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Some Quotations From Early Statisticians

All sciences of observation follow the same course. One
begins by observing a phenomenon, then studies all associated
circumstances, and finally, if the results of observation can be
expressed numerically [Quetelet’s italics|, estimates the inten-
sity of the causes that have concurred in its formation. This
course has been followed in studying purely material phenom-
ena in physics and astronomy; it will likely also be the course
followed in the study of phenomena dealing with moral behav-
ior and the intelligence of man. Statistics begins with the gath-
ering of numbers; these numbers, collected on a large scale with
care and prudence, have revealed interesting facts and have
led to the conjecture of laws ruling the moral and intellectual
world, much like those that govern the material world. It is
the whole of these laws that appears to me to constitute social
physics, a science which, while still in its infancy, becomes in-
contestably more important each day and will eventually rank
among those sciences most beneficial to man. (Quetelet, 1837)

The investigation of causal relations between economic phe-
nomena presents many problems of peculiar difficulty, and of-
fers many opportunities for fallacious conclusions. Since the
statistician can seldom or never make experiments for himself,
he has to accept the data of daily experience, and discuss as
best he can the relations of a whole group of changes; he can-
not, like the physicist, narrow down the issue to the effect of
one variation at a time. The problems of statistics are in this
sense far more complex than the problems of physics. (Yule,
1897)

Some people hate the very name of statistics, but I find
them full of beauty and interest. Whenever they are not bru-
talized, but delicately handled by the higher methods, and are
warily interpreted, their power of dealing with complicated
phenomena is extraordinary. They are the only tools by which
an opening can be cut through the formidable thicket of diffi-
culties that bars the path of those who pursue the Science of
man. (Galton, 1908)
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A Second Course in Statistics

The past decade has seen a tremendous increase in the use of statistical data
analysis and in the availability of both computers and statistical software.
Business and government professionals, as well as academic researchers,
are now regularly employing techniques that go far beyond the standard
two-semester, introductory course in statistics. Even though for this group
of users short courses in various specialized topics are often available, there
is a need to improve the statistics training of future users of statistics
while they are still at colleges and universities. In addition, there is a need
for a survey reference text for the many practitioners who cannot obtain
specialized courses.

With the exception of the statistics major, most university students do
not have sufficient time in their programs to enroll in a variety of specialized
one-semester courses, such as data analysis, linear models, experimental de-
sign, multivariate methods, contingency tables, logistic regression, and so
on. There is a need for a second survey course that covers a wide variety of
these techniques in an integrated fashion. It is also important that this sec-
ond course combine an overview of theory with an opportunity to practice,
including the use of statistical software and the interpretation of results
obtained from real data.

Topics

This two-volume survey is designed to provide a second two-semester course
in statistics. The first volume outlines univariate data analysis and provides
an extensive overview of regression models. The first volume also surveys
the methods of analysis of variance and experimental design including their
relationship to the regression model. The second volume begins with a
survey of techniques for analyzing multidimensional contingency tables and
then outlines the traditional topics of multivariate methods. It also includes
discussions of logistic regression, cluster analysis, multidimensional scaling
and correspondence analysis, which are not always included in surveys of
multivariate methods. In each volume an appendix is provided to review
the basic concepts of linear and matrix algebra. The appendix also includes
a series of exercises in linear algebra for student practice.
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Mathematics Background

The text assumes a background equivalent to one semester each of linear
algebra and calculus, as well as the standard two-semester introductory
course in statistics. Calculus is almost never used in the text other than in
the theoretical questions at the end of each chapter. The one semester of
calculus is an indication of the ideal mathematics comfort level. The linear
algebra background is needed primarily to understand the presentation of
formulae. Competence with linear algebra however is required to complete
many of the theoretical questions at the end of each chapter. These back-
ground prerequisites would seem to be a practical compromise given the
wide variety of potential users.

Ezamples and Ezercises

In addition to an overview of theory, the text also includes a large number
of examples based on actual research data. Not only are numerical results
given for the examples but interpretations for the results are also discussed.
The text also provides data analysis exercises and theoretical questions for
student practice. The data analysis exercises are based on real data which
is also provided with the text. The student is therefore able to improve by
“working out” on the favorite local software. The theoretical questions can
be used to raise the theoretical level of the course or can be omitted without
any loss of the applied aspects of the course. The theoretical questions
provide useful training for those who plan to take additional courses in
statistics.

Use as a Text

The two volumes can be used independently for two separate courses. Vol-
ume I can be used for a course in regression and design, and Volume II
can be used for a course in categorical and multivariate methods. A quick
review of multiple regression and analysis of variance may be required if
the second volume is to be used without the first. If the entire text is to
be used in two semesters some material in each chapter can be omitted. A
number of sections can be left for the student to read or for the student’s
future reference. Large portions of most chapters and/or entire topics can
be omitted without affecting the understanding of other topics discussed
later in the text. A course in applied multivariate data analysis for gradu-
ate students in a particular field of specialization can be derived from the
text by concentrating on a particular selection of topics.

This two-volume survey should be useful for a second course in statistics
for most college juniors or seniors. Also, for the undergraduate statistics ma-
jor, this text provides a useful second course, which can be combined with
other specialized courses in time series, stochastic processes, sampling the-
ory, nonparametric statistics and mathematical statistics. Because the text
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includes the topics normally found in traditional second courses, such as
regression analysis or multivariate methods, this course provides a broader
substitute by also including other topics such as data analysis, multidimen-
sional contingency tables, logistic regression, correspondence analysis and
multidimensional scaling. The set of theoretical questions in the book can
provide useful practice for statistics majors who have already been exposed
to mathematical statistics.

For graduate students in business and the social and biological sciences,
this survey of applied multivariate data analysis is a useful first year gradu-
ate course, which could then be followed by other more specialized courses,
such as econometrics, structural equation models, time series analysis or
stochastic processes. By obtaining this background early in the graduate
program the student is then well prepared to read the research literature
in the chosen discipline and at a later stage to analyze research data. This
course is also useful if taken concurrently with a course in the research
methodology of the chosen discipline. I have found the first year of the
Ph.D. program to be the ideal time for this course, since later in their
programs Ph.D. students are too often preoccupied with their own area of
specialization and research tasks.

Author’s Motivation and Use of Text

The author’s motivation for writing this text was to provide a two-semester
overview of applied multivariate data analysis for beginning Ph.D. students
in the Faculty of Business at the University of Alberta. The quantita-
tive background assumed for the business Ph.D. student using this text
is equivalent to what is required in most undergraduate business programs
in North America — one semester each of linear algebra and calculus and
a two-semester introduction to statistics. Many entering Ph.D. students
have more mathematics background but do not usually have more statis-
tics background. A selection of topics from the text has also been used
for an elective course in applied multivariate data analysis for second year
MBA students. For the MBA elective course much less emphasis is placed
on the underlying theory.

Because of the many different fields of interest within business Ph.D.
programs — Accounting, Finance, Marketing, Organization Analysis and
Industrial Relations — the topical needs, interests and level of mathemati-
cal sophistication of the graduate students differ greatly. Some will pursue
a strong statistics minor, whereas others will take very little statistics train-
ing beyond this course.

In my Ph.D. class the wide variety of needs are handled simultaneously
by assigning portfolios of theoretical questions to the statistics minor stu-
dent, while the less theoretically oriented students are assigned a paper.
The paper topic may involve a discussion of the application of one or more
of the statistical techniques to a particular field or an overview of tech-
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niques not discussed in the text. A small number of classes are devoted
exclusively to the discussion of the theory questions. For the theory classes
only the “theory folk” need attend. All students are required to complete
data analysis exercises and to provide written discussions of the results.
For the data analysis exercises great emphasis is placed on the quality of
the interpretation of the results. Graduate students often have greater dif-
ficulty with the interpretation of results than with the understanding of
the principles.

Quotations

The quotations by Quetelet (1837) and Yule (1897) were obtained from
pages 193 and 348, respectively, of The History of Statistics: The Mea-
surement of Uncertainty Before: 1900, by Stephen Stigler, published by
Harvard University Press, Cambridge, MA, 1986.

The quotation by Galton (1908) was obtained from An Introduction to
Mathematical Statistics and its Applications, Second Edition, by Richard
J. Larsen and Morris L. Marx, published by Prentice-Hall, 1986.
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Contingency Tables

This chapter begins with an introduction for Volume II and then presents a
survey of the techniques available for analyzing contingency tables. The in-
troduction consists of a discussion of data matrices measurement scales and
an outline of techniques presented in Volume II. The discussion of contin-
gency tables begins in the second section with a review of bivariate analysis
for two categorical random variables and includes a discussion of inference
techniques for two-dimensional tables. The discussion of two-dimensional
tables also includes an introduction to the use of loglinear models. The
third section presents a discussion of the application of loglinear models
to multidimensional tables based on the maximum likelihood approach to
estimation. The logit model is also introduced as a special case of the log-
linear model. The last section of the chapter outlines the weighted least
squares approach to modeling categorical data. The weighted least squares
approach affords a greater variety of models than the maximum likelihood
method.

6.1 Multivariate Data Analysis, Data Matrices
and Measurement Scales

The past decade has seen tremendous growth in the availability of both
computer hardware and statistical software. As a result, the use of mul-
tivariate statistical techniques has increased to include most fields of sci-
entific research and many areas of business and public management. In
both research and management domains there is increasing recognition of
the need to analyze data in a manner that takes into account the inter-
relationships among variables. Multivariate data analysis refers to a wide
assortment of such descriptive and inferential techniques. In contrast to
univariate statistics, we are concerned with the jointness of the measure-
ments. Multivariate analysis is concerned with the relationships among the
measurements across a sample of individuals, items or objects.
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6.1.1 DATA MATRICES

The raw input to multivariate statistics procedures is usually an n x p
(n rows by p columns) rectangular array of real numbers called a data
matriz. The data matrix summarizes observations made on n objects. Each
of the n objects is characterized with respect to p variables. The values
attained by the variables may represent the measurement of a quantity or
a numerical code for a classification scheme. The term object may mean
an individual or a unit, whereas the term variable is synonomous with
attribute, characteristic, response or item. The data matrix is denoted by
the n x p matrix X, and the column vectors of the matrix are denoted by
X1,X2,...,Xp for the p variables. The elements of X are denoted by z;;,
i=12,...,n; 7=12,...,p.

Data Matriz
Variables
X1 X2 Xz ... Xp Objects
T11 T12 TI13 .o T1p 1
X= %21 T2 T23 ... Tp 2
T3] T32 T33 e T3p 3
Tnl Tn2 Tn3 Tnp n

The following four examples of data matrices are designed to show the
variety of data types that can be encountered.

Ezample 1. The bus driver absentee records for a large city transit system
were sampled in four different months of a calendar year. The purpose of the
study was to determine a model to predict absenteeism. For each absentee
record, the variables month, day, bus garage, shift type, scheduled off days,
seniority, sex and time lost were recorded. Table 6.1 shows the obervations
for 10 records.

Ezample 2. The top 500 companies in Canada ranked by sales dollars
in 1985 were compared using information on percent change in sales, net
income, rank on net income, percent change in net income, percent return
on equity, value of total assets, rank on total assets, ratio of current assets
to current liabilities (current ratio) and number of employees. Table 6.2
contains the data for the top ten companies. In this study the researcher
was interested in the properties of the distributions of various quantities.

Ezample 3. A sample of police officers were asked to respond to questions
regarding the amount of stress they encounter in performing their regular
duties. The officers also responded to questions seeking personal informa-
tion such as age, education, rank and years of experience. The purpose of
the analysis was to identify the dimensions of stress.
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TABLE 6.1. Sample From Bus Driver Absenteeism Survey

Month Day Garage Shift Days Off Seniority Sex Time Lost

1 1 5 3 6 5 0 7.5
1 2 5 13 1 9 1 7.5
4 6 3 9 2 8 0 7.5
2 3 3 7 3 7 1 7.5
3 5 3 7 1 8 0 2.5
1 1 4 3 1 10 0 4.2
1 7 1 5 6 5 0 7.5
2 6 5 13 1 2 0 7.5
3 7 5 10 4 5 0 7.5
4 3 1 9 2 6 1 7.5

The data in Table 6.3 are a sample of responses obtained for 18 stress
items and the personal variables age, education, rank and years of experi-
ence.

The 18 stress variables are measures of stress due to 1. insufficient re-
sources, 2. unclear job responsibilities, 3. personality conflicts, 4. investiga-
tion where there is serious injury or fatality, 5. dealing with obnoxious or
intoxicated people, 6. having to use firearms, 7. notifying relatives about
death or serious injury, 8. tolerating verbal abuse in public, 9. unsuccessful
attempts to solve a series of offences, 10. lack of availability of ambulances,
doctors, and so on, 11. poor presentation of a case by the prosecutor re-
sulting in dismissal of the charge, 12. heavy workload, 13. not getting along
with unit commander, 14. many frivolous complaints lodged against mem-
bers of the public, 15. engaging in high-speed chases, 16. becoming involved
in physical violence with an offender, 17. investigating domestic quarrels,
18. having to break up fights or quarrels in bars and cocktail lounges.

Ezample 4. Real estate sales data pertaining to a sample of three bed-
room homes sold in a calendar year in a particular area within a city were
collected. The variables recorded were list price, sales price, square feet,
number of rooms, number of bedrooms, garage capacity, bathroom capac-
ity, extras, chattels, age, month sold, days to sell, listing broker, selling
broker and lot type. Table 6.4 shows a sample of 12 observations, one for
each month. The purpose of the study was to determine factors that influ-
ence selling price.

The four examples outlined above illustrate the variety of data matrices
that may be encountered in practice. Before discussing techniques of mul-
tivariate analysis it will be useful to outline a system of classification for
variables. We shall see later that the variable types influence the method
of analysis that can be performed on the data. The next section outlines
some terminology that is commonly applied to classify variables.
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6.1.2 MEASUREMENT SCALES

Variables can be classified as being quantitative or qualitative. A quantita-
tive variable is one in which the variates differ in magnitude, for example,
income, age, weight and GNP. A qualitative variable is one in which the
variates differ in kind rather than in magnitude, for example, marital sta-
tus, sex, nationality and hair colour.

Quantitative Scales

Obtaining values for a quantitative variable involves measurement along a
scale and a unit of measure. A unit of measure may be infinitely divisible
(eg., kilometres, metres, centimetres, millimetres) or indivisible (eg., family
size). When the units of measure are infinitely divisible the variable is said
to be continuous. In the case of an indivisible unit of measure the variable
is said to be discrete. A continuous variable (theoretically) can always be
measured in finer units; hence, actual measures obtained for such a variable
are always approximate in that they are rounded.

Analysis with discrete variables often results in summary measures or
parameters taking on values that are not consistent with the scale of mea-
surement (eg., 1.7 children per household). Some variables which are in-
trinsically continuous are difficult to measure and hence are often measured
on a discrete scale. For example, the stress variable discussed in Example 3
is an intrinsically continuous variable.

Scales of measurement can also be classified on the basis of the relations
among the elements composing the scale. A ratio scale is the most versatile
scale of measurement in that it has the following properties: (a) Any two
values along the scale may be expressed meaningfully as a ratio, (b) the
distance between items on the scale is meaningful and (c) the elements
along the scale can be ordered from low to high (eg., weight is usually
measured on a ratio scale).

An interval scale, unlike a ratio scale, does not have a fixed origin; for
example, elevation and temperature are measured relative to a fixed point
(sea level or freezing point of water). The ratio between 20°C and 10°C
is not preserved when these temperatures are converted to Fahrenheit. An
interval scale has only properties (b) and (c) above.

An ordinal scale is one in which only property (c) is satisfied; for example,
the grades A, B, C, D, can be ordered from highest to lowest, but we cannot
say that the difference between A and B is equivalent to the difference
between B and C, nor can we say that the ratio A/C is equivalent to the
ratio B/D.

Qualitative Scales

The fourth type of scale, nominal, corresponds to qualitative data. An
example would be the variable marital status which has the categories
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married, single, divorced, widowed and separated. The five categories can
be assigned coded values such as 1, 2, 3, 4, or 5. Although these coded
values are numerical, they must not be treated as quantitative. None of the
three properties listed above can be applied to the coded data.

On occasion, quantitative variables are treated in an analysis as if they
were nominal. In general, we use the term categorical to denote a variable
that is used as if it were nominal. The variable age for example can be
divided into six levels and coded 1, 2, 3, 4, 5, and 6.

Measurement Scales and Analysis

We shall see throughout the remainder of this text that the scale of mea-
surement used to measure a variable will influence the type of analysis
used. The body of statistical techniques that are specially designed for or-
dinal data are often outlined in texts on nonparametric statistics. Variables
that are measured on ordinal scales can often be handled using techniques
designed for nominal data or interval data. The categories on the ordinal
scale can be treated as the categories of a nominal scale by ignoring the
fact that they can be ordered.

The variables in the data matrix represent the attempt by a researcher
to operationalize various dimensions that are believed to be important in
the research study. For dimensions such as intelligence, stress and job sat-
isfaction, appropriate dimensions are difficult to define and measure. If
there are no appropriate units of measure, dimensions are sometimes oper-
ationalized by using other variables as surrogates for direct measurement.
The surrogate variable is usually an accessible and dependable correlate of
the dimension in question; for example, a surrogate variable can be mea-
sured and is believed to be strongly correlated with the required dimension.
Because surrogate variables are not in general perfectly correlated with the
required dimension, a number of them are often used to measure the same
dimension. The effectiveness with which a variable operationalizes a dimen-
sion is also called its validity. The measurement of validity in practice is
usually complex and inadequate.

6.1.3 DATA COLLECTION AND STATISTICAL INFERENCE

Having decided upon the variables to be measured, an experimental de-
sign must be formulated which outlines how the data are to be obtained.
The techniques for this are usually found under the theory and practice
of survey sampling and the theory and practice of experimental design. In
addition, texts on research methodology also discuss the issues of designs
for obtaining the data. One characteristic of the quality of a research design
is the reliability of the data that are obtained. The reliability of the design
refers to the consistency of the data when the same cases are measured at
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some other time or by other equivalent variables, or when other samples of
cases are used from the same population.

Probability Samples and Random Samples

The majority of multivariate techniques, generally employed to analyze
data matrices, assume that the objects selected for the data matrix rep-
resent a random sample from some well-defined population of objects. A
random sample is a special case of a probability sample. In a probability
sampling process the probability of occurrence for all possible samples is
known. In some cases the sample may not be a probability sample in that
the probability that any particular object will be chosen for the sample can-
not be determined. Haphazard samples such as volunteers, representative
samples as judged by an expert and quota samples where the objective is
to meet certain quotas are examples of nonprobability samples that are fre-
quently used. On occasion the data set may represent the entire population
(a census).

It is important to remember that without probability sampling, probabil-
ity statements cannot be made about the outcomes from the multivariate
analysis procedures. Since many research data sets are not obtained from
probability samples, it is important to note that inference results should
be stated as being conditional on the assumption of a probability sample.

In addition to the simple random sample there are alternative probabil-
ity sampling methods that are commonly used. Cluster sampling, stratified
sampling, systematic sampling and multiphase sampling are examples of
more sophisticated methods which are usually used to reduce cost and
improve reliability. Whenever simple random sampling is not used, adjust-
ments have to be made to the standard inference procedures. Probability
samples that are not simple random samples are called complez samples. Al-
though modifications to some multivariate techniques have been developed
for complex samples, they will not be discussed here. Random sampling is
discussed in Chapter 1 of Volume I.

Ezploratory and Confirmatory Analysis

The statistical techniques outlined in this text include both exploratory
analysis and confirmatory analysis. In ezploratory analysis, the objective is
to describe the behavior of the variables in the data matrix, and to search
for patterns and relationships that are not attributable to chance. Ex-
ploratory analysis includes analyses devoted to data reduction and matrix
approximation. Data reduction techniques attempt to replace the existing
columns or rows of the data matrix by a much smaller number of new val-
ues that are representative of the original data. Data reduction and matrix
approximation are essentially the same process. In confirmatory analysis,
certain hypotheses or models that have been prespecified are to be tested to
determine whether the data supports the model. The quality of the model
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is often measured using a goodness of fit criterion. In large data sets the
use of goodness of fit criteria often results in the model being overfitted;
that is a less complex model than the fitted one is sufficient to explain
the variation. The use of cross validation techniques to further confirm the
model is recommended. Cross validation involves checking the fitted model
on a second data matrix that comes from the same population but was not
used to estimate the model.

6.1.4 AN OUTLINE OF THE TECHNIQUES TO BE STUDIED

There is no widely accepted system for classifying multivariate techniques,
nor is there a standard or accepted order in which the subject is presented.
One useful classification is according to the number and types of variables
being used, and also according to whether the focus is a comparison of
means or a study of the nature of the covariance structure. Some multi-
variate techniques are concerned with data analysis and data reduction,
whereas others are concerned with models relating various parameters. The
presentation of topics in the two volumes of this text is governed by the
following:

1. What topics can be assumed to be known from a typical introductory
course in statistical inference?

2. How many variables in the data matrix are involved in the analysis?
3. What types of variables are involved in the analysis?

4. Is the technique a data reduction procedure?

For the most part the techniques to be studied are designed for continu-
ous and/or categorical data. Quantitative variables, with discrete scales or
ordinal scales, will sometimes be treated as if they have continuous scales,
and in other cases they may be treated as categorical. For the purpose
of outlining the techniques, variables are classified as either quantitative
or categorical. Occasionally ordinal data techniques will be introduced to
present alternative but similar procedures.

The topics in this text are split into two volumes. Volume I is primarily
devoted to procedures for linear models. In addition to the linear regression
model, this volume also includes univariate data analysis, bivariate data
analysis, analysis of variance and partial correlation. Volume II is designed
to provide an overview of techniques for categorical data analysis and mul-
tivariate methods. The second volume also includes the topics of logistic
regression, cluster analysis, multidimensional scaling and correspondence
analysis.
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Topics in Volume II

The topics in Volume II can be classified using the categories exploratory
or confirmatory and can also be classified according to the types of mea-
surement scales used for the variables involved. The topics in the first three
chapters (6, 7 and 8) are primarily confirmatory in the sense that the tech-
niques are usually concerned with making inferences about models and
distribution parameters. In Chapter 7 however there is some discussion of
data analysis techniques for multivariate samples. The last two chapters
(9 and 10) are for the most part exploratory and are generally concerned
with data reduction and data matrix approximation. In Chapter 9 there is
some discussion of inference with respect to the factor analysis model ho-
ever the emphasis in the chapter is data reduction. In Chapter 10 the topics
presented are solely concerned with data reduction, matrix approximation
and exploratory analysis.

The techniques presented in Chapter 6 are intended for multidimen-
sional contingency tables and hence would be classified as categorical. In
Chapter 7 the techniques presented are designed for studying relationships
among variables assumed to be distributed as multivariate normal and
hence must be continuous. In Chapter 8 the models studied are concerned
with relationships between categorical and continuous variables. In particu-
lar the concern is whether the relationships among the continuous variables
are the same for all categories defined by the categorical variables. In Chap-
ter 9 the topics of principal components and factor analysis are primarily
designed for data matrices of continuous variables, whereas correspondence
analysis is designed for categorical data. In Chapter 10, cluster analysis is
presented for both types of data, whereas multidimensional scaling is con-
cerned with the determination of continuous scales based on ordinal or
interval input data.

6.2 Two-Dimensional Contingency Tables

This section presents a discussion of bivariate distributions for categorical
random variables and includes an outline of various commonly used sam-
pling models. For inference purposes a sample of n observations is simul-
taneously cross-classified with respect to the two categorical random vari-
ables. The resulting joint frequencies are summarized in a two-dimensional
contingency table. The section also surveys procedures for making infer-
ences regarding the relationship between the two variables.
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TABLE 6.5. Joint Density for X and Y

Y
1 2 3 e c Total
1 fu | fiz | fiz | .- | fic | £1.
2 far | fa2 | faz | .. | fac | fa
X 3 f31 | faz | fa3 | ... | fac | fa.
r frr | fr2 | Fe3 | oo | fre | e
Total | fq | f2 | f3 | -+ | fe 1.00

6.2.1 BIVARIATE DISTRIBUTIONS FOR CATEGORICAL
DaATA

Joint Density Table

The joint distribution for a pair of categorical random variables can be illus-
trated in a two-dimensional table such as Table 6.5. The random variable
X is assumed to have a range of values consisting of r categories, whereas
the variable Y is assumed to have c¢ categories. The cell density or joint
density for cell (i,7) is denoted by fi;, i = 1,2,...,r; j =1,2,...,¢
where it is understood that the first subscript refers to the row and the
second subscript to the column. The marginal densities are denoted by f;.
and f.; for the row and column variables respectively. The conditional den-
sities for the rows given column j will be denoted by f;.(i | j) and for the
columns given row ¢ by f.;(j | 7).

Independence

The random variables X and Y are independent if the joint density f;; can
be expressed as the product of the corresponding marginal densities f;. and
f.; for every cell (i,5). Independence can also be defined in terms of the
conditional densities and the marginal densities. X and Y are independent
if the conditional density for each row is equal to the marginal density for
Y or equivalently if the conditional density for each column is equal to the
marginal density for X.

Ezample

The example presented in Table 6.6 illustrates a joint density function
for two random variables X and Y. The observations were obtained from
a large population of taxpayers in a large number of municipalities. The
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TABLE 6.6. Population Joint Density Age versus Opinion on
Crime Situation

Opinion Regarding Crime Situation
Not Slightly = Moderately Very

Age Level Serious  Serious Serious Serious  Totals
Under 30 0.015 0.076 0.121 0.055 0.267
30 to 39 0.017 0.117 0.111 0.037 0.282
40 to 49 0.012 0.074 0.104 0.032 0.222
50 to 59 0.007 0.034 0.072 0.020 0.133
60 and over 0.001 0.027 0.038 0.030 0.096
Totals 0.052 0.328 0.446 0.174 1.000

TABLE 6.7. Conditional Density for Opinion at Various Levels

Not Slightly = Moderately Very

i Level j Serious  Serious Serious Serious  Totals
1 2 3 4 5

1 Under 30 fi(@11) 0.056 0.285 0.453 0.206 1.000
2 30+to039 fiG12)  0.060 0.415 0.394 0.131  1.000
3 40to49 fi(313) 0.054 0.333 0.469 0.144 1.000
4 50to059 fi(G14) 0053 0256 0.541 0.150  1.000
5 60 & over fi(315) 0.010 0.281 0.396 0.313 1.000
Marginal density

for opinion £ 0.052 0.328 0.446 0.174 1.000

densities in the table are assumed to be the population densities. Each
taxpayer was asked to respond to a question regarding the seriousness of
the crime situation in the neighborhood. The taxpayers were also asked to
give their ages.

The column totals and row totals in Table 6.6 provide the marginal
densities for crime opinion and age. A comparison of the joint densities
fij with the products of the corresponding marginals f;. and f.; suggests
that the two variables are not independent. The departure from indepen-
dence is more easily observed from a comparison of the conditional densities
f.5(4 | %) for opinion at each age level. These conditional densities are shown
in Table 6.7.



14 6. Contingency Tables

TABLE 6.8. Age versus Opinion on Crime Situation

Row and Column Proportions*
Opinion Regarding Crime Situation

Not Slightly Moderately Very Row Total
Age Level Serious Serious Serious Serious Proportion
1 2 3 4 5

Under 30 0.056/0.288  0.285/0.232 0.453/0.271  0.206/0.318 0.267
30 to 39 0.060/0.322 0.415/0.357 0.394/0.248  0.131/0.210 0.281
40 to 49 0.054/0.237 0.333/0.225 0.469/0.234  0.144/0.185 0.223
50 to 59 0.053/0.136  0.256/0.104 0.541/0.162  0.150/0.113 0.133
60 & over  0.010/0.017 0.281/0.082 0.396/0.085 0.313/0.174 0.096
Column total

proportion 0.052 0.328 0.446 0.174 1.000

TR W N =

*The number on the left in each cell is the row proportion and the number on the right is
the column proportion.

Row and Column Proportions

A comparison of the conditional densities f.;(j | ) for opinion on crime
given age in Table 6.7, to the marginal density for opinion on crime f.; in
Table 6.7, reveals that the opinion very serious (j = 4) is more common
among the 60 and over (i = 5) and the under 30 (¢ = 1) levels than among
the middle three levels (¢ = 2,3,4). We can also see that for the 30-39
age group the most likely choice is slightly serious, whereas for the age
groups 40 to 49 and 50 to 59 the most likely choice is moderately serious.
The variation in the behavior of the conditional densities over the five
age categories suggests an interaction between the rows and columns. The
conditional densities f.;(j | ¢) are often referred to as row proportions, and
the marginal density f.; is called the column total proportion. In a similar
fashion the column proportions f;.(i | ) can be compared to the row total
proportions f;. as shown in Table 6.8. The row proportions and column
total proportions are also shown in Table 6.8.

Row and Column Profiles

The row and column proportions are also commonly referred to as row and
column profiles. The term profile is often used in connection with graphical
displays of relationships in a contingency table.

Figures 6.1 and 6.2 display the row and column profiles for the crime
opinion table. The figures also contain a plot of the marginal densities
(broken line) for the column and row densities respectively. A comparison
of the marginal density to the profile can be used to determine the nature
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FIGURE 6.1. Row Profiles for Crime Opinion Data
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of any departures from independence. For the row profiles in Figure 6.1 we
can see that the 60 and over age group has the greatest departure from
independence, while the 50-59 and 30-39 age group profiles also display
some differences from the column marginal densities. Figure 6.2 shows the
column profiles compared to the row marginal densities. The greatest de-
parture from independence occurs in the very serious category. Profile plots
are also useful in correspondence analysis to be discussed in Chapter 9.
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FIGURE 6.2. Column Profiles for Crime Opinion Data
Odds Ratios

The joint distribution can also be studied by examining the odds ratios.
The ratio f;;/fis measures the odds of being in column j relative to col-
umn $ given row i. The ratio f;;/f;s measures the odds for column j versus
column s given row t. The odds ratio is the ratio of the two sets of odds

and is given by

The odds ratio is necessarily 1 if the independence assumption holds. Under
independence, the odds of being in column j relative to column s do not

fs b _ Jishe
fia fta fiaftj.

depend on the row.
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TABLE 6.9. Two-Dimensional Contingency Table

Y Categories

1 2 3 . c Total
1 ni1 | ni2 | nag | ... | M1 ny.
2 ng1 | no2 | n2g | ... | m2. na.
X Categories 3 n3gy | n32 | naz | ... ng. ns.
r ne1 | ne2 | .3 Npe | nr
Total | n.y n.o n.3 e N.c n

Ezample

For the crime opinion distribution in Table 6.6, the odds for the category
very serious relative to the category not serious in the under 30 age group
is 0.055/0.015 = 3.67, whereas for the 60 and over age group this ratio is
0.030/0.001 = 30.0. The ratio of the two odds ratios is therefore 3.67/30.0 =
0.12 which indicates that the odds of very serious relative to not serious are
much higher for the 60 and over age group than for the under 30 age group.
Since this odds ratio is not 1, crime opinion and age are not independent.

6.2.2 STATISTICAL INFERENCE IN TwWO-DIMENSIONAL
TABLES

The Two-Dimensional Contingency Table

A two-dimensional contingency table is produced when a sample of n ob-
servations is simultaneously cross-classified with respect to two categorical
random variables. The notation for a two-dimensional contingency table is
shown in Table 6.9. The contingency table is similar to the joint density ta-
ble shown in Table 6.5, except that the joint densities f;; are replaced by the
observed frequencies or cell frequencies n;j, i1 =1,2,...,7; j=1,2,...,c
A contingency table with r rows and ¢ columns is called an r X ¢ contingency
table.

The contingency table provides a summary of the sample joint frequency
distribution. Dividing the sample frequencies by n yields a table of sam-
ple joint densities. The row and column totals for the contingency table
represent the sample marginal frequency distributions for the two random
variables.
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TABLE 6.10. Observed Frequencies: Driver Injury Level
versus Seatbelt Usage

Driver Injury Level

Seatbelt

Usage None  Minimal Minor Major/Fatal Total
Yes 12,813 647 359 42 13,861
No 65,963 4,000 2,642 303 72,908
Total 78,776 4,647 3,001 345 86,769

Ezample

An example of a two-dimensional contingency table is given in Table 6.10.
Prior to the enactment of seatbelt legislation in the province of Alberta,
a study was carried out to determine the usefulness of seatbelts for the
prevention of injury. A sample of 86,769 automobile accident reports were
studied. For each accident report, the injury level for the driver was clas-
sified into one of four categories, none, minimal, minor and major/fatal.
Each driver was also classified as to seatbelt usage, yes or no. Table 6.10
displays the 2 x 4 contingency table produced from this sample. This con-
tingency table will be used to illustrate the inference techniques presented
throughout this section.

Sampling Models for Contingency Tables

There are a variety of sampling models that can be used to describe the pro-
cess that yielded the (r x ¢) contingency table of n observations. The most
common models are the multinomial, hypergeometric, Poisson and prod-
uct multinomial. The most obvious extension of the simple random sample
assumed for quantitative bivariate analysis is the multinomial distribution.

Multinomial

For the multinomial distribution, a random sample of n observations is
selected from an infinite population. The observations are then classified
into one of the rc cells of the table. The joint density for the sample cell
frequencies is given by

—— 1111 %
H Hn,,; i=1j=1

i=1j=1

f(n117n12,---7nrc) =
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where }°i_;3°7_ nij = n. The means, variances, and covariances for the
ni; are given by

E[ni;] = nfij, Vnil =nfi;(1- fij) i=1,2,...,7;
)= 1)2a y Gy
Cov(nij, nke) = —nfij fre i#k, j#L
k=12
H€=12,...,c

The maximum likelihood estimators of the cell density parameters f;; are
the corresponding sample proportions n;;/n. A useful property of the multi-
nomial is that sums of multinomial random variables are also multinomial.
The parameters are also summed to get the corresponding parameters for
the distribution of the sums. A special case of the multinomial is the b:-
nomial where ¢ = 2 and r = 1. In this case there are only two possible
cells.

Hypergeometric

If the population is finite with known population cell frequencies N;;, i =
L,2,...,m, j=1,2,...,c, the density of the cell frequencies n;; obtained
from a random sample of n observations is given by the hypergeometric
density

r ¢
Ni;! N!
f(’nn,nlz,...,nrc)znl_[ ij

i=1j=1 ni;!(Nyj — "ij)!/n!(N —n)!

The means, variances, and covariances are given by

E[nij] = nfij,
Vini] (%—:—%) nfii(1 - fij),

N-n
Cov(nij, nke) - ( N 1) nfij fre
where fi; = N;;/N, i=1,2,...,r; j =1,2,...,c Inthe case of large finite
populations the hypergeometric can be approximated by the multinomial,
provided each N;; is large.

Poisson

In the multinomial and hypergeometric densities the total sample size n
is fixed. An alternative assumption is to allow n to be a random variable
as well. A useful distribution in this case is the Poisson distribution. The
distributions of the cell frequencies n;; are assumed to be mutually inde-
pendently distributed as Poisson with parameters F;; = E[n;;]. In this
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case the total sample size n also has a Poisson distribution with parameter
F.=E[n] = Y[_;3_, Fij. The variance V[ny;] is also given by F;;. The
joint density in this case is given by

T c
f(nll, n12,-- -, an) = H H Fi';‘je_Fij/nij!'

i=1j=1

Since the cell frequencies are assumed to be mutually independent, Cov(n;;,
nge) =0, i #k, j#E i,k=12,...,r; j€=12,...,c. The maxi-
mum likelihood estimators of the parameters F;; are the sample frequen-
cies n;;. A useful property of the mutually independent Poisson assumption
in contingency tables is that the conditional distribution of the n;;, given
a fixed n, is a multinomial distribution.

Product Multinomial

The product multinomial distribution arises from the joint distribution of
two or more independent multinomial distributions. In the two-dimensional
contingency table, the row sample sizes or row marginals, n;., i =1,2,...,r,
may be fixed. In this case the density for the cell frequencies in each row
is given by the multinomial. Each row of the table is referred to as a sub-
population. The joint density for all » rows is given by the product of
the individual row densities and hence the term product multinomial. The
product multinomial density for an r x ¢ contingency table is given by the
product of the » multinomial densities corresponding to the rows and hence

r

f(nll,nlz,...,n,.c)=1_[ n;.! f[ [&]"ii

i=1 ﬁn-" o1 - fi
= ij J=
i=1

The product multinomial can therefore be derived from the multinomial by
conditioning on the row sample sizes n;.. A product multinomial can also
be obtained by fixing the column marginals or column sample sizes, n.;,
instead of the row sample sizes.

Ezample

To characterize the differences among the sampling models, consider the
collection of questionnaire returns from a population of taxpayers. Each
questionnaire provides information regarding two categorical random vari-
ables, X and Y say, state of residence and income category. The entire
collection of returned questionnaires, N, is assumed to be a population.
The responses generate a two-dimensional table with NN;; in the cell (3, j).

A random selection of n questionnaires from this population can be as-
sumed to yield a multinomial or hypergeometric distribution depending on
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the magnitudes of the population quantities N;;. If the N;; are relatively
large, then the multinomial distribution can be assumed.

Suppose that over a fixed time period of two days questionnaires are
drawn randomly from the population. The sample size n is not fixed. The
number of questionnaires obtained in each cell can be assumed to be Pois-
son independent of the other cells. The conditional distribution of the cell
frequencies given the total sample 7 in this case is then multinomial.

A third possible sampling scheme first divides the population of ques-
tionnaires with respect to the categories of one of the random variables,
say state of residence. Random samples of predetermined sizes are then se-
lected from each subpopulation or state. The distribution in this case is a
product multinomial or product hypergeometric. This distribution can be
obtained from the multinomial or hypergeometric scheme by conditioning
on the subpopulation sample sizes.

Test of Independence

A common test of independence between the two categorical random vari-
ables X and Y in contingency tables is the Pearson x? test. The random
sample is assumed to have been drawn from a multinomial population.
If X and Y are independent, we would expect that the sample densities
ni;j/n should be similar to the product of the sample marginal densities
(ni./n)(n.j/n), and hence the estimated ezpected frequencies under inde-
pendence are (n;.n.;)/n. If this hypothesis of independence is true, in large
samples the Pearson statistic

"~ (nij — nin.;/n)?
G? = ij — iy
;; nin.;/n
has a x2 distribution with (r — 1)(c — 1) degrees of freedom. Large values
of G? reflect large differences between n;;/n and the product (n;./n)(n.;),
and therefore the independence hypothesis is rejected if G2 is too large.
The Pearson x? statistic is based on the assumption of a multinomial
population with rc cells. In large samples, the sample proportions n;. /n and
n.j/n are assumed to be normally distributed. The Pearson x? is obtained
from the distribution of the sums of squares of standardized normal random
variables.
An alternative x? statistic to G2 is obtainable using the likelihood ratio
approach. Again assuming a multinomial population, in large samples the

statistic . e
2 _ . nin
B = 222"’1] In (n,-.n.j)

has a x? distribution with (r—1)(c—1) degrees of freedom if the hypothesis
of independence holds. In large samples the two x? statistics are usually
quite comparable.
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TABLE 6.11. Driver Injury versus Seatbelt Usage Level

Observed and Expected Frequencies under Independence
Driver Injury Level

Seatbelt
Usage None Minimal Minor Major/Fatal Total
Yes Observed 12,813 647 359 42 13,861
Frequency
Expected 12,584.2 742.3 479.4 55.1
Frequency
No Observed 65,963 4,000 2,642 303 72,908
Frequency
Expected 66,191.8 3,904.7  2,521.6 289.9
Frequency
Totals 78,776 4,647 3,001 345 86,769
Ezample

For the example relating seatbelt usage to driver injury level in automobile
accidents, the value of the Pearson x? for the independence hypothesis
is G2 = 59.224. This chi square statistic has three degrees of freedom
and is significant at the 0.000 level. The likelihood ratio statistic has the
value H? = 42.9690 and a corresponding p-value of 0.000. Generally, the
two goodness of fit statistics have similar values. There appears to be a
relationship between seatbelt usage and driver injury level.

Table 6.11 compares the observed frequencies to the expected frequencies
under independence. A comparison of the numbers in each cell shows the
nature of the departure from independence. The frequency of injury for all
types of injury for drivers wearing seatbelts is less than expected under
independence.

Sampling Model Assumptions

Our test for independence in contingency tables outlined above assumed
that the data were obtained as a random sample of size n from a multi-
nomial population. The population units were divided among rc cells with
the probability of a unit occuring in cell (¢, ) being denoted by f;; where
E:=1Z;=1 fij = 1. The marginal densities for the rows are given by f;.,
where f;. = E;=1 fijy ©=1,2,...,r. Similarly the marginal densities for
the columns are given by f.;, where f.; = Z::lfi.‘i’ j=12,...,c. The
sample estimates of f;;, f;. and f.; are given by n;;j/n, n;./n and n.;/n re-
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spectively. These estimators are the maximum likelihood estimators under
the multinomial sampling assumption.

Poisson Distribution

As discussed earlier in this section, two commonly used alternative sampling
models lead to the same maximum likelihood estimators as the multinomial.
If there is no restriction placed on the total sample size, the cell frequencies
ni; may be viewed as random variables with expectation E[n;;] = Fj;. If
each of the n;; are assumed to have an independent Poisson distribution,
the maximum likelihood estimators for E[n;;] are given by (n;.n.;)/n. For
the Poisson assumption the total sample size n is not fixed. If the sampling
is carried out for a fixed period of time and then stopped, the total sample
size n acquired up to that point is also a random variable. The conditional
distribution of the n;;, given fixed n in this case, is a multinomial distribu-
tion; hence, the above procedures can be applied to the Poisson sampling.
The independence hypothesis in the Poisson case implies that the true cell
means E[n;;] satisfy the independence hypothesis given by

_ _ E[n,]E[nJ] _ E[n,]E[nJ]
Fij = Elny;] = “EnlEfn] [n] = ~Bm

Product Multinomial Distribution

A second alternative to the multinomial population is called the product
multinomial. In the product multinomial, additional restrictions are placed
on the sample. Either the row totals n;. or the column totals n.; are fixed in
advance. In this case the sample is restricted to contain a specific number
of observations from each category of one of the variables. The maximum
likelihood estimators of the unrestricted marginals, either f;. or f.;, are
given by n;./n or n.;/n respectively. The expected cell frequencies under
independence are estimated by (n;.n.;)/n as in the two previous cases. In
this case the test is often referred to as a test of homogeneity of row or
column proportions.

If the marginals n;. are fixed, then we are sampling independently from
the r row subpopulations. In this case, the independence hypothesis f;; =
fi.f.j is written in the alternative form f;;/f;. = f.;, which states that
the conditional densities for each level of j in each row i are equivalent
to the marginal densities at each level of j. The estimated expected cell
proportions under this model are obtained by rewriting n;; = (n;.n.;)/n in
the form n;;/n;. = n.;/n. The estimated expected row proportions n;;/n;.
for each level of j in each row are expected to be homogeneous over the r
rows. Similarly in the case of fixed column marginals the estimated expected
column proportions should be homogeneous over the columns.

All three sampling models for the r X ¢ contingency table yield the same
estimates for the expected frequencies under independence. The likelihood
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ratio x? statistic H given above is therefore identical for all three sampling
models.

Standardized Residuals

A useful way of comparing the observed and expected frequencies is to
determine the standardized residuals for each cell. The components of the
Pearson x? statistic provide information about which cells make the largest
contribution to x2. The square roots of each of the terms in the Pearson
x? statistic are commonly called the standardized residuals. For cell (i, j)
the standardized residual is given by

Tiij = (Tl,’j - n,n]/n)/ (n,-.n.j)/n.

An alternative method of standardizing the residuals is to use the Freeman-
Tukey deviations given by

r2ij = y/Mij + /nij + 1 —1/(4nin/n) + 1.

For the observed and expected frequencies in Table 6.11, the standardized
residuals are given by 2.0, -3.5, -5.5 and -1.8 for yes and —0.9, 1.5, 2.4
and 0.8 for no. The Freeman—Tukey deviations are 2.0, -3.6, —5.9 and —1.8
for yes and —0.9, 1.5, 2.4 and 0.8 for no. The two methods of determining
residuals produce very similar results in both cases.

Correspondence Analysis

An alternative approach to the study of relationships in a two-dimensional
contingency table is based on a singular value decomposition of the two
matrices of row and column proportions or profiles. In this method the de-
partures from independence for the row profiles are characterized in terms
of two orthogonal dimensions determined from the singular value decompo-
sition of the row profile deviations from independence. The row categories
can then be plotted on the two-dimensional graph to show the departure
from independence. A similar plot can be obtained for the column profile
deviations from independence. The two pairs of dimensions (one pair for
the row profiles, one pair for the column profiles) can be viewed as a scaling
of the row and column categories. Thus two scales are derived for each of
the two sets of profiles. The scales are determined in such a way that the
amount of variation explained among profile deviations is maximized.
This topic will be discussed more extensively in Chapter 9.

