown in Table 9.37. From the factor loadings in Table 9.37, it 
would appear that the first factor represents stress related to the unpleas­
ant aspects of police work, and the second factor is related to organizational 
stress. In comparison to the four factor solution discussed above, it would 
appear that the second and fourth factors have combined to form the un­
pleasant duties stress factor. This factor also includes the stress from a 
heavy workload which was part of factor three. The insufficient resources 
part of factor three is added to the organizational stress factor to make the 
organizational stress factor in the two-factor model. The total variation 
explained by the two-factor solution is 44%. It would appear, therefore, 
that separate factors for workload stress and stress due to risk of injury are 
of only minor importance. The communalities and factor loadings in Table 
9.37 for STRl, STR3, STR5 and STR14 are quite low suggesting that there 
may be other factors which have not been identified. 

9.2.7 OTHER SOURCES OF INFORMATION 

Extensive discussions of factor analysis can be found in Gorsuch (1983), 
Mulaik (1972), Jolliffe (1986) and Lawley and Maxwell (1971). 

9.3 Singular Value Decomposition and Matrix 
Approximation 

In Section 9.1, it was demonstrated that the least squares approximation 
to the (n x p) data matrix X could be accomplished by replacing the p 
columns of X by a smaller number of columns r < p derived from the 
principal components of the matrix X'X. The matrix approximation is de­
noted by X = Zl V~ where Zl (n x r) denotes the observations or scores 
on the first r principal components and VI (P X r) denotes the matrix 
whose columns consist of the first r eigenvectors of X'X. The r principal 
components are linear combinations of the X variables and are given by 
Zl = XVI. The r principal components can be viewed as the unobserv­
able underlying dimensions that generate the observable X variables. This 
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TABLE 9.37. Varimax Rotated Factor Pat-
tern Matrix for the Two Factor Maximum 
Likelihood Solution of the R.C.M.P. Stress 
Data 

Final 
Factar 1 Factar 2 Cammunalities 

STRI 0.378 0.429 0.327 
STR2 0.147 0.804 0.669 
STR3 0.001 0.604 0.365 

STR4 0.447 -0.035 0.201 

STR5 0.461 0.244 0.272 

STR6 0.746 0.179 0.589 

STR7 0.558 0.044 0.313 

STR8 0.533 0.209 0.327 

STR9 0.412 0.586 0.513 
STRlO 0.299 0.685 0.559 

STRll 0.019 0.617 0.382 

STR12 0.616 0.316 0.479 

STR13 0.230 0.684 0.521 

STR14 0.150 0.497 0.270 

STR15 0.656 0.216 0.477 
STR16 0.684 0.328 0.576 
STR17 0.816 0.133 0.683 
STR18 0.626 0.122 0.407 

Variance 
Explained 4.399 3.531 7.930 

principal component analysis is related to a more general form of matrix 
approximation based on the singular value decomposition of X. 

In this section the theory of singular value decomposition is used to 
obtain matrix approximations to X that can be characterized in terms 
of both column labels and row labels. The biplot will be introduced as a 
graphical method for interpreting a matrix approximation based on two 
dimensions. 

9.3.1 SINGULAR VALUE DECOMPOSITION AND PRINCIPAL 

COMPONENTS 

As outlined in Section 3.2 of the Appendix, the (n x p) data matrix X of 
fuH rank p < n can be expressed in the form 

X=UDV', (9.1) 

where D (p x p) is a diagonal matrix of positive diagonal elements 0:1,0:2, .•• , 

O:p arranged in descending order called the singular values of X, and U 
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(n x p) and Y (p x p) are matrices whose columns contain the left and right 
singular vectors of X respectively. The singular vectors are denoted by 
Ull U2, ••• , u" and Vll V2, ••• , vp for U and Y respectively and the vectors 
in each set are mutually orthogonal, hence U'U = Y'y = I. 

Aleast lKl.uares approximation to X of dimension r < p is provided by 
the matrix X, where 

r 

X= I>;u;vj, 
;=1 

and hence Y = X minimizes the expression tr(X - Y)(X - V)' subject to 
the rank of Y being less than or equal to r. 

The singular value decomposition can be related to principal component 
analysis, since for X given by (9.1) X'X = vn2y', and hence the right 
singular vectors of X are the eigenvectors of X'X and the eigenvalues of 
X'X are the squares of the singular values of X. In a similar fashion for 
the matrix XX' = un2u', it can be seen that the left singular vectors 
of X are the eigenvectors of XX' and that the eigenvalues of XX' are the 
squares of the singular values of X. The eigenvalues of X'X and XX' are 
therefore equivalent. 

For the principal components of X'X given by Z = XV, it can be seen 
that Z = UD and hence that the principal components of X'X are sim­
ply a scaled version of the left singular vectors of X. The singular value 
decomposition of X can therefore be expressed as X = ZY' as outlined in 
Section 9.1 

From the symmetry present it can be seen that principal components 
can also be defined for XX' say W = X'U and hence W = VD. The 
principal components of XX' are obtained by scaling the right singular 
vectors of X and the eigenvectors of XX' are the left singular vectors 
of X. We can conclude therefore that the principal components of XX' are 
related to the eigenvectors of X'X, and the eigenvectors of XX' are related 
to the principal components of X'X. The principal components of XX' 
can be used to derive underlying dimensions for the rows of X in a similar 
fashion to the principal components of X'X being used to generate column 
dimensions for X as discussed in Section 9.1. The use of the components 
of XX' to define row types is often referred to as, Q-type lactor analysis in 
contrast to, R-type lactor analysis based on X'X discussed in Sections 9.1 
and 9.2. 

9.3.2 BIPLOTS AND MATRIX ApPROXIMATION 

As suggested ahove the elements of a singular value decomposition of a 
matrix can he used to provide a least squares approximation to the matrix 
of a given dimension. By using the singular value decomposition format, 
portionsofU, Y andD can beused towriteX = UIDIY~ where U 1(nxr), 
D 1 (r X r) and Y 1 (p X r) represent the first r columns of U and Y and the 
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corresponding portion of D. The columns of VI provide information about 
the first r column or variable components of X, and the columns of U 1 

provide information about the first r row or object components of X. The 
term biplot has the prefix "bi" to refer to the simultaneous consideration of 
both column dimensions and row dimensions. The suffix plot refers to the 
graphical presentation of this information which will be outlined below. 

Constructing Biplots 

Abiplot is used to provide a two-dimensional representation for a data ma­
trix X. Only two dimensions are usually employed to keep the presentation 
simple. It is assumed that a singular value decomposition approximation 
for X based on r = 2 dimensions is adequate. This of course should be eval­
uated by examining the magnitudes of the singular values beyond r = 2. 
The sum of these remaining residual singular values should ideally represent 
only a small portion of trD. 

A singular value decomposition approximation for X based on two di­
mensions is given by i = UIDI V~, where the rows of V~(2 x p) are the 
eigenvectors of X'X and the columns of Ul(n x 2) are the eigenvectors of 
XX'. There are several ways of employing the three elements of the right­
hand side of the equation for i. We begin with the most common form 
which is called the principal components plot. 

The Principal Components Biplot 

In principal components analysis an approximation for X'X was given by 
"","" 2 , , 
X X = V IDI V 1 = V lAI VI' where Al denotes the (2 x 2) diagonal matrix 
consisting of the first two eigenvalues in the diagonal, and the two columns 
of V 1 are the principal component loadings for the first two principal com­
ponents of X'X. The approximation X = UIDI V~ = Zl V~ therefore 
represents the product of the principal component scores (two columns of 
Zl) and the corresponding loadings (two rows of vD. 

It was demonstrated in Section 9.1 that the principal component scores 
for the n objects could be plotted as a scatterplot using the two principal 
components as axes. In addition it was also shown that the loadings of the 
principal components (eigenvectors) could be plotted as rays drawn from 
the origin on a graph that contains principal components as axes. In the plot 
of object scores the objects can be related to the dimensions represented 
by the two components. In the plot of principal component loadings the 
relation between the new dimensions and the original variables could be 
observed. The principal components biplot simply combines the above two 
plots into one. By combining the two plots the relationships between the 
objects and the variables can be related through the principal components. 
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FIGURE 9.17. Principal Components Biplot for Air Pollution Data 

Example 

In panel (a) of each of Figures 9.6 and 9.7 in Section 9.1 plots of principal 
component scores and principal component loadings are illustrated for the 
first two principal components derived from the air pollution data. Com­
bining these two plots yields the biplot shown in Figure 9.17. From the 
biplot we can see that the first component is strongly related to SMAX 
and PMAX, and that the cities of Philadelphia, New York, Wheeling, BaI­
timore, Wichita and Scranton have relatively high scores along this di­
mension. The second component represents a contrast between SMAX and 
PMAX. New York therefore seems to have high values of SMAX relative 
to PMAX and the reverse is true for Albuquerque. 

Covariance Biplot 

If the variables in the columns of X have been mean corrected then the 
matrix X'X is a scalar multiple of the covariance matrix [say X'X = (n -
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I)S]. In the singular value decomposition X = UDV', we may write X = 
GH, where H = DV' j(n-l) and G = U(n-l). It follows then that HH' = 
VD2V' j(n-l) = VAV' j(n-l) = X'Xj(n-l) = S and GG' = X' S-IX. 
Denoting the rows of G by gi' i = 1,2, ... , n, the distance between the 
points represented by gi and gl is the Mahalanobis distance between the 
observations Xi and Xl (the ith and ith rows of X). Denoting the columns 
of Hand h j , j = 1,2, ... ,p, the sampie covariance between the variables 

Xj and Xk (columns of X) is the cross-product between the vectors h j 
and hk. The sampie variance of Xj is illustrated by the squared length of 
h j . Because the vectors h j derived from the columns of H describe the 
covariance matrix, the plot is called a covarianee biplot. The vectors h j are 
plotted as rays, whereas the vectors gi are plotted as points. A plot that 
only contains the rays corresponding to h j is sometimes called an h-plot. 

Symmetrie Biplot 

In asymmetrie biplot, the singular value decomposition approximation to 
Xis expressed as X = GH' where G = UD1!2 and H' = D1!2V'. In this 
case, the two columns of G are taken as coordinates for n points in a two­
dimensional space and similarly the two rows of H' are taken as c~ordinates 
for p points in a two-dimensional space. Since each element of X is given 
by the product of a row of G and a column of H', then 

Xij = gilhlj + gi2h2j = gihj, 

where gi denotes the ith row of G and h j denotes the jth column of H. 
The magnitude of Xij therefore depends on the magnitude of the scalar 
product between gi and h j . In Figure 9.18 the point corresponding to gi is 
shown as a vector, and the columns of H are shown as points. In the figure 
we can see that Xij is relatively large, whereas Xik is relatively small. The 
point Xim is relatively large but negative. 

9.3.3 OTHER SOURCES OF INFORMATION 

Additional discussion of biplots can be found in Jackson (1990) and Seber 
(1984). 

9.4 Correspondence Analysis 

Correspondenee analysis is a technique that uses singular value decomposi­
tion to analyze a matrix of nonnegative data. The technique sirnultaneously 
characterizes the relationship among the rows and also among the columns 
of the data matrix. The outcorne of a correspondence analysis is a pair of 
bivariate plots. One bivariate plot is based on the first two principal axes 
derived frorn the row profiles, and the second plot is based on the first two 
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2 

FIGURE 9.18. Symmetrie Biplot 

principal axes obtained from the column profiles. Points representing the 
row categories are plotted using the row principal axes and points repre­
senting the column categories are plotted using the column principal axes. 
The spatial relationships among the two sets of categories can then be stud­
ied using the two bivariate plots. By using the same pair ofaxes to denote 
both pairs of principal axes the two bivariate plots can be superimposed 
on one another. With both plots appearing on the same axes the spatial 
relationship between the row categories and column categories can also be 
related. 

The theory of correspondence analysis is based on the generalized sin­
gular value decomposition of matrices, which is outlined in the Appendix. 
Readers unfamiliar with such decompositions should review Section 3 in 
the Appendix. 

The discussion of correspondence analysis in this chapter begins with the 
study of two-dimensional contingency tables first discussed in Chapter 6. 
The technique is then extended to the two-dimensional product multi­
nomial scheme introduced in Section 6.3 for the weighted least squares 
methodology. Finally, the multiple correspondence analysis technique is in­
troduced for the study of higher dimensional contingency tables. The SAS 
computer software procedure CORRESP will be used tbroughout this sec­
tion to perform the necessary data analysis. 
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TABLE 9.38. Correspondence Matrix of Observed Cell 
Densities for an (r xc) Contingency Table 

Columns 

1 2 3 ... e Row Masses 

1 °11 °12 °13 ... °le °1· 

2 021 022 °23 .. , O2e °2· 

Rows 3 °31 °32 °33 ... °3e °3· 

r °r1 °r2 °r3 .. , Ore Or· 

Column Masses 0·1 0·2 0·3 .,. O·e 1 

9.4.1 CORRESPONDENCE ANALYSIS FOR 

Two-DIMENSIONAL CONTINGENCY TABLES 

Some Notation 

In this seetion eorrespondenee analysis is outlined as a technique that ean 
be used to study interaction in a two-dimensional eontingency table. In 
Chapter 6, the study of the n observation, (r x c) eontingency table began 
with the eell frequencies nij, i = 1,2, ... ,r, j = 1,2, ... , c, as displayed in 
Table 6.5. For the purposes of the discussion of correspondenee analysis this 
table is eonverted to a table of observed cell proportions or cell densities. 
This notation is introdueed in Table 9.38. The cell density for eell (i, j) 
is denoted by Oij = nij In, where nij denotes the sampie frequeney in eell 
(i,j). The row and eolumn marginal densities are given by 0i. = ni-/n and 
O-j = n.j In respeetively where ni. and n.j are the row and eolumn marginal 
frequencies respectively. 

Computer Software 

The ealeulations in this section were performed using the SAS PROC COR­
RESP. 

Example 

The first contingeney table to be used as an example in this seetion is illus­
trated in Thble 9.39. The data was obtained from the files of a student-run 
legal adviee service for the poor. This table examines the relationship be-
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TABLE 9.39. Contingency Table for Criminal Charge Data 

Charge 
Convicted Sex Impaired Theft Under Mischief Possession Other Totals 

Driving $1000 of Narcotics 

No Male 8 11 5 7 12 43 
Female 5 15 3 6 30 

Yes Male 105 32 11 23 37 208 
Female 32 57 6 2 25 122 

Totals 150 115 25 33 80 403 

TABLE 9.40. Correspondence Matrix for Criminal Charge Data 

Convicted Sex Impaired Theft Under Mischief Possession Other Row 
Driving $1000 of Narcotics Mass 

No Male 2.0 2.7 1.2 1.7 3.0 10.7 
Female 1.2 3.7 0.7 0.2 1.5 7.4 

Yes Male 26.1 7.9 2.7 5.7 9.2 51.6 
Female 7.9 14.1 1.5 0.5 6.2 30.3 

Column Mass 37.2 28.6 6.2 8.1 19.9 100.0 

tween the type of criminal charge and the eventual outcome of the case for 
both males and females. The corresponding matrix of cell densities and row 
and column marginal densities are shown in Table 9.40. The numbers are 
given as percentages and hence represent 1000ij' The column of row masses 
on the right presents the row marginals as percents 100oi., and the row of 
column masses (last row) displays the column marginals, 100o.j. The ma­
jority of the clients were convicted (81.9%); a total of 51.6% of the sampie 
were convicted males and 30.3% of the sampie were convicted females. The 
two most common offences were impaired driving (37.2%) and theft under 
$1000 (28.6%). The most common offence for males was impaired driving 
(28.1% ofthe sampie) and the most common female offence was theft under 
$1000 (17.8% of the sampie). 

Correspondence Matrix and Row and Column Masses 

The (r x c) matrix of cell densities as shown in Table 9.38 is denoted 
by 0 and is called the correspondence matrix. The (r xl) vector of row 
marginals 0i., i = 1,2, ... ,r, is denoted by r and similarly the (c xl) 
vector of column marginals o.j, j = 1,2, ... , c, is denoted by c. These row 
and column marginal vectors can be written as r = Oec and c = 0' er 
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TABLE 9.41. Matrix R for Row Profiles 

Columns 

1 2 3 ... c Totals 

1 nll/nl. n12/n l. n13/n l. ... nlc/nl. 1 

2 n21/n 2. n22/n 2. n23/n 2. ... n2c/n 2. 1 

Rows 3 n31!n 3. n32/n 3. n33/n 3. ... n3c/n3. 1 

r nrl/nr . n r2/n r. n r3/n r. ... nrc/nr . 1 

Column Mass n.l!n n.2/n n.3/n ... n.c/n 1 

where ec (c X 1) and er (r X 1) are vectors of unities. The vectors r and 
C are also referred to respectively aB row and column masses. Diagonal 
matrices constructed from the row and column maBses are denoted by D r 

(r X r) and D c (c x c) respectively. The diagonal elements of D r are the 
elements of rand the diagonal elements of D c are the elements of c. 

Row and Golumn Profiles 

Beginning with the table of cell frequencies nij for each row i, the (c X 1) vec­
tor of row conditional densities is determined from nij/ni" j = 1,2, ... , c, 
and is denoted by rio These row conditional densities are called row profiles. 
The complete set of r row profiles will be denoted by the (r x c) matrix 
R with rows given by ri, i = 1,2, ... , r. Similarly the vector of column 
conditional densities nij/n'j, i = 1,2, ... , r, for column j is denoted by the 
(r x 1) vector Cj and will be referred to aB the column profile for column j. 
The complete set of column profiles is denoted by the (r x c) matrix C with 
columns given by Cj, j = 1, 2, ... ,C. The matrices R and C are illustrated 
in Tables 9.41 and 9.42 respectively. The reader should recal1 from Chap­
ter 6 that the row and column profiles can be compared to the column and 
row marginal densities or masses to judge the departure from independence 
(ri is compared to c and Cj is compared to r). 

Example 

For the criminal charge data the row profile matrix R and the column pro­
file matrix C are summarized in Tables 9.43 and 9.44. Figures 9.19 and 
9.20 provide a graphical representation of the profiles. The row profiles 
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TABLE 9.42. Matrix C for Column Profiles 

Columns 

1 2 3 ... e Row Mass 

1 nu/n.l nI2/n .2 nI3/n .3 ... nle/n. e nl./n 

2 n21!n.1 n22/n .2 n23/n .3 ... n2e/n .e n2./n 

Rows 3 n31!n.1 n32/n .2 n33/n .3 ... n3e/n .e n3./n 

r n r l!n.1 n r2/n .2 n r3/n .3 ... nrc/n.c nr./n 

Totals 1 1 1 ... 1 1 

in Table 9.43 and Figure 9.19 compare the four sex/conviction categories. 
The two female profiles (no and yes) are quite similar to each other, but 
the two male profiles are different from each other. For the column profiles 
in Table 9.44 and Figure 9.20 the impaired driving and possession of nar­
cotics profiles are similar to each other. Also the mischief and other profiles 
are similar. The profile for the theft under $1000 is quite different from 
the other four column profiles. Since theft under $1000 is the only offence 
dominated by females we shall see that this provides a partial explanation 
for this different column profile. 

Departure from Independence 

The purpose of correspondence analysis in the study of contingency tables 
is usually to study the departure of the observed cell frequencies from the 
cell frequencies expected under independence. Although it is possible to 
compare the observed cell frequencies to expected frequencies from other 
models, the independence model is the most commonly used base for com­
parisons. 

In Chapter 6 it was outlined that under the independence assumption 
the theoretical row profiles for each row should be equal to the column 
marginals and equivalently the true column profiles for each column should 
be equal to the row marginals. For the sampie correspondence matrix there­
fore the matrix differences (R - erc') and (C - re~) measure the degree of 
departure or deviation from independence in the sampie. Equivalently, un­
der independence the cross product of the sampie row and column marginal 
vectors or masses should be approximately equal to the correspondence ma-
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TABLE 9.43. Row Profiles for Criminal Charge Data 

Charge 

Convicted Sex Impaired Theft Under Mischief Possession Other Total 
Driving $1000 of Narcotics 

No Male 0.186 0.256 0.116 0.163 0.279 1.000 
Female 0.167 0.500 0.100 0.033 0.200 1.000 

Yes Male 0.505 0.154 0.053 0.111 0.178 1.000 
Female 0.262 0.467 0.049 0.016 0.205 1.000 

Column Mass 0.372 0.286 0.062 0.081 0.199 1.000 

TABLE 9.44. Column Profiles for Criminal Charge Data 

Charge 

Convicted Sex Impaired Theft Under Mischief Possession Other Row 
Driving $1000 of Narcotics Mass 

No Male 0.053 0.096 0.200 0.212 0.150 0.107 
Female 0.033 0.130 0.120 0.030 0.075 0.074 

Yes Male 0.700 0.278 0.440 0.697 0.463 0.516 
Female 0.214 0.496 0.240 0.061 0.312 0.303 

1.000 1.000 1.000 1.000 1.000 1.000 

trix 0 of observed cell densities. The matrix difference (0 - rc') is also 
therefore a measure of the deviation from independence. 

A veraging the Profiles 

The r row profiles given by ri, i = 1,2, ... , r, have been obtained from 
sampies of size nh i = 1,2, ... ,r. Each profile ri therefore is representative 
of a proportion ni-/n of the data. A weighted average of the r profiles can 
be used to obtain an average row profile given by ~~=1 r i (ni. f n) = c, which 
is the (c xl) vector of column masses. Similarly a weighted average of the 
c column profiles is given by ~j=1 cj(n.jfn) = r, which is the (r x 1) 
vector of row masses and can be called on average column profile. These 
average profiles are shown in Tables 9.41 and 9.42 as column and row 
masses respectively. The matrices of differences (R - erc') and (C - ecr') 
defined above as departures from independence also therefore represent 
profile deviations from the average profiles. 
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FIGURE 9.19. Row Profiles for Criminal Charge Data 

Example 

The average row and column profiles for the criminal charge data are shown 
in Figures 9.19 and 9.20. The differences between these averages and the 
individual row and column profiles represent the departure from indepen­
dence. Figures 9.21 and 9.22 show these profile differences. These differences 
can also be obtained by subtraction using Tables 9.43 and 9.44. The results 
are summarized in Tables 9.45 and 9.46. 

From the row profile deviations, it would appear that the male con­
victed category has more convictions than expected for impaired driving 
and fewer than expected for theft under $1000. For females, it would appear 
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FIGURE 9.20. Column Profiles for Criminal Charge Data 

that more females are charged with theft under $1000 than would be ex­
pected under independence, whereas fewer than expected are charged with 
impaired driving. From the column profile deviations it, would appear that 
for impaired driving an unusually large number of males are convicted but 
for theft under $1000 an unusually large number of females are convicted. 
The number of males convicted of theft under $1000 is much less than 
expected under independence. For the possession of narcotics many more 
males are charged and convicted than expected, whereas for females the 
reverse is true. For the mischief charge there tend to be fewer convictions 
than expected for both sexes. 
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TABLE 9.45. Row Profile Deviations from Independence 

Charge 
Convicted Sex Impaired Theft Under Mischief P088eSIIion Other 

Driving 11000 of Narcotics 

No Male --{).186 -0.030 0.054 0.082 0.080 
Female -0.205 0.314 0.038 -0.048 0.001 

Yes Male 0.133 -0.132 -0.009 0.030 -0.021 
Female -0.110 0.181 -0.013 -0.065 0.006 

TABLE 9.46. Column Profile Deviations from Independence 

Charge 
Convicted Sex Impaired Theft Under Mischief P0B8ession Other 

Driving 11000 of Narcotic8 

No Male -0.054 -0.011 0.093 0.105 0.043 
Female -0.041 0.056 0.046 -0.044 0.001 

Yes Male 0.284 -0.238 -0.076 0.181 --{).053 
Female -0.089 0.193 -0.063 -0.242 0.009 

Relationship to Pearson Chi-Square Statistic 

The Pearson Chi-square statistic for testing independence was given in 
Section 6.1 as 

This expression ean be written alternatively in the forms 

(9.2) 

or 
c r 2 

2 " [" (ni; ) ] G = L..n.j L.. ;:: -ni·ln /(ni-/n). 
;=1 i=1 '3 

(9.3) 

In (9.2) for each row i, the square of each row profile deviation in 001-
umn j is divided by the column j marginal and the results are summed 
over a1l C oolumns. For each row i, the sum therefore yields a weighted av­
erage of the squared profile deviations over the columns. Since the oolumn 
weights are the inverse of the oolumn masses or marginals, large deviations 
that oeeur in columns with low oolumn mass are given greater weight in 
the average. Finally, the weighted average for the squared row profile de­
viations is multiplied by the row mass to obtain a total squared deviation 
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FIGURE 9.21. Row Profile Deviations frorn Independence for Crirninal Charge 
Data 

for the row. The sum of the resulting row total squared deviations yields 
the Pearson Chi-square statistic. A similar description can be given to the 
column oriented version in (9.3). 

Example 

Table 9.47 shows the cell contributions to the total Chi-square statistic. 
From the table we can see that males convicted of impaired driving and 
males and females convicted of theft under $1000 make the largest indi­
vidual contributions to X2 . For the row profiles the convicted males and 
convicted females yield the largest X2 contribution whereas for column 
profiles the largest contributions to X2 come from the impaired driving and 
theft under $1000 charges. 
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FIGURE 9.22. Column Profile Deviations from Independence for Criminal 
Charge Data 

Total Inertia 

The two versions of the Pearson Chi-square statistic given by (9.2) and 
(9.3) can also be expressed in the fOrIns 

r 

G2 = L ndri - c)'n;l(ri - c) (9.4) 
i=l 
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TABLE 9.47. Contributions to Chi-Square Statistic for Criminal Charge Data 

Charge 

Convicted Sex Impaired Theft Under Mischief Possession Other Totals 
Driving $1000 of Narcotics 

No Male 4.00 0.13 2.04 3.44 1.41 11.02 
Female 3.41 4.84 0.70 0.86 0.00 9.81 

Yes Male 9.83 12.61 0.28 2.09 0.44 25.25 
Female 3.96 14.14 0.32 6.39 0.03 24.84 

Totals 21.20 31.72 3.34 12.78 1.88 70.92 

and 
c 

G2 = L n.j(Cj - r)'D;l(Cj - r) (9.5) 
j=l 

respectively. The statistic G2 In is called the total inertia and the two statis­
tics shown in (9.4) and (9.5) when divided by n represent the totals of iner­
tia for the row points and column points respectively. Thus the total inertia 
can be viewed as a measure of the magnitude of the total row squared de­
viations or equivalently the magnitude of the column squared deviations. 
Later we shall see that singular value decomposition can be used to allocate 
this total inertia to various dimensions. The total inertia, G2 In, may also 
be expressed in the form 

(9.6) 

Example 

For the criminal charge data the value of the Pearson Chi-square statistic 
is 70.917 which has a p-value of 0.000. The total inertia given by (9.6) rep­
resents the magnitude of the departure from independence that needs to 
be explained. A generalized singular value decomposition of this matrix of 
deviations (0 - rc') is used to decompose the deviations by separately gen­
erating components for row profile deviations and column profile deviations 
respectively. 

Generalized Singular Value Decomposition 

The theory of the generalized singular value decomposition outlined in the 
Appendix can be employed to obtain a relationship between the total in­
ertia given by (9.6) and an approximation to the matrix of deviations 
(0 - rc'). For the matrix (0 - rc'), the generalized singular value de­
composition subject to the conditions A'n;l A = I, B'n;;-lB = I is given 
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by 
K 

(0 - rc') = AD/SB' = L I-'lealeb~, 
le=l 

where the columns of A(r x K) and B(c x K) are denoted by ale and ble 
respectively and 1-'1, 1-'2, ••• ,I-'le are the diagonal elements of the diagonal 
matrix D /S (K x K). The dimension K is the rank of the matrix being 
decomposed which in this application is min[(r -I), (c - 1)]. 

The vectors ale , k = 1,2, ... , K, are called the principal axes of the 
columns of (O-rc')j the vectors ble, k = 1,2, ... ,K, are called the principal 
axes of the rows of (0 - rc'). The diagonal elements 1-'1,1-'2, ..• , I-'K of D/S 
are called the singular values of (0 - rc'). The total inertia can therefore 
be written as 

K 

tr[D;:-l(O - rc')D;l(O - rc')] = LI-'~ 
le=l 

which is the sum of the squares of the singular values. 

Example 

The total inertia for the criminal charge contingency table is 70.917/403 
= 0.17957. This total can be allocated to the three dimensions (K = 3) as 
I-'~ = 0.14191, I-'~ = 0.03286 and I-'~ = 0.00120. The three percentages of 
the total inertia are 80.65%, 18.67% and 0.68%. The number of dimensions 
is three since the contingency table contains four rows and four columns. 
The first dimension of the generalized singular value decomposition there­
fore accounts for a large majority of the deviation from independence as 
measured by the Pearson Chi-square statistic. 

Coordinates for Row and Column Profiles 

For the generalized singular value decomposition of (0 - rc') given by 
AD /SB' the columns of the matrices A and B provide the principal axes 
for the columns and rows of (0 - rc') respectively. Each row of (0 - rc') 
can be expressed as a linear combination of the rows of B' (columns of B), 
and hence the coordinates for the rows of (0 - rc') in the spa.ce generated 
by the rows of B' are given by AD /S' The coordinates for the ith row of 
(O-rc') are given by the ith row of ADw Similarly the coordinates for the 
columns of (0 - rc') with respect to the spa.ce generated by the columns 
of Aare provided by the columns of D/SB'. 

To obtain coordinates for the row and column profile deviations, the 
relationships 

and 
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TABLE 9.48. Coordinates for Row 
Profiles on Row Principal Axes 

Row PrincipaJ Axes 
(Columns of B) 

123 K 

1 ~l V~ V~ ~K 

2 V21 V22 V2S V2K 

Rows 3 VSI vS2 vS3 v3K 

TABLE 9.49. Coordinates for Column 
Profiles on Column Principal Axes 

1 

2 

Columns 3 

c 

Column PrincipaJ Axes 
(Columns of A) 

123 K 

Wll Wl2 Wl3 WIK 

w21 w22 w23 w2K 

w31 w32 w33 w3K 

Wcl We2 We3 weK 

can be used. The required coordinates for the row and column profile de­
viations are therefore given by 

V(r x K) = D;l AD" = D;I(O - rc')D;lB 

and 
W(c x K) = D;lBD" = D;l(O - rc')'D;lA 

respectively. Since r'V = 0 and c'W = 0 the coordinates of the row and 
column profile deviations are related to each other by the equations 

(9.7) 

The coordinates for the r row profile deviations are given by the elements 
Vik, i = 1,2, ... , r, k = 1,2, ... , k, of V and are shown in Table 9.48. 
Similarly the coordinates for the c column profile deviations are given by 
the elements Wjk, j = 1,2 ... , c, k = 1,2, ... , k, of W and are shown in 
Table 9.49. 

Each row of V in Table 9.48 provides the coordinates for a row profile 
deviation with respect to the K principal axes given by the columns of B. 
Each column of V provides the coordinates for the r profile deviations 
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TABLE 9.50. Coordinates for 
Row Profiles on Row Principal 
Axes for Criminal Charge Data 

Principal Axes 
Row Profile 1 2 3 

No Males 0.04 0.50 -0.03 
No Females 0.55 0.09 0.11 
Yes Males -{l.35 -{l.05 0.01 
Yes Females 0.44 -{l.11 -0.03 

TABLE 9.51. Coordinates for Column 
Profiles on Column Principal Axes for 
Criminal Charge Data 

Principal Axes 
Column Profile 123 

Impaired Driving -0.34 -0.16 0.01 
Theft Under $1000 0.52 -0.06 0.00 
Mischief 0.08 0.34 0.11 
Possession of Narcotics -0.50 0.37 -0.01 
Other 0.07 0.13 -0.05 

with respect to a particular principal axis or column of B. Similarly the 
coordinates for the column profiles are given by Table 9.49. The coordinates 
for the first two principal axes (Vii, Vi2), i = 1,2, ... , T, can be used to 
locate the T profile deviations in a two-dimensional space defined by the 
two principal axes. For the column profile deviations the coordinates for 
the first two principal axes are given by (Wjl' Wj2), j = 1,2, ... , c. 

Example 

For the criminal charge data the coordinates for the row and column profile 
deviations on their respective dimensions are shown in Tables 9.50 and 9.51. 
For the row profiles it would appear that the first dimension reflects a con­
trast between females charged and males convicted. The second row di­
mension is primarily a measure of males charged but not convicted. For 
the column profiles the first dimension represents a contrast between theft 
under $1000 and the crimes of narcotics possession and impaired driving. 
The second dimension for column profile deviations seems to reflect a con­
trast between the three charges mischief, narcotics possession and other 
offences with the charge impaired. 
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FIGURE 9.23. Correspondence Analysis Plot for Criminal Charge Data 

Figure 9.23 shows the above results grapbically for the first two dimen­
sions. From the plot the relationships between the row and column dimen­
sions can be studied. The contrast between charged females and convicted 
males seems to be related to a contrast between theft under $1000 and the 
two crimes, narcotics possession and impaired driving. This relationsbip is 
consistent with the conclusions that were drawn earlier on comparisons of 
the profiles. Relating the two second dimensions, it would appear that the 
not convicted males category is positively related to the chargeS of mis­
chief, narcotics possession and other, and negatively related to impaired 
driving. In other words, in comparison to the relationships expected under 
independence, males tend to have bigher rates of conviction for impaired 
driving and lower rates of conviction for the remaining criminal charges. 

The generalized singular value decomposition of the matrix of deviations 
(0 - rc') = AD"B' can be approximated by the first row and column 
dimensions. Using only these first dimensions, the cell values are given by 
81 b~/ 1-'1 where 81 and b 1 are the first columns of A and B respectively and 
1-'1 is the first diagonal element of Dw Table 9.52 compares the deviations 
from independence derived frorn O-rc' (in percents) to the approximations 
obtained frorn the first row and column dimensions (shown in brackets). By 
comparing the nonbracketed figures to the bracketed figures in Table 9.52 
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TABLE 9.52. Deviations from Independence (Percents) Compared to Deviation 
Explained by First Row and Column Dimensions (Shown in Brackets) 

Conviction Sex Impaired Theft Under Mischief Possession Other Totals 
Driving $1000 of Narcotics 

No Male -1.98 -0.32 0.58 0.86 0.86 0.00 
(-0.16) (0.19) (0.00) (-0.05) (0.02) (0.00) 

Female -1.53 1.60 0.28 -0.36 0.01 0.00 
(-1.37) (1.62) (0.05) (-0.44) (0.14) (0.00) 

Yes Male 6.84 -6.79 -0.47 1.48 -1.06 0.00 
(5.94) (-7.00) (-0.22) (1.90) (-0.62) (0.00) 

Female -3.33 5.51 -0.39 -1.98 0.19 0.00 
(-4.41) (5.29) (0.17) (-1.41) (0.46) (0.00) 

Totals 0.00 0.00 0.00 0.00 0.00 
(0.00) (0.00) (0.00) (0.00) (0.00) 

it can be seen that for females and convicted males the approximation pro­
vided by the first dimensions is quite good. The largest deviations remain­
ing appear to be for nonconvicted males which is explained by the second 
dimension. The reader should recall that the first dimension accounts for 
80.65% and the second dimension accounts for a remaining 18.67%. 

The results obtained here can be related to loglinear models discussed 
in Chapter 6. The results obtained by fitting a three-dimensionalloglinear 
model to Table 9.39 yields significant interactions between sex and charge 
and between charge and convict. The interaction between sex and convict 
was not significant. From the loglinear analysis, one could conclude that 
after controlling for the charge there is no relation between the sex of the 
individual and the likelihood of conviction. The reader is left to explore 
further the relationships among the categories of this table. 

Partial Contributions to Total Inertia 

A weighted average of the coordinates in a column of V given by r'V 
yields the zero vector, and hence the weighted average of each column of V 
is zero. A weighted average of the squares of the elements in the columns 
of V is given by V'Dr V = D~. Thus using the row marginals as weights 
the coordinates with respect to each principal axis have zero mean and 
variance J.L~, k = 1,2, ... ,K. 

Since the squares of the singular values are given by J.L~ and since 1:~=1 J.L~ 
represents the total inertia we can conclude that the weighted variances of 
the columns of V indicate the contribution of each principal axis to the total 
inertia. The total inertia can be expressed as 1:~=1 J.L~ = 1:~=11:~=1 Oi· V:i, 
and hence Oi.I:~=l v:i represents the contribution made by the ith row 
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Row i 

Dimension k 

FIGURE 9.24. Squared Cosines for Allocation of Total Inertia 

profile deviation to the total inertia. In a similar manner the elements of 
W ean be used to relate the total inertia to the eolumn profile deviations 
and their principal axes. 

Squared eosines 

For each row profile deviation the inertia 0i. 2::~=1 Vi~ ean be alloeated to 
the K dimensions as 0i· Vi~, 0i· Vi~, ... , 0i· Vi~. The proportions 

K K 

°i· Vi~ /Oi. L Vi~ = Vi~ / L Vi~ 
k=l k=l 

therefore represent an alloeation of the row profile deviation to the kth di­
mension. This ratio represents the square of the eosine of the angle between 
the dimension k and a ray drawn from the origin to the point represent­
ing the row profile (see Figure 9.24.). Denoting this angle by (}ik we have 
eos2 (}ik = ViV 2::::1 Vi~· The doser this value is to 1 the doser the ith row 
point is to the kth axis and henee the more important that point is to the 
kth dimension. 

Example 

Tables 9.53 and 9.54 summarize the partial eontributions to total inertia 
and squared eosines for the row profile and eolumn profile dimensions re­
spectively. The tables also eontain the total inertia for each profile and the 
eorresponding total mass. 

For the row profiles, we ean see from Table 9.53 that the points eor­
responding to females and eonvicted males are dose to dimension 1 and 
noneonvicted males are dose to dimension 2. For the eolumn profiles in 
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TABLE 9.53. Partial Contributions to Inertia and Squared Cosines 
(in brackets) for Row Profiles 

RowMass Row Total Dimensions 
Inertia 1 2 3 

Male No 0.11 0.16 0.00 (0.01) 0.82 (0.99) 0.07 (0.00) 
Female No 0.07 0.14 0.16 (0.94) 0.02 (0.02) 0.75 (0.04) 
Male Yes 0.52 0.35 0.43 (0.98) 0.04 (0.02) 0.01 (0.00) 
Female Yes 0.30 0.35 0.41 (0.93) 0.12 (0.06) 0.17 (0.00) 

TABLE 9.54. Partial Contributions to Inertia and Squared Cosines (in 
brackets) for Column Profiles 

Column Dimensions 
Column Total 

Mus Inertia 1 2 3 

Impaired Driving 0.37 0.30 0.30 (0.81) 0.30 (0.19) 0.02 (0.00) 
Theft Under $1000 0.29 0.45 0.55 (0.99) 0.03 (0.01) 0.00 (0.00) 
Mischief 0.06 0.05 0.00 (0.04) 0.22 (0.87) 0.57 (0.08) 
Possession of Narcotics 0.08 0.18 0.14 (0.64) 0.35 (0.36) 0.01 (0.00) 
Other 0.20 0.03 0.01 (0.19) 0.10 (0.71) 0.39 (0.10) 

Table 9.54, impaired driving and theft under $1000 are close to dimension 1 
and mischief and other are close to dimension 2. The offence possession of 
narcotics, however, is in between dimensions 1 and 2. 

Principle 0/ Distributional Equivalence 

A useful property of the Chi-square metric in correspondence analysis is 
that if two row profiles are identical they may be replaced by a single row 
profile that is the sum of the two profiles. This collapsing of the two rows 
will not affect the geometry of the column profiles. Similarly a row profile 
can be subdivided into two or more rows without affecting the geometry of 
the column profiles. If two row profiles are identical they occupy identical 
positions in the row space. This property guarantees the invariance of the 
solution with respect to the coding of the original variables. 

Generalized Least Squares Approximation 

The objective of correspondence analysis is to replace the matrix of devia­
tions (0 - rc') by an approximation say X(r x c) based on a small number 
of the principal axes of the generalized singular value decomposition. Most 
commonly X is given by the first two terms of Ef=l akb~l'k and hence is 
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a rank two approximation to (0 - rc'). It can be shown that minimizing 
the expression 

tr[O;I(O - rc' - X)O;I(O - rc' - X)'] 

among all matrices X of rank two or less yields X = I:!=1 ak b~l'k' Thus 
the generalized singular value decomposition can be used to provide an 
approximation to the deviations (0 - rc'). This approximation maximizes 
the proportion of the total inertia that can be allocated to two dimensions. 

In terms of the row and column profile deviation coordinates provided 
in Tables 9.48 and 9.49, only the first two columns are required. The first 
column of Table 9.48 provides the row profile coordinate locations along the 
first row principal axis, whereas the second column of Table 9.48 provides 
tue row profile coordinate locations along the second row principal axis. 
Similarly the first two columns of Table 9.49 provide the coordinates for 
the column profiles along the first two column principal axes. 

Relationship to Generalized Singular Value Decomposition 010 

The discussion so far has been concerned with the generalized singular value 
decomposition of the matrix of deviations (0 - rc'). It is also possible to 
express the solution in terms of a generalized singular value decomposition 
of the correspondence matrix O. The generalized singular value decompo­
sition of 0 is given by 0 = A "O~B"', where A "'0;1 A" = B*'O;IB" = I 

and where A* = [r, A], B* = [c, B] and O~ = [~ ~I']. Therefore in 

comparison to the decomposition of (0 - rc') the decomposition of 0 sim­
ply adds one dimension without changing the other singular values and 
principal axes. The dimensions added are simply the row and column aver­
age profiles or marginal densities. The matrices of coordinates for row and 
eolumn profiles are now given by V" = 0;1 A"O~ and W" = O;IB"O~ 
respectively. 

Row and Column Profile Deviations and Eigenvectors 

The relations (9.7) between the eoordinate veetors for the row and col­
umn profiles deviations ean be used to obtain eigenequations. (The reader 
may wish to review the relation between singular value decompositions and 
symmetrie decompositions outlined in the Appendix.) These eigenequations 
will reveal the relationship between the eoordinate vectors and the eigenval­
ues and eigenveetors of the two symmetrie matriees 0;1/20'0;100;1/2 
and 0;1/200;1010;1/2. These relationships will be useful in the next 
seetion. 
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Using the relations given by (9.7) the following equations can be ob­
tained: 

D-10D-liO'V = vn2 
r c '" 

D;lO'D;lOW = WD!, 

where V'Dr V = D! and W'Dc W = D!. 

(9.8) 

(9.9) 

By introduemg' the notation H = D-1/ 20D-1/2 U = D 1/ 2WD-1 and 
r c' c '" 

X = D;/2vn;1, the equations (9.8) and (9.9) can be expressed as 

HH'X = XD2 and H'HU = UD2 • 

'" '" 
Since H'H and HH' are symmetrie matrices we ean eonc1ude that the 
diagonal elements of D! are eigenvalues of the two matrices H'H and 
HH'. In addition the eolumns of X are the eigenvectors of HH', whereas 
the eolumns of U are the eigenvectors of H'H. The matrices X and U are 
related by XD '" = HU. These relationships will be employed in the next 
section to relate the correspondenee analysis of eontingeney tables to the 
eorrespondenee analysis of frequeney response tables. 

Correspondence Analysis for Multidimensional Tables 

Although correspondenee analysis is designed to analyze a two-dimensional 
contingeney table it can also be used to study larger dimensional tables. 
In the example studied in this section the contingency table analyzed was 
three-dimensional. A two-dimensional table was derived by eonstructing a 
single dimension from two dimensions using the eross-produet of the two 
sets of eategories. Sinee correspondence analysis is designed to study the 
departure from independenee, in the example presented the departure be­
ing studied is relative to a partial independenee model. The independenee 
model fitted is equivalent to a partial independenee model for the under­
lying three-dimensional table. The fitted interaction term eorresponds to 
the two variables eombined to form the one dimension. The correspondenee 
analysis in this case therefore refleets the departures from the partial inde­
pendenee model. For the three-dimensional table additional analyses eould 
be earried out for the other two possible partial independence models. For 
higher dimensional tables, a variety of models ean be studied by choosing 
a variety of possible eombinations of variables to be formed into the two 
final dimensions. In the next section, an alternative approach to the study 
of multidimensional eontingency tables known as multiple correspondence 
analysis will be introduced. 
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9.4.2 OTHER SOURCES OF INFORMATION 

The outline of theory provided in this section parallels the discussion in 
Greenacre (1984). Alternative outlines ofthis topic are available in Lebart, 
Morineau and Warwick (1984) and Andersen (1990). 

9.4.3 CORRESPONDENCE ANALYSIS AND FREQUENCY 
RESPONSE TABLES 

An alternative application of correspondence analysis which yields similar 
results to those outlined in Section 9.4.1, is the frequency response table 
or product multinomial sampie as studied in Section 6.3. In the weighted 
least squares methodology, multidimensional contingency tables are struc­
tured as two-dimensional tables with all categorica1 variables being grouped 
into two multually exc1usive categories: response variables and factor or 
explanatory variables. The observations are assumed to be derived from 
independent sampies from each group. The two sets of categories will be 
labelled response categories for the response variables and subpopulations 
or groups for the factors or explanatory variables. 

Following the notation of Table 6.47 the r rows of the frequency response 
table denote the subpopulations and the c columns denote the response cat­
egories. A sampie size n will be assumed to have been selected by randomly 
selecting nl., n2.,"" nr ., ~~=l ni· = n, from the r groups respectively. The 
sampie size obtained in the jth response category of the ith group is de­
noted by nij, i = 1,2, ... , r, j = 1,2, ... ,c. 

Example 

For the driver injury data used in Chapter 6, the frequency response table 
illustrated in Table 6.49 is employed in this section to provide an example. 
Table 9.55 reproduces the frequencies from Table 6.49 and also presents 
the cell densities Oij as percentages. In this section the variation in injury 
level response over the driver condition-seatbelt groups is studied. The 
objective is to define an underlying dimension or relationship among the 
injury level categories that maximizes the variation among the four driver 
condition-seatbelt groups. A possible result might be that the injury level 
characteristic that is most important in distinguishing the four groups is 
a contrast between the two highest injury level categories and the two 
lowest injury level categories. Since the row categories are derived from 
the cross c1assification of two categorical variables the interaction among 
these two variables is also being fitted. The deviations being studied in this 
case are the deviations from a partial independence model that assumes an 
interaction between driver condition and seatbelt usage. 
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TABLE 9.55. Driver Injury Level Response to Driver Condi-
tionjSeatbelt Usage, Cell Frequencies and Cell Densities (Percent-
age) 

Grou!:! Driver Igjull: Level 
Driver Seatbelt 
Condition Usage None Minimal Minor Major/Fatal Totals 

Normal Yes 12,500 604 344 38 13,486 
(14.406) (0.696) (0.396) (0.044) (15.542) 

No 61,971 3,519 2,272 237 67,999 
(71.421) (4.056) (2.618) (0.273) (78.368) 

Been Yes 313 43 15 4 375 
Drinking (0.361) (0.050) (0.017) (0.005) (0.432) 

No 3,992 481 370 66 4,909 
(4.601) (0.554) (0.426) (0.076) (5.658) 

Totals 78,776 4,647 3,001 345 86,769 
(90.788) (5.356) (3.459) (0.398) 100.00 

A Dual Scaling Approach 

The derivation of a correspondence analysis for the frequency response table 
presented in this section employs a dual scaling approach. The objective 
will be to determine axes or scales to characterize the response categories 
and subpopulations so that the variation in response pattern across the 
groups can be studied. The approach is based on a one-way analysis of 
variance study of the response variation across grOUps. 

Review 0/ One-way ANOVA Notation 

In one-way analysis of variance random sampIes of ni. individuals are se­
lected from grOUps i = 1,2, ... , T. For each individual ja response is mea­
sured yielding the observation Yij, i = 1,2, ... , T, j = 1,2, ... , c. For the T 

groups the means are denoted by ik where ik = Ej=l Yij/ni .. The grand 
mean is denoted by y = E;=l Ej~l Yij/n. The sums of squares used to 
measure variation within groups, among groups, and the total are given by 
SSW = E;=l Ej~l (Yij - Yd 2 , SSA = E;=l ndik - y . .)2 and SST = 
E;=l Ej~l (Yij - y .. )2 respectively. The variation in the group means Yi. 
over the r groups is considered large ifthe ratio (n-r)SSA/SSW/(T-l) is 
large. In one-way analysis of variance the assumption of independence, ho­
mogeneity of variance and normality lead to an F distribution with (r - 1) 
and (n - r) degrees of freedom if the true group means are equal. 

Scaling the Response Categories 

In the context of the frequency response table, we assume that there is an 
underlying scale of measurement, say Z, for the response variable and that 
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TABLE 9.56. Response Frequency Table With Scaled Values Included 

Response Categories 
Groups 1 2 3 c Group Means 

e 

1 nll values n12 values n13 values nIe values tl = 2: nljZj/nl. 
j=1 

of zl of z2 of Z3 of ze 
e 

2 n21 values n22 values n23 values n2e values t2 = 2: n2jZj/n2. 
j=1 

of ZI of Z2 of Z3 of Ze 

e 

r n r l values n r 2 values n r 3 values n re values tr = 2: nrjzj/nr . 
j=1 

of ZI of Z2 of Z3 of Ze 

Column ZI Z2 z3 Ze Grand Mean 
r e 

Means f = z = 2: 2: n'jzj/n 
,=lj=1 

for the c response categories the values of Z are ZI, Z2, ... ,Zc (note that 
these Z values are not ordered). Each individual in a given response category 
is assumed to have the same value of Z. Thus for the jth response cate­
gory the sum of the hypothetical observations in group i is nij Zj, and the 
mean for group i is given by t i = 2:;=1 nijzjlni. = 2:;=10ijZjlri, where 
ri = ni-/n. The grand mean is given by f = z = 2:~=12:;=1 nijzjln = 
2:~=12:;=1 0ijZi· These quantities are shown in Table 9.56. 

The (r x 1) vector of group means t with elements ti, i = 1,2, ... , r, 
is given by t = D;10z, where D r is the diagonal matrix with diagonal 
elements equal to the row marginals ni.ln, i = 1,2, ... , r, and where z 
(c x 1) is vector of values Zj corresponding to the response categories j = 
1,2, ... ,c. The grand mean is given by f = z = c'z where c (c x 1) is a 
vector of column marginals o.j = n.j In, j = 1,2, ... ,c. 

To maximize the ratio (n-r)SSAISSW(r-1) it is sufficient to maximize 
the ratio ".,2 = SSAISST since SSA + SSW = SST. The two sums of 
squares can be written as 

and 

r 

SSA = L ndti - f)2 = nz'O'D;10z - nz'cc'z 
i=l 

r c 

SST = L L nij(Zj - f)2 = nz'Dcz - nz'cc'z. 
i=lj=l 
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Since these sums of squares are defined relative to the grand mean t, there 
is no 1088 of generality in assuming that t = O. The ratio to maximize 
therefore becomes Z'O'D;:-IOz/z'Dcz. 

Since multiplication of z by an arbitrary constant does not change the 
value of the above ratio, the scale can be restricted by assuming z'Dcz = 1. 
Maximizing the numerator Z'O'D;:-IOZ subject to the condition z'Dcz = 1 
yields the equation 

(9.10) 

where .,,2 is the value of the ratio to be maximized. 
An examination of equation (9.9) in the previous section and (9.10) above 

reveals that there is a relationship between z and w and between .,,2 and 
the elements of D!. Choosing .,,2 to be the largest diagonal element in D! 
and letting WI be the corresponding column of W we have z = WI. 

In a similar fashion the eigenvector of V in (9.8) corresponding to .,,2 the 
largest eigenvalue, is given by VI. Using (9.7) we have VI = D;:-IOwl/." = 
D;:-IOZ/." and hence t = VI"', where t is the vector of group means. Thus 
the group means or row scores can be obtained by multiplying the row 
profile coordinates on the first principal axis by the first singular value. 

From these results, we can conclude that a correspondence analysis of the 
matrix of profile deviations discussed in the previous section and the scaling 
of the response categories to maximize the variation among group responses 
introduced in this section yields the same solution. The coordinate vector 
which locates the column profile deviations along their first principal axis 
in Section 9.4.1 is also the coordinate vector that describes the loeation of 
the response factors along the scale that maximizes the variation among 
group means. 

The coordinate vector that locates the row profile deviations along their 
first principal axis is also the vector that describes the magnitudes of the 
group means tl, t2, .. " t r scaled by.,,2. 

Example 

For the accident data of Table 9.55 the Pearson Chi-square statistic is 
682.372 with 9 degrees of freedom. The evidence against homogeneity of 
response across the four driver condition/seatbelt groups is therefore quite 
strong. The correspondence analysis procedure in this case results in 97.89% 
(0.00770) of the total inertia (0.00786) being allocated to the first dimen­
sion. The second dimension accounts for almost all of the remaining 2% 
(0.00014). The three singular values were 0.0877, 0.0119 and 0.0049. The 
row profile and column profile coordinates are summarized in Table 9.57. 
Since the second dimension is relatively minor only the first dimension is 
plotted in Figure 9.25. From the profile coordinates in Table 9.57 and the 
plot in Figure 9.25, it is clear that the severity of injury is strongly related 
to the presence of one or both of the seatbelt and been drinking factors. 
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TABLE 9.57. Row Profile and Column Profile Coordinates for 
Accident Data 

Driver Seatbelt Row Profile Driver Injury Column Profile 
Condition Usage Coordinates Level Coordinates 

1 2 1 2 

Normal Yes --{l.07 0.01 None -0.03 -0.00 
Normal No -0.01 --{l.01 Minimal 0.22 0.04 
Been Drinking Yes 0.24 0.17 Minor 0.30 0.05 
Been Drinking No 0.34 -0.01 Major/Fatal 0.59 0.02 
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FIGURE 9.25. Correspondence Analysis for Accident Data 

The scale values for the four injury levels are given by the column coordi­
nates: None (-0.03), Minimal (0.22), Minor (0.30) and Major/Fatal (0.59). 
The mean scale values for the four groups can be obtained from the row 
profile coordinates by dividing by the first singular value which is (0.0877). 
These group means are given by -0.006 (Normal Yes), -0.001 (Normal 
No), 0.021 (Been Drinking Yes) and 0.030 (Been Drinking No). The col­
umn profile scores have been selected so as to maximize the variance among 
the four row means. 

Same Alternative Approaches to COrr'espondence Analysis 

The dual sca1ing approach to correspondence analysis described above is 
only one of several alternative approaches to obtaining the same decom­
position of the two-dimensional contingency table. Other approaches have 
been referred to as reciprocal averaging, bivariate correlation, linear re­
gression and canonical correlation. These various approaches are outlined 
in Greenacre (1984) and Nishisato (1980). The reciprocal averaging method 
has been employed in ecology and will not be discussed here. Abrief de-
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scription of the bivariate correlation, simultaneous linear regression and 
canonical correlation approaches is provided below. 

Bivariate Correlation 

Given the two-dimensional (r x c) contingency table, the objective of the 
bivariate correlation approach is to assign a (r x 1) vector of scale values, 
say y, to the row categories and a (c x 1) vector of scale values, say z, to 
the column categories such that the correlation TI between the two newly 
created variables is maximized. The solution to this problem is provided 
by the principal coordinates corresponding to the first singular vectors Vl 

and Wl for the row and column profile deviations and the first singular 
value J.tl 8S outlined in Section 9.4.1. The vectors of optimal scale values 
are y = Vl and z = Wl and the maximum correlation in TI = J.tl. This 
solution is also equivalent to the dual scaling solution outlined above. The 
vector z represents the optimal scale values and the vector t = YTI denotes 
the mean scores for the groups. 

Simultaneous Linear Regression 

Suppose we have an (r x c) contingency table with cell densities Oij, i = 
1,2, ... , r, j = 1,2, ... , c. 

Suppose also we have available vectors of scores Y (r x 1) for the row 
categories and z (c x 1) for the column categories. Let x (c x 1) denote 
the average values for the column categories based on the Y scores and 
similarly let t (r x 1) denote the average values for the row categories 
based on z scores. Suppose the average values for the row categories t are 
plotted against the row category scores y. Would the result be a straight 
line? Similarly would the relation between the assigned column scores z and 
the derived column scores x be linear? Since the answers to these questions 
depends on the original selection of scores y and z can they be chosen so 
that the above two plots are linear? 

The solution is to select the y and z score vectors corresponding to the 
first principal coordinate vectors. The resulting average values derived from 
y and z are x = TlZ and t = TlY, and hence the plot of x against z and t 
against Y lie on the same straight line through the origin. 

Example 

For the accident data example discussed above, the necessary scales are the 
coordinates for the row and column profiles on the first singular vectors as 
shown in Table 9.57. The correlation coefficient between these two vectors 
based on the frequencies in the contingency table is the first singular value 
0.0877. Table 9.58 shows the score vectors and the derived average scores 
for both the row and column categories. A plot of the linear relationship is 
given in Figure 9.26. 
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TABLE 9.58. Relationship Between Assigned Scores and Derived Means for Row 
and Column Categories 

Row Categories Assigned Row Means Column Categories Assigned Column Means 
Driver Seatbelt Row Derived From Driver Injury Column Derived From 
Condition Usage Scores Column Scores Level Scores Row Scores 

Normal Yes --{).07 --{).OO6 None --{).03 --{).OO3 

Normal No --{).OI -0.001 Minimal 0.22 0.019 
Been Drinking Yes 0.24 .021 Minor 0.30 0.026 
Been Drinking No 0.34 0.030 Major/Fatal 0.59 0.052 

Note: The derived columns are obtained from the scores columns by multiplying by 1/ = 0.0877. 
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FIGURE 9.26. Linear Relationship Between Assigned Scores (Horizontal) and 
Derived Scores (Vertical) 

Canonical Correlation 

Canonical correlation analysis introduced in Chapter 7 can also be applied 
to two-dimensional contingency tables. In canonical correlation observa­
tions on two sets of variables summarized in two data matrices X(n x q) 
and Y(n x s) are used to determine a pair of linear relationships one for 
X and one for Y. The relationships denoted by w = Xb and z = Ya 
are determined so that the correlation coefficient r zw between the (n xl) 
vectors z and w is maximized. The (n xl) vectors z and w denote ob­
servations on the underlying variable Z and W. The coefficient vectors a 
and b are (s xl) and (q xl) respectively. These coefficient vectors are the 
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eigenvectors obtained by solving the eigenequations 

(R;;Rzya.;iRyz - AI)b = 0 

(R;;RyzR;;Rzy - AI)a = 0, 

where the correlation matrix derived from X and Y is denoted by R = 
[:::: ::::]. The vectors b and a are the eigenvectors corresponding 

to the largest common eigenvalue A and .j). is the correlation r 1110 between 
z and w. In the context of correspondence analysis the variables Z and 
W correspond to the underlying scales derived for the row and column 
categories. 

For each ofthe (r+c) categories in the (r x c) contingency table dummy 
variables are defined. The n observations for the row dummies are denoted 
by Zl(n x r) and for the column dummies the observations are denoted 
by Z2(n xc). The entire matrix of observations on both sets of dummy 
variables is denoted by Z = (Zl Z2). The matrix (Z'Zjn) can be written 

as [~ gc]' where O(r xc), D r and D c are defined above. 

The sampie covariance matrices for the two sets of variables are given 
by [Dr - rr'] and [Dc - ce'] respectively. The sampie covariance matrix 
between the two sets of variables is given by [0 - rc']. The vectors r and 
c are the mean vectors for the row and column dummies respectively. The 
two sets of dummy variables are not linearly independent since only (r - 1) 
and (c - 1) dummy variables are suflicient to identify the r and c cate­
gories respectively. Aß a result the covariance matrices for Zl and Z2 have 
ranks of (r - 1) and (c - 1) respectively. To eliminate this problem of sin­
gular matrices the covariance matrices will be replaced by D r , D c and 0 
respectively. 

The result of this change simply causes the first eigenvaluejeigenvector 
solution to be trivial. It does not affect the remaining eigenvalue-eigenvectors 
solutions. An alternative procedure, which obtains full rank matrices by 
eliminating one dummy variable from each set, yields the same solutions 
as the nontrivial solutions obtained using D r , D c and O. 

Aß in the development of the theory of canonical correlation in Section 
7.5.2 the eigenvalue-eigenvector equations are given by 

(D;lOD;lO' - Ayl)y = 0 

(D;lO'D;lO - AIlI)z = 0, 

where y'Dry = z'Dcz = 1, the canonica1 variables are x = Z2Z and 
t = ZlY and the means satisfy f = e'tjn = x = e'xjn = O. The vec­
tors Y and z are the required canonica1 weights. The solution therefore 
involves determining the eigenvalues Ay , All and corresponding eigenvec­
tors Y and z of the two matrices D;lOD;lO' and D;lO'D;lO. As in 
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the case of canonical correlation analysis discussed above All = Az = A say. 
The common eigenvalue A represents the square of the correlation between 
the derived scores t and x. 

