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Preface

Despite possible misunderstanding which I assure readers I have not created, the
reader might think, from its title that this book is a piece of research about the
Philosophy of Statistics, a new brick into the great “Chinese wall” of the unending
philosophical debates about statistics. But this is not the case. Taking into account
that today philosophers still do not agree on the basic notions of “mind,” “cause,”
“evidence,” “experience,” or “truth,” it would be a waste of time to devote our
interests to the fuzzy and even impolite debates about what things are.
Nevertheless, we need to talk, solve, and think about several domains that affect our
lives. For example, why do things happen? Our minds are just used to accepting
any possible result: Our brains predict possible outcomes of several sensorimotor
actions at the same time our minds are trying to discover some kind of order in our
world (internal, external, cultural, real, or invented, does not matter). For all these
reasons, this book tries to deal with several connected questions: How do our minds
operate with quantities? What are the most natural ways to deal with information?
How can several epistemological models efficiently satisfy the numerical analysis
of reality? Why are certain events only feasibly understandable through the analysis
of big numbers? Some of these questions led us to the naturalization of statistics,
a project to which I have contributed scarcely but with high intensity in this book.
We will also learn how classic philosophical debates, like those related to causality
or determinism, have been updated and continued by modern statistical thinkers or
practitioners. The debate about the best and parsimonious methods is still present.
During the twenty-first century, we are ceasing to do things with words and we are
starting to explain concepts more and more with numbers. The last remnants of
qualitative analysis are being colonized by numerical methods. Thus, sociologists,
psychologists, philosophers, and archeologists, among other field experts, are
entering into a new computational, statistical, and experimental era. For all the
previous reasons, this cannot be understood as a book on Philosophy or History of
Statistics, although part of the purposes of this book does belong in these fields. The
overspecialization leads very frequently to experts unable to see the forest for the
trees, and then, their scholarship becomes an academical product, empty
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scholasticism. When we discuss about the numerical approach to the reality. we are
not acting as mystical Neopythagoreans; instead, we are analyzing how the
numerization process is created and how the rules work with these numbers. We are
talking about a natural property of the cognitive systems (to deal with quantities)
that has been heavily improved with symbolic tools. After centuries of intense
scientific revolution, it is lamentable that rather than innovating we are following
the same paths that made our ancestors venture their lives into the African
savannah: to understand the world and survive adding “best” or more accurate
meanings to our lives. The greatness and, at the same time, the main defect of this
book are to explain briefly that while we are entering into a new paradigm of
(numerical) research at the same time, we are not leading the need to solve our
practical/conceptual necessities. Big data, deep mining, big mechanisms, e-Science,
or computational simulations are only possible thanks to a new era of hardware and
mindware: Statistics are the backbone of this revolution. Numbers now trace the
path of the arrow of human evolution. Let me introduce you to some facts, debates,
ideas, and also doubts about how we can understand our world. This is the true
meaning of this book.

Arenys de Munt, Catalonia Jordi Vallverdú
July 2015
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Chapter 1
Some Questions to Begin with

Abstract First chapter analyzes how living systems such as amoebae, insects,
fishes, chicks, or dolphins are able to deal with numbers without any symbolic
system, explaining the notions of “subitization” or “numerosity,” among others. At
the same time, the cognitive limits for humans in relation to number processing are
explored, especially those expressed by kids. Once provided this basic naturalistic
framework for minds and numbers, the concepts of ignorance, chance, and statistics
are introduced as well as their related basic philosophical debates.

Keywords Subitization � Numerosity � Animal cognition � Cognition � Natural
statistics � Ignorance � Chance � Determinism

A book about statistics is, at the end, a book about numbers and how we establish
relationships between these numbers and some events in the world. Perhaps, it is a
problem of my background as philosopher, but I think that before we study the
schools of statistics with more or less detail, we should reconsider what we know
about numbers, minds, and chance.

1.1 Numbers and/or Neurons

Our knowledge comes from two different sources:
On the one hand, from experiential data (from own observations, experiments,

prerecorded first- or second-hand data stored in books/computers/oral tales,…) and
on the other, from mental mechanisms to obtain connections, regularities, patterns,
or relationships among data. It is a dynamic feedback process in which the
emphasis into one or another side of both prominent sources marks the classifi-
cation as realist/idealist or similar categories. In some cases, this knowledge is
expressed linguistically, but in some special cases by numbers. And the laws and
semantics of numbers are not the same as that of words.

From our common sense and natural understanding, we can infer that human
minds are not naturally designed to deal with numbers and let me explain why.

© The Author(s) 2016
J. Vallverdú, Bayesians Versus Frequentists,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-48638-2_1
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The maximum amount of elements we can visually identify as an exact “number” is
4. As I have written elsewhere (Vallverdú 2010), the human being does not have an
immediate perception of numbers greater to 4 (Ifrah 1999, Chap. 1). That is to say,
that he or she has a direct clear knowledge from 1 to 4. We can even note that
diverse native groups (not polluted by annoying Western intruders) of the
Australian Continent, Asia, America, and Africa only have in their respective
languages terms like “one,” “two,” and “many.” In several areas of our planet,1

survival does not require (nor has it required) more than a short range of numbers
from 1 to 3 or 4. This range is sufficient for necessary precision of basic activities.
Moreover, first attempts at counting are deeply influenced by bodily structure:
across cultures, primitive counting on fingers and toes led to the establishing of base
5 (following the number of fingers of a hand), base 10 (two hands), or base 20 (two
hands plus two toes) (Gvozdanovic 2006: 736). Counting by hand is also present in
the meaning of Proto-Indo-European words for “5” and “10.” Consequently, at a
certain basic level we can affirm that numbers are the result of our body structure
and are physically embedded into it, which is a tool to shape gradually higher
cognition from our senses. Consequently, sensorimotor experiences and abstract
mathematical concepts are connected, and maths was initially embodied (Bender
and Beller 2012).2 In a nutshell, numbers are human.3

Beyond the body constraints at the beginning of counting tools (in this case),
there are several pending conceptual aspects about numbers and counting:

(a) Ostensive definition and mimics: It generally expressed as “defining by finger
pointing,” an ostensive definition implies the definition or identity of a concept
through the finger pointing at the object itself. According to Wittgenstein
(1953, §6):

I will call it “ostensive teaching of words”. —I say that it will form an important part of the
training, because it is so with human beings; not because it could not be imagined other-
wise.) This ostensive teaching of words can be said to establish an association between the
word and the thing.

1Surprisingly, there is at least one human community that count in the language without numbers,
even without simple words like “one” or “two”: the Hi’aiti’ihi (called “Pirahã” by experts), an
indigenous hunter-gatherer tribe of Amazon natives, a subgroup of the Mura, who mainly live on
the banks of the Maici River in Brazil’s Amazonas state. Although they perform several complex
activities (tool making, food location, and qualities, social shared activities, etc., their language—
one of the most simple phonetically—has no cardinal or ordinal numbers (only approximate
descriptions or amounts, like “few,” “some,” and “more”). Dan Everett, after several years of field
research, wrote an impressive and seminal 200-page chapter on Pirahã language published in
Derbyshire and Pullum (1986). See also Frank et al. (2008), and finally, I recommend Gordon
(2004), to fulfill the debate.
2About embodiment and cognition, I recommend the first section of Carsetti (2010) to find a
naturalistic and evolutionary view about how cognition is bodily constrained.
3I accept that someone could ask me: Can numbers exist in the non-human world? My answer is
“yes, of course,” but numerosity is directly related to ontological views on reality such as entities’
stability, mass or volume conservation, among other possible aspects. So, numbers as we
understand them can only exist in our cultural minds.

2 1 Some Questions to Begin with



In the identity between one mark into a bone and one day or between one
object and one finger, it is a highly symbolic process, something close to a
friendly extension of imitation. We learn looking at the place where the others
eyes gaze or fingers/hands/arms point to. We know then the intentions and
interests of the others toward one external thing to our minds. This thing is
also explained by the others with more bogy gestures, voice intonation or even
language. Then, we accept/understand that there is an external object that has
some properties and that it can be discretized and counted. But even in the
case of the simple one-to-one matching task, we need numbers in order to
understand the notion of quantity and to perform correctly this action (Frank
et al. 2008: 820; Brannon 2006). The extremely strange Amazonian Pirahã
tribe has no words for numbers, or singular–plural morphology. This fact
produces severe errors in their judgments about quantities, although it is
assumed that they apply approximate magnitude estimations. Words are, then,
cognitive tools and language determines Nature and the content of thought
(following also the Sapir-Whorf thesis4).

(b) Base choice: At the same time, there is a semantic of numerals that must be
learned by their users. For example, consider the use of base and the cultural
divergences. A look at the history of mathematics shows us the differences,
Babylonian used base 60 (sexagesimal), while Mayans base 20, Greeks base
10, Leibniz suggested base 2, a very simple base used later by computers (as
well as hexadecimal and, sometimes, octal).
Even in our contemporary decimal system, the sexagesimal (60) base for
geometric grades (360) survives like cultural fossils. For time measurements
(seconds/minutes) and also the duodecimal (12) system is in use, for example
when we buy eggs (e.g., “one dozen, two dozens….”). Even the decimal
system is not so strict, when we count 12 months for a year, and the number of
days change from month to month. Despite some attempts to change this, like
the French Republican Calendar (1793) of 12 months for exactly 30 days with
each month one divided into three decades, things remain the same. Concepts
are culturally embedded and sometimes survive by tradition, laziness, and
disgust toward change. There are more bases: 3-ternary, 4-quaternary,
5-quinary, 6-senary, 7-septenary, 8-octal, 9-nonary, 11-undecimal,
16-hexadecimal ….

4Quoted by Kay and Kempton (1984), Whorf affirmed in 1956 that “The categories and types that
we isolate from the world of phenomena we do not find there because they stare every observer in
the face. On the contrary the world is presented in a kaleidoscopic flux of impressions which have
to be organized in our minds. This means, largely, by the linguistic system in our minds.” His
ideas seemed to emanate two hypotheses: “1st. Structural differences between languages systems
will, in general, be paralleled by nonlinguistic cognitive differences, of an unspecified sort, in the
native speakers of the two languages; 2nd. The structure of anyone’s native language strongly
influences or fully determines the world-view he will acquire as he learns the language.” By
language, we mean also numerical codes.
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Consequently, there is no natural way to choose a mathematical base; this
reflects a cultural process with some practical points that need our consider-
ation. Perhaps we feel comfortable with base 10 just because most of us have
learnt it from our parents, in school and from a variety of social environments
that surround us, nothing else. The classic remark that we have 10 fingers and
that this is the basis of the decimal system is not strong enough because we
know that several cultures make use of hands to calculate relying on several
subsections like phalanges or even combining methods to count differently.
Counting with hands differs very strongly among European countries and
more when compared with Japan, China, or some countries of Africa (Ifrah
1999). The one-to-one counting is not enough to justify the decimal system
from the body structure and hand morphology. The uses of the body create
numerical meaning. For example, we can explain that in ancient Rome and in
the Middle Ages, counting “one” by bending the left little finger, and perhaps
the reason for using the left hand was because the right hand was used for
more important things (Nishiyama 2010).

(c) Discrete semantics of arithmetic: They take into the consideration the basic
operation5 of 1 + 1 = 2: while the result is true for two oranges, in the case of
the sum of two drops of water this is not true, because the final result is 1
bigger drop of water. But even in the first case, we could try to sum oranges
and apples and decide that they cannot be summed because of their different
Nature. We must learn to create abstract identities that must be classified,
accumulated, grouped into classes… and this is not completely obvious or
natural. Anybody who has raised a child can observe this very easily. And the
empirical studies of Piaget on child mind development, the theory of cognitive
development (Piaget 1977), confirms this evidence. Before the preoperational
stage, at sensorimotor stage, children have the ability to link numbers to
objects, e.g., one dog, two cats, three pigs, four hippos (Ojose 2008), and this
trait, found in early development of human cognition, can be modeled cor-
rectly with Bayesian ideas (Lee and Sarnecka 2011). Today, Bayesian models
produce great models of several cognitive phenomena such as vision, cate-
gorization, decision making, language learning, motor control, or a theory of
mind (Kwisthout et al. 2011).6 As a result, there is an ontological stability that

5This is a not an easy concept. In order to certify the logical necessity and coherence of this
arithmetic operation, Bertrand Russell and Norbert Whitehead devoted 379 pages of their
Principia Mathematica to it (1910–1927); see Volume I, 1st edition, page 379).
6These authors provide a good number of bibliographical references about all these domains and
the Bayesian modelization. But at the same time, they extend their implementation ad infinitum
and find a big problem: computational intractability, due to the fact that many of the computations
postulated by Bayesian models of cognition fall into the class of NP-hard problems. Would this
lead to a bottleneck of intractability once we tried to scale Bayesian basic models to higher
cognitive processes? Well, humans are not bottlenecked: We have several decision-making
mechanisms. Perhaps at a theoretical level, it is true, in the same way that Gödel dynamited the
foundations of mathematics, in front of the horrified Hilbert. But even in that case, they are the best
tool we have for several purposes. And it works.
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makes it possible to engage in any work with numbers, or at least our success
defining some temporary states as stable make it possible.

(d) Finally, there are also psychological constraints: following the study of the
human (in) capacity to deal with long lists of numbers, we remember the
classic study of Miller (1956) which demonstrated that generally people have
problems to remember greater numbers than those of nine units (that is, for
example, 798428197). And our necessity to deal with greater numbers has a
strong relationship with commerce, war, or even with the time calculation
(calendars) and human body regularities. The embodied cognitive inference
could explain this, as Zaslavsky (1992) suggests:

The cyclical Nature of menstruation has played a major role in the development of
counting, mathematics, and the measuring of time… Lunar markings found on prehistoric
bone fragments show how early women marked their cycles and thus began to mark time.
Women were possibly “the first observers of the basic periodicity of Nature, the periodicity
upon which all later scientific observations were made” (quoted from Thomson 1981,
page 97).

In this later case, for an understanding of a ± 28 day cycle we need a notation
system, something beyond intuition and that requires us to take a step forward. The
fact is that the analysis of natural cycles, especially astronomical ones, has been the
basis of mathematical advances throughout history. We will see in the following
chapters that the technical analytic requirements of astronomy led to the birth of
modern statistical analysis.

Well, we have been talking about numbers as external entities that must be
captured by symbols that have a body correlation. However, another aspect must be
considered: the numbers inside the body. Beyond any symbolic instantiation of
numbers, human bodies perform several calculations through their nervous systems,
generating internal probabilities distributions rather than deterministically selected
information based on all the available information (Vul and Pashler 2008). In fact,
as Körding (2007: 606) points out, “many of the properties of the nervous systems
and the bodies of animals are remarkably well adapted to their ecological niche.”
Neuroscience studies how animals control their limbs and really perform inferences
about events in their world and choose among several kinds of rewards. So, the
central nervous system (henceforth, CNS) has a basic purpose to make decisions to
interact with the environment. Perceptual and motor tasks processed through the
CNS are truly probabilistic and must face up to noisy/local/ambiguous sensory cues
in a perpetually changing world of new stimulus and facts. And from an evolu-
tionary point of view, the basic necessity of a complex CNS was how to deal
properly with movement (Llinás 2001), and establishing connections between
motor actions and mentality. For any action, and more so in open and unpredictable
environments, there are several possible outcomes that must be considered by the
CNS. Daily activities of moving/freezing resting, foraging, fighting/flying involve
predictions and computations of action utility functions. Without numbers, the brain
performs a continuous statistical activity in order to solve several daily necessities
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about perception, decision making, and motor control (Doya et al. 2006).7 From
sensory signals (dynamic, multimodal, extended, time varying) to brain neurons
and again to body reactions, the whole process of a living entity is a selection
process in continuously changing environments. Some Bayesian statistical models
have been suggested as possible accurate descriptions of the real mechanism of the
spiking neurons (Deneve 2005; Doya et al. 2006) or cognitive processes (Perfors
et al. 2011).8 Nevertheless, some attempt to provide a robust frequentist model for
the Nature of this neuronal process has also been published (Martignon and Deco
1997). The truth is that in this research area the debate among Bayesians and
frequentists is not so intense as at the philosophical level, because both approaches
are useful for different purposes (Bayesian for estimating information transmission
while frequentism for detecting spatio-temporal patterns among groups of spiking
neurons, for example). The debate is more intense when we discuss the evolu-
tionary mind structure and which model is closer to it: Bayesianism or frequentism
(Sloman et al. 2003). Gigerenzer and Hoffrage (1995), first, and echoed later by
Cosmides and Tooby (1996)9 defended a basic “frequentist” approach, affirming
that the mind was tuned with frequency formats but at the same time their studies of
how information is naturally processed allowed us infer a Bayesian flavor of natural
minds. This can be true in certain advanced statistical contexts, because it is
obvious that frequentism helps to eradicate some cognitive biases (overconfidence,
the conjunction fallacy, and base-rate neglect). This is only a true statement if we
take into account the visualization models of data, not the reasoning by itself.10

Again, the tool determines the usability although this does not imply that the tool is
embedded into the mind. Later, Zhu and Gigerenzer (2005) gave support to the
notion that most animals are fairly good Bayesians as well as the fact that children
use a basic form of “Bayesian reasoning.” Again Gigerenzer, in 1991, published an
exceptional paper contributing to this very interesting debate “From Tools to
Theories: a Heuristic of Discovery in Cognitive Psychology.” Here, the cognitive
emphasis is made in tools: as soon as a new tool dominates a field, it is considered
the “natural” way to perform an action/heuristics, consequently psychological
studies take it as a granted model. For example, around 1955 psychophysics studied
absolute and differential thresholds in tone recognition. Absolute studies had been
the common way to study psychophysics but differential eluded the formal analysis

7Further: very important notions, such as surprise, have intuitive but at the same time quantifiable
statistical properties. For a Bayesian account for surprise, see Baldi and Itti (2010).
8Some “prior engineering” in robots has been already considered, but the results are still not
impressive. Read “the probabilistic mind,” by Sanders (2011).
9Cosmides and Tooby consider that natural evolved solving-problem algorithms are content
dependent and that even Bayesian approaches are content independent. Well, I am not agree
directly: Priors allow to be content dependent, although the mechanistic process follows a similar
formal pattern. From all the possible ways of dealing with numbers, Bayesian is more adaptive.
10Trimmer et al. (2011) suggest the contrary: Bayesian paradigm applied to the evolution of
decision-makers allows solving the Ellsberg paradox. The truth is that different models can solve
different problems, but this does not credit any of them as better than the others.

6 1 Some Questions to Begin with



because of its then intractability. They created the theory of signal detectability
(TSD), using the Neyman-Pearson technique of hypothesis testing, which made it
possible to analyze differential psychophysical stimulus. That is, a new tool created
a new range of available data, at the time that specialists tended to assume that
human minds were frequentists, just because the tool they employed was fre-
quentist. The same happened later when the theories of human causal reasoning
(Michotte, Piaget, Gestalt psychologists) that investigated how certain tem-
porospatial relationships between two and more visual objects, such as moving
dots, produced phenomenal causality. Then, Harold Kelley proposed his attribution
theory in 1967, in the middle of the institutionalization of inferential statistics, and
soon the gem of statistical research, Fisher’s ANOVA became the fundamental tool
of the behavioral scientist. Then, the Fisherian mind appeared. But the truth is that
despite the tool we have in mind, human kids use several types of causality
approaches (up to 17!). Téglás et al. (2011) have proved that 12-month-old pre-
verbal infants can also make predictions by pure reasoning, that is, probabilistic
inferences. Additionally, it has been demonstrated that young children can make
approximate comparisons of quantities before knowing the numerical symbolic
system (González and Girotto 2011) or infer causes of failed actions, tracking
intuitively the statistical dependence between objects, agents, and outcomes
(Gweon and Schulz 2011). And their looking times are consistent with a Bayesian
ideal observer embodying abstract principles of object motion. Common sense is
Bayesian, or the homunculus statistician is Bayesian, rather than frequentist
(Gigerenzer 1991: 6).

1.2 Natural Statistics…or Probability Without Numbers

At the First Joint Congress on Evolutionary Biology, held in July 2012 in Canada,
evolutionary geneticists Tristan Long, of Wilfrid Laurier University in Waterloo,
Canada, and William Rice, of the University of California, Santa Barbara, presented
the preliminary results of their ongoing research: after repeatedly subjecting fruit
flies to a stimulus (designed to select the presence of numerical skills), a group of
evolutionary geneticists finally hit on a generation of flies that could count (it took
40 tries before the species’ evolution occurred). They selected a race of numerically
savvy insects, and this is a successful piece of research on the neuroarchitecture of
counting at the same time that shows how numerical skills can emerge by evolution.
Nevertheless, this could be considered the result of a direct manipulation of the
animals…but what happens in wild Nature? How animals deal with quantities of
objects in the middle of dynamic environments under uncertain conditions? How
can they decide among several strategies, even in the case of low smart animals?
Before showing you some examples from the phylogenetic tree, I would like to
introduce two important concepts related to numerosity, defined as “the ability to
appreciate and understand numbers” (Coolidge and Overmann 2012): subitization
and magnitude appreciation. As we have seen in the example of fruit flies, they have
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some basic and innate ability to process quantities. Magnitude appreciation is a first
step toward the capacity of numerosity. Furthermore, numerosity needs a second
skill, subitization, the act of immediate recognition of small number of objects,
usually within the range of 1–4 tokens. Subitization is not the same as counting,
because it is innate and immediate, while the second implies a more elaborate
mental process. Numerosity is then an innate skill of several animals and it is shared
as a stable trait along the phylogenetic tree, necessary for spatial cognition (even for
blind living animals, like bats). It becomes the non-symbolic basis for the emer-
gence of symbolic thinking and human infants (9 months old), non-human pri-
mates, several mammals, and birds share this numeric ability. Let me to introduce
the reader to some direct examples somehow following the phylogenetic tree.

Amoebae. One experiment: slime mold Physarum polycephalum exposed to unfa-
vorable conditions presented as three consecutive pulses at constant intervals reduce
their locomotive speed in response to each episode. But an even more suggestive
result is that when the plasmodia were subsequently subjected to favorable con-
ditions they spontaneously reduced their locomotive speed at the time when the
next unfavorable episode would have occurred. Thus, they counted and were able to
anticipate their actions (Saigusa 2008).
Ants. Ants need to make measurements. Wittinger et al. (2006) have shown that
during ant navigation processes, these insects measure distances traveled using a
step integrator or “step counter.” Manipulating the lengths of the legs, the scientists
were able to appreciate that ants walking on stilts overestimated distances while
those walking on stumps underestimated the distances. Here, we find an example of
grounded cognition based in morphological traits (Barsalou 2008)11 as well as with
the intuitive (Davies 2004) step counting process.
Fishes. According to Agrillo et al. (2008, 2009), fishes are able to discriminate
quantities. It was inferred from their spontaneous tendency to join the largest social
group, a very useful skill to survive in open water. To be able to perform magnitude
appreciation would then be a cognitive skill directly related to higher survival rates.
No subitization has been observed.
Salamanders. From an experiment made by Uller et al. (2003), it was demonstrated
that given a choice between tubes containing two fruit flies or three, salamanders
lunge at the tube of three. It leads to a notion of number that evolved at least
28 million years ago. Beyond three objects, as we have seen in Sect. 1.1, they fail—
as well as monkeys and babies do—and feel themselves confused. This is evident
over the length of the susceptible objects to be tracked.
Honeybees. Gross et al. (2009) has shown that honeybees have a sense of numbers,
similarly to many mammals. Honeybees training, in a y-maze apparatus and under

11Barsalou defends statistical processing as central to grounded cognition. He even affirms that
Bayesian statistics can be viewed as statistical accounts of the multimodal information stored in the
dynamic systems that generate simulations and guide situated action. Memories, explicit as well as
implicit, are also cognitively oriented, using natural statistical ways of classification, evaluation,
and prediction.
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DMTS paradigm using one/two dot patterns, was performed successfully for sev-
eral days, and they were also able to select a three-pattern over a four-pattern,
although they were not able to consistently select a four-pattern over a three-pattern,
and higher-number tests were also unsuccessful. The ability of honeybees to dis-
criminate between numbers could easily be of evolutionary benefit. For example, it
could serve as directional cues, or aid in foraging behavior.
Newborn chicks. Rugani et al. (2009) reported that newborn chicks appear to add
and subtract, consequently proto-arithmetic capacities in the young and relatively
inexperienced chicks of this precocial species. This study aimed at extending
comparative research on the spontaneous representation of number to very young
birds, employing filial imprinting to familiarize the animals with a certain number
of elements. These animals did not receive numerical training, but were able to
perform basic arithmetic tasks. Here, subitization and magnitude discrimination
have added an extra skill: an active way to make “innate calculus.”
Dolphins. Recent studies of Yaman et al. (2012) show that dolphins are able to use
a numerical category based on “few” versus “many” when discriminating stimuli
according to the number of their constituent patterns. At the same time, this study
extended the previously demonstrated range of numbers, thereby testing the limits
of the numerical abilities of bottlenose dolphins, established now to 6. They also
demonstrate that for numbers 1–3 subitization is the basic process followed by
dolphins but that from 3 to 6, numerical comparisons are processed logarithmically,
as is postulated by the Weber–Fechner law.12

The list of animals that are able to perform numerically would be longer,
including primates (Thomas et al. 1980; Boysen 1993; Boysen and Hallberg 2000;
Smith et al. 2003; Brannon 2006; Jordan and Brannon 2006; van Marle et al. 2006;
Addessi et al. 2007; Beran 2007; Cantlon and Brannon 2007; Hanus and Call 2007;
Nieder and Merten 2007; Beran et al. 2008), pigeons (Scarf et al. 2012), or new
Zealand robins Hunt et al. 2008). The sum of all this evidence makes it possible to
affirm that numerosity is something natural previous to abstract thinking that can be
traced throughout the evolutionary phylogenetic tree. Now let us take a look at
humans.

12Weber–Fechner law combines two different laws: Weber’s law and Fechner law, both interested
on quantifying the perception of change in a given stimulus. Weber’s law expresses a general
relationship between a quantity or intensity of something and how much more needs to be added
for us to be able to say that something has been added (this can be studied by discrimination
threshold experiments). This general relationship between the initial intensity of something and the
smallest detectable increment is exactly what Weber noticed and formalized into “Weber’s law.”
Considering that the relation between one stimulus and its perception is logarithmic, the stimulus
changes geometrically and the perception arithmetically. M. S. Landy provides a very elegant
mathematical formulation and explanation of both laws in one of his courses’ materials, from
which the present information has been quoted: http://www.cns.nyu.edu/*msl/courses/0044/
handouts/Weber.pdf (Accessed in May 18th 2013).
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1.3 The Emergence of Natural Statistics in Humans

When we try to understand the roots of statistical reasoning and its evolutionary
necessity, a suggestive question appears in front of us: as we have demonstrated
that several kinds of animals perform statistical activities for their own survival, but
what can be said about humans? Owing to the difficulties of the absolute blur
between culture and Nature, it is still possible to learn something about the innate
statistical mechanisms of humans if we choose children as subjects of our analysis.

Even more, we can observe children that have not received language training yet
nor can make use of it, and consequently they are not influenced by it.

Young children’s number development is a classic domain of research in cog-
nitive sciences (Lee and Sarnecka 2011), and it is a well-established fact, as we
have seen in the previous section that humans and other animals have a natural skill
to represent small, exact set sizes (up to about 4), and can even make approximate
comparisons of quantities before knowing the numerical symbolic system (Barth
et al. 2005). They perform approximate arithmetic operations, those necessary to
manage their tiny world. Experimental results also support the possibility that
linguistic constructions are acquired probabilistically from cognition-general prin-
ciples (Hsu et al. 2011).

Besides natural counting, there is a second domain in which we must be
introduced: causality. Causality is also a necessary knowledge about world func-
tioning,13 and it is basic for any action: Does this object move? Does this piece hit
my foot if I throw it? Is it as good as food? Causality is not only a necessity for
high-level abstract knowledge (science is included into this domain) but also for
basic day-to-day information necessary for one’s own survival. From a basic
evolutionary perspective, pain is a good embodied discriminator of negative inputs:
for example, pain and the understanding of the mechanisms by which it is produced
save us from a young death.14 16-Month-Olds rationally infer causes of failed

13At least for Western thinkers, cognitio per causas has been a necessary heuristic in order to
understand the world.
14Recently, I exposed these ideas as Keynote speaker at EBICC2012 (Brazil), published as “O
SIGNIFICADO DO SIGNIFICADO: Novas Abordagens das Emoções e Máquinas”, in Gonçalves
(2013): UNESP. Familial dysautonomia (FD), also called Riley–Day syndrome, is a genetic
inherited disorder that affects the development and function of nerves throughout the body. Among
several symptoms, perhaps the most significative for us here is the inability to feel pain and
changes in temperature (Rahalkar et al. 2008). This disorder leads easily and fast to death. If we
look at the evolution of nociception and the emergence of pain, we can discover very interesting
things that show us a new conceptual framework for the analysis of human emotions. First of all is
the evolutionary emergence of complexity into nociceptors and nervous systems (Smith and Lewin
2009; Sneddon 2004), which could help us empirically study the elusive Nature of consciousness.
Second is the existing similarity from invertebrates right through to humans. Noxious arrays of
stimuli (mechanical, thermal, and chemical, from a body perspective but also social, symbolic, or
linguistic, in the human case) are threatening forces that any living entity must “understand” to be
able to react. Unicellular bacteria such as E. coli, although they have no nervous system, they have
mechanosensitive channels that make them possible to react to those stimuli. Although they have
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actions, as suggested by Gweon and Schulz (2011). From minimal data and sparse
evidence, very young children are able to draw accurate inductive inferences and
even change their actions when expected outcomes are the result of their “simple”
investigations (Cordes and Brannon 2009; Xu 2003). Infants can track the statistical
dependence between objects, agents, and outcomes to perform their initial rational
actions (Strauss and Curtis 1981; Xu and Spelke 2000).