6.2.3 MEASURES OF ASSOCIATION

If the independence model does not hold it is sometimes of interest to
measure the degree of association between the row and column categories.
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A useful approach to the measurement of association uses the concept of the
proportional reduction in error achieved through knowledge of one variable
when predicting the other variable.

Goodman and Kruskal’s Lambda

For an individual drawn at random from the population, if no information
is available about which row or column the individual belongs to, the best
prediction for the cell location would be the one corresponding to the largest
row and column population marginal densities. We denote the mazimum
row and column marginal densities by f,,. and f.,, respectively. Clearly,
the probabilities of making an error in each case are (1— fy,.) and (1- f.,,)
respectively.

If the column category for the individual is known, the best prediction for
the unknown row category is the one corresponding to the largest density in
the given column. Given column j we denote the maximum density by fm;.
The probability of making an error in this column is therefore f.; — fm;
and over all columns the probability of making an error is 1 — 2;;1 Jmj-

The difference between the two error probabilities is given by

(jgfmj - fm-)-

After dividing this expression by the probability of error in predicting the
row with no information, Goodman and Kruskal’s Lambda is obtained. This
ratio is given by

Am. = (ifmj - fm)/(l - fm)

The measure of association \,,. therefore denotes the proportional reduction
in error for row predictions when the column is known. Similarly, the pro-
portional reduction in error for column predictions given the row is defined

by .
Am = (2_: Fim — f.,,.) / 1= fm).

The above two measures of association are said to be asymmetric in that
one of the two variables is being predicted using the other. A symmetric
measure of association that combines the logic used above is given by

A= { (53t + 33 om] = 3lim = Fnd} /11 5l + ]

i=
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Ezample

For the crime opinion population described in Table 6.6, the lambda mea-
sures of association are given by

A\ _ (0.121 +0.117 4 0.104 + 0.072 + 0.038) — 0.446 _ 0.01
m - 1-0.446 -

_ (0.017 4 0.117 4 0.121 + 0.055) — 0.282 _

_ (0.452) + 1(0.310) — 1(0.282) — 1(0.446)

A 1 — 3(0.282) — 5(0.446)

=0.027.

All three measures of predictive association indicate that the association is
extremely weak.

Inference for Lambda

A contingency table can be used to make inferences about the population
measure of association defined above. A sample estimator for the Goodman-
Kruskal measure of association can be used for this purpose. Replacing
the true densities f;. and f.; by sample densities derived from the cell
frequencies, n;;, the estimators for the Goodman-Kruskal measures can be
obtained. To measure the predictability of the column given the row, the
estimator is given by

Am = [gnim - n.m] /[n = Nem),

where n;m, denotes the largest value of n;; in row %, and n.,, denotes the
largest value of the marginal totals n.;.

In large samples the statistic z = (A.;u—A.m)/6».,, has a standard normal
distribution. The estimator 6, ,, is given by

&?\.m = (n - i"%’m) (Enim + N — 2n’,'m> /(n - n.m)?,
i=1

where n’;, denotes the sum of the n;; in the same column as n.,. This
statistic cannot be applied if A.,, =0 orA/\.m =1. Tpe hypotheses Hy: A.,,, =
0 and Hy: A.,, = 1 are rejected unless A.,, =0 or A.,, = 1 respectively.

In a similar fashion the measure of predictability for the row given the
columns \,,. is given by

c
Am. = [an,- - nm.] [In—nm.;
=1

where n,,; denotes the largest value of n;; in column j and n,,. denotes
the largest value of the marginal totals n;..
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Ezample

For the sample data presented in Table 6.10, the two measures of association
A.m and A, are zero. The no-seatbelt category dominates the seatbelt
category for every injury level and the no-injury category dominates the
other injury categories for both seatbelts and no seatbelts.

6.2.4 MODELS FOR TWO-DIMENSIONAL TABLES

Up to this point in our study of the joint distribution for qualitative bi-
variate random variables, the departure from independence was charac-
terized by examining the behavior of row and column proportions and/or
by the measurement of association between rows and columns. Although
such techniques are usually sufficient for characterizing the behavior in two-
dimensional tables, higher dimensional tables are more easily studied using
models that relate cell frequencies. Before discussing multidimensional ta-
bles it will be useful to introduce cell frequency models for two-dimensional
tables.

The bivariate distribution can also be characterized in terms of proba-
bility models relating cell probabilities or densities. In the previous section
the independence model was evaluated using a x? test. This model is given
by

fij=fi-f-ja i=1,2,...,7‘;j=1,2,...,c.

In addition to the independence model, there are simpler models that could
also be used.
Equal Cell Probability Model

The simplest model for a two dimensional table is the equal cell probability
model
fij = 1/re, i=1,2,...,1; j=1,2,...,c

implying that all rc possible events are equally likely.

Constant Row or Column Densities

Models that assume constant densities across rows or constant densities
down columns are also possible and are given respectively by

fij = (1/c) fi. and hence constant column densities f.; = 1/c
and
fij = (1/r)f.; and hence constant row densities f;. = 1/r.

In the constant column density model the marginal density in each column
is 1/c whereas for the constant row density model the marginal density in
each row is 1/r. In each case the rows and columns are independent and, in
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addition, one of the marginals is constant. In the constant column density
model the column conditionals are given by f.;(j | ¢) = 1/c. Similarly, for
the constant row density model f;.(i | ) = 1/r. An examination of the
joint densities in Table 6.6 reveals that none of these simple probability
models would adequately describe the behavior of the cell densities.

The Independence Model as a Composite of Three Simple Models

The independence model may be viewed as a less restrictive model than
the constant row density and constant column density models, in that the
marginal densities are no longer constant. Under independence the condi-
tional densities are given by

fi@]4) = fu

and
£3G19) = £5.

The conditional densities are therefore equal to the marginal densities. In
the independence model the row conditionals are the same for each column
and the column conditionals are the same for each row. Unlike the constant
row or column density models described above under independence the
marginal densities are not constant.

The independence model introduced in Section 6.2.1 may also be written
in terms of the three simpler models by writing it in the form

fi; = [1/rd[rfillcf 4]
= [1/rc][fi./(1/m)][f.5/(1/c)], L,2,...,m

1,2,...,c

i
J
The first term of the product represents the density for cell (i, j) under the
constant cell density model. The second term represents the ratio of the
marginal density for row i to the marginal density under the constant row
marginal model. The third term represents the ratio of the marginal density
for column j to the marginal density under the constant column marginal
model. In comparison to the three simple models, the independence model
may be viewed as the product of an average effect [1/rc], a row effect [r f;.],
and a column effect [cf.;].

Ezample

For the crime opinion distribution introduced in Table 6.6 the average effect
is 1/rc = 0.0050. The row effects are 1.337, 1.404, 1.110, 0.663 and 0.481
respectively, and the column effects are 0.210, 1.308, 1.786 and 0.695. The
row effects indicate that larger than average proportions of the population
fall into the younger age categories, whereas the column effects indicate that
larger than average proportions of the population prefer the two moderate
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TABLE 6.12. Interactions Between Age and Crime

Opinion
Opinion Regarding Crime Situation

Not Slightly  Moderately Very
Age Level Serious  Serious Serious Serious
Under 30 1.08 0.87 1.01 1.19
30 to 39 1.14 1.27 0.88 0.75
40 to 49 1.07 1.01 1.05 0.83
50 to 59 1.03 0.78 1.22 0.85
60 & over 0.18 0.85 0.89 1.81

views of the crime situation. Under the independence model, therefore,
the row effects and column effects account for all the variation in the cell
densities.

The Saturated Model

If the independence model does not hold, the joint density may be expressed
as a product of the above effects and a residual. The model is given by

fij = [/re[r fillef 5 fi5/ fi- £.5)-

The fourth term
fij/ fifj

is the added residual term. This residual term guarantees that the equation
holds for all joint densities. This model is called a saturated model because
it fits the table perfectly. This last term is called the interaction term be-
cause it measures the interaction between rows and columns. The degree of
departure of the interaction term from the value 1 indicates the magnitude
and direction of the departure from independence.

Ezample

Table 6.12 presents the magnitudes of the interactions for the crime opinion
example. A quick perusal of the table reveals the pattern of departures
from independence. The largest and smallest values of the interaction term
are in the highest age category. Relatively few people in the 60 and over
category view the crime situation as not serious, whereas a relatively large
number view the situation as very serious. For the age category 30-39, fewer
individuals view the crime situation as very serious than would be expected
by chance under independence.
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Loglinear Characterization for Cell Densities

The above method of modeling the joint distribution employed ratios to
column and row marginals that were determined from arithmetic means of
row and column densities. Given that we are attempting to model densities
that are proportions, the use of geometric means rather than arithmetic
means may be preferable. The reader may recall that geometric means are
usually preferable to arithmetic means when averaging ratios.

The geometric mean of the rc cell densities is given by f. where

Inf. = ZZ In fi;.

3 li=1

The geometric means of the densities in row i and column j are given
respectively by f;. and f.; where

. 1
Inf, = ZZln fij

Jj=1

- 1
Inf; = ;;mf.-,-.

A Loglinear Model for Independence

Under the independence assumption we may write a loglinear model as

Infij=lnf. +[nfi —Inf.]+[nf; —Inf]

5y = F[2] ]
fALf.

if independence holds. Once again this product of three terms may be
viewed as an average term multiplied by a row effect and a column effect.
The row effect is obtained from the ratio of the geometric mean of the
densities in row i, f;., to the overall geometric mean of cell densities, f...
Similarly the column effect is obtained from the ratio of the geometric
mean of the densities in column j, f.;, to the overall geometric mean of
all cell densities, f.. The row and column effects therefore are now ratios
of geometric means of cell densities.

and hence
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Parameters for the Loglinear Model

From the definitions of the terms in the loglinear model, the terms may be
viewed as means. New parameters y, () and pg(j) may be defined as

© ='1"IEE ;lnfl] =lnf~-

_1
- cC
Ha) =%ﬁ;1nf,, Inf. =[nf;-nf].

The parameter y is therefore the logarithm of the overall geometric mean
of the densities. The parameter y, ;) represents the logarithm of the ratio
of the geometric mean of the densities in row ¢ to the overall geomet-
ric mean. Similarly, the parameter ;) is the logarithm of the ratio of
the geometric mean of the densities in column j to the overall geometric
mean. The parameters p;(;) and uy(;) have the properties DIV B =0
and E, 1M2¢j) = 0. These parameters therefore are similar to the effect
parameters used in analysis of variance.
Under independence the model then becomes

In fij = p+ pgiy + pag)-

This is commonly called the loglinear model for independence in a two-
dimensional table. The form of this model is similar to the models used in
analysis of variance.

The Loglinear Model with Interaction

If the independence model does not hold, an interaction term can be deter-
mined that represents the departure from independence. The density can
be expressed in the form

SN 1[f”f ]

J

As in the previous models the interaction term (f;; £/ fJ) measures
the ratio of the true density to the density suggested by the independence
model.
If independence does not hold, the loglinear form of the model can be
written as
In fij = p+ pag) + pagg) + p12Gs)

where the interaction parameter p;5(;) is given by

pais) =Infij +In f. —Infi —In f;.



32 6. Contingency Tables

TABLE 6.13. Age versus Opinion on Crime Situation, Logarithms of Cell

Densities
Opinion Regarding Crime Situation

Age Not Slightly = Moderately Very Row Row
Level Serious  Serious Serious Serious Totals Average
Under 30 —4.200 -2.577 -2.112 -2.900 -11.789 -2.947
30 to 39 —4.075 -2.146 -2.198 -3.297 -11.716 -2.929
40 to 49 —4.423 -2.604 -2.263 -3.442 -12.732 -3.183
50 to 59 —4.962 -3.381 -2.631 -3.912 -14.886 -3.722
60 & over —6.908 -3.612 -3.270 -3.507 -17.297 —4.324
Column
totals —24.568 -14.320 -12.474 -17.058 —68.420
Column
averages —4.914 -2.864 —2.495 -3.412 -3.421

The interaction parameters have the properties that °._; B12¢ij) = 0 and
Z;=1N12(ij) = 0. This model is commonly referred to as the saturated
loglinear model since it describes the densities precisely without any re-
strictions.

Ezample

For the crime opinion population discussed above, the logarithms of the cell
densities are shown in Table 6.13. The logarithms of the various geometric
means can be obtained from the row and column averages in this table. The
logarithm of the geometric mean, In f.., can be obtained from the average
of In f;; over the entire table. These averages are also shown in Table 6.13.

The logarithms of the various geometric means are given by the row and
column averages shown in Table 6.13.

Inf.=-3421, Inf,=-4914, Inf,=—2.864,
Inf3=-2495 Inf,=—3412,

Infi. = —2947, Info. =-2.929, Infs =—3.183,
Inf;. = -3.722, Inf5 = —4.324.

The loglinear model parameter for the overall mean is given by 4 = In f.=
—3.421. The row and column effects are obtained by subtracting In f.. from
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the row and column averages and are given by
po(1) = —1.493, pa(z) = 0.557, pg(3) = 0.926, pzg) = 0.009
pi11) = 0.474, py2) = 0.492, py(3) = 0.238,
pi(a) = —0.301, py(s) = —0.903.

The reader should note that both the row effects and column effects sepa-
rately sum to zero. These effects therefore can be compared to zero in order
to provide interpretation.

From the column parameters p;(;) determined above, we can conclude
that there are relatively more individuals in the columns corresponding
to slightly serious (ua(2)) and moderately serious (uz(3)), whereas for the
opinion not serious (g(1)) there are relatively few indivduals. The row
parameters p,(;) indicate that there are relatively more individuals in the
first three age categories and relatively fewer in the last two age categories.

Under independence the logarithm of the cell densities, In f;;, as shown in
Table 6.13 should be equal to the overall average p plus the corresponding
row and column effects y;(;) and p5(;) as determined above. The difference
between In f;; and the sum of the three parameters represents the departure
from independence.

The departure from independence can be shown using the interaction
parameters p;o(;;), Which are obtained by subtracting the overall mean p
and the row and column effects ;) and puy(;) from the logarithm of each
cell frequency as given in Table 6.13. These interaction terms are

“12(11) = 0253, H12(12) = —0193, ﬂ12(13) = '—0098,
pi2(14) = 0.038  pyg21) = 0.355, pize2) = 0.230,
pa2(23) = —0.200, pi2(24) = —0.385  piz(31) = 0.287,
pizaz) = 0.011, pipas) = —0.021, pya3e) = —0.277
H12(41) = 0.277, Hi2(42) = —0220, H12(43) = 0.161,
Pi2(ae) = —0.220  pigs1) = —1.173, piase) = 0.172,
Hi12(53) = 0.157, Hi12(54) = 0.844.

The reader should note that the interaction parameters necessarily sum
to zero across each row and down each column. Under independence each
of the above interaction parameters would be zero. By comparing the pa-
rameter values j;5(;;) to zero, we can determine that for the opinion not
serious, the oldest age category is underrepresented [see p15(51)] while the
remaining age categories are overrepresented. For the opinion very serious,
the oldest age category is overrepresented [see 1112(s4)] and for ages 30 to 59
this opinion is relatively scarce [see 12(44)]. Thus in comparison to other
age groups individuals in the oldest age category are more likely to choose
the opinion very serious and less likely to choose the opinion not serious.
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Matriz Notation for Loglinear Model

The loglinear model outlined above can also be shown in matrix notation
in a similar fashion to analysis of variance models. The model is given by

where

" In f1h
In fa;

lnfrl

In f12
In fa2

Inf= :

1nfr2

ln.flc

| Inf,e

This matrix notation is useful for multidimensional tables and is sometimes

Inf=X8+e¢,
[1 1 0
110
110
1 01
1 01

X=]:
1 01
10
10
| 0 0

C T

H1(1)

K1(2)

Hi(r) | > €=

H2(1)

H2(2)

L H2(c)

used when employing statistical software.

The loglinear model is a useful approach for characterizing variation in
a contingency table. It is very useful for the multidimensional tables which

will be studied in Section 6.3.

€11
€21

€r1
€12
€22

€r2

€1c
€2¢

ETC 4

OO

=
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6.2.5 STATISTICAL INFERENCE FOR LOGLINEAR MODELS

Given a two-dimensional contingency table, the loglinear model parameters
can be estimated using the sample cell frequencies. Inferences regarding the
model parameters can be made using both the Pearson and likelihood ratio
x? statistics. This section outlines the approach using the seatbelt data in
Table 6.10.

For the loglinear model introduced above, the independence model is
written

lnfij =u+ﬂ‘1(i)+’-l'2(j)’ i=12,...,7; j=1v2s--'7cv
where

po= izz In f;;

i=1j=1

1 c
P = -C'Zlnfij—ﬂ
=1

1 T
Boi) = ;Zlnfij_ﬂ"
=1

If the independence model does not hold, the interactions, u;2(;5), can be
determined from the loglinear model residuals

BazGj) = Infij — p— @) — pegy, 1=1,2,...,m j=12,...,¢c
hence
lnfij = ﬂ'+ﬂ'l(l) +“2(]) +"l‘12(ij)a 1= 1’21"-a7‘; .7 = 1,2,...,6,

which must fit the data perfectly.

The Loglinear Model Defined in Terms of Cell Frequencies

When fitting loglinear models to contingency tables, it is more common to
express the loglinear model in terms of the cell frequencies rather than the
cell densities. We shall denote the expected cell frequencies for a sample of
size n by Fij =nfi;, 1=1,2,...,7r; j=1,2,...,c. The loglinear model is
then written

lnFij = ﬂ'+ﬂ'l(z) +u2(]) +ﬂ'l2(ij), i=1,2,...,r; j=12,...,¢
where

1 IS
Br = EZZIDF,‘J'

i=1j=1
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1 c
Mm@ = ;ElﬂFﬁ — K
Jj=1

1 T
Mgy = -) Fy—p
=1
p2G) = WFyj—p—pa) — pag)-

Multiplicative Form of the Loglinear Model

Using the antilogarithms of the parameters the loglinear model can be
expressed in multiplicative form as

Fij = BoBi)B2(i)Pr2(iz)s
where o = e, By = e#1®), Byj) = e#2) and Big(;j) = eF136i),

Estimation for the Loglinear Model

Estimated theoretical frequencies E;; are determined from the observed
frequencies n;;. The parameter estimates are then determined by replacing
the Fj; by the E;; in the above definitions. These estimators are maximum
likelihood estimators under the sampling model assumptions introduced
above. The parameter estimates are given by

1 T [
p o= T—CZZlnEﬁ

i=1j=1

X 1¢ X
e = EZ InE;; — i
j=1

X 1¢ X
fngy = - InEj—j.
i=1
For the independence model E;; = n;.n.;/n, while for the saturated model
the F,'j are estimated using E,'j = Nyj.
Computer Software

The BMDP software will be used to fit the loglinear model in this section.

Ezample

The logarithms of the expected frequencies for the independence model for
the driver injury data of Table 6.10 are shown in Table 6.14. The parameter
estimates from this table are given by

i =17.3880, fiz)=—08301, fiz)=0.8301, )= 28823,

ﬂg(g) = 00518, ﬂ2(3) = —03854, ﬂ2(4) = —2.5487.
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TABLE 6.14. Logarithms of Expected Frequencies Driver In-
jury Level versus Seatbelt Usage

Seatbelt Driver Injury Level

Usage None Minimal Minor Major/Fatal Total
Yes 9.4402 6.6098 6.1725 4.0091 26.2316
No 11.1003 8.2699 7.8326 5.6695 32.8723
Total 20.5405 14.8797  14.0051 9.6786 59.1039

TABLE 6.15. Logarithms of Observed Frequencies Driver In-
jury versus Seatbelt Usage

Seatbelt Driver Injury Level

Usage None Minimal Minor Major/Fatal Total
Yes 9.4582 6.4723  5.8833 3.7377 6.3879
No 11.0968 8.2940 7.8793 5.7137 8.2460
Total 10.2775 7.3832 6.8813 4.7257 7.3169

The reader should note how the row effects and column effects separately
sum to zero. Under the independence hypothesis, these parameter estimates
indicate that the frequencies in the seatbelt row are relatively low and in
the no seatbelt row they are consequently very high. The column or injury
level parameters indicate that the no injury category has a relatively large
frequency and the major/fatal category has a relatively low frequency. We
have already seen from the x? test of independence in Section 6.2.2 that
the independence model does not fit the data in the table. The values for
both the Pearson and likelihod ratio x? statistics were significant at the
0.000 level. Therefore the saturated model must be used to describe the
variation in the table.

The logarithms of observed frequencies are presented in Table 6.15. The
parameter estimates for the saturated model are obtained by using the
observed frequencies n;; for the estimated expected frequencies E;; in the
estimation equations above. The interaction parameters are given by

p'l2(ij) =1nnij _p'_ﬂl(i) —ﬁ2(j)a i=12,...,r5 j=12,...,c

The reader should note that these parameter estimates are different than
those obtained for the independence model. In this case E;; has the value
nij, whereas for the independence model E;; = n;.n.;/n.
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For the observed frequencies in Table 6.15 the parameter estimates are

[ =17.3169, f1a) = —0.9290, [y 2) = 0.9290
fiz(1) = 2.9606, fa(2) = 0.0663, fia(3) = —0.4356,
ﬂ2(4) = —2.5913, ﬂ12(11) = 01097, ﬂ12(12) = 00182,
12013 = —0.0689, fi13(14) = —0.0590, fiyz(21) = —0.1097,
fir2(22) = —0.0182, fi1p(23) = 0.0689,  fija(24) = 0.0590.

The reader should note how the row effects and column effects sum to
zero and how the interaction effects separately sum to zero in each row
and column. The estimates of the interaction parameters indicate that for
individuals who wore seatbelts, the frequency of minimal, minor and ma-
jor/fatal injuries is lower than for those who did not wear seatbelts. An
individual in a car accident who wears a seatbelt therefore is more likely
to be in the no injury category and less likely to be in the minimal or
major/fatal category than for individuals who do not wear seatbelts.

The antilogarithms of these parameter estimates can be used to express
the parameters in terms of the geometric mean and ratios of geometric
means. The antilogarithms are given by

et =1505.530, ef1) =0.395, e =2.532,
ef2) =19.310, ef2 =1.0685, ef2® =0.647,
ef2@) = 0.075, efr2any =1.116, efr2a2) =1.018,
ef1203) = (0,933, ef1204) =(.943, efr2en = (.896,
efr2en = (0,982, ef12e3) =1.071, efr2c4) =1.061.

Each of the estimated expected frequencies can be written as a product of
the appropriate multiplicative parameters

Eij=mn; = eh . P16 . gh2(i) . gPr2G)

From the antilogarithms of the parameter estimates we can draw conclu-
sions about the cell frequencies. The geometric mean of the cell frequencies
is 1505.530. The ratio of the geometric mean of the cell frequencies relative
to the overall geometric mean for seatbelt users is 0.395 whereas for seat-
belt nonusers this ratio is the inverse of 0.395 = 2.532. Thus a relatively
large proportion of the drivers did not wear seatbelts.

The ratios to the overall geometric mean of the geometric means for the
injury categories suggest that a large proportion of the frequency did not
sustain any injury whereas only a very small proportion obtained a ma-
jor/fatal injury. For the minimal category the geometric mean was slightly
larger than the overall geometric mean, whereas for the minor category the
geometric mean was a little below the overall average.

The interaction terms suggest that seatbelt users are less likely to sustain
major/fatal or minor injury than seatbelt nonusers. Similarly the minimal
injury category and the no injury category are more likely for seatbelt users
than for seatbelt nonusers.
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Standardized Estimates of Loglinear Parameters

In order to compare the magnitudes of the various parameter estimates,
standardized estimates should be obtained by dividing the estimates by the
standard errors. For the parameter estimates i, f1(;), fi2(;) and f12(ij)
the asymptotic variances are given by

v = (LX) 5
Var(isgy) = (ric)zi;j;(n%)+(T,~Zzl)§(%)’
i) = ()20 + (LG
vt = ()30 + ()5 )

(S (L) =iy

The square roots of these quantities provide the standard errors.

For the driver injury data of Table 6.10, the parameter estimates, stan-
dard errors and standardized estimates are shown in Table 6.16. In large
samples these standardized estimates can be treated as standard normal
deviates for the purpose of judging significance. From the standardized es-
timates we can conclude that the interactions corresponding to the minimal
and major/fatal categories are not significant.

A Loglinear Representation for Some Simpler Models

In Section 6.2.4 several simple models for the two-dimensional contingency
table were introduced. The simplest model is given by

f,-j=1/7'c i=1,2,...,T; j=1,2,...,c,

which indicates that the cell probabilities are equal. For a sample of size n
in this case we would expect

Fij = TL/’I‘C,

and hence we would estimate the Fj; by E;; = n/rc.
A model which assumes constant column probabilities is given by

fii = filc

hence the cell densities in any row are uniform over the ¢ columns. Similarly
the constant row probability model is given by

fij = f.j/’l‘.
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TABLE 6.16. Standardized Parameter Esti-
mates for Saturated Model

Standard Standardized

Parameter Estimate Error Estimate

K1(1) -0.9290 0.0224 —41.443
K1(2) 0.9290 0.0224 41.443
K2(1) 2.9606 0.0227 130.562
H2(2) 0.0663 0.0046 2.458
H2(3) -0.4356 0.1772 -14.537
B2(q) -2.5913 0.0624 —41.539
B12(11) 0.1097 0.0227 4.839
B12(12) 0.0182 0.0079 0.675
K12(13) —-0.0689 0.1020 -2.300
#12(14) -0.0590 0.0624 -0.945
K12(21) -0.1097 0.0227 —4.839
K12(22) -0.0182 0.0079 -0.675
K12(23) 0.0689 0.1020 2.300
K12(24) 0.0590 0.0624 0.945

For a sample of size n, the expected frequencies for these two models are
given by Fi; = F;./c and F;; = F.j/r respectively. The expected cell fre-
quencies F;; for the two models are estimated using the sample cell frequen-
cies n;; and are denoted by E;; = n.j/r for the constant row probability
model and by E;; = n;./c for the constant column probability model.

The loglinear models for the three simple models would be given respec-
tively by

lnF’ij = My
In F}; B+ 13,
InFyj = ptpa):

Inference Procedures for the Three Simple Models

For each model the appropriate E;; values are used to determine the pa-
rameter estimates using the following equations

1 T [

po= 52 By
i=1j=1

e = %ZlnEij_ﬂ

fngy = =) WmEy—p

i=1
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TABLE 6.17. Comparison of Fitted Frequencies for the Simple Models

Seatbelt Driver Injury Level

Usage Model None Minimal Minor Major/Fatal Totals

Yes Actual 12,813 647 359 42 13,861
Constant 10,846.1 10,846.1 10,846.1 10,846.1 43,384.4
Constant 39,388.0 2,323.5 1,500.5 172.5 43,384.5
Row Prob.
Constant 3,465.2 3,465.2 3,465.2 3,465.2 13,861

Column Prob.

No Actual 65,963 4,000 2,642 303 72,908
Constant 10,846.1 10,846.1 10,846.1 10,846.1 43,384.4
Constant 39,388.0 2,323.5  1,500.5 172.5 43,384.5
Row Prob.
Constant 18,227 18,227 18,227 18,227 72,907.9

Column Prob.

Total Actual 78,776 4,647 3,001 345 86,769
Constant 78,775.9 4,647.0 3,001.0 345.0
Row Prob.
Constant 21,692.2 21,692.2 21,692.2 21,692.2

Column Prob.

The two x? statistics, G2 and H?, can also be used to test null hypotheses
for these models. The two statistics are given by

ZZ ntJ - tJ)

i=1j5=1

= 222""1 [n,, ]

i=1j5=1

and

These x? statistics have (rc — 1 — k) degrees of freedom, where k equals
the number of parameters estimated from the sample. For the constant
cell probability model, ¥ = 0, whereas for the constant column and row
probability models, k = (r — 1) and k£ = (c — 1) respectively. For the
independence model k = (r — 1) + (¢ — 1).

Ezample

For the seatbelt data in Table 6.10, the parameter estimates for the three
31mple models are g = 9.2916 for the constant cell probability model,

= 73169, [y = —0.929, and fi;2) = 0.929 for the constant col-
umn probability model, and 4 = 7.6990, [z;) = 2.882, fiz2) = 0.052,
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fa(3) = —0.385 and fiz(4) = —2.549 for the constant row probability model.
The estimated frequencies using the three fitted models are summarized in
Table 6.17. In the case of the constant row probability model, the column
totals are preserved, whereas in the constant column probability model the
row totals are preserved. By comparing the actual frequencies to the fitted
frequencies one can observe the goodness of fit for the three models. In
each case we can see from Table 6.17 that the models do not fit the table.

6.2.6 AN ADDITIVE CHARACTERIZATION FOR CELL
DENSITIES

To this point the models introduced for contingency table densities were
designed to characterize departures from the independence model. An al-
ternative approach can be obtained using an additive model with deviations
from the grand mean and from row and column means as measures of row
and column effects.

Each cell density f;; can be expressed as a linear model comparable to
analysis of variance models. The density f;; can be written as

fi = for+(fi—f)+(F5—-Ff)+(fii—fi—Fitf.)
= p+oa;+p;tei,

where p = f., a; = (fi.—f.), pj = (f;—Ff.) and &5 = (fij — fi. = f.5+f.).
The grand mean is denoted by u, the row effect by a; and the column effect
by p;. The term ¢;; is an interaction term.

As in the case of analysis of variance, matrix notation can be used to
represent the model for all rc cells.

f=XB+e

where the f(rc x 1), X[re x (r+c+1)], B[(r+c+1) x 1], e(rc x 1) are
given by

[ fun ] Fe11 T
21 €21
f"l €rl
12 €12
fa2 €22

f=| |, e=| : |,

fr2 €r2
fl €1c
fzz €2¢

L frc J L Erc J
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-1 1 0 010 0 1

110 00 1 0

: . 0 0

110 000 .0 1

101 010 ..0
101 001

X = : 0 0

101 000 .0 1

100 .0110 0.0
100 .0101 o0.

© 0 0

100 010 .0 1.

and
B=[poroz ... ar p1p2 ... P

This matrix notation is similar to the notation introduced for the log-
linear model above. The additive model introduced here will be used in
the weighted least squares approach to be outlined in Section 6.3. In Sec-
tion 6.3 the theoretical cell densities will be replaced by row densities p;;
where }°7_; pij = 1.

Ezample

For the example given by Table 6.6, the values of the parameters are given
by

p=1/re=1/20 = 0.05,
a; = 0.01675, a9 =0.0205, a3 = 0.0055,
ay = —0.01675, a5 = —0.026,
p1 = —0.0396, p; =0.0156, p3 =0.0392, pq=—0.0152.

The interaction parameters are summarized in Table 6.18. As can be seen
from the table, the row and column totals for the interactions are zero. In
comparison to the previous analyses of this table, the additive interaction
effects provide much the same information regarding the departure from
independence.

6.2.7 TwoO-DIMENSIONAL CONTINGENCY TABLES IN A
MULTIVARIATE SETTING

In this section, we assume that we are primarily interested in the relation-
ship between two categorical variables X and Y, but that a third categor-
ical variable Z is also related to both X and Y. Assume that the variable
Z has £ categories. The three-way cross-classification using X, Y and Z
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TABLE 6.18. Additive Model Interaction Effects

Opinion Regarding Crime Situation

Not Slightly = Moderately Very
Age Level Serious Serious Serious Serious
Under 30 -0.01215 -0.00635 0.01505 0.00345
30 to 39 -0.01390 0.03090 0.00130 -0.01830
40 to 49 —0.00390 0.00290 0.00930 -0.00830

50 to 59 0.01335 -0.01485 -0.00045 0.00195
60 & over 0.01660 —0.01260 -0.02520 0.02120

yields a three-dimensional contingency table with rcf cells. Given a sample
of n observations, allocation to the rcf cells yields cell frequencies n;jy,
i=12,...,m; j=12,...,¢; k=1,2,...,£ The important questions
are: How does the variable Z affect the relationship between X and Y?
When can the variable Z be ignored?

One possible approach to the problem is to carry out an analysis relating
X and Y at each level of Z. Thus a total of £ contingency tables must be
analyzed. If £ is large, the number of analyses will also be large, and in some
cases the cell frequencies for each level of Z may be quite small. In the next
section the loglinear model approach will be used to relate X and Y and
control simultaneously for Z. If the sample size is small, the table can be
collapsed over the categories of Z; however, the collapsing of contingency
tables can lead to unusual results, as demonstrated below.

Simpson’s Paradox

The importance of controlling for other variables is best illustrated by an
example that demonstrates how the relationship between X and Y can
be opposite depending on whether Z is controlled or not controlled. Such
reversals or contradictions are commonly referred to as Simpson’s paradoz.
This paradox is illustrated by the following example.

Ezxzample

Consider the following fictitious study relating age, smoking and heart dis-
ease. The study shows the cell frequencies in Table 6.19.

In the age 65 and over category, the probability of heart disease for
smokers is 95%, and for nonsmokers it is 90%. In the age 40-64 category,
the probability of heart disease for smokers is 50% and for nonsmokers
is 5%. Thus, in each age category smokers are more likely to have heart
disease than nonsmokers.

Collapsing the table over age yields Table 6.20. According to the col-
lapsed table, the probability of heart disease for smokers is 54% whereas
for nonsmokers it is 89%. Simpson’s Paradox has occurred in that the effect
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TABLE 6.19. Contingency Tables Showing Relationships Between Age, Heart
Disease and Smoking

Age 65 & over Age 40-64
Smoker  Nonsmoker Smoker  Nonsmoker

Heart 950 9000 Heart 5000 5
Disease Disease
No Heart 50 1000 No Heart 5000 95
Disease Disease
Proportion Proportion
with Heart 0.95 0.90 with Heart 0.50 0.05
Disease Disease

TABLE 6.20. Contingency Table Showing Relationship Be-
tween Heart Disease and Smoking After Collapsing on Age

Smoker Nonsmoker

Heart 5950 9005
Disease

No Heart 5050 1095
Disease

Proportion

with Heart 0.54 0.89
Disease

of smoking on the incidence of heart disease seems to have been reversed
from what was obtained when the variable age was controlled. If one were
to look at the data by collapsing on heart disease, the reason for the para-
dox becomes clear. For individuals 40-46, 99% are smokers, whereas for
those aged 65 and over, only 9% are smokers. The incidence of heart dis-
ease increases with age whereas the tendency to smoke decreases with age,
ignoring the effect of age, therefore, produces the paradoxical results.

Ezxzample

A second example of Simpson’s Paradox is provided by the following ficti-
tious tables of admission statistics for two university faculties. Table 6.21
shows the proportion of male and female applicants admitted to the Facul-
ties of Engineering and Business. The table demonstrates that the overall
proportion of female applicants admitted is lower than the overall propor-
tion of male applicants admitted, although for each of the faculties taken
separately the reverse is true. Once again collapsing on the faculty variable
hides the fact that the number of applications by sex varies considerably
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TABLE 6.21. Relationships Between Sex
and Admission Status

Females Males

Faculty of Business

No. of Applicants 160 60
No. of Admissions 40 12
Proportion Admitted 0.25 0.20

Faculty of Engineering

No. of Applicants 40 140
No. of Admissions 26 84
Proportion Admitted 0.65 0.60

Combined Faculties

No. of Applicants 200 200
No. of Admissions 66 96
Proportion Admitted 0.33 0.48

between the two faculties. Because the admission rates also vary between
the two faculties a lower overall rate of admission for females occurs.

Other examples of Simpson’s Paradox commonly occur in practice. Ex-
amples showing employment inequity can show opposite results depending
on what other variables are included. The effects of collapsing contingency
tables is discussed further in Section 6.3. To avoid collapsing tables, mul-
tidimensional models can be used to describe the variation in the tables
controlling for other effects.

6.2.8 OTHER SOURCES OF INFORMATION

More extensive discussions of statistical techniques for two-dimensional ta-
bles are available in Everitt (1977), Reynolds (1977) and Upton (1978).
Extensive discussions on testing for independence and the measurement of
association can be found in both Reynolds (1977) and Upton (1978). Sam-
pling models and loglinear models for two-dimensional tables are discussed
in Bishop, Fienberg and Holland (1975), Andersen (1980) and Freeman
(1987).

6.3 Multidimensional Contingency Tables

This section is concerned with statistical inference in multidimensional con-
tingency tables. The section begins with an outline of techniques for ana-
lyzing a three-dimensional contingency table. These techniques are then
extended to higher-dimensional tables. The loglinear model introduced in
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Section 6.2 is used to describe the interactions in the multidimensional
table. The parameters of the loglinear model are estimated using maxi-
mum likelihood estimators that are usually functions of the observed cell
frequencies.

6.3.1 THE THREE-DIMENSIONAL CONTINGENCY TABLE

The three-dimensional contingency table arises from the cross-classification
of the categories associated with three qualitative random variables. Ge-
ometrically the table may be viewed as having rows, columns and layers.
The subscripts for the rows, columns and layers will be denoted by i, j and
k respectively. The number of rows, columns and layers will be denoted by
7, ¢ and £ respectively. The probability density for cell (3, j,k) will be de-
noted by f;;x and the theoretical cell frequency by Fijx = nf;;i for a total
table frequency of n. The allocation of a sample of size n to the total of rcf
cells yields cell frequencies n;;x. Table 6.22 shows the n;;; for a sample of
size n.

Various marginal totals will be denoted using dots to indicate which sub-
scripts have been summed. For the three possible two-dimensional tables,
the cell frequencies are denoted by the marginals n;;., n;.x and n.jx. For
each of the three variables the univariate marginals are given by n,.., n.;.
and n.. k-

Ezample

An example of a three-dimensional table is presented in Table 6.23. For the
auto accident data described in Section 6.2, the three-way table shows the
relationships between extent of injury, seatbelt usage and driver condition.

Figure 6.3 shows row profiles relating the three injury levels to seatbelt
usage (ignoring driver condition) in panel (a), to driver condition (ignoring
seatbelt usage) in panel (b) and finally to the four categories of seatbelt
usage crossed with driver condition in panel (c). For simplicity the no injury
category has been omitted. From the profile plots we can see that the driver
condition effect is stronger than the seatbelt effect and that there is some
interaction between the two effects. In the case of interaction we can see
that the seatbelt effect is more pronounced for drinking drivers than for
non-drinking drivers.

Models for Three-Way Tables

The models introduced in Section 6.2 for two-dimensional contingency ta-
bles can be viewed as special cases of the set of all possible models for
the three-dimensional table. We begin here with the independence model
for the three-way table. The independence model requires that the joint
density fijx in cell (¢, j, k) be equal to the product of the three univariate
marginal densities fijx = fi..f.;.f..x. The theoretical frequency for a total
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TABLE 6.22. A Three-Dimensional Contin-

gency Table
Columns
Layers Rows 1 2 cee c

1 1 n111 m121 ... Plel
n211  n221 ... N2l

T nr11 ny21 (X Mrel

2 1 ni12 N2 ... Nle2
n212  n222 ... N2e2

r nr12 Np22 .- Nrc2

¢ 1 ni1e n12e .- Nlee
n21e n22¢ cee N2ce

r Nele  Nye2e . Npct

frequency of n is given by
Fijk = nfijk = F;.Fj.F.x/n?
where F;.. =nf;., Fj =nf; and F.x =nf.x.

Inference for the Independence Model

Given a sample of size n, the maximum likelihood estimators of the ex-
pected cell frequencies under the independence assumption are given by

E,'jk = n,-..n.,-.n..k/n2, 1= 1, 2, R S
j = 1’27 .. ’C’
k=1,2,...,¢

As in the case of the two-dimensional contingency table, the fitted cell
frequencies depend only on the row, column and layer marginals. Using the
estimated expected frequencies E;ji, the x? tests of goodness of fit for the
independence model are carried out using

T £
=y i ) (Eijkéj:ijk)z

i=1 j=1 k=1
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TABLE 6.23. Frequency Table — Driver Injury Level versus Seatbelt

Usage and Driver Condition

Driver Injury Level

Driver Seatbelt Major/
Condition Usage None Minimal Minor Fatal Total
Normal Yes 12500 604 344 38 13486
(11817.8) (697.1) (450.2) (51.8)
No 61971 3519 2272 237 67999
(62161.0) (3666.9) (2368.0) (272.2)
Totals 74471 4123 2616 275 81485
Been Yes 313 43 15 4 375
Drinking (766.3) (45.2) (29.2) (3.4)
No 3992 481 370 66 4909
(4030.9) (283.0) (153.6) 17.7)
Totals 4305 524 385 70 5284
Total both conditions 78776 4647 3001 345 86769
and
r c £

H? = 22 Z Enijk(lnn,-jk - lnE,-]-k),

=1 j=1 k=1

both of which are asymptotically x? with (rcf —r — £ — ¢ + 2) degrees of

freedom if the independence hypothesis holds.

Ezample

49

The x? test of independence for Table 6.23 yields 1057.47 and 939.90 for
the Pearson and likelihood ratio statistics respectively. Both of these x?2
statistics have 10 degrees of freedom and are significant at the 0.000 level.
The expected frequencies under the independence model are shown in Ta-
ble 6.23 in brackets. A comparison of the observed and expected frequencies

in the table permits us to conclude the following:

1. For seatbelt users who appeared normal, the number of accidents
resulting in no injury was larger than expected, whereas the number
who sustained any injury was smaller than could be expected under

independence.

2. For seatbelt users who had been drinking, the number of accidents
resulting in no injury was less than half the number that could be
expected under independence. Also, in the minor injury category,

there were fewer cases than expected.
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FIGURE 6.3. Profiles Relating Injury Level to Seatbelt Usage and Driver Con-
dition

3. For non-users of seatbelts who appeared normal, the number of acci-
dents in all injury categories was less than could be expected under
independence.

4. For non-users of seatbelts who had been drinking, the number of
accidents resulting in no injury was less than expected. For the three
injury categories, the number of accidents was much larger than could
be expected under independence.

Drivers who wore seatbelts and appeared normal sustained fewer injuries
than expected, whereas drivers who did not wear seatbelts and had been
drinking suffered more injuries than expected under independence. For the
remaining two categories, the difference between the observed and expected
frequencies seems less obvious. A loglinear model representation for this ta-
ble will be used below to provide a more systematic approach for identifying
the interactions among the three variables. Before attempting to model the
variation in the table, a discussion of various model types is required.

Other Models for Three-Way Tables

For the remainder of this section the sampling model assumed is either
multinomial or independent Poisson. As in the case of the two-dimensional

(2) (b) (c)
. - Injury vs
Injury vs Seatbelt Injury vs Driver Condition Seatbelt—DJrinr Condition
12 ﬂ .12 | 12
11 11 11 4 Drinking/
Yes
.10 .10 . .10 J \
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\\ Drinking N\
08 .08 | \ 08 _ \ Drinking/No
.07 4 .07 | .07 | \
.06 .06 | .06 |
Normal/No \ \
.05 J .05 | .05 |
.04 | .04 | .04
.03 .03 4 .03
.02 .02 | .02 |
.01 | .01 | .01 |
00 T T T -00 T T T -00 T T T
Minimal Minor Major Minimal Minor Major Minimal Minor Major
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table, the two distributions are equivalent if the sample size n is fixed.
Because the product multinomial places additional restrictions on some
marginals, additional requirements must be adhered to in order to obtain
maximum likelihood estimates. These requirements will be outlined later
in this section.

If the independence model does not fit the three-dimensional table it
is often of value to determine if a less restrictive model can be used. A
system of models that permits various levels of dependence among the
three variables is outlined next.

Partial Independence

Since there are three variables in the table, it is possible to have two vari-
ables related to each other that are both independent of a third variable.
This model is called the partial independence model and is given by

fijk = (fi. )(fk)-

In this case, the third variable with subscript k is independent of the re-
maining two variables with subscripts ¢ and j. The theoretical frequency is
given by

Fijk = F,-J-.F..k/n

and is estimated by
E,'jk = nij.n..k/n.

The two-dimensional marginals n;;. are being fitted since E;;. = n;;.. The
x2 goodness of fit statistic in this case has (rc—1)(£—1) degrees of freedom.

An example of a partial independence relationship would exist if in Ta-
ble 6.23 seatbelt usage were independent of both driver condition and driver
injury level, but at the same time driver condition and injury level were
related.

Conditional Independence

A conditional independence model permits two variables to be independent
after controlling for a third variable. An example of such a model is provided

by
fijk = firfik/ ok

where the variables with subscripts ¢ and j are independent at every level
of the variable with subscript k. The theoretical frequency is given by

Fijx = FixFjx/F.&
and the maximum likelihood estimator is given by

E,-jk = n,-.kn.jk/n..k.
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For this model the two-dimensional marginals n;.; and n.;x are being fitted
since E;x = nix and E.jix = n.jx. The x? goodness of fit statistic has
£(r — 1)(c — 1) degrees of freedom.