The required eigenvectors and eigenvalues can be obtained from a cor­
respondence analysis as outlined in Section 9.4.1. The vectors y and z 
correspond to the principal coordinates for the row and column axes in the 
generallzed singular value decomposition of the matrix (0 - rc'). The corre­
sponding canonical correlations .;x are given by the singular values of this 
decomposition. The number of canonical variables that can be obtained is 
min[(r -1), (e -1)]. The mean values of the new canonical variables evalu­
ated in each of the row categories and column categories are given by .;xz 
for the row categories and .;xy for the column categories. 

Example 

For the criminal charge data presented in Table 9.39, the correspondence 
analysis results of Tables 9.50 and 9.51 provide the vectors of canonical 
weights. For the first pair of canonical variables, the weights are males not 
convicted (0.04), females not convicted (0.55), males convicted (-0.35), fe­
males convicted (0.44) for the row catgories and impaired driving (-0.34), 
theft under 1000 (0.52), mischief (0.08), possession of narcotics (-0.50), 
other (0.07) for the column categories. The first canonical variable for 
the row categories represents a contrast between all females and convicted 
males. The first column canonical variable represents a contrast between 
the charge theft under 1000 and the charges of impaired driving and posses­
sion of narcotics. The correlation between these two canonical variables is 
0.377 which is the first singular value of the decomposition. Multiplying the 
principal coordinate vectors above by 0.377 yields the mean scores for the 
four row categories and the five column categories. These averages are given 
by (0.015, 0.207, -0.132, 0.166) and (-0.128, 0.196, 0.030, -0.189, 0.026). 
Thus for the canonical variable representing charges, convicted males have 
the lowest value (-0.132) and nonconvicted females have the highest value 
(0.207). Convicted females also have a relatively high value (0.166), whereas 
for nonconvicted males the value is close to zero (0.015). For the canonical 
variable representing sex-conviction status the charges of impaired driv­
ing and possession of narcotics have negative values (-0.128 and -0.189), 
whereas the charge of theft has the highest positive value at (0.196). The 
values corresponding to the charges mischief and other are quite small. 

9.4.4 OTHER SOURCES OF INFORMATION 

The dual scaling approach to correspondence analysis discussed here is 
similar to the presentation in Greenacre (1984) and Nishisato (1980). A 
discussion of the bivariate correlation and simultaneous linear regression 
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is available in Nishisato (1980). The canonical correlation approach is dis­
cussed in Greenacre (1984). 

9.4.5 CORRESPONDENCE ANALYSIS IN 

MULTIDIMENSIONAL TABLES 

Although singular value decompositions can be used to approximate two­
dimensional tables, there does not seem to be a simple extension of such a 
procedure to approximate tables of higher dimensions. One approach that 
has been used for multidimensional tables is called multiple correspondence 
analysis. In this procedure singular value decomposition is used to simul­
taneously approximate all possible two-dimensional subtables that can be 
derived from the multidimensional table. An outline of this procedure is 
provided below. 

Multiple COTTespondence Analysis and Burt Matrices 

Multiple coTTespondence analysis begins by constructing dummy indicator 
variables for each category of each variable. A data matrix Z is then con­
structed with rows corresponding to observations on subjects and columns 
corresponding to dummy variables. For each subject, row unities appear 
in one dummy column for each variable, whereas the remaining dummy 
columns in that row contain zeroes. The rows of the resulting data matrix 
can be clustered so that identical rows are combined to produce frequen­
eies in each row representing the number of occasions that the particular 
row type occurred in the data matrix. The resulting matrix Z* therefore 
has rows that correspond to the individual cells of the multidimensional 
table. The data matrix Z* becomes the starting point for a singular value 
decomposition on the column profiles. Dimensions for the row profiles of 
Z" can also be obtained from the decomposition of Z". The analysis for 
row profiles will not be discussed here. 

An equivalent procedure to the analysis of Z* is to first compute the 
matrix B = Z'Z using the matrix Z defined above. The new matrix B is 
called a Burt matrix. The matrix B contains block diagonal matrices re­
ßecting frequeneies for variable categories. The set of off-diagonal blocks in 
B represent the set of all two-dimensional contingency tables that can be 
constructed by studying two variables at a time. The matrix B is square 
symmetrie and hence only row or column profiles need to be approximated. 
The singular value decomposition of the rows and columns of B yield the 
same results as the singular value decomposition of the columns of Z dis­
cussed above. The rank of the matrix B is equal to the number of columns 
of Z less the number of underlying variables used to generate Z. Equiva­
lently, the rank is given by rank = E~=l(kj -1), where k j = number of 
categories for variable j and p is the number of variables. 
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Although the number of possible dimensions is given by L~=l (kj - 1) 
these dimensions are not all "interesting". Some of the dimensions are re­
quired for standardizing and centering and are considered to be artificial. 
As a rule of thumb only those dimensions with principal inertias that ex­
ceed l/p are considered to be relevant. For a multidimensional contingency 
table with only one observation per cell, the principal inertias for an di­
mensions would necessarily be l/p and hence l/p is a useful baseline. This 
rationale was suggested by Greenacre (1984). 

The multiple correspondence analysis measures the departure from inde­
pendence for all two-dimensional tables that can be derived from the multi­
dimensional table. For a three-dimensional table, the expected frequencies 
are determined for the three possible two-dimensional tables obtained by 
collapsing the table over the third variable. The diagonal blocks of the 
Burt matrix are also fitted using the independence model and hence the 
off-diagonal cells of these blocks are obtained from the products of the di­
agonal elements. The model for the expected frequency in the jth diagonal 
block is given by niinu/n, i, e = 1,2, ... ,kj , where n = L~;l nii and nii, 
nu denote the diagonal elements in block j. 

In Chapter 6 an outline of loglinear models illustrated that fitting a 
two-way interaction involved fitting the observed frequencies in the corre­
sponding two-dimensional collapsed table. Multiple correspondence anal­
ysis therefore focuses on the difference between the independence model 
and the model which includes all two-way interaction terms. The dimen­
sions with the largest inertias will represent the most important two-way 
interactions. 

Example 

The 4 x 2 x 2 contingency table for the accident data introduced in Sec­
tion 6.2 is used as an example. The Burt matrix resulting from this table 
is shown in Table 9.59. The various submatrices have been outlined in the 
table. The three block-diagonal matrices can be seen to contain the total 
frequencies for the various categories of the variables. In addition, the off­
diagonal blocks show the three two-dimensional contingency tables each of 
which appears twice. 

The multiple correspondence analysis of the Burt matrix yields five di­
mensions (3 + 1 + 1). Two of the dimensions yield principal inertias that 
exceed the ~ criterion (there are three variables). The two principal iner­
tias are 0.373 and 0.334. Since the second dimension has a principal inertia 
that is barely above ~ we can ignore it for the remainder of the analysis. 
The coordinates of the categories on the first dimension are summarized 
in Table 9.60 and are plotted in Figure 9.27. As expected based on previ­
ous results, higher levels of injury are associated with the category been 
drinking and with seatbelt nonusage. 
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TABLE 9.59. Burt Matrix for Three Dimensional Contingency Table for Accident 
Data 

Iniurv Level Driver Condition Seatbelt US8Ire 

None 
Minimal 
Minor 
Major/Fatal 
Normal 
Been Drinking 
Yes 
No 

None Minimal Minor Major/Fatal 
78776 0 0 0 

0 4647 0 0 
0 0 3001 0 
0 0 0 345 

74471 4123 2616 275 
4305 524 385 70 
12813 647 2642 42 
65963 4000 359 803 

Normal Been Drinking Yes 
74471 4305 12813 
4123 524 647 
2616 385 2642 
275 70 42 

81485 0 13486 
0 5284 375 

13486 375 13861 
67999 4909 0 

TABLE 9.60. Coordinates on First Column Dimension for Acci­
dent Data 

CATEGORY 
None Minimal Minor Major/Fatal Normal Been Yes No 

Drinking 

--{).19 1.52 2.13 3.96 -0.18 2.76 -1.14 0.22 

tIII 

~ 0; ... 
'C CI 

iiI r.. 
0; Q 

-C 
~~ .8 ... 

I:: 0 0 
111 

~ ~ 
cu 'äj' cu 00 0 cu 

>- :z:z :z III :::Iil I, , " , , 
" " -1.11 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

No 
65963 
4000 
359 
303 

67999 
4909 

0 
72908 

FIGURE 9.27. Multiple Correspondence Analysis for Accident Data 

A Second Example 

For the charge data introduced in Table 9.39 a 5 x 2 x 2 three-dimensional 
contingency table relating charge, conviction and sex was constructed and 
analyzed in Burt matrix form. Although there are a total of six dimensions 
only two of the dimensions produced principal inertias that exceeded ~. 
These inertias were 0.463 and 0.386 respectively for the first two dimen­
sions. The coordinates on the first two dimensions are shown in Table 9.61 
and a corresponding plot appears in Figure 9.28. The first dimension places 
high positive values on the charge theft and high negative values on nar-
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TABLE 9.61. Column Coordinates for First Two Di­
mensions for Criminal Charge Data 

C01umn Dimensions 
Category 2 

Impaired -U.75 -U.64 
Theft 1.13 -U.31 
Mischief 0.23 1.64 
Narcotics -1.06 1.65 
Other 0.14 0.47 
No 0.69 1.47 
Yes --{).15 -U.33 
Male -U.61 0.20 
Female 1.00 --{).33 

cotics and impaired. This dimension also assigns high positive values to 
no eonviction and female and a moderately high negative value to male. 
The first dimension suggests that females are more assoeiated with theft 
and that males are more assoeiated with impaired driving and possession 
of nareotics. In addition it would appear that no conviction is more as­
sociated with theft and females than with males, impaired driving and 
nareotics possession. The second dimension assigns high positive values to 
no convietion, mischief and nareotics and high negative values to impaired. 
The second dimension indicates that the charges of mischief and narcotics 
possession are less likely to result in eonvietion than the charge of impaired 
driving. 

9.4.6 OTHER SOURCES OF INFORMATION 

Multiple eorrespondenee analysis is discussed more extensively in Greenacre 
(1984) and Lebart, Morineau and Warwick (1984). Abrief discussion is also 
available in Andersen (1990). Extensive referenees to the research literature 
ean be found in these texts. 
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FIGURE 9.28. Multiple Correspondence Analysis for Criminal Charge Data 
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Exercises for Chapter 9 

1. This exercise is based on the Air Pollution Data in Table V7 in the 
Data Appendix. 

(a) Carry out a principal components analysis ofthe covariance ma­
trix for the eleven variables exc1uding TMR. Interpret an of the 
components whose eigenvalues exceed the geometrie mean of the 
eigenvalues. How important is each of these components in ex­
plaining the variation in the underlying variables. 

(b) Repeat the steps in (a) using the correlation matrix. Interpret 
all components whose eigenvalues exceed one. How important 
is each component in explaining the variation in the underlying 
variables. 

(c) Obtain the standardized principal component scores for an of 
components generated in (a) and regress TMR on those scores. 
Discuss the results. Alloeate the variation in TMR to each com­
ponent. 

(d) Repeat (c) for the principal components obtained in (b). 

(e) Use principal eomponents analysis to identify and characterize 
outliers as illustrated in Chapter 9 using the results in (b). Dis­
euss the results. 

2. This exercise is based on the Financial Accounting Data in Table V6 
in the Data Appendix. 

(a) Carry out a principal components analysis ofthe covariance ma­
trix for the 12 variables excluding RETCAP. Interpret all the 
eomponents whose eigenvalues exceed the geometrie mean of the 
eigenvalues. How important is each of these eomponents in ex­
plaining the variation in the underlying variables. 

(b) Repeat the steps in (a) using the correlation matrix. Interpret 
all components whose eigenvalues exceed one. How important 
is each component in explaining the variation in the underlying 
variables. 

(c) Obtain the standardized principal component scores for an of 
the components generated in (a) and regress RETCAP on these 
scores. Discuss the results. Alloeate the variation in RETCAP 
to each component. 

(d) Repeat (e) for the principal eomponents obtained in (b). 

(e) Use principal components analysis to identify and characterize 
outliers as illustrated in Chapter 9 using the results in (b). Dis­
euss the results. 
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3. This exereise is based on the Shopping Attitude Data in Table VS in 
the Data Appendix. 

(a) Beginning with a principal components analysis of the variables 
Al to AIS retain four factors and earry out a varimax rotation. 
Obtain a seree test plot and justify the four factor solution. 
Interpret the rotated factors. Comment on the communalities of 
the variables. Examine plots of the rotated factor patterns. 

(b) Examine the varimax rotated four-factor solution derived from 
the squared multiple correlation approach to the principal factor 
method and compare the factors to (a). 

(e) Examine the maximum likelihood factors after varimax rota­
tion and compare to the factors in (a) and (b). Carry out a X? 
test of goodness of fit for the number of factors from one factor 
through six factors and discuss the results. Also determine the 
cross validation test statisties. 

(d) Carry out an alternative method of rotation and repeat the anal­
ysis in (a). Compare the results to the previous factor solutions. 

(e) Select one ofthe four factor solutions determined in (a) through 
(d) and obtain the factor scores for the four rotated factors. Re-­
late the factors to the variables WORK and AGE using one-way 
ANOVA. Diseuss the differenees in means for the four factors 
over the eategories of WORK and AGE. 

(f) Use a two-way ANOVA to relate the factors to the WORK and 
AGE eategories. Is there any interaction? Compare the results 
to (e). 

(g) Use regression analysis to relate AGE as an interval variable to 
the four factors. Discuss the results. 

(h) Write an overall summary discussing the shopping attitude fac­
tors and their relation to WORK and AGE. 

4. This exercise is based on the Air Pollution Data in Table V7 in the 
Data Appendix. 

(a) Beginning with the principal eomponents of the eorrelation ma­
trix use the eigenvalue-one-eriterion and varimax rotation to ob­
tain a factor analysis solution. Examine the scree plot and factor 
pattern plots. Diseuss the results. 

(b) Repeat the analysis in (a) beginning with the squared multiple 
correlation approach to the principal factor approach. Discuss 
the results and compare to (a). 

(e) Examine various alternative solutions in (a) and (b) by alter­
ing the number of factors criterion and/or the varimax rotation 
criterion. 
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(d) Use the maximum likelihood method with varimax rotation to 
obtain a factor analysis for the correlation matrix. Use the X2 

statistic to examine the significance of various factors. Also ex­
amine the various cross-validation statistics. Discuss the results. 
Compare the solution to the results in (a), (b) and (c). 

(e) Write an overall summary discussing the factors that seem to be 
present in the data. 

5. This exercise is based on the Financial Accounting Data in Table V6 
in the Data Appendix. 

(a) Beginning with the principal components of the correlation ma­
trix use the eigenvalue-one-criterion and varimax rotation to ob­
tain a factor analysis solution. Examine the scree plot and factor 
pattern plots. Discuss the results. 

(b) Repeat the analysis in (a) beginning with the squared multiple 
correlation approach to the principal factor approach. Discuss 
the results and compare to (a). 

(c) Examine various alternative solutions in (a) and (b) by alter­
ing the number of factors criterion and/or the varimax rotation 
criterion. 

(d) Use the maximum likelihood method with varimax rotation to 
obtain a factor analysis for the correlation matrix. Use the X2 

statistic to examine the significance of various factors. Also ex­
amine the various cross-validation statistics. Discuss the results. 
Compare the solution to the results in (a), (b) and (c). 

(e) Write an overall summary discussing the factors that seem to be 
present in the data. 

6. This exercise is based on the Air Pollution Data in Table V7 in the 
Data Appendix. For the principal component analysis of the correla­
tion matrix construct abiplot. Interpret the plot. 

7. This exercise is based on the Financial Accounting Data in Table V6 
in the Data Appendix. For the principal component analysis of the 
correlation matrix construct abiplot. Interpret the plot. 

8. This exercise is based on the Bus Data of Table VI in the Data 
Appendix. 

(a) Construct three two-dimensional tables relating the variable AT­
TEND to all possible pairs of the variables SEX, DAY and 
GARAGE by combining the categories in pairs. Use correspon­
dence analysis to study the three tables and discuss the results. 
Give a dual scaling interpretation for your results. 
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(b) Repeat the analyses in (a) using the three three-dimensional 
tables and multiple correspondenee analysis. 

(e) Combine your results from (a) and (b) and write an overall eon­
clusion. 

9. This exereise is based on the Aecident Data in Table V2 of the Data 
Appendix. For some analyses it may be necessary to combine eate­
gories because of the cells with zero frequeney. 

(a) Use correspondence analysis to study the two-dimensional table 
relating DRlVER INJURY LEVEL to the variable which eom­
bines POINT OF IMPACT and DRlVER CONDITION. Repeat 
the procedure to relate DRIVER INJURY LEVEL to the vari­
able which combines SEATBELT and POINT OF IMPACT. 
Diseuss the results. Give a dual scaling interpretation for your 
results in each ease. 

(b) Use multiple correspondenee analysis to analyze the two three­
dimensional tables of (a): 

i. DRIVER INJURY LEVEL vs POINT OF IMPACT vs 
DRlVER CONDITION, and 

ii. DRIVER INJURY LEVEL vs POINT OF IMPACT vs SEAT­
BELT. 

Discuss your results. 

(c) Use eorrespondenee analysis to relate INJURY LEVEL to all 
three variables by combining the latter three variables into one 
variable. Discuss your results. 

(d) Use multiple eorrespondence analysis to analyze the four-dimen­
sional table relating the four variables in Table V2. Discuss your 
results. 

(e) Combine your results from (a), (b) and (e) and write an overall 
eonclusion. 

10. This exereise is based on the Aecident Data in Table V3 of the Data 
Appendix. 

(a) Use eorrespondenee analysis to study the two-dimensional ta­
ble relating DRIVER INJURY LEVEL to the variable which 
eombines SPEED LIMIT and DRlVER CONDITION. Repeat 
the procedure to relate DRlVER INJURY LEVEL to the vari­
able which combines SEATBELT and SPEED LIMIT. Discuss 
the results. Give a dual sealing interpretation for your results in 
each ease. 

(b) Use multiple correspondence analysis to analyze the two three­
dimensional tables of (a): 
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i. DRIVER INJURY LEVEL vs SPEED LIMIT VS DRIVER 
CONDITION, and 

ii. DRIVER INJURY LEVEL vs SPEED LIMIT vs SEAT­
BELT. 

Discuss your results. 

(c) Use correspondence analysis to relate INJURY LEVEL to all 
three variables by combining the latter three variables into one 
variable. Discuss your results. 

(d) Use multiple correspondence analysis to analyze the four-dimen­
sional table relating the four variables in Table V2. Discuss your 
results. 

(e) Combine your results from (a), (b) and (c) and write an overall 
conclusion. 
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Questions for Chapter 9 

1. Given a data matrix X(n x p), let zen xl) be an index variable and 
let a(p xl) be a vector of eonstants so that X = za' provides an 
approximation for X. Assume that a is scaled so that a' a = 1. 

(a) Show that E:=lE~=l(Xij - Xij)2 ean be written as tr[(X -
X)'(X-X)]. 

(b) Substitute X = za' and show that 

tr[(X - X)'(X - X)] = tr X'X - tr az'X - tr X'za' 
+tr az'za' = tr X'X - 2z'Xa+ z'z 

using properties of the trace and also that a' a = 1. 

(e) Differentiate the expression on the right-hand side in (b) with 
respect to z, holding a fixed, and henee show that Z = Xa when 
the derivative is zero. 

(d) Using the expression for tr[(X - X)'(X - X)] given in (b) sub­
stitute Xa for z to obtain 

tr[(X - X)'(X - X)] = tr X'X - a'X'Xa. 

(e) Minimize the expression in (d) with respect to a subjeet to a' a = 
1. Use a Lagrange multiplier A to include this condition and show 
that setting the derivative equal to zero yields the expression 
(X'X - AI)a = 0 and henee that A is an eigenvalue of X'X with 
corresponding eigenvector a. 

2. Given the (n x p) data matrix X let zen x 1) be given by z = Xv 
where v(p xl) is a vector of eonstants with v'v = 1. 

(a) Show that the vector v that maximizes z'z subject to v'v = 1 
is obtained from the equation (X'X - AI)v = O. Use a Lagrange 
multiplier A on the eondition v'v = 1, and maximize the funetion 
v'X'Xv - A(v'V - 1) with respect to v. 

(b) Show that the largest eigenvalue Al that is obtained in (a) is the 
one that maximizes z' z. 

(e) Let Z2 = XV2 be a second linear transformation of X so that 
Z~Zl = O. Show that this implies that V~V1 = O. 

(d) Determine Z2 in (e) so that Z~Z2 is maximized subject to VaV2 = 
1 and subject to V~V1 = O. Use Lagrangian multipliers A2 for 
v~ V2 = 1 and () for v~ V1 = O. Maximize the function VaX'X V2 -
A2(VaV2 -1) - ()(YtV2) with respeet to V2. 
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(e) Show the general result that the kth principal component Zk = 
XVk maximizes Z~Zk subject to v'kVk = 1 and v'kVj = 0, j;f: k, 
j = 1,2, ... , k - 1. 

3. Given the eigenvalues Al, A2, ... , Ap and corresponding eigenvectors 
Vl! V2, ... , Vp of X'X where vjVj = 1 and vjvk = 0, j;f: k, j, k = 
1,2, ... ,p, let V denote the (p x p) matrix whose columns are the 
eigenvectors and let A(p x p) be the diagonal matrix whose diagonal 
elements are the eigenvalues Al! A2, ... , Ap. Denote the corresponding 
principal components ofX by Zj, j = 1,2, ... ,p, where Zj = XVj and 
let Z(n xp) denote the matrix whose columns are the vectors Zj, j = 
1,2, ... ,p. Use these properties and the fact that (X'X - AjI}Vj = 0 
to show the results summarized below. 

(a) V'V = I, V' = V-I, Vv' = I. 

(b) Z = XV. 

(c) Z'Z = A, (Z'Z)-l = A- I. 

(d) X = ZV'. 

(e) X'X = VAV' and X'XV = VA, (X'X)-l = VA-lV'. 

(f) Let Z be partitioned into Zl(n x r) and Z2[n x (p - r)] and let 
V I (p X r) and V 2 [P X (p-r)] be the corresponding partitions of V. 
Let AI(r x r) and A2((P - r) x (p - r)) denote corresponding 
diagonal matrices formed from the diagonal matrix A where 

A = [~1 12 ]. Show that 

X = ZIV~ + Z2V~ 
and 

4. In Question 2 the eigenvalues and eigenvectors were determined for 
the data matrix X'X. Let Cov(x) = E for the random variable x(p x 
1) and define Zj = x'vi. Repeat the steps in question 2 by maximizing 
V(Zj) subject to vjVj = 1 and also COV(Zj,Zk) = 0, j =I- k. Use E in 
place of X'X and vjEvk in place of Cov(Zj, Zk). 

5. For the eigenvalues Al, A2, ... , Ap and corresponding eigenvectors 
Vl! V2,·· ., vp determined from (E - AjI)Vj = 0 with Zj = X'Vj show 
the following results. 

(a) Aj =vjEvj, j = 1,2, ... ,p. 

(b) V(Zj) = Aj where zi = x'vi, j = 1,2, ... ,po 

(c) Cov( z) = A where A is a diagonal matrix with diagonal elements 
Aj, and z is the (p x 1) vector of elements Zj, j = 1,2, ... ,po 
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(d) A = V' EV where V(p x p) contains the eigenvectors Vj, j = 
1, 2, ... ,p, as columns. 

(e) X = VAV' = E~=lAjVjvj (The spectral decomposition of X). 

(f) X-1 = VA-lV'. 

(g) Let I'x = E[x], I'z = E[z], z' = x'V and show that I''z = 
I''x V. 

(h) Use the results of (f) and (g) to show that 

(x -I'x)' X-1(x -I'x) = (z -I'z)' A-1(z -I'z) 

and hence that the principal components define the principal 
axes of the ellipsoid of constant probability for the multivariate 
normal. 

(i) If the random variable x in (h) has been standardized to have 
variance 1, show that if X = p (the correlation matrix) the 
expression in (h) can be written in terms of principal components 
as in Section 9.1.6. 

6. Let Al! A2, ... , Ap denote the eigenvalues ofX'X and let Vl! V2, ... , vp 

denote the corresponding eigenvectors. Show that the eigenvalues 
and eigenvectors of (X'X)-l are given by I/Al, I/A2, ... , I/Ap and 
V1, V2, ... , vp respectively. 

7. Consider the multiple linear regression model given by y = Xß + u 
and let Z = XV denote the corresponding principal components 
derived from X'X. Let ,.., be defined such that Xß = Z,.., and hence 
y = Z,..,+u. 

(a) Show that ,.., = V' ß and ß = V,..,. 

(b) Given that ß = (X'X)-lX'y and ..:y = (Z'Z)-lZ'y, show that 
ß =V..:y and i =V'ß. 

(c) Show that the covariance matrix of ß given by cr2 (X'X) -1 can be 
written as cr2E~=1 v jvj / Aj, which is the spectral decomposition 
of cr2(X'X)-1. Explain how multicollinearity in X shows up as 
relatively large terms in the above spectral decomposition. 

(d) Given that the regression sum of squares for i is given by i'Z'y 
show that this sum of squares can be separately allocated to 
each component Zj, j = 1,2, ... ,po 
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8. The equal correlation-equal variance matrix is given by 

1 P P P 
P 1 

p 

1 

P 
1 

(a) Show that E = (72 pii' + (72 (1 - p)1 where i(p xl) is a vector of 
unities. 

(b) Given that the eigenvalue A, must satisfy the characteristic equa­
tion IE-AII = 0 use the fact that IcI+bdfl = c+bd'ffor l(pxp), 
d(p x 1) and f(p x 1) to show that A = (72[1 + p(p - 1)] satisfies 
the characteristic equation. 

(c) Using A derived in (b) show that the eigenvector v that satisfies 
(E - AI)v = 0 is given by v = i/ .;p. 

(d) Let Al and VI denote the eigenvalue and eigenvector determined 
in (b) and (c). Show that all remaining eigenvalues are equal to 
Aj = (72(1- p), j = 2, ... ,p, and all remaining eigenvectors are 
orthogonal to the vector i. 

9. Two pairs of orthogonal axes XI, X2 and ZI, Z2 are related by the 
equations 

Zl Xl COS q, + X2 sin q, 

Z2 -Xl sinq, + X2 cosq" 

where q, represents the angle ofrotation between the X1 ,X2 axes and 
the Zl, Z2 axes. 

(a) Given the covariance matrix E = [~ V;] of [ i~ ], show 

that the eigenvectors and eigenvalues of E are given by Al = 6, 
A2 = 2 and 

_ [ v'3/2 ] 
VI - 1/2 ' [ -1/2 ] 

V2 = v'3/2 . 

Give the equations relating the components Zl and Z2 to Xl 
and X 2 . 

(b) Show that the angle q, of rotation from Xl to Zl is 30°. 

10. The factor analysis model requires that the correlation matrix be 
expressible as p = AA' + lP, where lP is a diagonal matrix, p(p x p), 
lP(p x p) and A(p x r). 
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(a) Assume r = 1 and p = 3 and denote the elements of A, p and 
!li by 

A= 

Show that the model yields the six equations given by 

(b) Assume p is the correlation matrix 

[ 
1 0.8 0.6] 

0.8 1 0.2 
0.6 0.2 1 

and show that 

al J12/5 
a2 J4/15 
a3 J3/20. 

(c) What does the solution for al imply about 0"~1 and how does 
this violate the conditions of the model? Is this called a Heywood 
case? 

(d) Determine a condition on the parameters 0"12,0"13 and 0"23 that 
would eliminate any Heywood cases. If the partial correlation 
between variables 2 and 3 given variable 1 is given by (0"23 -

0"120"13)/[(1 - O"r2)(1 - O"r3W/2 what does your condition say 
ab out this partial correlation coefficient? Can you draw a general 
conclusion about when a one factor model can be used in place 
of three variables? 

( e ) For the model in (a) there were precisely six unknowns and six 
equations. Assuming E known in general and A and !li given 
above, how many independent equations usually result and how 
many unknowns must be solved? Give a minimum condition 
on the relationship between p and r in order for there to be a 
sufficient number of equations. 
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11. Given the estimated factor model 

R=AA' +~ and X=AF+U, 
I ............. ....... , 

where E[UU I = q, and 'li = UU , by referring to the weighted least 
squares estimator in multiple regression, explain why the estimates 
of the factor scores given by 

are called weighted least squares. 

[ 
1.00 0.63 0.45] 

12. Given p = 0.63 1.00 0.35 . 
0.45 0.35 1.00 

(a) Show that the standardized variables Xl, X2 and Xa can be 
generated by the single factor model 

Xl = 0.9 FI + UI 

X 2 = 0.7 FI +U2 
Xa = 0.5 FI +Ua, 

where V(Fi ) = 1, Cov(Ui , Fi ) = 0, i = 1,2,3 and 

[ 
0.19 0 0] 

'li = 0 0.51 0 
o 0 0.75 

by showing the p = AA' + 'li where A = 0.7 . [ 0.9] 
0.5 

(b) The eigenvalues and eigenvectors of the correlation matrix p 
above are 

[ 
1.96] 

..\ = 0.68 
0.36 

[ 
0.625 -0.219 0.749] 

and V = 0.593 -0.491 -0.638 
0.507 0.843 -0.177 

respectively. Determine the factor loadings for a one-factor model 
based on this principal component solution and compare the 
loadings to the solution in (a). 

(c) Compare the communalities for the one factor models obtained 
in (a) and (b). 

Johnson and Wiehern (1988). 
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13. Assume that the three variables Xl, X 2 and 1 have mean 0 and 
variance 1 and let Corr(Xl ,X2) = Tl2, Corr(Xl,f) = Corr(X2 ,J) = 
TI' 

(a) Show that if the angle between 1 and Xl and between 1 and 
X2 is 9, where TXd = TX21 = cos9 then the largest possible 
angle between Xl and X 2 is 29 and hence the minimum value 
of Tl2 = cos29. Show that if TX1/ = TX21 = 0.707 then the 
minimum value of Tl2 is O. HINT: Show that the angle between 
Xl and X 2 is maximized if Xl, X 2 and 1 are in the same plane 
with Xl and X 2 on opposite sides of I. From Mulaik (1972). 

(b) Suppose Xl and X 2 satisfy the factor model 

Xl = 0.7071 + Ul 

X 2 = 0.7071 + U2 

Corr(UI U2 ) = 0, 

Corr(f, U2 ) = 0, 

Corr(f, Ud = O. 

Show that Corr(Xl, X 2 ) = 0.50 and that the partial correJ.a.... 
tion between Xl and X 2 controlling for 1 is O. What condition 
given in the model ensures that this partial correlation is zero? 
Explain. 

(c) Determine the communality and specific variance for each of the 
variables Xl and X 2 in (b). 

14. (a) Given the correlation matrix for Xl and X 2 

= [1 T12] 
P Tl2 1 ' 

show that the eigenvalues and eigenvectors are given by 

A = [ 1 + Tl2 ] , 
1- Tl2 

[ .;2/2 -.;2/2] 
V = .;2/2 .;2/2 . 

(b) Show that, if the first standardized principal component is used 
as the factor 1 in the one-factor model 

Xl = ad+UI 

X 2 = a2/+U2, 

then Cov(Ul, U2 ) = 0 is only satisfied if T12 = 1. 

(c) Suppose that Xl and X 2 are both dependent on another factor, 
say g. How does this assumption affect the previous assumption 
that Cov(Ul, U2 ) = O? 

(d) What general statement can you make about the assumptions 
in the factor analysis model x = Af + U given the result in (c). 
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15. Given an (n x p) matrix X of rank p, denote the singular value de­
composition by X = UDV', where U, D, and V are defined in 
Section 9.3. 

(a) Show that X'X = V'AV and XX' = UAU', where A = D 2 
and relate V, A and U to the principal components Z of X'X 
and W of XX'. 

(b) 
~ , ~ 

Let X = U1Dl V l where X is based on the first two diago-
nal elements of D (denote by Dd. Explain why abiplot that 
plots U lDl and V 1 simultaneously in two dimensions is called 
a principal components plot. 

(c) Assume that the columns of X are mean-corrected and denote 
the singular value decomposition of X by GH where H = DV' / 
(n - 1)1/2 and G = (n -1)U. Show that HH' = VD2V' = S 
where S is the covariance matrix for the variables in X and 
GG' = X'S-lX. 

(d) Use the information in (c) to provide an interpretation for the 
columns of Hand the rows of G, and hence interpret the biplot 
that plots the first two columns of G and the first two rows of H. 

16. Show that the Pearson Chi-square statistic for testing independence 
in a two-dimensional contingency table can be written in the forms 
shown in equations (9.2) to (9.6) given in Section 9.4.1. 

17. Review the theory of singular value decompositions given in the Ap­
pendix and show that the generalized singular value decomposition 
given by 

0= A*D*B*' where A*'D-1A* = B*'D-1B* = I 
I-' ' r c' 

can be expressed as a singular value decomposition given by 

F = D-l/20D-l/2 = LD* M' where L'L = M'M = I 
r CI-" 

by defining L and M appropriately. 

18. Given the singular value decomposition of F = D;1/20D;;-1/2 = 
LD:M'where L'L = M'M = I, review the theory of matrix decom­
positions in the Appendix and show that spectral decompositions of 
FF' and F'F are given by 

FF' = LD*2L' and F'F = M'D*2M. 
I-' I-' 

In each case give the eigenvalues and eigenvectors. What is the rela­
tionship between L and M? 
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19. Given that the generalized singular value decomposition of (0 - rc') 
is given by ADI'B' where A'D;l A = B'D;;-lB = I and that the 
coordinates of row and column profiles are given by F = D;l(O -
rc')D;;-lB and G = D;;-l(O - rc')'D;l A show that F = D;l ADI" 
G = D;;-lBDI' and GDI' = D;;-lO'F, FDI' = D;lOG. HINT: Show 
that r'D;l(O - rc') = 0' and (0 - rc')D;;-lc = o. 

20. Given the definitions of SSA and SST in Section 9.4.3 derive the 
expressions 

SSA 

SST 

= nz'0'D-10z - nz'cc'z r 

= nz'Dcz - nz'cc'z. 

21. Define a Lagrangian expression to maximize the quantity Z'O'D;lOZ 
subject to z'Dcz = 1, and show that finding the maximum involves 
solving the eigenvalue problem given by (D;;-10'D;10 - 772I)Z = o. 
Show also that 772 is the required maximum. [HINT: 772 is the required 
Lagrange multiplier]. 

22. Assume you have observations on three categorical variables in the 
form of a 2 x 2 x 2 three-dimensional contingency table. Construct 
a Z matrix of indicator variables to be used in a multiple correspon­
dence analysis. Construct the Z* and Burt matrices as outlined in 
Section 9.4.5, and hence confirm that the nonzero observations in the 
rows of Z* are cell frequencies and that the Burt matrix consists of 
block diagonal elements of frequencies and off-diagonal blocks which 
are two-dimensional contingency tables. 

23. Assume that correspondence analysis is to be applied to a three­
dimensional contingency table after constructing a single dimension 
from the cross classification of two of the original three dimensions. 
Explain why a correspondence analysis in this case represents the 
study of the residuals from a partial independence model introduced 
in Chapter 6. 



10 

Cluster Analysis and 
Multidirnensional Scaling 

This chapter continues the discussion of data reduction techniques begun in 
Chapter 9. In Chapter 9 the focus was on reducing the number of variables 
or columns of the data matrix X. Chapter 10 begins by focusing on the 
reduction of the number of rows of X. Since the rows of X represent obser­
vational units, the approach is to combine the units into groups of relatively 
homogeneous units called clusters. For this approach to data reduction, the 
various techniques available are commonly called cluster analysis. 

In principal components analysis, the starting point is a sum of squares 
and cross products matrix of the form X'X, which is usually a covari­
ance matrix or correlation matrix. These matrices are used to measure 
the degree of similarity in variation among pairs of variables over the ob­
servational units. Variables that are similar tend to have relatively large 
off-diagonal elements in X'X whereas variables that are not related tend 
to have relatively small off-diagonal elements. 

In cluster analysis, the starting point is a proximity matrix that measures 
the similarity of the observational units over the variables. The proximity 
matrix can often be obtained from X using the matrix XX', which is a sum 
of squares and cross products matrix for observational units. Off-diagonal 
elements of XX' that are relatively large correspond to objects that are 
similar. As in the case of principal components analysis, the form of XX' 
can vary depending on whether the X variables have been mean-centered 
or standardized. 

In some situations, it is difficult to obtain precise measurements in the 
form of a data matrix X however, it is possible to obtain a proximity 
matrix that provides information about the degree of similarity among the 
observational units. Under the assumption that the measures of proximity 
are ordinal measures and that they actually represent some underlying 
interval scale measures, it is possible to determine interval dimensions that 
are consistent with the given proximities. Such techniques are commonly 
referred to as multidimensional scaling. Multidimensional scaling is used to 
determine a low-dimensional graphical representation of the relationships 
among the objects given by the proximity matrix. In multidimensional 
scaling the given matrix of proximities is used to generate a matrix of the 
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form XX'. This sum of squares and cross products matrix is then used to 
generate the underlying dimensions. 

This chapter begins with an outline of how proximity matrices can be de­
rived from data matrices. The section on proximity matrices also discusses 
the measurement of proximity between groups of observational units. Sec­
tion 10.2 then outlines a variety of approaches to cluster analysis. The dis­
cussion of cluster analysis uses the various measures of proximity outlined 
in Section 10.1. Multidimensional scaling is presented in Section 10.3. 

10.1 Proximity Matrices Derived from Data 
Matrices 

The multivariate data matrix X (n x p), consists of observations obtained 
from the measurement of n subjects or objects with respect to p features 
or characteristics. The p columns of X are usually referred to as variables 
whereas the n rows are commonly called the profiles or patterns of the 
observational units. The term profile has been used previously in this text 
to refer to row or column densities for contingency tables (Chapters 6 and 9) 
and to refer to the components of a multivariate mean vector (Chapters 7 
and 8). A profile is simply a vector of measurements whose elements are 
to be compared. In this chapter the profiles are the n (1 x p) vectors that 
constitute X. 

A proximity matrix is an (n x n) matrix that summarizes the degree of 
similarity or dissimilarity among all possible pairs of profiles in X. This 
matrix is denoted by P with elements Prs, r,8 = 1,2, ... , n. The element 
Prs denotes the proximity measure between observational units r and 8. The 
matrix XX' is an example of a proximity matrix. A variety of measures 
of proximity are introduced in this section. Proximity measures are also 
introduced for relating two groups of observational units in Section 10.1.2. 
The proximity measures introduced are employed in Sections 10.2 and 10.3 
in the study of cluster analysis and multidimensional scaling. 

To provide examples tbroughout this section, the air pollution data in­
troduced in Chapter 9 are used. Table 10.1 shows the observations for 10 
of the 40 cities introduced in Table 9.7. Table 10.1 also contains the stan­
dardized data obtained by subtracting the variable means and dividing by 
the variable standard deviations. Because the 11 variables use a variety of 
measurement scales it is sometimes preferable to standardize the variables 
to obtain a common scale. In the next section we will be concerned with 
the measurement of proximity among these 10 cities. 
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10.1.1 THE MEASUREMENT OF PROXIMITY BETWEEN 

OBJECTS 

Proximity measures usually reflect the degree of similarity or the degree of 
dissimilarity. As two objects become more similar, the value of a similarity 
measure increases whereas the corresponding dissimilarity measure declines 
in value. An example of a similarity measure between two objects is a 
correlation coefficient between the objects based on the P measurements. 
An example of a dissimilarity measure based on the same P observations is 
the Euclidean distance between the two objects. The two types of proximity 
measures are defined more generally by the properties summarized below. 

Similarity 

Given two objects T and s, the proximity measure Prs is a measure of 
similarity if Prs satisfies the following: 

1. 0 ~ Prs ~ 1 for all objects T, Sj 

2. Prs = 1 if and only if T and s are identicalj 

3. Prs = Psr· 

The most common measure of similarity is the Pearson correlation coeffi­
cient. Since a correlation coefficient has the range [-1,1], it is customary 
to use either the absolute value of the coefficient or to add 1.0 to the value 
of the coefficient and then divide the result by 2. In either case the re­
vised coefficient lies in the required range. Similarity proximity measures 
are sometimes called Q-type or correlation-type measures. 

Dissimilarity 

A proximity measure Prs is a measure of dissimilarity if Prs satisfies the 
following: 

1. Prs ~ 0 for all objects T, Sj 

2. Prs = 0 if objects T and s are identicalj 

3. Prs = Psr· 

The most commonly used measure of dissimilarity is the Euclidean dis­
tance. An alternative measure of dissimilarity is the Mahalanobis distance 
between two observations introduced in Chapter 7. Dissimilarity measures 
are commonly referred to as distance-type measures. 

An outline of dissimilarity measures is provided next, followed by a dis­
cussion of similarity measures. The relationship between correlation-type 
measures and distance-type measures is discussed in connection with pro­
files. The section ends with a discussion of proximity measures for categor­
ical data. 
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X r 2 

__ ~~ __ J-____ -L ____ ~ __________ XI 

i. 1 Xrl 

FIGURE 10.1. Two-Dimensional Representation of Proximity Between Two 
Points 

Euclidean Distance 

The rth and sth rows of the data matrix X will be denoted by (Xrl, Xr2, 

... , xrp ) and (xst. X s2, ••• , x sp ) respectively. These two rows correspond to 
the observations on two objects for all p variables. Geometrically, the two 
profiles can be viewed as the coordinates of two points in a p-dimensional 
space. A convenient measure of dissimilarity between the objects r and s 
can be obtained from the Euclidean distance between the two points. This 
distance is denoted by drs where 

p 

d~s = ~)Xrj - X S j)2. 

j=l 

The quantity a:.8 will be referred to as the squared Euclidean distance. 
For two (p = 2) dimensions the distance between objects r and s can be 

represented as shown in Figure 10.1. In this case the square ofthe Euclidean 
distance is given by 

The quantities can be related to the sides of a triangle formed by the points 
r, s and t in Figure 10.1. 

Using Mean-Centered Variables 

It can be seen from the expression for a:.s that the Euclidean distance be­
tween r and s would be unaffected if the variables Xl and x2 were each 
mean-corrected or mean-centered. The mean (Xrl + xs I)/2 would be sub­
tracted from both Xrl and Xsl and similarly the mean (Xr2 +xs2)/2 would 
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FIGURE 10.2. Scatterplot for Ten Cities 

be subtracted from X rB and X s2' The resulting value of lP"s therefore would 
remain unchanged. This result extends to the case of p variables in a similar 
fashion. 

Example 

A scatterplot is used in Figure 10.2 to show the variation among the ten 
cities of Table 10.1 with respect to the two pollution measures SMIN and 
PMIN. With respect to these two measures we can see from the figure that 
Washington and Scranton are furthest away from the remaining eight cities. 
The city of Scranton is quite far away in that it is twice as far from the 
group in comparison to Washington. The cities of Los Angeles, Salt Lake 
and Minneapolis are quite close to each other as are the cities of Wichita, 
Columbus and Montgomery. 

To study the relationships among the ten cities with respect to all 11 
dimensions, a proximity matrix of squared Euclidean distances can be used. 
Table 10.2 shows this Euclidean distance proximity matrix based on the 
measurements given in Table 10.1. From the table it would appear that 
Albuquerque is quite distant from all other nine cities. Scranton also tends 
to be distant from the other nine cities. The two closest cities are Columbus 
and Wichita. Another similar pair is Los Angeles and Salt Lake. Excluding 
Albuquerque and Scranton the remaining seven cities all seem to be close 
to Minneapolis. 
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Euclidean Distance in Matrix Form 

Given an (n x p) data matrix X with (1 x p) row vectors ~,x~, ... ,x~, 
the square of the Euclidean distance, cP,.s' between objects r and 8 can be 
written as 

r, 8 = 1,2, ... , n. 

The (n x n) matrix of cP,.s values is often called a squared Euclidean distance 
matrix. 

If tbe p X variables are mean-centered the data matrix is denoted by X* 
as defined in Section 7.1.1 of Chapter 7. Since removing the means from 
tbe p variables does not affect tbe distance between two points, tbe squared 
Euclidean distance between objects r and s is given by 

r, s = 1,2, ... , n, 

where X;' and x;' are tbe corresponding rows of X* . 

Standardized Euclidean Distance 

A disadvantage of tbe Euclidean distance as a measure of proximity is 
its sensitivity to the scales of measurement. It is possible for one or a 
few variables to dominate the distance measure because of large differ­
ences in scale. In general, if the scales of measurement are not common 
for all p variables, it is preferable to use a weighted distance given by 
L:~=1 Wj(xrj - Xsj)2 where the weights Wj reflect the importance of the 
variables j = 1,2, ... ,p. 

A special case of the weighted Euclidean distance is the standardized 
Euclidean distance. The standardized Euclidean distance is given by 

where s~, j = 1,2 ... ,p denotes tbe variance of the variable X j over the n 
objects and D is the diagonal matrix witb diagonal elements given by s~, 
j = 1,2, ... ,p. Tbe (p x 1) vectors Xr and Xs denote the observations on 
the two profiles. 

Computer Software 

The calculations in this section were performed using the SPSSX program 
PROXIMITIES. 

Example 

The proximity matrix of squared Euclidean distances based on the stan­
dardized observations in Table 10.1 is sbown in Table 10.3. In this case 
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the two closest eities are Columbus and Montgomery. The eities of Salt 
Lake, Wichita and Minneapolis are quite close to each other and similarly 
Atlanta, Washington and Los Angeles are relatively close. As observed pre­
viously, Albuquerque and Scranton are distant from each other and from 
the remaining eight cities. 

Mahalanobis Distance and Multivariate Distance 

An extension of the system of weights that also takes into account the co­
variances among the variables is given by the Mahalanobis distance (x,. -
x s ),S-I(Xr -xs ) introduced in Section 7.1.1. This distance is called a multi­
variate measure of distance since it takes into account the covariance struc­
ture among the p variables. If the original variables are first transformed to 
principal components before computing the Euclidean distance, then the 
Euclidean distances based on all the principal components are equivalent 
to the Mahalanobis distances. The Mahalanobis distance may not be use­
ful as a measure of distance in some applications because it removes the 
correlation effects. These correlation effects may be important elements in 
distinguishing between objects and hence should not be removed. 

Euclidean Distance and the Centroid 

The Euclidean distance between two profiles, drs, can be related to the 
centroid between the two objects. Denoting the mean on variable j by x'j, 
[x.j = (xrj+xs j)/2], the centroid is given by (X'I,X'2,'" ,x.p ). The squared 
Euclidean distance can be written as 

p p 

d~s = 2 [~)Xrj - X.j)2 + ~)X8j - x.j)2] . 
j=1 j=1 

(10.1) 

Each of the two parts on the right-hand side of (10.1) represents the 
square of a distance between a profile and the centroid of the two profiles. 
The sum represents the sum of squared deviations of the two profiles from 
their centroid. Thus the variation 0/ the two profiles around their centroid 
is proportional to the square of the distance between them. This variation 
between the two profiles can also be characterized as the variation within the 
group formed by joining the two profiles. This characterization will be used 
in the discussion of cluster analysis in Section 10.2 For the two-variable case 
Figure 10.1 shows the centroid as the midpoint of the line joining points r 
and s. 

Manhattan or City Block Metric 

An alternative distance-type metric is the Manhattan or city-block metric, 
which is based on the absolute values of the differences among the coordi-
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nates. This metric is given by 
p 

brs = ~)Xrj - xsjl. 
j=1 

For the two-dimensional C8Be in Figure 10.1, the distance brs represents the 
sum of the distances from points r to t and from points 8 to t. With the city 
block metric, a constant difference between each of the P coordinates in the 
amount a has the same effect on total distance as changing the difference 
between one set of coordinates by the amount pa. This is not true for the 
Euclidean distance metric where the distance in the second C8Be would be 
larger than in the first C8Be. The city-block metric therefore is much less 
sensitive to outliers. 

Minkowski Metrics 

The Euclidean distance and city-block metrics are special cases of the 
Minkowski metric which is given by 

[ 
p ] 1/ A 

m rs = L IXrj - xrslA • 

j=1 

The Euclidean and city-block distances correspond to A = 2 and A = 1 
respectively. In general the larger the value of A the greater the empha­
sis given to differences in coordinates on a given variable. In addition to 
the three properties of a dissimilarlty measure given above, an Minkowski 
metrics also satisfy the following: 

4. Prs = 0 only if X r = xs ; 

5. Prs ~ Prm + Pms for all points r, s and m. 

Distance MeasuTes Averaged over Variables 

Some users of distance measures choose to divide the distance measure 
by the number of variables in the expression. For example the squared 
Euclidean distance and Euclidean distance are sometimes given by 

and 

1 p 

- L(xrj - XSj)2 
P j=1 

1 [ P 2] 1/2 
- L(Xrj - Xsj) , 
P j=1 

respectively. This modification does not affect the results when measuring 
proximity since all such measures are divided by the same amount. Some 
software packa.ges use these versions of the distance and squared distance 
measures. 
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Correlation Type Measures 0/ Similarity 

An alternative approach, to the measurement of proximity between two 
points r and s in a p-dimensional spa.ce, is to use the angle between the 
two (p x 1) vectors of observations x,. and XS ' In Figure 10.1 the profiles 
of objects r and s are shown as points in two-dimensional spa.ce. The two 
points can be viewed as tips of vectors drawn from the origin with an angle 
() between the two vectors. A useful measure of similarity is the eosine of 
the angle (). 

In general the eosine of the angle between the vectors X r and X s is given 
by 

p 

Crs = L XrjXsj / 
j=l 

p p 

LX~jLX~j' 
j=l j=l 

It can be seen from Figure 10.1 that Crs does not depend on the lengths 
of the two vectors, and hence proportional changes in the coordinates x,. 
and/or X s will not change Crs. The quantities L~=l X~j and L~=l X~j are 
the squared lengths of the vectors. This eosine coeffieient is also sometimes 
referred to as the eongrueney coeffieient. 

The profiles x,. and X s can be mean-centered to yield (x,. - xroe) and 
(xs - xsoe), where e (p x 1) is a vector of unities and xro = L~=l Xrj/p 

and Xso = L~=l XSj/p are the means for profiles r and s respectively. 
The eosine of the angle between the mean-centered vectors is equivalent 
to the Pearson correlation between the vectors x,. and x s . The resulting 
eorrelation coeffieient similarity measure is given by 

p 

= L(Xrj - xro)(xsj - xso) / 
j=l 

p 

L(Xrj - Xro)2 L(Xsj - x s.)2. 
j=l 

The measures Crs and qrs are often called Q-type measures of similarity. 
A disadvantage of the Q-type measure of similarity is its sensitivity to the 
direction of the scale of measurement for each of the variables. If some items 
are measured in the positive direction (i.e., honest, sociable) and others 
are measured in the negative direction (i.e., tardy, sloppy) the number of 
positive and negative type measures will affect the overall profile means 
and hence the value of qrs' In such cases some scales could be reversed so 
that the directions are all the same. 

As discussed earlier, since correlation type measures have the range 
[-1, 1], it is customary to use either the absolute value of the coefficient or 
to add 1.0 to the coefficient and divide the resulting sum by 2.0. 
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Example 

For the ten-city data of Table 10.1 the eosine and correla.tion measures of 
simila.rity are shown in Tables 10.4 and 10.5 respectively. The eosine mea.­
sure of proximity emphasizes the similarity in pattern of variation over the 
variables rather than the absolute level. Prom Table 10.4 we can eonc1ude 
that Albuquerque continues to show a weak similarity with the other nine 
cities. The proximities among the other nine cities however show eosine val­
ues c10se to 1. In eomparison to the Euelidean distanees in Tables 10.2 and 
10.3, Seranton now shows a strong similarity with the other eight cities. 
The eosine of the angle between Los Angeles and Seranton is very c10se 
to 1. 

The correlation proximity matrix is given in Table 10.5. For this matrix 
Albuquerque shows a high eorrelation with Atlanta. Thus after eorrecting 
for the differences in the overall levels these two profiles exhibit similar 
patterns of variation over the eleven variables. The strongest eorrelation in 
the matrix is between Los Angeles and Salt Lake (0.99), whereas the weak­
est correlations are between Albuquerque and ea.ch of the cities Columbus, 
Minneapolis and Wiehita. In addition to Albuquerque, the city of Mont­
gomery also appears to be somewhat different from the other eight cities 
when eorrelation is used to measure similarity. 

Similarity Matrices 

The similarity measures derived from Q-type proximities can be summa.­
rized in an (n x n) sum of squares and eros8-products matrix for objects 
rather than variables. For the data matrix X the matrix XX' (n x n) is a 
raw sum of squares and eros8-produets matrix for the n objects. For the eo­
sine eoefficient, the similarity matrix is derived from the matrix X+ where 
X+ is the standardized X matrix given below. 

Xu X12 XII! 

(E x~.)1/2 
j=l 3 

( E x~.)1/2 
j=l 3 

( E x~.)1/2 
j=l 3 

X21 X22 X2.l! 

X+= ( E x~.)1/2 
j=l 3 

( E X~.)1/2 
j=l 3 

(E x~.)1/2 
j=1 3 

Xul Xu 2 Xn.l! 
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For the eorrelation eoefficient qrs, the data matrix is given by X++, which 
eontains mean-centered and standardized measurements as shown below. 

(Xll-XI-} (X12 -xI-} (XlI! - xd 
Sl Sl Sl 

X++= (X21 - X2.} (X22 - X2.} (X21! - X2.) 
S2 S2 S2 

(Xn 1 - xn .} (Xn2 - xn .} (Xnl! - xn .) 
Sn Sn Sn 

The quantities Xr. and Sr are given by Xr· = Er=l Xrj/p and Sr = Er=l (xrj 

-xr .)2/p, r = 1,2, ... ,n. 
A third form of X matrix involves mean-centered profiles that have not 

been standardized. In this ease the XX' matrix is proportional to a eovari­
anee matrix among the profiles. 

Double Mean-Centered 

U the observations are first of all mean-eentered by variables and then 
mean-eentered by row, the resulting observations are given by (Xij - Xi. -

X.j + X .. ) where 

and 

P 

Xi· = LXij/p, 
j=l 

n 

X.j = LXij/n, 
i=l 

n p 

x .. = LLXij/np. 
i=l j=l 

In this ease the elements of the revised data matrix have no row effects and 
no eolumn effects and are said to be double mean-centered. This transfor­
mation will be used in multidimensional sealing. 

Profile Shape, Scatter and Level 

When the variables all have the same seale of measurement (or are stan­
dardized) an alternative geometrie representation that ean be used to eom­
pare two or more profiles is the profile plot. An example of two profile plots 
is shown in Figure 10.3. The p observations corresponding to a partieular 
profile are plotted in order of the eolumns of X. The variation among the 
observations and the level or magnitude of the observations ean be quickly 
observed from the profile plot. In addition the profiles eorresponding to two 
or more objects ean be eompared using a profile plot. 
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X Observation 
Value 

2 3 4 5 6 7 8 9 10 

FIGURE 10.3. Profile Comparison 

Variable 
Number 

In Figure 10.3, the squared Euclidean distance a;.s between objects r and 
s can be viewed as the sum of squared distances between the two values 
shown for each variable. When comparing the two profiles it is possible to 
compare the overall levels, the scatter and also the shape. 

The level of the rth profile is given by the mean of the p observa­
tions, xr. = E~=l Xrj/p. The scatter of the rth profile is given by v; = 

E~=l (xrj - xr.)2, which represents the variation of the profile observations 
around the mean level xr .. In Figure 10.3 the profile levels xr. and xs. are 
shown for the two profiles. The two profile scatters v; and v; measure the 
variation of the profiles around the levels xr . and xs. respectively. 

The shape of a profile is measured relative to a second profile by com­
puting the Pearson correlation coefficient qrs between the two profiles. The 
closer that qrs is to 1, the greater the tendency for the two profiles to 
display the same shape or pattern. 

The square of the Euclidean distance between the two profiles a;.s can 
be expressed in terms of the measures of level, scatter and shape. The 
relationship is given by 

(10.2) 

This expression shows that the Euclidean distance consists of three com­
ponents reflecting differences in scatter, level and shape in that order. The 
component (xr . - xs .)2 reflects differences in level whereas the component 
(vr - vs)2 reflects differences in scatter. Finally the component (1 - qrs) 
reflects differences in shape. 

In some applications the measurement of scatter and shape are combined 
and referred to as shape. In this context, profiles are compared with respect 
to level using p(xr. - xsY and with respect to shape using d;s - p(xr. -
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i B.)2 = [v~ + v~ - 2vrvBQrB]' In this e88e, the shape coefficient represents 
the squared Euclidean distanee between the mean-eorrected profiles given 
by 

p 

tr,./ = ~)x;j - X:j)2, 
j=1 

where X;j = (xrj - i r.) and x:j = (xBj - i B.). 
H the profiles are mean-centered the level eomponent disappears. H in 

addition the profiles are standardized with respect to scatter the squared 
Euelidean distanee becomes tf!.B = 2(1 - QrB)' which simply reflects the 
difference in shape. Consequently for standamized profiles there is a simple 
relationship between Euclidean distanee and the correlation coefficient. 

Example 

The profiles for the ten cities with respect to the 11 variables are plotted 
in Figure 10.4. Since the variables should all have the same scale of mea­
surement the standardized data from Table 10.1 has been used to produee 
the four plots. The first profile plot in panel (a) eompares the cities of 
Albuquerque and Seranton. These two cities appear to be quite distinct 
with respect to SMEAN, SMAX, SMIN and GE65. Seranton has relatively 
high values for all six pollution variables, and Albuquerque has relatively 
high values for the three P variables (PMAX, PMEAN, PMIN) and rela­
tively low values for the three S variables (SMAX, SMEAN, SMIN). The 
two cities are quite similar with respect to the demographie variables PM2, 
LPOP, PERWH and NONPOOR. In Scranton, the proportion of individu­
als over age 65 is relatively high whereas for Albuquerque this proportion 
is relatively low. 

The second panel (b) eompares the profiles for Columbus and Mont­
gomery. The two profiles are quite similar and all observations are negative. 
The two cities appear to have relatively low values for all 11 variables. 

The third panel (e) eompares the profiles for Minneapolis, Salt Lake and 
Wichita and the fourth panel (d) compares the profiles for Los Angeles, 
Washington and Atlanta. In both e88eS the three cities in the plot appear 
to have a lot in eommon. From the plots in panel (e) Minneapolis appears 
to lie between Salt Lake and Wichita on the six pollution variables and for 
the demographie variables Salt Lake lies between Wichita and Minneapolis. 
In panel (d) the three profiles eross frequently. A eomparison of panels (e) 
and (d) indieates that the three cities in panel (e) tend to have lower 
values than the three cities in panel (d). The squared Euelidean distanees 
in Table 10.3 however indieate that the six cities have a lot in common. The 
largest differenees appear to be between Wichita and each of Los Angeles 
and Washington. 
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FIGURE 10.4. Profiles for Ten Cities 

Sorne Relationships between Similarity and Euclidean Distance 

The above discussion of profile plots has illustrated the relationship between 
the Euclidean distance ~s between two profiles and the differences in level, 
scatter and shape. It is also of interest to relate the Euclidean distance to 
the elements of the matrix XX'. The quantity ~s is given by 

p p p p 

d~s = ~)Xrj - X sj)2 = L X~j + L X~j - 2 L XrjXsj 

j=1 j=1 j=1 j=1 

and hence the three components of ~s can be obtained from the elements 
ofXX'. 
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H the measurements for each profile are standardized so that L~=1 X~j = 
L~=1 x~~ = 1, the Euclidean distance becomes lP,.s = 2(1- L~=1 XrjXsj) = 
2(I-Crs). H in addition the measurements for each profile are standardized 
so that Lr=1 Xrj = Lr=1 Xsj = 0, then lP,.s = 2(1 - qrs). 

The relationship between lP,.s and the cosine measure of similarity can 
also be obtained from the cosine law in trigonometry. The squared Eu­
clidean distance lP,.s can be expressed as 

d~s = ~ + ~ - 2drds cos9, 

where ~ and ~ denote the squared lengths of the vectors Xr and X s given 
by lP,. = L~=1 X~j' ~ = L~=1 X~j and where eos 9 is the eosine coefficient 

Crs = L~=1 XrjXsj/drds. 

H lP,. = ~ = 1 then lP,.s = 2(1 - cos 9) and if L~=1 Xrj = L~=1 Xsj = 0, 
then lP,.8 = 2(1 - qrs) where qrs is the correlation between the profiles. 

From the above relationships between lP,.s and the correlation type mea­
sures Crs and qrs a Euclidean distance matrix can be obtained from a simi­
larity matrix. Q-type similarity measures are often converted to Euclidean 
distance measures to employ computer algorithms for cluster analysis. 