Menninger (1992) noted that number words appeared first in writing and only
later in speech. And from archaeological evidence, we can infer that number
concept was much older than writing and that one-to-one correspondence matching
was present within Neolithic farmers in the Middle East (Hyde and Spelke 2008;
Piazza et al. 2004). From previous sections, we have shown that subitization is an
earlier stage for finger counting, a subjective mode and analogical way to count
(creating identity relationships between objects and body sections, Coolidge and
Overmann 2012).

As a conclusion, we can affirm that for most animals with spatio-visual tools
used to manage their basic interaction with the world, a sense of numerosity is
necessary to improve their chances of survival: selecting biggest sources of food,
discerning best mating groups, deciding among optimal distances, and so on. The
sense of quantities, even in an informal way, makes it absolutely necessary for an
interaction with the world. Although there is a space for minimal cognition and
even for non-symbolic computing approaches to cognition (like in morphological
computing, Casacuberta et al. 2010), even in the case of these minimal systems, a
sense of numerosity is embedded and, consequently, the emergence of more
sophisticated ways to deal with numbers is something completely coherent, natural,
and logical. Even if we look at most recent studies on human cultural evolution
(Pagel et al. 2013), the existence of a set of such highly conserved words among
seven language families of Eurasia postulated to form a linguistic superfamily that
evolved from a common ancestor around 15,000 years ago can be demonstrated.

(Footnote 14 continued)

no true nociceptive response, they have the basis for it. The nervous system, the basic piece of all
this emotional arousal, was originated during the early evolution of Eumetazoa (animals with
tissues). In some cases, like in Placozoa and Parazoa such as Porifera (sponges), if it is true that
they do not have a nervous system, they present genes associated with neural development,
something like “proto-neural” cells. It was within bilaterates that the nervous system emerged. It
was in the Annelida Hirudo medicinalis that nociceptive cells were identified firstly. The sea slug
Tritonia diomedia shows escape swimming that supports the idea of triggering of nociceptive
responses. Nematoda like Caenorhabditis elegans and Arthropoda like Drosophila melanogaster
demonstrate how the evolution of bilateralism enabled a more structured nervous system
specialized in the detection of noxious stimuli. Here, we have pain with feeling, because in the
previous examples, the nociception activation by itself was not pain. In lower vertebrates, the
nociception evolved becoming more specialized, and this was accentuated with Amphibia,
Reptilia, Aves, and Mammals. The tree of life offers us an empirical path to the analysis of basic
emotions and the possible understanding of the mechanisms that made the emergence of the
consciousness possible, always by the hand of emotions (Damasio 1999; Llinás 2001).
Consequently, basic emotions are hardwired, even unconsciously as can be shown in reflex acts.
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Since the end of the last ice age, some proto-words have survived and among them,
we can find…numerals. As a final conclusion, we can affirm that mathematics is
panhuman, as ethnomathematicians have demonstrated (Chrisomalis 2009: 495).

1.4 So…Must Statistics Be Considered as a Property
of the World or the Result of Our Ignorance?

The Nature of chance has been very controversial all throughout human history, as
well of some other ideas as the emptiness (remember the classic horror vacui) or
the eternity of the world, and it is because there is a strong bond between chance
and causality. I will explain it you in a nutshell, and taking as a framework the idea
of the (in)existence of chance:

(a) First option: Chance does not exist, and it is only the result of our ignorance
about the real causes that rule the world. In a perfect knowledge situation, we
could control and understand each one of the variables which are involved into
one action and we could easily predict the final outcome. If we cannot do it,
and this is the most common situation in our daily life, it is because we do not
have a deep knowledge about the real Nature of the objects under our scrutiny
neither about the laws that affect to them. Then, everything is the result of a
predictable set of variables and consequently we live in a deterministic world,
with no choice or freedom. Causality led us to determinism. But, on the other
hand,

(b) Second option: if chance does really exist, then there are two consequences:

(i) First of all, moral/intentional: Chance is the true and core characteristic of
our universe, which is not governed by anything nor by anyone. What
then is the meaning of our world and life?

(ii) Second, an ontological problem: Chance exists, but at the same time,
deterministic rules exist affecting our universe. Then, it is true that
chance exists and, at the same time, it is not the result of our ignorance
but a characteristic of the universe. In this case: Is there a reality scalable
between determinism and chance? Chance forms the basis of quantum
reality or evolutionary biology, while determinism seems to dominate at
macro level (objects, planets, galaxies). Heisenberg’s uncertainty prob-
lem (regarding the uncertain relation between the position and the
momentum, or mass times velocity, of a subatomic particle, and the
epistemological paradox according to it “the more precisely the position
is determined, the less precisely the momentum is known in this instant,
and vice versa”15) and the Brownian motion (the random drifting of
particles suspended in a fluid) are examples of the reality of chance in the

15English translation from the original text in German (Heisenberg 1927).
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government (or lack of any control or determinacy) over the natural
events. On the contrary, at higher or macroscopic scales, events are ruled
by 4 deterministic elementary forces16 that alone or combined make it
possible to predict conceivable outcomes of events. Therefore, stochastic
processes lie at the heart of Nature, although it does not mean that
determinism is not possible.

By previous examples, we can affirm that human minds are not naturally ready
to deal with mathematical numbers, whatever the low complexity of their range, but
at the same time, there is also a natural17 numerosity skill necessary to work with
two kinds of events: first of all, the knowledge related to direct survival (to take care
of their breeding, to identify a possible situation of danger by number inferiority
and other daily situations); secondly, decision-taking processes in which an intu-
itive evaluation of previous events is involved, and this implies a rude, basic and
natural way to add or subtract positive/negative marked values over previous sit-
uations (or in more sophisticated beings, even imagined). As a conclusion, we
admit that the use of naïve, intuitive numbers is a reality in the natural world.

Then, several living animals show innate numerosity skills and it is plausible that
from this ability emerged a numeric knowledge of the world, as humans do,
although I will avoid here the philosophical debate about how the numbers acquired
quantitativeness (Wittgenstein 1953). For me it now more important to focus on
another aspect: how to solve specific tasks in which a fuzzy idea of number and
abstract quantity are involved. This is one of the benefits of future statistical
thinking: how to deal appropriately with uncertain or excessively disperse/broad
information to give an answer.

Swarm intelligence, like that intelligence showed by ants, is a kind of collabo-
rative task-design in which there are no words or numbers, although a basic
chemical language exists. It has been under intense study by AI programmers,
trying to obtain benefits from bioinspiration (Bonabeau 1999). Perhaps they decide
things, but the amount of information and/or conceptual rules to extract information
from it is very limited. Only when a rich environment, and complex tasks related to
it must be solved, can statistical thinking be necessary. The truth is looking at
Nature we can demonstrate that from irrational individual’s group rationality can
emerge (Sasaki and Pratt 2011).

16These four fundamental forces are as follows: strong, electromagnetic, weak, and gravity.
17Or prewired, following Page l, 2012. This work can somehow be situated within the range of the
debate on the cognitive Nature of human beings, a topic lead since the last decades by the notion of
“Universal Grammar” by linguist Noam Chomsky. For a deeper analysis of this question, see
Pinker (1997).
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1.5 Then…What the h__ll Is Statistics?

Surely you know the exact letter necessary to understand the previous phrase. You
have knowledge enough about language and its most frequent constructions,
besides some popular expressions, so it is easy to fill the blank space. Forgive my
impoliteness, I was just trying to show you how easily evolutionary meaning of
statistics and how it works can be conveyed. We recognize shapes from blurred,
fuzzy, evolving, and dark scenarios; our minds are evolutionarily prepared to find
meaning of the world. This explains the psychological mechanisms of pareidolia,
which explains how somebody can find a Jesus face in a slice of toast. This
pattern-attentiveness skill was very useful during millennia from a survival per-
spective. It is an example of several more strategies that emerged during natural
evolution to deal with the environment. Those animals with the ability to take good
decisions involving several sources of information and possible outcomes had
highest ratio of survival and, hence, of disseminating their genes through their
offspring.

My starting point is, animals, and from now our animals under study will be
humans, are faced with questions for which they do not have enough information.
They never can know all the possible data of any object/event (considering also
epistemic layer levels), and, consequently, they need to make generalizations from
insufficient data. This cognitive situation has been defined as “bounded rational-
ity”18 and the seminal paper on human real heuristics was written by Tversky and
Kahneman (1974). At this point, it was clear that the dual role of statistics as a tool
and a model of mind was an established fact. When Edwards, Lindman, and Savage
proposed Bayesian statistics as the true way to perform scientific analysis of data,
they considered at the same time the mind as a reasonably good, albeit conservative,
Bayesian statistician. This is the hidden legacy that tools bequeath to theories
(Gigerenzer 1991: 11). Besides this fact, and returning to our previous debate, some
events, like dice, are intrinsically hazardous. The search of rules, sense, and order
into the universe is the response to this necessity. In a first moment, magic answers
will appear and, then, scientific truths will illuminate the darkness of mind slowly.

18Going beyond, and accepting the impossibility of an universal implementation of
procedural/logicist rationality in all human action and decision domains, some authors consider
bounded rationality as an ecological rationality adapted to the environment features (see
Gigerenzera and Todd (1999). They consider that this approach is successful, fast and frugal and
escapes from the classic algorithmic approach, defending stronger heuristic thesis. They consider it
as an alternative to Bayesian thinking (Albert 2009:63) and defend what they call “cognitive
algorithms” (Gigerenzer and Goldstein 1996), as realizations of a framework for modeling
inferences from memory, the theory of probabilistic mental models.
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Chapter 2
Ancient Statistics History in a Nutshell

Abstract This chapter is entirely devoted to the historical roots of human interest
of chance, from gambling activities and theories to the role of insurance companies,
the medical aspects of vaccination, the notion of legal evidence or even the exis-
tence and intervention of some divinity. Conjoined to several human practices, the
philosophical aspects implied into the notion of hazard are explored which were
found initially in gambling or predictive rituals, most of them from a religious
context.

Keywords Dice � Insurance companies � Lottery � Determinism � Gambling �
Astronomy � Luck � Destiny � Wager � Vaccines � Legal � Evidence

At the beginning of the eleventh century, Japanese Emperor Shirakawa1 recited his
own list of three unmanageable things: sōhei (armed monks), dice, and the water of
the Kamo River. Those monks died centuries ago and Kamogawa was finally
domesticated by modern disciplined engineers, but dice… are still a proof of daily
surprise and the simplest example of the reality of chance. They are small toys for
fun, sometimes portrayers of good or bad luck, but always a solid geometrical form
with some signs painted or grabbed. Dice have fascinated us for several centuries,
always changing sides without a reasonable way of knowing their next behavior.
They will show us the pathway to statistics, be patient.

2.1 Dice in a Deterministic World

Five thousand years ago, dice were invented in India (David 1998). This fact
implies that their users had at least a common sense approach to the idea of
probability. Those dice were not the contemporary cubical standard dice, but fruit

Some of the data in this chapter has been extracted frommyprevious research (Vallverdú 2011a, b).
1白河天皇, Shirakawa-tennō, July 7, 1053—July 24, 1129, was the 72nd emperor of Japan.

© The Author(s) 2016
J. Vallverdú, Bayesians Versus Frequentists,
SpringerBriefs in Statistics, DOI 10.1007/978-3-662-48638-2_2

19



stones or animal bones (Dandoy 2006). They must surely have been used for fun
and gambling as well as for fortunetelling practices. The worries about the future
and the absurd idea that the world was causally guided by supernatural forces led
those people to a belief in the explanatory power of rolling dice. In fact, cos-
mogonical answers were the first attempt to explain in a causal way the existence of
things and beings. The Greek creation myth involved a game of dice between Zeus,
Poseidon, and Hades. And in the classic Hindu book Mahabharata (section
“Sabha-parva”), we can find the use of dice for gambling, where it is explained how
the Pandavas were robbed of their kingdom by means of a game of dice, but in both
cases, there is no theory regarding probability2 in dice, just their use “for fun.” At
this point, it is nonetheless necessary to make a stop and take a tour into Indian
culture.

According to Raju (Gabbay et al. 2011: 1174–1195), the permutational and
combinational theories necessary to calculating probabilities in games of chance,
such as dice or cards, were born in ancient India. First in Vedic metre conception
and secondly in the Jain Vyākhyāprajñapti, commonly known as Bhagavati sūtra,
the fifth of the 12 sacred āagam or janinist canonical texts. These texts were written
by Mahavira’s disciples who memorized and transmitted his ideas orally until they
were fixed by writing them into books (specifically, Sutras) around 4th or 3rd BCE.
There, permutations are called vikalpa-ganita (the calculus or alternatives) and
combinations bhanga. While Greek and Roman mathematics were still slaves of a
bad notational system, Indians had a perfect place value system and the number
zero, something that made it possible to work with very big numbers. It is true that
even before, in Egyptian mathematics of 12th Dynasty (ca 1990–1800 BCE) existed
even a number for one million drawn as a god with his hands raised in adoration
pictogram,3 and we know that Egyptians worked with high numbers as a conse-
quence of their big governmental necessities (food, prisoners, soldiers,…).
Nonetheless even in that case their numbers’ size was nothing compared to Indian
ones: Jain literature typically runs into very large numbers as 1012, 1053, or even
1060. Large numbers, beyond their magical meaning, demand a use of probability.
On the other hand, dice games in India are popular and have attracted intellectual
interest. For example, in the Rigveda, Mandala (book) 10, chapter 34,4 we find
several references to the gambling practices. Then, Indians have at the same time
knowledge about dice (and that they are always loaded), and fair/deceitful gam-
bling. This later introduces us to a notion of knowledge of large numbers where the
notion of convergence can be found and, even, the foundations or probability
theory.5 We note this and leave the debate at this point, more interesting for

2For a very detailed history of probability and how the empire of chance emerged among several
disciplines, see Gigerenzer, Gerd et al. (1989).
3Information obtained from Burton (2005).
4Although not written until fourth or sixth century of our era, Rigveda was much more ancient.
5As attempted to justify in the 1950s P.C. Mahalanobis, J.B.S. Haldane and D.S. Kothari. Raju
(2011): 1191 from the 3-valued logic present in Jainism.
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specialists in history of mathematics than us, who are following the path from
natural numbers to human ways to design strategies to deal with them. Anyhow,
numbers are not free from conceptual frameworks from which they emerge.

Again in Western territories, we can consider Aristotle as the strongest defender
of the causal and empirical approach to reality (Physics, II, 4–6) although he
considered the possibility of chance, especially the problem of the game of dice (On
Heavens, II, 292a30) and probabilities implied in it. These ideas had nothing to do
with those about atomistic chance by Leucippus, Democritus6, or Lucrecius’ con-
troversial clinamen’s theory. Hald (1988, Sect. 3.2.) affirms the existence of
mathematical rather than statistical thought in Classical Antiquity, surely due to the
imperfection of the used randomizers (bones of hooved animals instead of regular
dice), something that made an axiomatization of games of chance impossible;
regardless, we can accept that some authors (like Aristotle) were worried about the
idea of chance (as well as about the primordial emptiness and other types of
conceptual cul-de-sac), but they made no formal analysis of it. Anyhow, trust in
order and regularities was the aim of life and philosophy, as we can find in verse
490 of Book 2 of the Georgics (29 BC), by the Latin poet Virgil: “Felix qui potuit
rerum cognoscere causam” (translated as “Can he happy who is able to know the
causes of things”).

Later, we can find traces of interest in the moral aspects of gambling with dice in
Talmudic (Babylonian Talmud, Book 8: Tract Sanhedrin, chap. 3, Mishnas I to III)
and Rabbinical texts, and we know that in 960, Bishop Wibolf of Cambrai cal-
culated 56 diverse ways of playing with three dice. De Vetula, a Latin poem from
the thirteenth century, tells us of 216 possibilities. But the first occurrence of
combinatorics per se arose from Chinese interest in future prediction through the 64
hexagrams of the I Ching (previously eight trigrams derived from four binary
combinations of two elemental forces, yin and yang). The idea of making combi-
nations in order to obtain several results and find the best options was also
described by the Catalan philosopher Raimon Llull in his Ars Magna [Ars Maior
(1273–74), Ars inventiva (1289), and Ars generalis (1308)], later updated and
improved by Wilhelm Leibniz in his Dissertatio de arte combinatorial (1666).
What Llull tried to design was a method to convince Muslims about their funda-
mental error and to demonstrate the “evidence” of the Christian truth. With his
conceptual wheels, Llull embraced as a real polymathist all the wisdom of his era:
“arbor scientiae,” “arbor elementalis,” “arbor vegetalis,” “arbor moralis,” “arbor
aspostocalis,” “arbor coelestialis,” “arbor christianalis,” “arbor divinalis,” “arbor
naturalis et logicalis.” It can look like the classic encyclopedism of the Middle Age,
but Llull tried in fact to surpass this with a new heuristic of knowledge generation.

Despite the religious flavor of Llull’s attempts, it was a Muslim who started the
history of statistics, and beyond any religious framework. Instead of being worried

6As an exception of a whole Western paradigm, however, we find this point in one of the
conserved fragments of Democritus: “Everything existing in the universe is the fruit of chance and
necessity.” A whole recompilation can be found in the classic Diels (1903). Demokritos. A very
good paper on this topic is Edmunds (1972).
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by proselytism, Abu Yūsuf Yaʻqūb ibnʼ Isḥāq aṣ-Ṣabbāḥ al-Kindī, usually known
by Western historians as Al-Kindi (801–873), gave a detailed description of how to
use statistics and frequency analysis to decipher encrypted messages. With his book
Manuscript on Deciphering Cryptographic Messages, he gave birth to both
statistics and cryptanalysis. The truth is that Al-Kindi, while working at
al-Ma’mun’s House of Wisdom (together with al-Khwarizmi and the Banu Musa
brothers!) was faced with religious confrontations among orthodox factions,
although he was always a neutral philosopher and scientist more interested in
general knowledge than religious discussions. Anyway, cryptography had con-
nected politics and numbers or letters and now, statistical approaches had started to
change the way by which secrets could be transmitted.

In 1494, Luca Paccioli defined the basic principles of algebra and multiplication
tables up to 60 × 60 in his book Summa de arithmetica, geometria, proportioni e
proportionalita. He posed the first serious statistical problem of two men playing a
game called “balla,” which is to end when one of them has won six rounds.
However, when they stop playing A has only won five rounds and B three. How
should they divide the wager? It would be another 200 years before this problem
was solved. In 1545, Girolamo Cardano wrote the books Ars magna (the great art)
and Liber de ludo aleae (the book on games of chance). This was the first attempt to
use mathematics to describe statistics and probability and accurately describe the
probabilities of throwing various numbers with dice. Galileo expanded on this by
calculating probabilities using two dice, writing a small text in 1620, Sopra le
scoperte dei dadi (Concerning an Investigation on Dice). At the same time, the
measurement and quantification of all aspects of daily life (art, music, time, space)
between the years 1250 and 1600 made possible the numerical analysis of nature
and, consequently, the discovery of the distribution of events and their rules
(Crosby 1996). It was finally Blaise Pascal who refined the theories of statistics and,
later, Pierre de Fermat solved the “balla” problem of Paccioli (Devlin 2008). All
these paved the way for modern statistics, which essentially began with the use of
actuarial tables to determine insurance for merchant ships (Hacking 1984, 1990).
Pascal was also the first to apply probability studies to the theory of decision,
curiously, in the field of religious decisions. Despite the previous affirmation, and
according to Bellhouse (1988: 63) the beginning of probability began in 1645, it
was the time of the Pascal–Fermat correspondence in the middle of puritan casu-
istry. Puritans were faced with the problem of conciliate to the presence of div-
ination and gambling in the Bible with the notion of God’s will into a deterministic
world. There is a long list of examples of such events in the Bible,7 and crucial

7Bellhouse (1988): 66 quotes Acts 1:23–26; Luke 1:9–11; Matthew 27:35–37; Mark 15:22–24;
Luke 23:35, John 19:23–24…but there is a long list of false prophets (Deut. 18:10, 14; Micah 3:6,
7, 11), of necromancers (1 Sam. 28:8), of the Philistine priests and diviners (1 Sam. 6:2), of
Balaam (Josh. 13:22). Three kinds of divination are mentioned in Ezek. 21:21, by arrows, con-
sulting with images (the teraphim), and by examining the entrails of animals sacrificed. The
practice of this art seems to have been encouraged in ancient Egypt. Diviners also abounded
among the aborigines of Canaan and the Philistines (Isa. 2:6; 1 Sam. 28). At a later period,
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Christian theologists like Thomas Aquinas devoted part of their researches to battle
against chance falls. In the case of Aquinas, he expressed in his Summa Theologiae
that chance events were part of contingent events, and thus they were far from the
true and definitive nature of divine necessary events. Providence is thus deter-
ministic. Finally, in 1662, John Graunt published his mortality tables that produced
what has been called “empirical statistics.”

It is in this historical moment that the Latin term “probabilis” acquires its actual
meaning evolving from “worthy of approbation” to “numerical assessment of
likelihood on a determined scale” (Moussy 2005). In fact, Pascal introduced a new
concept: the moral wager.

2.2 From Dice to Moral Wagers and God in Mathematics

In 1669, seven years after his death, Blaise Pascal’s book Pensées was published
posthumously. At the beginning of the Third Section, aforism §233, it reads:

“(…)Let us then examine this point, and say, “God is, or He is not.” But to which side shall
we incline? Reason can decide nothing here. There is an infinite chaos which separated us.
A game is being played at the extremity of this infinite distance where heads or tails will
turn up. What will you wager? According to reason, you can do neither the one thing nor
the other; according to reason, you can defend neither of the propositions.

Do not then reprove for error those who have made a choice; for you know nothing
about it. “No, but I blame them for having made, not this choice, but a choice; for again
both he who chooses heads and he who chooses tails are equally at fault, they are both in
the wrong. The true course is not to wager at all.”

(Footnote 7 continued)

multitudes of magicians poured from Chaldea and Arabia into the land of Israel and pursued their
occupations (Isa. 8:19; 2 Kings 21:6; 2 Chr. 33:6). This superstition widely spread, and in the time
of the apostles there were “vagabond Jews, exorcists” (Acts 19:13), and men like Simon Magus
(Acts 8:9), Bar-jesus (13:6, 8), and other jugglers and impostors (19:19; 2 Tim. 3:13). Every
species and degree of this superstition was strictly forbidden by the Law of Moses (Ex. 22:18; Lev.
19:26, 31; 20:27; Deut. 18:10, 11). But beyond these various forms of superstition, there are
instances of divination on record in the Scriptures by which God was pleased to make known his
will. (1) There was divination by lot, by which, when resorted to in matters of moment, and with
solemnity, God intimated his will (Josh. 7:13). The land of Canaan was divided by Lot (Num.
26:55, 56); Achan’s guilt was detected (Josh. 7:16–19), Saul was elected as king (1 Sam. 10:20,
21), and Matthias chosen to the apostleship, by the solemn Lot (Acts 1:26). It was thus also that the
scape-goat was determined (Lev. 16:8–10). (2) There was divination by dreams (Gen. 20:6; Deut.
13:1, 3; Judg. 7:13, 15; Matt. 1:20; 2:12, 13, 19, 22). This is illustrated in the history of Joseph
(Gen. 41:25–32) and of Daniel (2:27; 4:19–28). (3) By divine appointment, there was also
divination by the Urim and Thummim (Num. 27:21), and by the ephod. (4) God was pleased
sometimes to vouch-safe direct vocal communications to men (Deut. 34:10; Ex. 3:4; 4:3; Deut.
4:14, 15; 1 Kings 19:12). He also communed with men from above the mercy-seat (Ex. 25:22),
and at the door of the tabernacle (Ex. 29:42, 43). (5) Through his prophets, God revealed himself
and gave intimations of his will (2 Kings 13:17; Jer. 51:63, 64). From: Divination. (n.d.). Easton’s
1897 Bible Dictionary.
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Yes; but you must wager. It is not optional. You are embarked. Which will you choose
then? Let us see. Since you must choose, let us see which interests you least: You have two
things to lose, the true and the good; and two things to stake your reason and your will, your
knowledge and your happiness; and your nature has two things to shun, error and misery.
Your reason is no more shocked in choosing one rather than the other, since you must of
necessity choose. This is one point settled. But your happiness? Let us weigh the gain and
the loss in wagering that God is. Let us estimate these two chances. If you gain, you gain
all; if you lose, you lose nothing. Wager, then, without hesitation that He is.—“That is very
fine. Yes, I must wager; but I may perhaps wager too much.”—Let us see. Since there is an
equal risk of gain and of loss, if you had only to gain two lives, instead of one, you might
still wager.”8

This colloquial style scandalized his contemporaries as well as posterior thinkers:
faith could be rational or not (the classic debate of Middle age), but never be the
result of a wager, because this act joined ignominiously the fields of religion and
games. This idea will be destroyed by the powerful Kantian moral Metaphysics
(Grundlegung zur Metaphysik der Sitten, 1785) and not will change until the radical
works of Friedrich Nietzsche at the end of nineteenth century and the antifunda-
mentalist ethical advances in the twentieth century. Although Kant also made an
indirect reference to a bet as a way to understand whether the things in which we
trust are solid enough,9 he was far from the belief in the presence of chance into

8Quoted from http://www.gutenberg.org/files/18269/18269-h/18269-h.htm#SECTION_III, acces-
sed May 28, 2013.
9“For the subjective grounds of a judgement, such as those that produce belief, cannot be admitted
in speculative inquiries, inasmuch as they cannot stand without empirical support and are inca-
pable of being communicated to others in equal measure. But it is only from the practical point of
view that a theoretically insufficient judgement can be termed belief. Now the practical reference is
either to skill or to morality; to the former, when the end proposed is arbitrary and accidental, to
the latter, when it is absolutely necessary. If we propose to ourselves any end whatever, the
conditions of its attainment are hypothetically necessary. The necessity is subjectively, but still
only comparatively, sufficient, if I am acquainted with no other conditions under which the end can
be attained. On the other hand, it is sufficient, absolutely and for every one, if I know for certain
that no one can be acquainted with any other conditions under which the attainment of the
proposed end would be possible. In the former case my supposition—my judgement with regard to
certain conditions—is a merely accidental belief; in the latter it is a necessary belief. The physician
must pursue some course in the case of a patient who is in danger, but is ignorant of the nature of
the disease. He observes the symptoms, and concludes, according to the best of his judgement, that
it is a case of phthisis. His belief is, even in his own judgement, only contingent: another man
might, perhaps come nearer the truth. Such a belief, contingent indeed, but still forming the ground
of the actual use of means for the attainment of certain ends, I term Pragmatical belief. The usual
test, whether that which any one maintains is merely his persuasion, or his subjective conviction at
least, that is, his firm belief, is a bet. It frequently happens that a man delivers his opinions with so
much boldness and assurance, that he appears to be under no apprehension as to the possibility of
his being in error. The offer of a bet startles him, and makes him pause. Sometimes it turns out that
his persuasion may be valued at a ducat, but not at ten. For he does not hesitate, perhaps, to venture
a ducat, but if it is proposed to stake ten, he immediately becomes aware of the possibility of his
being mistaken—a possibility which has hitherto escaped his observation. If we imagine to our-
selves that we have to stake the happiness of our whole life on the truth of any proposition, our
judgement drops its air of triumph, we take the alarm, and discover the actual strength of our
belief. Thus pragmatical belief has degrees, varying in proportion to the interests at stake.”
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moral sphere. Even in the natural domain, scientists like Einstein declared in the
twentieth century that “God does not play dice.” There is a cultural horror toward
the idea of the chance in the universe, as a rule of the destiny. Nonetheless, the birth
of moral statistics and the relationship between God and numbers must still to be
explained. Let’s go!