An example of a conditional independence model in Table 6.23 would
occur if, for each of the two driver conditions, driver injury level is in-
dependent of seatbelt usage. In this case driver injury level is related to
seatbelt usage through the variable driver condition, but if driver condition
is held fixed then seatbelt usage and driver injury level are independent.
In other words, any relationship between driver injury level and seatbelt
usage is due to the relation between driver condition and each of the other
two variables. This result is similar to obtaining a zero first-order partial
correlation coefficient with three quantitative variables.

No Three-Way Interaction

The next step in moving to less restrictive models is to assume that each
pair of variables is related, but that the relation between any pair of vari-
ables does not depend on the level of the third. This model is usually
referred to as the no three-way interaction model. It is not possible to give
an expression for f;;x or for Fjjx that would permit us to determine the es-
timators E;;x directly. For this model the E;;; are obtained by a procedure
known as iterative proportional fitting.

Since the model to be fitted assumes that all possible pairs are related
but that there is no three-way interaction, we need only fit a model that
preserves the three sets of two-dimensional marginal totals n;;., n.;x and
n;.x. The steps for iterative proportional fitting proceed as follows:

Step 1. Compute the observed marginal totals nj., n.jk, ni.k .

Step 2. Assign the initial value 1 to every estimated cell frequency, that
is, E5) = 1, for all 4, j, k.

Step 3. Compute new estimates of the E;jx so that they sum to the
marginal totals n;;. using

1 0
Efj,l Efj,l[ (0)] for all 4, j, k.

Step 4. Compute new estimates of the E;jir so that they sum to the
marginal totals n;.; using

2 1
E® =E.(.,1[

] ij

-k .

for all ¢, 3, k.
1 1 J
E._k)]
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Step 5. Compute new estimates of the E;jr so that they sum to the
marginal totals n.;; using

@) _ @[ Nk -
ES) = ,.J.,,[E(—ﬁ] for all i, j, k.
-jk

Step 6 and subsequent steps. Repeat the cycle given by Steps 3, 4 and 5
until the changes in the E;; are smaller than some preassigned number.

For the fitted model the three two-dimensional marginals E;;., E.;; and
E;.x will be very close to their observed counterparts n;;., n.jx and n;.g.
The number of degrees of freedom for a x? goodness of fit test would in
this case be (r —1)(k — 1)(c - 1).

A no three-way interaction model implies that the interaction between
any pair does not depend on the third variable. For the data in Table 6.23
a no three-way interaction model would imply that the interaction between
seatbelt usage and driver injury level does not depend on driver condition.
Similarly, the interaction between driver injury level and driver condition
does not depend on seatbelt usage, and the interaction between seatbelt
usage and driver condition does not depend on driver injury level.

Saturated Model

As in the case of the two-way contingency table, the most general model for
the three-way contingency table is the saturated model that fits the data
perfectly. The saturated model for the three-way table includes a three-way
interaction that allows the two-way interaction between any pair to vary at
each level of the third variable. This model will be discussed further with
the introduction of the loglinear model for three-way tables below.

Loglinear Models for Three-Way Tables

We begin our discussion of the loglinear model for three-way tables by
extending the definitions of the y parameters introduced in Section 6.2 for
the two-way table. The saturated model for the three-way table is given by

In Fijk = p+ p1G) + Bag) + Bak) + H1235) + B13ik) + B23(k) + B123(ijk)»
i=12,...,75 j=12,...,¢; k=1,2,...,¢
where Fj;; = true frequency in cell (¢, j, k) and

1 T c £
ko= @ZZZmFijk,

i=1 j=1 k=1

1 c £
M = &Z > InFyi - p,

J=1 k=1
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Ho(j) = —Z Zlangk T3

:_1 k=1
H3k) = _Z Zlanﬂc )
t—l j=1
Bi2ij) = Zln Fijk — pagy — p2¢) — My
k_
Basgik) = _ZlnFth = PaG) — B3(k) — M
j=1
Ka3(jk) = ;ZlnFijk = B2(j) — H3(k) — M
=1

Ba23iik) = InFix — pa) — Mag) — M3k) — M12(i5)
—H23(jk) — H13(ik) —
The following conditions follow from these definitions

r c £
> e = Z Ba@) = Y Mak) =0,
=1 k=1
T C

T (4 l
Z 2 B12(ij) = E luls(ik) = Z E H23(jk) =
J=1 k= =1

i=1 =1k
T c £
Z: E E Ba23(ijk) = 0.

In comparison to the saturated loglinear model for the two-way table
the saturated model now contains a total of four interaction terms. Three
of the interaction terms are two-way interactions, whereas the remaining
term is a three-way interaction. For a two-way interaction, the interaction
is independent of the third variable, but for a three-way interaction the two-
way interaction varies over the categories of the third variable. When both
two-way and three-way interactions are included, the two-way interaction is
an average over the categories of the third variable, whereas the three-way
interaction measures departures or residuals from this average.

Definitions of Parameters in Terms of Cell Frequencies

The p parameters are functions of various marginal totals in the table
of logarithms of the theoretical frequencies, In Fj;x. As in the case of the
two-dimensional table discussed in Section 6.2, the u parameters are also
functions of the logarithms of various geometric means of the frequencies.
The expressions for the y parameters may also be written as p =InF...,

p@ = WF. —-InF.,
Bai) = lnﬁj.—lnﬁ..,
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M3y = InF .- ln1~7'...,
MHi12(ij) = lnf',',-. —~InF,. - lnf’.j. + lnf‘...,
H13(ik) = InF,,—InF,. —InF,+ lnf’...,
Ba3(jk) = lnf’.jk —In f?"] —InF,+ lnf‘...,
M23iik) = InFix — InFjj. —InFyx — InF,
+lnF,. +mF; +nF -nF.,

where

F.. is the overall geometric mean of all the frequencies Fi;y;

F;. is the geometric mean of all the frequencies Fj;x holding i fixed;

Fij. is the geometric mean of all the frequencies Fj;x holding j fixed;

F ) is the geometric mean of all the frequencies Fjjx holding k fixed;

i’,-,-. is the geometric mean of all the frequencies Fj;x holding i, j fixed;

F jk is the geometric mean of all the frequencies Fjx holding j, k fixed;

ﬁ-.k is the geometric mean of all the frequencies Fjjx holding i, k fixed.
For each of the models introduced above for three-way tables the cell

frequencies F;;x have different properties. These properties imply that some

of the u parameters are zero. These models can be related to the loglinear

model parameters as outlined below.

Independence Model

In the case of the independence model, F;;x = (F;..F.;.F.x)/n? implies that
In Fjjk = p + p1) + M2(j) + M3ak) With all remaining p parameters zero.
Partial Independence Model

For the partial independence model the two-way interaction between i and
J results in p;5(;5) being non-zero. The other possible interactions are zero.
The loglinear model for this particular partial independence model is there-
fore given by

In Fiji = p+ paGiy + pagy) + Back) + Maz(ij)-

If the table is collapsed over k, the resulting two-dimensional table is fitted
exactly. There are two other possible partial independence models that
contain only one two-way interaction term.

Conditional Independence Model

In the conditional independence model, the relationship between ¢ and k is
captured by p13(ik), and the relationship between j and k is captured by
K23(jk)- Since 7 and j are independent at every level of k, pj(;5) = 0. The
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loglinear model in this case is
In Fji = p+ pags) + Bagg) + B3k) + K13(ik) + B23(ik)-

If the table is collapsed over % or over j, the resulting two-dimensional tables
are fitted exactly. There are two other possible conditional independence
models, one for each possible omitted two-way interaction.

No Three-way Interaction Model

In the no three-way interaction model all pairs are related, but these rela-
tionships are independent of the third variable. Only the term p;23(;;x) is
zero. The loglinear model is given by

In Fijk = p+ pa) + s2¢) + B3k) + B12(i) + B13(ik) + H23(ik)-

In this case the three two-dimensional tables obtained by collapsing the
fitted table on the third variable have cell frequencies identical to the ob-
served two-dimensional tables. This is precisely what is accomplished by
the iterative proportional fitting algorithm.

Saturated Model

The saturated model given at the beginning of this section fits the three-
dimensional table perfectly. Although this model is not needed to determine
expected frequencies, it is often useful for characterizing the interactions
in a three-way table. The estimated interaction parameters provide a sys-
tematic way of studying the relationships among the variables.

Multiplicative Form of the Loglinear Model

Taking the antilogarithm of both sides of the loglinear model yields a mul-
tiplicative model for the cell frequency F;ji. The equation becomes

Fijk = BoP()Ba2(j)Pa(k) Br2(is)Pr3(ik) B23(ik) B123(ijk)

The beta parameters are sometimes useful for characterizing the variation
in the table. The beta parameters are defined by

Bo = e*, ,31(i) = ek, ﬂz(j) = eM20), ﬂs(k) = M3k
Bra(ij) = eF1269), Braiky = €F136R) Bog(jky = €33k,
18123(ijk) = eM123(ijk) ,
Hierarchical Models

The above collection of models does not include all possible variants using
the parameters specified by the saturated model. Such models as

In Fji = p+ pas) + pagg) + Ba2gs) + Ba3(ik) + H13cik)
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and
In Fiji = p+ ) + H2¢) + B3(k) + H123(ijk)

have not been considered. In order to maintain the practice of defining
higher order terms using deviations of lower order terms, the hierarchy
principle is followed. This principle requires that, if a given term is fitted,
all lower order terms involving those variables must also be included. The
above two models do not satisfy this hierarchy principle. The main difficulty
with non-hierarchical models is the interpretation of the fitted parameters.
An additional problem, however, is that the iterative proportional fitting
procedure cannot be used to fit the model without some transformation of
the model being carried out first. Only models that satisfy the hierarchy
principle will be discussed in this text.

Notation for Loglinear Models

To simplify the notation for the remainder of this chapter, the various
models in the hierarchical system will be denoted by symbols such as [1],
[23] and [123]. Only the symbols for the highest order interaction for each
variable will be used. All lower order terms containing that variable are
automatically included in the hierarchical system. The model [12], [3], for
instance, implies that the terms [1] and [2] are also present, whereas the
parameters corresponding to [13] and [23] are not present. The saturated
model is denoted by [123] and implies that all lower order terms are present.

Model Selection

Given a three-dimensional table of observed cell frequencies n;;i, a variety
of models in the hierarchical system can be fitted by replacing F;;x by E;;x
in the above formulae for the loglinear model parameters. The expression
for E;j,. depends on the model being fitted. The various formulae for E;jj
for the various models have been outlined above. The goodness of fit of
a particular model can be judged using the x? goodness of fit statistics
G? and H?. A probability level of 0.15 to 0.25 is usually required to con-
firm that the model adequately represents the interactions in the table. In
practice we seek to fit the simplest model while maintaining a reasonable
fit.

In addition to the overall measure of goodness of fit, the likelihood ra-
tio statistic H has the advantage that it can be used to compare nested
models in the hierarchical system. Let H? and HZ denote two likelihood
chi-square statistics for two alternative models and assume that model 2
is the larger model which contains all the parameters of model 1. The
conditional likelihood chi-square statistic H2, = (H? — H2) can be used
to determine whether model 2 is superior to model 1. Under the null hy-
pothesis that model 1 is equally as good as model 2, the statistic H2,
is asymptotically a x? distribution with degrees of freedom equal to the
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difference (d.f. model 1 - d.f. model 2). An example of such a test might
involve a comparison of the model [13] [2] to the model [12] [13] [23]. The
null hypothesis would be that the terms [12] and [23] are superfluous.

Standardized Estimates and Standardized Residuals

Expressions for the asymptotic variances of the loglinear model parameters
can be obtained using expressions similar to those given in Section 6.2.2
for the two-dimensional table. The expressions can be generated using the
theory presented in Bishop, Fienberg and Holland (1974).

The concept of standardized residuals introduced in Section 6.2.2 for the
two-dimensional table can be extended to higher-dimensional tables and
also to models other than the independence model. For each cell (3, j, k) in
the table, the component of the Pearson x? given by (nijk — Eiji)? /Eijk
provides the standardized residual ryjx = (nijx — Eijk)/+\/Eijk-

The Freeman-Tukey standardized residuals introduced in Section 6.2.2
can also be extended to multidimensional tables using the expression

Toijk = \/Mijk + \/n,-jk +1- \ﬂEﬁjk + 1.
These residuals are useful for examining the quality of the fitted model on
a cell by cell basis and also for detecting outliers.

Summary of Loglinear Model Fitting Procedure

The system of fitting loglinear models for the purpose of explaining in-
teraction in a multidimensional contingency table is demonstrated by the
diagram in Figure 6.4. It is useful to note that the estimates of F;;x depend
on the model being fitted.

For the three-dimensional table the simplest loglinear model is the con-
stant cell density model that contains only one parameter u. In this case
the E;ji are all equal to n/rc. The next three models in the hierarchy are
the single effect models that fit the marginal frequencies for one variable
and restrict the remaining two variables to constant marginal frequencies.
The three models (1 + p1(;)), (1 + pag)) and (4 + p3(x)) fit the theoret-
ical marginal frequencies so that E;. = n;.., E;. = n.j. and E.x = n.;
respectively. Similarly for the loglinear models which contain two of the
three main effects two of the three sets of theoretical marginals, E;.., E.;.
and E..p, are set equal to two of the three corresponding sample marginals,
.., n.j. and n..x. Finally the independence model which contains all three
main effects requires that E;.. =n;.., E.;. =n.;. and E.x = n.x.

For each interaction term that is fitted a set of two-dimensional marginals
are fitted. If the parameter p,(;;) is included then E;;. = n;;. Similarly for
K23(jk) and py3(ix) the corresponding theoretical two-dimensional marginals
are given by E.jx = n.jx and E;; = n;x respectively. For the no three-way
interaction model all three sets of two-dimensional marginals are fitted as
outlined in the iterative proportional fitting algorithm discussed above.
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FIGURE 6.4. System for Fitting and Using Loglinear Models

Product Multinomial Sampling

In product multinomial sampling, certain marginals are held fixed. In the
three dimensional table we consider the two cases corresponding to the
fixing of the marginals for one or two of the three variables. If the marginals
are fixed for the first variable, then the loglinear model must contain the
term p;(;). This will ensure that the fitted marginals E;.. are equal to the
observed marginals n;... Similarly, if the marginals for both variables 1 and 2
are fixed, then the model must contain the parameters y;(;), pa(j) and
K12(¢i5)- In this case the fitted marginals F;.., E.;. and E;;. are equivalent
to the sample marginals n;.., n.;. and n;;..

In product multinomial sampling some of the variables can be viewed as
response variables, whereas the remainder can be viewed as fixed or con-
trolled. The control variables have the fixed marginals, and the marginals
for the response variables are viewed as an outcome of the sampling pro-
cess. The weighted least squares approach in Section 6.4 assumes product
multinomial sampling.

Computer Software

The statistical software package BMDP will be used throughout Section 6.3
to perform the calculations.
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6.3.2 SOME EXAMPLES
Accident Data

For the example presented in Table 6.23, the entire set of loglinear models
was fitted using the maximum likelihood estimators E;; defined above and
in Section 6.2. Table 6.24 summarizes the x? goodness of fit statistics for the
various models. The first three lines in the table present the goodness of fit
statistics for the three single-effect models. In the model [2], for instance,
the marginals for seatbelt usage are permitted to be different, but the
marginals for driver condition and injury level are forced to have equal
frequencies in all categories. Similarly in [1], only the marginal for driver
condition is permitted to vary, whereas for [3] only the marginal for injury
level is not constant.

The next three rows of Table 6.24 present the three possible models
that fit two effects holding the third effect fixed. The seventh row is the
independence model which permits all three marginals to vary but contains
no interaction.

Rows 8, 9 and 10 of Table 6.24 summarize the results of fitting a satu-
rated model to a marginal two-dimensional table while restricting the third
variable to a constant marginal. Rows 11, 12 and 13 show the results for
the fitting of the three possible partial independence models. In row 11
the model [2], [13] allows variables 1 and 3 to be related, but both are
assumed to be independent of variable 2. Similarly, in row 12 variables 2
and 3 are independent of 1, and in row 13 variables 1 and 2 are independent
of variable 3.

The three conditional independence models are shown in rows 14, 15
and 16. In row 14 the model [12], [23] requires that 1 and 3 be independent
at each level of variable 2. Similarly, in row 15 variables 1 and 2 are inde-
pendent at each level of 3, and in row 16 variables 2 and 3 are independent
at each level of 1. The no three-way interaction model is fitted in the last
row. In this model all two-way interactions among the three variables are
assumed to explain all the interactions in the table.

An examination of the x? goodness of fit statistics reveals that the no
three-way interaction model can be used to explain the interactions among
the three variables. Both the Pearson and likelihood x?2 statistics show a
p-value of 0.1705. The fitted parameters for this model are summarized in
Table 6.25. The ratios of the loglinear model parameter estimates to their
standard errors are also shown (with brackets) for selected parameters.
Plots of the values of the parameter estimates are shown in Figure 6.5. The
loglinear model being fitted is given by

In Fiji = p+ p1) + Bagg) + Bak) + H12(ij) + B13k) + B2a(jk)-

From the fitted parameters in Table 6.25 the logarithm of the geomet-
ric mean of the expected frequencies is 6.002. Very few of the parameter
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TABLE 6.24. Summary of x2> Goodness of Fit Statistics for System

of Hierarchical Models*

Model d.f. Likelihood Prob Pearson Prob

1. [2] 14 25550.38 0.0000 428867.25  0.0000
2. [1] 14 219138.75 0.0000 332231.00 0.0000
3. [3] 12 125473.63 0.0000 136095.75  0.0000
4. [1)[2] 13 175077.63 0.0000 201950.81  0.0000
5. [1] 3] 11 45001.13  0.0000 41474.70 0.0000
6. [2] [3] 11 81412.63  0.0000 67216.56  0.0000
7. (1] [2] [3] 10 940.02  0.0000 1057.47  0.0000
8. [12] 12 174680.25 0.0000 201019.50  0.0000
9. [23] 8 81349.75  0.0000 67141.44  0.0000
10. [13] 8 44505.84  0.0000 40381.77  0.0000
11, [2] [13] 7 444.85  0.0000 372.21  0.0000
12.  [1] [23] 7 877.16  0.0000 967.92  0.0000
13.  [3] [12] 9 542.50  0.0000 682.37  0.0000
14.  [12] [23] 6 479.69  0.0000 610.75  0.0000
15, [13] [23] 4 382.02  0.0000 317.32  0.0000
16. [13] [12] 6 47.34  0.0000 44.51  0.0000
17.  [12] [13] [23] 3 5.02 0.1705 5.02 0.1705

*[2] = seatbelt usage, [1] = driver condition, [3] = injury level

estimates are not significantly different from zero. The driver condition ef-
fects indicate that the normal condition is much more frequent than the
been drinking condition. The seatbelt usage effects indicate that many more
drivers were not wearing seatbelts than were wearing them. The injury level
parameters indicate that the large majority of drivers were not injured and
that very few drivers sustained major or fatal injuries. The graph of the
logarithms of the fitted frequencies shown in Figure 6.5 illustrates that at
each injury level the frequencies are highest for the normal-no seatbelt
category and lowest for the drinking—seatbelt category.

The interaction effects in Table 6.25 suggest that normal condition drivers
were more likely to be wearing seatbelts than drivers who had been drink-
ing. The driver condition-injury level interactions indicate that, in com-
parison to drivers who had been drinking, a larger proportion of drivers in
the normal category had no injury and a smaller proportion of the normal
category drivers were in the major or fatal injury category. For the mini-
mal category, the interaction term was quite weak. The interaction between
driver injury level and driver condition therefore seems to primarily affect
only the two extremes of the injury level range. The seatbelt usage-injury
level interaction appears to be relatively weak. There is some tendency,
however, for seatbelt users to be over-represented in the no-injury category
and under-represented in the minor injury category. The minimal injury
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FIGURE 6.5. Parameter Estimates for Loglinear Model for Accident Data

category and the major/fatal category show only slight interactions with
seatbelt usage. These interactions can also be seen in Figure 6.5.

In conclusion, we could say that a large majority of drivers appeared
normal, had not been wearing seatbelts, and were not injured. For drivers
wearing seatbelts, there were proportionately fewer who sustained an injury
and proportionately more were in normal condition than for non-seatbelt
users. Among those who had been drinking, proportionately more sustained
a minor or major/fatal injury than among those who appeared normal.

A comparison of the observed frequencies to the expected frequencies un-
der the no three-way interaction fitted model is shown in Table 6.26. The
expected frequencies are shown in round brackets under the correspond-
ing observed frequencies. The fit seems to be excellent with only minor
differences in the minimal and minor categories for drivers who had been
drinking and were wearing seatbelts. The values of the standardized resid-
uals are shown in square brackets for each cell. The largest standardized
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TABLE 6.25. Fitted Parameters for No Three-Way Interaction Loglinear Model

Overall Mean 4 = 6.002
. . o . -1.212
Driver Condition Effects Ay =1.212 B2 = (~53.906)
. . 1.119
Seatbelt Usage Effects figy) = ~1.119 Ba2) = (43.938)

Injury Level Effects
262 __ oom . -—0316 . -2.322
M) = (g7.010) 3D T (2152) P T (10315 MO (_33387)

Driver Condition — Seatbelt Usage Interaction

. 0.234 . . N
""12(11) = (17.147) y12(12) = —0.234 p12(21) = —-0.234 p12(22) = 0.234

Driver Condition ~ Injury Level Interaction

) 0392 _ 0006 0061 0337
P31 = (19.698) #1302 T (g219) #13013) T (_5949) H13014) = (_g 57g)

ﬂ13(21) = —-0.392 ﬁ13(22) = —0.006 ﬂ.13(23) = 0.061 [113(24) = 0.337
Seatbelt Usage - Injury Level Interaction

X 0085 0013 _ —0.069 _ —0.029
BB = 3714)  HBAD T (g490) F2(13 T (_5086) H2814) = (g 465)

[223(21) = —0.085 }123(22) = —0.013 ﬂ23(23) = 0.069 ﬂ-23(24) = 0.029

residuals occurred in the minimal and minor categories for drivers who had
been drinking. These residuals, however, were quite small indicating an ex-
cellent fit. In these two columns the frequencies are relatively small and
hence the prediction errors are proportionately larger.

The fitted parameters in Table 6.25 were converted to multiplicative
parameters and are summarized in Table 6.27. The multiplicative form of
the fitted model is given by the equation

Fijk = BoP1()B2(5)Ba(k) Pr2(ij) P13(ik) Bas(jk)-

The magnitudes of these multiplicative effects can be compared to 1.0 in
order to interpret direction. The resulting interpretations will be the same
as the interpretations derived from Table 6.25.

Three-Way Interaction

When a saturated model is required in order to obtain a good fit for a
three-way table, the three-way interaction pa3(ijk) is said to be signifi-
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TABLE 6.26. Comparison of Observed and Expected Frequencies

Driver Injury Level

Driver Seatbelt
Condition Usage None Minimal Minor Major/Fatal
Yes 12500 604 344 38
(12497.0) (613.3) (337.8) (37.9)
[0.0] [-0.4] [0.3] [0.0]
Normal
No 61971 3519 2272 237
(61974.0)  (3509.7) (2278.2) (237.1)
[0.0] [0.2] [-0.1] [0.0]
Yes 313 43 15 4
(316.0) (33.7) (21.2) (4.1)
[-0.2] [1.6] [-1.3] [-0.1]
Been Drinking
No 3992 481 370 66
(3989.0) (490.3) (363.8) (65.9)
[0.0] [-0.4] [0.3] [0.0]

cant. The presence of such an interaction indicates that each of the three
two-way interactions cannot be assumed to be constant over the various
levels of the third variable. As an example, consider the two-way interac-
tion p19(i5). This parameter measures the interaction between variables 1
and 2 and is estimated using the marginal table obtained after summing
over the subscript k. The two-way interaction p;(;;) therefore represents
an average relationship between variables 1 and 2 summed over the cate-
gories of the third variable. The fact that ;93(ijk) is nonzero indicates that
the interaction between variables 1 and 2 varies over the levels of variable 3.

Ezample

To provide an example interpretation for three-way interaction parameters,
the estimates fi123(;jx) for the data in Table 6.23 are shown in Table 6.28.
Although these estimates are not significant they will be interpreted as if
they were. The largest parameter estimate of 0.086 for the minor injury
category allows us to conclude the following:

1. The two-way interaction between seatbelt usage and injury level in-
dicates that the probability of a minor injury is greater for a seat-
belt nonuser than for a seatbelt user. The three-way interaction with
driver condition suggests that this two-way interaction in the case of
drinking drivers is less pronounced, whereas for normal drivers it is
stronger. In other words, the marginal effect of driver condition on
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TABLE 6.27. Multiplicative Parameters for No Three-Way Inter-

action Model
Geometric Mean B = 404.362
Driver Condition Effects Bi1) = 3.361 By (2) = 0.298
Seatbelt Usage Effects Ba1) =0.237  Pyp) = 3.061

Injury Level Effects
33(1) = 13.824 [33(2) = 1.074 ﬁ3(3) = 0.687 ﬂ3(4) = 0.098

Driver Condition — Seatbelt Usage Interaction
ﬂl2(ll) = 1.263 ﬁ12(12) = 0.792 312(21) =0.792 ﬁ12(22) = 1.263

Driver Condition — Injury Level Interaction
ﬂ13(11) = 1.481 ﬁ13(12) = 1.006 ,313(13) = 0.941 ﬂ13(14) =0.714

Bia(a1) =0.675  Bi3(an) =0.994  By353) = 1.063  Py3(z4) = 1.401

Seatbelt Usage — Injury Level Interaction
ﬁ23(11) = 1.088 ﬂ23(12) = 1.013 ﬂ23(13) = 0.934 ﬁ23(14) = 0.971

Baz(21) = 0.919  Pag(az) = 0.987  Bag(a3) = 1.071  fPa3(24) = 1.030

the likelihood of minor injury is less for seatbelt nonusers than for
seatbelt users.

2. The two-way interaction between driver condition and injury level
indicates that the probability of a minor injury is greater for a driver
who has been drinking than for a normal condition driver. The three-
way interaction with seatbelt usage suggests that this two-way inter-
action in the case of seatbelt nonusers is less pronounced whereas for
seatbelt users it is stronger. In other words, the marginal effect of
seatbelt usage on the likelihood of minor injury is less for drinking
drivers than for normal condition drivers.

3. The two-way interaction between seatbelt usage and driver condition
indicates that the probability of seatbelt usage is greater for normal
condition drivers than for drinking drivers. The three-way interaction
with injury level suggests that for the minor injury category this
interaction is less pronounced. In other words, among drivers who
sustained a minor injury the relation between seatbelt usage and
driver condition is different than when injury level is ignored.

Without the three-way interactions the two-way interactions are additive.
With the three-way interactions included a correction is made for the fact
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TABLE 6.28. Three-Way Interaction Terms from Saturated

Model
Driver Seatbelt Driver Injury Level
Condition Usage None Minimal Minor Major
Normal Yes -0.007 -0.080 +0.086 0.000

No +0.007  +0.080 —0.086 0.000

Been Drinking Yes +0.007  +0.080 -0.086 0.000
No -0.007 —-0.080 +0.086  0.000

that the two-way interactions are not additive. In this example the seatbelt
and driver condition interactions are not additive. The combined effect in
the minor category is less than the sum. The reader is left to provide an
interpretation for the minimal injury category.

Bus Driver Data

This example is based on a study of bus driver absenteeism in the transit
system for the City of Edmonton, Alberta. The data is based on a survey
of all shifts over a two-week period in each of four seasons of a calendar
year. From this study, Table 6.29 relating Attendance (1), Day of Week (2)
and Shift Type (3) was obtained. The frequencies in the table represent the
total number of shifts in the cells. A swing shift is one that involves driving
on the weekend, and a split shift implies that the seven hour driving day
is split into two parts with several hours time off in between parts (i.e.,
morning rush period and evening rush period).

The x? goodness of fit statistics are shown in Table 6.30 for all models of
complexity greater than the independence model. The table shows that two
models fit the data reasonably well: the conditional independence model
[13] [23] and the no three-way interaction model [12] [13] [23]. The x? p-
values for the conditional independence model are 0.3882 for H? = 43.97
and 0.3103 for G* = 45.91. For the no three-way interaction model the
x2 p-values are 0.5200 for H? = 34.92 and 0.3737 for G2 = 38.11. Since
the conditional independence model is less complex, it is usually the pre-
ferred model. Comparing the two models, Hp.;, = 43.97 — 34.92 = 9.05
which has 42 — 36 = 6 d.f. This x2 value is not significant at conventional
probability values and hence we would conclude that the conditional inde-
pendence model is as good a fit as the no three-way interaction model. We
can conclude, therefore, that after controlling for type of shift there is no
interaction between attendance and day of the week. Thus, for instance,
after controlling for type of shift there is no tendency for drivers to be
absent on Fridays or Mondays.
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TABLE 6.29. Attendance versus Day of Week and Type of Shift
Type of Shift (3)
Attendance Day AM. Noon PM. Swing A Split A Split B Split
(1) (2) /Swing  /Swing
Sun 9 13 18 31 39 23 38
Mon 99 31 67 34 252 27 43
Tues 117 32 88 18 291 19 43
Absent Wed 13 39 96 13 290 24 50
Thur 101 38 91 19 320 13 48
Fri 91 34 82 19 292 16 47
Sat 24 21 49 26 115 30 61
Sun 135 59 230 409 393 273 458
Mon 1029 361 605 2156 389 389 445
Tues 1099 416 712 150 2293 221 445
Present Wed 1103 409 704 155 2302 208 438
Thur 1083 370 677 253 2264 227 440
Fri 1093 374 662 253 2292 224 465
Sat 264 123 399 414 821 386 659

TABLE 6.30. Goodness of Fit Statistics for Absenteeism by Day by

Shift
Model df. H?  Prob G> Prob  R? A
(1] (2] 3] 84 336092 0.0000 375649 0.0000 0 3431
(1] [23] 48 13242 00000 129.34 00000 0.961 130
(2] [13] 78 327265 0.0000 364353 0.0000 0.027 3331
(3] 12] 78  3343.08 0.0000 3720.47 0.0000 0.005 3401
[13] [23] 42 43.97 0.3882 45.91 0.3103 0.987 30
(13] [12] 72 3254.61 0.0000 3625.02 0.0000 0.032 3300
[12] [23] 42 11441 00000 112.98 0.0000 0.966 100
[12] [13] [23] 36 34.92  0.5200 38.11 0.3737 0.990 9

The fitted parameters for the conditional independence model are sum-
marized in Table 6.31. The numbers in brackets indicate the standardized
values of the estimated parameters and hence can be compared to the stan-
dard normal to determine significance. The attendance parameters indicate
that a large proportion of the drivers are not normally absent. The day ef-
fects indicate that the number of drivers required is lower on Saturday and
much lower on Sunday than the other five days of the week. The shift ef-
fects indicate how the number of employees required per shift varies. The
order from largest to smallest is A Split, A.M., P.M., B Split/Swing, Noon,
Swing and A Split/Swing. The attendance by shift effects are relatively
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weak; however, there is some evidence that the P.M. and A Split shifts see
somewhat smaller rates of absenteeism while the Swing and A Split/Swing
shifts see somewhat larger rates of absenteeism. For the parameters that
measure the interaction between day of the week and type of shift, we can
conclude that in comparison to weekdays on the weekends relatively few
drivers are on the A.M., Noon, P.M. and A Split shifts whereas a relatively
large number of drivers are on the Swing, A Split/Swing and B Split/Swing
shifts. During weekdays the opposite effects seem to occur. The large nega-
tive interaction parameters for the swing shift on Tuesdays and Wednesdays
suggest that these days are the most common days off for the swing shift
drivers who work on weekends.

Goodness of Fit and Model Selection

A measure of goodness of fit comparable to R? in multiple linear regression
is given by
R?*=1-H?*/HE,

where HZ is the value of the likelihood ratio x? statistic for the indepen-
dence model, and H? is the likelihood ratio x? statistic for the model of
interest.

An adjusted R? measure comparable to the adjusted R? in multiple linear
regression is given by

_H*/(g-7)

H§/(g— o)’
where ¢ = number of cells in the contingency table, and r and rqy are
the degrees of freedom associated with the models yielding H? and H?
respectively.

An alternative approach to model comparison is provided by Akaike’s
information criterion. This criterion recommends choosing the model that
minimizes the value of

R?=1

A=H?-(q-2r),

where H? is the likelihood ratio x? statistic for the model, 7 is the number of
degrees of freedom, and ¢ is the number of cells in the table. The subtraction
of the term (¢ — 2r) is a method of compensating for the overfitting that
can occur when the number of cells is relatively large.

Ezample

The values of the criteria R? and A for the bus data contingency table
are shown in Table 6.30. The R? values for the models [1][23], [13][23],
[12][23] and [12][13][23] are 0.961, 0.987, 0.966 and 0.990. For the Akaike
criterion the values of A for these four models are 130, 30, 100 and 9
respectively. Although the maximum R? and minimum A correspond to
the model [12][13][23] we have already seen from the likelihood ratio test
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TABLE 6.31. Estimated Parameters for Conditional Independence Model
for Absenteeism by Day by Shift

Mean 4.981

Attendance Effects [1]
Absent  Present
-1.159 1.159

(-97.978)
Day Effects [2]
Sun Mon Tues Wed Thurs Fri Sat
-0.690 0.280 0.129 0.124 0.175 0.177 -0.195

(-29.103) (18.471) (7.441) (7.162) (10.611) (10.768) (-10.547)

Shift Effects [3]
A Split B Split

A.M. Noon P.M. Swin, A Split /Swing /[Swing
0.328 -0.598 0.249 -0.655 1.317 -0.664 0.022

(13.327) (-16.812) (10.275) (-17.429) (75.445) (-17.491) (0.793)

Attendance by Shift Effects [13]

Present -0.016 0.000 0.111 -0.114 0.130 -0.111 0.000

Absent 0.016 0.000 -0.111 0.114 -0.130 0.111 0.000
(0.716)  (0.000) (-4.758) (3.108)  (-7.962)  (2.968)  (0.000)

Day by Shift Effects [23]

Sun 0915  -0669  -0.190  1.103 -0.688 0.718 0.642
(-13.917) (-7.421) (-3.584) (24.049) (-16.131) (13.937) (15.171)

Mon 0.174 0.055  -0.163  0.132 0.059 0.088 -0.345
(5.798)  (1.234) (-4.760) (3.144)  (2.607)  (2.051)  (-8.988)

Tues 0.400 0.340 0.162  -0.679 0.281 -0.311  -0.194
(13.096)  (7.771)  (4.838) (-11.140) (11.728) (-5.891)  (-4.930)

Wed 0.404 0.345 0.176  -0.675 0.289 -0.341  -0.189
(13.225)  (7.868)  (4.965) (-11.065) (12.025) (-6.364) (-4.814)

Thurs 0.327 0.201 0.076  -0.243 0.235 -0.357  -0.239
(10.824)  (4.492) (2.258) (-4.838) (10.074) (-6.794) (-6.154)

Fri 0.325 0.199 0.042  -0.246 0.233 -0.359  -0.194
(10752)  (4.441)  (1.230) (-4.885) (9.981) (-6.839) (-5.064)

Sat -0.716  -0.471  -0.093  0.608 -0.410 0.563 0.519

(-14.846) (-7.125) (-2.285) (14.008) (-13.195) (12.804) (14.698)

that this model is not a significant improvement over the model [13][23].
This latter model has the second best values of the two goodness of fit
criteria.
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6.3.3 FOUR-DIMENSIONAL CONTINGENCY TABLES AND
STEPWISE FITTING PROCEDURES

For a four-dimensional contingency table the independence model has the
form

In Fijkn = p+ p1s) + tagG) + Ma(k) + Hacn)s
and the saturated model has the form

InFijkn = p+ pie) + da) + Hak) + Hacn)
FH12(i5) T B13(ik) + H1aGn) + B23(jk) + Bea(jh) + H3a(kh)
tH124(i5h) T H123(i5k) T H134(ikh) T B234(jkh) T B1234(ijkh)-

Between these two models there are over 100 possible models within the
hierarchical system. Fitting all possible models to determine the simplest
model that fits the data can therefore be an expensive and time-consuming
process. For dimensions higher than four, the number of possible models is
mind expanding. For four and higher-dimensional tables, therefore, stepwise
search procedures are often used for selecting a suitable model.

Stepwise Model Selection

The stepwise approach to choosing a model begins with a particular model
and either adds terms (forward) or deletes terms (backward) one at a time
until the simplest model that fits the data is obtained. Since the stepwise
procedure begins with a starting model, this model must be selected in a
suitable manner.

A common approach to selecting a starting point is to fit all models of a
uniform order. The uniform order models for a four-dimensional table are
given below.

Order 1 1] 2] [3] [4]

Order 2 [12] [13] [14] [23] [24] [34]
Order 3 [123] [234] [134] [124]
Order 4  [1234]

The simplest uniform order model that fits the table well makes an excellent
upper bound. Usually, if a particular uniform order model fits the data well,
all higher order models will also fit the data. A lower bound for a stepwise
process would be the highest uniform order model that does not fit the
table. Usually the upper and lower bounds differ by only one or two orders.

To describe the stepwise procedures, we denote the order of the upper
bound by g and the lower bound by r. The forward procedure begins with
the 7 uniform order model and adds terms one at a time in such a way that
the change in the likelihood ratio statistic is maximized. Terms are added
as long as the increase in the likelihood chi-square statistic is significant.
For the backward procedure, terms are removed one at a time beginning
with the ¢ uniform order model. At each step, the term removed is the
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TABLE 6.32. Observed Frequencies Injury Level, Condition of
Driver, Seatbelt Usage and Sex of Driver

Var (4)

Var (1) Var (2) Var (3) Driver Condition
Injury Level Seatbelt Usage Sex Normal Been Drinking
None Yes Male 8312 263

Female 4188 50
No Male 42476 3440
Female 19495 552
Minimal Yes Male 313 37
Female 291 6
No Male 1841 383
Female 1678 98
Minor Yes Male 189 12
Female 155 3
No Male 1214 290
Female 1058 80
Major/Fatal Yes Male 24
Female 14 1
No Male 146 51
Female 91 15

one that yields the smallest change in the likelihood chi-square statistic.
Terms are removed as long as they are not considered to be significant.
These stepwise procedures are illustrated below using the auto accident
data introduced earlier in this chapter.

Ezample

The four-dimensional table showing the relationship between injury level,
condition of driver, seatbelt usage and sex of driver for a large number of
auto accidents is shown in Table 6.32. The goodness of fit statistics for the
uniform order models for ¢ = 1, 2 and 3 are shown in Table 6.33. From the
x? goodness of fit statistics it would appear that we should seek a model
between orders 1 and 3. The order 2 model seems to fit the data (p = 0.30);
however, we would like to determine other models in the neighborhood of
this one for comparison purposes.

The results of a forward stepwise procedure are shown in Table 6.34.
Beginning with the uniform first-order model, the procedure adds first-
order interaction terms one at a time. A good fit of the table is not achieved
until the uniform second-order model is reached in Step 6. The goodness
of fit x? has a p-value of 0.3025 for this model. The last term added before
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TABLE 6.33. Goodness of Fit Statistics for Uniform Order

Models
Likelihood

Model d.f. Ratio x? Prob Pearson xz Prob
1234 25 2448.86  0.0000 2498.04  0.0000
[12] [13] [14]
[23] [24] [34] 13 15.24  0.3024 15.70  0.2656
[123] [234)
[124] [134] 3 1.39 0.7081 1.31 0.7258

TABLE 6.34. Results of Forward Stepwise Procedure

Added Likelihood

Step Model Fitted Effecct d.f.  Ratio x>  Prob

0 (1] [2] (3] [4] 25 2448.86  0.0000

1 [1] 2] [34] 24 1628.81  0.0000

[34] 1 820.05  0.0000

2 [1] [24] [34] 23 1236.61  0.0000

[24] 1 392.20  0.0000

3 [13] [24] [34] 20 698.46  0.0000

(13] 3 538.15  0.0000

4 [13] [14] [24] [34] 17 73.78  0.0000

[14] 3 624.68  0.0000

5 [12]) [13] [14] [24] [34] 14 33.23  0.0027

[12) 3 40.55  0.0000

6 [12] [13] [14] [23] [24] [34] 13 15.08  0.3025

[23] 1 18.15  0.0000

7 [134] [12] [23] [24] 10 8.98 0.5340

[134] 3 6.10 0.1069

8  [134] [124] [23] 7 412  0.7662

[124] 3 4.86 0.1821

9 [134] [124] [123] 4 1.32  0.8587

[123] 3 2.80 0.4232

10 [134] [124] [123] [234] 3 1.32  0.7246
[234] 1 0.00 1.0

this model was reached, [23], was significant at the 0.0000 level. The first
term added beyond the uniform second-order model was [134] which was
significant at the 0.1069 level. A reasonable conclusion, therefore, is that
the uniform second-order model provides a good fit to the table. The model
cannot be simplified without deleting a significant second-order interaction,
and adding a third-order interaction does not significantly improve the fit.
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TABLE 6.35. Results of Backward Stepwise Procedure

Deleted Likelihood

Step Model Fitted Effect d.f  Ratiox?  Prob
0 [123] [124] [134] [234] 3 1.32 0.7246
1 [123] [124] [134] 4 1.32 0.8587

[234] 1 0.00 1.0
2 [124] [134] [23] 7 4.12 0.7662
[123] 3 2.80 0.4232
3 [134] [124] [24] [23] 10 8.98 0.5340
[124] 3 4.86 0.1821
4 [12] [13] [14] [23] [24] [34]  [134] 3 6.10 0.1069

For comparison, the results obtained from using the backward procedure
between the second and third orders is shown in Table 6.35. The results
are simply the reverse of the forward procedure results in Table 6.34.

Tests of Partial and Marginal Association

Two additional procedures that can provide insight in model selection are
tests of partial and marginal association. In partial association the partial
significance of an effect is determined by comparing the uniform model of
the same order to the model from which the effect in question has been
removed. In the second order uniform model [12] [13] [14] [23] [24] [34], the
test of partial association for [23] involves comparing the uniform second-
order model to the model with [23] removed, given by [12] [13] [14] [24]
[34]. The difference of the two likelihood ratio x? statistics provides a test
statistic for this partial association.

Ezample

From the results of the forward stepwise procedure in Table 6.34, we can
conclude that the term [23] is significant at the 0.0000 level (see step 6).
Thus we would conclude that, after fitting all other first-order interactions,
the interaction [23] is significant. A second example is provided by step 10
in the same table. Removing [234] from the uniform third-order model does
not result in any loss in the quality of the fit.

Marginal Association

A test of marginal association seeks to determine the importance of an
effect by collapsing the table over all other effects and then determining
whether the effect of interest is required to model the collapsed table. In
the four-dimensional table a test for the marginal association of [123] is
obtained by collapsing the table on variable 4 and then fitting the model
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[12] [13] [23] to the collapsed table. If it fits the data well, then the effect
[123] is not required. A difficulty with the test of marginal association is
the potential problem of collapsibility. This topic is discussed in the next
section.

Ezample

For the auto accident data, the three-dimensional table for variables 1, 2
and 4 was studied in Section 6.3.2. The model [12] [14] [24] was found to
provide an adequate fit for this table. A test for the marginal association
for the effect [124] would conclude that this effect is not important.

Estimated Parameters for the Four-Dimensional Auto Accident Table

The estimated parameters for the log linear model [12] [13] [14] [23] [24]
[34] for the auto accident data are summarized in Table 6.36. The ratio
of the parameter estimates to the standard errors is also shown for some
of the parameters. The remaining ratios can be determined by symmetry.
The main effect parameters indicate that the majority of the drivers were
in normal condition and that more were male drivers than female drivers.
A majority of the drivers were not wearing seatbelts. A large majority of
the drivers were not injured and very few sustained major or fatal injuries.

The sex by driver condition interaction indicates that, in comparison to
females, a larger proportion of male drivers had been drinking. The sex by
seatbelt usage interaction indicates that males are less likely to be wearing
seatbelts than females. The sex by injury level interaction suggests that,
with the exception of the major/fatal category, females were more likely
to sustain an injury (minimal or minor) than were males under the same
conditions.

The seatbelt usage by driver condition interaction shows that drivers
who had been drinking were less likely to be wearing seatbelts than normal
condition drivers. The injury level by driver condition interaction indicates
that drivers who had been drinking were more likely to sustain all levels of
injury than normal condition drivers. For the injury level by seatbelt usage
interaction the estimated parameters suggest that seatbelt wearers were
less likely to have sustained minor or major/fatal injuries than seatbelt
nonusers.

