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Preface

Statistical mechanics is one of the greatest achievements of the human mind,
combining theoretical elegance with powerful methods for studying an enor-
mous range of specific systems and phenomena. It connects the properties of
the material world to the basic constituents of matter at the deepest level. It
lays bare the atomic and molecular content of thermodynamics and shows how
to obtain new and important relations among the properties of matter, how to
organize enormous amounts of scientific information, and how to understand
it. Furthermore, it is a dynamic discipline in that it continues to grow and
enhance our understanding of the physical world. Its study is essential for
those who want to probe deeply into the nature of things.

Statistical mechanics can be studied from a variety of viewpoints and at dif-
ferent levels of theoretical sophistication. It is an important discipline for the
study of matter in every form and at every level of aggregation. The number of
available texts on the subject is therefore large, and they range from elementary
to quite advanced treatments. However, modern texts that include topics on
solids generally focus on such phenomena as phase transitions at critical points,
universality, and those commonalities that permit similar treatments of solids
and liquids. Aside from my earlier book (Statistical Physics of Materials, 1973),
there has been no satisfactory text that concentrates solely on the statistical
mechanics of solids from the point of view of the material properties of the solid
state. This is such an important subject with such far-reaching applications that
the neglect of this approach is somewhat surprising. My major objective was to
fill this gap.

This book grew out of a course in statistical mechanics of solids I give to stu-
dents of materials science at the University of Pennsylvania. It bears some
resemblance to my previous book but includes much new and updated mate-
rial. My intention is to provide a useful reference as well as a basis for course
work.

This book is intended for those whose primary interests are in the proper-
ties of solids rather than in the statistical mechanical theory itself. One of my
objectives is to aid students in developing a physical insight that relates prop-
erties to statistical models and theories. Such insight is extremely valuable for
those studying the application of statistical mechanics to condensed matter.
I have therefore included some discussion of the physics of the systems and
phenomena presented along with the statistical mechanical developments
and their physical interpretations.

Another objective is to make the subject matter accessible to as wide an audi-
ence as possible among those whose background is equivalent to the first- or
second-year graduate school level. This includes students with undergraduate
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degrees in physics, chemistry, and materials science, and their differences must
be recognized. The variation in their mathematical training, their knowledge
of the solid state, and, surprisingly, their grasp of thermodynamics poses a
special problem for the teacher. I address this problem by starting at what
should be a common base and trying not to assume too much in the way of
specialized background.

A third objective is to give a representative sample of those aspects of mate-
rials and solid state science that benefit the most from the application of sta-
tistical mechanics. The field has grown enormously since my earlier effort in
1973 and includes many new important subjects. The contents of this book
reflect this.

These objectives have determined both the orientation and the content of the
book. Regarding the fundamentals of statistical mechanics, I have tried to
present a careful exposition of the basic concepts without excessive formal-
ism. Thus, although statistical mechanics is developed as a tool for under-
standing properties, rather than for its own sake, I have given a fairly detailed
discussion of the nature of ensembles and their relation to thermodynamics.
In fact, chapters 1-3 should be excellent preparation for advanced study of
both the fundamentals of statistical mechanics and its theoretical formalism.

The book starts with a brief review of thermodynamics despite the fact that
students should have had at least one course in the subject. My experience has
been that the review is needed, particularly regarding the origin and mean-
ing of entropy and the second law. I do not agree with some of the modern
approaches of first teaching thermodynamics as either being derived from sta-
tistical mechanics or as a purely axiomatic structure that connects to experi-
ment only after considerable formal development. Both these approaches are
valid and interesting, but should be preceded by a knowledge of the origin of
thermodynamics from experimental data.

Chapters 4 and 5 present the statistical thermodynamics of simple crystals
and include a discussion of both harmonic and anharmonic properties. The
traditional theory of the harmonic crystal is still of great value and has not
changed much in the past decades. But modern developments make it possi-
ble to deal with anharmonicity in a more rigorous and transparent way than
before, while still maintaining much of the simplicity of the original Gruneisen
method.

Chapters 6 and 7 work out the consequences of the free electron theory of
metals and semiconductors, for both equilibrium and transport properties.

The emphasis on properties and physical insight has led to a sequence on
cooperative phenomena in which order-disorder alloys and magnetic ordering
are treated separately in chapters 8 and 9 (although the commonalities of
these two kinds of phenomena are stressed). The overall theory of phase
transformations in chapter 10 and of critical points in chapter 11 is taken up
only after the presentation of these two topics. I believe this ordering keeps a
closer connection with real materials than does starting with the more general
theory.

Because of the ever-growing importance of surface phenomena, chapter 12
is devoted to the thermodynamics and statistical mechanics of surfaces.

The theory of random flight has a large number of uses and is given in chapter
13. For the study of materials, the most important applications are to polymers
and diffusion. Chapter 14 presents the statistical mechanics of polymer chains,
which draws heavily on the theory in chapter 13.

Chapters 15-17 develop the statistical mechanics of point defects and dif-
fusion. These are of great importance for the properties of solids and can be
given an elegant treatment, at least for simple crystals, that well illustrates the
power of the statistical theory.
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The range of properties that have a statistical basis is so large and so impor-
tant that no selection of topics can be complete. However, it is obvious that
there are some subjects that must be presented because they are so basic, and
others that are part of the mainstream of modern interests in material proper-
ties. These considerations, along with my personal interests, have determined
my selection of specific applications of statistical mechanics. I have included
a number of appendices on topics that are important for understanding statis-
tical mechanics in solids, but that would interrupt the flow and be out of place
in the body of the book.

The exercises at the end of each chapter are designed to enhance the
student's understanding of the subject matter, and to help develop physical
insight. The student should do them all.

I am particularly indebted to the students who have taken my course, and
who have enthusiastically hunted down errors in my notes.
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The Basics of Thermodynamics

1.1 The existence of equilibrium and state functions

Thermodynamics addresses those relations among the macroscopic properties
of macroscopic systems that do not depend on the properties of its atomic
constituents. It is a fact of experience that systems exist whose properties do
not change with time, within the limits of measurement. It is also a fact that
systems exist whose properties do change with time. In making such state-
ments, the time scale must be considered. Thus, a piece of iron may have prop-
erties whose values are constant over some time period, say, one week, but
over a period of months or years the iron might develop rust on its surface.

To develop thermodynamic theory, we first restrict our analysis to systems
in the absence of external fields, such as gravity or magnetism, and that consist
of isotropic phases. An isotropic phase is a homogeneous substance none of
whose properties depend on spatial directions. If the system consists of just
one phase, then we will call it a simple system. A heterogeneous system is one
that consists of several simple systems. The extension of the theory to hetero-
geneous complex systems, and to systems in external fields, is straightforward
once the thermodynamics of simple systems is understood.

A system is said to be in internal equilibrium if none of its properties change
with time. Such properties might be the pressure exerted by the system, or its
volume, chemical composition, magnetic moment, refractive index, or tem-
perature. Experiments have shown that the values of these properties are not
all independent. For example, in a one-component system the temperature,
volume, and pressure are related through the equation of state. In general, the
state of a system at equilibrium is defined as the minimum amount of infor-
mation needed to determine all of the system's properties. One of the tasks of
thermodynamics is to find the number and types of system properties that
define state.

The measured properties of a system at equilibrium are independent of
the system's history. Thus, a system could arrive at a particular composition,
volume, and pressure by any of an infinite number of ways, each of which
would result in the system having the same value for these properties. Not all
system properties are independent of a system's history. The magnetization of
a piece of iron depends on how it was magnetized; the electrical resistivity of
a metal depends on the defects present, and these depend on how the metal
was treated.

It is part of the definition of equilibrium that the system properties not only
are constant in time but also are independent of how the system got to equi-
librium. This is a definition of what may be called absolute equilibrium. Partial

- j
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2 STATISTICAL MECHANICS OF SOLIDS

equilibrium also exists, in which the properties are time independent although
the values of some of them may be history dependent.

A property of a system at equilibrium that is independent of the systems
history is called a state function.

1.2 Empirical temperature scales

The idea of temperature requires some special comment. Other quantities can
be directly measured and have their origin in mechanics and in the basic mea-
surements of mass, length, and time. Temperature, on the other hand, has its
origin in our perception of hot and cold bodies and their interactions. We note
that these perceptions are accompanied by properties of the bodies that can be
measured quantitatively. Thus, if a thin metal rod is exposed to hot water, we
notice that its length increases. We can qualitatively sense that water gets pro-
gressively hotter as it sits in a kettle over a fire, and this sense can be given a
quantitative form by noting that the length of the metal rod progressively
increases as the water approaches boiling.

An empirical temperature scale can be constructed by choosing some phys-
ical property that we know is different for hot and for cold bodies, construct-
ing an instrument that measures this property, putting the instrument in
contact with a system whose temperature we wish to know, and then measur-
ing that property. Instruments of this sort (thermometers) can be based on such
properties as length (mercury or alcohol thermometers), electrical resistance
(resistance thermometers), voltage (thermocouples), or volume (gas thermome-
ters). An obvious problem is that the empirical temperature scales depend on
the physical property chosen to measure it and even on the material the ther-
mometer is made of. If this could not be overcome, a temperature scale would
be arbitrary and not have any fundamental significance.

1.3 The ideal gas temperature

The gas thermometer occupies a special place in defining empirical tempera-
ture scales. The reason for this is that, if the gas is sufficiently dilute, all gas
thermometers give the same temperature scale. At low pressures and high
volumes, the gases approach an ideal behavior, and it is therefore possible to
construct a thermometer based on the properties of an ideal gas.

Experiment shows that in the limits of high temperature and/or low pres-
sure, the volume, pressure, and temperature of a gas are related by

where (P, V) and (P0, V0) denote the pressure and volume at any two different
temperatures t and to, respectively, the temperature being measured on an
empirical temperature scale. This is the ideal gas law. If we adopt the centi-
grade scale of temperature, then the constant A is found to be 273.16. We are
thus led to define a new temperature scale by the relation

T is the temperature on the ideal gas temperature scale. We expect this to have
a more fundamental significance than t because the ideal gas law is valid for
all gases that are sufficiently dilute and are at sufficiently high temperature.
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That is, the ideal gas law holds when the intermolecular interactions are very
small. In fact, it will be shown that the temperature defined by ideal gases is
the same as the absolute temperature of thermodynamics.

With this definition of temperature, equation (1.3.1) becomes

where k is Boltzmann's constant and N is the number of molecules in the gas.
A gas thermometer is just a bulb or glass tube filled with a dilute gas. The

gas can be held at either constant volume or constant pressure. The pressure,
or the volume, is then measured and converted to temperature via equation
(1.3.3).

The ideal gas is an example of a system whose thermodynamic state is com-
pletely specified by two of the three variables (P, T, V). It is an empirical fact
that if any two of these are known, all properties of the system are determined.
The ideal gas equation is the simplest example of an equation of state that con-
nects the state parameters of a system.

1.4 The mechanical equivalent of heat

A large array of experiments have shown that doing work on a system raises
its temperature. Starting with Count Rumford's observation that the mechani-
cal work in boring cannon raises the temperature of the brass, and the exten-
sive experiments of James Prescott Joule that related the performance of many
kinds of work to the temperature rise of systems, it is an experimental fact that
work has important thermal effects. The results of these experiments can be
summarized in the statement that work can be converted into heat and that the
ratio of the work expended to the heat generated is always the same constant.
This implies, of course, that a concept of heat has been developed and that a
method exists for its measurement. Much of the verbal description of thermal
phenomena is a holdover from the days of the caloric theory, when it was
believed that heat was a substance that flows from hotter to colder bodies.
While this is in some respects unfortunate, it still provides a convenient
descriptive language. In modern terms, the concept of heat and its measure-
ment can be made precise as follows.

Consider a system, which for the sake of specificity we take to consist of pure
water, enclosed in a perfectly insulating envelope (this can be approximated
by a Dewar flask or asbestos). Assume that we have an empirical temperature
scale so that we know that any temperature change in the environment has no
effect on the temperature of the system and any temperature change in the
system has no effect on the temperature of the environment. The walls are said
to be thermally insulating or adiabatic. Assume also that the system can be
accessed by thermometers or other instruments in such a way that the ther-
mally insulating property of the walls is not sensibly disturbed. Now do work
on the system by turning a paddle wheel that is immersed in the water. The
experimental result is that the temperature of the water goes up. We also notice
that, if a certain amount of work raises the temperature of the water by one
degree, twice as much work will raise the temperature by two degrees.

In general, the temperature rise is proportional to the amount of work done.
(This is only approximately true if the temperature range over which mea-
surements are made is large.) Also, the temperature rise is inversely propor-
tional to the mass of the water. It takes twice as much mechanical work to raise
the temperature by one degree if there are two kilograms of water rather than
one. This law is quite exact. We are thus led to define a unit quantity of heat
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in terms of a unit temperature rise for a unit amount of water. In fact, the def-
inition of a calorie is that amount of heat needed to raise the temperature of
one gram of water from 14.5 to 15.5°C. It is found that the amount of work
required to do this in an adiabatic system is always the same. This experiment
is described by saying that the mechanical work generates heat. The ratio of
the mechanical work, in mechanical units, to the heat generated, in thermal
units, is called the mechanical equivalent of heat.

Since work is done on the system, and since we insist on the law of the con-
servation of energy, we associate the rise in temperature, and therefore the heat
generated, with an increase in the internal energy of the system.

Different substances exhibit different temperature rises for the same amount
of mechanical work, and the ratio of the two temperature rises is used to define
the relative heat capacities of the substances. An enormous number of calori-
metric experiments are readily rationalized and understood on the basis of this
concept.

The extension of the above experiments to other kinds of systems and to
other kinds of work yields consistent results. For work produced by mechan-
ical, gravitational, electrical, or magnetic means acting on gases, liquids, or
solids of any composition, the mechanical equivalent of heat is always the
same.

1.5 Walls and the zeroth law of thermodynamics

We know that it is possible to effectively isolate a system from its surround-
ings in the sense that any changes in the environment have no effect on the
values of the properties of the system. A system so isolated is said to be sur-
rounded by a completely isolating wall. For purposes of illustration, let the
system be a closed bottle of gas surrounded by an adiabatic wall and immersed
in a pool of water. The gas has a fixed volume, pressure, composition, and
empirical temperature, and let these be constant in time. The gas is then said
to be in internal equilibrium because of the constancy of its properties and
because, by definition, it is not interacting with its surroundings. If some
change is effected in the pool of water, such as a rise in temperature or pres-
sure, or a change in chemical composition, then there is no change in the
physical properties of the gas in the sealed bottle. This is the meaning of a
completely isolating wall.

It is possible to have a partially isolating wall. Thus, if our bottle is fitted
with a piston and cylinder at its neck instead of being sealed, a change in
pressure of the pool of water will effect a change in the gas because the change
in pressure will cause the piston to move, thereby changing the volume of
the gas in the bottle. But a change in temperature of the water, while leaving
the pressure constant, will not result in a change in temperature of the gas.
Such a wall is said to be adiabatic, and the system is said to be thermally
isolated.

Not all walls are adiabatic. In fact, special care must be taken to thermally
isolate a system. Most containers will allow the systems within them to
respond to temperature changes in their surroundings sooner or later. For many
walls, such as those made of metal, the response is quite rapid. A system is
said to be surrounded by a diathermic wall if it responds to temperature
changes in its environment.

Now consider systems surrounded by diathermic walls, each system being
at internal equilibrium. The following statements are found to be true from
experiment:
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a. If two systems that are each in internal equilibrium but at different tem-
peratures are brought into contact through a diathermic wall, they will
each come to a new state of internal equilibrium. Both will then have
the same temperature, whose value is between the two initial temper-
atures. The two systems are then said to be in thermal equilibrium with
each other.

b. If a system A is in thermal equilibrium with a system B, and if B is in
thermal equilibrium with a system C, then systems A and C are in
thermal equilibrium with each other. That is, if two systems are each
in equilibrium with a third system, they are in equilibrium with each
other. This is often called the zeroth law of thermodynamics.

According to the zeroth law, for a system with diathermic walls to be in inter-
nal equilibrium, it must be in thermal equilibrium with its surroundings.

1.6 Spontaneous, reversible, and irreversible processes

For the purposes of thermodynamics it is important to distinguish among the
general processes by which a system can change its state. These processes are
called spontaneous, reversible, and irreversible.

A spontaneous process is one that takes place naturally without any inter-
vention. Examples of spontaneous processes are the flowing of water downhill,
the rusting of iron in moist air, and the dissolution of sugar in hot coffee. If a
system is isolated and it is found that its properties change with time, it is under-
going a spontaneous internal process. If a system is not isolated, but immersed
in an environment that is sensibly constant (such as a large pool of water at con-
stant temperature and pressure) and its properties change with time, it, too, is
undergoing a spontaneous internal process but may also be involved in an inter-
action with its environment. The combined system plus environment is then
undergoing a spontaneous process. If the environment does not have constant
properties, the details of the system-environment interaction must be analyzed
to determine whether or not a spontaneous process is taking place.

Consider a system that is initially at equilibrium with given values for its
properties. For specificity let the system be a one component gas with pres-
sure, volume, and temperature given by (P1( Vi, TJ. Now suddenly change the
volume to V2, by rapidly pushing on a piston, and wait. The system eventu-
ally comes to a new state of equilibrium with pressure, volume, and tempera-
ture given by (P2, V2, T2), but the process of getting there is rather chaotic.
Because the volume is changed suddenly, turbulent flow takes place in the gas
as it rushes to adjust to the new volume. The frictional effect of this turbulence
generates heat that raises the temperature either of the gas or of its surround-
ings, or both. Because of this frictional effect, if the volume is restored to its
original value of Vi by pulling up on the piston, and the system is then allowed
to come to equilibrium, the original values of the pressure and temperature,
(Pi, TI), are not recovered. The process of going from state 1 to state 2 via a
rapid change in volume is said to be irreversible because it cannot be undone
by just changing the volume back to its original value. It is clear that the states
the system goes through between 1 and 2 are not equilibrium states. There are
an infinite number of equilibrium states of the system, but none of these occur
during the irreversible process because equilibrium does not exist until we wait
for the system to calm down.

The irreversible effects can be mitigated by pushing on the piston more
slowly to get from Vi to V2. The degree of turbulence and the internal frictional
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effects are then less. In fact, the degree of irreversibility clearly depends on the
rate at which the pressure is applied to effect the volume change. If this rate
is very slow, then at any instant of time, the difference between the internal
pressure and the applied pressure is very low and the system is near an equi-
librium state. In the limit of zero rate of change of the pressure, the system is
always at an equilibrium state. This leads us to define a reversible process as
one in which the rate of change of all relevant parameters is so low that the
system is always in an equilibrium state. Clearly, the process is truly reversible
only if the process is infinitely slow. Thus, there are no real processes that are
reversible, but the slower the process the more nearly it approaches reversibil-
ity. In practice, a process can be called reversible if at every stage it is in equi-
librium within the accuracy of measurements made on the system. These
concepts apply to any sort of system and any changes in state functions, not
only to [P, V, T) changes in gases.

The difference between reversible and irreversible processes is of great phys-
ical importance. From a mathematical point of view, reversible processes
connect equilibrium states. Thus, a system can exist in an infinite number of
equilibrium states, each state being characterized by specific values for the state
functions of the system so that if F is a state function that depends on para-
meters xit

then two equilibrium states that are very close together and differ by an amount
dF are related by

and since F is a state function, its value for any state is independent of the
system's history. In a reversible process, state functions exist throughout the
process, and all differentials of state functions have the form of equation (1.6.2).

1.7 Work and the dependence of work on the path

Changes in the equilibrium state of a system can be effected by changing
its temperature or by doing work. If the system has diathermic boundaries, its
temperature can be changed by changing that of its environment. Work can
be done on systems that have either diathermic or adiabatic boundaries. If
the temperature of the system is maintained at a constant value while work
is being done, the process is said to be isothermal. This can be done by sur-
rounding the system with diathermic walls and placing it in contact with
another system at the same temperature that is very large compared to the
system of interest.

If the system is surrounded by an adiabatic wall while work is being done
on (or by) it, the process is said to be adiabatic. In an adiabatic process, the
temperature of the system may change, but this does not affect the tempera-
ture of any other system or of the environment.

A system at equilibrium has a definite energy that depends only on the
equilibrium parameters and not on its history. The energy is therefore a state
function.

The energy of a system surrounded by adiabatic walls can be changed by
doing work on the system. Thus, in the bottle of gas surrounded by asbestos
and fitted with a piston, as described in section 1.5, work can be done on the
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system by applying a pressure on the piston that is greater than the gas pres-
sure. The piston then moves, compressing the gas until its pressure rises to
equal the external pressure. Since the system is impervious to all other influ-
ences, the work done on the system increases its internal energy. Let Ut be the
initial energy of the system and let Uf be the energy of the system after a certain
amount of work has been done. Also, let us adopt the convention that work
done by the system is positive and work done on the system is negative. Then,
from the law of the conservation of energy,

where Wy is the work done by the system in going from state i to state /. Equa-
tion (1.7.1) merely states that the decrease in energy of a system resulting from
an adiabatic process is equal to the work done by the system.

In general, there is a temperature change accompanying an adiabatic process
such that the temperature of the final state is not the same as that of the initial
state.

Equation (1.7.1) is correct whether or not the process in going from the initial
to the final state is reversible because only work can get through to an adia-
batic system.

Now let us shift our viewpoint and consider the system doing work rather
than having work done on it. That is, the system exerts a pressure on its envi-
ronment, thereby changing the volume of the system from Vt to Vf. If the process
is carried out reversibly so that the difference between the internal pressure
and the external pressure is always very small, a certain amount of work will
be done given by f^PdV = Witf, the relation between P and V being given by
the equation of state at every stage in the process.

What if the process is carried out irreversibly? In this case, frictional
processes will be set up that create turbulent internal motion and some of the
energy that would have gone into work against the external pressure is dissi-
pated in the internal friction of the system. We thus get the result that the
maximum amount of work that can be performed by an adiabatic system in
irreversibly going from one state to another is less than that for the reversible
process. The irreversible processes do less external work.

The same is true for work done in an isothermal process, because in a
reversible process the pressure exerted by the system is infmitesimally close
to the external pressure. But if the process were irreversible, the external pres-
sure would be appreciably less than that exerted by the system, and then the
work done by the expanding system would be decreased. We then have a
general conclusion that work done in going from one state to another is a
maximum if the process is reversible.

Since the energy is a state function, equation (1.7.1) shows that the work
done in an adiabatic process is independent of the detailed path taken in
going from the initial to the final state. That is, the pressure could have been
applied rapidly or slowly or in varying increments; the work in going adia-
batically from a given equilibrium initial state to a given equilibrium final state
is always the same. This is not true for all kinds of processes, and it can be
shown that the amount of work done depends on the particular way the process
is carried out. It is easiest to demonstrate this for a system consisting of an
ideal gas.

Let us assume that the gas is surrounded by diathermic walls and is in equi-
librium with a large water bath at a constant temperature. Let the system
undergo a change in state from an initial pressure, volume, and temperature
of (P^ Vj, T,) to a final pressure, volume, and temperature [Pf, Vf, Tj\. Note that
the temperature is constant because the walls are diathermic.
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Let us examine two reversible processes by which we can go from the initial
to the final state. For process 1, we first change the volume of the gas from its
initial to its final value while keeping the temperature constant. The amount
of work done in this step is

Next we change the temperature to its final value 7} by changing the tempera-
ture of the reservoir while keeping the pressure and volume constant. No work
is done in this second step and the total work done is given by (1.7.2).

In comparison, in process 2 let the first step consist of changing the tem-
perature to its final value while keeping the pressure and volume constant. No
work is done in this step. For the second step of process 2, change the volume
to its final value by increasing the pressure. The amount of work done is now
given by

The amount of work done by the two processes is clearly different, although
both processes started at the same initial state and ended up at the same final
state. The work done on or by a system is therefore not a state function of the
system. This conclusion is not restricted to ideal gas systems. The reasoning
is easily extended to any kind of work and to any equation of state.

The above considerations lead to a definition of heat that is based purely on
mechanical concepts as follows: in any process, the work done by a system in
going from one state to another is equal to the internal energy change only if
the process is adiabatic. For all other processes, the work done is not equal to
the change in internal energy. We define the heat absorbed by the system
as the difference between the work done and the internal energy change.

1.8 The first law of thermodynamics

We are now ready to formulate the first law of thermodynamics. In fact, the
last sentence in the preceding section is a statement of the first law that we
have obtained as a mere definition of the heat change of a process. Written in
symbols, the definition is

Again note that work done by the system is taken as positive, so (1.8.1) defines
heat as the change in internal energy minus the work done on the system.

There are two facts that give the first law a status that goes beyond that of
mere definition. The first is that the internal energy is taken to be a state func-
tion, and every consequence of its being so, that can be tested by experiment,
has been verified. The second fact is the existence of the mechanical equiva-
lent of heat, which is one of the most accurately verified experimental results
in all of science. The first law is therefore nothing but a statement of the law
of conservation of energy extended to processes that involve thermal changes.
To emphasize this, we write (1.8.1) as
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where 8Q is the heat absorbed by the system and 8W is the work done by the
system in any process for which the change in internal energy is 8U. Equation
(1.8.2) is true for spontaneous and irreversible processes as well as for
reversible processes; we adopt the convention that S is used to label changes
that can be either reversible or irreversible, while lowercase d is used to label
differential changes for reversible processes.

1.9 Heat capacity, energy, and enthalpy

Consider a system that undergoes a reversible process from a state A to a state
B. We assume heat can be absorbed or liberated by the system during the
process, that only PFwork can be done by or on the system, and that the com-
position of the system is constant. (It will be clear from the following discus-
sion that the results are easily generalized to systems for which other kinds of
work can be done.) The change in the state of the system is then defined by
the change in the values of pressure, volume, and temperature. The ideal gas
temperature scale is used to measure the temperature.

First assume that the volume is kept constant during the entire process in
going from A to B, such that no work is done on or by the system. Then, from
the first law, the energy change is just equal to the heat liberated or absorbed
by the system during the process. If we call this heat 8Qv, then the energy
change is

In general, the absorption of heat is accompanied by a temperature change.
The heat capacity is defined as the heat absorbed when the temperature of the
system is increased by a small amount. That is, if the system absorbs an amount
of heat 8Q when the temperature is increased by an amount 8T, then the heat
capacity is defined by

If the volume is constant during the temperature increase in a reversible
process, then (1.9.1) shows that (1.9.2) becomes the derivative of the energy
with respect to temperature at constant volume. The constant volume heat
capacity is therefore defined by

where the heat is transferred to the system reversibly.
Now consider a constant pressure process in which the volume goes from

Vj to V2. The work done during this process is

From the first law, the energy change is the heat absorbed minus the work done,
so if Ui and U2 are the energies in the initial and final states, respectively, then

or
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8QP being the heat absorbed in a constant pressure process.
Equation (1.9.6) leads us to define the function

called the enthalpy. For a constant pressure process, the heat absorbed is the
change in enthalpy.

Clearly, the heat capacity at constant pressure for a reversible increase in
temperature is the derivative of the enthalpy at constant pressure:

1.10 The second law of thermodynamics and entropy

We know from experience that many processes cannot take place even if they
satisfy the law of conservation of energy. Water left to itself, for example, is
never seen to flow uphill, and if two bodies at different temperatures are
brought into contact and then left alone, heat never flows from the colder to
the hotter body. This experience is embodied in the second law of thermody-
namics, which has been expressed in two basic forms. One form states that a
quantity of heat extracted from a system cannot be converted entirely into work
while leaving everything else unchanged. This is called the Kelvin statement.
Another version of the second law states that heat cannot be transferred from
a colder to a hotter body while leaving everything else unchanged. This is
called the Clausius statement of the second law.

The two statements of the second law are equivalent, as can be seen by
showing that if one is violated then so is the other. For example, if the Kelvin
statement is false, then a quantity of heat from a system at temperature jTi can
be completely converted to work. This work could then be completely used to
heat a system at a higher temperature T2, thereby violating the Clausius state-
ment. Thus, if the Kelvin statement is false, so is the Clausius statement.

Conversely, if the Clausius statement is false, then a quantity of heat Q can
be extracted from a system at a temperature TI and completely transferred to
a body at a higher temperature T2. Now let the second system do an amount
of work equivalent to this amount of heat. The result is that an amount of heat
Q is converted completely into work, thereby violating the Kelvin statement.
Thus, if the Clausius statement is false, so is the Kelvin statement. The Kelvin
and Clausius statements of the second law are thus seen to be equivalent.

A principle reason we value energy is because the performance of work is
so essential to so much human activity. From this anthropomorphic point of
view, therefore, some forms of energy (such as the potential energy at the top
of a waterfall, or the chemical energy in fuel) are more desirable than others.
The operation of heat engines depends on the transfer of heat between two
temperatures, so thermal energy at a uniform temperature is useless for per-
forming work. This is often described by saying that the generation of heat
results in the degradation of energy to a less useful form.

Heat engines are devices that operate in cycles to convert heat into work,
and their efficiency is defined as the ratio of the work obtained from the engine
to the heat absorbed by the engine from its environment during a cycle. A cycle
is merely a sequence of events that starts with a system in a particular state
and ends up with the system in the same state.
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It is clear from the Kelvin statement of the second law that the efficiency of
heat engines must be less than unity. But it turns out that there is a maximum
efficiency that is the same for all heat engines, regardless of the material nature
of the engine. This maximum efficiency can be found by considering a mat-
erial system that can accept heat from its surroundings and use it to per-
form work by going through an idealized cycle called the Carnot cycle.

For specificity, we consider a system consisting of a gas in a cylinder with
a piston that can be placed in contact with heat reservoirs. Thus, heat can flow
into and out of the system and the system can do work. Our conclusions,
however, are valid for any kind of system that can be surrounded by heat
sources or sinks and for any kind of work, not just PV work. That this is true
will be obvious from an inspection of the steps in the cycle. There are four
steps:

1. Start with the system that is in thermal equilibrium with a heat bath at
a temperature T2. Label this initial state A. (For a gas, the state is deter-
mined by the pressure, volume, and temperature, P2, V2, T2.) Let the
system do work reversibly to bring it to a new state labeled B. The tem-
perature is still T2, but work has been done by the system, so an amount
of heat Q2 had to be absorbed from the reservoir. (For a gas, this is a
reversible isothermal expansion.) The energy change for this process
is SEi = |Q2| - |Wj|. To emphasize that work done on the system is
negative and heat absorbed by the system is positive, this equation
was written in terms of absolute values.

2. Now take the system in the state B, surround it with insulating
walls, and let it do an amount of work W2 on its surroundings reversibly.
This brings the system to a new state C. (For a gas, this amounts
to a reversible adiabatic expansion.) No heat is transferred, so the
energy change is just the work done by the system: 8E2 = -\W2\,
Since no heat is transferred, the temperature must fall to some new
value 7\.

3. Put the system in state C in contact with a heat bath at temperature 7\
and remove the insulating wall. Now do an amount of work — W3 on the
system reversibly and isothermally. (For a gas, this is a reversible
isothermal compression.) An amount of heat Qj is thereby transferred
to the heat bath and the first law requires that 8E3 = -|Qi| + |W3|.

4. To complete the cycle, the system must be brought back to its original
state. This can be done by surrounding it with an insulating wall and
doing an amount of reversible work that brings it back to its original
temperature T2. (For a gas, this is a reversible adiabatic compression
such that the final pressure and volume are equal to the original pres-
sure and volume so that, because of the equation of state, the final tem-
perature is T2.) The energy change for this step is SE^, = \W4\.

The sum of the energies for each of the four steps described above step must
add up to zero since the energy is a state function. Thus, |Q2| - \W^\ -\W2\ - IQj]
+ \W3\ + \W4\ = 0. The total amount of work done by the system during this cycle
is |W| = |Wi| + |Wa| - |W,| - |Wi|, so

That is, the amount of work done is equal to the amount of heat extracted from
the reservoir at T2 minus the amount given up to the reservoir at 7\.

The efficiency r| of the cycle is the ratio of work done to heat taken from the
reservoir. That is,



12 STATISTICAL MECHANICS OF SOLIDS

The temperatures T2 and T\ of the two heat reservoirs were written as if they
were from the ideal gas temperature scale. In fact, they do not appear in the
final result of the Carnot cycle. But a temperature scale that is independent of
any material can be defined in purely thermodynamic terms by recognizing
that the ratio of the heats in (1.10.2) is a function of the temperatures of the
two reservoirs. By considering two Carnot cycles, each with the same lower
temperature, it can be shown that

where f(T) is some function of the temperature.
The absolute temperature scale is defined by requiring that the function f(T)

is just the thermodynamic temperature such that

This defines a thermodynamic temperature scale that is independent of any
particular material. The same symbol T is used here as in the definition of the
ideal gas temperature scale. In fact, if the Carnot cycle is carried out using an
ideal gas as the working substance, then the ratio of the heats is indeed equal
to the ratio of the ideal gas temperatures. The thermodynamic absolute tem-
perature is therefore equal to the ideal gas temperature. The reason for this
equality is that in an ideal gas there are no intermolecular interactions and
therefore nothing that identifies the differences among different substances.
Note that using (1.10.4) in (1.10.2) gives the maximum thermodynamic effi-
ciency as it is usually written: r| = 1 - (TJTz). Let us rewrite (1.10.4) as

or

where the removal of the absolute value signs defines positive heat as being
heat absorbed by the system.

Since the heat absorbed in going from one state to another depends on the
path, it is not a state function. But (1.10.6) can be used to define a state function
that includes the concept of heat. To do this, consider any cycle that brings a
system through a succession of states that returns the system to its original state.
This is not necessarily a Carnot cycle, but simple construction shows that it can
be approximated by a succession of many small Carnot cycles, for each of which
(1.10.6) is true. By taking the limit of an infinite number of Carnot cycles, it is
easy to show that the integral of dQ/T over the cycle is zero, where dQ is the
infinitesimal amount of heat reversibly transferred to the system at temperature
T. Thus, if the cycle is separated into two parts such that the system first goes
from state A to state B and then from state B to state A, we have
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This means that no matter how we get from A to B, the result is always the
same integral. That is, integrating over any path from A to B always gives the
negative of the integral from B to A. Since both paths are arbitrary, the inte-
grals must both be path independent. The integral is therefore a state function.
This is the definition of the entropy:

The importance of the entropy arises from two basic (and related) attributes:
the first is that the total entropy change in physical processes is always posi-
tive, and the second is that this fact can be used to determine the conditions
required for a system to be in thermodynamic equilibrium. To show this, we
start with the fact that the efficiency of the transformation of a given amount
of heat into work is a maximum for a reversible Carnot cycle. The reason for
this is that in a Carnot cycle the work done by the system in steps 1 and 2 is
a maximum and the work done on the system in steps 3 and 4 is a minimum
because the work is done reversibly. Thus, the work done by the system in a
Carnot cycle is the maximum that can be done in bringing the system from its
initial state to its final state.

Since the energy change of the system is zero for the cycle, the heat absorbed
by the system is a minimum. Remember that this minimum is relative to all
the irreversible paths in going through a cycle in which heat is absorbed and
work is done in a system such that the system ends up in its initial state. Thus,
the maximum thermodynamic efficiency is

where the first equality comes from equation (1.10.4). From (1.10.9), it follows
that

where the equality holds for a reversible process and the inequality holds for
an irreversible process. Since a cycle is irreversible, if any part of it is irre-
versible, it follows from (1.10.10) that

where the integral is taken over the entire cycle. Now consider the cycle as the
sum of two processes, the first of which takes the system from its starting state
A to some state B, and the second of which takes the system from state B back
to state A. Then, (1.10.11) is
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Now assume that the return part of the cycle, from B to A, is done reversibly.
Then the second integral in (1.10.12) is just the entropy change of the system
in going from state B to state A and (1.10.12) becomes

Equation (1.10.13) is equivalent to

That is, the entropy difference connecting two infinitesimally close states of a
system is equal to the heat absorbed by the system divided by the temperature
if the heat is transferred reversibly, and is greater than this if the heat is trans-
ferred irreversibly.