Proximity Measures for Categorical Data 

Up to this point in the discussion of proximity measurement between rows 
in data matrices, it has been assumed that the values of the variables were 
measured on an interval scale. In this section the concept of proximity is 
extended to categorical variables. Assume that al1 p variables are categor­
ical with the number of categories for each variable equal to k1 , k2, ... , kp 

respectively. Assume that the columns of the X matrix are now composed 
of dummy variables representing the categories of the p variables. The t~ 
tal number of dummy variables required is K = Lr=1 kj and hence for 
n observations the X matrix is now (n x K). Each row of the X matrix 
will contain precisely p unities and (K - p) zeros. There will be one unity 
corresponding to each variable. 

To measure the proximity between the rows of X the matrix XX' can be 
used. The diagonal elements of this matrix are all equal to p whereas the 
off-diagonal elements are equal to frs, where frs is the number of variables 
in which the two rows have the same categories (e.g., unities in common). 

The eosine coefficient of similarity between rows r and s in this case is 
given by 

K 

Crs = E XrjXsj / 
j=1 

= frs/P, 

K K 

EX~j EX~j 
j=1 j=1 

which is simply the proportion of the p variables in which the two rows 
matched. 
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The correlation coefficient between the rows r and s can also be obtained 
from X. Since each row has the same sum (P) and the sum of squares (P) 
the means and variances of the rows are equal to piKand pi K(1 - piK) 
respectively. The correlation between rows r and s in this case is therefore 
given by 

Since the means and varianees of the rows are all equal, the Euelidean 
distance drs between rows r and s is given by 

~s = 2K(I-qrs) = 2K(i - ;) 

= 2(p - frs). 

Example 

Assume the data matrix X is eonstrueted from observations made on three 
eategorical variables and that the variables have 2, 3 and 4 levels respec­
tively. Observations on the three eategorical variables ean be used to ereate 
a three-dimensional eontingeney table with dimensions 2 x 3 x 4. The total 
number of observations n is distributed over the 24 cells of the eontingeney 
table. The X matrix eonsists of 2 + 3 + 4 = 9 dummy variables with each 
row eonsisting of 3 unities and 6 zeroes. One of each of the 3 unities eorre­
sponds to each of the 3 variables. The n rows of X will eonsist of only 24 
types depending on the Ioeation of the 3 unities in each row. A eompari­
son of any 2 rows may yield 3, 2, 1 or 0 unities in eommon. If there are 3 
unities in eommon the rows are identieal. If there are 2 unities or 1 unity 
in eommon, then the rows agree with respect to two or one of the variables 
respeetively. If there is no agreement between rows the two objects have 
different eategories for all three variables. For the eosine measure of simi­
larity the possible values are 1, 2/3, 1/3 or 0 sinee frs = 3, 2, 1 or 0 and 
p = 3. For the eorrelation eoefficient measure the possible values are 1, 1/2, 
o and -1/2 eorresponding to the values of frs = 3, 2, 1, and 0 respeetively. 
Finally for the Euelidean distanee measure, the measures of dissimilarity 
are given by 0, 2, 4, and 6 eorresponding to the values of frs = 3, 2, 1 
and 0 respectively. The number of eases for each proximity measure will 
depend on the various eell frequencies. 

Matching Coefficients for Binary Variables 

In the special case that the p categorical variables each eontain only two 
eategories (binary), an alternative approach can be used to measure prox­
imity between subjeets. Each variable for each subjeet is eoded either 0 or 
1 to indieate which of the two attributes is present. A (2 x 2) table ean be 
used to describe the proximity in terms of the four possible eategories for 
each of p variables as shown in Figure 10.5. 
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row r 
o 

o a b 

row s 

c d 

FIGURE 10.5. Relationship Between Two Binary Variables 

In Figure 10.5, a represents the number of variables in which both sub­
jects were coded 0, and d represents the number of variables in which both 
subjects were coded 1. The sum (c + b) represents the number of variables 
in which the subjects had different coding. The total number of variables 
observed is p = (a + b+ c+ d). 

Two commonly used measures of similarity in this case are the simple 
matching coefficient and Jaccard's coefficient. For the simple matching co­
efficient the similarity measure is given by (a + d) J (a + b + c + d) which 
measures the proportion of variables in which the subjects have the same 
coding. 

For Jaccard's coefficient the similarity measure is given by aJ{a+ b+c). 
In this case the number of variables in which both subjects were coded 0 has 
been omitted. If the purpose of the measure of similarity is to indicate how 
similar the subjects are with respect to attributes present (coded 1) and to 
ignore the impact of attributes absent (coded 0), then Jaccard's coefficient 
is more appropriate. By excluding variables in which neither subject has the 
attribute, similarity is only measured with respect to attributes in common. 
If two subjects are both missing a large number of attributes it may not 
be desirable to say they are similar. For example in numerical taxonomy 
the Jaccard coefficient is often preferred. Since a fish and a bird have few 
attributes in common one would not want to say that the two species are 
similar. 

If the dummy variable X matrix is used for binary variables (2 columns 
for each X variable) as in the case of categorical data discussed above, 
the quantities K, p and frs are related to a, b, c and d in Figure 10.5 by 
p = (a + b + c + d), K = 2p and frs = (a + d). The measures of proximity 
introduced for categorical data are now given by Crs = (a+d)J{a+b+c+d), 
qrs = [(a+d) - (b+c)lJ(a+b+c+d) and cP"s = (b+c). The Crs measure is 
therefore equivalent to the simple matching coefficient and cP"s is obtained 
by subtracting the matching coefficient from 1. The correlation coefficient 
qrs in this case is commonly called the Hamann coefficient. 
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If in the case of binary variables an X matrix is formed by using 0-1 
coding (1 column per variable), a 0 appears in a column when the subject 
does not have the attribute and a 1 appears when the attribute is present. 
In this case the XX' matrix yields eosine and correlation measures given 
by 

Crs = dj[(b + d)(c + d)j1/2 

and 
qrs = (ad - bc)j[(a + b)(a + c)(b + d)(c + d)]1/2. 

The Crs coefficient is usually called the Ochiai coefficient and the qrs is 
referred to as the phi coefficient. 

There are many other binary similarity coefficients available. A large list 
of such coefficients can be found in the Proximities chapter of the SPSSX 
User's Guide. 

Example 

Table 10.6 shows the available grounds for divorce in 1982 for twenty se­
lected U.S. states. For each of the nine categories astate is coded 1 if that 
ground is available and is coded 0 otherwise. A comparison of the rows 
of the table allows one to conclude that the states of Washington, Mon­
tana, Oregon and Nebraska have identical responses with only one available 
ground "marriage breakdown" . The states of Rhode !sland, Massachusetts 
and New Hampshire also have identical rows. For these three states there 
are eight grounds available for divorce. Finally, the two midwestern states 
North Dakota and Oklahoma have identical rows. It is interesting to note 
that identical states seem to be located in the same geographical area in 
all three cases. 

To determine the similarity among all twenty states, similarity matrices 
were constructed using both the simple matching coefficient and Jaccard's 
coefficient. These two similarity matrices are displayed in Table 10.7. From 
the simple matching coefficients in the lower triangle of the table, we can 
observe that there are exact1y nine possible values of (a + d) which is 
the number of matches. Thus states with eight out of nine matches have 
the coefficient 0.889, and states with seven out of nine matches have the 
coefficient 0.778. From this table of similarities we can conclude that Florida 
is quite similar to the four western states of Nebraska, Montana, Oregon and 
Washington with a similarity of 0.889. Other examples of strong similarities 
are provided by Louisiana and South Dakota, Maine with each of North 
Dakota and Oklahoma and finally Texas with West Virginia. 

The upper triangle of Table 10.7 shows the similarities as measured by 
the Jaccard coefficient. For this coefficient, similarity is measured using 
only the grounds present not the grounds not present. Of course the states 
that are identical have the coefficient value 1.000 as above. The largest co­
efficient value less than 1 appears to be Maine with each of North Dakota 
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and Oklahoma with a coef6.cient of 0.875. For these three states, seven 
of the eight grounds that are available in North Dakota and Oklahoma 
are also available in Maine. All of the grounds available in Maine are also 
available in North Dakota and Oklahoma. An interesting comparison be­
tween the two similarity measures used in Table 10.7 is provided by the 
similarity measure between Florida and the four western states, Nebraska, 
Oregon, Montana and Washington. For the four western states, there is only 
one ground available "marriage breakdown" , whereas for Florida there are 
two grounds available: "marriage breakdown" and "insanity". The simple 
matching coef6.cient between Florida and each of the western states was 
0.889 whereas for the Jaccard coef6.cient the similarity measure is only 
0.500. The Jaccard coef6.cient simply indicates that only one of the two 
grounds available in Florida or Montana is available in both Florida and 
Montana. The fact that these two states are almost identical with respect 
to grounds not available does not influence the similarity measure. 

Mixtuf'eS 0/ CategoricaJ. and Interval ScaJ.es Variables 

H the data matrix X contains a mixture of dummy variables and interval 
scaled variables it is dif6.cult to combine the variables to determine a mea­
sure of similarity. One approach would be to standardize the variables or 
columns of X before computing the matrix XX'. 

A second alternative would be to compute separate measures of proximity 
for the categorical and interval variables and then to combine the two 
proximity measures using appropriate weights. A third alternative would be 
to convert the interval variables into categorical variables by constructing 
classes and then treating all the variables as categorical. 

10.1.2 THE MEASUREMENT OF PROXIMITY BETWEEN 

GROUPS 

In the previous section techniques were introduced for measuring the prox­
imity between objects or rows of a data matrix. In this section a variety of 
approaches are introduced for the measurement of proximity between two 
groups of objects. The purpose of studying the measurement of proxim­
ity among groups will be demonstrated in Section 10.2 with the outline of 
cluster analysis. 

Assume that two groups of objects denoted by s and r contain n s and nr 

objects respectively. The observations on the p variables for the n r objects 
in group r are denoted by Xrjm, j = 1,2, ... ,p, m = 1,2, ... ,nr , and 
similarly for group s the observations are denoted by Xsjm, j = 1,2, ... ,Pi 
m = 1,2, ... , ns • Figure 10.6 illustrates the notation for p = 2 variables. 
In the figure group r contains nr = 6 objects and group s contains ns = 
7 objects. The mth object in group r has the coordinates (Xrlm , Xr 2m) 

whereas the mth object in group s has the coordinates (Xslm , X s2m)' 
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-
xrz • 

~-----_-L--~-------_-L---L------Xl 

x r1 • x r1ffi XS1 • x S1ffi 

FIGURE 10.6. Measuring Proximity Between Groups 

A variety of possible approaches to the measurement of proximity be­
tween two grOUps are introduced in this section. The function Prs(j, k) is 
used to denote the measure of proximity between the jth object of group 
rand the kth object of group s. 

Single Linkage or Nearest Neighbor 

The single linkage or nearest neighbor measure of proximity between two 
groups is based on the strongest measure of proximity between objects 
in the two groups. Thus although there can be many objects involved, the 
proximity measure used is based on only one pair of objects. If a dissimilar­
ity measure such as Euclidean distance is being used to measure proximity, 
then the single linkage approach uses the smallest possible Euclidean dis­
tance measure between objects in the two groups. For a similarity measure 
such as a correlation coefficient the single linkage measure will be based 
on the maximum possible correlation between objects in the two groups. 
In Figure 10.6 the distance between Ar and As represents the smallest 
Euclidean distance between points in the two groups. 

Complete Linkage or Furthest Neighbor 

The complete linkage or furthest neighbor measure of proximity between 
two groups is derived from the weakest link between objects in the two 
groups. The complete linkage measure is therefore the opposite of the sin­
gle linkage measure. For a dissimilarity type measure such as Euclidean 
distance, the largest possible distance between objects in the two groups is 
used to represent the proximity between the groups. For a similarity mea-
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sure such as the correlation coefficient the smallest possible value over all 
possible pairs is used to measure the proximity. In Figure 10.6 the distance 
between Er and Es appears to be the largest distance between objects in 
the two groups. 

Average Linkage 

As an alternative to using the proximity measure based on only one of the 
possible pairs of objects, an average can be determined over all possible 
pairs of objects. If there are nr and ns objects in the two groups T and 
s respectively, there are a total of (nr ) ( ns ) paired measures of proximity. 
The average linkage measure is given by the average ofthese (nr)(ns) mea­
sures given by E;:l E~==l Prs(j, k)/nrns. The average linkage is sometimes 
referred to as UPGMA which stands for "unweighted pair group method 
using averages." 

Example 

To illustrate the application of these between-group measures of proximity 
the ten city data will be used. Various measures of proximity between the 
two groups [I] [Columbus, Montgomery] and m [Salt Lake, Wichita] are 
determined. The squared Euclidean distances in Table 10.8 were obtained 
from Table 10.3. 

The single linkage measure of proximity between groups [I] and m is 
the minimum of the distances between elements in the two groups given by 

P12 = min(23.4, 14.4, 30.9, 19.2) = 14.4. 

The complete linkage measure is the maximum of these distances 

P12 = max(23.4, 14.4, 30.9, 19.2) = 30.9. 

The average linkage between the two groups is given by 

P12 = [23.4 + 14.4 + 30.9 + 19.2]/4 = 21.98. 

An Algorithm fOT Updating the Proximity Measures 

When objects or groups of objects are combined to form a new group, it is 
necessary to be able to revise or update the proximity measures between 
the new group and the remaining groups in the data set. A useful algorithm 
that can be used to revise the matrix of proximity measures is given by 

Ptu = O'.rPru + O'.sPsu + ßPrs + "YIPru - Psul (10.3) 

where 

1. t is the new reference for the group resulting from the combining of 
groups T and s. 
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TABLE 10.8. Squared Euclidean Distances Between Cities 

Columbus Montgomery Salt Lake Wichita 

ITJ { Columbus 0.0 2.8 23.4 14.4 
Montgomery 2.8 0.0 30.9 19.2 

0 { SaltLake 23.4 30.9 0.0 5.1 
Wichita 14.4 19.2 5.1 0.0 

2. u is the reference for some other group other than r or s. 

3. an a s , ß and 'Y are coefficients that depend on the proximity measure 
being used. 

Assuming the proximity measure being used is a dissimilarity measure, 
the complete linkage method employs a r = a s = ~, ß = 0 and 'Y = ~ 
whereas for the single linkage method the values are a r = a s = ~, ß = 0 
and 'Y = - ~. If the proximity measure is a similarity measure the values 
of 'Y are interchanged for the complete and single linkage methods. For the 
average linkage method, a r = nr/{nr + ns), a s = ns/{nr + ns), ß = 0 and 
'Y = O. 

Using the relationship (1O.3) allows the proximity matrix to be updated 
after groups r and s are combined to form the new group t. It is important 
to note that the updated proximity matrix does not require the original 
data matrix. The original proximity matrix among the objects is the only 
link required to the original data. 

Example 

The previous example is used to illustrate the use of (10.3) for the single 
linkage method. Groups [I] and m each contain two objects and hence 
there are two steps required to proceed from the original proximity matrix 
with all groups consisting of one object. Formula (10.3) must be applied 
twice. If group [I] is formed first, then the new measure of proximity be­

tween each member of m and group [TI is given by 

111 
'2(23.4) + '2(30.9) - '2123.4 - 30.91 = 23.4 

for Salt Lake and 
111 
'2(14.4) + '2(19.2) - '2 114.4 - 19.21 = 14.4 



512 10. Cluster Analysis and Multidimensional Scaling 

for Wichita. When Wichita and Salt Lake are combined using s~e linkage 
the proximity measure between group [I] and the new group ~ is given 
by 

111 
2(23.4) + 2(14.4) - 2123.4 - 14.41 = 14.4. 

This result is equivalent to the result obtained earlier for the single linkage 
proximity measure between groups [I] and @]. The same result would be 
obtained if Wichita and Salt Lake were combined first followed by Colum­
bus and Montgomery. 

A similar procedure can be carried out to illustrate the complete linkage 
and average linkage methods. The reader is invited to try these two cases 
using (10.3). 

Distance Between Centroids 

The Euclidean distance between group centroids can also be used to mea­
sure proximity between two groups of objects. H the coordinates for the 
centroids in groups r and s are given respectively by (Xr1.,Xr2., ... ,xrp.) 
and (Xsl., Xs2., ... , Xsp.), the square of the Euclidean distance between the 
two centroids is given by 

p 

cP,.s = ~)Xrj. - Xsj.)2. 
j=1 

This measure is referred to as the distance between centroids. 
For the two-variable case displayed in Figure 10.6 the two centroids are 

denoted by *r and *8. The Euclidean distance between the two points is 
the required proximity measure between the groups r and 8. 

Incremental Sums 0/ Squares 

An alternative measure of proximity based on the Euclidean distance be­
tween centroids uses the fact that there are a total of (nr )( ns ) distances 
between the two groups. A measure of the total distances between the two 
groups is given by nrnscP,.s. Since there are a total of (nr + ns) objects an 
average is provided by nrnsa:.s/(nr+ns). This measure of average distance 
is equivalent to the change in within group sum 0/ squares, or incremen­
tal sum 0/ squares, resulting from the combining of groups r and s. This 
concept is illustrated below. 

For the rth group the within group sum of squares is given by 

n r p 

SSWr = L L(Xrjm - Xrj.)2. 
m=1j=1 
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Similarly for group s the within group sum of squares is given by 

n. p 

SSWs = L L(Xsjm - Xsj.)2. 
m=lj=l 

If groups r and s are combined to form a new group t, a new centroid 
(Xtl.,Xt2."" ,Xtp.) is obtained and the new within group sum of squares 
for group t is given by 

nr+n. p 

SSWt = L L(Xtjm - Xtj.)2. 
m=l j=l 

The increase in the total within group sum of squares as a result of join­
ing groups r and s is given by SSWt - (SSWr + SSWs ). This increase 
in total within group sum of squares is equivalent to the total distance 
nrnsa:.s/(nr + ns ). This incremental sum of squares is commonly used as 
a measure of proximity between two groups. The reader should recall from 
Section 10.1.1 that for n r = n s = 1 the squared Euclidean distance between 
the points and the centroid were related to the Euclidean distance between 
the points (see (10.1)). In Figure 10.6 the centroid for group t is given by 
*t which lies along the line joining *r and *s. 

Relationship to Analysis of Variance 

The total within group sum of squares for the combined group t can be 
viewed as a total sum of squares as in ANOVA. The subgroups r and s 
yield a total within group sum of squares and a total between group sum 
of squares. As in the analysis of variance, the total sum of squares contains 
the two components, the within sum of squares and the between sum of 
squares. The total sum 0/ squares is equivalent to SSWt defined above and 
the within group sum of squares is (SSWr + SSWs) defined above. The 
difference between the two is the between sum of squares given by 

p 

SSGt = L[nr(Xrj. - Xtj.)2 + ns(xsj. - Xtj.)2] 
j=l 

= 

This between sum of squares is the incremental sum of squares used to 
measure the proximity between groups r and s. 

Algorithms for Determining Proximity Measures Based on Centroids and 
Sums of Squares 

For both the centroid method and the incremental sum of squares method, 
the proximity measure can be obtained in a sequential fashion using the 
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algorithms outlined below. The sequence involves aseries of steps in which 
a measure of proximity is determined between two objects or groups of 
objects at each step. The process begins with a proximity matrix based 
on the squared Euclldean distances among the original objects. At a given 
point in the sequence, the proximity measures among the groups r, 8 and 
u are denoted by Prs, Pru and Psu. Group r and 8 are combined to form 
a new group denoted by t, and a new proximity measure Ptu is required 
relating t and u. 

For the incremental sum of squares method, the process begins with 
proximity measures given by Prs = lc.es where c.es denotes the square of 
the Euclidean distance between objects r and 8. After combining objects r 
and 8 to form the new group t, the incremental sum of squares proximity 
measure between t and u is given by 

Ptu = ( 1 ) [(nu + nr)Pru + (nu + ns)psu - nuPrs] , (10.4) 
nt+nu 

where nt = (nr + ns). 
For the centroid method the process begins with proximity measures 

given by Prs = c.eB' After combining objects r and s to form group t the 
proximity measure between t and u is given by 

(10.5) 

The application of these algorithms is illustrated in the example below. 
The above two algorithms are special cases of (10.3) defined above. For 

the incremental sum of squares, ar = (nr + nu)/(nt + nu ), aB = (nB + 
nu)/(nt + nu ), ß = -nu/(nt + nu ) and 'Y = O. For the centroid method, 
ar = nr/(nr + nB), aB = nB/(nr + nB), ß = -nrnB/(nr + ns)2 and 'Y = O. 
Although these two algorithms can be viewed as special cases of (10.3) it is 
important to keep in mind that the original proximity matrix is assumed 
to be squared Euclidean distance. 

The incremental Sum of squares measure is also referred to as Warcl's 
method, and the centroid method is also referred to as UPGMC which is 
an abbreviation for the expression "unweighted pair group method using 
centroids." 

Example 

In this example we determine the proximity measure between Wichita and 
the [Columbus, MontgomeryJ group and then the proximity measure be­
tween Salt Lake and the [Columbus, Montgomery] group. These two prox­
imity measures are then used to determine the measure between the groups 
[Wichita, Salt Lake] and [Columbus, Montgomery]. The two algorithms pre­
sented above are used repeatedly. 
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For the centroid method, the distance between Wichita and [Columbus, 
Montgomery] applying (10.5) and the information in Table 10.8 is given by 

111 
"2(14.4) + "2(19.2) - "4(2.8) = 16.1. 

In (10.5), r corresponds to Columbus, 8 corresponds to Montgomery and 
u corresponds to Wichita. This proximity measure is based on the three 
squared Euclidean distance measures among the three cities. Similarly for 
the distance between Salt Lake and [Columbus, Montgomery] the measure 
is given by 

111 
"2(23.4) + "2(30.9) - "4(2.8) = 26.45. 

In (10.5) r corresponds to Columbus, 8 corresponds to Montgomery and u 
corresponds to Salt Lake. 

Finally the distance between the centroids of the two groups can now be 
obtained from (10.5) and is given by 

111 
"2(16.1) + "2(26.45) - "4(5.1) = 20.075. 

In (10.5) r corresponds to Wichita, 8 corresponds to Salt Lake and u cor­
responds to the group containing Columbus and Montgomery. 

For the incremental sum of squares or Ward's method a similar series 
of steps is required. The squared Euclidean distances can be converted to 
the incremental sum of squares measure by dividing the squared distances 
by 2. Using (10.4) and Table 10.8 the incremental sum of squares that 
would result from combining Wichita with Columbus and Minneapolis is 
given by 

1 
3[2(14.4) + 2(19.2) - (2.8)] = 21.47. 

Similarly 
1 
3[2(23.4) + 2(30.9) - (2.8)] = 35.27 

determines the incremental sum of squares that would result from combin­
ing Salt Lake with Columbus and Montgomery. Finally the incremental sum 
of squares that would result from combining the two groups is determined 
by applying (10.4) and is given by 

~[(3)(21.47) + (3)(35.27) - (2){5.1)] = 40.0. 

Ultmmetric Inequality 

The general algorithm given by (10.3) provides a sequential method for 
updating proximity measures between groups as groups expand in size and 
hence berome less numerous. Usually the proximity measure is such that 
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the distance between the two groups being combined (groups r and s) 
is smaller than the distance between the new combined group t and any 
other group u. H this is true then the distance-type proximity measure 
is said to satisfy the ultrametric inequality. This inequality implies that 
no distance measure in the new matrix can be smaller than the smallest 
distance measure in the previous matrix. The purpose of identifying this 
property is that it guarantees that as groups are combined the distance­
type proximity measures will be monotonically nondecreasing. 

H the parameters in (10.3) satisfy the conditions (ar + aB + ß) ;::: 1 
and 'Y ;::: max( -ar, -aB)' then the proximity measure will have the ul­
trametric property. For the measures discussed in this section only the 
centroid method does not satisfy this property. For the centroid method 
(ar + aB + ß) = nrnB/(nr + nB)2 which is not;::: 1. For this reason the 
centroid method is seldom used. 

Sums 0/ Squares Derived from MANOVA Matrices 

Given 9 groups of objects with group sizes n1, n2, .. . , ng ; where each object 
is measured on a p-dimensional variable x (p x 1), MANOVA notation 
introduced in Chapter 8 can be used to characterize differences between 
the 9 groups. In the discussion of MANOVA, three sum of squares and 
cross-product matrices were used to measure variation and were denoted 
by T, W and G. The three matrices were labeled total sum of squares, 
within sum of squares and among sum of squares respectively and satisfied 
the relation T = W + G. 

The matrices T, W and G are p x p matrices with jth diagonal elements 
given by tjj = Ef=1 E~1 (Xijk - X.j.)2, Wjj = Ef=1 E~~1 (Xijk - X.jk)2 
and 9jj = Ef=1 E~~1 (X.jk - X.j.)2 = Ef=1 nk(X.jk - X.j.)2 respectively. 
For each of these three elements, the first or inside summation represents 
the sum of squares over the observations in a group for variable j, whereas 
the outer sum determines the sum over all groups. Each of the diagonal 
elements therefore respectively represents the total sum of squares, within 
group sum of squares and among group sum of squares over all 9 groups 
for one variable. 

To determine the three sums of squares over all p variables the sums of 
the diagonal elements of these matrices are required. The three sums of 
squares are given by 

p p 9 nie 

trT = Ltjj = LLL(Xijk _x.j.)2, 
;=1 ;=1k=1i=1 

p p 9 nie 

trW = LWj; = LLL(Xi;k -X.;k)2, 
;=1 j=1 k=1 i=1 
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p p 9 n. 
trG = Lgjj = LL~)x.jk - x.j.)2 

j=1 j=lk=li=1 
p 9 

= LLnk(X.jk _X.j.)2. 
j=lk=1 

By reordering the sequences of summation signs these quantities can be 
viewed as sums over 9 groups of sums of squares determined over p vari­
ables. Denoting the sums of squares for group k by SSWk, SSTk and SSGk 
we have trT = L~=1 SSTk, trW = L~=1 SSWk and trG = L~=l SSGk, 
where 

and 

p n. 
SSWk = L L(Xijk - X.jk)2, 

j=1 i=1 
p 

SSGk = L nk(x.jk - x.j.)2 
j=1 

p n. 
SSTk = LL(Xijk _x.j.)2. 

j=li=l 

The previous discussion on the measurement of proximity between groups 
using the incremental sum of squares method illustrated the relationship 
between the three sums of squares. It was shown that when groups r and 
8 are joined to form a new group t that 

Therefore since S STt = S STr + S STs remains fixed, the effect on the among 
group sum of squares is 

For the jth diagonal elements of the matrices W and G the elements 
Wjj increase by nrns(x.jr -x-js)2 j(nr +ns) while the elements gjj decrease 
by this same amount. The net effect on trW and trG of the combining 
of groups r and 8 is therefore an increase in trW of nrns L~=l (x-jr -
x.js)2 j(nr +ns ) and a corresponding decrease in trG ofthis same amount. 

A Multivariate Measure 0/ Proximity 

Assume that the (p x 1) observation vectors Xik, k = 1,2, ... , g, represent 
random sampies from 9 multivariate populations with (p x 1) mean vectors 
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I-'k and common (p X p) covariance matrix E. Denoting the sampie within­
group covariance matrices by S17 S2, ... , Sg the pooled estimate of E is 
given by 8 = E~=l(nk -l)Sk/(n- g) and W = (n- g)8 (see Section 8.1). 
For any two groups r and s, a measure of proximity between the two groups 
that takes into account the covariances is given by the squared Mahalanobis 
distance (n-g)(x.r-x.s),W-l(x.r-x.s), wherex.r andx.s are thesampie 
mean vectors for groups r and s respectively. 

10.2 Cluster Analysis 

The object of cluster analysis is to partition a set of objects into groups or 
clusters in such a way that the profiles of objects in the same cluster are 
very similar, whereas the profiles of objects in different clusters are quite 
distinct. Since the concept of clusters is closely linked to the concept of 
proximity between objects and groups of objects, the techniques discussed 
in Section 10.1 play an important role in cluster identification. 

In some applications of cluster analysis, the objects are believed to belong 
to a few natural groups whereas in other cases the quest is simply to find 
a convenient grouping. The first case is sometimes called classificationj the 
latter application is often referred to as dissection. Other terms commonly 
used for cluster-analysis-type procedures include pattern recognition and 
numerical taxonomy. Both the development of clustering techniques and 
the application of such techniques have appeared in many different fields of 
study. Engineering, zoology, medicine, linguistics, anthropology, psychology 
and marketing are just some of the fields of application. 

Like principal component analysis, cluster analysis can be viewed as a 
data reduction technique. Instead of reducing the number of variables or 
columns required to characterize X as in principal components analysis, 
cluster analysis reduces the number of distinct objects or rows of X by 
creating groups of objects called clusters. 

Cluster analysis techniques can be classified into five major typesj hier­
archical, partitioning, Q-sort, density and clumping. In the hierarchical 
approach the process proceeds sequentially such that at each step only one 
object or group of objects changes group membership and the groups at 
each step are nested with respect to previous groups. Thus once an object 
has been assigned to a group it is never removed from the group later 
on in the clustering process. The hierarchical method produces a complete 
sequence of cluster solutions beginning with n clusters (one for each object) 
and ending with one cluster containing all n objects. In some applications a 
set of nested clusters is the required solution whereas in other applications 
only one of the cluster solutions in the hierarchy is selected as the solution. 

The partitioning method begins with a given number of clusters, say g, as 
the objective and then partitions the objects to obtain the required 9 clus­
ters. In contrast to the hierarchical method, partitioning techniques permit 
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objects to change group membership throughout the cluster formation pro­
cess. The partitioning method usually begins with an initial solution, after 
which reallocation occurs according to some optimality criterion. 

The Q-sorl methods include a variety of techniques that are similar to 
factor analysis. These methods usually begin with the XX' matrix and are 
concerned with grouping objects together whose off-diagonal elements in 
XX' are relatively large. 

The density or mode seeking procedure assumes that the objects will 
be allocated in space in such a way that there are several dense areas with 
regions in between that are very sparse. This method assumes the existence 
of natural clusters. 

Finally, the clumping method unlike the above three techniques permits 
the clusters to overlap. Another term used for this type of cluster analysis 
is fuzzy clustering because the clusters are allowed to overlap. 

In this section the hierarchical method is emphasized. A variety of al­
gorithms for performing a hierarchical cluster analysis will be outlined. 
Techniques for evaiuating the cluster solution will also be introduced. 

While cluster structure can vary across many differing research appli­
cations, for the most part the techniques outlined here assume that the 
quest is to find natural clusters. Natural clusters are assumed to satisfy 
the properties of external isolation and internal cohesion. External isola­
tion suggests that points in one cluster should be separated from points in 
another cluster by an empty area of space. Internal cohesion requires that 
points within a cluster should be close together. This characterization of 
the "natural cluster" therefore does not allow cluster overlap. 

10.2.1 HIERARCHICAL METHODS 

The most common approach to cluster analysis is the hierarchical method. 
The method proceeds sequentially yielding a nested arrangement of ob­
jects in groups. The hierarchical process can be represented conveniently 
using a tree diagram as illustrated in Figure 10.7. This figure illustrates the 
hierarchical clustering process for a sampie of five objects. 

To begin with on the left of Figure 10.7, there are five objects that can 
be viewed as five clusters each containing a single object. At step 1 in the 
process (moving one step to the right) objects 1 and 2 are joined to form a 
group. Similarly at step 2 objects 4 and 5 are joined to form a group. After 
step 2 is complete, there are now three clusters, two each containing two 
objects and one cluster containing only object 3. At step 3, object 3 joins 
the cluster containing objects 1 and 2, and finally in step 4 all objects are 
joined to form a single cluster of five objects. 
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FIGURE 10.7. Tree Diagram. for Hierarchical Clustering 

Agglomerative versus Divisive Processes 

At each step in a hierarehieal clustering proeess, proeeeding from left to 
right, two groups are joined together. Onee the groups are joined together 
they are never separated later in the proeess. This hierarchieal proeess 
is ealled agglomerative beeause, as the proeess moves sequentially from n 
clusters to one cluster, the sizes of the clusters inerease and the number of 
clusters decrease. The agglomerative proeess moves from the branehes of 
the tree on the left to the root of the tree on the right. A hierarehieal proeess 
that moves in the reverse order is ealled divisive. The divisive proeess begins 
with all objeets in one cluster on the right of Figure 10.7 and moves to the 
left. This proeess therefore moves from the root of the tree to the branehes 
of the tree. The divisive approach is not eommonly used and will not be 
diseussed in this ehapter. 

At each step of the hierarehical proeess, the value of an objective junction 
or clustering criterion must be eomputed to determine which two groups 
are to be joined. The objective function is usually based on a measure 
of proximity between groups. The methods outlined in Section 10.1.2 for 
measuring proximity between groups are used in the hierarehieal proeess 
to determine which groups are to be joined at each step. 

Beginning with the proximity matrix for the n objects the two closest 
objects are joined in step 1 to form a group. Before seleeting the next pair 
of objeets or clusters to be joined, the proximity matrix must be revised 
to refleet the proximities between the new cluster and the remaining ob­
jeets. The formula given by (10.3) in Seetion 10.1.2 ean be used to revise 
the proximities between the new cluster and the remaining objeets. Af­
ter revising the proximity matrix a seleetion of the two closest clusters to 
be joined in step 2 ean be made. This proeess eontinues until all objeets 
are eontained in one cluster. After each step of the proeess the proximity 
matrix is revised to refleet the relationships among the groups that exist 
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at that time. The revised proximity matrix is then used to determine the 
groups to be joined at the next step. 

The agglomerative hierarchical clustering process does not provide a sin­
gle cluster solution. In fact each step of the process is a cluster solution. 
The determination of the appropriate number of clusters involves select­
ing one of the steps of the hierarchical process using a second optimality 
criterion. A variety of optimality criteria are outlined in Section 10.2.2. 
The example below illustrates the hierarchical process using the ten-city 
example introduced in Section 10.1. 

Computer Software 

The cluster analysis calculations in this section have been carried out us­
ing the SPSSX program CLUSTER, the SAS program CLUSTER and 
Wishart's CLUSTAN software package. 

Example 

The five methods introduced in Section 10.1.2 for measuring group proxim­
ity are employed here to obtain a five cluster solution for the ten city data 
introduced in Table 10.1. In each case the process begins with the stan­
dardized Euclidean distance matrix given in Table 10.3. At each step in 
the process the revised proximities are obtained using formula (10.3). The 
optimality criterion value is the closest proximity value among groups at 
that stage of the process. The results are summarized below. The criterion 
value shown represents the optimality criterion value or proximity value as 
determined by that method. 

Single Linkage Method 

Step 
1 
2 
3 
4 
5 

Clusters Combined 
[Columbus] & [Montgomery] 
[Salt Lake] & [Minneapolis] 
[Wichita] & [Salt Lake, Minneapolis] 
[Washington] & [Atlanta] 
[Los Angeles] & [Wichita, Salt Lake, Minneapolis] 

Five-Cluster Solution: 1. Albuquerque 
2. Scranton 
3. Columbus, Montgomery 
4. Washington, Atlanta 

Criterion 
Value 

2.8 
4.8 
5.1 
7.7 
8.7 

5. Los Angeles, Wichita, Salt Lake, Minneapolis 
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Complete Linkage Method 

Step Clusters Combined 
1 [Columbus] & [Montgomery] 
2 [Salt Lake] & [Minneapolis] 
3 [Washington] & [Atlanta] 
4 [Wichita] & [Salt Lake, Minneapolis] 
5 [Los Angeles] & [Washington, Atlanta] 

Fiv~Cluster Solution: 1. Albuquerque 
2. Scranton 

Criterion 
Value 

2.8 
4.8 
7.7 
8.5 

12.9 

3. Columbus, Montgomery 
4. Washington, Atlanta, Los Angeles 
5. Wichita, Salt Lake, Minneapolis 

Average Linkage Method 

Step Clusters Combined 
1 [Columbus] & [Montgomery] 
2 [Salt Lake] & [Minneapolis] 
3 [Wichita] & [Salt Lake, Minneapolis] 
4 [Washington] & [Atlanta] 
5 [Los Angeles] & [Washington, Atlanta] 

Criterion 
Value 

2.8 
4.8 
6.8 
7.7 

11.1 
Fiv~Cluster Solution: Same as Complete Linkage Method 

Ward's Method 

Step Clusters Combined 
1 [Columbus] & [Montgomery) 
2 [Salt Lake) & [Minneapolis] 
3 [Wichita) & [Salt Lake, Minneapolis) 
4 [Washington) & [Atlanta) 
5 [Los Angeles] & [Washington, Atlanta] 

Criterion 
Value 

1.4 
2.4 
3.7 
3.8 
6.2 

Fiv~Cluster Solution: Same as Complete Linkage and Average Linkage 
Methods 

Centroid Method 
Step Clusters Combined 

1 [Columbus] & [Montgomery] 
2 [Salt Lake] & [Minneapolis) 
3 [Wichita) & [Salt Lake, Minneapolis) 
4 [Washington) & [Atlanta) 
5 [Los Angeles) & [Wichita, Salt Lake, Minneapolis) 

Fiv~Cluster Solution: Same as Single Linkage 

Criterion 
Value 

2.8 
4.8 
5.6 
7.7 
8.2 
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FIGURE 10.8. Single Linkage versus Complete Linkage Using the Distance Mea­
sure 

From the above results it can be seen that there are only two different 
five cluster solutions. The difference between the two solutions involves the 
location of Los Angeles. In the single linkage and centroid methods Los 
Angeles belongs to the group that also includes Wichita, Salt Lake and 
Minneapolis, whereas in the other three methods Los Angeles belongs to a 
group containing Washington and Atlanta. A discussion of the differences 
among the hierarchical cluster solutions obtained from the five methods is 
given below. A larger example involving all 40 cities is illustrated in Sec­
tion 10.2.3. An example based on binary data is illustrated in Section 10.2.2. 

Comparison 0/ Group Proximity Measures 

Assuming that the squared Euclidean distance is the underlying proximity 
measure, it will be useful to compare the various grOUp proximity measures 
in the context of a hierarchical clustering process. The single linkage and 
complete linkage measures are compared in Figure 10.8. Using the single 
linkage measure, grOUpS [!] and @J are closer than grOUpS [!] and 0. 
The distance between [!] and @J is the distance from Dr to Du, and the 
distance from [!] to 0 is the distance from Cr to Cs. For the complete 
linkage measure, groups [!] and 0 are closer since the distance from Br 
to Bu is greater than the distance from Ar to As. As a result of this 
difference it is easy to imagine how single linkage clustering leads to chain­
like clusters, whereas complete linkage clustering leads to compact clusters. 
As can be seen from Figure 10.8, it is possible in single linkage clustering 
for an object in one cluster to be closer to an object in another cluster than 
to some objects in its own cluster. 

A second interesting comparison between single and complete linkage is 
the impact of cluster size on the proximity measure. Imagine two distinct 
clusters that are growing in size within a confined space. The single link-
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age measure between the two clusters will remain constant, whereas the 
complete linkage measure will increase. Imagine also an isolated point or 
outlier and its proximity measure to a cluster growing in size. The sin­
gle linkage measure of proximity to the outlier will remain fixed, but the 
complete linkage measure will tend to increase. In a hierarchical process, 
the proximity measure increases as clusters increase in size. Since the com­
plete linkage measure is based on the weakest link, an isolated point more 
quickly becomes relatively close to an existing cluster with the complete 
linkage method than with the single linkage method. With the single link­
age method outliers tend to remain as isolated points until very late in the 
hierarchical process. The single linkage method is said to be space conserv­
ing, whereas the complete linkage method is called space diluting or space 
filling. 

Both the single and complete linkage measures employ only a single prox­
imity measure to represent group proximity and hence are very susceptible 
to extreme observations. In a single linkage hierarchical process, a single 
outlier lying between two clusters can result in the eventual joining of the 
two groups. In the case of a complete linkage process, small changes in the 
location of particular points or errors can have a substantial impact on the 
hierarchical solution. 

The average linkage, centroid and Ward's methods are usually preferable 
to the single linkage and complete linkage methods because of their relative 
insensitivity to extremes or outliers. Depending on the types of clusters 
expected this property could also be a disadvantage. 

The average linkage measure is determined by averaging the proximities 
between all pairs of objects (one object from each group). This averag­
ing process has some interesting properties. In Figure 10.9 two groups are 
shown, A with one point and B with two points (BL and Bu). The average 
distance in the one dimension is 

d = [(Xl - X 2 - h)2 + (Xl - X 2 + h)2J/2 = (Xl - X 2)2 + h2. 

The average linkage therefore between A and B increases as BLand Bu 
move away from the center at B. Thus the average distance between point A 
and group B increases as the distance between points in B increase. The 
average linkage between two groups based on squared Euclidean distance 
therefore grows as the two groups become less compact. 

A second interesting property of the average linkage method can also be 
illustrated using Figure 10.9. If B represents a single point group and A 
represents a single point group the average squared Euclidean distance is 
given by (Xl - X2)2. In comparison to the previous example, Ais closer 
to group B in this case than it was when B was considered to be a group 
of two points. Thus as the size of the group increases, the average linkage 
measure increases unless all points in the group are located at the centroid. 

The behavior of the average linkage method of hierarchical clustering 
in the presence of outliers can be explained using the above mentioned 
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FIGURE 10.9. Distance Between Clusters Using Average Linkage 

properties. Initially although the beginning clusters are small and com­
pact, outliers tend to remain isolated. As clusters grow in size the average 
proximity measure between clusters grows until a point is reached where 
outliers have proximity measures of a similar magnitude. Since the size 
and compactness of the clusters infiuences the average linkage measure, 
outliers are most likely to link with other outliers and least likely to link 
with less compact and/or large clusters. In addition to lying between the 
single linkage and complete linkage methods with respect to space dilution, 
the average linkage method is also characterized by its tendency to form 
nonconformist groups of outliers near the end of the hierarchical process. 

The centroid method and Ward's method are easily compared since the 
proximity measures are both based on cP,.B' the squared Euclidean distance 
between group centroids. Since the coefficient of tP..s is 1 for the centroid 
method and nrnB/(nr + n8) for Ward's method it is only necessary to de­
termine the impact that the cluster sizes nr and n 8 have on the Ward's 
measure. 

The coefficient nrnB/(nr + nB) can also be written in other forms such 
as nB/(1 + nB/nr) and l/(l/nr + l/n8 ). From these expressions we cancon­
clude that as nr and nB get larger in size so does the coefficient nrn8/(nr+nB) 
and also as nr increases relative to nB the coefficient increases. Given two 
clusters whose centroids are a distance cP,.B apart we can conclude that 
Ward's method would yield a larger measure of proximity between them 
as the cluster sizes increase and as the cluster sizes become less equal. We 
can conclude therefore that in comparison to the centroid method, Ward's 
method has a greater tendency to form equal size and/or smaller clusters. 
The centroid method therefore tends to join clusters whose centroids are 
close, whereas in Ward's method smaller clusters reach out to other more 
distant smaller clusters. Like single linkage the centroid method is space 
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contracting, whereas Ward's method like the eomplete linkage method is 
space diluting. 

It is also interesting to examine the impact that outliers might have on 
the hierarchieal clustering proeess and also to eompare these proeesses to 
the average linkage method discussed. above. Consider the proximity mea.­
sure between a single outlier and a group with n s objects. The coefficient of 
tP"s in this ease is given by ns/(l + ns ). When ns is small this eoefficient is 
also relatively small and as ns inereases the eoefficient approaches 1. Sinee 
the eoefficient would be relatively small early in the hierarchical process 
there would be a tendeney for isolated points to be more eompatible with 
small clusters at the early stages of the proeess. Two isolated points would 
have a eoefficient of ~ and henee are more likely to join together early in 
the proeess. Two large clusters would have a coefficient of nrns/(nr + ns). 
When eompared to a eoefficient of ~ for two single point clusters it ean be 
seen that a large distanee between outliers ean eventually be overeome as 
nrns/(nr + ns) inereases relative to ~. When the average linkage method 
is eompared to Ward's method it is not uneommon to find that in Ward's 
method the outliers are grouped much earlier in the hierarchical proeess. 
An example illustrating the impact of outliers on the average linkage and 
Ward's methods is provided in Seetion 10.2.3. 

Some Multivariate Approaches to Hierarchical Clustering 

In Section 10.1, the ineremental sum of squares method for measuring prox­
imity between groups was shown to be related to changes in trW and trG, 
where W and G are the within and the among group sums of squares 
matriees respeetively. After groups r and s are joined at step l, the new 
matriees Wl and Gi ean be expressed in terms of these matriees at the 
previous step (l - 1) as 

and nn 
Gi = Gl - 1 - ( r B ) (x.. - Xs)(x.. - Xs)'. 

nr+ns 
Each step in Ward's algorithm attempts to minimize the inerease in 

trWl and minimize the deerease in trGl. Beeause this eriterion does not 
take into aceount the off-diagonal elements of W and G it tends to produce 
spherical shaped clusters. This method is optimal therefore if the underlying 
eovarianee matrix :E, is spherical, namely :E = 0'21. 

An alternative eriterion, whieh takes into aceount the covarianees among 
the variables, minimizes IWI instead of trW. When groups r and s are 
joined the revised value of IWI is given by 

IWtl = IWt-d( nrnB 
) (x.. -XS)'W;;~l(x.. -Xs). 

nr+ns 
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Therefore at each step the two groups selected to be joined must minimize 
a function of the Mahalanobis distance between the group centroids. Recall 
that the Mahalanobis distance is equivalent to the Euclidean distance with 
principal components used in place of the X variables. 

In comparison to the criterion trW the criterion IWI takes into account 
correlation effects. The use of the latter criterion would therefore tend to 
generate elliptical shaped clusters. Both criteria tend to produce clusters 
of the same shape because of the assumption of homogeneity of covari­
ance matrices across groups. An alternative criterion, which permits greater 
variation in cluster shape, is to minimize n~=l IW kin" where W k and nk 

correspond to cluster group k. 
An alternative multivariate criterion for cluster choice is related to dis­

criminant analysis and MANOVA. The criterion seeks to choose clusters 
that maximize trGW-1• Since this criterion tends to maximize the largest 
eigenvalue of GW-1 clusters obtained tend to be elongated. 

An Example with Outliers 

In the above discussion comparing the various measures of group prox­
imity in a hierarchical clustering process, it was suggested that outliers 
could have a strong impact on the clustering process and that the various 
methods would respond differently to such extreme observations. The ex­
ample presented here will compare the average linkage method to Ward's 
method. From the earlier discussion, we would expect the outliers to have 
less impact on the Ward's solution than on the average linkage solution. In 
addition we would expect outliers to remain isolated for a longer period in 
the average linkage process than in the case of Ward's method. 

Given that there are unusual observations there are two ways of deter­
mining the impact of the outHers on the cluster solution. The variable on 
which the outlier is measured can be removed for all objects (a column 
of X) or the object with the unusual value can be removed from the anal­
ysis (a row of X). After the clusters have been determined with respect to 
the reduced X matrix the omitted observations can be used to calculate 
values for each cluster in the case of omitted variables. In the case of omit­
ted objects the location of the objects can be determined relative to the 
existing clusters. 

The World Data in Table 10.9 contains observations on 12 variables for 
25 countries. The variables are intended to represent various dimensions of 
economic and physical well-being. To identify outHers standardized values 
were computed for each country for each of the 12 variables. An exami­
nation of the standardized values (not shown) revea1ed three observations 
that exceed an absolute value of 3. The Hong Kong population density 
(POP) showed a standardized value of 4.78, the inflation rate (INFLAT) 
for Argentina showed a value of 4.19, and the number of hospital beds per 
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capita (BEDS) in Japan showed a standardized value of 3.35. These three 
observations are treated as outliers in the following cluster analyses. 

For the purposes of comparison to the outlier detection methods of Chap­
ter 7, Table 10.10 shows the Mahalanobis distances from the centroid for 
each country for the full X matrix, the X matrix omitting three variables, 
POP, INFLAT and BEDS and for the X matrix omitting three countries 
Argentina, Hong Kong and Japan. These three X matrices are used in 
the example. Using the Mahalanobis distance measure we can conclude 
that Hong Kong and Argentina are fanhest from the centroid when all 
variables are used. Japan is the third most distant country from the cen­
troid, although it is much closer to the centroid than Argentina or Hong 
Kong. The country of Israel has approximately the same distance from the 
centroid as Japan. Israel, however, did not have any standardized values 
above 1.7 (not shown). After removing the three variables POP, INFLAT 
and BEDS, Argentina, Israel and Syria yield the largest distances from 
the centroid. When Argentina, Japan and Hong Kong were removed from 
the data the variation among the Mahalanobis distances seemed much less 
extreme. 

For each of the three data matrices two hierarchical cluster analyses 
were performed using the average linkage method and Ward's method. 
Figures 10.10, 10.11, and 10.12 show tree diagrams which compare the 
various solutions from the eight-cluster stage to the single cluster final step. 
The numbers in brackets report the value of the proximity measure at that 
step. Within each figure the two methods can be compared for a given 
data matrix. For the full data matrix Figure 10.10 illustrates the tendency 
for Ward's method to determine more equal sized clusters. In contrast 
Figure 10.10 illustrates the tendency for the average linkage method to 
form some large clusters early with outliers remaining more isolated until 
later in the process. Even though Argentina is regarded as an outlier, it 
is dose enough to Chile and Mexico that it forms a cluster at stage 7 in 
the average linkage method. For Hong Kong, however, the closest countries 
are Australia, Japan, Canada and United States at values of 31.15, 35.94, 
33.15 and 35.54 respectively. Hong Kong therefore tends to remain isolated 
until very late in the process. The squared Euclidean distances from Israel 
to Canada, the United States, Australia and Japan are 12.38, 13.84, 9.65 
and 17.10 respectively. Israel is therefore an isolated point as was also seen 
in Table 10.10. Israel joins these four countries at stage 7 in Ward's method 
but not until stage 4 in the average linkage method. 

In Figure 10.11 the two analyses for the matrix with three variables 
missing (POP, INFLAT and BEDS) are compared. Now that there are no 
isolated points the two solutions are almost identical. The order in which 
some groups are joined differs slightly but the membership in the groups is 
the same. 

For the data matrix omitting the countries of Argentina, Hong Kong and 
Japan Figure 10.12 shows the results of the two cluster analyses. In this 
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TABLE 10.10. Squared Mahalanobis Distances for 
Three Data Matrices - World Data 

All Omitting Omitting 
Country Observations Variables Countries 

Canada 7.980 6.612 9.823 
United States 14.196 10.602 13.876 
Mexico 14.315 11.626 16.194 
Brazil 10.983 8.244 15.881 
Chile 13.466 4.675 12.613 
Argentina 20.833 16.817 
Ecuador 13.306 9.547 12.482 
Algeria 8.572 8.074 10.458 
Nigeria 13.001 11.103 13.125 
Kenya 11.737 9.739 10.267 
South Africa 5.547 4.892 6.894 
Mozambique 9.428 7.968 9.190 
India 12.600 10.310 14.545 
Pakistan 6.437 5.712 9.012 
Zaire 8.404 6.477 9.185 
Columbia 4.184 3.531 5.708 
Japan 16.959 3.514 
Indonesia 7.577 6.464 9.828 
Phillipines 8.810 7.704 10.932 
Australia 5.735 3.701 6.003 
Egypt 12.667 12.290 16.195 
Syria 16.546 15.944 16.528 
Israel 16.086 15.166 18.340 
Zambia 5.672 5.091 4.922 
Hong Kong 22.954 10.195 

case there is one difference between the two solutions at the eight-cluster 
level. Ward's method puts South Africa and Indonesia in aseparate group, 
whereas the average linkage method places Mexico and Chile in aseparate 
group. For Ward's method Brazil, Ecuador and Columbia are with Mexico 
and Chile, whereas in the case of the average linkage method these three 
countries are placed with South Africa and Indonesia. 

It is interesting also to compare the resuIts of the X matrix with three 
variables missing (Figure 10.11) to the results for the full X matrix (Fig­
ure 10.10). After omitting the three variables contributing the outliers, 
the countries of Japan, Argentina and Hong Kong moved much closer to 
Canada, United States and Australia. In the case of Argentina, the change 
in distances resulted in its moving away from its South American neigh­
bors to form a Hong Kong-Argentina-Israel cluster at an early stage in the 
process. Other than this major difference the Ward's solution for the re­
maining countries produced similar resuIts. For the average linkage method 
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bowever, tbe tendency for isolated points to remain isolated eaused tbe two 
solutions to be less similar. 

For tbe three-country omitted matrix Japan, Argentina and Hong Kong 
bave been omitted. In comparing this case to tbe full X matrix case tbere 
is perbaps one puzzling differenee. For tbe full X matrix India is clustered 
witb Nigeria, Mozambique, Zaire and Pakistan, wbereas tbe Pbilippines 
are clustered with Brazil, Ecuador, Soutb Africa, Columbia and Indonesia. 
In tbe three-country omitted case India joins witb tbe Philippines to form 
a separate cluster of two. The reason for this change is the impact on tbe 
standardization of tbe variables wben tbe outlier countries are removed. An 
examination of tbe Mahalanobis distanees in Table 10.10 also sbows some 
changes in loeation relative to tbe eentroid as a result of tbe changes in tbe 
data. 

10.2.2 ASSESSING THE HIERARCHICAL SOLUTION AND 

CLUSTER CHOICE 

As outlined above the hierarchieal method of cluster analysis produees a 
nested sequence of cluster solutions ranging from n (the total number of 
ojects) to 1. Tbe cluster solutions tbat are selected from this hierarchy for 
later use depends on the partieular applieation. In some eases a nested 
hierarchy within a range of solutions may be used to summarize the rela­
tionsbips among various subgroups. An example would be groups of plants 
or animals in numerieal taxonomy. Alternatively, a particular cluster s0-

lution (only one step in the hierarchy) may be selected to be used as a 
convenient grouping for further analyses. Depending on the applieation, 
the hierarchieal solution may require additional study before the particular 
choice of solution (or solutions) is made. In this section techniques are pre­
sented for assessing the quality of the hierarchical solution and for choosing 
an appropriate cluster solution. 

Dendogmms and Derived Proximities 

In bierarchical clustering a tree diagram such as Figure 10.7 can be used 
to keep track of tbe sequential clustering proeess. In such tree diagrams it 
is also of interest to indicate tbe proximity value at each step. This derived 
proximity measu1'e indicates the degree of similarity of tbe two clusters 
tbat bave just been joined at that step. Wben these proximity values are 
included with the tree, the tree diagram is usually called a dendogram. A 
dendogmm therefore contains a derived proximity seale that shows the value 
of the proximity measure at each step of the hierarchical process. Figures 
10.10,10.11 and 10.12 in Section 10.2.1 are examples of partial dendogmms 
since only the final stages of the process were shown. The proximity values 
monotonically inerease if the hierarchieal clustering process satisfies the 
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ultrametric inequality introdueed in Seetion 10.1.2. A table whieh summa­
rizes the information in the dendogram is ealled an agglomeration schedule. 

For the (n -1) steps in the sequential process the order of the steps forms 
a one-to-one relation with the proximity measures in the dendogram. The 
number of the step at which two given objects first appear together in the 
same cluster is called the partition rank. The set of eorresponding derived 
proximities in the dendogram can be used to obtain a new proximity matrix 
called the derived proximity matrix. When two groups of objects are joined, 
all possible pairs of objects derived from objects in opposite groups are 
assigned the same derived proximity value. Since there are only (n - 1) 
unique proximity values in the dendogram, the derived proximity matrix 
that contains a total of n(n -1)/2 values must therefore have many values 
in eommon. 

Cophenetic Correlation and Cluster Validity 

As a measure of cluster validity it is sometimes of interest to compare 
the derived proximity matrix to the original proximity matrix. The most 
common method of comparison is to compute a Pearson correlation between 
the original values and the derived values. The resulting eorrelation is called 
a cophenetic correlation. The magnitude of this correlation should be very 
close to 1 for a high-quality solution. This measure can also be used to 
compare alternative cluster solutions obtained from different algorithms. 

Stress 

An alternative method of comparing the two sets of proximities in the case 
of Euclidean distances is to compute the stress measure 

n n 

L L (Pij - Pij)2 / L L P~j' 
i<j i<j 

where Pij denotes the original proximity and Pij the derived proximity. This 
measure is commonly used in multidimensional sealing to evaluate scaling 
solutions. This topic is outlined in Section 10.3. 

Alternative Derived Proximities Based on Centroids 

An alternative approach to deriving proximities from the results of the 
hierarehical proeess would be to return to each of the steps and eompute 
the distance between the eentroids of the clusters joined at each step. These 
distances eould then be used as the derived proximity measures. In this ease, 
the eentroid method is not being used as a eriterion for forming the clusters 
but is used as the measure for the derived proximity. In this ease, however, 
the derived proximities would not satisfy the ultrametric inequality. 
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TABLE 10.11. Agglomeration Schedule for Ward's and Average Linkage Methods: 
Ten-City Data 

Cluster Groups Proximity Values Change in Proximity Values 
Step Combined Ward's Average Linkage Ward's Average Linkage 

1 (3) (6) 1.42 2.84 
2 (5) (1) 2.41 4.81 0.99 1.91 
3 (5,1) (10) 3.12 6.18 1.31 1.91 
4 (9) (2) 3.84 1.68 0.12 0.90 
5 (2,9) (4) 6.12 11.10 2.28 3.42 
6 (2,4,9) (5,1,10) 10.29 12.22 4.11 1.12 
1 (1) (8) 11.11 26.41 6.88 4.25 

8 (1,8) (2,4,5,1,9,10) 30.13 34.34 12.96 1.81 
9 (3,6) (1,2,4,5,1,8,9,10) 38.08 38.66 9.95 4.32 

Note: For pairs of individuals Ward's measure is one-half the squared Euclidean distance. 

Example 

For the ten-city example introduced above the squared Euclidean distance 
matrix for the standardized data was given in Table 10.3. Using this prox­
imity matrix both the Ward's and the average linkage methods were used 
to produce a hierarchical cluster analysis. The agglomeration schedules for 
the two methods are shown in Table 10.11. Because the two procedures 
produced an identical sequence of clusters it is possible to compare the ag­
glomeration schedules with respect to the proximity values. The dendogram 
for the two processes is shown in Figure 10.13. Since the two procedures 
produced an identical sequence of clusters the same tree diagram can be 
used for both procedures. 

A comparison of the derived proximities to the original proximities is 
shown in Tables 10.12 and 10.13. In Table 10.12, the upper right triangle 
contains the partition rank, while the lower left triangle contains the three 
proximity measures. The first proximity measure is derived from Ward's 
method, the second proximity measure is derived from the average linkage 
method and the third is the original squared Euclidean distance measure 
given in Table 10.3. (The reader should recall that Ward's measure is one­
half the squared Euclidean distance when comparing individual objects.) 
The means and standard deviations for the proximities are given at the 
bottom of Table 10.12. Comparing the original proximities to the derived 
proximities shows several unusual cases. The twelth ranked original prox­
imity (out of a total of 45) between Atlanta and Columbus is 10.9 though 
these two cities are not joined until the last step (see Table 10.13). The two 
pairs, Atlanta and Montgomery and Columbus and Wichita also represent 
pairs that are joined much later than their original proximities would sug­
gest. The cophenetic correlation between the original proximities and the 
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FIGURE 10.13. Dendogram for Hierarchical Cluster Analysis of Ten Cities -
Ward's Method and Average Linkage Method 

derived proximities is given by 0.72 and 0.74 for Ward's method and the 
average linkage method respectively. 

Choosing the Number 0/ Clusters 

In the hierarchical clustering process, a sequence of cluster solutions is 
obtained with an "ideal" solution appearing for each possible number of 
clusters from n to 1. A second step of the cluster analysis is often to se­
lect an optimal number of clusters. To assist with the determination of the 
appropriate solution an optimality criterion is usually used. As the num­
ber of clusters 9 declines from n to 1 the cluster solution is evaluated by 
computing one or more available optimality criteria. At the completion of 
the hierarchical process the optimality criteria are studied to determine the 
optimum value of g. 

The simplest approach to cluster choice uses the value of the group prox­
imity measure for the two groups joined at each step. As the process moves 
from step 1 to step (n-l) the value ofthe group proximity measure, say 8, 

will increase (for dissimilarity measures). If n is large the increases in 8 will 
be small initially but will tend to grow exponentially. Thus as 9 decreases 
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s 

n 7 4 7 6 5 4 

(a) (b) 

FIGURE 10.14. Plotting the Clustering Criterion 

from n to 1 the value of the group proximity measure should behave as 
in Figure 1O.14(a). One approach to the seleetion of an appropriate value 
of 9 would be to examine the behavior of 8 in a neighborhood of the ex­
pected g. If a large change in 8 oeeurs at some value of 9 then the solution 
(g + 1) immediately prior to this step should be chosen. Figure 10.14(b) 
illustrates this eoneept; the function seems to have a much larger jump at 
step 4 than the two prior steps and henee the five-cluster solution should be 
seleeted. An alternative graphical approach involves plotting the ehanges 
in S, tl.S, as a function of the number of clusters. lnitially the eurve tl.S 
should rise slowly but eventually should rise rapidly when distant clusters 
are eombined. An elbow or dramatic change in the slope of tl.S would be 
indicative of the appropriate end to the clustering proeess. 