In the year of 1612, a big first prize was obtained by the winner of the London
Lottery. This Lottery was organized by King James I to obtain funds to help to the
colonies established in Virginia.10 At the same time, he granted to the Virginia
Company of London the right to raise money to help establish those settlers in the
first permanent English colony at Jamestown (Virginia). Lotteries were created in
China in the third to second century BC, in order to obtain funds to run politic
activities (financial aid to State projects, pay armies…). 46 years had passed after
the first lottery in England, authorized by Queen Elizabeth I, when there was a
debate on some social problems on chance games, so it is normal that intellectuals
devoted themselves to its study. The French Calvinist Lambert Daneau was the first
(in 1566, Deux traittez de S.c. Cyprian. L’un, contre les ieux ei iouers de cartes &
de dez. Le tout mis en francois par L. Daneau) to write about gambling and religion
and suggested which games should be allowed or forbidden to Christians: to the
first section belong games of pure chance, while in the second corresponded games
of mixed chance and skill. The first English Puritan to write about this topic was
Northbrooke (1577).

Some decades later, in 1619, Thomas Gataker published Of the Nature and Use
of Lots, offering a historical review on games in which hazard is involved, as well as
a religious interpretation of Chance. From his own words, in Chap. 2, §1, 6, 711:

Now because Chance or Casualty bears much sway in Lottery, Casual Events being the
subject matter of Lots, the due consideration thereof will help not a little to the clearing of
the nature of Lots and Lottery, and those Questions that are moved concerning the same.
Concerning Chance therefore or Casualty we will consider four things: (1) the name of it;
(2) the nature of the thing so named; (3) two distinct Acts concurring in it, and (4) and
lastly, certain conclusions or aphorisms concerning it. (…)By the means whereof it comes
oft to pass, the same events are casual to some that foresaw them not, and yet not casual to
others that foresaw them before. And so it is true, that Casualty depended upon our
ignorance; which therefore the more we know, the less we are subject unto. §7. And hence
follows the fourth and last Conclusion: That there is no casualty with God, because there is
no ignorance in God. There is nothing, I say, casual unto Him; nothing comes contingently,
but all things are necessarily in regard of Him and His decree.”

(Footnote 9 continued)

Critique of Pure Reason, A825/B853. Quoted from http://www.gutenberg.org/files/4280/4280-h/
4280-h.htm, accessed in May 28th 2013. In 20th Century Bruno de Finetti will offer a more
sophisticated version of Kant’s approach to the confidence evaluation of own opinions.
10Only in 1612, the benefits of this lottery amounted to nearly of £30.000, according to Holmes
(1826).
11The full edited text can be found at http://www.conallboyle.com/lottery/GatakerNature_
UseofLots.pdf, accessed in May 29, 2013.
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Here, and italics in the previous text are mine, we find one of the most current ideas
of ancient thinkers: casualty (or chance or hazard) is nothing but the result of human
ignorance; God knows everything and, then, for him (yes it is a he), there is no
casualty. Chance is a consequence of ignorance, not a real dimension of the reality,
just a mistake emerged from human fuzzy cognition.12 Consequently, childish
bibliomantic practices were banned by early Christians, although not very suc-
cessfully: among the Christians remained some fortune-telling practices, as Bible
lottery or sortes Biblicae, a method consisting by taking random passages from the
Bible and to interpret them as signs of fortune. This was an inherited practice from
Greek and Roman cultures (Sortes Homericae—usually from Iliad, sortes
Virgilianae—using Aeneid fragments or verses). In France, the Gallican synods of
Vannes (465 CE), Agde (506), Orleans (511), and Auxerre (570–590) passed
ordinances vowing to excommunicate any Christian who “should be detected in the
practice of this art, either as consulting or teaching it’” (Metzger 1993). What is
most surprising is that the most well-known instance of sortes biblicae was by St.
Augustine of Hippo who in the year 386 was prompted by a childlike voice he
heard telling him to “take up and read” (in Latin: tolle, lege). Augustine opened a
Bible at random, selecting from the two sides the verses of Romans 13:13–14 (“Not
in rioting and drunkenness, not in chambering and impurities, not in strife and
envying; but put you on the Lord Jesus Christ, and make not provision for the flesh
in its concupiscences.”), and later wrote that “as if before a peaceful light streaming
into my heart, all the dark shadows of doubt fled away” (Confessions, Bk. 8,
Chap. 29). Augustine was then converted, calling the experience a direct work of
God, but a few centuries later this would have been considered just a blaspheme and
sinful behavior (some millennia later, it could be easily typified as “schizophrenic”).

So, Gataker studied lotteries and hazard games because he wanted to clear the
darkness inside them, and at the same time to reflect the paucity of the human mind,
which always needed the divine omniscient guidance (Rescher 1995).

The next attempt to join theology and statistics was the demographic theology of
Johann Peter Süssmilch. In 1741, this German priest with interests in demography
published Die göttliche Ordnung in den Veränderungen des menschlichen
Gesglechts, aus der Grut, dem Tode, un der Fortpflanzung (The Divine order in the
changes in the human sex from birth, death and reproduction of the same), a very
curious work full of still more curious theses, all about the invisible guidance of
God through the hand of His Providence. According to Süssmilch, if somebody
analyzes long rungs of birth registers, it can be found that approximately the 50 %
ratio of males and females is stable. For him, this was a logic consequence of the
evident hand of God, and this text becomes one of the first attempts to talk about

12We will find in one of the leading founders of modern statistics, Laplace, a similar idea: “(proba-
bility) is relative, in part to our ignorance, and in part to our knowledge”, Laplace (1814: 8).
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intelligent design. In fact, Süssmilch had not been the first to point to this fact, but
the Scottish John Arbuthnot. In 1710, he published An argument for Divine
Providence, taken from the constant regularity observed in the births of both sexes
in the Royal Society’s Philosophical Transactions, where he analyzed birth data
and demonstrated that males were born at a greater rate than females. He considered
that this fact was against the 50 % equal odds and that the only explanation was the
active influence of divine providence into this process, in order to correct the early
deaths of males who die young more often than females. This problem of sex ratio
was attacked but not solved one century later by Charles Darwin and was necessary
to reach the twentieth century to find an answer: Ronald A. Fisher established it in
1930 with the book The Genetical Theory of Natural Selection the so-called Fischer
principle, a ratio of 1:1 between sexes as an evolutionary stable strategy. But
cultural incidence is changing this ratio, as has been noted by Hvistendahl (2011).

2.3 Fortuna, Destiny, Luck, Chance, or Probability …

Until this moment we have seen that before seventeenth century, a specific
vocabulary to deal with probability did not exist, basically because cultural para-
digms cannot allow it inside them. Nevertheless, these different cultures had the
necessity to express several notions of non-deterministic events. That is, not con-
trolled events. I will make a short journey across these words and their meanings.

Greek Goddess Ananké (Necessitas for Roman mythology), the mother of the
Moiri and Adrasteia, was considered the Goddess of destiny, necessity, and fate.
Supranatural or divine rules guided human lives secretly, who should discover it
and embrace their destiny. At a certain level, there was no free will for them just a
terrible divinity will. Tyche was a different goddess (worshipped in Rome under the
name of Fortuna) who was considered as the governor of the prosperity or decline
of a city as well as the source of all unexpected events in human life, whether good
or evil. So in a certain way, she was related to hazard or luck. Temples were built to
Tyche asking for a better life and Romans considered her as the fors, the luck,
fortuity, accident, and chance and sometimes painted her as a woman who spins a
wheel, the Rota Fortunae (or wheel of fortune). Fortuna was also christianized and
forms part of the history of medieval art and minds. Curiously, there was still a third
goddess, Ananke, also called “Necessity,” the strongest force in the realm of gods
who was also paired with Fortuna. Something similar exists in Hinduist tradition
under the name of karma (a cosmic regulatory law of cause–effect, along
with samsara (reincarnation cycle) and moksha (liberation from samsara). In our
days, the presence in human life of the notion of chance is overwhelmingly present.
As the poet tells us, luck is everything.13 Close to the notion of “fortuna” in the

13Childish (1988). Poem ‘h.m. prison maidstone’. A wonderful poem written by a different poet.
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twelfth and thirteenth centuries in Europe appearing in the oriental Mediterranean
area, the notion of risicum or risk emerged, probably from the Arab word riszq
(Piron 2004). This risicum was related to the games practices as well as to the perils
of economic procedures, most of them analyzed by Franciscan monks (Ceccarelli
1999). These theologians were mainly interested in the notion of contract and how
random elements present in that contract should be considered (Meusnier and Piron
2007). This was very close to the first maritime insurances invented in Tuscany in
the first half of the fourteenth century were the risk of a commercial operation,
accepted by the insurer against the payment of a premium. For a psychological
analysis of luck, see Pritchard and Smith (2004).

Finally, the term “probability” can be found in Classic Rome in Latin as the
word “probabilis,” translated as “credible,” but in 1660 when it turned the meaning
toward the modern use (Hacking 1984). It was in 1657 that Hyugens published De
Ratiociniis in Ludo Aleae (1714 English version published as “The VALUE of all
CHANCES IN Games of Fortune; CARDS, DICE, WAGERS, LOTTERIES, &c.
Mathematically Demonstrated”). Very soon La logique, ou l’art de penser, in 1662
also appeared by Antoine Arnauld and Pierre Nicole, commonly quoted as
Port-Royal Logic. They introduced the idea of the necessary quantification of
probability.

2.4 Pay Me Again, Sam…From New Gods and Taxes
to Statistics

Approximately 6/7 years before year 114 of our Era and during the reign of Emperor
Augustus, Publius Sulpicius Qurinius was appointed governor of Syria. One of his
first actions was to improve his taxes recollection performing a new census of the
Jewish population. The Gospel of Luke explains that was then when Joseph and the
pregnant Maria travelled to Jerusalem to notify their data, but because of the
advanced situation of her pregnancy, they gave birth to the child in Bethlehem: he
was Jesus, the founder of the biggest and most widespread religion existing to this
day. Don’t be lost by this shell game with words: here the important thing is the
census, not the religion.

If we look at the Oxford English Dictionary, as a simple source to the topic and
look for the entry “statistic” this is found:

The earliest known occurrence of the word seems to be in the title of the satirical work
Microscopium Statisticum, by ‘Helenus Politanus’, Frankfort (?), 1672. Here the sense is
prob. ‘pertaining to statists or to statecraft’ (cf. statistical a. 1). The earliest use of the adj. in
anything resembling its present meaning is found in mod.L. statisticum collegium, said to
have been used by Martin Schmeizel (professor at Jena, died 1747) for a course of lectures

14See Gould (1997) for the debate on when exactly it is supposed that Jesus was born and how it
should be considered numerically the first year of Jesus’s life.
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on the constitutions, resources, and policy of the various States of the world. The G.
statistik was used as a name for this department of knowledge by G. Achenwall in his
Vorbereitung zur Staatswissenschaft (1748); the context shows that he did not regard the
term as novel. The F. statistique n. is cited by Littré from Bachaumont (died 1771); Fr.
writers of the eighteenth century refer to Achenwall as having brought the word into use.
The sense-development of the word may have been influenced by the notion that it was a
direct derivative of L. status.

And by “statistics”:

c.B.1.c Statistics. Any of the numerical characteristics of a sample (as opposed to one of the
population from which it is drawn). Cf. parameter 2f.

So, statistics has a direct relationship with census, the registration of citizens and
their property for purposes of taxation. From this close tie between social numbers
and government, the etymological trace of the work “statistics” can be understood.
The German jurist and philosopher Gottfried Achenwall coined the word “Statistik”
in his 1752 work Staatsverfassung der Europäischen Reiche im Grundrisse
(Constitution of the Present Leading European States), when he related mathe-
matical calculations of country activities like commerce or agriculture. He also gave
currency to the word “Staatswissenschaft” (science of politics), the knowledge
necessary to understand and run a modern State. At the beginning of the section
“Vorbereitung von der Statistik überhaupt,” he identifies some authors who in the
past talked about things close to his notion of statistics, a concept that he defined in
section §5: “Staatsverfassung eines oder mehrerer einzelnen Staaten ist die
Statistik” (The constitution of one ore more individual states is the statistics), and in
§6 he added “Durch die Statistik erlangt man die Staatskenntniß” (Thanks to
statistics somebody can achieve knowledge about the State). Achenwall makes a
qualitative approach to numbers and the affairs of the State (in this sense he also
talks of Staatslehre, Staatswissenschaft, Staatrecht…), not merely one quantitative
as we can infer in our days from the notion of “statistics.” Going to the core of his
ideas, we find a very charming notion of State, §2: “Staat ist eine Gesellschaft von
Familien, welche zu Beförderung ihrer gemeinsamen Glückseelichkeit unter einem
Oberhaupte mit einander vereiniget leben” (The State is a society of families who
live together under the guidance of a superior power for the conveyance of a
common happiness).

The Bills of Mortality (1662, the complete title is Natural and Political
Observations Made upon the Bills of Mortality), published by the haberdasher John
Graunt included the first life table and turned his author into one of the first
demographers and epidemiologists. He made statistical analysis of the population of
London and his impressive results appointed him to the election as member of The
Royal Society despite the class reluctances. One of the 12 who were at Gresham
College in November 28,1660, who proposed a new institution that would be the
Royal Society, William Petty is considered, together with Graunt, the founder of the
modern census statistics, basically due to his interests in what he called “political
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arithmetic.” He made estimations and used simple averages, always as part of his
duties working alongside Oliver Cromwell and serving as parliamentarian.

From the “Herodes Census” (Quirinius), to the first colonial census made in Peru
by the Spanish Don Pedro de La Gasca at Perú of 1548, the interest in such tables of
data was mainly due to economics as well as military. It is not strange that
mathematicians, even leading experts like Leibniz, were attracted by governmental
forces to this research field, which became secret for national security. At the same
time, these huge lists of data required from new ways to be easily understandable,
that is, visually mapping. And, finally, with so many objective data, the idea of
“normality,” emerged that introduced into human studies the notion of “average
man” (home moyen, according to Quetelet, the astronomer who first applied sta-
tistical analyses to human biological domains). This also made possible a math-
ematization of the whole human sphere, allowing the birth of the social
mathematics, by Condorcet, as well as the consequent positivist view of Auguste
Comte.

2.5 From Dice to Vaccines and Assurance Companies:
The Birth of Probability

1660 is the year, if we follow Hacking (1984, 1990), of the birth of probability. But
several things concurred in order to generate the complex and extended notion of
probability, which we will analyze in this section.

2.5.1 First of All, Vaccines

The dispute between Daniel Bernoulli and Jean Le Rond D’Alembert on the effi-
cacy and utility of smallpox vaccination was a different context in which the
probability issues were discussed, far from previous recreational, hypothetical, or
mathematical discussions. It was the year 1760, in the middle of an intense con-
troversy on the benefits of inoculation that had started with the works of Pierre
Louis Moreau de Maupertius (1698–1759) and Charles Marie de la Condamine
(1701–1774). The latter, especially, has written several memoranda favoring the
introduction of inoculation into France, then a very young technique (Dietz and
Heesterbeek 2002). Daniel Bernoulli wrote a paper modeling smallpox, using
Halley’s life table and some data concerning smallpox to show that inoculation was
advantageous if the associated risk of dying was less than 11 %. Inoculation could
increase life expectancy at birth to up to three years (Bacaër 2011). This was the
first mathematical model employed in epidemiology, a discipline that we will
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discuss in later chapters because of its close links with statistics and causality
debates. Immediately, D’Alembert criticized Bernoulli’s work from a seminal
presentation at Académie royale des sciences to its several publications.15

Bernoulli’s model was probably the first compartmental model and described the
age-specific prevalence of immunes for an endemic infection which is potentially
lethal. In a letter to the mathematician Euler, Bernoulli showed himself as sad at
D’alembert’s criticisms and considered his work as “c’etoit, si j’ose le dire, comme
une nouvelle province incorporée au corps des mathematiques” (translated as “it
was, I dare say, like incorporating a new province into the body of mathematics”;
cursives are mine). This debate aroused an enthusiasm in France for the social uses
of probability (Zabell 2011: 1153). The star-system philosopher Voltaire joined the
general debate on probability and its uses incorporated into the list of friendly
statistics authors. He wrote a book in 1772 entitles Essai sur les probabilités en fait
de justice. There he explained (p. 371) that “Presque toute la vie humaine roule sur
des probabilité” (Almost all human life is based on “probability”), a curious dec-
laration in a deterministic era, sign of the changes that were happening in his time.

2.5.2 Secondly, Insurance Companies

As a second domain encapsulating an attraction toward the use of numbers to
explain and predict future outcomes is the assurances. Yes, a pragmatic use, as
usually happens with most new ideas of humanity. Babylonian merchant land
traffics and later Phoenician merchant sea traffic were the first situations in which a
rude and basic insurance idea was applied. Following Trenerry (2009: 6), the
essentials of that Bottomry were reinforced by law for the first time in the Code of
Hammurabi (2250 B.C.). Later, Achaemenids (Persians), Greeks, or Romans
evolved this simple version and started a transformation (e.g., introducing life
insurances by collegia funeraticia in Roman culture16) that led to the origin of
modern insurance companies in seventeenth century. A first step toward this

15For the very strange reasons of life, D’Alembert immediately wrote a criticism which he pre-
sented on November 12, 1760, to the Royal Academy of Sciences and which he published his
collected works in the following year. This means that his critique of Daniel Bernoulli appeared
five years before Bernoulli’s contribution was eventually published by the Academy in 1766.
Bernoulli was very annoyed about the critique by d’Alembert, which can be seen from his letter to
Euler in April 1768 (Dietz and Heesterbeek 2002: 12).
16A look at an old but still fascinating book like Die römischen Collegia Funeraticia nach den
Inschriften (1888), by Traugott Schiess, is very informative in this topic. An online version is
available at: http://archive.org/stream/diermischencoll00schigoog#page/n5/mode/2up. These
societies allowed poor people to cover the expenses of their burial, as well as some other assistance
during their life.
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process was made in Genoa in 1347, when the first known insurance contract was
created (Franklin 2001). The first book on insurances was written in 1557 by the
Portuguese lawyer Pedro de Santarem (Petrus Santerna): Tractatus de assecura-
tionibus et sponsionibus mercatorum ad praxim quotidianam utilissimus & om-
nibus in foro presertim mercatorum versantibus quotidianus. In this book, sea trade
protection (Mercatores maris) was the basic target of the insurance system pro-
tecting merchandise as well as the crew or the vessel. The creation of quantitative
lists trying to evaluate the possible risks from the destiny, boat, captain, crew, or
merchandise required from mathematical tools from statistical nature. A coffee
house led by Edward Lloyd in London in 1688 was a common place for sailors and
shipping industry investors to share last notices about the field, and it was a source
of information for insurance experts. It was in this conceptual arena in which ideas
like “normal curves” or “normal man” (Adolphe Quetelet’s l’homme moyen)
emerged from statistical data to enter into political, medical, artistic, and even the
anthropological arena. Fire protection was another important speciality of insurance
companies, and curiously, Benjamin Franklin founded in 1752 America’s oldest,
continuously active insurance company: Philadelphia Contributorship for the
Insurance of Houses from Loss by Fire. The Contributorship, as is now its common
reference, was a proactive insurance carrier refusing to provide coverage to houses
and other structures that were not constructed according to strict building standards.

2.5.3 Third, Legal Issues and the Notion of “Evidence”

In Sect. 2.5.1, it was mentioned that Voltaire wrote a book on probability and
evidence in the legal context. This work inspired Minister Turgot in the reform of
the French legal system and prepared the field for fruitful research across the time.
In 1837, for example, the mathematician Siméon-Denis Poisson wrote Recherches
sur la probabilité des judgements, where he made an interesting distinction between
subjective and objective senses of probability (Zabell 2011: 1153). At a certain
level, he followed some previous but not well-defined concepts of Hume. The
British philosopher wrote in 1739, A Treatise on Human Nature (T 1.3.11.3, SBN
124–125): “Probability or reasoning from conjecture may be divided into two
kinds, viz. that which is founded on chance, and that which arises from causes. We
shall consider each of these in order.” For Hume, chance was merely the negation of
a cause and causes themselves were not real just mental habits, and even more
“chance is nothing real in itself” (íbid. p. 125). Without causality, all the beliefs of
Enlightenment religious scientists, who looked at nature to find the justification of
the existence of God and his rules, disappeared. Then, the study of causal events
became a priority for theologians. Probability was then the result of an imperfect
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experience17 and consequently chances were equal and indifferent (no place for
statistical multicausality). Poisson tried to make a new objective field of research,
avoiding previous errors and misunderstandings or fatidic double senses, basically
those concerning the meaning of words, into a philosophical problem:
“Fundamentally, the theory of chance and mathematical probability applies to two
kinds of questions that are quite distinct: to questions of possibility which have an
objective existence, as has been explained, and to questions of probability which
are relative, in part to our knowledge, in part to our ignorance” (quoted from Zabell
2011: 1156). This philosophical debate continued with Cournot in his 1843
Exposition and 1851 Essai, where he affirmed the existence of two kinds of
probability (and types of studies): philosophical and mathematical. First one was
not reducible to a calculus of chance, while the second was. Philosophical proba-
bility was closer to natural phenomena, and out of the realm of mathematical
analysis, and hence, of absolute (frequentist) truth. This distinction between chance
(philosophical) and probability (mathematical) was also proposed in a certain way
by Jakob Fries in Germany (1842, Versuch einer Kritik der Prinzipien der
Wahrscheinlichkeitsrechnung, Braunschweig: Vieweg),18 Richard Leslie Ellis
(1843, “On the Foundations of the Theory of Probabilities”, Transactions of the
Cambridge Philosophical Society vol 8) and John Stuart Mill (1843, A System of
Logic, Ratiocinative and Inductive) in England. It is interesting to note that Mill
was hostile to statistical thinking and related thinking (like Quetelet’s social phy-
sics). Auguste Comte, another influential thinker of that century, was an opponent
of social statistics as well as of other, for him, biased uses of statistics into scientific
realms, despite his defense of scientific quantification. In the case of Mill, his
approach to the statistical debate came from the analysis of coincidences: how to
distinguish coincidences that are casual from those that come from natural laws or
processes. Mill argued against Laplace’s (initial) subjective interpretation of
probability and made him affirm that statistics misuses were “the real opprobrium of

17Specifically he wrote (íbid. T 1.3.12.25, SBN 142): “BUT beside these two species of probability,
which are deriv’d from an imperfect experience and from contrary causes, there is a third arising
from ANALOGY, which differs from them in some material circumstances. According to the
hypothesis above explain’d all kinds of reasoning from causes or effects are founded on two
particulars, viz. the constant conjunction of any two objects in all past experience, and
the resemblance of a present object to any one of them. The effect of these two particulars is, that
the present object invigorates and in livens the imagination; and the resemblance, along with the
constant union, conveys this force and vivacity to the related idea; which we are therefore said to
believe, or assent to.” The complete work of Hume, very professionally digitalized, can be
accessed from http://www.davidhume.org.
18Fries, besides of his studies on Kantian psychology and ethics, wrote in 1816 a text How the
Welfare and Character of the Germans are Endangered by the Jews (Über die Gefährdung des
Wohlstandes und Charakters der Deutschen durch die Juden. Eine aus den Heidelberger
Jahrbüchern der Litteratur besonders abgedruckte Recension der Schrift des Professors Rühs in
Berlin: Ueber die Ansprüche der Juden an das deutsche Bürgerrecht, Heidelberg: Mohr und
Winter). It is very curious that statistics was so close related (or used) in a future with eugenics and
racist theories, as we will see with the use of Darwin’s work by Galton. L’esprit du siècle was a
bad spirit…directing European culture to the worst and darkest future.

2.5 From Dice to Vaccines and Assurance Companies … 33

http://www.davidhume.org


mathematics.” (íbid. p. 382).19 Under this accusation, we must identify a debate on
the procurance of inferences. One of the theoreticians involved in this debate was
Charles S. Peirce, who wrote on the topic on Illustrations of the Logic of Science
(1877–1878) and A Theory of Probable Inference (1883). He conducted research on
regression models and defended a propensity theory of probability (later continued
by eminent philosopher Karl Popper together with his ideas on falsifiability, close
to the null hypothesis testing ideas, as suggested by Meehl in 1967, hinting at
achieving the Popperian principle of representing theories as null hypotheses and
subjecting them to challenge).

Close to the Ellis probability ideas, in 1866 the British Philosopher and logician
John Venn wrote The Logic of Chance: An Essay on the Foundations and Province
of the Theory of Probability, which is considered one of the first texts on frequentist
statistics paradigm, something we have still not explained and that we will analyze
in the following chapters. Venn was also the inventor of the very important Venn
diagrams, and one of these can be seen as peacefully mingling colors from the sun
light at a stained glass window in the dining hall of Gonville and Caius College, in
Cambridge (UK). In the preface to the first edition, Venn explained:

This supposed want of harmony between Probability and other branches of Philosophy is
perfectly erroneous. It arises from the belief that Probability is a branch of mathematics
trying to intrude itself on to ground which does not altogether belong to it. I shall endeavour
to show that this belief is unfounded. To answer correctly the sort of questions to which the
science introduces us does generally demand some knowledge of mathematics, often a great
knowledge, but the discussion of the fundamental principles on which the rules are based
does not necessarily require any such qualification. (…) The opinion that Probability,
instead of being a branch of the general science of evidence which happens to make much
use of mathematics, is a portion of mathematics, erroneous as it is, has yet been very
disadvantageous to the science in several ways. Students of Philosophy in general have
thence conceived a prejudice against Probability, which has for the most part deterred them
from examining it.

Venn considered that the foundations of probability needed to be explained as well
as the same probability. That mathematicians were not interested in entering into
this philosophical quicksand was not an excuse about the necessity of the project.
The philosophical debate surrounding the statistical analysis of nature has disap-
pointed, hassled, abashed, or disgusted those researchers with a more mathematical
training and pragmatic spirit, although at the end the philosophical debate appeared
again to justify the “best” statistical approach. The debate on statistics is not only

19The exact and full quote is as follows: “It is obvious, too, that even when the probabilities are
derived from observation and experiment, a very slight improvement in the data, by better
observations, or by taking into fuller consideration the special circumstances of the case, is of more
use than the most elaborate application of the calculus to probabilities founded on the data in their
previous state of inferiority. The neglect of this obvious reflection has given rise to misapplications
of the calculus of probabilities which have made it the real opprobrium of mathematics. It is
sufficient to refer to the applications made of it to the credibility of witnesses, and to the cor-
rectness of the verdicts of juries”. To provide justice to his words, Mill did not have a negative
attitude towards statistics, just to some (for him) misuses of statistical tools.
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ontological, but also epistemological: the idea of method and truth. Venn even
included some exceptions to this philosophical disinterest, like de Morgan’s Formal
Logic and Boole’s Laws of Thought. He also considered Mill and Whewell (1840,
Philosophy of the Inductive Sciences) as trend inducers to an aversion toward
interest on probability, something wrong and misleading. Herschel, a leading
thinker at that time, considered probability in his preliminary Discourse (1830)
only as something related to measurement techniques, but not as a basic charac-
teristic of normal science.

Finally, the introduction of statistics into the judicial arena was seen as a great
mistake for several authors although Joseph Louis François Bertrand, for example,
wrote against this common view in his 1889 Calcul des probabilités, p. 43, 5:
“L’application du calcul aux decisions judiciaires est, dit Stuart Mill, le scandale des
Mathematiques.20 L’accusation est injuste. On peut peser du cuivre et le donner
pour or, la balance reste sans reproche. Dans leurs travaux sur la theorie des
jugements, Condorcet, Laplace et Poisson n’ont pese que du cuivre.”

After all these seminal ideas on probability, we are now prepared to introduce
the reader to Prof. Bayes and his revolutionary ideas on numbers and events.
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Chapter 3
The Bayesian Approach and Its Evolution
Until the Beginning of the Twentieth
Century

Abstract Rev. Bayes and his friend Richard Price created a new way to deal with
the philosophical and theological problems on induction as were explained by
Hume. This mathematical formula included the notion of subjective probabilities
and, consequently, opened a debate on its validity. French mathematician
Pierre-Simon Laplace applied it successfully to astronomical calculations just
before starting to change his mind over the correctness of Bayes’ formula. Several
objections and practical challenges made the general implementation of Bayes’
ideas impossible.