The expected frequencies for the fitted log linear model are displayed
in Table 6.37. A comparison of the expected frequencies to the observed
frequencies in Table 6.32 shows that the model fits the table very well. As
in the case of the three-way table fitted in Section 6.3.2, the minimal and
minor categories seem to be the most difficult to fit.
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TABLE 6.36. Estimated Parameters for Loglinear Model

Overall Mean 5.1806
Normal
Driver Condition 1.320
Male
Sex of Driver 0.436
Yes
Seatbelt Usage -1.110
None
Injury Level 2.540
(91.425)

Sex by Driver Condition
Male
Normal -0.270
Been Drinking 0.270

Seatbelt Usage by Driver Condition

Yes

Normal 0.229

Been Drinking -0.229
Seatbelt Usage by Sex

Male

Yes -0.021

No 0.021

Injury Level by Driver Condition

Normal
None 0.435
Minimal -0.022
Minor -0.084
Major/Fatal -0.329
Injury Level by Sex
Male
None 0.201
Minimal -0.127
Minor -0.106
Major/Fatal 0.032
Injury Level by Seatbelt
Yes
None 0.088
Minimal 0.010
Minor -0.071
Major/Fatal -0.026

Been Drinking
-1.320 (-56.323)

Female
-0.436 (-24.229)

No
1.110 (43.499)

Minimal

0.119
(3.522)

Minor
-0.334
(-8.979)

Female
0.270 (27.426)
-0.270

No
-0.229 (-16.801)
0.229

Female
0.021 (4.258)
-0.021

Been Drinking
-0.435 (-21.431)
0.022 (0.861)
0.084 (3.034)
0.329 (6.31)

Female
-0.201 (-12.685)
0.127 (6.767)
0.106 (5.203)
-0.032 (-0.748)

No
-0.088 (-3.842)
-0.010 (-0.368)

0.071 (2.374)
0.026 (0.418)

Major/Fatal
-2.325
(-31.479)

75
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TABLE 6.37. Expected Frequencies Based on Uniform Sec-
ond-Order Model

Driver Condition
Injury Level Seatbelt Usage Sex Normal Been Drinking

None Yes Male 8328.1 270.3
Female 4168.8 45.9

No Male 42442.6 3450.1

Female 19531.5 538.8

Minimal Yes Male 312.2 25.3
Female 301.3 8.3

No Male 1859.7 376.9

Female 1650.0 113.5

Minor Yes Male 175.5 16.1
Female 162.4 5.0

No Male 1231.1 282.3

Female 1047.1 81.5

Major/Fatal Yes Male 223 3.3
Female 15.6 0.8

No Male 144.3 54.1

Female 92.8 11.8

An Ezample with a Fitted Three-Way Interaction

To provide an example with a fitted three-way interaction, the previous
example table will be fitted with the model [134] [12] [23] [24]. This model
was the next model to be fitted in Table 6.34 (see step 7), immediately
after the uniform second-order model [12] [13] [14] [23] [24] [34] described
in Table 6.36. For the model containing the parameters p1134(ix¢), the esti-
mates of these parameters are summarized in Table 6.38. The remaining
parameter estimates for this model are very similar to those given in Ta-
ble 6.36. The ratios of the parameter estimates to the standard errors are
shown in brackets. These ratios generally indicate that the estimates are
not significant. In order to illustrate how to interpret three-way interactions
we shall proceed as if the parameter estimates are significant.

The two-way interaction between driver condition and injury level in-
dicates that for drivers who have been drinking the probability of a min-
imal injury is greater than for drivers who are in normal condition. The
three-way interaction with sex indicates that for females the driver condi-
tion effect on minimal injury is less pronounced while for males the driver
condition effect on minimal injury is stronger. Alternatively the two-way
interaction between sex and injury level indicates that in comparison to
males, female drivers are more likely to be in the minimal and minor in-
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TABLE 6.38. Three-Way Interaction Parameter
Estimates

Driver Condition
Injury Level Sex Normal Been Drinking

None Male -0.002  0.002 (0.066)
Female 0.002 -0.002

Minimal Male -0.063 0.063 (2.043)
Female 0.063 -0.063

Minor Male -0.023  0.023 (0.677)
Female 0.023 -0.023

Major/Fatal Male 0.088 -0.088
Female  -0.088  0.088 (1.378)

jury categories and less likely to be in the no injury category. The three-
way interaction parameter suggests that this difference between males and
famales is less pronounced for drinking drivers and more pronounced for
normal condition drivers. Finally although the two-way interaction between
sex and driver condition indicates that male drivers are less likely to be in
the normal category than female drivers, the three-way interaction with
injury level reduces these sex differences in the minimal and minor injury
categories.

6.3.4 THE EFFECTS OF COLLAPSING A CONTINGENCY
TABLE AND STRUCTURAL ZEROES

Collapsing Contingency Tables

It is often the case in practice that the number of variables being studied is
less than the number of explanatory variables that actually have an impact
on the dependent variables of interest. In some cases variables cannot be
measured and in other cases variables are omitted to avoid complexity or
due to small sample size. The contingency table being analyzed should in
general be viewed as a collapsed table in that the cell frequencies in the table
represent sums of frequencies over the categories of the omitted variables.
In our study of two-dimensional tables in Section 6.2 it was demonstrated
that a Simpson’s Paradox phenomenon can result from collapsing a table,
altering interactions among variables considerably. The important question,
therefore, is when may a table be collapsed over a particular variable?

In a three-dimensional table with variables A, B and C, the table may
be collapsed over the variable C if C is independent of at least one of the
variables A and B. If the model [AC] [AB] fits the table, then, since variable
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TABLE 6.39. Observed Frequency Attendance by Sex by Type of Shift

(1] [2] (3]
Shift A A Split B Split
Attendance Sex AM. Noon PM. Swing Split /Swing /Swing

Absent Male 545 183 347 133 1244 129 240
Female 8 25 128 26 282 5 67
Present Male 5735 2137 3653 1747 1116 1617 2720
Female 32 55 272 294 1158 195 413

C is independent of B, the table may be collapsed over C and may also be
collapsed over B. In this case, the interaction between A and B can be
studied independently of C and similarly, the interaction between A and C
can be studied independently of B. If, however, the three-dimensional table
requires the more complex model [AB] [AC] [BC], then the table cannot
be collapsed over any of the variables without changing the measurement
of the interaction between any pair.

For a four-dimensional table with variables A, B, C and D, the table
may be collapsed over D if the true model is [ABC] [AD]. Recall that this
model contains the interactions [AB], [AC], [BC] as well as [AD]. Since D
is independent of both B and C, none of the interactions among A, B and
C will be affected by collapsing on D. Collapsing the table with respect to
the variable C, however, will affect the interactions [ABC], [AC] [AB] and
[BC].

If the true model is [AB] [AC] [BC] [AD] [BD], then the table cannot
be collapsed on any of the variables. While collapsing on D will not affect
[AC], [AB] will be affected. If the true model is [AB] [AC] [BC] [AD] [BD]
[CD], then collapsing on any variable will affect all other interactions. The
collapsibility of a contingency table therefore involves two considerations,
the variable to be collapsed and the interaction to be studied.

Ezample

To illustrate the problem of collapsibility, we analyze a three-dimensional
contingency table based on the bus data introduced in Section 6.3.2. A
three-dimensional table relating attendance, sex and type of shift is shown
in Table 6.39. A saturated loglinear model is required to explain the interac-
tions as demonstrated by the goodness of fit statistics shown in Table 6.40.
The estimated loglinear parameters for the saturated model are displayed
in Table 6.41. From these parameter estimates we can obtain information
about the interaction among the three variables.
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TABLE 6.40. Goodness of Fit Statistics for Attendance by

Sex by Type of Shift
Likelihood
Model d.f. Ratio x2 Prob Pearson x2 Prob
[1] (2] 3] 19 1602.39  0.0000 1430.39  0.0000
[12] [3] 18 1377.91  0.0000 1073.14  0.0000
[13] [2] 13 1517.17  0.0000 1303.71  0.0000
[23] [1] 13 400.90 0.0000 515.67  0.0000
[13] [23] 7 315.50  0.0000 408.07  0.0000
[12] [13] 12 1292.51  0.0000 989.57  0.0000
[12] [23]) 12 176.21  0.0000 163.36  0.0000
[12] [13] [23] 6 92.63  0.0000 88.82  0.0000

Since this model contains a fitted second-order or three-way interaction
term, we can interpret the first-order interactions as partial interactions be-
tween two variables while controlling for a third variable. The attendance by
sex interaction parameters indicate that, after controlling for shift, the rate
of absenteeism for females is greater than for males. From the attendance
by shift interactions we can conclude that, after controlling for sex, the rate
of absenteeism seems to be lowest for the Swing and A Split/Swing shifts
and greatest for the Noon and P.M. shifts. From the sex by shift interaction
we can conclude that there are proportionately more males on the A.M.
shift and proportionately more females on the P.M., Swing, A Split/Swing
and B Split/Swing shifts than one would expect under independence.

The second-order interaction parameters can be used to indicate how
the first-order interactions are affected by the third variable. From the
first-order interactions relating attendance to shift we found that certain
shifts have higher rates of absenteeism. From the second-order interactions
we have an indication of how this first order interaction differs by sex. For
males, the rate of absenteeism of the A.M., P.M. and Noon shifts should be
adjusted downward, whereas for the A Split/Swing shift the absenteeism
must be adjusted upward. The opposite is true for females.

To examine the effects of collapsing a table when a second order inter-
action is present, we shall analyze the two-dimensional table Attendance
by Type of Shift. The observed frequencies presented in Table 6.42 are ob-
tained by collapsing on the sex variable. The independence model produces
likelihood ratio and Pearson x? values of 85.385 and 82.545 respectively,
and so a saturated model is required to describe the interaction in the
table. The estimated parameters are shown in Table 6.43. Based on a com-
parison of Tables 6.41 and 6.43 we can conclude that the main effects for
attendance are similar, however for the shift effects there are a number of
large differences. The A.M. effect changes from positive to negative whereas
the B Split/Swing changes from negative to positive. In addition the Noon,
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TABLE 6.41. Estimates of Loglinear Parameters for Saturated Model for
Attendance by Sex by Type of Shift

Mean 5.655

Absent Present

Attendance Effects -1.042 -1.042
Male Female
Sex Effects 1.228 -1.228

A A Split B Split
AM. Noon P.M. Swing Split /Swing /Swing

Shift Effects -0.530 -0.629 0.473 -0.330 1.630 -0.864 0.250
Attendance by Sex Male Female
Absent -0.167  0.167
Present 0.167 -0.167

A A Split B Split

Attendance by Shift AM. Noon PM. Swing /Split /Swing Swing
Absent 0.107 0.230 0.265 -0.208 0.141 -0.514 -0.020
Present -0.107 -0.230 -0.265 0.208 -0.141 0.514 0.020

A A Split B Split

Sex by Shift AM. Noon P.M. Swin Split /Swing /Swing
Male 1.125 0.185 -0.329 -0.374 -0.291 0.122 -0.437
Female -1.125 -0.185 0.329 0.374 0.291 -0.122 0.437

Attendance by Sex by Shift
A A Split B Split
AM. Noon P.M. Swing Split /Swing /Swin
Absent Male -0.075 -0.250 -0.233 0.129 -0.028 0.442 0.015

Female 0.075 0.250 0.233 -0.129 0.028 -0.442 -0.015
Present Male 0.075 0.250 0.233 -0.129 0.028 -0.442 -0.015
Female -0.075 -0.250 -0.233 0.129 -0.028 0.442 0.015

P.M. and Swing effects also change in magnitude. Thus collapsing the table
on the sex variable causes a number of changes in the shift effects.

From the estimated loglinear parameters for the interaction between at-
tendance and shift in Table 6.43 we conclude that absenteeism is relatively
high for the P.M. and A Split shifts and relatively low for the Swing and
A Split/Swing shifts. This measure of interaction does not take into ac-
count the differences in the rates of absenteeism between the sexes, nor
does it take into account the differences in proportions of females assigned
to the different shifts. Comparing the attendance by shift parameter esti-
mates in Table 6.43 to the same parameters in Table 6.41 shows that by
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TABLE 6.42. Observed Frequencies Attendance by Type of Shift

Type of Shift
A A Split B Split
Attendance A.M. Noon PM. Swing Split /Swing /Swing

Absent 553 208 475 159 1526 139 307

Present 5767 2192 3925 2041 2274 1812 3133

TABLE 6.43. Estimated Log-Linear Parameters for Saturated Model
Attendance by Shift

Absent Present
Attendance Effects -1.172 1.172

A A Split B Split

AM. Noon P.M. Swing Split /Swing /Swing
Shift Effects 0.482 -0.491 0.213 -0.661 1.367 -0.791 -0.118

A A Split B Split
Attendance by Shift A.M. Noon P.M. Swing Split /Swing /Swing
Absent 0.0000 -0.006 0.116 -0.104 0.129 -0.145 0.010
Present 0.0000 0.006 -0.116 0.104 -0.129 0.145 -0.010

not controlling for sex the estimates change. Although the directions of the
attendance by shift parameter estimates did not change, the magnitudes
changed by more than a factor of 2 in most of the categories. By omitting
the sex effect the attendance by shift interactions became weaker. Thus the
interaction between attendance and shift depends on whether the sex fac-
tor has been fitted. The estimated parameters of this two-dimensional table
relating attendance to shift cannot be used to predict rate of attendance
if the male-female ratio or the distribution of males and females over the
various shifts were changed. The two-dimensional model has not controlled
for potential changes in the sex variable. The fitted model assumes that
the interaction between absenteeism and shift type will not be affected by
the sex of the driver.

Random Zeroes, Structural Zeroes and Incomplete Tables

An observation of zero in the cell of a contingency table may be due to
chance (random zero) or it may be because it is impossible for that cell to
occur (a structural zero). For example, suppose in a study of automobile
accidents drivers were classified according to whether they appeared to have
been drinking, whether they were later convicted, and also by level of injury.
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For those drivers who were killed in the accident the cell corresponding to
later conviction and fatal injury must be a structural zero. Our study of
contingency tables thus far has ignored the possibility of such structural
zeroes. Any cell zeroes were treated as random zeroes and were assumed
to have positive theoretical frequencies.

In large contingency tables with many cells it is often the case that
there are many sampling or random zeroes. Depending on the distribution
of the zeroes throughout the table, it is possible to have zero marginals
resulting in undefined or negative expected cell frequencies. One approach
to this problem is to set the expected cell frequencies to zero and fit the
remainder of the table. The degrees of freedom must also be adjusted for
the cells fitted by zeroes. A contingency table with structural zeroes is
called an incomplete table if the cells with structural zeroes are removed
from the table. Under certain conditions a loglinear model may be fitted
to the incomplete table using the methods described above. A discussion
of structural and random zeroes is given in Fienberg (1980).

Quasi-loglinear Models for Incomplete Tables

A quasi-loglinear model for an incomplete table is a loglinear model which
is only defined over the cells of the table that do not contain structural
zeros. For a three-dimensional table, an indicator variable §;; is defined
for each cell (4, j, k), and hence §;;x = 1if cell (, , k) is not a structural zero
and ;% = 0 if cell (4, j, k) is a structural zero. For each cell, the observed
frequencies n;;; and expected frequencies Fi;; are replaced by the product
quantities 6;jxni;x and 5k Fijx respectively. The parameters and estimators
can then be defined using these product quantities in place of the former
quantities. If iterative proportional fitting is used, the starting estimate for
each cell is 6;;x which is either 0 or 1. Since the iterative proportional fitting
algorithm uses ratios to revise the cell estimates, a starting value of zero
for cells with structural zeros guarantees that these cells remain zero.

6.3.5 LOGIT MODELS FOR RESPONSE VARIABLES

Up to this point our discussion of modeling techniques for categorical data
has not included the consideration of a dependent variable or response
variable. If one of the variables in a contingency table can be regarded as a
dependent variable, it is possible to construct a model for this dependent
variable in terms of the remaining variables using the estimated loglinear
model.

The Logit Function

Assume that a dependent variable is dichotomous and that, for given levels
of the other variables, the probabilities for the two categories are p and
(1 — p). The function In[p/(1 — p)] of the probabilities p and (1 — p) is
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called a logit function and will serve as a convenient dependent variable.
In a loglinear model for categorical data, it is easy to rewrite the model so
that the left hand side is the logit function of a dichotomous response vari-
able. To demonstrate, consider the saturated model for a three-dimensional
contingency table.

InFije = p+pme) + sag) + Hak)
FH12(i5) T Pa3ik) T B23(ik) T H123(ijk)>
i = L2,...,r; j=12,...,¢c; k=1,2,...,L

Assuming that the first variable is dichotomous i = 1,2, the difference
between the equations for the two values of ¢ may be written as

F2 ik F2 ik Djk
In Fojk —InFije =In 2% =1n : )=1n(_z_,
2k 1k Fyji (F-jk — Fyjk 1- ij)
where Fji = (Fyjk + Fajk) is the total frequency in category (j, k) and pj
is the probability of an observation in category (4, k) when ¢ = 2. The right
hand side of this model is given by

[#1(2) - #1(1)] + [M12(2j) - #12(13')] + 5#13(%) - #13(11:)]
+|K123(25k) — H123(15k) ]

Since the pairs of parameters in brackets in the above expression must sum
to zero, the two parameters in each bracket are equal in magnitude and
opposite in sign. The right hand side therefore becomes

= 2puy(2) + 2112(25) + 2K13(2k) + 21123(25k)
= L+ Lygj) + Laky + Las(jn)s

where L = 2pu1(2), Loy = 2p1225), Lak) = 2k13¢2k) and Lag(jk) =
2p123(25k) -

Fitting a Logit Model

A fitted loglinear model can be used to fit a logit model provided certain
terms are included in the loglinear model. We can see from the above exam-
ple that in the logit model all the terms involving variable 1 are necessary
but that all variables excluding 1 disappeared. The use of the logit model
to explain the variation in the response variable therefore omits the interac-
tion effects among the explanatory variables themselves. These interaction
terms disappear by subtraction when the logit model is constructed from
the loglinear model. In the logit model the primary purpose is to study the
impact of the explanatory variables on the response variable.

Although the parameters in the model that do not contain the response
variable do not appear in the final logit model, they may have to be in-
cluded in the loglinear model being fitted. By including these parameters,
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TABLE 6.44. Attendance by Garage by Type of Shift*
Shift

A A Split B Split
Attend. Garage A.M. Noon P.M. Swing Split /Swing /Swing Total

Present A 2471 984 1702 920 4428 784 1614 12903
B 1795 533 1146 552 4220 580 791 9617

C 1500 675 1061 568 3593 484 745 8626

Total 5766 2192 3909 2040 12241 1848 3150 31246

Absent A 289 96 258 80 612 56 106 1497
B 125 67 134 48 500 60 129 1063
C 140 45 99 32 487 36 95 934

Total 554 208 491 160 1599 152 330 3494

TOTALS 6320 2400 4400 2200 18340 2000 3480 34520

*[1] = Attendance, [2] = Garage, [3] = Type of Shift

the associated marginals are fitted to the sample marginals. Recall that if
the sampling scheme is product multinomial and the explanatory variables
are control variables, the fitted marginals must be equal to the sample
marginals. For explanatory variables that are not control variables and do
not contain response variables if they are not significant, they can be omit-
ted from the fitted loglinear model. In Section 6.4, logit models will be
fitted to multidimensional contingency tables using weighted least squares
assuming product multinomial sampling.

Ezample

The bus data introduced earlier in this chapter provides an example. From
the bus data, the observed relationship between attendance, garage and
type of shift is summarized in Table 6.44.

A saturated model was fit to this three-dimensional table. The estimates
of the parameters for the logit model for attendance are obtained by dou-
bling the parameter estimates for u1(2), 12(25), H13(2x) and pa3(2jk) given
in Table 6.45. The estimates for the model

lll u—f’%k—) = L + L2(j) + L3(k) + L23(jk)
are summarized in Table 6.46.

The ratio p/(1 — p) measures the ratio of the probability of Present to
the probability of Absent. The estimate for the constant term, L, indicates
that the category present is much more likely to occur than the category
absent. From the parameter estimates in Table 4.46 we can conclude that
the probability of Present is higher in Garage C than in Garages A and B.
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TABLE 6.45. Fitted Parameters for Loglinear Model

Mean 5.891

Absent Present

Attendance Effects -1.159 1.159
(1

A B (¢}
Garage 0.301 -0.071 -0.230
[2]

A A Split B Split

Shift AM. P.M. Noon Swin Split /Swing /Swing
[3] 0.451 -0.514 0.192 -0.691 1401 -0.739 -0.099

A A Split B Split
AM. PM. Noon Swing Split /Swing /Swing

Garage by A 0.096 0.050 0.113 0.103 -0.186 -0.108 -0.068
Shift B -0.111  -0.064 -0.041 -0.037 0.060 0.147 0.046
[23] C 0.015 0.014 -0.072 -0.066 0.126 -0.039 0.022

A A Split B Split

AM. P.M. Noon Swin Split /Swing /Swing

Attendance Absent -0.038 -0.026 0.091 -0.135 0.149 -0.092 0.059

by Shift Present 0.038 0.026 -0.091 0.135 -0.149 0.092 -0.059
(13]

Attendance Absent  0.006  0.049 -0.055
by Garage Present -0.006 -0.049 0.055

(12]

Attendance by Garage by Shift A A Split B Split

[123] AM. P.M. Noon Swing Split /Swing /Swing
A 0.118 0.016 0.118 0.067 0.023 -0.074 -0.268

Absent B -0.184 0.099 -0.054 0.024 -0.097 0.068 0.144
C 0.066 -0.115 -0.064 -0.090 0.074 0.006 0.124
A -0.118 -0.016 -0.118 -0.067 -0.023 0.074 0.268

Present B 0.184 -0.099 0.054 -0.024 0.097 -0.068 -0.144
C -0.066 0.115 0.064 0.090 -0.074 -0.006 -0.124

From the shift parameter estimates we can conclude that the probability of
Present is relatively high for Swing and A Split/Swing and relatively low
for B Split/Swing, A Split and P.M. For the interaction between Garage
and Shift we can conclude that, in Garage A, shifts B Split/Swing and
A Split/Swing have better attendance records than in Garages B and C.
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TABLE 6.46. Logit Model Parameter Estimates

L= 2[[1(2) 2.318

A B C
Lyg;) = 2p12(25)  -0.012 -0.098 0.110

A A Split B Split

AM. P.M. Noon Swing Split /Swing /Swing
La(e) = 2m13zx)  0.076 0.052 -0.182 0.270 -0.280 0.184 -0.118

A A Split B Split

AM. P.M. Noon Swing Split /Swing /Swing

L23 = 2p23(2;%) A -0.236 -0.032 -0.236 -0.134 -0.046 0.148 0.536
B 0.368 -0.198 0.108 -0.048 0.194 -0.136 -0.288

C -0.132 0.230 0.128 0.180 -0.148 -0.012 -0.248

For the P.M. shift, the opposite is true. For the A Split and A.M. shifts,
Garage B has the superior attendance to A and C. For the Noon and Swing
shifts, Garage C is superior in attendance to A or B.

Relationship to Logistic Regression

In Chapter 8 the logit function will be introduced in connection with logistic
regression. In the logistic regression model the logit function is expressed
as a function of a set of explanatory variables that may be interval scaled
variables or dummy variables. In this section, the logit function has been
expressed as a function of the cell frequencies of a contingency table. In
the case of the contingency table model, a sample measure of goodness of
fit based on a x? statistic is available that is often not available for the
logistic regression model because, with interval data, the cell frequencies
are usually very small and often equal to one.

Polychotomous Response Variables

If the response variable has r, (r > 2) categories, there are a variety of
ways for constructing a set of logit models. If one category is a logical base
case, a total of (r — 1) models can be constructed by comparing the other
categories to the base case. The logit functions would be given by In(p;/p,),
i=1,2,...,7 — 1 where the base case is denoted by 7 = r. In this case it
should be noted that subtraction of the loglinear models does not result in
the factor of 2 as was the case for the dichotomous model above.
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If there is a natural order for the categories, a second alternative would
be to use the logit function

Pi

> P

In

, t=1,2,...,m

The ratio p;/ E;m. 4+1P; is called a continuation ratio. The advantage of
the continuation ratio approach is that the likelihood x? statistics for each
fitted model can be added together to get an overall goodness of fit statistic
for the complete set of (r —1) models. Continuation ratios will be employed
in Section 6.4 for the weighted least squares approach. This topic will also
be discussed in connection with the logistic regression model in Chapter 8.

6.3.6 OTHER SOURCES OF INFORMATION

Extensive discussion of loglinear model techniques for three-dimensional
tables are available in Andersen (1980, 1990), Fienberg (1980), Bishop,
Fienberg and Holland (1975), Christensen (1991), Santner and Duffy (1989)
and Reynolds (1977). Discussion of stepwise procedures, incomplete tables
and structural zeroes is available in Fienberg (1980), Bishop, Fienberg and
Holland (1975) and Christensen (1991). Logit response models are outlined
in Fienberg (1980). Techniques available for ordinal variables are outlined
in Agresti (1984).

6.4 The Weighted Least Squares Approach

So far our approach to modeling the variation among cell frequencies in
multidimensional contingency tables has been restricted to logarithms of
frequencies. In addition, the method used for estimation so far has been
the maximum likelihood approach. It is possible to define ANOVA type
models that do not involve the logarithms of the frequencies, and it is
also possible to obtain estimators of model parameters by an alternative
method called weighted least squares. This approach permits much more
flexibility in both defining models and in the types of hypotheses that can
be tested. This section provides an overview of this weighted least squares
methodology.

6.4.1 THE WEIGHTED LEAST SQUARES THEORY

In the weighted least squares approach, the variables that combine to form
the multidimensional contingency table are first classified into two cate-
gories, response variables and factor or ezplanatory variables. The cross-
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TABLE 6.47. Contingency Table Showing
Cross-Classification of Sample Frequency by Re-
sponse Category and Subpopulation

Response Levels

Subpopulations 1 2 cee c Totals
1 nj; n12 ... nNic ny.
2 nmg1 mn22 ... N2 ng.
r el N2 Nre Ny

classification of the entire set of factor variables yields a set of categories
called subpopulations. Similarly, the cross-classification of the complete set
of response variables produces a set of categories called response levels.
Thus, regardless of the number of underlying variables, the multidimen-
sional contingency table can be represented as a two-dimensional array
representing the cross-classification of the response levels with the subpop-
ulations.

Table 6.47 illustrates the allocation of a sample of size n to the rc cells.
The number of response levels is ¢ and the number of subpopulations is r.
The cell frequency is denoted by n;; for response level j and subpopula-
tioni; 1=1,2,...,7 j=12,...,c. The row totals n;.,, i =1,2,...,r,
represent the sample sizes for the r subpopulations.

The Product Multinomial Distribution Assumption

The underlying sampling distribution is assumed to be product multino-
mial. For each of the r subpopulations, the sampling process is multinomial
and the r samples are assumed to be mutually independent. The theoret-
ical cell densities for each subpopulation are shown in Table 6.48 and are
denoted by p;j, i =1,2,...,m; j =1,2,...,c. These distribution parame-
ters satisfy the condition E;=1p,-j = 1 and hence the row totals are unity.
For each subpopulation the multinomial density is given by

ni; .
c pr i=12,...,r
H n! =1

f(nil, ni2,... ynic)
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TABLE 6.48. Population Densities for
the Independent Multinomial Compo-
nents of the Product Multinomial

Response Levels

Subpopulations 1 2 . c
1 P11 P12 --- Plc
2 P21 P22 ... P2
r Pr1 Pr2 ses Prc

The corresponding product multinomial density is therefore given by

T

c
n;.! i
f(ni1,maz2,. .. M) = H - Hp:}u

(4
i=1

The (rc x 1) vector of densities p;j, 1 =1,2,...,m; j=1,2,...,¢, will be
den()ted by P= [pll:pl?a ceeyP1cy P21, D22y - -3 P2¢y -+ - s Pr1y Pr2y - - - ap‘r‘C]' In
comparison to the two-dimensional contingency table discussed in Section
6.2 the densities p;; are given by p;; = fi;/fi..

Ezample

The three-dimensional contingency table relating driver injury level to both
seatbelt usage and driver condition first presented in Table 6.23 will be
used in this section to provide an example for the weighted least squares
approach. Table 6.49 contains both the cell frequencies and the correspond-
ing row proportions. The response variable is driver injury level, which has
four levels, and the cross-classification of the variables driver condition and
seatbelt usage provide the four subpopulations. A comparison of the row
proportions over the four subpopulations seems to suggest that the pro-
portions are not homogeneous. We shall use the weighted least squares
methodology to model the variation in row proportions.

Sampling Properties of the Row Proportions

The sample proportions n;;/n;. which can be obtained from Table 6.47,
provide estimators of the parameters p;;. Under the product multinomial
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TABLE 6.49. Driver Injury Level Response to Seatbelt Usage and
Driver Condition — Cell Frequencies and Row Proportions

Subpopulations Response Levels
Driver Seatbelt Driver Injury Level
Condition Usage None  Minimal Minor Major/Fatal Totals
Normal Yes 12500 604 344 38 13486
0.9269 0.0448 0.0255 0.0028
No 61971 3519 2272 237 67999
0.9114 0.0518 0.0334 0.0035
Been Yes 313 43 15 4 375
Drinking 0.8347 0.1146  0.0400 0.0107
No 3992 481 370 66 4909
0.8132 0.0980 0.0754 0.0134

assumption we have that

E[nij/ni] = pij, i=12,...,m; j=12,...,c,
Vinij/ni.] = pi;(1 - pij)/ni., i=1,2,...,m;j=1,2,...,¢
Cov[2t, 2| = —pypun/mi, i=1,2...,mi=12...0¢
Cov[%‘-,;‘f =0, il i=1,2,...,m j=12...,c

The (rc x 1) vector of estimators n;;/n;. will be denoted by

[nu n12 n13 Nic N21 N2 Nr1 nrc]
n. ' n) e ng  ng T

and the individual elements by p;; = n;;/n;..

Ezample
The vector of observed proportions based on Table 6.49 is given by

p’ = [0.9269,0.0448,0.0255,0.0028,0.9114,0.0518,0.0334, 0.0035,
0.8347,0.1146,0.0400, 0.0107,0.8132, 0.0980, 0.0754, 0.0134].

Determining Linear Functions Among the Row Proportions

The weighted least squares approach is used to estimate relationships among
linear functions of the elements of p. A set of m linear functions of the el-
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ements of p are given by a system of equations

g1 = ampn +a2p12 + - .. G1rcPre
g2 = a211p11 +a22p12 + ... 42rcPre
Im = Qm11P11 + ami2P12 + - .. CmrcPrec-

In matrix notation the system is given by g = Ap where g is the (m x 1)
vector of elements gx, k = 1,2,...,m; A is the (m x rc) matrix of elements
arij, k=1,2,...,m; i =1,2,...,7r, 5 = 1,2,...,¢; and p is the (rc x 1)
vector of cell densities.

Since the proportions in each row of Table 6.48 add to unity, we need only
use (c — 1) relations among the proportions in a given row. One common
approach is simply to omit one of the ¢ columns so that the matrix A
simply removes these elements from p to get g. An alternative approach
is to compare (c — 1) of the column proportions to a particular column
proportion using the differences pi; —pix, j#k, j=1,2,...,c. A third
alternative would be to compute a score for each row based on a weighted
sum of the p;; values in each row such as s; = 3°;_,w;p;;. A simple case
would be the mean scores with w; =1/¢, j=1,2,...,c

Ezample

For the accident data in Table 6.49, a useful way of comparing the four
subpopulations would be to use contrasts between the no injury level and
the three injury levels. The g vector therefore contains 12 differences. The
A matrix and g vector for the equation g = Ap in this case are given by

P11 — P12
D21 — P22
P31 — P32
P41 — P42
P11 — P13
— | P21 — P23
& P31 —p33 |’
P41 — P43
P11 — P14
D21 — P24
P31 — P34
| P41 — P44 |
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P11

- - P12
1-1 0 00 0 0 00 0 0 00 O O O P13
0 00 01-1 0 00 0 0 00 O O O P14
0 00 00 0 0 01-1 0 00 0 OO P21
0 00 00 0 0 00O O O O01-1 0 O P22
1 0-1 00 0 0 00 0 0 00 O O O P23
Ap = 0 00 01 0-1 00 0 0 00 O O0 O D24
0 0 0 00 0 0 01 0-1 00 0 0 O P31
0O 00 00 0 0 00 O 0 01 0-1 0 P32
1 0 0-10 0 0 00 0 0 00 O O O P33
0 00 01 0 0-10 0 0 00 0 0 O P34
0 00 00 0 0 01 0 0-10 0 0 O P41
_0 0 0 00 0 0O OO O O 01 o 0—1_ P42
P43

P44 |

For each of the four no injury proportions each of the three injury pro-
portions is subtracted to provide a contrast.
The Linear Model to Be Estimated

The vector g of linear functions is assumed to satisfy the linear model

g=Xp3

where X (m X s) is a specified design matriz and 3 (s x 1) is an unknown
parameter vector.

Computer Software

The statistical software package SAS, procedure CATMOD is used to per-
form the analyses in Section 6.4.

Ezample

For the example, a convenient model that can be used to describe the differ-
ences among the row proportions as a function of seatbelt usage and driver
condition would be an ANOVA type model. Using effect coding the design
matrix for a driver condition effect, a seatbelt effect and an interaction
effect for each response is given by

1 1 1 1
1 1 -1 -1
1 -1 1 -1

1 -1 -1 1
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TABLE 6.50. Parameter Definitions for Model

Overall Mean i
Driver Condition Normal Been Drinking
aj —Qj
Seatbelt Usage Yes No
Vi /]

Seatbelt Usage by

Driver Condition Normal Been Drinking
Yes  (a7); —(e7);
No  —(av); (a7);

The first column of the design matrix generates the mean, the second col-
umn yields the driver condition effect, the third column measures the seat-
belt usage effect and the last column represents the interaction. This design
matrix is repeated for each of the three response functions (corresponding
to the three injury categories) in a block diagonal fashion to get the overall
design matrix X.

The parameter vector 3 contains three sets of four parameters. For the
Jjth response function the elements of 3 are p;, o, v; and (a);, j = 2,3
and 4. For the jth response function (j = 2, 3,4) we have the four equations
corresponding to the four subpopulations generated by the two seatbelt
categories and the two driver conditions. The equations are given by

P11 — D1 1 1 1 1 Mj
D21 — D2; _ 1 1 -1 -1 aj
P31 — P3j 1 -1 1 -1 vj
P41 — P4j 1 -1 -1 1 (a7);
Bi +aj +7; + (a7);
- Hitai—v—(a); (6.1)

B — o+ — (ay);
B — o =7 — (av);

These parameter estimates can also be summarized in tabular form as
shown in Table 6.50. The parameters in each of the three categories sum
to zero as is the case with ANOVA models.

Determining the Weighted Least Squares Estimator

Since the vector g is a function of the true proportions, it is not observable;
we therefore replace g by g where § = Ap, and p is the corresponding
vector of sample proportions. Defining the error vector u (m x 1) by u =
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€ — g, we have the linear model
g=XB+u.

If the covariance matriz of u is denoted by E[uu’] = H, then from linear
model theory the weighted least squares estimator of 3 is given by

B=(X'H'X)X'H g

The covariance matrix H is defined by H = ARA’ where £ is the
covariance matrix of p.
The covariance matrix §2 is block diagonal with block components §2;,
i1=1,2,...,r,
?,
2,

2,

The block matrices §2;, i = 1,2,...,r are functions of the p;;, j =
L1,2,...,c. The c diagonal elements of §2; are given by p;;(1 — pi;)/ni.,
J=1,2,...,c; and the off-diagonal elements by —p;;pix/ni., j #k, j k=
1,2,...,c
This covariance matrix is estimated by replacing the elements of p by the
elements of p. The resulting estimator is denoted by 2 and the estimator
of H by H=ARA' The weighted least squares estimator of 3 therefore
becomes 1 1
=X'H X)"(X'H §g). (6.2)

Ezample

Continuing the above example for the accident data, the value of g is given
by [0.8821, 0.8596, 0.7200, 0.7152, 0.9014, 0.8779, 0.7947, 0.7378, 0.9241,
0.9079, 0.8240, 0.7998]. These values are plotted in Figure 6.6 in such a
way that the interaction between seatbelt usage and driver condition can
be observed. As can be seen from the figure the greatest departure from two
parallel lines occurs in the middle panel, which is concerned with the minor
injury category. The bottom panel displays an almost parallel relationship.
The resulting weighted least squares estimates for the two-way ANOVA
model outlined above are given by

[ 0.7942 0.0766
p=| 08280 |, a=| 00617 |,

| 0.8639 | 0.0520

[ 0.0068 ] —0.0044
4= 0.0200 |, (64) = 0.0083

| 0.0101 | l 0.0020 }
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FIGURE 6.6. Relationship Between Injury Level Response and the Factors Seat-
belt Usage

These three estimated models fit the contingency table perfectly since the
model is a saturated model. In tabular form the parameter estimates are
shown in Table 6.51. From the parameter estimates, we can conclude that
the proportion of individuals in each injury category increases relative to
the no injury category if the individual has been drinking and also if the
individual was not wearing a seatbelt. The driver condition effects have
larger magnitudes than the seatbelt usage effects. The interaction effects
suggest that in the minor and major categories the effect is more pro-
nounced if both are present, whereas in the minimal category the reverse
is true. These effects are relatively weak.
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TABLE 6.51. Estimates for Two-Way Model for Accident Data

(pi1 —pi2)  (Pi1 —Pi3) (P2 — paa)

Overall Mean 0.7942 0.8280 0.8639

Driver Condition = Normal 0.0766 0.0617 0.0520

Been Drinking -0.0766 -0.0617 -0.0520

Seatbelt Usage Yes 0.0068 0.0200 0.0101

No -0.0068 -0.0200 -0.0101

Driver Condition = Normal Yes -0.0044 0.0083 0.0020

by Normal No 0.0044 -0.0083 -0.0020
Seatbelt Usage

Been Drinking Yes 0.0044 -0.0083 -0.0020

Been Drinking No -0.0044 0.0083 0.0020

6.4.2 STATISTICAL INFERENCE FOR THE WEIGHTED
LEAST SQUARES PROCEDURE

Having obtained the weighted least squares estimator given by (6.2), a test
of goodness of fit can be carried out using the chi-square test statistic given
by el A oran—1 ~
gH g-B(XH X)B

In large samples this statistic has a x? distribution with (m — s) degrees of
freedom if the model fits the data. [Recall that X is (m X s).] This statistic
is sometimes referrg\d_’(lo as a Wald statistic. This statistic is the minimum
value of (g — XB8)H (& — X8), which is minimum at 8 = 3.

If the model fits the data, hypotheses regarding linear functions of the
parameter vector B can also be tested. Denoting the linear functions by
Cp where C is (g x s), the test statistic

(CAY[C(X'H™X)"CI}(CB)
has a x? distribution with g degrees of freedom in large samples if Hy: C3 =
0 is true.

Ezample

In the previous section a saturated model was fit to the accident data and
hence the x? goodness of fit test yields a x? value of 0.0. The individual
parameters in the model and the various effects can be tested using various
forms of the matrix C in the test statistic for Hyo: C@ = 0. Using this
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TABLE 6.52. Analysis of Variance Table for Effects

2

Source d.f. X p-Value
Intercepts 3 39371.44 0.0001
Seat Belts 3 16.31 0.0010
Driver Condition 3 91.42 0.0001
Interactions 3 7.93 0.0474
Residual 0 0 1.000

TABLE 6.53. Significance for Individual Parameter Estimates

2

Parameter Estimate X p-Value
77} 0.7942 8,085.8 0.0001
u3 0.8280 14,993.9 0.0001
I 0.8639 24,437.2 0.0001
g 0.0068 0.60 0.4400
ag 0.0201 8.81 0.0030
ay 0.0101 3.35 0.0673
Y2 0.0766 75.25 0.0001
3 0.0617 83.28 0.0001
"4 0.0520 88.69 0.0001

(av)2 -0.0044 0.25 0.6161
(av)3 0.0083 1.52 0.2169
()4 0.0020 0.13 0.7160

procedure, the x? statistics and p-values shown in Tables 6.52 and 6.53
can be produced. The ANOVA table suggests that all effects including the
interaction are significant at the 0.05 level. The table, which summarizes
the significance levels for the individual parameters, indicates that each
of the interaction parameters is not significant at the margin. In other
words, if any two of the interaction parameters are included, the third
parameter does not contribute significantly to the overall goodness of fit. An
examination of the significance of the individual parameter estimates for the
main effects in Table 6.53 reveals that a; is not significant. It would appear
that seatbelts on average do not affect the difference in proportions between
no injury and minimal injury after controlling for driver condition effects. It
would also appear that after controlling for driver condition, seatbelt usage
had little impact on the difference for the major/fatal category (see ay).
When the interaction terms are omitted from the model, the ANOVA
table and parameter estimates for this reduced model are summarized in
Tables 6.54 and 6.55. As can be seen from the table of parameter estimates,
some changes occur in the estimates of the main effects. In general the
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TABLE 6.54. Analysis of Variance Table for Effects

2

Source d.f. X p-Value
Intercepts 3 112727.68 0.0001
Seat Belts 3 46.42 0.0001
Driver Condition 3 320.59 0.0001
Residual 3 7.93 0.0474

TABLE 6.55. Significance for Individual Parameter Estimates

2

Parameter Estimate X p-Value
K2 0.7987 28,962.3 0.0001
H3 0.8225 38,125.2 0.0001
m 0.8631 75,358.2 0.0001
ag 0.0112 28.98 0.0001
ag 0.0121 46.17 0.0001
ay 0.0082 39.61 0.0001
v2 0.0721 264.10 0.0001
73 0.0674 280.44 0.0001
Y4 0.0530 312.51 0.0001

main effects appear to be stronger when the interaction is omitted. From
the ANOVA table we can see that the residual x? statistic is simply the x2
statistic for interaction observed in Table 6.52 since the former model was
a saturated model.

6.4.3 SOME ALTERNATIVE ANALYSES

The previous discussion of the impact of seatbelt usage and driver condition
on driver injury level focused on the comparison between the no injury level
and each of the three levels of injury. Given that there are four response
levels, it is possible to define a variety of other response functions using
alternative linear transformation matrices A. Up to three linearly indepen-
dent response functions can be defined. In this section several alternative
analyses will be carried out using different transformations.

Marginal Analysis

Perhaps the simplest type of analysis that can be performed is to model
all but one of the response proportions directly. In this case the response
functions are called marginal response functions. The A matrix for this
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TABLE 6.56. Significance for Individual Parameter Estimates for Marginal
Analysis

Parameter Estimate x2 p-Value
B2 0.0723 1064.78 0.000
1“3 0.0486 680.83 0.000
m 0.0080 98.11 0.000
g 0.0033 11.57 0.000
ag 0.0042 31.27 0.000
ay 0.0000 1.82 0.1769
72 0.0239 130.89 0.000
73 0.0193 115.76 0.000
Y4 0.0049 38.24 0.000

case contains rows with a single entry of 1 and the remaining entries 0.
To illustrate using the accident data, the no injury level was omitted and
the remaining three injury levels were related to seatbelt usage and driver
condition using a two-way ANOVA model.

Even though the A matrix has changed, the overall significance levels for
the effects are the same as in the analysis in Section 6.4.2. The individual
effect parameters, however, now measure the impact of the factors on the
injury level proportions rather than on the differences of the proportions
from the no injury level. The equations are now

Py = pjtoj+y+ (@)
p2j = Mjtog—— (o)
p3; = Wi —aj+v;— (a)j, J=2,3,4
ps; = pj—oa;—7+(ar);

for the three injury levels. (Recall that o measures seatbelt effects and ~
measures driver condition effects.) Notice that the design matrix is iden-
tical to (6.1). In this analysis we can determine how each proportion cor-
responding to a given injury level varies according to seatbelt usage and
driver condition.

The results of this analysis are shown in Table 6.56. The model without
the interaction term was fitted because of the marginal significance (0.0474)
of this term. From this table it would appear that the two main effects are
significant in the anticipated directions except for the seatbelt usage for
the major/fatal level. In this case seatbelt usage does not have a significant
effect on the proportion in this injury category.
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No Major/
Injury Minimal Minor Fatal

FIGURE 6.7. Three Partitions of Four Injury Level Groups

Continuation Differences

Since in the accident data example the four levels of injury are ordinal,
it also makes sense to study the response probabilities using continuation
differences. In this case the proportions are compared by dividing the four
levels into two groups in three different ways by changing the line of division
along the continuum from none to major/fatal. Figure 6.7 shows three
partitions of the four groups.

In Figure 6.7 the three dotted vertical lines divide the four levels into
two groups in three different ways. The division 1 compares the no injury
category to the other three, and division 2 compares the two lower injury
levels to the two higher injury levels. The final division 3 compares the
major/fatal level to the other three.