Example 

For the ten-city example discussed above, the proximity values for the nine 
steps for both Ward's method and the average linkage method are sum­
marized in Table 10.11. The changes in the values of these two eriteria are 
also shown in the table. For Ward's ineremental sum of squares method 
the eriterion value increases more rapidly beginning with the four-cluster 
solution. For the average linkage method the eriterion value is relatively 
large at the five-cluster stage and after the four-cluster stage. The forma­
tion of the four-cluster stage did not require an average linkage value much 
greater than for the five-cluster solution. It would appear that a four- or 
five-cluster solution is reasonable. A summary of the four groups for the 
four-cluster solution is given below. It is interesting to note that in the 
original proximity matrix Seranton is equidistant from both Albuquerque 
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and Salt Lake and that Albuquerque is closer to Salt Lake than it is to 
Scranton. Since the three-cluster solution involves the joining together of 
Scranton and Albuquerque the fact that Salt Lake is not part of this clus­
ter seems inappropriate. Leaving the two cities as single object clusters 
therefore sooms more justified. 

GrouD 1 
Columbus 
Montgomery 

A Binary Data Example 

GrouD 2 
Washington 
Minneapolis 
Los Angeles 
Atlanta 
Salt Lake 
Wichita 

GrouD 3 
Albuquerque 

GrouD 4 
Scranton 

For the divorce data introduced in Table 10.7 cluster analyses were caf­

ried out using the two similarity matrices summarized in Table 10.8. Both 
the single linkage and complete linkage criteria are applied to both the 
simple matching coefficient and Jaccard proximity matrices. The derived 
proximity results for the 19 stages ofthe four hierarchical analyses are sum­
marized in Table 10.14. Figure 10.15 plots the behavior of the similarity 
measures over the 19 stages of the hierarchical process. Panel (a) of the 
figure compares the single linkage (SL) and complete linkage (CL) results 
for the simple matching coefficientj panel (b) compares the two clustering 
criteria for Jaccard's coefficient. 

For the simple matching coefficient the two clustering criteria provide 
identical results up to the seven-cluster stage. Between six clusters and 
four clusters, the difIerence betwoon the two proximities is 0.778 versus 
0.667 in all throo cases. Below four clusters the difIerence between the 
two proximities is quite large. Using the simple matching coefficient a four 
cluster solution may be acceptable. 

For the Jaccard coefficient the two clustering criteria yield identical de­
rived proximities up to ten clusters. Betwoon nine clusters and seven clus­
ters the difIerence between the two similarities is always less than 0.100. 
At six and five clusters the difIerence jumps to 0.143 and 0.214, while after 
four clusters the difIerence between the two coefficients is approximately 
0.3. Using the Jaccard coefficient possible solutions range betwoon seven 
and four depending on the purpose. Certainly with seven clusters the dif­
ferences betwoon the two proximities is small and the overall degroo of 
similarity is relatively high. 

Tables 10.15 and 10.16 show the clustering results for the simple match­
ing coefficient and the Jaccard coefficient respectively. Each table compares 
the single linkage results to the complete linkage results. For the simple 
matching coefficient, the single linkage clusters and complete linkage clus­
ters are quite similar. At the five-cluster solution for the single linkage 
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TABLE 10.14. Cluster Analysis Derived Proximities for Divorce 
Data 

Value of Similarity Measure 
Number Simele Matchig Coefficient Jaccard's Coefficient 

Stage of Single Complete Single Complete 
Clusters Linkage Linkage Linkage Linkage 

1 19 1.000 1.000 1.000 1.000 
2 1S 1.000 1.000 1.000 1.000 
3 17 1.000 1.000 1.000 1.000 
4 16 1.000 1.000 1.000 1.000 
5 15 1.000 1.000 1.000 1.000 
6 14 1.000 1.000 1.000 1.000 
7 13 1.000 1.000 1.000 1.000 
8 12 0.889 0.889 0.875 0.875 
9 11 0.889 0.889 0.857 0.857 
10 10 0.889 0.889 0.833 0.833 
11 9 0.889 0.889 0.778 0.714 
12 8 0.778 0.778 0.750 0.667 
13 7 0.778 0.778 0.714 0.667 
14 6 0.778 0.667 0.714 0.571 
15 5 0.778 0.667 0.714 0.500 
16 4 0.778 0.667 0.667 0.500 
17 3 0.778 0.444 0.667 0.375 
18 2 0.778 0.222 0.500 0.222 
19 0.556 0.111 0.333 0.000 

method, New York, South Carolina and Vermont are joined with Mary­
land, Texas, and Virginia, but in the complete linkage method the first 
three states mentioned are joined with Louisiana and South Dakota. 

For the Jaccard coefficient in Table 10.16 there is greater variation be­
tween single linkage and complete linkage than in the case of simple match­
ing. For the state of Florida, which is somewhat isolated with respect to 
the other states, the single linkage process does not link it with other states 
until the two-cluster stage is reached. In comparison the complete linkage 
method links Florida at the four-cluster stage. This is an example of the 
difference in behavior expected of the two methods with respect to isolated 
points. Another common difference between the two linkage methods is in 
the size of the clusters. At the five-cluster stage under single linkage the 
clusters have sizes 12, 4, 2, 1, 1, whereas for the complete linkage method 
the cluster sizes are 6, 6, 4, 3, 1. As expected the complete linkage clusters 
have less variance in size. 

Test Statistics for Number of Clusters 

At each step of the hierarchical process, a derived proximity measure is 
available indicating the group proximity measure corresponding to the two 
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clusters joined at that step. H the algorithm employed satisfies the utra­
metrie inequality the derived measures increase monotonieally through the 
entire process. The Clustan software package (see Wishart 1987) employs 
these derived proximity measures to develop two test statisties for the op­
timal number of clusters. The statistics are also outlined in Mojena (1977). 

The first statistie is ealled the 'l.l.pper tail rule and is based on the assump­
tion that if in truth there are no clusters, the derived proximity measures 
are simply a set of order statisties eorresponding to sampies from some 
underlying probability distribution. If the underlying derived proximity 
measures ean be assumed to be normally distributed, the measured values 
obtained from the hierarchieal process ean be treated as a sampie from 
a normal distribution. Denoting the derived measures by SI, S2, ••• , Sn-1 

eorresponding to 1,2, ... , (n - 1) clusters, the sampie mean S = ~j~: Sj, 

and the sampie standard deviation v = [~j~:(Sj - s)2/(n - 2)] 1/2 ean be 
used to derive a test statistie. Standardized values of the observed proxim­
ity measures are given by (Sj - s)/v. H this test statistie is large relative to 
a standardized normal statistie then it ean be concluded that the cluster 
formed at step j is nonoptimal. The value of the eorresponding proximity 
measure Sj at step j in this ease is deemed to be too large. This first rule 
is conservative sinee if Sj is relatively large the value of sand v will also 
be too large and henee the standardized value will be too small. 

A seeond test statistie ealled the moving average rule employs a moving 
average fitted to a line obtained by the ordered proximity values SI, S2, 

••. , Sn-I. Assuming that there are no clusters the ordered Sj values are 
expected to be approximately linear with some slope bj. Using an r point 
moving average based on the r points prior to Sj+1, the fitted value of S;+h 

Sj+1 is given by (Sj +Lj +bj ), where bj is the moving average least squares 
slope of the line and Lj = (r -1 )bj /2. Denoting an estimate of the standard 
deviation of Sj+1 by Vj a test statistic is given by (S;+l - Sj+1)/Vj. Onee 
again large values of this statistic relative to a standard normal statistic 
would indicate that the (j + 1) grouping is not optimal. In eomparison to 
the upper tail rule, this statistie has the advantage that the quantities used 
to derive Sj+1 do not depend on Sj+1 and the higher values. 

Example 

For the ten-city example the Clustan package was used to compute the 
standardized values of the proximity measures for the upper tail rule de­
scribed above. The standardized values for both the average linkage method 
and Ward's method are shown below. 

No. of Clusters 
Stage 9 8 765 4 3 2 

Average Linkage -0.80 -0.58 -0.56 -0.52 -0.18 0.59 0.95 2.06 
Ward's -0.82 -0.68 -0.64 -0.61 -0.06 0.62 1.34 1.75 
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Since the data set contained only ten cities, the relatively large values 
of the proximity measures corresponding to the latter four stages caused 
the standard deviation to be large relative to the mean. As a result the 
standardized values were relatively low. 

For the moving average rule based on a four-point moving average the 
standardized deviations from the forecasts are given below. 

No. of Clusters 
Stage 6 5 4 3 

Average Linkage -0.80 
Ward's -0.72 

1.79 
5.22 

3.88 0.31 
2.24 0.72 

2 

0.83 
-0.25 

The moving average deviations at five and four clusters appear to be 
relatively large. Since the moving averages do not include values beyond 
the forecast stage the standardized deviations tend to be higher than for 
the upper tail rule. Either four or five clusters could be justified using the 
moving average rule. 

Some ANOVA Type Statistics 

Regardless of which criterion is used to carry out the hierarchical pro­
cess (average linkage, complete linkage, Ward's, single linkage, etc.), ifthe 
original proximity matrix is squared Euclidean distance, then the sums 
of squares matrices T, W and G can be used to construct a variety of 
measures to assist with cluster choice. As outlined in Section 10.1.2 the 
quantities trT, tr W and trG measure total sum of squares, within sum of 
squares and among sum of squares respectively. At each step of the hier­
archical process tr W increases by (S SWt - S SWr - S SWs ) whereas trG 
decreases by the same amount. The total sum of squares remains fixed over 
the entire process. 

Pseudo-F, Pseudo-t2 and Beale's F Ratio 

Three F-type statistics that are sometimes used for cluster choice are de­
rived from the changes in the sums of squares described above. Two statis­
tics produced by the SAS procedure CLUSTER are called pseudo-F and 
pseudo-t2 • The pseudo-F statistic is given by 

F* = [trGj(g - l)l![trW j(n - g)] 

and has also been termed the variance ratio criterion. Under the assump­
tion of multivariate normality with spherical covariance matrix, this statis­
tic is the conventional one-way ANOVA statistic for testing equality of 
cluster means. With this rather strong assumption, F* has an F distri­
bution with p(g - 1) and p( n - g) degrees of freedom if the cluster mean 
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vectors are equal. This statistie could be eompared to a tabular F using an 
appropriate Bonferroni p-value to assess the significance of the clusters. 

An alternative use of the F* statistic is to simply monitor the behavior 
of F* over the various stages of the process. lnitially as 9 decreases, F* will 
decline as tr W gradually inereases and trG gradually decreases. The grad­
ual almost monotonie decline in F* that oeeurs as like objects are joined, 
will eventually end, as largely dissimilar objects or clusters are joined. At 
some point in the proeess a sudden relatively large decline in F* should 
oeeur if the joining of two clusters result in a large change in tr W and trG. 
The value of 9 immediately prior to this point should then be eonsidered 
as a possible optimum value of 9. This statistie should perform well if there 
are a few quite distinct spherieal-shaped clusters. 

A second statistie that is similar in principal to F* is the pseudo-t2 

statistie given by 

t*2 = [SSWt - SSWr - SSWs](nr + ns - 2) . 
[SSWr + SSWs] 

The numerator sum of squares in t*2 measures the incremental sum of 
squares resulting from the joining of clusters r and s to form a new clus­
ter t. The denominator sum of squares is the sum of the within sum of 
squares for the two clusters being joined. The two cluster sizes are nr and 
n s respectively. Under the assumption of multivariate normality with spher­
ical eovarianee matrix, the pseudo-t2 statistie has an F-distribution with 
p and p(nr + n s - 2) degrees of freedom if the two clusters being joined 
are not distinet. AB above this statistie eould be eompared to a Bonferroni 
p-value to perform an approximate test of cluster signifieanee. As in the 
case of F* , t*2 ean be used to monitor the hierarchieal proeess. A relatively 
large value of t*2 at 9 clusters would suggest (g + 1) as a possible cluster 
ehoice. 

Monitoring the pseudo-t2 statistic is equivalent to monitoring the statis­
tie [SSWr + SSWal/SSWt over the hierarchieal proeess. A sudden decline 
in this amount would also be indieative of the joining of two very distinet 
clusters. 

A third F-type statistic is eommonly referred to as Beale's F-mtio and 
is given by 

F' = [trW1 - trW2] / [(n - 91) (92)2/P -1], 
trW2 n- g2 91 

where W 1 and W 2 denote the matrix W eorresponding to 91 and 92 clus­
ters respectively and where 92 > g1. If the g2 solution is significantly better 
than the 91 solution F' will be relatively large. F' ean be eompared to an 
F statistie for P(g2 - 9I) and p( n - 92) degrees of freedom. This is only an 
approximate F as in the two previous statisties outlined above. 
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If the two cluster solutions 92 and 91 are consecutive [g2 = (91 + 1)] then 
F' is given by 

F' = [SSWt - SSWr - SSWs] / [( n - 91 ) (91 + 1)2/P -1]. 
trW2 n-91- 1 91 

In this case the increase in the within group sum of squares is compared to 
the total within group sum of squares prior to this point in the process. The 
ratio should therefore be a more reliable measure of change in tr W than 
the t*2 statistic, when the hierarchical process is governed by the value of 
[SSWt - SSWr - SSWs] as in Ward's method. 

R2 _Type Measures 

A measure of the partition of the total sum of squares trT, between tr W 
and trG, is given by R~ = trG/trT. This ratio indicates the proportion 
of the total variation among the objects that is accounted for by variation 
among cluster groups. As the number of clusters declines R~ also declines. 
A sudden decrease in R~ would indicate the joining of two clusters that are 
quite distinct. Another statistic related to R~ is called the semipartial R2 

and is given by t::.R2 = R~ - Rfg-1). The semipartial R2 statistic computes 
the ratio of [S SWt - S SWr - S SWs ] to trT. Both of these statistics are 
produced by the SAS procedure CLUSTER. Since the numerator of t::.R2 
represents the incremental sum of squares, this quantity can be monitored 
throughout the process even though Ward's method may not be the hi­
erarchical clustering criterion being used. If the average linkage method is 
being used to choose clusters the semipartial R2 provides information using 
an alternative criterion. The t::.R2 statistic is also useful for comparing two 
or more alternative heirarchical solutions based on different criteria. 

Example 

For the ten-city data the values of the various ANOVA-type statistics are 
shown in Table 10.17 for Ward's method. Examining the results for F* 
and t*2 does not reveal an obvious solution to the number of clusters prob­
lem. These results are typical of the results this author has encountered 
with a variety of data sets using these criteria. For the statistic F' the 
value seems to increase at four clusters and again at three clusters. The 
R2 statistics exhibit behavior already observed in connection with the be­
havior of Ward's method. Large changes in R2 begin to occur around the 
four-cluster solution. When it comes to making inferences there is no "easy 
to use, works every time statistic." Cluster analysis is an exploratory data 
analysis technique requiring judgement and cross-validation techniques, as 
weH as the comparison of a variety of solutions derived from alternative 
clustering criteria. 
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TABLE 10.17. ANOVA-Type Statistics for Ten-City Data 

Ward's Cumulative 
No.of Incremental Incremental 

Stage Clusters Sum of Squares Sum of Squares R2 
9 aR~ FO t o2 F' 

9 1.42 1.42 0.987 0.013 9.49 
2 8 2.41 3.83 0.966 0.021 8.13 1.63 
3 7 3.72 7.55 0.933 0.067 6.96 1.54 1.81 
4 6 3.84 11.39 0.899 0.101 7.12 1.38 
5 5 6.12 17.51 0.845 0.155 6.81 1.59 1.84 
6 4 10.29 27.80 0.754 0.246 6.13 4.18 2.36 
7 3 17.17 44.97 0.603 0.397 5.32 2.65 
8 2 30.13 75.10 0.336 0.664 4.05 6.58 2.94 
9 1 38.08 113.18 0.000 0.336 9.66 1.84 

Total 113.18 

Correlation Type Measures 0/ Cluster Quality 

Correlation type measures of cluster quality are based on a eomparison of 
the original proximity matrix and the cluster group loeation of each objeet. 
The measures are based on the principal that objeets that are in the same 
cluster at any step should have closer original proximity measures than 
objeets that are in different clusters. At each step of the clustering proeess, 
all pairs of objeets are assigned a new or derived proximity value based 
on whether or not the pair are both in the same cluster group. Pairs in 
which objects belong to the same cluster are assigned the value 0, whereas 
those in which objeets are in different clusters are assigned the value 1. 
All pairs eoded 0 are ealled within pairs and all pairs coded 1 are called 
between pairs. Correlation coefficients between the original proximities and 
the assigned values can be used to determine cluster quality. 

Point-Biserial Correlation 

The Pearson correlation eoefficient between the original n( n - 1) /2 prox­
imities and the corresponding assigned values (0 or 1) is ealled the point­
biserial correlation. The correlation ean also be determined using the ex-
pression 

- - 2 1/2 
rb = (db - dw)(nbnw/nd) /Sd, 

where the subscripts b and w eorrespond to the groups of pairs coded 1 
(between pairs) and coded 0 (within pairs) respectively. The means of the 
original proximities for the two groups are denoted by db and dw • The 
number of pairs in each of the two groups is denoted by nb and nw. The total 
number of pairs n( n - 1) /2 = (nb + nw) is denoted by nd and the standard 
deviation of the original proximities is denoted by Sd. A relatively high 
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value of this eorrelation eoefficient (dose to 1) would indieate that pairs 
eoded 1 tend to have low proximity values (relatively dissimilar) whereas 
pairs eoded 0 tend to have high proximity values (relatively similar). 

Gamma and G(+) 

An alternative measure of eorrelation between the original proximities and 
the assigned numerieal values ean be obtained using a coefficient 0/ con­
cordance. The two groups of pairs defined above, within and between, are 
eompared, one from each group, to yield a total of (nw)(nb) eomparisons. 
All comparisons in which the original proximity of the within pair, ex­
eeeded (more similar) the original proximity of the between pair, are das­
sified as concordant whereas in the opposite case the eomparison is dassified 
as discordant. The total number of eomparisons is therefore divided into 
two groups containing 8(+) concordant and 8( -) discordant comparisons, 
hence 8(+) + 8( -) = nwnb. The gamma eoefficient of coneordance is given 
by 

'Y = [8(+) - 8(-)]/[8(+) + 8(-)]. 

A value of'Y close to 1 therefore indieates a close agreement between original 
proximities and cluster group membership. Kendall's eoefficient of concor­
danee between the original proximities and the coded 0-1 values is equiva­
lent to the gamma eoefficient if all ties are eliminated from the caleulation. 

An alternative measure of agreement is given by G(+) = 8(-)/[8(+) + 
8( - )]. For this eoefficient, a value close to 0 is indicative of close agreement 
between cluster group membership and the original proximities. 

Example 

For the ten-city example Table 10.14 shows the original proximity values 
for each pair as weIl as the 0-1 coding for each of the nine sets of clusters. 
These coding eolumns ean be used to judge the quality of various cluster 
solutions. The point-biserial, gamma and G( +) correlations for the latter 
four cluster solutions are summarized below. The eorrelations for the four­
cluster solution are optimum in all three eases. The four-cluster solution 
appears to be the best when it eomes to preserving the order established 
by the original proximities. This solution is eonsistent with the solution se­
lected above based on the values of Ward's and the average linkage eriteria. 

No. of Clusters 
5 4 3 2 

Point-Biserial 0.51 0.74 0.71 0.37 
Gamma 0.92 0.95 0.89 0.49 
G(+) 0.04 0.02 0.06 0.25 
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TABLE 10.14. Coding for Correlation Comparison 
of Original Proximities and Coded Pairs 

Original No. of Clusters in Solution 
Pair Proximity 9 8 7 6 5 4 3 2 

(3,6) 
(5,7) 
(7,10) 
(2,9) 
(5,10) 
(4,5) 
(2,7) 
(2,10) 
(4,9) 
(2,5) 
(4,7) 
(2,3) 
(7,9) 
(2,4) 
(3,10) 
(2,6) 
(5,9) 
(9,10) 
(4,10) 
(6,10) 
(1,7) 
(3,7) 
(3,9) 
(7,8) 
(4,8) 
(1,4) 
(6,7) 
(6,9) 
(1,9) 
(1,10) 
(3,5) 
(1,2) 
(1,8) 
(5,8) 
(8,9) 
(2,8) 
(3,4) 
(5,6) 
(1,5) 
(4,6) 
(1,3) 
(8,10) 
(1,6) 
(3,8) 
(6,8) 

2.8 0 0 0 0 0 
4.810000 
~1 1 0 0 0 
~7 1 1 1 0 0 
&5 1 1 0 0 0 
8.7 1 1 1 1 
9.0 1 1 1 1 1 
9.1 1 1 1 1 
9.4 1 1 1 0 

10.0 1 1 1 1 1 
10.7 1 1 1 1 
10.9 1 1 1 1 1 
12.3 1 1 1 1 1 

12.9 1 1 1 1 0 
14.4 1 1 1 1 
14.5 1 1 1 1 
15.1 1 1 1 1 
17.4 1 1 1 1 1 
17.8 1 1 1 1 1 
19.2 1 1 1 1 
22.3 1 1 1 1 
23.4 1 1 1 1 
25.0 1 1 1 1 1 

26.8 1 1 1 1 1 
28.6 1 1 1 1 1 
30.2 1 1 1 1 
30.9 1 1 1 1 
31.0 1 1 1 1 
32.4 1 1 1 1 
32.6 1 1 1 1 
32.6 1 1 1 1 1 
33.5 1 1 1 1 1 
34.3 1 1 1 1 
35.1 1 1 1 
35.7 1 1 1 1 
35.8 1 1 1 1 
35.9 1 1 1 1 
36.8 1 1 1 1 1 
38.6 1 1 1 1 
43.1 1 1 1 1 
44.2 1 1 1 1 
45.1 1 1 1 1 
55.6 1 1 1 1 1 

57.4 1 1 1 1 1 
64.6 1 1 1 1 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
1 1 1 
000 
000 
1 1 1 
1 1 1 
000 
000 
000 
1 1 1 
110 
1 1 1 
1 1 1 

110 
110 
1 0 
1 1 1 

1 1 1 
110 
110 
1 1 1 
110 
100 
110 
110 
110 
1 1 1 

1 1 1 
1 1 0 
1 1 1 

1 1 1 
110 
1 1 1 

1 1 1 
1 1 1 
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10.2.3 COMBINING HIERARCHICAL CLUSTER ANALYSIS 

WITH OTHER MULTIVARIATE METHOnS 

Interpretation 0/ the Cluster Solution 

After a cluster analysis solution has been obtained, it is usually of interest to 
characterize the clusters with respect to the variables used to derive them. 
As a result of the cluster analysis, a new categorical variable denoting the 
cluster group membership can be added to the original data matrix X. 
The task of characterizing the clusters therefore consists of relating the 
new categorical variable to the original p variables in X. Each of the p 
variables can be related to the cluster variable individually using ANOVA 
or simultaneously using MANOVA. Since there are usually a large number 
of variables a principal components analysis could be used initially to reduce 
the number of variables. Altematively, a discriminant analysis based on the 
original p variables can be used to characterize the differences among the 
cluster groups. These techniques will now be demonstrated in the example 
below. 

Example 

The air pollution data in Table 9.7 contains observations for 40 cities. 
So far in this chapter the analysis has been based on only 10 of these 
cities. A cluster analysis will now be carried out using the entire (40 x 
11) data matrix in Table 9.7. Using Ward's incremental sum of squares 
method a hierarchical cluster analysis was carried out. An examination of 
the behavior of the incremental sum of squares over the 39 stages revealed 
a steady exponential rise without any sudden or major jumps. The moving 
average rule based on a 16-point moving average indicated that three or 
five clusters might be appropriate. For convenience a three-cluster solution 
will be used for this example. The three groups of cities are summarized 
below. 

Group 1 Group 2 Group 3 

San Jose Port land Roanoke Philadelphia 
Albuquerque Springfleid Charleston Wilmington 
Harrisburg Salt Lake Greenville Scranton 
Hartford Wichita Columbus New York 
Orlando Lorain J acksonville Wheeling 
Sacramento Hamilton Atlanta Canton 
Washington San Diego Montgomery Baltimore 
Minneapolis Duluth Baton Rouge 
Los Angeles Wilkes Barre San Antonio 
Greensboro Cincinnati 
Madison Saginaw 
Tacoma Springfleld 
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TABLE 10.19. ANOVA Results for Three 
Cluster Groups on Eleven Air Pollution 
Variables 

Group 1 Group 2 Group 3 

SMEAN --{J.30 -{).61* 1.81* 
PMEAN -{).27 --{J.35* 1.39* 
PMAX --{J.24 -{).21 1.08* 
SMIN -{).27 -{).35* 1.39* 
SMAX -{).28 -0.56* 1.67* 
PMIN --{J.29 -{).39* 1.51* 
PERWH 0.43* -1.25* 0.13 
NONPOOR 0.45* -1.39* 0.25 
GE65 0.13 --{J.93* 0.75* 
PM2 -{).18 -{).04 0.68* 
LPOP --{J.01 -{).45* 0.61* 

For comparison purposes a three-cluster solution was also generated UB­

ing the average linkage method. The outcome in this case resulted in a 
single city cluster for Albuquerque, a second cluster identical to the cluster 
in group 3 of Ward's and a third cluster which contained all the cities in 
groups 1 and 2 ofthe Ward's solution (except Albuquerque). This provides 
another example of the tendency for the average linkage method to leave 
outliers isolated until late in the process. 

ANOVA 

Using a one-way analysis of variance, a comparison of means over the three 
groups (determined using Ward's method) was carried out for each of the 
eleven variables. The results from this analysis are shown in Table 10.19. 
Since the variables have been standardized the overall mean in each case is 
zero and the standard deviation is always 1. A 95% confidence interval for 
the mean in each case is (-0.32,0.32). Values in the table that are outside 
of this interval have been marked with an *. An examination of the values in 
the table reveals that the group 3 means tend to be large particularly for the 
pollution variables. In addition the means for PM2, GE65 and LPOP are 
also significantly large. In contrast to group 3, group 2 shows means that are 
significantly negative in most cases. The means for PERWH, NONPOOR 
and GE65 are particularly large and negative. For group 1 the means for 
PERWH and NONPOOR are significantly positive, whereas the remainder 
of the means are not significantly different from zero. The means for the 
air pollution variables however are all negative and very close to the lower 
boundary of -0.32. 
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MANOVA and Discriminant Analysis 

A multivariate analysis of varianee shows that the three (11 x 1) mean 
vectors are signifieantly different. A diseriminant analysis ean therefore 
be used to find two linear eombinations of the eleven variables that best 
characterize the group differenees. In this ease, both discriminant funetions 
obtained were highly signifieant and are given by 

and 

Yl = 0.12 SMEAN + 0.71 SMAX + 0.45 SMIN + 0.30 PMEAN 

+0.08 PMAX + 0.08 PMIN + 0.56 PM2 + 0.00 LPOP 

-0.36 GE65 - 0.44 PERWH - 0.89 NONPOOR 

Y2 = 0.51 SMEAN + 0.31 PMEAN + 0.15 PMAX - 0.17 SMAX 

+0.11 SMIN - 0.20 PMIN + 0.06 PERWH + 0.75 NONPOOR 

+0.05 LPOP + 0.51 GE65 - 0.26 PM2. 

The first discriminant funetion eontrasts the six pollution variables and 
population density with the three demographie variables GE65, PERWH 
and NONPOOR. It would appear that cities with large values of Yl tend to 
have relatively large values of the pollution variables and relatively small 
values of the three demographie variables. The means on Yl for the three 
groups were -1.7, 1.8 and 3.6 indieating therefore that groups 1 and 3 
differ the most on the Yl dimension with group 3 having the largest values 
of Yl and group 1 having the smallest values. 

For the seeond diseriminant function the negative eoefficients seem to 
be minor, whereas the positive eoefficients are dominated by NONPOOR, 
GE65 and SMEAN. The correlation between Y2 and the 11 variables is posi­
tive in all eases with the highest eorrelation oeeurring between Y2 and each 
of SMEAN, SMAX, NONPOOR, PERWH, PMIN, GE65, PMEAN and 
SMIN. Cities with large values of Y2 therefore tend to have higher values of 
the pollution variables and the three demographie variables. The means for 
groups 1, 2 and 3 were 0.35, -2.77 and 2.35 respeetively. The Y2 dimension 
therefore seems to separate cluster groups 2 and 3 with group 3 having 
high values of Y2 and group 1 having low values of Y2. Combining the re­
sults from the two diseriminant functions, it would appear that group 3 has 
relatively high values of both the pollution variables and the demographie 
variables with the pollution variables being higher in a relative sense than 
the demographie variables. Group 1 appears to have moderate values of 
the 11 variables with the pollution variables being smaller relatively than 
the demographie variables. Group 2 appears to have relatively low values 
of all variables with the demographie variables being smaller than the pol­
lution variables. The diseriminant funetion results and the ANOVA results 
eorrespond very well overall, as they should. 
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FIGURE 10.16. Discriminant Analysis of Cluster Groups 

A scatterplot of the 40 cities with respect to the two discriminant func­
tions is shown in Figure 10.16. The cluster group number is used as a plot­
ting symbol. For the most part the three groups of cities are weIl separated 
with respect to the two dimensions. 

Principal Components Analysis and Factor Analysis 

Since there are 11 variables involved in the analysis, it may also be useful to 
use principal components analysis or factor analysis to reduce the number of 
variables before comparing the groups. A factor analysis of the correlation 
matrix for the eleven variables was carried out in Chapter 9 using the 
principal component method. Table 9.23 shows the loadings for the four 
factors obtained from a varimax rotation. Using the factor scores on the 
four factors, the means on the four factors were compared across the three 
groups using one-way analysis of variance. The means are summarized in 
Table 10.20. 

With the exception of factor 3 the means were significantly different over 
the three cluster groups. From the factor loadings in Table 9.23, factor 1 
represents the pollution variables PMIN, PMEAN and PMAX, whereas 
factor 2 represents the pollution variables SMIN, SMEAN and SMAX, as 
weIl as the variable GE65. The last factor, factor 4, is negatively corre-
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TABLE 10.20. Cluster Group 
Mean on Four Factors 

Cluster Groul! Means 
Factor 1 2 3 

1 -0.27 -{l.14 1.10 
2 -0.27 -{l.36 1.39 

3 -{l.07 -{l.31 0.64 
4 -0.56 1.40 0.13 

lated with PERWH and NONPOOR. From these results we can conclude 
that cluster group 3 has relatively high values for the two sets of pollution 
variables, whereas group 2 has relatively low values of PERWH and NON­
POOR. Group 1 appears to have relatively high values of PERWH and 
NONPOOR. These results are comparable to the ANOVA results obtained 
above using the original 11 variables. 

Principal Components Analysis Prior to Cluster Analysis 

In applications involving a relatively large number of variables, it is some­
times advantageous to first perform a principal components analysis on the 
data matrix X before the hierarchical cluster analysis. By keeping only a 
small portion of the principal components the number of variables used for 
the cluster analysis can be reduced substantially. This practice, however, 
must be carried out with extreme caution because of the weighting and 
scaling effects that principal components analyses can introduce. 

In Chapter 9, it was demonstrated that the form of the X'X matrix 
used for principal component analysis is usually one of a correlation ma­
trix, covariance matrix or raw sum of squares and cross-products matrix. 
Depending on which of these three forms is used the nature of the prin­
cipal components vary. In addition, it has been suggested in Section 10.1 
that standardization of the variables is usually an important preliminary 
step before performing a cluster analysis. In general, the correlation matrix 
should be used to generate the principal components to ensure that certain 
variables do not dominate the solution because of scale differences. This 
would be consistent with using standardized variables in cluster analysis 
since in both cases the beginning data matrix X is the same. 

A second consideration of extreme importance in cluster analysis is the 
effective weight given to each of the variables. A data matrix X may contain 
a few groups of highly correlated variables and hence may only represent 
a few underlying dimensions. In a cluster analysis each standardized vari­
able in X is usually given the same weight. Thus if some dimensions are 
overrepresented by sets of highly correlated variables, the resulting cluster 
analyses will give greater weight to these overrepresented dimensions. A 
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preliminary principal components analysis of the correlation matrix can be 
useful for extracting the underlying dimensions before the cluster analysis 
is carried out. It is also important to keep in mind that if only the most 
important components are retained for the cluster analysis, outlier effects 
carried by the latter components will be lost. This may or may not be 
advantageous. An important issue remaining is whether the resulting prin­
cipal component scores should be standardized prior to the cluster analysis. 
This issue is discussed next. 

In Chapter 9 it was demonstrated that a small number of principal com­
ponents can be used to provide an approximation to the data matrix X. 
Recall that if the matrix of unstandardized principal component scores is 
given by Z(n x p) then X = ZV where V'V = VV' = I and V is the 
matrix of eigenvectors of X'X. The matrix XX' therefore can be written 
as ZZ'. If Z = [Z1Z2] is a partition of Z then XX' = Z1Z~ + Z2Z; and 
hence if Zl provides a close approximation to X then Z1Z~ approximates 
XX'. If, however, the principal component scores are standardized, then 
X = Z*V*, where Z* = ZA-1/ 2 , V* = A1/ 2V and Z'Z = A. In this 
case, XX' = Z*V*V*'Z*', and hence using Z*Z*' to approximate XX' 
involves in effect achanging of the scale since Z* Z*' = XV' A -1 VX'. 
Proximity measures based on Z*Z*', which are concerned with scale such 
as Euclidean distance will yield different results than the same proximity 
measures based on ZZ'. If principal components are used prior to a cluster 
analysis, it would therefore seem "safer" to use the unstandardized prin­
cipal component scores for the cluster analysis. If the proximity measure 
being used however is a correlation type measure, then the scaling of the 
principal component scores prior to clustering should not affect the prox­
imities. The use of principal components analysis as a preliminary step to 
cluster analysis is demonstrated next. 

Example 

For the data matrix of 40 cities used in the previous example a princi­
pal components analysis of the correlation matrix was carried out. The 
unstandardized principal component scores for the first four components 
were then used as the input for a Ward's hierarchical cluster analysis. The 
results of the principal components analysis can be viewed in Tables 9.14 
and 9.15. These two tables can be used to interpret the four components. 
The first four components represent the eigenvalues that exceed one and 
together account for 85.6% of the variation. 

A three-cluster solution produced clusters very similar to those obtained 
in the previous example. In this case the cities of Orlando and Greensboro 
moved from group 1 to group 2, whereas the cities of Washington, Los 
Angeles and Cincinnati moved to group 3 from group 1. The reason for 
these slight changes is the differences in weights attached to the various 
dimensions by the principal components. A comparison of the means for 
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TABLE 10.21. Comparison of Cluster Group Means on the Four 
Principal Components 

Principal Cluster Group Overall Standard Deviation 
Component 2 3 of Component 

1 -0.482 -1.939 3.050 2.165 

2 0.457 -0.709 -0.089 1.337 

3 0.822 -0.915 -0.555 1.307 
4 0.549 -0.663 -0.314 1.109 

Group Size 19 11 10 

the principal component scores across the three cluster groups is given in 
Table 10.21. The magnitudes of the means for each principal component 
reflect the differing standard deviations for the fOUT components. The stan­
dard deviations of the components are the square roots of the eigenvalues 
in Table 9.14. The interpretation of the differences in means is left as an 
exercise for the reader. It would appear, however, that the use of principal 
components analysis has reduced slightly the impact of the six pollution 
variables while increasing the relative importanee of the five demographie 
variables. 

10.2.4 ÜTHER CLUSTERING METHons 

Although the hierarehical method is the most eommonly used teehnique 
for clustering there are other approaches. The remaining methods are com­
monly classified into the four eategories: partitioning methods, Q-sort meth­
ods, density methods, and clumping methods. Of these methods, the par­
titioning methods are more eommonly used and are most similar to the 
hierarehical approach. These methods are briefly outlined next. 

Partitioning Methods 

Partitioning methods usually begin with a preselected or target number of 
groups or clusters, say g. An initial allocation of the objects into 9 groups 
is carried out followed by adetermination of the proximity between each 
objeet and each group. Objects are then placed in the groups to which 
they are closest. The proximities are recalculated each time objects change 
groups. The proeess of reassigning objeets to new groups continues until 
all objeets belong to the closest group. The method consists of two ma­
jor phases, a choice of the initial 9 clusters and the realloeation proeess. 
Partitioning methods do not usually use the initial proximity matrix but 
instead employ the original data matrix X. This is a contrast to the hier­
archical method, which sequentially updates the proximity matrix without 
ever returning to X. The difference lies in the fact that in the hierarchical 
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method objects cannot change groups, whereas in the partitioning method 
this is not the ease. 

The k-Means Algorithm 

A commonly used partitioning method is the k-means algorithm which 
measures the proximity between groups using the Euelidean distance be­
tween group centroids. In this method the quest is for k clusters. Using the 
notation employed here the method would be labeled a g-means algorithm. 
Beginning with the initial selection of 9 groups objects are reassigned until 
they are loeated in the group with the nearest eentroid. As objeets are 
reassigned the group eentroids must be revised. For a given level of g, equi­
librium is reached when an objeets are loeated in the group whose centroid 
is closest. 

Selecting the Initial Partition 

The initial group phase can begin with either a preselected set of 9 clusters 
or, with a preselected set of 9 seed points or objects that are then used to 
loeate the remaining objects. The initial set of 9 clusters may be available 
from another clustering solution, from a previous study, or may be dictated 
by some underlying hypothesis. 

The number of possible initial solutions is large if n is large relative to g. 
The number of possible partitions of n objects into 9 groups is given by 

\ t ( ~ )(_1)9-iin , 

9 i=l 

which is of the order gn / g! when n is large. To evaluate all possible par­
titions would therefore be prohibitive if n is large. In practice therefore 
a few well-chosen initial solutions are required. Several different starting 
configurations should be used to ensure the validity of the final solution. 

In the absence of a beginning set of 9 clusters the initial stage begins 
with a set of 9 objects or seed points around which 9 clusters are formed. 
Proximity measures are computed between each of the (n - g) remaining 
objeets. Other criteria that eould be used include trW, IWI and G-1W. 
In addition a procedure suggested in the Clustan procedure RELOCATE is 
based on a split of the squared Euclidean distanee into two eomponents. 
The two components are the size component based on differences between 
profile means and the shape component based on the variances of the two 
profiles and the eovariance between them. An example using the RELOCATE 

procedure is given below. 

An Example Using RELOCATE 

The RELOCATE procedure is a generalization of the k-means algorithm. 
Given a particular partition of the n objeets into 9 groups, the RELOCATE 
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procedure uses a given criterion to measure the proximity hetween each 
ohject and 9 groups. Each ohject is then placed into the closest group. The 
process is carried out sequentially so that after each ohject is placed, the 
criterion is recomputed for placing the next ohject. The process continues 
until all ohjects are located in their closest group. It is therefore possihle 
for an ohject to move more than once hefore equilihrium is reached. A 
hierarchical clustering process can he carried out hy joining the two closest 
clusters at each equilihrium. The initial partition can he hased on a random 
allocation or can he hased on a prior cluster analysis solution. 

For the purposes of testing cluster validity, the Clustan manual suggests 
that the outcome of three alternative two-step procedures he compared. 
Initially a random allocation is made to g' clusters where g' is larger than 
the expected solution. One first-step solution consists of reallocating the 
initial solution using the size component whereas a second first-step solu­
tion consists of reallocating the initial solution using the shape component. 
The third first-step solution consists of the initial random allocation with 
no relocation. The second step of the recommended process produces a 
heirarchical solution hy using the Euclidean distance measure to reduce 
the numher of clusters and at each step to reallocate the ohjects. The pro­
cedure is carried out for each of the three first-step solutions and produces 
three sets of hierarchical solutions each ranging from g' clusters to 1 cluster. 

Using the air pollution data for the 40 cities discussed ahove three initial 
ten-group solutions were generated. Then, using the squared Euclidean 
distance criterion, the RELOCATE procedure was applied to join clusters 
and to relocate ohjects. At the five-cluster stage all three methods produced 
the same solution. The solutions of course then remained the same for the 
later stages of the process. For the five-cluster stage the cluster groups are 
given hy 

1 2 3 4 

San Jose Salt Lake Charleston Hartford Wilmington 
Roanoke Wichita Greenville Philadelphia Scranton 
Harrishurg Lorain Columhus Washington Canton 
Sacramento Hamilton Orlando Los Angeles Wheeling 
Minneapolis San Diego Greenshoro Baltimore 
Madison Duluth Jacksonville Cincinnati 5 
Tacoma Wilkes Barre Atlanta New York Alhuquerque 
Portland Saginaw Montgomery 
Springfield, OH Springfield, MA San Antonio 

Baton Rouge 

The three-cluster solution derived from this RELOCATE procedure was 
compared to the three-group solution obtained in Section 10.2.4 using 
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Ward's. The three duster solution derived from the RELOCATE procedure 
is identical in terms of the three cluster sizes 24, 9 and 7. There are some 
differences in group membership however since in comparison to the Ward's 
solution, Roanoke and San Antonio move to group 1, whereas Orlando and 
Greensboro move to group 2. 

Glassijication Typologies and Q-Sorl Methods 

The classijication typology approach to clustering objects has been used 
extensively in psychology and psychiatry for the classification of human 
personalities and various psychological disorders. The approach is based 
on the properties of a spectral decomposition of the (n x n) matrix XX'. 
Since the number of variables p is usually much less than the number of 
individuals n, the rank of XX' is usually p. The spectral decomposition 
therefore yields a set of p components which may be viewed as a set of 
"pure" types. The classification process then involves assigning the n indi­
viduals to the closest ''pure'' type. 

This method may be viewed as a factor analysis carried out on the n 
rows of X rather than the p columns of X and hence is also referred to 
as a Q-sort method rather than the conventional R-sort method of factor 
analysis. For a data matrix X( n x p) with appropriate standardization, the 
matrix X'X is called an R-type matrix, whereas the matrix XX' is called 
a Q-type matrix. The R-type matrix summarizes the correlations among 
the columns or variables of X, while the Q-type matrix summarizes the 
correlations among the rows or profiles of X. 

The eigenvectors of XX' provide vectors of coefficients that can be used 
to obtain the pure types as a linear combination of the n objects. A rotation 
of the initial solution is usually carried out in an attempt to obtain pure 
types that depend on only a small number of individuals. Ideally any one 
individual should be primarily adeterminant of one and only one "pure" 
type. Thus after rotation each individual should load highlyon only one 
factor or ideal type. An extensive discussion of this approach to cluster 
analysis is available in Overall and Klett (1972). 

Density Methods 

In applications where natural clusters are expected, methods are used that 
search for regions of high density commonly called modes. Natural duster­
ing usually suggests that there should be many points in space that are 
very dose to other points and that these clusters are separated by areas 
with very few points. Single linkage approaches are usually used in this 
category. A popular technique is called mode analysis. This method deter­
mines dense points which are used to define the initial clusters. A radius r 
and a number of points k is selected initially. Around each point or object a 
sphere of radius r is determined and the number of points contained in the 
sphere is then calculated. All points with at least kother points contained 
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in the sphere are called dense points. The initial clusters are defined by 
the dense points in such a way that if adense point belongs to more than 
one cluster the relevant clusters are combined. Clusters are also combined 
if the distance between them is less than a threshold value c, which is the 
average of the 2k smallest distances between the original n points. Any 
point separated from all dense points by at least r forms its own cluster. 
After the initial solution has been determined r can be increased and the 
process repeated. 

The taxmap method also uses a single linkage approach. Beginning with 
the proximity matrix, the two closest individuals are selected to form the 
first cluster. A new proximity matrix is computed relating the cluster to 
the other points. The closest point to the cluster is again determined. The 
average measure of proximity among the three is computed and compared 
to the measure of proximity between the first two. The difference between 
the two measures is referred to as the measure of discontinuity. If this 
measure is larger than some preassigned value, then the individual is not 
added to the cluster and a new cluster is initiated with the rejected point. 
The process is now repeated for the new cluster. 

Clumping Techniques or Fuzzy Clustering 

Clumping techniques usually begin with a proximity matrix. Beginning with 
a preselected level of proximity p all points are joined if their level of prox­
imity is at least as large as p. A cluster is formed by finding the largest 
possible subset in which all points are joined to all other points in the set. 
If one cluster has points that are joined to at least k points in another 
cluster, the two clusters are combined. The integer k is preselected. In this 
method the clusters are allowed to overlap to a certain extent. 

10.2.5 CLUSTER VALIDITY AND CLUSTER ANALYSIS 

METHODOLOGY 

The discussion of cluster analysis presented in this chapter suggests that 
the methodology is exploratory. The outcome of the analysis depends to 
a large extent on the technique selected, on the variables selected, and on 
the underlying cluster structure - if indeed there is one. The following 
quotation from Milligan (1981) sets the stage for the discussion presented 
in this section. 

An inherent problem in the use of a clustering algorithm in prac­
tice is the difficulty of validating the resulting data partition. 
This is a particularly serious issue since virtually any clustering 
algorithm will produce partitions for any data set, even random 
noise data which contains no cluster structure. Thus, an applied 
researcher is often left in a quandry as to whether the obtained 
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clustering of a real life data set actually represents signifieant 
cluster strueture or an arbitrary partition of random data. 

Cluster Validity 

To be valid tberefore, a cluster solution sbould not be a structure tbat 
eould bave oeeurred by chance by random sampling from a bomogeneous 
population. Tbe strueture must be unusual to be valid. Tbe underlying 
randomness assumption eould be expressed in several ways. Tbe loeation 
of tbe n points in Euelidean space is random, or tbe assignment of n points 
to 9 clusters is random, or finally, tbe rank order of tbe observed proximities 
is random. Tests for randomness usually appeal to one of tbese eoneepts of 
randomness. An extensive diseussion of this topie is provided in Jain and 
Dubes (1988). 

Tbe validity of a cluster structure ean be examined in several ways. Ex­
ternal criteria measure cluster solutions against apriori information re­
garding structure. Evaluation of clustering algorithms using sampies from 
known clusters is an example of an external evaluation of cluster metbod­
ology. Internal criteria are UBed to evaluate a cluster solution relative to 
tbe underlying sampie data matrix and tbe corresponding proximity ma­
trix. Witb internal criteria tbe issue is tbe goodness of fit of tbe cluster 
solution relative to tbe original proximity matrix. Tbis issue was explored 
in Seetion 10.2.2. A third eriterion for tbe evaluation of a cluster solu­
tion is replicability which involves tbe use of cross-validation procedures. 
Comparison of results from split-haIf sampies would be an example of a 
replieability evaluation. Finally, a comparison of cluster solutions obtained 
from alternative clustering algorithms applied to tbe same data matrix, 
eonstitute wbat is usually referred to as tbe applieation of relative crite­
ria. In tbis case indices of agreement can be computed between alternative 
cluster solutions. 

Monte Carlo Studies 

A large variety of Monte Carlo experiments bave been carried out over tbe 
past two decades for tbe purpose of evaluating cluster analysis metbodology. 
Tbe studies carried out bave bad a variety of purposes. To illustrate tbe 
variety of experiments, four studies carried out by Milligan (1980) and 
(1981), Milligan and Cooper (1985) and (1988) are summarized below. 
Tbe purposes of tbe four studies were to evaluate clustering algorithms, 
rules for cluster choice, criteria for measuring cluster internal validity and 
variable standardization procedures. Tbese four reports are UBed bere for 
illustration because tbey are all based on tbe same underlying design. 
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The Underlying Cluster Population 

The experimental design for the experiments consisted of 36 cells derived 
from a 4 x 3 x 3 design. The first design factor was the number of clusters 
(2,3,40r 5) and the second f&etor was the number of variables (4,6 or 8). 
The third f&etor represented the distribution of points across clusters and 
consisted of three levels: (a) equal distribution, (b) one cluster with 10% 
and remaining clusters equal and (c) one cluster with 60% and remaining 
clusters equal. 

The points for the clusters were selected randomly from a truncated mul­
tivariate normal with diagonal covariance matrix. The cluster means and 
variances were selected to guarantee complete separation on one dimension 
and to ensure that the clusters satisfied the properties of external isolation 
and internal cohesion. The construction of cluster boundaries with respect 
to the various dimensions was somewhat complex and will not be described 
here. Each of the 36 cells was used to generate sampies of 50 points each. 
Three replications were used to yield 108 data sets of 50 points each. 

Evaluation 0/ Clustering Algorithms - Milligan (1980) 

Ten different types of errar perturbation were used in the 108 data sets to 
yield a total of 1080 data sets. The types of error were addition of outliers 
(2 levels), measurement error (2 levels), addition ofrandom noise (2 levels), 
addition of random noise dimensions (2 levels), use of a correlation type 
proximity measure (2 different measures), standardization of the variables 
and finally, the original unperturbed data set. 

Fifteen clustering algorithms were evaluated including single linkage, 
complete linkage, average linkage, centroid method, Ward's method and 
the k-means partitioning method. The k-means method was eva.luated with 
random starts and with preliminary solutions based on the other methods. 
The best all-around method seemed to be the average linkage method, 
although the single linkage method performed best in the presence of out­
liers. The k-means algorithm following an average linkage method start also 
performed well. 

Evaluation o/Internal Criterion Measures - Milligan (1981) 

Using the same 108 data sets described above, 432 sets were constructed 
using four different errar characteristics; no error, random noise, measure­
ment error and random noise dimensions. For each of the 432 data sets 
four hierarchical algorithms (single linkage, complete linkage, average link­
age and Ward's) were employed. Thirty internal criterion measures were 
evaluated. A set of six measures were judged to be outstanding. Three of 
these six measures were the point-biserial correlation, gamma and G( +), 
which are described in Section 10.2.2. 
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Cluster Choice - Milligan and Cooper (1985) 

Using the 108 data sets described above four clustering methods (single 
linkage, complete linkage, average linkage and Ward's) were applied to 
yield a total of 432 sets of hierarchical solutions. Each set of solutions 
was evaluated using a total of 30 cluster choice criteria. 

Some of the best performing choice criteria were gamma, Beale's F ' ratio, 
pseudo-F, G(+), Mojena's average rule, point-biserial correlation and the 
statistic [SSWr + SSWsl/SSWt , which is equivalent to using the statistic 
pseudo-t2. All of the above were in the top 9 out of 30 criteria studied. 
The pseudo-F statistic showed the best results by correctly identifying the 
number of clusters in 390 out of 432 whereas the Mojena procedure was 
correct on 289 out of 432 cases and was rated ninth out of 30. 

Interestingly, procedures that have been designed on the basis of multi­
variate normal mixtures for cluster structure tended to perform poody. The 
procedures in this category included ITI/IWI, trW-1G, trW, log(ITI/IWI) 
and g21WI. This result may be due to the particular design of clusters used 
in the study. 

Variable Standardization Procedures - Milligan and Cooper (1988) 

In a Monte Carlo evaluation of various standardization procedures, the 
following six standardization procedures were compared: 

(a)Z=(X-X)/S 

(b) Z = X/max(x) 

(c) Z = X/[max(x) - min(x)] 

(d) Z = X/EX 

(e) Z = Rank(X) 

(f) no standardization, Z = X. 

The 108 basic data sets described above were perturbed with respect to 
cluster separation (2 levels), cluster variance (2 levels) and error conditions 
(4 levels). Four different hierarchical methods, single linkage, complete link­
age, average linkage and Ward's were used to perform the analyses. Cluster 
recovery was evaluated at levels g, (g + 3), (g + 6) and (g + 9) where 9 is 
the correct number of clusters. 

The results of the Monte Carlo study indicated that division by the 
range [method (c) 1 was usually the best method of standardization. The 
rank transformation [method (e)] performed very poody. 
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TABLE 10.22. Comparison of Locations of Pairs of 
Points Between True Solution and Derived Solution 

True Solution 
Pair in Same Pair Not in Same 

Cluster Cluster 
Pair 
in Same a b 

Derived Cluster 
Solution Pair Not 

in Same c d 

Cluster 

On the Measurement 0/ Clu.ster Recovery and External Measurement 
Criteria 

Over the decade spanned by the four Monte Carlo studies outlined above, 
improvements have been made with respect to the measurement of external 
validity. Based on a number of studies, the recommended measure of ex­
ternal validity is the adjusted Rand index developed by Hubert and Arabie 
(1985). This index, which is used to compare a derived cluster solution to 
a true cluster solution, is given by 

Ra = (a + d - nc)/(a + b + c + d - nc), 

where nc is an adjustment to correct for chance agreement. The parame­
ters a, b, c and d are defined by Table 10.22. The adjustment for chance 
agreement, nc, is given by 

nc = [n(n2 + 1) - (n + l)En~. - (n + l)En~j + 2EEn~.n~j/nl/[2(n - 1)], 

where nij denotes the number of points in cluster i for the derived solution 
which are also in cluster j of the true solution. The marginals are given by 
ni· = E j ~j and n.j = Ei nij and the grand total by n = Ei E j nij. The 
index was used in Milligan and Cooper (1988) but was not used in their 
prior studies. See Milligan and Cooper (1986) for a comparison to other 
external criteria. 

A second important consideration in Monte Carlo studies is at what 
number of clusters the derived and true solutions should be compared. In 
most studies the known true solution of 9 clusters is compared to the 9 
clusters derived solution. It has been argued (see Edelbrock 1979) that due 
to outliers, a point in the tree may be reached where all points except the 
outliers are correctly classified. Requiring that the derived solution have 
the same number of clusters as the true solution, forces the comparison 
calculation to be made at a point in the tree that does not represent the 
ideal solution given the outliers. Thus, algorithms that tend to combine 
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outliers into clusters at an early stage such as Ward's method would tend 
to appear superior. This in fact seems to be the case, since many early 
studies found Ward's criterion to be superior. To combat this difliculty 
Milligan and Cooper (1988) compared solutions at levels g, (g + 3), (g + 6) 
and (g + 9) where 9 is the true number of clusters. They found that at 
level 9 and (g + 3) Ward's method was superior to the average linkage 
method, whereas at levels (g + 6) and (g + 9) the average linkage method 
was superior to Ward's method. Generally the single linkage and complete 
linkage methods were inferior to the average linkage and Ward's methods. 
The single linkage method tended to behave like the average linkage method 
in terms of its cluster recovery pattern over the four measurement levels g, 
(g + 3), (g + 6) and (g + 9); however, its index was always lower. Similarly 
the cluster recovery pattern for the complete linkage method was similar 
to the pattern for Ward's method, but the index was at lower levels. 

10.2.6 OTHER SOURCES OF INFORMATION 

Summaries of cluster analysis can be found in Anderberg (1973), Everitt 
(1974), Gordon (1981), Jain and Dubes (1988), Lorr (1983), Mardia, Kent 
and Bibby (1979) and Seber (1984). 

10.3 Multidimensional Scaling 

Multidimensional scaling (usually abbreviated MDS) is a body of tech­
niques that uses proximities between objects to produce a spatial repre­
sentation of the objects. The proximity matrix is usually a dissimilarity 
matrix. The derived spatial representation consists of a geometrie configu­
ration of points on a map, each point corresponding to one of the objects. 
The greater the similarity among the objects the closer the objects will 
be on the map. A proximity matrix consisting of distances among cities 
for instance can be used to construct a spatial representation preserving 
the given intercity distances. Unlike the map of cities, however, in many 
applications the measures of proximity used to relate the objects are not 
based on direct measurement. Instead the proximity measures are based 
on perceptions of similarity derived from human judgements. An exam­
pIe would be the perceived degree of similarity among automobile brands 
by consumers. A two-dimensional representation in this case may contain 
dimensions that appear to represent size and luxury. 

Multidimensional scaling which is based on measured proximities is usu­
ally referred to as metric MDS, whereas nonmetric MDS is used to char­
acterize the technique when the proximities are based on judgement. In 
metric MDS the spatial representation attempts to preserve the distances 
among the objects, whereas in nonmetric MDS the spatial representation 
only preserves the rank order among the dissimilarities. Thus in nonmetric 



10.3 Multidimensional Scaling 569 

MDS if objects (A and B) are perceived to be closer than (A and C) 
and (B and C), then the spatial configuration will preserve these similar­
ity rankings. In the derived geometrie configuration the distance between 
points (A and B) will be less than the distances between (A and C) and 
(B and C). In the case of the perceived similarities among automobiles, 
A and B may represent compact cars produced by two North American 
companies, whereas automobile C may represent a compact car produced 
in Europe. 

Once the dimensions or scales have been determined the second step of 
the analysis involves the interpretation of the results. Seatterplots showing 
the loeation of the objects with respect to the derived dimensions are useful 
for providing a graphical representation of the dissimilarity relationships. H 
measurements of object characteristics are available that are believed to be 
contributing to the perceived dissimilarities, other analyses can be carried 
out to assist with interpretation. The derived dimensions can be related 
to the measured characteristics using other multivariate techniques. In the 
study of automobiles, characteristics such as fuel economy, size, style and 
luxury, can be related to the derived scales. Unexplained differences that 
still remain may lead the researcher to look for other unknown factors. 

H the dissimilarity matrix is based on an average of the dissimilarity 
matrices of a sampie of individuals, then individual differences can also 
be studied. Once the derived dimensions have been determined for the 
entire sampie, a set of coordinates can be determined to locate the objects 
for each individual. The differences among individuals is handled by the 
assigning of individual weights to the various dimensions. The rationale for 
the individual difference scaling approach is that individual differences are 
attributable to the differences in importance that individuals attach to the 
various common scales. The underlying scales are assumed to be constant 
across individuals. 

Like cluster analysis, multidimensional scaling is an exploratory data 
analysis technique. Cluster analysis seeks to classify objects into groups us­
ing dissimilarity measures derived from observed measurementsj however, 
multidimensional scaling seeks to determine the underlying dimensions that 
contribute to the perceived differences among the objects. As in the case 
of principal components and factor analyses, multidimensional scaling is 
concerned with understanding the underlying dimensions that contribute 
to differences among objects. Factor analysis uses measures obtained from 
objects along known dimensions, whereas multidimensional scaling uses 
overall measures of dissimilarity of the objects to derive underlying dimen­
sions. 

This section begins with a discussion of metric multidimensional scaling 
and also introduces the fundamental theorem of multidimensional scaling. 
Although the metric method is not commonly used, it provides the moti­
vation for the techniques used in the more popular nonmetrie multidimen­
sional scaling, which is discussed in the second section. Abrief outline of 
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other types of nonmetric multidimensional scaling is then provided in the 
last section. 

10.3.1 METRIC MULTIDIMENSIONAL SCALING 

Metric multidimensional scaling begins with an (n x n) proximity matrix 
D of dissimilarities, 6rs , T, S = 1,2, ... ,n, which assigns a measure of dis­
similarity to all possible pairs of n objects. The diagonal elements of D 
are therefore zero. The objective of metric MDS is to define a set of p 
underlying dimensions defined by measures Xl. X 2 , ••• ,Xp , such that 

1. the coordinates of the n objects along the p derived dimensions yield 
a Euclidean distance matrix, and 

2. the elements of the Euclidean distance matrix are equivalent to, or 
closely approximate, the elements 6rs of D. 

In contrast to most other multivariate techniques in multidimensional scal­
ing, the (n x p) X matrix of observations is derived from the given matrix 
D of dissimilarities. 

Constructing a Positive Semidefinite Matrix Based on D 

A dissimilarity matrix D with zeroes in the main diagonal is not positive 
semidefinite. A positive definite matrix A(n x n), however, can be con­
structed based on the elements 6rs of D. The elements ars of the new 
matrix A can be determined using the relationship 

ars = -~[6~B - 6~. - 6~s + 6~], T, S = 1,2, ... , n, (10.6) 

where 

6~ = 

In matrix notation the relationship is given by 

A I [I 1../ ]D2 [I 1../ ] = --2 n - -lnIn n - -lnln' 
n n 

where In is an (n x n) identity matrix, in is an (n x 1) vector of unities, 
and D 2 is the matrix whose elements are the squares of the elements of D. 
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The matrix [In - ~ini~l is called a centering matrix. The matrix A has 
been derived from the matrix D 2 by centering the rows and columns of D 2 

(double mean centering). The rows and columns of A therefore sum to zero, 
and hence the rank of A is at most (n - 1). 

The FUndamental Theorem 0/ MDS 

The matrix D (n x n) of dissimilarities ors, r, S = 1,2, ... ,n is said to be 
Euclidean if there exists a dimension p and a set of n points given by the 
(1 x p) vectors (xi,x~, ... ,x~) such that 

r, S = 1,2, ... , n. 

In other words if the X observations were known, D would be the Euclidean 
distance matrix derived from X(n x p) = (xi,x~, ... ,x~) as outlined in 
Section 10.1.1. 