Keywords Bayes � Bayes’ theorem � Price � Laplace � Priors � Subjective
probabilities � Induction � Hume � Military

The Presbyterian minister Thomas Bayer died in the serenely beautiful city of
Tunbridge Wells, which is 35 miles southeast of London, in April 7, 1761. He had
devoted his life to his ministry duties but always keep in mind a true interest in
mathematics. Although he published two books1 his greatest contribution to science
remained hidden in his personal writings. Bayes’ family asked Richard Price, an
Unitarian minister and friend of Bayes,2 to examine his unpublished papers and it
was then that Price realized their importance: One of the manuscripts, An Essay
towards solving a Problem in the Doctrine of Chances, was extremely important
and consequently was read by Price to the Royal Society in 1763. For that occasion,

1Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and
Government is the Happiness of His Creatures (1731) and An Introduction to the Doctrine of
Fluxions, and a Defence of the Mathematicians Against the Objections of the Author of the Analyst
(published anonymously in 1736).
2Price was even a beneficiary of Bayes’ inheritance. Bayes left £200 to be divided between John
Hoyle and Richard Price (Dale 1999: 26). Hoyle was the minister at Stoke Newington from 1748
to 1756. When Hoyle left Stoke Newington to take up a position in Norwich (Browne 1877),
Richard Price became the pastor at Stoke Newington. Both chapels eventually became Unitarian
churches, and both Hoyle and Price were known Arians, (Bellhouse 2004: 11). It was a complete
religious environment.
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Price wrote a very interesting introduction3 in which he presented Bayes’ results as
experimental philosophy, the cornerstone idea of English philosophers of that
epoch.4 The philosophical implications of the manuscript were clear: in order to
give “a clear account of the strength of analogical or inductive reasoning,”
according to Price’s own words, Bayes, again according to the interpretation of
Price, had suggested firmly5:

to find out a method by which we might judge concerning the probability that an event has
to happen, in given circumstances, upon supposition that we know nothing concerning it
but that, under the same circumstances, it has happened a certain number of times, and
failed a certain other number of times. He adds, that he soon perceived that it would not be
very difficult to do this, provided some rule could be found, according to which we ought to
estimate the chance that the probability for the happening of an event perfectly unknown,
should lie between any two named degrees of probability, antecedently to any experiments
made about it; and that it appeared to him that the rule must be to suppose the chance the
same that it should lie between any two equidifferent degrees; which, if it were allowed, all
the rest might be easily calculated in the common method of proceeding in the doctrine of
chances.

At any rate, and more according to his true vital interests, after discussing de
Moivre’s work, Price stated:

The purpose I mean is, to shew what reason we have for believing that there are in the
constitution of things fixt laws according to which events happen, and that, therefore, the
frame of the world must be the effect of wisdom and power of an intelligent cause; and thus
to confirm the argument taken from final causes for the existence of the Deity.

What motivated Price to work on this paper was that to him the result provided a
proof of the existence of God, as well as contributing to clarify the theological and
philosophical corollaries of Hume’s critics on induction (Bellhouse 2004: 24).
When the essay was published posthumously in the Philosophical Transactions of
the Royal Society of London (1763), it received some good reviews, but it did not
receive the surely deserved honors…it was not until the 1950s that it would be
applied extensively by different authors. Why? The reasons are clear: because of the
calculations complexity of its implementation into real scientific studies, Bayes’
theorem was not an easy choice and consequently for two centuries, it remained
almost hidden.

3Although Price himself expressed his role as simple transmitter of the ideas of Bayes, some
reluctance could be expressed about his complete respect of the original manuscript. Following
some remarks of Prof. Bellhouse (2002), it might be very probable that Mr. Price made some
“adjustments” to the final redaction, although he respected the main ideas (see Earman (1992) for a
technical analysis).
4Following Gillies (1987, as well as by personal correspondence), we must say that Bayes made
the mathematical contributions and Price the philosophical arrangement of it. Though the papers
do not explicitly cite Hume, there is evidence that the authors were trying to solve Hume’s
problems about induction.
5The original essay can be freely downloaded as a PDF file from http://www.stat.ucla.edu/history/
essay.pdf.
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But which was the exact contribution of Rev. Bayes? When we read the original
paper published posthumously by Price,6 we find the statement of a problem, how
to find for an unknown event the chance that the probability of its happening in a
single trial, and several sections with a conceptual response to the initial problem.
In the same problem description, Bayes affirms that this chance lies somewhere
between any two degrees of probability that can be named. Then, he elaborated a
list of definitions, trying to clarify frequent linguistic misunderstandings when we
talk about chance, and 10 propositions, 3 rules plus 1 appendix later, he closed his
text affirming that:

But what most of all recommends the solution in this Essay is, that it is compleat in those
cases where information is most wanted, and where Mr. De Moivre’s solution of the inverse
problem can give little of no direction; I mean, in all cases where either p or q are of no
considerable magnitude. In other cases, or when p and q are very considerable, it is not
difficult to perceive the true of what has been here demonstrated, or that there is reason to
believe in general that the chances for the happening of an event are to the chances for its
failure in the same ratio with that of p to q. But we shall be greatly deceived if we judge in
this manner when either p or q are small. And tho’ in such cases the Data are not sufficient
to discover the exact probability of an event. Yet it is very agreeable to be able to find the
limits between which it is reasonable to think it must lie, and also to be able to determine
the precise degree of assent which is due to any conclusions or assertions relating to them.

In any case, here there is no trace of any formula that synthesizes his ideas! We
must go to France to find a very young mathematician with the answer. The main
ideas in Bayes’ theorem were rediscovered independently by Pierre Simon
Laplace,7 who first published his version in 1774, eleven years after Bayes, in one
of Laplace’s first major works when we was only 25 years old: “Mémoire sur la
probabilité des causes par les évènements.” Although he made the earliest appli-
cation of “Bayesian” ideas to multimodal setting (Stigler 1986: 361), the principal
success of Laplace was the spreading of these new ideas (from
Bayes-Price-Laplace) to the whole mathematical community. In fact, Bayes own
article was ignored until 1780 and had no important role in scientific debate until
the second half of the twentieth century.

Perhaps, it was in 1781, when Richard Price visited Paris, when Bayesian words
reached Laplace for the first time reinforcing his preliminary ideas. But Laplace
made something even more important: he created the formula of the (not com-
pletely honestly) so-called Bayes’ theorem. It was in 1812, in his book Théorie
analytique des probabilités (TAP), specifically into section II, §1 (and with some
slight changes into the 1814 second edition), where he presented the conceptual
basis of the formula:

La probabilité d’un événement future, tirée d’un événement observé, est le quotient de la
division de la probabilité de l’événement composé de ces deux événements, et determiné a
priori, par la probabilité de l’événement observé, déterminée parcillement a priori.

6Downloadable from the Royal Society at http://rstl.royalsocietypublishing.org/content/53/370.
7There is a different possibility that Laplace knew about the Bayes–Price ideas through a common
friend, Condorcet. Unfortunately, this is only a possibility that cannot be confirmed empirically.
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Hald (2007) considers that Laplace’s principle could have two interpretations:
(a) a frequency interpretation (based on a two-stage model with objective proba-
bilities and (b) an interpretation based on the principle of insufficient reason (also
called the principle of indifference). Replacing the old and original terminology
employed by Laplace, the proof acquires the modern form as follows:

PðCijEÞ ¼ PðCiÞPðEjCiÞP
PðCiÞPðEjCiÞ

where i = 1,…, n.
Despite the two possible interpretations about the real Laplacian contribution, as

a frequency interpretation based on a two-stage model with objective probabilities
and an interpretation based on the principle of insufficient reason, it is obvious that
he was the person who transformed the general ideas of Bayes into a well-defined
theorem. Nevertheless, for Laplace, probability was the result of our ignorance not
an ontological and epistemological reality of the world. As Laplace wrote in TAP,
iv: “La courbe décrite par une simple molécule d’air ou de vapeurs, est réglée d’une
manière aussi certaine, que les orbites” planétaires; il n’y a de différence entre elles,
que celle qu’y met notre ignorance. La probabilité est relative en partie à cette
ignorance, et en partie à nos connaissances.” And the interest about probability is at
the same time not a true scientific project, but most of the time it is the result of our
fear about future (TAP, 2nd edition, xv: “La probabilité des événemens sert à
determiner l’espérance ou la crainte des personnes intéressées à leur existence”).

It can be affirmed that Laplace reached the same basic ideas of Bayes inde-
pendently, but as soon as in the year of 1814, with the second edition of TAP, page
ciii, Laplace cited for the first time the ideas of Bayes: “Bayes, dans les
Transactions Philosophiques de l’année 1763, a cherché directement la probabilité
que les possibilités indiquées par des expériences déjà faites, sont comprises dans
les limites données; et il y est parvenu d’une manière fine et très-ingénieuse,
quoiqu’un peu embarrassée. Cet objet se rattache à la théorie de la probabilité des
causes et des événemens futurs, conclue des événemens observés; théorie dont
j’exposai quelques années après, les principes, avec la remarque de l’influence des
inégalités qui peuvent exister entre des chances que l’on suppose égales. Quoique
l’on ignore quels sont les événements simples que ces inégalités favorisent;
cependant cette ignorance même accroit souvent, la probabilité des événemens
composés.” He recognized the genuine ideas of Bayes but at the same time affirmed
that “he (for Bayes) did it in a way very fine and ingenious, though somewhat
awkwardly.”

The case study that Laplace chose in order to check his formula was gender birth
records differences. The largest data set available for him was the census data, and
at the same time, there was an unclosed debate about one related question: It is true
that there are slightly born more boys than girls, but… is this a constant phe-
nomenon of Nature or instead of it, just an accidental and provisional anomaly?
From a pure statistical point of view, both sexes should be born with the same
frequency of 50 % odds. Using recorded data from Paris, London, Naples, and other
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cities, we stated in 1812 that it was a general law for the human race. His methods
were applied by his friend Alexis Bouvard to the astronomical calculus of the
masses of Jupiter and Saturn, with such a high accuracy that Laplace understood the
power of the statistical tools until the point to affirm the superiority of this new
science (classic + statistical) over any other discipline to explain the world.8 A short
anecdote explains it perfectly: in 1796 Emperor Napoleon I received Laplace after
his publication of the Exposition du système du monde (The System of the World).
Once there, Emperor asked Laplace “Newton a parlé de Dieu dans son livre. J’ai
déjà parcouru le vôtre et je n’y ai pas trouvé ce nom une seule fois.” (Newton spoke
of God in his book. I’ve looked at yours but I did not find his name even once), and
he replied “Citoyen premier Consul, je n’ai pas eu besoin de cette hypothèse.”
(Citizen First Consul, I have not necessity of that hypothesis.”), (Fayé 1884, 109–
111).9 Going beyond Newton,10 Laplace choose a new direction for science, far
from supranaturalistic forces, but still inside a deterministic world, where statistics
was at the end, the tool to solve our lack of deep understanding about the world.

Also inside TAP, we can find one of the greatest contributions of Laplace: the
central limit theorem. According to Fischer (2010: 18), Laplace’s ideas were
applied to two categories: “sums of random variables” and “inverse probabilities.”
Initially, by 1774, his methods involved only a posteriori probabilities, but from
1810, he was able to adapt his method to a priori probabilities,11 making approx-
imations of probabilities of sums of independent random variables (something that
can be considered the first step toward the creation of the central limit theorem).

8Dealing with large amounts of complex data was a problem that emerged at the end of the
eighteenth century and became a true problem for nineteenth-century scientists. New evidences
and calculations in Astronomy, huge amounts of natural collected biological data required a
fundamentally new way of thinking. It was provided by statistical thinking. Was the universe
stable thanks to a Newtonian God? Besides the lack of knowledge about the real mechanistical
cause of gravitatory, then still a dark force (the Higgs boson that justified gravity as undiscovered
until 2013, at the European LHC), the gravitatori calculations were so complex that their calcu-
lation power was not able then to do it. As a consequence, statistical approximations were the only
rational solution to that problem, and it’s what Laplace understood (Bertsch McGrayne 2011: 19).
9This attitude can be labeled as “infidel mathematics” and was run by the free thinkers of the
Enlightenment. On the other side, religious reformists that were considered Dissenters were
interested in using mathematics to do the opposite: use mathematics to justify the existence of God
(Bertsch McGrayne 2011: 3–5).
10Newton, opposed Laplace in this point, claimed against hypotheses: just remember his “hy-
potheses non fingo,” but at the same time was not able to explain gravity and the necessity of a
God as a Watchmaker inside a clock-universe. Clearly, eighteenth-century rationalism is not a
unified intellectual project, nor a true naturalist rationalism. Anyhow, Laplace was accused by
radical revolutionaries as “Newtonian idolator” and he was arrested on suspicion of disloyalty to
the French Revolution. Science under politics debates. Some centuries later, the Lysenko case
repeated this situation under the communism of the URSS.
11Even in that case only to uniform priors following the insightful suggestions of Stigler (2012,
from personal electronic epistolary talk). As he wisely points out, before Galton there was no real
multivariate analysis, so the modern practice of starting with a prior and likelihood then getting the
multivariate and then the conditional (posterior) distribution could not be done before the 1880s.
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These ideas deeply influenced the probability and error theory during the nineteenth
century, under the basic idea that probability was “good sense reduced to calculus”
(TAP, cv: “On voit par cet Essai, que la théorie des probabilités n’est au fond, que
le bon sens réduit au calcul”). Curiously, in the last decade of his life, Laplace
turned himself into a ‘frequentist’ statistician… he, who was the first Bayesian!
This mental shift toward a more strict view on causality led Laplace to become a
determinist, following in some ways the ideas of Leibniz. The whole book Essai
philosophique sur les probabilités, 1814, is the work in which he defends his
change:

Nous devons donc envisager l’état présent de l’universe comme l’effet de son état antérieur,
et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné
connaîtrait toutes les forces dont la nature est animée et la situation respective des êtres qui
la composent, si d’ailleurs elle était assez vaste pour soumettre ces données à l’analyse,
embrasserait dans la même formule les mouvements des plus grands corps de l’universe et
ceux du plus léger atome; rien ne serait incertain pour elle, et l’avenir comme le passé serait
présent a ses yeux.12

This man with deep knowledge of all possible states of the universe was called later
Laplace’s demon, or even sardonically by Reichenbach (1952: 226) Laplace’s
superman. Here, Reichenbach demonstrated that Boltzmann’s interpretation of the
second law of thermodynamics was confirmed after Heisenberg’s principle of
indeterminacy: The vagueness found at quantum mechanical phenomena is nothing
to do with imperfections of the human observer, but is grounded in the physical
structure of the world. So, twentieth century physics diluted any attempt to belief in
the perfect notion or deterministic causation as well as introducing the idea of
meta-level behavior: The world seems to show different behaviors at different
scales.13

In any case, and far from the solution of the debate about the true inventors of
the Bayes’ theorem, Bayes or Laplace, I will proceed to explain it in its modern
form. Let me introduce you to details of Bayes’ theorem and its context.

(a) Bayes’ theorem context. In eighteenth-century England, there was a debate
that had ancient roots but at the same time was formulated under a new
approach: causality and inverse probability. Let us to see them separately:

12Translated as “We may regard the present state of the universe as the effect of its past and the
cause of its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were also vast
enough to submit these data to analysis, it would embrace in a single formula the movements of the
greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its eyes.”
13There is also the contrary question of scale invariance and dilation, but this is a different question
to be analyzed in a different place. We have neither space here to analyze the problem of con-
necting the gap between quantum microphysics with macrophysics (through mesophysics).
Quantum paradoxes are also a crucial challenge for contemporary thinkers and scientists. For an
attempt to unify quantum microphysics with macrophysics see Sewell (2002).
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Causality has been at the core of any philosophical attempt to understand or
explain the world, from Western as well as eastern traditions. Perhaps, the
term “causality” in itself has not been the exact word we can find in all these
ancient books, although the notion of direct sequentiality among events is
always present, even in the case of considering it as an illusion of mind and,
therefore, to deny it. In Sect. 2.5.3, we already talked about this notion as well
as the impact of the ideas of Hume.
Inverse Probability is the second important concept to be explained. The
notion of “inverse probability” was first used in English by Augustus de
Morgan in the 1830s (Dale 1999: 4) abandoning the notion of “the converse
problem” defended by Price for that of “the inverse method.” But…what are
we talking about? Sometimes we need to infer some information about why
something has happened in order to explain a possible similar outcome in the
future. These hidden causes can be considered as variables that are still
unobserved but at the same time must show some probability distribution,
even from an abstract perspective. Obviously, this is an inverse or go-back
(causal) problem, and when we introduce a probabilistic quantification of
those hidden variables, then we are working with inverse probability.
Bayes tried to design a method that could find causality among events until
then considered outside of possible knowledge but at the same time not only
applied to future events but also to past ones. In fact, the knowledge of past
events is very useful in order to understand the causal chain that led to the
present and, henceforth, will shape the future. His solution was presented in
his book An Essay towards solving a Problem in the Doctrine of Chances
(1763). But was Laplace, who gave an exact formulation of the inverse
probability in his Sur la probabilité des causes (1774), in a scientific context?
In modern terms, his contribution was to consider an event E which could be
produced by any one of a number of mutually exclusive and exhaustive cases
Ci, each of positive probability, and then, for each i:

Pr½CijE� ¼ Pr½EjCi� Pr ½Ci�=
X

j

Pr½EjCj� Pr ½Cj�:

(b) Bayes’ theorem with more detail.
The modern formulation of Bayes’ theorem or Bayes’ rule (Vallverdú 2011a)
can be commonly found as follows:

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ :

where

• P(A|B) is the conditional probability of A, given B. It is also called the
posterior probability because it is derived from or depends upon the
specified value of B.
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• P(B|A) is the conditional probability of B given A.
• P(A) is the prior probability or marginal probability of A. It is “prior” in

the sense that it does not take into account any information about B.
• P(B) is the prior or marginal probability of B and acts as a normalizing

constant.

We can see, then, that our posterior belief P(A|B) is calculated by multiplying our
prior belief P(A) by the likelihood P(B|A) that B will occur if A is true. Although
Bayes’ method was enthusiastically taken up by Laplace and other leading prob-
abilists of the day, it fell into disrepute in the nineteenth century because they did
not yet know how to handle prior probabilities properly. The prior probability of
A represents our best estimate of the probability of the fact we are considering prior
to attending to a new piece of evidence. Therefore, in the Bayesian paradigm,
current knowledge about model parameters is expressed by placing a probability
distribution on the parameters, called the “prior distribution.” When new data
become available, the information they contain regarding the model parameters is
expressed in the “likelihood,” which is proportional to the distribution of the
observed data given the model parameters. This information is then combined with
the prior to produce an updated probability distribution called the “posterior dis-
tribution,” on which all Bayesian inference is based. So, Bayes’ theorem, an ele-
mentary identity in probability theory, states how the update is done
mathematically: The posterior is proportional to the prior times the likelihood.

Bernardo (2011: 263) defends the objectivity of Bayesian methods.

Bayesian methods may be derived from an axiomatic system and provide a coherent
methodology which makes it possible to incorporate relevant initial information, and which
solves many of the difficulties which frequentist methods are known to face. (…) This leads
to objective Bayesian methods, objective in the precise sense that their results, like fre-
quentist results, only depend on the assumed model and the data obtained. The Bayesian
paradigm is based on an interpretation of probability as a rational conditional measure of
uncertainty, which closely matches the sense of the word ‘probability’ in ordinary
language.14

This led to some authors who name this approach as “probability theory.” After the
seminal work of Bayes and Laplace, we will find a leading defender of it in Harold
Jeffreys. He read Karl Pearson’s Grammar of Science in 1914, and it made a great
impression on him, especially the notion of the probabilistic basic of scientific
inference. But for Jeffreys, probability was a degree of a reasonable belief, not an
objective property of the world. This was an idea shared by some Cambridge
thinkers like W.E. Johnson, J.M. Keynes, and C.D. Broad. Following an episte-
mological approach to statistics in science, Jeffreys asked himself the use of

14According to Efron (2012: 133), Objective Bayes is the contemporary name for Bayesian
analysis carried out in the Laplace–Jeffreys manner. According to Gillies (2000), Chap. 3, the
interpretation of probability as degree of rational belief by Objective Bayesians has never been
resolved and has even given rise to several paradoxes. But as far as I can see paradoxes never
stopped scientists or theory-users in their activities. Conceptual paradigms are very flexible as well
as resistant to internal or external criticisms.
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statistics in scientific practices, something that recently Galavotti (2003) called the
“Harold Jeffreys’ Probabilistic Epistemology.” In 1939, he wrote an influential
book Theory of Probability published by Oxford University Press, and by proba-
bility, he referred to a theory of inductive inference founded on the principle of
inverse probability. He maintained some exciting (and even disgusting) debates
with R.A. Fisher, which we will analyze in Chap. 5. It can be affirmed that modern
Bayesianism was founded by Jeffreys, and his book offered a solid way to introduce
Bayesian tools into scientific domains. The main problem is that he was not as
persuasive as Fisher, and at the same time, his methods were much more compli-
cated than those of Fisher. Finally, quantum mechanics, then a hot and attracting
field, employed frequentist tools rather than Bayesian, and all these factors (in-
cluding the fierce opposition of Fisher and Neyman-Pearson to Bayesianism,
beyond their own confrontation within the “frequentist paradigm”) forced
Bayesianism into oblivion.

Despite the initial theoretical debates, some practical results gained credit for
Bayesian methods. French military15 were involved in this process thanks to the
work of Joseph Louis François Bertrand and his contributions for artillery, a dis-
ciplined faced with a host of uncertainties (enemy’s precise location, air density,
wind direction, variations among hand-forged cannons, and range/direction/initial
speed of projectiles). Bertrand made a variation of Bayesian ideas (rejecting uni-
versal 50–50 odds for prior causes) but also thought about the new implications of
statistics in legal frameworks (Bertrand 1889), as well as producing philosophical
thoughts (p. 23):

La Physique, l’Astronomie, les phénomènes sociaux, semblent, dans plus d’un cas, régis
par le hazard. Peut-on comparer la pluie ou le beau temps, l’apparition ou l’absence des
étolies filantes, la santé ou la maladie, la vie ou la mort, le crime ou l’innocence à des
boules blanches ou noires tirées d’una meme urne? Le meme désordre apparait dans les
details, cache-t-il la meme uniformité dans les moyennes? Retrouvera-t-on dans les écarts
les traits connus et la physionomie des effets du hazard? (p. 31, from now) Les lois du
hazard son invariables, ce sont les conditions du jeu qui changent. Poisson, pour les plier à
tous les accidents, a cru completer l’oeuvre de Bernoulli en énonçant sa loi des grands
nombres.

Bertrand accepted the overall presence of hazard in human domains but at the same
time offered a conceptual tool, statistics, to deal with it. At a certain point, he
considered that the Medieval debate about the universals had reached a new level
when Quetelet was able to define the work “man” (homme) apart from particular
men, considered accidents, (Bertrand 1889: 41): the home moyen (the average
man). This home moyen has an àme moyenne (average soul, ibid, p. 43) and suffers
from a “maladie moyenne que la Statistique révelerait pour lui” (an average illness
that will be discovered by Statistics). As it is usual, thinkers faced with the deep

15Very surprisingly, the military swiftly accepted Bayesian techniques during the Second World
War and Cold War, as well as related agencies such as NASA. And this is valid for American and
European efforts: In 1979, NATO organization held a symposium to encourage Bayesian appli-
cation for real conflicts.
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implications about statistical analysis of Nature need to justify conceptually new
visions about the world and the ways by which we know it. Without computational
power, Bayesian methods were difficult and hard to apply, and all this changed
slightly from the beginnings of the 1960s and completely since the 1980s. The other
impediment, how to apply scientifically the subjective interpretation of probability,
despite it being invented in the 1930s by Ramsey and De Finetti, did not become
well-known and applied until the 1950s with the work of Savage and Lindley.16

This new interpretation solved the main problems of the older “degree of rational
belief” interpretation and gave Bayesian ideas a new space into academic
research.17
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Chapter 4
A Conceptual Reply to Reverend Bayes:
The Frequentist Approach

Abstract The response to subjective probabilities of the Bayesian approach was
frequentism, that is, the analysis of long-run series of frequencies of an event from
which came the possibilities to extract statistical data. Frequentism became the
dominant view in scientific practices during most of the twentieth century. This
academic view was espoused by several authors, like Pearson, Fisher, Gosset, and
Neyman–Pearson, not all of them agreeing about the best ways to perform this
statistical approach. The main ideas and internal debates are analyzed here.

Keywords Frequentism � Frequency � Long-run series � p-value � Pearson �
Fisher � Neyman–Pearson � Null hypotheses
In all good stories, there is a strong character fascinating and charming in equal
parts because of its association with the “dark side.” This blend of a true, innocent,
and brave hero confronted with a bad and not-smart-enough guy gives an irre-
sistible smell of all the histories of the past. In our story, frequentists occupy this
dark area, perhaps not for conceptual reasons, because frequentism is really useful
and has provided successful tools in several fields and/or domains, but by the
intransigent and aggressive attitude toward a different methodology, Bayesianism,
that has demonstrated basics for very important scientific advances of the
twenty-first century. Let me explain how and why frequentists acquired power
inside the statistics communities and the works of their leading experts. At the same
time, we will see how Bayesianism evolved.

First of all…what does “frequentism” mean? According to the definition pro-
vided by the Oxford English Dictionary:

frequentist. [f. frequent-, stem of adjs., etc., related to FREQUENCY + -IST.]
One who believes that the probability of an event should be defined as the limit of its
relative frequency in a large number of trials. Also attrib. or as adj.

Therefore, we are talking about people who search relative frequencies in a large
number of trials, that is, from facts to mathematical quantification without being
exhaustive of all the possible cases (otherwise statistics would not be necessary).
With a typical example, it will be easy to understand: coin tossing. A coin has two
sides, and when you throw it into the air, once it lands the coin can be found in …
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three positions: head, tail, and edge. It is true that most times, although you cannot
discard the coin landing on its edge so happily because it can really happen, the
coin will land head or tail; so, we are considering two possible outcomes. If the coin
is perfectly balanced (something not possible unless both sides had exactly the same
design), there are no biases into the throwing process and the surrounding variables
(wind, temperature, floor shape…) are not different each time; the coin will land
only as head or tail. So, if we consider a 100 % of a range of possibilities, 50 % of
the time it will land on heads and 50 % on tail. Ancient Romans used this process to
let the Gods decide between things and called it capita aut navia, the two usual
signs present in coins.1 And in the twenty-first century, it is still a practice used at
football stadiums to decide the initial side of the field for each team. Isaac Asimov
wrote a wonderful short story in 1961 called “The Machine that Won the War”
following this idea. But…are we sure that each coin tossing will offer us a result
heads and tails with equiprobability? This is precisely what a French naturalist and
mathematician asked himself in the eighteenth century. He was Georges-Louis
Leclerc, Comte de Buffon, and a very thorough guy who was able to toss a coin
4040 times trying to obtain greater evidence toward the equiprobability of this
action. Heads came up on 2048 tosses (50.693 %), so it was very close. Well, to be
honest, Buffon himself did not do it, he asked a kid to do it, as he explained in his
Essai d’arithmétique morale (1777). If Buffon pursued exactitude, around 1900,
Karl Pearson tossed a coin 24,000 times, which can be described close to an
obsessive behavior, or a true statistician’s mood. He obtained 12,012 heads
(50.05 %). Finally, and only explained by the inexistence of leisure activities for
prisoners during the WWII, the South African mathematician John Kerrich tossed a
coin 10,000 times with heads coming up 5067 times (50.67 %). While visiting
Copenhagen, Kerrich was caught up during the Denmark’s Nazi invasion and
imprisoned in the Frøslev Prison Camp (in Jutland area and a few km north of the
German border). After the war, in 1946, Kerrich published the book An
Experimental Introduction to the Theory of Probability. From the data provided by
Kerrich in 1946 and their graphic made by Freedman et al. (1979), we find the
distribution of toss results. It tends to be equiprobable on a long-run procedure. In a
nutshell, this is the idea of frequentism: to obtain a large number of trials from
which emerged the relative frequency of an event. Now, you can understand the
main difference with bayesianism: no presence in frequentism of personal prior
beliefs in this process.2

1From Smith et al. (1890): “CAPITA AUT NAVIA head or tail, the name of a game at ‘pitch and
toss,’ derived from the fact that early as had on one side a double-faced Janus, on the other the
prow of a ship. See cut of as on p. 202. (Macr. 1.7, 22; Fest. s. v. Navia, p. 169 M.)”.
2Well, we could discuss how personal beliefs cannot affect a frequentism experiment in the
selection of the good variables that can affect or not affect the experiment or, even, the meaning of
“a large number of trials,” something completely subjective and that can vary from discipline to
discipline or even from laboratory to laboratory. For a nice and opposed vision of my ideas on this
topic, read Gillies (200): 152–153. Anyhow, the selection of the basic range of trials is absolutely
subjective.
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Between 1885 and 1935, the Statistical Enlightenment happened (according to
Stigler 2012), which changed the nature and evolution of statistics as a discipline as
well at its conceptual core. It is time now to know some of the stronger defenders of
this statistical school. In 1900, an English mathematician, Karl Pearson, wrote a
paper that was the first step toward modern mathematical statistics. Pearson was a
talented and curious researcher, Germanist, Literature expert, Philosopher3, and
Mathematician, who was also involved in the quantitative new approaches to
biology made by evolutionary experts at the end of the nineteenth century, working
closely with eugenicist Francis Galton (for whom he was also the official biogra-
pher) with whom (and Weldon) he created and edited the first statistics journal
Biometrika, for 35 years. The empirical (statistical) foundations of modern biology
favored the adoption of frequentist approaches, but after some decades, later this
dominance was altered by new tools and ideas. Pearson was a leading figure who
established a real school of statistics, being at the same time the main inspiration for
the discipline in the twentieth century.4 It was precisely Galton’s interests in
regression and correlation in psychology, heredity, and anthropology that led
Pearson to the intense study of them during the period of 1891–1900 (Plackett
1983). As a consequence of it, in 1900, his paper appeared on the chi-square test of
goodness of fit: “On the criterion that a given system of deviations from the
probable in case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling.” In this research, he offered a
system of chance distribution, called the chi-square test (χ2), and laid the founda-
tion stone of modern frequentist statistics. It is a hypothesis test using normal
approximation for discrete data, and he developed a system of chance distributions,
each obtainable via a variation in the parameters appearing in a “generalized
probability curve,” a formula that generalizes the normal distribution. A few years
later, in 1911, he founded the world’s first university statistics department at
University College London. Under the figure of Karl Pearson, we find the figure of

3Of great philosophical interest is his The Grammar of Science (1892), a book about which the
young Albert Einstein was enthusiastic, and also received critics from Lenin on the debate between
materialism and idealism, Lenin, V.I. (1909) Materialism and Empirio-Criticism. Critical
Comments on a Reactionary Philosophy, Ch. 5, Sect. 2. Lenin described him as a “machian.” Read
this section at: http://www.marxists.org/archive/lenin/works/1908/mec/five2.htm, accessed on
August, 13, 2013. At the same time, we need to explain that Pearson wrote on epistemological
issues: For example, he considered that knowledge came from sensations and that probability tried
to find invariability among these groups pf sensations (shared with other individuals as a
“sameness experience”). Lenin quoted him on this topic at V.I. Lenin (1908) Materialism and
Empirio-Criticism, Critical Comments on a Reactionary Philosophy, Chapter One: The Theory of
Knowledge of Empirio-Criticism and of Dialectical Materialism. (1) Sensations And Complexes
Of Sensations. There is a strong connection between his notions of science and the future of human
societies (Norton 1978).
4Pearson is also the longest “sleeping beauty” in the history of science; he wrote “On lines and
planes of closest fit to systems of points in space” in 1901, but his ideas gained approval only in
2002. It indicates that changes in society and advances in understanding can breathe new life into
sometimes long-forgotten science papers. See the last research on this topic at Ke et al. (2015).
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a chemist and mathematician who worked for brewery industries: William Sealy
Gosset. Gosset was an employee of the Guinness firm and employed his knowledge
to the statistical selection of the best yielding varieties of barley and other chemical
questions related to brewery techniques. He spent two terms (1906–1907) in the
biometrical laboratory of Pearson where they became friends as Gosset decided the
importance of small samples’ statistical treatment. Due to industrial restrictions of
Guinness industrial secrets, Gosset was not allowed to publish his results directly,
even after demonstrating to Guinness heads that his research was philosophical and
mathematical with no danger to Guinness drinks’ secret industrial processes, and
therefore, he was forced to use a pseudonym, Student, with which he wrote several
papers, most of them published in Biometrika. His greatest contribution, based on
the analysis of small samples, was the so-called the Student’s t-distribution (Student
1908), and he referred in this paper to the distribution as the “frequency distribution
of standard deviations of samples drawn from a normal population.” Fisher was in
that time not truly interested in small samples because his analysis was focused on
the contrary: big data samples (at least for an early twentieth-century scientist).