As above, the overall significance of the effects is the same. The parameter
estimates, however, provide an alternative way of measuring the effects. The
three response functions in this case are given by (3pi;1 — pi2 — i3 — pis),
(Pi1 + Pi2 — Pi3 — pia) and (pi1 + piz + Pis — 3pia). In each case, the right
hand side has the same form as (6.1) for i = 1,2, 3,4.

The main effect parameter estimates obtained using a no interaction
model are shown in Table 6.57. Once again all the main effects are sig-
nificant except for the seatbelt usage effect in the major/fatal category. It
would appear that the usage of a seatbelt in the major/fatal category does
not yield a difference in proportion relative to the other three categories.

Averaging or Summing Response Functions

When there are two or more categories for the response variable, it is also
possible to use a single response function based on a weighted average or
weighted sum of the proportions. The resultant average response function
or sum of responses is then related to the explanatory factors. In the case
of the accident data, it would seem reasonable to use the sum of the three
injury categories ignoring the no injury category. The response function
would therefore reflect the injury proportion. The model would be given
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TABLE 6.57. Significance for Individual Parameter Estimates for Continua-
tion Differences

2

Parameter Estimate X p-Value
Ba 2.4842 47482.9 0.000
u3 0.8867 48676.4 0.000
m 0.9678 88771.1 0.000
az 0.0316 40.75 0.000
ag 0.0091 33.02 0.000
ay 0.0014 1.82 0.1769
Y2 0.1925 316.00 0.000
Y3 0.0484 155.92 0.000
Y4 0.0196 38.24 0.000

by
(P21 + P31 +pa1) = p+a+v+(ay)
(P22 +p32+ps2) = p+a-—v—(ay)
(P23 +p33+pa3) = p—a+y—(ay)
(P2a +P3a+paa) = p—a—y+(ay).

For the accident data the estimates of the parameters for the model above
are f1 = 0.1297, & = 0.0078 and 4 = 0.0488, all of which are significant at
the 0.000 level. The interaction term was not significant and was omitted
from the fit. We can conclude, therefore, that the proportion of drivers who
sustain any level of injury is increased when a seatbelt is not used and also
if the driver has been drinking. The impact of driver condition on injury
level seems to be much greater than the impact of seatbelt usage.

Weighted Sums for Ordinal Responses

When the response levels are ordinal, weighted averages or sums of the
response functions can be based on values that are attached to the levels.
A common technique is simply to use integer values for the levels that
reflect the rank order of the levels. In the case of the injury data, one may
wish to attach weights that reflect the cost of the various injury levels. To
provide an example we will use the weights 0, 5, 10 and 100 for the four
injury levels. The model is given by (5p;2 + 10p;3 + 100p;4). The right hand
side of the model has the same form as (6.1).

For the accident data the estimated parameters for the model that ex-
cludes the interaction term are 4 = 1.6572, & = 0.0920 and 4 = 0.8070. All
three estimates were significant at the 0.000 level. A comparison of these
results to the results obtained using the unweighted sum suggests that the
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magnitude of the driver condition parameter relative to the seatbelt us-
age parameter increases when higher values are placed on the more serious
levels of injury.

6.4.4 WEIGHTED LEAST SQUARES ESTIMATION FOR
LoGcIiT MODELS

The Logit Model as a Special Case of a Weighted Least Squares Model

The weighted least squares approach can also be used to estimate loglinear
models based on the cell proportions. Since the transformation of the p
vector is no longer linear in this case, the covariance matrix for the error
term must be determined in an alternate manner.

We begin by denoting the vector containing the logarithms of the ele-
ments of p by Inp, and hence Inp has the elements Inp;;, i = 1,2,...,r,
Jj = 1,2,...,c. In a similar fashion the vector of elements Inp;; will be
denoted by In p.

A covariance matrix for the vector In P is required in order to perform the
weighted least squares procedure. To determine the covariance matrix for
Inp, a Taylor Series expansion is used which yields the covariance matrix
D !2D!, where D is the diagonal matrix with the elements of p on
the diagonal and §2 is the covariance matrix for p defined in Section 6.4.1.
Using the elements of p as estimators of p, the estimated covariance matrix

of Inp is given by D lflﬁ 1.

A logit response model can be written as a linear transformation of the
vector In p so that we have the same form as in the case of linear response
models

g=Alnp.

When we relate the logit responses to the explanatory factors, the model
becomes g = X3. Replacing g by g when P replaces p, we obtain the linear
model

g=XB+u
and the weighted least squares estimator

B=(x'H;'X)"'(X'H,'g), where H,=AD 2D A"

The inference procedures for this model are identical to those outlined in
Section 6.4.2.

Ezample

The accident data table introduced in Section 6.4.1 is used here to illus-
trate the use of logit models. Two different types of response models are
estimated. The logit model relating the no injury category to the remain-
ing three injury categories has the three response functions Inp;; — Inp;2,
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TABLE 6.58. Analysis of Variance for Logit Model
2

Source d.f. X p-Value
Intercepts 3 15427.26 0.000
Seat Belts 3 39.13 0.000
Driver Condition 3 561.73 0.000
Residual 3 4.96 0.1756

TABLE 6.59. Weighted Least Squares Parameter Estimates for

Logit Model
Parameter Estimate x2 p-Value
B2 2.5534 7390.75 0.000
B3 3.0000 6572.24 0.000
pa 4.9515 2727.31 0.000
ag 0.0707 10.51 0.001
ag 0.1522 28.17 0.000
ay 0.1168 1.99 0.159
Y2 0.3887 251.30 0.000
3 0.4559 255.33 0.000
Y4 0.7311 116.54 0.000

Inp;1 —Inp;3, and Inp;; — In p;4. To relate these logits to the seatbelt usage
and driver condition factors, a two-way ANOVA model is used. In this case
the interaction term was not significant (p = 0.1746) and so the model was
fitted without an interaction term. The analysis of variance results and
parameter estimates are summarized in Tables 6.58 and 6.59 respectively.
From the two tables we find that the main effects are significant in the ex-
pected direction and that only in the case of major/fatal was the seatbelt
usage not significant.

The estimated logit model obtained above, using weighted least squares,
can be compared to the estimated logit model, using maximum likelihood,
by using the estimates given in Table 6.25 in Section 6.3.2. The estimates
can be obtained as shown in Section 6.3.5. The resulting parameter esti-
mates are summarized in Table 6.60. Comparison of Tables 6.60 and 6.59
shows that the parameter estimates obtained are virtually identical.

Continuation Ratios

In a manner similar to the continuation differences introduced above, the
continuation differences based on Inp;; are logarithms of ratios and are
usually called continuation ratios. For the accident data, the parameter es-
timates for the continuation ratio response models are shown in Table 6.61.
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TABLE 6.60. Parameter Esti-
mates for Logit Model Based on
Maximum Likelihood Estimates

of the Loglinear Model

Parameter

B2
H3
K4
a2z
a3
a4
72
3
Y4

2.626 — 0.072 = 2.554
2.626 + 0.376 = 3.002
2.626 + 2.322 = 4.948
0.085 — 0.013 = 0.072
0.085 + 0.069 = 0.154
0.085 + 0.029 = 0.114
0.392 — 0.006 = 0.386
0.392 + 0.061 = 0.453
0.392 + 0.337 = 0.729

TABLE 6.61. Weighted Least Squares Parameter Estimates for Logit Model
Using Continuation Ratios

2

Parameter Estimate X p-Value
B2 2.0020 7405.13 0.000
B3 2.9458 7281.99 0.000
B4 5.0838 2878.63 0.000
ag 0.1030 35.31 0.000
ag 0.1450 28.51 0.000
ay 0.1077 1.69 0.1937
Y2 0.4318 526.18 0.000
Y3 0.4590 302.05 0.000
Y4 0.6793 100.84 0.000

The first function compares the no injury case (numerator) to the three in-
jury levels (denominator), the second function compares the no injury and
minimal injury categories (numerator) to the minor and major/fatal cat-
egories (denominator). The third function compares the major/fatal cate-
gory (denominator) to the other three categories (numerator). The fitted
model in each case excludes the interaction term that is not significant.

6.4.5 TwoO OR MORE RESPONSE VARIABLES

Defining Response Functions

When there are two or more response variables, there are a variety of ways
of defining response functions. We begin by examining the general case
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of two response variables. We then look at some specialized models for
repeated measures designs.

If there are two response variables, with a and b levels respectively, the
cross-classification of the two variables yields a total of ¢ = ab response
categories. The cross-classification can now be viewed as a single response
variable with c levels, and the weighted least squares methodology can be
applied as outlined in Sections 6.4.1 and 6.4.2. Since the derived response
variable represents a cross-classification of two variables, it is usually of
interest to define the transformation matrix A in such a way that the
response functions g represent separate effects for each of the two response
variables, as well as interactions between the two sets of effects. The impact
of the factor variables on the response variable main effects and interactions
can then be measured by the model.

Ezample

For the accident data, both the injury level variable and seatbelt usage
variable are treated as response variables, whereas the driver condition
variable will be the only factor variable. The p vector now contains elements
pij, 1=1,2; j=12,...,8. We assume that j = 1,3,5,7 corresponds to
seatbelt usage = yes, and j = 2,4, 6, 8 corresponds to seatbelt usage = no.
The four levels of injury are none, minimal, minor and major/fatal, in that
order.

The A matrix below uses effect coding to generate seven response func-
tions for each of the two driver conditions. These response functions mea-
sure a seatbelt usage effect, three injury level effects, and the three in-
teractions between these two sets of effects. The p vector is also shown
below.

[ P11 ]
P12
P13
P14
P15
P16
P17
Pis
D21
P22
P23
D24
P25
P26
D27
| P28 |

COOCOOOOOOHOOHH

OO O OO OOO—HOO—HOM

COOCOOOOHOOHOOH

et b e ek e = = O O OO OO0

COOOOOCOOOHOO -
OO OOOOOHOO-O
COOCOOOOHOOHOOH
et b e e e i = O OO OO OO
OCOHOOMHEOOOOOOO
OO OOHMHOOOOOOO
OHOOHOHOOOOOOO
|

OO OHOHOOOOOOO
—HOOHOOHOOOOOOO
|

HOOHOOHOOOOOOO

OCOOCOOOOHKHH

The first and eighth rows of A derive the response function for seatbelt
usage whereas rows 2, 3, 4 and 9, 10, 11 represent the three injury level
effects. The remaining six rows represent the three interaction effects. These
rows can be seen to be obtained by taking the products of elements in
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row 1 with each of rows 2, 3 and 4 and row 8 with each of rows 9, 10
and 11. On the right-hand side of the model, a design matrix is required
to measure driver condition effects. For each response function the design

matrix is [ } _} ] Denoting the parameter vector for response function

i by [ Z : ] , the right-hand side has the form (u; +a;) for normal condition

drivers and (p; — a;) for been drinking drivers. The p; parameter measures
the category mean, and the «; parameter measures the driver condition
effect. The driver condition parameter is preceded by a positive sign for
normal condition drivers and by a negative sign for been drinking drivers.

The equations for the normal condition drivers can be expressed by

(PYes — PNo)Normal =l tao
All Injury Levels

(PMinimal — PNone)Normal = #2 + @2
Both Seatbelt Usages

(PMinor — PNone)Normal = M3+ a3
Both Seatbelt Usages

(pMajor — PNone)Normal = M4+ a4
Both Seatbelt Usages

(PMinimal ~ PNone)Normal— (PMinimal — PNone)Normal

Seatbelt Yes Seatbelt No
or = us + as

(PYes — PNo)Normal = (PYes — PNo)Normal
Minimal Injury No Injury
(PMinor — PNone)Normal~ (PMinor — PNone)Normal
Seatbelt Yes Seatbelt No

or = ue + ag
(PYes — PNo)Normal — (PYes — PNo)Normal
Minor Injury No Injury
(pMajor — PNone)Normal ~ (PMajor — PNone)Normal
Seatbelt Yes Seatbelt No

=prtaor

or
(PYes — PNo)Normal — (PYes — PNo)Normal
Major/Fatal Injury No Injury
For the been drinking drivers the equations are the same as above ex-
cept the signs in front of the a parameters are all negative. Combining
the equations for normal and been drinking drivers yields the parameter
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relationships summarized below.

201 = (PYes — PNo)Normal ~ (PYes — pNo)Drinking
All Injury Levels

— a positive a; therefore implies that normal condition drivers have a
greater tendency to wear seatbelts.

202 = (PMinimal ~ PNone)Normal ~ (PMinimal ~ pNone)Drinking
Both Seatbelt Usages

203 = (PMinor ~ PNone)Normal ~ (PMinor ~ pNone)Drinking
Both Seatbelt Usages

204 = (PMajor — PNone)Normal ~ (PMajor — pNone)Drinking
Both Seatbelt Usages

— negative values of as, a3 and a4 imply that normal condition drivers tend
to have less injuries than drinking drivers.

205 = {(PMinimal ~ PNone)Normal ~ (PMinimal — pNone)Drinking}
Seatbelt Yes
— {(PMinimal — PNone)Normal ~ (PMinimal ~ pNone)Drinking}
Seatbelts No
or
= {(PYes ~ PNo)Normal ~ (PYes — pNo)Drinking}
Minimal Injury

—  {(PYes — PNo)Normal — (PYes — pNo)Drinking}
No Injury

206 = {(PMinor ~ PNone)Normal — (PMinor — pNone)Drinking}
Seatbelts Yes

{(PMinor — PNone)Normal ~ (PMinor — pNone)Drinking}
Seatbelts No
or

= {(PYes — PNo)Normal ~ (PYes — pNo)Drinking}

Minor Injury

{(PYes — PNo)Normal — (PYes — pNo)Drinking}
No Injury
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207 = {(pMajor — PNone)Normal ~ (pMajor 'pNone)Drinking}
Seatbelts Yes

{(pMajor — PNone)Normal ~ (pMajor - pNone)Drinking}
Seatbelts No
or

{(PYes — PNo)Normal — (PYes — pNo)Drinking}
Major/Fatal Injury

{(PYes — PNo)Normal — (PYes — pNo)Drinking}
No Injury

- negative values of as, ag and a7 imply that the impact of driver condition
on injury level is less pronounced among non-seatbelt users than among
seatbelt users or, equivalently, the impact of driver condition on the level
of seatbelt usage is less pronounced in the injury categories than in the no
injury category.

The weighted least squares estimates for the resulting model are shown
in Table 6.62. From the intercept parameter (u parameter) estimates we
can conclude that after averaging over the driver condition categories:

(a) a smaller proportion of the drivers wore seatbelts,

(b) for each of the three injury categories the proportions in the injury
categories were much smaller than the proportion in the no injury
category,

(c) the difference between the proportion of non-seatbelt wearers and
seatbelt wearers is much larger in the no injury category than in the
three injury categories. The magnitude of the parameter increases as
the severity of injury increases reflecting the smaller proportion of
injuries in the more serious injury categories.

The driver condition effects indicate how the intercept parameter re-
sponses are influenced by driver condition.

(a) The seatbelt usage response parameter indicates that for normal con-
dition drivers the proportion wearing seatbelts tends to be higher
than for drinking drivers.

(b) The injury level parameters indicate that for the three injury cat-
egories the proportions of normal drivers who incur injuries is less
than the proportion of drinking drivers who incur injuries.
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TABLE 6.62. Parameter Estimates for the Two-Response

Model
Intercept Parameters Estimate ﬁ p-Value
(1) Seatbelt Usage -0.7635 41133.8 0.000
(2) Minimal vs No Injury -0.7894  31657.8 0.000
(3) Minor vs No Injury -0.8118 40013.0 0.000
(4) Major/Fatal vs No Injury -0.8560 80948.2 0.000
(5) Interaction (1) & (2) 0.5924  12807.5 0.000
(6) Interaction (1) & (3) 0.6063  14626.7 0.000
(7) Interaction (1) & (4) 0.6446 222232  0.000

Driver Condition Effects

(1) Seatbelt Usage 0.0945 630.6 0.000
(2) Minimal vs No Injury -0.0739 277.3 0.000
(3) Minor vs No Injury -0.0700 297.3 0.000
(4) Major/Fatal vs No Injury -0.0545 328.6 0.000
(5) Interaction (1) & (2) -0.0210 16.10 0.000
(6) Interaction (1) & (3) -0.0228 20.70 0.000
(7) Interaction (1) & (4) -0.0399 85.2 0.000

(c) The interaction response parameters suggest that the difference in the
proportion of seatbelt wearers between normal and drinking drivers
is less at each of the injury levels than it is at the no injury level. The
seatbelt response and injury level response are therefore not simply
additive.

Ezample Using Logs

The above analysis can also be carried out using the log form In p;; in place
of p;;. When the analysis is carried out for the accident data, the interaction
terms are not significant. This result is consistent with the loglinear model
results summarized in Tables 6.24 and 6.25. The three-way interaction term
had a p-value of 0.17 and was omitted from the model. It would seem that
modeling the logarithm of the proportions yields different results from the
model for the proportions.

Repeated Measurement Designs

In analysis of variance, the repeated measures design is commonly used. In
the repeated measures design, more than one observation is obtained from
each experimental unit. The multiple observations on each experimental
unit may represent a variety of experimental conditions, such as treat-
ments, or may represent responses to different items on a questionnaire.
In such circumstances it is not only the interaction between the response
variables that is of interest but also the symmetry among the response
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distributions for the response variables. The repeated measures design will
also be discussed in Chapters 7 and 8. In this section we examine some
alternative models that can be used for tests of symmetry. Such tests are
also referred to as tests of marginal homogeneity.

We assume that there are a total of r subpopulations of subjects and
that the subjects in these subpopulations are observed on a total of d
different measurement conditions. Each measurement or experimental con-
dition yields a response on any one of b levels. The total number of response
categories is therefore ¢ = db. In place of the notation p;;, i =1,2,...,r;
j=1,2,...,c; used above for cell probabilities, it will be more convenient to
use g;x¢ to denote these cell probabilities where k denotes the experimental
condition and ¢ denotes the response level, k =1,2,...,d; £=1,2,...,b.

One hypothesis of interest is the total symmetry hypothesis given by

Hiquee=qore=...=¢qrke, k=12,...,d, £=1,2,...,b,

which indicates that there are no differences between the r subpopulations
with respect to the response probabilities in each of the ¢ = db cells. The
distribution of the probability over the c cells is therefore assumed to be
the same for all r subpopulations. A second hypothesis of interest is the
marginal symmetry or marginal homogeneity hypothesis given by

H2:q,~u=q,»2¢=...=q,~dg, i=1,2,...,7‘, L= 1,2,...,b,

which suggests that for a given subpopulation and a given response level,
the cell probabilities are identical for all experimental conditions or re-
sponse variables.

The two hypotheses are useful for comparing subpopulations and also for
comparing experimental conditions. These two hypotheses will be tested by
fitting a model to the cell proportions in such a way that the model param-
eters measure departures from the two hypotheses. For H; the parameters
are similar to those used above to represent the variation in the factor vari-
ables that define the r subpopulations. For H; the parameters are designed
to compare the degree of homogeneity among the distributions of the re-
sponse variables. It is this latter hypothesis that requires a different type
of model than those already discussed. An example will be used below to
illustrate the procedure.

Ezample

To provide an example for the repeated measures case, the contingency
table shown in Table 6.63 will be used. The contingency table is based
on a sample of 1250 individuals who were asked to respond to a ques-
tionnaire dealing with the evaluation of police services. The two response
variables CRIME 1 and CRIME 2 pertain to the individual perceptions
of their safety while walking in their neighborhood at night (CRIME 1)
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TABLE 6.63. Contingency Table Relating Crime
Perceptions to Education Level

EDUC
CRIME 1 CRIME 2 1 2 3 TOTAL
1 71 81 83 235
1 2 32 54 56 142
3 5 8 6 19
Total 108 143 145 396
1 7 3 5 15
2 2 172 138 98 408
3 66 48 33 147
Total 245 189 136 570
1 0 2 0 2
3 2 15 13 10 38
3 119 79 46 244
Total 134 94 56 284
1250

and in the downtown region at night (CRIME 2). The codes 1, 2, and 3
refer to the three opinions very safe, somewhat safe and unsafe. The fac-
tor variable EDUC represents level of education and is coded 1, 2, or 3.
Level 1 corresponds to those with at most a high school diploma, level 2
corresponds to those who have some post secondary training, and level 3
corresponds to those who have a university degree. The A matrix used to
create 12 response functions for the cell probabilities is shown below. For
each of the two response variables there are two response probabilities to
model since there are three levels of response (three probabilities must sum
to one). Since there are three education subpopulations the total number
of response functions is (3)(2)(2) = 12.

The response functions are given by g = Ap. The A matrix is given by

[ 1
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This A matrix consists of three sections of four rows each corresponding
to the three education subpopulations. The four rows in each section gener-
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ate the four response functions corresponding to the two response variables.
The first row of A determines the probability for CRIME 1 = 1, and the
second row of A determines the probability for CRIME 1 = 2. Similarly the
third and fourth rows of A determine the probabilities for CRIME 2 = 1
and CRIME 2 = 2 respectively. The CRIME 1 = 3 and CRIME 2 = 3 cate-
gories are omitted since the proportions must sum to one for each variable.
The same pattern is repeated in the four rows corresponding to each of the
second and third subpopulations.

The design matrix, X, for the model g = X8 to be fitted is shown
below. The parameter vector 3 is also shown. The X matrix contains three
horizontal blocks corresponding to the three education subpopulations.

1 0 1 0 0 0 1 o0
0 1 0 1 0 0 o0 1
1 0 1 0 0 0 -1 0
0 1 0 1 0 O 0 -1 [y ]
K2
1 0 0 0 1 0 1 0 a1l
0 1 0 0 0 1 o0 1 aig
X=11 0 0 0o 1 0 -1 o] B= a21
0 1 0 0 0 1 0 -1 Q22
84!
1 0-1 0 -1 0 1 o0 | 12
0 1 0 -1 0 -1 0 1
1 0 -1 0 -1 0 -1 0
|0 1 0 -1 0 -1 0 -1

In the B parameter vector there are two sets of parameters corresponding
to the two levels of each response variable being modelled. Effect coding
has been used to account for EDUC effects and the effects due to difference
between CRIME 1 and CRIME 2. For the first level of the response variables
(odd numbered rows of A) the cell probabilities are described by (u;+011 +
1), (B1+ai1—m), (B1+ai2+m), (B1+a12—7), (p1—o11—12+7)
and (p1 — @11 — @12 — 1), and similarly the second level of response by
(w2 + a21 + 712), (B2 + a21 — 72), (w2 + a2z +72), (p2 + a2 — 72),
(p2 —az1 — az2 +72) and (u2 — 021 — @22 —72) (even numbered rows of A).
The parameters o1, @12, az; and az; represent the effects of EDUC while
the parameters y; and v, account for differences between CRIME 1 and
CRIME 2.

The analysis of variance table and parameter estimates are shown in
Tables 6.64 and 6.65 respectively. From the analysis of variance table we can
conclude that both the EDUC effects and the CRIME effects are significant.
Since the EDUC effects are significant, the total symmetry hypothesis H;
can be rejected, and hence the distribution of cell probabilities differs with
respect to the three levels of EDUC. Similarly, since the CRIME effects
are significant, the hypothesis of marginal symmetry Hs must be rejected
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TABLE 6.64. Analysis of Variance for Model Relating CRIME 1 and
CRIME 2 to EDUC

Source d.f. x2 p-Value
Intercepts 2 4313.19 0.000
EDUC 4 27.35 0.000
CRIME 2 184.86 0.000
Residual 4 22.68 0.000

TABLE 6.65. Parameter Estimates and p-Values
2

Parameter Estimate X p-Value
I 0.2653 546.53 0.000
2 0.4607 1457.83 0.000
agl -0.0636 9.32 0.000
aj2 0.0142 0.78 0.392
a1 -0.0043 0.08 0.781
age -0.0021 0.01 0.903
T 0.0511 111.56 0.000
72 -0.0014 0.04 0.844

and therefore the distribution of probabilities over the response levels of
CRIME 1 is different from the distribution of these probabilities over the
levels of CRIME 2. The parameter estimates in Table 6.65 suggest that, at
the margin, some of the parameter estimates are not significantly different
from zero. It would appear that for the first response level of the two
crime variables the proportion is lower in the first education category. Thus
individuals from the lowest education category feel less safe in general.
Outside of the first response category and the first education category there
does not appear to be any other differences. Also, for the first levels of
CRIME 1 and CRIME 2 the cell probability is higher for CRIME 1 than
for CRIME 2. This indicates that at night a larger proportion of people
tend to feel very safe in their neighborhood than in the downtown region.
For the somewhat safe category the proportions are about the same for
both crime variables. The parameters y; and ps indicate that on average
26.5% of the respondents choose the first response whereas 46% choose the
second response.

Adding Interaction Effects

The analysis of variance shown in Table 6.64 suggests that the residual
is significant and hence that the fitted model does not fit the data well.
To obtain a better fit we consider the impact of adding interaction ef-
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TABLE 6.66. Analysis of Variance

2

Source d.f. X p-Value
Intercepts 2 4333.32 0.000
EDUC 4 37.00 0.000
CRIME 2 203.29 0.000
CRIME-EDUC Interaction 4 22.68 0.000
Residual 0 0 1.000

TABLE 6.67. Parameter Estimates and p-Values

Parameter Estimate x2 p-Value
Bl 0.2658 557.52 0.000
77} 0.4613 1461.30 0.000
aly -0.0775 27.36 0.000
a2 0.0151 0.83 0.363
ag) 0.0000 0.00 0.985
a2 0.0011 0.00 0.947
T 0.0608 131.58 0.000
Y2 -0.0112 2.21 0.137

(a11m) -0.0300 20.94 0.000
(a12m) 0.0379 14.60 0.000
(a2172) 0.0061 0.68 0.409
(a2272) -0.0076 0.52 0.472

fects between the EDUC levels and the CRIME effects. Columns can be
added to the X matrix to account for the interaction between CRIME
and EDUC. Since there are two EDUC parameters and one CRIME pa-
rameter in each equation, there are two interaction parameters for each
equation. The columns corresponding to these interaction parameters can
be obtained by taking the product of corresponding elements in the main
effect columns. Tables 6.66 and 6.67 summarize the results obtained from
fitting the model which includes the interaction terms.

From Table 6.67 we can conclude that fitting the interaction parameters
leaves the main effect parameters virtually unchanged. Two significant in-
teraction parameters are also obtained for CRIME response level 1. The
interaction between the first level of EDUC and CRIME response level 1
is negative, and between EDUC level 2 and CRIME response level 1 the
interaction is positive. We can conclude, therefore, that the difference in
cell proportions between CRIME 1 and CRIME 2 for level 1 depends on the
level of EDUC. At EDUC level 1 it would seem that there is less difference
between the two crime variables than for EDUC level 2.
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6.4.6 OTHER SOURCES OF INFORMATION

The most comprehensive outline of the weighted least squares methodology
is contained in Forthofer and Lehnen (1981). This methodology is also
discussed in Reynolds (1977) and Freeman (1987). A number of papers by
Koch and others can also be used to gain further understanding. References
to these papers can be found in the three texts listed above. Two useful
papers are Grizzle, Starmer and Koch (1969) and Koch, Landis, Freeman,
Freeman and Lehnen (1977).
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Exercises For Chapter 6

1. This exercise is based on the Bus Data in Table V1 in the Data
Appendix.

(a)

(b)

()

(d)

(e)

(£)

Using the three three-dimensional tables determine the three
two-dimensional tables relating the variable ATTEND to each
of the variables SEX, DAY and GARAGE. For each of the three
tables analyze the relationships and discuss the results.

For the three three-dimensional tables construct two-dimensional
tables that relate SEX and DAY, SEX and GARAGE, and DAY
and GARAGE. For each of the tables analyze the relationships
and discuss the results.

For each of the three three-dimensional tables use the maxi-
mum likelihood approach to determine a loglinear model that
adequately fits the table. Are the findings consistent with the
results obtained in (a) and (b). Discuss the fitted model in each
case. Include graphs of the interaction effects as part of your
discussion.

For each of the three three-dimensional tables in (c) use the
fitted saturated model to determine a logit model relating the
dependent variable ATTEND to the remaining two variables.
Discuss and interpret the results.

A four-dimensional table relating ATTEND, SEX, DAY and
GARAGE could not be obtained from company records. As-
suming that the loglinear model for this table does not require
interaction terms with the variable ATTEND of greater than
second order (three-way) a logit model for ATTEND can be es-
timated using the three logit models estimated in (d). Write out
the saturated versions of the three logit models corresponding
to the three tables and add the right hand side terms together
to produce a logit model for ATTEND for the four dimensional
table. In cases where the same term appears in more than one
model the terms can be replaced by a simple average. Estimate
the three saturated models for the three tables and combine the
estimates to obtain an estimate for the four dimensional table
logit model for ATTEND. Use the fitted logit model to obtain
a table giving P[ATTEND)] for each of the 2 x 7 x 3 = 42 cells.
Explain how this table could be used by the bus company man-
agement to plan staff requirements.

In parts (a) and (b) collapsed tables were used to relate the
four variables two at a time. In part (c) the four variables were
studied three at a time. Did collapsing the tables change the
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(h)
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conclusions about the relationships? Examine the collapsibility
conditions given in the text and comment on the results.

Use weighted least squares to fit logit models for the variable
ATTEND to each of the three three-dimensional tables and com-
pare the results to (d).

Use weighted least squares to fit a model to each of the three
tables using PJATTEND) as the dependent variable. In this case
model the proportions rather than the logarithms of the propor-
tions as in (g). Interpret the results in each case and compare
to the logit model results in (g).

2. This exercise is based on the Accident Data in Table V2 of the Data
Appendix. Because of empty cells you should combine the DRIVER
INJURY categories for MINOR and MAJFAT when using weighted
least squares.

(a)

(b)

(c)

(d)

(e)

(f)

Table V2 contains a four-dimensional contingency table relat-
ing SEATBELT, DRIVER INJURY LEVEL, DRIVER CON-
DITION and POINT OF IMPACT. Determine the three three-
dimensional tables relating DRIVER INJURY LEVEL with two
other variables. The three-dimensional table relating DRIVER
INJURY LEVEL to DRIVER CONDITION and SEATBELT is
identical to Table 6.23 discussed in the text. Fit loglinear models
to each of the three tables using maximum likelihood. In each
case obtain the fitted parameters and discuss the results. Include
graphs of the interaction effects as part of your discussion.

Fit a loglinear model to the four-dimensional table which in-
cludes all three-way interaction terms using maximum likeli-
hood. Discuss the results. Compare the results to (a). Did col-
lapsing the table have any effect?

Use maximum likelihood stepwise methods to fit a model to the
four dimensional table. Estimate the fitted model and discuss
the results. Compare the results to the results obtained in (a)
for the three collapsed tables. Did the collapsing of the table
change the results?

Using the fitted model in (b) determine logit models relating
INJURY LEVEL to the other three variables. Compare each
INJURY category to the NO INJURY category. Discuss the fit-
ted models.

Use weighted least squares to fit logit models relating INJURY
LEVEL to NO INJURY for the four-dimensional table. Compare
the results to the results obtained in (d).

Repeat the analysis in (e) using continuation ratios as outlined
in the text.
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Use weighted least squares to fit a model that relates the differ-
ences between injury level proportions and the no injury propor-
tion to the other three variables. Discuss the results and compare
to the logit model results in (e).

Repeat the analysis in (g) using continuation differences as out-
lined in the text. Compare the results to the results in (f).

Use weighted least squares to relate a weighted sum of two in-
jury category proportions to the other three variables. Use the
weights for the three injury categories 1 (minimal) and 10 (mi-
nor). Discuss the results.

Use weighted least squares to fit a model that combines the
INJURY LEVEL and SEATBELT variables into one dependent
variable and relate to the other two variables. Use models based
on proportions and on log proportions. Is there any interaction
between INJURY LEVEL and SEATBELT usage? Discuss the
results.

3. This exercise is based on the Accident Data in Table V3 of the Data
Appendix.

(a)

(b)

(c)

(d)

Table V3 contains a four-dimensional contingency table relat-
ing SEATBELT, DRIVER INJURY LEVEL, DRIVER CONDI-
TION and SPEED LIMIT. Determine the three three-dimensional
tables relating DRIVER INJURY LEVEL with two other vari-
ables. The three-dimensional table relating DRIVER, INJURY
LEVEL to DRIVER CONDITION and SEATBELT is identical
to Table 6.23 discussed in the text. Fit loglinear models to each
of the three tables using maximum likelihood. In each case ob-
tain the fitted parameters and discuss the results. Include graphs
of the interaction effects as part of your discussion.

Fit a loglinear model to the four-dimensional table which in-
cludes all three-way interaction terms using maximum likeli-
hood. Discuss the results. Compare the results to (a). Did col-
lapsing the table have any effect?

Use maximum likelihood stepwise methods to fit a model to the
four-dimensional table. Estimate the fitted model and discuss
the results. Compare the results to the results obtained in (a)
for the three collapsed tables. Did the collapsing of the table
change the results?

Using the fitted model in (b) determine logit models relating
INJURY LEVEL to the other three variables. Compare each
INJURY category to the NO INJURY category. Discuss the fit-
ted models.
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(e) Use weighted least squares to fit logit models relating INJURY
LEVEL to NO INJURY for the four-dimensional table. Compare
the results to the results in (d).

(f) Repeat the analysis in (e) using continuation ratios as outlined
in the text.

(g) Use weighted least squares to fit a model that relates the differ-
ences between injury level proportions and the no injury propor-
tion. Discuss the results and compare to the logit model results
in (e).

(h) Repeat the analysis in (g) using continuation differences as out-
lined in the text. Compare the results to the results in (f).

(i) Use weighted least squares to relate a weighted sum of three
injury category proportions to the other three variables. Use the
weights for the three injury categories 1 (minimal), 10 (minor)
and 100 (major/fatal). Discuss the results.

(j) Use weighted least squares to fit a model that combines the
INJURY LEVEL and SEATBELT variables into one dependent
variable and relate to the other two variables. Use models based
on proportions and on log proportions. Is there any interaction
between INJURY LEVEL and SEATBELT usage? Discuss the
results.
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Questions for Chapter 6

(a)

(b)
(©)

(d)

(e)

2. (a)

Given that n; and n; are independent Poisson random variables
with densities

fln) = FMe Fi/ml,  i=1,2
show that the joint density of n;,n; is given by

f(n1,ng) = F{"F;’e_(F“LF’)/nl Iny!.

Show that the probability P[n; = a, n2z = s — a] is given by
FeF{*Ye~(Fi+F2) [g)(5 — q)\.

Show that the density of n = (n; + ny) is given by a Poisson
distribution with mean parameter F' = (F; + F3) by determining
P[n = s|. (HINT: use (b) and sum the expression from a = 0 to
a = s; also recall from the binomial theorem that (X +Y)" =

Sreo (5 )XTY™).

The conditional density of n; = a and n; = (s — a) given n =
(n1+4n2) = s can be obtained by combining the results in (b) and
(c). Recall that a conditional density is obtained by dividing the
joint density by a marginal density. Show that the conditional
density for n; = a, ng = (s — a) given (n; + n2) = s is given by

()@@
What is the density called?

Generalize the result obtained in (d) to an (r X ¢) contingency
table by writing an expression for the conditional density of the
n;; given the total n = Y ;_,; E =14 is fixed. Show that the
resulting density is the multmomla.l given in Chapter 6. Begin
by writing the joint density for the n;; as a product of Poisson
densities, and repeat the steps in (a) through (d). (HINT: Use
the result from (b) and (c) that the sum of independent Poisson
random variables is also Poisson.)

Assume that in a 2 x 2 contingency table the cell frequencies
ni, 1= 1,2, j = 1,2, satisfy the multinomial with fixed n =
(m11 + na2 + n21 + n22). Show that the density is given by

n!

fl 11 fnu fﬂzl ﬂzz

f(n1,mi2,n21,n29) = —————
n11n121n2; Ingy!

where fi1, f12, f21 and fao are the theoretical probabilities for
the four cells respectively.
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(b) Assume that the 2 x 2 contingency table is collapsed over the
columns and let n;. = (n1; + n12) and ny. = (ng; + n22). Show
that the multinomial density for (n;.,n,.) for fixed n = (n;. +
ng.) is given by

ni. gna.

f(ny,ne) = 2

ni. !n2. !

where fi. = (fi1 + fi2) and fao. = (fa1 + f22).

(c) Use the marginal density in (b) and the joint density in (a) to
show that the conditional density for (ni11,n12,n21,n22) given
(m1.,m2.) is given by the product multinomial

f(n11,m12,m91,m22/n1.,m2.) =
el Bl
ni1!niaing Ingg! \ fi fi [ fa2 '
(HINT: Joint density = marginal density x conditional density.)

(d) Generalize the result in (c) to an (r X c) contingency table and
give the multinomial density for the n;;, the marginal density
for the n;. and the conditional density for the n;; given the n;..
Check that the latter density is the product multinomial given
in Chapter 6.

(a) Show that the multinomial density for the (r x ¢) contingency
table given in Section 6.2.2 can be written as

H H eMii In f.,

C
I ni;! i=1j=1
15=1

f(nll,n12’---:nijy---anrc) =

:‘)

i

(HINT: @ = e'*®.)

(b) Show that the logarithm of the density in (a) is given by

Inf=In T“‘c‘_— + i In fi;
i M EZn )

(c) Given that the logarithm of the density is equivalent to the log-
arithm of the likelihood as given in (b) show that the maximum
likelihood estimator for f;; is n;;j/n. Use a Lagrange multiplier
and the condition 37_, 377, fi; = 1.
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(d) Show that the logarithm of the likelihood function in (c) evalu-
ated at f;; = n;;/n is given by

n!
InL=In TT_ + ZZ"’J In[n;;/n).
II [Iny!| =152

i=1j=1

(e) The maximum likelihood estimator of a function of parameters
can be obtained by evaluating the function with the parameters
replaced by their maximum likelihood estimators. Given that
the maximum likelihood estimator of f;; obtained in (c) is given
by n;;j/n show that the maximum likelihood estimators of f;.
and f.; are given by n;./n and n.;/n.

(f) Show that the maximum likelihood function evaluated under the
independence model assumption (fi; = f;.f.;) is given by

' i c
InL=In + + ZZnij Infn;.n.; /n?).
I1 H ni;! i=1 j=1

i=1j=

(g) The likelihood ratio test for the independence model compares
the likelihood in (f) with the likelihood in (d). In large samples
the logarithm of the likelihood ratio multiplied by (—2) has a x?2
distribution. Show that the likelihood ratio statistic in this case
is given by 2)°(_, 35 ny; In[(nnij) /nin.4].

(h) The number of degrees of freedom for the x? distribution is
(g —p — 1), where q is the number of cells in the table and p is
the number of independent parameters estimated in the fitted
model. Show that (g —p — 1) = (r — 1)(c — 1) for the x? test in
(8)-

4. (a) Show that the Poisson joint density for the 7 x ¢ contingency
table given in Section 6.2.2 can be written as

™ [
f(ni,nag, .., nij, ..y npe) = H H[e_F‘f/nij!][e"‘f l“F‘f].

i=1j=1

(HINT: @ = el®®))
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(b) Given that the logarithm of the joint density is the logarithm of
the likelihood show that the log likelihood for (a) is given by

InL = EZ[—lnn,, Fil+ Y Y nijInFy

i=1j=1 i=1j=1
c T [
DHINTID S PINE 3 3N
i=1j=1 i=1j=1 i=1j=1

(c) Show using (b) that the maximum likelihood estimator of F;; is
ngj.

(d) Show that the logarithm of the likelihood function in (b) evalu-
ated at F,'J' = Nyj is given by

InL= ZZn,,lnn,_., szn.,'—

i=1lj= i=1j=1

(e) The maximum likelihood estimator of a function of parameters
can be obtained by evaluating the function with the parameters
replaced by their maximum likelihood estimators. Given that the
maximum likelihood estimator of F;; obtained in (c) is given by
n;; show that the maximum likelihood estimators for F;. and
F.; are given by n;. and n.;, and also that F.. is estimated by n.

(f) Show that the maximum likelihood function evaluated under the
independence model assumption is given by

InL = ZZ”U [ ] ZZlnnUI_

i=1j=1 i=1j5=1

(g) The likelihood ratio test for the independence model compares
the likelihood in (f) with the likelihood in (d). In large samples
the logarithm of the likelihood ratio multiplied by (—2) has a x?
distribution. Show that this likelihood ratio statistic is given by

5 [224].

i=1j=1

(h) The number of degrees of freedom for the x? distribution is
(g = p— 1), where p is the number of independent parameters
estimated in the fitted model and ¢ is the number of cells in the
table. Show that (g —p — 1) = (r — 1)(c — 1) for the x? test in
(g). Note that in this case the total sample size n is not fixed.

5. In a two-dimensional contingency table denote the true cell frequency

by Fi;, i=1,2,...,7, j=1,2,...,c
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(a) Let F.. denote the geometric mean of the rc cell frequencies and
show that

(b) Let F.and F ;j denote the geometric means of the cell frequencies
in row ¢ and column j respectively and show that

~ 1S
lnF,-. = ZZIDFU
Jj=1
~ 1w
lIlF.j = ;ZIDF,]
i=1

(c) Let F;. and F; denote the row and column total frequencies and
denote the geometric means of the row totals and column totals
respectively by Fy. and F.o. Show that

mFy = 23 mF
ri=1
~ 1<
lnFo. = Z;lnFJ

d) Given that the independence model can be written as F;; =
3
(F3.)(F.j)/n show that
lnFij=lnFi.+h1Fj—lnn (1)

and that after summing over i and j and dividing by rc

InF. =mnFq+InFy. —Inn; (2)
hence show that ~ o
F. = FoFo/’n

(e) Show that by summing over the subscript j and dividing by ¢
in equation (1) yields

InF, =InF, +InFo-Inn (3)

and similarly by summing over the subscript ¢ and dividing by
r in equation (1) yields

lnF,; =InFy +InF, - Inn. (4)
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(f) Combine equations (2), (3) and (4) to show that
InF, +nF;]=nF, +nF; - InF. +Inn.
and then use the independence result (1) to obtain
nF;=nF, +mF;-InF.

and hence o
F;; = F,F,/F.

(g) Use the result in (f) to show that under independence

~ ~

r- (23]

and give a verbal description of the three terms on the right

hand side.
(h) If independence does not hold show that the following equation
holds
InF; = [nF]+[nF, —mF]+[F;-InF]

+[lnF,-j - lnf', - lni‘.j + mﬁ]
and provide an interpretation for the last term.

6. (a) Construct an example of Simpson’s Paradox with different num-
bers and different variables than the examples in Chapter 6.

(b) For the contingency tables shown below derive a set of conditions
that would represent Simpson’s Paradox.

A B
ay az b1 b2
X T1| mn ni12 | M1 T1| mon n212 | N21.
T2 | M21 ni22 | N12. T2 | mN221 n222 | N22.
nia ni.2 Ng.1 n2.2
[A+ B]
a1/by  az/b;
I n.11 n.12 n.g.
T2 n.21 n.22 n.g.
n..a n..o

(c) Use your result to explain why Simpson’s Paradox occurs.
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7. For the three-dimensional contingency table the observed cell fre-
quencies are denoted by n;;x and the theoretical cell frequencies are
denoted by Fijx, ¢+ =1,2,...,7, j=1,2,...,¢c, k=12,... L. If
the maximum likelihood estimators of the Fj;j are given by the n;ji
show that the maximum likelihood estimators for the functions

(a.) F,'jk = E..F,-.F..k/nz,
(b) Fijk = Fij.F.x/n,
(¢) Fijk = FixFjk/F.,
are given respectively by
(d) E,'jk = ni..n.j.n..k/nz,
(e) E,'jk = n,-j.n..k/n,
(f) Eijk = n,-.kn.jk/n..k.
(HINT: Use the fact that maximum likelihood estimators of func-

tions of parameters are the functions of the maximum likelihood
estimators of the parameters.)

8. The saturated loglinear model for a three-dimensional contingency
table is given by
InFijr = p+pia) + B2i) + H3k) + Bi2g5) + Ba(ix)
+H23(jk) + H123(ijk)s
i=1,2,...,7, j=12,...,¢, k=12,...,¢,
where Fjj = true frequency in cell (¢, j,k) and

£

T c
") 3D 3 I

i=1 j=1 k=1
1 c £
me = g2 WPk
j=1 k=1
1 T £
) = 2. D mFuk— b
=1 k=1
1 T Cc
M3k) = T—CZ ZlﬂFz‘jk — Wy
i=1 j=1
1
Mi12¢i5) = ZZIDFijk = M) — H2(5) = M
k=1

1 c
B13(k) = Ezln Fijk — pa(s) — M3(k) — M
=1



128 6. Contingency Tables

1 T
Ha3(jk) = ;EIDF’""‘ ~ H2G) T Hak) Ky
i=1

Bi23(isk) = InFije — pa) — Bai) — B3(k) — K12(i5)s
—HK23(jk) — K13(ik) —

(a) Show that the properties below follow from these definitions
r c £
_Zl paG) = Z Ha(j) = kZ pak) =0,
1=
T (4
21 E HraGi) = 2 1»“13(:'1:) 2 2 Ba3(jk) = 0,
Jj=1 k= j=1 k=1

r c £
E g g K123(ijk) = 0.