The fundamental theorem 0/ MDS states that the given dissimilarity ma­
trix D is Euclidean if and only if the matrix A defined by (10.6) is positive 
semidefinite. This fundamental theorem provides the key to obtaining the 
MDS solution for a given dissimilarity matrix D. If the matrix D is Eu­
clidean, then the matrix A can be written as A = X·X·', where X is the 
( n x p) matrix consisting of the coordinates of the n points in p-dimensional 
space and X· is the matrix of mean centered columns of X. There is no 
loss of generality therefore in assuming that the p X variables each have 
mean zero. We shall assume for the remainder of this section that the p X 
variables have mean zero. 

The MDS Solution 

Given a dissimilarity matrix D the matrix A is constructed using (10.6). 
The eigenvectors Vb V2,"" v n and corresponding eigenvalues >'1, >'2,"" >'n 
of the matrix Aare then used to obtain underlying measures Xl, X2, ... ,Xn­
If A is positive semidefinite of rank p, then p of the eigenvalues of A will 
be positive and the remaining (n - p) eigenvalues will be zero. The matrix 
A is expressible as A = V AV', where V is the matrix of eigenvectors of 
A and A is the diagonal matrix of eigenvalues. 

The number of positive eigenvalues permit the determination of p whereas 
the absence of any negative eigenvalues supports the positive semidefinite 
claim. Thus given the matrix D the rank of A is not specified in advance 
but is determined from the number of positive eigenvalues. 

For the p nonzero eigenvalues the X coordinates can be defined by 

j = 1,2, ... ,p, 

where it is assumed that vjVj = 1. Equivalently 
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The rows of X, given by x~,x~, ... ,~ have the property that 

r,8 = 1,2, ... , n, 

and hence the dissimilarity relationships in D are preserved by the scaling 
solution given by X. The p X variables or dimensions (scales) have mean 
zero and are only unique up to a constant. 

An Approximate Solution 

Usually in practice the objective is to obtain a small number of dimensions 
say k « p such that the derived dissimilarity relationships are approxi­
mately equal to the original matrix D. A common approach is to retain 
the first r eigenvectors and corresponding eigenvalues so that A is approxi­
mated by A = VoAo V~, where Ao and Vo denote submatrices of A and V 
corresponding to the r largest eigenvalues and corresponding eigenvectors 
respectively. The corresponding scale values are given by X(O) = VoA~/2 
and the resulting distances are given by 

d(O)3 = (x(O) _ x(O»)'(y(O) _ x(O») 
,.8 ,. 8 -,. 8· 

H the first k eigenvalues account for most of the variation in Athen the 

approximations of the 6~8 by the 4~)2 should be good. 
A useful measure of goodness of fit is based on the square of the Pearson 

correlation RSQ between the 6"8 and 4~), r,8 = 1,2, ... , n. This value 
should be dose to 1 to assure a reasonable fit. Other goodness of fit mea­
sures called STRESS and SSTRESS will be introduced in the next section 
in connection with nonmetric MDS. 

Computer Software 

The calculations in this section were carried out using the SPSSX programs 
PROXIMITIES and ALSCAL. 

Example 

This example is based on the ten-city data discussed in Sections 10.1 and 
10.2. The ten cities represent a subset of the 40 cities studied in the Air 
Pollution Data of Chapter 9. The multidimensional scaling analysis begins 
with the squared Euclidean distance matrix, based on standardized data, 
introduced in Table 10.3. The objective is to use metric multidimensional 
scaling to derive a spatial representation for the ten cities. The original 
observations will then be used to provide an interpretation for the derived 
dimensions. 

The dissimilarity matrix of Table 10.3 is repeated in the lower left of the 
matrix of Table 10.23. The diagonal elements of 0.00 have been omitted. 
The upper right portion of the matrix in Table 10.23 contains the scaling 
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matrix A derived according to (10.6). The eigenvalues and eigenvectors 
of A are used to derive the spatial representation for the ten cities. The 
coordinates for the first four dimensions are summarized in Table 10.24. 
Figure 10.17 (a) and (b) show plots ofthe ten cities with respect to the first 
two and last two dimensions respectively. As indicated in Table 10.24, the 
first four eigenvalues represent 93.2% of the sum of the diagonal elements 
of A and hence account for most of the variation. 

In multidimensional scaling, the objectives include minimizing the num­
ber of dimensions while at the same time preserving the dissimilarity re­
lationships of the original dissimilarity matrix. Often only two dimensions 
are used. Table 10.25 summarizes the original Euclidean distances 6rs and 
compares them to the Euclidean distances based on only the first two di­
mensions [drs (2)] and then based on the first four dimensions [drs (4)]. The 
original dissimilarities are shown in ascending order. Derived distances that 
do not preserve the ranking of the original dissimilarities are coded with 
an asterisk. The derived dissimilarities drs (4) show fewer asterisks than 
the dissimilarities drs (2). The relationship between the original distance 
and the two sets of derived distances is shown in panels (a) and (b) of 
Figure 10.18. Comparing panels (a) and (b) of this figure shows that the 
four-dimensional solution provides a much better approximation than the 
two-dimensional case. Table 10.25 also shows the deviations between the 
original distances and the distances based on two dimensions, [6rs -drs (2)]. 
Examination of these deviations reveals some large differences suggesting 
that the spatial representation for some cities (in two dimensions) is in­
accurate. A comparison of the original distances to the four-dimensional 
distances shows that the two sets of distances are quite dose. The corre­
lation coefficients between ors and each of drs (2) and drs(4) are 0.936 and 
0.997 respectively. 

As in the case of principal components analysis in Chapter 9, it can be 
seen here from Table 10.23 that dimensions are sensitive to the magni­
tudes of the diagonal elements of A. Cities corresponding to large diago­
nal elements such as Scranton, Albuquerque, Columbus and Montgomery 
therefore dominate the first dimension. An examination of the differences 
tOrs - dr8 (2)] reveals that a number of distances involving Washington are 
too small. In addition a few distances involving either Scranton or Albu­
querque are also too smalI. An examination of Figure 1O.17(b) which plots 
the cities with respect to the third and fourth dimensions confirms, that 
the cities of Washington, Scranton and Albuquerque are furthest from the 
origin. In panel (a) of Figure 10.17 arrows have been attached to the cities 
indicating the direction the corresponding points should move so that the 
derived distances could approach the original distances. 

To provide some interpretation for the derived dimensions, a correlation 
matrix was generated to relate the four dimensions to the 11 variables in 
the air pollution data set. The results are shown in Table 10.26. The vari­
ables SSUM and PSUM represent the sums of the three S variables and 
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FIGURE 10.17. Spatial Plot for First Four Dimensions - Ten-City Data 
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TABLE 10.24. Coordinates for First Four Dimensions -
Ten-City Data 

City Xl X2 X3 X4 

1 -2.4 2.9 2.5 0.3 
2 1.0 -0.5 -0.4 0.6 
3 3.3 1.3 -0.3 0.1 
4 -1.6 -1.6 0.1 1.0 
5 -0.6 -2.4 0.2 -1.1 

6 4.0 1.2 -0.9 0.0 
7 -0.7 -0.6 0.6 -1.1 

8 -3.8 1.5 -2.9 -0.6 
9 -0.3 -1.0 0.0 2.2 

10 1.10 -0.8 1.0 -1.4 
Eigenvalues 52.25 24.83 17.26 11.18 Total 105.52 
Sum of Diagonal Elements of Matrix 113.18 
First Four Dimensions Represent 93.2% of Variation 

three P variables respectively. Because of the small number of observations 
(10) large correlations are required to feel confident about the relationships. 
It would appear that DIM1 is strongly related to the S variables, whereas 
DIM2 is strongly related to the P variables. Dimensions 3 and 4 show 
somewhat weaker correlations although DIM3 seems to have a negative 
correlation with the S variables. The five demographie variables mayaiso 
be important although the correlations are somewhat weak. A comparison 
of the various profiles shown earlier in Figure 10.4 indieates that Albu­
querque and Scranton are quite different with respect to the S variables. 
Albuquerque has low values and Scranton has high values. The third dimen­
sion, DIM3, confirms this result. Note that in Figure 10.17 Albuquerque 
and Scranton differ along this dimension. For the city of Washington, the 
profiles shown in Figure 10.4 indicate that Washington differs from Los 
Angeles, Minneapolis and Wichita with respect to PERWH and GE65 and 
from Atlanta with respect to NONPOOR and PM2. These differences could 
explain why for DIM4 in Figure 10.17 Washington is different than these 
other cities. 

Metric Multidimensional Scaling Beginning with D 

In general the original dissimilarity matrix D is given and the underlying X 
matrix is not available. The MDS derived dimensions are then interpreted 
using other information. For this example we have behaved as if the un­
derlying X matrix was not available when generating the dimensions. The 
original X matrix was then used to relate the derived dimensions to the 
original variables. This example has been used for convenience and also to 
allow comparisons to other techniques such as cluster analysis and princi-
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TABLE 10.25. Comparison of Original Distances to Derived 
Distances Based on Two and Four Dimensions 

City Pair 6r • dr .(2) dr .(4) 6r • - dr .(2) 

Columbus-Montgomery 1.67 0.63 0.89 1.04 
Minneapolis-Salt Lake 2.19 1.73 1.76 0.46 

Salt Lake-Wichita 2.26 1.87 1.92 0.39 
Atlanta-Washington 2.77 1.38* 2.19 1.40 
Minneapolis-Wichita 2.92 2.37 2.53 0.55 
Los Angeles-Minneapolis 2.95 1.18* 2.43* 1.77 
Atlanta-Salt Lake 3.00 1.76* 2.63 1.24 
Atlanta-Wichita 3.02 0.32* 2.47* 2.70 

Los Angeles-Washington 3.07 1.48* 1.90* 1.58 
Atlanta-Minneapolis 3.16 2.47 3.03 0.69 
Los Angeles-Salt Lake 3.27 1.30* 2.55* 1.97 

Atlanta-Columbus 3.30 2.95 3.00* 0.35 
Salt Lake-Washington 3.51 0.63* 3.42 2.87 
Atlanta-Los Angeles 3.59 2.85* 2.93* 0.75 

Columbus-Wichita 3.79 3.03 3.65 0.76 
Atlanta-Montgomery 3.81 3.42 3.51* 0.39 
Minneapolis-Washington 3.89 1.38* 3.55* 2.51 
Washington-Wichita 4.17 1.41* 4.05 2.76 
Los Angeles-Wichita 4.22 2.85* 3.87* 1.37 
Montgomery-Wichita 4.38 3.46 4.20 0.92 
Albuquerque-Salt Lake 4.72 3.95 4.59 0.77 
Columbus-Salt Lake 4.84 4.49 4.74 0.34 
Columbus-Washington 5.18 4.28* 4.79 0.90 
Salt Lake-Scranton 5.35 3.70* 5.11 1.65 
Los Angeles-Scranton 5.50 3.82* 5.13 1.67 
Albuquerque-Los Angeles 5.56 4.66 5.31 0.90 
Montgomery-Salt Lake 5.57 5.05 5.38 0.52 
Montgomery-Washington 5.69 4.77* 5.36* 0.92 
Albuquerque-Washington 5.71 4.51* 5.53 1.20 
Albuquerque-Wichita 5.71 5.11 5.60 0.60 
Columbus-Minneapolis 5.71 5.41 5.56* 0.30 
Albuquerque-Atlanta 5.79 4.87* 5.71 0.92 
Albuquerque-Scranton 5.86 2.00* 5.83 3.86 
Minneapolis-Scranton 5.92 4.96* 5.87 0.96 
Scranton-Washington 5.97 4.31* 5.90 1.66 
Atlanta-Scranton 5.98 5.20* 5.87* 0.79 
Columbus-Los Angeles 5.99 5.74 5.83* 0.26 
Minneapolis-Montgomery 6.07 5.82 6.02 0.24 
Albuquerque-Minneapolis 6.21 5.59* 6.20 0.63 
Los Angeles-Montgomery 6.57 6.25 6.42 0.32 

Albuquerque-Columbus 6.65 5.90* 6.57 0.75 
Scranton-Wichita 6.72 5.38* 6.69 1.34 
Albuquerque-Montgomery 7.46 6.58 7.43 0.88 
Columbus-Scranton 7.58 7.06 7.54 0.51 
Montgomery-Scranton 8.04 7.72 7.99 0.32 
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FIGURE 10.18. Comparison of Original Euclidean Distances and Derived Dis­
tances 

pal components analysis. In particular in Chapter 9, it has alread.y been 
demonstrated that spatial relationships can be obtained using the first few 
principal components or factors. 

Relation to Cluster Analysis 

In Section 10.2, it was outlined how beginning with a proximity matrix the 
objects can be clustered in a hierarchical fashion and that the results can 
be used to obtain derived proximities among the objects. These derived 
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TABLE 10.26. Correlation Matrix Relating 
Dimensions to Air Pollution Variables 

DIMI DIM2 DIM3 DIM4 

SMEAN 0.54 0.06 -0.36 -{).25 

SMAX 0.26 0.02 -{).64 -{).08 
SMIN 0.75 0.13 -{).37 -{).14 
SSUM 0.45 0.05 -{).56 -{).14 
PMEAN 0.06 0.64 0.26 0.00 
PMAX 0.07 0.65 0.26 -{).08 
PMIN 0.34 0.58 -0.05 -{).20 
PSUM -{).01 0.66 0.25 -{).07 

GE65 0.34 -{).26 -0.32 -{).10 
PERWH -{).39 0.22 -0.23 0.38 
NONPOOR 0.36 0.08 -0.17 0.32 
PM2 0.21 -0.25 -0.15 -{).22 

LPOP -{).07 -{).45 -0.01 -{).17 

proximities could then be related to the original proximities to evaluate 
the cluster procedure. 

A cluster analysis concentrates on accurately fitting the small dissimi­
larities or proximities. At the early stages of the hierarchical process the 
group proximities are "close" to the original proximities. As the clusters 
grow in size however the group proximities are much less comparable to 
the original proximities. Thus a hierarchical cluster analysis does not tend 
to provide reliable proximities at the large end of the scale. In contrast, 
a scaling procedure such as principal components tends to concentrate on 
the large dissimilarities and does a very poor job of fitting the small dis­
similarities. It is often useful therefore to combine the results from a cluster 
analysis and an MDS analysis on the spatial plot of the objects. The results 
of the hierarchical clustering process can be shown on the plot hence con­
firming the proximity of various objects. This is illustrated for the ten-city 
data below. 

Example 

Figure 10.19 is a reproduction of Figure 1O.18{a) with the names of the 
cities omitted. Curves have been drawn on the figure to indicate the order 
of the clustering process and the values of Ward's criterion in each case 
has also been shown. The information used to complete the plot can be 
obtained from Table 10.9 and Figure 10.10. Figure 10.19 shows that in 
the first step of the clustering process Columbus and Montgomery were 
joined at a criterion value of 1.42 and at step 7 of the hierarchical process 
Albuquerque and Scranton were joined at a criterion value of 17.17. We can 
see from the figure that Albuquerque and Scranton appear closer on the 
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FIGURE 10.19. Spatial Plot of First Two Dimensions with Cluster Information 

plot than their proximity would justify. For the six cities in the maiD cluster 
some of the plotted distances are inconsistent with the proximities derived 
from the clustering. These results tend to confirm that it is dangerous to 
judge the relative distances on the MDS plot for objects that are relatively 
close. For the large distances, however, it appears safe to conclude that 
there are three or four clusters depending on whether Albuquerque and 
Scranton are combined. 

Improving the Solution 

It is possible at this stage to improve the tw~dimensional representation 
of the ten cities by revising the coordinates for the ten objects. One ap­
proach would be to use a numerical approximation procedure to revise the 
coordinates to bring the derived distances closer to the original distances. 
This is usually carried out by determining revised coordinates in the first 
two dimensions so that Lr<s L [drs (2) - 6rs ]2 is minimized. Numerical 
procedures such as Newton-Raphson or steepest descent are usually used 
to obtain revised coordinates and revised values of drs (2), say d,.s(2) such 
that the above sum of squares is minimized. In some instances an iterative 
procedure is carried out that revises both drs (2) and the coordinates in a 
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series of alternating steps. This iterative procedure will be discussed in the 
next section in connection with nonmetric scaling. 

Using Similarities 

If the proximity matrix is a similarity matrix (e.g., a correlation matrix) 
C with elements Crs satisfying Crr = 1, Crs = Csr , 0 ~ Crs ~ 1, r, S = 
1,2, ... ,n, the matrix can be transformed to a dissimilarity matrix using 
the expression 6~s = (2 - 2Crs). In Section 10.1 this was the relationship 
obtained between squared Euclidean distances and correlations for stan­
dardized variables. 

Relation to Principal Components Analysis 

As illustrated in Chapter 9, if the matrix X(n x p) is known it can often 
be approximated by a small number of principal components k <t:: p. The 
components can be used to produce plots showing the relationships among 
the n objects in X. Such plots were illustrated in Chapter 9. In the context 
of metric scaling as discussed in this section X is unknown. Only the matrix 
of dissimilarities D is available. If X is known then there is no need to 
generate the matrix A to determine X. 

Metric MDS and Principal Coordinates Analysis 

Principal coordinates analysis uses a given similarity matrix S (n x n) to 
derive a spatial representation for the n objects. (S might be a covariance 
matrix among the n objects or other XX' type matrix). Denoting the 
elements of S by Srs, T, S = 1,2, ... , n, a new matrix C is obtained by 
computing 

Crs = Srs - Sr. - s.s + s .. , 
h - 1 ",n - 1 ",n d - 1 ",n ",n 

W ere Sr· = Ti" L...,s=l Srs, S·s = Ti" L...,r=l Srs an S .. = ~ L...,r=l L...,s=l Srs· 

Equivalently C = (I - ini~)S(1 - ini~) as in the case of (10.6). Principal 
components analysis is then applied to C to determine coordinates for the 
n objects. Setting S = _!D2 where D 2 is a matrix of squared Euclidean 
distances results in the metric MDS approach outlined above. 

An Alternative Derivation fOT A 

Given the (n x n) matrix D of dissimilarities, a spatial configuration for 
the n objects can be obtained from the positive semidefinite matrix A as 
outlined above in (10.6). The elements of A were defined as deviations from 
the means of the rows and columns of D and hence the row and column 
means of the elements of A are zero. An alternative approach to obtaining 
a spatial configuration is to define the elements of A using an alternative 
reference point. In Section 10.1, the cosine law was used to relate squared 
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r 

s 

FIGURE 10.20. Cosine Law Relationship Between Three Points 

Euelidean distanee to the eosine measure of similarity. This approach ean 
also be used to obtain the positive semi-definite matrix A. 

A partieular referenee point v is selected from the set of n points in 
p-dimensional space. For each pair of points, say T and s, the squared 
Euelidean distances relating the three points are given by tP,.s, tP,.v and ~v 
respectively. Denoting by () the angle between the two vectors joining v to 
T and s respectively, the eosine law yields the relationship 

d~s = ~v + d~v - 2d,.v dsv eos(). 

Figure 10.20 illustrates the relationship for two dimensions Xl and X2. 
The (n x n) matrix of elements ars, T, S = 1,2, ... , n, is given by 

ars = (d~v + ~v - d~s) = 2d,.v dsv cos() 

and ean be used to obtain a positive semidefinite matrix A. The matrix A 
can be USed to obtain a spatial configuration for the n points as outlined 
above. 

The Additive Constant Problem 

H the given dissimilarity matrix D (n x n) for n ohjects is Euelidean, then 
there exists an integer p such that a p-dimensional eonfiguration ean be 
determined for the n objeets. In some applieations the dissimilarities are 
estimated in such a way that the matrix D may not be Euclidean. The 
dissimilarities may be valid as interval sealed distances, but they may not 
be aceeptable as ratio scaled distances. Interval distanees are eorreet up 
to a eonstant c, but the origin is undefined (e.g., Celcius and Fahrenheit 
temperatures are intervaI seales hut not ratio seales sinee the zero point is 
arbitrary). 

The true distanees 6rs ean be related to the dissimilarity values drs hy 
the equation 6rs = drs + c, T, S = 1,2, ... ,n. H the value of c is sufficiently 
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large the observed dissimilarities may not be Euclidean. To illustrate this, 
recall that Euclidean distances must satisfy the triangle inequality given 
by 

8rs ~ 8ru + 8su . 

By subtracting a constant c from all three terms in this inequality a point 
can be reached such that drs > dru + dsu . 

If the dissimilarity matrix D is not Euclidean, the matrix A derived 
according to (10.6) will no longer be positive semidefinite and hence will 
yield at least one negative eigenvalue. If A is not positive semidefinite it will 
not be possible to derive p dimensions to reproduce D. It is still possible 
however to derive dimensions corresponding to the positive eigenvalues of A 
and hence to approximate D. Ifthe negative eigenvalues are relatively small 
the approximation based on the positive eigenvalues should be adequate. 

An alternative approach is to determine a constant c that can be added 
to all the off-diagonal elements of D to ensure that the matrix is Euclidean. 
If c is sufficiently large, D will be Euclidean, however what is required is 
the smallest value of c to guarantee that D is Euclidean. As c increases 
the dimension p required to approximate D also increases. The objective 
in MDS is to minimize p and hence c should be as small as possible. Some 
MDS computer routines determine an approximate value of c although it 
is possible to determine c precisely (see Cailliez 1983). 

Application of Metric Scaling 

If we are provided with the exact map distances between the major cities of 
Europe we could use metric scaling to produce a map that reproduced the 
between-city distances exactly. We could not however produce a map that 
showed the cities located correctly with respect to their true location in 
N-S and E-W coordinates. The derived locations of the cities would have 
to be moved around in N-S and E-W directions as weH as perhaps rotated 
to obtain the correct orientation. If however we could place two of the cities 
in their correct location, then the remaining cities would automatically be 
correctly located using the between city distances. There are only (n - 2) 
independent dimensions available from the n cities. 

If instead of the exact map distances, we were provided with the schedule 
of a major airline, which gave the required flying time between the major 
cities, the map locations could only be approximated. The flying times 
are also based on factors such as stopovers and general flying conditions. 
The matrix of flying times however would still be Euclidean. The derived 
coordinates in two dimensions would simply reflect some error due to the 
nondistance factors. 

In experiments dealing with humans the dissimilarities are often based 
on judgements that are subject to measurement error. The dissimilarities 
obtained are therefore only approximations and in addition the nature of 
the underlying dimensions is somewhat vague. In this case the MDS so-
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lution is used to derive insights about relationships among the objects as 
perceived by the subjects in the experiment. The analysis does not however 
yield models that can be used to make precise individual predictions. 

In addition to the problems associated with the measurement of true 
dissimilarity, MDS procedures also are intended to minimize the number of 
derived dimensions. With so many levels of approximation inherent in the 
MDS process the attempt to reproduce the dissimilarities precisely does 
not seem justified. Nonmetric scaling discussed in the next section seeks 
only to preserve an ordinal relationship between the original dissimilarities 
and the derived distances. H two objects A and B are perceived to be more 
similar than objects C and D, then the derived distances should also refiect 
this relative relationship. H the differences in perceived similarity are only 
slight, scaling procedures cannot be relied upon to preserve the differences. 
Qnly large differences in perceived similarity are in general preserved by 
the sca1ing process. 

10.3.2 NONMETRIC MULTIDIMENSIONAL SCALING 

In nonmetric MDS a matrix D of dissimilarities 6rs is often derived from 
human responses to questionnaires or experimental procedures. The r~ 
spondents or subjects are usually asked to make comparisons among sets 
of objects or stimuli. The purpose of the nonmetric scaling analysis is to 
obtain insights into the nature of the perceived dissimilarities. Such anal­
yses have been used to measure attitudes and preferences in law, political 
science and sociologyj to make cross-cultural comparisons in anthropologyj 
to study human perceptions in psychology and linguisticsj and to evalu­
ate product designs and advertising campaigns in marketing. The fields of 
psychology and marketing have provided much of the research literature 
on techniques of scaling and the required experimental designs. Review pa­
pers such as Carroll and Arabie (1980) and Young (1984) provide excellent 
summaries of the research literature. 

In nonmetric multidimensional scaling much effort must be devoted to 
the design of experimental procedures to measure dissimilarity. A partial 
list of the types of procedures is given below. 

1. Paired comparisons - subjects are asked to comPare all possible pairs 
of a set of objects and to rate the degree of similarity. 

2. Partitions - subjects are asked to divide the set of objects into a 
small number of mutually exc1usive categories. 

3. Rankings - subjects are asked to rank the objects with respect to a 
specified criterion. 

4. 1Hadic comparisons - subjects are asked to rank the degree of sim­
ilarity among three possible pairings of sets of three objects. 
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5. Tetmds - Subjects are asked to compare all possible pairs of objects 
and to indicate the most similar and/or the most dissimilar pairs. 

Additional discussion on the measurement of dissimilarities in experimental 
situations ean be found in Coxon (1982) and Green, Carmone and Smith 
(1989). 

The techniques of design will not be discussed in this text. For additional 
background, interested readers should eonsult the research literature of 
the partieular discipline as weIl as the references on MDS provided here. 
Although MDS ean be applied to nonsymmetric matrices the discussion 
presented here will be restrieted to symmetrie matrices. 

Ordinal Scaling 

In nonmetrie MDS, the given dissimilarities 6rs are used to generate a 
set of derived distances d,.s, which are approximately related to the given 
dissimilarities 6rs by a monotonie inereasing function I. In this case we 
write 

drs ~ 1(6rs }, 

where 1 is a function with the property that 

6rs < 6"'11 <* 1(6rs } < 1(6"'1I}' 

The rank eorrelation between the 6rs and 1(6ra } is therefore unity, whereas 
the rank correlation between 6ra and the d,.s is close to 1. A plot of the 
d,.s versus 6ra should be very close to a monotonically inereasing function. 
Because only the rank order is important the scaling is ordinal and is 
eommonly ealled nonmetrie scaling. 

The most eommon approach to determining the elements d,.a and the 
underlying eonfiguration Xl, X2, ... ,Xp is an iterative process commonly 
referred to as the Shepard-Kruskal algorithm. 

Shepard-Kruskal Algorithm 

The Shepard-Kruskal algorithm for nonmetrie MDS is illustrated in Fig­
ure 10.21. After determining the dissimilarity matrix D and the eorrespond­
ing scaling matrix A using (10.6) an iterative proeess begins that succes­
sively revises the dissimilarities and object coordinates until an adequate 
fit is achieved. The objective of the iterative process is to obtain asp&­
tial representation in a given dimension such that the Euelidean distances 
&mong the objects are monotonicially related to the original dissimilarities. 

The iterative part of the proeess eontains four steps. The first step or 
initial phase selects the dimension p and determines the initial eonfigur&­
tion X(O) and resulting distanees 4~). The second step or nonmetric phase 
then uses monotone regression to relate the 4~) to the 6rs • The estimated 
regression produces a new set of pseudo-dissimilarities ~~) called dispari­
ties that are monotonically related to the 6ra • The third step of the process 
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FIGURE 10.21. Shepard-Kruskal Algorithm for Nonmetric Scaling 

called the metric phase revises the spatial configuration to obtain X(l) in 
order to obtain new distances 4~) which are more closely related to the 
disparities d1.~) generated in step two. The fourth step is the evaluation 
phase which determines the goodness of fit of the distances 4~ and the 
disparities ~~). H the fit is not adequate steps 2 and 3 are repeated. For 
the repetition of step 2, the distances 4~) are related to the original dis­
similarities 6rs using monotone regression to generate new disparities ~~) . 
A new step 3 is then carried out to determine a new spatial representation 
X(2) and new distances 4~). The evaluation phase then compares the ~~) 
to the 4~). Finally after obtaining solutions over a range of dimensions a 
solution dimensionality is selected. This solution is then interpreted. This 
step will be referred to as the selection and interpretation phase. A more 
detailed presentation of the techniques involved in steps 2, 3, 4 and 5 is 
given below. 

The Nonmetric Phase and Monotone Regression 

In the nonmetric phase, disparities ~~) are determined from the distances 
4~) in such a way that the ~~) are monotonically related to the original 
dissimilarities Örs . The ~~) are the result of a regression of the 4~) on 
the 6rs subject to the condition that the fitted relationship is monotonie. 
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This regression is therefore caIled monotone regression. A useful successive 
approximation method for obtaining the regression estimates is called the 
pool-adjacent violators algorithm which is outlined next. 

The Pool Adjacent Violators Algorithm 

This approach to determining the disparities d!.~) from the 4'!> and örB 

begins by ranking the örB values from lowest to highest before comparing 
them to the corresponding 4~) values. Beginning with the lowest ranked 
value of ÖrB1 the adjacent 4~) values are compared for each örB to determine 
if they are monotonically related to the ÖrB • As long as 4~) < diOJ when 
örs < ÖU'lJI then d!.~) = 4~). Whenever a block of consecutive values of 4~) 
are encountered that violate the required monotonicity property the 4~) 
values are averaged together with the most recent nonviolator 4~) value to 
obtain an estimator d!.~) . This value of d!.~) is then assigned to all points in 
the particular block. This procedure is illustrated by the following example. 

Example 

örs 1 2 3 4 5 6 7 8 9 10 
4~) 10 8 11 5 13 11 9 14 6 16 

9 8 11 10 

8.5 10.6 
d!.~) 8.5 8.5 8.5 8.5 10.6 10.6 10.6 10.6 10.6 16 

In this example the blocks 0/ violators that are underlined above are 
averaged to obtain initial estimates of disparities. The new estimates are 
then checked for monotonicity. If blocks of violators remain the averaging 
proeess continues. In the above example two steps are required to obtain 
a monotonie set of disparities. In this ease the resulting disparities are 
eonstant for periods of four and five eonsecutive dissimilarities. 

Figure 10.22{a) plots the relationships between each of d~~) and d!.~) 
and the original dissimilarities örs . The plot in Figure 1O.22{b) applies to 
the rank image method to be discussed below. These plots are eommonly 
referred to as Shepard diagrams. The behavior exhibited by the plot for 4~) 
is not unlike the behavior exhibited in the distances obtained for the two­
dimensional solution for the example in Section 10.3.1. The reader should 
note how the plot for d!.~) is monotonically nondecreasing. Figure 1O.23{a) 

shows the relationship between d!.~) and 4~). This plot is usually referred 
to as an image diagram. Figure 1O.23{a) pertains to the 4~) and d!.~) values 
shown in Figure 1O.22{a). Figure 1O.23{b) relates to Figure 1O.22{b) and is 
discussed below. 
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FIGURE 10.22. Shepard Diagrams for Example 

Ties and Types 0/ Monotonicity 

The requirement that d!.~) $ caOJ if 6rB < 6uv is called weak monotonicity 
whereas the requirement that d!.~) < caOJ if 6rB < 6uv is called strang mono­
tonicity. Note that the disparities determined in the example above sat­
isfy the weak monotonicity requirement but not the requirement of strong 
monotonicity. The weak monotonicity requirement results in Bat/horizontal 
regions in the Shepard diagram relating d!.~) to 6rB • Strong monotonicity 
does not allow such Bat regions. 

To obtain disparities that satisfy the strong monotonicity requirement 
the Guttman mnk image approach is usually used. In this method the dis­
tances d~~) are simply ranked and then relabelled to obtain the disparities 
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(a) 

16 

14 

12 

10 

6 

~~). The following example illustrates this approach for the data of the 
previous example. 

Example 

6rs 
deO) 

rs 
'(0) drs 

1 2 
10 8 
5 6 

3 4 5 
11 5 13 

8 9 10 

6 7 8 9 10 
11 9 14 6 16 
11 11 13 14 16 

The Shepard diagrams relating the distances and disparities to the observed 
dissimilarities appears in Figure 1O.22(b). In comparison to panel (a) the 
strong monotonicity requirement in this example produces an almost linear 
relationship. The image diagram for this example is shown in panel (b) 
of Figure 10.23. In comparison to the image diagram of Figure 1O.23(a), 
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panel (b) of this figure has much more scatter indicating a greater variation 
between l~) and d~~. 

Ties in the Original Dissimilarities 

If there are ties encountered in the original dissimilarity data so that 8rs = 

8uv , then there is no guarantee that 4~) = d~~. There are two approaches to 
the estimation of 4~) when two or more 8rs are tied. The primary approach 

permits the d~~) to be unequal, even though the 8rs are tied, while the 
secondary approach requires that d~~) = d~~ when 8rs = 8uv . 

In general the primary approach is commonly used. The secondary ap­
proach demands a level of precision that is often not justified given the 
reliability of the original dissimilarities. The primary approach permits a 
step in d~~) when 8rs is constant, whereas the secondary approach demands 
a constant 4~) when 8rs is contant. The primary approach therefore per­
mits vertical changes in 4~) while 8rs is constant. The combination of weak 
monotonicity and the primary approach to ties tends to yield a Shepard 
diagram with many steps. At the opposite extreme, strong monotonicity 
with a secondary approach to ties tends to yield a more smooth curve for 
a Shepard diagram. 

The M etric Phase 

At the completion of the nonmetric phase, the set of disparities l~) and 
distances d~~) have been generated using the original dissimilarities 8rs . If 
the two sets of derived measures are elose the scaling is considered to be 
good. A measure that is commonly used to determine goodness of fit is 
called STRESS and is given by 

(10.7) 
r<s r<s 

which is the sum-of-squared deviations normalized by Er<s E d~~)2. Alter­

native normalizing denominators that are also used are Er<s E d1~)2 and 

Er<s E[d~~) - er?)j2 where er?) denotes the average value of d~~). 
An alternative measure which is used in the ALSCAL procedure (to be 

outlined later) is given by 

SSTRESS = { L L[d~~)2 - d~~)2j2 / L L d~~)4} 1/2. 

r<s 

Note that the denominator of STRESS is determined from d~~), whereas 
the denominator of SSTRESS employs d~~). 

The two goodness of fit measures STRESS and SSTRESS tend to place 
greater emphasis on deviations corresponding to the larger dissimilarities. 
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This is particularly true for SSTRESS which uses the squares of the drs . For 
this reason the relative positions of objects that are close together should 
not be used to derive conclusions. Objects close together in the spatial 
representation should simply be viewed as a cluster of similar objects. An 
alternative goodness of fit measure based on relative differences is given by 

STRESSR = ~~(1- d~~) /d~~»)2. 
r<s 

We have already seen that a useful diagram for comparing the values of 
d~~) to the values of d~ü) is the image diagram. Figure 10.23 illustrated the 
image diagram for the examples discussed above. 

In the metric phase a new configuration X(l) is sought to replace X(O). 

The new distances derived from the X(1) matrix, dW, must minimize the 
STRESS measure. In other words the X(l) is selected in such a way that 
STRESS is minimized. In this step the disparities d~~) are held constant 
and the distances d~~) change with X(l). This procedure requires a numer­
ical approximation procedure such as the method of steepest descent or 
the Newton-Raphson method. These numerical procedures yield expres­
sions for X(1) in terms of X(O), d~~) and d~~). These procedures are not 
outlined here. For the steepest descent method the interested reader is re­
ferred to MDS texts such as Coxon (1982) or Davidson (1983). For the 
Newton-Raphson procedure the reader should consult the ALSCAL pro­
gram description in Schiffman, Reynolds and Young (1981). 

The Evaluation Phase 

In the evaluation phase the value of the goodness of fit measures obtained 
over all previous iterations are compared for the given dimensionality. When 
the changes in the goodness of fit measure as a result of the last iteration 
are sufficiently small, the procedure is usually terminated. At this stage the 
optimal fit has been obtained for a given dimension, say p. At this stage 
the analyst hopes that the minimum achieved is a global minimum for the 
given level of p. 

Selection and Interpretation Phase 

After the minimum stress solution has been determined for a range of di­
mensionalities a selection of the solution dimensionality is made. A plot of 
the minimum stress value as a function of the fitted dimensionality usually 
yields a downward sloping exponential shaped curve. One approach to se­
lecting the appropriate dimensionality is to look for an elbow in the plot of 
the stress values. In some cases the curve may decline steeply until a cer­
tain dimension is reached after which the function becomes relatively Hat. 
The dimension corresponding to the point of the change in slope is then 
selected as the appropriate dimension. The shape of the curve is based on 
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the property that initially as the dimensionality increases toward the true 
value, the stress value decreases because of the increasing ßexability for 
fitting presented by the additional dimensions. Eventually, however, as the 
dimensionality goes beyond the true value, the stress value changes very 
little since the increased ßexability is now fitting noise. 

The overall magnitude of the stress value depends on the stress formula 
used and the criteria used to perform monotone regression. Unless other­
wise indicated it is assumed that the weak monotonicity criterion with a 
primary approach to ties will be used. In addition the stress will be evalu­
ated according to (10.7). 

Ideally the stress value of the solution should be less than 0.10 and 
preferablyas low as 0.05; however, the value of this index is also inftuenced 
by the number of points being fitted and the amount of error or noise in the 
data. The larger the number of points to be fitted, the greater the number 
of squared differences in the stress computation and hence the greater the 
stress value. A common rule of thumb is to require that the number of 
points should exceed (4p - 1) where p is the dimensionality. Also, as the 
error variance increases the true configuration is less distinct and hence 
more difficult to fit. A portion of the squared differences between fitted 
distances and disparities is due to the error in the original dissimilarities. 

Monte Carlo Studies 0/ the Stress Function 

A number of Monte Carlo studies have been carried out to study the impact 
that the three factors, number of points, dimensionality and error, have 
on the value of the stress function. Using various known configurations 
with a variety of true dimensions the variation in stress values have been 
studied and related to the above three factors. Tables 10.27 and 10.28 show 
the results from two such studies. Table 10.27 is derived from a study by 
Wagenaar and Padmos (1971) which shows the relationship between stress 
and various levels of error and fitted dimensionality. This table is based on 
n = 10 points or stimuli. The second table, Table 10.28 is derived from 
a study by Spence and Graef (1974). In this second table the number of 
points was 36. A study of the tables aHows one to see the impact that error 
and fitted dimensionality have on stress at each true dimension level. A 
comparison of the two tables provides some information about the impact 
of the number of points on the stress values. Another study illustrating the 
impact of error and dimensionality on stress is outlined in Young (1970). 

In practice the two tables of stress values can be used to assist in se­
lecting the appropriate dimensionality. For each level of error and true 
dimensionality there is a pattern of stress values corresponding to the fit­
ted dimensionalities from 1 to 5. By finding a stress value pattern similar 
to the one obtained in an actual MDS analysis the researcher can guess 
at the true dimensionality and the magnitude of error. This approach is 
illustrated in the example discussed below. 
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TABLE 10.27. Stress Values for Simulated Data for Ten Objects 

True Error Level Fitted 
Dimension 0.00 0.05 0.10 0.20 0.40 00 Dimension 

0.000 0.006 0.040 0.105 0.216 0.408 1 
0.000 0.004 0.019 0.038 0.099 0.197 2 
0.000 0.000 0.009 0.017 0.054 0.106 3 
0.000 0.000 0.003 0.008 0.024 0.053 4 
0.000 0.000 0.002 0.002 0.007 0.025 5 

2 0.214 0.194 0.204 0.275 0.319 0.408 1 
0.000 0.008 0.037 0.087 0.131 0.197 2 
0.000 0.005 0.018 0.038 0.066 0.106 3 
0.000 0.001 0.012 0.015 0.025 0.053 4 
0.000 0.000 0.002 0.006 0.010 0.025 5 

3 0.264 0.282 0.278 0.297 0.361 0.408 1 
0.070 0.079 0.092 0.122 0.166 0.197 2 
0.000 0.006 0.026 0.058 0.094 0.106 3 
0.000 0.001 0.009 0.017 0.056 0.053 4 
0.000 0.000 0.000 0.005 0.024 0.025 5 

Source: Wagenaar and Padmos (1971) 

TABLE 10.28. Stress Values for Simulated Data for 36 Objects 

True Error Level Fitted 
Dimension 0.0000 0.0625 0.1225 0.2500 00 Dimension 

1 0.000 0.096 0.192 0.331 0.529 1 
0.000 0.089 0.164 0.257 0.349 2 
0.000 0.081 0.140 0.203 0.259 3 
0.000 0.074 0.121 0.167 0.205 4 
0.000 0.069 0.107 0.142 0.169 5 

2 0.334 0.342 0.360 0.438 0.529 1 
0.000 0.078 0.144 0.255 0.349 2 
0.000 0.071 0.123 0.200 0.259 3 
0.000 0.064 0.106 0.162 0.205 4 
0.000 0.060 0.096 0.138 0.169 5 

3 0.413 0.403 0.428 0.470 0.529 1 
0.197 0.196 0.228 0.289 0.349 2 
0.000 0.063 0.121 0.203 0.259 3 
0.000 0.057 0.104 0.163 0.205 4 
0.000 0.053 0.091 0.137 0.169 5 

4 0.387 0.447 0.467 0.502 0.529 1 
0.204 0.233 0.255 0.312 0.349 2 
0.097 0.125 0.160 0.221 0.259 3 
0.000 0.060 0.111 0.172 0.205 4 
0.000 0.055 0.097 0.143 0.169 5 

Source: Spence and Graef (1974) 
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It is also useful to examine the behavior of the stress function when 
there is no spatial configuration (i.e., random data). Monte Carlo studies 
have also been carried out to examine this behavior. In the two tables 
discussed above the error column 00 refers to the no-configuration case. An 
examination of the stress values in this case illustrates quite clearly that 
increasing the fitted dimensionality reduces the stress quite dramatically. 
Also, by comparing the two tables we can see that increasing the number 
of points from 10 to 36 also increases the overall levels of stress in the 
error = 00 case. In light of these results it is of interest to consider the 
null hypothesis of no spatial configuration for a given MDS analysis. Since 
there are no statistical models available for testing this hypothesis a Monte 
Carlo study will be used to provide some guidance. 

In a study by Spence and Ogilvie (1973) the behavior of the stress func­
tion was studied for populations with no spatial configuration (random 
data). Plots showing the stress value as a function of fitted dimensional­
ity were presented for n = 12, 18, 26, 36 and 48 points. Corresponding 
to n = 18 the stress values were approximately 0.468, 0.288, 0.198, 0.144 
and 0.108, for dimensionalities 1 through 5 respectively. Since these values 
are based on means the standard deviations of the stress values should 
also be considered. Based on a plot of the standard deviations given in 
their paper, Spence and Ogilvie suggest using the three standard devia­
tion lower limit as a critical region for rejection of the null hypothesis. 
Corresponding to n = 18 the approximate standard deviations obtained 
from their graph are 0.015, 0.009, 0.008, 0.008 and 0.007 for dimensions 1 
through 5 respectively. Using the above means for n = 18 and applying 
the three standard deviation criterion results in the lower limits of 0.423, 
0.261,0.174, 0.120 and 0.087 for the stress values. These lower limits can 
provide some guidance to the researcher regarding the acceptability of the 
no-true-spatial-configuration hypothesis. 

In addition to the study of the stress values as a function of dimension­
ality, cross validation can also be used to provide some guidance. If the 
data can be subdivided so that two or more separate MOS analyses can be 
carried out for the same stimuli the stress value functions can be compared. 
This process will be illustrated in the example discussed below. 

Any fitted solution should be examined carefully for large differences 
between the fitted distances and the disparities. Generally at the lower lev­
els of drs, there will be many small differences since the fitting procedure 
concentrates on fitting the large dissimilarities. If there are any large dif­
ferences at the larger end of the drs scale this could be due to an outlier 
or error. A study of the impact of outliers on MOS is provided by Spence 
and Lewandowsky (1989). 

The example below will be used to illustrate the selection and inter­
pretation phase of MOS. The example will also illustrate the use of cross 
validation. 
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The ALSGAL Algorithm 

The statistical computer software packages SPSSX and SAS employ the 
ALSCAL algorithm created by Takane, Young and de Leeuw (1977) and 
Young, Takane and Lewyckyj (1978). A description of the algorithm is 
provided in Schiffman, Reynolds and Young (1981). This algorithm has 
been used to perform the MDS analyses for the example discussed below. 

The ALSCAL program begins by estimating an additive constant c to 
ensure that the triangle inequality holds for all tripies among the original 
dissimilarities Ors. The scaling matrix is then computed according to (10.6). 
The initial configuration is derived using the metric scaling procedure for 
the prescribed number of dimensions. Kruskal's least squares monotone 
regression with weak monotonicity is used to generate disparities. The esti­
mated disparities are then normalized to minimize the SSTRESS expression 
described above and then a Newton-Raphson procedure is used to obtain 
a new configuration, which minimizes SSTRESS. Iteration at each dimen­
sionality continues until the change in SSTRESS on a given iteration is 
sufficiently small. The algorithm also determines STRESS and RSQ for 
the final solution at each dimensionality. 

Example 

A total of 182 Royal Canadian Mounted Police Officers (RCMP) working 
in 18 municipal detachments in Alberta, Canada, were asked a number of 
quest ions regarding the amount of stress they experienced due to a variety 
of sources. (See example at the end of the factor analysis section of Chap­
ter 9 for a description of the various stress items.) The responses obtained 
were used to construct the Euclidean distance matrix shown in the lower 
left triangle of Table 10.29. Using the ALSCAL procedure in SPSSX, non­
metric MDS solutions were generated for dimensions 1 through 5 yielding 
the STRESS values of 0.351, 0.134, 0.068, 0.044 and 0.029 respectively. The 
corresponding RSQ values were 0.646, 0.900, 0.964, 0.982 and 0.991 respec­
tively. Using the "elbow" approach it would appear that a dimensionality 
of 3 is appropriate. Examining the stress values in Tables 10.27 and 10.28, 
it would appear that the pattern exhibited by these STRESS values lies 
somewhere between the error level 0.40, true dimension level 3, values for 
10 points in Table 10.27, and the error level 0.0625, true dimension level 3, 
values for 36 points in Table 10.28. Since in this case there are 18 points it 
would appear that the three-dimensional solution is reasonable. 

For the three-dimensional solution the coordinates are summarized in 
Table 10.30. Figure 10.24 shows plots locating the 18 detachments with 
respect to the three dimensions. A Shepard diagram illustrating the rela.­
tionship between the final disparities and the original dissimilarities is given 
in Figure 10.25. The final disparities are also summarized in the upper right 
triangle of Table 10.29. 



T
A

B
L

E
 1

0.
29

. 
O

ri
gi

na
l 

D
is

ta
nc

es
 (

lo
w

er
 l

ef
t)

 a
n

d
 F

it
te

d
 D

is
pa

ri
ti

es
 (

up
pe

r 
ri

gh
t)

 -
R

C
M

P
 D

at
a 

A
 

B
 

c 
D

 
E

 
F

 
G

 
H

 
I 

J 
K

 
L 

M
 

N
 

o 
p 

Q
 

R
 

A
 

X
 

3.
20

 
1.

66
 

1.
66

 
1.

88
 

2.
09

 
2.

46
 

2.
80

 
2.

85
 

1.
38

 
1.

88
 

2.
67

 
2.

63
 

3.
20

 
3.

00
 

2.
09

 
1.

26
 

2.
80

 

B
 

1
l.

5
3

 
X

 
1.

47
 

4.
33

 
3.

90
 

0.
70

 
3.

90
 

2.
67

 
2.

58
 

2.
46

 
2.

46
 

0.
70

 
3.

65
 

2.
67

 
0.

70
 

1.
26

 
2.

67
 

1.
26

 

C
 

7.
45

 
7.

10
 

X
 

3.
40

 
2.

85
 

0.
70

 
3.

00
 

2.
05

 
2.

05
 

1.
78

 
2.

09
 

1.
26

 
2.

64
 

2.
32

 
1.

26
 

1.
26

 
2.

09
 

1.
66

 

D
 

7.
72

 
14

.5
3 

11
.8

2 
X

 
2.

85
 

3.
66

 
2.

09
 

4.
48

 
4.

33
 

1.
66

 
2.

09
 

3.
82

 
3.

57
 

4.
25

 
4.

37
 

3.
57

 
1.

26
 

4.
03

 

E
 

7.
99

 
13

.4
6 

10
.8

8 
10

.9
0 

X
 

3.
00

 
2.

09
 

2.
67

 
2.

09
 

2.
09

 
2.

63
 

3.
40

 
1.

66
 

2.
09

 
3.

20
 

3.
20

 
2.

09
 

2.
80

 

F 
8.

68
 

3.
95

 
5.

06
 

12
.7

5 
1

l.
3

6
 

X
 

3.
24

 
2.

05
 

2.
09

 
2.

05
 

1.
88

 
0.

86
 

3.
00

 
2.

09
 

0.
88

 
0.

86
 

2.
09

 
0.

94
 

G
 

9.
93

 
13

.3
6 

10
.9

9 
8.

88
 

9.
41

 
1

l.
7

3
 

X
 

3.
00

 
3.

00
 

2.
09

 
2.

32
 

3.
67

 
2.

09
 

2.
63

 
3.

57
 

3
.5

7
 

1.
66

 
3.

00
 

H
 

10
.5

9 
10

.4
4 

8.
43

 
14

.8
7 

10
.4

7 
8.

34
 

11
.0

2 
X

 
1.

88
 

3.
20

 
3.

54
 

2.
85

 
2.

46
 

2.
09

 
2.

09
 

2.
09

 
3.

15
 

2.
09

 

I 
10

.8
1 

10
.0

1 
8.

33
 

14
.8

1 
8.

51
 

8.
72

 
11

.1
2 

8.
30

 
X

 
2.

46
 

2.
85

 
2.

64
 

1.
88

 
0.

70
 

1.
47

 
2.

85
 

2.
85

 
1.

26
 

J 
7.

06
 

9.
88

 
7.

78
 

7.
50

 
9.

15
 

8.
49

 
8.

78
 

11
.7

3 
9.

78
 

X
 

0.
94

 
2.

09
 

2.
46

 
2.

58
 

2.
46

 
2.

09
 

0.
70

 
2.

09
 

K
 

8.
08

 
9.

74
 

9.
13

 
8.

49
 

10
.0

4 
8.

31
 

9.
45

 
12

.0
8 

10
.8

2 
5.

56
 

X
 

2.
09

 
3.

00
 

2.
46

 
2.

64
 

2.
67

 
1.

26
 

2.
09

 

L
 

10
.3

2 
4.

96
 

7.
04

 
13

.0
4 

11
.7

8 
5.

16
 

13
.0

3 
10

.8
6 

10
.2

5 
9.

34
 

9.
07

 
X

 
3.

57
 

2.
81

 
1.

26
 

1.
26

 
2.

46
 

1.
66

 

M
 

10
.1

0 
12

.7
3 

10
.2

4 
12

.0
8 

7.
72

 
11

.1
1 

9.
40

 
9.

94
 

8.
32

 
9.

93
 

11
.4

5 
12

.3
4 

X
 

1.
66

 
2.

80
 

3.
20

 
2.

58
 

2.
32

 

N
 

11
.5

0 
10

.4
1 

9.
43

 
14

.4
3 

9.
31

 
9.

02
 

10
.1

0 
8.

53
 

5.
05

 
9.

98
 

9.
67

 
10

.6
7 

7.
51

 
X

 
1.

88
 

3.
40

 
3.

00
 

1.
26

 

o 
11

.0
3 

4.
73

 
6.

94
 

14
.8

7 
11

.5
1 

5.
31

 
12

.2
1 

9.
12

 
7.

10
 

9.
58

 
10

.2
9 

6.
78

 
10

.5
4 

8.
09

 
X

 
1.

66
 

2.
80

 
0.

86
 

P 
8.

84
 

5.
96

 
6.

30
 

12
.2

4 
11

.7
0 

5.
13

 
12

.1
1 

9.
21

 
10

.9
3 

9.
24

 
10

.5
1 

6.
54

 
11

.5
1 

11
.9

4 
7.

21
 

X
 

2.
05

 
2.

09
 

Q
 

6.
80

 
10

.3
0 

8.
66

 
5.

93
 

8.
65

 
8.

90
 

7.
38

 
11

.5
0 

10
.8

9 
4.

64
 

6.
54

 
9.

68
 

9.
97

 
11

.3
8 

10
.5

7 
8.

36
 

X
 

2.
46

 

R
 

10
.5

6 
6.

48
 

7.
50

 
13

.6
6 

10
.5

6 
5.

54
 

11
.0

1 
8.

71
 

6.
85

 
8.

87
 

8.
60

 
7.

65
 

9.
45

 
5.

90
 

5.
30

 
8.

86
 

9.
80

 
X

 

8 .... ~ Q
 J i Si
" [ ~ ~ I 0
0

 ~ JiI 



10.3 Multidimensional Scaling 597 
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FIGURE 10.24. Spatial Plots for RCMP Detachments 
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TABLE 10.30. Coordinates for Seal-
ing Dimensions - RCMP Data 

Detachment OIMI OIM2 OIM3 

A 1.15 0.61 0.88 
B -1.63 1.00 -0.37 
C -0.65 0.59 0.46 
D 2.69 1.04 -0.09 
E 1.26 -1.33 0.53 
F -0.95 0.63 0.04 
G 1.86 --{I.92 --{I.41 

H -1.00 -0.98 1.45 
-0.89 -1.38 --{I. 19 

J 0.86 0.58 --{I.47 

K 0.73 0.73 -1.13 
L -1.13 1.22 -0.31 
M 0.55 -1.85 0.25 
N -0.65 -1.51 --{I.73 

0 -1.57 0.04 --{I. 17 

P -0.72 1.17 0.95 

Q 1.18 0.68 --{I.n 

R -1.08 -0.31 -0.58 

Using Ward's criterion a hierarchical clustering was carried out using the 
original dissimilarities in Table 10.29. The sequence of clusters obtained is 
shown graphically in Figure 10.26. This figure illustrates how the hierchieal 
clustering takes place and relates the clusters to the spatial configuration 
provided by the first two scaling dimensions. The changes in the total within 
group sum of squares for the first 14 steps of the proeess are summarized 
below. 

1 
7.8 

8 
25.2 

2 3 
10.8 12.8 

9 10 
29.8 29.9 

4 5 6 7 
14.0 14.5 19.9 21.0 

11 12 13 14 
34.4 36.0 47.6 49.1 

The remaining three steps in the process yielded very large values of 
the change in the within total sum of squares. From Figure 10.26 it would 
appear that the four distinct clusters make sense with respect to the first 
two dimensions. An examination of the two plots in Figure 10.24 that 
contain the third dimension seem to suggest that detachments H and K 
are at the two extremes of this third dimension. In addition detachments 
A and P appear to have relatively large positive values of this dimension 
whereas detachment N has a relatively large negative value. 

To aid in the interpretation of the spatial relationships the three derived 
dimensions were related to several other sets of variables. One set of vari-
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FIGURE 10.26. Spatial Plot for RCMP Detachments with Hierarchical Clusters 

ables consisted of opinions of residents of the various communities with 
respect to the severity of the crime situation in the community, the feelings 
of lack of safety, the quality of performance of the RCMP, the degree of 
perceived interaction between RCMP and the community, and the behavior 
of the RCMP while carrying out their duties. In general communities with 
high values on DIMI tended to view the crime situation as serious, were 
more fearful for their personal safety, and tended to have negative views 
regarding the behavior, performance and interaction of the RCMP. A sec­
ond set of variables consisted of responses from the same individuals with 
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respect to age, education, income, length of residency and family size. No 
relationships were found between these variables and the three dimensions. 

A third set of variables consisted of responses from the RCMP officers 
regarding their satisfaction with various aspects of their job and working 
conditions. Relating these variables to the three dimensions shows that 
DIM2 tended to be large if the officers were happy with the commanding 
officer, their coworkers and the working conditions. Using the first two di­
mensions, we can conclude that detachments in the south-east quadrant of 
panel (a) ofFigure 10.26 tend to have high crime rates, a low regard for the 
RCMP, and the police officers are not happy with their working conditions 
or with the commanding officers or coworkers. In a similar fashion the other 
three quandrants of the figure can be characterized. The third dimension 
derived from the scaling did not seem to be related to any of the variables 
discussed above. Another useful characterization of the dimensions is pro­
vided by other community characteristics. Detachments that are within 30 
minutes of a major city (bedroom suburbs) tended to have low values of 
DIMl. Communities that are further away from the major city and experi­
encing high rates of growth tended to have high values of DIMI while the 
relatively stagnant communities showed lower values of DIMl. Additional 
background on this police study is available in Jobson and Schneck (1982). 

For the purposes of cross validation, the responses of the 182 police 
officers were divided randomly into two groups SO that approximately half 
of the respondents in each detachment were in different groups. Separate 
MDS solutions were obtained for each of the two groups. The STRESS 
values and RSQ values for the two groups are given below. 

Group 1 
2 

Group 1 
2 

STRESS 
STRESS 

RSQ 
RSQ 

1 
0.333 
0.285 
0.669 
0.739 

2 
0.156 
0.154 
0.868 
0.866 

Dimension 
3 4 5 

0.102 0.057 0.028 
0.088 0.048 0.029 
0.923 0.969 0.991 
0.941 0.978 0.990 

Although the two sets of STRESS values exhibit the same behavior, the 
STRESS value at three dimensions seems to be a little higher than for 
the combined data seen earlier. Perhaps the reduction in sampie size has 
increased the error component sufficiently. The fourth dimension may be 
required to fit some of this noise. 

To compare the two sets of coordinates for the three-dimensional solu­
tions a canonical correlation analysis was carried out to relate the two sets 
of dimensions. The canonical correlations obtained for the first two sets of 
functions were quite high, and these two dimensions were strongly related 
to the original dimensions DIMI and DIM2. The third canonical functions 
were not correlated nor were they correlated with DIM3. It would appear 
that the third dimension in an three cases contains a large noise component. 
These results appear to be consistent with the two factors obtained in the 
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factor analysis of the stress data in Table 9.37. The two factors obtained 
were related to the unpleasant aspects of police work and organizational 
stress. These two factors appear to be related to the two sca1ing dimensions 
obtained from MDS. A correlation analysis relating the two stress factors 
to the MDS dimensions showed that DIM1 is strongly and positively re­
lated to both stress factors, whereas DIM2 is related to a contrast between 
the two stress factors. If DIM2 is large, stress due to unpleasant duties is 
high relative to stress due to organizational matters. 

Other Examples 

The above example was derived from survey data. Examples in which the 
dissimilarities are derived from experiments designed to measure prefer­
ences for products as in marketing can be found in Schiffman, Reynolds 
and Young (1981) and Green, Carmone and Smith (1989). Other examples 
can be found in Romney, Shepard and Nerlove (1972). 

10.3.3 üTHER SCALING MODELS 

In this section abrief outline of other types of sca1ing models is provided. 
In the previous two sections, the beginning data matrix was assumed to 
be an (n x n) symmetrie matrix of dissimilarities among n objects derived 
from observations received from a group of respondents. The output of the 
multidimensional scaling analysis was a spatial representation for the n 
objects based on the "averaged" dissimilarity ratings of the group. Alter­
native MDS models have been developed to analyze data matrices other 
than the single symmetrie matrix of dissimilarities. Two such variations are 
discussed here. Individual difference models are designed to simultaneously 
determine a spatial representation for a group and to determine how the 
representation for each individual differs from the average. Preference mod­
els or unfolding models are designed to determine spatial representations 
for objects based on preference rankings obtained from individuals. These 
two types of MDS models are outlined below. 

Individual DiJJerence Models 

Assume that an (n x n) dissimilarity matrix D is obtained from the re­
sponses supplied by a group of m individuals, and assume that X (n x p) 
denotes the matrix of coordinates for the underlying spatial configuration. 
For each object j the coordinate vector is given by Xj (p xl) where Xj 

locates the object in the p-dimensional space. 
Individual difference scaling models assume that for each individual the 

matrix of coordinates can differ from X and hence Xl:, k = 1,2, ... , m 
denotes the coordinate matrix for individual k. The matrix Xk is assumed 
to be related to X by some function gk, Xk = 9k(X), k = 1,2, ... ,m. 
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The simplest and most commonly used model relating X 1c to X is the 
weighted Euclidean model, which assumes X1c = XW 1c where W 1c (p X p) 
is a diagonal matrix of nonnegative weights for the p coordinates. Thus 
each individual is permitted to apply a different set of weights to the group 
coordinates X. The input to the analysis is a set of m dissimilarity matrices, 
one for each individual. The output of the analysis consists of the group 
spatial configuration given by X and a set of weight matrices for the m 
individuals. The matrix X and the weight matrix W 1c can be combined to 
determine a spatial representation for the n objects for each individual k. 

A more general model than the weighted Euclidean model permits the 
individual coordinate matrix to be given by X1c = XW 1c T1c, where T1c is 
a linear transformation matrix. In this case the spatial configuration for 
each individual consists of both a rotation of the group dimensions as well 
as a stretching or shrinking of the coordinates. This model of individual 
scaling is sometimes referred to as a three-mode model. The solution to the 
MDS analysis in this case consists of three sets of matrices, X, W 1c and 
Tk, k = 1,2, ... , m. 