Note that the first law requires that 8Q = 5(7 + 5W, so because of (1.10.14)
the entropy change at constant energy and volume is

This equation is the basis of the equilibrium conditions of thermodynamics.
If, for example, the only work involved is pressure-volume work, then it
follows from (1.10.15) that

where the equality holds for a reversible process and the inequality holds for
an irreversible process.

Equation (1.10.16) states that the entropy for a system with constant energy
and constant volume is a maximum. Of course, if other forms of work are
involved, then (1.10.16) becomes

where O represents all the extensive parameters for all the types of work done
by the system.

1.11 Free energies and equilibrium conditions

From (1.10.14), the heat change in a reversible process is related to the entropy
by dQ = TdS, so the first law can be written as

where dWr is the work done reversibly in increasing the energy of the system
by dU. For an isothermal process that brings the system from state A to state
B, integration of equation (1.11.1) gives -Wr (A -> B) = (UB - UA) - (TSB - TSA)
(isothermal process). This leads us to define a function A by
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A is called the Helmholtz free energy, and AA is the maximum available work
when a system goes from one state to another via an isothermal process.

The Gibbs free energy function is defined by

It is related to the maximum work that can be done by the system in a con-
stant temperature, constant volume process. To see this, take the differential
of (1.11.3) at constant pressure to get

If we also require that the change in state is isothermal, then since the
Helmholtz free energy is the negative of the maximum (reversible) work done
by the system in an isothermal process, (1.11.4) becomes

so the change in Gibbs free energy at constant temperature and volume is
equal to the maximum available work done by the system, exclusive of pres-
sure-volume work.

The Helmholtz and Gibbs free energies both provide very useful criteria for
a system to be at equilibrium. The fundamental equilibrium condition is given
by equation (1.10.17) [or when only P-V work is present by equation (1.10.16)].
This states that the entropy is a maximum for any process in which the energy
and the extensive work parameters (such as volume) are constant. In practice,
most thermodynamic processes occur at constant temperature and pressure, or
at constant temperature and volume. It is convenient, therefore, to have equi-
librium criteria for such processes. The free energies provide such criteria.

If we consider only reversible processes so that differentials of thermody-
namic functions connect two equilibrium states, then in going from one state
to the other, any heat involved is transferred reversibly. That is, dQ= TdS. The
equilibrium condition (1.10.16) then becomes

For convenience, we restrict ourselves to processes involving PV work only;
the generalization to include other types of work will generally be obvious.
Then, since we consider only reversible processes, the first law becomes

from which it follows that

From the definition of the Helmholtz free energy given by (1.11.2), we get
dA = dU - TdS - SdT, or, using (1.11.7),

so
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Now start with the definition of the Gibbs free energy given by equation
(1.11.3) to get dG=dU~ TdS - SdT + PdV + VdP, and again use the first law
to reduce this to

At constant temperature and pressure this gives

Equations (1.11.6), (1.11.8), (1.11.10), and (1.11.12) are all conditions for equi-
librium. For completeness, the enthalpy can also yield an equilibrium condi-
tion, and in fact, it is easy to show that

1.12 Thermodynamic potentials and
Legendre transformations

Since equation (1.11.7) arises directly from the combination of the first and
second laws, the energy is said to be a natural function of entropy and volume,
so the thermodynamic state of the system is defined as a relation among the
energy, volume, and entropy:

Taking the differential of (1.12.1) gives

The enthalpy, Helmholtz free energy, and Gibbs free energy were defined in
the preceding section as natural consequences of considering simple cases
of heat transfer and work done by a system. These quantities, along with
the energy and entropy, are called thermodynamic potentials, and their im-
portance lies in the fact that each of them is a natural function of a different
pair of independent variables that can be connected to differing experimental
conditions. The adjective "natural" means that the relationships between
the thermodynamic potential and the independent variables arise directly
from the connections of the potential to work or heat processes. It is, of
course, possible to express a potential in terms of variables other than the
natural ones, but the differentials of the potentials take their simplest form
when expressed in terms of the natural independent variables. The notation
adopted for the partial derivatives recognizes that the potentials can be
expressed as functions of different sets of variables by explicitly specifying
them. Thus, in equation (1.12.3), the partial derivative that defines the tem-
perature clearly refers to the energy as a function of entropy and volume as the
independent variables.

Comparing this with (1.11.7) gives



THE BASICS OF THERMODYNAMICS 17

But entropy and volume are not convenient variables for describing experi-
ments, so we are led to look for other descriptions. The Helmholtz free
energy, for example, is most useful for describing processes at constant tem-
perature and volume, while the Gibbs free energy is naturally connected to
constant pressure, constant temperature conditions as shown by (1.11.9) and
(1.11.11).

The natural variables for the enthalpy are readily obtained from the energy
equation and equation (1.9.7) defining the enthalpy. Taking the differential of
(1.9.7) and combining the result with (1.11.7) for the differential of the energy
gives

so the natural variables for the enthalpy are entropy and pressure.
The expression of the potentials in terms of their natural variables immedi-

ately yields thermodynamic relations analogous to (1.12.3). From (1.12.4)

while (1.11.9) and (1.11.11) yield

Similarly, differentiating (1.12.9) with respect to temperature at constant pres-
sure gives

These equations lead to expressions for the free energies that are extremely
useful. If the second equation in (1.12.6) is substituted for the entropy in the
definition of the Helmholtz free energy given by (1.11.2), the result is

Similarly, if the first of equations (1.12.7) is used to replace the entropy in the
definition of the Gibbs free energy, (1.11.3), then

Equations (1.12.8) and (1.12.9) are the Gibbs-Helmholtz equations for the
Helmholtz and Gibbs free energies, respectively.

In statistical mechanical applications it is sometimes more convenient to
express heat capacities in terms of derivatives of free energies rather than
energy or enthalpy. This is easily done by using the Gibbs-Helmholtz equa-
tions. Differentiating (1.12.8) with respect to temperature at constant volume
gives



18 STATISTICAL MECHANICS OF SOLIDS

While the definitions of the potentials are directly connected to work and
heat changes, they are also simply described as mathematical transformations
of each other that all describe the same thermodynamic information. To see
this, start with the energy equation (1.11.7) for a system in which only P^ work
is done when a system undergoes an infinitesimal reversible change, and con-
sider a system with a given, fixed volume whose energy can vary through heat
transfer. The possible states of the system are then determined by the relation
between energy and entropy and can be represented by a two-dimensional plot
of energy versus entropy, as shown in figure 1.1. The curve represents the
energy—entropy relation for the system, while the straight line is a tangent to
the line at a given point. Clearly, if every tangent to the curve is specified, then
the energy-entropy curve is determined. That is, giving the slope and inter-
cept of the tangent to every point of the curve is fully equivalent to specifying
the curve itself.

For the given point with energy U, the slope (3f7/9S)y = T is given by
(3L7/3S)y = (U - b)/S, where b is the intercept. Solving for the intercept gives

Figure 1.1. Illustration of Legendre transformation.
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Equation (1.12.12) is an example of the Legendre transformation, which
expresses a function in terms of its derivative. Since the derivative in (1.12.12)
is the temperature, the intercept is just the Helmholtz free energy, which we
see is a Legendre transformation of the energy.

The generalization to more than one variable is straightforward. In general,
if p = F[Xi, X2,.. . , Xt) is a function of t variables with derivatives pt = dF/Xt,
the Legendre transformation is defined by

The transform bF(Xi, X2,...) is now the intercept of lines that are parallel to
the surface defined by the function F in a i-dimensional space. It is the trans-
form of the function F with respect to the variables (X^, X2,.. .). Equation
(1.12.13) may be called the complete Legendre transformation in that all the
variables were transformed. This is indicated by writing the transform as a
function of all the variables. A partial Legendre transformation is one in which
only some of the variables are transformed. The Helmholtz free energy, for
example, is a partial transform of the energy with respect to the entropy.

The partial Legendre transform of the energy with respect to the volume is

But the derivative in (1.12.14) is just the negative of the pressure [equation
(1.12.3)], so

which is the definition of the enthalpy. Finally, if a Legendre transform of the
energy with respect to entropy and volume is performed, the result is

But from (1.12.3) the first derivative on the right of (1.12.16) is the tempera-
ture, and the other derivative is the negative of the pressure, so

which is just the Gibbs free energy. The four thermodynamic potentials are
therefore related by Legendre transformations. Other potentials can be defined
by additional Legendre transforms, but these four are the most useful. A simple
scheme describing them is given in the following diagram:

where each function has its independent variables on either side of it, with the
appropriate plus or minus sign indicated.
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1.13 Chemical potentials

Up to this point, we have assumed that our system was closed. That is, there
was no transfer of matter during any change from one equilibrium state to
another, so the dependence of energy on composition did not have to be made
explicit. But there are many cases in which the composition changes during a
thermodynamic process; the system is then an open system in that matter can
pass in and out of it. The composition dependence of the energy must then be
included explicitly and equation (1.12.1) must then be written as

This equation refers to a system that has c components, AT,- being the number
of molecules of the/th component. The differential form of (1.13.1) is

The first two derivatives are at constant composition, as well as constant
volume and entropy, respectively, while the derivative in the j'th term of the
sum is at constant entropy, volume, and number of molecules of every type
except for the ith. To be consistent with (1.11.7), the derivatives in the first two
terms must still be given by temperature and negative pressure as in equation
(1.12.3). Also, the derivatives with respect to the number of molecules are given
their own symbol n,-, so we have

where ji, is called the chemical potential of the j'th component. We rewrite
(1.13.2) as

The other thermodynamic potentials are easily generalized to include the
composition variables and the chemical potentials. Combining (1.13.6) first
with (1.12.4), then with (1.11.9), and then with (1.11.11) gives
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Note that the chemical potential is given by partial derivatives of each of the
potentials as

1.14 Conditions of phase equilibria and stability

Equation (1.13.6) is valid for any system; it gives the energy change when a
system goes from one state to another by a reversible process, the two states
differing infinitesimally in their entropy, volume, and composition. Solving for
the entropy gives

Since (1.14.1) is valid for any system, it is valid for a system that consists of
two phases. Let one phase be labeled by a superscript A and the other by
a superscript B, and consider a process in which the energy, volume, and
composition of phases A and B change because of transfers of matter and
energy between the two phases. Then, if we assume the total system is isolated
so no heat or work is transferred to it, the total entropy vanishes and (1.14.1)
becomes

But since the system as a whole is isolated, we must also have

Using (1.14.3) in (1.14.2) gives

But the variations in energy, volume, and composition are independent, so
each term in (1.14.4) must vanish, and therefore
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This result can obviously be extended to any number of phases, so for inter-
nal equilibrium of a system consisting of c components distributed among p
phases, the temperature must be the same in every phase (thermal equilibrium),
the pressure must be the same in every phase (hydrostatic equilibrium), and
the chemical potential of each component must be the same in every phase
(chemical equilibrium).

From the mode of their derivation, the conditions of equality of tempera-
tures, pressures, and chemical potentials obviously apply to a single-phase
system as well as multiphase systems. For a single-phase system these condi-
tions state that, for equilibrium, the temperature, pressure, and chemical poten-
tials must each be constant throughout the phase.

The phase rule addresses the following question: for a multiphase system,
how many thermodynamic variables are needed to specify the state of the
system? Since the most useful thermodynamic independent variables for lab-
oratory work are temperature and pressure, it is most convenient to use the
Gibbs free energy to answer this question. The equilibrium condition in terms
of the Gibbs free energy is that the differential given by (1.13.9) must vanish
for a reversible process. The Gibbs free energy change for the Kth phase is given
by an equation just like (1.13.9):

The entropy and volume are extensive quantities, and the temperature and
pressure are the same for every phase, so summing (1.14.8) over all phases
gives the total Gibbs free energy differential for the multiphase system. The
total free energy change for the entire system must vanish because it is iso-
lated, so

This equation defines the equilibrium state of the system in that, if the tem-
perature, pressure, and composition variables are given, the state is, deter-
mined. There are c composition variables for each phase, giving a total of
cp + 2 variables including the temperature and pressure. But these variables
are not all independent. In the first place, because the system as a whole is
closed, the total number of molecules of each component is fixed, so the total
variation over all phases for each component must vanish. That is,

There are p such equations, one for each phase so this imposes p conditions
on the variables. Furthermore, the equality of chemical potentials for a given
component among phases gives

This is a set of (p - 1) equations for each component, so (1.14.11) represents
an additional c(p - 1) conditions that must be satisfied. If we call the
difference between the number of variables and the number of conditions /,
then
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/is called the number of degrees of freedom of the system since it is the number
of variables that may be independently varied. This is the famous phase rule
of Gibbs.

Equations (1.14.5)-(1.14.7) are necessary for equilibrium, but not sufficient.
They arise from the requirement that the first variation of the entropy with
respect to any possible variations of the system variables is equal to, or greater
than, zero. But in order for this to represent a maximum, the second differen-
tial of the entropy must be negative. That is,

or, using (1.14.1),

If (1.14.11) is to be true, then if the composition and volume are held constant,
the first term in (1.14.15) must be less than zero. That is,

But

because the derivative in the middle term in (1.14.17) is the reciprocal of the
heat capacity at constant volume. Thus, the condition for stable thermal equi-
librium is that the heat capacity is positive:

By considering the case of constant energy and composition, the condition for
mechanical equilibrium is easily shown to be

By keeping all compositions constant except one, as well as the energy and
volume, the condition for chemical equilibrium is found to be
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By starting with the Helmholtz free energy (1.13.8), and requiring the second
differential to be positive (because the equilibrium condition requires the free
energy to be a minimum), a similar derivation gives somewhat more useful
forms for the conditions of mechanical and chemical equilibrium as

Equations (1.14.18) and (1.14.21) are obviously true on physical grounds. If the
temperature is raised, the system must gain energy, and if the pressure is
increased, the volume of the system decreases (the isothermal compressibility
is positive).

If the conditions arising from both the first and second differentials of the
entropy (or free energy) are both satisfied, the system is in equilibrium. These
are local conditions in that they are the result of considering changes in the
system close to the maximum of the entropy function, or the minimum of the
free energy. They do not guarantee that the system is in the lowest of all free
energy states (or maximum of all entropy states). It is entirely possible for a
system to have a number of states for which the entropy is a maximum and
the free energy a minimum. There is always at least one state for which the
entropy is higher, and the free energy smaller, than all the others. These are
called states of absolute, or stable, equilibrium. The states for which all equi-
librium conditions are satisfied, but which are not states of the highest entropy
or lowest free energy, are called metastable states.

1.15 Euler's theorem and the Gibbs-Duhem equation

A major task in thermodynamics is to find the relationships among measurable
physical quantities. These are needed to enable the enormous amount of pos-
sible experimental results to be described in a rational, ordered theoretical
structure. Also, thermodynamics places restrictions on the possible relations
among physical quantities; if experimental results violate these restrictions,
they must be in error. Furthermore, a knowledge of the thermodynamic rela-
tions is necessary if any microscopic theory is to be used to understand macro-
scopic systems. There are a number of simple mathematical results that allow
us to connect the basic laws of thermodynamics to physical properties and to
obtain the desired relations among them.

The energy is a natural function of entropy, volume, and composition. These
are all extensive variables, so if the number of molecules of each component
in a phase increases by some fraction, the entropy volume and energy both
increase by the same fraction. That is, if each composition variable is multi-
plied by the same number A,, then
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That is, the energy is a homogeneous function of its natural variables of order
unity.

The Euler theorem for homogeneous functions can therefore be applied to
(1.15.1) to yield very useful results. This theorem states that, given a homoge-
neous function of order n of variables x,-, which is defined by

then

To prove this, differentiate (1.15.2) with respect to A, to get

which, upon setting A, = 1, gives (1.15.3). For n = 1, applying this to the energy,
we get

Using the relation of the derivatives to temperature, pressure, and chemical
potential given by equations (1.13.3)-(1.13.5), this becomes

Thus, the Euler theorem yields an integration of the energy, equation.
The integrated forms of the enthalpy, Helmholtz free energy, and Gibbs free

energy in terms of composition are easily obtained by using (1.15.5) in equa-
tions (1.9.7), (1.11.2), and (1.11.3) to get

These equations are quite general and apply to any homogeneous phase of any
number of components. From (1.15.8),
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which, when combined with (1.13.9), gives

This is the Gibbs-Duhem equation.
If the temperature and pressure are kept constant, then equilibrium requires

the Gibbs free energy change to be constant and (1.15.10) reduces to

Equation (1.15.11) is the Gibbs-Duhem equation at constant temperature and
pressure. It is valid for any process involving an infinitesimal change in the
composition of a phase but carried out at constant temperature and pressure,
and is very useful for analysis of the equilibria of solutions and chemical
reactions.

1.16 Reciprocity relations of Maxwell

The differentials of the thermodynamic potentials given by equations
(1.13.6)-(1.13.9) all have the form

where dF is a perfect differential and (M, N, (jj are all functions of (X, Y, N]).
That is, the integral of dF is independent of the path of integration, so F is a
state function. The coefficients of the differentials in (1.16.1) are therefore

For simplicity of notation, let us consider a phase of constant composition,
with all dNs = 0, so that (1.16.1) and (1.16.2) reduce to

Since the order of differentiation is immaterial, differentiating the first equa-
tion in (1.16.4) with respect to Y and the second with respect to X gives the
same result, so
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[Note that there is no loss of generality by considering a system of constant
composition. If the composition is allowed to vary, we simply specify that the
differentiation is carried out at constant composition in (1.16.5).]

If (1.16.5) is applied to the differentials of the potentials in (1.13.6)-(1.13.9),
we get that

These are the Maxwell reciprocity relations. They have many applications in
finding relations among thermodynamic quantities, such as those that are
important for chemical and phase equilibria and in relating heat capacities to
other physical quantities.

Since the Maxwell relations are a simple result of the fact that the order of
differentiating makes no difference in the value of a second derivative, similar
relations among derivatives containing composition variables also exist. They
can be found by a straightforward extension of the above procedure.

1.17 Useful differential relations

The state of a thermodynamic system is completely determined by any one
of the thermodynamic potentials. The Gibbs free energy, for example, specifies
the state as a function of the temperature, pressure, and composition. For a
single-phase system, the phase rule tells us that the number of independent
variables is one more than the number of components. For a single-phase, one-
component system, there are only two independent variables. That is, speci-
fying any two variables determines all other thermodynamic quantities. Since
these quantities are derivatives of the potentials, we need to know the con-
nections among the derivatives. Finding these connections is easily accom-
plished with the aid of some properties of derivatives of a function of several
variables, which we hereby establish.

Let z be a function of two independent variables x and y,

so that

Divide (1.17.2) through by dx to get
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This equation is true for any dz, so it is true for dz = 0, and therefore

Equations (1.17.4) and (1.17.5) give

Equations (1.17.7)-(1.17.10) are very useful in manipulating derivatives of
thermodynamic functions.

1.18 Equations of state and heat capacity relations

Consider a simple system consisting of a single phase of constant composition.
The properties of the system are then determined by any two thermodynamic
variables, and the state of the system is completely described by any of the
thermodynamic potentials as a function of two variables. In this sense, the ther-
modynamic equations are equations of state, but this name is normally applied
to the relation between pressure, temperature, and volume.

Similarly, dividing (1.17.2) through by dy and applying the condition of con-
stant z gives

and from (1.17.6) and (1.17.7),

Now multiply (1.17.4) by the derivative of y with respect to z at constant x and
use (1.17.6) to get

which, because of (1.17.8), becomes



which is a thermodynamic equation of state for the volume as a function of
temperature and pressure.

The heat capacity, thermal expansion, and bulk modulus (or its reciprocal,
compressibility) are among the more important thermodynamic derivatives,
not only because they can be experimentally measured and are of practical use,
but also because they are readily related to atomistic theories of matter. The
heat capacities at constant pressure and at constant volume have been defined
in section 1.9. The definitions of the isothermal compressibility K and the iso-
baric thermal expansion coefficient a are

The bulk modulus is defined by

and because of (1.17.8) this is just the reciprocal of the compressibility. The
compressibility is the fractional decrease in volume per unit of applied pres-
sure, and the thermal expansion coefficient is the fractional increase in volume
per unit temperature increase.
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A thermodynamic equation of state is easily obtained as follows: start with
equation (1.11.7), divide by dV, and then specify that the temperature is con-
stant to get the derivative of the energy with respect to volume at constant
temperature:

Substitution of the Maxwell relation (1.16.8) into (1.18.1) and solving for the
pressure gives

which is a thermodynamic equation of state for the pressure as a function of
volume and temperature.

Another equation of state can be derived by starting with equation (1.12.4)
for the reversible differential of the enthalpy. Dividing (1.12.4) by dP and then
requiring the temperature to be constant gives

Using the Maxwell relation (1.16.9) in (1.18.3) and solving for the volume gives
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Measured thermal expansions are usually reported as linear thermal expan-
sion coefficients, which are denned as

where L is a linear dimension of the sample.
The relation between the volume and linear expansion coefficient is readily

obtained by writing the volume as a product of the linear dimensions LI, L2, L3
so that dV = LjLzdLa + LjLsdLz + L2L3dU and dV/V = dLj/Li + dL2/L2 + dL3/L3.
Putting this in (1.18.6) gives

and if the system is isotropic, all three terms in (1.18.9) are equal, so compar-
ing it to (1.18.8) gives

For an anisotropic system, such as an orthorhombic crystal, the linear expan-
sion coefficient varies with direction.

A relation between the heat capacities, the thermal expansion coefficient and
the compressibility is found as follows. First, write the energy as a function of
volume and temperature, instead of its natural variables volume and entropy,
so that its differential is

from which (dU/dT)P = (dU/dV)T (3V/dT)P + @ 17/3 TV But the last term in this
equation is just the constant volume heat capacity, so

Now start with the definition of the heat capacity at constant pressure to get

From (1.18.12) and (1.18.13), the difference between the two heat capacities is

Because of the thermodynamic equation of state (1.18.2) the term in the square
bracket is
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From the definitions of the compressibility and thermal expansion coefficient
given by (1.18.5) and (1.18.6), this becomes

Experimental measurements are most easily carried out under conditions of
constant temperature and pressure, but the statistical mechanical theories of
heat capacity are most easily developed with temperature and volume as inde-
pendent variables. Equation (1.18.8) provides the needed connection between
the two heat capacities.

1.19 Magnetic systems

To this point, pressure was assumed to be the only external parameter acting
on the system, so it was subject only to PFwork. It is obvious that the proce-
dures used to develop the ideas of thermodynamics are the same for any kind
of work. All that is needed is to treat the external force and its corresponding
property of the system just as pressure and volume were treated. An important
example of this in the study of solids is from magnetic materials, in which an
external magnetic field H1 acts on a system with a net magnetization M. The
magnetic work accompanying a change in external field is MdH, so assuming
that this is the only work (zero pressure), the thermodynamic equations for a
magnetic system are obtained by replacing P with H and V with M in the equa-
tions for a PV system. Thus, the heat capacity at constant volume is replaced
with the heat capacity at constant magnetization:

the last equality being the magnetic analog of (1.12.10). The analog of the
entropy equations in (1.12.6) and (1.12.7), for a system in a magnetic field, is

so (1.18.14) becomes

and using (1.17.7), this becomes
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Instead of the compressibility, we now have the derivative of the magnetiza-
tion with respect to external field, so the analog of the compressibility is the
isothermal magnetic susceptibility:

and that

For our purpose, we can take the external field as given in the same sense
that we took the pressure as given. However, there is a difference between mag-
netic field and pressure in that the magnetic field carries energy.2

Exercises

1.1 Prove that

These are alternate forms of the Gibbs-Helmholtz equations.

1.2 The Stefan-Boltzmann law for black body radiation states that the energy
density of radiation in equilibrium within a cavity varies as the fourth power
of the absolute temperature. Derive this law from the fact that the radiation
pressure P is related to the energy density u by P = u/3, where u = U/V, U
being the total energy and V being the volume of the cavity, and the energy
density is a function of temperature only. (These results can be derived from
the electromagnetic theory of radiation.)

1.3 The grand potential for a one-component system containing AT molecules
is defined by ¥ = U - TS - \iN. Show that

Notes

1.. The symbol for the magnetic field is the same as for the enthalpy. But -we
will be considering only magnetic systems at zero pressure, so there will be
no need to specify constant pressure properties and the enthalpy will not
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appear in the equations. I have therefore chosen to retain the traditional
symbols rather than invent a new one.

 2.A clear exposition of the relation of the external field to total magnetic
energy is given in chapter 1 of Goodstein, David L.; 1975; States of Matter,
chapter 1; Prentice-Hall, Englewood Cliffs, N.J.; reprinted by Dover
Publications, 1985.



Principles of Statistical Mechanics

2.1 Definitions for statistical mechanics

The prime article of faith in scientific theory is that experimentally observed
phenomena can be derived from a small number of general principles. The
acceptance of this idea implies that, despite the constant changes evident in
physical systems, they possess some immutable attributes from which all of
their interesting properties can be calculated. A central concept in such a cal-
culation is that of the state of an isolated system. If all of the experimentally
measurable properties of a system are known at all times, then this would cer-
tainly constitute an adequate description of the state of the system. However,
such a definition would be useless for theoretical purposes and is contrary to
the assumption that all properties can be related to a few general laws. The
most fruitful definition of state is this:

The state of a physical system is the minimum amount of information
required for a calculation of its properties.

A theory can be regarded as the set of concepts and mathematical apparatus
needed to go from the definition of the state of a system to its observable
properties.

A system is defined as any physical entity that can be separated from the
rest of the world, at least to a good approximation. That is, the energy of inter-
action of the system with the rest of the world is small compared to the system's
energy. No system is truly isolated since there are always some interactions
with its surroundings. In fact, by definition, no measurements can be made
on isolated systems, and they are therefore of limited interest. However, a
system that is too strongly coupled to its environment cannot be treated as a
separate entity. The systems that are of interest to us are those for which
there is a small interaction with the environment so that a meaning can be
assigned to its properties as an entity that is almost independent of the rest of
the world. Examples of systems are an atom or molecule in a dilute gas, a gas
in an insulating container, a liquid in a bottle, a crystal, and the earth with its
atmosphere.

The "nature" of a system is defined by specifying its constituent particles
(such as electrons, nuclei, atoms, and/or molecules), the number of different
constituent particles, and the interaction potentials among these particles.
Often, as a matter of convenience, we go further and specify its phases and
structure (i.e., gas, liquid, solid; crystals, polymers, amorphous solid). In prin-
ciple, the phases and structure can be derived from the constitution and inter-
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action potentials, but this is a difficult task and we are often interested in
systems whose phases and structure are given.

The above discussion applies to conservative systems. For nonconservative
systems, the effects of the nonconservative forces must be included. But while
there may be nonconservative processes at the macro level, they often reduce
to conservative processes at the micro level, for example, the phenomena of
friction and turbulence. Statistical mechanics is primarily concerned with
macroscopic systems, which are defined as systems whose dimensions are
large compared to atomic dimensions and whose number of constituent parti-
cles is large compared to unity.

The definition of state is different for different branches of physical theory.
Given the constituent particles, their masses, and the forces acting among them,
the state in classical mechanics is completely specified by the coordinates and
momenta of the particles at any given instant. The reason for this is that, in
classical mechanics, all properties of systems are functions of coordinates
and momenta, and once the positions and momenta are given at one particu-
lar time, they can be calculated at any future (or past) time. In quantum
mechanics, the state is completely defined by the wave function if the con-
stituents, their masses, and their interaction potentials are given, since all mea-
surable physical properties can be obtained from the wave function.

2.2 Thermodynamic state

The first and second laws of thermodynamics provide a basis for constructing
relations among the macroscopic properties of physical systems. These prop-
erties include temperature, pressure, volume, energy, specific heat, compress-
ibility, and so forth. In a one-component, one-phase system, two variables (e.g.,
temperature and pressure) are enough to define the thermodynamic state. All
other properties are then determined by the equations of thermodynamics. For
systems in equilibrium, the thermodynamic state is defined by a number of
macroscopic properties determined by the phase rule given by (1.14.12).

The thermodynamic parameters of a system are of two kinds: mechanical
and nonmechanical. Mechanical variables are those quantities that can be
interpreted in mechanical terms, such as energy and internal pressure. Non-
mechanical variables are those that have no analog in mechanics and are pecu-
liar to thermodynamics. These include temperature and entropy.

Thermodynamic quantities can also be classified as being intensive or exten-
sive. Intensive parameters are those that are independent of the size of the
system, such as temperature, pressure, and concentration of components.
Extensive parameters are those that are directly proportional to the amount of
matter in the system, such as volume, energy, and heat capacity.

Also, it is useful to distinguish between the properties of the system and
external parameters. The external parameters define the conditions under
which the system exists and its interaction with the environment. These
include such quantities as external fields (gravitational, electric, magnetic), the
pressure of a movable piston, and the temperature of a heat bath.

Two important points must be noted. First, thermodynamics deals with equi-
librium systems, so time and the concept of temporal causality do not enter into
it at all. Equilibrium thermodynamic systems are macroscopically static, and
the definition of state given here is incapable of describing systems whose prop-
erties are changing with time. The idea of thermodynamic equilibrium needs to
be applied with care because, in thermodynamics, equilibrium is defined as
being the state with the lowest free energy. But there are states whose proper-
ties do not change with time, or change so slowly that no change can be mea-
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sured over laboratory time scales, and yet are not states with the lowest free
energy compared to all other possible states. This can happen when the transi-
tion to a lower free energy state is hindered by extremely slow kinetic rates, as
when nonequilibrium structures are quenched into solids, or when chemical
reaction rates are slow, for example, the reaction between hydrogen and oxygen
at room temperatures. It is often valid to apply equilibrium thermodynamics to
such systems because, while the free energy may not be at an absolute minimum,
it might be at a relative minimum. It is then in a metastable state.

The second point is that no actual numerical computations of the thermo-
dynamic properties can be made from the specification of the thermodynamic
state of the system. For example, if we are given the temperature and pressure
of a gas, thermodynamics tells us that the volume is determined, but it cannot
tell us the numerical value of this volume. To get the volume, an equation of
state is needed, and this can only be obtained from some source outside of
thermodynamics such as experimental data or a microscopic theory. In this
sense, the specification of state in thermodynamics is incomplete.

Sometimes a macroscopic state cannot be defined. This is the case for
systems that are so chaotic and changing so rapidly that their future proper-
ties cannot be determined, or even expressed, in macroscopic terms. For some
nonequilibrium systems, however, it may still be possible to define a macro-
scopic state. For example, a system whose temperature is changing with time
can be described by the equations of heat conduction if the temperature gra-
dients are not too large. The state is then defined by including in it the thermal
conductivity and the temperature as a function of position at a given time. This
constitutes a definition of state for the nonequilibrium system because it allows
the temperature distribution to be computed for all future times.

2.3 Comparison of microscopic and macroscopic state

It is always possible to define a microscopic state of the system since, in
principle, the equations of motion (quantum or classical) of the particle con-
stituents completely define the system. Microscopic states can be defined in
classical and quantum mechanics whether or not the system is in equilibrium
since the equations of motion are known.

To appreciate the task of statistical mechanics, it is useful to contrast the fol-
lowing characteristics of the microscopic and macroscopic definitions of state:

1. For macroscopic systems the microscopic definition of state is extremely
detailed and requires knowledge about every particle in the system. Classically,
it is necessary to specify all coordinates at some particular time. In quantum
mechanics, all relevant properties are computed from the wave function at a
particular time, the wave function being obtained from a second-order partial
differential equation involving all particle coordinates. For macroscopic
systems, however, there is no way to get such detailed information, and even
if it were available, it would be useless.

In thermodynamics, the macroscopic state says nothing about microscopic
parameters and does not even recognize their existence. Furthermore, the
macroscopic state is specified by a small number of parameters (the phase rule),
in sharp contrast to the enormous number of variables that enter into the micro-
scopic state.

2. The microscopic definition of state is totally causal in the sense that the
state at any time is determined by the state at some earlier time. This means
that all measurable quantities are determined as a function of time. This is a
precise statement even in quantum mechanics, despite the uncertainty princi-
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pie, because the state is defined by the wave function whose evolution in time
is precisely determined by the wave equation. (It is true that, at an atomistic
level, the measurable quantities are subject to quantum mechanical probabili-
ties, but these are determined by the wave function.) The macroscopic state,
on the other hand, is only partially causal. For equilibrium systems, it is causal
in the trivial sense that it does not change in time. For nonequilibrium systems,
it may be causal to a good enough approximation for certain phenomenan such
as diffusion and heat transfer (when gradients are not too large) in the sense
that future temperature or concentration distributions can be computed from
initial conditions. But for systems that are far from equilibrium, the future
macroscopic state cannot always be predicted from a past macroscopic state.
Note that in those cases that may be described causally, laws specific to the
phenomenon must be introduced (e.g., Pick's law and Fourier's law).

3. The microscopic state is reversible with respect to time. That is, for every
process evolving into the future that brings the system from a state A to a state
B, there is a corresponding process evolving into the past that brings the system
from state B to state A. What this means is that every temporal process is
described by equations that give solutions for the properties as a function of
time and valid solutions are obtained if the time is reversed in these equations.
For macroscopic states, however, temporal processes are irreversible. That is,
for the evolution of a macroscopic system in time, there is no corresponding
process that undoes the evolution if the time is reversed.

4. If the microscopic state is known, along with some fundamental constants
(such as the mass and charge of the electron, Planck's constant, and the veloc-
ity of light), then actual numerical calculations of the system's properties can
be made, at least in principle (within the limitations of the uncertainty prin-
ciple). Numerical values of macroscopic properties cannot be computed even
in principle from the definition of macroscopic state. The equations defining
macroscopic state are merely general relations among macroscopic parameters.

2.4 The relation between microscopic and
macroscopic state

Our belief in the ultimate unity of scientific knowledge leads us to conclude
that there must be some connection between the macroscopic (thermodynamic)
and microscopic (mechanical) definitions of state. The first task of statistical
mechanics is to find that connection. For the many particle systems that
concern us, it is impossible to obtain an actual specification of the microscopic
state and, even if such a specification were available, the equations of motion
would be so complicated that they could not be solved. Also, we are not par-
ticularly interested in such detailed information. We are, however, very much
interested in the possibility of interpreting thermodynamic data in microscopic
terms, and in particular, it would be very desirable to obtain a method of com-
puting macroscopic quantities from atomic properties, thereby making up for
the inherent deficiency of thermodynamics.

In view of these considerations, any bridge connecting macroscopic and
microscopic descriptions of material systems must have the following charac-
teristics:

1. A great deal of microscopic information must be erased in constructing
macro- from microstates so that we are not encumbered with an enor-
mous number of microscopic parameters.

2. Enough microscopic information must be retained to enable the calcu-
lation of bulk properties from atomic properties.
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3. Temporal causality and reversibility, which operate at the micro level,
do not appear at the macro level. (Except insofar as introduced by
special postulates such as the law of thermal conduction. The disci-
pline of irreversible thermodynamics was developed to provide a causal
description of such processes that are not too far from equilibrium. This
introduces temporal causality, but not reversibility.)

4. The laws of thermodynamics must have a microscopic interpretation.

The program of statistical mechanics is to construct the bridge between
micro- and macroscopic states and to use that construction to compute the bulk
properties of matter.