(b) Given the following notation for various geometric means based
on the Fj;; determine expressions for the logarithms of these

quantities in terms of summations of In F; .

F.. is the overall geometric mean of all the frequencies Fj;
f, is the geometric mean of all the frequencies F;;j holding
1 fixed;
F j- is the geometric mean of all the frequencies Fj;jj holding
J fixed;
F. & is the geometric mean of all the frequencies Fjjx holding
k fixed;
Ej. is the geometric mean of all the frequencies Fj; holding
1, J fixed;
F jk is the geometric mean of all the frequencies F;j; holding
J, k fixed;

f’g. k is the geometric mean of all the frequencies Fj;x holding
1, k fixed,;

(c) Use the expressions derived in (b) and the parameter definitions
to show that the following expressions hold.

g = InF.
pi = WF.-lnF.,
poj) = ImFj; —InF.
paky = IFg-InF.
pragj) = InFy - nF,. —InF; +lnF.
K13Gk) = nF—InF,. —InFi+InF.
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H23(jk) = In F‘.jk —In ﬁj —In F‘..k +In i
Pi2sijk) = InFiyjx—InF; —InFj —InFiy
+InF. +mF +nF,—nF..

(a) Using the saturated loglinear model for a three-dimensional ta-
ble derive the expression for the logit model assuming one of the
variables is a response variable (see Section 6.3.5). Assume that
the response variable has only two categories.

(b) Repeat the exercise in (a) assuming the response variable has
three categories. Obtain expressions for In(p;/p;) for all possible
pairs.

(c) Repeat the exercise in (b) using continuation ratios for the logit
model. (HINT: Sum the frequencies over two of the three cate-
gories and then repeat the steps in (a)).

(d) Assume that the logit model derived in (a) pertains to the cate-
gories Present and Absent. Use the model to derive an expression
for the probability of Present.

(a) In the weighted least squares approach to fitting contingency
tables the covariance matrix for the sample proportions is block
diagonal as outlined in Section 6.4.1. Use the expressions for the
covariances among the elements of p given in Section 6.4.1 to
show that the covariance matrix of p given by §2 in Section 6.4.1
is block diagonal.

(b) Given that § = AP as in Section 6.4.1 show that the covariance
matrix for the elements of g is given by Af2A’, where 2 is given
in (a).

(c) Review your knowledge of the weighted least squares estimator
in linear models and discuss the rationale for the weighted least
squares estimator given by (6.2).

(d) Assume H = H and show that the covariance matrix for 3 given
by (6.2) is (X'H ™' X)"1.
(e) Use the result in (d) to show that the covariance matrix for (o]
is given by
[CX'HX)"lc)

(f) Show thatif 3 = (}'ﬁ“X)-l(x'ﬁ‘lg) minimizes the quadratic
form (§—XB)'H (g—Xp) with respect to 3 then the quadratic
form has the value g’ﬁ‘lg - ﬁ,(X'ﬁ_IX)ﬁ.
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Multivariate Distributions,
Inference, Regression and
Canonical Correlation

Before we introduce additional techniques for multivariate analysis, it is
necessary to explain notation for multivariate random variables and sam-
ples. Since many multivariate inference procedures require a multivariate
normal distribution assumption, an introduction to this distribution is also
provided here. In addition, the chapter includes an outline of inference pro-
cedures for the mean vector and covariance matrix. In some applications
multivariate random variables are partitioned into two or more subsets.
The relationship between the variables in different sets is often of interest.
In the last section of this chapter we outline the techniques of multivari-
ate regression and canonical correlation in order to study the relationships
between subsets of random variables.

7.1 Multivariate Random Variables and Samples

The (n x p) data matrix X is viewed as a sample of n observations on each

of the p random variables X, X3, ..., X,. The X matrix therefore contains
the p (n x 1) observation vectors x;,X2,...,Xp, Where
oy
T2j
X; = : , j=12,...,p, and X = [x;, X2, ..., Xp].
mnj

Thus each column of X is a (n x 1) vector of observations on one of the p
variables.

Each row of X contains observations on the p variables, X1, X3, ..., X,,
corresponding to a particular individual or object. The p random variables
together form a (p x 1) vector random variable x, where



132 7. Multivariate Distributions, Regression and Correlation

X1
X2
xX= .
Xp
The X matrix therefore consists of n observations on the multivariate ran-
dom variable x, denoted by x;,x2,...,X, and hence
X
X3
X =
xI

n

The vector x; therefore will be used to denote an (n x 1) vector of observa-
tions on the variable X; or a (p x 1) vector of observations on the variables
X1, Xs,..., X, for individual <. The choice between these two possibilities
will usually be clear from the context. An outline of properties for multi-
variate random variables and multivariate samples is provided in the next
section.

Ezamples

Two examples of data matrices are shown in Tables 7.1 and 7.2. Table 7.1
contains 50 weekly return observations (in percents) on each of ten stock
portfolios. The portfolios were constructed from stocks on the Toronto
Stock Exchange from 1982. Each portfolio is an equal weight average of
50 stocks. For all practical purposes, weekly stock returns can be assumed
to be independent over time. Table 7.2 contains the responses of 50 police
officers to eight questions regarding the stress they felt in various work
situations. The stress is measured on a five-point scale with the value 1
indicating low stress and the value 5 indicating high stress. These two data
matrices will be used in this chapter to illustrate various types of analysis.

7.1.1 MULTIVARIATE DISTRIBUTIONS AND MULTIVARIATE
RANDOM VARIABLES

Joint Distribution

The joint distribution function for the (p x 1) vector random variable x is
denoted by Fx(x*), where

Fx(x*) = Fx(z1,23,...,2;) = P[x<x’]
= P[X; <z}, X2<1%5,...,X, < 73].

The joint density function for x is denoted by
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TABLE 7.1. Portfolio Returns

X X2 X3 X4 X5 X6 X7 Xs X9 X10

1.99 3.00 3.55 6.94 6.51 9.91 12.71 8.57 9.27 7.67
4.46 6.57 9.28 13.68 15.00 18.35 19.23 18.93 17.13 16.88
1.78 2.76 3.63 9.30 15.19 11.67 20.20 20.59 22.49 30.52
-0.16 -1.86 -0.34 -1.66 1.89 3.72 3.27 3.38 8.60 3.27
-035 —0.44 1.33 1.34 3.89 291 7.37 8.19 11.57 41.35
1.52 1.12 -0.22 1.24 7.32 5.59 096 —0.12 0.17 6.98
2.13 2.75 1.19 3.00 0.28 -0.44 155 -1.57 0.65 5.62
1.29 1.77 2.75 1.98 -0.14 -2.10 -2.42 2.09 -1.01 -0.02
1.31 064 -297 484 -654 -5.16 -587 449 -543 -5.04
1.83 1.21 093 -0.42 1.93 1.71 1.80 1.15 4.11 10.89
1.15 0.67 -0.93 0.55 -1.54 -190 -2.09 -0.30 3.01 176.80
-048 -0.02 -3.10 -1.77 -0.52 -2.14 -4.05 -5.60 -3.50 -2.77
041 1.28 0.01 2.84 0.39 0.34 0.01 -0.72 1.93 -1.72
1.51 0.20 1.64 0.52 1.81 -0.31 1.63 2.63 4.78 -0.74
0.11 0.45 1.97 -0.38 0.54 0.15 2.77 -1.85 0.16 -2.01
3.24 3.32 4.16 2.10 1.74 5.20 1.13 5.48 2.38 2.31
2.25 2.22 0.83 5.38 029 -1.3¢4 -0.78 4.74 -3.04 0.28
1.94 0.94 0.74 -0.83 -2.21 3.29 2,57 -0.21 -2.69 5.54
2.77 2.98 4.76 4.32 8.66 6.15 8.24 11.14 7.67 7.11
1.70 2.79 3.68 5.52 3.94 0.38 4.34 2.72 5.64 8.37
-0.14 -0.80 -0.56 1.55 0.27 0.56 142 -2.46 0.67 0.89
1.21 2.99 1.73 2.54 4.12 4.17 -1.17 4.68 1.59 1.63
035 -1.59 -1.31 0.75 0.57 1.15 1.19 0.43 -0.62 0.07
-0.27 -0.90 1.15 0.89 -0.39 1.81 -1.19 -1.23 1.68 -2.46
0.84 3.25 141 0.76 0.64 -0.12 1.07 0.49 1.37 1.46
1.52 1.48 1.81 -1.20 -2.88 -1.79 -4.56 -3.02 —4.81 -5.11
-031 -0.17 -0.32 -0.54 1.18 -0.26 -3.02 -2.56 -0.67 -0.18
2.16 1.39 2,51 -0.08 1.52 -0.32 -041 -0.59 2.27 24.86
-0.67 0.54 -0.66 -0.07 -1.31 -1.10 -0.29 3.66 -2.75 -2.54
1.02 2.53 2.12 2.40 0.75 4.21 0.78 -0.65 -1.51 1.19
0.40 0.04 -030 -0.54 -1.11 -2.50 2.13 6.39 1.16 1.01
-0.16 -1.33 -2.58 -2.12 0.37 -245 -0.77 -3.79 -3.77 -2.85
-0.21 -0.33 1.24 -0.16 -2.23 -3.74 1.79 -1.03 2.09 -0.37
0.93 0.17 -0.18 0.60 4.35 096 -0.25 -1.32 1.36 -2.31
0.73 0.78 0.31 0.76 -1.15 3.61 0.78 -2.15 -0.16 -1.42
1.00 -0.24 -0.01 2.43 4.46 -0.82 4.71 2.41 4.67 3.54
2.13 1.69 1.89 —0.78 -3.34 130 -135 -1.20 -0.20 —0.74
-073 -1.75 -137 -0.74 -390 -5.26 -5.53 -2.55 -5.19 -0.59
2.12 0.83 043 -0.52 0.34 -1.60 -3.25 -434 -5.17 -1.76
-0.54 -2.58 -2.68 -3.22 -332 -1.80 -295 -332 -4.10 -2.34
0.25 0.01 -1.02 -2.55 0.17 1.76 1.93 1.14 -0.11 —4.09
-0.17 -0.53 0.05 035 -3.29 -023 -2.07 -0.11 -5.92 1.62
-0.65 -2.12 -1.54 -330 -3.90 -4.67 -493 -3.26 -3.85 -4.06
-1.16 -1.76 -2.66 -1.70 -3.80 -6.79 -4.75 -1.45 -4.63 -3.40
0.99 0.50 -1.17 -2.30 1.01 -128 -2.14 -3.00 -2.50 16.03
1.36 2.37 0.50 0.59 4.43 -1.96 1.57 1.91 1.01 1.36
0.93 0.04 -1.09 049 -2.20 2.31 8.88 -0.89 -0.82 0.85
1.30 -0.28 033 -2.84 -231 -343 -241 -3.96 -1.88 -2.63
1.82 2.00 5.00 4.42 3.30 2.45 4.50 10.86 4.57 -3.31
031 -0.28 -0.50 -3.15 172 -143 -1.86 —4.43 -3.05 -4.87
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TABLE 7.2. Police Officer Stress Data
X1 X2 X3 X4 X5 Xe X7 Xslxl Xs X3 X4 X5 Xe¢ X7 Xg

D = QO = D) N W R N O R e e e N NN O = RN
e DN WO NN W NN NWNN N W R W N
D W WO LN R LN W W NN O =W WW
B O R D N WO T W RN RN WN R WOTOT R e W
DB BN DWW U R W WWN R WW R O W OOt Ot W
OB B = WO WD R R R W OTN N R Ot R Ot Ot Ot Ot W
- W WWN R R R RW K NWNWR R WA R WA OE®
G0 D) OO N W W W U NN W WOt RN = O
P b e e QO DN R DD W W O WO WA WW W WS
W o W OOT N R W O 0T W WO ROt NN W
COON BN W W N e e e e O RN W NN WWRe N W
B OT R R D WO TTW RN R R R R W WR WA AR
B N DWW Ut W N UTWEWOTW RGN R AR
BTt R R R W R R WOt R WWR WOt R WW
B O R W R D D R WWR UTWOTW R R TTN Ot OtW o= O]
W o W W NN R R W W WEWN =N NWN A

Variable Descriptions
X, Handling an investigation where there is serious injury or fatality.

X2 Dealing with obnoxious or intoxicated people.

X3 Tolerating verbal abuse in public.

X4 Being unable to solve a continuing series of serious offences.

X5 Resources such as doctors, ambulances etc. not being available when needed.
Xg Poor presentation of a case by the prosecutor leading to dismissal of charge.
X7 Unit members not getting along with unit commander.

Xg Investigating domestic quarrels.

fX(x‘l) = fX(xi) z;a ey IL';),

where

Ty [T T,
Fx(x*) = / / ce / fx(x*)dmldzz e d.’l;p.

Partitioning the Random Variable

The random variable x can be partitioned into two mutually exclusive
subsets, where
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x={::], x1is (g x 1), xeis (s x 1) and p= (g +9).

Thus x; and x, are also vector random variables but of lower dimension
than x. The joint distribution function Fx,(x}) for x; can be obtained
from Fx(x*) by integrating the joint density fx(x*) over the entire range
of the variables in x;. Denoting the joint density by fx(xi1,x2), the joint
distribution function Fx, (x}) is given by

7 Ty 0O 00
Fx,(x}) = f / / / fx(x1,x2)dz1dzs . . . dzp,

= / / " fx, (x1)dz1dzs . . . dz,g,

—00
where fx, (x1) is the joint density of x;. The joint density for x; is obtained

from the joint density for x by integrating fx(x) over the range of the
variables in x.

fx (T1, 22, - ., Tg) = fx, (x1) = /‘°° /‘°° fx(x1,%2)dTg41 ... dzp.

A special case of the distribution for x; occurs when ¢ = 1. In this case
X; is equivalent to the scalar random variable X; and the distribution is
called the marginal distribution of X;.

Conditional Distributions and Independence

The conditional distribution for x; given x; is obtained from fx(x) by
determining

fX2|x1(x2 I X1 = XI) = fx(xI!XZ)/fX1(xI)

where fx, (x}) is the joint density for x; evaluated at x}
The two vector random variables x; and x2 are independent if and only
if
Fxax, (X2 | X1 =x7) = fx,(x2) for all x] and all x2,
or equivalently fx(x) = fx,(x1)fx,(x2) for all x. A special case of this
result for bivariate independence is given by fy,(z,y) = fz(2)f, ().

Mean Vector and Covariance Matriz

The mean vector p corresponding to the (p x 1) random variable x is
the (p x 1) vector of elements u; = E[X;], j =1,2,...,p, and we write
p = E[x]. The covariance matriz for x is the (px p) matrix X' with diagonal
elements 0;‘7 = V[X;], j = 1,2,...,p, and off diagonal elements oj; =
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Cov(X;,Xk), j#k, j,k=1,2,...,p. The mean vector u and covariance
matrix X are given by

[ 42 N
(] 012 013 ... O1p
2

M 012 03 023 ... O

M2

= 3y = .
K e : o3

2
Hp Lalp O o0 «ov Op

The covariance matrix X' can also be expressed as
El(x - p)(x — p)] = Z.

Correlation Matriz

The correlation matriz p is obtained from the elements of the covariance
matrix ¥ by determining the off diagonal elements from

Pjk =Ujk/va]2'a]€, J#k 3,k=12,...,p

The matrix p is given by

1 p12 p13 ... p1p
piz2 1 pa3 ... p2p
P= : 1
Pip P2p -v- .- 1
L -
The covariance matrix ¥ can also be expressed as
_ 2 -
51 P120102 P130103 ... pP1p010p
P120102 03  p230203 ... p2p020p
Yy =
2
03
2
P1p010p  P2p020p . . oy

7.1.2 MULTIVARIATE SAMPLES

The data matrix X represents a sample of n observations on x from the
multivariate population and is called a multivariate sample.

Sample Mean Vector and Covariance Matriz

Each row of the (n x p) data matrix X represents an observation on the
(px 1) random vector x. For row i the (1 x p) observation vector is denoted
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by x;. The (p x 1) sample mean vector is denoted by X and is defined by
%X = Y i, %i/n. The elements of the (p x 1) vector X are the individual
sample means for each variable

[z ]
.2 1 n
x= , WwhereZ.; = ;Zz,-j, i=L12...,p.
i=1
Ep

The sample covariance matriz is denoted by S where S = "+ | (x; —X)(%; —
x)'/(n—1). The diagonal elements are given by s? = 31", (zi; —Z.;)/(n—
1), j = 1,2,...,p, and the off-diagonal elements have the form s;; =
S (@i — z5) (@i — Tk)/(n—=1), j#k, jk=1,2,...,p. The matrix
(n —1)S therefore has the form

i:l(:z:.-l —z4)? i:l(zu — &) (w2 —Fa) ... g;l(zu — %) (®ip — 5p) |

é(zu —Z.1)(Ti2 — Z.2) é(m«iz —%,)? e é(zgg — %.2)(Tip — Z.p)

i=1
L J

(@01 = 51)(Tip — Bop) gjjl (i2 — 5.2) (@ip — Bp) - . ijl (@ip — 5.p)°

which can be written as X*'X* where X* is the mean-corrected or mean-
centered X matrix given by

( T11—Ty Ti2—T2 ... T1p—Ty
To1 — Ty Taz— T2 ... Top—T,yp

X* =
Tp1 — L1 Tp2— T2 ... Tpp—Tp

Sample Correlation Matriz

The sample correlations among the p variables are given by

Tik = 8ik/\/ 352 = 8jk/sjsk, G k=1,2,...,p.

The correlation matrix that summarizes the correlations is given by
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TABLE 7.3. Portfolio Data — Mean Vector, Covariance and Correlation

Matrices

Mean Covariance and Correlation Matrices

Vector | X3 X2 X3 X4 Xs X6 X7 Xg Xg X10
0.93 1.32 168 1.92 2.27 2.54 2.95 2.99 3.13 2.72 3.76
0.74 4.43 4.65 5.07 5.19 5.81 4.95 4.80
0.65 6.18 6.46 730 8.06 939 8.60 2.52
0.81 0.59 10.86 11.00 11.14 13.90 14.78 13.64 12.53
1.05 0.52 0.62 17.71 1491 18.31 18.18 19.61 12.84

0.77 | 0.58 0.65 0.71
1.09 048 054 064 0.78
1.18 | 049 060 073 0.82 0.79
1.06 042 050 066 074 083 0.76 0.88
6.41 0.12 0.10 0.04 0.14 0.1 0.08 0.12

19.12 19.66

28.74

18.04 18.61 10.02
25.01 26.34 17.97
29.90

1 T2 T3 ... "'lp
T12 1 T23 ... T2p
T13 T23 1 oo T3p
R= .
Tip T2p T3p .- 1

Ezample

The sample mean vectors, covariance matrices and correlation matrices for
the data matrices in Table 7.1 and 7.2 are shown in Tables 7.3 and 7.4.
The correlation coefficients are shown in the lower left triangle and the
covariance matrix in the upper right including the diagonal.

Sums of Squares and Cross Product Matrices

The matrices S and R are both examples of sums of squares and cross
product matrices. As indicated above, S = X*'X*/(n — 1) where X" is the
matrix of mean corrected X values given above. The correlation matrix R
can be written as i'i/ (n—1) where X is the n x p matrix of standardized
observations
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TABLE 7.4. Stress Data — Mean Vector, Covariance and Correlation
Matrices

Mean Covariance and Correlation Matrices
Vector X1 X2 X3 X4 Xs X6 X7 Xg

X1 2.12 1.33 0.59 0.14 0.42 0.42 032 030 0.61
Xo  2.32 1.61
X3 2.30
X4 3.54
Xs  3.38
Xe 3.0
X7 3.52
Xg 2.62
[ 233 =3 T2—F.2 ZTip—Tp T
81 82 e Sp _
Ty —ZT3 Tp—T. T2p —Tp
31 32 e 5p
X =
Tpl1 —T] Tpa—T. Tnp — Zp
81 89 et 8p

The correlation matrix can be written as
R=D"/28p"1/2

where D is the diagonal matrix containing the diagonal elements of S.

A third type of sums of squares and cross products matrix is given
by X'X. This matrix contains the raw sums of squares and cross prod-
ucts given by

[ & o n n -
TH Y TaZi ... Y TiuTip
nl:=1 i=]h 5:1
Y TaTiz 2 TH ... Y TieTip
=1 i=1 i=1
X'X = .
n n n
Y TuZip Y TioTip ... Y x?p
i=1 i=1 i=1

This matrix will be referred to as the sums of squares and cross products
matrix and will sometimes be abbreviated by SSCP.
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Multivariate Central Limit Theorem

If the rows of the data matrix X denoted by x},xj,...,z!, represent a
multivariate random sample from a multivariate distribution with E[x] = p
and Cov(x) = X, then the asymptotic distribution of X = Y . ;x;/n is
multivariate normal with mean vector u and covariance matrix ¥'/n. In
other words, in large samples \/n(X — p) is multivariate normal with mean
0 and covariance matrix .

The multivariate central limit theorem also applies to the elements s;;
of S. The elements of \/n[S — X] converge in distribution to a multivariate
normal with mean O and covariance matrix H where a typical element
of H is given by Cov[y/n(sij — 0i;), n(Ske — oke)] = Oik0je + Ojk0i,
1=12,...,p.

7.1.3 GEOMETRIC INTERPRETATIONS FOR DATA
MATRICES

Geometric interpretations can be applied to multivariate samples in two
different ways. The columns of X generate a p-dimensional space and the
rows of X generate a n-dimensional space.

p-Dimensional Space

The most common geometric interpretation for the data matrix X is to
regard each row as a point in a p-dimensional space. Thus the (n x p)
matrix X summarizes the coordinates of n points in a p-dimensional space.
The amount of scatter among the n points depends on the interrelationship
among the p variables and on the mean and variance of the variables.
Depending on the scatter it may be possible to find a smaller number of
axes or dimensions (< p) that could be used to locate the n points with
fewer than p coordinates; for example, for three variables X;, X2 and X3,
it may be possible to represent the points adequately in a two-dimensional
plane given by X3 = aX; + bX;. Most readers will be familiar with the
two-dimensional scatterplot (p = 2) used in simple linear regression and
correlation.

n-Dimensional Space

An alternative geometrical interpretation can be obtained by viewing the
p columns of X as coordinates of p points in an n-dimensional space. Each
of the p variables can be represented by a vector drawn from the origin to
the point denoted by the values of the n coordinates. If the p variables have
mean zero, the angle between any two variables is related to the correlation
between the variables. The strength of linear association between any two
mean zero variables is measured by the cosine of the angle between the two
vectors.
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Mahalanobis Distance and Generalized Variance

In the discussion of bivariate samples the quantity

— ’ 2 -1 -
2 T, — T 81 812 ry — T
m- = 7 2 7
T2 —T.2 812 83 To — T.2

is often used to describe the locus of an ellipse in two-dimensional space
with centre (Z.;,Z.2). This quantity also measures the square of the Ma-
halanobis distance between the point (z1,z2) and the centre (Z.,Z.2).
All points on this ellipse have the same distance m? from (Z.1,Z.2). This
squared distance m? is the square of the radius of the circle that would be
obtained after transforming X; and X5 into new variables Z; and Z; with
zero means, unit variances and zero correlation. The Mahalanobis distance
therefore takes into account the variances and covariances. In comparison,
the Euclidean distance is given by d, where

T -1 ! T —ZTa
T — .9 To—ZT2o |-

An alternative way to view the Mahalanobis distance is to begin with the
circle located at the origin and given by ZZ + Z2 = m?2. If the variables Z;

and Z, are transformed using linear combinations X; = (a1Z; +b1Z2 +¢1)
and X, = (a2Z; + baZ; + c3), the value of

— / 2 -1 —
Ty — T 81 812 T, —Ta
Ty —T.9 S12 S% T —T.2

will still be m2. The mean vector and covariance matrix corresponding to

X . Ta s7  s12
[ X, } is denoted by [ Z ] and [ o1z 82 ]

d2

p-Dimensional Ellipsoid

For multivariate samples the Mahalanobis distance of x’' = (z1, Z2,...,Zp)
from the mean X' = (Z.1,Z.2,...,%.p) is given by m, where m? = (x —
%)'S™!(x — %), which describes an ellipsoid in p-dimensional space. The
sample squared Mahalanobis distance from the mean for each of the obser-
vations for the data matrix in Table 7.1 is shown in Table 7.5. These values
can be used to indicate the distance of each sample observation from the
centre of the data. Thus observation 11 in the table appears to be furthest
from the centre of the data while observation 43 is closest to the centre.

Generalized Variance

The volume of the sample ellipsoid defined above is given by m?|S|'/2C(p),
where C(p) is a constant that depends on the number of variables p and
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TABLE 7.5. Squared Mahalanobis Distances for Portfolio Data

Squared Squared Squared Squared
Obs. Mahalanobis Obs. Mahalanobis Obs. Mahalanobis Obs. Mahalanobis
No. Distance No. Distance No. Distance No. Distance
1 7.72 14 5.41 26 4.73 38 6.20
2 19.16 15 6.67 27 4.13 39 7.09
3 20.33 16 9.63 28 6.69 40 5.21
4 14.67 17 18.28 29 11.20 41 6.41
5 10.67 18 8.81 30 7.12 42 8.79
6 13.40 19 9.48 31 9.30 43 3.62
7 8.62 20 10.08 32 5.57 44 7.06
8 5.08 21 5.86 33 10.71 45 4.26
9 13.25 22 11.28 34 5.06 46 10.44
10 9.17 23 7.00 35 5.80 47 21.41
11 44.86 24 8.60 36 8.26 48 5.65
12 8.09 25 12.19 37 8.59 49 10.69
13 8.58 50 9.13

|S| denotes the determinant of S. From this expression we can see that
for given values of p and m? the volume of the ellipsoid depends on |S]|.
The quantity |S| is usually called the generalized variance since it is related
to the overall variation among the p variables. For the portfolio data the
generalized variance is 18992767.

If the n-dimensional geometrical representation for the sample is used,
the columns of X*/v/n —1, where S = X*X*/(n — 1), are represented
by mean corrected vectors (x; — Z.;e)/vn—1, j=1,2,...,p, eminating
from the origin. The p vectors can be used to generate a p-dimensional
trapezoid or a parallepiped. The volume of the p-dimensional figure is given
by (n — 1)?/2|S|'/2. Thus the volume is influenced by the lengths of the
vectors in X* and the angles among them. This provides an alternative
characterization for the generalized variance |S|. The generalized variance
increases if the magnitudes of the elements of X* increase and/or if the
columns of X* become less collinear. Obviously, if the columns of X* are
linearly dependent, |S| = 0. If the columns are almost collinear, |S| will be
very small.

Trace Measure of Overall Variance

An alternative measure of overall variance is the sum of the diagonal ele-
ments of S, ¢r S. This measure is simply the total of the variances for the p
random variables. Unlike |S|, this measure is not sensitive to the degree of
collinearity among the columns of X*. The trace of the portfolio covariance
matrix is 833.824.
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Generalized Variance for Correlation Matrices

The generalized variance determined from the sample correlation matrix is
given by |R|. Because the variables are standardized, this quantity is not
influenced by the magnitudes of the sample variances s?,s2,... ,812,. The
diagonal elements of R are necessarily 1, and the off-diagonal elements of
R must lie in the interval (—1, 1). If all of the off-diagonal elements are zero,
the variables are mutually uncorrelated and |R| = 1. As the off-diagonal
elements increase in absolute value away from zero, the magnitude of |R|
decreases. If any one of the off-diagonal elements is close to 1 or —1, then
|R| will be negligible. The generalized variance based on |R| is therefore
a measure of the lack of correlation among the variables. The generalized
variance for the portfolio correlation matrix is 0.0000125.

The quantity |R| can be related to the volume generated in n space by
the standardized variables vectors. The volume is given by (n —1)?/2|R|!/2
as in the case of |S| above. This volume is a function of the angles among the
p vectors. The quantity |R| can be related to |S| using |R| = |S|/s1s2...5p
and hence S| also includes the impact of scale given by s1,..., sp.

FEigenvalues and Eigenvectors for Sums of Squares and Cross Product
Matrices

In Chapter 9 the eigenvectors and eigenvalues of matrices of the form X'X
will be used to achieve dimension reduction by defining new variables called
principal components. The principal components are linear transformations
of the form Y = AX, with the transformation matrix A provided by the
matrix of eigenvectors of X'X. The principal components are designed to
retain most of the variation described by X'X, while reducing the number of
dimensions or variables. The eigenvalues and eigenvectors of X'X therefore
provide important information about the structure of X'X.

The matrix S is a special case of a matrix of the form X'X and hence
the eigenvalues and eigenvectors provide important information about the
structure of S. As outlined in the Appendix, the eigenvectors and eigenval-
ues of X'X satisfy the equations

X,XV]' = AJ’VJ', ] = 1,2,. .y P

In this case since X'X is positive definite and symmetric, the eigenvec-
tors v; are mutually orthogonal and are usually scaled so that viv; = 1.
The eigenvalues )\;, j =1,2,...,p satisfy the properties H?:lAJ' = |X'X]
and tr(X'X) = 3°%_, );. Since |X'X| and tr(X'X) are measures of overall
variation, the eigenvalues can be seen to represent such information. The
arithmetic mean of the eigenvalues represents the average of the diagonal
elements of X'X (or variances if S = X'X). The geometric mean of the

eigenvalues of X'X reflects the pth root of the generalized variance of X'X.
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TABLE 7.6. Eigenvalues for Portfolio Covariance Matrix

Eigenvalue No. 1 2 3 4 5 6 7 8 9 10
Eigenvalue 691.75 117.57 7.07 5.99 4.17 259 2.49 132 0.55 0.27
Arithmetic Mean  83.38 Geometric Mean 5.34

The eigenvalues for the portfolio return covariance matrix are summa-
rized in Table 7.6. The arithmetic and geometric means of the eigenvalues
are also shown in Table 7.6.

7.1.4 OTHER SOURCES OF INFORMATION

More extensive coverage of the topics in Section 7.1 is available in Mardia,
Kent and Bibby (1979), Johnson and Wichern (1988) and Kryzanowski
(1988).

7.2 The Multivariate Normal Distribution

The univariate and bivariate normal distributions play an important role
in statistical inference. For multivariate random variables, the multivariate
normal distribution is a convenient and easy generalization of these two
distributions. As in the univariate and bivariate normal distributions, the
multivariate normal is completely defined by its first and second moments.
The marginal distribution of any one variable from the multivariate normal
random variable is univariate normal, and the joint distribution of any pair
of variables from the multivariate normal is bivariate normal. Therefore
the equivalence between independence and zero correlation for bivariate
normal random variables holds for all pairs of multivariate normal random
variables. More generally, any subset of g variables in a p-dimensional mul-
tivariate normal, ¢ < p, has a g-dimensional multivariate normal distribu-
tion. Also, a linear combination of the variables from a multivariate normal
is univariate normal. Finally, many procedures based on the assumption of
multivariate normality are robust to departures from normality, and many
multivariate statistics used in practice converge in distribution to a multi-
variate normal (multivariate central limit theorem).

In this section we introduce the multivariate normal distribution. Infer-
ence techniques for the mean vector p and the covariance matrix ¥ will
be introduced in Section 7.4.
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7.2.1 THE MULTIVARIATE NORMAL
Multivariate Normal Density

The random vector x (p x 1) has a p-dimensional multivariate normal dis-
tribution if its density is given by

£ = @) P Z el (5) k- WY B -], (A1)

where the elements of x are in the range (—o00,00) and ¥ is of rank p. The
mean of x is given by E[x] = u, and the covariance matrix for x is given
by E[(x — p)(x — p)'] = X. The correlation matrix p relating the variables
in x is given by

p= D;1/22D;1/2,

where D, is the diagonal matrix of elements 03,03, ...,02. The density is
usually denoted by Np(p, X).
The elements of p and ¥ are denoted by

©“
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Constant Probability Density Contour

The quantity (x — p)’ £~ (x — ) = ¢2, which is the squared Mahalanobis
distance between x and p, describes the surface of an ellipsoid centered
at p. The density of x is therefore a constant over the ellipsoidal surface
(x—u)' £~ (x—p) = 2. This surface is called a constant probability density
contour. As in the case of the univariate normal, the density is maximum
at x = pu.

Linear Transformations

A linear combination of the p variables given by y = ¢’x, ¢ (px1), has a uni-
variate normal distribution with mean p, = ¢’u and variance o2 = ¢’ X,
hence y ~ N(c'u,c’Xc). Similarly, if C is a (¢ x p) linear transforma-
tion matriz, the random variable y = Cx has a ¢-dimensional multivariate
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normal distribution with mean vector p, = Cp and covariance matrix
XYy = CXC/, hence y ~ N,(Cu,CXC').

Distribution of Probability Density Contour

A useful property of the multivariate normal is that, for a random observa-
tion x from Np(u, X), the quantity (x—p)’ X! (x—pu) has a x? distribution
with p degrees of freedom. Since (x — )’ X! (x — ) describes an ellipsoid
with center u, the probability is a that a random x will be outside the el-
lipsoid (x—p)' X~ (x—p) = x?,;p. In Section 7.3 this property will be used
to check for normal goodness of fit and outliers for multivariate samples.

7.2.2 PARTITIONING THE NORMAL
The multivariate random variable x (p x 1) can be partitioned into two

X1

subvectors x = [ % |’ where x; denotes the first ¢ elements of x, and x»

denotes the last s = (p — q) elements of x. The corresponding partitions of
p and X are given by

I 2u T
B = and ¥ = ,
Ko Ya Yo

where p, is (g% 1), myis (sx 1), X11is (gxq), T is(sx8), Xiais
(g x 8), and X = X,.
Marginal Distributions

The marginal distribution for x; is Ng(p, X'11), and the marginal distri-
bution for xz is Ny(pg, X2). If X153 = X = 0, then the elements of
the vector x; are uncorrelated with the elements of x2, and hence under
multivariate normality x; and x are independent.

Conditional Distributions

The conditional density of the random variable x; given x; = x] is normal
with mean vector

Baa (X)) = (Hy — En T ) + En Br'x}
and covariance matrix
221 = (T2 — T T Z1a).

Therefore the conditional mean vector is a function of x7, but the covariance
matrix of the conditional distribution is independent of x]. The conditional
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density of x3 given x; = x] is given by
- -1/2 1 _
f(x2 | x; =x7) = (27) 8/2|E22-1| exP[“(5)(x2‘#2-1),2221.1("2—“2.1)]-

Multivariate Regression Function

The conditional mean vector p, , is called the multivariate regression func-
tion for xo on x;. f g=(p—1),then s = (p—¢g) =1,and xo = X, is a
univariate random variable. In this case X, is a [(p—1) x 1] vector, say o.
The conditional mean of X, given x; is given by

Bo.1(x1) = (g — B Z1i ) + T B x1 = (p2 — 0525 1) + 05 X%y

and is called the regression function of X2 on x;. For the regression of
X, on x;, the true intercept and slope parameters 3y and B* are given
by (u2 — 0527 ;) and o, X7} respectively. The variance of X; can be
partitioned into two terms, 02, = (02, — 04X '02) + 04X '02. The
first term is the residual variance, and the second term is the variance
of X, explained by the regression relationship with x;. The coefficient of
determination is given by R? = 0y ¥}'a2/02,, which is the square of the
multiple correlation between X, and x;.

If s > 2 and each of the elements of x; is regressed on x;, the set of
regression coefficients of x; is given by the (s x ¢) matrix Xo; X}, with
the (s x 1) intercept vector (py — X1 X1 ;). The intercept vector and
matrix of regression coefficients will be referred to later in this chapter
as the multivariate regression coefficients for the multivariate regression
of x on x;. The intercept vector will be denoted by 3, and the matrix of
regression coefficients by B™*. The combined parameter matriz [s x (g +1)]
is given by B’ = [8, B™].

Partial Correlation

The conditional covariance matriz ¥op.1 = (X — 22121'112‘12) contains
the elements necessary to construct the matrix of partial correlations be-
tween the variables in x2 controlling for the variables in x;. The partial
correlation matrix is given by
D, }/2(23 — E B7 212)D; 2,

where Dy, , denotes the diagonal matrix containing the diagonal elements
of (Yo — Xo; 21'11 X12). The elements of the conditional covariance matrix
X50.1 are usually denoted by

0ij.1,2,.,q Wherei,j=12...,s.

The elements of the partial correlation matrix are given by
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Pij1,2,..,4 = o't'j-1,2,...,q/\/aii-1,2,...,q VT3551,2,...,0)
,j=1,2,...,s,

which are usually referred to as qth order partial correlations.
For the first-order partial ¢ = 1, recall that

— Pi1Pj1

Pij1 =
V 1- Pi1 V 1- p]l

The higher order partial correlations can be obtained in a recursive manner
using the relationship

ptjlzv 1q_1-p‘q121 g 1p1q121 gd— 1
Pij-1,2,...4 =
\/1 P,q12, »g-1 \/1 J9°1,2,...,4-1

7.3 Testing for Normality, Outliers and Robust
Estimation

The multivariate normal distribution has the property that, for all sub-
sets of variables, multivariate normality holds; however, the converse is not
necessarily true. Ensuring univariate normality for all individual variables
and/or ensuring bivariate normality for all possible pairs does not there-
fore guarantee multivariate normality. Tests for multivariate normality are
discussed in this section.

The detection of univariate outliers is relatively straightforward in the
sense that outliers are generally observations that are somewhat distant
from the remainder of the data. To guard against the effects of outliers,
robust estimators can be obtained by trimming extreme observations. For
the bivariate distribution case, scatterplots, regression residuals and mea-
sures of influence can be used for both detecting and measuring the impact
of outliers. Robust estimators for covariances, correlations and regression
parameters are also available. In this section techniques are discussed for
detecting outliers in multivariate distributions. In addition, the robust es-
timation of the mean vector and covariance matrix is also studied.

7.3.1 TESTING FOR NORMALITY
Mahalanobis Distances from the Sample Mean

For a bivariate distribution with random variables (X,Y), in large samples
the ordered distances m%i), i = 1,2,...,n, can be compared to the x2

distribution, x? _ .., where (1 — a;) = (i — .5)/n. The distance m? is the
(1-ay);2 1
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squared Mahalanobis distance between (z;,y;) and (Z, ) given by

1 @-2)?  @i-9? 2r(s-2)F—9)
mf=(1_r2)[ S |

A plot of the points [m%i), xfl_ ai);2] should yield a straight line.
This plotting technique can be extended to the multivariate normal by
computing the squared Mahalanobis distances
m? = (x; — X)'S7!(x; — %)
for the n multivariate observations ¢ = 1,2,...,n. The ordered distances
m¢;, are plotted against the x* distribution percentiles, X, _,,,, where
l-a)=(GE—-.5)/n, i=12,...,n.

Multivariate Skewness and Kurtosis

Tests for multivariate normality can also be based on measures of mul-
tivariate skewness and kurtosis. The Mardia (1970) sample measures of
multivariate skewness and kurtosis are given by

1 3 1
'?lp=_2 mej and '?2p=_z:m‘i1a

n i=1 j=1 n i=1
where
mf = (x,- - i)’S_l(xi - )_() and
m;; = (xi - i)’S_l(xj - )_K)

In large samples from a multivariate normal, n9,,/6 has a x? distribution
with p(p + 1)(p + 2)/6 degrees of freedom, and 9, is normally distributed
with mean p(p + 2) and variance 8p(p + 2)/n.

For the multivariate normal population, the Mardia (1970) measures of
skewness and kurtosis are

My = Elx-p)Z Y (y-p)® and
Y2 E[(x— p)Z7 (x — w))?,

where x and y are independently distributed with mean vector g and
covariance matrix X.

Ezxzample

Table 7.7 contains the squared Mahalanobis distances for the fifty ob-
servations on the ten portfolios. Table 7.7 also contains the x? distribu-
tion (1 — p)-values based on 10 degrees of freedom, and also the values
of (i —0.5)/n for i = 1,2,...,n. Since the values of x? corresponding to
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(¢ — 0.5)/n are difficult to obtain, they do not appear in the table. A com-
parison of the (1 — p)-values to (i — 0.5)/n would suggest that there are
generally fewer observations in both tails of the distribution of m? than
could be expected for a theoretical x2. There also appear to be a few out-
liers with relatively large values of m?, which is confirmed later on in this
section.

The values of the measures of multivariate skewness and multivariate
kurtosis were determined to be 4; = 58.49 and 4, = 137.34 respectively.
The value of n4;/6 = 487.49 when compared to a 220 degree of freedom
x? yielded a p-value less than 0.0000. For 4, the Z value was determined
to be 3.96, once again suggesting an extremely small p-value. The two
measures therefore suggest that the multivariate normality assumption is
questionable.

If each of the ten individual portfolio distributions is tested for normality,
all but the first two result in rejection of the univariate normality hypothesis
at p-values less than 0.01.

If the observation corresponding to m? = 44.86 (observation 11) in Ta-
ble 7.7 is removed from the data set, the values of the skewness and kurtosis
statistics are reduced to 4; = 33.45 and 4, = 117.69. The test statistics
in this case yield p-values of 0.0084 for 4; and greater than 0.5000 for 4.
Removal of this potential outlier results in a considerable reduction in both
skewness and kurtosis. The detection of outliers is discussed below.

Transforming to Normality

A variety of procedures are available for transforming univariate random
variables to normality. For multivariate random variables the simplest pro-
cedure is to transform each random variable using the appropriate uni-
variate technique. Although this approach does not guarantee multivariate
normality, it is usually good enough in practice.

7.3.2 MULTIVARIATE OUTLIERS

The procedures commonly available for detecting ouliers in univariate and
bivariate distributions should be used as a preliminary step to identifying
potential outliers for multivariate data. Since it is possible for a multivari-
ate outlier not to be an outlier with respect to any one of the underlying
univariate distributions, the detection of extreme observations in multivari-
ate distributions is more difficult. A more general approach for detecting
multivariate outliers is discussed here.

Multivariate Outliers and Mahalanobis Distance

A useful way of detecting multivariate outliers is to measure the distance
of each observation from the centre of the data using the Mahalanobis
distance. Each observation x; can be ordered or ranked in terms of its
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TABLE 7.7. Mahalanobis Distances and Chi Square p-Values

m? (1 — p)-Value (1 —0.5)/n
3.624 0.037 0.01
4.135 0.058 0.03
4.264 0.065 0.05
4.736 0.091 0.07
5.068 0.113 0.09
5.080 0.114 0.11
5.210 0.123 0.13
5.414 0.138 0.15
5.570 0.150 0.17
5.656 0.156 0.19
5.806 0.168 0.21
5.869 0.173 0.23
6.206 0.202 0.25
6.411 0.220 0.27
6.669 0.243 0.29
6.696 0.246 0.31
7.001 0.274 0.33
7.066 0.280 0.35
7.091 0.283 0.37
7.126 0.286 0.39
7.720 0.343 0.41
8.094 0.380 0.43
8.264 0.397 0.45
8.583 0.427 0.47
8.589 0.428 0.49
8.604 0.429 0.51
8.623 0.431 0.53
8.793 0.448 0.55
8.818 0.450 0.57
9.133 0.480 0.59
9.169 0.483 0.61
9.296 0.495 0.63
9.481 0.512 0.65
9.634 0.526 0.67
10.083 0.566 0.69
10.446 0.597 0.71
10.674 0.616 0.73
10.690 0.617 0.75
10.709 0.619 0.77
11.202 0.658 0.79
11.284 0.664 0.81
12.191 0.727 0.83
13.257 0.790 0.85
13.402 0.797 0.87
14.470 0.847 0.89
18.288 0.949 0.91
19.168 0.961 0.93
20.339 0.973 0.95
21.411 0.981 0.97

44.867 1.000 0.99
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value of m? = (x; —x)'S™!(x; — ) which is the equation of a p-dimensional
ellipsoid. An equivalent procedure is to compute the ratio of the generalized
variance r? = |S(;)|/|S|, where S(;) denotes the sample covariance matrix
with x; omitted. A relatively small value of r? would indicate that x; is a
potential outlier. Since rZ = 1 — nm?2/(n — 1), the two methods of ordering
extreme observations are equivalent. Recall from Section 7.1 that both of
these measures can be related to the volume of a p-dimensional ellipsoid.