Preference Models and Multidimensional Unfolding 

In this context the beginning data matrix consists of the rank order pref­
erences of m individuals to a set of n objects. In this case the input matrix 
is asymmetrie (n x m). The analysis begins with a dissimilarity matrix de­
termined from the ranking by each individual k of each object i denoted 
by Oik. A nonmetric multidimensional unfolding model simultaneously fits 
a spatial configuration for both subjects and objects. As in the case of Sec­
tion 10.3.2 the spatial configuration is determined so that the Euclidean 
distances di1c are monotonically related to the initial ranks Oi1c. In this case, 
there are coordinates X (n x p) defining the location of the objects and co­
ordinates Y (m x p) defining the location of the individuals with respect to 
the same paxes. The derived distances are given by d;k = L;=1 (Xi; -Yk;)2. 

10.3.4 ÜTHER SOURCES OF INFORMATION 

Surveys of the various types of multidimensional scaling can be found in 
Schiffman, Reynolds and Young (1981), Coxon (1982), Davidson (1983), 
Kruskal and Wish (1978) and Green, Carmone and Smith (1989). An in­
teresting survey of examples is provided in Young (1987). 
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Exercises for Chapter 10 

1. This exercise is based on the U .s. Crime Data contained in Table V17 
in the Data Appendix. 

(a) Obtain proximity matrices for the fifteen states using both squared 
Euelidean distanees and the eosine coefficient. Compare the prox­
imity matrices. Does the change in proximity measure have an 
impact on the relationships among the states? Why might the 
proximity relationships change? Which measure would you rec­
ommend? 

(b) Standardize the data in Table V17 so that for each type of crime 
the mean over the 15 states is 0 and the standard deviation is 1. 
Determine proximity matrices using squared Euelidean distanee 
and the eorrelation eoefficient. Compare the proximity matrices. 
Does the change in proximity measure have an impact on the 
relationships among the states? Compare these two proximity 
matrices to the two matrices obtained in (a). 

(e) Using the covariance matrix derived from Table V17 carry out a 
principal eomponents analysis. Obtain the unstandardized scores 
and the standardized scores for the first two eomponents. Deter­
mine a proximity matrix relating the 15 states using the squared 
Euelidean distance method. Determine two such matriees, one 
based on the first two unstandardized components and one based 
on the standardized eomponents. Compare the results to (a) and 
(b). 

(d) Using the two sets of principal component scores in (c) obtain 
two plots for the 15 states based on the first two components. 
Diseuss the results by interpreting the first two components. 

(e) Repeat the analyses in (e) and (d) using the eorrelation matrix 
from Table V17. Compare the results to (a), (b), (c) and (d). 

(f) Write an overall summary discussing the proximity eharacteris­
tics of the 15 states. 

2. This exercise is based on the Air Pollution Data in Table V21 eon­
tained in the Data Appendix. 

(a) Obtain proximity matrices for the twelve cities using both squared 
Euclidean distanees and the eosine coefficient. Compare the prox­
imity matrices. Does the change in proximity measure have an 
impact on the relationships among the cities? Why might the 
proximity relationships change? Which measure would you rec­
ommend? 
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(b) Standardize the data in Table V21 so that for each variable the 
mean is zero and the standard deviation is 1. Determine proxim­
ity matrices using squared Euclidean distance and the correla­
tion coefficient. Compare the two proximity matrices. Does the 
change in proximity measure have an impact on the relation­
ships among the cities? Compare these two proximity matrices 
to the two matrices obtained in (a). 

(c) Using the covariance matrix derived from Table V21 carry out a 
principal components analysis. Obtain the unstandardized scores 
and the standardized scores for the first two components. Deter­
mine a proximity matrix relating the 12 cities using the squared 
Euclidean distance method. Determine two such matrices, one 
based on the first two unstandardized components and one based 
on the standardized components. Compare the results to (a) and 
(b). 

(d) Using the two sets of principal component scores in (c) obtain 
two plots for the 12 cities based on the first two components. 
Discuss the results by interpreting the first two components. 

(e) Repeat the analyses in (c) and (d) using the correlation matrix 
from Table V21. Compare the results to (a), (b), (c) and (d). 

(f) Write an overall summary discussing the proximity characteris­
tics of the 12 cities. 

3. This exercise is based on the U.S. Divorce Data contained in Ta­
ble V15 in the Data Appendix. 

(a) Use the simple matching coefficient and the Jaccard coefficient 
to determine proximity matrices relating the twenty states with 
respect to the available grounds for divorce. Compare the prox­
imity measures and discuss the differences between the two co­
efficients. 

(b) The columns of the data matrix formed by Table V15 represent 
binary indicator variables. Use the squared Euclidean distance, 
eosine coefficient and correlation measures to determine proxim­
ity measures. Compare the three proximity matrices. Also com­
pare the proximity matrices to the matrices obtained in (a). 

( c ) Create nine new indicator variables by transforming the binary 
variables in Table V17 using 

NEWVAR= -1 *OLDVAR+ 1. 

Using the new data matrix containing old and new variables 
(18 altogether), determine proximity measures using squared 
Euclidean distance, eosine coefficient and correlation coefficient 
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measures. Compare the three sets of proximity measures. Also 
compare these measures to those obtained in (a) and (b). 

(d) Write a summary discussion outlining the properties of the vari­
ous proximity measures for categorical data used in this exercise. 

4. This exercise is based on the Automobile Data in Table V18 in the 
Data Appendix. 

(a) Determine a proximity matrix for the 20 automobiles using the 
correlation, squared Euclidean distance and eosine measures of 
similarity. Discuss the similarity relationships found. 

(b) Define dummy variables for the categories defined by the ranked 
variables (e.g., ENGSIZE has five categories and hence requires 
five dummy variables). Also, define a new dummy variable for 
the (FOR = 0) category using NONFOR = -1 * FOR + 1. Us­
ing the new data matrix containing the entire set of 19 dummy 
variables determine proximity matrices using the measures cor­
relation, eosine and squared Euclidean distance. Discuss the re­
lationships obtained. Compare the results to (a). 

(c) Write a summary discussing the differences among the various 
measures. Comment on the problem of combining categorical 
and ordinal variables. 

5. This exercise in based on the U.S. Crime Data contained in Table V16 
in the Data Appendix. 

(a) Use Ward's algorithm to carry out a hierarchical cluster analysis 
for the data in Table V16. Standardize the data first. Discuss 
the results and choose a particular solution. 

(b) Use other statistical methods to characterize the clusters from 
your solution in (a) using the data in Table V16. Compare the 
clusters. 

( c ) Repeat steps (a) and (b) using the average linkage method in­
stead of Ward's method. Compare the solution obtained us­
ing Ward's to the solution obtained using the average linkage 
method. 

(d) Use a partitioning method such as the k-means algorithm to 
obtain solutions in the neighborhood of the number of clusters 
selected in (a) and (c). Compare the partitioning method solu­
tion to the solutions obtained in (a) and (c). 

(e) Use principal components analysis applied to the standardized­
data in Table V16 to obtain a plot of the states with respect to 
the first two principal components. Compare the plot locations 
of the states to the clusters obtained in (a), (c) and (d). 
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(f) Provide an overall summary regarding the similarity of the states 
with respect to the crime rates. 

6. This exercise is based on the Air Pollution Data contained in Table V7 
in the Data Appendix. 

(a) Use Ward's algorithm to carry out a hierarchical cluster analysis 
for the data in Table V7. Standardize the data first. Discuss the 
results and choose a particular solution. 

(b) Use other statistical methods to chara.cterize the clusters from 
your solution in (a) using the data in Table V7. Compare the 
clusters. 

(c) Repeat steps (a) and (b) using the average linkage method in­
stead of Ward's method. Compare the solution obtained using 
Ward's to the solution using the average linkage method. 

(d) Use a partitioning method such as the k-means algorithm to 
obtain solutions in the neighborhood of the solutions in (a) and 
(c). Compare the partitioning method solution to the solutions 
in (a) and (c). 

(e) Use principal components analysis applied to the standardized 
data in Table V21 to obtain a plot of the cities with respect to 
the first two principal components. Compare the plot locations 
of the cities to the clusters obtained in (a), (c) and (d). 

(f) Provide an overall summary regarding the similarity of the cities 
with respect to the variables. 

7. This exercise is based on the U.8. Divorce Data contained in Ta.­
ble V14 in the Data Appendix. 

(a) 8elect two different measures of proximity (e.g., simple match­
ing coefficient and Jaccard coefficient) and carry out a hierar­
chical cluster analysis using the single linkage method. Choose 
a particular solution in each ca.se. Discuss the results including 
a comparison of the two solutions. 

(b) Repeat the steps in (a) using the same proximity measures but 
replace the single linkage method by the complete linkage method. 
Compare the results in (a) and (b). 

(c) For the data matrix in Table V14 define nine new variables by 
transforming the old variables using 

NEWVAR= -1 *OLDVAR+ 1. 

Using the data matrix containing all 18 variables (OLD and 
NEW) determine principal components. Using the scores based 
on the first two principal components plot the location of the 
states. 
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(d) Provide an overall summary discussion regarding the similarity 
among the states with respect to available grounds for divorce. 

8. This exercise is based on the U.S. Crime Data in Table V17. 

(a) Use a multidimensional scaling program to obtain a spatial rep­
resentation for the 15 states based on a Euclidean distance ma­
trix derived from the data in Table V17. Discuss the results. 

(b) Obtain the principal components for the data in Table V17 and 
interpret the components. Obtain a scatterplot for the 15 states 
based on the first two components. How does this spatial repre­
sentation compare to the one obtained in (a). 

(c) Use cluster analysis to reIste the 15 states and compare the 
results to the results in (a) and (b). 

(d) Use other multivariate techniques to reIste the original dsta to 
the scaling dimensions. 

(e) Provide an overall summary discussion regarding the relation­
ships among the 15 states. 

9. This exercise is based on the Air Pollution Data in Table V21. 

(a) Use a multidimensional scaling program to obtain a spatial rep­
resentation for the ten cities based on a Euclidean distance ma­
trix derived from the data in Table V21. Discuss the results. 

(b) Obtain the principal components for the data in Table V21 and 
interpret the components. Obtain a scatterplot for the ten cities 
based on the first two components. How does the spatial repre­
sentation compare to the one in (a). 

(c) Use cluster analysis to relate the ten cities and compare the 
results to the results in (a) and (b). 

(d) Use other multivariate techniques to reiate the original data to 
the scaling dimensions. 

(e) Provide an overall summary discussion regarding the relation­
ships among the ten cities. 

10. This exercise is based on the U .S. Divorce Data in Table V15. 

(a) Obtain a dissimilarity matrix for the 20 states by determining 
the Euclidean distance derived from the matrix of nine binary 
variables in Table V15. Use multidimensional scaling to obtain 
a spatial representation for the 20 states. Choose a solution and 
interpret the derived spatial configuration. 
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(b) Carry out a hierarchical cluster analysis using the same dissimi­
larity matrix as in (a). Compare the cluster results to the results 
in (a). 

(c) Repeat the steps in (a) and (b) using a dissimilarity matrix de­
rived from the Euclidean distance based on the matrix of dummy 
variables (two for each of the grounds variables. Discuss the s0-

lution. Compare your solution to the ones in (a) and (b). 

11. This exercise is based on the Automobile Data in Table V18. 

(a) Obtain a dissimilarity matrix for the 20 automobiles by deter­
mining a Euclidean distance matrix based on the variables in 
Table V18. Use multidimensional scaling to obtain a spatial 
representation for the 20 automobiles. Choose a solution and 
interpret the derived spatial configuration. 

(b) Carry out a hierarchical cluster analysis using the dissimilarity 
matrix in (a). Compare the cluster results to the scaling results 
in (a). 

(c) Repeat the steps in (a) and (b) using a dissimilarity matrix 
based on the matrix of dummy variables (one dummy variable 
for each category of each variable). Discuss the solution and 
compare your solution to (a). 

12. This exercise is based on the Cola Similarity Data in Table V19. 

(a) Use nonmetric multidimensional scaling to obtain a spatial con­
figuration for the dissimilarity matrix given in Table V19. Ob­
tain the STRESS values for dimensions 1 through 5 and compare 
them to the simulation values shown in Table 10.27. Select the 
appropriate dimension. 

(b) Examine the spatial representation for the chosen solution in (a) 
and interpret the result. 

13. This exercise is based on the Car Similarity Data in Table V20. 

(a) Use nonmetric multidimensional scaling to obtain a spatial con­
figuration for the dissimilarity matrix given in Table V20. Obtain 
the STRESS values for the dimensions 1 through 5 and compare 
them to the simulation values shown in Tables 10.27 and 10.28. 
Select the appropriate dimension. 

(b) Examine the spatial representation for the chosen solution in (a) 
and interpret the result. 
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Questions for Chapter 10 

1. Let X (n X p) denote a data matrix of n observations on each of p 
variables and let Xij denote the observation in row i and column j. 
H the observations in a row of X denote the coordinates of an object 
in a p-dimensional space, the Euclidean distance between the objects 
in rows r and 8 is given by d,.s, where 

p 

d~s = ~)Xrj - XS j)2. 
j=l 

(a) Denote the rth row of X by x~ and show that 

d~s = (Xr - xs)'(Xr - xs). 

(b) Let x = E:=l Xr/n denote the mean of the row vectors and let 
X; = (Xr - x) and x: = (xs - x). Show that 

a;.s = (X; - x:)'(x; - x:). 

2. Let Xrs denote the mean of X r and xs , hence Xrs = (xr + xs) /2. Show 
that 

where drs is the Euclidean distance between X r and X s . Give an in­
terpretation for the right-hand side of this expression. 

3. For the (n x p) matrices X+ and X++ defined in Section 10.1, show 
that the elements of X+'X+ and X++'X++ are given by the cosine 
coefficient Crs and the correlation coefficient qrs also defined in Section 
10.1. 

4. Each row of the data matrix X is called a profile. 

(a) Show that the Euclidean distance between the rth and 8th profile 
given by d,.s can be written as 

a;.s = (vr - vs)2 + p(xr. - XS .? + 2vrvs(1- qrs) 

where v~ = E~=l (xrj - xr.)2, xr· = E~=l Xrj/p (similarly for 
v~ and xs.) and qrs is the correlation coefficient between rows r 
and 8. 

(b) The squared Euclidean distance is composed of three compo­
nents: level, scatter and shape. Define these terms with reference 
to the three terms in rP,.s and explain what the terms actually 
measure. 
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(e) Use the eoneepts in (b) to help explain the differenees between 
drs and 2(1 - qrs) as measures of proximity. When might one 
measure be preferable to the other? 

5. Assume that the X matrix eontains a total of K dummy variables 
eorresponding to p eategorieal variables. Let k j denote the number of 
eategories for the jth variable, K = E~=l k j • 

(a) Show that the eosine eoefficient is given by Crs = frs/P, where 
frs is the number of variables in which the rth and 8th rows 
have the same eategories (unities in eommon). 

(b) Show that the eorrelation eoefficient is given by 

(e) Show that the square of the Euclidean distanee between rows r 
and 8 is given by ~s = 2{p - frs). 

6. If the eategorieal variables are binary (only two eategories), an al­
ternative method of eoding is to use only one dummy variable for 
each variable so that X has P dummy variables eorresponding to the 
P classifieation variables. Let a = number of variables in which r and 
8 both are eoded 0, and d = number of variables in which both are 
eoded 1. Let c = number of variables in which r is eoded 0 and 8 is 
eoded 1, and let b = number of variables in whieh r is coded 1 and 8 
is eoded O. 

(a) Show that the eosine eoefficient Crs based on X is given by d/[(b+ 
d)(c+d)P/2. 

(b) Show that the eorrelation eoefficient qrs based on X is given by 
(ad - bc)/[(a + b)(a + c)(b + d)(c + d)P/2. 

7. For any group proximity measure that satisfies the ultrametric in­
equality, (10.3) ean be used to update the proximity measures after 
two groups are joined. 

(a) Show that for the eomplete linkage method a r = a s = !' ß = 0 
and 'Y = ! assuming a dissimilarity measure. 

(b) Show that for the single linkage method ar = a s = !' ß = 0 
and 'Y = -! assuming a dissimilarity measure. 

(e) Show that for the average linkage method ar = nr/(nr + ns), 
as = ns/(nr + ns), ß = 0, and 'Y = 0 assuming a dissimilarity 
measure. 
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8. Let (Xr1m, Xr2m, ... , xrpm ) denote observations on the p variables for 
the mth object in group r. Similarly let (XBlm, Xs2m," . , xspm ) de­
note observations on the p variables for the mth object in group 8. 

Let the means for each group on the p variables be denoted by 
(Xr1"Xr2"""Xrp,) and (XBl"Xs2.,''''Xsp,) for groups r and 8 re­
spectively. The within group sums of squares for the two groups are 
given by 

n r P 

SSWr = L L(Xrjm - Xrj.)2 and 
m=1j=1 

n. P 

SSWs = L L(Xsjm - Xsj.)2, 
m=1j=1 

where nr and ns denote the number of objects in groups r and 8 

respectively. When groups r and 8 are joined to form group t the new 
centroid is given by (xn., Xt2., ... , Xtp.) and the within group sum of 
squares is given by 

(nr+n.) p 

SSWt = L L(Xtjm - Xtj.)2. 
m=1 j=1 

Denote the squared distance between the centroids of groups r and 8 

by rP,.s where 
p 

d~s = ~:)Xrj. - Xsj.)2. 
j=1 

(a) Show that nrnsrP,.s/(nr + ns) is equivalent to the incremental 
sum of squares given by SSWt - (SSWr + SSWs ). 

(b) In an analysis of variance with two groups r and 8 the within 
group sum of squares is given by (S SWr + S SWs ) as defined 
above. Show that S SWt corresponds to the total sum of squares 
and nrnsrP,.s/(nr + ns) corresponds to the between group sum 
of squares. (HINT: Xt;., j = 1,2, ... ,p is the grand mean for the 
two groups.) 

(c) The incremental sum of squares measure of proximity between 
two groups r and 8 is given by 8rs = nrnsrP,.s/(nr + ns) where 
rP,.s is defined above. Let 8tu, 8ru , 8su denote the proximities 
between groups t and u, r and u and 8 and u respectively. If t 
corresponds to the combination of groups r and 8 show that 
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( d) Show that the expression for Stu given in (c) can be obtained 
from (10.3) with ar = (nr+nu)/(nt+nu), a s = (ns+nu)/(nt+ 
nu), ß = -nu/(nt + nu) and 'Y = o. 

9. Let 9 denote the number of groups of objects and let T, W and G 
denote the total, within and among group sums of squares matrices as 
defined in Section 10.1.2. Show that the incremental sum of squares 
resulting from the combining of groups rand s is given by an increase 
in trW and a corresponding decrease in trG of nrnsa:.s/(nr + ns). 

10. The quality of a cluster analysis can be determined by comparing the 
group membership of the objects to the original proximities. Objects 
that are in the same cluster group should in general be closer as 
measured by the original proximities than objects that are not in 
the same group. Correlation measures can be used to measure the 
cluster quality of a given solution. Pairs in which the objects are in 
the same group are coded 0, and pairs that are not in the same group 
are coded 1. This newly created dummy variable defined over the 
n( n - 1) /2 pairs can be correlated with the original proximities to 
measure cluster quality. 

(a) Show that the Pearson correlation between the two sets ofvalues 
yields the point-biserial correlation as given in Section 10.2.2. 

(b) Show that if all ties are eliminated, Kendall's coefficient of con­
cordance is given by 'Y defined in Section 10.2.2. 

11. Let D (n x n) denote a dissimilarity matrix with elements hrs , r, S = 
1,2, ... ,n. Assume that D is Euclidean and hence that there exists 
a set of p (n X 1) vectors Xl, X2, ... , X n such that 

r, S = 1,2, ... , n. 

brs x~xr - x~x - x'xs + x'x 
(xr - x)'(xs - x) = x;'x:, 

h - 1 "n W ere X = n L..tr=l X r • 

(c) Let B denote the matrix of elements brs , r, S = 1,2, ... , n. Show 
that B = X·X·', where X* (n x p) is the matrix of row devia­
tions (xr - x)', r = 1,2, ... ,n so that B has the form B = ZZ'. 
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(d) Show that you could use principal components to determine two 

,.. [Z'] underlying vectors Zl and Z2 so that B = z~ [Zl Z2). What 

properties does this approximation to B have? 

12. Given an (n x p) matrix X, a rigid notation of the columns of Xis 
given by Z = XV, where V' = V-I (V is orthogonal). 

(a) Show that the squared Euclidean distance between rows T and 
8, tJ:.s, is not affected by rigid rotations and hence that 

d~s = (xr - xs)'(Xr - xs) = (zr - zs)'(zr - zs). 

(b) Assume X (n x p) is derived from a matrix D of dissimilarities 
6rs , T,8 = 1,2, ... , n. Given the results from (a) and Question 1 
what conclusions can you draw regarding the uniqueness of X? 

13. Suppose that the (n x p) data matrix X (n x p) contains p variables 
that have been standardized to have mean 0 and variance 1. 

(a) Show that the matrix X'X is a correlation matrix. 

(b) Show that the principal components of X given by Z = XV 
satisfy ZZ' = XX'. 

(c) Show that the squared Euclidean distances 6~s are given by 6~B = 
(Xr - xs)'(Xr - xs) = (zr - ZB)'(Zr - zs), where Xr,Xs denote 
columns of X and Zr, Zs denote the corresponding columns of Z, 
T, S = 1,2, ... , n. 

(d) Show that 6~B in (c) can be written as 6~s = E~=l(zrj - ZBj)2. 
What does each term of this sum represent? 

(e) Show that E:=l E:=l 6~s = 2n E~=l E:=l Z~j. (HINT: The 
means of the components are necessarily zero. 

(f) Show that E:=l E:=l 6~B/n2 = 2p/n. 



Appendix 

1 Matrix Algebra 

1.1 MATRICES 

Matrix 

A matrix of order (n x p) is a rectangular array of elements consisting of 
n rows and p columns. A matrix is denoted by a boldface letter, say A, 
where 

an al2 alp 

a2l a22 a2p 

A= 

The elements are denoted by aij, i = 1,2, ... , n, j = 1,2, ... , p, where 
the first subscript i refers to the row location, and the second subscript j 
refers to the column location of the element. The matrix is also sometimes 
denoted by (( aij ) ). 

Example 0/ a Matrix 

The matrix B = [! ~ -~] has 2 rows and 3 columns and is a (2 x 3) 

matrix, whereas the matrix C = [-~ -~ 1 has 3 rows and 2 columns 
-3 8 

and is a (3 x 2) matrix. 

Transpose 0/ a Matrix 

The tmnspose of the matrix A (n x p) is the matrix B (p x n) obtained by 
interchanging rows and columns so that 

bij=aji, i=I,2, ... ,p; j=I,2, ... ,n. 
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The transpose of A is usually denoted by B = A'. Some additional prop­
erties of a matrix transpose are 

1. A' = B' if and only if A = B, 

2. (A')' = A. 

Example 0/ a Matrix 'Iranspose 

The transpose of the matrices B and C defined in the above example are 
given by 

Exercise - Matrix 'Iranspose 

Using the matrices B and C defined above verify that (B')' = B and 
(C')' = C. 

Row Vector and Column Vector 

A row vector is a matrix with only one row and is denoted by a lower case 
letter with boldface type 

A column vector is a matrix with only one column and is also denoted 
by a lower case boldface letter 

a~ [I ]. 
Example 0/ Row and Column Vectors 

Tb. (4 xl) matrix d ~ [ ~~ 1 is a column vector, bul lhe (1 x 5) matrix 

f= [3 5 -7 4 -2] is a row vector. 

Square Matrix 

A matrix is square if the number of rows n is equal to the number of 
columns p (n = p). A square matrix with m rows and columns is said to 
have order m. 
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Symmetrie Matrix 

A square matrix A of order m is symmetrie, if the transpose of A is equal 
toA. 

A = A' if Asymmetrie. 

Diagonal Elements 

The elements aii, i = 1,2, ... , m, are ealled the diagonal elements of the 
square matrix A with elements aij, i = 1,2, ... ,m, j = 1,2, ... , m. 

TInce 01 a Matrix 

The sum of the diagonal elements of A is ealled the tmce of A and is denoted 
by tr(A). The trace of the (m x m) matrix is given by tr(A) = L:'l aii. 

Example - Square, Symmetrie, Diagonal Elements, TInee 

The matrix H = 6 2 -1 is a (3 x 3) or square matrix of order 3. [ 8 6 -4] 
-4 -1 7 

The matrix is symmetrie sinee H' = H. The diagonal elements of H are 
the elements 8, 2 and 7. The trace of H = tr H = 17 which is the sum of 
the diagonal elements. 

Exercise - Symmetrie Matrix, TInee 

Verify that the matrix A = [ a~:bjC] is symmetrie and that tr(A) = 

(a+d+ I). 

Null or Zero Matrix 

The null or zero matrix denoted by 0 is the matrix whose elements are all 
zero. 

Identity Matrix 

The identity matrix of order m is the square matrix whose diagonal elements 
are all unity, and whose off-diagonal elements are all zero. The identity 
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matrix of order m is usually denoted by Im and is given by 

1 0 
0 1 

I m = 0 0 

0 0 

Diagonal Matrix 

0 
0 

1 

o 
o 

o 
o 1 

A diagonal matrix is a matrix whose off-diagonal elements are all zero. The 
identity matrix is a special case of a diagonal matrix. 

Submatrix 

A submatrix of a matrix A is a matrix obtained from A by deleting some 
rows and columns of A. 

Example 0/ Submatrix 

The (2 x 2) matrix C* = [~ -i] is a submatrix of the matrix C = 

[ ~ =: ! ]. C· is obtained from C by deleting the first row and the 
2 1-5 

third column. 

1.2 MATRIX OPERATIONS 

Equality 0/ Matrices 

Two matrices A and B are equal, if and only if each element of A is equal to 
the corresponding element of B: aij = bij , i = 1,2, ... ,n, j = 1,2, ... ,p. 

Addition 0/ Matrices 

The addition of two matrices A and B is carried out by adding together 
corresponding elements. The two matrices must have the same order. The 
sum is given by C where 

C=A+B 

and where Cij = aij + bij , i = 1,2, ... ,n, j = 1,2, ... ,po 
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Additive Inverse 

A matrix B is the additive inverse of a matrix A, if the matrices sum to 
the null matrix 0 

B+A=O, 

where bij + aij = 0 or bij = -Bij, i = 1,2, ... , n, j = 1,2, ... ,po This 
additive inverse is denoted by B = - A. H C = A + B then C' = A' + B'. 

Ezample 

The sum of the matrices A and B given below is denoted by C. 

A = [-: ~ ] 
2 -4 

[ 2 -5] 
B = -~ -~ 

[ 4 + 2 3 -5] [6 -2] 
-6 - 2 9 - 2 = -8 7 . 

2+4 -4+6 6 2 
C = 

The matrix D = [-: =~] is the additive inverse of the matrix A 
-2 4 

mnreA+D= [~ n 
Ezercise 

Verify that C' = A' + B' using the matriees A, B and C in the previous 
example. 

Scalar Multiplication 0/ a Matrix 

The scalar multiplication of a matrix A by a sealar k is earried out by 
multiplying each element of A by k. This scalar produet is denoted by k A 
and the elements by kaij, i = 1,2, ... , n, j = 1,2, ... ,po 

Product 0/ Two Matrices 

The product of two matriees A (n x p) = (aij)and B (p x m) = (bjk ) is 
denoted by C = AB, if the number of eolumns (P) of Ais equal to the 
number of rows (P) of B, and if the elements of C = (Cij) are given by 

P 

Cik = Laijbjk. 
j=1 

The order of the produet matrix C is (n x m). 
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Example 

The matrix A = [-: ~ ] when multiplied by the sealar 3 yields the 
2 -4 

matrix 3A = [-~~ 2~ ]. 
6 -12 

The produet of the two matrices A and B, where A is given above and 

B [ 0 62] .. b = 1 -2 3 ,IS glven y 

C=AB [ 
(4)(0) + (3)(1) 

(-6)(0) + (9)(1) 
(2)(0) + (-4)(1) 

= [ ~ -~~ ~;]. 
-4 20-8 

Some additional properties are: 

1. A+B=B+A. 

2. (A + B) + C = A + (B + C). 

3. a(A+B) = aA +aB. 

4. (a + b)A = aA + bA. 

5. (AB)C = A(BC). 

6. (A + B)C = AC + BC. 

(4)(6) + (3)(-2) (4)(2) + (3)(3) ] 
(-6)(6) + (9)( -2) (-6)(2) + (9)(3) 
(2)(6) + (-4)(-2) (2)(2) + (-4)(3) 

7. In general AB i- BA even if the dimensions eonform for multiplica­
tion. 

8. For square matrices A and B 

tr(A + B) = trA + trB and tr(AB) = tr(BA). 

Exercise 

Given A = [~ - ~ ], B = [~ _ ~ ] and C = [ - ~ ~] verify the 

properties 1 through 8 given above. 
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Multiplicative Inverse 

The multiplicative inverse of the square matrix A (m x m) is the matrix B 
(m x m) satisfying the equation AB = BA = Im, where Im is the identity 
matrix of order m. The multiplieative inverse of A is usually denoted by 
B = A -1. If A has an inverse it is unique. 

Some additional properties are: 

1. If C = AB then C-1 = B-1 A-1 

2. (A')-l = (A -1)' 

3. IfC = AB then C' = B'A'. 

4. (kA)-1 = (l/k)A -1. 

Example 

The inverse of the matrix A = [_~ -~] is given by A -1 = [ t i ] 
sinee AA -1 = [ _~ -2 ] [! !] = [1 0] 2 j 1 0 1 . 

2 

A Useful Result 

Given asymmetrie nonsingular matrix A (p x p) and matrices B and C of 
order (p x q), the inverse of the matrix [A + BC'] is given by 

[A + BC'tl = A -1 - A -IB[I + c' A -IBt1C' A -1. 

An important special ease of this result is when B and C are (p xl) 
vectors, say b and c. The inverse of the matrix [A + bc'] is given by 

[A+ bC']-1 = A-1 _ A -lbc'A -1. 

1 + b'A -IC 

Exercise 

(a) Verify the above two results by using matrix multiplieation. 

(b) The equieorrelation matrix has the form B = (1 - p)1 + pii', where p 
is a eonstant eorrelation eoefficient and i (n xl) is a vector of unities. 
Show by using the above result that the matrix B-1 is given by 

B-1 = _1_ 1- pii' . 
(1 - p) (1 - p)2 + p(1 - p)n 

Idempotent Matrix 

An idempotent matrix A is a matrix that has the property AA = A. If A 
is idempotent and has full rank then A is an identity matrix. 
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Example 

The matrix B = [ ~ -1 ] [1 -1] [1 -1] o is idempotent since 0 0 0 0 = 

[1 -1] o O· 

Exercise 

Show that the mean centering matrix [I - kii'] is idempotent, where 1 is 
an (n x n) identity matrix and i (n xl) is a vector of unities. 

Kronecker Product or Direct Product 

If A(n x m) and B(p x q), the Kronecker product of A and B is denoted 
by A ® B and is given by the matrix 

allB a12B al m B 
a21B a22B a2mB 

an1B an2B ... anmB 

Example 

Given A = [ ~ -! ] B = [ ~ ] then 

2 [ ~ ] -1 

[n I ~ [ 1~ -3] -5 
A®B = 12 and 

3 [ ~ ] 4 [ ~ ] 15 20 

3 [~ -!] [ 6 -3] 
= 1~ ~; . B®A = 

5 [~ -!] 15 20 

Some properties of Kronecker products are as follows: 

1. (A ® B) ® C = A ® (B ® C). 

2. (A + B) ® C = (A ® C) + (B ® C). 

3. (A®B)(C®D)=AC®BD. 

4. (A®B)'=A'®B'. 
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5. tr(A ® B) = tr(A)tr(B). 

6. For vectors a and b 

a'®b=b®a'=ba'. 

7. In general A ® B :f:. B ® A as demonstrated in the above example. 

Exercise 

(a) Use the matriees A and B defined in the example above to show that 
(A ® B)' = (A' ® B'). 

(b) Use the matriees A = [! -~] and B = [-! ~] to verify that 

tr(A ® B) = tr(A)tr(B). 

1.3 DETERMINANTS AND RANK 

Determinant 

The determinant of a square matrix Ais a sealar quantity denoted by lAI 
and is given by 

n! 

lAI = ~)-1)j(k)an(k)a22(k) ... ann(k)· 
k=l 

The determinant represents the sum of n! terms, each term eonsisting of 
the product of n elements of A. For each term of the summation, the first 
subscripts are the integers 1 to n in their natural order, and the second 
subseripts represent a partieular permutation of the integers 1 to n. The 
power j (k) is 1 or 2 depending on whether the second subscripts represent 
an odd or an even number of interehanges with the integers in their natural 
order. 

For the 2 x 2 matrix 

A = [an a12 ] 
a21 a22 

the determinant is given by 

lAI = ana22 a12a21 

For the 3 x 3 matrix 

(0 interchanges ) (1 interchange ) 

[ 
bn b12 b13 ] 

B = ~1 ~2 ~3 
b31 b32 b33 
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the determinant is given by 

IBI = bll~2ba3 - bll~3b32 + b12~3b31 
(0 interchanges) (1 interchange) (2 interchanges) 

- b12~lb33 + b13~lb32 - b13~2b31 
(1 interchange) (2 interchanges) (1 interchange) 

NOTE: n! = 3! = 6 terms. 

Nonsingular 

If lAI '# 0 then A is said to be nonsingular. 
The determinant of the matrix A (n x n) can be evaluated in terms 

of the determinants of submatrices of A. The determinant of the sub­
matrix of A obtained after deleting the jth row and kth column of A 
is called the minor of ajk and is denoted by IAjkl. The cofactor of ajk 
is the quantity (-l)j+kIAjkl. The determinant of A can be expressed by 
lAI = L;=l ajk( -l)j+kIAjkl for any k and is called the cofactor expansion 
ofA. 

Example 

The determinant of the matrix B = 4 5 1 can be determined [ 1 3 -2] 
-3 -4 7 

by expanding about the first row obtaining 

Equivalently expanding about the third column 

Exercise 

Verify the value of the determinant in the example by expanding about the 
second row. 

Some useful properties of the determinant are: 

1. lAI = lAI'· 

2. If each element of a row (or column) of Ais multiplied by the scalar k 
then the determinant of the new matrix is klAI. 

3. IkAI = IAlkP if A is (p x p). 

4. If each element of a row (or column) of Ais zero then lAI = o. 
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5. If two rows (or columns) of Aare identical then lAI = O. 

6. The determinant of a matrix remains unchanged if the elements of 
one row (or column) are multipled by a scalar k and the results added 
to a second row (or column). 

7. The determinant of the product AB of the square matrices A and B 
is given by IABI = lAI/BI. 

8. If A -1 exists then lA-li = IAI-1. 

9. A -1 exists if and only if lAI =I- o. 
10. IA ® BI = IAlnlBlm where A(n x n) and B(m x m). 

11. (A ® B)-l = A -1 X B-1. 

12. If A(p x p) is non-singular, B(p x m) and C(m x p) then IA + BC/ = 
IAI-1IIp + A -lBC/ = lA-lI/Im + CA -lBI where Ip(p x p) and 
Im (m x m) are identity matrices. 

Relation Between Inverse and Determinant 

The inverse of the matrix A is given by A -1 = l*r A *, where A * is the 

transpose of the matrix of cofactors of A. The matrix A * is called the 
adjoint of A. 

Example 

For the (2 x 2) matrix A = [_~ -~] the determinant is given by 

54 - 8 = 46. The matrix of cofactors is given by [~ ~] and hence the 

adjoint matrix is A * = [~ ~]. The inverse of A is therefore given by 

A-1 _ 1 [6 2] 
-46 4 9 . 

Exercise 

(a) Verify that lA-li = IAI-1 using the matrix A in the previous exam­
pIe. 

(b) Verify the inverse of the matrix A in the example above using the 
adjoint and determinant of A -1 to get A. 

( c) U se the properties above to show that the determinant of the equi­
correlation matrix is given by IpI+(I-p)ii'l = (l-p)n-1[1+p(n-l)], 
where i (n xl) is a vector of unities. 
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Rank 0/ a Matrix 

The rank of a matrix A, rank (A), is the order of the !argest nonsingular 
submatrix of A. HAis nonsingular then A is said to have juli rank. 

Example 

Given the matrix B = [ ~ ~] the rank is the order of the largest 
-1 4 

nonsingular submatrix of B. Since B is (3 x 2) the rank cannot exceed 2 
since a (2 x 2) matrix is the largest square submatrix of B. The three 
possible submatrices are 

The first of these submatrices has determinant zero and hence is singular. 
The remaining two submatrices are nonsingular. The rank of the matrix B 
is therefore 2. 

Exercise 

(al Verify that th. rank of th. matrix A given by A ~ [ ! 
is 2 and determine all (2 x 2) matrices that have rank 2. 

3 -4] 
4 2 

11 0 

(b) Using the matrix B in the above example and A in (a) verify that 
rank (BA) = 2. 

The following properties are useful. 

1. HA and B are nonsingu!ar matrices with the appropriate dimensions 
and if C is arbitrary of appropriate dimension, then 

(a) rank (AB) ~ min[rank (A), rank (B)J 

(b) rank (AC) = rank (C) 

(c) rank (CA) = rank (C) 

(d) rank (ACB) = rank (C). 

2. The rank of an idempotent matrix is equal to its trace. 
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1.4 QUADRATIC FORMS AND POSITIVE DEFINITE 

MATRICES 

Quadratic Form 

Given a symmetrie matrix A (n x n) and an (n xl) vector x, a quadratic 
form is the scalar obtained from the product 

n n 

x'Ax = L LaijXiXj. 
i=l j=l 

The matrix A must be square, but need not be symmetrie, since for any 
square matrix B the quadratie form x'Bx ean be written equivalently in 
terms of a symmetrie matrix A. Thus 

x'Ax= x'Bx. 

There is no 1088 of generality therefore, in assuming the matrix A in a 
quadratie form is symmetrie. 

Exercise 

Given x = [ -2: 1 and A = [! ~ -~ 1 determine the value of 
-a 0 -1 4 

x' Ax and solve for a in the equation x' Ax = 10. 

Congruent Matrix 

A square matrix B is congruent to a square matrix A if there exists a 
nonsingular matrix P sueh that A = P'BP. By defining the linear trans­
formation y = Px the quadratie form y'By is equivalent to x' Ax. If A is 
of rank r, there exists a nonsingular matrix P such that the congruent ma­
trix B is diagonal. In this ease B has r nonzero diagonal elements and the 
remaining (n-r) diagonal elements are zero, therefore y'By = E;=l biiy;. 

Positive Definite 

A real symmetrie matrix A (n x n) is positive definite if the quadratie 
form x' Ax is positive for all (n x 1) vectors x. If A is positive definite and 
nonsingular, then A is eongruent to an identity matrix in that there exists 
a nonsingular matrix P sueh that 

x'Ax = y'y, where y = Px. 

Positive Semidefinite, Negative Definite, Nonnegative Definite 

The matrix A is positive semidefinite if x' Ax ~ 0 for all x, and x' Ax = 0 
for at least one x. It is negative definite if x' Ax < 0 for all x, and negative 
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semidefinite if x' Ax ~ 0 for all x and x' Ax = 0 for at least one x. The 
matrix Aisnonnegative definite if it is not negative definite. 

Exercise 

Suppose that A = aa' where a(p xl) and show that x' Ax is positive 
definite if a 1= o. 

Some additional results are: 

1. The determinant of a positive definite matrix lAI is positive. 

2. If A is positive definite (semidefinite) then for any nonsingular ma­
trix P, p' AP is positive definite (semidefinite). 

3. A is positive definite if and only if there exists a nonsingular matrix 
V such that A = V'V. 

4. If A is (n x p) of rank p then A' Aispositive definite and AA' is 
positive semidefinite. 

5. If Ais positive definite then A -1 is positive definite. 

1.5 PARTITIONED MATRICES 

A matrix A can be parlitioned into submatrices by drawing horizontal and 
verticallines between rows and columns of the matrix. Each element of the 
original matrix is contained in one and only one submatrix. A parlitioned 
matrix is usually called a block matrix. 

[
an a12 a13 a14 

A = a21 a22 a23 a24 
a31 a32 a33 a34 
a41 a42 a43 a44 

Product 0/ Parlitioned Matrices 

The product of two block matrices can be determined if the column par­
titions of the first matrix correspond to the row partitions of the second 
matrix. As usual, the total number of columns of the first matrix must be 
equal to the total number of rows of the second, 



and using A above 

[ 
AuBu + A12B21 + A13B31 

AB= 
A21 Bu + A22 B21 + A23 B31 

Inverse 0/ a Partitioned Matrix 
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Au B12 + A12B22 + A13B32]. 

A21 B12 + A22B22 + A23B32 

Let the (n xp) matrix A be partitioned into four submatrices A U(n1 xpd, 
A 12 [n1 x (p - pdl, A 21 [(n - nd x P1l and A 22 [(n - nd x (p - pdl and 

hence A = [!~~ !~:]. If B = A -1 exists, then B = [:~~ :~:] 
can be related to A by the following 

1. B u = [Au - A 12Ai21 A 21l-1 = [Ail + Al} A12B22A21Aill· 

2. B 12 = -All A 12 [A22 - A 21A l l A 12J-1 = -All A 12B 22 . 

3. B 21 = -Ai21 A2dAu - A 12Ail A2d-1 = -Ai21 A 21B u . 

4. B 22 = [A22 - A21Al11 A 12J-1 = [Ai21 + Ai21 A21BuA12Aill. 

Exercise 

1. (a) Verify the above expressions for B = A -1 by multiplication to 
show that AB = I. 

(b) Verify the above expressions for B = A -1 by solving for the 
four submatrices in B in the equation AB = I. 

2. :: ~::~:~[ Im! th: i~Tle :: ::::::::: i::: 
-7 1 8 

[ 5 -3] 
1 8' 

Determinant 0/ a Partitioned Matrix 

The determinant of lAI can be expressed as follows: 

1. lAI = IA22 11Au - A 12Ail A 22 1 = IAu llA22 - A 21A ll A 12 1· 

2. lAI = IA22 1/IBu l = IAu l/IB22 1, where B u and B 22 are defined 
above with the inverse of a partitioned matrix. 

If A 21 = A 12 = 0 then 

1 A -1 = [Al} 0] . 0 A-1 . 
22 
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Exercise 

(a) Use the expression for lAI in (1) above to determine lAI in the pre­
vious exercise. 

(b) Show that lAI = lAu IIA22 I using the matrix A in the previous ex­
ercise. 

1.6 EXPECTATIONS OF RANDOM MATRICES 

An (n xp) random matrix Xis a matrix whose elements Xij i = 1,2, ... , n, 
j = 1,2, ... ,p, are random variables. The expected value of the random 
matrix X denoted by E[X] is the matrix of constants E[Xij] i = 1,2, ... , n, 
j = 1,2, ... ,p, if these expectations exist. 

Let Y (n x p) and X (n x p) denote random matrices whose expectations 
E[YJ and E[X] exist. Let A (m x n) and B (p x k) be matrices of constants. 
The following properties hold: 

1. E[AXB] = AE[X]B. 

2. E[X + Y] = E[X] + E[YJ. 

Let z (n xl) be a random vector and let A (n x n) be a matrix of 
constants. The expected value of the quadratic lorm z' Az is given by 
E[z'Az] = E7=1 Ej=laijE[ZiZj] where A has elements ~j and z has 
elements Zi. 

Exercise 

(a) Show that E[(X+A)'(X+A)] = L'+A'IT+IT'A+A'A, where X 
is a random matrix E[X] = IT and E[X'X] = L'. 

(b) Show that E[x' Ax] = Ef=l E;=laijO'ij + Ef=l E;=laijJ.tiJ.tj, where 
E[(Xi - J.ti)(Xj - J.tj)] = O'ij, i,j = 1,2, ... ,po 

1.7 DERIVATIVES OF MATRIX EXPRESSIONS 

If the elements of the matrix A are functions of a random variable x, then 
the derivative of A with respect to x is the matrix whose elements are the 
derivatives of the elements of A. For A = (~j), dAldx = (daijldx). 

If x is a (p x 1) vector, the derivative of any function of x, say I(x), is 
the (p xl) vector of elements (8118xj), j = 1,2, ... ,po 

Given a vector x (p xl) and a vector a (p xl), the vector derivative of 
the scalar x'a with respect to the vector x is denoted by 8(x'a)/8x = a, 



which is equivalent to the vector 

8~x'a) 
Xp 
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Given a vector x (p xl) and a matrix A (p x p), the vector derivative of 
Ax is given by 8AI ax = A' or 8AI ax' = A. 

Given a vector x (p x 1) and a matrix A (p x p), the vector derivative 
of the quadratic form x' Ax with respect to the vector x is denoted by 
8(x' Ax)/ax = 2Ax, which is equivalent to the vector 

8(~Ax) 
xp 

Given a matrix X (nxm) then the derivative of a function ofX, say I(X), 
with respect to the elements of X is the (n x m) matrix of partial derivatives 
(81 I 8Xij). Some useful properties of the matrix derivative involving the 
tra.ce operator are: 

1. &tr(X) = I. 

2. &tr(AX) = A'. 

3. &tr(X' AX) = (A + A')X. 

The derivative of adeterminant lXI of a matrix X, with respect to the 
elements of the matrix, is given by 81XI/8X = (X')* = adjoint of X'. 

Exercise 

(a) Show that if 1= (a - Bx)'(a - Bx) where a (n xl), B (n x p), and 
x (p x 1) then 81 lax = [2B'Bx - 2B'a]. 

(b) Show that if f= tr(A - BX)'(A - BX) where A (n x p), B (n x r) 
and X (r x p) then 8118X = [2B'BX - 2B' Al. 
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~-----------------------X2 

FIGURE A.1. Addition of Two Vectors 

2 Linear Algebra 

2.1 GEOMETRIC REPRESENTATION FOR VECTORS 

A veetor x' = (Xl, X2, ••• ,Xn ) ean be represented geometrieally in an 
n-dimensional space, as a directed line segment from the origin to the 
point with coordinates (Xl, X2, . •. ,xn ). The n-dimensional vector space 
is formed by n mutually perpendieular axes Xl. X 2 , ••• ,Xn . The coordi­
nates (Xl, X2, ••• , x n ) are values of Xl. X 2 , ••• , X n respectively. Figure A.l 
shows the vectors xi = (Xll, X21, Xat) and x~ = (X12, X22, Xa2) in a three­
dimensional space. The addition 0/ the two vectors xi + x~ = (Xll + 
X12, X21 + X22, Xa1 + Xa2) is also shown in Figure A.1. Figure A.2 shows 
scalar multiplication by a sealar k for a two-dimensional vector x' = (Xll, X2t), 
where kx' = (kxl1, kX2t). 

The length 0/ the vector x' = (Xl, X2, ••• ,Xn ) is given by the Euclidean 
distance between the origin and the point (Xl. X2, ••• ,xn ) and is denoted 
by 

n 1/2 
IIxll = ..j(X1 - 0)2 + (X2 - 0)2 + ... + (Xn - 0)2 = [I>~] . 

i=l 

The angle (J between the vector Xl = (Xl1, X21o ••• , xnt) and the veetor 
x2 = (X12, X22, ••• ,Xn2) is given by 

n n 1/2 n 1/2 
eos (J = I>i1Xi2/ [I>~l ] [I>~2] . 

i=l i=l i=l 
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(kxll • kxZI ) 

I 
I 
I 
I 
I 
I 
I 
I 

~----------~--------~--- Xl 

FIGURE A.2. Sealar Multiplieation 

The matrix produet of the (n x 1) veetors Xl and X2 is given by 

and henee 
eosB = X~X2/(X~XI)I/2(X;X2)1/2. 

In Figure A.3, the angle B between xi = (Xll' X21) and x~ = (XI2, X22) is 
given by eos (J = [XllXI2 +X2IX22J/[X~1 +X~IJI/2[x~2 +X~2P/2. If eos(J = ±1 
the veetors Xl and X2 are said to be orthogonal. 

The distanee from the vector point xi = (Xll, X2b ... , xnt) to the veetor 
point x~ = (XI2' X22, . .. ,Xn 2) is the Euclidean distanee between the two 
points 

The projection of the veetor X2 on the veetor Xl is a veetor that is a 
sealar multiple of Xl given by 

where B is the angle between X2 and Xl, and k is the sealar given by 
Ilx211/llxIIi eosB. 
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X22 --

1 
1 

Xl 1 

1 (X12 • X22) 
---1------

1 1 
1 1 
1 1 
1 1 

"""-___ ---' ____ --1. _____ Xl 

FIGURE A.3. Angle Between Two Vectors 

Exercise 

(a) Given Xl = [ ~ ] and X2 = [ ! ] plot the veetors Xl and X2 in the 

two-dimensional space formed by the axes Xl and X 2 • 

(b) Plot the vector (Xl + X2) and the veetor 2XI in the two-dimensional 
space in (a). 

(e) Determine the length of the veetors XI. X2 and (Xl + X2). 

(d) Determine the angle () between the veetors Xl and X2. 

(e) Determine the distanee between the tips of the vectors Xl and X2' 

(f) Determine the projeetion X2 of the veetor X2 on Xl and determine 
the veetor X; = X2 - X2. Show that X2 and x; are orthogonal. 

2.2 LINEAR DEPENDENCE AND LINEAR 

TRANSFORMATIONS 

Linearly Dependent Vectors 

If one vector X in n-dimensional space ean be written as a linear eombina­
tion of other veetors in n-dimensional space, then X is said to be linearly 
dependent on the other veetors. If 
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then x is linearly dependent on V!, ... , vp-

The set of (p + 1) vectors (x, Vi, ... , vp ) is also a linearly dependent set, 
if any one of the vectors can be written as a linear combination of the 
remaining vectors in the set. 

Linearly Independent Vectors 

A set of vectors is linearly independent, if it is not possible to express one 
vector as a linear combination of the remaining vectors in the set. In an 
n-dimensional space the maximum number of linearly independent vectors 
is n. Thus given any set of n linearly independent vectors, all other vectors 
in the n-dimensional space can be expressed as a linear combination of the 
linearly independent set. 

Basis for an n-Dimensional Space 

The set of n linearly independent vectors is said to generate a basis for the 
n-dimensional space. 

In two-dimensional space linearly dependent vectors are colinear or lie 
along the same line. In three-dimensional space linearly dependent vectors 
are in the same two-dimensional plane and may be colinear. If the set of 
linearly independent vectors are mutually orthogonal then the basis is said 
to be orthogonal. 

Generation of a Vector Space and Rank of a Matrix 

If the matrix A (n x p) has rank r, then the vectors formed by the p 
columns of A generate an r-dimensional vector space. Similarly the rows 
of A generate an r-dimensional vector space. In other words, the rank of 
a matrix is the maximum number of linearly independent columns, and 
equivalently the maximum number of linearly independent rows. 

Exercise 

(al Given Ihe vecOOrn x, ~ [ -n x, ~ [ ! 1 and x, ~ [ n show 

that they are linearly independent by showing that each cannot be 
written as a linear combination of the remaining two. 

(b) Let A = [Xi,X2,X3] and determine lAI for the values of x!, X2,X3 

given in (a). 

Linear Transformation 

Given a p-dimensional vector x, a linear transformation of x, is given by 
the matrix product 

y=Ax, 
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where A (n x p) is called a transformation matrix. The matrix A maps 
the n-dimensional vector x into a Jrdimensional vector y. If A is a square 
nonsingular matrix, the transformation is one to one, in that x = A -ly 
and hence each point in x corresponds to exactly one and only one point 
iny. 

Orthogonal1'ransformation, Rotation, Orthogonal Matrix 

If A is a square matrix and A has the property that A' = A -1, then 
the equation y = Ax is an orthogonal tro.nsformation or rotation. The 
matrix A in this case is called an orthogonal matrix. If A is orthogonal, 
A also has the property that lAI = ±1. The transformation is orthogonal 
because it can be viewed as a rotation of the coordinate axes through some 
angle (J. The angle (J between any pair of vectors remains the same after 
the transformation. 

Example 

In Figure A.4, the point M has coordinates (Xl, X2) with respect to the 
Xl - X 2 axes and has coordinates (Zl, Z2) with respect to the ZI - Z2 axes. 
The angle rP between Xl and Zl is the angle of rotation required to rotate 
the Xl - X2 axes into the ZI - Z2 axes. The coordinates (Zl, Z2) of the 
point M in Zl - Z2 space can be described in terms of the coordinates 
(Xi! X2) of M in Xl - X 2 space using the equations 

Zl = Xl COSrP + X2 sinrP 
Z2 = -Xl sin rP + X2 COS rP. 

In matrix notation the linear transformation to [ ;~ ] from [ :~ ] can 

be expressed as [ Zl ] = [ c~ ~ sin ~ ] [ Xl ]. The transformation 
Z2 - SIn'f' COS'f' X2 

. [cos rP sin rP ] matrIX A = . A. A. has the property that 
-SIn'f' COS'f' 

A-1 - 1 [COS rP -sinrP]_[COs rP -sinrP]=AI 

- cos2 rP + sin2 rP sin rP cos rP - sin rP cos rP ' 

and hence the transformation is orthogonal as required. 

Exercise 

(a) Let A = [~~~ -~~~] denote a transformation matrix. Show 

that A -1 = A' and hence that A is an orthogonal transformation 
matrix. 
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--~~~----L--------------Xl 

FIGURE A.4. Rotation ofAxes 

(b) Use the results of the above example to show that the angle of rotation 
in (a) is 45°. 

(c) Give the transformation matrix corresponding to 4J = 60°. 

2.3 SYSTEMS OF EQUATIONS 

Let Xl, X2, X3 denote the unknowns in a system of three equations 

a11 X I + al2 X 2 + al3x 3 bl 

a2lXI + a22X2 + a23X3 = b2 

a3l X I + a32 X 2 + a33X 3 b3 · 

The system of equations can be represented by a matrix equation 

Ax=b, 

where 

Solution Vector for a System of Equations 

The solution vector x is given by 

x= A-Ib. 
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Exercise 

1. Given 'he three linearly independent vectors X, ~ [ -i l' X, ~ 

[ -!] and ~ ~ U l Ify ~ U 1 m con'Wned in 'he 'p= 

generated by Xl, X2 and X3 then there exist coefficients a, b and c 
such that y = aXI + bX2 + CX3' Show that the equation for y can be 

wri'ten os y ~ Af, where f ~ [ : landSOl" for f. 

2. Solve the system of equations 

3XI +X2 - 4X3 

2XI + 5X2 +X3 

Xl - 4X2 + 3X3 

= 
= 
= 

3 

10 

-6 

for XI, X2 and X3 using the expression X = A -ly. 

Homogeneous Equations - Trivial and Nontrivial Solutions 

If the vector b in the system Ax = b is the null vector 0, the system is 
said to be a system of homogeneous equations. The obvious solution X = 0 
is said to be a trivial solution. If A is (n x p) ofrank r, where x and b are 
(p xl), then the system of n homogeneous equations in p unknowns given 
by Ax = b has (p - r) linearly independent solutions in addition to the 
trivial solution x = O. In other words, a nontrivial solution exists if and 
only if the rank of A is less than p. If A is a square matrix a nontrivial 
solution exists if and only if lAI = o. 

2.4 COLUMN SPACES, PROJECTION OPERATORS AND 

LEAST SQUARES 

Column Space 

Given an (n x p) matrix X, the columns of X denoted by the p vectors 
xI, X2, ... ,xp span a vector space called the column space of X. The set of 
all vectors y (n xl), defined by y = Xb for all vectors b (p xl), b =I 0, 
is the vector space generated by the columns of X. 

Orthogonal Complement 

The set of all vectors z (p xl) such that Xz = 0 generates the orthogonal 
complement to the column space of X. 
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Projection 

Given a vector y (n xl) and a p-dimensional column space defined by the 
matrix X (n x p), p::; n, the vector y (n x 1) is a projection of y onto the 
column space of X, if there exists a (p xl) vector b such that y = Xb, 
and a vector e (n xl) such that e is in the orthogonal complement to the 
column space of X. If Y is the projection of y, then y = y + e, and the 
vector e is the part of y that is orthogonal to the column space of X. 

Ordinary Least Squares Solution Vector 

Given an (n x p) matrix X of rank p, and a vector y (n xl), n ~ p, the 
projection of y onto the column space of X is given by the ordinary least 
squares solution vector 

y = X(X'X)-lX'y, where b = (X'X)-lX'y. 

Idempotent Matrix - Projection Operator 

The matrix X(X'X)-lX' is an idempotent matrix and is called the pro­
jection operator for the column space of X. The vector e = (y - y) = 
[I - X(X'X)-l X']y is orthogonal to the column space of X. The idem­
potent matrix [I - X(X'X)-l X'] is called the projection operator for the 
vector space orthogonal to the column space of X. 

Exercise 

1. Given X (n x p) and y (n x 1) demonstrate the following: 

(a) X(X'X)-lX' is idempotent. 

(b) [I - X(X'X)-lX'] is idempotent. 

(c) [I - X(X'X)-lX'][X(X'X)-lX'] = O. 

(d) y'(y - y) = 0, where y = X(X'X)-lX'y. 

2. Given X = 

1 1 
1 2 
1 3 
1 4 y = [~ 
1 5 6 

Y = X(X'X)-l X'y and (y - y). 

d t . bA (X'X)-lX'y, e ermlne = 
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3 Eigenvalue Structure and Singular Value 
Decomposition 

3.1 EIGENVALUE STRUCTURE FOR SQUARE MATRICES 

Eigenvalues and Eigenvectors 

Given a square matrix A of order n, tbe values of tbe scalars A and (n x 1) 
vectors v, vi- 0, tbat satisfy tbe equation 

Av= AV, (A.1) 

are called tbe eigenvalues and eigenvectors of tbe matrix A. Tbe problem of 
finding A and v in (A.1) is commonly referred to as tbe eigenvalue problem. 
From (A.1) it can be seen tbat if visa solution tben kv is also a solution 
wbere k is an arbitrary scalar. Tbe eigenvectors are tberefore unique up to 
a multiplicative constant. It is common to impose tbe additional constraint 
tbat v'v = 1, and bence tbat tbe eigenvector be normalized to bave a lengtb 
of 1. 

Chamcteristic Polynomial, Chamcteristic Roots, Latent Roots, 
Eigenvalues 

Rewriting (A.1) as 
(A - AI)v = 0, 

we obtain a system of homogeneous equations. A nontrivial solution v =f 0 
requires that 

lA-All =0. 

This equation yields a polynomial in A of degree n and is commonly called 
tbe chamcteristic polynomial. Tbe solutions of the equation are tbe roots 
of the polynomial, and are sometimes referred to as chamcteristic roots or 
latent roots, altbougb tbe most common term used in statistics is eigenval­
ues. 

Tbe characteristic polynomial bas n roots or eigenvalues some of wbich 
may be equal. For each eigenvalue A tbere is a corresponding eigenvec­
tor v satisfying (A.1). Tbe matrix A is singular if and only if at least one 
eigenvalue is zero. 

Some additional properties of eigenvalues and eigenvectors are: 

1. Tbe eigenvalues of a diagonal matrix are tbe diagonal elements. 

2. Tbe matrices A and A' bave tbe same eigenvalues but not necessarily 
tbe same eigenvectors. 

3. If A is an eigenvalue of A tben 1/ A is an eigenvalue of A -1. 
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4. H>. is an eigenvalue of A and v the corresponding eigenvector, then 
for the matrix A k, >.k is an eigenvalue with corresponding eigenvec­
tor V. 

5. H the eigenvalues of A are denoted by >'t, >'2, ... ,>'n, then 

n n 

trA = L>'j and lAI = 11 >'j. 
;=1 ;=1 

Eigenvalues and Eigenvectors for Real Symmetrie Matrices and Some 
Properties 

In statistics the matrix A will usually have real elements and be symmetrie. 
In this case the eigenvalues and eigenvectors have additional properties: 

1. H the rank of A is r then (n - r) of the eigenvalues are zero; 

2. H k of the eigenvalues are equal the eigenvalue is said to have mul­
tiplicity k. In this ease there will be k orthogonal eigenvectors corre­
sponding to the common eigenvalue; 

3. H two eigenvalues are distinct then the eorresponding eigenvectors 
are orthogonal; 

4. An nth order symmetrie matrix produees a set of n orthogonal eigen­
vectors. 

5. For idempotent matriees the eigenvalues are zero or one. 

6. The maximum value of the quadratie form v' A v subject to v'v = 1 
is given by >'1 = ~ A VI, where >'1 is the largest eigenvalue of A and 
VI is the eorresponding eigenvector. 