2.5 System and environment

Consider a system containing a large number of atoms or molecules. If it were
completely isolated, it would be in a definite quantum state. But no real system
can be completely isolated, and no measurements can be made on an isolated
system. If the interaction between the system and its environment is weak and
random, then the environment is sufficiently constant, on the average, that it
does not affect the measured properties of the system, at least within the accu-
racy of the macroscopic measurement. By a weak interaction, we mean that
the changes in the system properties are very small compared to the value of
those properties. By random, we mean that over the time it takes to make a
measurement, there are a large number of changes in the properties of the
system, that the magnitude of these changes follow the rules of probability for
independent events, and that the effects of positive and negative changes are
very nearly equal. Such an environment might consist of a heat bath at con-
stant temperature that exchanges energy with the system. In addition, the
system can be subject to small perturbations due to stray electric and magnetic
fields, mechanical vibrations, cosmic rays, and so on. The microscopic state of
the system is therefore changing in time in a random, chaotic manner, but its
macroscopic state remains essentially unchanged. We will call such an envi-
ronment one that is thermodynamically constant

If the environment is not weak or not random, a macroscopic state and mean-
ingful macroscopic measurements for a system can be defined only in cases
where the environmental conditions are constant or changing slowly. An
example is that of a metal whose different surfaces are maintained at different
but constant temperatures by different heat baths. The interaction is certainly
not weak because the system can exchange large amounts of energy with the
environment, but a state can be defined by the use of Fourier's law.

A macroscopic system contains so many atoms that it can be mentally
divided into a very large number of subsystems such that each subsystem con-
tains an enormous number of atoms compared to unity. A particular subsys-
tem is then in the environment provided by all the other subsystems.

The concept of a subsystem is useful for several reasons:

1. It distinguishes between internal processes and external processes. A
system not at equilibrium, for example, changes with time because of
interactions among its subsystems as well as interactions with its envi-
ronment. A system in the environment denned by the example given
above (of heat flow in a metal) changes because of its interaction with
the environment, but its subsystems are also changing because of inter-
actions among them as heat flows through the material. If all subsys-
tems have the same values of the macroscopic parameters and these are
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not changing with time, then the system is in internal equilibrium and
in equilibrium with its environment. If the parameters are different for
different subsystems but constant in time, the system is said to be in a
steady state.

2. A system in equilibrium can be represented by one of its subsystems in
the sense that measurements made on the subsystem will be the same
as that for the entire system, if the parameter is an intensive variable,
or differs only by being proportional to the volume if the parameter is
an extensive variable. That is, the subsystems are in equilibrium with
each other. The other subsystems then constitute the environment.
Usually, subsystems are defined to have the same shape and volume so
that even extensive parameters are the same for all subsystems. For the
analysis of bulk properties the existence of surfaces of the system are
ignored in the sense that the subsystems near the surface are assumed
to be the same as subsystems in the interior. For analysis of surface
properties, of course, this is not the case.

3. A system in a nonconstant or nonuniform environment can be repre-
sented by a subsystem embedded in a nonuniform environment con-
sisting of the other subsystems. This is often necessary to construct
theories of nonequilibrium systems.

These considerations are quite clear in the case of homogeneous systems,
but with a bit more thought they can also be applied to nonhomogeneous
systems. In a two-phase alloy at equilibrium, for example, two separate sets
of subsystems can be defined, one for each phase. All the equilibrium proper-
ties (except for interfacial properties) then follow from the requirement that
all subsystems be in equilibrium with each other. Alternatively, a sample
of the alloy containing representative amounts of each constituent can be
defined as a subsystem. This latter construct is useful if the alloy phases are
very fine-grained.

2.6 Quantum states of macroscopic systems

If a subsystem is isolated by impermeable walls, it can exist in one of the
quantum states defined by the solution of the Schrodinger equation. If q rep-
resents all the coordinates and t is the time, then the possible states are given
by the wave function as

where En is the energy of the nth quantum state, h is Planck's constant, and
un(q) is the space part of the wave function, which is a function of coordinates
only. The system will be in one of these states.

Isolated subsystems are unrealistic, so let us consider a subsystem that can
exchange energy with its surroundings. It cannot then stay in just one of the
states given by (2.6.1). But, at any instant, we can expand the wave function
of this subsystem in terms of those for the isolated subsystem as

This means that, at any instant, the probability of finding the subsystem in a
state n is
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so the subsystem is continually jumping among the states of the isolated sub-
system with a probability given by (2.6.3). We will call pn(i) the instantaneous
probability function.

Because of the uncertainty principle, the concept of an instantaneous prob-
ability function is not quite consistent with quantum mechanics. An energy
change arising from the interaction of the subsystem with its surroundings can
be precisely specified only if the time over which the energy change occurs is
infinite. In principle, therefore, equation (2.6.2) is only approximate. However,
the uncertainty principle applies to the distribution of the results of a large
number of measurements of both the time and energy of interaction and refers
to averages of these measurements. Also, we are normally not interested in
specifying the interaction times. At any rate, this difficulty will be ignored by
taking (2.6.2) to be a postulate of statistical mechanics. This is justified by the
self-consistency of statistical mechanics and its agreement with experiment.

2.7 Time averages

For time differences that are small, that is, for time intervals that are compa-
rable to the fluctuation times of the subsystems, pn(t) is a rapidly varying func-
tion of time. But since the interactions, and therefore the fluctuations, are
random, the fluctuations over a period of time that is large compared with the
interaction times are distributed about some mean. Therefore, let us consider
a time interval (t2 - fi) that is long compared to the interaction time but short
relative to macroscopic times. That is, if the macroscopic properties of the sub-
system are changing with time, then (t2 - tj is short with respect to the time
it takes for the macroscopic properties to change appreciably. This means that
the macroscopic properties must be changing slowly relative to the times of
fluctuations at the micro level.

Now take a time average of equation (2.6.3) to get

The integral is taken over the time interval (t2 - £1), and the time t on the left-
hand side of (2.7.1) is the midpoint of the time interval (£2 - fi); At the macro-
scopic level, the average defined by equation (2.7.1) is very nearly continuous
for subsystems whose macroscopic properties are stationary or changing slowly
with time.

During the time interval (f2 - ti), the subsystem spends a time tn in the nth
quantum state. Therefore, the probability that it is in the nth state at the time
interval centered on t is

The connection between microscopic and macroscopic mechanical variables
is now easily made. The macroscopic variable is just a time average of the
microscopic variable. For example, if U(t) is the macroscopically measured
energy of the subsystem, then
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The summation is taken through all states that the subsystem passes through
in the time (t2 - tj.

2.8 Ensembles

Macroscopic properties can be computed from microscopic properties from
equations like (2.7.3) only if the time ratios tn/(t2 - tj are known. But there is
no way of computing these ratios, and time averages cannot be used to con-
struct a practical statistical mechanics. An alternative to time averages is pro-
vided by the concept of ensembles.

Imagine an enormous number of systems all of which are replicas of the
physical system under consideration and all subject to the same external con-
ditions as the physical system. Now place imaginary walls around each system
and stack them together to form one huge, continuous mass. Such a collection
is called an ensemble, and each replica is a member system of the ensemble.

The nature of the boundaries between the systems determines the type of
ensemble:

1. If the boundaries are impermeable and each system is completely iso-
lated, there are no interactions among the systems and the ensemble is
called microcanonical.

2. If the walls are permeable to energy but not to anything else, only
energy can be transferred among systems and the ensemble is called
canonical.

3. If both energy and matter can be exchanged among systems, but the
walls are impermeable to all other influences, the ensemble is called
grand canonical.

In the above three ensemble types, it is assumed that the volume of each
member of the ensemble is the same. However, it is possible to define ensem-
bles in which the volumes of the member systems fluctuate. We then can define
the following ensembles.

4. If energy can be exchanged among systems whose volumes can fluctu-
ate but the walls are impermeable to all other influences, we have a
canonical pressure ensemble.

5. If energy and matter can be exchanged among systems whose volumes
can fluctuate, but the walls are impermeable to all other influences, the
ensemble is called a grand canonical pressure ensemble.

The utility of the concept of ensembles lies in the fact that averages of phys-
ical quantities can be obtained by averaging over the member systems of the
ensemble. These ensemble averages are then identified with experimentally
observed properties. In essence, the ensemble averages are equated to the time
averages defined in the preceding section. This sidesteps the need to compute
time averages and provides a consistent scheme to arrive at a statistical theory
of macroscopic properties. The equality of time and ensemble averages is called
the ergodic hypothesis, and its ultimate justification lies in the agreement of
the results of statistical mechanics with experiment.

Clearly, in all ensembles except microcanonical ones, fluctuations will occur
in at least some values of the physical variables of the member systems. Essen-
tially, what is done in constructing an ensemble is to replace fluctuations
caused by external influences, by fluctuations caused by internal interactions
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among various parts of the system. In so doing, the ensemble is taken to be a
supersystem isolated from the rest of the world. Different kinds of ensembles
consider fluctuations of certain properties and neglect others. For example, in
the pressure grand canonical ensemble, fluctuations in volume, number of
atoms, and energy are all taken into account, while in a canonical ensemble
only energy fluctuations are considered.

2.9 The canonical ensemble

Consider a physical system in equilibrium (both internally and with its sur-
roundings) that can exchange only energy with its environment. The corre-
sponding ensemble is then canonical, and each of its members can exist in one
of the quantum states characteristic of the isolated system.

Let the number of systems that are in the jth quantum state be n:. Then the
set of numbers (u,j defines the state of the ensemble, and the possible sets {n,}
must be considered. That is, we need to determine which {n,} are legitimate
possible states of the ensemble. But the only restrictions on the ensemble are
the values of the macroscopic parameters in its definition. For the canonical
ensemble, the energies of the member systems may differ from one another,
but they must always add up to the total energy of the ensemble, which is a
constant. There are clearly many sets {n,} that are consistent with a total con-
stant energy of the ensemble, and there is a large number of quantum states for
a given set. A particular set {n,} will be called a state distribution of the ensem-
ble, while a particular quantum state of the ensemble will be called a com-
plexion. An ensemble can have many state distributions, and each distribution
can have many complexions.

Number the ensemble members from 1 to X and consider a given state dis-
tribution {n,}. One way of realizing this distribution is to have the first nt
members in state 1, the next n2 members in state 2, and so on. This is one com-
plexion of the state distribution. But an equally valid complexion is obtained
if one of the systems in the first group is exchanged with one in the second
group. In fact, the number of different complexions is just the number of ways
of arranging all possible ensemble members among all possible states such that
n-i members are in state 1, n2 are in state 2, and so forth.

Because the members of the ensemble are macroscopic, they can be distin-
guished from each other, so the number of complexions for a given state dis-
tribution is just the number of ways of putting marbles in boxes such that n-i
are in the first box, n2 in the second box, and so on. (The member systems cor-
respond to marbles, while the quantum states correspond to the boxes.)

The number of complexions for a given state distribution is therefore (see
appendix 1)

and the total number of all possible complexions is

where the sum is over all the possible distributions of the systems among the
quantum states.

It is a fundamental assumption of ensemble theory that, in the absence of
any constraints, all complexions are equally likely. This is the assumption of



PRINCIPLES OF STATISTICAL MECHANICS 43

equal a priori probabilities and is assumed to hold for the microcanonical
ensemble that represents the supersystem of canonical ensembles. For the
canonical ensemble of member systems, however, the possible energies of the
systems are constrained by the requirement that the energy of the ensemble as
a whole and the number of member systems are both fixed. For the canonical
ensemble, therefore, the fundamental assumption is that all complexions are
equally probable subject to the number of systems and total ensemble energy
being constant. Complexions subject to such constraints are called allowed, or
accessible, complexions.

Because of this assumption, the ensemble energy is just the number of
allowed complexions for a given distribution times the energy of that distrib-
ution divided by the total number of allowed complexions. That is, if Uis the
average energy (total ensemble energy divided by the number of members of
the ensemble), then

where £"{!!,•) is the ensemble energy for the distribution and the summations are
taken over all possible distributions. The subscript a indicates that Wa{ns} is
the number of accessible (allowed) complexions for the distribution {n,}, and
Ca is the total number of accessible complexions.

An alternate way of writing the average energy U is in terms of the proba-
bility/I/) that the ensemble has a distribution [n,] with energy {n,}. This prob-
ability is clearly given by

and (2.9.3) can then be written as

All the sums in equations (2.9.2)-(2.9.5) are taken over all accessible
complexions.

Calculation of f{i\ from (2.9.4) is not practical, but its functional form can be
obtained in a simple way. We first note that because the fii] determine macro-
scopic parameters [as in equation (2.9.5)], they cannot depend on such micro-
scopic variables as particle coordinates or momenta. However, there are
mechanical properties that arise directly from the micro-level mechanics but
refer to the system as a whole. In classical mechanics these are the total energy,
the components of total linear momentum, and the components of total angular
momentum, which are the integrals of motion that are constant for an isolated
system. These quantities play the same role in quantum mechanics since the
operators for energy, linear momentum, and angular momentum all commute.
These are the only properties that survive an average over microscopic times
and that have a macroscopic as well as a microscopic interpretation. There-
fore, it is assumed that the canonical probability distribution function for an
equilibrium system is a function only of the total energy, linear momentum,
and angular momentum. But the dependence on the momenta is trivial because
a coordinate system can always be chosen for which the total linear and angular
momenta are zero (at least for terrestrial problems). The probability that the
ensemble has a particular distribution is therefore a function only of the energy
of that distribution.
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To get this functional form, consider two independent, identical ensembles.
Then, since the two ensembles are statistically independent, the joint proba-
bility that one of the ensembles has a distribution {1} and the other has a dis-
tribution {/} is the product of the separate probabilities. That is,

or

But since energies are additive, the energy of the two distributions is the sum
of the energy of each:

The simplest function that can satisfy both (2.9.7) and (2.9.8) is an expo-
nential. That is,

where a and P are constants. This is obvious if we take the logarithm off[j] and
expand it in a power series in E[j}. The logarithms for combined systems must
then be additive, because of (2.9.7), and the energies must be additive, so only
terms up to the first order in the energy can be retained in the series expansion.

What about systems that are not in equilibrium? In this case, the definition
of state must include gradients (i.e., in temperature, concentration, electric
fields, etc.). At any instant, the energies are still additive but the gradients are
not, so the dependence on the gradients cannot be obtained in the simple
manner that led to (2.9.9).

2.10 The canonical most probable distribution

For the canonical ensemble, the total energy of the ensemble is a constant and
the interactions among its member systems are weak. This means that the
energy for most of the member systems cannot be very far from the average
energy U and there must be some distribution {.n,} for which the number of
complexions is very large relative to that for other complexions. That is, there
must be a distribution that maximizes the number of complexions, subject, of
course, to the conditions that the number of systems in the ensemble and the
total ensemble energy are both constant. The n, that maximize W{ns} subject to
constant X and constant UX can be found by the method of undetermined mul-
tipliers (see appendix 2). It is more convenient to apply this method to lnW{n,)
than to W{ns}. Accordingly, the equations to be solved are

where (2.10.1) follows from (2.9.1).
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Note that we have adopted the continuum notation of the calculus of varia-
tions even though the n, can change only in discrete steps. The number of
systems can be taken to be so large that this is an excellent approximation.
This is often the case in the statistical mechanics of macroscopic systems, and
we will use either the discrete or the continuum notation as convenient.

Equations (2.10.1)-(2.10.3) are readily simplified by using Stirling's approx-
imation (see appendix 3),

Now multiply (2.10.2) and (2.10.3) by the constants ~P and -a, respectively,
and add the results to (2.10.6). Remembering that only the n, are being varied
and not the energy levels, the result is

The Lagrangian multipliers have been given the same symbols as the con-
stants in equation (2.9.9) in anticipation that we will arrive at a similar result.
The multipliers make each term in the sum in equation (2.10.7) independent,
so each term must be zero, and finally

This is the distribution function for the canonical ensemble.
The method of Lagrangian multipliers only guarantees that this result is an

extremum. But it is easy to show that it is a maximum and not a minimum by
taking the second derivative of the number of complexions W{nh with respect
to n and showing that it is always negative in the vicinity of the extremum (see
appendix 2). Equation (2.10.9) therefore gives the probability that a member
system is in quantum state i for the most probable distribution of states among
the ensemble. Note that it has the same form as equation (2.9.9), which gives
the probability that an ensemble has a specific distribution of systems among
states, not the most probable. The reason that these two approaches are equiv-
alent is that the number of complexions for the most probable distribution is
very much larger than for any other distribution. Therefore, if all calculations
are made for the most probable distribution, the results are extremely close to
what would be obtained by a full analysis including all possible distributions.
This is entirely reasonable because the interaction energies among member

so that equation (2.10.1) becomes

or, since

or
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systems of the ensemble are very weak compared to the system energy: the
ratio of interaction energy to system energy is of the order of the ratio of
the number of atoms in the system surface to the total number of interactions.
The system is therefore never pushed very far from the most probable distrib-
ution. This is fortunate because it is much easier to deal with just the most
probable distribution rather than all possible distributions. Later, when we
examine fluctuations, this statement will be given a quantitative form.

Therefore, the probability that a system is in a particular state i will be
written as

even though it is understood that (2.10.10) is the probability that the system
is in state i when the ensemble is in the most probable distribution. A rigor-
ous notation would embellish all fh nit and £/ with some symbol or superscript
to identify the fact that we are using the most probable distribution, but this
would be an unnecessary proliferation of symbols.

Note that f, is the probability of finding the system in the state i when the
member systems of the ensemble are distributed among the quantum states in
the most probable way. It equals the probability that the system has energy Et
only if there is just one system eigenfunction per energy level so that there is
no degeneracy. But if there is degeneracy and we wish to describe the distrib-
ution in energy, the states of the same energy must be grouped together. Thus,
if there are CD, eigenfunctions each with the same energy £,, then denoting the
energy distribution by pit we get

for the probability that the system has energy E/. The constants can be deter-
mined formally from the requirement that the probabilities in (2.10.10) must
sum to unity and from the definition of the average energy of the system.

Performing the sum over i and solving for ea gives

Therefore, (2.10.10) becomes

The average energy is therefore

The ensemble constants a and (3 are completely determined by (2.10.12) and
(2.10.14) in terms of the energy levels and the average energy of the system.

The sum on the right-hand side of (2.10.12) turns out to have special impor-
tance for thermodynamics. It is called the partition function and is given its
own symbol Z:
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The probability distribution function (2.10.13) is then conveniently written as

2.11 Summary of definitions of probabilities

To clarify the meaning of the definitions of complexions and distributions, con-
sider an ensemble of eight member systems distributed among four quantum
states. Two of the possible distributions are illustrated in figures 2.1 and 2.2.
In figure 2.1 we consider the distribution {!), which is defined as having three
systems in state 1, none in state 2, two systems in state 3, and three in state 4.
This is shown in the first row of numbers in the figure. The rows under this
top row show that there are a number of ways of realizing this distribution.
The second row of numbers states that the distribution can be realized by
putting systems 1, 2, and 3 in state 1; putting no systems in state 2; putting
systems 4 and 5 in state 3; and putting systems 6, 7, and 8 in state 4. The next
row shows that another realization of the distribution is obtained by putting
systems 1,2, and 4 in state 1, none in state 2, systems 3 and 5 in state 3, and
systems 6, 7, and 8 in state 4. Each of these represents a complexion, and the

Figure 2.1. A possible distribution of an ensemble of eight member systems
distributial among from quantum states.
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number of complexions for the distribution (!) is clearly the number of ways
of putting marbles in boxes such that there are three in box 1, none in box 2,
two in box 3, and three in box 4, all marbles being regarded as distinguishable
from each other.

Figure 2.2 represents a distribution (2} defined by having two systems in state
1, two systems in state 2, one system in state 3, and three systems in state 4.
Again, this is shown in the first row of numbers in the figure. Three of the pos-
sible complexions are shown in the subsequent rows. The a priori, uncon-
strained number of complexions for each distribution is W[1} = 560, W{2] =
1680.

It is important to distinguish among the following distribution functions:

f[j] = the probability that the ensemble has a distribution {;'}, defined as
having given numbers of systems in each of the possible quantum states
of the system subject to the constraints that the total energy and the total
number of systems of the ensemble are both constant. A longer but more
specific way of denoting the distribution is as {/} = [j1, ;2, /3,. ..}, where j^
is the number of systems in state 1, j2 is the number of systems in state 2,
and so on. The jll j2,. . . are called the occupation numbers for the states
1,2, and so forth.
f, = the probability that a member system of the ensemble is in quantum
state j subject to the condition that the ensemble energy and number of
systems is constant, when the ensemble has its most probable distribution.
Pi = the probability that the system has energy E-, corresponding to the
quantum state / of the system, when the ensemble has its most probable
distribution. This may differ from fa because of degeneracy such that a
number of quantum states may have the same energy.

2.12 The canonical ensemble and thermodynamics

The Ej in the canonical distribution function are mechanical parameters of the
individual member systems of the ensemble and can be computed, at least in

Figure 2.2. A second possible distibution of the ensenble shown in figure 2.1.
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principle, from quantum theory. However, the parameters a and p refer to the
ensemble as a whole and cannot be obtained from quantum theory alone, even
in principle. These parameters, in fact, provide the connection between the
microscopic theory of quantum mechanics and the macroscopic theory of ther-
modynamics and are related to the Helmholtz free energy and the temperature.
The connection is made by first showing that (3 has the property of a functio
of temperature for systems in equilibrium with each other and then by identi-
fying some statistical mechanical equations with corresponding equations of
thermodynamics.

Consider two physical systems A and B in thermal equilibrium with each
other. Since each system treated separately is in equilibrium, each has a canon-
ical distribution given by

The combined system is also in equilibrium, so it, too, must have a canonical
distribution function:

where

and

Equation (2.12.3) gives the probability that the combined system is in a state
such that system A is in state i and system B is in state j. But a joint probabil-
ity of independent events, is the product of the probabilities of the separate
events, so we must have

Therefore, multiplying (2.12.1] and (2.12.2) together and setting the result
equal to (2.12.3) gives

Rearrange (2.12.7) to give

The right-hand side of (2.12.8) is a constant, so the left-hand side must also be
constant. But (2.12.8) is true for any pair of the infinite number of energies Ef
and Ef, both of which are positive, so the left-hand side can be true for all
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values of the subscripts i, j , only if it is zero. This means that the coefficients
of the energies must be zero. That is,

and

Therefore, if two systems are in equilibrium, the ensemble parameter |3 must
be the same for both systems. But this is also the property of temperature in
thermodynamics, so the first connection between statistical mechanics and
thermodynamics is to assume that (3 is a function of temperature T.

To find the full connection between statistical mechanics and thermody-
namics, consider an infinitesimal change in the state of a system. According
to (2.10.14) the resulting change in energy can be produced by a change either
in the probability distribution or in the energy levels. That is,

From thermodynamics, the energy change is given by

where dS is the entropy change and dWis the work done on the system during
the energy change dU.

When work is done on the system, its energy levels must change. Therefore,
if the statistical mechanical equation (2.12.11) is to be identified with the ther-
modynamic equation (2.12.12), the second term in (2.12.11) must be the work
term. The first term must then be the entropy term. That is,

Now, from equation (2.10.16) for the canonical distribution, solve for the
energy level to get

Put this into (2.12.14) and solve for dS, using the fact that the dft sum to zero,
to get

The entropy is a state function so dS is a perfect differential. The right-hand
side of (2.12.16) must then also be a perfect differential if the statistical method
is valid. That this is so can be shown by writing the sum in (2.12.16) as

and
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and rewriting (2.12.16) as

The term dx is a perfect differential, so (2.12.18) can be integrated if |3T is
not a function of x. That this is actually the case can be shown by writing -
(fST)'1 = f(x) and using the additive property of the entropy, as follows.

For two systems A and B, write (2.12.18) as

For the combined system, AB (2.12.18) gives

From (2.12.17) it is easy to show that

and since dx is a perfect differential,

Also, entropy is additive and therefore

Using (2.12.19)-(2.12.24) gives

or

Since dxA and dxa are independent differentials, this equation can only be
true if the coefficients of the differentials are zero. That is,

But the two systems are completely arbitrary, so (2.12.25) can only be correct
if/is not a function of x. This is the result we were after because it shows that
(2.12.18) is a perfect differential, which can be integrated to give

except for an additive constant, which we take to be zero. Now solve (2.12.15)
for In / and put the result in (2.12.26) to get
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From thermodynamics, the Helmholtz free energy is

Comparing (2.12.28) and (2.12.30) gives

Again from thermodynamics,

so the entropy can be obtained from (2.12.31) by a differentiation. The condi-
tion of constant N is automatically satisfied, and the condition of constant
volume can be satisfied by keeping all Ef constant.

Differentiating (2.12.31) with respect to temperature gives

From the definition of the partition function, equation (2.10.15), we get

so, since f, = e^Ei/z,

Putting this in (2.12.33) gives

Now compare this to the expression for the entropy in equation (2.12.28).
Clearly, (l/(3)(dp/dT) = -(1/T) and (d/dt)(l/|3) = 1/|3T. When integrated, each of
these equations gives

or

so



PRINCIPLES OF STATISTICAL MECHANICS 53

where k is some universal constant whose value is to be determined. (3"1 is the
statistical mechanical temperature, and as is evident from the way it appears
in the formula for the canonical distribution function, it has the units of energy
per degree. The constant k is just a conversion factor that connects the energy
units of temperature in statistical mechanics to the absolute temperature units
of thermodynamics. The value of k is obtained by working out the statistical
thermodynamics of a specific system and comparing it to experiment. When
we do this for the ideal gas (section 3.4), we will find that k is just Boltzmann's
constant. Since k is a universal constant, it is the same for all systems.

The foregoing has not only yielded the interpretation of p\ but also has actu-
ally provided the complete connection between statistical mechanics and ther-
modynamics. The entropy (2.12.26) now is

and using (2.12.35) in (2.12.31) gives

with the partition function given by

Also, from (2.10.12) and (2.10.15), equation (2.12.37) gives the constant a as

and the canonical distribution function becomes

or, equivalently [see (2.10.16)],

The statistical mechanical interpretation is now complete because all
thermodynamic functions can be derived from the Helmholtz free energy.
The program of statistical thermodynamics is to find the energy levels of
the system of interest and to use these to compute the partition function so
as to get the free energy, which then yields all the thermodynamic functions.
We have thus arrived at a microscopic interpretation of thermodynamics
that permits the calculation of thermodynamic properties from microscopic
theory.

From the point of view of fundamental principles it should be noted
that what has actually been done here has been to derive a set of statistical
mechanical equations that have the form of thermodynamic equations, and
that the connection with thermodynamics was made by identifying these
equations and the terms in them with corresponding equations and terms in
thermodynamics. The ultimate justification for this procedure is that its con-
sequences are in complete agreement with experiment in every case that has
been tested.
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2,13 Statistical entropy and the second law
of thermodynamics

The identification of entropy in terms of the probability distribution function
is one of the fundamental results of statistical mechanics. For the canonical
ensemble, this identification is given by equation (2.12.36). This relation is
regarded as being so fundamental that an alternate approach to statistical
mechanics simply assumes (2.12.36) to be the entropy for any distribution of
f: and uses it to maximize the entropy, subject to the conditions of constant
average energy and constant number of ensemble members. This will then give
the most probable distribution, and all of the results we obtained above can
then be derived.

From thermodynamics alone, we know that the entropy of a substance
increases as it is heated and goes from the solid to the liquid to the vapor phase.
We also know that the system becomes more "random" in this progression in
the sense that the molecules become less localized and can be found in any
part of an increasing volume. In this sense, thermodynamics tells us that there
is a connection between entropy and randomness.

It takes statistical mechanics in the form of equation (2.12.36) to make this
idea precise and give it quantitative form. A totally nonrandom system is one
in which the system is in one particular quantum state so that all /, are zero
except for one fm, which is unity. Then (2.12.36) gives S = 0. A random system,
on the other hand is one in which a great many of the quantum states can be
occupied with equal probability. That is, there are many /) with about equal
values. These values must be small because there are so many of them and
they must add up to one. If all /, are equal, we have ft = \IX, and (2.12.36) gives

Since Xis extremely large, the entropy is very large. (In fact, the results of sta-
tistical mechanics are rigorously exact only in the limit as X becomes infinite.)

The entropy is also related to the number of complexions. To see this, replace
fi by nJX in (2.12.36) and use Stirling's approximation as follows:

which is easily rewritten as

and from Stirling's approximation, n, Inn, = Inn,! + n,, and X InX = \nX\ + X,
so (2.13.2) becomes

But the argument of the logarithm in (2.13.3) is just the number of complex-
ions for the most probable distribution, so we have

That is, the entropy of the ensemble is proportional to the logarithm of the total
number of complexions for the distribution of systems among quantum states.
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Let (2.12.36) be the definition of entropy for nonequilibrium as well as equi-
librium systems. From (2.13.1), the time dependence of the entropy is given by

Now define a conditional transition probability, T^-dt, as the probability that
if a system is in state i at time t, it will be in state / at time t + dt. If the prob-
ability that a system is in state i is f,{t) at time t, then the change in its value
during time dt is the probability that some system in state / jumps to state / in
the time dt minus the probability that the system in state i jumps to some other
state / in time dt, summed over all systems. That is,

[There is no need to omit the i = j term in (2.13.7) since nothing is changed by
adding this to the first term and subtracting it in the second term of the sum.]
From (2.13.6) the time derivative is

The subscripts i and/ can be interchanged since they are dummies. Doing this,
adding the result to (2.13.8), dividing by 2, and rearranging terms gives

Equation (2.13.9) shows that equilibrium, (dS/dT = 0), is assured if

This is called the principle of detailed balance.
At equilibrium, the great majority of states are close together since fluctua-

tions from the most probable state are very small. This means that most of the
/, have values that are very close together and only a few have values that are
much different. For most states, therefore, we can take ff to be nearly equal to
fj, and to a good approximation (2.13.11) then gives

This states that the conditional transition probabilities for transitions between
two given states are equal. We have given a plausibility argument for the valid-
ity of (2.13.11) for a system at equilibrium. However, in kinetic theory this rela-
tion is taken to be true even for systems not at equilibrium. It is called the
principle of microscopic reversibility. For transitions that can be described by
perturbation theory, quantum theory shows that microscopic reversibility is
indeed correct. We therefore adopt (2.13.11) as true for nonequilibrium
systems, at least when the systems are not too far from equilibrium. Using
(2.13.11) in (2.13.9), we get

Putting (2.13.7) into (2.13.5) gives
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The reason for putting the rate of change of entropy in this form is to show
that the entropy of a system not at equilibrium always increases. This follows
from (2.13.12) because i f / > /, then if In/ > In/,, and if f, < f,, then In/ < In/,
so every term in the sum is always positive. This is a statistical expression for
the second law of thermodynamics for systems changing in time.

2.14 The semiclassical approximation

If the constituent particles of a system follow the laws of classical mechanics,
the state of the system is then completely described by the coordinates and
momenta of the particles. If the system contains N particles, the state is defined
by the 3N coordinates (q1( q2, q3 q3N) and the 3AT momenta (p1: p2, p3,
. . ., p3N). These 6iV quantities can be thought of as defining a 6N-dimensional
space. The set of 6N "coordinates," which we will designate as [q, p}, is then
a point in that space. The 6N-dimensional space so defined is called the phase
space for the system; the set of 6N variables {q, p] is called the phase of the
system and is a point in the phase space that defines the state of the system.

A statistical mechanics can be constructed from this classical picture by
applying the concept of ensembles to the classical systems, and this was in
fact done by Gibbs before the advent of the quantum theory. Since the classi-
cal theory is a limiting case of the quantum theory, classical statistical mechan-
ics is not developed in this book. However, there are many cases for which a
classical description of the particle energy is valid to a high degree of accu-
racy, such as in the theory of gases and liquids when the temperature is high
enough and/or the molecules are massive enough that quantum effects are
small. It is therefore instructive, as well as convenient, to show how distribu-
tion functions and partition functions can be expressed in terms of coordinates
and momenta in the classical limit.

Let us start with the distribution function and partition function for the
canonical ensemble as given by (2.12.41) and (2.12.38). In these equations, the
index i refers to the ith quantum state of the system. But in a classical system,
the state is defined by a point in the phase space and the energy is a function
of the coordinates and momenta of all the particles. That is,

Clearly, in the classical limit, the sum over quantum states must be replaced
by an integral over coordinates and momenta. We therefore write the classical
limit of the partition function as a 6A/-dimensional integral over the 3N coor-
dinates and the 3AT momenta:

where dpdq = dp!dp2 • • • dp3Ndqldq2 . • . dq3N and the subscript cl denotes the
classical limit.

The proportionality constant Chad to be introduced into (2.14.2) because
the partition function is dimensionless whereas the integral has the dimen-
sions of the 3Nth power of coordinate times momentum through the differen-
tials dpdq. Each dp/dq, pair has the dimensions of action, so the constant C has
the dimensions of (action)"3™.
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The classical limit of the probability distribution function (2.12.41) is now
the probability that a phase point lies in the phase volume dpdq and is there-
fore given by

The proportionality constant in (2.14.3) must be the same as in (2.14.2)
because, when the probability distribution function is integrated over all pos-
sible ps and qs, the result must be unity.

All the equations connecting thermodynamics to statistical mechanics
remain unchanged. The Helmholtz free energy is still given by

so that all the thermodynamic functions of a classical system can be computed
from the classical partition function.

At this point, let us rename the proportionality constant Cby defining a con-
stant h such that

where h is a number with the dimensions of action. The choice of the symbol
h reflects the fact that it turns out to be Planck's constant, and the inclusion of
the AT! takes into account the fact that the molecules are indistinguishable. The
reason the N] is needed is that the partition function is defined as a sum over
states whereas (2.14.2) is an integral over energies. That is, the partition func-
tion contains N\ states that differ from one another only because of the assign-
ment of energy states to particular molecules. Dividing by AT! corrects for this.
If we work out the theory of the ideal gas using both the quantum and the clas-
sical description, they agree completely if C is taken to be given by (2.14.5)
with h being Planck's constant. (Note that we are presuming that our system
consists of a set of identical molecules. If several different kinds of mole-
cules are present, then Nl is replaced by ATJ, A T 2 ! , . . . because two unlike
molecules are distinguishable and their interchange does not leave the system
unchanged.)

The presence of Planck's constant is readily understood on physical grounds
by dividing the phase space into cells of volume h3N, The uncertainty princi-
ple tells us that the coordinates and momenta of a particle can be measured
simultaneously with a maximum accuracy limited by the uncertainty relation

where 5p, and 8q, are the limits of accuracy in the simultaneous measurement
of any coordinate-momentum conjugate pair p, and q,. This means that all
phase points in a phase cell of volume h3N must be thought of as representing
the same classical state. Therefore, for a volume element in phase space defined
by

The total possible number of distinct states is
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The partition function (2.12.38) can be rearranged by taking all states that
are in the range (ApAq)t and lumping them together. Since (2.14.8) gives the
number of such states, the partition function becomes

This can be approximated by an integral by replacing (ApAg)^ by differentials
and dividing by Ni\Nzl . . . to account for indistinguishability to get, for a
system of c components,

which is the same as (2.14.2) except that it now explicitly displays Planck's
constant.

If the coordinates are expressed in a Cartesian reference system, the classi-
cal energy of the system is

where p, is the magnitude of the momentum of the ith particle and m; is its
mass, and §(q) is the potential energy of the system as a function of all the par-
ticle coordinates. Now the partition function can be written as

The momenta now appear explicitly in (2.14.12). Since a sum of exponentials
is the product of each separate exponential, (2.14.12) can be written as

Note that, as a matter of notational convenience, we now attach a subscript to
each particle instead of to each coordinate.

Each of the momentum integrals are identical and are given by

This follows from the fact that

and
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[see equation (A.4.17) in appendix 4]. Putting (2.14.14) into (2.14.13) gives
the classical partition function as

where Z, is called the configurational partition function and is defined by

In the classical approximation, the problem of statistical thermodynamics
therefore reduces to that of evaluating the configurational partition function
from the potential energy of interaction of all the particles.

If the particles are identical, such that their masses are all the same, (2.14.18)
simplifies to

where

is called the thermal wavelength.1

Note that in the special case of identical independent particles, the poten-
tial energy is zero, so Zq = V/Nl and the partition function becomes

This is just the partition function for an ideal gas of N particles (since we are
in the classical approximation and the particles do not interact). Section 3.4
shows that the same result is obtained from particle quantum statistics and that
the constant h is indeed Planck's constant.