R.A. Fisher is the next historical actor we will consider in this chapter. Again,
we find a personality with strong interests in mathematics as well as in biology,
especially evolutionary theory5 and eugenics (Fisher was one of the founders of the
Eugenics Society of the University of Cambridge, together with John Maynard
Keynes, according to Howie 2002: 52).6 Fisher was a talented, hardworker, and
devoted researcher who considered Bayesianism as the main mistake and error of
statistics and embraced philosophical Laplacian of a full deterministic world
described by statistics, which was the result of objective properties of the world, not
from subjective performing of the mind. Having been granted a studentship in
physics (1912–1913), Fisher dedicated his graduate research in Cambridge to
quantum physics (with Physicist James Jean) and error theory (with F.J.M. Stratton,
who had applied it with T.B. Wood to agriculture, see Grattan-Guinness 1994). As
a consequence of this background, he understood the meaning of Heisenberg’s
principle of uncertainty, although from his objectivist approach to stochastic events.
As he explicated in his paper of 1922, “On the Mathematical Foundations of
Theoretical Statistics,” “we may agree wholly with CHRYSTAL at inverse prob-
ability is a mistake (perhaps the only mistake to which the mathematical world has
so deeply committed itself), there yet remains the feeling that such a mistake would

5According to Loucã (2008: 3), Fisher’s model of Mendelian populations was metaphorized from
the molecular models of statistical mechanics applied to gases.
6R.C. Punnet, and Leonard and Horace Darwin, both sons of Charles Darwin, were also members
of this society. The friendship between Leonard Darwin and R.A. Fisher was very intense, sharing
their interest in eugenics and evolutionary ideas. Besides, Leonard gave support to Fisher at the
beginning of his career. Also Pearson was close to these circles, in this case friend of Ida Darwin,
wife of Horace Darwin, as some correspondence shows (http://www.eugenicsarchive.org/html/
eugenics/static/images/2140.html, accessed on August 12th, 2014). Again, eugenics was the
common point.
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not have captivated the minds of LAPLACE and POISSON if there had been
nothing in it but error” (p. 311), and for him, probability was something very clear:
“When we speak of the probability of a certain object fulfilling a certain condition,
we imagine all such objects to be divided into two classes, according as they do or
do not fulfil the condition This is the only characteristic in them of which we take
cognisance. For this reason probability is the most elementary of statistical con-
cepts. It is a parameter which specifies a simple dichotomy in an infinite hypo-
thetical population, and it represents neither more nor less than the frequency ratio
which we imagine such a population to exhibit” (p. 312). Inverse probability was
part of an “obscure” era of statistics that needed to be eradicated. He wrote two
books that offered his ideas about how statistics should be performed as well as how
experiments should be designed: (1925) Statistical Methods for Research Workers
and (1935) The Design of Experiments. Both works were extremely successful and
were adopted by several disciplines and reprinted from time to time. Fisher was the
real creator of the notion of a statistical model, refining the concepts of “variables”
and “parameters” as well as establishing the distinction between sample and pop-
ulation. In the field of statistics, Fisher was terribly prolific and his influence was
deep as well as full of debates with other experts in the field. With Neyman and
Pearson, he maintained private as well as public debates (see Inman 1994), but he
can be remembered by crucial contributions such as the ANOVA,7 the method of
maximum likelihood, the fiducial inference, or the derivation of various sampling
distributions. Fiducial inference has a philosophical flavor that is impossible to
avoid any expert in statistics. “Fiducial” comes from the Latin word fiducia for
“faith,” and fiducial inference can be interpreted as an attempt to perform inverse
probability without calling on prior probability distributions, an idea that received
several counterexamples very soon and that have not reached general acceptation.8

Additionally, Fisher published one of the world’s first scientific papers, in fact, the
first one in the field of biology using computer calculations, which were done on
EDSAC (Electronic Delay Storage Automatic Calculator), the first fully operational
and practical stored-program computer. Fisher suggested a genuine problem, the
solution of a second-order nonlinear differential equation with two-point boundary
condition relating gene frequencies, which was solved by D.J. Wheeler in April
1950 and was published with due acknowledgements later in the year in Biometrics
(Fisher 1950), making some progress toward establishing the credibility of elec-
tronic computing.

7Later, in 1952, Kruskal and Wallis published a paper in which they provided a nonparametric
equivalent of the ANOVA. And John Tukey designed an ANOVA in 1951 a posteriori multiple
comparison tool: the Tukey’s HSD (for honestly significant difference test). Tukey’s multiple
comparison test is one of several tests that can be used to determine which means among a set of
means differ from the rest. There are more multiple comparison tests, including Scheffe’s test and
Dunnett’s test.
8Curiously, in the early 1930s, most statisticians regarded fiducial probability and Neyman’s
confidence intervals as synonymous (Louçã 2008: 22).
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The third historically important figure in frequentism is Jerzy Neyman, a Polish
mathematician who was the first to introduce the modern (and beautiful, according
to Cousins 1995) concept of a confidence interval, one of the methods of confidence
estimation. His ideas made the birth of a new theoretical statistics paradigm pos-
sible deriving optimal statistical procedures as solutions to clearly stated mathe-
matical problems. His application of these ideas to hypothesis testing, estimation by
confidence intervals, and survey sampling changed the history of statistics. Despite
being strongly influenced by Karl Pearson’s Grammar of Science (Lehmann 1994:
397), until 1926, he favored Bayesian approaches from the belief that any theory
would have to involve statements about the probabilities of various alternative
hypotheses and hence an assumption of prior probabilities. But after his joint work
with Karl Pearson and the influence of von Mises’s book Wahrscheinlichkeit,
Statistik und Wahrheit (1928), Neyman turned himself into a radical frequentist. His
necessity of “purity” led him to abandon the notion of inductive reasoning, pregnant
to his eyes of subjective data (or “beliefs”), and to talk about “comportement
inductif” or inductive behavior, that is, that statistics is to be used not to extract
“beliefs” from experience, but as a guide to appropriate action. In a paper presented
at the International Congress on the Philosophy of Science in 1949, Neyman gave
his ideas:

Why abandon the phrase ‘inductive reasoning’ in favor of ‘inductive behavior’?” As
explained in 1937, the term inductive reasoning does not seem appropriate to describe the
new method of estimation because all the reasoning behind this method is clearly deduc-
tive.9 Starting with whatever is known about the distribution of the observable variables X,
we deduce the general form of the functions f(X) and g(X) which have the properties of
confidence limits. Once a class of such pairs of functions is found, we formulate some
properties of these functions which may be considered desirable and deduce either the
existence or non-existence of an “optimum” pair, etc. Once the various possibilities are
investigated we may decide to use a particular pair of confidence limits for purposes of
statistical estimation. This decision, however, is not ‘reasoning’. This is an act of will just as
the decision to buy insurance is an act of will. Thus, the mental processes behind the new
method of estimation consist of deductive reasoning and of an act of will. In these cir-
cumstances the term ‘inductive reasoning’ is out of place and, if one wants to keep the
adjective ‘inductive’, it seems most appropriate to attach to it the noun ‘behavior’.

The strong relationship between his philosophical ideas on the nature of scientific
methodology and the role of statistics is completely connected in Neyman’s mind.
Even working with Karl Pearson, he was not satisfied with his laboratory, which he
considered old-fashioned, neither by his lack of modern mathematical knowledge
(which led to a misunderstanding between them, because Pearson was not able to
understand the differences between the ideas of independence and lack of
correlation, and this led to Neyman’s decision to move to a new research

9According to Gillies (personal communication), it can be affirmed, and it is worth noting that
Popper was also criticizing the notion of inductive reasoning in the 1930s. Generally, classical (or
frequentist) statistics was very much in agreement with Popper’s anti-inductivist methodology of
conjectures and refutations, except for the fiduciary argument which is definitely inductivist in
character.
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place10). Regardless, this confrontation was not a problem for the posterior coop-
erative debates with Egon Pearson, Karl Pearson’s son, who occupied (half of)11 the
vacant chair left by his father at the university. Egon and Neyman worked together
trying to solve a big problem that had emerged from Fisher and Student studies:
The small sample tests showed an ad hoc nature, and this resulted in offense for any
frequentist expert. After some ideas exchanges with Student, Egon and Neyman
created what has been called the “Neyman–Pearson theory of hypothesis testing.”
In 1928, they published “On the Use and Interpretation of Certain Test Criteria for
Purposes of Statistical Inference: Part I.” Let them convey their ideas:

One of the most common as well as most important problems which arise in the inter-
pretation of statistical results, is that of deciding whether or not a particular sample may be
judged as likely to have been randomly drawn from a certain population, whose form may
be either completely or only partially specified (…) The sum total of the reasons which will
weigh with the investigator in accepting or rejecting the hypothesis can very rarely be
expressed in numerical terms. All that is possible for him is to balance the results of a
mathematical summary, formed upon certain assumptions, against other less precise
impressions based upon a priori or a’ posteriori considerations. The tests them- selves give
no final verdict, but as tools help the worker who is using them to form his final decision;
one man may prefer to use one method, a second another, and yet in the long run there may
be little to choose between the value of their conclusions. What is of chief importance in
order that a sound judgment may be formed is that the method adopted, its scope and its
limitations, should be clearly understood, and it is because we believe this often not to be
the case that it has seemed worth while to us to discuss the principles involved in some
detail and to illustrate their application to certain important sampling tests (…) [and at the
conclusions section, italics are mine] The system adopted will provide a numerical mea-
sure, and this must be coordinated in the mind of the statistician with a clear understanding
of the process of reasoning on which the test is based. We have endeavored to connect in a
logical sequence several of the most simple tests, and in so doing have found it essential to
make use of what R. A. Fisher has termed “the principle of likelihood.” The process of
reasoning, however, is necessarily an individual matter, and we do not claim that the
method which has been most helpful to ourselves will be of greatest assistance to others. It
would seem to be a case where each individual must reason out for himself his own
philosophy.

This paper contained the seeds of what was later improved and called the
Neyman–Pearson theory of hypothesis testing (NPTHT). Egon Pearson was son of
Karl Pearson and succeeded him as professor of statistics at University College
London as well as editor of the journal Biometrika. With Neyman, Egon created the
NPTHT.12 With this approach, they opposed Fisher face-on; it was Fisher who

10When Neyman moved to the University of California at Berkeley, he transformed that place into
an anti-Bayesian powerhouse.
11The second half of K. Fisher divided position was given to R.A. Fisher, a next author to be
covered in this chapter. Despite the objections of Karl Pearson, his laboratory was divided into
separate departments of statistics and eugenics. His son became head of the new Department of
Statistics, while R.A. Fisher was elected as Galton Professor of National Eugenies (Inman 1994: 4).
12Curiously, George Box, a former student of Pearson, became Bayesian and even married one of
Fisher’s daughters…some years after he divorced her, because his wife had inherited a temper
much like her father.
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defended that only the null hypothesis needed to be tested in a binomial procedure.
On the contrary, Neyman and Pearson defended that after defining a hypothesis,
one could consecutively test multiple alternatives against this hypothesis and that
there were different kinds of errors that could be detected (Type I and Type II,
respectively, the incorrect rejection of a true null hypothesis and the rejection of a
false null hypothesis, that is, false positives and false negatives).13

We will analyze this debate between Fisher and Neyman–Pearson, taking null
hypothesis, created by Fisher, as a central concept. When somebody tries to
establish a causal relationship between two measured phenomena, there can be
difficulties to ascertain whether the relationship is spurious or has a direct rela-
tionship between some cause and some effect. A false-positive result could show us
a relationship that does not exist.14 With the null hypothesis, this can be partially
avoided, and the idea is simple: You define a hypothesis that defends that there is
no relationship between two phenomena (or sets of data); if it is true, then you
prove a false relationship and can guide your efforts toward a different direction.
Philosophically, it is close to Popper’s notion of falsifiability (Popper 1934), despite
the true statistical nature of Fisher’s approach, and again has a deep relationship
with the problem of induction.15 Fisher conceived this concept as a practical tool for
agricultural research studies. In 1926, he affirmed:

In the investigation of living beings by biological methods, statistical tests of significance
are essential. Their function is to prevent us being deceived by accidental occurrences, due
not to causes we wish to study, or are trying to detect, but to a combination of many other
circumstances which we cannot control. An observation is judged significant, if it would
rarely have been produced, in the absence of a real cause of the kind we are seeking. It is
common practice to judge a result significant, if it is of such a magnitude that it would have
been produced by chance not more frequently than once in twenty trials. This is an arbi-
trary, but convenient, level of significance for the practical investigator, but it does not
mean that he allows himself to be deceived once every twenty experiments. The test of
significance only tells him what to ignore, namely all experiments in which significant
results are not obtained. He should only claim that a phenomenon is experimentally
demonstrable when he knows how to design an experiment so that it will rarely fail to give
a significant result. Consequently, isolated significant results which he does not know how
to reproduce are left in suspense pending further investigation. (p. 189)

For Fisher, a null hypothesis could be potentially rejected or disproved on the
basis of related data, and this led to the p-values notion. But Neyman and Pearson

13There is also a Type III error: when you get the right answer to the wrong question. This is
sometimes called a Type 0 error. This error arises from a two-sided test, when one side is
erroneously favoured although the true effect actually resides on the other side. It is not a false
positive but a crossed causal relationship. See Schwartz and Carpenter (1999); a more recent
analysis in Heinz and Waldhoer (2012).
14This obvious fact should introduce modesty in statisticians as well as a careful epistemological
attitude, (Boffetta et al. 2008; Blair et al. 2009).
15As Meehl (1990), p. 110, explained quoting the words of American philosopher Morris Raphael
Cohen: “All logic tests are divided into two parts. In the first part, on deductive logic, the fallacies
are explained; in the second part, on inductive logic, they are committed.” Induction is one of the
oldest and more conflictive problems in the history of philosophy.
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made a different approach to this idea16: They suggested using two complimentary
hypotheses (called null and alternative).17 For a deep analysis of this debate on null
hypothesis significance testing, see Robinson and Wainer (2001) as well as Louçãa
(2008): 10. Curiously, very recently, the journal Basic and Applied Social
Psychology published an editorial banning officially null hypothesis significance
testing procedures (NHSTP): They wanted to remove all vestiges of the NHSTP (p-
values, t-values, F-values, statements about “significant” differences) and decided
that Bayesian methods were more interesting (despite the problems generated by
the Laplacian assumption of equiprobability).18 Previously, researchers like
Wagenmakers (2007) tried to avoid p-values because of the imaginary statements19

(implies the faith about some value obtained if the study was repeated an infinite
number of times) and suggested a “Bayesian model” that does not require the
specification of that he called Bayesian information criterion (BIC).

In 1930, Neyman wrote to Pearson telling him that he has discovered a rigorous
argument in favor of the likelihood method, what led him to create the
“Fundamental Lemma” of Neyman–Pearson theory on NPTHT. Paradoxically,
Imre Lakatos, a disciple of Popper, considered Neyman–Pearson test of hypothesis
as “resting completely on methodological falsificationalism” (Lakatos 1978: 25),
although both developed this idea before and independently to Popper.

Anyhow, Fisher’s test of significance has arrived upon our days mixed with
Neyman–Pearson hypothesis test, despite the several debates about their similitude
or difference (Lehmann 1993; Lenhard 2006). Abraham Wald was an
Austro-Hungarian mathematician who wrote a paper on statistical theory in 1939
and later created the maximin model. Curiously, during WWII research on statis-
tical ways to improve fighter airplanes, armor was conducted leading to the defi-
nition of the survivorship bias. He died unexpectedly in an airplane crash in India
during a conference tour. Wald’s theory was heavily criticized by Fisher, but
Neyman decided to defend his legacy. A young frequentist, Howard Raiffa, was
hired by Columbia University to teach Wald’s course and he studied Wald’s book
intensively each night (keeping only a day ahead of his students). Raiffa soon
realized the power and depth of Wald’s methods and ideas, especially for
decision-making situations, going beyond the classic and static data analysis.

16See the acid analysis of Nuzzo (2014). As she points, p. 151: “Neyman called some of Fisher’s
work mathematically “worse than useless”; Fisher called Neyman’s approach “childish” and
“horrifying (for) intellectual freedom in the west.” As Bertsch (2011: 46) compiles from his
contemporaries, Fisher was aggressive, unpolite, fiery tempered. About p-values, Nuzzo is even
sardonic (p. 150): “P values have always had critics. In their almost nine decades of existence, they
have been lik-ened to mosquitoes (annoying and impossible to swat away), the emperor’s new
clothes (fraught with obvious problems that everyone ignores) and the tool of a “sterile intellectual
rake” who ravishes science but leaves it with no progeny. One researcher suggested rechristening
the methodology “statistical hypothesis inference testing”, presumably for the acronym it would
yield…and she meant SHIT….
17About this debate, read the precise paper of Gillies (1971).
18Trafimov and Marks (2015).
19Head talks about “p-hacking.” Read Head et al. (2015).
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Together with Schlaifer, from Havard University, Raiffa worked intensively on
Bayesian decision in economic contexts. In 1954, Leonard Jimmie Savage wrote
his influential book The Foundations of Statistics, the first modern book on
Bayesian statistics20, and in 1959, Schlaifer wrote the book Probability and
Statistics for Business Decisions, the first textbook written entirely from the
Bayesian point of view. Trying to improve the implementation and reception of
Bayesian tools, Raiffa21 and Schlaifer introduced decision trees, tree-flipping, and
conjugate priors. All of them contributed to introduce Bayesian ideas into several
disciplines related to decision-making procedures (especially in decision making in
uncertainty contexts). They both contributed to the Bayesian revival of the 1960s.

Until here, we have seen the main figures of frequentist approaches (without
considering Fisher’s likelihoodism as a completely different school), and in the next
chapter, we will analyze the debate and evolution of both approaches during the
second half of the twentieth century.
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Chapter 5
The Coevolution, Battles, and Fights
of Both Paradigms

Abstract During the second half of the twentieth century, the statistical arena
experienced a turbulence of new debates: first, among frequentists, especially the
classic such as K. Pearson, Neyman, E. Pearson, and the so-called likelihoodist
R. Fisher, second among objective and subjective Bayesian, and finally, between
Bayesian and frequentists. After exploring a demarcation process of all the involved
schools, the strong divergences as well as the similarities between both main
paradigms are posited.

Keywords Frequentism � Likelihoodism � Objective Bayesian � Subjective
Bayesian � Experiment design � Mixture � Demarcation � Ad hoc rules �
Regression � Mean � Controversy
Any debate among statistics experts about the nature and meaning of statistics rely
on a previous philosophical view (even unconsciously). At the same time, they do
not want to enter into the philosophical arena and try to justify themselves based on
the evidence of their ideas or the power of their results, something quite childish.
Bayesians are usually much more practical than frequentists in several research
fields, considering their methods as problem-solving tools, while the latter feel a
deep reluctance to admit “subjective values” into their protocols. Nevertheless,
Bayesianism is not the realm of subjective-crazy priors1 nor is frequentism the
heaven of disinfected rationalism. In fact, frequentism is faced with several and

1Greenland (2006): 766 makes a strong and clear defense of the non-arbitrariness of subjective
probabilities. At the same time, he claims against some specific views of Bayesian thinking that
have become a major obstacle to the dissemination of Bayesian procedures. Subjectivity in prior
distribution is minimized through basing prior information on defensible evidence and reasoning,
and with accumulation of data differences of priors are solved by general consensus. The process
of eliciting a prior distribution involves a dialogue between an expert and a statistically trained
facilitator. Priors can be based on sound evidence and reasoned judgements, and they are not
foolish claims from brainless guys!
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serious accusations of subjectivism: p-values,2 experiment design, ad hoc rules,
arbitrary features of Neyman–Pearson tests, the difficulties caused by regression to
the mean, and the relevance of stopping rules, among others. And another and more
important question is, boundaries between these schools are not always so clear and
this is in part a result of a practical use of statistics, beyond philosophical debates on
the meaning of them.

5.1 Demarcation Problems

Until now, I have talked about frequentists and Bayesians, as clear delimitated
groups, but this is not truly exact because there are more views and ideas that
cannot strictly fit into these categories. The same authors implied into this classi-
fication would surely disagree about this point, but most of them can be defined as
belonging to some of these different schools (Hawthorne 2011: 335):

I. Frequentists:

(a) Classic: K. Pearson, Neyman, E. Pearson, Wald.
(b) Likelihoodism: Fisher.

II. Bayesians3:

(a) Objective Bayesians: Bayes (1763), Laplace (1814a, b), Keynes (1921),
Jeffreys (1939), Carnap (1950), Edwin and Jaynes (1968), Fitelson
(2001a, b), Williamson (2013).

2According to Greenland and Poole (2013), p-values and their corresponding frequentist (mis)
interpretations can be better understood by correct Bayesian ideas. A mixture of both paradigms
improves the practice of this technique. At the same time, we need to consider the limitations and
conflictive nature of p-values, and we will exemplify it with fMRI studies…and salmon’s brains.
In 2008, a neuroscientist Craig Bennet was discussing with his coadviser George Wolford about
false positives in fMRI multiple comparisons. Just to check their ideas, they decided to scan a dead
salmon head and the look at the results. Incredibly, they found an empiric example about a real
false positive and some non-sensical inferences that could be extracted from that scan. They
presented the results as a poster at the Human Brain Mapping Conference, held in San Francisco.
Submitted as an abstract, the poster was rejected, but when they wrote a paper with the results, the
journal discussed intensively about their possible inclusion. The whole story can be found here:
http://prefrontal.org/blog/2009/09/the-story-behind-the-atlantic-salmon/, accessed on July, 17,
2014. As the author remarked: “redefined significance thresholds with a specified cluster extent are
a weak control to the problem of false positives in imaging data. Statisticians and methods
researchers have argued about the need for multiple comparisons correction for some time. In just
one figure the salmon data illustrates exactly why we need stronger controls for the false positive
problem in fMRI.”…obviously the were awarded with 2012 igNobel in neuroscience…The full
paper here: http://pages.vassar.edu/abigailbaird/files/2014/06/bennett_salmon.pdf.
3There are a large number of types of Bayesians and speaking ironically, Good (1971) spoke of the
existence of “46,656 kinds of Bayesians”, depending on their attitude toward subjectivity in
postulating priors. A little bit of humor can help to maintain a healthy debate.
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(b) Subjective Bayesians: Ramsey (1931), de Finetti (1931), Savage (1954),
Lewis (1980), Skyrms (1984), Howson and Urbach (1991), Bernardo4 and
Smith (1996), Howson (1997), Joyce (1992), Bradley (2012).5

Obviously, this is not an exhaustive list of all authors of possible classification
under these categories, just a sketch for information purposes. It is important to
remark that the rebirth of Bayesian models was the result of de Finetti’s 1937 text,
although to be honest, his writings, together with those of Ramsay and Jeffreys, lay
unread until the Second Word War.6 Despite the vigorous defense of Bayesianism
by de Finetti, this view was not widely held and implemented by statisticians until
the publication of Savage (1954), and under his influence, it is widespread and
influential in the philosophy of science (especially in the form of Bayesian confir-
mation theory). De Finetti was one of the three independent thinkers (James Ramsey
in the USA, Émile Borel in France) who defended Bayesian approaches, while
Fisher, Egon Pearson, and Neyman lead the then victorious frequentist paradigm. De
Fineti’s subjective interpretation of probability was part of an ambitious and original
approach to the problems of statistical thinking. He contributed equally to
methodological as well as to philosophical debates on Bayesianism. For example, he
talked about the coherence of subjective probabilities (having fair odds that avoid
sure loss) and pioneered the concept of “exchangeability,” or exchangeable random
variables (where permutation symmetric subjective probabilities over a sequence of
variables may be represented by mixtures of iid statistical probabilities, Vicig and
Seidenfeld 2012). The truth is that de Finetti was a thinker as well as mathematician,
trying to understand the reality that justifies causation as well as the methods that can
provide knowledge about events connections. The key problem, for him, as he
expressed in Probabilismo—Saggio critic sulla teoria delle probabilità e sul valore
delle scienza (Perrella: Italy, 1931)—was to show how to connect internal feelings
(sensazione psicologica, Sect. 24) with fictional quantities, which express a possible

4According to Sprenger (2012), Bernardo works on something called “reference Bayesian
approach”, a desubjectivization of the Bayesian account while at the same time maintaining its
decision theoretic foundation. The key point here is how to understand the value of loss functions,
which should not vary under one-to-one transformations. That is, invariant loss functions. At the
same time, it is necessary to select reference priors, something that Bernardo makes maximizing
the information of the data, “in maximising the information that the data transmit about the
parameter of interest” (ibid., p. 5). Finally, Bernardo’s ideas on reference Bayesianism allow a
unified approach to hypothesis testing and estimation.
5Bradley (2012) suggests a similar approach to de Finetti that he calls “imprecise probabilism.”
Bradley says that it is a deidealised versión of Bayesianism that represents an agent’s belief state
by a set of probability measures, rather than by a single such measure. Well, it make possible a
more complex quantification approach to subjective beliefs, it is true.
6There was an extra factor against Bayesians: the accusation of Bayesians of being ‘socialists’
(during McCarthy’s campaign!!!), or un-American. Bertsch (2011: 87).
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grading of beliefs.7 At the end, he thought, we have no direct contact with reality, but
with cognitive processes8 that allow us to infer values from data. For that reason in
1934, he published The Invention of Truth (L’invenzione della verità), a philo-
sophical text in which he tried to create a philosophical framework for the emergence
of a statistical mechanism that can provide knowledge from reality. His idea is that
logic does not explain anything and that external reality is a construct that we can
imagine thanks to several sets of concepts, such as space, time, matter, or energy
(§30, “Ciò che è logico è essato, ma non dice nulla…Per imaginare che cosr-
rispondono a una “realtà esterna” dobbiamo prima inventare la “realtà esterna”
immaginando un modello fisicomatematico (spazio, tempo, material, energia) cin cui
rappresentare e esteriorizzare le nostre impressioni”). Then, causes are not real, but
they are projections of our mind over external events, and evidence is an illusion.
The method is then all.9 Consequently, truth is probabilistic, and probability is
plausible.10

At the same time, we must notice that likelihoodism was a well-defined third
branch of statistics with no common agreement among statistics experts. In my
case, I will include them into conceptually frequentist-oriented experts with a less
restrictive view (or realist) on the objectivity issues. Hawthorne (2011: p. 358),
defines this “third way” as:

7Well, this a key point not considered by most of evidence seekers, like Hill and his 9 criteria or
Mayo and Spanos (2010), when they affirm that a viable gravity theory must be complete,
self-consistent, and relativistic and have the correct Newtonian limit. All these criteria are theo-
retical and are not accompanied by a quantification mechanism as well as with a rule for not
deciding between these variables once quantified. From psychological ideas to absolute truths and
without thinking about how these really are connected. It is a naive frequentism that hates
Bayesianism because it is supposed that Bayesianism is too subjective. Their project turns
absolutely crazy once they defend frequentism as a good inductive inference, when induction is
precisely opposite to frequentist ideas, because there is a bias in the fact selection and on the
limitation of the long-run experimental design and analysis. Nobody makes infinite experiments!
Then, there is an agreement or expert protocol beyond quantified data about the value of the
obtained data.
8In Probabilism¸ first page, he says that human thought (il pensiero) is a mere biological function
(una funzione biologica), a method to orientate one’s life (un mezzo per orientarsi nella vita).
Besides, sciences cannot provide absolute truths as if they were measuring experimental results:
There is always a subjective processing of the data (Sect. 14). Here, Causality must be understood
as a mental mechanism necessary for the understanding and control of facts. At Sect. 9, he adds
“The probability of an event is relative to our degree of ignorance” (La probabilità di un evento è
dunque relativa al nostro grado d’ignoranza). Here, a priori knowledge is illusory (or even proofs
that converge toward the infinite) despite the validity of logical and formal tools. He defends, in
Sect. 14, the practical truth (certeza pratica), saying that it is not positivist nor rationalist (Sect. 16).
9As he defends at (1934) L’invenzione della verità: To analyze everything? OK, but with what?
(§4. “Analizzare tutto? Va bene. Ma con che?”).
10In his writings for the Lecture for the Accademia del Lincei, de Finetti wrote in 28/07/1973, that
the relationship between mathematics and plausibility belongs to Polya (onine Bruno de Finetti
Papers, 1924–2000, ASP.1992.01, Box 6, Folder 10). Anyhow, de Finetti was in disagreement
with Polya, as a personal letter of January 7th, 1975 shows, because the latter defended frequency
as the value of long-run frequencies.