Similarly the second largest eigenvalue >'2 = v~A v2 of A is the max­
imum value of v' Av subject to ~Vl = 0 and V~V2 = 1, where 
V2 is the eigenvector corresponding to >'2. The kth largest eigen­
value >'k = v'kAvk of A is the maximum value of v' Av subject to 
vkVI = v'kV2 = ... = VkV(k-l} = 0 and vkVk = 1, where Vk is the 
eigenvector eorresponding to >'k. 
The above properties are essentially summarized by the following 
statement. HAis real symmetrie of order n, there exists an orthog­
onal matrix V such that 

V'AV = A or A = VAV', 

where A is a diagonal matrix of eigenvalues of A with diagonal el­
ements >'1, >'2, ... , >'n; and V is the matrix whose columns are the 
eorresponding eigenvectors Vt, V2, ... , Vn . The orthogonal matrix V 
diagonalizes the matrix A. 
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7. If A is nonsingular and symmetrie then A" = VA "V', where A = 
VAV'. 

8. If A = V AV' then the quadratic form x' Ax can be written as y' Ay 
where y = Vx. 

Example 

Given the matrix 

6 fl 0 

A= fl 4 j! 
0 j! 2 

the eigenvalues are obtained by solving the determinantal equation IA -
,XII = 0, which in this case is given by 

(6 -'x) 
fl 

o 

flO 
(4-,X) j! 
j! (2 -'x) 

=0. 

The resulting characteristic polynomial is given by 

3 15 
(6 - ,X) (4 - 'x)(2 -'x) - 2(6 -'x) - 2(2 -'x) = O. 

The characteristic roots or eigenvalues determined from this polynomial 
are ,X = 1, 3 and 8. 

The corresponding eigenvectors are obtained by solving the equation 
(A - 'xI)v = 0 for each of the eigenvalues ,X determined above. Correspond­
ing to ,X = 3 the equation becomes 

3fl 
fll 
Oj! 

o 
j! 
-1 

Adding the condition that vf + v~ + v~ = 1 yields the eigenvector 

v' = [-~ {fd a], 
the remaining two eigenvectors are given by 

[-VI ~ -Vi] and [~ JH //0] 



3 Eigenvalue Structure and Singular Value Decomposition 645 

corresponding to >. = 1 and >. = 8 respectively. The complete matrix of 
eigenvectors is given by 

V= 

corresponding to >. = 1,3 and 8 respectively. The reader should verify that 
V'V=I. 

Ezercise 

(a) Show that the eigenvalues of the matrix A - [ : 

by 1, 1 and 4. 

1 1 1 2 1 are given 
1 2 

(b) Show that v' = (7a' ta, ta) is an eigenvector corresponding to 

>. = 4. 

(c) Show that the remaining two eigenvectors corresponding to the dou­
ble root >. = 1 are 

( 1 1) (2 1 1) 
0, y'2' - y'2 and - y'6' y'6' y'6 . 

(d) Show that the 3 x 3 matrix of eigenvectors 

1 0 2 
va -y'6 
1 1 

V= v'3 y'2 76 
1 1 1 

Va -y'2 y'6 

satisfies V'V = I. 

Spectral Decomposition 

The equation A = V AV' can be written 

where >'1, >'2"", >'n are the eigenvalues of A and VI, V2, ••• , Vn are the 
corresponding eigenvectors. This equation gives the spectral decomposition 
ofA. 
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Matrix Approximation 

Let Z (n x p) be a matrix such that A = Z'Z and let A(l) denote the first 
l terms of the spectral decomposition A(l) = E;=I"\jVjvj, l< n. This 
expression minimizes tr(Z - X)(Z - X)' = E~l E~=l(aij - Xij)2 among 
an (n x p) matrices X of rank l. Thus the first few terms of the spectral 
decomposition of A = Z'Z can be used to provide a matrix approximation 
toA. 

Example 

For the matrix A of the previous example the matrix of eigenvalues can be 
approximated in decimal form by 

[ 
-0.327 -0.500 0.802] 

V = 0.598 0.547 0.586 . 
-0.732 0.671 0.120 

The spectral decomp08ition for A is given by 

[ 
(0.327)2 -(0.327)(0.598) (0.327)(0.732)] 

A = 1 -(0.327)(0.598) (0.598)2 -(0.598)(0.732) 
(0.327)(0.732) -(0.598)(0.732) (0.732)2 

[ 
(0.500)2 -(0.500)(0.547) -(0.500)(0.671)] 

+3 -(0.500)(0.547) (0.547)2 (0.547)(0.671) 
-(0.500)(0.671) (0.547)(0.671) (0.671)2 

[ 
(0.802)2 (0.802)(0.586) (0.802)(0.120) 1 

+8 (0.802)(0.586) (0.586)2 (0.586)(0.120). 
(0.802)(0.120) (0.586)(0.120) (0.120)2 

This simplifies to 

[ 
0.107 -0.196 0.239] [ 0.750 

A = -0.196 0.358 -0.438 + -0.821 
0.239 -0.438 0.536 -1.007 

[ 
5.146 3.760 0.770] 

+ 3.760 2.747 0.563 . 
0.770 0.563 0.115 

-0.821 -1.007] 
0.898 1.101 
1.101 1.351 

Except for inaccuracies due to rounding this matrix should be equivalent 
to the decimal form of 

[ 
6.000 2.739 0.000] 

A = 2.739 4.000 1.225 . 
0.000 1.225 1.000 

As a matrix approximation the term of the spectral decomp08ition cor­
responding to ..\ = 8, say Al, can be viewed as a first approximation to A. 
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The differenee between the two matriees A - Al is given by 

[ 
0.857 1.017 -0.768] 
1.017 1.256 0.663 . 

-0.768 0.663 1.887 

If two terms (.x = 8 and .x = 3) are used, we obtain A2 with the differenee 
given by (A - A2), whieh is approximately the matrix term eorresponding 
to .x = 1 in the spectral deeomposition. It would appear that the variation 
in the magnitudes of the errors is quite small eompared to the variation in 
the magnitudes in the original matrix. In other words the speetral decom­
position approximation seems to be weighted toward the larger elements 
ofA. 

Exercise 

Determine the spectral decomposition for the matrix given in the eigenvalue 
exercise above and eomment on the quality of the approximation based on 
the largest eigenvalue. 

Eigenvalues tor Nonnegative Definite Matrices 

If the real symmetrie matrix A is positive definite then the eigenvalues are 
all positive. If the matrix is positive semidefinite then the eigenvalues are 
nonnegative with the number of positive eigenvalues equal to the rank of A. 

3.2 SINGULAR VALUE DECOMPOSITION 

Areal (n x p) matrix A of rank k ean be expressed as the produet of 
three matrices that have a useful interpretation. This decomposition of A 
is referred to as a singular value decomposition and is given by 

A=UDV', 

where 

1. D (k x k) is a diagonal matrix with positive diagonal elements ab a2, 
... ,ak, which are ealled the singular values of A, (without loss of 
generality we ~sume that the aj, j = 1,2, ... , k, are arranged in 
deseending order). 

2. The k columns ofU (n x k), UI, U2,"" Uk are called the left singular 
vectors of A and the k eolumns ofV (p x k), Vb V2,"" Vk are ealled 
the right singular vectors of A. 

3. The matrix A can be written as the sum of k matriees, each with 
rank 1, A = E7=1 ajujvj. The subtraction of any one of these terms 
from the sum results in a singular matrix for the remainder of the 
sumo 
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4. The matrices U (n x k) and V (p x k) have the property that U'U = 
V'V = Ij hence the columns of U form an orthonormal basis for the 
columns of A in n-dimensional spare and the columns of V form an 
orthonormal basis for the rows of A in p-dimensional spare. 

5. Let A(.e) denote the first .e terms of the singular value decomposition 
for Aj hence A(.e) = ~;=1 QjUjvj. This expression minimizes tr[(A­
X)(A - X)'] = ~~=1 ~~=l(aij - Xij)2 among all (n x p) matrices 
X of rank .e. Thus the singular value decomposition can be used to 
provide a matrix approximation to A. 

Complete Singular Value Decomposition 

A complete singular value decomposition can be obtained for A by adding 
(n-k) orthonormal vectors Uk+b' •. , t1n to the existing set Ub"" Uk. Sim­
ilarly the orthonormal vectors Vk+b"" vp are added to the set Vb V2, ••. , 

vp ' Denoting the n column vectors Uj, j = 1,2, ... , n by U* and the p 
column vectors by V* then U*'U = I and V*'V* = I and A = U*D*V* 

is the complete singular value decomposition where D* = [~ ~] . 

Generalized Singular Value Decomposition 

A generalized singular value decomposition permits the left and right sin­
gular vectors to be orthonormalized with respect to given positive definite 
matrices n (n x n) and ~ (p x p) where 

N'nN = M/~M = I. 
The generalized singular value decomposition of A (n x p) is given by 

k 

A = NDM' = LQjDjmj, 
j=1 

where Qj, j = 1,2, ... , k, are the diagonal elements ofD, Dj, j = 1,2, ... , n, 
are the columns of N and mj, j = 1,2, ... ,p, are the columns of M. The 
columns of N and M are referred to as the generalized left and right sin­
gular vectors of A respectively. The diagonal elements of D are called the 
generalized singular values. 

Let A(.e) denote the first .e terms of the generalized singular value de­
composition for A, hence A(.e) = ~~=1 QjDjmj. This expression for A(.e) 
mjnimizes ~~=1 ~:=1(aij - Xij)2~jWi among all matrices X of rank at 
most .e where the ~j and Wi are the elements of ~ and n respectively. The 
generalized singular value decomposition can be used to provide a matrix 
approximation to A. 

The generalized singular value decomposition of A given by NDM' 
where N'nN = I and M'~M = I can be related to the singular value 
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decomposition by writing 

n1/ 2 A.1/2 = n1/2NDM' .1/2 = UDV 

where U = n1/ 2N and V = .1/2M and U'U = V'V = I. 

Relationship to Spectral Decomposition and Eigenvalues 

If the matrix Aissymmetrie, the singular value decomposition is equivalent 
to the spectral decomposition 

A=UDV' =VAV'. 

In this ease, the left and right singular vectors are equal to the eigenvectors 
and the singular values are equal to the eigenvalues. 

The singular value decomposition of the (n x p) matrix A ean also be 
related to the spectral decomposition for the symmetrie matrices AA' and 
A' A. For the singular value decomposition 

A=UDV', 

the eigenvalues of AA' and A' A are the squares of the singular values of A. 
The eigenvectors of AA' are the eolumns of U and the eigenvectors of A' A 
are the columns of V. Since covarianee matrices and correlation matrices 
ean be written in the form A' A, the eigenvalues and eigenvectors are often 
determined using the singular value decomposition. 



Data Appendix for Volume 11 

Introduction 

This data appendix contains twenty-two data tables that are used in the 
chapter exercises throughout Volume 11. Outlines to the data sets are given 
below. In some cases the data tables represent additional observations or 
variables derived from the data sets used in this text or in Volume I. A 
listing of the data tables follow the outlines. 

Data Set Vl Bus Data 

This data set consists of observations on additional variables in the study 
of bus driver absenteeism used in Chapter 6. The data set is divided into 
the three contingency tables listed below. 

Part I - Day by Sex by Attendance 
Part 11 - Day by Garage by Attendance 
Part 111 - Garage by Sex by Attendance 

Data Set V2 Accident Data 

This data set consists of observations on some additional variables for the 
accident data introduced in Chapter 6. The observations are based on the 
same 86,769 accidents employed in Chapter 6. A four-dimensional contin­
gency table relating INJURY LEVEL, SEATBELT USAGE, POINT OF 
IMPACT and DRIVER CONDITION is given below. The variable POINT 
OF IMPACT indicates where on the vehicle the collision occurred. The 
remaining three variables were used in Chapter 6. 

Data Set V9 Accident Data 

This data set consists of observations on some additional variables for the 
accident data introduced in Chapter 6 and in data set V2. The observa­
tions are based on the same 86,769 accidents employed in Chapter 6. A 
four dimensional contingency table relating INJURY LEVEL, SEATBELT 
USAGE, SPEED LIMIT and DRIVER CONDITION is given below. The 
variable SPEED LIMIT refers to the posted speed limit for the road on 
which the accident occurred. The remaining variables were used in Chap­
ter 6. 
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Data Set V4 Real Estate Data 

This data set consists of 116 observations on three bedroom bungalows 
listed and sold through areal estate multiple listing service in a given 
year in a particular area of a large city. The variables are LISTP (list 
price), SELLP (selling price), SQF (square feet), ROOMS (total number 
of rooms), BEDR (total number of bedrooms), GARAGE (no garage = 
0, single garage = 1, double garage = 2), EXTRAS (numerical code 1, 2, 
or 3 denoting number of extras that come with the house), CHATTELS 
(numerical code 0, 1, 2, 3 indieating the number of additional items included 
in the price), AGE (age of the house), BATHR (no. of bathroom pieces Le. 
a fuU bath usuaUy has three pieces while a half bath usuaUy has two pieces), 
and SELLDAYS (number of days the house was listed before it was sold). 
Some of the variables from this data set were used in Volume I. 

Data Set V5 Automobile Data Part I 

This data set contains observations on a sampie of 97 automobiles selected 
from the Fuel Consumption Guide 1985 published by Transport Canada. 
The table contains observations on ENGSIZE, WEIGHT, AUTOMAT (0 
= standard, 1 = automatie transmission), FOR (0 = domestic, 1 = for­
eign), URBRATE (urban fuel consumption rate), HWRATE (highway fuel 
consumption rate) and slope shiftersj FWFIGHT = FOR * WEIGHT, 
FENGSIZE = FOR * ENGSIZE, AENGSIZE = AUTOMAT * ENGSIZE, 
AWEIGHT = AUTOMAT * WEIGHT. An additional sampie of observa­
tions from this data set was introduced in Volume I. 

Data Set V6 Financial Accounting Data 

This data set consists of 80 observations collected from the Data Stream 
data base for a sampie of UK companies for the year 1983. An additional 
sampie of observations from this data base was used in Volume I. The vari­
ables are RETCAP (return on capital), WCFTDT (ratio ofworking capital 
flow to total debt), LOGSALE (log to base 10 of total sales), LOGASST 
(log to base 10 oftotal assets), CURRAT (current ratio), QUIKRAT (quick 
ratio), NFATAST (ratio ofnet fixed assets to total assets), PAYOUT (pay­
out ratio), WCFTCL (ratio of working capital flow to current liabilities), 
GEARRAT (gearing ratio or debt-equity ratio), CAPINT (capital intensity 
or ratio of total sales to total assets), INVTAST (ratio of total inventories 
to total assets), and FATTOT (gross fixed assets to total assets). 

Data Set V7 Air Pollution Data Part I 

This data consists of observations on 80 U.S. cities for the year 1960 ob­
tained from Gibbons, Dianne Ij Gary C. McDonald and Richard F. Gunst, 
"The Complementary Use of Regression Diagnostics and Robust Estima­
tors," Naval Research Logistics 34, 1, February, 1987. Other cities from this 
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data set were also used in Chapter 9 and 10 and in Volume I, Chapter 4. 
The variables are defined below. 

TMR 
SMIN 
SMEAN 

SMAX 
PMIN 

PMEAN 

PMAX 

PM2 
GE65 
PERWH 
NONPOOR 

LPOP 

- total mortality rate 
- smallest biweekly sulfate reading (p,g/m3 x 10) 
- arithmetic mean of biweekly sulfate readings 

(p,g/m3 x 10) 
-largest biweekly sulfate reading (p,g/m3 x 10) 
- smallest biweekly suspended particulate reading 

(p,g/m3 x 10) 
- arithmetic mean of biweekly suspended particu­

late reading (p,g/m3 x 10) 
- largest biweekly suspended particulate reading 

(p,g/m3 x 10) 
- population density per square mile xO.1 
- percent of population at least 65 x 10 
- percent of whites in population 
- percent of families with income above poverty 

level 
- logarithm (base 10) of population x 10 

Data Set V8 Shopping Attitude Data 

This data set consists of 200 observations obtained from a mail survey 
designed to obtain attitudes of females pertaining to shopping for clothing. 
Seven of the items designed to measure shopping orientation are given by 

Al: I like sales people to leave me alone until I find clothes that 
I want to buy. 

A2: I like to pay cash for clothing purchases. 
A3: Price is a good indicator of the quality of clothes. 
A4: I usually spend more than I planned when shopping for 

clothes. 
A5: I do not think clothing shops provide enough customer service 

these days. 
A6: When clothing is sold at a reduced price there is often some­

thing wrong with it. 
A7: I like to shop where my friends shop for clothes. 

The responses were coded from 1 (strongly agree) to 5 (strongly disagree). 
In addition to the seven shopping orientation variables two additional vari­
ables included in the data set are WORK and AGE. These variables are 
coded as follows: 
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WORK 
Code 

o 
1 

respondent works outside home 
respondent does not work outside home 

AGE 
Code 

1 
2 
3 

Age 
240r less 
25-34 
35-44 

Code 
4 
5 
6 

Data Set V9 R.C.M.P. OjJicer Data 

Age 
45-54 
55-64 
65 and over 

This data set contains observations from Royal Canadian Mounted Po­
lice (R.C.M.P.) ofticers regarding their satisfaction with various aspects of 
their jobs. The responses were combined into four factors labeled SATF1, 
SATF2, SATF3 and SATF4. The four factors can be characterized respec­
tively as satisfaction with job characteristics, salary and benefits, com­
manding ofticer and co-workers. The observations were obtained from ten 
different municipal detachments in Alberta, Canada. Observations from 
this data set were used for examples in Chapters 9 and 10 and also in 
Volume I. 

Data Set Vl0 Mystery Data 

This data set consists of observations on five of the ten variables from the 
mystery data given in Table 8.11. The five variables are Cl, C3, C8, C9 
and C10 defined below: 

Cl: Importance of more than one murder or crime. 
C3: Importance of powerful opponents. 
C8: Importance of many possible suspects. 
C9: Importance of puzzle being "fair play" by giving clues. 
C1O: Importance of suspects appearing as average people. 

Data Set Vll and V12 Bank Employee Data 

These two data sets represent two different sampies of 100 observations each 
selected from a larger data set. This bank employee data has been used by 
SPSSX to provide examples for the SPSSX User's Guide. Table Vll is an 
expansion of Table 7.9. Table Vll indudes all the variables in Table 7.9 plus 
the additional variables SEX, RACE and JOBCAT. Table V12 is identical 
to Table D3 of Volume I. The variables in these two data sets are listed 
below: 



LCURRENT 
LSTART 
SEX 
JOBCAT 

RACE 
SENIOR 
AGE 
EXPER 

Data Set V13 
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- In (current salary) 
- In (starting salary) 
- male = 0, female = 1 
- 1 = clerical, 2 = office trainee, 3 = security officer, 
- 4 = college trainee, 5 = MBA trainee 
- white = 0, nonwhite = 1 
- seniority with the bank in months 
- age in years 
- relevant job experience in years 

Panel Data 

This data set is derived from the U niversity of Michigan Panel Study of In­
come Dynamics and is an expansion of the data summarized in Table 8.25. 
The purpose of the data in this application is to study the factors that in­
fluence married female participation in the labor force. Table V13 contains 
200 observations. The last 100 observations in the table are arepetition of 
the observations in Table 8.25. The variables are defined below. 

THISYR 

LASTYR 

BLACK 

EDUC 
AGE 
CHILDI 

CHILD2 

HUBINC 

- indicator variable for whether the wife worked outside 
the horne in the year of the survey (l=yes, O=no) 

- indicator variable for whether the wife worked outside 
the horne in the previous year (l=yes, O=no) 

- indicator variable for black race (l=black, O=not 
black) 

- education level (years) of the respondent 
- age level of the respondent (years) 
- indicator variable for whether there are children in 

the horne under the age of 2 (l=yes, O=no) 
- indicator variable for whether there are children in 

the horne between the ages of 2 and 6 (l=yes, O=no) 
- income of husband in 1000 dollars. 

Data Sets V14 and V15 U.S. Divorce Data 

Data set V14 provides a summary of the available grounds for divorce in the 
United States by state (including District of Columbia) in 1982. The data 
was obtained from The World Almanac and Book 0/ Facts 1983 published 
for the Boston Herald American by Newspaper Enterprise Association, Inc., 
New York. The nine available grounds for divorce are listed below. States 
that have the ground available are coded 1, if they do not they are coded O. 
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BREAK 
CRUEL 
DESERT 
NOSUPPOR 
ALCOHOL 
FELONY 
IMPOTENT 
INSANE 
SEPARATE 

- marriage breakdown/incompatibility 
- cruelty 
- desertion 
- nonsupport 
- alcohol and/or drug addiction 
- felony 
- impotency 
- insanity 
- living separate and apart for a specified period. 

Data set V15 is a subset of V14 consisting of the observations for 20 
states. 

Data Sets V16 and V17 U.S. Crime Data 

Data set V16 summarizes the crime rates by state (per 100,000 population) 
for nine categories for the United States in 1980. The data set was obtained 
from The World Almanac and Book 0/ Facts 1983published for the Boston 
Herald American by Newspaper Enterprise Association, !nc. New York. The 
nine types of crime are violent, property, murder, rape, robbery, assault, 
burglary, larceny and auto theft. 

Data set V17 is a subset of V16 consisting of the observations for 15 
states. 

Data Set V18 Automobile Data Part II 

This data set comes from the same database as V5. This sampie consists of 
observations on 20 different automobiles with respect to COMBRATE (rate 
of fuel consumption), CYLIND (no. of cylinders), WEIGHT, ENGSIZE 
and FOR (l=foreign manufacturer, O=North American manufacturer). The 
observations on all but FOR are ranks as defined below. 

CYLIND 
ENGSIZE 
COMBRATE 
WEIGHT 

Data Set V19 

- 4, 6, 8 becomes 1, 2 and 3 respectively 
- 15-18 = 1, 20-24 = 2, 28-30 = 3, 38-41 = 4, 50 = 5 
- 64-71 = 1, 74-84 = 2, 93-97 = 3,104-110 = 4 
- (2000,2250) = 1, (2500,2750) = 2, 3000 = 3, 

3500 = 4, 4000 = 5 

Cola Similarity Data 

This data set consists of a dissimilarity matrix relating ten different brands 
of cola soft drinks [0 = same, 100 = completely different]. The dissimilarity 
matrix was derived from an experiment involving ten university students 
aged 18-21 years. Subjects were blindfolded and then asked to taste ten 
different colas without swallowing. Subjects rinsed their mouths with dis­
tilled water between tastes. Subjects were asked to judge the similarity 
between all possible pairs (45) of the ten colas over a five-day period. The 
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dissimilarity matrix is an average of the ten dissimilarity matrices of the 
ten subjects. The data was obtained from Schiffman, Susan S., Lance M. 
Reynolds and Forest W. Young (1981) Introduction to Multidimensional 
Scaling: Theory, Methods and Applications, New York: Academic Press. 

Data Set V20 Gar Similarity Data 

A number of subjects were asked to compare 11 automobiles with respect 
to overall similarity. The rank order of the 55 dissimilarities are given in 
a dissimilarity matrix (1 = most similar pair, 55 = least similar pair). 
This matrix was obtained from Green, Paul E., Frank J. Carmone and 
Scott M. Smith (1989) Multidimensional Scaling: Concepts and Applica­
tions, Boston: AHyn and Bacon. 

Data Set V21 Air Pollution Data Part II 

This data set consists of a subset of observations from Data Set V7. 

Data Set V22 Shopping Attitude Data Part II 

This data set consists of 200 observations from a mail survey designed to 
obtain attitudes of females pertaining to shopping for clothing. Eighteen 
items designed to measure shopping orientation are contained in the data 
set. The first seven items were included in Data Set V8 along with vari­
ables measuring WORK and AGE. Table V22 contains these items plus 
the additional 11 items summarized below. 

A8: I always buy my clothes at the same shops. 
A9: I visit several shops before buying clothes for myself. 
AlO: I think shops that carry weH known makes of clothing are 

overpriced. 
All: I like to have someone with me when I shop for clothes. 
A12: I like to make my own buying decisions rat her than get advice 

from others. 
A13: To me, shopping for clothes is fun. 
A14: I feel creative when I go shopping for clothes. 
A15: Buying new clothes gives me a lift. 
A16: I only go shopping for clothes when I really need something. 
A17: Shopping for clothes gives me no satisfaction. 
A18: I like browsing in clothing shops without buying anything. 
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TABLE Vl. Bus Data Part I 

Day Sex Attend Frequency 

Sun Male Present 1676 
Mon Male Present 4931 
Tues Male Present 4850 
Wed Male Present 4835 
Thurs Male Present 4832 
Fri Male Present 4857 
Sat Male Present 2702 
Sun Female Present 162 
Mon Female Present 361 
Tues Female Present 392 
Wed Female Present 398 
Thurs Female Present 396 
Fri Female Present 413 
Sat Female Present 297 
Sun Male Absent 132 
Mon Male Absent 461 
Tues Male Absent 494 
Wed Male Absent 501 
Thurs Male Absent 512 
Fri Male Absent 479 
Sat Male Absent 242 
Sun Female Absent 30 
Mon Female Absent 79 
Tues Female Absent 96 
Wed Female Absent 98 
Thurs Female Absent 92 
Fri Female Absent 83 
Sat Female Absent 63 

TABLE Vl. Bus Data Part III 

Garage Sex Attend Frequency 

1 Male Present 15422 
2 Male Present 10811 
3 Male Present 10023 
1 Female Present 1086 
2 Female Present 801 
3 Female Preeent 697 
1 Male Absent 1658 
2 Male Absent 1069 
3 Male Absent 977 
1 Female Absent 274 
2 Female Absent 319 
3 Female Absent 223 
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TABLE VI. Bus Data Part 11 

Day Garage Attend Frequency 

Sun 1 Present 855 
Mon 1 Present 2170 
Tues 1 Present 2123 
Wed Present 2113 
Thurs Present 2129 
Fri Present 2157 
Sat 1 Present 1308 
Sun 2 Present 514 
Mon 2 Present 1634 
Tues 2 Present 1619 
Wed 2 Present 1625 
Thurs 2 Present 1636 
Fri 2 Present 1644 
Sat 2 Present 857 
Sun 3 Present 460 
Mon 3 Present 1475 
Tues 3 Present 1482 
Wed 3 Present 1469 
Thurs 3 Present 1437 
Fri 3 Present 1450 
Sat 3 Present 813 
Sun Absent 81 
Mon Absent 222 
Tues Absent 269 
Wed Absent 279 
Thurs Absent 263 
Fri Absent 235 
Sat Absent 148 
Sun 2 Absent 46 
Mon 2 Absent 182 
Tues 2 Absent 197 
Wed 2 Absent 191 
Thurs 2 Absent 180 
Fri 2 Absent 172 
Sat 2 Absent 95 
Sun 3 Absent 44 
Mon 3 Absent 149 
Tues 3 Absent 142 
Wed 3 Absent 155 
Thurs 3 Absent 187 
Fri 3 Absent 174 
Sat 3 Absent 83 
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TABLE V2. Accident Data 

Seatbelt Point of Injury Driver Frequency 
Impact Level Condition 

Yes Front None Normal 7389 
Yes Front None Bdrink 199 
Yes Front Minimal Normal 308 
Yes Front Minimal Bdrink 30 
Yes Front Minor Normal 169 
Yes Front Minor Bdrink 13 
Yes Front Majfat Normal 18 
Yes Front Majfat Bdrink 2 
Yes Rear None Normal 3509 
Yes Rear None Bdrink 79 
Yes Rear Minimal Normal 207 
Yes Rear Minimal Bdrink 5 
Yes Rear Minor Normal 106 
Yes Rear Minor Bdrink 1 
Yes Rear Majfat Normal 5 
Yes Rear Majfat Bdrink 
Yes Rside None Normal 827 
Yes Rside None Bdrink 21 
Yes Rside Minimal Normal 36 
Yes Rside Minimal Bdrink 5 
Yes Rside Minor Normal 27 
Yes Rside Minor Bdrink 1 
Yes Rside Majfat Normal 8 
Yes Lside None Normal 775 
Yes Lside None Bdrink 14 
Yes Lside Minimal Normal 53 
Yes Lside Minimal Bdrink 3 
Yes Lside Minor Normal 42 
Yes Lside Majfat Normal 7 
Yes Lside Majfat Bdrink 
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TABLE V2. Accident Data (continued) 

Seatbelt Point of Injury Driver Frequency 
Impact Level Condition 

No Front None Normal 37492 
No Front None Bdrink 2833 
No Front Minimal Normal 2025 
No Front Minimal Bdrink 384 
No Front Minor Normal 1337 
No Front Minor Bdrink 278 
No Front Majfat Normal 135 
No Front Majfat Bdrink 48 
No Rear None Normal 16280 
No Rear None Bdrink 768 
No Rear Minimal Normal 913 
No Rear Minimal Bdrink 50 
No Rear Minor Normal 491 
No Rear Minor Bdrink 42 
No Rear Majfat Normal 28 
No Rear Majfat Bdrink 6 
No Rside None Normal 4165 
No Rside None Bdrink 218 
No Rside Minimal Normal 397 
No Rside Minimal Bdrink 27 
No Rside Minor Normal 207 
No Rside Minor Bdrink 26 
No Rside Majfat Normal 28 
No Rside Majfat Bdrink 4 
No Lside None Normal 4034 
No Lside None Bdrink 173 
No Lside Minimal Normal 184 
No Lside Minimal Bdrink 20 
No Lside Minor Normal 237 
No Lside Minor Bdrink 24 
No Lside Majfat Normal 46 
No Lside Majfat Bdrink 8 



662 Data Appendix 

TABLE V3. Accident Data 

Seatbelt Speed Injury Driver Frequency 
Limit Level Condition 

Yes Lt60kph None Normal 9838 
Yes Lt60kph None Bdrink 234 
Yes Lt60kph Minimal Normal 401 
Yes Lt60kph Minimal Bdrink 31 
Yes Lt60kph Minor Normal 219 
Yes Lt60kph Minor Bdrink 10 

Yes Lt60kph Majfat Normal 11 

Yes Lt60kph Majfat Bdrink 1 
Yes 60-89kph None Normal 2021 
Yes 60-89kph None Bdrink 60 
Yes 60-89kph Minimal Normal 144 
Yes 60-89kph Minimal Bdrink 11 
Yes 60-89kph Minor Normal 68 
Yes 60-89kph Minor Bdrink 2 
Yes 60-89kph Majfat Normal 6 
Yes 60-89kph Majfat Bdrink 1 
Yes Gt89kph None Normal 641 
Yes Gt89kph None Bdrink 19 
Yes Gt89kph Minimal Normal 59 
Yes Gt89kph Minimal Bdrink 1 
Yes Gt89kph Minor Normal 57 
Yes Gt89kph Minor Bdrink 3 
Yes Gt89kph Majfat Normal 21 
Yes Gt89kph Majfat Bdrink 2 
No Lt60kph None Normal 52269 
No Lt60kph None Bdrink 3242 
No Lt60kph Minimal Normal 2531 
No Lt60kph Minimal Bdrink 350 
No Lt60kph Minor Normal 1609 
No Lt60kph Minor Bdrink 228 
No Lt60kph Majfat Normal 91 
No Lt60kph Majfat Bdrink 26 
No 60-89kph None Normal 7993 
No 60-89kph None Bdrink 571 
No 60-89kph Minimal Normal 790 
No 60-89kph Minimal Bdrink 87 
No 60-89kph Minor Normal 452 
No 60-89kph Minor Bdrink 87 
No 60-89kph Majfat Normal 58 
No 60-89kph Majfat Bdrink 16 
No Gt89kph None Normal 1709 
No Gt89kph None Bdrink 179 
No Gt89kph Minimal Normal 198 
No Gt89kph Minimal Bdrink 44 
No Gt89kph Minor Normal 211 
No Gt89kph Minor Bdrink 55 
No Gt89kph Majfat Normal 88 
No Gt89kph Majfat Bdrink 24 
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TABLE V6. Financial Accounting Data 

RETCAP WCFTCL WCFTDT GEARRAT LOGSALE LOGASST 

0.19 0.16 0.16 0.15 5.2291 4.8315 
0.22 0.26 0.16 0.54 4.1495 4.3402 
0.11 0.26 0.20 0.49 5.3831 4.8811 
0.12 0.08 0.08 0.39 4.1225 3.9333 
0.21 0.34 0.34 0.11 4.1195 4.5811 
0.12 0.25 0.25 0.19 4.1503 3.9086 
0.15 0.25 0.16 0.35 5.6998 5.5511 
0.10 0.12 0.09 0.39 4.4162 4.2128 
0.08 0.04 0.04 0.50 4.1108 4.5126 
0.31 0.12 0.11 0.41 4.4618 4.1928 
0.21 0.36 0.33 0.08 4.3899 4.2336 
0.22 0.31 0.31 0.16 4.0253 3.8344 
0.20 0.48 0.48 0.13 3.8513 3.8164 
0.11 0.18 0.15 0.23 3.9068 3.8685 
0.38 0.25 0.20 0.21 5.1631 4.6669 
0.23 0.24 0.24 0.00 5.1130 4.9712 
0.32 0.09 0.09 0.11 4.7114 4.3123 
0.13 0.06 0.05 0.55 4.6763 4.4912 
0.29 0.60 0.60 0.00 4.5233 4.8709 
0.09 0.10 0.09 0.28 4.9876 4.4058 

-2.22 -1.28 -1.28 1.78 4.0554 3.5485 

0.17 0.12 0.11 0.28 4.2831 3.9619 
-0.04 -0.04 -0.04 0.46 4.7616 4.3153 
0.26 0.23 0.23 0.00 4.2468 3.8779 
0.21 0.40 0.30 0.20 4.4106 4.3829 
0.15 0.30 0.21 0.66 4.3984 4.3634 
0.23 0.07 0.01 0.11 4.8314 4.4399 
0.20 0.33 0.28 0.33 4.2050 4.0364 
0.19 0.16 0.14 0.30 4.3139 4.1727 
0.08 0.18 0.10 0.35 4.9510 4.8675 
0.19 0.15 0.14 0.19 5.5754 5.4405 

0.20 0.63 0.35 0.21 4.7722 4.8638 

0.14 0.21 0.20 0.30 4.9993 4.8282 
0.04 0.01 0.07 0.18 4.1786 3.9151 
0.10 0.15 0.12 0.13 5.1613 5.780l 

-0.09 -0.46 -0.22 0.68 3.9671 4.0802 
0.10 0.18 0.14 0.23 5.6884 5.6334 

0.20 0.13 0.12 0.05 4.1908 4.4200 
0.13 0.17 0.13 0.22 5.4876 5.3501 
0.08 0.14 0.14 0.19 4.0891 3.8731 
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TABLE V6. Financial Accounting Data (continued) 

NFATAST CAPINT FATTOT INVTAST PAYOUT QUIKRAT CURRAT 

0.28 2.47 0.36 0.42 0.31 0.54 1.33 
0.13 0.64 0.16 0.04 0.45 0.83 0.93 
0.43 3.18 0.74 0.13 0.50 0.84 1.09 
0.23 1.55 0.50 0.37 0.65 0.50 1.09 
0.30 1.56 0.50 0.20 0.25 1.10 1.74 
0.34 1.74 0.38 0.31 0.80 1.00 1.89 
0.48 1.39 0.62 0.22 0.46 0.73 1.38 
0.26 1.60 0.42 0.30 1.03 0.94 1.57 

0.25 1.58 0.33 0.31 0.00 0.74 1.28 

0.17 1.88 0.25 0.31 0.25 0.66 1.10 

0.40 1.43 0.71 0.17 0.61 1.06 1.49 

0.42 1.55 0.62 0.17 0.25 0.97 1.38 

0.68 0.96 0.97 0.13 0.60 0.61 1.00 
0.40 1.09 0.64 0.15 0.80 0.92 1.23 
0.21 3.13 0.32 0.38 0.39 0.33 1.39 
0.27 5.44 0.38 0.50 0.36 0.24 1.29 
0.09 2.51 0.13 0.31 0.53 0.86 1.34 

0.24 1.51 0.40 0.42 0.00 0.44 1.14 
0.57 0.45 0.58 0.01 0.21 1.18 1.21 
0.34 3.82 0.50 0.46 1.52 0.34 1.28 
0.16 3.21 0.30 0.37 0.00 0.50 1.06 
0.26 2.07 0.32 0.37 0.22 0.67 1.36 
0.19 2.79 0.32 0.28 0.00 0.72 1.11 
0.21 2.34 0.26 0.27 0.53 1.20 1.83 
0.24 1.07 0.36 0.24 0.42 1.77 2.72 
0.70 1.08 1.07 0.15 0.00 0.29 0.58 
0.17 2.46 0.22 0.00 0.67 0.88 0.88 
0.53 1.47 1.16 0.07 0.21 0.77 0.91 
0.25 1.38 0.33 0.42 0.52 0.49 1.28 
0.31 1.21 0.51 0.27 1.08 1.44 2.36 
0.22 1.36 0.36 0.22 0.40 0.96 1.35 
0.21 0.81 0.34 0.26 0.51 2.63 3.98 
0.72 1.48 0.74 0.09 0.53 0.26 0.54 
0.28 1.83 0.54 0.23 4.21 1.08 1.57 
0.12 0.96 0.21 0.28 0.43 0.57 1.40 
0.62 0.77 0.71 0.19 0.00 0.60 1.45 
0.33 1.14 0.52 0.23 0.12 0.83 1.56 
0.04 2.35 0.07 0.37 0.33 0.80 1.42 
0.26 1.37 0.52 0.41 0.53 0.75 1.73 
0.17 1.64 0.27 0.34 0.91 0.74 1.57 
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TABLE V6. Financial Accounting Data (continued) 

RETCAP WCFTCL WCFTDT GEARRAT LOGSALE LOGASST 

0.14 0.41 0.37 0.21 4.3516 4.3615 
0.12 0.30 0.25 0.29 4.2835 4.1800 
0.17 0.20 0.20 0.33 4.4271 4.0467 
0.27 0.38 0.38 0.00 3.6470 3.9209 
0.22 0.45 0.44 0.18 3.8183 3.5728 
0.13 0.35 0.35 0.00 4.4159 4.4739 

-0.10 -0.70 -0.70 0.00 2.7973 3.8199 
0.13 0.18 0.16 0.30 3.7923 3.6307 
0.14 0.09 0.07 0.63 6.6360 6.1332 
0.07 0.03 0.03 0.49 4.5339 4.5888 
0.31 1.57 0.27 0.54 2.0212 3.7313 
0.18 0.48 0.41 0.08 4.0326 4.0720 
0.26 0.16 0.16 0.72 3.9202 3.8331 
0.08 0.13 0.10 0.47 4.5782 4.4681 
0.16 0.14 0.14 0.15 4.3202 4.2248 
0.09 0.10 0.08 0.45 4.2578 4.2315 
0.29 0.12 0.12 0.29 4.6570 4.9039 
0.22 0.21 0.19 0.45 3.5813 3.5751 
0.12 0.12 0.12 0.39 4.2843 4.0931 
0.26 0.78 0.78 0.01 3.7270 3.6617 
0.10 2.12 2.12 0.01 0.0000 5.0505 
0.15 0.16 0.15 0.44 4.2181 3.9019 
0.16 0.20 0.13 0.34 4.2322 4.2077 
0.12 0.11 0.11 0.48 4.7735 4.4443 
0.16 0.25 0.22 0.11 4.3490 3.9451 
0.23 5.46 5.46 0.00 3.7897 4.2260 
0.11 0.26 0.20 0.24 3.8366 3.6951 
0.15 0.17 0.14 0.28 3.9725 3.8831 

-0.02 -0.11 -0.08 0.89 4.3601 4.1623 
0.10 0.06 0.05 0.41 4.6635 4.5154 
0.08 0.09 0.08 0.05 4.6209 4.4724 
0.08 0.08 0.06 0.45 4.0991 3.9227 
0.11 0.12 0.11 0.44 4.9139 4.6044 
0.10 0.04 0.04 0.47 4.2430 3.8602 
0.08 0.04 0.04 0.42 4.8882 5.1535 
0.20 0.57 0.57 0.01 3.8650 3.7666 

-0.16 -0.54 -0.15 0.54 4.1210 4.8298 
0.10 0.37 0.15 0.49 3.5941 4.0571 
0.06 0.07 0.06 0.64 4.7757 4.2350 
0.26 0.25 0.25 0.46 4.1162 4.3087 
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TABLE V6. Financial Accounting Data (continued) 

NFATAST CAPINT FATTOT INVTAST PAYOUT QUIKRAT CURRAT 

0.72 0.98 0.93 0.07 0.47 0.57 0.74 
0.31 1.27 0.56 0.33 0.63 0.97 1.91 
0.14 2.40 0.23 0.43 0.33 1.00 1.97 
0.57 0.53 0.70 0.13 0.57 0.69 0.97 
0.13 1.76 0.38 0.45 0.00 1.18 2.43 
0.08 0.88 0.41 0.22 0.46 0.58 1.29 
0.46 0.09 0.75 0.00 0.00 8.82 8.82 
0.24 1.45 0.33 0.52 0.43 0.56 1.82 
0.31 3.18 0.37 0.28 0.66 0.60 1.05 
0.20 0.88 0.29 0.44 0.81 0.75 1.63 
0.06 0.02 0.07 0.00 0.74 2.55 2.55 
0.35 0.91 0.53 0.07 0.45 1.91 2.22 
0.22 1.22 0.43 0.17 0.00 0.78 1.01 
0.51 1.29 0.78 0.18 0.21 0.65 1.03 
0.34 1.25 0.58 0.24 0.73 0.72 1.23 
0.34 1.06 0.45 0.27 0.83 0.62 1.12 
0.27 0.57 0.34 0.02 0.40 1.03 1.06 
0.21 1.01 0.29 0.40 0.37 0.63 1.29 
0.31 1.55 0.52 0.24 0.64 0.69 1.08 
0.45 1.16 0.79 0.07 0.07 1.93 2.23 
0.00 0.00 0.00 0.00 0.61 1.97 1.97 
0.21 2.07 0.23 0.44 1.40 0.52 1.05 
0.45 1.06 0.68 0.16 0.71 0.68 1.09 
0.27 2.13 0.43 0.36 0.87 0.65 1.27 
0.22 2.53 0.31 0.40 0.20 0.97 1.99 
0.26 0.37 0.43 0.00 0.22 6.22 6.22 
0.31 1.38 0.59 0.23 0.27 0.99 1.62 
0.22 1.23 0.33 0.34 0.54 0.94 1.89 
0.47 1.58 0.64 0.22 0.00 0.50 0.85 
0.27 1.41 0.55 0.46 0.00 0.52 1.41 
0.16 1.41 0.23 0.38 0.65 0.57 1.25 
0.40 1.50 0.51 0.34 2.13 0.54 1.25 
0.15 2.04 0.25 0.54 0.46 0.49 1.37 
0.19 2.41 0.31 0.46 0.00 0.54 1.25 
0.22 0.54 0.33 0.00 0.79 1.09 1.09 
0.09 1.25 0.18 0.21 0.23 2.10 3.09 
0.72 0.20 1.01 0.00 0.00 1.56 1.56 
0.27 0.34 0.45 0.59 0.49 0.62 3.33 
0.44 3.47 0.54 0.30 0.00 0.46 1.00 
0.10 0.64 0.12 0.74 0.07 0.18 1.53 
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TABLE V7. Air Pollution Data 

CITY TMR SMIN SMEAN SMAX PMIN PMEAN PMAX 

Providence 1096 30 163 349 56 119 223 
Jackson 789 29 70 161 27 74 124 
Johnstown 1072 88 123 245 70 166 452 
Jersey City 1199 155 229 340 63 147 253 
Huntington 967 60 70 137 56 122 219 
Des Moines 950 31 88 188 61 183 329 
Denver 841 2 61 188 54 126 229 
Reading 1113 50 94 186 34 120 242 
Toledo 1031 67 86 309 52 104 193 
Fresno 845 18 34 198 45 119 304 
Memphis 873 35 48 69 46 102 201 
York 957 120 162 488 28 147 408 
Milwaukee 921 65 134 236 49 150 299 
Savannah 990 49 71 120 46 82 192 
Omaha 922 20 74 148 39 107 198 
Topeka 904 19 37 91 52 101 158 
Columbus 877 94 161 276 74 119 190 
Beaumont 728 27 71 144 32 76 190 
Winston 802 28 58 128 72 147 306 
Detroit 817 52 128 260 59 146 235 
EI Paso 618 47 87 207 49 150 373 
Macon 869 18 27 128 22 122 754 
Rockford 842 33 66 210 36 86 143 
Jackson 928 41 52 138 39 77 124 
Fall River 1157 62 79 136 18 102 254 
Boston 1112 42 163 337 55 141 252 
Dayton 847 18 106 241 50 132 327 
Charlotte 791 43 81 147 62 124 234 
Miami 897 44 57 68 33 54 124 
Bridgeport 938 137 205 308 32 91 182 
Sioux Falls 795 18 55 121 25 108 358 
Chicago 1000 75 166 328 88 182 296 
South Bend 888 73 77 261 28 90 164 
Norfolk 803 49 112 198 39 89 242 
Cleveland 969 69 160 282 86 174 336 
Austin 689 40 46 58 10 78 157 
Knoxville 825 56 77 157 28 135 302 
Indianapolis 969 50 139 269 92 178 275 
Nashville 919 54 160 362 45 130 310 
Seattle 938 47 179 32 69 141 



Data Appendix 675 

TABLE V7. Air Pollution Data (continued) 

CITY PM2 PERWH NONPOOR GE65 LPOP 

Providemce 116.1 97.9 83.9 109 58.5645 

Jackson 21.3 60.0 69.1 64 52.7195 

Johnstown 15.8 98.7 73.3 103 54.4829 

Jersey City 1357.2 93.1 87.3 103 57.8585 

Huntington 18.1 97.0 73.2 93 54.0617 
Des Moines 44.8 95.9 87.1 97 54.2540 
Denver 25.4 95.8 86.9 82 59.6819 
Reading 31.9 98.2 86.1 112 54.3999 
Toledo 133.2 90.5 86.1 98 56.5985 
F'resno 6.1 92.5 78.5 81 55.6342 
Memphis 83.5 63.6 72.5 73 57.9728 
York 26.2 97.7 84.8 97 53.7719 
Milwaukee 150.2 94.4 90.4 88 60.7711 
Savannah 42.7 65.9 72.0 65 52.7485 
Omaha 29.9 94.0 86.4 90 56.6075 

Topeka 25.9 92.7 84.1 99 51.5010 

Columbus 127.2 88.1 86.3 79 58.3440 

Beaumont 23.5 79.3 79.9 58 54.8574 

Winston 44.7 75.8 79.9 62 52.7744 
Detroit 191.5 84.9 86.5 72 65.7546 

EI Paso 29.8 96.7 77.9 45 54.9703 

Macon 28.6 69.0 73.7 62 52.5624 
Rockford 40.3 95.8 88.2 85 53.2173 
Jackson 18.7 94.3 86.5 90 51.2055 
Fall River 71.7 98.7 82.9 116 56.0042 

Boston 174.5 97.3 88.5 109 64.9275 
Dayton 53.9 89.8 87.1 74 58.4175 
Charlotte 50.2 75.4 79.5 57 54.3475 
Miami 45.5 85.1 77.2 100 59.7083 
Bridgeport 103.3 94.7 90.7 94 58.1530 
Sioux Falls 10.6 99.3 82.4 92 49.3739 
Chicago 167.5 85.2 89.4 86 67.9385 
South Bend 51.1 94.0 88.4 84 53.7770 
Norfolk 86.7 73.6 73.1 53 57.6231 
Cleveland 261.1 85.5 88.6 89 62.5445 
Austin 20.9 87.2 75.2 76 53.2661 
Knoxville 25.8 92.5 72.5 74 55.6594 

Indianapolis 173.5 85.6 87.2 85 58.4359 
Nashville 75.1 80.8 76.5 79 56.0178 

Seattle 26.2 95.2 88.8 96 60.4423 
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TABLE V7. Air Pollution Data (continued) 

CITY TMR SMIN SMEAN SMAX PMIN PMEAN PMAX 

Dallas 757 31 69 148 22 96 230 
Mobile 823 47 67 248 29 129 284 
Phoenix 758 15 86 266 98 247 573 
Augusta 823 31 46 158 28 66 142 
Youngstown 915 75 145 263 58 148 371 
Chattanooga 940 10 105 191 69 186 361 
Galveston 873 62 72 86 23 55 125 
Fort Worth 789 9 32 73 28 79 152 
Flint 747 64 80 229 49 124 468 
Charleston 780 15 283 940 55 225 958 
New Haven 983 39 124 288 42 88 248 
Portland 1146 42 140 287 50 82 147 
St. Louis 1004 60 182 299 63 168 295 
Atlantic City 1338 54 75 110 25 71 118 
New Orleans 1027 49 96 187 62 87 117 
Las Vegas 727 31 79 201 50 145 389 
Little River 910 19 61 175 29 72 147 
San Francisco 925 16 62 202 32 70 183 
Raleigh 801 34 49 97 39 80 132 
Oklahoma City 812 18 26 63 42 84 173 
Worcester 1082 71 90 204 32 99 229 
Gary 796 113 190 290 56 170 420 
Pittsburgh 1031 55 150 345 43 166 475 
Waco 914 20 28 88 10 76 156 
Manchester 1102 35 76 129 32 66 156 
Terre Haute 1294 63 135 214 53 118 203 
Allentown 1059 129 146 305 60 135 261 
Richmond 974 49 115 214 26 82 206 
Houston 716 18 65 171 26 117 385 
Newark 1017 54 131 297 42 113 232 
Birmingham 943 55 145 341 38 146 400 
Shreveport 891 84 88 272 47 104 197 
Columbia 727 11 84 167 55 112 274 
Brockton 1139 46 142 332 30 79 165 
Tampa 1259 60 105 197 48 94 233 
Lansing 799 46 57 226 34 76 160 
Kansas City 969 38 141 350 70 142 343 
Buffalo 1012 59 114 193 23 131 978 
San Bernadino 901 18 131 282 39 140 255 
Spokane 1045 14 36 66 19 101 409 
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TABLE V7. Air Pollution Data (continued) 

CITY PM2 PERWH NONPOOR GE65 LPOP 

Oallas 29.7 85.4 81.4 71 60.3487 
Mobile 25.3 67.7 74.6 57 54.9735 
Phoenix 7.2 94.5 80.9 72 58.2185 
Augusta 15.2 70.2 67.8 60 53.3574 
Youngstown 49.0 90.8 87.1 89 57.0672 
Chattanooga 27.7 82.4 74.0 77 54.5205 
Galveston 32.7 78.6 76.8 64 51.4726 
Fort Worth 35.8 89.3 80.7 73 57.5832 
Flint 58.2 90.1 87.8 62 55.7323 
Charleston 27.9 94.2 78.6 70 54.0299 
New Haven 108.3 94.7 89.9 99 58.1975 
Portland 21.4 99.5 83.1 114 52.6186 
St. Louis 64.6 85.5 84.9 93 63.1389 
Atlantic City 28.0 82.3 77.0 140 52.0650 
New Orleans 77.7 69.0 75.7 73 59.3876 
Las Vegas 1.6 90.5 88.7 45 51.0386 
Little River 31.7 78.5 74.0 86 53.8557 
San Francisco 84.0 87.5 88.1 90 64.4457 
Raleigh 19.6 73.9 70.9 65 52.2810 
Oklahoma City 24.0 90.6 81.4 79 57.0913 
Worcester 38.5 99.3 87.2 116 57.6584 
Gary 61.1 84.7 89.1 62 57.5857 
Pittsburgh 78.8 93.2 85.3 95 63.8119 
Waco 14.5 83.9 70.2 98 51.7635 
Manchester 20.0 99.7 86.8 109 52.5081 
Terre Haute 26.1 95.5 78.1 123 50.3526 
Allentown 45.5 99.2 86.4 104 56.9211 
Richmond 56.3 73.6 83.2 82 56.1119 
Houston 72.7 79.9 81.9 54 60.9453 
Newark 242.0 86.6 89.6 94 62.2774 
Birmingham 56.8 65.4 74.2 77 58.0268 
Shreveport 16.3 65.9 69.6 74 54.4945 
Columbia 17.9 71.0 69.2 59 54.1635 
Brockton 37.4 98.0 87.7 113 53.9524 
Tampa 59.2 88.5 70.0 171 58.8787 
Lansing 17.6 97.2 85.6 78 54.7560 
Kansas City 63.3 88.6 85.9 92 60.1682 
Buffalo 84.6 91.5 93.2 99 61.2872 
San Bernadino 4.0 94.3 89.7 109 60.4525 
Spokane 16.3 97.7 91.4 111 54.5723 
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TABLE V8. Shopping Attitude Data Part I 

WORK AGE Al 

1 2 2 
1 4 3 
o 1 1 
o 1 I 
1 5 2 
1 2 3 
o 3 1 
1 5 4 
1 5 2 

1 6 5 
o 1 1 
1 4 3 

o 1 1 
o 5 1 
1 5 2 
1 5 3 
o 3 1 

2 3 
1 2 2 
o 4 2 
o 2 1 

o 1 2 
o 1 1 
o 3 2 

o I 1 
o 2 1 
1 5 3 

1 1 1 

1 3 3 
o 2 1 
1 3 3 
1 5 4 
o 1 1 

o 2 1 

o 3 2 

6 2 
1 4 3 
o 5 1 

5 2 
1 6 3 
1 2 1 
1 6 4 
1 3 3 
o 3 2 
o 2 1 
o 2 1 
o 2 1 
o 1 1 

5 5 
o 5 1 

A2 A3 A4 A5 A6 A7 

5 2 2 4 4 4 
2 1 5 1 3 
333 5 5 4 
3 5 2 544 
1 1 5 1 3 3 
1 2 3 4 3 5 
144 3 4 4 
1 153 3 3 
1 153 1 4 
2 3 5 3 3 3 
3 4 I 535 
1 3 5 2 3 3 
241 545 
135 1 4 5 
1 1 5 3 2 4 
133 3 3 4 
I 2 3 332 
2 3 2 3 3 4 

44432 2 
I 545 4 4 
4 5 3 3 3 5 
2 4 3 4 5 5 
3 3 1 535 
1 2 2 2 3 4 
4 5 3 4 5 5 
551 535 
135 1 3 3 
4 2 2 3 4 5 
1 133 1 1 
5 4 3 5 5 5 
113 133 
2 4 2 2 3 
4 4 1 5 5 5 
3 5 3 4 5 5 
2 4 2 3 3 4 

123 1 2 2 
1 233 2 2 
2 223 3 4 
1 131 3 
1 453 1 3 
3 243 2 4 
224 2 2 3 
135 3 1 1 
445 2 2 4 
3 5 1 455 
3 5 3 3 5 5 
553 5 5 5 
4 3 1 555 
135 1 3 3 
3 4 2 3 4 4 
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TABLE V8. Shopping Attitude Data Part I (continued) 

WORK AGE Al 

1 3 2 

o 3 

5 5 

1 2 3 

o 3 2 

o 2 1 

4 4 
4 3 

1 6 2 

Oll 
o 4 2 

6 2 
o 2 1 

o 2 1 
o 1 

1 2 
o 4 
1 6 4 

o 2 3 

2 2 
o 2 1 

o 2 1 

o 2 
o 2 
1 6 3 

o 3 2 
o 5 2 

5 2 
4 3 

o 1 1 

4 2 

5 3 

6 3 
5 3 

1 2 

o 2 
1 

2 2 
3 2 

o 2 1 

6 3 

1 2 

o 3 4 

1 2 
5 5 

1 2 2 
o 3 3 

5 3 
1 6 3 
o 2 

A2 A3 A4 A5 A6 AT 

3 5 3 3 
1 3 2 244 
4 1 5 2 1 3 
1 2 3 344 
3 2 4 2 4 4 
543 535 

433 
2 4 3 2 3 

4 4 123 
5 5 1 345 
22224 
33413 
3 5 3 3 5 4 
2 3 2 335 
4 5 244 5 
353 543 
4 5 4 443 
23313 
5 3 1 545 
2 4 244 4 
2 3 2 4 5 4 

2 3 3 545 
3 2 122 5 
521 245 
1 153 1 3 
2 2 2 334 
2 2 4 4 4 4 

3 5 3 3 
21513 
4 3 2 5 5 5 

1 1 3 1 3 3 
1 5 1 3 
133 2 

334 1 
2 2 4 434 
3 3 435 
4 3 1 444 
3 242 2 4 
1 1 5 1 2 3 
4 5 1 445 
13443 
232 243 
242 244 
2 4 4 2 4 2 
1 132 3 3 
2 3 3 3 3 4 
4 4 4 3 3 4 
1 133 2 2 
333 133 
532 3 3 4 
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TABLE V8. Shopping Attitude Data Part I (continued) 

WORK AGE Al 

I 2 3 
I I I 

I 4 3 
o 2 I 

6 3 
o 5 2 
o 3 I 
o 2 1 

1 

1 

o 
1 

1 

1 

1 

o 
1 

1 

o 
1 

I 
o 
1 

o 
o 

1 

1 

1 

1 

1 

o 
o 
o 
o 
1 

1 

1 

1 

1 

o 
o 
o 
o 

I 

o 

2 

2 
6 
6 

5 

3 

4 

2 

3 
6 

5 

1 

4 
1 

2 
4 
3 

4 
1 

6 
5 
6 

5 

5 

4 
5 
5 

3 
1 

5 

6 
3 
2 

5 

2 

4 

3 
5 

2 

3 

3 

I 

2 
3 
5 

4 
2 

3 

2 

2 
2 
2 

2 

2 

I 

1 

I 

2 
1 

1 
3 
2 

4 

3 
3 

3 
1 

2 
2 

2 

2 

2 

2 

3 

3 
1 

2 

2 

A2 A3 A4 A5 

3 3 2 3 
5 4 4 4 
1 153 
3 5 I 3 
2 4 I 
525 3 

2 343 
555 
3 

2 
1 

1 

1 

1 

1 

4 

1 
2 
2 

3 

4 

4 

4 

2 
2 
1 

5 
5 
1 

1 

3 

1 

2 

3 
1 

1 

2 
2 

1 

5 

3 
3 
2 

2 

1 

1 

1 

4 

1 

2 

2 

3 

2 

1 

1 

3 
2 

2 

2 
4 

3 
2 
1 

3 

3 
4 
1 

1 

3 
2 

3 

5 

2 

5 
3 

1 

1 
2 

2 

4 
1 

5 

2 

3 

4 

1 

1 

4 
3 
3 

3 
5 
3 
4 
2 
5 
2 

2 
2 
2 

2 

4 
2 
5 
2 

1 

5 

4 

3 
5 
3 

5 

5 
4 

2 

5 

4 
5 

3 

5 

1 

1 

2 
2 
2 
3 

1 

5 
4 
1 
3 
2 
3 
3 
4 
3 
1 

2 

3 

4 

2 

3 
4 
4 
3 

3 
5 

2 

1 

3 
3 

1 

4 

4 

5 

2 

1 

2 

3 

3 
5 
4 

2 
3 

4 
4 

4 

A6 A7 

4 5 
3 3 

3 I 
2 5 
2 
5 4 
4 4 
5 5 
3 
4 
I 

I 

3 

2 

I 

3 

1 

2 

4 

2 

3 
4 

4 

3 
4 
3 

3 
5 

3 
2 

I 

3 
2 

3 
I 
4 

2 
5 

I 

3 
3 
4 
2 

3 
4 

2 

2 

4 

3 

1 

4 
4 
3 
3 

3 

3 

2 
3 

3 
3 
5 

5 

4 
4 

4 
4 
4 
3 

5 

5 
4 
4 

2 

3 
3 
3 

5 
4 

4 

5 

3 

3 

3 
2 

3 

5 
I 

4 

4 
4 

4 

4 
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TABLE VB. Shopping Attitude Data Part I (continued) 

WORK AGE Al 

I 5 3 
I I I 

o 3 I 
o 4 2 
o I I 

o 6 2 
o 1 1 

o 4 3 

I 6 5 
o 1 I 
I 6 5 
o I 2 
I 
o 
o 
o 
o 
I 
1 

o 
o 
o 
1 

I 
o 

I 
o 
o 
o 
o 
I 

1 

o 
o 
o 
1 

o 
o 
o 
I 

I 
o 
o 
o 
1 
o 
1 

o 

6 

2 
2 
2 

5 
6 
I 
5 
4 

2 

6 
6 
4 
6 
2 

2 

I 
2 

5 

2 

6 

2 

2 

1 

3 
1 

5 
2 

6 

4 
5 
I 
2 
5 
4 
6 

2 

6 

3 
1 

1 

1 
1 

4 
2 
3 
2 
1 

2 
5 
1 

2 

1 
1 

I 
1 

2 

1 

3 
1 

1 

1 

2 

1 

1 

2 
3 
3 
2 

1 

1 

3 
2 

3 
1 

2 

A2 A3 A4 A5 A6 A7 

I 3 5 3 1 3 
2 3 2 2 2 4 

3 I 2 3 3 4 
242 145 
5 5 355 
2 2 2 4 4 4 
5 5 1 555 
2 3 3 4 3 4 
3 131 1 4 

5 5 355 
1 153 I 3 
5 3 I 555 
1 

2 

3 

3 
1 

1 

3 
1 

2 
3 
1 

1 
1 

1 

3 
5 

3 
3 
5 
2 

1 

5 
3 

3 
2 

3 
1 

5 
1 

1 

2 

4 
5 
3 
2 
1 

5 

1 

3 
4 

3 

4 
1 

1 
4 
4 
2 
5 
3 
1 
4 
2 
3 
3 
4 
3 

2 
4 
1 

3 

5 

5 
3 
4 
4 
3 
1 

3 
4 
5 
3 
2 

5 
2 

4 
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4 
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3 
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5 
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5 