It is sometimes useful to have an expression for the probability that a system
has a set of coordinates or of momenta in a particular range. This is readily
obtained by noting that the constants in front of the right-hand sides of (2.14.3)
and (2.14.12) are the same, and by using equations (2.14.11), (2.14.12), and
(2.14.3) to get

The probability that a particle has a momentum or a coordinate in a partic-
ular range is obtained by integrating over all variables in (2.14.23) except the
one of interest. For example, if (2.14.23) is integrated over all coordinates, the
probability that the particles have the momenta {p^ p 2 , . . . , p, , . . .) in the range
dp^dp2dp3... is
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The probability that the jth particle has a momentum of magnitude p, is
obtained by integrating (1.14.24) over all momenta except that for the jth par-
ticle to get

and the probability that the x-component of the momentum of the jth particle
is in a range dpjx is the integral of (2.14.25) over all components of momentum
except pix:

2.15 The grand canonical ensemble

All the results of statistical mechanics, including the interpretation of ther-
modynamics in statistical terms, can be obtained from the canonical ensem-
ble. But the canonical ensemble is most convenient for systems that can only
exchange energy with other systems. If we want to describe a system for which
fluctuations in the number of molecules, as well as energy, are allowed, a gen-
eralization of the canonical ensemble is useful. This generalization is the grand
canonical ensemble.

For simplicity, assume that our system consists of just two components 1
and 2, and let us form an ensemble of systems that can exchange molecules
and energy. Let

X = total number of systems in the ensemble,
n/A/!, N2) = number of member systems that contain A^ molecules of type
\, Nz molecules of type 2, and are in the jth quantum state, and
£}(A/!, Ay = energy of the jth quantum state of a system containing A/j mol-
ecules of type 1 and N2 molecules of type 2.

Note that there is a different spectrum of quantum states for each system com-
position (A/!, Ay.

The total number of systems in the ensemble is

The ensemble averages for the number of molecules and for the energy are

The most probable distribution of member systems among the states char-
acterized by the number of molecules A/j, N2 and quantum states j is found by
a procedure completely analogous to that for the canonical ensemble. The
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combinatorial problem is similar to that for the canonical ensemble, and the
number of complexions W{j, N-i, N2] is

Now take the variations of luW(j, A/j, N2), N1,N2, and [/with respect to varia-
tions in the n/(A/i, N2) and set them equal to zero. With the help of Stirling's
approximation, the result is

Multiply equations (2.15.7)-(2.15.10) by the undetermined multipliers -y^ -y2,
-p\ and -a', respectively, add the results to (2.15.6), and set each term equal
to zero, just as in finding the canonical distribution. The result is

This is the grand canonical distribution function and gives the probability that
the system contains A/j molecules of type 1 and N2 molecules of type 2 and is
in the jth quantum state with energy EfcNi, N2). It is obvious that a completely
analogous derivation could have been made for a system containing any
number of components and that the result would be just like (2.15.11) except
that there would be Lagrangian multipliers y1; y2 , . . . , ys for each of the com-
ponents and the energy levels would be a function of all N1( N2,. .., Ns, where
N, is the number of molecules of the / component.

At this point, we will simplify the notation by using the index r to specify
the composition, so that each r corresponds to a particular set of JVJ. Equation
(2.15.11) then becomes

It is easy to show that the (3 in (2.15.12) is equal to (JcTT1 just as in the case o
the canonical ensemble. To do this, we use the fact that a grand canonical
ensemble is just the sum of a set of canonical ensembles. That is, if we focus
only on all member systems of the grand canonical ensemble that have a spe-
cific composition r, then those systems constitute a canonical ensemble with
a most probable distribution given by
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where Z, is the partition function for the canonical ensemble containing X,
members, all having the same composition r. If n] from (2.15.13) and from
(2.15.12) are set equal to each other, the result is easily rearranged to give

But the right-hand side depends only on the composition of the canonical
ensemble and is constant with respect to changes in the quantum state j. The
left-hand side must then also be constant, and this can be so only if it is zero,
because the energy levels can take on any of an infinite set of values.
Therefore,

and p is related to the thermodynamic temperature just as for the canonical
ensemble.

The next step to make the connection to thermodynamics is to express the
entropy in terms of probabilities. Again, we use the fact that a grand canoni-
cal ensemble is a collection of canonical ensembles. Thus, if we list all systems
with the same composition r, they form a canonical ensemble whose entropy,
according to (2.13.4), is

where Xr is the number of systems in the ensemble of composition r and Wr{n'i\
is the number of ways of distributing the Xr systems among the states i.

The total entropy of all systems in the grand canonical ensemble is obtained
by summing (2.15.16) over all possible complexions to get

But the product of the number of complexions over all canonical ensembles
(one for each composition) is just the number of complexions for the entire
grand canonical ensemble, and the left-hand side of (2.15.17) is just the total
entropy of the grand canonical ensemble, so if S is the mean entropy of a
system, then (2.15.17) is

where W{n"i} is the number of complexions for the grand canonical ensemble.
Using Stirling's approximation on the factorials in the number of complexions
just as in section 2.13, this gives the entropy of the system as

Now solve (2.15.11) for E£Nlt N2), substitute the result into (2.15.19), and use
the fact that (3 = 1/kT and the definitions of average energy and average numbe
of molecules. Then solve for the average system energy to get
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From the thermodynamics of open systems, the energy is given by equation
(1.15.5] as

Hi and |I2 being the chemical potentials of the two components. Comparison of
(2.15.20) with (2.15.21) shows that the statistical mechanical and thermody-
namic equations agree if we make the following identifications:

The grand partition function is denned in a manner similar to the definition
of the canonical partition function as

so by summing equation (2.15.11) and remembering that the sum of the prob-
abilities is unity, we get

and from (2.15.21),

This completes the identification of the grand canonical ensemble with
thermodynamics.

It is useful to note that the grand canonical ensemble is an ensemble of canon-
ical ensembles and that the grand canonical partition function is a weighted sum
of canonical partition functions. That is, (2.15.25) can be written as

where Z(NiN2) is the canonical partition function for a system containing ATj
molecules of component 1 and N2 molecules of component 2.

2.16 The pressure ensemble

To describe a system in which the number of molecules is fixed but the volume
and energy can fluctuate, we construct the canonical pressure ensemble and
derive the most probable distribution function just as in the case of the grand
canonical ensemble. The result is
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where f,{V) is the probability that the system has a volume V and is in the
quantum state ; with energy E,{V). Zp is the pressure partition function and is
given by

where the sum is over all possible volumes and quantum states. The pressure
partition function is related to thermodynamics through the Gibbs free energy
by

Clearly, an analogous ensemble can be denned for a system subject to any
kind of work as well as for pressure—volume work. For example, as discussed
in section 1.19, for a magnetic system in a magnetic field H the analog of pres-
sure is the external magnetic field and the analog of volume is the magnetiza-
tion. Instead of (2.16.2) we then have

the Gibbs free energy now being given by

2.17 Fluctuations

For macroscopic systems in equilibrium, the measured thermodynamic quan-
tities are constant to a very high degree of accuracy. This means that if the con-
nection between statistical mechanics and thermodynamics is valid, then the
magnitude of the fluctuations of the thermodynamic quantities computed from
statistical mechanics must be small. Ensemble theory does indeed lead to fluc-
tuations that are very small for equilibrium systems, now shown here to be the
case for fluctuations in energy as computed from the canonical ensemble.

The average deviation of the energy from its mean value is not a good
measure for energy fluctuations because this measure is identically zero, as is
evident from writing it out:

We therefore choose the root mean square deviation as a measure of the spread
of the energy distribution. This is always positive even though there are just
as many negative as positive deviations from the mean. The mean square devi-
ation is defined by

For the canonical distribution, the average energy is
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Now differentiate this with respect to temperature to get the heat capacity at
constant volume. The result is

This follows from the definitions of U and E2:

The relative mean square deviation of the energy from the average is therefore

and the square root of this is the root mean square deviation, which is the
expected magnitude of the energy fluctuations from the mean:

Both the energy and the heat capacity of a physical system are proportional
to the number of particles (atoms or molecules) in the system. Equation (2.17.7)
therefore shows that the relative root mean square deviation of the energy is
inversely proportional to the square root of the number of particles. Since this
is ordinarily very large (of the order of Avagadro's number), the root mean
square deviation is very small, regardless of the specific values of the energy
and heat capacity. As will be shown in section 3.4, the energy and heat capac-
ity of an ideal gas are given by

so in this case (2.16.7) becomes

For a sample of gas containing one billionth of a mole, the root mean
square deviation is about 10~7, and this becomes smaller for larger amounts of
gas.

The above calculation was for an ensemble in which the distribution of
systems among energy states was the most probable since the nt were obtained
by maximizing the number of complexions for an ensemble with a fixed
number of systems and a fixed energy. The fluctuations therefore refer to the
probability of finding a system in this most probable distribution whose prop-
erties differ from the most probable value. But there is another aspect about
fluctuations that needs to be considered. That is, what is the effect of distri-
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buttons of the number of systems among quantum states that are not the most
probable? So far in this book, only plausibility arguments have been used to
show that the effect of all distributions except the most probable can be
neglected. Let us investigate this further.

Our procedure will be to write down the number of complexions of the
ensemble for both the most probable and an arbitrary distribution. Then, since
the most probable distribution represents a maximum, we expand the arbitrary
distribution as a Taylor series about the most probable value. From this, we
will be able to show that the number of complexions for the sum of all possi-
ble distributions is very close to that for just the most probable distribution, if
the number of systems is large.

To carry out this calculation, we first use Stirling's approximation to rewrite
equation (2.9.1) for the total number of complexions as

Equation (2.17.11) is true for any distribution of the n, as well as for the most
probable distribution. Up to this point, we have been using only the most prob-
able distribution, so, for the sake of convenience, we did not label the n, to
reflect the fact that they were the most probable values. But now we want to
distinguish between most probable and arbitrary distributions, so we will label
the most probable distribution with a superscript and let W* be the number of
complexions for the most probable distribution in which n*systems are in the
state /. For the most probable distribution, we therefore write (2.17.11) as

Now expand In W about the most probable value to the second order in a Taylor
series:

the derivatives being evaluated at the most probable distribution. The linear
term in the expansion vanishes because the first derivative is zero at the most
probable distribution, and the mixed second derivatives vanish because In W
is a sum of terms, one for each /.

[Note that it seems as if this expansion does not take into account the fact
that the total number of systems and the total energy of the ensemble remain
fixed. But this lack is only apparent and not actual, as can be seen by recog-
nizing that including the conditions of constant number of systems and con-
stant energy means that, instead In W in the above, we should use the function
(InW- aX - (3L/X), since the variation of this function gives the most proba-
ble distribution. But it is easy to verify that expanding this in a Taylor series
leads to (2.17.13) because the number of systems and the ensemble energy are
both linear in the n,. See appendix 2.]

Evaluating the second derivatives in (2.17.13) gives

But this is just a Gaussian form, which we write as
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(Note that since the second derivative is negative, the most probable number
of complexions is a maximum, not a minimum.) For large n*, each factor in
this ratio is extremely close to unity when n, is close to nfbut rapidly falls to
zero for increasing deviations of the n, from the most probable values. Equa-
tion (2.17.15) is the quantitative justification for using the most probable dis-
tribution and shows that fluctuations away from the most probable values are
very small.

Equation (2.17.14) immediately gives the second law of thermodynamics
because, if we write (2.13.5) for an arbitrary distribution and for the most prob-
able distribution, (2.17.14) shows that the entropy of the most probable distri-
bution is always greater than that for an arbitrary distribution. That is, the
entropy of a system in statistical equilibrium is a maximum with respect to all
other possible state distributions of the system with the same energy.

While the above derivation was for the canonical ensemble, it is easily
extended in an obvious way to other types of ensembles. Statistical mechan-
ics can be used to compute equilibrium thermodynamic properties because it
yields fluctuations in thermodynamic properties that are very small.

Exercises

2.1 For the illustrative example of the distribution of states in an ensemble
of eight members distributed among four quantum states shown in section
2.11, verify that the number of complexions for the distributions (!) = {3, 0,
2, 3) and {2} = |2, 2, 1, 3) are 560 and 1680, respectively.

2.2 Write the canonical partition function as a sum over energies instead of
a sum over states. Approximate this partition function by using only the most
probable term, and within this approximation show that the relation between
the partition function and the Helmholtz free energy is A = —kT InZ, just as
in the ordinary theory. Why does this procedure work?

2.3 Derive the equations for the distribution function of the pressure ensem-
ble, for the pressure ensemble partition function, and for the thermodynamic
functions.

2.4 Assume that a system has a Gaussian distribution in energy such that
the probability that a system is in_ a state with an energy E in the range dE
is given by f(E)dE= (1/V27IO2 )e~(E~E]2/2a2dE where E is the average energy and
0 is the standard deviation of the distribution. Assume the energy can have
any positive or negative value. Show that the root mean square deviation of
the energy is equal to the standard deviation and that the entropy is given
by S = (k/2) [In (2rco2) +1]. Note that the larger the standard deviation, the
larger the entropy.

2.5 What is the root mean square deviation of the energy, as a percentage of
the total energy, of an ideal gas containing 1000 molecules, one million mol-
ecules, and one millionth of a mole of molecules?

2.6 Let n* the number of systems in state r, in a most probable distribution,
be 108. Now consider a distribution (Aii) in which the number of systems in
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the state r differs from the most probable number by +An while the number
of systems in a neighboring state differs from the most probable number by
-Ail. Assume that the number of systems in the neighboring state is very
close Lo that in the r state and can be taken to also equal 108. Write the
formula for the ratio of the number of complexions for the distribution {An}
to the number of complexions for Lhe most probable distribution. Plot this
ratio as a function of Arz/n = 0 to 0.0002.

Note

1. This name arises from the fact that (2nmkT)^12 is the momentum contribu-
tion to the partition function from one degree of freedom. In quantum
mechanics, the momentum divided into Planck's constant is a wavelength,
hence the designation "thermal wavelength."



Particle Statistics

3.1 Entropy and number of complexions

Consider a system composed of AT identical particles that interact with each
other very weakly. That is, they can exchange energy, but the energy of each
individual particle is otherwise independent of the other particles. This situ-
ation is completely analogous to that for a canonical ensemble in the sense that
a physical system of nearly independent particles can be thought of as an
"ensemble" with each particle being a member "system" of the ensemble. This
is the same as simply renaming the terms used in the canonical ensemble
theory. Then, the ensemble canonical distribution function becomes the parti-
cle distribution function. That is,

where ft is now the probability that a particle is in a quantum state i with energy
£,-, NI is the number of such particles, and N is the total number of particles.
Equation (3.1.1] is the Maxwell—Boltzmann distribution law for nearly inde-
pendent particles.

But there is a basic flaw in the Maxwell-Boltzmann distribution function.
Remember that in ensemble theory, the distribution function is derived from
the number of complexions of the system, and since the systems are macro-
scopic, they are distinguishable. This fact is reflected in the combinatorial
expression for the number of complexions, so (3.1.1) can be valid only if the
nearly independent particles are distinguishable from each other. But we know
from quantum theory that this is not the case. At the micro level, similar par-
ticles are indistinguishable. That is, if the positions of two electrons (or protons
or identical atoms) are interchanged, the system is completely unaltered and
there is no way of telling that the exchange has taken place. This has an impor-
tant effect on the way the number of possible complexions of the system is
counted. The theory leading to (3.1.1) must be replaced by a theory that takes
into account the indistinguishability of particles.

Since the particles are indistinguishable, the probability of finding a parti-
cle in a particular place must be unchanged if the positions of particles are
interchanged. This means that the square of the system wave function must be
invariant with respect to an exchange in position of the particles. Therefore,
after an interchange of particles, the value of the wave function must be the
same as before the exchange except for a possible difference in sign. If 4* is the
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system wave function for particles with coordinates i\, r2,. . . then we must
have

for any exchange of two coordinates. The positive sign defines symmetric wave
functions, while the negative sign refers to antisymmetric wave functions.

The most general symmetric wave function is a linear combination of prod-
ucts of the particle wave functions. This shows that there is no limit to the
number of particles that can be in any particular particle quantum state. Any
distribution of particles among states corresponding to a valid product of par-
ticle wave functions therefore constitutes a legitimate quantum state for the
system of particles. In counting the number of complexions, therefore, any
number of particles can be in any quantum state.

The most general antisymmetric wave function for the system is a linear com-
bination of determinants formed from the particle wave functions. Since a
determinant is zero if any two columns or rows are identical, any distribution
of particles among quantum states in which two particles are in the same state
cannot exist. This leads to the requirement that at most only one particle can
occupy a given particle state. This condition is a form of the Pauli exclusion
principle and must be satisfied in constructing the number of possible com-
plexions for antisymmetric particles.

Let us denote the occupation numbers of particles in states by

This is a shorthand notation for saying that N, particles are in state 1, N2
particles are in state 2, N3 particles are in state 3, and so on. For particles
whose wave functions are symmetric, the occupation numbers can take on
any integral values. Such particles are called bosons, and the most important
examples for us are photons and phonons. For particles with antisymmetric
wave functions, the occupation numbers can have only the values zero or
unity. Such particles are called fermions, and our most important example is
the electron.

The connection between indistinguishability and ensemble theory is easily
made in terms of entropy. The entropy of a canonical ensemble of X systems
is given by ensemble theory as

Since entropy is additive, the total ensemble entropy is the sum of the entropies
of the individual systems, so (3.1.4) can be written as

where S, is the entropy of the ;'th system and w, is the number of complexions
for the /th system. Restricting our attention to a particular system, the subscript
can be dropped and the entropy of the system of particles is

where w is the number of complexions for the individual system. That is, w is
the number of different wave functions for a system of energy U containing N
independent particles.



PARTICLE STATISTICS 71

All that is needed to construct a statistical mechanics of particles is to max-
imize w with respect to variations in the number of systems occupying the par-
ticle quantum states subject to the conditions that the total energy and total
number of particles are each constant. But the number of complexions depends
on whether or not the particles are distinguishable and on the possible occu-
pation numbers, and this is different for bosons and fermions.

An elementary calculation of the number of complexions starts with the fact
that, for a system of N identical particles in a fixed volume, the energy levels
of the system are very close together. This means that it is always possible to
arrange the energy levels in a set of contiguous groups such that the /th group
has energy in a range e; + cfe;, and there are a great many energy levels in the
group. That is, demean always be chosen such that it is small with respect to e;-
and still contains a number of levels, CD/, that is large with respect to unity. It
is therefore possible to characterize the system by the following scheme.

Group number 1,2,3 j , . . .
Number of possible states in the group coj, co2, oo3,. . . , c o y , . . .
Number of particles in the group Nlt N2, N3,..., N / , . . .
Energy of a particle in the group e1; e2, £3 , . . . , e/,. . .

Note that the index / now refers to a group of states all having energies that are
very nearly equal. The energy e;- of a particle in the /th group is taken to be an
average or midpoint energy of all the states in the group.

The distribution of particles among particle states is denned by the set of
numbers (AT;j.

3.2 Particle distribution functions

For a given distribution of particles {N/}, the number of complexions is the
number of states of the entire system, so it is just the number of ways of arrang-
ing the particles such that A^ are in state 1, N2 are in state 2, and so on. This
number depends on whether or not the particles are distinguishable and on
how many particles can be in the same energy state. Therefore, three different
cases must be considered.

3.2.1 The Fermi-Dirac case

In this case the particles are indistinguishable and not more than one particle
can be in a given state.

First consider one group of levels with energy £/. The number of ways of
putting NJ indistinguishable particles into co; levels such that no more than one
particle is in a given energy state is (see appendix 1)

The product of all terms similar to this, for all /, is the number of ways of
arranging the particles among all states such that NI are in one of the states in
group 1, A/2 are in one of the states in group 2, and so on. For the Fermi-Dirac
case, the number of complexions is therefore
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3.2.2 The Bose-Einstein case

In this case the particles are indistinguishable and there is no limit to the
number of particles that can be in a given energy state.

For the ;'th group, the number of ways of putting N/ particles among the o>;
levels with no restrictions on the number of particles per level is (see appen-
dix 1)

For all groups, the number of ways of arranging the particles such that there
are NI in group 1, N2 in group 2, and so forth, is just the product of terms like
(3.2.3), so the Bose-Einstein number of complexions is

3.2.3 The Maxwell-Boltzmann case

In this case the particles are distinguishable and there is no limit to the number
of particles that can be put in any level. The number of complexions for this
case is (see appendix 1)

The Maxwell-Boltzmann distribution is inconsistent with quantum theory
since it presumes distinguishable particles. It is included here because of
its historical significance and to illustrate the far-reaching effects of the con-
cept of indistinguishable particles. The Maxwell-Boltzmann distribution was
derived before the advent of quantum mechanics and was particularly useful
for the kinetic theory of gases. The factor JV!, which arises from the distin-
guishability of particles, gave some trouble that was resolved in ad hoc ways
that turned out to be consistent with quantum theory.

Note that in the number of complexions for the Fermi-Dirac case every state
was assumed to have a different energy. For electrons, this is not the case since
a spin-up electron has the same energy as a spin-down electron. This is easily
taken into account at a later stage by inserting a factor of 2 in appropriate
places.

There is yet no theory that tells us whether a particle will be a fermion or a
boson. All that quantum theory tells us is that both types of particles are pos-
sible. It is a fact of nature that both types exist.

The most probable distribution of particles among energy states is obtained
by solving the Lagrangian multiplier problem just as in the case of the canon-
ical ensemble. Only the Fermi-Dirac case is treated here since the mode of
derivation is similar for all three cases.

As usual, we maximize the logarithm of the number of complexions and
assume that there are so many particles that it is a very good approximation
to use continuum notation in taking variations. From (3.2.2) the logarithm of
the number of complexions for the Fermi-Dirac case (using Stirling's approx-
imation) is
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and the requirement of constant total energy and number of particles gives

The maximization equations are therefore

Multiply (3.2.10) and (3.2.11) by the parameters -a and -b, respectively, and
add the results to (3.2.9). The result is a sum all of whose terms are indepen-
dent, and since the sum is zero, each term is zero. That is,

which leads to

Using (3.2.6) to evaluate the derivative and solving for Nj gives the Fermi—Dirac
distribution function in terms of the undetermined multipliers as

A completely analogous treatment for the Bose-Einstein and the Maxwell-
Boltzmann statistics gives

Note that if the exponential term in the Fermi-Dirac and Bose-Einstein
cases are very large, then both distributions have the same limiting form,
namely,
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Since the exponential term in the denominators of the distribution functions
(3.2.14) and (3.2.15) are very large in this limit, then its reciprocal in (3.2.17)
is very small. Therefore, N/ofy « 1. But the number of particles is constant, so
this means that the available particles are spread out over a very large range
of levels. This is just the condition to be expected at high temperatures because
the high thermal energy can boost particles into a large number of high-energy
levels. We therefore expect (3.2.17) to be valid at high temperatures. Also,
(3.2.17) is identical to the Maxwell—Boltzmann distribution except for the
factor N. The appearance of N in the Maxwell—Boltzmann distribution is a
direct result of treating the particles as distinguishable. If we correct for indis-
tinguishability by dividing the Maxwell-Boltzmann number of complexions
through by N! and then carry out the method of Lagrangian multipliers, the
result is identical to (3.2.17), which is a distribution function that has been
partially corrected for quantum effects in that it takes indistinguishability into
account but does not deal with the symmetry properties of the wave function.
It can be used at high temperatures because the levels are so sparsely popu-
lated that there is not much chance of there being more than one particle per
level no matter what the symmetry of the wave function. The distribution func-
tion (3.2.17) is called semiclassical for obvious reasons.

Just as for the canonical ensemble, it can be shown that these distribution
functions represent maxima and not minima by taking second variations of the
logarithm of the number of complexions.

3.3 Particle statistics and thermodynamics

The thermodynamlc interpretation of particle statistics is easily obtained
because we already have the statistical formula for the entropy. For each of the
particle distribution functions, the starting point of our analysis was a varia-
tional equation of the form given by equation (3.2.12). Since the variational
equation is also valid for variations connecting two equilibrium states, it can
be written in terms of ordinary differentials as

But S = klnw, so (3.3.1) gives

Because the volume of our system is fixed, (3.3.2) gives

The thermodynamic formulas [see (1.14.1)] for these derivatives are
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where (0, is the chemical potential. Comparison of (3.3.5) and (3.3.6) with (3.3.3)
and (3.3.4) shows that particle statistics is consistent with thermodynamics if

Just as in ensemble theory, the undetermined multiplier for the energy is
related to the temperature. That is, the parameter b in particle statistics has the
same interpretation as (5 has in ensemble theory. However, the multiplier a fo
the number of particles is related to the chemical potential, that is, the Gibbs
free energy per particle, whereas in ensemble theory a was related to the
Helmholtz free energy.

Equation (3.3.1) applies to any system of identical particles regardless of the
particular expression for the number of complexions, so the parameters a
and b have the same interpretation for Fermi-Dirac, Bose-Einstein, Maxwell-
Boltzmann, and semiclassical statistics. The distribution functions (3.2.14)-
(3.2.17) therefore are

Each of these distribution functions is valid for different kinds of systems,
but first note that the Maxwell—Boltzmann distribution is not really valid for
any system. It is included in our list to stress the importance of indistin-
guishability and to compare it to the semiclassical distribution function, which
is valid for any kind of particle if the temperature is high enough. The
Fermi—Dirac distribution function applies to particles with antisymmetric
wave functions and half-integral values of spin. It therefore must be used for
systems of nearly independent electrons. The Bose-Einstein distribution
applies to particles with symmetric wave functions and integral values of spin
(including spin = 0). Important applications are to helium at low temperatures
the phonons associated with crystal lattice vibrations, and to photons.

Since the temperature now appears explicitly in the distribution functions,
the condition for the validity of the semiclassical approximation can be given
a more explicit form. Equations (3.3.9) and (3.3.10) reduce to (3.3.12) when

The accuracy of the semiclassical approximation therefore depends on the
chemical potential as well as on the temperature, so specific calculations of
the validity of (3.3.13) must be made for different systems. It turns out that
(3.3.13) is valid for all ordinary dilute gases at ordinary temperatures and the
quantum corrections are important only for hydrogen and helium at low tem-
peratures. For electrons, however, the quantum effects are important at even
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quite high temperatures, so it is necessary to use the Fermi-Dirac distribution
function.

3.4 The ideal gas

An ideal gas is defined as a many-particle system of nearly independent iden-
tical particles that can be described by semiclassical statistics. The particles
have no internal structure, so their energy levels are those of the quantum
mechanical particle-in-a-box. When this definition is used, the semiclassical
distribution function leads to the usual thermodynamic and phenomenologi-
cal equations for the ideal gas.

Let us start by obtaining some useful statistical mechanical results for the
semiclassical system of particles. If (3.3.12) is summed over all ;', the result is

Solving this for (0, gives

where we have defined a particle partition function z by

in analogy with the partition function of canonical ensemble theory. Since the
chemical potential of a one-component system is the Gibbs free energy per par-
ticle, multiplying (3.4.2) by N gives an expression for the Gibbs free energy in
terms of the particle partition function:

Now the entropy can be written in terms of z because, from equation (1.12.7),
the entropy is given by the derivative

Therefore, differentiating (3.4.4) with respect to temperature gives the entropy
as

Just as in the ensemble statistics, the partition function provides the essen-
tial connection between statistical mechanical and thermodynamic equations.
All that needs to be done to work out the theory of the ideal gas is to evaluate
the particle partition function and use it in the appropriate statistical thermo-
dynamic equations.

To compute the partition function, the energy levels must be known. These
are available from the quantum theory of the particle-in-a-box, which gives, for
a box of volume V, the energy levels as
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where h is Planck's constant, m is the mass of the particle, and j\, j2, J3 are
positive integers that can take any values from zero to infinity. The set of
three integers defines the state of a particle, and there is just one wave
function for each set jlt J2, J3. The energy levels are so close together that the
sum defining the partition function can be replaced by an integral as follows.
Treat the energy as if it were a continuous variable e and let co(e)ofe be the
number of levels with energy between e and (e + cfe). Then the sum (3.4.3)
becomes

(Note that replacing the sum by an integral is not strictly valid for all energy
levels. What counts is the ratio of the energy difference between two closely
spaced levels to the energy level itself. For low-lying states this ratio is not far
from unity and the continuum approximation fails. However, as we go to higher
quantum levels this ratio rapidly becomes very small, and it is trivial to show
that for a macroscopic sample of gas the number of states for which the ratio
is extremely small is overwhelmingly large. Only a totally insignificant per-
centage of the particles have energies so low that they cannot be treated
continuously.)

The integral (3.4.8) can be evaluated only if the density of states co(e) is
known. Equation (3.4.7) can be used to get o(e) by constructing a three-
dimensional simple cubic lattice with the edge of the unit cell being of unit
length. Each lattice point corresponds to three integers, which give its coordi-
nates from one of the points taken as origin. This construction yields a /-space
containing a lattice in which each point of the positive octant represents an
energy level of our particle-in-a-box. Let j be the magnitude of the vector from
the origin to one of the lattice points. Then,

Because the energy levels are closely spaced, we can construct a spherical
shell about the origin with a thickness dj that is small compared to the radius
of the sphere but still contains a very large number of lattice points. The
volume of the shell is 4KJ2dj, and the number of points in the positive
octant of the shell is one eighth of this. Since each lattice point in the positive
octant corresponds to a quantum state, the number of states contained in the
shell is

To convert this to the number of states in a given energy range de., we need a
relation between cfe and dj. But this is readily obtained from (3.4.10) if we again
treat e; and / as continuous variables. Then,
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If equation (3.4.12) is solved for dj and the result put into (3.4.11), we get the
number of levels in the range of energy de, which is just the density of states
in energy co(e) in equation (3.4.8):

We want o>(e) to be a function of energy only, so we solve (3.4.10) for / and
put the result in (3.4.13) to get

This is the density-of-states in energy and is important in all theories of a large
number of independent particles.

We are now equipped to go back and compute the particle partition func-
tion by substituting (3.4.14) into (3.4.8) to get

For convenience, C has been denned as the collection of constants

The integral is a standard form given by [see equation (A.4.19) in appendix
4]

Putting (3.4.17) into (3.4.15) and collecting constants gives the particle parti-
tion function as

where A is the thermal wavelength denned by (2.14.21). Note that (3.4.18) is
the same as the partition function for a canonical ensemble of systems of inde-
pendent particles in the semiclassical approximation derived in chapter 2.

Now all the thermodynamic functions are easily obtained in terms of the
number of particles, the volume, and the temperature. The Gibbs free energy
is the result of substituting (3.4.18) into (3.4.4):

Differentiating this equation according to equation (3.4.5) gives the entropy
as
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The energy can be obtained from the thermodynamic relation G = U- TS +
PV, but a simple expression for the energy is readily obtained directly from
the distribution function (3.3.12), which in the continuum notation is

The total energy is therefore

Using the density of states as given in (3.4.14), this becomes

According to equation (A. 4. 20) in appendix 4, the integral has the value
, so (3.4.23) gives

The chemical potential is easily eliminated from this equation by dividing
(3.4.19) by AT to get |i and then solving for ^/kT to get

where A is the thermal wavelength defined by equation (2.14.21) and the last
equality follows by using the ideal gas law. Combining this with (3.4.24)
reduces the energy to

To get the equation of state, start with the energy in terms of the distribution
function in the discrete form:

The energy differential connecting two equilibrium states is therefore

If only pressure—volume work is done in the interaction of the system with its
environment, then the first law of thermodynamics is

Just as was done for ensemble theory, the statistical equation (3.4.28) is com-
pared to the thermodynamic equation (3.4.29), and the work term PdV in
(3.4.29) is identified with the first term in (3.4.28) because doing work on the
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system changes its energy levels. The second term in (3.4.28) must then be
identified with the entropy term in (3.4.29). Therefore,

and

The derivative in (3.4.31) is readily obtained from equation (3.4.10) as

so (3.4.31) becomes

Combining this with (3.4.26) gives the equation of state of the ideal gas:

Since the enthalpy H = U + PV, it can now be obtained from (3.4.34) and
(3.4.26) as

The heat capacities at constant volume and at constant pressure are easily
obtained from their definitions as temperature derivatives of the energy and
enthalpy, respectively, by using (3.4.26) and (3.4.35):

With the equation of state for the ideal gas in hand, we can now get rid of
the derivative in (3.4.20) and get an explicit expression for the entropy as a
function of temperature and pressure:

This is the Sacker-Tetrode equation for the entropy of an ideal gas. [Note that
equation (3.4.33) is true for any system of independent particles, not only those
obeying semiclassical statistics. This is so because equations (3.4.27)-(3.4.32)
are also correct for Bose— Einstein and Fermi— Dirac particles.]

Let us pause to remark on what has been accomplished here. First, the ideal
gas law has been derived from atomistic considerations, and the constant k
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arising in statistical mechanics has been identified as Boltzmann's constant (the
gas constant per molecule). This is valid for any system since k is a universal
constant. Second, the atomistic conditions for the validity of the ideal gas law
have been determined. The ideal gas equation was originally obtained as a phe-
nomenological equation to describe the experimental results for the relation
between pressure, volume, and temperature for dilute gases. It was found that
the more dilute, the gas, the better the ideal gas equation fit the data, and that
as the gas gets denser (high pressures, low temperatures), there are increasingly
large deviations from ideal gas behavior. This can be understood in a general
way even without statistical mechanics by recognizing that the effect of inter-
molecular forces increases as the density of the gas increases. But the statisti-
cal mechanical derivation completely clarifies and quantifies this concept by
showing that the validity of the ideal gas law requires that the interactions
among the gas particles must be very weak. Not only has the phenomenologi-
cal equation been given a theoretical foundation, but equations have been
obtained that permit the explicit calculation of the thermodynamic functions
in terms of temperature and pressure from microscopic properties. For the ideal
gas, all that is needed in addition to the values of fundamental constants (Boltz-
mann's and Planck's constants) is the mass of the particle.

The theory of the ideal gas presented here is strictly true only for dilute
monatomic gases. However, if the theory is carried out for polyatomic systems,
it turns out that the ideal gas equation of state is still recovered because inter-
actions among the molecules are still ignored but the expressions for energy,
heat capacities, and entropies are different because of the contributions of the
internal structure to the partition function.

Let us note that, once the particle partition function was evaluated, the ideal
gas equation of state could have been derived in an almost trivial manner by
using the relation between the Helmholtz free energy and the system partition
function and applying the definition of the pressure as the negative derivative
of the free energy with respect to volume. However, this would not have clearly
displayed the relation between the pressure—volume work and the energy
levels.

3.5 Particle statistics from the grand canonical ensemble

In arriving at the particle distributions in section 3.2, each particle was treated
as if it were a member system in a canonical ensemble. Because of this, the
energy levels had to be arbitrarily divided into groups with nearly the same
energies, and then combinatorial analysis was applied to each group to get the
number of complexions. This procedure works because there are many closely
spaced levels for a system containing a large number of independent particles.
While it has the advantage of showing how to deal with the statistics of parti-
cles directly, it does suffer from a degree of inelegance. The arbitrary grouping
of levels can be avoided by use of the grand canonical ensemble, which permits
the derivation of the particle distribution functions in a straightforward, easy
manner.