Although the measure m? is relatively easy to use, in practice it is worth
pointing out that this measure is related to the measure

b} = (xi — X(5))'S(p) (% — X(3))

where X(;) denotes the sample mean vector with x; omitted. The relation-
ship between m? and b7 is given by m? = (n—1)3b?/[n%(n—2)+(n—1)bZ].
Ordering based on m? is therefore equivalent to ordering based on b?. The
presence of a single oultier in the calculation of X and S does not therefore
affect the ordering.

Testing for Multivariate Outliers

Under the assumption of multivariate normality and the null hypothesis
that xx ~ Np(p, &), k = 1,2,...,n, the statistic given by b? above, is
related to the two-sample Hotelling T? statistic for testing the null hy-
pothesis against the alternative Hq:x; ~ Np(p;, X), xx ~ Np(p, X),
k#i,k=1,2,...,n. Hotelling’s T? will be discussed in Section 7.4. The al-
ternative hypothesis permits a single mean shift. (This test is a special case
of the test for equality of means across g groups to be discussed in Chapter 8
in MANOVA.) The Hotelling 7 statistic is given by (n — 1)b?/n = T2.
The largest value of T? over the sample is given by 732, which can
be used to test for the presence of a single outlier. This test statistic is
also useful in testing the null hypothesis against the alternative H4:x; ~
Np(p,c;X), xx ~ Np(p, %), k #1, k =1,2,...,n. In other words the
outlier is obtained from a multivariate normal distribution with a different
mean p (mean shift) or a different covariance matrix X' (scale shift). The
statistic (n — p — 1)T2/(n — 2)p is distributed as an F' distribution with p
and (n—p—1) degrees of freedom if the value of x; corresponding to max T2
has the same multivariate normal distribution as the remaining (n — 1) ob-
servations. The computation of T? can be carried out more simply using the
relationship of 772 to the squared Mahalanobis distance m? discussed above.
The F-test statistic can be written as m2(n —p — 1)/p[(n — 1) — m2).

Multiple Outliers

The identification of subsets of outliers is a more difficult problem. If the
subset cannot be prespecified independently of the data, there is no in-
ference procedure for detection. For any prespecified subset believed to
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contain outliers, however, the two-sample T2 test can be used. Similarly,
for groups of observations believed to have different means, the techniques
of multivariate ANOVA to be discussed in Chapter 8 can be used.

The measure r? introduced above for single outliers can be extended
for multiple outliers. We denote by S(i) the covariance matrix without
the t observations z;;, T2, . . . , Tit, where i denotes the vector of subscripts
(41,12, ...,it). The critical ratio r? is given by |S (i)l/ |S|. A subset of obser-
vations for which r? is relatively small is an indication that outliers may
be present.

The F-test statistic based on the Mahalanobis distance given above can
be used to detect multiple outliers. Although the F distribution only applies
to the maximum value of m? if very small p-values are used and if F is com-
puted recursively, other ouliers can be detected. Beginning with the entire
sample, the observation yielding the largest value of m? is removed from
the sample if the corresponding F-statistic is considered significant. The
values of m? are then recomputed and a new maximum value of m? is com-
pared to F. By restricting the significance level to very low p-values such as
0.000, this process can provide some evidence of multivariate outliers over
and above the outliers detected by univariate and bivariate methods.

Ezample

Table 7.8 contains the squared Mahalanobis distances, F-values and p-
values for the successive application of the 72 max procedure applied to
the portfolio data of Table 7.1. The table presents the results for five inter-
ations of this procedure. For step 1, observation 11 yields the largest m?2,
a value of 44.8673, and a corresponding p-value of 0.0000. After removing
observation 11, the m2-values are computed again in step 2. Observation 5
has the largest value of m? (26.0082) in step 2 even though its value of m?
in step 1 was relatively small. This suggests that removal of observation 11
in step 1 moved the centre of the data away from observation 5. In step 3,
observation 3 yields the largest value of m? (24.9623). This observation
had a relatively large value of m? in all three steps. The p-value for this
m? is 0.0000. In step 4, after the removal of observations 3, 5 and 11, the
largest value of m? occurs for observation 28 (m? = 24.1450, p = 0.0000).
It is interesting to note that once again an observation with the largest
m? did not have a relatively large m? in the first step. This phenomenon
occurs again in step 5 where observation 45 yields the largest m2-value
(23.0393). Up until step 5, observation 45 had had relatively small m? val-
ues. The p-value for observation 45 in step 5 was 0.0000. In step 6 (not
shown) observation 45 was deleted. The smallest p-values in step 6 were in
the neighborhood of 0.0002.
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156 7. Multivariate Distributions, Regression and Correlation

7.3.3 ROBUST ESTIMATION

To obtain a robust estimator of a mean vector, it is a simple matter to
employ a vector of univariate robust estimators for the vector components.
For the covariance matrix and correlation matrix (p > 2), however, us-
ing individual robust estimators for the parameters of the matrix will not
guarantee that the matrix of estimators is positive definite.

Obtaining Robust Estimators of Covariance and Correlation Matrices

If the correlation matrix is not positive definite, adjustments can be made
to make the matrix positive definite. The approach is to shrink the absolute
magnitude of the off-diagonal elements relative to the diagonal elements. A
method proposed by Devlin et al. (1975) is to compute revised estimates of
each correlation coefficient using the Fisher Z-transformation as outlined
below. For a given positive constant A compute

Z;; =11n(i—f:-:jfj)+A; if%ln(i—i—:g-)<—A, ii=1,2,...,p,
_1 +7i) A, el + Tij
=35ln (1—_7:‘;') A; if 5 In ('1—_—7,:.‘:‘) > A,
=0 otherwise.

Then determine 7;; from the inverse Fisher transformation of Z;;. A ro-
bust positive definite estimate of the covariance matrix can be obtained
using 7;;3;3;, where 57,32 are robust estimators of 07,07 respectively,
i,j=1,2...,p.

Multivariate Trimming

An alternative multivariate approach to obtaining a robust estimator of the
covariance matrix is called multivariate trimming. The Mahalanobis metric
is used to identify the 1000% extreme observations that are to be trimmed.
The calculation is done iteratively each time determining the proportion
a of extreme observations. Beginning with the conventional estimators x
and S for each observation x;, i = 1,2,...,n, the distance m? = (x; —
x)'S™!(x;—x) is computed. For a given a the observations corresponding to
the largest proportion a of the values of m? are determined. New trimmed
estimators X* and S* of 4 and ¥ are then determined using the remaining
observations.

Once again for all n observations x; the distances m? = (x;—%*)'S* ™ (x;—
x*), i=1,2,...,n, are determined and a proportion a of the largest m? are
trimmed. The remaining observations are used to recompute the trimmed
estimators X* and S*. As long as the number of observations remaining
after trimming exceeds p, the dimension of the vector X, the estimator S*
determined by multivariate trimming will be positive definite. A robust
estimator of the correlation matrix is obtained using the elements of S*.
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Ezample

The largest outlier for the portfolio data in Table 7.8 was observation 11.
Removal of this observation results in a reduction in the mean and vari-
ance for portfolio 10 from X1 = 6.41, s%, = 686.59 to X ;o = 2.93 and
s3, = 83.74. With the exception of some changes in the covariances be-
tween portfolio 10 and the remaining portfolios, only very minor changes
in the remaining elements of the mean vector and covariance matrix oc-
curred after trimming observation 11. A perusal of the original data shows
that for portfolio 10 observation 11 was extremely large in comparison to
the remaining observations.

7.3.4 OTHER SOURCES OF INFORMATION

More extensive coverage of the topics in this section can be found in
Hawkins (1980), Gnanadesikan (1977) and Mardia, Kent and Bibby (1979).

7.4 Inference for the Multivariate Normal

The purpose of this section is to outline a variety of inference procedures
for the mean vector u and covariance matrix X' for a multivariate normal
distribution. We assume that a random sample of size n from a multivariate
normal has been obtained and is given by the n x p data matrix X. The
sample mean vector and covariance matrix were defined in Section 7.1 and
denoted by X and S respectively.

7.4.1 INFERENCE PROCEDURES FOR THE MEAN VECTOR
Sample Likelihood Function

The likelihood function for a random sample of size n from a multivariate
normal is given by the product of the densities evaluated at each of the
n observations (X1,X2,...,Xy). Using the expression for the multivariate
normal density given by (7.1) the likelihood function is therefore given by

n

L= £6x) = @m) 2|2 exp | - 2> xi = W Z7 (i — ).

=1 =1

Maximizing this likelihood function with respect to p and X' yields the
maximum likelihood estimators of u and ¥ given respectively by x and (n—
1)S/n. This likelihood function will be the basis for many test procedures
in this chapter.

If x is obtained from a multivariate normal random sample, then X ~
N, (i, £/n). The statistic n(x—p)’ X" (X— p) therefore has a x? distribu-
tion with p degrees of freedom and can be used to make inferences about .



158 7. Multivariate Distributions, Regression and Correlation

Given a sample mean vector X, the equation n(x — u)' X~ (% — p) = xX2.p
describes an ellipsoid with center at X. This equation provides a 100(1—a)%
confidence ellipsoid for p.

Hotelling’s T?
If X' is unknown, we can replace X by S and use the fact that

T? = n(x — p)'S™'(x - p)

is distributed as (n — 1)pF}, (n—p)/(n — p), where Fp ,_, denotes an F' dis-
tribution with p and (n — p) degrees of freedom. The quantity 72 is usually
referred to as Hotelling’s T?2. Therefore, the statistic (n—p)T?/(n — 1)p has
an F distribution with p and (n—p) d.f. The elliposid n(X—p)'S™! (X—p) =
(n — 1)pFy;p (n—p)/(n—p) provides a 100(1—a)% confidence ellipsoid for .

Inference

The confidence ellipsoids for g given above can also be used to test hy-
potheses regarding p. To test Hp:p = g, we can use one of the test
statistics

n(% — po)' Z7H (% — po) or
(X — po)'S™H(% — po)

depending on whether X' is known or unknown. For an « level test of Hp, the
critical values of the test statistics are x3., and (n — 1)pFo;p (n—p)/(n — D)
respectively. These two tests are equivalent to the tests that would be
obtained using a likelihood ratio approach.

Ezample

For the portfolio returns given in Table 7.1, a test of the null hypothesis
that the mean return vector is the zero vector requires the test statistic
(n — p)nx'S™'%/(n — 1)p, which has an F distribution with p and (n — p)
degrees of freedom if the null hypothesis is true. For the portfolio data,
F = 0.9850 which has a p-value of 0.472 for F' with 10 and 40 degrees of
freedom. We therefore cannot reject the hypothesis that the mean vector
is zero.

For the police officer stress data of Table 7.2, a test of the null hypoth-
esis that the elements of the mean return vector are all three requires the
test statistic (n — p)n(x — 3i)’S™!(x — 3i)/(n — 1)p where i is a vector of
unities. This statistic has the value 2.603 for the stress data and has an F'
distribution with 8 and 42 degrees of freedom if the null hypothesis is true.
The p-value in this case is 0.021. It is therefore difficult to accept the null
hypothesis that the elements of the mean vector are all 3.
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Simultaneous Confidence Regions

Given that X ~ Np(u, ¥ /n), the distribution of £'x where £ (p x 1) is
a vector of constants is N(€'u,£€ X£/n). An important property of the
Hotelling 72 statistic is that, simultaneously for All linear combinations of
the vector X, say £'%, where £ (p x 1), the probability is (1 — a) that the
interval

/= p(n — 1) / /= p(n - 1) /
£x \/—n(n =7 Fa;p,(n_p)l Se, £x+ \/——n(n 7 Fa;p,(n_p)t Sé

contains £'p. In addition to making comparisons among elements of p,
this result can be used to give individual confidence intervals for the ele-
ments of p. By choosing £ to contain only one nonzero element, a unity
corresponding to j, a (1 — ) probability interval for p; is given by

p(n—1)
W a;p,(n—p) 3?/"-

As in the case of Scheffé’s multiple comparison procedure in ANOVA, this
procedure is a conservative approach to comparing means. The ezperimen-
twise error rate a is preserved over all possible linear combinations £’ .

Ezamples

For the ten portfolios in Table 7.1, a single portfolio was constructed using
the weights £ = [5,4,3,2,1,0, -2, —3, —4, —5|. (Note that the weights must
add to one for a portfolio.) The estimated variance is given by £'S€ =
20022.8. A 95% confidence interval for the mean of this portfolio is given
by —29.83+108.05. The mean of this portfolio is therefore not significantly
different from zero.

For the eight stress indicators in Table 7.2 a weight vector indicating the
frequency of occurrence is given by £ = [0.20, 0.20, 0.15, 0.05, 0.10, 0.05,
0.10, 0.15]. The estimated weighted average stress is given by £'x = 2.668
and the estimated variance is given by €S€ = 0.4805. A 95% confidence
interval for the average stress measure is given by 2.668+0.487. The interval
(2.181, 3.155) therefore contains the true average stress measure with a
probability of 0.95.

Inferences For Linear Functions

It is sometimes of interest to make inferences about a linear transformation
y = Cx, which we have already indicated is multivariate normal with mean
Cp and covariance matrix CX'C’, where C is (g x p). Confidence ellipsoids
and tests of hypotheses regarding Cu can therefore be obtained using the
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fact that
n(Cx — Cp)'(CXC')™}(Cx — Cp) is distributed as x2 (7.2)

and

(n—1)q
(n—2q) Fy(n—q)-

(7.3)

n(Cx — Cu)'(CSC’)"}(Cx — Cp) is distributed as

Ezamples

The four stress indicators X, X2, X3 and Xjg are related to direct dealings
with the public, whereas the four stress indicators X4, X5, X¢ and X7 are
related to the structure of the organization. The two sets of stress indicators
can be used to form two indices of stress, one for public stress and one for
organizational stress. The two different indices of stress can be constructed
using the transformation matrix

025 025 025 00 00 00 00 0.25
C=100 00 00 025 025 025 025 00

To test the hypothesis that Cu = [ ;g

;3‘8“5) . The test statistic value is given by 2.547 which is distributed as

(2)(49) F2,48/(48). The value of F; 45 is therefore 1.248 which has a p-value
of 0.296. The null hypothesis therefore cannot be rejected.

] the sample value is Cx =

7.4.2 REPEATED MEASURES COMPARISONS
Repeated Measurements on a Single Variable

An important application of the linear function property discussed in the
previous section is the repeated measurements comparison. In this appli-
cation we assume that the same n individuals or objects are measured on
a particular response variable (i.e., some measure of performance) under
a variety of p conditions or treatments (i.e., p different time periods). We
denote the response vector for each individual over the p conditions by
x (p x 1) and assume that x ~ Np(u, X). It is often of interest in such

situations to determine if y; = pp = ... = pp, and hence that the mean
level of performance over the n individuals is the same for the p conditions.
Testing the hypothesis Ho: 13 = p2 = ... = pp is equivalent to testing

Hy: (p2 — p1) = (ps — p2) = ... = (p — pp—1) = 0. Using the transformed
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#j

FIGURE 7.1. Profile Plot for Five Variables

vector random variable Cx, where C is the (p — 1) X p matrix given by

e

-1 1 0
0 -1 1 00
c_| 0 0 - 00 4
0 0 0 10
| 0 0 0 -1 1|

the test statistic given by (7.2) or (7.3) can be used to test Hy.

An alternative approach to computing the test statistic (7.3) is available
using the expressions X’'S™'%, 'S~ 'i and i'S™i, whereiis a (px 1) vector
of unities. The statistic (7.3) can be written as

nx'S™'x — n(x'S71)%/i'S 7. (7.5)

Profile Characterization

A plot of the components of u in order from 1 to p is called a profile, as
illustrated in Figure 7.1, for a mean vector with five components. Sometimes
adjacent points are joined to show the changes in level among the elements
of .

Ezamples

For the officer stress data of Table 7.2, the test statistic (7.5) has the value
131.35, which has a p-value of 0.0000 when compared to an F distribution
with 7 and 43 degrees of freedom. The hypothesis of equal stress means is
therefore rejected at conventional levels.
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An alternative application of this test is given by the comparison of the
mean returns on p securities over n time periods. Weekly security returns
can usually be assumed to be independent over time, but the covariance
between the returns on any two securities in a given time period is usually
nonzero. Denoting the vector of returns on the p securities in a given time
period by x, we assume that x ~ Np (i, 2). It is sometimes of interest to
test the hypothesis that the mean returns on the p securities are equal.
The test statistic is again given by (7.3) with C defined above and with
g=(p-1).

For the ten portfolios in Table 7.1 the test statistic for the hypothesis
of equal mean returns is given by 8.8429. Under the null hypothesis this
statistic has an F' distribution with 9 and 41 degrees of freedom and hence
has a p-value of 0.0000. We cannot, therefore, accept the hypothesis of
equal portfolio mean returns. It is interesting to note that earlier we could
not reject the hypothesis that the mean vector was the zero vector.

Repeated Measures in a Randomized Block Design

In analysis of variance the repeated measures experiment is often applied as
a special case of a randomized block design. Since in the repeated measures
experiment the same experimental unit (block) is used for each treatment,
the responses in each block may no longer be independent. As outlined
above, the covariance matrix for treatment responses could be assumed to
be some arbitrary X. If X does not have the form o2 I, as assumed in
the randomized block design, then the conventional F-test for equality of
means may no longer be valid.

The conventional ANOVA F'-statistic can be used for the repeated mea-
sures, randomized block experiment for some X structures other than o2 I.
The most commonly used assumption is that X has an equal variance-equal
covariance structure given by

(1 p p ... p]

p 1 p ...op
X =02

p ... p ... 1

Necessary and Sufficient Conditions for Validity of Univariate F Test

Although the equal variance-equal covariance structure is sufficient for the
F-statistic to be valid, it is not necessary. Necessary and sufficient condi-
tions are that the elements of X' satisfy
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o2 =2j+ea, j=12,..,p

ok =X+, JF#k G k=12,...,p,

or
X =Ai"+i) +ol, (7.6)

where A = {\;}, j=1,2,...,p, is a vector of constants, and i (p x 1) is
a vector of unities. This variance-covariance structure is commonly called
the Huynh-Feldt pattern (1970) and is equivalent to the condition that the
differences between all pairs of responses (z; — ) have the same variance
and the same covariances.

The variance-covariance structure given by (7.6) is equivalent to the con-
dition € = 1 in the expression

p?(64—5..)2
(p-1(S-2 . 53 +p02)
k=1

E =

where S denotes the sum of squares of the elements of X, 4 is the mean
of the diagonal elements of X' = {o,x}, 7. is the mean of the elements
in row k, and .. is the mean of all p? elements of X. This constant lies in
the range (p — 1)™! < & < 1 and can be estimated using the elements of
the sample covariance matrix S. The Geisser—-Greenhouse procedure (1958)
for the repeated measurements design consists of adjusting the degrees
of freedom for the conventional ANOVA F test to take into account the
departure of ¢ from 1. The adjusted degrees of freedom are &(p — 1) and
€(p — 1)(n — 1) instead of the usual (p — 1) and (p — 1)(n — 1). & is the
estimate of € obtained by replacing the elements of X' by the elements of S
in the above expression for €. This procedure is meant as a substitute for
the more general multivariate approach outlined above. The multivariate
procedure is more reliable but has less power than the Geisser—-Greenhouse
procedure.

7.4.3 MAHALANOBIS DISTANCE OF THE MEAN VECTOR
FROM THE ORIGIN

Mahalanobis Distance of Mean Vector from the Origin

A measure of the distance from the origin in a p-dimensional space for
the mean vector g (p x 1) is provided by the Mahalanobis distance given
by w'X'u. The equation u'E ' = k describes an ellipsoid centered
at the origin. For a subset of the elements of p denoted by p, (¢ x 1),
q < p, with corresponding covariance matrix ¥'1; (g X ¢), we can compute
w) X7 n, which is the Mahalanobis distance from the origin in a reduced
g-dimensional space. If /X'y = p| X7 u,, then p, = X9 X7y, and
hence the distance of p from the origin can be captured by the distance of
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p, from the origin. The remaining (p — q) dimensions are not required to
describe the distance.

Application to Financial Portfolios

An example of an application of this measure comes from the evaluation of
financial portfolios. Let x; denote the returns on p financial assets earned in
time period t, where x; ~ Np(p, X), and where the x; are independent over
time. The return on a portfolio of these assets at time is given by y; = ¢'x;
(where Y°_ c; = 1). The mean and variance of the portfolio return y; are
py = c’'p and 03 = ¢’ Xc. If the performance of the portfolio is measured
using pg / ag , then the maximum value of this measure is given by p/ X~ p,
which is the Mahalanobis distance from the origin. For a subset of g assets
with return vector 2; = ¢jxy;, p, = cjp, and o2 = ¢} ¥c;, the maximum
value of p2/o? is given by p} X' p;. If W' ' = ), X', then there
is no improvement in performance to be achieved by adding the s = (p—q)
additional assets to the portfolio.

Given a random sample of observations on x with sample mean re-
turn vector X and covariance matrix S, a test statistic for the hypothesis
Ho: (! 7 'p = py ® 11, is provided by

@[ﬁ’s*i — %, S%4)/[1 + ¥, S1%1). 7.7)

The quantities X.; and S;; denote the portions of the sample mean vector
% and the sample covariance matrix S corresponding to p, and ¥,. If Hy
is true, this statistic has an F' distribution with s and (n — p) degrees of
freedom.

It can be shown that if (' £~ pu—p) 21 ;) = 0 then (uy— X2 i )
= 0 and hence the test Ho: ' 2~ pu = p) X7 u, is equivalent to Ho: (pq —
X157 1y) = 0. As we shall see later in this chapter, this test is equivalent
to a test for zero intercept vector in the multivariate regression of x2 on x;.
A more detailed discussion of this applicatoin is available in Jobson and
Korkie (1982, 1989).

Ezample

For the portfolio data, the value of X’S™'x for all ten portfolios is 1.0416.
For the subset of five portfolios 1, 2, 3, 6 and 9, the value of X;S7]'%; is
0.9880. The value of the test statistic (7.7) is therefore 0.2157. In compari-
son to an F' random variable with 5 and 40 degrees of freedom, the p-value
is 0.9538. There is very little improvement in performance to be achieved
by adding the remaining five portfolios to the first subset of five.
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7.4.4 INFERENCE FOR THE COVARIANCE AND
CORRELATION MATRICES

Wishart Distribution

If X (n x p) is a data matrix obtained as a random sample from N,(0, X),
then X'X has a p-dimensional Wishart distribution W,(X,n) with n de-
grees of freedom. The sample covariance matrix S multiplied by (n—1) has
the Wishart distribution Wy[X, (n — 1)]. The Wishart distribution can be
used to make inferences about ¥.

Sphericity Test and Test for Independence

If the covariance matrix X' for the multivariate normal has the form ¥ =
021, then the p random variables in x are mutually independent with com-
mon variance o2. In this case, the multivariate distribution is said to be
spherical since the ellipsoid of constant density (x — p)' 2! (x — p) = ¢
is equivalent to (x — u)'(x — p) = o%c?, which is the equation of a p-
dimensional sphere centered at p.

A test statistic for testing the null hypothesis Hy: ¥ = 0?1 is given by
np In[A/B], where A=Y"_ \;/pand B = [II;_, );] /P are the arithmetic
and geometric means of the eigenvalues A1, Az, ..., Ap of S respectively. If
Hy is true, the statistic has a x? distribution with (p — 1)(p +2) d.f. in
large samples.

Ezample

For the portfolio data of Table 7.1, the eigenvalues are shown in Table 7.6.
The arithmetic mean and geometric mean for the ten eigenvalues are also
shown in Table 7.6. Using these two means the test statistic for testing
sphericity is given by (50)(10)1n[83.382/5.344] = 164.85. Under the null
hypothesis of sphericity, the test statistic has a x? distribution with 1(p —
1)(p + 2) = 54 degrees of freedom. The p-value for 164.85 is therefore
0.0000. In the case of the portfolio data, the sphericity hypothesis for the
covariance matrix cannot be justified.

A Test for Zero Correlation

For the correlation matrix R, if R = I the covariance matrix X is diagonal.
To test Ho:R = I, in large samples, the test statistic —[n — (1/6)(2p +
11)]3°%_, In ); has a x? distribution with (1/2)p(p—1) d.f. if Hy is true. In
this case the \;, j = 1,2,...,p are the eigenvalues of the sample correlation
matrix R.
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Ezample

For the stress data the eight eigenvalues of the correlation matrix are given
by 2.8959, 1.2741, 0.9853, 0.8156, 0.6516, 0.5694, 0.4427 and 0.3655. The
test statistic for testing Hyp: R = I has the value 77.3823 which when com-
pared to a x? distribution with 45 degrees of freedom has a p-value of
0.0019. It is therefore very unlikely that the correlation matrix for the
eight stress variables is an identity matrix.

Test Statistics for Repeated Measures Designs

In the discussion of the repeated measures experiment in Section 7.4.2, two
special variance-covariance structures were found to be useful in permitting
the more powerful F-test used for the univariate ANOVA randomized block
design. Test statistics for the equal variance-equal covariance structure and
the Huynh-Feldt pattern are outlined below.

Test for Equal Variance-Equal Covariance Structure

For the equal variance-equal covariance structure, shown in Section 7.4.2,
the test statistic

p(p+1)%(2p - 3) ]
—l(n-1) - InL
(=~ 5 0w 179
in large samples is approximately distributed as x> with %p(p +1)-2
degrees of freedom, if the equal variance-equal covariance hypothesis holds.
The likelihood ratio statistic L is given by

L=18|/(®P(1 - 7P 1+ (p— D)7,

P P
where 32 = Y°__ s2/p and 7 = ——L 8ik/82.
3=153/P pp—1) J;l kgl ik/
i#k

Test for the Hyunh-Feldt Pattern
For the Hyunh-Feldt pattern the test statistic is given by

2p% —3p+3

[(n 1 6(p—1) ] W,
where W = (p — 1)P~1|CSC'|/(tr CSC')P~!, and where C (p— 1) x pis a
matrix of rows that are mutually orthogonal and are also orthogonal to the
row vector of unities i, and whose elements sum to one. The matrix C is
a submatrix of the Helmert matriz which is given by H' = [i’/,/p C]. The
rows of C have the same structure as the contrast coefficients in analysis
of variance. In large samples the test statistic has a x? distribution with
%p(p — 1) degrees of freedom if the hypothesized Huynh-Feldt pattern is
true.
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Ezample

For the stress data in Table 7.2 the equal variance-equal covariance statis-
tic has a value of 35.6982. In comparison to a x? distribution with 34 de-
grees of freedom, the p-value is 0.3885. The stress data covariance matrix
therefore seems to be consistent with an equal variance-equal covariance
structure. The test statistic for the Huynh-Feldt structure has a value of
31.4994. A comparison of this value to a x? distribution with 28 degrees of
freedom yields the p-value of 0.2954. Since the equal variance-equal covari-
ance structure implies the Huynh-Feldt structure, the test for Huynh-Feldt
structure was not necessary, given that the first test did not reject the equal
variance-covariance structure.

The above two tests for structure when carried out for the portfolio data
yield extremely large values of the x? test statistics and hence are not
reported here. The lack of homogeneity among the sample variances in this
case is a major contributor to the magnitude of the test statistics.

Equal Correlation Structure

A very useful additional test for covariance matrix structure is provided by
the test for equal correlation structure. In this case the correlation matrix
is given by

1 p p ... p
p 1 p ... p
p=(1-p)I+pii' =
p
p p 1
L .
The covariance matrix is given by
[ ol  o102p ... g10pp ]
0102p 03 020pp
2 =D*((1 - p)I+pif|DY? = :
010pp .o e 012,
where D, is the diagonal matrix of variances 012-, i=12,...,p.

Using the off-diagonal elements of the sample correlation matrix R =
rik} J,k=1,2,...,p, the test statistic is given by
j J
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—_ 14 P p
((:— F1))2 % z Z("'jk -7)? - q}:(r'k -7)?],
k=1

j=1 k=1
J#k
where
Ly LYy
’I_‘k = - Tjk, T = —'_'—— Tjk
4 1j=1 pp-1) j=1 k=1
Jj#k Jj#k
and

_ (-1 - (-7
p-(p-2)1-7)?"
Under the null hypothesis of equal correlation structure, this statistic has
a x? distribution with (p + 1)(p — 2)/2 degrees of freedom.

Ezample

For the police officer stress data the value of the above test statistic is
21.4303. For the x? distribution with 27 degrees of freedom the p-value
is 0.7657. The null hypothesis of equal correlation therefore cannot be re-
jected.

Independent Blocks
For the partitioned model of Section 7.2 with

X1 I Zun e
xg | ~“No | py |0]| Bn B2 | )

it is sometimes of interest to test for independence between the two subsets,
Hy: ¥12 = 0. Using the notation of Section 7.2, we assume x; (¢ x 1) and
x2 (8 x 1) where (¢+ s) = p. The mean vector p and covariance matrix X'
are partitioned accordingly.

The likelihood ratio test of Hy is based on the statistic

1 _ -
- [n - E(q +s+ 3)] In|I — S3,'S2:1S1'S12|

which has a x? distribution with sq degrees of freedom in large samples.
The sample covariance matrix S has been partitioned to conform to the
partitioning of x. This test will also be used in canonical correlation in
Section 7.5 and will be exemplified there.

Partial and Multiple Correlation

The maximum likelihood estimators of the partial correlation coefficients
are obtained by replacing the elements of X' by the elements of S in the
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definitions of Section 7.2. The matrix of sample partial correlation coeffi-
cients is given by Rgz.1 = D2_21.{2822.1D;21,{2 where Dyz.; is the diagonal
matrix containing the diagonal elements of Sis.;. Inferences for the ele-
ments of p,,.; can be made using the conventional Fisher transformation
for zero-order correlations. The transformation is given by

7= (l) In (1 + rij-1,2,...,q),
2 1-7i1.2,..q
where 7i;.1,2,... q is the partial correlation between variables 7 and j control-
ling for the variables 1,2,...,q.
The sample multiple correlation coefficient v/R? relating a single variable
X, and a vector of variables x; is commonly used in a multiple regression
model. If the true multiple correlation coefficient is zero, then the statistic

(n—p—1)R%?/(1 — R?)(p — 1) has an F distribution with (p — 1) and
(n — p — 1) degrees of freedom.

7.4.5 OTHER SOURCES OF INFORMATION

More extensive coverage of the multivariate normal distribution and infer-
ence for the multivariate normal can be found in Anderson (1984), Seber
(1984), Morrison (1976), Mardia, Kent and Bibby (1979), Johnson and
Wichern (1988) and Stevens (1986).

7.5 Multivariate Regression and Canonical
Correlation

In Section 7.2, the multivariate normal random vector x was partitioned
into two subvectors x; (¢ x 1) and x3 (s x 1), where p = (¢ + s). The
conditional distribution of x2 given x; was introduced to measure the re-
lationship between the two random vectors. The mean of this conditional
distribution was called the multivariate regression function of x; on x;.
This function gives the mean value of x, at specific values of x;. In this
section we are concerned with the use of random samples to make inferences
about the multivariate regression relationship between x; and x;. As out-
lined below, the estimators involved are simple extensions of the ordinary
least squares estimators used for multiple linear regression.

The relationship between the two vector random variables x; and x»
depends on the elements of the covariance matrix ¥';2 and their magnitudes
relative to the elements of X'y; and ¥9,. If 3,2 = 0, then the two random
vectors are uncorrelated and hence under the normality assumption would
be independent. If, however, the elements of X' are relatively large, it may
be of interest to determine relationships between the two random vectors
x; and x3. The multivariate regression model determines linear functions
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of the variables in x; that are related to each of the variables in x, (one
linear function for each variable in x;). An alternative approach to relating
the two vectors, is to determine a linear function of the variables of x,
and a linear function of the variables of x; in such a way that the two
linear functions are strongly related. This technique is commonly called
canonical correlation. Canonical correlation is discussed in the latter part
of this section.

7.5.1 MULTIVARIATE REGRESSION

The Multivariate Regression Function

In Section 7.2 the multivariate regression function relating x2 (s x 1) to x;

(gx1), p=s+gq, was given by the (s x 1) vector E[x2 | x;] = p,.;, where
Hoa = (Hy — En T ) + x5 B,

The intercept vector B; (1x s) and the matrix of slope coefficients B*(gx s),
were given by (g — X1 X1 ;) and B} X1, respectively with

5o 5]

To relate this to the conventional regression notation, we denote the
(s X 1) vector x2 by y and the [(g + 1) x 1] vector [ x11 J by x. The

multivariate regression relationship relating y to x is therefore given by

y=xB+u, (7.8)

!
where u' =y’ — pb,, and py , = [ ):1 ] B. In Section 7.2 the conditional
covariance matrix for u was given by Y., = (X2 — 22121’11212), or

equivalently in our alternate notation Zyy.x, = (Zyy—Zyx, Zx.x, Zx.y)-
This covariance matrix is also denoted by I' later in this section.

Estimation of the Multivariate Regression Model

Given a random sample of n observations on y and x, the maximum
al
likelihood estimators of B;, B* and Xyy.x, are given by By, = §' —
— - S* - -1
x{lsxllx1 ley, B = Sx}xl ley and Syy.x1 = [Syy —Syx1 Sx1x1§i(1y].
The elements of the estimator 3, and the rows of the estimator B are

equivalent to the maximum likelihood estimators of the intercept and slope
coefficients in the multiple regression model relating each element of y sep-
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arately to the vector x. The elements of ,[:)0 are given by
Boj =3 —%iB;, =125
and the columns of B by

Bj = Si}XIleyj, ] = 1,2,.. .y S

These estimators are equivalent to the ordinary least squares estimators for
the univariate multiple regression model y; = X@3; +u;, j =1,2,...,s,

given by Bj = (X'X)"'X'y,, where 3; = ’%’3 . The [n x (g+1)] matrix
J
X denotes the n observations on the (g + 1) x 1 vector x.

Relationship to Ordinary Least Squares

For the multivariate regression model involving s univariate multiple re-
gressions, we can write the model for all n observations as

Y=XB+U, (7.9)

where Y is (n x 8), Xis[nx (¢g+1)], B= [ gé ] is [(g+1) x s], and

U is (n X s). The ordinary least squares estimator given by
B=(X'X)"'X'Y (7.10)

is an unbiased estimator of B. The columns of B are equivalent to the s uni-
variate ordinary least squares estimators 3;, j =1,2,...,s, corresponding
to the s univariate multiple regressions. This ordinary least squares esti-
mator can also be written as

= y' _ )‘c—'% S)_(llx1 ley
Sx,x,Sx,y ’

and is therefore equivalent to the maximum likelihood estimator.

Residuals, Influence, Outliers and Cross Validation

As outlined above the multivariate regression model can be estimated using
the ordinary least squares estimator for univariate multiple regression mod-
els. Therefore, the procedures available for the study of residuals, detection
of outliers and the measurement of influence available in multiple linear re-
gression can be employed in multivariate linear regression. Similarly the
techniques available for cross validation in multiple linear regression can
also be extended.
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Estimation of the Error Covariance Matriz

The maximum likelihood estimator (n — 1)(Syy — syxls;}xlsxlyl) /n
of Yyy.x, is related to the multivariate residual sum-of-squares matriz

(Y — XB) and is given by
(Y - XB) (Y - XB)/n.
An unbiased estimator of I' = X'yy.x, , however, is given by
I'=(Y-XB)(Y-XB)/(n—q-1).

Relationship to Multiple Linear Regression

For each of the dependent or response variables Y3,Ys,...,Y, a multiple
linear regression model is given by

y;=XB;+u;, j=12,...,s,

where y; is (n x 1), X is [n x (¢ +1)], B; is [(g + 1) x 1], u; is (n x 1)
and Efu;u}] = 7121. The ordinary least squares estimator is given by [‘3]- =
(X’X)~!X'y; and the residuals are given by e; = (y; —X[')j). The variance
72 is estimated using 47 = (y; — XBj)’(yj - XBJ)/(n —-q-1).

The multivariate regression model combines the s multiple regression
models into a single model

Y=XB+U,

where Y = [y,y,...¥,), B = [8182...8,] and U = [uju;...u,). In
addition to E[u;u}] = 7?I we also have a relationship between error terms
from different multiple regression, E[ujui] = v;xl, j # k, 5,k =1,2,...,s.
The (s x s) matrix of elements ny?, 7k is denoted by I' and represents the
covariance matrix among the error terms for individuals.

The residuals are denoted by (Y — XB) and the covariance matrix I" is
estimated by I' = (Y — XB)'(Y — XB)/(n — ¢ —1). The diagonal elements
of I are equivalent to the "y? obtained from the multiple regression for y .
The off-diagonal elements are equivalent to ejex/(n — g — 1), where e; and
ey are obtained from the multiple regressions for y; and y;.

The important distinction between the set of single multiple regressions
and multivariate regression is that in the multivariate regression model
there are nonzero correlations among error terms from the different multiple
regression models. If joint inferences are required involving two or more
of the multiple regression models these correlations must be taken into
account. These joint inference procedures are discussed next.
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Testing the Hypothesis that Some Coefficients are Zero

As in the case of univariate regression, it is sometimes useful to be able to
test the null hypothesis that a subset of the columns of X is superfluous.
A reduced model is given by

Y=X,B,+U

where X, is [n x (v+1)], By is [(v+1) X 8] and v = (g+1—7). The matrices
B and X are partitioned as ]B3: and [X, X,] respectively where X, is
(n x r) and B, is (r x s). We therefore require a test of Hy: B, = 0 and
hence that the first » X variables are superfluous.

For the full or complete model, we denote the residual sum of squares
matrizby E = (Y — XB) (Y —XB). For the reduced model corresponding
to B, = 0, the least squares estimator B, = (X} X,) !X]Y is determined,
and the residual sum of squares matrix is given by Eo = (Y-X,B,) (Y-
X B,,) The likelihood ratio criterion is a function of the ratio given by A =
|E|/|Eo| which is called Wilk’s Lambda and has parameters (s, r, (n—q—1)].
The dimension s refers to Y, the dimension 7 reflects the number of X
variables deleted if Hy is true and (n — g — 1) refers to the degrees of
freedom for E.

If Hy is true, then in large samples the distribution of A can be approx-
imated by the statistic ma(1 — A'/¥)/m;A1/¥ which has an F distribution
with m; and my degrees of freedom, where

s2r2 — 4
v=4/————, mi=rs
s24+r2-5

and 1
sr
my=vl(n-g-1)-5(s—r+1)]- T +1

This F' approximation is often referred to as Rao’s F. If s = 1 or 2 or if
r =1 or 2 this F distribution is exact.

Other Tests

An alternative large sample statistic for Hy is based on the x? distribution.
In large samples the statistic —[n — ¢ — 1 — %(s —7r+1)]InA has a x2
distribution with sr degrees of freedom.

There are several asymptotic tests available that are not based on the
likelihood ratio criterion. These statistics are based on such measures as
tr[E(Eo—E)~!] (Lawley-Hotelling), tr[EE; '] (Pillai) and the largest eigen-
value of E(Eq—E)~! (Roy) all of which require special tables. Monte Carlo
studies have shown that none of these alternative criteria is uniformly supe-
rior to the likelihood ratio criterion. Throughout the text only the likelihood
ratio criterion will be used for the multivariate linear model.
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Inferences for Linear Functions

The condition B, = 0 discussed above is a special case of a more general set
of constraints on the coefficient matrix B given by AB = K, where A is a
[@ x (g+1)] matrix of known constants of rank a and K is an (a x s) matrix
of known constants. The restricted least squares estimator of B subject to
AB = K is given by

By=B- (X'X)'A/[A(X'X)"'A']"}(AB - K).

The likelihood ratio test of the hypothesis Hy: AB = K is carried out by
using the Wilk’s Lambda statistic A = |E|/|Eo| with parameters s, a, (n—
g—1)] where Eg = (Y — XBA) (Y- XBA) and E = (Y- XB) (Y- XB)
Using Rao’s F' approximation if Hy is true then, in large samples, the

statistic
1- Al/ v mo

Al/v ’ m_l

has an F distribution with m; and m, degrees of freedom where

(7.11)

s%a? — 4

V= s“+a* -5’

my = sa,

me=vn—q—-1- %(3—-a+1)] -+
For the multivariate linear model
Y=XB+U

a more general hypothesis is given by Hy: ABM = K where A [a X (¢+1)],
M (sxb), and K (axb) are matrices of specified constants. The relationship
to be tested can be converted to the form of the previous test by writing

YM = XBM + UM

or
=XB* + U*,

and hence we wish to test Hy: AB* = K. This hypothesis can be tested

using the statistic given by (7.11) by revising m1, mz and r accordingly.

Computer Software

The calculations for the examples in this section were performed using SAS
PROC REG.
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Ezample

The data in Table 7.9, which provide an example for Section 7.5, represent
observations on 100 bank employees on each of six variables. Two variables
are the logarithm of two salary variables LCURRENT = In(CURRENT
SALARY) and LSTART = In(STARTING SALARY). The remaining four
variables are background variables consisting of EDUC = level of education
in years, AGE, EXPER = years of relevant work experience at time of
hiring, and SENIOR = level of seniority with the bank. The two salary
variables are the dependent variables, and the four background variables
are explanatory variables.
The multivariate linear regression model is denoted by

LCURRENT = f,+ 1 EDUC + (; AGE
+03 EXPER + 34 SENIOR + u;
LSTART = ag+ a; EDUC + a; AGE
+a3 EXPER + a4 SENIOR + u,.

In matrix notation the model is given by

y =x'B+u,
where

[ ,30 Qg ]

ﬂl Cn
Y = [LCURRENT LSTART], u=[u,u, B=|? © |,

B3 a3

,B4 (6 7}
x = [1EDUC AGE EXPER SENIOR]. )

With no restrictions the estimated regression relationships are given by
LCURRENT = 8.699 + 0.083 EDUC — 0.015 AGE + 0.016 EXPER
(0.000) (0.000) (0.000) (0.001)
— 0.002 SENIOR  R®=0.528 and
(0.487)
LSTART = 8.285 + 0.081 EDUC — 0.010 AGE + 0.016 EXPER
(0.000) (0.000) (0.003) (0.000)
— 0.003 SENIOR R’ =0.543.
(0.202)

The p-values for the coefficients appear in brackets below the coefficient
estimates. These p-values are based on the usual multiple linear regression
statistics.
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To structure several hypotheses to be tested using this data, the notation
Hy: ABM = K is used. To test the null hypothesis that the coefficient of
SENIOR is zero in both equations the relationship for Hy is given by

B ap ]

B o

poooy | P | =pa.
B3 o3

Bs o4
Therefore, A=[0000 1], K =[00] and M = I. The F-statistic with
2 and 94 degrees of freedom derived from Wilks’ Lambda has a value of
4.795 and a p-value of 0.0104. Thus, at best, Hy can only be weakly rejected.
The variable SENIOR seems to be of only minor importance after the other
three explanatory variables.

To test the null hypothesis that the coefficients of the EDUC and EXPER
variables are the same in both equations, the relationship ABM = K is
given by

Bo ap
b o

|2 =1 [4]-[¢]
-1~

Bas a3 0
Bs a4
or equivalently 8; — @; = 0 and B3 — ag = 0. The F-statistic with 2 and
95 degrees of freedom derived from Wilks’ Lambda has a value of 0.048
and a p-value of 0.9531. The hypothesis that the coefficients of EDUC and
EXPER are equal in both equations is therefore consistent with the data.

If the variable SENIOR is omitted from both equations, the unrestricted
ordinary least squares estimation yields

(=
o o
- O
o O

| |
o o

LCURRENT = 8.854 +0.084 EDUC — 0.015 AGE
(0.000)  (0.000) (0.000)

+0.016 EXPER  R?=0.526 and
(0.001)
LSTART = 8.031 +0.081 EDUC — 0.011 AGE
(0.000)  (0.000) (0.002)

+0.016 EXPER R? =0.535.
(0.000)

A test of the hypothesis that the coefficients of the three explanatory vari-
ables are equal yields an F-statistic of 2.551. Comparing this statistic to an
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F distribution with 3 and 96 degrees of freedom yields a p-value of 0.0601.
Using the same estimated coefficients for the three variables in both regres-
sions is therefore a reasonable procedure for the sampled population.

Relationship to Generalized Least Squares

An alternative way of writing equation (7.9) is given by
y' =X*'8" +u’, (7.12)

where y*, 8" and u* are the vectors formed by stacking the columns of Y,
B and U, and where X* is the block diagonal matrix formed by repeating
the matrix X. The quantities are defined by

T
. Y2 wherey; (nx 1), j=12,...,s,
y' (nsx1)= - |»  denotes the jth column of Y,
L ¥Ys
8,
B, .
. where 3; [(g+1) x 1], j=1,2,...,s,
B [s(g+1) x1] = : |»  denotes the jth column of B,
Bs
Cay T
u2
. where u;, j=1,2,...,s,
u* (nsx1) = »  denotes the jth column of U,
U,
L _
and
(X 0 0 1
0 X 0
X* = : , where X [n x (g+1)]
[ 0 ... 0 X |
- L®X] the direct product of the identity matrix

I, (s x 8) with X (see Appendix).