5 

5 
2 
5 
2 
3 
1 

3 
3 
4 
5 
1 

4 
1 

4 
3 

3 
5 
3 

5 
4 
2 
2 
5 

4 
5 
1 

3 
4 
3 
2 
5 

5 
5 
4 
5 
3 
5 
5 

5 

3 
5 
5 

4 
3 

3 
4 
4 
5 
3 
4 
3 
4 
4 
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TABLE V9. R.C.M.P. Officer Data 

DET SATFl SATF2 SATF3 SATF4 

1 3.8 4.0 4.0 4.0 
1 3.0 3.5 5.0 4.0 
1 3.6 4.5 3.0 3.0 
1 3.2 2.5 4.0 5.0 
1 3.8 3.0 5.0 3.0 
1 4.4 4.5 5.0 5.0 
2 3.8 4.5 5.0 4.0 
2 3.2 2.5 4.0 4.0 
2 3.8 3.5 5.0 5.0 
2 3.8 4.0 4.0 4.0 

2 4.4 3.5 4.0 4.0 
2 4.2 2.5 5.0 5.0 
2 3.6 3.5 4.0 5.0 
2 4.4 4.0 5.0 4.0 
2 4.6 4.0 5.0 5.0 
2 4.2 3.5 5.0 5.0 
2 4.0 4.0 5.0 5.0 
2 3.6 4.0 4.0 4.0 
2 4.2 4.0 5.0 5.0 
3 3.2 3.0 4.0 4.0 
3 3.6 4.5 5.0 5.0 
3 3.6 4.5 5.0 4.0 
3 3.8 4.0 5.0 4.0 
3 3.8 4.0 5.0 5.0 

3 3.4 4.0 4.0 5.0 
3 2.8 3.5 5.0 4.0 
3 3.6 3.5 5.0 4.0 
4 3.0 4.5 5.0 2.0 
4 2.8 3.0 4.0 3.0 
4 2.8 4.0 3.0 5.0 
4 4.0 3.0 5.0 4.0 
4 2.4 2.0 5.0 4.0 
4 4.4 3.0 5.0 4.0 
4 3.2 5.0 5.0 5.0 
4 3.4 4.0 3.0 5.0 
4 4.6 2.0 3.0 4.0 
4 4.0 2.5 4.0 4.0 
4 4.6 3.5 5.0 3.0 
4 4.6 4.0 4.0 5.0 
4 2.4 4.0 3.0 4.0 
4 4.0 4.0 5.0 4.0 

4 3.2 2.0 3.0 5.0 
4 4.4 4.0 4.0 4.0 
4 3.6 4.0 5.0 5.0 
4 4.2 3.5 4.0 4.0 
4 4.0 3.0 5.0 4.0 
5 3.8 3.0 4.0 3.0 
5 2.8 3.0 1.0 4.0 
5 3.6 5.0 4.0 4.0 
5 4.0 3.5 2.0 5.0 
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TABLE V9. R.C.M.P. Officer Data (contin-
ued) 

DET SATFI SATF2 SATF3 SATF4 

5 2.2 4.0 1.0 4.0 
5 4.0 4.0 4.0 4.0 
5 3.4 4.0 2.0 4.0 
5 2.6 4.0 1.0 5.0 
6 3.8 4.0 2.0 4.0 
6 3.2 4.0 3.0 4.0 
6 3.6 4.0 2.0 5.0 
6 3.8 4.0 3.0 5.0 
6 5.0 4.0 2.0 4.0 
6 4.2 4.0 3.0 4.0 
7 2.2 2.5 5.0 5.0 
7 3.8 3.5 5.0 5.0 
7 3.6 3.0 5.0 5.0 
7 4.0 4.0 5.0 3.0 
7 4.2 4.0 5.0 5.0 
7 4.4 4.0 5.0 5.0 
7 3.4 3.5 4.0 4.0 
7 3.4 2.0 3.0 4.0 
7 4.0 4.0 2.0 3.0 
8 3.0 3.0 4.0 3.0 
8 2.2 3.0 1.0 4.0 
8 2.8 2.0 2.0 3.0 
8 2.8 5.0 3.0 5.0 
8 3.6 3.5 4.0 3.0 
9 3.8 4.0 4.0 4.0 
9 3.8 4.0 5.0 4.0 

9 3.4 4.0 4.0 4.0 
9 4.4 4.0 4.0 4.0 
10 3.6 4.0 4.0 4.0 
10 3.8 4.0 4.0 4.0 
10 3.2 4.0 3.0 4.0 
10 4.0 4.0 5.0 5.0 
10 3.2 3.5 5.0 3.0 
10 2.2 3.5 2.0 5.0 
10 4.8 4.5 5.0 5.0 
10 3.6 3.5 4.0 5.0 
10 3.6 1.5 4.0 4.0 
10 4.2 5.0 2.0 4.0 
10 3.4 4.5 5.0 4.0 
10 3.4 4.0 5.0 5.0 
10 3.8 4.0 4.0 4.0 
10 3.8 4.0 4.0 3.0 
10 3.6 3.5 4.0 4.0 
10 3.8 4.0 4.0 4.0 
10 4.0 4.0 5.0 5.0 
10 4.6 2.5 5.0 3.0 
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TABLE VIO. Mystery Data 

SEXED Cl C3 C8 C9 ClO 

7 12 11 16 20 17 
5 19 10 11 4 11 
3 15 15 11 12 13 
8 14 11 20 20 9 
4 12 12 12 12 1 
7 12 12 11 15 13 
6 12 18 18 11 19 
8 12 19 14 19 12 
8 16 18 15 20 2 
1 13 19 18 17 14 
8 11 3 16 19 15 
8 11 10 10 18 10 
7 12 9 17 16 16 
5 12 11 11 11 11 
6 11 17 17 18 17 
7 11 11 11 11 11 
8 12 13 20 12 13 
6 12 18 18 18 17 
7 11 20 20 17 8 
8 11 14 13 14 11 

6 16 15 17 17 14 
6 11 18 20 18 13 
4 11 17 14 18 11 
8 11 17 17 14 11 

5 11 18 18 11 3 
6 12 12 12 12 20 
6 4 20 11 1 20 
5 12 13 12 13 13 
8 11 10 17 17 9 
7 12 19 19 11 19 
8 8 12 18 18 15 
7 14 3 18 13 10 
6 4 8 15 20 11 
8 12 12 13 13 13 
7 11 11 11 11 14 
3 11 11 8 18 8 
7 7 20 12 20 12 
4 12 19 17 14 10 
8 12 12 14 15 11 

7 12 13 17 20 11 

7 18 6 19 19 19 
8 9 4 8 14 11 

8 11 16 18 14 10 
3 16 15 16 17 16 
3 17 16 11 15 12 
6 11 12 14 15 15 
1 11 17 10 14 10 

5 10 9 13 11 11 

4 13 17 15 15 8 
5 19 19 4 4 19 
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TABLE VlO. Mystery Data (contin-
ued) 

SEXED Cl C3 C8 C9 ClO 

7 19 12 20 20 20 
7 12 15 14 14 14 
7 19 12 11 11 11 
7 12 15 14 15 9 
8 10 11 13 17 10 
2 11 20 20 17 1 
7 12 19 19 11 11 

11 7 13 7 11 
4 14 18 19 14 6 
8 11 15 15 17 16 
5 16 15 7 9 5 
2 19 11 18 5 12 
2 11 18 17 11 10 

5 12 10 15 7 10 
7 12 14 18 16 14 
8 11 7 3 1 3 
7 12 17 15 16 18 
7 16 11 13 19 16 
7 11 17 16 11 18 
6 11 12 12 12 12 
6 11 19 19 11 11 
7 11 20 18 20 20 
7 11 19 18 18 19 
5 13 8 14 16 14 
4 11 18 8 17 8 
8 11 11 10 10 10 
7 12 15 15 15 12 
3 18 16 15 15 10 
8 12 11 20 19 11 

4 17 16 18 12 13 
3 12 19 12 12 13 
8 5 0 11 19 18 
8 12 11 19 19 10 
3 15 16 17 20 16 
7 17 16 12 11 15 
7 12 19 13 13 13 
8 11 3 10 10 15 
6 11 17 20 11 17 
8 12 17 18 19 10 
3 12 19 20 20 8 
8 11 16 15 3 7 
7 11 20 20 20 10 
6 11 16 14 18 10 
2 11 10 18 18 20 
3 12 9 13 14 15 
8 11 15 19 15 18 
8 11 13 14 15 13 
5 11 6 15 10 11 
3 11 15 10 17 12 
3 9 17 7 17 16 



686 Data Appendix 

TABLE Vll. Bank Employee Data Part I 

LCURRENT LSTART SEX JOBCAT RACE EDUC SENIOR AGE EXPER 

9.6853 

10.2524 

10.0345 

9.4174 

9.9282 
10.2128 

9.1050 

9.3038 

9.6816 
9.9965 

10.0858 

9.6473 

9.5359 

10.3735 

9.3927 

9.5042 

9.4556 

10.0962 

9.1378 

10.2921 

10.1659 

9.3414 

9.9035 

9.4556 
9.3927 
9.5539 
9.8119 

10.1166 

10.1266 
10.5133 

9.4174 
10.6334 

9.4174 

10.2400 

10.0266 

9.5750 

10.1166 

9.0359 

9.7642 

9.2873 

8.6376 
9.3049 

9.4575 

8.7948 

8.6793 
9.2301 

9.3049 

9.1582 

9.1582 

9.3147 

8.7483 

8.7483 

8.7483 

8.6995 

9.1049 

8.6482 

9.2591 

9.6158 

8.7483 
9.4724 

8.7483 
8.7483 
8.7483 
9.1377 
9.5956 
9.5462 

9.6800 
8.5941 

9.3060 
8.6995 

9.5479 

9.2103 

8.9226 

9.3497 

9.0572 8.4763 

9.0711 

9.0848 

9.3927 

9.1442 

9.4415 

9.3673 

9.1757 
9.3147 
8.7578 

9.2183 
9.0642 

10.0301 

8.4118 

8.4763 
8.7948 

8.5941 

8.9226 

8.4381 

8.5370 
8.9618 
8.3138 

8.6586 
8.5941 
9.3926 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
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3 

3 
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5 
5 
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o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

16 

19 

15 

12 
16 

19 

12 

12 

15 
16 

16 

15 

16 

15 

12 

12 

8 
16 

12 

18 

21 

8 
16 

8 
12 
12 

16 
19 
18 
19 

12 
16 

8 
19 
16 

15 

19 

12 

12 

12 

12 

12 

12 
15 

8 
15 

8 
12 

8 
16 

81 

83 

98 

94 

83 

78 

70 

70 

78 

90 

94 

78 

82 

82 

69 

66 

85 

91 

95 

94 

88 
69 

77 

74 
79 
78 

86 
80 
75 

96 

95 
97 
87 

67 

93 

98 

65 

98 

65 

76 

95 

64 

90 
93 

66 
82 
74 
91 

66 
73 

28.50 

41.92 

41.17 

46.25 

35.17 

30.08 
44.50 

27.83 

35.42 
34.33 

34.00 

38.92 

44.42 

29.50 

63.58 

27.42 

58.08 

33.75 
29.33 

39.67 

56.67 

59.42 
48.33 

63.50 
54.17 
59.83 

32.25 
42.58 
35.42 
44.92 

56.00 
37.08 

64.25 

36.92 
33.42 

37.17 

28.42 

64.50 

23.00 

40.17 

55.25 

45.50 

61.67 
26.83 

46.17 

58.75 
55.25 
33.50 
64.25 

31.92 

0.25 

13.00 

12.00 

20.00 

5.75 
2.92 

18.00 

3.42 

11.08 

5.67 
4.92 

14.67 

12.42 

2.83 

29.00 

3.92 

36.50 

3.67 

3.83 

4.67 

22.00 

14.50 
22.00 

34.00 
25.67 
32.25 

5.00 
16.58 
6.17 

14.58 

25.58 
5.83 

37.58 

6.25 
2.83 

9.50 

2.17 

31.75 
0.00 

0.50 

19.00 

16.50 

17.08 
0.92 

8.00 

22.08 
3.58 
6.92 

19.00 
1.25 
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TABLE Vll. Bank Employee Data Part I (continued) 

LCURRENT LSTART SEX JOBCAT RACE EDUC SENIOR AGE EXPER 

9.1050 8.3848 
9.0070 8.4118 
9.2591 8.4381 
9.3622 8.5370 
9.7527 
9.6238 
9.0780 
8.9847 
8.8901 
9.5298 

9.8389 
9.0216 

10.0123 
9.4970 

8.9771 

8.8530 
8.7483 

8.2687 
8.3138 
8.2687 
8.9618 

8.8392 
8.6482 

8.9862 
8.6995 

8.3138 
9.0288 8.5941 
9.7642 8.9618 
8.8217 
9.3361 
9.2301 

9.5324 
9.4174 

9.4026 
9.3775 

9.4076 
10.0758 
9.4319 
9.2301 

8.3138 
8.4763 
8.6586 
8.7483 

8.6995 
8.7483 
8.7483 

8.6995 
9.5104 

8.7483 
8.4250 

10.3546 9.3497 
9.4222 8.6995 
9.4174 8.1886 

10.5966 9.7779 
9.3927 8.7483 
9.1569 8.5941 
9.3201 8.6995 
9.1819 8.6995 
9.3927 8.6995 

9.4174 8.6995 
9.1050 8.2687 
9.2418 8.5941 
9.1881 8.6482 
8.8217 8.1886 

8.8305 8.3138 
9.1313 8.4763 
9.3876 8.6995 
9.0848 8.3848 

9.0143 8.4118 
8.9464 8.1886 
9.3038 8.3138 
9.1881 8.3848 

1 

1 

1 

1 

o 
o 
o 
o 
o 
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o 
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o 
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1 
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1 

8 
12 
12 
17 
16 
16 
12 
12 

12 
16 
16 
15 

16 
12 

8 

12 
16 

8 

8 

12 

8 
8 
8 
8 

12 
12 

12 
12 
17 
12 
12 
16 
8 

15 
14 
15 

8 
8 
8 

15 
12 
12 

8 
16 

15 
12 
12 
15 
12 
12 

81 
69 
97 

73 
79 
90 
86 
72 

86 
65 

86 
65 

64 
90 
83 
67 
68 
72 

98 
86 
79 

92 
68 
76 
91 
74 

73 
81 
70 
94 
91 
66 
67 
88 
79 
90 
92 

83 
94 
78 
74 
97 
81 
84 

86 
92 

73 
96 
85 
75 

24.33 
23.42 
53.92 
55.58 
28.42 
29.92 
52.00 
52.17 
62.00 
30.75 

32.00 
59.50 
29.00 
44.50 
59.08 
51.50 
27.58 
56.92 

27.83 
28.67 
48.50 

60.67 
32.92 
35.25 
30.33 
48.25 

38.67 
24.75 
32.08 
34.58 
53.50 
35.33 
47.25 
57.50 
30.33 
42.17 
37.83 

48.83 
29.17 
48.67 
45.17 
60.67 

51.50 
47.58 
40.50 
25.50 

47.92 
60.50 
54.17 
27.58 

0.42 
0.00 
4.00 

31.25 
1.67 
0.58 

13.00 
4.67 

6.00 
6.58 

1.58 
20.08 

3.00 
0.25 
6.25 

15.08 
0.92 

26.58 
2.17 

3.08 
20.50 
36.00 

12.92 
12.00 
4.08 

22.67 

12.92 
0.75 
5.58 
8.50 

26.17 
10.67 
25.42 
29.92 

3.92 
15.92 
12.00 

25.17 
3.00 
4.25 
9.75 

10.33 

0.00 
17.83 

6.58 
0.42 

12.83 
1.92 
8.42 
2.67 
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TABLE V12. Bank Employee Data Part II 

LCURRENT LSTARr SEX JOBCAT RACE EDUC SENIOR AGE EXPER 

10.6310 
9.9970 
9.8627 

10.2128 
9.4174 
9.9988 
9.8532 

10.0078 
10.2219 
10.2400 
9.9988 

10.2036 
10.3514 
9.9988 

10.2887 
9.4174 
9.9641 
9.4174 

10.1064 
10.1811 
10.3498 
10.0753 
10.0648 
10.1659 
9.4125 
9.8782 
9.8201 

10.1659 
9.9451 
9.9321 

10.5662 
9.5104 
9.5324 
9.5411 
9.0288 
9.1695 
9.1942 
9.3308 
9.0711 
9.3725 
9.1695 
9.3725 
9.1942 
9.6512 
9.2648 
9.1881 
8.9227 
9.6037 
9.6198 
9.1881 

10.0858 
9.2301 
9.0711 
9.4724 
8.7483 
9.2591 
9.4880 
9.5104 
9.3060 
9.0711 
9.5462 
9.5462 
9.3049 
9.4724 
9.4880 
8.7483 
9.0360 
8.6995 
9.4880 
9.8520 
9.3927 
9.3927 
9.0711 
9.4174 
8.7483 
9.0821 
9.0474 
9.4566 
9.3049 
9.5816 
9.5471 
8.6995 
8.4888 
8.6691 
8.4764 
8.5942 
8.2990 
8.5370 
8.5132 
8.7193 
8.4118 
8.6482 
8.5942 
8.6995 
8.5942 
8.5717 
8.3428 
8.8818 
8.7483 
8.4764 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
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o 
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o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

16 
15 
16 
18 
12 
17 
19 
19 
17 
16 
19 
17 
18 
18 
19 

8 

16 
8 

19 
16 
19 
20 
16 
17 
12 
16 
16 
19 
19 
18 
19 
12 
12 
16 

8 

12 
12 
15 

8 

12 
12 
12 
12 
16 
15 
12 
15 
15 
12 
12 

73 
83 
93 
80 
77 
93 
64 
81 
89 
65 
65 
83 
91 
75 
78 
78 
93 
84 
68 
86 
93 
89 
84 
78 
80 
76 
93 
69 
80 
78 
91 
83 
77 
93 
79 
98 
92 
81 
74 
72 
83 
63 
78 
97 
94 
88 
90 
75 
73 
79 

40.33 
31.08 
31.17 
29.50 
52.92 
32.33 
31.92 
30.75 
34.17 
28.00 
39.75 
30.17 
30.17 
41.17 
32.92 
63.75 
30.67 
63.42 
29.50 
42.42 
31.67 
35.58 
30.25 
29.75 
61.67 
32.67 
29.75 
28.83 
45.67 
39.42 
34.33 
50.25 
24.33 
31.50 
50.17 
47.33 
44.00 
27.17 
59.83 
25.75 
25.83 
25.08 
27.17 
30.58 
29.50 
54.42 
58.00 
28.75 
54.08 
24.33 

12.50 
4.08 
1.83 
2.42 

26.42 
2.67 
2.25 
5.17 
3.17 
1.58 

10.75 
0.75 
3.92 

10.42 
3.75 

35.75 
4.00 

31.67 
0.75 

12.50 
0.58 
0.50 
1.08 
2.17 

38.33 
5.08 
2.92 
6.17 

18.42 
12.42 
5.67 

23.67 
0.33 
0.67 
5.83 

20.33 
3.67 
1.58 

26.50 
2.50 
1.33 
0.75 
3.92 
1.42 
0.25 
8.92 
4.50 
0.42 

11.00 
0.67 
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TABLE V12. Bank Employee Data Part 11 (continued) 

LCURRENT LSTART SEX JOBCAT RACE EDUC SENIOR AGE EXPER 

9.3414 

9.2003 

9.4742 

9.9233 

9.1182 

9.6434 

9.1632 

9.0288 

8.8901 

8.7948 

9.4026 

9.5148 

9.2360 

9.3200 

9.1819 

9.3518 

9.2591 

9.1182 

8.8038 

9.0216 

9.2183 

9.0431 

8.8392 

9.1313 

9.2761 

9.3622 

9.4970 

8.9695 

9.2591 
9.3254 

9.0710 

9.1049 

9.2873 

9.2704 

9.3038 

9.0982 

9.4556 

9.2761 

9.4366 

9.4173 

9.5539 

9.3147 

9.4173 

8.8479 

9.2928 

8.7856 

8.8217 

9.2534 

8.9695 

8.9065 

8.3428 

8.3848 

8.5942 

8.8818 

8.4118 

8.7948 

8.5370 

8.4763 

8.3848 

8.3138 

8.7948 

8.4763 

1 

1 

1 

8.6482 1 

8.5941 1 

8.3848 1 

8.6269 

8.3848 1 

8.4118 1 

8.2687 

8.4118 

8.6269 

8.4763 

8.3138 

8.4118 1 

8.5941 0 

8.5941 0 

8.8530 0 

8.5370 0 

8.7671 0 
8.7948 0 

8.5370 0 

8.6995 
8.8818 

o 
o 

8.6995 0 

8.6995 0 

8.6995 0 

8.7483 0 

8.7483 0 

8.6995 0 

8.6995 0 

8.7483 0 

8.6482 0 

8.6995 0 

8.3138 

8.7483 

8.3138 

8.3138 

8.5941 

8.6269 

8.3138 

2 

2 
2 

2 

2 

2 

1 

2 

2 

2 

1 

2 
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2 
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1 
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12 

12 

15 

16 

12 

16 

12 

12 

12 

12 

16 

12 

15 

12 

12 

12 

12 

12 

8 
12 
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12 

12 

12 

12 

16 

12 

8 
15 

12 
15 

17 

16 

12 

12 

15 

12 

15 

12 

12 

15 

12 

12 

15 

12 

12 

12 

12 

12 

92 

79 

90 

93 

68 

90 

69 
87 

80 

84 

98 

82 

82 

73 

93 

72 

89 

69 

88 

69 

64 

73 

82 

81 

88 
96 

67 

84 

67 
66 

97 
82 

70 

78 

90 

80 

67 

76 

96 

91 

78 

98 

90 

72 

84 

66 

72 

72 

69 

85 

25.50 

24.67 

28.75 

32.50 

23.42 

30.42 

24.42 

53.92 

25.00 

62.42 

43.92 

28.17 

30.17 

27.33 

25.25 

27.33 

25.83 

23.67 

62.50 

23.67 

29.08 

60.50 

53.92 

24.08 

29.92 

39.50 

41.67 

44.58 

51.42 
30.75 

53.08 
59.75 

47.33 

33.83 

37.50 

57.17 

29.33 

28.33 

31.92 

45.50 

55.33 

33.67 

43.67 

46.50 

55.17 

60.50 

51.50 

50.33 

50.00 

51.00 

0.50 

0.42 

1.83 

1.83 

0.17 

0.00 

1.67 

13.58 

0.00 

24.00 

11.92 

0.92 

4.25 

2.67 

0.42 

1.50 

0.00 

0.00 

34.33 

0.17 

4.75 

13.25 

29.83 

1.08 

3.17 

9.42 

10.00 

15.00 

8.08 
7.00 

26.25 
30.92 

16.00 

8.75 

14.42 

22.67 

4.83 

1.50 

4.08 

20.00 

23.42 

2.83 

17.42 

9.67 

19.25 

13.58 

22.58 

14.08 

11.08 
19.00 
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TABLE V13. Panel Data 

THISYR LASTYR HUBINC AGE EDUC BLACK CHILDl CHILD2 

o 1 7.352 27 10 1 0 0 
o 6.784 35 12 0 0 0 

1 1 6.059 40 12 0 0 0 
1 1 6.438 35 12 1 0 0 
1 0 4.739 28 10 0 0 1 
1 1 6.617 30 10 0 0 1 
1 1 6.041 35 10 0 0 1 
1 1 4.343 46 7 0 0 0 
1 0 9.724 32 10 0 0 0 

1 1.855 30 10 1 0 0 
1 1 11.267 45 12 0 0 1 
1 1 15.430 33 16 0 0 0 

1 8.123 39 12 0 0 0 
1 1 5.813 22 12 0 0 1 
1 0 6.167 27 12 0 0 0 
o 0 4.093 23 10 1 0 1 
o 1 2.920 25 12 1 0 1 
o 0 8.111 43 12 0 0 1 
1 1 11.502 38 12 0 0 0 
o 0 11.311 40 12 0 0 1 
1 0 6.093 44 12 1 0 0 
o 0 7.718 31 12 0 0 1 
1 1 9.919 42 12 0 0 0 
o 0 0.222 24 12 0 0 0 
1 1 7.452 42 12 0 0 0 
1 1 6.382 31 12 1 0 0 
1 1 7.689 38 12 1 0 0 
o 0 6.609 43 12 0 0 0 
o 7.721 24 12 0 0 1 
o 0 36.357 29 12 0 0 0 
o 0 3.668 31 12 0 0 0 
1 0 8.257 37 12 0 0 0 
1 1 11.283 42 12 0 0 0 
1 1 5.714 34 12 0 0 0 
o 1 9.967 25 10 0 0 1 
o 0 7.629 25 10 1 1 0 
1 1 10.154 31 12 0 0 0 
o 0 10.370 35 12 0 1 0 
o 0 15.365 40 12 0 0 1 
o 0 11.917 26 12 0 0 1 

1 11.023 34 12 0 0 0 
1 17.598 39 12 0 0 0 
1 7.424 43 12 0 0 0 

o 0 8.812 23 12 0 0 1 
1 1 4.841 40 12 0 0 0 
o 0 10.848 36 12 0 0 0 

o 9.810 25 12 0 0 1 
1 15.138 30 12 0 0 1 
1 9.966 27 12 0 0 0 

1 1 8.328 32 12 0 0 1 
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TABLE V13. Panel Data (continued) 

HUBINC AGE 

8.856 37 
7.443 37 

14.264 27 
0.000 35 
3.401 39 
0.000 33 
9.136 46 
4.839 32 

14.168 28 
7.671 33 
1.599 38 
3.853 40 
5.366 40 
7.041 46 

12.187 46 
12.408 40 

5.693 26 
3.869 21 
3.069 26 
7.588 27 
7.786 44 

12.581 36 
5.962 39 
4.406 45 
6.341 31 
7.517 35 
7.984 40 
7.823 43 
6.852 24 
8.807 34 
9.923 25 
9.148 30 
4.511 43 

15.248 30 
7.651 45 

20.515 39 
8.375 41 
7.514 27 
9.474 32 

10.149 33 
4.782 31 

10.472 35 
6.762 23 
9.467 29 

10.342 32 
1.240 44 

13.820 34 
9.727 40 
8.853 46 
8.061 36 

EDUC BLACK 

12 0 
10 0 
12 0 

10 0 
12 0 

16 0 

12 0 
7 0 

12 0 
12 0 
12 0 
12 0 

12 0 
12 0 
12 0 
12 0 
12 0 

12 0 
12 1 

16 0 

12 0 
12 0 
10 1 

10 1 

12 0 
12 0 
12 0 
12 0 

12 0 
12 0 

12 0 
12 0 

7 1 
12 0 
12 0 

12 0 
12 0 

12 0 
12 0 
18 0 
12 1 
12 1 

12 0 
12 0 
12 0 

12 0 

12 0 
12 0 
12 0 
12 

CHILD1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
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TABLE VI3. Panel Data (continued) 

THISYR 

o 
o 
1 

1 
1 

1 

1 

o 
o 
1 
1 

1 

1 
1 

1 

1 

1 
1 

o 
o 
1 

1 
1 
1 
o 
1 

o 
1 
o 
o 
1 

1 

1 

o 
1 
1 

1 

o 
1 

1 
1 
o 
1 
o 
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1 
1 

1 

1 
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LASTYR 
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o 
o 
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o 
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1 
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o 
1 

1 

1 

1 
1 
1 

o 
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1 

1 
o 
1 

o 
1 

o 
o 
o 
o 
1 

1 

1 

1 

1 
1 

1 

o 
1 

1 
1 
o 
o 
o 
1 

1 
1 

1 

o 
o 

HUBINC 

4.340 
13.648 

4.973 
8.427 

18.320 
7.680 
5.612 

13.554 
5.329 

10.511 
10.486 
14.071 
9.024 

14.329 
5.118 
3.044 
2.640 
2.050 
6.750 
3.383 
6.630 
7.000 
8.815 
3.450 

12.031 
6.144 

11.513 
12.167 
9.968 
5.888 

10.232 
8.017 

11.686 
28.363 

4.343 
10.554 

2.484 
5.672 

13.319 
7.678 
7.162 
7.804 

13.648 
9.311 

27.938 
6.704 
7.711 
8.576 
7.223 

11.259 

AGE EDUC BLACK 

42 12 0 
31 12 0 
38 10 1 
46 12 0 
46 18 0 
29 10 
25 12 0 
32 12 0 
26 12 0 
29 12 0 
34 12 0 
38 16 0 
32 12 0 
36 12 0 

28 18 0 
37 12 1 
38 7 1 
43 7 1 
23 12 1 
24 12 0 
40 12 0 
46 12 0 
42 12 0 
46 12 0 
42 12 0 
31 12 1 
39 12 0 

46 12 0 
28 16 0 
23 12 0 
32 12 0 
40 12 0 
45 12 0 
31 12 0 
46 7 1 
38 12 0 

29 10 0 

44 12 0 
31 18 1 
35 18 1 
24 12 0 
34 12 0 
28 16 0 
27 12 0 
46 12 0 

27 12 0 
32 12 0 
38 16 0 
26 16 0 
31 16 0 

CHILDI 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

o 
o 
o 
o 
o 
o 
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o 
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TABLE V13. Panel Data (continued) 

THISYR LASTYR HUBINC AGE EDUC BLACK CHILDI CHILD2 

o 0 26.063 30 12 0 0 1 

1 11.776 42 12 0 0 0 
1 12.793 46 18 0 0 0 

1 11.080 44 12 0 0 0 

1 1 7.074 31 12 0 0 0 

1 1 6.679 36 12 0 0 1 

o 

1 

1 

1 

o 

1 

o 
o 

o 
o 

1 

1 

1 

o 
1 

o 
1 

o 
1 

1 

o 
o 
o 

o 15.868 45 12 0 0 0 

1 

o 

1 

1 

1 

o 
o 

1 

1 

o 
o 

1 

o 
1 

o 
o 
1 

o 
o 
o 
o 
1 

o 
1 

1 

7.972 

0.000 

3.030 

2.970 

9.305 

8.125 
13.033 

0.000 
2.781 

3.010 

26.056 

5.795 

0.000 

2.639 

9.087 

12.312 

7.325 

3.517 

17.140 
24.054 

6.144 
13.211 
9.309 

3.135 
2.935 

9.067 
10.629 

8.207 

9.772 
8.955 

6.204 
9.378 

54.281 

7.525 

11.504 

5.763 

5.683 

10.937 

9.361 

6.342 

7.160 

7.788 
2.402 

42 

29 

43 

27 

40 

30 

29 

39 

30 

35 

40 

46 

36 
28 

24 
34 

33 

26 
35 

40 

42 
34 
45 

40 
45 

41 
44 
24 

42 
46 

46 
32 

45 

31 

32 

42 

32 

40 

45 

35 
31 

31 
25 

16 

12 

10 

16 

12 

12 

10 

12 

12 
12 

12 

12 

12 

12 

12 

12 
12 
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12 

12 
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700 Data Appendix 

TABLE V18. Automobile Data Part 11 

TYPE ENGSIZE CYLIND COMBRATE WEIGHT FOR 

Pontiac Paris 5 3 4 5 0 
Honda Civic 1 1 1 1 
Buick Century 4 2 4 3 0 
Subaru GL 1 2 1 
Volvo 740GLE 2 2 3 1 
Plymouth Caravel 2 2 3 0 
Honda Accord 1 2 2 1 
Chev Camaro 3 2 3 4 0 
Plymouth Horizon 2 2 2 0 
Chrysler Daytona 2 1 2 3 0 
Cadillac Fleetw 4 3 4 5 0 
Ford Mustang 5 3 4 4 0 
Toyota Celica 2 2 2 1 
Ford Escort 1 2 2 0 
Toyota Tercel 1 1 1 
Toyota Camry 2 2 1 
Mercury Capri 5 3 4 4 0 
Toyota Cressida 3 2 3 4 1 
Nissan 300ZX 3 2 4 4 1 
Nissan Maxima 3 2 4 4 1 

TABLE V19. Cola Similarity Data 

00 Diet Pepsi 

34 00 RC Cola 

79 54 00 Yukon 

86 56 70 00 Dr. Pepper 

76 30 51 66 00 Shasta 

63 40 37 90 35 00 Coca-Cola 

57 86 77 50 76 77 00 Diet Dr. Pepper 

62 80 71 88 67 54 66 00 Tab 

65 23 69 66 22 35 76 71 00 Pepsi-Cola 

26 60 70 89 63 67 59 33 59 00 Diet-Rite 



Data Appendix 701 

TABLE V20. Car Similarity Data 

00 Mustang SVO 
27 00 Cadillac Seville 
26 01 00 Lincoln Continental 
17 38 39 00 Ford Eecort 
13 28 29 36 00 Corvette 
25 41 42 10 35 00 Chevrolet Corvette 
15 32 30 45 09 48 00 NisBan 300ZX 
24 40 02 12 43 11 34 00 Renault Alliance 
16 33 31 46 08 49 14 44 00 Porshe 944 
37 07 05 50 18 52 19 51 21 00 Jaguar XJ6 
47 06 04 53 23 55 22 54 20 03 00 Mercedes 500SEL 
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discrimination using ranks 277 
discrimination without normality 

277 
dissection in clustering 518 
dissimilarity 486 
dissimilarity matrix 570 



distance between centroids 512 
distance-type proximity 486 
distribution of probability density 

contour 146 
divisive clustering 520 
double-mean-centered matrix 498 
dual scaling 454-457 
dummy variables 222-228, 294, 502 

E 
eifect coding 92,224 
eigenvalue 143, 165, 166, 248, 352, 

451, 456, 572, 642 
eigenvalue problem 182, 247, 352, 

642 
eigenvalue one criterion 376, 394 
eigenvalues for nonnegative defi­

nite matrices 647 
eigenvector 143, 182, 183, 248, 352, 

451, 456, 572, 642 
ellipsoid 141, 359 
elliptical shaped clusters 527 
equal cell probability model 27 
equal correlation structure 167, 397 
equal profiles 232 
equal variance-equal covariance struc­

ture 162, 166 
equality of covariance matrices 215, 

216,221 
equality of eigenvalues 377 
equality of matrices 620 
equality of mean vectors 215, 216 
equamax: rotation 404 
error covariance matrix 172 
error perturbation 565 
Euclidean distance 487, 634 
Euclidean distance between cen-

troids 512 
Euclidean distance matrix 571 
evaluation phase in MDS 591 
examples, Chapter 6 

contingency table for admis­
sion status by sex by fac­
ulty 45,46 
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contingency table for bus driver 
attendance by type of shift 
by day of week 66-69, 
84-86 

contingency table for bus driver 
attendance by type of shift 
by sex 78-81 

contingency table for crime 
opinion by age 12-17, 28, 
29,32,33 

contingency table for crime 
rating by education level 
110-114 

contingency table for driver 
injury level by seatbelt 
usage 18, 22, 26, 27, 36-
43 

contingency table for driver 
injury level by seatbelt 
usage by driver condition 
47-50,60-66,71-77,89-
109 

contingency table for heart dis­
ease by age by smoking 
habit 44, 45 

examples, Chapter 7 
bank employee salary data 175-

178, 184-189 
police officer stress data 134, 

139, 158-161, 166-168 
portfolio returns 133, 138, 143, 

144, 149-151 
examples, Chapter 8 

bank employee salary data 240-
244 

bond rating data 269-278, 309-
320 

married female work data 279-
281,287-291,293-303,323-
326 

mystery novel data 245-247, 
250-254, 257, 258 

public safety data 210-212, 
216-218, 221-234, 236-
239 
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yield curve data 264-267, 303, 
304 

examples, Chapter 9 
air pollution data 347-387,392-

418,430 
contingency table for convic­

tion status by sex by type 
of charge 434-450, 461, 
464,465 

contingency table for driver 
injury level by seatbelt 
usage by driver condition 
453-459, 463, 464 

police officer stress data 419-
427 

examples, Chapter 10 
air pollution data 484, 485, 

488-492,495-497,500,501, 
510-516, 521-523, 536-
541, 549-562, 572-580 

grounds for divorce data 505-
508, 541-545 

police officer stress data 595-
601 

world data 527-534 
expected frequencies 21 
expected value of a matrix 632 
expected value of a quadratie form 

632 
experimental design 8 
experimentwise error rate 159 
explanatory or factor variables 87 
exploratory factor analysis 388-

426 
external cohesion 519 
external clustering criteria 564 

F 
F-test statistie 

canonical correlation inference 
184 

discriminant analysis inference 
249 

equality of covariance matri­
ces 221 

financial portfolio inference 164 
Hotelling's T2 test, mean vec­

tor 158 
Hotelling's T 2 test, two groups 

219 
MANOVA inference 216,236 
multiple correlation 169 
multivariate regression infer-

ence 173 
profile analysis 229-234 
T2 max test for outliers 152 

factor analysis 
common factor analysis model 

389-398 
communalities and unique vari­

ance 390 
cross validation 415 
determining the number of fac-

tors 394-397 
estimation 391-398 
factor scores 410, 411 
geometrie interpretation 406-

409 
goodness of fit 414-417 
maximum likelihood estima-

tion 413-415 
multivariate normality 413 
rotation 398-409 
scree test for number of fac­

tors 395 
simulation study of factor cri­

teria 417-419 
used with multiple regression 

412 
used with principal compo-

nents 391 
factor loadings 389 
factor pattern matrix 389 
factor rotation 398-406 
factor score coefficient matrix 410 
factor scores 410 
factor structure matrix 390 
factor variables 87 
feasible generalized least squares 

181 



financial portfolio inference 164 
finite population 19 
first order partial eorrelation 148 
Fisher discriminant eriterion 244, 

247, 259 
Fisher Z-transformation 156 
forward stepwise model selection 

70 
Freeman-Thkey deviations 24 
frequeney response table 453 
fundamental theorem of MDS 571 
furthest neighbor proximity 509 
fuzzy c1ustering 563 

G 
G(+) measure 551 
gamma coefficient 551 
Geisser-Greenhouse proeedure 163 
generalized least squares 179, 450 
generalized singular value decom-

position 443, 648 
generalized varianee measure 141, 

143,376 
geometrie interpretation of data 

matrix 140 
geometrie mean 30, 376 
geometrie mean of eigenvalues 143 
geometry of factor analysis 406 
geometry of principal components 

357 
Goodman and Kruskal's lambda 

25 
goodness of fit 10, 59, 68, 289, 414 
grand mean vector 213 
graphical interpretation, diserim-

inant functions 252-254 
group effect parameters 215 
group effects 215 
group effects design matrix 226 
group profiles 229-234 
group proximities 508-518 
Guttman lower bounds 394 
Guttman rank image approach 588 
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H 
haphazard sampie 9 
Hamann coefficient 504 
Helment matrix 166 
Heywood eases 414 
hierarchieal c1ustering 519 
hierarchleal system 56 
hierarchy principle 56 
higher-order partial correlations 148 
homogeneity of covarianee matri-

ees 215, 216, 221 
homogeneous equations 182, 640 
horizontal profiles 233 
Hosmer-Lemeshow test 289 
Hotelling's T2 test 152, 158, 219 
Hyunh-Feldt strueture 163, 166 
hypergeometrie distribution 18, 19 

I 
ineomplete eontingency table 82 
ineremental sum of squares 512, 

514 
idempotent matrix 623 
independence 12, 24, 48,135,165, 

440 
independenee model 27, 48, 55 
independence of irrelevant alter-

natives 308, 322 
independent bloeks 168 
identity matrix 619 
indeterminancy, factor analysis 390 
index variable 347 
indicator variables 222-228 
indivisible seale 7 
infinitely divisible scale 7 
inHuence measurement 171, 189, 

298, 387 
image diagram 587 
inerease in within sum of squares 

513 
ineremental sum of squares 512 
individual difference models 601 
initial phase in MDS 585 
interaction 29, 31, 93, 99 
interaction response variable 113 
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intercept vector 147 
internal cohesion 519 
internal clustering criteria 564 
interval scale 7 
inverse of a matrix 621,623 
inverse of a partitioned matrix 631 
isolated point 524 
iterative proportional fitting 52 

J 
Jaccard's coefficient 504, 541 
jackknife procedure 264, 295 
joint density table 12 
joint distribution 12, 132 

K 
k-means algorithm 560 
Kendall's coefficient of concordance 

551 
Kronecker product or direct prod­

uct 624 
kurtosis 149 

L 
latent roots 642 
Lawley-Hotelling test 173 
left singular vector 428 
level of a profile 499 
leverage 298 
linear functions, row proportions 

90 
linear probability model 282 
linear transformations 145, 638 
linearly dependent vectors 637 
logistic distribution 284 
logistic model 283 
logistic regression model 

categorical explanatory vari-
ables 291, 292 

chi-statistic 296 
deviance statistic 297 
goodness of fit 289 
Hosmer-Lemeshow test 289 
inference 286-291 
influence diagnostics 296-299 

leverage 296 
maximum likelihood estima­

tion 285, 286 
minimum logit chi-square 306 
Newton-Raphson procedure 

286 
prediction and classification 

294-296 
residuals 297 
role of the intercept 293 
stepwise variable selection 296 

logistic transformation 284 
logit function 83 
loglinear models 

conditional independence model 
51,55 

four-dimensional tables 70-77 
goodness of fit 21, 48-53, 57, 

68 
hierarchical models 56 
interaction 37, 63 
iterative proportional fitting 

52 
logit models 82-87 
maximum likelihood estima-

tion 36,51 
model selection 57, 70 
multiplicative form 36, 56 
no-three-way interaction mdoel 

52,56 
partial independence model 

51, 55 
quasi-Ioglinear model 82 
saturated model 29, 53, 56 
standardized estimates 39, 58 
standardized residuals 39,58 
stepwise model selection 70 
three-dimensional tables 47-

69 
two-dimensional tables 30-42 
uniform order models 70 

lower bound for number of factors 
394 



M 
Mahalanobis distance 141, 148, 150, 

156, 163, 251, 259, 268, 
214, 382, 491, 518, 521 

Manhattan metric 491 
marginal analysis 98 
marginal association 13 
marginal density 12 
marginal distribution 146 
marginal homogeneity 110 
marginal symmetry 110 
matching coefficients 503 
matrix 611 
matrix approximation 346-353, 426-

431,646 
maximally correlated 181 
maximum likelihood factor anal­

ysis 413 
maximum R2 estimation 394 
maximum row and column densi-

ties 25 
mean-centered data matrix 131 
mean-centered profile 500 
mean-centered variables 481 
mean-corrected data matrix 131 
mean-corrected variables 481 
mean shift model 152 
mean square among 210 
mean square within 210 
mean vector profile 161 
mean vectors 135, 213 
measurement seales 7, 8 
measures of association 25 
metric MDS 510 
metric phase in MDS 590, 595 
minimax criterion 261 
minimum cost criterion 262 
minimum logit chi-square 306 
minimum total probability of mis-

classification 261 
Minkowski metric 493 
mode analysis 562 
monotone regression 581 
monotonicity 588 
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Monte Carlo studies in clustering 
564 

Monte Carlo studies in MDS 592 
Monte Carlo study in factor anal-

ysis 411 
moving average rule 546 
MSA 210 
MSW210 
multidimensional sealing (MDS) 

additive constant problem 582 
ALSCAL algorithm 595 
derived dissimilarities 585 
disparities 586 
dissimilarities 510, 585 
dissimilarity matrix 510 
double-mean-centering 511 
Euclidean distance matrix 511 
evaluation phase 591 
fundamental theorem 511 
Guttman rank image approach 

588 
metric scaling 510-584 
metric phase 590 
monotone regression 581 
Monte Carlo studies of stress 

592-594 
nonmetric sealing 584-601 
ordinal scaling 585 
other scaling models 601 
pool-adjacent-violators algo-

rithm 587 
principal coordinates analy­

sis 581 
proximity matrix 510 
relation to cluster analysis 519, 

591 
relation to principal compo-

nents 581 
Shepard-Kruskal algorithm 585 
stress measure 590, 591 
ties 588-590 
types of monotonicity 588, 589 

multinomial distribution 18, 21 
multinomiallogit 306-326 
multiphase sampling 9 
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multiple comparison procedures 220 
multiple correlation 147, 168 
multiple correspondence analysis 

462-465 
multiple group classification 268 
multiple linear regression 172, 188 
multiple observations in logistic 

regression 304 
multiple regression with factors 412 
multiple regression with principal 

components 378 
multiplicative form of loglinear model 

36,56 
multiplicative inverse of a matrix 

623 
multivariate analysis of covariance 

228 
multivariate analysis of variance 

(MANOVA) 
among group sum of squares 

matrix 215 
Bartlett's chi-square statistic 

218 
block sum of squares matrix 

235 
correlation ratio 218 
equality of covariance matri­

ces 216, 221 
Hotelling's T 2 for two group 

case 219 
indicator variables, coding and 

multivariate regression 222-
228 

MANOVA with a covariate 
228,239-242 

multiple comparison procedures 
220 

one-way MANOVA 209-234 
Rao's F-statistic 216 
relation to one-way ANOVA 

209,210 
repeated measures design and 

profile analysis 229-234 
total sum of squares matrix 

215 

two-way MANOVA 234-242 
Wilk's lambda 216 
within group sum of squares 

matrix 215 
used with cluster analysis 555 

multivariate centrallimit theorem 
140 

multivariate distance - see Maha­
lanobis distance 

multivariate distributions and sam­
pIes 

canonical correlation 181-189 
conditional distributions, in-

dependence 135 
correlation matrix 136, 137 
covariance matrix 135, 137 
discriminant analysis 242-278 
eigenvalues and eigenvectors 

143 
generalized variance 141 
geometrie interpretation 140 
joint distribution 132 
mean-centering, mean-correcting 

137 
mean vector 135, 136 
Mahalanobis distance 141 
multivariate analysis of vari-

ance (MANOVA) 209-242 
multivariate centrallimit the­

orem 140 
multivariate kurtosis 149 
multivariate normal distribu­

tion 144-169 
multivariate regression 169-

181 
multivariate skewness 

multivariate kurtosis 149 
multivariate measures of proxim­

ity 517 
multivariate normal distribution 

canonical correlation 181-189 
conditional distributions 146 
constant probability density 

contour 145, 146 
covariance matrix 165-169 



density 145 
discriminant analysis 242-278 
equal correlation structure 167 
equal variance-equal covari-

ance structure 166 
financial port folio inference 164 
goodness of fit 148 
Hotelling's T 2 152, 158 
Hyunh-Feldt pattern 166 
independence 165 
inference for covariance ma­

trix 165-169 
inference for mean vector 157-

164 
kurtosis 149 
likelihood function 157 
linear transformations 145 
Mahalanobis distance 149, 163 
marginal distributions 146 
multivariate analysis of vari-

ance (MANOVA) 209-242 
multivariate regression 169-

181 
outliers 150-155 
partial correlation 147, 148 
partitioning the normal 146 
regression function 147 
repeated measurements 160, 

161 
profiles, profile comparisons 

160, 161 
robust estimation 156 
Scheffe's multiple comparison 

procedure 159 
skewness 149 
sphericity test 165 
transformations 150 
T 2 max 152 
Wishart distribution 165 
zero correlation test 165 

multivariate paired comparison test 
237 

multivariate qualitative response 
models 322 

multivariate random variables 132 
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multivariate regression 
Bartlett's chi-square test 173 
estimation 170, 171 
inference 173, 174 
model 170-174 
other asymptotic tests 173 
Rao's F test 173 
relationship to generalized least 

squares 179 
relationship to multiple regres­

sion 172 
relationship to ordinary least 

squares 171 
Wilk's lambda 173, 174 
ZeHner's seemingly unrelated 

regression 180 
multivariate regression coefficients 

147, 170 
multivariate regression function 147, 

170 
multivariate regression residuals 

172 
multivariate sampies 131, 136 
multivariate skewness 149 
multivariate trimming 156 

N 
n-dimensional space 140, 634 
natural clusters 562, 519 
nearest neighbor proximity 278, 

509 
negative definite matrix 394, 629 
negative semidefinite 629 
nested models 286 
nested sequence of partitions 312 
Newton-Raphson procedure 286, 

302,591 
no-three-way interaction model 52, 

56 
nominal scale 7 
non-fuH rank design matrix 226 
non-hierarchical model 57 
nonmetric multidimensional unfold-

ing 602 
nonmetric phase in MDS 586 
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nonnegative definite matrix 629 
nonprobability sampIe 9 
nonsingular matrix 626 
nontrivial solution of a system of 

equations 640 
normal goodness of fit 148, 149 
normalized varimax rotation 400 
numerical taxonomy 504,518 
null matrix 619 

o 
objective function 520 
oblique rotation 406 
observed frequencies 17, 290 
Ocheae coefficient 505 
odds ratio 16 
optimality criterion 521 
ordinal responses 10 1 
ordinal scale 7 
ordinal scaling 585 
ordinary least squares 171, 283 
ordinary least squares solution vec-

tor 641 
original dissimilarities 586 
orthogonal complement 640 
orthogonal matrix 359,390,570 
orthogonal transformation 638 
orthogonal vectors 635 
orthogonality 143 
orthomax rotation 403 
outliers 146, 150, 152, 171, 189, 

381, 524, 527 

p 
Jrdimensional ellipsoid 141, 359 
Jrdimensional space 140 
paired comparisons 584 
parallel profiles 230-233 
parallelepiped 142 
parameter 10 
parameter matrix 147 
partial association 73 
partial contributions to total in­

ertia 448 
partial correlation 147, 168 

partial correlation matrix 148 
partial dendogram 534 
partial independence model 51, 55 
partition rank 535 
partitioned matrix 630 
partitioning method 559 
partitioning the multivariate nor-

mal 146 
partitioning a multivariate random 

variable 134 
partitions 584 
pattern recognition 518 
Pearson chi-square 21, 48, 440 
phi coefficient 505 
Pillai test 173 
plots for principal components 365, 

368 
plots of profiles 438, 439 
plots ofprofile deviations 441,442 
point binomial 279 
point biserial correlation 550 
Poisson distribution 18, 19, 23 
polychotomous response variable 

86,306-326 
pool adjacent violators algorithm 

587 
population 9 
positive definite matrix 394, 629 
positive semidefinite matrix 571, 

629 
predicted frequencies 290 
prediction success matrix or table 

294-296, 303 
preference models 601 
primary approach to ties 590 
principal axes 359, 444 
principal coordinates analysis 581 
principal components analysis 

bipolar component 360 
communality and variance ex­

plained 374 
criteria for number of com­

ponents to retain 376 
cross validation 377 
dimension reduction 346-350 



eigenvalue problem 352 
equality of eigenvalues test 377 
geometry 359,360 
matrix approximation 347-359 
outlier detection using prin-

cipal components 365--367 
plotting principal components 

365-367 
plotting principal component 

scores 365-367 
principal component scores 365 
spectral decomposition 356 
supplementary points and di-

mensions 380 
standardized principal com­

ponents 371 
used with multiple regression 

378--381 
used with cluster analysis 557 
used with multidimensional 

scaling 581 
principal components biplot 429 
principal component scores 365 
principal factor method 394, 397 
principle of distributional equiva-

lence 450 
probability density contour 146 
probability sampie 9 
probit analysis 282, 299 
probit transformation 283 
Procrustes rotation 406 
product multinomial distribution 

18, 20, 23, 88 
product multinomial sample 59, 

453 
product of partitioned matrices 630 
product of two matrices 621 
profile analysis in repeated mea-

sures 229--234 
profile characterization 161 
profile comparisons 229--234 
profile correlation 499 
profile deviations 437 
profile level 499 
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profiles and profile plots 14-16, 
47, 48, 161, 499 

profile scatter 499 
profile shape 499 
profile variation 499 
projection 641 
projection of a vector on a vector 

635 
projection operator 641 
proportion of variance explained 

187 
proportional reduction in error 25 
proximity between groups 
proximity matrix 570 
proximity measurement 

average linkage 510 
binary data 502, 503 
categorical variables 502 
centroid method 512 
complete linkage, furthest neigh-

bor 509 
correlation 494 
dissimilarity 486 
Euclidean distance 487 
group proximities 508--518 
incremental sum of squares 

512 
Mahalanobis distance 491 
multivariate measures of prox-

imity 516--518 
profile similarity 498-500 
similarity 486 
similarity matrices 495--498 
single linkage, nearest neigh-

bor 509 
sums of squares matrices 516 
ultrametric inequality 515 
updating group proximities 510, 

511,514 
Ward's method 514 

pseudo-F statistic 547 
pseudo-R2 289 
pseudo-t2 statistic 547 
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Q 
Q-sort method 562 
qth order partial correlation 148 
Q-type factor analysis 428 
Q-type matrix 562 
Q-type proximity measure 486, 494 
quadratic discriminant function 262 
quadratic form 629 
qualitative response regression mod­

els 
conditionallogit and consumer 

choice 321, 322 
dichotomous response 279-284 
linear probability model 282 
logistic regression 284-299 
multinomiallogit 306-317 
multivariate qualitative response 

322-326 
probit 299-304 

qualitative scales and variables 7,8 
quantitative scales and variables 

7 
quartimax rotation 403 
quasi-Ioglinear model 82 
quota sampie 9 

R 
R-type factor analysis 428 
R-type matrix 562 
R2 68, 289 
R2g 549 
Rand index 567 
Rand index - adjusted 567 
random matrix 632 
random sampie 9 
random zeroes 81 
rank correlation 387 
rank of a matrix 628 
Rao's F-statistic 173, 184, 216, 

249 
ratio scale 7 
raw SUlD of squares and cross prod­

ucts matrix 139 
reduced model 173 
redundancy analysis 187 

redundancy measure 187, 188 
relative clustering criteria 564 
reliability 8 
relocate clustering method 561 
repeated measurement designs 105, 

109, 166 
repeated measurements in MANOVA 

229-234 
repeated measurements on a sin­

gle variable 160 
repeated measures comparisons 160 
repeated measures in a random-

ized block 162 
replicability in clustering 564 
representative sampie 9 
residual SUlD of squares matrix 172, 

173 
residuals in multivariate regresson 

171, 189 
response functions 282 
response levels 88 
response variables 82, 87, 102, 104 
restricted least squares estimator 

174 
right singular vector 428 
rigid rotation 390, 398 
robust estimation 156 
robust principal components 387 
rotation of a vector 638 
rotation ofaxes 638 
row effects 28, 30 
row marginal densities 435 
row marginal vectors 434 
row marginals 20 
row masses 435 
row profile 14, 435 
row profile coordinates 444 
row profile deviations 437 
row proportion 14, 23, 89 
row sampie sizes 20 
row total proportion 14 
Roy's test 173 
RSQ 572 



S 
sampie correlation matrix 137 
sampie covariance matrix 136, 214 
sampie grand mean vector 214 
sampie joint densities 17 
sampie joint frequency distribu­

tion 17 
sampie marginal frequency distri-

bution 17 
sampie mean vector 136, 214 
sampling 9 
sampling model assumptions 18-

24 
sampling models 18 
saturated loglinear model 29, 32, 

53,56 
scalar multiplication of a matrix 

621 
scalar multiplication of a vector 

634 
scale shift in outlier analysis 152 
scaling response eategories 456 
seatter in profiles 499 
scatterplot 382 
Scheffe's multiple eomparison pro-

cedure 159, 219 
Schwartz eriterion 417 
scree plot 395 
seree test 395 
seeondary approach to ties 590 
seed points 560 
seemingly unrelated regression model 

180 
seleetion and interpretation phase 

591 
semipartial R 2 549 
shape of a profile 499 
Shepard diagram 587 
Shepard-Kruskal algorithm 585 
shrinking off-diagonal elements 156 
similarities from dissimilarities 
similarity in clustering 486 
similarity matrix 495 
simple matching coefficient 504, 

541 
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simple random sampie 9 
simple structure 398 
Simpson's paradox 44, 77 
simultaneous confidence intervals 

219 
simultaneous confidence region for 

I' 159 
simultaneous linear regression 458 
single linkage 541, 509, 521 
singular value decomposition 24, 

426-431, 647 
singular values 427, 444, 648 
singular vector, left and right 428, 

647 
single equation methods 312 
skewness 149 
solution of systems of equations 

640 
space conserving 524 
space diluting 524 
spatial plots 597, 599 
specifie varianee 390 
spectral deeomposition 356, 645 
spherieal multivariate distribution 

165 
spherieal eovarianee matrix 547 
spherieal shaped clusters 526 
sphericity test 165, 414 
split sampie 264 
square matrix 618 
squared eosines 449 
squared Euelidean distanee 487 
squared Euelidean distanee ma-

trix 490 
squared multiple eorrelation esti-

mate 394 
squared profile deviations 440 
SSA 210 
SSTRESS 590 
SSW 210 
standardization proeedures 566 
standardized discriminant function 

eoefficients 250 
standardized estimates 39, 58 
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standardized Euclidean distance 
490 

standardized logistie density 284 
standardized observations 138 
standardized principal components 

371,374 
standardized profiles 500 
standardized residuals 24, 58 
standardized scoring coefficients 374 
standardized scores 371,374 
steepest descent procedure 591 
stepwise logistie regression 296 
stepwise model selection 70 
stratified sampling 9 
STRESS 590 
stress in clustering 535 
STRESSR 591 
strong monotonicity 588 
structural zeroes 81 
structure correlation matrix 187 
structure correlations 186 
submatrix 621 
subpopulation 20, 88 
sum of squares and cross prod-

ucts matrix 138 
sum of squares for blocks 235 
sum of squares for groups 235 
summing response functions 100 
supplementary dimensions 380 
supplementary points 381 
surrogate variable 8 
survey sampling 8 
symmetrie biplot 431 
symmetrie matrix 619, 643 
symmetrie measure of association 

25 
system of equations 639 
systematie sampling 9 

T 
T2_max 152 
tax map method 563 
tetrads 585 
three-way interaction 63, 76 
ties in MDS 588-590 

total inertia 442 
total redundancy 188 
total symmetry hypothesis 110 
total sum of squares 210, 513 
total sum of squares matrix 215, 

516, 547 
total within group sum of squares 

513 
trace of a matrix 617 
trace measure of overall variance 

142 
transforming to normality 150 
transpose of a matrix 617 
trapezoid 142 
tree diagram 519 
triadie comparisons 584 
trivial solution, systems of equa­

tions 640 
Thkey's multiple comparison pro­

cedure 220 
two-group classification 258-267 
two-group comparison of mean vec-

tors 219 
two-way MANOVA 234-238 

U 
uniform order loglinear model 70 
ultrametrie inequality 515, 535 
unbalanced MANOVA 239-241 
unequal covariance matrices 262 
unfolding models in MDS 602 
unique factors 389 
unique variance 390 
univariate analysis of variance, ANOVA 

209,210 
UPGMA 510 
UPGMC 514 
upper tail rule 546 
updating group proximities 510 

V 
variable selection 274, 296 
variance explained in principal com­

ponents 374 
variance ratio criterion 547 



variation around the centroid 491 
variation between profiles 491 
variation within groups 491 
varimax rotation in factor analy-

sis 400 
vector, row and column 618 
vector random variable in multi­

variate distributions 131 
vector space 634 

W 
Wald statistic 96 
Ward's method 514, 522, 527 
weak monotonicity 588 
weighted Euclidean distance 490 
weighted least squares 87,283,306 
weighted least squares modelling 

for contingency tables 
continuation differences 100 
continuation ratios 87, 103, 

315 
design matrices 106, 112 
estimation using weighted least 

squares 87-95 
explanatory variables 87 
factor variables 87 
goodness of fit 96 
inference procedures 96 
logit models 102 
marginal analysis 98 
ordinal response categories 101 
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product multinomial distribu­
tion 88 

repeated measurement designs 
109-114 

response levels 88 
response variables 87 
subpopulations 88 
summing response functions 

100 
tests for symmetry with re­

peated measures 110 
two or more response vari­

ables 104-114 
Wald statistic 96 

weighted sums of ordinal responses 
101 

Wilk's lambda 173,174,184,216, 
235, 248, 249, 275 

Wishart distribution 165 
within group sampie covariance ma­

trix 214 
within group sum of squares 513 
within group sum of squares ma­

trix 215, 526, 547 

Z 
Zellner's seemingly unrelated re­

gression model 180 
zero correlation in a multivariate 

distribution 165 
zero matrix 619 
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