For a one-component system of identical noninteracting particles, the grand
canonical distribution function is

where the energy of the system in the ;'th state and containing N particles is
just the sum of the energies of the individual particles and is given by
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NoLe that here we are using the single index / as an abbreviation for the
state of the system of N particles. nk is the number of particles with energy e^,
so

The summations in (3.5.2) and (3.5.3) are taken over all particle states.
The grand canonical partition function for our one-component system is

The state of the system is specified by the integers nk, so the sum over N
and / can be replaced by a sum over all possible values of the set of integers
[nk] = (nlt n2, i7 3 , . . . ) . Performing this replacement and using equation (3.5.2)
for the total energy in terms of the particle energies, equations (3.5.1) and
f3.5.4l become

The right-hand side of (3.5.6) is just a product of independent sums, one for
each particle, and can be written as Q = x/lie^l(8l-ri/fc%,,e^2le2^1/fcr . . . or, in a
briefer notation,

Equation (3.5.5) gives the probability that n-i particles are in state 1, n2 par-
ticles are in state 2, and so on. We are after the particle distribution function.
That is, we want the mean number of particles that are in a particular state,
for example, state i with energy e,. To get this, we first calculate the probabil-
ity that HI particles are in state i by summing (3.5.5) over all particle states
except the ith. Doing this gives

where the product is over all energy states except for the ML.
But the product of sums in (3.5.8) is the same as the product of sums in

(3.5.7), except that the sum over n,- is missing. Canceling the sums that appear
in both the numerator and denominator, (3.5.8) reduces to



PARTICLE STATISTICS 83

This is the probability that a particle is in state i. To get the mean number of
particles in state jf, just multiply /(n,) by nt and sum_pver all possible values of
i. That is, the mean number of particles in state i, ns, is given by

All sums in (3.5.10) are carried out over all possible values of n,-.
Up to this point, the derivation has been valid for either bosons or fermions.

It is in the evaluation of the sums in (3.5.10) that the difference between
Fermi-Dirac and Bose-Einstein statistics appears. For Fermi-Dirac particles,
the evaluation of the sums is trivial because a state can only be empty or hold
one particle. This means that nt can only take on the values 0 and 1 and (3.5.10)
reduces to

For the Bose-Einstein case, any number of particles can be in a given state, so
the iij can take on all values from zero to infinity. The sums in (3.5.10) there-
fore have well-known values because they have the form

[See equations (A. 4.1) and (A. 4. 2)]. Applying these formulas to (3.5.10) by iden-
tifying x as x = e~^t-v-vkT gives the mean number of particles in state i for the
Bose-Einstein statistics as

Equations (3.5.11) and (3.5.14) are equivalent to (3.3.9) and (3.3.10) because,
if a group of to, states are chosen that have energies closely clustered around
£/, then the number of particles in these states is N/ = (s>jnj, so fTj = N/(oj.

The Fermi—Dirac and Bose—Einstein distribution functions look a lot alike
and differ only in the sign of unity in their denominators, but this difference
has far-reaching implications. For example, since the mean number of parti-
cles must always be positive, (3.5.14) shows that

This means that e,- > n for all possible values of the energy, and since the energy
can be zero, the chemical potential is always negative for bosons. The condi-
tion (3.5.15) also follows from the requirement that the sums (3.5.12) and
(3.5.13) converge to a finite sum, so we must have x < 1.

For fermions, (3.5.11) shows that the mean number of particles can be pos-
itive for both positive and negative values of the chemical potential. The dif-
ference implied by (3.5.15) and (3.5.16) is a clue that we can expect very
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different physical properties for fermions and bosons, and this indeed turns
out to be the case.

3.6 Representations of the density of states

In the continuum notation, ca(e) is the number of particle states per unit energy
range. It is sometimes convenient to express the distribution functions in
terms of some parameter related to the energy, such as velocity or momentum,
rather than in terms of the energy itself. It is then necessary to express the
density of states in terms of that parameter. This section shows how to write
the density of states in terms of wave numbers, momentum, and velocity as
well as energy.

Remember that the particle moves in a box of zero potential, so its energy is
entirely kinetic and is given by

where p is the particle momentum and v is its velocity. This is a particle
description of the energy, but from the de Broglie relation we know that the
particle can also be treated as a wave whose wavelength X is connected to the
particle momentum by

where e is a unit vector in the direction of the particle motion. We now define
a vector k by

This is the wave number vector, and it describes the wavelength and the direc-
tion of motion of the particle. In terms of k, the momentum in (3.6.2) becomes

where h is Planck's constant divided by 2n. The factor 2rc is included in the
definition of the wave number vector in (3.6.3) because it is convenient to do
so in the mathematics of wave phenomenan.

Using (3.6.4), the energy (3.6.1) in wave number language becomes

k being the magnitude of the wave number vector. The wave number vectors
can be treated as quasi-continuous just as we treat the energy. In fact, however,
they form a discrete set whose values are easily obtained by combining equa-
tions (3.4.7) and (3.6.5). The result is
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Let kx, ky, and kz be the x, y, and z components of the wave number vector so
that

ii, i2, is being the three orthogonal unit vectors in a Cartesian coordinate system.
The components of the wave number vector are the square roots of the j\, J2, J3
terms in (3.6.6).

We are now able to get the density of states in terms of wave number
vectors, velocities, or momenta. First note that the energy is quadratic in all
of these parameters and depends only on their magnitudes, not their direction.
Also, the number of states in a given range must be the same whether that
range is defined in terms of energy, wave number, velocity, or momentum.
Therefore,

which gives

The co(e) is given by equation (3.4.14) and is expressed in terms of k, p, or v by
using equations (3.6.1) and (3.6.5). These latter equations also yield the deriv-
atives in (3.6.9)-(3.6.11). Doing the small amount of algebra involved, equa-
tions (3.6.9)-(3.6.11) now become

It is sometimes necessary to count the number of particles with momenta in
a given range moving in a particular direction. To get the corresponding density
of states, construct a spherical polar coordinate system in momentum space
with radial component p, colatitude 6, and azimuthal angle <j>, and let co(p, 9,
0) dfip be the number of states for which the momentum vectors terminate in a
volume element d£lp, which is given by

The function oo(p)c/p, already given by (3.6.13), is just the integral of (3.6.15)
over the angular coordinates, so
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Because the distribution of states in momenta is isotropic, the number of
states is the same for a given p regardless of the direction of the momentum
vector. This means that the density of states function in the integral in (3.6.16)
can be taken outside the integral, and then (3.6.16) becomes

Evaluating the integral and solving for co (p, 6, §), we get

The number of states in a volume element of momentum space does not
depend on the choice of coordinate systems, and therefore dflp = dpxdpydpz
and a>(p, Q, §)d Q.p = K>(px, py, pz) dpxdpydpz, where a>(px, py, pz)dpxdpydpz is
the number of states with momentum components (px, py, pz) in the range
dpxdpydpz. Combining this with (3.6.18) gives

In a similar way, it is easy to show that the density of states for particles with
velocity components (vx, vy, vz) is

and the density of states in terms of the number of states with wave number
vectors having components (kx, ky, kz) is

3.7 Maxwell's velocity distribution

The distribution function for the velocities of molecules in a gas is easily
obtained from equation (2.14.25), which we rewrite for a monomolecular
gas as

Since the number of molecules in a given momentum range must equal the
number in the corresponding velocity range, we have

so
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Expressing the velocity in polar coordinates, this is

This is the probability that a molecule has a velocity whose magnitude is v in
the direction given by the angles 9, <|>. Integrating over the angles gives the prob-
ability that a molecules has a speed v irrespective of direction as

This is the Maxwellian distribution of speeds in a gas.

3.8 Two-dimensional ideal gas

The theory of the ideal gas in two dimensions follows the same path as that
for three dimensions given in section 3.4. In fact, the theory depends on dimen-
sionality only through the energy levels and density of states, as can be seen
by going over the derivation and identifying those steps that depend on the
number of dimensions. In particular, equation (3.4.2) for the relation between
the chemical potential and the partition function is still valid, and we can write

except that now the partition function must be computed for the two-
dimensional case. To do this, we start with the appropriate energy levels.

In two dimensions, the energy levels for a free particle of mass m confined
in a square area o are

This is analogous to equation (3.4.7) for the three-dimensional energy levels of
a particle-in-a-box. The density of states is obtained from (3.8.2) just as (3.4.14)
was obtained from (3.4.7) except that the number of states with integers
between ;' and j + dj is the number of points in one quarter of a ring of thick-
ness dj at radius / in a two-dimensional /-space. The result is that the two-
dimensional density of states in energy is

so equation (3.4.8) for the particle partition function becomes
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which integrates to

The similarity to (3.4.18) is obvious. In fact, it is trivial to show that every
translational degree of freedom has a partition function associated with it given
by

L being the length of the cubic box containing the system.
The surface pressure of the two-dimensional gas is defined from thermo-

dynamics as

G2D being the Gibbs free energy of the two-dimensional phase. Thus, if we use
(3.8.1) in (3.8.7), remembering that the chemical potential is the Gibbs free
energy per particle, we get

This is the equation of state for a two-dimensional perfect gas.

3.9 Independent particles and subsystems

The systems we have considered above are gases of atoms or molecules that
do not interact with each other. These are examples of systems composed of
independent subsystems. Because the molecules are independent subsystems,
the partition function of the system can always be written as a product of par-
tition functions of the subsystems thereby simplifying both notation and
calculations.

Let us consider the general case in which the subsystems may be atoms, mol-
ecules, groups of molecules, or macroscopic entities. The only requirement we
impose is that the subsystems be independent. But it is necessary to take into
account the fact that some collections of subsystems are distinguishable while
others are not. The particle statistics developed above applies to indistin-
guishable subsystems. Atoms or molecules that are identical and freely
interchangeable generally must be treated as indistinguishable particles.
Macroscopic subsystems and subsystems that are not identical are always
distinguishable.

With this in mind, let us consider a system made of independent distin-
guishable subsystems. If JSyj, -E(/2), E(j3),. . . , E(jr) are the energy states of the
r subsystems, then the total energy of the system, when it is in the state spec-
ified by the states ]\, jz jr of the subsystems is

so the partition function for the total system is
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The partition function for the nth subsystem is defined by

so the total partition function (3.9.3) becomes

If all N subsystems are identical, this reduces to

What if the subsystems are not distinguishable? To see how (3.9.5) must be
modified for this case, consider a system that has three identical subsystems.
An energy term of the form E^(j) + E2(k) + E3(l) appears in the partition func-
tion for the total system. This is for a member of the system ensemble in which
the subsystems labeled 1, 2, 3, are in subsystem states ;', k, 1, respectively. But
there are also systems in the ensemble for which the subsystems 1, 2, 3, are in
energy states k, j, 1, respectively, and corresponding terms appear in the ensem-
ble. In fact, all permutations of the subsystems among their states appear in
the partition function, and if there are N subsystems, there are N! such per-
mutations. But since the subsystems are indistinguishable, each of these per-
mutations represents the same state, so to get the correct number of states the
partition function, (3.9.5) must be divided by N\. Therefore,

If the system consists of subsystems some of which are identical but others
are not, then the N\ in the denominator of (3.9.7) is replaced by a product of
Nj\s, NJ being the number of subsystems of the /th kind. For a system of iden-
tical molecules, (3.9.7) reduces to

A further simplification can be achieved by noting that the separation of the
partition function into products was made possible by the fact that the energy
could be separated into independent parts. For a system of molecules the
energy can be written as a sum of terms that include translational, vibrational,
and rotational energies. That is, the total energy for the system in a state k is

The state labeled k is a composite of the translational, vibrational, and rota-
tional states of the molecules whose energies are given by the three terms in



90 STATISTICAL MECHANICS OF SOLIDS

the sum. These constitute the kinetic energy states of the system. The energy
term Eicon) is the potential energy of interaction among the molecules and
is generally not separable into contributions from each molecule. It is called
the configurational energy because it is a function of the positions of the
molecules. When (3.9.9) is put into the definition of the partition function, the
result is

z[i., zj,, zr
ro being the translational, vibrational, and rotational partition functions

for the rth molecule, respectively, and the product is taken over all molecules.
If all molecules are alike, this reduces to

The molecular partition functions are defined by

The sums are over all translational, vibrational and rotational states with ener-
gies et, ev, and er, respectively.

The configurational partition function is just that defined by equation
(2.14.19). The translational partition function for a molecule is that for a par-
ticle-in-a-box and is given by equation (3.4.18). The vibrational partition func-
tion for a system with a set of frequencies rij is evaluated in chapter 4 in
connection with the theory of the heat capacity of solids.

Exercises

3.1 For a classical one-dimensional oscillator with energy states given by
E = pz/2m + Kq2/2, where m is the mass, K is the force constant, p is the
momentum, and q is the coordinate defining the instantaneous amplitude of
the vibration, compute the classical partition function for the oscillator and
show that the energy is U - kT.

3.2 For a monatomic ideal gas, use the pressure ensemble to show that the
Gibbs free energy per atom is given by G/N= -kT InkT/PA3, where the A is
the thermal wavelength defined by A = h2l2nmkT12. (Hint: Use the fact that
the number of volume states in a range dV is dV/V; i.e., the "density of
volume states" is equal to 1/V.)

3.3 Using semiclassical statistics, show that the mean kinetic energy per
molecule of an ideal gas is 3kT/2. Get the formulas for the root mean square
speed and for the most probable speed of a molecule in an ideal gas. What
is the value of the root mean square speed of molecules in molecular oxygen
gas at 0, 25, and 1000°C?
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3.4 Given a column of a monatomic gas of uniform cross-sectional area in a
constant gravitational field, use semiclassical statistics to find the formula
for the concentration of gas as a function of height h, relative to the con-
centration at h = 0. Take the zero of gravitational energy at h = 0.

3.5 Given a system of N independent particles such that each particle can
assume one of the energy values ±e, e being a positive constant, let N+ be the
number of particles with energy +e and JV_ be the number of particles with
energy -e, so that the total energy of the system is E = N+e - JSLe. Write the
number of possible states and from this get the entropy as a function of a
where a = E/Ne. From the thermodynamic relation between temperature and
entropy, get the temperature as a function of a and plot this function, taking
the temperature to be in units of 2e./k for 1 < a < 1. What is the significance
of the negative temperatures obtained for negative a?

3.6 Consider a one-dimensional line (dislocation) that has Ns sites at which
an impurity can be attached. Assume the impurity has zero energy when in
solution and an energy e when attached to a site. Show that the number
of impurity atoms Nj, attached to the line at temperature T, is given by
N,/NS = l/(eelkT+ 1), and that the Helmholtz free energy of the dislocation
line is A = A° + ATs[e - kTln (1 + E/iT)], where A° is the free energy of the dis-
location line when no impurities are attached to it.

Why is this formula like that for the Fermi-Dirac distribution? Why does
it not contain a chemical potential? (Note: e < 0 because we are assuming
that the impurity binds to the dislocation.)

3.7 Given a fictitious system of independent particles in which each energy
level E, can be occupied by zero, one, or two particles, use the grand canon-
ical ensemble to get the formula for the mean number of particles in state i.

3.8 Given a gas of noninteracting particles with energy levels e1; e z , . . . ,
ek. .. where each state can be occupied by any number of particles from
0 to P, use the grand canonical ensemble to show that the most probable
occupation for the nth state is iTk = [e(e^rt/iT- I]-1- (1 + P)[e11+PKe^rtr- I]'1.
Show that in the limit of P = 1 this yields Fermi-Dirac statistics and that in
the limit of P —» <*>, it yields Bose-Einstein statistics. (Hint: The sums you
need are from the geometric progression.)

3.9 What is the density of states for independent particles in a one-
dimensional line of length L? For two dimensions in a square of side L?

3.10 Given a system of AT noninteracting particles, each of which can exist
in one of two nondegenerate states such that the energy of state 1 is e, and
the energy of state 2 is e2,

A. write the partition function of the system,
B. write the formulas for the average energy and the square of the

average energy for the system, and
C. derive the formula for the heat capacity of the system and show that

it satisfies the equation Cv= (NlkT2)(W-f2), where t? is the mean
square energy and e2 is the square of the mean energy.
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The Harmonic Crystal

4.1 The harmonic model

The atoms in a monatomic crystal continually vibrate around their mean posi-
tions, and it is these vibrations that give the crystal its thermal energy. A rig-
orous quantum theory of the crystal should include the dynamics of all the
electrons and the nuclei explicitly. However, the electrons are much lighter
than the nuclei and therefore have a much faster reaction time to any distur-
bance. That is, if a nucleus is given a small displacement, the electrons will
readjust their positions in response to the forces between the nucleus and the
electrons in a very short time. This is the basis for the adiabatic approxima-
tion, which states that the readjustment time is so short compared to the period
of vibration of the nuclei that it can be taken as zero. This means that the
electrons are in a state that is determined by the instantaneous position of the
nuclei.

The adiabatic approximation allows the nuclear and electronic motions to
be treated separately because all the electronic information can be absorbed
into a potential energy function that is a function of the nuclear coordinates
alone. When the atoms are at their mean (equilibrium) positions, the potential
energy is a minimum, and it increases as the atoms are displaced from equi-
librium. Since the motion of the atoms is constrained to be in the vicinity of
their equilibrium positions, the displacements are not extremely large and the
potential energy can be expanded in a Taylor series in the displacements. If
the displacements are small enough, the expansion can be truncated at the qua-
dratic terms. This is called the harmonic approximation since it is a general-
ization of the simple harmonic motion of a mass at the end of a spring obeying
Hooke's law. Note that the terms of first order in the displacements do not
appear because they must vanish by virtue of the requirement that the poten-
tial energy is a minimum at equilibrium.

The above discussion applies equally well to polyatomic crystals, such as
ionic solids and compound semiconductors, although the details of analyzing
the vibrations are different than for monatomic crystals. For molecular crys-
tals, the vibrations of the atoms within the molecules must be considered as
well as the vibrations of the molecules as whole units. The intramolecular
vibrations generally have a much higher frequency than the intermolecular
vibrations because the chemical bonds holding the atoms together in the mol-
ecule are much stronger than the physical interactions that hold the molecules
together in the crystal.

The harmonic model provides a good basis for the theory of crystals. It
accounts for a good bit of the thermodynamics of crystals remarkably well,

92
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Figure 4.1. The monatomic chain.

being especially successful in the theory of the heat capacity. But for some pur-
poses it requires extension and addition. The theory of thermal expansion, for
example, requires that third- and fourth-order terms must be included in
the expansion of the potential energy. Also, the theory of the heat capacity
of metals at low temperatures must include the contribution of the "free" elec-
trons as well as that of the atomic vibrations. In general, however, the harmonic
model serves as one of the basic pillars of solid state theory.

4.2 The monatomic linear chain and normal mode analysis

The most important facts concerning vibrations in crystals are most easily
introduced by considering a fictitious one-dimensional crystal composed of
identical atoms of mass m arranged in a line. When the system is in mechan-
ical equilibrium, the atoms are all equally spaced, adjacent atoms are an equal
distance a apart, and the potential energy is a minimum. This minimum poten-
tial energy is taken to be zero. The atoms will be labeled by an index j that
runs from 0 to N, and the total number of atoms in the chain is (N + 1). This
monatomic chain system is illustrated in figure 4.1.

The displacement of the /th atom from its equilibrium position will be
denoted by ujt and in keeping with the harmonic model, the potential energy
V of the chain will be written as

The force constants C,y are defined by

the derivative being evaluated at equilibrium where all displacements u,- are
zero. The force constants Q,- that couple the /th and the /th atom depend only
on the distance between them and not on the absolute position of the atoms
in space. That is, if \i - j\ = \m - n\, then C,y = Cmn. Also, C1? = Cg.

The equations of motion of the chain are easily obtained by a simple
application of Newton's second law in the form

where t is the time and the negative derivative of the potential energy is just
the force on the /th atom. From (4.2.1) this force is
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so

The form of (4.2.5) is very suggestive of that for the simple harmonic
oscillator and would be identical to it if all force constants in the sum were zero
except for Cu. We will therefore try out a harmonic oscillator solution in (4.2.5)
and see if it works. For the displacement of the/th atom, the trial solution is

where co is an angular frequency and v depends only on ;'. Taking the second
derivative of (4.2.6) gives

Substituting (4.2.6) and (4.2.7) into (4.2.5) gives

This shows that a set of harmonic oscillator solutions to the equations of
motion exist if a set of v(i') is chosen that satisfies (4.2.8).

We can go further by making use of the translational symmetry of the chain.
If i and / are replaced by i + 1 and 7 + 1 in (4.2.8), the equation is still valid
and we have

But since the force constants depend only on the distance between the atomic
sites, Cjj must equal CMj+1. This means that the solutions to (4.2.8) and (4.2.9)
can differ by at most a constant factor. That is,

where B(l) is a constant. The argument (1) identifies it as the constant that con-
nects two solutions that are related by a unit translation. It is clear that a similar
relation holds for any lattice translation, say, by r units, so

Also, for two translations r and r', we have

But treating (r + r') as a single translation gives
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and therefore

Since B for the sum of two translations taken together is the product of the
Bs for the translations taken separately, it is convenient to define a parameter
a that allows us to write B(r) in exponential form. Accordingly, we define a by

so that (4.2.14) now becomes

It is clear that if we knew the values of the parameter a, we would have an
explicit expression for the harmonic oscillator solutions to our problem. These
values can be obtained by considering the ends of the chain. If the chain is
long enough, what happens to the ends of the chain cannot have any measur-
able effect on its physical properties. It can, in fact, be proven mathematically
that the boundary conditions at the ends (surfaces for three-dimensional lat-
tices) can have no physical effects if the number of atoms is large. We will
simply take this result to be physically reasonable and treat the ends of the
chain on the basis of convenience. Accordingly, we treat the chain as if its two
ends were superimposed by requiring that

That is, we imagine that the chain forms a circle that now contains N atoms.
For a large enough number of atoms, the properties of this circle cannot differ
appreciably from those of a linear chain. This is the periodic boundary condi-
tion, which when applied to (4.2.6) gives

But from (4.2.11) and (4.2.15),

It therefore follows that

or, equivalently,

where n is any integer, (0, ±1, ±2, ±3 , . . . ) .
The periodic boundary conditions have allowed us to determine a set of as

relating v(r) to v(0) for any r by

where o is limited to the set of values
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Now we can go back to (4.2.6) and write the proposed trial solutions as

where v(0) is a constant. Let us define a new parameter q by o = aq and write
(4.2.24) as

This is just the form of a plane wave of frequency CO with am being the dis-
tance parameter and q being 2n times the wave number. Because of (4.2.23) the
qs can only take on the values

Because of the periodic boundary condition, the integers 0 and Nin (4.2.26)
yield identical waves. Therefore, there are only AT independent solutions of the
form of (4.2.25) and only Nindependent values of q, so there are as many solu-
tions as there are atoms in the chain. Also the integer n produces the same
wave as the integer n + N, so the solutions are periodic and the range of q from
-7i/a to +n/a covers all N solutions.

Because q has the interpretation of a wave number, it must be closely related
to the frequency CO. This relationship can be found by substituting (4.2.22) into
(4.2.8) to get

or, solving for mat2,

It has already been pointed out that the force constant Cri depends only
on the magnitude of the difference of the atomic position indices |r - j\.
Therefore, the right-hand side of (4.2.28) can be written as a sum over |; - r|,
and when the summation is performed, neither / nor r will appear in the
result. Equation (4.2.28) is therefore an equation for co2 as a function of
0 or, as it is usually stated, a function of q. The cos form a discrete set becaus
the qs can only take on the values determined by (4.2.26), and there are
precisely N of them, one for each degree of freedom of the chain. From
now on, we will label the frequency to emphasize this fact and write it as
co(q).

We now have a set of special solutions to the equations of motion whose
number is just equal to the number of degrees of freedom. The general solu-
tion is just a linear combination of the special solutions, so the displacement
of the rth atom becomes

where the v(0) has been absorbed into the constant Aq.
Equation (4.2.29) shows that the atomic displacements are linear combina-

tions of plane waves. It is useful to write (4.2.29) as
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where T|q is defined by

Equation (4.2.30) can be regarded as connecting two different sets of coor-
dinates, the ur and the r\q. The advantage of this is that the equations of motion
for the chain turn out to be separable into N equations, one for each degree of
freedom when expressed in terms of the r\T (This is not the case when the
atomic displacements themselves are taken as the coordinates.) To show this,
substitute (4.2.30) into the equation of motion (4.2.5) to get

or

But using (4.2.28) in (4.2.33) reduces the double sum to a single sum over q,
and we have

The r\q are independent coordinates and each term in (4.2.34) is independent.
This means that the sum in (4.2.34) can be zero only if each individual term
is zero. That is,

This result could have been obtained directly by differentiating (4.2.31), but
the somewhat longer method given here shows that a coordinate transforma-
tion defined by (4.2.30) reduces the dynamical problem to a set of indepen-
dent harmonic oscillators. A similar procedure applied to three-dimensional
crystals yields a similar result. If the potential energy is quadratic in the dis-
placements, a set of coordinates can always be found that separates the equa-
tion of motion into independent equations of motion for independent harmonic
oscillators. This is an important result because it tells us how to get the energy
levels for a vibrating solid. They are just the energy levels of a set of harmonic
oscillators whose frequencies are determined by (4.2.28) (or its analog in the
case of two or three dimensions).

The allowed frequencies of the monatomic chain can be easily computed if
it is assumed that the potential energy depends only on the relative distance
between nearest neighbors and that the only forces acting in the chain are those
between nearest neighbors. The potential energy is taken to be zero when the
relative distance between atoms is the mean equilibrium distance, and is
nonzero only when the relative displacements are nonzero, then, instead of
(4.2.1), we write
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the djj being constants. [These are readily related to the Q, by multiplying out
the squares of the relative displacements and comparing the result to equation
(4.2.1).]

If we focus on an atom labeled m, we assume it interacts only with the atoms
at (m - 1) and (m + 1), so dm,m_4 and dm,m+i exist but all other dmj are zero.
Because all the atoms are identical, all the force constants acting between
nearest neighbors are the same and can be set equal to a constant K. For this
case, equation (4.2.5) reduces to

It has already been shown that (4.2.25) is a solution of (4.2.5) and therefore of
(4.2.36), so

The second derivative of (4.2.37) is

Putting (4.2.37)-(4.2.40) into (4.2.36) gives the relation between the frequency
and the wave number as

Using the trigonometric identity cosx = 1 - 2sin2(x/2) in (4.2.41) gives

Equation (4.2.42) shows how the frequency is related to the wave number and
is called the frequency dispersion relation for our nearest-neighbor monatomic
chain. Its form is shown in figure 4.2.

The first point to notice from equation (4.2.42) is that there is a maximum
frequency given by the fact that the highest value the sine can have is unity.
This occurs when qa/2 = n/2 or q = n/a. The maximum frequency is given by
(4.2.42) as

Frequencies higher than this cannot propagate through the lattice. The short-
est wavelength, corresponding to this maximum frequency, is obtained by
remembering that q is 2it times the wave number, so qm = 2n/XM= n/a and there-
fore the minimum wavelength is XM = 2a. The physical interpretation of this is
that waves with a length shorter than twice the spacing between atoms cannot
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Figure 4.2. Dispersion relation for vibrations of a monatomic chain.

exist because there is nothing to take part in the vibration in the space between
the atoms. Wavelengths less than the order of the atomic spacing have no
meaning in a discrete structure.

The second important point to note is that the wave velocity is not constant.
Since the velocity of a plane wave is defined by v = A.co/271 = co/q,

so waves of different frequencies have different velocities. This is why the
co = co(q) function is called the frequency dispersion relation.

It is instructive to compare these results to those for the vibrations in a con-
tinuous string. This can be done by recognizing that (4.2.36) is a difference
equation that approaches a differential equation as the atomic spacing
approaches zero. Thus, if we make the transition from the discrete chain to the
continuous string, then

This treats u as a continuous displacement in a continuous string and in the
continuum limit (4.2.36) becomes

where the mass m now becomes a linear mass density. But (4.2.47) is just the
equation of wave motion in one dimension; that is,
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with the wave velocity given by

Solutions of (4.2.48) exist that have the form

where A is a constant, as can be verified by direct substitution. This is the
equation of a one-dimensional wave that is periodic in x and t with a frequency
V0 = co0/2;t and wavelength A,0 where

Since v0 is a constant, (4.2.51) is just the ordinary frequency-wavelength
relation for a nondispersive medium. The continuum limit is a representation
of one-dimensional sound waves.

The correspondence between the continuum and the discrete cases is
apparent from a comparison of equations (4.2.25) and (4.2.50). The quantity
am plays the role of x, and q corresponds to 2jtA0. In the continuum case,
however, there is no upper limit on the frequency and the velocity is not a
function of wavelength.

When the wavelength is very large, q is very small and the sine in (4.2.42)
can be expanded in a power series. If q is small enough, it is sufficient to keep
only the first term of the expansion, with the result that

But co = 2?iv and q = 271/1, so (4.2.52) gives v = a/X -jKIm, (q->0) or, using (4.2.49),

which is the same as (4.2.51).
This analysis shows that in the limit of very large wavelength, the chain

behaves as a continuous string carrying a sound wave. This conclusion carries
over to the more general case of two or three dimensions and with interactions
among atoms that are not restricted to nearest neighbors. All that is required
is that the potential be quadratic in the displacements. For long waves, a crystal
can be treated as a continuous elastic solid.

The treatment given here is restricted to one dimension but it is readily
generalized to three-dimensional crystals. The wave number q then becomes a
wave number vector q and instead of the condition (4.2.26) we have

where ji,, n2, n3 are integers ranging from 0 to Nc and bt, b2, b3 are reciprocal
lattice vectors defined by
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The a,- are the basic lattice vectors defined by the size and shape of the unit
cell, ATC is the number of unit cells, and 8,y is the Kronecker delta. The dis-
placement vector ur of the rth atom in a three-dimensional crystal is related
to a set of independent, harmonic oscillator-type coordinates by equations
similar to equation (4.2.30) but generalized to three dimensions.

It is a general result of mechanics that whenever the potential energy of
a set of interacting particles is a quadratic function of the particle displace-
ments, a set of coordinates can be found whose equations of motion are
those of a set of independent simple harmonic oscillators. This can be
proven directly without using the trial solutions we have resorted to here. Such
a set of coordinates are said to represent the normal modes of the motion, and
what we have done for the linear chain is to analyze its motion into normal
modes.

The solution of the equations of motion of real crystals requires that the force
constants acting among the atoms be known. A specific calculation must be
made for each different material from a detailed knowledge of the crystal
energy as a function of atomic displacements. The end result that is important
for the thermodynamic properties is the set of frequencies of the normal mode
vibrations.

4.3 Partition function and free energy of the
harmonic crystal

For the harmonic model, the energy levels of a crystal containing N atoms
are the same as those for a set of 3JV independent simple harmonic oscillators,
the /th oscillator having a frequency v;-. The possible energy levels associated
with this frequency are given by the quantum theory of the simple harmonic
oscillator as

where ns is a positive integer that can take on any value from zero to infinity.
The energy of the harmonic crystal is the potential energy when all atoms are
at their equilibrium positions plus a sum of terms like (4.3.1), one for each of
the 3N normal modes. The state of the crystal is therefore determined by a set
of integers and all possible states are determined by the possible sets of inte-
gers iij. If U0 is the potential energy when all atoms are at their equilibrium
positions, the energy of the crystal when it is in a particular state defined by
the integers [njl = {nlt n2, n3,. .. , n3N] is therefore given by

The partition function is a sum over all states and is given by

But summing over all states means that the sum is to be performed over all
possible sets of integers. That is, for each normal mode of frequency v/, the sum
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is carried out over all integers from zero to infinity. Thus, substituting (4.3.2)
into (4.3.3) gives

Now let us define E0 by

This is the zero point energy. The sum is the vibrational zero point energy,
which derives its name from the fact that at zero temperature none of the higher
vibrational quantum states are excited and each normal mode is in its lowest
state with energy hVj. Using (4.3.5), we rewrite (4.3.4) as

Equation (4.3.6) looks complicated but it is easily simplified. Because of the
convenient properties of the exponential function, the exponential of a sum
is the product of the exponentials of the factors. Therefore, the multiple sum
reduces to a product of sums, all of which are alike except for the subscript /
on the frequencies, and (4.3.6) becomes

Since all the sums have the same form, the subscript on the ns can be thrown
away and (4.3.7) can be written as a product of similar sums with one factor
for each frequency:

The infinite sum over n can be performed: if xy is defined by

then

But this is just a geometric series whose sum is 1/(1 - x/}, so

Putting this into (4.3.8) gives the partition function as
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and the Helmholtz free energy A = -kTlnZ is

Now a complete theory of the thermodynamic properties of a harmonic crystal,
complete with numerical results, can be constructed, provided we know the
values of the frequencies. This, of course, is the fundamental problem of the
theory of the harmonic crystal.

It was pointed out in section 4.2 that the frequencies can indeed be found
from a solution of the equations of motion, and this has actually been done
for a number of crystals. There are two disadvantages with such an approach.
The first is that the force constants are not generally known to a high degree
of accuracy for most crystals. This is an especially serious defect for
those many crystals for which the nearest neighbor approximation is not very
accurate. The second disadvantage is that a separate numerical calculation
is needed for each case. The simplicity and coherence of being able to express
statistical mechanical results in a single set of equations are thereby lost.

Historically, a different approach was taken, based on simplified approxi-
mations to the frequency spectrum in solids. Such approximations were sug-
gested at about the same time (Einstein in 1907, Debye in 1911) that the
dynamical equation of motion methods were being developed (1912) and were
so useful that the more rigorous equation of motion methods were investigated
vigorously only in more recent times.

It is convenient to replace the sum in (4.3.13) by an integral. This can be
done by defining a frequency distribution function g(v) such that Ng(v)dv is
the number of modes with frequencies between v and v + cfv. Since there are
3N vibrational modes altogether, the normalization condition for g(v) is

The Helmholtz free energy is put into integral form by multiplying the
summand in (4.3.13) by Ng(v)dv, replacing the sum by an integral from zero
to infinity, and dropping the subscript on the frequency. The result is

Similarly, the partition function is expressed in the continuum notation as

If g(v) were known, the problem would be solved. The approximate methods
mentioned above are actually approximations to g(v), and we will examine
these shortly.

At this point it is instructive to establish the relation of the frequency dis-
tribution function to dynamical theory by showing that g(v) can be obtained
from a knowledge of the frequency as a function of wave number. For the one-
dimensional case, we start with equation (4.2.26), which, treating q and n as
quasi-continuous variables, gives
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We can now restrict the u and dn to positive integers by taking the number of
vibrations in the frequency range dv to be twice the number of integers in the
corresponding range dn, and therefore

Combining these last two equations and solving for g(v) shows that

so if the frequency is known as a function of wave number from a solution of
the equations of motion, g(v) can be calculated. Similar considerations hold for
the three-dimensional case with the general result that the frequency distrib-
ution function can be computed from the dispersion relation.

4.4 General heat capacity equations

The heat capacity at constant volume can be obtained from the thermodynamic
relation which gives the heat capacity in terms of the second derivative of the
Helmholtz free energy. It can also be more conveniently obtained by directly
differentiating the energy, which will be done here. From the definition of
statistical mechanical averages in the canonical ensemble, the energy of any
system is given by

where the partition function, as usual, is

the sums in (4.4.1) and (4.4.2) being taken over all possible states.
If Z is differentiated with respect to the variable 1/kT, the result is

Comparing (4.4.3) with (4.4.1) shows that

The energy levels are kept unchanged during this differentiation so that the
derivative in (4.4.4) is at constant volume.

Equation (4.4.4) is perfectly general and is readily applied to the harmonic
crystal. Therefore, differentiating (4.3.16) in accord with (4.4.4) gives the
energy of a harmonic crystal as
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and the derivative of this with respect to the temperature gives the heat
capacity at constant volume as

The procedure leading to (4.4.6] could, of course, just as easily have been
carried out in the discrete notation, with the result that

From now on, we will use either the discrete or the continuum notation as
convenient without further comment.