64 5 The Coevolution, Battles, and Fights of Both Paradigms



A view (or family of views) called likelihoodism maintains that confirmation theory should
only concern itself with how much the evidence supports one hypothesis over another, and
maintains that evidential support should only involve ratios of completely objective like-
lihoods. When the likelihoods are objective, their ratios provide an objective measure of
how strongly the evidence supports hi as compared to hj, one that is “untainted” by such
subjective elements as prior plausibility considerations. According to likelihoodists,
objective likelihood ratios are the only scientifically appropriate way to assess what the
evidence says about hypotheses. Likelihoodists need not reject Bayesian confirmation
theory altogether. Many are statisticians and logicians who hold that the logical assessment
of the evidential impact should be kept separate from other considerations. They often add
that the only job of the statistician/logician is to evaluate the objective strength of the
evidence. Some concede that the way in which these objective likelihoods should influence
the agents’ posterior confidence in the truth of a hypothesis may depend on additional
considerations — and that perhaps these considerations may be represented by individual
subjective prior probabilities for agents in the way Bayesians suggest. But such consid-
erations go beyond the impact of the evidence. So it’s not the place of the
statistician/logician to compute recommended values of posterior probabilities for the
scientific community.

Efron (1998: 111) suggested that the boundaries among statistical schools were
not so clear, (see Fig. 5.1):

So, although we consider in this book the existence of two main approaches to
statistics, Bayesian and frequentist, we could consider the possibility to include a
third one into the list, fisherian. But we also need to admit that Fisher was fre-
quentist except for his fiducial argument, and nobody ascribed themselves to it. It
does not mean that really a great divergence exists among statistics practitioners: in

Fig. 5.1 Relationship between different schools of statistics. Taken from Efron (1998: 111).
Published with the kind permission of © Institute of Mathematical Statistics, 1998. All rights
reserved
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the case of theoreticians, perhaps this could be true (a deep distance between
Bayesian and frequentists), but from a practical point of view, experts try to use the
best tools for each specific problem and this implies not to be married exclusively
with a philosophical approach, instead showing an open attitude toward the best
rational methods for problem-solving tasks. Before we see contact points among
them, as Kass (2011: 1) tried to create a merged approach that he calls “statistical
pragmatism,” we will analyze briefly some of the biggest debates in this field.

5.2 An Acid and Blurred Debate

Statistics is a young and dynamic discipline and, consequently, opens to strong and
serious debates among their practitioners. Some frictions can also be found in the
same intellectual side, as happened to Karl Pearson, and Ronald Fisher, but for
personal reasons that are not the main interest of this text (Inman 1994). Fisher and
Jeffreys had a dispute between 1932 and 1934 because of their opposing views on
the nature of statistics, as well as Fisher (1955) with Neyman, Fisher made an
intense critique of Neyman ideas, which received a direct answer by Neyman
(1956). Fisher even proclaimed “mad Neymanians in California” (Louçã 2008: 6).
The disputes were hard and increased once Neyman–Pearson’s methods gained
general recognition and were adopted swiftly through the academic world. After
World War II, it became the received position. Fisher was perhaps the most
combative statistician of the twentieth century, entering into public disputes with
Neyman, Gosset, and Wishart. As early as in 1949, Kendall wrote a paper, “On the
Reconciliation of Theories of Probability,” in which he coined the word “fre-
quentist” and stated “Few branches of scientific method have been subject to so
much difference of opinion as the theory of probability.” He tried to attempt
mediation between the contestants, but failed. Curiously, he did mention Bayesians,
but named them “non-frequentists.”

He had such a strong character that while he was working in 1928 on crop
experiments at Rothamsted, some workers sung a funny Christmas song at
Rothamsted annual Christmas party (it was to the tune of “Wrap Me Up in My
Tarpaulin Jacket,” also known as “The Handsome Young Airman Lay Dying”)
(Kruskal 1980). In that song, they expressed the dominance and power of Fisher,
who was presented as able to bend formulae to his will, and the whole statistical
activity as a wondrous cult for lay and non-mathematical minds. It is also funny/sad
(according to your half full-half empty day) to note that important thinkers such as
Karl Pearson, R.A. Fisher, Harold Jeffreys, or Ian Hacking misinterpreted the
original Bayes’ essay, especially the disputed assumption that an unknown prob-
ability is uniformly distributed a priori (Stigler 1982).11 Despite the great conflicts

11Stigler argues that although there is a relationship between Bayes argument and the principle of
insufficient reason, it is a distant relationship. When Bayes characterized the lack of knowledge
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between Fisher and Neyman/Pearson, economists ignored this debate and mixed
both approaches, thus creating a methodological hybridization (Louçã 2008), fol-
lowing the term coined by Gigerenzer et al. (1989: 106).

In our days, some Taliban-like approaches to statistical thinking can still be
found: For example, a recent keynote at an IACAP conference (2014), Selmer
Bringsjord and Naveen Sundar, gave a speech titled “Two refutations of
Hegemonic Bayesianism.” There, the authors affirm things like “the sign of a mind
infected with either or both of these views (both Bayesian)” or “dirt-simple Baye’s
Theorem.” The authors, luckily satisfied by their intellectual superiority, even
affirmed that the problem of the statistical mechanisms of the human brain was
evidently non-Bayesian and that this problem will not be discussed then but “saved
for five minutes on another day.”12 Prepotence, lack of knowledge about real
scientific practices, and isolation into a blind ivory tower are the only explanations
that I can find to justify such an uninformed, weak, and outmoded attitude.

Clearly, one of the recurrent arguments against/in favor of one of the two
positions (frequentist or Bayesian) consists in saying that a true scientist is
always/never frequentist/Bayesian (you can choose between the two possibilities).
As an example of this confrontation, see the ideas of Giere (1988): “Are Scientists
Bayesian Agents? (…) The overwhelming conclusion is that humans are not
Bayesian agents”, and of Efron (1986) or Cousins (1995). The last two do not need
to be quoted. It seems to be an epistemological law about statistical practices: “A
true scientist never belongs to the opposite statistical school” (Vallverdú 2008). It
could seem that frequentists are realists, when they consider relative frequencies,
and that Bayesians are subjective, when they defend degrees of belief of prior
probabilities, but the truth is that in cluster investigations, for example, the fre-
quentist approach is just as subjective as the Bayesian approach,13 although the

(Footnote 11 continued)

about θ by a discrete uniform distribution for X, he did not postulate that he was unwilling to
specify probability a priory: In fact, his basic definition of probability was an a priori expectation
(Stigler 1982: 253).
12The truth is that brains seem to work in another direction: Synaptic plasticity shows an inherent
stochastic nature. Besides, spine mobility enables cortical networks of neurons to carry out
probabilistic inferences by sampling from a posterior distribution of network configurations,
Kappel (2015).
13For example, implicit in the best Bayesian practice is a stance that has much in common with the
error statistical approach of Mayo (1996), despite the latter’s frequentist orientation (Gelman and
Shalizi 2013). They, Gelman and Shalizi (2013) defend that Bayesianism do not support any
particular philosophical school but instead fit modern forms of hypothetico-deductivism. Well, I
agree with them that actual Bayesian tools do not represent a pure inductivist approach, but at a
certain point a sophisticated deductive perspective. Considering the fact that statistical tools are an
important but not dominant part of all scientific activities, they can be understood as a bunch of
tools that satisfy specific conceptual requirements throughout a long process of epistemic activi-
ties. On the other hand, the notion that Bayesian data analysis approaches it to falsificationism
(Gelman and Shalizi 2013: 17) must be seen as a naive view about how scientific research works.
Scientists are not falsificationists. It is not an explicit step of any of the existing epistemological
heuristics, just a possible rule that is optionally applied.
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Bayesian approach is less ambitious in that it treats the analysis as a synthesis of
data and personal judgments (possibly poor ones), rather than objective reality
(Coory et al. 2009).

5.3 Why Bother to Become Frequentist/Bayesian?

Bland and Altman (1998: 1160) have their own answer: “Most statisticians have
become Bayesians or Frequentists as a result of their choice of university.” And as
the epidemiologist, Berger says (2003): “practicing epidemiologists are given little
guidance in choosing between these approaches apart from the ideological adher-
ence of mentors, colleagues and editors.”

So, the arguments go beyond the ethereal philosophical arena and become more
practical ones. Better opportunities to find a good job is an important argument, and
the value of Bayesian academic training is now accepted: “where once graduate
students doing Bayesian dissertations were advised to try not to look too Bayesian
when they went on the job market, now great numbers of graduate students try to
include some Bayesian flavor in their dissertations to increase their marketability”
Wilson (2003: 372). Therefore, and following Hacking (1972: 133): “Euler at once
retorted that this advice is metaphysical, not mathematical. Quite so! The choice of
primitive concepts for inference is a matter of “metaphysics.” The orthodox
statistician has made one metaphysical choice and the Bayesian another.” To be
honest, this is not a fatally flawed position, but different context-based applications
of both main approaches. As Gigerenzer (1990) expresses, “we need statistical
thinking, not statistical rituals.” Lilford and Braunholtz (1996: 604) goes further:
“when the situation is less clear cut (…) conventional statistics may drive decision
makers into a corner and produce sudden, large changes in prescribing. The
problem does not lie with any of the individual decision makers, but with the very
philosophical basis of scientific inference. We propose that conventional statistics
should not be used in such cases and that the Bayesian approach is both episte-
mologically and practically superior.”14 There is also a structural aspect: compu-
tational facilities; due to recent innovations in scientific computing (faster computer
processors) and drastic drops in the cost of computers, the number of statisticians
trained in Bayesian methodology has increased (Tan 2001). Trying to offer a
mid-point perspective, Berger (2003) proposes using both models and studying
their possibilities case by case: “based on the philosophical foundations of the
approaches, Bayesian models are best suited to addressing hypotheses, conjectures,
or public-policy goals, while the frequentist approach is best suited to those epi-
demiological studies which can be considered ‘experiments’, i.e. testing constructed
sets of data.” Usually, we find no such equitable position.

14See the persuasive updated from 1997: Hajek (2009).
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In the middle of such debates, sometimes really intense and aggressive, there is a
space for humor and irony. For example, there is a superb paper from Cohen “The
Earth is Round (p < .05),” published in 1994, of which the main aim is to rant
against the misuse of p-values for null hypothesis significance testing (NHST). The
author uses the word of “the ritual of null hypothesis significance testing” or “a
sacred .05 criterion” to justify the necessity to abandon faith in specific statistical
methods and to embrace the need of experimental replication. The most amusing
point of this paper is that it demonstrates that certain Bayesian uses of inverse
probability are as false or misleading as frequentist p-values. In a similar joking but
philosophically justified spirit, we find the paper of Gigerenzer (1993). The mis-
interpretation of NHST and Ho affected researchers such as Guilford, Nunnally,
Anasti, Ferguson, or Lindquist, besides the error of R.A. Fisher who rejected
Bayesian theory of inverse probability but slipped into invalid Bayesian interpre-
tation of NHST (Cohen 1994: 999).

It must be noticed that although far from a more centered perspective critical
with both approaches, we can find the delicious Bayesian songs sung at Valencia
international conferences15 where have performed very successfully a choir of
female statisticians/singers called “The Bayesettes.” A reading of the texts of these
musical versions16 is unavoidable to understand with a smile on your face about the
nature of the debate between Bayesians and frequentists. The first international
conference on Bayes rule was held in a Spanish city, Valencia, in 1979, and since
then, several other Bayesian conferences followed the same location (Bernardo
1999).

5.4 A Practical Mixture and Mutual Influence

Once you have read previous sections of this book, the reader could think that there
is a strong battle among statistics experts clearly located at two opposite sides:
Bayesians versus frequentists. If it is true that a dichotomization of both schools
exists, and that sometimes strong divergences exist about the interpretation of
statistical tools, it can be affirmed at the same time that once we take into account
practical frameworks in which there are needed results, boundaries are blurred by
common sense. For example, there are frequentists as well as Bayesian parametric,
semi-parametric, and nonparametric models with specific tools for similar problems
that can be combined. And there is an important parallel between frequentist and
Bayesian methods: their dependence on the model chosen for the data probability

15You can easily find videos of these amateur performances at: https://www.youtube.com/watch?
v=zO63SQkeuW0 or https://www.youtube.com/watch?v=RRhIxf6EIDg.
16The Valencia songbook can be downloaded from: https://www.google.es/url?sa=t&rct=j&q=
&esrc=s&source=web&cd=2&ved=0CDoQFjAB&url=http%3A%2F%2Fwww.biostat.umn.edu%
2F*brad%2Fsongbook.ps&ei=gqUkUvWENoKL7AbLj4HIDw&usg=AFQjCNEzNlZru33lEtj-
IImj2Juu1RLBig&sig2=dYfR8P_M6wZR_2SJoqCCsA.
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p (data∣parameters) (Greenland 2006: 767). Then, frequency-based priors should be
called “empirical” rather than “subjective.”

There is another possibility: a pragmatic approach to statistics, something that
we cannot forget or neglect. Even in the case of one of the contemporary founders
of frequentism, Pearson, we can find a good attitude toward the use of Bayesian
methods in specific contexts. In 1917, Pearson and other authors (headed by Soper)
wrote On the distribution of the correlation coefficient in small samples.
Appendix II to the papers of “Student” and R.A. Fisher. A cooperative study (H.E.
Soper, A.W. Young, B.M. Cave, A. Lee, and K. Pearson), in which they explained:
“Clearly the only result of experience by which we could justify this ‘equal dis-
tribution of ignorance’ would be the accumulative experience that in past series the
correlation of parent and child had taken with equal frequency of occurrence every
value from −1 to +1. To appeal to such a result is absurd; Bayes’ Theorem ought
only to be used where we have in past experience, as or example in the case of
probabilities and other statistical ratios, met with every admissible value with
roughly equal frequency” (p. 358). Howie (2002) claimed that Pearson connected
this pragmatic view with the principle of insufficient reason (p. 59).

Again considering the notion of pragmatism, we can read Wilson (2003): “their
methodological successes (from Bayesian) have indeed impressed many within the
field and without, but those who have adopted the Bayesian methods have often
done so without adopting the Bayesian philosophy.” As the editorial from British
Medical Journal (1996) states, “most people find Bayesian probability much more
akin to their own thought processes. The areas in which there is most resistance to
Bayesian methods are those where the Frequentist paradigm took root in the 1940s–
1960s, namely clinical trials and epidemiology. Resistance is less strong in areas
where formal inference is not so important, for example, during phase I and II trials,
which are concerned mainly with safety and dose finding.” The Scientific
Information and Computing Center at CIBA-GEIGY’s Swiss headquarters in Basle
moved toward the systematic use of Bayesian methods not so much as a result of
theoretical conviction derived from philosophical debates, but rather as a pragmatic
response to the often experienced inadequacy of traditional approaches to deal with
the problems with which CIBA-GEIGY statisticians were routinely confronted
(Racine et al. 1986). As an example, clinical trials made by pharmaceutical
industries are usually Bayesian method (Estey and Thall 2003) although such
methods are not easily implemented (Wang et al. 2002).

Bayarri and Berger paper of 2004 is a perfect example of this pragmatic
approach: Going beyond the “philosophical correctness” of any statistical school,17

17Bayarri and Berger (2004), both true Bayesians, remark in p. 60, that “there is a sense in which
everyone should ascribe to frequentism: FREQUENTIST PRINCIPLE. In repeated practical use of
a statistical procedure, the long-run average actual accuracy should be no less than (and ideally
should equal) the long-run average reported accuracy”. What they try to show is that some parts of
frequentist approach are good and necessary, unless you assume too strictly with their principles.
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there are several situations in which a joint frequentist–Bayesian approach is
desirable18, such as

• Mixed approaches:

– Empirical Bayes approach, by Robbins (1955, 1964, 1983) and other modern
reviews of this (Carlin and Louis 2000; Robert 2001).

– Gamma minimax approach (Berger 1985; Vidakovic 2000).
– Restricted risk Bayes (Berger 1985).
– Prequential approach (Dawid and Vovk 1999).
– Binary regression: the BARS-based (Bayesian adaptive regression splines)

posterior interval can be considered from either a Bayesian or frequentist
point of view (Kass 2011: 3).

• Design or preposterior analysis: frequentist design focused on planning of
experiments is very close to the Bayesian notion or preposterior analysis.

• Binomial confidence interval.
• Estimation and confidence intervals: frequentist estimates and confidence

intervals coincide exactly with the standard objective Bayesian estimates and
credible intervals.

• Subjectivism: according to Louçã (2008), Fisher arbitrarily chose the model and
the test; Neyman and Pearson made the same with the class of hypotheses and
the rejection region, and finally, Bayesian had the a priori probability. A last
example provides evidence that α-levels are arbitrary (why .05 instead of .06?).
Obviously, this needs mode details, but in essence, it is quite correct, and the
good attitude toward several grades of subjectivism among statistical studies
must be respected and properly understood.

• Computationwith hierarchical,multilevel, ormixedmodel analysis, such asGibbs
sampling and other Markov chain Monte Carlo (MCMC) methods of analysis.
MCMC methods rely fundamentally on frequentist reasoning to do computation.

• Assessment of accuracy of estimation: finding good confidence intervals in the
presence of nuisance parameters, obtaining good conditional measures of
accuracy, and making accuracy assessments in hierarchical models.

• Foundational level: to find the complete class of procedures optimal to solve a
situation, frequentists and Bayesians use similar approaches. Frequentist use of
minimaxity (Brown 1994, 2000; Strawderman 2000) is close to Bayesian ways
to the “least favorable prior distribution.” And Bayesian exchangeability, as
developed by de Finetti (1970), involves frequentist reasoning or mathematics
by considering infinite series of observations.

• Likelihood function: Both classical and Bayesian statisticians can agree about
the importance of the likelihood function, in particular on its value as a concise
summary of the experimental data (Cousins 1995).

18Williamson (2013) defends the same position, from a more philosophical rather than an oper-
ational perspective. A note published but officially uploaded paper with ideas of Thomas J. Loredo
is highly recommendable: “The Return of the Prodigal: Bayesian Inference in Astrophysics.”
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• Prior development: frequentist consistency principle.
• Frequentist simplifications and asymptotic approximations.
• p-Values, for both classic frequentist and Bayesian statisticians (Greenland and

Poole 2013). It can even be said that fisherian p-values were incoherently mixed
with Neyman–Pearson’s hypothesis tests and confidence intervals (Greenland
2006: 765).

• Bayesian networks,19 despite the name, Bayesian networks do not necessarily
imply a commitment to Bayesian statistics.20 Indeed, it is common to use fre-
quentist methods to estimate the parameters of the conditional probability dis-
tributions (CPDs). Rather, they are so-called because they use Bayes’ rule for
probabilistic inference, and the term “directed graphical model” would be per-
haps more appropriate. Nevertheless, Bayes nets are a useful representation for
hierarchical Bayesian models, which formed the foundation of applied Bayesian
statistics. In such a model, the parameters are treated like any other random
variable and become nodes in the graph.

• Bounded rationality and experts’ heuristics: Although it is clear that normal
human beings do not follow rules of logic, probability theory, statistics, rational
choice, or game theory during their daily decisions, experts use some of these
tools when they work in their fields. Several fallacies and biases have been
discovered during the last decades that affect how experts process numerical data
(overconfidence bias, Alexander Problem, Linda Problem, Harvard Medical
School Problem, Violation of expected utility theory, Gambler’s fallacy, etc.), but
at the same time, the mixture of Bayesian and frequentist approaches, or more
precisely, its selective implementation, can contribute to controlling these mis-
takes. As Thomas et al. (2009) have shown the probability to give correct answers
under uncertainty decreases with the level of education, some procedures are
biased because of the wrong combination of new information with prior infor-
mation as well as because of the difficulties of making judgments that involve
conditional probabilities. The base rate neglect is a very common bias, and for
some wrong heuristics like the Harvard Medical School Problem (Casscells and
Schoenberg 1978), there is a solution: use different number treatment tool: from
Bayesian to frequentist. At that moment, base rate fallacies drop to 30 % and less
(Cosmides and Tooby 1996; Gigerenzer and Hoffrage 1995). Then, we could
apply Bayesian methods in order to obtain more accurate and reliable data but
process them cognitively under a frequentist framework to improve the whole
heuristics or involved experts. If classic Bayesian efforts toward solving the

19Quoted from: Murphy (1998).
20As Gillies and Sudbury (2013) show, Bayesian networks can often be improved by interpreting
the probabilities objectively and testing the so-called Markov assumption, using some of the
frequentist statistical tests. The beneficial symbiosis between both paradigms is evidence!
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problem of induction with the help of probability calculus yield to cognitive
mistakes (Albert 2009), we can design new methods of data visualization or even
to combine methodologies to provide a better final outcome.21

Nevertheless, there still remain some deep gaps between both schools such as
multiple comparisons, sequential analysis, or finite population sampling. Besides,
some narrowness on the interpretation of the epistemological value of certain sta-
tistical tools, such as happens usually with p-values plus a generalized lack of
replication, has led to some researchers to distrust main research results, like
Ioannidis (2005) and his shocking paper titled: “Why Most Published Research
Findings Are False,” in which he also affirms: “(…) large-scale evidence is
impossible to obtain for all of the millions and trillions of research questions posed
in current research” (p. 700). Perhaps one of the most unnoticed but deep problems
of frequentist techniques has been the strict perspective about the range of available
statistic tools as well as sometimes naïve perspective about how real science is
performed, something broadly extended during the first half of the twentieth century
by logic positivists. Then, when Bayesian methods were reintroduced, they spread
fast among scientists, not for philosophical reasons but for practical ones.22 Despite
Savage’s success in 1954, giving to the subjective interpretation of probability a
solid philosophical basis, in my opinion, challenges several researchers were faced
with were solved in the next decades, and this is what gave Bayesianism the real
support. Most times, actions determine the success of theories.
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Chapter 6
The Birth of Multicausality as the Death
of Causality and Their Statistical
Corollaries

Abstract The emergence of a new discipline, epidemiology, contributes to the
understanding of the evolution of scientific attitudes and ideas about causality. After
an initial and ancient belief in single causes supported by classic philosophers and
nineteenth century physicians like Koch that can be expressed as a monocausality
view, the complexity of real medical and toxicological problems forced researchers
to embrace the notion of multicausality and similar approaches (web of causes,
chain of events). All these debates fed the evolution of statistical methodologies
employed as well as led to a new way to understand causality within complex
systems or contexts.

Keywords Epidemiology � Monocausality � Multicausality � Risk � Web of
causes � Chain of causal relationships � Evidence � Social � Complexity

Causality debates did not finish with the evolution of statistical tools and instru-
ments. In fact, the more we know about the world, the more we need to admit our
ignorance and oversimplification of data we extract from nature. In this chapter, I
will introduce the last important debate on induction, causality and statistics: the
epidemiological debate.

In this chapter we will analyze a very important topic: the multiple hypotheses
problem. If historically philosophers have been worried about the notion of cause, it
was a mono-cause problem: how one thing causes another thing. It was a single
cause dogma, absolutely tacit for all the academic community. But with the pro-
gress of sciences, the notion of multiple causes or cocauses emerged as a true force
of nature, beyond the reluctances of the scientists and theoreticians and impelled by
the new complexities of modern sciences (immersed today in Big Data problems).

Very briefly let us take an eagle-eye view on the historical process that preceded
the birth of multicausality: the bygone era of single causes and absolute truths. In
the Western philosophical tradition, the search for non supranatural causes to
explain the world has been the fundamental force of research, despite all the
exceptions and counterexamples we could find to this affirmation: one event, one
cause, and the human mind (with the help or not of sensory data) ability to catch it.
But nature seems to behave in different ways at different scales or reality domains,
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so it seemed necessary to find a more technical theory of causation and Aristotle set
the theory of 4 causes to explain how the world worked, becoming the first Grand
Unified Theory, if you allow me the use of contemporary vocabulary. Although he
included the notions of chance and causality into his writings (Physics II, 4–6), the
dogma was: one effect requires a single cause. Consequently, the origin of the
universe resided into one primordial and temporarily initial cause: the Unmoved
Mover, from which all the entities of our universe were a mere consequence. In this
universe, everything followed strict rules that made establishing links between
causes and effects possible, completely open to the mind of philosophers. Only
Lucretius and Democritus were too brave or insensate as to offer a place to hazard
or indeterminacy when they considered that atoms followed a basic deviation or
clinamen to produce movement and interaction. That is, the cause of change. Later,
was constructed inside Western thought an increasingly materialistic and mecha-
nistic approach that made possible one unexpected consequence: the quantification
of several domains of human made possible to assume that, first, human life was
quantifiable, and second, that those big numbers needed specific treatment. This
opened the backdoor of rationalists to accept the idea of numeric probability, first in
the work La logique ou l’art de penser, written in 1662 by Antoine Arnauld and
Pierre Nicole. Later, other authors made new advances: Huygens, 1657, De rati-
otiniis in aleae ludo; De Moivre, 1711, De mensura sortis (in which the view was
defended that hazard was not possible, otherwise it could be a demonstration of
atheism’s validity)1; Laplace, 1789, Essai philosophique sur les probabilités; Bayes
1763, An Essay towards solving a Problem in the Doctrine of Chances. Some
authors understood how this implied the fracture of systematic thinking, like
Leibniz, who argued that hazard was not a reality but the result of our ignorance
about the system as a whole.

The ethical aspects of indeterminacy were grounded by Pascal and his famous
moral bet about the existence of God and our beliefs. How could humans be free
and responsible for their acts if the whole world was a deterministic system, a big
clock-machine? Some protestant sects were true and we were all damned or for-
given by God before our birth? Descartes tried to find a solution creating a clear
distinction between a res extensa forced to follow mechanistic rules and a free res
cogitans with choice possibility. To us this sounds like a deus ex machina fallacy.