The covariance matrix for the error term u* is given by the direct product
2 = [I'®l,], where I' = X951 = {7k}, J,k =1,2,...,s, is the covariance
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matrix for u;, j=1,2,...,s,
[ 'ﬁln '712111 s 713111
Q= 712‘In 7%17; '723.111
Nsln  72:In 73 I,

and I,, is the (n X n) identity matrix.
From the theory of the general linear model, the generalized least squares
estimator for B* is given by

A" = (X*27 X" (X 2y, (7.13)
which can be simplified in this case to
B = Lgen) ® (X'X) ' X')y*. (7.14)

From (7.14) we can see the matrix pre-multiplying y* is block diagonal and
hence that 3" is simply the stacked vector of columns of B, which are the
ordinary least squares estimators of the 3; in the s models y; = X;3,+u;,
j =1,2,...,8. The generalized least squares estimator and the ordinary
least squares estimator are therefore equivalent for the multivariate regres-
sion model.

Zellner’s Seemingly Unrelated Regression Model

The multivariate regression model (7.9) written in the form of (7.12) repre-
sents s separate univariate regression models all having the same X matrix.
The models are related in that the error vectors u;, j =1,2,...,s, are mu-
tually correlated. Even though the u; vectors are correlated, the individual
equation ordinary least squares estimators are equivalent to the system or-
dinary least squares estimator given by (7.10) and also to the generalized
least squares estimator given by (7.13).

A more generalized multivariate regression model allows the individual
equation X matrices to be different, say X;, j = 1,2,...,s. In this case
X* has the block diagonal form with distinct block diagonal elements X,
j=1,2,...,s. Thus X* can no longer be written in the simplified form
of [I, ® X]. As a result, the generalized least squares estimator (7.13) is
no longer equivalent to the ordinary least squares estimator B in (7.10).
This type of model has appeared in the economics literature and is usually
referred to as Zellner’s Seemingly Unrelated Regression Model (1962). The
name “seemingly unrelated” is derived from the property that the equations
in the model are only related through the error terms u;, j=1,2,...,s.

To obtain an estimator for this model, a feasible generalized least squares
procedure is used. If I', the covariance matrix for u;, is unknown, it can be
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estimated using the residuals from the multivariate ordinary least squares
estimated model U = Y — XB. In this case I' = (Y - XB)'(Y - XB)/n =
E/n, where E is defined in the expression for Wilk’s Lambda in multivariate
regression. This estimator of I' is consistent and hence can be used to yield
the feasible generalized least squares estimator

B =X xn 1 xa ),

where 2 = [ ® I,

The feasible generalized least squares estimator ﬁ. is consistent, and,
under the assumption of multivariate normality, inferences for B* can be
made using the fact that the expression

B -pyx 27X -

has a x? distribution with s degrees of freedom in large samples.

7.5.2 CANONICAL CORRELATION

Given two random variable vectors y (s x 1) and x (g x 1), we have already
studied two ways of relating the variable elements of y to the variable ele-
ments of x. One way is to examine the degree of linear association between
all possible pairs consisting of one element of y and one element of x using
the covariance matrix X'xy or the corresponding correlation matrix Pxy-
Alternatively, multivariate regression can be used to relate each element of
y to all the elements of x and vice versa. The multivariate linear regression
model determines linear combinations of the x variables that are mazi-
mally correlated with a particular y variable. In this section, we introduce
canonical correlation, which is used to find linear combinations of both sets
of variables y and x that are maximally correlated. Often in practice one
vector of variables is a criterion set and the other vector of variables is a
predictor set. The objective in canonical correlation analysis is to determine
simultaneous relationships between the two sets of variables.

Derivation of Canonical Relationships

As in multivariate regression, we begin with the two random variable

vectors y (s x 1) and x (¢ x 1) which have zero-valued mean vectors
: . Tyy Tyx .

py = px = 0 and covariance matrix Y= Exy Exx . In this case

there is no intercept term because the variables are assumed to have zero

means.

Let W = B'x and Z = o'y denote linear combinations of the x and
y variables respectively. For each single variable in y, say Y;, we can use
multiple regression to determine the vector 3 that maximizes the correla-
tion between Y; and W. Similarly, for any single variable in x, say X}, we
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can use multiple regression to determine the vector a that maximizes the
correlation between X} and Z. In canonical correlation we simultaneously
determine the vectors a and 3 in such a way that the correlation between
the two linear combinations Z and W is maximized.

The covariance between Z and W is given by a'Zyx/3, and the vari-
ances of Z and W are given by o’ ¥yya and B’ Xxx3 respectively. The
correlation between Z and W is therefore given by

rzw = & ByxB/(a Byya)'/*(B' Exxp)"/*.

To determine unique values of & and B3 in order to maximize rzw, side
conditions on the scales of Z and W must also be included. It is convenient
to use the conditions o/ Fyya = 8'Zxxf8 = 1.

An Eigenvalue Problem

To maximize rzw subject to o’ Zyya = B’ XxxB = 1 we require solutions
to the two systems of homogeneous equations

(Zxx Exy Zyy Zyx — Aols)B 0 and

(Byy PyxTxxTxy — dala)a = 0,

where I, (g% ¢) and I, (sx s) are identity matrices. The solution is obtained
by determining the eigenvalues and eigenvectors of the matrices

TxxExyTyyTyx and FyyTyxTyy Fxy. (7.15)

The eigenvalues of the two matrices are identical, A\, = Ay = A, and the
number of positive eigenvalues is t, where ¢ = min(s, q) is the rank of the
two matrices in (7.15). Corresponding to each eigenvalue, A, is a unique
pair of eigenvectors a and 3. Denoting by A1, Ag,. .., A; the eigenvalues in
order of magnitude from largest to smallest, the corresponding eigenvectors
are denoted by a3, a3, ...,a; and B;,8,,...,8,. The correlation between
the two corresponding linear functions oy and ﬂ;x is given by \/A;, j =
1,2,...,t.

The maximum correlation solution corresponds to A;, the largest eigen-
value, and hence the correlation is maximized by using Z; = ajy and W; =
B;x. The remaining linear combinations for x given by Wy, W3, ..., W; are
mutually uncorrelated and uncorrelated with W;. Similarly, the remaining
linear combinations for y given by Zs, Zs, ..., Z; are also mutually uncorre-
lated and uncorrelated with Z;. In addition, non-corresponding members of
the two sets are uncorrelated; that is, Z; is uncorrelated with Wy, k # j, k,
j=12,...,t
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The Canonical Variables

As a result of determining the eigenvalues and eigenvectors of

- -1
Ty Zyx Exx Exy,

we have t pairs of canonical variables (Z;, W;) with correlations /};
j =1,2,...,t. Each successive pair of canonical variables maximizes the
correlation subject to being uncorrelated with the previously determined
pairs. In practice all but a small number of pairs usually have negligible
correlations. Typically the eigenvalues A;, j =1,2,...,t decline in a rapid
geometric fashion.

The canonical variables Z and W have been derived using the covariance
matrices and the expressions for Z and W are in terms of the variables
y and x respectively. If the correlation matrices pyy, pxx and Pyx are
used, the same eigenvalues would be obtained. If, however, the correlation
matrices are used, the canonical variables are expressed as functions of the
standardized variables. The eigenvectors are not the same, therefore, when
standardized data are used.

Sample Canonical Correlation Analysis

The canonical variates can be estimated using the sample covariance or cor-
relation matrices Sxx, Syy, Sxy and Syx, or Rxx, Ryy, ny and Ryx
respectively. We assume in this discussion that the correlation matrices are
used. The sample eigenvalues and eigenvectors are therefore determined
from the matrices RxxRxyRyyRyx and RyyRyxRxxRxy and are de-
noted by A1, Az2,...,A:, bi,bs,...,bs, and ay,ay,...,a,, respectively.

Canonical Weights and Canonical Variables

The eigenvectors a; and b; are usually referred to as the canonical weights.
These weights can be used to determine the values of the canonical vari-
ates Z; and W;, where Z; = aljy, and W; = b;x. The n values of the
two new variables (Z;, W;) corresponding to the n observations are called
the canonical variate scores. The canonical weights can also be used to in-
terpret the canonical variables and the relationship between the canonical
variables. The canonical variables are interpreted like regression functions.
Each canonical weight gives the marginal impact of that variable on the
canonical variable holding the other variables in the equation fixed. After
each canonical variable of the pair is interpreted, the relationship between
the pair is interpreted.
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Inference For Canonical Correlation

Under the assumption that the Xs and Y's are multivarite normal, we can
test the hypothesis that the correlations between the canonical variates
are not significantly different from zero. To test the hypothesis that none
of the ); are significantly different from zero, we use the test statistic
x% = —[n—(3)(s+q+3)]log A, which has approximately a x? distribution
with sq d.f. if the null hypothesis is true. The statistic A which is given by
A= Hfi:l(l — );) is called Wilk’s Lambda. This statistic is equivalent to
the statistic used to test the independence between two sets of variables
introduced in Section 7.4. If the first hypothesis is rejected, we remove A;,
the largest eigenvalue from A and compute A; = IT{_,(1 — X;). We then
test the hypothesis that all remaining A; are not significantly different from
zero, using the test statistic x> = —[n — (3)(s + ¢ + 3)]log A; which has a
x? distribution with (s —1)(g— 1) d.f. if the null hypothesis is true. To test
the hypothesis that all remaining A; after the first k are not significantly
different from zero, we compute Ay = II;.=(k +1)(1 — ;) where x? now
has (s — k)(¢ — k) d.f. This process continues until the null hypothesis is
accepted.

An Alternative Test Statistic

An alternative large sample approximation for the distribution of Wilk’s
Lamda under the hypothesis of independence is based on Rao’s F' used
in multivariate regression above. The statistic is given by F' = mg(1 —

Ag)Y¥* /myAY* where

(s—k)*(q—k)* -4

* (s—k2+(@—R?—5
muxy = (s—k)(g—k)
mox = Vk[n—%(s+q+3)]———(s_k)2(q_k) +1,

which has m;; and my;, degrees of freedom if all but the first k£ eigenvectors
are zero. Some computer software for canonical correlation analysis uses
this F-approximation claiming that it is superior to the x? approximation
in small samples.

Computer Software
The calculations for the example in this section were performed using SAS
PROC CANCORR.

Ezample

Using the bank salary data from Table 7.9, a canonical correlation anal-
ysis was carried out to relate the two salary variables LCURRENT and
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TABLE 7.10. Correlation Matrix for Bank Data
LCURRENT LSTART EDUC AGE EXPER SENIOR

LCURRENT 1.000 0.889 0.666 -0.333 -0.099 0.050
LSTART 0.889 1.000 0.673 -0.003 -0.080 -0.234
EDUC 0.666 0.673 1.000 -0.294 -0.254 0.054
AGE -0.333 -0.003 -0.294 1.000 0.730 0.070
EXPER -0.099 -0.080 -0.254 0.730 1.000 -0.013
SENIOR 0.050 —0.234 0.054 0.070 -0.013 1.000

LSTART to the four background variables EDUC, AGE, EXPER and SE-
NIOR. The correlation matrix for the six variables is shown in Table 7.10.

The two eigenvalues obtained from the canonical correlation analysis are
A1 = 0.559 and A2 = 0.142. The correlations between the two correspond-
ing canonical functions, which are the square roots of the eigenvalues, are
therefore 0.748 and 0.377 respectively. The values of Rao’s F' likelihood
ratio statistic are 14.71 with 8 and 188 degrees of freedom and 5.26 with
3 and 95 degrees of freedom. The resulting p-values are 0.000 and 0.002
respectively.

The two pairs of canonical functions using standardized coefficients are
given by

Z, = 043 LCURRENT + 0.60 LSTART

W; = 0.91 EDUC + 0.54 EXPER — 0.50 AGE — 0.04 SENIOR
Zy; = —2.14 LCURRENT + 2.10 LSTART

W2 = 0.22 EDUC + 0.16 EXPER + 0.59 AGE — 0.78 SENIOR.

The first canonical function Z; for the salary variables almost represents a
simple average of the two salary variables and hence is a measure of salary
level. The first canonical function W, for the background variables contains
relatively large positive coefficients for EDUC and EXPER and a relatively
large negative coefficient for AGE. The function W; therefore measures a
contrast between the variables EDUC and EXPER and the variable AGE.
Therefore, from the canonical correlation relationship the higher the values
of EDUC and EXPER relative to AGE, the greater the value of W;. The
positive correlation between Z; and W; therefore suggests that salary level
is higher when EDUC and EXPER are large relative to AGE.

The second canonical function Z; for the salary data measures a contrast
between LSTART and LCURRENT. The value of Z; increases as LSTART
increases relative to LCURRENT. The second canonical function W, for
the background variables is primarily a function of the variables AGE and
SENIOR. As AGE increases relative to SENIOR, the function W, increases.
The positive correlation between Z; and W, suggests therefore that, as
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TABLE 7.11. Correlations Between Canoni-
cal Functions and Original Variables

z Zy wy W2

LCURRENT 0.96 -0.27 0.72 -0.10

LSTART 0.98 0.20 0.73 0.07
EDUC 0.69 -0.01 0.92 -0.03
AGE -0.28 0.22 -0.38 0.59
EXPER —0.04 0.21 -0.06 0.55
SENIOR -0.03 028 —0.04 -0.73

seniority with the bank increases relative to AGE, current salary increases
relative to beginning salary. From the two estimated canonical relationships
we have determined that salary level is high when education and experience
are large relative to age and that salary growth is large when seniority with
the bank is large relative to age.

Structure Correlations or Canonical Loadings

It is also useful to determine the correlation coefficients between the canoni-
cal variables and each of the constituent variables used to define the canoni-
cal variable. These correlations are called structure correlations or canonical
loadings. By examining these canonical loadings the canonical variate can
also be interpreted. The matrix of structure correlations between the x vari-
ables and the canonical variates Wy, Wa, ..., W; is given by Rxw = RxxB,
and similarly for the y variables and the canonical variates Z;, Zs,...,Z;
the matrix of structure correlations is given by Ryz = RyyA. The matri-
ces B and A contain the columns of eigenvectors b;, j = 1,2,...,¢ and a;,
j = 1,2,...,t respectively. Figure 7.2 illustrates the relationships among
the various correlation matrices.

Ezample

The correlations between the canonical functions and the original variables
are shown in Table 7.11. For the first salary canonical function Z;, a very
strong positive correlation exists with both salary variables. The correlation
between Z; and the background variables shows a relatively strong positive
correlation with EDUC and a weak negative correlation with AGE. Thus, as
EDUC increases, salary level tends to increase as well. For the second salary
canonical function Z, the correlation with the two salary variables are quite
weak. This results because the function Z, measures the difference between
the two salary variables. The correlation between Z, and the background
variables indicates weak positive correlations with AGE and EXPER and
a weak negative correlation with SENIOR.
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FIGURE 7.2. Summary of Canonical Correlation Terminology

For the background variables, the first canonical function W; is strongly
positively correlated with the two salary variables and the variable EDUC
and weakly negatively related to the variable AGE. For the second canon-
ical function W, the correlations with the two salary variables are negli-
gible. For the background variables, W, is positively related to AGE and
EXPER and negatively related to SENIOR.

Redundancy Analysis and Proportion of Variance Ezplained

The square of any element of a structure correlation matriz gives the pro-
portion of the variance of an original variable explained by a canonical
variate. The sum of the squares in any column of a structure correlation
matrix gives the total variation in the original variables explained by the
canonical variate. For the jth column of Rxw the sum of squares of the
elements gives the total of the proportions of variance explained by W;. For
a correlation matrix this total divided by ¢ is the proportion of the total
variation in the x variables explained by W; (and is denoted by Rjy x). See
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Figure 7.2. Similarly, the total of the elements squared in the jth column
of Ryz divided by s denoted by R%j.y gives the proportion of the total
variation in the y variables explained by Z;.

Redundancy Measure for a Given Canonical Variate

It is possible for the canonical correlation \/x to be relatively large, even
though the proportion of variance of the underlying variables explained
by the canonical variates Z; and Wj is relatively small. Thus A; does not
measure the strength of the correlation between the canonical variables Z;
and W; and the underlying variables. The eigenvalue A; gives the propor-
tion of variation in W; explained by Z;, and R%V,--x gives the proportion of
variance in the x variables explained by W;. The product /\jR%VJ_ there-
fore gives the proportion of the variation in x variables explaineg' by the
canonical variate Z;. This product is called the redundancy measure and
measures the quality of Z; as a predictor of the x variables. Similarly, the
redundancy measure /\jR%_y gives the proportion of the variation in the
y variables explained by the canonical variate W;. The relationships are
shown in Figure 7.2.

Total Redundancy

A measure of total redundancy of the x battery given the y battery is
given by the total Z;=1 )«jR%VJ,_x, and similarly a measure of the total

redundancy for the y battery given the x battery is Z;=1 AiR% .y (see
Figure 7.2). It is possible for one of these totals to be high and the other
low. A set of macroeconomic variables might be excellent predictors of
certain microeconomic variables in a particular sector of the economy, but
the reverse may not be so. Another example might be provided by student
grades in a set of courses and a set of scores on an aptitude test. The grades
may be more predictable from the aptitude scores than the reverse.

Relation to Multiple Regression

If each element of the y vector variable, say Y}, is regressed separately on
the x vector variable, Rf,j x gives the proportion of the variation in Y,
explained by the x set. If these R values are averaged over all y variables,
the result is equivalent to the total redundancy measure of the y battery
given the x battery; thus

t r
S ARy = 3R/
Jj=1 Jj=1

Similarly, the total redundancy measure of the x battery given the y battery
is given by
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t q
Z ’\J'R%Vj'x = E Rg‘j y/9
Jj=1 Jj=1

which is the average of the squared multiple correlations relating each of
the X variables to the Y set.

Ezample

A redundancy analysis can be carried out using the eigenvalues determined
above and the correlations in Table 7.11. For the canonical function Z,,
the cumulative proportion of variance explained by the salary variables is
(3)[(0.96)% + (0.98)%] = 0.94 and, after multiplying by A\; = 0.56, the re-
dundancy measure is (0.94)(0.56) = 0.53. For the second function Z,, the
variance explained is (3)[(—0.27)2 + (0.20)?] = 0.06 and, on multiplication
by Ay = 0.14, the redundancy measure is (0.06)(0.14) = 0.01. The propor-
tion of variation in the salary variables explained by the canonical functions
of the four background variables W; and W5 is 0.53 + 0.01 = 0.54.

For the two canonical functions W; and W5, the redundancy measures
are

(%) [(0.92)% + (—0.38)% + (—0.06)% + (0.04)2](0.56) 0.14 and

0.04

(%) [(—0.03)% + (0.59)% + (0.55)% + (—0.73)?](0.14)

and hence a total of 0.18. The two canonical functions Z; and Z, based
on the salary variables explain a proportion 0.18 of the variation in the
background variables. Thus the redundancy analysis indicates that the
background variables explain a large portion of the variation in the salary
variables but that the reverse is not true.

Residuals, Influence, Outliers and Cross Validation

The techniques available for studying residuals, detecting outliers and mea-
suring influence in multiple linear regression can be used in canonical corre-
lation analyses. By relating each variable in one group to all of the variables
in the other group using multiple linear regression, conventional regression
software can be used.

A cross validation can be carried out by splitting the sample randomly
into g mutually exclusive groups. Leaving out one group at a time a canoni-
cal correlation is carried out using the combined data for the (g—1) groups.
The canonical weights obtained are then applied to the omitted group and
the correlations determined. The correlations should be similar to the corre-
lations determined in the canonical correlation analysis based on the (g—1)
groups. This procedure is repeated for each group as an omitted group.
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7.5.3 OTHER SOURCES OF INFORMATION

More extensive discussion of the topics of Section 7.5 can be found in
Anderson (1984), Seber (1984), Mardia, Kent and Bibby (1979) and Press
(1972).
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Exercises for Chapter 7

1. This exercise is based on the Real Estate Data in Table V4 of the
Data Appendix.

(a) Estimate the multivariate regression model with the two equa-
tions given below. Discuss the results of the analysis.

LISTP

Bo + B1SQF + B2AGE + 3ROOM + 34BATH
+BsEXTRAS + BsGARAGE + 3;CHATTELS
+BsBEDR + BoSELLDAYS

SELLP = ao+ a1SQF + 02AGE + a3ROOM + a4BATH

+asEXTRAS + a6GARAGE + a7CHATTELS

+asBEDR + agSELLDAYS.

(b) Carry out a test of the hypothesis
a; =p;, j=12,...,9, for each variable separately.

Discuss the outcome of the test.

(c) Carry out a test of the hypothesis
a; =p;=0, j=1,2,...,9, for each variable separately.

Discuss the outcome of the test.

(d) If you were to estimate a reduced model what variables would
you include? Estimate the reduced model and compare it to the
complete model using a test statistic.

(e) Carry out a canonical correlation analysis relating the two price
variables to the nine explanatory variables and discuss the re-
sults. Also provide an interpretation for each of the canonical
functions using both the canonical function coefficients and the
correlations between the canonical functions and the original
variables. Also discuss the results of a redundancy analysis.

2. This exercise is based on the Automobile Data in Table V5 of the
Data Appendix.

(a) Estimate the multivariate regression model with the two equa-
tions given below. Discuss the results of the analysis.

URBRATE = o+ B ENGSIZE + 3, WEIGHT + 3;FOR
+B8:AUTOMAT + BsFWEIGHT + s AWEIGHT
+B:FENGSIZE + fs AENGSIZE
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HWRATE = a9+ aiENGSIZE + a2 WEIGHT + a3FOR
+a4AUTOMAT + asFWEIGHT + as AWEIGHT
+a7FENGSIZE + asAENGSIZE

(b) Carry out a test of the hypothesis
a; =6, j=1,2,...,8, for each variable separately.

Discuss the outcome of the test.

(c) Carry out a test of the hypothesis
a;j=p;=0, j=1,2,...,8, for each variable separately.

(d) If you were to estimate a reduced model what variables would
you include? Estimate the reduced model and compare it to the
full model using a test statistic.

(e) Carry out a canonical correlation analysis relating the two rate
variables to the nine explanatory variables and discuss the re-
sults. Also provide an interpretation of the canonical functions
using both the canonical function coefficients and the correla-
tions between the canonical functions and the original variables.
Also discuss the results of a redundancy analysis.
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Questions for Chapter 7

1. Let the joint density of the random variables X;, X3 and X3 be given
by

f(z1,22,23) = 2/3(x1+22+123), 0< 1,722,231
= 0 otherwise.

(a) Show that f(z,z2,z3) is a density by showing that

1 1 1
/ / / 2/3(.’131 + x9 + $3)d271d132dx3 =1.
0 Jo JO

(b) Show that the distribution function is given by
F(z1, 2, 3) = 1/3[xz223 + 17323 + T12072).

Use this function to determine P[z; < %, T9 < %, T3 < %]
(c) Show that the marginal density of X; is given by

1 ,1
f(z1) = /0 /0 2/3(z1 + z2 + x3)dzodz3 = (g)(xl +1).

Plot the density for Xj.

(d) Show that the conditional density for X2, X3 given X; = z; is
given by

Ixa,%s1%, (2,23 | X1 =21) = (21 + 22 + 73) /(21 + 1)
and show that

1 p1
/ / (231 + T2+ :Eg)/(:l,'l + 1)d.’l?2d.’l:3 =1.
0 Jo

Is X; independent of X5 and X3?
(e) Show that E[z;] = u is given by
12 5
E[Xl] = (—)(a:l + l)xld(l:l = (-—)
o '3 9

What are the values of E[X;] and E[X3]?
(f) Show that

1 1
E[X2/X: = z1] / (@1 + 22 + 73)
0

- Todzodr
A @+ D) 20T20T3

(%)(w1 +7/6)/(z1 + 1).

Use this function to evaluate E[X3 | X; = }]. Is the regression
function for X5 on X; linear?
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2. Given
T H1
X = z2 |, E[x]=| p2 | =mp, and
| Z3 U3
)
oy 012 013
Cov(x) = o123 0% o033 |=2%.
2
| 013 023 O3
(a) Let
z1 = 61171 +a12%2 + 01323
Z2 = @21%1 + a22T2 + a23T3,

and show that z = Ax, where z = [ 2 ],
Az [ e a1z a3 ]
a1 a2 a3 |

(b) Show that E[z] = Ap and Cov(z) = AXA'.

(c) Given that X' (p x p) is the covariance matrix for x (p x 1) and
that p (p x p) is the corresponding correlation matrix show that

p= 6—1/226—1/2

where § is a diagonal matrix whose diagonal elements are equal
to the diagonal elements of X.

3. Given that the sample covariance matrix is given by S = Y7, (x; —
x)(x; —X)'/(n — 1), show that S = [X'X — nxx']/(n — 1) where X is
the (n X p) data matrix and X (p x 1) is the vector of sample means.

4. (a) Show that

n(X'X)1xx/(X'X)?

-1 —1= /x -1
(r=DS™ = (XX + XX %

using the identity

A laa’A™!

A+aad] l=A"1- .
[A +aa] 1+a'Ala

(b) Use the result in (a) to show that

(n - 1)x'S™!x = ¥/ (X'X)"'%/[1 - nx'(X'X) " 'x].
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5. Let (x; —X)'S™"(x; —X) denote the square of the sample Mahalanobis
distance from x; to X where X and S are the sample mean vector and
covariance matrix. Use the fact that for a (p x 1) and A (p X p) the
scalar a’Aa can be expressed as a’Aa = tra’Aa = trAa’a to show
that 30 (x; — X)’S7!(x; — %) = (n — 1)p. NoTE: S = "7 (%; —
)(x; — X)'/(n - 1).

6. (a) Let z; = D™Y%(x;—%), i = 1,2,...,n, denote a transformation
of x where D is the diagonal matrix whose diagonal elements are

z

!

the diagonal elements of S. If Z = ,2 denotes an (n X p)
Z,

matrix of transformed observations show that Z'Z/(n —1) is

the sample correlation matrix R. The transformed variables are

the standardized variables. In what way are the new variables

standardized?
(b) (b) Let w; = S™V/%(x; — %) denote a transformation of x; and
w1
w3
let W= _ | denote the (n x p) matrix of transformed ob-
Wn,

servations. Show that W'W/(n — 1) = I (the identity matrix).
What is the covariance matrix for the variables in W?

7. Let X(n) denote the data matrix X with the nth row x|, deleted.
Show that

(a) X'X = X'(n)X(n) + xnXp;

(b) x(n) = ﬁ[m‘c — Xj|, where X(n) denotes the sample mean
vector based on the first (n — 1) rows of X.

(c) Use the relationships (n — 1)S = X'X — nxx/, (n —2)S(n) =
X'(n)X(n) — (n — 1)X(n)x'(n) and results (a) and (b) to show
that S(n) = =348 — T3 (Xn — X)(Xn — %)’ where S(n)
denotes the sample covariance matrix based on the first (n — 1)

rows of X. What can you conclude about the difference between
S(n) and S if x,, is an outlier which is large relative to x.

(d) Show that

sty = (=2 g1 B S ™ (%n — X)(xn — %)’
(n-1) [1—W(Xn—x)'s Y (xn — )]

by using the relation
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[A-dd]'=AT1+Add'A7/(1-d'A7Nd).

What can you conclude about the difference between S~*(n)
and S~! if x,, is an outlier which is large relative to X7

1

8. Partition the random variable x into x = i ] and let the corre-
2

sponding partitions for the covariance matrix X and the mean vector
p be denoted by

Zu i ™
=3y Zp| and p= By |

(a) Use the formula for the inverse of a partitioned matrix to show

that 6. 6
s-1_| Ou Or
[ 6 62 |’

where
61 = IS+ 55T - TnZ et En D
61 = I Z[Zn-EuXiEn)™!
O = [En-XuXiZn™

Recall (see Appendix) the formula for the inverse of a partitioned
symmetric matrix is given by

(&3] =[5 5]

a A'B'D-BA7'B|"'BA! +A!
B = -A'B'D-BA7!B|!
¥ = [D-BA7'B|"L

where

(b) Use the expression for the inverse of the partitioned matrix X
to show that

(x—p)Z 7 x—p) = (x1 — py) B (k1 — pay)
+(x2 — pg) — Za1 B (31 — py))
X[Zo2 — Zo1 B T1a] 7H(x2 — pg) — T T (x1 — )]

(c) Use the result in (b) and the fact that |¥| = |¥q1| | T2 —
Y9127 ¥12| to show that the multivariate normal density for
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x can be expressed as

(271’)_"/2|2711|_1/2 exp [— (%)(xl — 1) Z5 (%1 — I‘l)]
x (21)~P=9/2| 5y — By BTL T,/
xexp{ = (5)[0x2 — o) — a1 B3 (s — o)
X[ D92 — T B7 Tra] (%2 — pg) — T B (x1 — #1)]}

and hence that f(x) = f1(x1)f2(x2 | x1).

9. If x (p x 1) has a multivariate normal distribution with mean vector
p and covariance matrix X then the new random variable y(gq x 1) =
Ax has a multivariate normal with mean vector Ay and covariance
matrix AX'A’, where A (g x p) has rank q.

(a) Partition x into [ :1 ] where x2 is (¢ X 1) and define y =
2

21222'21::2 where Y15, Y95 are the partitions of X' correspond-

ing to :; . Show that y is multivariate normal with mean

vector 2122‘;21;1,2 and covariance matrix 21222_21 Y.

(b) Given that y = Ax the covariance matrix Cov(y, x) is given by
A Y whereas the covariance matrix Cov(x,y) is given by XA’
Show that Cov(y,x2) and Cov(xz,y) for y given in (a) are X1,
and ¥ respectively.

(c) Given that y = Axj, the covariance Cov(y,x;) is given by
A Y whereas the covariance matrix Cov(x;,y) is given by
¥12A’. Show that Cov(y,x;) and Cov(x;,y) for y given in (a)
is 2122521 Y21 in each case.

(d) Define z = x; — ¥12X5, x2 and use (b) and (c) to show that
COV(Xz,Z) = 0 and Cov(xl,z) = 211 - 21222_21221.

(e) Recognizing that x; =y + z, where y is defined in (a) and z is
defined in (d) use the results in (b), (c) and (d) to show that y

and z divide x; into two components such that z is uncorrelated
with X2.

(f) Relate the variables ¥, X5, x2 and (x; — ¥12 X5, X3) to the
multivariate regression of x; on x3.

10. In the Appendix, it is shown that if X (p x p) is a full rank symmetric
matrix then X' can be written as ¥ = VAV’ where A is a diagonal
matrix of eigenvalues of ¥ and V is the corresponding orthogonal
matrix of eigenvectors (V' = V1),
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(a) Use this result to show that Q@ = (x — uy)' ¥~ (x — uyx) can
be written as Q = (y — p,y)’A_l(y — py) where y = V'x and
“y = vlllfx.

(b) Show that Q in (a) can be written as Y°F_, (yi — py, )2/ i where
Yi, wy, and ); are elements of y, wy and A respectively.

(c) fx ~ N(u,X) and y = A'x with A (p x p) of rank p then
y ~ N(Au,A’XA). Use this result to show that y = V'x
defined in (a) is a normal distribution with mean vector V'p

and diagonal covariance matrix A. Why are the elements of y
statistically independent?

(d) Given that the sum of squares of p mutually independent stan-
dard normal random variables has a x? distribution with p de-
grees of freedom, show that Q in (a) and (b) has a x? distribution
with p degrees of freedom.

11. The density of the multivariate normal random variable is given by

() = |2 B expl— (s — ) 571 (i = ).

(a) Show that the joint density and hence the likelihood function
for the random sample x;,Xs,...,X, is given by

L= H f(xs) = [2n 2| exp [“ %Z(& - )27 (xi - u)]'

i=1 i=1

(b) Show that the logarithm of the likelihood function in (a) is given
by

L= -2 f2n 2] - 23" (x — ) E7 i ).

i=1

c¢) Show that S . (x; — p)' ¥~} (x; — ) can be written as
=1

n
3 (o — %) E (xi — %) + (% — 0 ZHR — ).
i=1
(HINT: Use the fact that Y-, (x; — %) =0.)

(d) Use the fact that tr(x;—%)' X~ (x;—%) = tr 2~ (x; — ) (x; —X)’
to show that 37, (x; — X)'Z~}(x; — X) = trX~'S*n, where
S*=(n-1)S/n.

(e) Use the results of (c) and (d) to show that InL in (b) can be
written as

InL = -g In[|2r 2] — gtrZ'_lS* - g(x —p)E (% - p).
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(f) Since the only term of In L in (e) that depends on p is the last
term, show that In L is maximized with respect to p if p = X
and hence that the maximum likelihood estimator of u is Xx.

(g) For any fixed matrix S* the function —2In[|X|] — Jtr2~!S*
is maximized with respect to X if ¥ = S*. Use this result to
obtain that the maximum likelihood estimator of X in (e) is S*.

(h) Show that the value of the likelihood function evaluated at p = X
and ¥ = 8" is given by In L = — % In[|27S"*|] — np/2.

12. The maximum likelihood estimator of X given p = p,, is given by
~ 1<
S= ;Z(Ki = to)(Xi — po)'.
=1

(a) Show that this expression for S can be written as S = $* + (X —
o) (X — p)’ where 8* = (n —1)S/n.

(b) Use the fact that |S* + (X — po)(X — po)'| = |S*||1 + (X —
10)'S* T} (% — po)| to show that the value of the logarithm of
the likelihood function of 11(b) in this case is given by

InL = —"2—” ln21r—g In |s*|-"—2”—g In[1+(X—p)'S* ™} (R—pto)]-

(c) The logarithm of the likelihood ratio test for testing Ho: p = p
is obtained from the difference of the logarithms of the likeli-
hoods in 12(b) and 11(h). Show that the difference is given by

n _ e—1,_
D) In[1+ (% — po)'S l(x = )]
and hence that the test of Hy: u = p, depends on
(% — po)'S" ™! (% — o)
which is proportional to Hotelling’s T2.

13. In the multivariate normal distribution x ~ N(u, X), the distribution
is partitioned so that

X1 T Zn X
3 y = d Y= .
* [ X2 ] # [ Mo ] o Ya Xz ]

(a) Use the formula for the inverse of a partitioned matrix (see Ques-
tion 8) to show that
W= - gy B
= (M2 ~ ZnT1 w][Ba2 - En Ty Trg] ™!
x[pg — B T py).
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(b) Use the result in (a) to show that if the intercept is 0 in the
regression of xz and x; then p/ X 'p = pi Xl p,.

14. The equal variance-equal covariance structure covariance matrix is

given by i _
1 p p ... p
p 1 ... ... p
X(n xn)=o0?
(nxn) ,
p .o ... p 1
L -

(a) Show that this can be written as o2pii’ +02(1—p)I, where i(nx1)
is a vector of unities.

(b) Use the formula for the inverse of the matrix [A + aa’] given by
A7!'— A7 'aa’A7'/(1+a’'A'a) to show that

1 p ii’

-1 _ _
i T =T ey

(c) Show that for X(n x p) and y(n x 1)

1, o (XDEX)
AA=p) X F1=p) [+p(n—1)]
X'ZIX)! = A1-p)(X'X)!

p(1 - p)o(X'X)"1X/it' X (X'X) "1

[L+p(n - 1) — pi X(X'X)~1Xi]

1 P X'ii'y
2(1=-p) Y o®1-p) M+pn-1)

X'¥1x

and (X'E"ly) =

(d) Assume that the first column of X contains the vector of unities,
i, and recall that, for any x; in X, X(X'X)"!X'x; = x; and
hence X(X'X)~1X'i = i. Use this property to show that

X'Z1X) (X' 2 ly) = (X'X)"Xy.

(e) For the regression of y on X if the conditional covariance of y
given X is given by X, the generalized least squares estimator
of the regression parameters is given by the left hand side of
the equation in (d). What does the equation in (d) say about
the property of this estimator if X' has the equal variance—equal
covariance structure?
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15. In the multivariate regression model Y = XB+ U, Y(n x s) denotes

Y1
: Y2
n observations on the (s x 1) random vector y, Y = . and
Yn
X[n % (g + 1)] denotes the corrsponding n observations on the ¢ X
1 x
X3
variables plus a column of unities, X = | . . |. The (n x s)
1 x),

matrix U denotes the matrix of unobserved error terms and the (g +
1) x s matrix B denotes the unknown parameters. The i-th row of U,
u; is assumed to be multivariate normal with mean 0 and covariance
matrix I" (s x s) where u] =y, — [1 x}]B.

(a) Show that the log likelihood for the n independent u}, i =
1,2,...,n, is given by

-~ n(l2n ) - (%)tr(Y — XB)I"}(Y - XBY.

HINT: See the multivariate normal likelihood function in Ques-
tion 11.

(b) Let B = (X'X)~!X'Y denote the ordinary least squares esti-
mator of B and denote by U = Y — XB the matrix of resid-
uals. Show that if B is substituted for B and I' = ﬁlﬁ/n is
substituted for I', then the likelihood function in (a) becomes

-2 In(|2nT|)— 1ns, which has the same form as the sample value
of the likelihood function in 11(h). HINT: Use the relationship

tr(¥ - XB)I' (Y~ XB) = trI' (Y - XB)(Y - XB) = ns.

16. Given [ y ] y(sx1), x(qxl)andE[i] = [ g ] Cov( y ) =

X

yy YX | let z = a'y and w = b'x denote linear transforma-
Yxy Txx

tions of y and x respectively. The steps outlined below are designed
to derive the canonical correlation results of Section 7.5.2.

(a) Show that the correlation between z and w is given by 7., =
a'Zyxb/(b' Txxb)!/?(a’ Zyya)'/2.

(b) To determine the values of a and b such that r,,, is maximized
subject to the conditions a’Yyya = 1 and b’ Exxb = 1, the
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Lagrangian expression is given by
S = alzyxb - U (a’Eyya - 1) - ‘U.z(b,zxxb - 1)

Use differentiation of S with respect to a and b to obtain the
equations
nyb - 2u12yya =0 (l)
nya— 2u22xxb = 0. (2)
NOTE: Formulae for differentiation of matrix expressions are
given in the Appendix.

(c) Multiply through (1) by a’ and (2) by b’ and use the conditions
a'Yyya=1, b’ Exxb = 1 to show that u; = up = a'Yyxb/2
is the correlation between z and w.

(d) Letting 2u; = 2u; = A2 and solving (1) for a and (2) for b,
show by substitution that (1) and (2) can be expressed as

(nyz;ulczxy - Azyy)a =0 (3)
(e) Rewriting (3) and (4) as

(Byy ZyxExxExy —Aa = 0 (5)

(ZxxTxyZyyZyx - A)b = 0, (6)

use the theory of eigenvectors and eigenvalues given in the Ap-
pendix to obtain that a and b are eigenvectors of

TixExy Zyy Byx

respectively and that A the corresponding eigenvalue is common
to both equations.

(f) Given that the matrices
ZyyZyxTxxTxy and
-1 -1

are both positive definite of rank ¢ = min(s, q) use the theory of
eigenvalues and eigenvectors to establish that there are two sets
of canonical functions 2; = aly, i =1,2,...,t, and w; = bx,
i=1,2,...,t, where a; and b; satisfy (3) and (4) respectively.
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(g) Use equations (5) and (6) to obtain the four characteristic equa-
tions for a;, a; and b;, b; and show that by premultiplication
and subtraction

(N = Xj)a;Zyya; =0
and (\; — /\j)bQZ'xxbj =0,
and hence that the z; are mutually uncorrelated and the w; are
mutually uncorrelated.

(h) Using two of the four characteristic equations determined in
16(g) premultiply by b ¥xy and ajXyx and subtract to get
that (\; — )\,-)b;-Exya; = 0. What property does this result
establish?

(i) Use equation (1) or (2) to show that if 2u; = 2us = A'/2 then
A/2 = r,,, and hence r.,,, is maximized if A is the largest eigen-
value.

Let x*(¢ x 1) = Ax+ g and y*(s x 1) = By + h, where A(g x q)
and B(s x s) are nonsingular matrices and g(g x 1) and h(s x 1) are
constant vectors. Denote the covariance matrix for

PR 4
y Zyx Zyy

and for

x Yxx Ix ]
by ¥ = Y .
[Y] Y [ny Zyy

Use the fact that AZxxA’ = Sy, BEyyB' = 5y, A¥xyB =
Xxy and BXyxA = XYy to show that

(Bxy Zyy Zyxb — AZxxb) =0
yields the same solution as
(Zxy Zyy Zyxb — AZxxb) =0

and
(ByxTix Exya — AZyya) =0
yields the same solution as

(nyz,‘ol(ﬂxya - AZyya) =0.

What does this result imply about the relationship between the canon-
ical correlation analysis for x* and y* and the canonical correlation
analysis for x and y.
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18. For the multivariate regression model Y = XB + U where Y(n X s),
X[nx (g+1)], B[(g+1) x s] and U(n x s) the least squares estimator
of B is given by B = (X'X)"1X'Y.

(a) Show that Y = XB and (Y- ?) can be written as HY and
(I — H)Y respectively, where H = X(X'X)~!X' and I is the
identity matrix.

(b) Show that B'X'XB and (Y — ¥)'(Y — ¥) are given by YYHY
and Y'(I-H)Y respectively using the fact that H' = H, HH =
H, (I-H) = (I-H) and (I - H)I - H) = (I - H), which
are properties of idempotent matrices.

(c) Show that Y'Y = YYHY + Y'(I-H)Y and hence that Y'Y =
A~/ ~ A~ ~
B X'XB + (Y — XB)/(Y — XB) using (b).

(d) Partition the multivariate regression model as

B,
Y=X;B; +X;B,+ U= [X1X2] [ B, ] + U,
where X; [n x (v+1)], X3 (nxr) and ¢ = (v+7). Let B,
denote the least squares estimator for the reduced model Y =
X;B;+U, B; = (X'IXI)‘IX'IY and show that
YY = YH,)Y+Y(I-H)Y
= BiX(X,B, + (Y -X,B))(Y - X,B)),
where H; = X;(X}X;) !X} and I (nxn) is an identity matrix.

(e) Show that Y/(I - H;)Y = YI-H)Y + Y/ (H - H;)Y and

hence show that
(Y - X1B1)' (Y - XiBy)
= (Y - XB)(Y - XB) + B'X'XB - B,X/X,B,.
(f) The Wilk’s Lambda test statistic for testing Ho: B2 = 0 in the

model
Y=X;B; +X;B,+U

is given by A = |E|/|Eo|, where E = (Y — XB)' (Y — XB) and

Eo = (Y - X;B,;)'(Y — X;B;). Use the result of (e) to show
~ ~ ~/ ~

that A = [E|/|E + G|, where G = (B'X'XB - B, X, X,B).
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19. For the multivariate regression model Y = XB + U assume

Bor Boz Pos
B Bz i3
B=| B2 P22 Pas
B31 B3z Pa3
Ba1 PBaz Pas

For each of the hypotheses of the form Hy: ABM = 0 given below
explain what is being tested and the practical significance in each

case.
01000
00100
@ o001 0|B=0
00001
11
®B|-1 0]|=0
0 -1
1 -1 0 0 0]
1 0 -1 0 0
©@1 o0 o0 -1 ofB=0
1 0 0 0 -1
1 -1 0 0 0]
1 1
1 0 -1 0 0
@11 0 o0 -1 o B[_(l) _(1)]=°
1 0 0 0 -1




8

MANOVA, Discriminant
Analysis and Qualitative
Response Models

The first part of this chapter extends Chapter 7 by specializing the multi-
variate linear regression model to the case where the explanatory variables
represent design variables. In the same manner that ANOVA is a special
case of multiple regression, we see here that multivariate analysis of vari-
ance (MANOVA) can be viewed as a special case of multivariate linear
regression.

A special case of canonical correlation discussed in Chapter 7 occurs if
one of the two sets of variables are dummy variables. This specialized tech-
nique is called discriminant analysis and is useful for characterizing group
differences obtained from a significant MANOVA. Discriminant analysis is
also useful as a technique for classifying unknowns.

If in a multivariate regression model the dependent variables are categor-
ical, the model is said to be a qualitative response model. The qualitative
response model, like discriminant analysis, can also be used to characterize
group differences and classify unknowns. Special cases of this type of model
presented in this chapter are called logistic regression, probit analysis and
multinomial logit.

This chapter presents a summary of MANOVA, discriminant analysis,
and qualitative response models.

8.1 Multivariate Analysis of Variance

8.1.1 ONE-WAY MULTIVARIATE ANALYSIS OF VARIANCE
Comparison to Univariate Analysis of Variance

Multivariate analysis of variance (MANOVA) is an extension of the concept
of analysis of variance to the case of more than one dependent variable.
Given g groups of individuals, a set of p variables X;, Xs, ..., X,, denoted
by the (p x 1) vector x, is observed in each group rather than a sin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>