Some interesting results follow from (4.4.6) even in the absence of any
detailed information about g(v). First, as shown for the case of the monatomic
chain, there must be an upper limit on the possible frequencies in the crystal.
Because of the atomistic, discrete structure of crystals, wavelengths shorter
than some value of the order of the lattice spacing have no meaning, so fre-
quencies cannot be arbitrarily large and some maximum frequency must
exist. As a result, a temperature T must exist that is high enough to ensure that
hv/kT«1., so it is reasonable to seek a high-temperature limiting form of (4.4.6)
based on a series expansion of the exponentials. Let us therefore take a look at
the function E(x) defined by

E(x) is called the Einstein function.
A series expansion for the Einstein function can be found by using the series

representation of the exponential functions, which are

Putting these expansions into (4.4.8) gives

Inverting the series in the parentheses gives

If we identify hv/kT with x, then (4.4.6) is
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Therefore, replacing x by hv/kT in (4.4.12) and substituting the result in
(4.4.13) gives the high-temperature result as

The dots have been dropped and only the first three terms have been retained
because this expansion is only useful for high temperatures. If g(v) is known,
(4.4.14) can be integrated term by term. Actually, the first term does not depend
on the form of the distribution function, and it can be evaluated immediately
because of the normalization condition (4.3.14). Also, the second and third
terms are proportional to the second and fourth moments of the distribution
function, so we write (4.4.14) as

If the temperature is high enough, all terms but the first can be ignored and
to a good approximation Cv = 3Nk. This is in fact the Dulong-Petit law, which
was first enunciated on the basis of experimental observations in 1819, in
which it was noticed that, for many solids, the heat capacity was close to
six calories per gram atom. In many cases, room temperature is high enough
for the approximate validity of the high-temperature limit. Of course, it was
found that some elements did not follow the Dulong-Petit law and that at
low temperatures the heat capacity was much less than six calories per gram
atom. These facts were important in the early development of the theory of
solids.

The value of 3Nk for the heat capacity is just what is obtained from classi-
cal statistical mechanics in which the partition function would be computed
from the energy of classical oscillators. The deviation of the heat capacity
from 3Nk is a direct quantum mechanical effect. Since the heat capacity is
the derivative of the energy, the high-temperature limiting value of the energy
is U = 3NkT. There are 3N oscillators, so the energy per oscillator is kT.
This is called the classical equipartition of vibrational energy because the
energy is equally divided among all the vibrational modes.

What happens at low temperatures? In this case hv/kT is very large and the
heat capacity approaches zero as the temperature goes to zero. This is evident
from taking the limit of E(x):

E(x) starts out at zero when T is zero and increases monotonically, approach-
ing unity asymptotically as T goes to infinity.

4.5 The Einstein model

The simplest choice to make for the vibration spectrum of a harmonic crystal is
to assume that all vibrational modes have the same frequency. Einstein made
this assumption and in 1907 worked out a theory of heat capacity on this basis
that accounts for the experimental data rather well and clarified the quantum
mechanical origin of the low-temperature deviations from the Dulong-Petit law.

If all modes have the same frequency VB, then the heat capacity (4.4.7)
becomes
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This is the Einstein formula for the heat capacity. The fact that it gives a pretty
fair representation of the heat capacity is a remarkable success considering that
it rests on the assumption that all atoms vibrate independently with the same
frequency. It is worthwhile noting that the Einstein theory is quite accurate for
the vibrational contribution of the specific heat of diatomic gases. In this case,
the interactions among molecules are weak and each molecule is an indepen-
dent oscillator.

It is convenient to define a parameter with the dimensions of temperature,
®B, by

and rewrite (4.5.1) as

From (4.4.8), we see that (4.5.3) can be abbreviated by writing it in terms of
the Einstein function as

Qs is called the Einstein characteristic temperature and is obtained by finding
the best fit of (4.5.3) to experiment. An advantage of defining a characteristic
temperature is that the heat capacity then becomes a universal function of the
ratio of the temperature to the characteristic temperature for all crystals. The
form of the Einstein heat capacity is shown in figure 4.3, where Cv is plotted
against T/QE. Above about T= QE/2 the theory is fairly accurate. Typical values
of the Einstein characteristic temperature are in the neighborhood of 300K.
Using (4.5.2) gives an estimate of the magnitude of crystal vibration frequen-
cies to be vs ~ 1013/sec.

4.6 Superposition of Einstein oscillators

Equation (4.4.6) shows that the most general form of the heat capacity is a
superposition of Einstein functions, the contribution of Einstein oscillators of
each frequency being determined by the frequency distribution function g(v).
The heat capacity equation is therefore the sum of many curves similar to that
in figure 4.3. All these curves start out with a value of zero at the origin, and
as shown from the analysis of the high-temperature limit [equation (4.4.15)],
they all approach the same value at high temperatures. This means that the
differences among theories with different assumptions about g(v), and between
these theories and experiment, will occur at low and intermediate tempera-
tures. At higher temperatures all theories of g(v) will give about the same
results. The reason for this is that the Einstein function E(x) is relatively insen-
sitive to changes in x at low x values.

An important consequence of the Einstein function is that not all frequen-
cies are equally significant at all temperatures. E(x) is small when x is large,
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Figure 4.3. The Einstein heat capacity function.

and x is essentially the ratio of frequency to temperature. If the temperature is
very low, then E(x) is small unless the frequency is also low. That is, at low-
temperatures only-low frequency, or long-wavelength, vibrations contribute
significantly to the heat capacity. The high-frequency vibrations are simply
choked off by the form of the Einstein function. As the temperature is raised,
the frequency values that can contribute to the heat capacity increase. This can
be summarized by saying that at low temperatures only the low-frequency
modes are excited, and as the temperature increases more and more of the
higher frequencies become excited. As a consequence of this we can anticipate
that at low temperatures the heat capacity can be treated as arising from
low-frequency sound waves. This is consistent with the result in section 4.2
that the equation of motion of a discrete crystal structure reduces to that of an
elastic continuum in the long-wavelength limit.

4.7 The Debye model

Debye assumed that the frequencies in a crystal are distributed as though the
solid were an isotropic elastic continuum rather than an aggregate of particles.
The distribution function g(v) can then be obtained by just counting the
number of sound waves that can exist in a given frequency range.

This procedure should work well for long wavelengths because, as shown
in section 4.2, the long wavelength limit of the vibrations in a discrete struc-
ture gives the same result as a continuum. The reason for this is that long waves
consist of the cooperative motion of large numbers of atoms and in such cases
the discrete structure is not important. This is the physical reason that the dis-
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persion relation at low frequencies is linear, corresponding to elastic waves
being propagated at a constant velocity. But the Debye assumption cannot be
right at high frequencies because the short waves are sensitive to the discrete
nature of the medium and the dispersion relation is not linear. The discrete
structure of the crystal introduces the additional complication that waves
shorter than the lattice spacing have no meaning, so there is an upper limit on
the frequencies. This difficulty is easily met by introducing a cutoff frequency
above which g(v) is zero and no vibrations exist. The dispersion problem,
however, is simply ignored in the Debye model.

The Debye model works quite well, and at first sight, this is surprising
considering the physical assumptions it contains. The reasons for its success
can be understood by referring to the results of preceding sections. At low tem-
peratures the form of the Einstein function is such that low frequencies make
the major contribution to the heat capacity, and the low frequencies are well
described as vibrations in a continuum. At high temperatures, it was shown
that the heat capacity is not very sensitive to the form of g(v), and if the tem-
perature is high enough it is independent of any information about the vibra-
tions at all. The Debye model should therefore work well for low and for high
temperatures. Deviations between the Debye model and experiment should
manifest themselves at intermediate temperatures. It turns out that this is
indeed the case, but even at intermediate temperatures the troubles are not
serious.

To derive an expression for g(v) in the Debye model, suppose that the spec-
imen is a cube of side aL (where L is a positive integer and a is a lattice spacing)
and attach a coordinate system to one corner such that the Cartesian coordi-
nates of any point in the specimen lie in the range

Any frequency can be impressed on an elastic continuum but only standing
waves concern us here. All other waves would die out rapidly and cannot cor-
respond to the thermal vibrations that exist in a crystal. The possible wave-
lengths are therefore determined by the dimensions of the specimen.

Consider a particular standing wave with wavelength A,- traveling in a direc-
tion determined by a unit vector n that has direction cosines aa, cc2, oc3 relative
to the x, y, and z axes, respectively. For a standing wave traveling in the direc-
tion of the x-axis the half-wavelength must be an integral submultiple of the
length of the box. For the wave traveling in the direction n, this condition must
be fulfilled by the x—component of the wave number vector n/A,. That is,

where ;t is any positive integer from 1 to L.
Similarly, for the projections of n/A, in the y and z directions,

J2 and J3 also being any positive integers from 1 to L. Each possible wavelength
is associated with a set of three positive integers d\, jz, J3), which form a cubic
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lattice in a /-space, and we have a problem completely analogous to that of
determining the density of states of a gas of independent particles, which we
solved in connection with the development of particle statistics in section 3.4.
If we define 7 in the integer space by

then, in quasi-continuum language, the number of possible vibrations in a
given range of wavelength, dK, corresponding to a range dj, is

From this, we want to compute the number of vibrations in a given wavelength
range. From the theory of sound vibrations in an isotropic elastic solid, we
know that three distinct waves are possible for each wavelength. One of these
is longitudinal, and two are transverse, so the number of vibrations in a given
frequency range should be written as

gi(v) and gt(v) being the frequency distribution functions for the longitudinal
and transverse waves, respectively. Since there is only one longitudinal wave
per wavelength, (4.7.6) gives the number of longitudinal waves directly:

and all that is needed is a relation between v and ;'. Summing the squares of
(4.7.2)-(4.7.4) gives

or, since the sum of the squares of the direction cosines is unity, using (4.7.5)
gives

The wavelength is related to the frequency by Kv = C, where C is the wave
velocity. Therefore, for longitudinal waves with a velocity Q, we have

Combining this with equation (4.7.10) gives

and therefore
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from which we get

Now we can use (4.7.13) for f and (4.7.14) for dj in equation (4.7.8) to get the
distribution function for longitudinal waves as

where L3 has been replaced by the volume V. The calculation for the transverse
modes is just the same except for a factor of two because there are two trans-
verse modes for each frequency. The result is

Cf being the transverse velocity of sound. Adding (4.7.15) and (4.7.16) gives
the frequency distribution for the isotropic elastic solid:

It is convenient to lump the constants in (4.7.17) together into a single symbol
B denned by

and write (4.7.17) as

Notice that B contains constants that can be measured independently of heat
capacity data. The frequencies will integrate out in the statistical mechanical
equations, so the values of B obtained from the density and velocities of sound
in the crystal can be compared to those obtained by fitting heat capacity data.
This will give a measure of the accuracy of the Debye model.

The constant B can be related to the cutoff frequency required by the dis-
crete structure of the crystal by using the normalization condition (4.3.14).
Calling the cutoff frequency VB, this gives

Performing the integration we get

Later, we will need a characteristic Debye temperature, @D, which is defined
by
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In terms of QD, B is

An estimate of the values of VD and QD can be made from data on the density
and velocity of sound in solids using the definition of B given by (4.7.18)
and equations (4.7.21) and (4.7.23). If the velocity of sound is of the order of
105 cm/sec (we ignore the difference between longitudinal and transverse
velocities for the purposes of this calculation) and we take the density to be
about 1023 atoms/cm3, then VD is of the order of 1013 vibrations per second and
the Debye characteristic temperature QD is in the neighborhood of 400K.

4.8 Debye energy and heat capacity

The energy and the heat capacity for the Debye model are obtained by substi-
tution of the Debye frequency distribution function (4.7.19) into equations
(4.4.5) and (4.4.6). The results are

The constant B in (4.7.19) has been replaced by its value in terms of the Debye
characteristic temperature according to (4.7.23), and the cutoff frequency of
Debye has been introduced as the upper limit on the integrals. (U - E0) is the
thermal energy and plays an important role not only in the heat capacity but
also in the theory of the equation of state.

To simplify the appearance of these equations, define a parameter x by

When T = &D this parameter has the value XD given by

Now define two functions DE(xD) and D(xD) by

Using (4.8.5) and (4.8.6), the energy (4.8.1) and the heat capacity (4.8.2) can
now be written in the following compact forms:
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Df{xD) and D(xD) are called the Debye energy function and the Debye heat
capacity function, respectively. They cannot be evaluated in closed form, but
their properties have been well studied. Tables of these functions are available
for use in numerical analyses, but with the widespread use of microcomput-
ers, the tables are no longer really necessary. [Note that DE(xD) is the thermal
energy per oscillator in units of k&D and D(xD) is the vibrational heat capacity
per oscillator in units of k.]

Analytic approximations to the Debye energy and heat capacity can be
obtained in the limits of low and high temperatures that are useful for the study
of crystal properties. For high temperatures ©D/T= XD is small, so the variables
of integration in the integrals of equations (4.8.5) and (4.8.6) are small and it
is legitimate to use Taylor series expansions. To do this for the thermal energy,
define a function f(x] by

and expand it in a Taylor series to the second order in x:

The values of f(x) and its derivatives at x = 0 can be computed by using the
series expansion for the exponential

in equation (4.8.9) and then taking the limit as x goes to zero. The result is

Using these values, (4.8.10) becomes

Multiplying this by x2 gives us the integrand we were after, which can be sub-
stituted into (4.8.5) to yield

Now perform the integration to get
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The Debye heat capacity function in the high-temperature limit is obtained
even more simply because (4.8.6) is just x2 times the Einstein function, and we
have already derived the high-temperature limiting formula for the Einstein
function. Therefore, multiplying (4.4.12) by x2, the high-temperature limit of
the integrand in (4.8.7) is

Putting this in (4.8.6) and performing the integration gives

The high-temperature approximations for the Debye energy and heat capacity
are obtained by substituting (4.8.15) and (4.8.17) into equations (4.8.7) and
(4.8.8), respectively, to get

As required by the general theory of section 4.4, the energy and the heat
capacity approach the classical limit in which each oscillator has an energy
kT and a heat capacity k.

The low-temperature limit is obtained by first writing the integral in the
definition of the Debye energy (4.8.5) as the difference of two integrals:

The first term on the right-hand side in this equation is a definite integral whose
value is known to be rc4/15. To approximate the second term, remember that
xDis large when T is small. This means that unity can be neglected relative to
the exponential term and the last integral in equation (4.8.20) can therefore be
approximated by1

Putting these results in (4.8.20) and multiplying by 3/Xo gives the low-
temperature approximation to (4.8.5) as

Actually, an approximation in which terms beyond the first two are retained
is not useful, so we take the low-temperature approximation to be
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The low-temperature approximation to the heat capacity function is derived
in a similar manner by writing the integral in (4.8.6) as a sum of two integrals
as follows:

The definite integral on the right-hand side has the value 4re4/15, and in the
second integral the exponential e? needs to be retained because x is large. We
therefore have2

where we neglect powers of XD lower than the fourth. Multiplying (4.8.24) by
3/xf> gives the low-temperature Debye heat capacity function as

Equations (4.8.23) and (4.8.25) can now be put into (4.8.7) and (4.8.8) to give
the low-temperature approximations to the Debye energy and heat capacity,
respectively:

The Debye model predicts that at very low temperatures the heat capacity
varies as the cube of the temperature. Because only long waves are important
at low temperatures and because the long waves are well represented by an
elastic continuum model regardless of the choice of frequency distribution
function, we would expect the T3 law to be valid if the temperature is low
enough. This is verified by experiment.

The theory presented here is valid only if lattice vibrations are the only cause
of the variation of energy with temperature. When other factors are present,
such as phase transformations or "free" electrons in metals, additional con-
tributions to the heat capacity must be considered.

4.9 Relation between Einstein and Debye
characteristic temperatures

The Einstein model can be thought of as describing crystal vibrations by replac-
ing all of the vibrational frequencies by a single average frequency. Given the
Debye model, an equivalent Einstein frequency can be defined as the average
frequency for the Debye frequency distribution. This average is
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or, performing the integral,

so if the average of the Debye spectrum is identified with the Einstein
frequency, we have

An alternative method of relating the Einstein and Debye models is to require
that the two theories match closely in some temperature range. At low tem-
peratures, analysis shows that the Einstein heat capacity varies as (QE/T)2e"eE/T.
Since the Debye heat capacity varies as (T/QD)3, no sensible comparison can be
made. At high temperatures, both theories approach the classical limit of 3Nk
and the first term in the high-temperature expansion that contains any infor-
mation about the frequency spectrum is quadratic in the frequencies, as is
evident from equation (4.4.15).

For the Debye model, the mean square frequency is obtained from the Debye
distribution function (4.7.19) as

Now if the Einstein frequency is identified with the root mean square of the
Debye distribution, we get

The connection between the Einstein and the Debye model is approximately
the same for both the mean and the root mean square relations. Use of (4.9.5)
gives a rather good match between the Einstein and the Debye heat capacity
data at high temperatures, while the overall fit is better when the average given
by (4.9.4) is used.

Figure 4.4 shows a comparison of the heat capacity per oscillator in the
Einstein and Debye theories when we take QE = 0.750D. The two theories give
significantly different results only at temperatures lower than about half the
Debye temperature.

4.10 Comparison of Debye theory with experiment

The Debye theory has been tested for a large number of solids by fitting the
theory to experimental heat capacity data, using ©D as a disposable parameter
to be computed from the data. The result is that a ©D can always be found such
that the deviation of the data from that predicted by the Debye theory is small.
The Debye theory therefore gives an excellent theoretical description of the
heat capacity. Values of the Debye temperature obtained by fitting the theory
to experiment are given for a number of crystalline solids in table 4.1. But com-
parison with heat capacity data is not the most sensitive way to test the Debye
theory. Section 4.4 showed that the theory is not very sensitive to the form of
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Figure 4.4. Comparison of Debye and Einstein heat capacity functions.

the frequency distribution function, especially at higher temperatures. The Ein-
stein and Debye models therefore give quite similar results. This is comforting
in that the Debye theory can be used with an assurance that is not really jus-
tified by the fundamental assumptions, but it is not of much help if we want
to investigate the validity of these assumptions.

Another way of testing the theory is to start with the definition of the
frequency distribution function as being that for an elastic solid continuum.
From equations (4.7.18) and (4.7.23), the Debye temperature is related to the
velocities of sound by

The velocity of sound can be measured directly or computed from elastic con-
stants, so (4.10.1) can be used to compute &D from information that is directly
connected to the core of the model. The Debye temperatures obtained in this
way can then be compared with those obtained from heat capacity data. Such
a comparison is given in table 4.2, which shows that the Debye temperature
computed from the velocity of sound is not very different from that obtained
from heat capacity data. In many cases, the two results differ by less than 5%.
Some solids, however, show a considerable difference between the two
methods. This is particularly true for anisotropic crystals, as would be expected
because the theory is based on that of an isotropic elastic continuum,

A third test of the theory is to see if the data actually follow the T3 law at
low temperatures. If the Debye theory is correct, then a plot of Cv data against
T3 should be linear. The evidence is very good that the T3 law holds for simple



Table 4.1:
from Heat

Element

A

Ag
Al
As
Ail
B
Be
C (diamond)
C (graphite)
Ca
Cd
Co
Cr
Cu
Fe
Ga
Ge
Gd

Hg
In
K
Li

Debye Temperatures
Capacity Data

eD (°K)

85
215
394
285
170

1250
1000
1860
420
230
120
385
460
315
420
240
360
152
100
129
100
132

of Some

Element

Mg
Mn
Mo
Na
Ne
Ni
Pb
Pd
Pr
Pt
Sb
Si
Sn (gray)
Sn (white)
Ta
Tb
Ti
Tl
V
W
Zn
Zr

Elements

eD (°K>

318
400
380
150

63
375
88

275
74

230
200
625
260
170
225
100
380

96
390
310
234
250

From a compilation by De Launay (1956, p. 233). "(he American Institute of

Physics Handbook (1957) contains another compilation based on low-

temperature heat capacity data.

Table 4.2: Comparison of Debye Temperatures Based
on Heat Capacity and Velocities of Sound

Element

Al
Fe
Cu
Ag
Cd
Pt
Pb

QD (sound velocity;

399
467
329
212
168
226

72

Taken from a compilation by Slater,

Physics; McGraw-Hill, New York, p. 237

°K) 0D (heat capacity;

394
420
315
215
120
230

88

°K)

J.C.; 1939; Introduction to Chemical
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solids if the temperature is low enough. It was previously thought that the T3

law is valid if the temperature is below 0D/12. More recent work, however,
shows that the temperature must be below 0D/50 for the T3 law to be accurate.
Of course, this is just a question of the degree of accuracy that can be obtained
in experiments.

Again, however, neither the computation of ®D from elastic constants nor the
verification of the T3 law is a very sensitive test because the long-wavelength
limit is expected to give fairly good results at low temperatures and at
high temperatures the theory is well described using a single root mean square
frequency. A more sensitive test is to use precision heat capacity data to
compute QD from equation (4.8.8) for each temperature at which data are taken.
This is easily done by using tables of the Debye function. If the Debye theory
is correct, then the Debye temperature computed in this way should be the
same for all temperatures. Any deviation from a constant in a 0D versus T plot
reflects an inaccuracy in the Debye theory. This is a sensitive method and
shows that for many crystals 0D is not constant with respect to temperature.
However, deviations from constancy are generally smaller than 20% and
often less than 10%. Crystals with the diamond or hexagonal structures
exhibit greater deviations than those with face-centered or body-centered cubic
structures.

The general conclusion to be drawn from the comparison with experiment
is that the Debye theory is very useful and quite accurate considering its doubt-
ful axiomatic ancestry. Detailed comparisons show that the theory contains
some defects that can be removed only by going to an actual lattice dynamics
calculation of the frequency distribution function.

4.11 The phonon gas

In the harmonic approximation, the statistical thermodynamic functions are
written in terms of simple harmonic oscillator frequencies. This is possible
because a coordinate transformation always exists that transforms a quadratic
form in the atomic coordinates to normal mode coordinates, thereby convert-
ing the dynamical equations of motion, which involve all the coordinates, to
a set of equations each containing only one normal mode coordinate. The
many-body problem of the crystal is then reduced to a set of one-body prob-
lems. But a set of independent one-body equations of motion is just what we
get for a system of independent particles, so normal mode analysis reduces the
vibrating crystal to an analog of a set of independent particles.

The equivalence of the harmonic approximation to an independent particle
model can be shown by considering a system of independent particles with
the following properties:

1. Each particle can exist in any of a set of energy levels z} = hVj.
2. There is no restriction on the number of particles that can occupy any

given level.
3. There is no restriction on the total number of particles in the system;

that is, particles are not conserved.

If the v; are the possible frequencies of electromagnetic radiation, then the par-
ticles are photons and the theory of black body radiation can be developed
from these three properties. If the v, are the frequencies of a vibrating solid,
then the "particles" are called phonons and, as shown below, the statistical
thermodynamics worked out in the preceding sections is equivalent to that for
a phonon gas.
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The second property listed above requires that phonons be described by
Bose-Einstein statistics. Because of the third property, however, the probabil-
ity distribution function is not quite the same as for material bosons. Phonons
can be created and destroyed, so in solving the variational problem for the sta-
tistical number of complexions, the restriction that dN = 0 does not apply in
this case. The corresponding Lagrangian therefore does not appear in the
distribution function. For phonons, |i = 0. Instead of the Bose-Einstein distri-
bution for material particles worked out above, we then have, for the number
of phonons in an energy range e, to e;- + de/,

or, in continuum language,

To write this in terms of the frequencies, recall that Ng(v)dv is the number of
modes in a frequency range v to (v + dv), which we now identify with the
number of phonon states in the same frequency range. This amounts to choos-
ing a density of states eo(e] that agrees with the frequency distribution in crys-
tals. Equation (4.11.2) now becomes

where N(v)dv is the number of phonons with frequency range v to (v + dv).
The energy of the system of phonons is now readily obtained by multiply-

ing (4.11.3) by the energy hv of a phonon of frequency v and integrating over
all frequencies. The result is

The heat capacity at constant volume of the phonons is just the temperature
derivative of (4.11.4), which is

We want to get the Helmholtz free energy by using the relation A = U - TS,
so we need the entropy. From thermodynamics, this is given by an integral of
the heat capacity as

Using (4.11.5), this gives, for the phonon gas,

The inner integral can be evaluated by means of the transformation y = ehv/kT,
so that the inner integral becomes
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Now let us integrate (4.11.8) by parts to get

Substituting this for the inner integral in (4.11.7) gives us the phonon entropy
as

Multiplying (4.11.10) by the temperature and subtracting the result from
the energy equation (4.11.4) gives the Helmholtz free energy for the phonon
gas AP=UP- TSP as

Now compare equations (4.11.4), (4.11.5), and (4.11.11), to the equations
for the energy, heat capacity, and Helmholtz free energy from the theory of
harmonic vibrations given by equations (4.4.5), (4.4.6), and (4.3.15). The two
sets of equations are identical except for the presence of the zero point energy
term E0 in the earlier set of equations. This term could have been included in
those for the phonon gas also, if the phonons had been defined as moving in
a constant potential U0 and if hv/2 were added to the definition of the phonon
energy e;-.

This analysis shows that, as far as the vibrations are concerned, the harmonic
crystal can be treated as a phonon gas. This concept is widely used in the
theory of solids. Note in passing that the frequency distribution function for
photons is given by

where c is the velocity of light. The theory of black body radiation is the theory
of bosons with the distribution function given by (4.11.12). The similarity to
the Debye solid is apparent through the dependence of the frequency dis-
tribution on the square of the frequency. The major difference is that a black
body is a true continuum with respect to radiation in that there is no cutoff
frequency.

Exercises

4.1 Derive the frequency distribution function from the dispersion relation
for a monatomic chain with nearest neighbor forces undergoing longitudinal
vibrations.
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4.2 The third law of thermodynamics states that the entropy of a perfect
crystal is zero at absolute zero of temperature. Verify this in two ways:

A. by recognizing that for a perfect crystal there is only one ground state
(i.e., wave function; neglect possible quantum degeneracy) and that
the ground state is realized at absolute zero, and

B. by using the Debye theory for the harmonic crystal and the thermo-
dynamic formula for the entropy as an integral containing the heat
capacity.

4.3 A crystal contains Nj impurity interstitial atoms, each of which vibrates
with three localized modes (three-dimensional Einstein oscillator with
Einstein temperature = 0B). The crystal has N identical atoms of the major
component and a Debye temperature of QD, which is not changed by the pres-
ence of the interstitials. Find the equation for the total heat capacity (at con-
stant volume) as a function of atomic fraction nt = Nj/N of interstitials in
terms of the Einstein and Debye temperatures. Write this equation for the
case when the Einstein characteristic temperature is twice the Debye tem-
perature for a temperature that is equal to the Debye temperature. What is
the fractional contribution of the interstitials to the heat capacity for Nj/N
of 0.5%? Use high-temperature approximations (to order T~2) for the heat
capacity equations.

4.4 Derive the formula for the vibrational zero point energy for a Debye solid
and compute the zero point energy in electron volts if the Debye tempera-
ture is 300K.

4.5 Show that, in the limit of high temperatures, the entropy of a harmonic
crystal in terms of the normal mode frequencies is

4.6 Show that, in the Debye theory, the high-temperature limit of the entropy
(derived in problem 4.5) becomes S = 3Mc[(4/3) - ln(0D/r)].

4.7 Find the low-temperature limit of the heat capacity of a harmonic
crystal in the Einstein approximation and compare it to the low-
temperature limit in the Debye theory. Why does the Einstein model fail
at low temperatures?

4.8 Work out the heat capacity theory for a two-dimensional Debye solid.
Show that at very low temperatures, the heat capacity (constant volume)
varies as the square of the absolute temperature. You need not evaluate the
proportionality constant.

4.9 Given a crystal consisting of diatomic molecules, assume that the vibra-
tional energy can be separated into two parts: a crystal vibrational energy
and a molecular vibrational energy. Let the crystal vibrations have a Debye
frequency VD corresponding to a Debye temperature 0D, and let the molecules
all have the same intravibrational frequency VM corresponding to a charac-
teristic temperature 0M.
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A. How would you compute QD and ®M from low-temperature heat
capacity data?

B. If the crystal lattice and molecular vibrational contributions are equal
at a temperature corresponding to T/QM = 0.1, what is the value of
T/©D at that temperature? What is the value of VM/VD?

Use low temperature approximations throughout.

4.10 Compute the values of the heat capacity per atom of an Einstein crystal,
in units of k, when the temperature is equal to the Einstein characteristic
temperature, and for a Debye crystal when the temperature is equal to the
Debye characteristic temperature. What is the ratio of these two heat
capacities?

JVotes

1. This integral is readily evaluated in terms of simple forms by a successive
integration by parts.

2. This requires only one integration by parts to be evaluated to the fourth
order.
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Anharmonic Properties and
the Equation of State

5.1 The crystal potential energy

The equation of state is the pressure as a function of temperature and volume.
It is contained in the thermodynamic relation

All that is needed is a statistical mechanical expression for the Helmholtz free
energy, which is then differentiated according to (5.1.1) to give the P-V-Trela-
tion. For the harmonic solid, the Helmholtz free energy is given by equation
(4.3.13).

If practical use is to be made of (5.1.1), the static crystal energy U0 as a func-
tion of volume must be known. In fact, the pressure term arising from the vari-
ation of U0 with volume is the largest contribution, so a major task of equation
of state theory is to determine U0 = U0( V). The general form of this function is
clear from a consideration of some simple observations on the condensation
of gases and on the compressibility of solids. Since cooling a gas reduces the
kinetic energy of its atoms, this means that when they are far apart the atoms
attract one another. At high temperatures the attractive forces are not strong
enough to overcome the kinetic energy, but as the temperature is lowered the
kinetic energy decreases, the attractive forces take over, and condensation
occurs. But at very large distances from each other, the attractive forces must
be small. Thus, we infer an attractive force between atoms that increases in
strength as the atoms come closer together.

But if only an attractive force existed, all matter would condense to a van-
ishingly small volume at very low temperatures. In fact, once a condensed
phase is formed, further decrease in temperature decrease the volume only by
small amounts, and compressibility experiments show that large external
forces are needed to decrease the volume of a solid or a liquid appreciably. We
therefore conclude that when atoms are very close together they repel each
other and that the repulsive force increases to very high values with decreas-
ing distance between the atoms. Also, the fact that solids have a definite
volume at low temperatures shows that there is a most stable configuration cor-
responding to a minimum in the potential energy.

These observations can be summarized by the following description of the
interatomic interactions: atoms exert both attractive and repulsive forces on

124
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each other. When they are very far apart their interactions are negligible, but
as they approach each other their mutual attraction increases with decreasing
interatomic distance due to the attractive forces. The attraction dominates until
the atoms get close enough to a point at which the repulsive forces become
large. These repulsions increase rapidly with decreasing distance. The equi-
librium volume of a crystal is determined by the balance of attractive and
repulsive forces when the potential energy of the crystal is a minimum.

A great deal of effort has been expended toward finding the theoretical form
for U0 = U0(V). For rare gas crystals, the energy has been successfully computed
by assuming that the atoms interact according to a Lennard-Jones potential of
the form

where ̂  is the potential energy of interaction of two atoms i and j when they
are a distance r,y apart, and A and B are constants. The first term in (5.1.2) rep-
resents the attractive potential, while the second term represents repulsion.
The static energy of a rare gas crystal is obtained by assuming that it is a pair-
wise sum of Lennard-Jones potentials summed over the crystal lattice.

For simple metals, theoretical crystal energies have been computed from the
nearly free electron model, which assumes that the metal consists of ion cores
immersed in a free electron gas formed from the valence electrons. The form
of the crystal energy is then found to be

N is the number of atoms, and z is the valence of the metal; rs is the
Wigner-Seitz radius, defined as the radius of a sphere whose volume is equal
to the atomic volume. That is,

In equation (5.1.3) the energy is expressed in rydbergs and the Wigner-Seitz
radius is in units of the Bohr radius. The first term on the right-hand side is
the interaction of the electrons with the ion cores. A simple approximate
expression for this term can be obtained from a quantum mechanical treatment
of a single electron near the edge of a unit cell in the field of the ion core at
the center. The result is

where ra is a constant. The second term in (5.1.3) arises from the kinetic energy
of the electrons in the electron gas, the third term is the Coulomb energy of the
mutual repulsion of the electrons, and the third term is the exchange energy,
which arises from the fact that, because of the exclusion principle, electrons of
like spin tend to avoid each other. The last two terms constitute the correlation
energy, which results from cooperative interactions among the electrons that are
not accounted for by assuming that they are independent particles.

The Lennard—Jones and the nearly free electron theories given above are only
two of many approaches that have been developed in efforts to describe the
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Figure 5.1. Crystal energy as a function of lattice spacing.

crystal potential energy. The most rigorous work consists of large-scale com-
puter calculations based on accurate approximations to the Schrodinger equa-
tion for crystals. Despite the fact that these are individual numerical
calculations, they can be organized in a remarkably simple way. In fact, a
simple form for the static potential energy function exists that is valid for a
large number of metals, given by Rose et al.1

The starting point is the set of first-principles quantum mechanical calcula-
tions of the crystal energy as a function of lattice parameter that have been per-
formed for a large number of elements. Each of these calculations gave a curve
similar to that shown in figure 5.1, which is a typical cohesive energy curve
showing that the energy of a crystal is a minimum at the equilibrium lattice
spacing (taken as unity in the figure). The energy scale is defined relative to
the minimum energy. At very close distances the energy is very high because
of atomic repulsions resulting from electron overlaps, while at very large dis-
tances the energy goes to a constant value corresponding to the energy of atoms
at infinite separation.

Rose and colleagues in 1984 found the remarkable result that the
energy-lattice parameter curves for elements for which the first-principles cal-
culations were performed could all be reduced to a single universal curve by
proper scaling. They did this by first defining a function g as the ratio of the
crystal energy to the magnitude of its value at the minimum (zero pressure):
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(The energy is written as a function of the Wigner-Seitz radius rs rather than
the lattice parameter.) This brings the scaled minimum energy values for all
crystals to the same value, namely g(rl?) = -1, but still does not bring all the
energy curves into coincidence.

The scaling of the distance is somewhat more complex. If all distances are
translated by the minimum Wigner-Seitz radius, the different energy curves
are brought closer together and their minima are all at the same point, but they
still do not coincide because the curves all have different curvatures. Let us
look at the curvature by expanding g(rs) to the second order in rs:

or, since g(r3 = -1 and the first derivative is zero at the energy minimum,

This is the equation of a parabola, which crosses the rs axis (g = 0) for values
of rs = r's, given by

or

go" being the second derivative in (5.1.8). The two values of r's given by (5.1.9)
define a length given by

which is the distance intercepted on the rs axis by the parabola (5.1.8). This
leads us to try using (5.1.10) as a scaling factor for the distance. The numeri-
cal factor in (5.1.10) is irrelevant, so we choose a scaling distance L as

U0(r^)" is the second derivative of the crystal energy with respect to the
Wigner-Seitz radius, evaluated at the equilibrium volume (zero pressure). It is
related to the bulk modulus by

The superscripts on the bulk modulus and the compressibility indicate that
they refer to zero pressure while the subscripts refer to the fact that (5.1.12)
includes only the static contribution and all vibrational contributions are
neglected. Using the definition of the Wigner—Seitz radius, we get
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so the scaling length (5.1.11) can be written as

where uS is the potential energy per atom of the crystal, evaluated at the zero
pressure, zero temperature, equilibrium value of the Wigner-Seitz radius.

Note that the scaling length contains only the energy and bulk modulus at
the Wigner-Seitz radius for which the energy is a minimum (for the static
crystal). These quantities are obtained either from experiment or from the first
principles calculation.

Now we define a reduced distance a by

r° being the Wigner—Seitz radius at the static energy minimum (zero pressure).
When the results of first principles calculations for the potential energy as a

function of volume are used to plot g against a for many metals, it is found
that for metallic elements all points fall on the same curve to a high degree of
accuracy. This curve is well represented by the equation

The static contribution to the equation of state is readily obtained by differen-
tiating the static crystal energy in (5.1.16):

or

From the definition of the scaling distance L and the Wigner-Seitz radius,
(5.1.17) is readily converted to

where V = V/V0 is the ratio of the volume to the volume at zero pressure. This
is the static part of the equation of state.