Anyhow, the continuous addition of new data to the scientific arena showed that
the classic or ancient philosophers and scientists were not the guardians of eternal
truths but old walls to be destroyed in order to see the reality. But, alas, this implied
at the same time a confusing discovery: New data were not so easy to reduce to
lineal causal processes in which A was clearly cause of B. Therefore, causality

1This was something important for Moivre and more so after his long stays in French prisons as a
consequence of his being a Protestant. The battles of God were then performed in a mathematical
arena.
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became a more complex process, a new challenge for philosophers and scientists. If
it is true that statistical thinking emerged as the leading approach in order to solve
those problems, a redoubt of classical thinkers tried to maintain a philosophical
view. John Stuart Mill was one of them (Auguste Comte was another leading author
in this view) and he designed in 1843 (A System of Logic) a new way to establish
relations of causal necessity among events, five different formal methods for
establishing causal connections between types of events: (a) method of agreement;
(b) method of difference; (c) joint method of agreement and difference; (d) method
of concomitant variations; and (e) method of residues. With these ways to obtain
“causal” connections, Mill tried to avoid the type of statistical thinking that was
gaining power in scientific and social sciences. Mill denounced statistics as “an
aberration of the intellect” and “ignorance…coined into science” (McGrayne 2011:
36). The French statistician Bertrand wrote in 1889: “L’application du calcul aux
decisions judiciaries est. dit Stuart Mill, le scandale des Mathématiques.
L’Accusation est injuste” (p. 43). Cartwright (1989: 176) asserts that Mill was
“opposed” to the statistical laws of Quetelet’s social physics, considering necessary
the establishment of rules of association of events. This philosophical change was
not an easy or desired decision: It was meant the only way to save rationality from
chaos and its disappearance. Because, as Bertrand Arthur William Russell, 3rd Earl
Russell, affirmed at the beginning of the twentieth century: “the law of causality
(…) is a relic of a bygone age, surviving, like the monarchy, only because it is
erroneously supposed to do no harm (…) The principle ‘same cause, same effect’,
which philosophers imagine to be vital to science, is therefore utterly otiose”
(Suppes 1970: 5). Physicist James Clerk Maxwell also adopted frequency-based
methods for the creation of statistical mechanics and the kinetic theory of gases.
Statistics was then at the core of nature, not of (limited) minds. Some decades later
century Karl Popper wrote A World of Propensities, defending a new status for
statistical propensities,2 now becoming the maximum level of rationality.3 And,
later, Nancy Cartwright constructed a defense of probabilistic probability. It looks
like the abandonment of philosophical belief in the cause–effect relationships, but it
represented an advance into several notions of causality: Entities in the world
behave in a more complex way than our predecessors knew, and although we can
measure and quantify the whole process, numbers alone are not able to offer direct
causal relationships (Buck 1975). In this model, mechanisms replace causes. In fact,
scientific disciplines entered into this new approach by operational and experi-
mental results, not by theoretical debates. There is one discipline that exemplifies
perfectly this process: epidemiology.

2Philosopher Gillies (2000) defended long-run propensity theories, while his predecessor Popper
showed the coexistence of long-run and single-case propensity theories. This is a diffused way to
defend frequentist ideas.
3About propensities and causes in Quantum Physics see Suárez (2011).
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6.1 Epidemology as a Data-Scanner Discipline

According to Bhopal (2002: 21), epidemiology “is the science and craft that studies
the pattern of diseases (and health, though usually indirectly) in populations to help
understand both their causes and the burden they impose. This information is
applied to prevent, control or manage the problems under study.” The concept is
derived from the Greek words meaning study upon populations (epi upon, demos
people, logos study).

The ancient Greek physician Hippocrates (470–400 B.C.) is considered the
father of modern Western medicine. He wrote a book entitled Air, Waters and
Places, where he clearly identified the general dependence of health not on magical
and supranatural influences but on an identifiable array of natural external factors,
some of them clearly environmental. This led to several historians to talk about the
man-environment binominal also referred to as “Hippocrates’ dyad.” According to
Saracci (in Olsen et al. 2010: Chap. 1), there were three streams in early epi-
demiology: medical, demographic, and theoretical, coalesced in an effective way
only toward the end of the eighteenth and beginning of the nineteenth centuries,
giving rise to epidemiology as we recognize it today, an investigation of diseases
and their etiology at the population level. Ramazzini, Sydenham, Lancisi, or Graunt
are some of the pioneers.

A change in the discipline was experienced with the advent of the industrial
transformation of Western Europe, when “crowd diseases” emerged which struck
the populations amassed in the slums of the fast-growing centers of industrial
development. John Snow (1813–1858) exemplifies this renewal of ideas and
techniques with his brilliant identification of a pathogenic agent from the envi-
ronment: the cholera in London because of contaminated water supplies. He con-
tributed to the end of London’s great cholera epidemic episodes in 1849 and 1854.
Rudof Virchow (1821–1902, talking about medicine as a social science) and Robert
Koch (1843–1910, with his causal postulates) were also key actors for the estab-
lishment of conceptual elements of epidemiology. After World War Two, this
discipline entered into the reign of clinical and statistical debates, around the
controversies about tobacco and health. In the next section, we will cover the
conceptual analysis on epidemiology evolution about causality and disease.

6.2 The Epidemiological Monocausality

Once practical roots of epidemiological research have been explained, it is neces-
sary to identify the conceptual debate that was born with and became cosubstantial
to this discipline: causal relationships. Epidemiology exemplifies perfectly how
conceptual debates and empirical advances are intertwined. In 1844, Robert Koch
demonstrated how a causal relationship between a bacterial parasite and illness
existed, where 1 agent in 1 ambient caused 1 illness. Besides their demonstration,
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Koch needed to establish four postulates that reinforced or demonstrated these
monocausal relationships (Croce 1996):

1. The microorganism must be found in abundance in all organisms suffering from
the disease, but should not be found in healthy organisms.

2. The microorganism must be isolated from a diseased organism and grown in
pure culture.

3. The cultured microorganism should cause disease when introduced into a
healthy organism.

4. The microorganism must be reisolated from the inoculated, diseased experi-
mental host and identified as being identical to the original specific causative
agent.

This successful as well as promising approach implied that, from hence, any
expert in diseases looked only for the single agent that caused one disease. The first
known agent to behave in that way was anthrax bacterium (Bacillus anthracis).
French physicists and pathologists, respectively, Casimir Joseph Davaine and Pierre
François Olive Rayer,4 discovered in 1850 certain microorganisms in diseased and
dying sheep. That same year Rayer inoculated sheep with the blood of dead sheep
(by what we know as anthrax) and published a short note of this work in the
Bulletin de la Societé de Biologie. Six years later, F.A. Brauel inoculated sheep,
horses, and dogs with blood taken from animals sick with anthrax, demonstrating
that the disease could be transmitted to sheep and horses, but not to dogs. In 1863,
Davaine published three valuable papers on anthrax and demonstrated that the
blood of an animal sick with anthrax is not capable of transmitting the disease to
others unless it contains the bacillus. Finally, in 1876, German microbiologist
Robert Koch researched the etiology of Bacillus anthracis and discovered its ability
to produce “resting spores” that could stay alive in the soil for a long period of time
to serve as a future source of infection. For these strange causes, Koch received all
the credit for this epistemologically distributed process. Nevertheless, a “golden
age” of scientific discovery ensued. But monocausality was not as certain as it
appeared to be as follows: After a few years, the clinical and laboratory evidence
showed that this was not true and that a plethora of possibilities were real. As Inglis
(2007) shows, there is no single accepted method to establish a causal relationship
between an infective agent and its corresponding infectious disease. Different
biomedical disciplines use a patchwork of distinct but overlapping approaches.
Now, over a century later, a more rigorous method to test causality has still to be
finalized. One contender is a method that uses molecular methods to establish a
causal relationship (“molecular Koch’s postulates”).

Before allowing the discipline to enter into a shock or to be collapsed by their
inconsistencies, Sir Austin Bradford Hill worked hard establishing causal criteria in
epidemiology. In 1965, he published the famous paper “The environment and

4Rayer was a very famous and successful physician expert among other things in skin diseases.
Davaine attended him unsuccessfully in 1867 when he suffered a deadly stroke.
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disease: association or causation?” where he specified 9 criteria that made it pos-
sible to affirm causal relationships:

1. Strength: A small association does not mean that there is not a causal effect,
though the larger the association, the more likely that it is causal.

2. Consistency: Consistent findings observed by different persons in different
places with different samples strengthen the likelihood of an effect.

3. Specificity: Causation is likely if a very specific population at a specific site and
disease with no other likely explanation. The more specific an association
between a factor and an effect is, the bigger the probability of a causal
relationship.

4. Temporality: The effect has to occur after the cause (and if there is an expected
delay between the cause and expected effect, then the effect must occur after that
delay).

5. Biological gradient: Greater exposure should generally lead to greater incidence
of the effect. However, in some cases, the mere presence of the factor can trigger
the effect. In other cases, an inverse proportion is observed: Greater exposure
leads to lower incidence.

6. Plausibility: A plausible mechanism between cause and effect is helpful (but
Hill noted that knowledge of the mechanism is limited by current knowledge).

7. Coherence: Coherence between epidemiological and laboratory findings
increases the likelihood of an effect. However, Hill noted that “… lack of such
[laboratory] evidence cannot nullify the epidemiological effect on associations.”

8. Experiment: “Occasionally, it is possible to appeal to experimental evidence.”
9. Analogy: The effect of similar factors may be considered.

With these 9 rules (closer to Mill’s approach to the causal associationism than to
any other mechanistic determinism approach under the statistical framework), Hill
tried to establish5 a solid set of rules that make the advancement or event possible in
the existence of epidemiology as a scientific practice (Phillips and Goodman 2004;
Höfler 2005). The most amazing fact about Hill’s criteria is that he did not provide
algorithmic and quantified methods to implement them: This process relies on the
expertise and the epidemiologist’s own decision. At a certain point, this turns the
criteria as declarations of good will, instead of being solid ways to achieve
unquestionable truth. Even useful, their implementation is an epistemological
quagmire.

Anyhow, the increasing number of variables and elements existing at the same
time as causal processes sought a need for a new visualization strategy (Greenland
et al. 1999) that makes the work of several cocausal factors easier. Part of these
criteria was applied in assessing the causal relation between cigarette smoking and

5Following and unifying ideas from Hume, Hammond, Yerushalmy, Palmer, Lilienfeld, Sartwell,
and the Surgeon General’s Advisory Committee as a chain of predecessors. See Blackburn and
Labarthe (2012: 1075) for these ideas as well as to understand how the debate was richer and with
independent ramifications at European and North American institutions.
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lung cancer in the 1964 Report of the Advisory Committee to the US Surgeon
General, Smoking and Health (Morabia 1991).6

Curiously, Hill affirmed in the same paper that “I have no wish, nor the skill, to
embark upon philosophical discussion of the meaning of ‘causation’. The ‘cause’
of illness may be immediate and direct; it may be remote and indirect underlying
the observed association. But with the aims of occupational and almost synony-
mous preventive, medicine in mind the decisive question is where the frequency of
the undesirable event B will be influenced by a change in the environmental feature
A. How such a change exerts that influence may call for a great deal of research,
However, before deducing ‘causation’ and taking action we shall not invariably
have to sit around awaiting the results of the research. The whole chain may have to
be unraveled or a few links may suffice. It will depend upon circumstances.” On the
one hand, Hill declared his lack of interest in the philosophical debate on causation,
while on the other hand, he claimed the need for a new way to obtain causal
relationships, that is, making epistemology. From a conceptual perspective, Hills’s
approach seems very similar to the improvements and changes that were suffered in
the field of logics: Initially worked with phrases that constituted arguments (syl-
logisms), until deeper details were entered into using the predicates inside the
phrases and thus leading to predicate logic. But this was the logic of perfect abstract
minds, not the logic followed by humans. The analysis of how humans really
thought introduced new elements into consideration, allowing the emergence of
non-monotonic logics, with more and powerful variables to be taken into account.
In a similar way, epidemiologists, who initially really believed in material single
causes for single effects, shifted toward a more complex panorama in which causes
and effects followed several paths that had to be combined in order to produce
relations of mutual sequential necessity. Trying to solve how individuals should
face Hill and Doll results (devoted to populations), Jerome Cornfield used Bayes’
rules to create a solution as well as to defend a scientific approach to multicausality,
which faced him directly to debate with the fierce Fisher about relationships
between tobacco and cancer.

In 1991, Mervyn Susser, after several years of investigations in this area (Susser
1973), proposed to reduce Hill’s list to three elements of causal criteria:

a. Association. The exposure and outcome are associated more commonly than
would be expected by chance.

b. Time order. The exposure can be shown to precede the outcome, that is, X
precedes Y.

c. Direction. A change in the outcome is a consequence of change in exposure, not
the same as directionality in a study, where X leads to Y.

6Morabia (1991) also shows that here are strong evidences towards the strong similitude between
first 6 Hill’s criteria and Hume’s rules (at Hume’s Treatise of Human Nature).
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Five years later, Susser published more research (Susser 1996a, b, together with
his son), and even his son Ezra has published very important ideas on causality on
his own in epidemiology, especially in psychiatric epidemiology (Susser 2004).

6.3 The Multiple Causes Paradigm in Epidemiological
Studies

Trying to put order after the fiasco of monocausation dogma, if we consider it as the
representative model for all epidemiological cases, some authors created their own
models of multicausality. This was not only necessary for new techniques but also
to use metaphors to think about being able to embrace a new way to obtain
knowledge about causality.7 The necessity of this new metaphor is easy to
understand: At its beginnings, epidemiology was faced with mono-infectious
agents, “easy” to identify and to fight. But in the second half of the twentieth
century, health improvements such as filtered water supplies, sewage systems,
vaccines for serious epidemic diseases (typhoid fever, tuberculosis, tetanus), dis-
covery of penicillin, better nutrition, and access to sanitary facilities changed the
kind of threats that menaced large populations, bringing about a steady decline of
infectious diseases during the first half of the twentieth century (Andersen 2007).
Chronic and multifactorial diseases emerged as a new research topic, at a moment
in which there were no conceptual tools for diseases such as cancer, coronary artery
disease, diabetes, ulcers, or strokes. The need for new tools was imperative and
soon innovative ways appeared to deal with these diseases: bias and confounding
concepts, case–control or cohort designs.8 This allowed a new set of chronic studies
such as the Framingham Heart Study (1948), embarked on an ambitious project in
health research to identify the common factors that contribute to cardiovascular
disease by following its development over a long period of time in a large group of
participants, the study began in 1948 (conducted by Thomas Royle Dawber) with
5209 adult subjects from Framingham, and is now in its third generation of par-
ticipants; the famous case–control study of cancer cases from London hospitals
(Doll and Hill 1950); or the cohort study of British doctors (Doll and Hill 1956).
These first studies made it possible to investigate in depth some health problems for
which there was not clear data. Lung cancer was one of them, increasing at con-
cerningly greater rates, and soon became a leading research topic among epi-
demiologists. The causal bonds between lung cancer and smoking were provided
by Doll and Hill (1950) and several other authors, running retrospective case–
control studies that used hospital populations. Prospective studies were soon to
follow, showing defined causal connections between smoking and suffering lung

7Krieger (1994: 896).
8It is true that all these concepts or tools already existed in the previous century, but it was during
this period that they reached maturity and precision. See Vandenbroucke (2002), Vineis (2002).
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cancer, although some leading experts such as the British biostatistician Ronald
Fisher or North American biostatistician Joseph Berkson made several objections to
these evidences. The weight and influence of Fisher was at that moment over-
whelming among epidemiological communities. Not in vain, he was the stronger
defender and apostle of randomized clinical trials (RCTs),9 initially applied to
agricultural trials, which he made the gold standard in clinical trials and medical
research. According to Fischer, a leading frequentist, RCT avoided biases as well as
confounding factors, becoming the only scientific option. Curiously, the first
published RCT applied to clinical trials, in 1948 (Marshall et al. 1948), was
coauthored by Hill. They used same (or similar) methodological tools, but obtained
different or even opposite results.

Back to our analysis of multicausality, we look at the “chain of causation,” the
first metaphor we will analyze. It emerged after the methodological debates on
investigation of chronic diseases (especially cancer and heart diseases) parallel to
that of infectious diseases, by leading American biostatisticians, Jacob Yerushalmy
and Carroll E. Palmer (Yerushalmy and Palmer 1959). The American epidemiol-
ogist Abraham Lilienfeld, surprisingly brother-in-law to Yerushalmy, had described
the same assumption that all disease causation would ultimately have to be
described at a cellular level (Andersen 2007). This new view he saw as a “chain of
causal relationships,” a new visual way to understand causality (Lilienfeld 1957:
56) (Fig. 6.1).

Following Lilienfeld own and clear words (1957: 56–59, italics are mine):

After a statistical association has been ascertained, we would like to make some sort of an
inference as to whether a cause and effect relationship exists between the disease and the
associated characteristic (…) Epidemiological studies are composed of two stages: first, the

Fig. 6.1 Lilienfled’s original image on chain of causal relationships. Taken from (Lilienfeld 1957:
56). Published with the kind permission of © Association of Schools of Public Health, 1957. All
rights reserved

9Greenland (2006: 768) affirms that controlled randomized experiments on random samples as a
method for scientific research is a mind-projection fallacy, something expressed close to thought
experiment completely useless than to real procedures in daily practices. As he affirms: “data alone
say nothing at all” (ibid, p. 773).
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determination of statistical associations between a disease and various population charac-
teristics; second, the derivation of biological inferences from the pattern of associations.
Both the associations and inferences constitute the epidemiology of the disease. Statistical
associations may be determined from demographic data or from individual history data.
The latter may be obtained from retrospective studies, prospective studies, or experimental
studies. In these studies, characteristics of a group of cases are compared with those of one
or more groups of controls. Cases and controls may be selected by various methods, each of
which has advantages and disadvantages. In general, leads to the existence of statistical
associations come from individual history studies of hospital populations or from demo-
graphic data. The associations so suggested require confirmation by retrospective studies of
adequately selected samples of cases and controls from their respective populations.
Whether or not prospective studies are necessary depends largely on the kind and strength
of the association. The method of carrying out a prospective study depends on the nature of
the characteristics and the disease under investigation. In the derivation of causal inferences
from observed statistical associations, certain biological and non biological factors are
influential. Among the biological factors are the ability to conduct human experiments, the
strength of the association, the role of animal experimentation, and the prevailing biological
concepts. The latter is time most important. Snow’s and Farr’s observations on cholera are
illustration-s of the interaction between biological theory and the interpretation of statistical
associations. A non biological factor is the course of action resulting from the degree of
plausibility with which a causal inference is regarded.

“Web of causation” is another of the new successful metaphors and according to
Susser (2001) “is a metaphor for a theory of sequential multiple causes. Originally
deployed mainly for an epidemiology practised at the individual level of organi-
sation, but not necessarily confined to it, the metaphor can be and has been
extended to incorporate a sequence of multiple dimensions.” MacMahon et al.
(1960) were the first users of this notion, basically as Krieger (1994) points, “as a
reaction to the prevalent notion of chain of causation.” The chain of causation was a
metaphor and research model that failed to account for the complexity of the
genealogy of the antecedent of the chain and, thus, for the possible partial overlap
between different factors. With the web of causation, multifactorial etiology of
disease gained ground. This metaphor incited epidemiologists to embrace a more
sophisticated view of causality: that of a spider web made with an intricate network
of delicate and cross-connected strings, symbolizing diverse causal pathways
(Krieger 2011: 151). For example, the web of causation of MacMahon et al. (1960)
had a tree structure, close to the family trees we are used to.

6.4 New Trends in Epidemiology and Causality

Once richer, plural, and broader methods of causality were established, new factors
were necessary inclusions into these models.10 “Eco-social” variables were widely
discussed and multilevel epidemiology went one step ahead of previous webs of

10It is very curious the close-philosophical conceptualization of this new causality by Rothman and
his causal pies and sufficient causes (Rothman 1976).
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causation. In this new paradigm, epidemiological explanations of disease may refer
to different levels of analysis of disease causation. Susser and Susser (1996b) talked
about the pass from black boxes to Chinese boxes in causal analysis: Then, more
levels of complexity do not imply a desertion of causal explanations (Weed 1998),
and they show the need to consider the existence of multilevel complex systems. At
the same time, several authors avoided a discussion of the notion of cause, because
their “goal is to allow researchers to feel more confident in the power of their
research to tell a convincing story without resorting to metaphysical/unsupportable
notions of cause” (Lipton and Ødegaard 2005: 1). The previous statement is
hilarious and terribly paternalist, as if epidemiologists were intellectually impaired
or heart-weak. The main idea is easy to understand: To create causal relationships
without knowing about the true nature of these causes, something that G.E.M.
Anscombe claimed. If somebody is able to predict, intervene and manipulate the
world she/he then does not need to know it ontologically. Then, language must be
modified: Instead of causes, we should talk about causative meaning. They even
used Wittgenstein’s ideas to justify this domestication of causal controversies.
Finally, there is a defense of probabilistic models of causation versus deterministic
ones (from pragmatism to realism). As a consequence, the 2004 Surgeon General’s
Report used a new language (here semantics is the key):

“A. Evidence is sufficient to infer a causal relationship.
B. Evidence is suggestive but not sufficient to infer a causal relationship.
C. Evidence is inadequate to infer the presence or absence of a causal relationship
(which encompasses evidence that is sparse, of poor quality, or conflicting).
D. Evidence is suggestive of no causal relationship.”

After fierce debates on causality, the solution is to hide the debate and to adopt a
pragmatic approach to statistics, concluding (Lipton and Ødegaard 2005: 9) that
“for epidemiology, in particular, and science generally, the devil is in the details.”
Trying to find at least some sources of causative power, we could consider three
levels (hierarchically placed), each one with specific and independent statistical
analysis:

i. Social epidemiology: social macrolevel (Berkman and Kawachi 2000).
ii. Risk factor epidemiology: on behaviors and exposure, at the individual level.
iii. Molecular epidemiology: at the molecular microlevel.

The notion of “mechanism” as a partial and non-definitive approach to the reality
pushed this field to a new view on causal models, between associationism and
causal forces, but always through statistical assumptions. Causes are also substi-
tuted by “determining conditions” (Vineis 2003) or “active agents of change”
(Kaufman and Poole 2000: 104). Renton (1994) calls this approach a “realist view
on epidemiology and causation.” This must now force us to abandon realist posi-
tions or the belief in solid facts that can be understood, and it only increases the
complexity of the object under analysis at the same time that asks us to be open to
several epistemological strategies (Wilkinson and Marmot 2003).
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Finally, there is a last step of research on epidemiology: epidemiology in
e-science environments (Thew 2009). New big data environments as well as
computationally intensive methodologies represent a challenge to epidemiologists.
Besides, the increasing implementation of e-science environment asks for the
unification of language and, especially, of the tacit knowledge employed in rea-
soning about epidemiological data. New computational techniques will made
possible to epidemiology to enter into a new level of performance, but not before
making adjustments into their technical aspects.

As a conclusion to this chapter: If epidemiology was the contemporary cradle
and test bed of new statistical techniques (regression models at the beginning or
complex systems dynamic models in the last decades, Galea et al. 2010), this field
went across a single cause model to a multicausal one, asking for more powerful
techniques than those that frequentism could provide. Again, Bayesian statistics
was the best option to deal with such complex analysis (Nguefack and Zucchini
2011). If it is true that frequentist tools were useful at the beginning of epidemi-
ology, in the context of randomized trials and random-sample survey as the use of
the methods spread from designed surveys and experiments to observational
studies, why then did an increasing number of statisticians question the objectivity
and realism of the hypothetical infinite sequences invoked by frequentist methods?
(Rothman et al. 2008, Chap. 18). But in both approaches, the notion itself of
“cause” has been silenced under the makeup of mechanistic and/or statistic
approaches. Salmon-Dowe would be more interested on how mechanisms are based
on physical facts, while Suppes, Lewis, or Price could be more focused into the idea
of change (as difference-making) from a probabilistic, agent theory or counterfac-
tual activity. Thus, the quantitative and the qualitative methods in epidemiology are
related (Weed 2000).

Meanwhile, Bayesian methods have become common in advanced training and
research in statistics (e.g., Leonard and Hsu 1999; Carlin and Louis 2000; Gelman
et al. 2003; Efron 2005), even in the randomized trial literature for which frequentist
methods were developed (e.g., Spiegelhalter et al. 1994, 2004). Following
Broadbent (2013: 182), we could conclude that “the common theme through much
of this discussion has been the importance of explanation and the relative
de-emphasis of causation,” but nothing further from the truth: Explanations are
statistically flavored and they are founded in causal bonds between events of the
world. What has changed radically has been the kind of tools that have been applied
into epidemiological studies as well as the meaning of the notion of “cause.” Causes
are now open to include also complex social factors such as specific zone of
residence, cultural habits or hobbies, among a long, rich, and sometimes discour-
aging variables list. Because we cannot forget that inductive reasoning, causes,
predictions risks, or stable inferences are still live concepts into the field.
Explanations are empty without causal and predictive power. Miracles and myths
are powerful but fake explanations, and if we do not want to follow a fallacious ad
honorem attitude toward epidemiologists, we must conclude that the range of the
notion of causal relationship has been enriched by new meanings and relations. We
move from close-controlled data environments to big data, fuzzy, complex, and
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open-uncontrolled ones. We are experiencing a second-level stochastication: The
numerical control that we previously tried to establish between some variables and
the rules that managed certain events have now been applied to the infinitesimal
range of variables. We have a new level of statistic complexity that affects directly
the variables weight before entering into how a cluster of variables affect certain
problems. We have several webs inside a web, following a structure of a fractal
statistics puzzle. It does not mean that we abandon or reject the possibility of causal
claims, but that we are not so simple than before when we tried to find more
complex causal patterns among huge amounts of data. It is a new step into the
delicacies of epistemic knowledge of the world.

There is a corollary, at least for epidemiological researchers: Causes are related
to behaviors, and the consequences of all events are interconnected following the
butterfly effect, and numbers are ethically embedded. There is a strong connection
between causes and consequences, and the same ethical project (or projects)
becomes statistical (Vallverdú and Gustafsson 2009).
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Chapter 7
Natural Versus Artificial Minds
and the Supercomputing Era

Abstract Computer sciences have completely changed the way scientific and
social research is performed nowadays. This chapter analyzes the role of
Bayesianism and frequentism into the emergence of e-science, artificial intelligence,
and robotics, the generation of expert systems, and the overwhelming problem of
how to analyze Big Data, a process called “data mining.” This review of the main
systems and ideas will show us how Bayesianism is acquiring a determinant
position among worldwide users of statistical tools.

Keywords AI � E-science � Robotics � Data mining � Expert system �
Supercomputing � Big data � Cognitive systems

In May of 1623, Galileo Galilei published his famous book Il Saggiatore, nel quale
con bilancia squisita e giusta si ponderano le cose contenute nella Libra. In Sect. 6
can be found one of his most famous quotes (see footnote 1):

La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli
occhi (io dico l’universo), ma non si può intendere se prima non s’impara a intender la lingua,
e conoscer i caratteri, ne’ quali è scritto. Egli è scritto in lingua matematica, e i caratteri son
triangoli, cerchi, ed altre figure geometriche, senza i quali mezi è impossibile a intenderne
umanamente parola; senza questi è un aggirarsi vanamente per un oscuro laberinto.1

Mathematics and science since then share a common flavor. Once sciences evolved
and their complexity increased, statistical methodologies were necessary to solve or
treat several problems. After this, the number of data became so high that we
needed to use computational power to process this great amount of information.
Therefore, sciences, mathematics, statistics, and computers are deeply related to
each other in our time. Bigger data sets asked for data-mining techniques and more
complex methods were incorporated into statistical practices.

1Here is the English translation, by Drake and O’Malley (1960): “Philosophy is written in this
grand book, the universe, which stands continually open to our gaze. But the book cannot be
understood unless one first learns to comprehend the language and read the letters in which it is
composed. It is written in the language of mathematics, and its characters are triangles, circles, and
other geometric figures without which it is humanly impossible to understand a single word of it;
without these, one wanders about in a dark labyrinth.”
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This is our last chapter of compared analysis of Bayesian and frequentist sta-
tistical methods, and we will focus our research into a very important domain:
computer sciences. Computer facilities are the backbone of contemporary scientific
research. Not only in the cases of e-science or e-humanities, but also in continuing
classic research run together with computing power and techniques (Vallverdú
2009; Casacuberta and Vallverdú 2014). At the same time, not only has science
been increasingly computerized but computer sciences also have played a very
important role in statistical data analysis.