Note that we have used the fact that the parameter a can be written in terms
of V = V/Va, since from (5.1.15) we have
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Figure 5.2. Static equation of state of copper.

Equation (5.1.18) therefore states that the static contribution to the pres-
sure-volume relation for all pressures can be obtained from the cohesive
energy, the bulk modulus, and Wigner-Seitz radius at zero pressure.

The theory can be tested by computing an equation of state from (5.1.18) and
comparing it with experiment. When this was done, it was found to work very
well for a great many metals out to very high pressures. Of course, the exper-
imental data are at a finite temperature while the derivation of the theory
neglected all atomic vibrations. But at room temperature or lower the contri-
bution of the vibrations to the equation of state is small.

A calculation of the equation of state for copper is shown in figure 5.2. The
pressure is plotted in units of the bulk modulus, and the volume is in units of
its relative deviation from the value at zero pressure.

5.2 Anharmonic properties and the Gruneisen assumption

The full equation of state, including the vibrational contributions, is obtained
by differentiating equation (4.3.13) according to equation (5.1.1). In doing this,
it must be recognized that the frequencies are functions of volume. When the
volume changes, the interaction forces among the atoms change because of the
altered distances between them. In general, we can expect that, as the atoms
get closer together, the frequencies increase because of the increased force of
atomic interactions. This is clearly evident in the theory of the linear chain
worked out in section 4.2. The force constants in harmonic theory are second
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derivatives of interatomic potential functions, which makes them the first
derivatives of the interatomic force functions, evaluated at the mean atomic
position. Since the slope of the force function increases with decreasing inter-
atomic distance, the force constants, and therefore the frequencies, increase.
Conversely, the frequencies will decrease with increasing volume. Differenti-
ating (4.3.13) gives

The derivatives of the frequencies are an essential part of the equation of state,
and there is no easy way of getting them from first principles. To deal with the
variation of frequency with volume, Gmneisen assumed that

where y is a positive constant that is the same for all frequencies in a given
solid. Equation (5.2.2) is just the result of assuming that the frequency varies
inversely as some power of the volume as follows:

Vj being the frequency of the jth mode when the volume is V, and v" being the
frequency when the volume has some reference value V0, normally taken as
the volume at zero pressure. The constant 7 is taken to be the same for all fre-
quencies because it is then much easier to develop a theory from which cal-
culations can be made, y is a disposable parameter to be determined from
experimental data, and the validity of this approach is measured by the utility
and applicability of its results.

Adopting the Gruneisen assumption, equation (5.2.2) gives

Using these relations, it is possible to write statistical mechanical formulas for
volume-dependent properties and make several interesting connections among
the thermodynamic properties of a harmonic crystal. To do this, we need the
energy and heat capacity equations, which in the discrete notation are given
by equations (4.4.5) and (4.4.6) as

Now use (5.2.4) and rewrite (5.2.1) as
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But the sum in (5.2.8) is the same as that in (5.2.6), and therefore we can write

This is the Mie-Gruneisen equation of state. The pressure is displayed as a
sum of two terms. The first term does not contain the temperature explicitly
and arises from the variation of the potential energy of the nonvibrating crystal
with volume plus the variation of the zero point vibrational energy with
volume. The second term is a pressure that is proportional to the thermal
energy (U - E0).

The volume derivatives of the frequencies are required for both the com-
pressibility K and the thermal expansion coefficient a since they are deter-
mined by the thermodynamic equations

Differentiating equation (5.2.8) for the pressure with respect to volume and
using equations (5.2.4) and (5.2.5) for the volume derivatives of the frequen-
cies then gives the bulk modulus according to (5.2.10) as

In arriving at (5.2.12), the differentiation yielded sums over the normal modes
that were the same as those for the thermal energy and the heat capacity as
given by equations (5.2.6) and (5.2.7).

Differentiating the free energy equation (4.3.13) first with respect to volume
and then with respect to temperature and using the definition of the Gruneisen
constant (5.2.4), we get, from (5.2.11),

This is known as Graneisen's equation and can be used to compute the
Gruneisen constant since all other quantities are measurable and can be
obtained from experiment.

Equations (5.2.9), (5.2.12), and (5.2.13) show that the introduction of the
Gruneisen parameter allows the equation of state and its accompanying para-
meters (K and a) to be expressed in terms of thermal properties, that is, the
heat capacity and the thermal energy. The theoretical development of the
thermal properties can therefore be carried over bodily into equation of state
theory. In particular, the Debye theory, which was originally designed to
describe the heat capacity, can now be used for a theory of the equation of state
just by substituting the Debye expressions (4.8.7) and (4.8.8) for the thermal
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energy and the heat capacity into equations (5.2.9), (5.2.12), and (5.2.13). The
results are

The low- and high-temperature limits of equations (5.2.14)—(5.2.16) are
obtained by substituting the low- and high-temperature approximations for the
Debye energy and heat capacity functions as given by equations (4.8.15),
(4.8.17), (4.8.23), and (4.8.25). For T» QD, the results are

while for T « QD,

where we have retained only the dominant term in the low-temperature
expansion.

From experimental data we know that the equations of state and compress-
ibility of metallic, covalent, and ionic solids do not vary much with tempera-
ture when the temperature is low (T « 0D) This means that the thermal
contribution to equation of state properties is small at low temperatures. At
high temperatures, the thermal contribution is larger but still does not exceed
the zero temperature term. Note that although we refer to the terms containing
the derivatives of E0 as zero point or zero temperature terms, they are not really
temperature independent. Because of thermal expansion, the volume changes
with temperature, and since the "zero point" terms are volume dependent, they
are indirect functions of temperature. These terms are truly temperature inde-
pendent in heat capacity theory because that theory deals with constant
volume systems. Of course, if we want to write a theory for the heat capacity
at constant pressure, then the indirect temperature dependence of the zero
point energy must be taken into account.
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Let us recall that the zero point energy is given by equation (4.3.5) as

The second term is the zero point vibrational energy and is easily evaluated in
the Debye theory by converting the sum to an integral and using the Debye dis-
tribution function:

In the Debye theory, the zero point energy of the crystal is therefore

The derivative of the zero point vibrational energy is readily obtained within
the Gruneisen assumption because it applies to VD as well as to all other fre-
quencies, and since VD is proportional to the Debye temperature, (5.2.4) and
(5.2.5) can be rewritten as

Therefore, the first and second derivatives of the zero point energy (2.25) are

These equations show how the zero point contributions to the pressure and
the bulk modulus vary with volume in the Debye theory. The first derivative
of U0 is negative, and its magnitude decreases with the increasing interatomic
separation resulting from a volume increase, so the U0 derivative contributes
a term to the pressure, (5.2.20), that decreases with temperature. @D varies as
V~J, so the last term in (5.2.28) varies as V~J~1, and since the volume increases
with temperature, the magnitude of the last term in (5.2.28) decreases with
temperature, so the contribution of the zero point vibrational energy to the
pressure (5.2.20) decreases with temperature.

The total zero point energy therefore contributes a term to the pressure that
decreases with temperature. However, this variation is small because, if we
start at absolute zero, the potential energy is a minimum and, as we see from
(5.2.22), the thermal expansion coefficient goes to zero as Tgoes to zero. This
means that the dependence of volume at low temperatures is very small, so U0
and its derivatives are only weakly dependent on temperature at low temper-
atures. The temperature dependence of the zero point contributions to both the
pressure and the bulk modulus can therefore be neglected at low temperatures.
According to (5.2.20) and (5.2.21), they then both vary as T4 for T « QD.
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At high temperatures, however, the thermal expansion is not negligible, so
L/o and its derivatives vary with temperature and there is a contribution from
the zero point energy to both the pressure and the bulk modulus. According
to equations (5.2.17) and (5.2.18), the magnitude of the thermal energy contri-
bution to both the pressure and the bulk modulus increases with temperature.
The static energy terms, on the other hand, decrease with increasing tempera-
ture. That is, as the temperature goes up, the thermal vibrations make the
crystal harder while the spreading apart of the atoms makes it softer. The latter
effect dominates, and the bulk modulus always decreases with increasing
temperature.

The low-temperature T* dependence of the bulk modulus is actually ob-
served in solids with an accuracy that increases with decreasing tempera-
ture.

5.3 Heat capacity at constant pressure

The canonical ensemble leads to the Helmholtz free energy as the thermody-
namic potential most naturally related to the energy levels of the physical
system. This means that the theory gives the heat capacity at constant volume
rather than at constant pressure. Experiments, however, are most conveniently
done at constant pressure, and it is the constant pressure heat capacity that is
measured.

From thermodynamics, the relation between constant volume and constant
pressure heat capacities is

The presence of the compressibility and thermal expansion in this relation
shows that a theory of the constant pressure heat capacity must somehow
include the variation of the energy levels with volume. For crystals, the easiest
way to do this is to adopt the Gruneisen assumption by using equation (5.2.13),
which when combined with (5.3.1) gives

Section 5.2 showed that the thermal expansion coefficient approaches zero as
the temperature decreases and increases with increasing temperature. At low
temperatures, therefore, CP and Cv are nearly equal. Even at high temperatures
the difference is not large. Taking 7= 2 and a = 10~5 as typical values for metals,
then at T= 1000K, we get ya = 2 x 10~2. The two heat capacities therefore differ
by only a few percent.

5.4 Debye theory and the Gruneisen assumption

In the Debye theory, the vibrational frequencies v;- are the possible sound fre-
quencies. The longitudinal frequencies depend on the volume according to
equation (4.7.13), which, when solved for the frequencies and written in terms
of the volume V= L3, gives
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An exactly, analogous relation exists for the transverse waves, for which the
volume dependence is just like (5.4.1) except that it contains the transverse
velocity of sound rather than the longitudinal velocity:

Taking logarithms of these two equations and then differentiating gives

where we have written only one of the equations with the understanding that
C can be either the transverse or the longitudinal velocity of sound.

From the theory of elasticity, the transverse and longitudinal velocities in an
isotropic body are related to its elastic properties by

where p is the density and (j, and A, are the Lame constants, which are related
to the compressibility K and Poisson's ratio o by the equations

The left-hand side of (5.4.3) is just the definition of the Gruneisen constant,
and it is clear from the existence of two velocities of sound that if the Gruneisen
assumption is applied to the Debye theory, then two Gruneisen constants
should be used. From (5.4.3), these are given by

Using (5.4.4) and (5.4.5), and the fact that the density is inversely proportional
to the volume, (5.4.8) and (5.4.9) give the Gruneisen constants in terms of the
Lame constants as
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To be completely consistent with its assumptions, the Debye theory requires
two Gruneisen constants to describe the variation of the frequencies, and there-
fore of the Debye cutoff frequency VD and the Debye temperature &D, with
volume. The Debye theory contains only one cutoff frequency, but this is just
a result of assuming that the cutoff frequency is the same for both transverse
and longitudinal waves. The introduction of two cutoff frequencies and two
Gruneisen constants would greatly complicate the theory. Not only would
the algebra be a lot more cumbersome, but two Debye temperatures and two
Gruneisen constants would then have to be determined from experiment. The
accuracy of the underlying assumptions of the theory does not justify adding
these complications, and a single Debye temperature and a single Gruneisen
constant are usually adequate for a good description of heat capacity and a rea-
sonably fair description of equations of state.

5.5 Vibrational anharmonicity

From equation (5.2.13), we see that the thermal expansion coefficient vanishes
if y = 0. But if the thermal expansion is zero, then the derivatives of the zero
point energy in equations (5.2.14) and (5.2.15) are temperature independent
and the other terms vanish, so neither the equation of state nor the compress-
ibility depend on temperature. Also, equation (5.3.2) shows that the heat capac-
ities at constant pressure and at constant volume are the same if the Gruneisen
constant vanishes. The interpretation of a zero value for the Gruneisen con-
stant is that the crystal vibrations are precisely harmonic. This can be seen by
looking at equation (4.2.28), which gives the normal mode frequencies of a
linear chain in terms of the force constants Cy. For a harmonic crystal, the
potential energy is truly a quadratic function of the atomic displacements; the
force constants are independent of atomic positions and therefore independent
of volume. Equation (4.2.28) shows that in this case the frequencies are also
independent of volume and therefore Gruneisen's constant is zero.

Adopting a nonzero Gruneisen constant is a replacement of the harmonic
assumption that introduces anharmonic effects in an arbitrary way. The rela-
tion between the Gruneisen method and anharmonicity can be seen if we start
with an anharmonic potential. To the fourth order in the atomic displacements,
the potential energy of the crystal O is

where the us are the atomic displacements and the Cs are constants defined as
derivatives of the potential O with respect to displacements, evaluated at zero
displacements. (To avoid having too many symbols, the subscripts are meant
to label the atoms as well as the components of the displacements.) Equation
(5.5.1) is just a Taylor expansion of the potential energy to fourth order. (Both
third- and fourth-order terms should be retained when going beyond the har-
monic approximation because they both contribute comparable amounts to
physical properties. The reason for this is that, when the higher order contri-
butions to physical properties are treated by perturbation theory, the third-
order terms appear in the second-order perturbation while the fourth-order
terms appear in the first-order perturbation. Thus, although the fourth-order
force constants are roughly an order of magnitude smaller, they are still
important.)

Equation (5.5.1) holds for arbitrary displacements of the atoms and therefore
holds for the case when the displacements are the result of a change in volume
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of the static crystal. In this case, the displacements are the changes in the posi-
tion of atoms when the crystal volume is changed and the potential energy <!>
becomes the energy of the static crystal as a function of volume. The constant
U0 is now the energy of the static crystal at zero pressure, which we have
called (7JJ. For the case of a static crystal under pressure, equation (5.5.1) is
written as

The KJ are the changes in atomic position when the static crystal changes its
volume.

In the harmonic approximation, only second-order terms are used and the
force constants are the second derivatives of the potential. But if the crystal is
anharmonic, these second-order derivatives are not independent of volume, as
can be seen by taking the second derivative of (5.5.2):

So when anharmonicity is included, the second derivatives depend on the
atomic displacements and therefore on the volume of the crystal. This shows
that the frequencies are volume dependent.

What if we want to retain the simplicity of the harmonic assumption and
write the potential as a quadratic form even if we know it is not entirely
correct? Equation (5.5.3) shows that it would be more accurate to take the force
"constants" to be functions of volume than to treat them as being completely
constant. This is precisely what is done with the Gruneisen method; it amounts
to shifting the minimum of the potential as the volume changes.

This discussion clarifies the meaning of the Gruneisen method and also
shows that it only accounts for a part of the anharmonic effect because it does
not truly reflect the existence of the anharmonic terms but tries to make the
volume dependence of the second-order derivatives wholly responsible for the
higher order terms. It is therefore not surprising that the Gruneisen method
gives only a semiquantitative description of the volume-dependent properties
of crystals.

5.6 Theory of the Gruneisen parameter

The Gruneisen assumption is quite useful and shows that the thermal expan-
sion, the variation of compressibility with temperature, the temperature depen-
dence of the equation of state, and the difference between constant pressure
and constant volume heat capacities are anharmonic properties in that their
existence is the result of vibrational anharmonicity.

But the Gruneisen assumption suffers from some defects even aside from the
fact that it takes all vibrational frequencies to have the same dependence on
volume. First, it assumes that y is truly a constant that is independent of crystal
volume. Second, it is completely empirical and treats y as a disposable con-
stant to be determined from the values of the anharmonic properties. Consid-
erable progress can be made on removing these defects.2

The discussion in section 5.5 shows that if the crystal potential is known as
a function of volume, we should be able to calculate the Gruneisen constant.
The way to do this is to remember that the vibration frequencies are deter-
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mined by the second derivatives of the potential energy. If we assume that only
the nearest neighbor interactions are important, then the vibration frequencies
are proportional to the square root of the second derivatives of the potential
with respect to changes in the nearest neighbor distance. All we need then is
the potential energy as a function of nearest neighbor distance. For this, we
choose the "universal" potential energy of Rose et al. (1984) as given by equa-
tion (5.1.16), which can be used to get the Gruneisen parameter.

First, we write y in terms of the Wigner-Seitz radius as follows:

Assuming that the frequencies are all proportional to the square root of the
second derivative of the energy, using (5.1.16), this becomes

or

where g" and g"' are the second and third derivatives, respectively, of the
reduced energy g(a) with respect to rs. Since drs = Lda, this becomes

where g121 and g01 are the second and third derivatives of g(a) with respect to
a. The derivatives of g(a) are

The crystal anharmonicity depends on the ratio of the third to the second
derivatives of the potential energy. This ratio is obviously a measure of anhar-
monicity since the second derivative determines the harmonic forces. It would
appear that only the third derivative enters into the anharmonicity as measured
by (5.6.3), but this is true only for a crystal volume corresponding to the
minimum of potential energy. At other volumes, the entire form of the poten-
tial function is needed to get the derivatives, and this implicitly brings in
the potential to all orders of the volume change from that at the minimum of
energy.

Substituting (5.6.5) and (5.6.6) into (5.6.3), the Gruneisen parameter becomes

where F[a) is a function of the reduced distance a given by
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and T) is defined by

At zero pressure, rs = r°, a = 0 and F(a) = 1, so

where the subscript indicates zero pressure.
Note that the Gruneisen "constant" is not really a constant. It depends on

the volume through the function F(a), which is why we call it the Gruneisen
parameter rather than the Gruneisen constant. Note also that the Gruneisen
parameter is proportional to the parameter r\, so the ratio of the Wigner-Seitz
radius to the scaling distance L is a measure of anharmonicity. That this must
be so is evident from the definition of the scaling distance as the distance
marked off on the zero energy axis by a parabola whose curvature is that of the
potential energy function. Clearly, the narrower this parabola relative to the
interatomic distance, the greater the departure of the potential energy from
harmonicity.

Equation (5.6.7) gives us a way of calculating the Gruneisen parameter as a
function of volume directly from the crystal potential energy. The theory can
be tested by comparing calculations from the crystal potential energy with
those computed from experiment. This was done for a number of elements by
putting values of r\0 tabulated by Rose et al. into (5.6.10) and using experi-
mental data in equation (5.2.13) to get y at zero pressure and room tempera-
ture. The thermal expansion coefficients and densities were taken from
standard tables in the American Institute of Physics Handbook, and the bulk
moduli were taken from the compilation of Rose et al. (1984). The heat capac-
ities at 300 K were computed from Debye theory using the Debye temperatures
listed in chapter 4. The Debye theory is sufficiently accurate for this purpose.
The results are shown in table 5.1. The agreement between the two methods
of calculating the Gruneisen parameter is quite good for most of the simple
metals, but for silicon, germanium, and a few others the agreement is poor.

There are two possible sources of error in the theoretically computed values.
The first is that the "universal" energy curve of Rose et al. (1984) may not
give a sufficiently accurate representation of the energy, and the second is that
the lattice vibrations are not described with sufficient accuracy by nearest
neighbor interactions alone. If we keep in mind that the calculation requires
the second and third derivatives of the static crystal energy with respect to
volume, it is clear that small errors in the energy curve can lead to significant
errors in the calculated Gruneisen parameter. Also, the interatomic forces in
metals are not so short-ranged that the vibration frequencies are completely
determined by nearest neighbor interactions. Given these considerations, the
agreement between the calculated and experimental Gruneisen parameters is
remarkable.

The variation of the Gruneisen parameter with volume can be computed from
(5.6.7) and (5.6.8). The result of such a calculation for copper is shown in figure
5.3. The volume axis in figure 5.3 extends to a 20% compression of the solid,
which corresponds to extremely high pressures. The rate of variation of the
Gruneisen parameter with volume is therefore not large. At pressures



Table 5.1

Element

Li
Be
Na
Mg
Al
Si
K
Ca
V
Cr
Fe
Co
Ni
Cu
Zn
Ge
Rb
Y
Zr
Nb
Mo
Ru

: Values of the Gruneisen Parameter at Zero Pressure

jo (experiment)

1.06
1.28
1.49
1.71
2.41
0.44
1.65
1.09
1.36
0.90
1.88
2.37
2.11
2.14
2.75
0.77
—
—

0.92
—

1.63
—

jo (theory)

1.33
1.56
1.44
2.17
1.83
1.89
1.53
1.76
1.87
2.17
2.00
2.06
1.98
2.02
2.78
1.96
1.62
1.64
1.74
1.88
2.27
2.35

Element

Pd
Ag
Cd
In
Cs
Ba
Hf
Ta
W
Re
Ir
Pt
AU
Tl
Pb
Ce
Eu
Gd
Dy
Er
Yb

Yo (experiment)

2.47
2.65
3.09
2.75
—
—
—

1.66
1.71
—
—

2.89
3.17
2.36
3.06
—
—
—
—
—
—

% (theory)

2.49
2.31
3.14
1.98
1.62
1.71
1.81
1.91
2.21
2.39
2.53
2.51
2.62
2.23
2.47
1.21
1.84
1.66
1.88
1.92
1.53

Figure 5.3. Variation of the Gruneisen parameter with volume for copper.
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corresponding to compressions of 4%, the Gmneisen parameter changes by
10%. For pressures that are not too high, the assumption of a constant
Gruneisen parameter is not bad. However, for pressures that are now attain-
able in modern high-pressure apparatus and in shock-wave experiments, the
variation of y with volume should be taken into account.

The equations in sections 5.2 and 5.3 for the anharmonic properties were
derived assuming that y was independent of volume and must therefore be
modified when the volume dependence is taken into account. This is easily
done by going through exactly the same steps that led to equations (5.2.9),
(5.2.12), (5.2.13), and (5.3.2) but letting y = y(V) so that the derivatives of the
Gruneisen parameter do not vanish. It turns out that the only one of these equa-
tions to be affected is (5.2.12) for the compressibility, because this is the only
anharmonic property that depends on the second derivative of the vibration
frequencies with respect to volume. The bulk modulus must now be modified
by appending a term given by

The second term in the bracket arises from the zero point vibrational energy
as computed from Debye theory. Of course, in addition to adding this term to
the equation for the bulk modulus, the volume-dependent Gruneisen parame-
ter must be used in all the equations for the anharmonic properties.

Exercises

5.1 The Lennard—Jones potential for the energy of interaction between two
rare gas atoms is given by (p(r) = —Alf" + Blr12, where A and B are constants
and r is the distance between the two atoms. From the requirement that
the energy be a minimum at the equilibrium distance, show that the
Lennard—Jones potential can be written as

where r0 is the equilibrium distance between atoms.

5.2 Assume that the energy of a rare gas crystal is a sum of pairwise
Lennard-Jones potentials and that only nearest neighbor interactions are
important. Assume that the z nearest neighbors are all at the same distance
r0 at static equilibrium.

Write the expression for the crystal energy in terms of these potentials and
compute the numerical value of the Gruneisen constant at the static equi-
librium (zero pressure) volume. (Hint: equation (5.6.2) in obviously correct
when g is any crystal energy as a function of a distance.)

5.3 Show that at high temperatures and zero pressure, the ratio of the
thermal energy to the zero pressure, zero temperature potential energy of
the crystal depends approximately only on the reduced parameter a in the
universal energy equation. That is, prove that, to a good approximation,
kT/\u°0\=f(a).

5.4 In terms of the function derived in exercise 5.3, derive a formula for the
linear thermal expansion coefficient at high temperatures.
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Free Electron Theory in
Metals and Semiconductors

6.1 Free electrons in metals

One of the earliest successful approximations in the theory of metals was the
free electron theory. This approximation starts with the notion that the metal
contains a collection of ion cores, each core consisting of a nucleus and shells
of tightly bound electrons, and a number of electrons that are not bound to any
particular nucleus. The electrons are assumed to be essentially independent
and are treated as being completely free, the metal simply acting as a box to
contain them. The statistical counterpart of this assumption is that electrons
in metals are described by particle statistics.

An essential parameter in free electron theory is the number of electrons per
atom that are to be considered free rather than being tied up in ion cores.
Usually, the number of free electrons is taken to be the number of valence elec-
trons of the atoms. When applied to real solids, the free electron concentration
can be treated as a disposable parameter to be determined by experiment,
thereby providing a check on our choice of the number of free electrons
per atom.

A much more basic question is involved in trying to understand how it is
that the free electron theory of metals is successful at all. We know that none
of the electrons in a metal can really be independent; they interact with each
other and with the ion cores through strong Coulomb forces. However, there
are several factors that allow the electrons to be treated as if they were free.
First, on a large-scale average, the ionic charges just cancel the electronic
charges. The electrons move in a background of positive charge that tends to
neutralize them, so in the free electron model we regard the periodic potential
of the ion cores to be smoothed out to some average value. Second, if we solve
the problem of a charged electron in a "sea" of mobile charged particles, we
find that the electrical potential of an electron is screened by the other elec-
trons, thereby greatly reducing the range over which the interaction of two elec-
trons is appreciable. To a first approximation, then, the electron-electron
interactions can be neglected.

Also, there is a remarkable result from quantum theory that states that a per-
fectly periodic potential offers no resistance to electron motion. The electrical
resistivity observed in metals arises from imperfections in the periodic struc-
ture and not from the ideal periodic potential itself. These imperfections
include atomic vibrations, vacant sites, dislocations, impurity atoms, grain
boundaries, and anything else that interrupts the regular periodic array of the
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ion cores. This does noL mean that the regular ion-core structure has no influ-
ence on the electron motion. In fact it does, but this influence manifests itself
in the inertial properties of the electron. It is often sufficient to assign some
fictitious "effective mass" m* to the electron instead of the true electron mass
m. The electron then moves through the crystal as if it were a Fermi-Dirac par-
ticle of mass m*.

There is thus some justification from theory, and certainly in practice, for
applying free electron theory to metals. The theory works best for alkali and
alkaline earth metals and reasonably well for the noble metals. It is interesting
to note that for the alkali metals the electrons-in-a-box model is not far from
the truth. A calculation based on experimental values of ion core and metal-
lic radii shows that the ion cores in sodium take up only about one tenth the
volume of the metal. Nine tenths of it is empty except for the valence elec-
trons. Also, quantum theoretic calculations show that the wave function in
sodium is very much like that for a free electron over the 90% of the volume
not occupied by the ion cores.

6.2 Statistics for the electron gas

Our first job is to show that semiclassical particle statistics are not adequate
for electrons and that quantum statistics must be used. This can be done by
recalling that, from section 3.3, the quantum statistics reduce to semiclassical
statistics only if

for all values of e;. Since e, is always positive, the condition (2.1) for the applic-
ability of semiclassical statistics can only be strengthened if we write

The theory of the ideal gas has already been worked out on the assumption
that (6.2.2) is satisfied, and we obtained a formula for the chemical potential
in terms of particle mass, particle density, and temperature:

This allows us to test the validity of (6.2.2) for various kinds of particles. If
(6.2.2) is fulfilled when we compute e^lkT from (6.2.3), then the use of semi-
classical statistics is justified. Otherwise, quantum statistics is necessary.

Equation (6.2.3) shows that high particle mass, high temperature, and low
particle density contribute to the accuracy of the semiclassical statistics. Let
us evaluate (6.2.3) for a collection of hydrogen atoms. Inserting the values of
h, k, and the mass of a hydrogen atom gives

Let us assume that the particle density is N/V = 1.89 x 1020 atoms/cm3. This
corresponds to a pressure of about seven atmospheres at room temperature.
Then (6.2.4) becomes e^lkT = T312, and for temperatures as low as 10K we get
g-n/iT _ 31 6 This means that even at quite low temperatures a collection of
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hydrogen atoms is described rather accurately by semiclassical statistics.
Quantum statistics is not needed for collections of atoms or molecules except
at very low temperatures and high densities.

But a similar calculation for electrons gives the opposite result. If we use the
electronic mass in (6.2.3) we get

Let us take N/V= 2.42 x 1022 electrons/cm3. This is roughly the magnitude of
the density of free electrons in metals. Then we get

and we see that e v'/kT « 1 at all but the highest temperatures. Even at T= 10,000
K e~tllkT = 0.1, so at all temperatures of practical interest it is necessary to use
the Fermi-Dirac quantum statistics for electrons in metals.

In semiconductors, the density of free electrons ranges from 109 to 10" elec-
trons/cm3, so the semiclassical statistics are sometimes valid depending on the
particular density and temperature.

6.3 The distribution of free electrons

Since electrons are fermions, in the continuum notation the results of section
3.3 give

where N(e) is a distribution function such that N(e)cfe is the number of elec-
trons in an energy range between e and e + cfe, and co(e) is the density of states
in energy. The energy levels are just those for a particle-in-a-box given by (3.4.7)
or (3.4.10). The density of states is therefore just like that for the ideal gas
except for a minor modification. Since every electron can exist in two spin
states, each with the same energy, there are two electrons that can have an
energy determined by a set of integers (j\, j2, ;3) rather than just one. For elec-
trons, therefore, the density of states is just twice that for an ideal gas, and
we have

or, using the constant C defined in equation (3.4.16),

The reason for defining the constant C with the factor 1/2 in chapter 3 is now
evident: we did not want to have factors of two in all the equations that arise
from electron statistics.

We now define the Fermi function by
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and write the distribution function (6.3.1) as

The density of states in terms of wave number, momentum, and velocity are
just like those for an ideal gas in equations (3.6.12)-(3.6.14) except for the factor
of two that takes into account the electron spin:

The distribution functions in the wave number, velocity and momentum rep-
resentations are obtained just by multiplying (6.3.6), (6.3.7), and (6.3.8), respec-
tively, by the Fermi function.

The properties of the Fermi function are of basic importance and should be
thoroughly understood. The Fermi function is the probability that a particular
state of energy E is occupied by an electron, as can be seen from the fact that
when it is multiplied by the number of states with given energy, it yields the
number of electrons with that energy.

From the calculations in section 6.2, we know that jj, is positive and much
greater than kT for ordinary temperatures. Also, /(e) < 1 since the exponential
is always positive. The Fermi function therefore approaches unity for low ener-
gies, but it must decrease to zero for high enough energy. How wide is the
energy range over which /(e) differs from either unity or zero? Note that for
e = (0,, /(e) = /((i) = 1/2; if e < (j., then the greater the difference (n - e), the closer
/(e) is to unity. For an energy difference (|i - e) = 3kT, (6.3.4) tells us that /(e)
differs from unity by only 5%. If e > (i, then the greater the difference (|j, - e),
the closer/(e) is to zero. Again a difference of 3kT yields a/(e) that differs from
zero by about 5%. We therefore conclude that /(e) differs significantly from
unity or zero over an energy range, centered on (j,, of about five or six times the
thermal energy kT. The lower the temperature, the more rapid the drop of the
Fermi function from unity to zero in the vicinity of |j,. In the limit of zero tem-
perature, /(E) is a step function whose value is unity for energies up to (i and
zero for energies greater than jx. The chemical potential \L obviously plays a
critical role in electron statistics and is called the Fermi energy. The Fermi
function at zero and at a finite temperature is shown in figure 6.1.

For solids, the Fermi energy is much greater than the thermal energy at ordi-
nary temperatures. For metals, |i is about 2-6 eV, while at room temperature
kT is about 1/40 eV, so \tikT = 80-240. This means that the width of the tran-
sition region from /(E) = 1 to /(E) = 0 is very narrow, and the Fermi function is
almost a step function at temperatures that are not too high. In fact, in metals
room temperature is a low-temperature for electrons and low-temperature
approximations are adequate.

In this analysis, we have incidentally arrived at the physical interpretation
of the Fermi energy. It is the energy of that state for which the probability of
being occupied by an electron is 0.5.

In the limit as T -» 0, /(E) -» 1 for E < \L and /(E) -> 0 for E > u, so at T = 0
the distribution function (6.3.5) becomes
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Figure 6.1. The Fermi function.

where u,0 is the value of the Fermi energy at absolute zero.
Since u,0 is the maximum energy that an electron can have at T= 0, an expres-

sion for (0,0 can be obtained by integrating (6.3.9).

But the left-hand side of this equation is just the total number of electrons N,
so performing the integral on the right and solving for u,0 gives

or, using the definition of C,

So the Fermi energy at absolute zero is completely determined by the electron
density N/V. The magnitude of the Fermi energy to be expected in metals can
be estimated from this equation, and it turns out to be several electron volts.

It is also easy to get the average energy of the electrons. The definition of the
average is
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and since at absolute zero Me) is given by (6.3.9), the average energy at absolute
zero is given by

which upon integration yields

If (6.3.11) is solved for CV/N and the result substituted into (6.3.16), the
result is

so at T = 0 the average electron energy is three fifths of the Fermi energy.
These results at absolute zero provide estimates that are reasonably good

even at ordinary finite temperatures because the thermal effect on electrons at
the densities found in metals is small. Also, the zero temperature results are a
starting point for the analysis of the temperature dependence of the thermo-
dynamic properties of free electrons.

6.4 Thermodynamic properties of the free electron gas

All the statistical thermodynamic formulas for a free electron gas can be
derived if the Fermi energy and the internal energy are known as functions of
temperature. The equation for the Fermi energy is obtained from the require-
ment that the total number of electrons is the integral of the distribution func-
tion over all energies:

Since N(s.)de, is the number of electrons with energy in the range de, eAT(e)cfe is
their energy and the total energy is therefore

Using (6.3.5) for the distribution function in terms of the Fermi function, equa-
tions (6.4.1) and (6.4.2) become

The dependence of (i and U on temperature can be obtained by evaluating the
integrals in (6.4.3) and (6.4.4). These integrals cannot be evaluated in closed
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form, but a method exists to compute integrals of this type as rapidly conver-
gent series. This method depends on the fact that the derivative of the Fermi
function with respect to energy is practically zero except in the vicinity of the
Fermi energy, where it is large, as can be seen by inspection of figure 6.1.

The integrals in (6.4.3) and (6.4.4) are examples of the Fermi integral, which
is defined by the general form

where /(e) is the Fermi function and g(e) is any monotonically increasing func-
tion of the energy whose value is zero when e = 0. The method of getting the
series solution of (6.4.5) depends on expressing it in terms of the derivative of
the Fermi function. This can be done if (6.4.5) is integrated by parts to give

where the function F(e) is defined by

But, from its definition, F(e) is zero when e = 0, and the Fermi function vani-
shes as E —> oo, so the first term on the right of (6.4.6) is zero and we have

A rapidly converging series for the integral, based on the fact that the deriva-
tive in (6.4.8) is small everywhere except when e is near n, is derived in appen-
dix 5 (A.5.20). For the temperatures and Fermi energies encountered in the
study of solids, an excellent approximation is obtained by retaining only the
first two terms of the series expansion. That is,

where

and

Now equations (6.4.3) and (6.4.4) can be written in terms of Fermi integrals as
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and these are the starting points for getting the Fermi energy and the total
energy of the electrons as functions of temperature.

Let us work on the Fermi energy hy solving for N/CV from equation (6.3.11)
and putting the result in (6.4.12) to get

The right-hand side of (6.4.14) is just a Fermi integral of the form of (6.4.5),
with g(e) denned by

so using (6.4.7),

The value of F0(n) = F([i) is therefore

and the second derivative evaluated at e = (j, is

According to equation (6.4.9), the temperature dependence of the Fermi inte-
gral (6.4.14) is given by

Using (6.4.17) and (6.4.18), this becomes

or, raising both sides of (6.4.20) to the 2/3 power,

This is a truncated version of the temperature dependence of the Fermi
energy, but an idea of its accuracy can be obtained by putting in reasonable
values of the temperature and Fermi energy. The higher the temperature and
the lower the Fermi level, the more slowly the series converges and the more
inaccurate the approximation (6.4.21). Let us therefore be conservative and
choose kT to be about one tenth of an electron volt and the Fermi energy to be
just one electron volt. This corresponds to a metal with a low Fermi energy at
a temperature of 1200K. Even so, the second term in (6.4.21) amounts to only
10~2, and if the next term in the series were to be included, it would have a
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value of about 2 x 10 7. Keeping only the first temperature-dependent term is
therefore sufficiently accurate for electrons in metals. The Fermi energy varies
with temperature so slowly that it can be replaced by u.0 in the second term of
(6.4.21). This allows us to solve for p, as a function of T, which is what we were
after:

Since the second term in the bracket is quite small, there is no loss of accu-
racy if the right-hand side is expanded in a Taylor series and only the first two
terms are retained. The result is a somewhat simpler formula

which shows that the Fermi level decreases with temperature.
A similar calculation can be performed to get a formula for the energy. The

application of (6.4.9) to (6.4.13) gives

The energy can be written as a function of (0,0 by substituting (6.4.22) into
(6.4.23) to get

The powers in the brackets can be expanded by the binomial theorem or the
Taylor series. Doing this and retaining terms only up to (kTI\\.0)

2 gives

and thus the energy is a slowly increasing function of temperature. [In getting
(6.4.25), we used equation (6.3.11).]