7.1 Artificial Intelligence and Statistics

AI is a multidisciplinary research field with broad and ambitious interests regarding
artificial cognitive systems. The necessity of working with intensive and sometimes
pervasive numerical data as well as artificial cognitive systems requires from sta-
tistical techniques ability to deal with those problems. Machine supervised or
unsupervised learning, knowledge discovery, data mining,2 simulations, analytics,
or predictive modeling have been a serious challenge for AI experts. Despite some
frequentist implemented methodologies, we can affirm that the domination of
Bayesian models into AI is overwhelmingly superior. A number of recent ACM
Turing Award winners are close to Bayesian ideas. Among them, we would like to
mention Judea Pearl, who championed the probabilistic approach in AI, developer
of the Bayesian Networks3 (Pearl 1999) as well as the creator of a theory of causal
and counterfactual inference based on structural models (Pearl 2009).4 Again, we

2Data mining is a crucial discipline in the twenty-first century, but must be run under solid
techniques. Austin et al. (2006) have shown how intensive data mining can obtain invalid results,
like the false relationships they obtained associating causally astrological signs and health. The
nontrivial extraction of implicit, previously unknown, and potentially useful information from data
is not free from error. In their case despite of adding a validation cohort study, the false association
remained.
3Following Gillies (1998, as well as personal communications), it is true that Bayesian networks
can be interpreted entirely within the framework of classical (frequentist) statistics. This is done by
(a) interpreting the probabilities objectively as frequencies or propensities and (b) testing the
assumptions involved by statistical tests. It matches perfectly with spirit of Pearl, who is not
interested in the purity of one school or another but on the uses and design of statistics. As happens
with mathematical formulation and computer language programming, the same idea can be per-
fectly translated from one domain to another, if the symbolic system is powerful enough, as
happens today with Bayesian and frequentist paradigms.
4Curiously, he admits that “the debate on “who is a Bayesian” is empty, and even those who pride
themselves on being “Bayesian” do not really understand what drives them, and what justifies
what they are doing,” quoted from personal e-mail conversation (April 6, 2014). He even defines
himself as “Half-Bayesian” (Pearl 2001: 19), considering probabilities as subjective but causes as
objective. Again, the ontological constraint of the human (and human-externally supported or
extended) observer position forces us to distinguish between our ideas and “the world itself,”
although we only can deal with ideas.
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found the connection between pioneering into statistical nature of events, statistical
methodologies, and causal thinking.

Computers and statistics have a close relationship, because the former allowed
new ways to perform calculations and to analyze data. Let me show you a related
example: in 1959, Robert Ledley wrote two influential articles in Science:
“Reasoning Foundations of Medical Diagnosis” (with Lee B. Lusted) and “Digital
Electronic Computers in Biomedical Science”5 which inspired the next generation
of physicians to use computational facilities in their research. Both articles
encouraged biomedical researchers and physicians to adopt computer technology.6

Just two years later, Homer Warner wrote the influential paper to explain the
creation of the first computerized program for diagnosing disease. He used
Bayesian analysis (Warner et al. 1961). Diagnosis of liver disease and congenital
heart disease were among the first subjects for which computer-based Bayesian
models were constructed. As soon as Bayesian-network technology became
available at the end of the 1980s, biomedical researchers started developing
Bayesian networks, usually using expert knowledge as a foundation. Examples of
early Bayesian-network systems include Pathfinder, a system aimed at supporting
pathologists in the diagnosis of white-blood-cell tumors, and MUNIN, a system
meant to assist neurologists in the interpretation of electromyograms (Lucas 2004:
221).

The implementation of computational power into statistics domains has also
allowed the emergence of new techniques that have been used by AI experts as
well. For example, bootstrap is a frequentist machine that produces Neyman-like
confidence intervals (Efron 2012: 140)7; on the other side, Bayesians methods have
been also automated, for example with the Gibbs sampling (a Markov Chain8

5He also created the first whole-body computer tomography machine. See Sittig et al. (2006), for a
nice and direct contact with this creation process.
6Very often, it has been affirmed that the higher technical complexity of Bayesian calculus before
the computers era was one of the first practicals reasons against its main implementation. I can
agree with that view, but not always simplicity or parsimony is the best approach to scientific truth.
For a complete analysis of this idea, I suggest the reading of Foster and Sober (1994), Schurz
(2015) prefers to look at statistical “unification power” at the theoretical level instead of simplicity.
7Joseph Felsenstein started in 1985 adapting bootstrap method of statistics to phylogenies, and this
provided a way to know which aspects of the evolutionary tree were well-supported or not.
Something that started as a personal hobby, an eccentricity, became an excellent and recognized
technique some years later. (According to his own words, expressed at JSPS Quarterly, 47: 2).
8Andrei Andreevich Markov (1856–1922, father…his son was called exactly like him and was
also a mathematician) was a Russian mathematician with multiple interests. According to Hayes
(2013), Markov founded a new branch of probability theory by applying mathematics to poetry.
Delving into the text of Alexander Pushkin’s novel in verse Eugene Onegin, Markov spent hours
sifting through patterns of vowels and consonants. On January 23, 1913, he summarized his
findings in an address to the Imperial Academy of Sciences in St. Petersburg. His analysis did not
alter the understanding or appreciation of Pushkin’s poem, but the technique he developed—now
known as a Markov chain—extended the theory of probability in a new direction. Markov’s
methodology went beyond coin flipping and dice-rolling situations (where each event is inde-
pendent of all others) to chains of linked events (where what happens next depends on the current
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random walk procedure). In 1989, Smith and Gelfand wrote a crucial paper in
which they demonstrated how Markov Chain Monte Carlo Methods could be
applied to almost any statistical problem, by replacing integration by MCMC. This
led to a new world of possibilities for scientists and started the worldwide spreading
of Bayesian methods. Consequently, specific software was created to deal with all
these changes and BUGS (for Bayesian Statistics Using Giggs Sampling) is one of
the most reputed. JASP is another powerful and open-source statistical software.9

Bayesian ideas are implemented in several computer environments such as
spamming filtering, Web site searching, automated translations, data mining, and
even in parts of the Microsoft software or forms part of new ideas on emotional AI
when Bayesian methods are implemented into uncertainty management in
emotion-based reasoning (Chakraborty and Konar 2009). Anyhow, Bayesian ideas
are of great influence in several AI domains such as vision, natural language
parsing, concept learning, or categorization.

7.2 Supercomputing, Big Science and Big Data

The emergence of the Big Data context, boosted by intensive computational
facilities, has reached the practices of all scientific and humanistic disciplines.
Supercomputers, distributed computing resources or even small grids of compu-
tational stations10 are starting to deal with huge amounts of data (according to the
research size and topic) that need to be collected, checked, stored, and analyzed.
The statistics of Big Data is a new challenge for contemporary sciences and

(Footnote 8 continued)

state of the system). A Markov chain is a mathematical system under a random process that
undergoes transitions from one state to another, with the property that the next state depends only
on the current state (memoryless). Some decades later, and during the intense researches on atomic
bombs at Los Alamos, the basic idea of Markov led to the birth of the Monte Carlo method, in
1949, when an article entitled “The Monte Carlo method” by Metropolis and Ulam appeared. The
American mathematicians John von Neumann and Stanislav Ulam are considered its main
originators (Sobol 1994). The resultant algorithm was also called Markov Chain Monte Carlo
Method (MCMC) and has been widely and intensively used in very diverse disciplines, especially
in physics (E. Fermi or M.G. Mayer) and chemistry. For a deep analysis of MCMC creation, see
Robert and Casella (2011). RAND was one of the first believers in MCMC, and from this research
the Hastings-Metropolis algorithm emerged later, to work with huge problems involving thousands
of hypothesis and of parallel inference programs (Bertsch 2011: 223).
9https://jasp-stats.org/, accessed on May 24, 2015.
10At the beginning of the twentieth century, automated stations were created to control information
exchange infrastructures, specially telephonic ones. Edward C. Molina worked for Bell company
and applied Bayesian ideas to make possible the relay translator, saving Bell survival in a changing
era.
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industries.11 In 2011, an IDC report defined Big Data as “Big Data technologies
describe a new generation of technologies and architectures, designed to econom-
ically extract value from very large volumes of a wide variety of data, by enabling
the high-velocity capture, discovery, and/or analysis.”12 With this definition,
characteristics of Big Data may be summarized as four Vs related to information,
i.e., Volume (great volume), Variety (various modalities), Velocity (rapid genera-
tion), and Value (huge value but very low density).13 DARPA’s Big Mechanism
program14 allows researchers to find new information contained in various scientific
reports and papers published around the world and then absorb that information into
their ongoing work. As they declare15: “The Big Mechanism program aims to
develop technology to read research abstracts and papers to extract pieces of causal
mechanisms, assemble these pieces into more complete causal models, and reason
over these models to produce explanations. The domain of the program is cancer
biology with an emphasis on signaling pathways. Although the domain of the Big
Mechanism program is cancer biology, the overarching goal of the program is to
develop technologies for a new kind of science in which research is integrated more
or less immediately—automatically or semi-automatically—into causal, explana-
tory models of unprecedented completeness and consistency. Cancer pathways are
just one example of causal, explanatory models.”

Among the list of existing supercomputers as well of projects involved in Big
Data analysis, Bayesianism is a leading option. Thanks to new classes of Monte
Carlo inference procedures for statistical inference it is possible to scale billions of
data items. Bayesian learning with Big Data is now the best option,16 as well as for
a long list of computational activities such as artificial intelligence, machine
learning, analytics, or deep learning17. For example, as Chai et al. (2013) explain
Bayesian inference is one of the most important methods for estimating phyloge-
netic trees in bioinformatics (See also Reumann 2012). We could show dozens of
examples following the same mood and content: the overall superiority of Bayesian
techniques into supercomputing and Big Data environments. Could this vast

11See Chen et al. (2014). As they point “For example, Google processes data of hundreds of
Petabyte (PB), Facebook generates lots of data of over 10 PB per month, Baidu, a Chinese
company, processes data of tens of PB, and Taobao, a subsidiary of Alibaba, generates data of tens
of Terabyte (TB) for online trading per day.”
12See http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf, acce-
ssed on March 14, 2014.
13Ibid.
14See https://www.fbo.gov/index?s=opportunity&mode=form&id=fe17239c6586a4d6521a09ad3-
a7aa5b7&tab=core&_cview=0, accessed on April 27, 2014.
15http://www.darpa.mil/program/big-mechanism accessed on September 1, 2015.
16See Yuan (Alan) Qi, “Bayesian learning with Big Data,” from: https://www.cs.purdue.edu/
homes/alanqi/papers/Qi-UCL-July-2-2012.pdf. Accessed on April 8, 2014.
17Deep learning is the next step in the evolution of AI and contemporary data sciences, and its
spirit is 100 % Bayesian. This research group provides good references on this topic: http://
research.ics.aalto.fi/bayes/, accessed June 1, 2015.
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amount of data allow a frequentist interpretation? My answer is still “no,” because
the key point is not the size of raw data but the epistemological approach. And
Bayesian allows a more dynamic and intuitive approach to new data.

While classic symbolic AI approaches like CYC18 were not interested on
Bayesian or human-like reasoning, some pioneering expert systems like
PROSPECTOR used Bayesian reasoning. At the same time, new AI trends have
been shifting toward Bayesian approaches (Spiegelhalter 1993). Created for com-
pany publicity interests as well as for research purposes, IBM’s Watson super-
computer defeated all time Jeopardy champions Ken Jennings and Brad Rutter in
February 2011. Although Watson ran on IBM’s own software, called DeepQA, this
software used a variety of weighting schemes including Bayesian techniques to
assess the accuracy of its answers (Ferrucci et al. 2010).19

Again on Big Data, contemporary e-science and Big Commerce strategies as
well as Social Networks’ environments are increasingly working with huge
amounts of data. Therefore, Big Data Analytics has become a fundamental topic of
research. Using machine learning tools such as Bayesian nonparametrics, an area in
machine learning, in which models grow in size and complexity as data accrue, can
help to deal with this. But their algorithms for posterior inference generally show
poor scalability and are extremely slow when analyzing massive amounts of data.
People like John Paisley are working on a general and efficient variational inference
strategy for learning based on stochastic optimization, and he shows that with this
combination of modeling and inference approach, we are able to learn high-quality
models using millions of documents.
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Chapter 8
And the Winner Is…

Abstract The concluding chapter of this book makes a revision about the way by
which scientists choose between ideas or techniques and how it is important for
statistics. The notion of epistemological opportunism and the consideration of
sciences as problem-solving activities make it possible to understand the fierce
statistical debates as well as show us a way to find a winner to the contest:
Bayesianism. At the same time, the possibility of the notion of cause is defended
under a mixed approach to statistical tools.

Keywords Problem solving � Epistemology � Winner � Causality � Pearl �
Epistemic opportunism

After our long journey across the main schools, ideas and protagonists of the
statistical thinking, we must ask ourselves if there is a winner, whether somebody
has the better solution to the epistemological problems humans are faced with in our
time. To offer you an answer I will take a metaphor from biological tradition: there
is not a clear winner, just the most adapted and fittest to the challenges of con-
temporary sciences, and it is… Bayesianism.1

As Cousins (1995: 198) notes, a Nobel Laureate in condensed matter theory
decreed matter-of-fact that Bayesian statistics “are the correct way to do inductive
reasoning from necessarily imperfect experimental data,” and is useful in order to
solve several scientific problems, something that has propitiated the idea of
“therapeutic Bayesianism” (Horwich 2005). My humble vision on this topic is
clear: not only Bayesians have showed to be more powerful, versatile and decisive

1I recommend also to read the 10 specific advantages of Bayesianism listed by Wagenmakers et al.
(2008). They are very interesting and, in some cases, even funny. It is the kind of sardonic humor
with a little of lack of respect toward the contrary that we usually find at the frequentist side. In any
case, Bayes’ Theorem can even be studied with Lego pieces: https://www.countbayesie.com/blog/
2015/2/18/bayes-theorem-with-lego, accessed in May 24, 2015.
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in most complex scientific environments2 but also have demonstrated an open
attitude to include frequentist ideas and methods into their models, while frequentist
experts are usually horrified with Bayesian techniques. The former is the basic way
of evolution in science.

Anyhow, at the same time we have seen that blurred lines exist between both
views (a broad range of gray tonalities between clear black and white) as well as
their practical implementations often justify combined methodologies. Scientists
and methodologies have a curious relationship, and according to Einstein (1949:
683–684),3 they are unscrupulous opportunist.4 As Platonist or Pythagorean, the
scientist furnishes a logical representation of relations that can or not come from
direct sensory experiences.

If we forget the ontological debate on the foundation of both main schools and
accept that numbers do not exist beyond our minds and models, we are clearly faced
with an undetermination situation (Duhem–Quine thesis): several theories can
explain by different methods and ways the same phenomenon. If we consider
sciences as “problem-solving” disciplines (Funtowicz and Ravetz 1994), it is
enough with being able to deal with certain areas of reality and to receive good
feedback. I am not postulating toward a new saving the phenomena attitude in
science, but it is necessary to admit that statistical tools are instruments to create
meaning about the world…they are not the meaning, just the messenger…and we

2According to McGrayne (2011), the whole twentieth century would be completely different
without Bayesianism: Alan Turing used it to break the Enigma Code (with a Bayesian system he
nicknamed Banburismus; there was also a Bayesian method called Turingery or Turingismus),
Andre Kolmogorov (in Russia, also in military-related research), and Claude Shannon (in the
United States) rethought Bayes for wartime decision making, helped to find lost bombs and
submarines, is in Microsoft, Google, Wall Street… for her it’s the panacea. It is true not only from
a practical or applied point of view but also as a successful metaphor about brain performing.
3About simplicity and Bayesianism, I must recommend the reading of the dissertation of Scoto
(2003).
4Following Levine and Perlovsky (2010: 1), we must point out that Leven (1987) and Levine
(1998, Chap. 7) posited three major problem solving styles, each named after a different mathe-
matician whose major work illustrated the essence of that style. Their three types are “Dantzig” or
direct solvers who try simply to achieve an available solution by a repeatable method; “Bayesian”
solvers who play the percentages and try to maximize a measurable criterion; and “Godelians”
who use both intuition and reason to arrive at innovative solutions. The Bayesian solver type is the
one idealized in normative decision theory and is the best suited to problems of the ratio-bias or
base-rate type. Yet Godelian solvers are better at problems that are much more open-ended, such as
designing the best possible office environment; hence, they are often valued in group brain-
storming situations. Even in quantifiable domains, the Godelian tendency frequently leads great
thinkers to find solutions that highly competent Bayesians have overlooked. For example, Albert
Einstein was led to his relativity theory by cognitive dissonance between some new (relatively
minor) results on light and radiation and the Newtonian paradigms for physics (Cline 1965).
Before him even other great physicists such as Planck had largely glossed over the discrepant data.
Poincaré (1914) described the process of discovery of mathematical proofs as involving alternating
periods of logical deduction and intuitive insight. No truth in a single repository of ideas, nor
evolution from a closed set of conceptual rules or data.
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do not need to kill the messenger, or none of them! This does not justify relativism,5

but a moderate realism embedded in operationalism. This is the kind of illustrated
opportunism to which Einstein pointed to. There is even a deeper problem: statistics
manipulation even if its nature is as an over-confident discipline (Funtowicz and
Raven 1990). If data and models are not good, and at the same time there is a
general pressure toward the use of statistical tools, then you obtain a GIGO
pseudo-science (Garbage In, Garbage Out). The idea of Funtowicz and Ravetz is to
affirm that no single system will be able to prevent abuse and corruption of
statistics, especially when we are dealing with uncertainty.6 Just collecting numbers
is not enough, but at the same time the pursuit of a single methodology or technique
to obtain pure and definitive results is a chimera. Perhaps not banished, but
uncertainty must be managed with a multiplicity of conceptual tools, completely
immersed into a post-normal science paradigm.

We can explain this looking at classic human epistemology: we do not discuss
about which are the best senses to capture the world because we are naturally
equipped with specific sensorial tools to capture sections of the world. With the
extra aim of external instruments, we are able to check, enrich, and analyze that
reality that is beyond our basic senses. At the same time, a holistic capture of the
reality is not possible, because there are several levels of activity and order, each
one of them operated by different mechanistic processes: quantum events are not
similar to those of macrophysics, and systems biology, for example, they deal with
specific living processes: different layers, different mechanisms, different method-
ologies. Once we have all the information, we can try to see the whole forest and
not only a huge amount of trees.7 In this moment, Bayesian statistics is widely
accepted and provides powerful and successful methodologies for sciences (and

5As made Paul Feyerabend with his lemma Anything Goes. His works are basic for any reader with
interests on scientific epistemology, with titles like Against Method: Outline of an Anarchistic
Theory of Knowledge (1975) or Farewell to Reason (1987). As Alexander Pope (1688–1744) said,
“False eloquence, like the prismatic glass,/ Its gaudy colors spreads on every place”; according to
this spirit, Feyereband thought that scientific facts were social constructions and that observations
were the result of interventions. Then to know is not a passible filtering of truth, but a direct action
over the reality. As a good epistemological anarchist, Feyerabend considered that there was not a
unified method for all sciences, and instead of it, scientists behave like epistemic opportunists.
6I need the reader to remember the famous categorization of Wynne (1992), where he defined four
different levels: (i) risk for known odds, (ii) uncertainty for unknown odds, (iii) ignorance for lack
of understanding about what we really know, and (iv) indeterminacy, for causal chains or networks
open. The uncertainty can provide from incomplete or imperfect observations, from incomplete
conceptual frameworks, from inaccurate prescriptions of known processes (by poor parametrisa-
tions, etc.), by intrinsic chaos or by intrinsic lack of predictability.
7I use again a quote from A. Einstein: “I fully agree with you about the significance and educa-
tional value of methodology as well as history and philosophy of science. So many people today—
and even professional scientists—seem to me like somebody who has seen thousands of trees but
has never seen a forest. A knowledge of the historic and philosophical background gives that kind
of independence from prejudices of his generation from which most scientists are suffering. This
independence created by philosophical insight is—in my opinion—the mark of distinction
between a mere artisan or specialist and a real seeker after truth.” A. Einstein to R.A. Thornton,
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economics), but frequentist contributions illuminate other areas of the reality, cre-
ating very often complementary views about possible truths. Immanuel Kant once
used the metaphor of the truth as island surrounded by fog or icebergs as illusions,
which needed to be illuminated by reason.8 The world is much more complex,
because there are many islands, an archipelago that we need from all ways and
methods to discover. The voyage of reason can be done upon the shoulders of
statisticians, but only with those who have an open-minded attitude. We need to be
methodological pluralists. Our instruments cannot become dogmas, as Lovric
(2011) included into his recent International Encyclopedia of Statistical Science.

There is also a necessary conceptual remark: the gaps between theoreticians–
philosophers and the practitioners of statistical methodologies are really big.
Thinkers detail the ontological and epistemological claims they consider necessary,
while statisticians try to justify better data processing, avoiding at a certain point the
conceptual debate, despite from time to time burning heavily in strong quarrels.
Hilariously, for the mathematician John Warren Tukey the collective noun for a
group of statisticians was a quarrel. The explained thesis of the operationalism can
overcome this problem, although they do not solve it definitively. If it works, then it
is fine, don’t worry. But at the same time, I need to express my ideas about the
philosophical debates on probability: as far as I can see, the several theories, mental
experiments, countertheories, and overdetailed analysis on causality, retrocausality,
multicausality, propensions, priors or long-run sequences, are all of them fictional
modelizations about reality: sciences deal with a vast range of phenomena that must
be managed. For those purposes, a broad number of techniques exist that run under
basic methodological agreements on accuracy, quantification, honesty, and coher-
ence. At a certain level, anything goes if follows these basic principles. We have
seen that several approaches, and even mixed- or cross-techniques, work correctly

(Footnote 7 continued)

unpublished letter dated December 7, 1944 (EA 6-754), Einstein Archive, Hebrew University,
Jerusalem cited by Howard (2005).
8The Critique of Pure Reason, Chap. 3. Of the Ground of the Division of all Objects into
Phenomena and Noumena: “We have now not only traversed the region of the pure understanding
and carefully surveyed every part of it, but we have also measured it, and assigned to everything
therein its proper place. But this land is an island, and enclosed by nature herself within
unchangeable limits. It is the land of truth (an attractive word), surrounded by a wide and stormy
ocean, the region of illusion, where many a fog-bank, many an iceberg, seems to the mariner, on
his voyage of discovery, a new country, and, while constantly deluding him with vain hopes,
engages him in dangerous adventures, from which he never can desist, and which yet he never can
bring to a termination. But before venturing upon this sea, in order to explore it in its whole extent,
and to arrive at a certainty whether anything is to be discovered there, it will not be without
advantage if we cast our eyes upon the chart of the land that we are about to leave, and to ask
ourselves, firstly, whether we cannot rest perfectly contented with what it contains, or whether we
must not of necessity be contented with it, if we can find nowhere else a solid foundation to build
upon; and, secondly, by what title we possess this land itself, and how we hold it secure against all
hostile claims? Although, in the course of our analytic, we have already given sufficient answers to
these questions, yet a summary recapitulation of these solutions may be useful in strengthening our
conviction, by uniting in one point the momenta of the arguments.”
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for specific purposes. No single method can provide a solution. I know that par-
simony is necessary, and I agree with this principle. But atomization of statistical
procedures in small and fragmented pieces broke the whole: nature is relational and
works at different organizational levels. Following the ideas of Robert Rosen, we
need to repeat that “the whole is more than the sum of parts.” The diverse statistical
methods offer good ways to solve problems and to interact better with the world:
frequentist or Bayesian flavors are not black or white, but justify a wide number of
numerical techniques to explain the world, some of them complementary. Like
Zeno, Achilles, and the tortoise, we can get trapped by ideas that make us see only
the trees and to forget the forest.

But I would like to close this book with one question and some final remarks: Is
there still a space for causality in statistics? We have seen that the fights between
statisticians are at the end not only a question of honor but also the result of the true
belief into the existence of a unified methodology able to explain the real nature of
the world. My answer to the last question in this book is affirmative, and I will
explain to you why through the ideas of Pearl (2000, 2009). Most studies in the
health, social, and behavioral sciences are not motivated by associational but causal
elements in nature. They rely on the mechanisms that support events, not in the
statistical distributions that govern the data. Besides, the standard statistical analysis
(typified by regression, estimation, and hypothesis testing techniques) is working
with static data, while causal analysis work with mechanisms that produce data
under changing conditions. There is a deep ontological distance between associa-
tional and causal concepts9. The first ones provide from any relationship that can be
defined in terms of a joint distribution of observed variables, if the sample is large
enough, while the second ones cannot be defined from the distribution alone, but
ask for identified relationships that remain invariant when external conditions
change,10 i.e., the causes, and can be verified by experimental control. Without
taking this into account is not possible, for example, to see that confounding bias in
frequentist statistics cannot be detected or corrected by statistical methods alone:
some judgmental assumptions regarding causal relationships must be done in the
problem before the adjustments can correct it. In order to obtain knowledge about

9As Pearl (2001: 28) notes “the slogan ‘correlation does not imply causation’ can be translated into
a useful principle: one cannot substantiate causal claims from associations alone, even at the
population level—behind every causal conclusions there must lie some causal assumption that is
not testable in observational studies.” Nancy Cartwright expressed it positively as “no causes in,
no causes out,” something that we can redefine more rudely as “garbage in, garbage out.”
Cartwright makes it possible to talk about statistical causality without implying determinism. As an
example of very funny spurious correlation between margarine consumption and rate of divorces,
see: http://www.bbc.com/news/magazine-27537142, and more examples at http://www.tylervigen.
com/ accessed on July, 18, 2014. Anyhow, recent data are suggesting that at least at quantum level
of analysis, quantum correlation can imply causation, see Ried et al. (2015).
10Pearl (2001: 36) discusses the insufficient approach of Suppes (1970), where the philosopher
tried to justify that the calculus of probabilities endowed with a time dynamic would be sufficient
for causation. There are counterexamples for the Suppes arguments, provided by Otte in 1981
about light perceptions and chains of delayed switches.
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these causes, they could use existing conceptual and algorithmic tools but they are
far from their educational skills. Four areas of maximum interest are not under the
necessary study and application: (1) counterfactual analysis (we are forced to admit
extra-probabilistic primitives), (2) nonparametric structural equations, (3) graphical
models, and (4) symbiosis between counterfactual and graphical models. According
to Pearl (2009), the transition from statistical to causal analysis is not yet reached
because of two barriers: (a) coping with untested assumptions and (b) the lack of a
suitable mathematical notation for these purposes.11 Although statisticians do not
think on it, scientific equations are non-algebraic. There is an educational gap
between both communities. At the same time, the mathematical tools cannot work
with causal concepts so simple like “symptoms do not cause diseases.” This new
approach allows Pearl to create algorithms for something so complex and debatable
as the transportability of experimental results (Bareinboim and Pearl 2013).

Based in his previously developed structural causal model (SCM), Pearl (2000)
combined it with features of the structured equation models (SEM) used in eco-
nomics and social sciences, as well the potential outcome framework of Neyman/
Rubin with, finally, the graphical models12 developed for probabilistic reasoning
and causal analysis. Although Sewall Wright tried at the beginning of twentieth
century to express mathematically causal relationships using a combination of
equations and graphs, his methods were not powerful enough. The classic example
of the obstacle of causal vocabulary in statistics is the Simpson’s Paradox. Besides,
even in the case of doing correct causal questions, they are not always able to be
answered experimentally. Take, for example, questions of attribution (e.g., what
fraction of death cases are due to specific exposure?) or susceptibility. Then, to be
able to answer we should perform a probabilistic analysis of counterfactuals. With
a new mathematical language applied to causal notions, and good mathematical
machinery, statistics can work with statistical causation. Again, the best solution for
a big problem is to combine ideas and innovate methodologically. But as Pearl’s
mantra affirms: Think nature, not experiments. Perhaps is time to admit that all our
epistemological tools are provisional and fallible elements and that the path toward
better knowledge is necessarily close to a critical thinking. Ontological disam-
biguation about causality and or statistics will not emanate by itself or due to any

11Frigg and Hoeffer (2013) talk about several levels of ontological reality that can, consequently,
be captured by diverse probability rules, making possible an analysis of chance. Part of their thesis
follows the idea that laws and chance rules are formulated in a natural language and that by
reformulating Lewis’ HBS approach to chance it is possible to accommodate determinism and
chance as well as to defend a pluralist but objective way to perform statistical analysis, which they
call Theory of Humean Objective Chance (THOC). Pearl tries to solve the natural language
problems with his ideas, but is not worried about pluralism, because it is something obvious in
scientific practices.
12In Pearl (2005), he remarked the usefulness of graphical models, following four reasons:
(a) allow modular representation of theories; (b) facilitate the systematic construction of methods,
(c) make possible explicit encoding of dependencies, and (d) facilitate efficient inference
procedures.
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analytical process, instead of it, is an honest and critical activity of plenty of several
failures and some successes. Let any one of you who is without priors be the first to
throw a formula at the others.
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