The heat capacity at constant volume is obtained by differentiating (6.4.25)
with respect to temperature, with the result that

so the heat capacity of the electrons is linear with temperature. Its numerical
value is small relative to the vibrational heat capacity, except at very low tem-
peratures, where the electronic contribution becomes comparable to that of the
T3 term in the low-temperature limit of the vibrational heat capacity.

The entropy is easily computed in terms of the integral of the heat capacity.

which becomes, on using (6.4.26),
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so the entropy of a free electron gas is equal to its heat capacity.
From the thermodynamic formula A = U- TS, (6.4.25) and (6.4.28) give the

Helmholtz free energy as

This completes the collection of basic equations for the thermodynamic
properties of the free electron gas in terms of the zero-temperature Fermi level.

6.5 Electronic heat capacity in metals

Before the development of quantum theory and Fermi-Dirac statistics, there
was a great inconsistency in the interpretation of experimental data for metals.
The high values of the observed electrical and thermal conductivities could
only be understood by postulating the existence of large numbers of free elec-
trons. If electrons were present, however, classical statistical mechanics pre-
dicted that they should contribute an amount to the heat capacity of 3k per
electron. As a result, the heat capacity per atom should be about two or three
times that of insulators. In fact, however, it is found that metals and insulators
have about the same heat capacity per atom, which is close to the classical
Dulong-Petit value at room temperature and above. The resolution of this
inconsistency by the Fermi-Dirac statistics is evident in equation (6.4.26).

Most metals have Fermi levels between 2eV and 10 eV, so kT/\ia is between
about 0.05 and 0.01 for temperatures in the neighborhood of 1200K. For these
ranges, equation (6.4.26) shows that the electronic heat capacity is about
0.25-0.0sl: per particle. This means that the free electrons can contribute only
something like 2-8% of the Dulong-Petit value to the heat capacity at high
temperatures. This relative contribution decreases with increasing temperature
until the temperature approaches the Debye temperature.

Despite its small value, the electronic heat capacity can be separated from
that arising from crystal vibrations. The electronic heat capacity decreases lin-
early with decreasing temperature, but at low temperatures the lattice heat
capacity decreases as T3 in accord with the Debye law. At low enough tem-
peratures the electronic contribution is a large fraction of the lattice contribu-
tion. At low temperatures, the total heat capacity of a metal is

where the first term on the right is the electron contribution and the second
term is the lattice contribution. Both constants in (6.5.1) can be determined
from experimental values of the heat capacity as a function of temperature by
plotting Cv/T against T2. The intercept gives AI while the slope gives A2.

The theoretical value of the constant A-i is given by the coefficient of T in
(6.4.26):

or, using (6.3.13) for UQ,
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Table 6.1: Effective Mass and Fermi Level for Some
Metals

Metal Effective Mass Fermi Level (e.v.)

Li 1.19 4.72
Na 1.0 3.12
K 0.99 2.14
Rb 0.97 1.82
Cs 0.98 1.53
Cu 0.99 7.04
Ag 1.01 5.51
Au 1.01 5.51

The Fermi levels were computed from free electron theory. The effective
masses were computed from pseudopotential theory. (See Cohen, M.L., and

V. Heine; 19"; Solid State Physics (1970) vol. 24; F. Seitz and D. Turnbull,
Eds.; Academic Press, New York. The effective masses of the noble metals

were computed by Kambe, K.; 1955; Physics Review; vol. 99, p. 419.)

while A2 is given as the coefficient of the T3 law in the Debye theory as
A-i = H2K4kN/5®[,. If the number of free electrons per unit volume is known, Al
can be computed from (6.5.3).

It is quite reasonable to take the number of free electrons to equal the number
of valence electrons. The computed value of A^ is not always in good agree-
ment with experiment when the actual electronic mass is used in the calcula-
tion. The reason for this is to be found in the quantum theory of electrons
moving in a three-dimensional periodic potential. The effect of the periodic
potential is to alter inertial properties of the electrons so that, while electrons
in metals can still be treated by free electron theory with reasonable accuracy,
the electronic mass must be replaced by the effective mass m*. The ratio m*/m
is a measure of the influence of the crystal potential on the motion of the quasi-
free electrons. This ratio, along with values of the Fermi energy, is shown for
a number of metals in table 6.1.

6.6 Equation of state of the free electron gas

The equation of state can be derived from the Helmholtz free energy by using
the thermodynamic relation

We have an expression for the Helmholtz free energy, but it has to be written
as a function of volume. To do this, we just substitute equation (6.3.11) into
(6.4.29) to get
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Now differentiate (6.6.2) with respect to volume and take its negative. This
gives the pressure as

This is the equation of state for the free electron gas. It can be written in terms
of the Fermi energy (j,0 by using (6.3.11) in (6.6.3). The result is

An estimate of the pressure of the electron gas in metals can be made from
equation (6.6.4). For an electron density of 1022 electrons/cm3 and a Fermi
energy of 5eV, the leading term in (6.6.4) gives a pressure of about 3 x 104

atmospheres. This means that, as far as the free electrons are concerned, a metal
should fly apart into atoms. The metal is held together, of course, by the attrac-
tive interaction between the electrons and the ions. It is clear that any theory
of the cohesion of metals must take the free electrons into account.

If (6.6.4) is compared to equation (6.4.25), we see that the PVproduct is just
two thirds of the energy:

This relation is also correct for the ideal gas, as can be seen from our results
in section 3.4 [see equation (3.4.33)].

The bulk modulus, B = 1/K, is denned in terms of the derivative of the pres-
sure by

so taking the volume derivative of (6.6.3) and putting it in (6.6.6) gives the
compressibility as

or, using (6.3.11),

Again, the leading term is sufficient to get an estimate of the bulk modulus for
free electrons in metals. Taking N/V = 1022 and |a,0 = 5eV gives 1/K = 5 x 1010

dynes/cm2, which is of the order of the experimental results. The free electrons
therefore contribute an appreciable amount to the bulk modulus of metals.

The equation of state properties of real metals depend on the electron-ion
interactions as well as on the free electrons. This effect is rather insensitive to
temperature, so we could ignore it in heat capacity theory and a satisfactory
model could be built on the basis of a combination of crystal vibrations and
free electrons. But the electron-ion interactions are functions of volume and
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must be included in any realistic equations of state for metals. If the volume
is decreased this interaction becomes stronger, so the electron-ion interaction
decreases both the pressure and the bulk modulus. That this is a large effect
is shown by the fact that it more than offsets the tendency of the free electrons
to make the crystal blow apart.

6.7 Thomas-Fermi theory

The free electron theory presumes that the potential energy and the electron
density are constants. This is not so in a metal, and some simplified method
of estimating the spatial dependence is desirable. The Thomas-Fermi theory
provides such a method. It starts with the electron distribution function in
terms of momentum, which is just the product of the Fermi function and the
density of states given by equation (6.3.7):

All thermal effects will be neglected by taking T = 0. Thus, if we let pF be the
momentum of an electron when its energy is the Fermi energy, then (6.7.1)
becomes

If this equation is integrated over all momenta, the result is just the total
number of electrons:

so the electron density n = N/V is given by

The basic assumption of Thomas-Fermi theory is that (6.7.4) is valid even
when the electron density depends on position. That is, for an electron density
that is space dependent, we assume that

where n(r) and pF(r) are the electron density and Fermi momentum at the posi-
tion r. The variations in electron density are the result of a space-dependent
potential acting on the electrons. The connection between this potential O and
the electron density is given from electrostatics by the Poisson equation as

In this equation, e is the magnitude of the charge on an electron, -en(r) is the
charge density at r, and <J> is the electrostatic potential, so -e<!> is the potential
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energy of an electron at r. Since the system is in self-equilibrium, the chemi-
cal potential must be a constant throughout the system. Also, jo,0 is the total
energy of an electron with momentum pF, so the law of conservation of energy
requires that

where (0,0 is independent of position.
Solving (6.7.7) for pp(r) and substituting into (6.7.5) gives

This equation allows Poisson's equation to be written in terms of the potential
only by putting it into (6.7.6) to get

Once the boundary conditions are given, (6.7.9) can be solved for 3>(r), which
can then be substituted into (6.7.8) to get n(r). The Thomas—Fermi method
therefore gives the spatial variation of both the electron density and the poten-
tial in which the electrons move.

The solution of (6.7.9) generally requires numerical methods, but an approx-
imation exists for which analytic solutions can be found. If we restrict our-
selves to systems for which the Fermi energy is much greater than the
electrostatic potential energy, then we have e<3> « (j,0. Equation (6.7.8) can then
be linearized by first writing it in the form

and then treating e<J>/n0 as a small quantity so that to a good approximation

Therefore, (6.7.10) becomes

This equation can be made to look a little simpler by using (6.3.12), which
relates jj,0 to the electron density that would exist in the absence of a potential.
This electron density is N/V, which we will call na. Solving (6.3.13) for
N/V = na and putting the result in (6.7.12) gives

Substituting (6.7.13) into the Poisson equation (6.7.6) gives
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This is the linearized Thomas-Fermi equation.
The Thomas-Fermi theory developed so far holds only in regions where

there is no positive charge, because only the negative charge density was
included on the right-hand side of the Poisson equation. But it should contain
the total charge density, so in regions where a positive charge density exists
the appropriate term must be added. If the positive charge exists as point
charges, then it is represented by delta functions centered on the location of
the point charges. In this case, Poisson's equation is solved in the region
outside these points and the positive charge need not be included explicitly.
Its existence, however, is taken into account in the boundary conditions.

In the application of free electron theory to metals, the positive charges are
assumed to be smeared out into a uniform density that just cancels the charge
of the electrons. The total charge is then zero and Poisson's equation reduces to
Laplace's equation V2<3> = 0. This is called the jellium model of a metal. Let us
investigate what happens if we put a point charge q into this uniform system.
This can be done, for example, by replacing one of the atoms in the metal by
another of a different valence, or by removing an atom to form a vacancy. In the
first case, the point charge is the difference between the valencies of the host
and the impurity atoms. In the second case, the electrical equivalent of remov-
ing an atom is to introduce a negative charge of the same magnitude as the pos-
itive charge that was removed. To be specific, a cadmium impurity (Cd2+) in
silver (Ag+) would introduce a unit positive charge, q = 1, while a vacancy in
silver introduces a unit negative charge q = —l. Analysis of this problem is clearly
useful for the theory of impurities and point defects.

The introduction of a point charge into the jellium model gives rise to a
nonuniform potential and induces a charge redistribution of the electron gas
in the vicinity of the charge. The uniform positive background charge is
assumed to remain unchanged at its value of en0 everywhere except at the
excess point charge because it is anchored in place by the ions on the lattice.
In the linearized approximation, the redistributed electron density is related
to the potential by (6.7.13). Subtracting this from the positive charge back-
ground density en0 then gives the total charge density at all points except at
the excess point charge as

Multiplying this by -4n and putting it in the Poisson equation gives the lin-
earized Thomas-Fermi equation for the potential around an excess point
charge:

The field around a point charge embedded in an initially uniform electron
gas must be spherically symmetric, so the Laplacian in (6.7.16) can be written
in terms of spherical coordinates centered on the point charge as
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r being the distance from the point charge. Using (6.7.17), equation (6.7.16)
becomes

where A, is denned as

Define a function /(r) by

from which we get, by direct differentiation,

so equating the right-hand sides of (6.7.18) and (6.7.21) gives

But this is just a simple second-order differential equation with constant coef-
ficients whose auxiliary equation is m2 - X~2 = 0 and whose general solution is
therefore

Using the definition of/given in (6.7.20), the general solution for the poten-
tial is therefore

To get the solution specific to our problem, we need to know the boundary
conditions. Clearly, the potential must approach the Coulomb potential of the
point charge at very small distances because the effects of the electron gas must
be negligible very close to the origin. At very large distances, the effect of the
point charge must vanish, so the potential approaches zero. This gives us the
two boundary conditions we need as

From the second of these boundary conditions the constant Q must be zero,
while from the first boundary condition we must have C2 = q. Equation (6.7.24)
therefore becomes
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The potential field around an excess charge embedded in a free electron gas
therefore has the form of a Coulomb field modified by a decreasing exponen-
tial function. The physical interpretation of this is that the mobile electrons
screen the interaction between an electron and the excess point charge by
piling up around the origin (if q is positive) or leaving a hole around it (if q is
negative). The resulting spatial distribution of the electrons is obtained by sub-
stituting equation (6.7.26) into (6.7.13):

From equations (6.7.26) and (6.7.27), we see that for distances much greater
than A,, the effect of the excess point charge is small; X is a measure of the effec-
tiveness of the screening of the point charge by the mobile electrons and is
called the screening distance. The value of the screening distance can be cal-
culated from the Fermi energy and the electron density using its defining equa-
tion (6.7.19). For typical metals, it turns out to be of the order of one angstrom,
so an excess point charge is effectively screened out over distances compara-
ble to the lattice spacing.

As is evident from the nature of its approximations, the linearized
Thomas-Fermi theory gives only a rough approximation to the actual poten-
tial and electron density around impurities and point defects in real metals.
However, it has been used profitably in both alloy and defect theory to give
qualitative and semiquantitative results. The physical significance of the above
development goes beyond its applicability to such problems because it pro-
vides at least a partial justification of the use of free electron theory in metals.
The screening distance is short. This means that the interaction between any
two charges is negligible unless the charges are close together. Ignoring all elec-
tron-electron interactions in the metal is therefore not as bad an approxima-
tion as it sounds. The theory of electron-electron interactions is more complex
than can be presented here, but more sophisticated investigations bear out
these conclusions.

6.8 Review of results of band theory

For metals, the analysis of the statistical mechanics of electrons could be made
just by assuming that they contain free electrons. For semiconductors, however,
a few simple results of the band theory of solids are also required. Accordingly,
these results are reviewed here. Let us start by recalling that each atomic level
of a free atom gives rise to a band of energy levels when a large number of
such atoms are condensed to form a solid. These levels are very close together
in energy and form a quasi continuum. Because there are infinite numbers
of atomic levels, there are infinite numbers of bands. Also, because each
atomic energy level can hold two electrons, the number of levels in each band
is twice the number of atoms in the solid. The gap width between bands, the
width of the band itself, and the presence or absence of overlap among the
bands depend on the details of the interactions among the electrons and ions
of the solid.

The most obvious success of the band theory is that it accounts for the exis-
tence of metals, insulators, and semiconductors. Consider a monovalent metal.
A free atom of this metal -would have one electron in an outer level, and the
energy band corresponding to this level would be only half full because it can
accommodate two electrons per atom. With this in mind, assume that an
electric field is applied to the metal. In order for electrons to move under the
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influence of the field and thereby contribute to an electric current, they must
absorb some energy, thereby converting potential energy from the field into
kinetic energy of moving electrons. Electrons at the bottom of the band cannot
do this because if they were to absorb energy, this would put them in a level
slightly above their normal level. But this upper level is already occupied by
two electrons, and according to the Pauli exclusion principle it can accept no
more, so the electron must stay where it is. Electrons just at the top of the occu-
pied portion of the band, however, can contribute to electrical conductivity
because they can absorb energy from the field by just jumping into the empty
levels above them. Furthermore, when an electron jumps into an empty level
in the top part of the band, it leaves an empty level behind it. This empty level
is called a "hole," and it too can contribute to conductivity since electrons near
it in energy can jump into it under the influence of the applied field. This sit-
uation is characteristic of metals. The high mobility of the free electrons in
metals is the result of the fact that they exist in partially filled bands. Such
partially filled bands are called conduction bands.

If the free atoms from which the solid is made contain two electrons each in
their outer levels, then the corresponding band in the crystal contains two elec-
trons per atom and is completely filled. Such a filled band is called a valence
band. Assume that there is no overlapping of bands so that the band above the
filled one is completely empty and the two bands are separated by a gap. Also
assume that the energy gap is large compared to the energy that an applied
field can give to an electron. No electrons can exist with energies in this gap,
so it is clear from the above discussion that the electrons in the filled band
cannot absorb energy from an applied electric field because there are no levels
near them to jump into. If the two bands overlap, then a set of 4JV contiguous
states exist containing 2N electrons and the material is a metal.

All this is at absolute zero. The effect of temperature is different for metals,
insulators, and semiconductors. For a metal, the thermal energy excites some
electrons near the top of the occupied part of the conduction band into nearby
levels that would be empty at absolute zero. At normal temperatures, the frac-
tion of such electrons is not large since the thermal energy is of the order of
kT and metallic bands are much wider than this. If we raise the temperature
of an insulator, there is a finite probability that a thermal fluctuation will occur
that supplies enough energy to an electron at the top of the filled band to kick
it into the upper, empty band. If this happens, a current can flow because the
electron has empty states available to it. The greater the energy gap, the larger
the energy needed for the kick and the more improbable the required thermal
fluctuation. If the gap is large relative to kT, very few electrons will be excited
to the conduction band and the material remains an insulator. But if the energy
gap is not too large relative to kT, an appreciable number of electrons reach
the conduction band and the material is a semiconductor. The designation
"semiconductor" is a recognition of the fact that the concentration of electrons
excited to the conduction band is much less than that in a metal, so the elec-
trical conductivity is much less than that in metals. Energy band diagrams for
metals, insulators, and semiconductors are shown in figure 6.2.

One of the most important results of band theory is that in many cases the
energy of an electron near the bottom of a band is given, at least approximately,
by

where EB is the energy at the bottom of the band, k is the wave number vector,
and y is a constant. Note that in the theory of the particle statistics of free elec-
trons, the energy "was a quadratic function of the wave number vector.
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Figure 6.2. Energy bands in insulators, semiconductors, and metals.

Equation (6.8.1) can be put into a form just like that for a free electron by
defining the effective mass as

Then (6.8.1) can be written as

This equation is just like that for a free particle with an effective mass m*
moving in a constant potential. The constant y, and therefore the effective mass,
depends on the interaction of the electron with the rest of the crystal. If the
scale of energy is defined such that EB = 0 and if the effective mass is used
rather than the actual electronic mass, free electron theory can be used when-
ever the energy is a quadratic function of the wave number vector.

For electrons near the top of a band, the energy is also found to be approx-
imately a quadratic function of a wave number vector, but in this case, the
wave number is measured relative to the top of the band. That is,

where ET is the energy of an electron at the top of the band and kr is its wave
number vector. Note that the effective masses at the top and at the bottom of
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a band are not necessarily the same, nor are they necessarily the same for dif-
ferent bands in the same material. Equation (6.8.4) can be written as

where k2 = (k - kT)2. This shows_that the electron can be treated as a free par-
ticle with wave number vector k, mass m*, and energy (ET - e). These results
are particularly useful for semiconductors because the electrons that contribute
to the conductivity in these materials are generally near the top and the bottom
of bands.

For the statistical mechanics of electrons in semiconductors, it is convenient
to treat the holes left behind in a valence band when electrons are excited to
the conduction band as "particles." This is a useful concept because the holes
act as positive charge carriers, which can be shown as follows: in a filled band
no current can flow, so the sum of all the electron velocities must vanish. This
means that if there are N electrons in a band and v,- is the velocity of the ith
electron, then

Now pick out a particular electron, label it /, and rewrite (6.8.6) as

where the sum is over all electrons except the /th. The right-hand side of (6.8.7)
is therefore the sum of all electron velocities for a band that is missing one
electron. Equation (6.8.7) shows that, for such a band, the effect is that of an
electron moving with the negative of the velocity it would have in the band.
The hole therefore acts as if it were a positive charge carrier.

6.9 Impurity levels in semiconductors

Impurities have profound effects on the properties of semiconductors, and the
operation of semiconductor devices depends on these effects. It is therefore
important to have some knowledge of how the distribution of energy levels is
related to these impurities.

Let us replace a tetravalent atom in an elemental semiconductor (e.g., silicon
or germanium) by a pentavalent atom such as phosphorus. Four of the five
valence electrons take part in the tetrahedral bonding in the diamond struc-
ture of the semiconductor. The fifth electron, however, is not needed for cova-
lent bonding and, at absolute zero of temperature, stays in the vicinity of the
impurity ion since it is attracted by its positive charge. To a first approxima-
tion, the electron-impurity ion system behaves like a hydrogen atom, and the
binding energy of the electron to the impurity ion can be computed from
quantum theory analogous to the calculation of the ionization energy of hydro-
gen. The fact that this system is embedded in a crystal can be accounted for
by recalling that in a dielectric medium the force of attraction between two
charges is just the Coulomb force divided by the dielectric constant K of the
medium. Working out the hydrogen atom problem with a potential e2/Kr gives
the ionization energy in electron volts as
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Using typical values of K for semiconductors (11.9 for silicon, 16.1 for germa-
nium), the ionization energy is then about 0.05-0.10 eV. When the impurity
ionizes, it must go into the conduction band. This means that the energy level
of an electron attached to an impurity is about 0.05-0.10 eV below the lowest
level of the conduction band.

Note that the ionization energy is in the range of thermal energies at room
temperature. Thermal excitation is therefore sufficient to ionize a significant
fraction of the impurity atoms, thereby releasing electrons to the empty con-
duction band where they can take part in electrical conduction. Impurities of
the type just discussed are called donors because they donate electrons to the
conduction band. The semiconductor is then an extrinsic n-type conductor
since conduction is by negative electrons and the conduction is not an intrin-
sic property of the pure crystal.

Trivalent atoms also introduce impurity energy levels into the crystal. In this
case, the impurity needs an extra electron to complete the tetrahedral bonding,
and it can get this electron from the full valence band. The impurity-electron
system is then a negative ion but the binding energy of the electron to the im-
purity can still be estimated by analogy to a hydrogen atom in a dielectric
medium. The impurity level is now, therefore, about 0.05-0.10eV above the
highest energy in the valence band. When it ionizes, the impurity creates a
hole in the valence band that contributes to conduction as if it were a positive
particle. The material is then an extrinsic p-type semiconductor.

6.10 Electron distribution in intrinsic semiconductors

The statistics of electrons in pure semiconductors can be understood by start-
ing with the simple two-band model shown in figure 6.3. This model states
that only electrons in two bands contribute to electronic conductivity and that
these bands are separated by a forbidden range of energies that constitute the
energy gap.

At absolute zero, all the states in the lower (valence) band are filled with
electrons while all states in the upper band are empty. The zero of energy is
taken to be at the bottom of the valence band. Ev is the energy at the top of the
valence band, while Ec and EC are the energies at the bottom and top of the
conduction band, respectively. At nonzero temperatures, a fraction of the elec-
trons in the valence band are excited to the conduction band, leaving an equiv-
alent number of holes in the valence band.

We will assume that Ev, Ec, and EC are all considerably greater than kT, and
that the energy gap (Ec - Ev) is large enough that the conduction band contains
only a small fraction of the electrons available from the valence band. For real
materials of technological interest, these conditions are usually satisfied.

The purpose of the present analysis is to determine the energy distribution
function for the electrons in the conduction band and the holes in the valence
band, and to determine the position of the Fermi energy relative to energies of
the bands. The importance of the electron and hole distributions and of the
Fermi energy is that these determine the conductivity of semiconductors. The
electrons we are interested in are obviously those near the bottom of the con-
duction band and near the top of the valence band. We can then adopt the
approximate results of band theory that the electrons near the bottom of a band
are just like free electrons with kinetic energies (e - EC] and those near the top
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Figure 6.3. Two-band model for intrinsic semiconductors.

of the valence band are just like free electrons with energies (Ev — e) with, of
course, effective masses appropriate to each band. Then the distribution func-
tions of electrons in the two bands are

o>c(e) and coy(e) are the density of states near the bottom of the conduction band
and near the top of the valence band, respectively. They are given by expres-
sions just like those for free electrons except that the energy is replaced by
(e - EC) in K>c and by (Ev - e) in a>v. That is,

The possibility that the effective masses in the two bands might be different
has been indicated by the subscripts C and V.

In the valence band, we are more interested in the distribution of holes than
of electrons. This is easily obtained from the fact that the Fermi function /is
the probability that a particular state contains an electron. The probability that
the state is empty is therefore (1 - /), and this is just fh, the probability of the
existence of a hole. Therefore, the Fermi function for holes is
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Multiplying this by the density of states for the valence band gives the energy
distribution for the holes:

In intrinsic semiconductors the band gap is several electrons volts and the
Fermi level is near the middle of the gap. For a semiconductor with a band
gap of several electron volts and a Fermi level right at the middle of the gap,
equations (6.10.1) and (6.10.6) give an electron or hole concentration of about
1016 per cubic centimeter at room temperature. Both JVc/0)c(e) and JV;,/(Q;,(e) are
therefore small relative to unity. But (6.10.1) and (6.10.6) show that then the
exponentials in these equations must be large compared to unity, which can
therefore be ignored. Equations (6.10.1) and (6.10.6) then reduce to

Equation (6.10.7) can be true only if (|i - e) < 0 for all values of the energy of
conduction electrons. This means that the Fermi energy must be less than the
energy of the bottom of the conduction band. Also, (6.10.8) can be true only if
(e - u) < 0 for all values of the energy of the valence electrons, and this means
that the Fermi energy must be greater than that of the top of the valence band.
The Fermi energy must therefore be somewhere in the energy gap.

The actual position of the Fermi energy is obtained from the fact that the
number of electrons in the conduction band must be equal to the number of
holes in the valence band. The total number of electrons per unit volume of
crystal is just the integral of (6.10.7) from the bottom to the top of the con-
duction band divided by the volume. Using the density of states expression
(6.10.3), the integral of (6.10.7) per unit volume is

Change variables in the integral to x = (e — Ec)/kT to get

The upper limit of this integral is the ratio of the width of the conduction band
to kT, and this ratio is large, so practically no accuracy is lost if the upper limit
is replaced by infinity. The value of the integral is then V5F/2 and (6.10.10)
becomes

A completely analogous calculation for the number of holes per unit volume
of crystal gives the result
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The preexponential factor in (6.10.11) has an interesting interpretation as
can be seen by considering the quantity pc defined by

The Boltzmann factor in (6.10.11) multiplied by two (because of electron spin)
is the probability that there is an electron in the conduction band, and when
this is multiplied by pc we get the number of electrons in the conduction band.
pc can then be thought of as a density of states for the conduction band in the
sense that the number of electrons in the conduction levels is the product of
a probability and a density of states. A precisely analogous argument leads us
to interpret pv, which is denned by

as a density of states for the valence band with respect to the number of holes
it contains.

The Fermi level is easily obtained by equating n to p and solving for p, to get

This shows that if the two effective masses are equal, the Fermi level is directly
in the middle of the gap. In real materials the effective masses are not usually
very different, so jj, is generally near the center of the gap.

The concentrations of electrons and of holes can be expressed in terms of
the value of the energy gap Eg = Ec - Ev as follows. Multiplying (6.10.11) by
(6.10.12) eliminates the Fermi level from the equations with the result

But for an intrinsic semiconductor n = p, so taking the square root of both sides
of (6.10.16) gives

The electron and hole concentrations in an intrinsic semiconductor are inde-
pendent of the Fermi level and depend only on the energy gap. This is an intu-
itively reasonable result since it is in accord with the fact that the process of
transferring an electron from the valence band to the conduction band depends
on thermal excitation, which must give the electron an energy at least equal to
the gap energy.

Note that the only step in which it was assumed that the semiconductor is
intrinsic was that in which the square root of (6.10.16) was taken to give equa-
tion (6.10.17) for the equal concentrations of electrons and holes. In extrinsic
semiconductors, the equilibrium distribution function for electrons in the con-
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duction and valence bands is the same as for intrinsic semiconductors. This
means that equations (6.10.11) and (6.10.12) for the electron and hole concen-
trations, and equation (6.10.16) for their product, will also be valid for extrin-
sic semiconductors.

Equation (6.10.17) shows that the charge carrier concentration is an increas-
ing function of temperature. Since the electrical conductivity is proportional
to the charge concentration, it will therefore increase with temperature in a
manner controlled by the Boltzmann factor in (6.10.17) containing Eg. The
thermal vibrations tend to decrease the electrical conductivity as more of them
are excited and as their amplitudes increase with increasing temperature. But
this effect is overshadowed by the more rapid increase in carrier concentra-
tion. In metals, the electron concentration changes very slowly with tempera-
ture and is nearly constant for the usual temperature ranges encountered in
practice. The temperature derivative of the conductivity is controlled largely
by the electron-phonon scattering process. The conductivity in metals there-
fore exhibits an approximately linear decrease with temperature, while semi-
conductors show a rapid increase with temperature.

6.11 Electron statistics in extrinsic semiconductors

In intrinsic semiconductors, the energy levels in each band form a quasi con-
tinuum and each level can hold two electrons of opposite spin. The Fermi par-
ticle statistics can therefore be applied directly. For semiconductors containing
donor or acceptor impurities, however, some modifications are necessary. To
show the origin of these modifications, we must go back to the statistical count-
ing procedure used to derive the distribution in energy.

Consider a semiconductor containing both donor and acceptor impurities
whose energy band diagram is shown in figure 6.4. The levels in the conduc-
tion and in the valence bands are treated in the same way as for the particle
statistics, and the number of complexions is given by equations that are com-
pletely analogous to those for free fermions. For the valence band, the number
of complexions is

where ATy is the number of electrons in the ca^ levels whose energies are cen-
tered on a level e/ in the valence band. For the conduction band, the number
of complexions is

where Ny is the number of electrons in the &l levels whose energies are
centered on a level e; in the conduction band.

Now consider the number of ways in which a given number of electrons
can be distributed among the acceptor levels. When an electron moves
from the valence band to an acceptor level, the impurity atom becomes
negatively charged. Any attempt to place another electron in that level requires
a very high energy to overcome the electrostatic repulsion. This means
that each level can hold only one electron. If NA is the number of acceptor
impurity atoms and NA is the number of electrons in these levels (i.e., the
number of ionized acceptors), then a straightforward application of the
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Figure 6.4. Two-band model for extrinsic semiconductors.

Fermi—Dirac counting method (see appendix 1) would give the number of
complexions as

However, because of the existence of electron spin, this is not quite correct.
A neutral trivalent impurity has an unpaired electron, and this electron has
two possible spin states. If the spin of the unpaired electron is reversed, a new
state is produced. Since the number of neutral acceptors is just the number of
empty acceptor levels (NA - NA), the number of states that can be produced
just by reversing spins of the unpaired electrons is 2(NA~NA] . To get the number
of complexions for acceptors, (6.11.3) must be multiplied by this factor. There-
fore, the number of ways of distributing NA electrons among NA acceptor
levels is

Similar considerations hold for the donor levels. When a donor impurity
gives up an electron to the conduction band, it becomes ionized, and the energy
to ionize it further is prohibitive because the second electron must overcome
the electrostatic attraction of the ion. The neutral pentavalent atom has an
unpaired electron that can take on two spin values. The number of neutral
atoms is just the number of electrons in donor levels. Each time the spin of an
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electron in a donor level is reversed, a new state is produced, and the total
number of such possible permutations is 2N°D where ND is the number of
electrons in donor levels. For donors, therefore, the total number of com-
plexions is

where ND is the total number of donor atoms. Equation (6.11.5) is just the
product of the normal Fermi-Dirac statistical count and the spin factor 2N°.

The total number of complexions is the product of the separate counts, so
the number of ways of arranging electrons among the available states such that
NY are in the ;'th valence band levels, NC are in the /th conduction band levels,
NA are in acceptor levels, and Nr> are in donor levels is

The distribution in energy can now be derived in the usual way by maximiz-
ing \nw subject to the conditions of constant total number of electrons N and
constant total energy U. The maximization must be carried out with respect to
NY, NC, NA, and NO, so the variational problem to be solved is

where EA and ED are the energies of the acceptor and donor levels, respectively.
Multiplying (6.11.8) and (6.11.9) by the Lagrangian multipliers -a and -b,
respectively, adding the results to (6.11.7), and equating the coefficients of the
variations to zero gives

The first two of these equations lead directly to the usual Fermi—Dirac distri-
bution for the bands. Performing the differentiations in the last two and using
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Stirling's approximation, however, gives the following results for the distribu-
tion in the donor and acceptor levels:

The Lagrangian multipliers have the same connection with thermodynamics
as derived previously, so these equations may be written as

The probability that an acceptor level contains an electron is NAINA, and the
probability that a donor level contains an electron is No/ND. We therefore
define the Fermi functions for donor and acceptor levels by

Equation (6.11.17) gives the number of ionized acceptors and equation
(6.11.19) gives the probability that an acceptor is ionized. To get the number
of ionized donors, Njj, write

(1 - /D) is just the probability that a donor level is empty and is given by

and the number of ionized donors is

Similarly, the probability that an acceptor level is neutral (empty) is

and the number of empty acceptor levels is
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This completes the list of the statistical formulas needed for a description of
extrinsic semiconductors.

6.12 Mass action laws for extrinsic semiconductors

Whenever (e - |a) » kT for electrons, or (jx - e) » kT for holes, the Fermi func-
tion reduces to a Boltzmann form. Section 6.10 showed that this is true for
intrinsic semiconductors with a large energy gap and that this implies that the
electron and hole concentrations in the conduction and valence bands, respec-
tively, are small relative to the number of available states. The Fermi level then
lies near the center of the energy gap. If small amounts of donor or acceptor
dopants are added to such a semiconductor, then the number of electrons and
holes in the conduction bands may be increased, but if the impurity concen-
tration is low enough, the number of electrons and holes will still be small
relative to the number of available energy states.

For an extrinsic semiconductor of the type just described, it is convenient
to describe the transfer of electrons among the energy levels by a set of chemi-
cal ionization reactions. Four such reactions are possible, (1) the ionization of
a donor in which an electron goes to the conduction band:

(2) the ionization of an acceptor in which an electron goes from the valence
band to an acceptor level, leaving behind a hole:

(3) the transfer of an electron from a neutral donor to a neutral acceptor:

and (4) the transfer of an electron from the valence band to the conduction
band:

In these equations, e represents an electron, or a filled state, while h+ repre-
sents a hole, or an empty state. CB and VB stand for conduction band and
valence band, respectively.

Now define four equilibrium constants, corresponding to each of the four
reactions as follows:
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In the last of these equations, N is the number of atoms in the crystal and 2N/V
is the number of available states per unit volume in each band. But n, the
number of electrons per unit volume, and p, the number of holes per unit
volume, are both much smaller than the concentration of states in the bands,
so n and p can be neglected in the denominator of (6.12.8), which can then be
written as

where Kis a new equilibrium constant defined by K= K^N^/V2. The equilib-
rium constants can be written in terms of the energy parameters of the system
by substituting the appropriate expressions for n, ND, ND, NO, p, and N%. For the
semiconductor we are considering here (large gap, low impurity concentration),
equations (6.10.11) and (6.10.12) are valid. Using these equations for n and p,
and (6.11.16), (6.11.17), (6.11.22), and (6.11.24) in the right-hand sides of
(6.12.5)-(6.12.7) and (6.12.9), and remembering that/D + /£ = 1, we get

The energies in these expressions are denned by

and pc and pv are denned by equations (6.10.13) and (6.10.14).
Equations (6.12.10)-(6.12.13) must be satisfied in our semiconducting sys-

tem. Their value lies in the fact that the right-hand sides are functions of tem-
perature that depend only on the nature of the crystal and its impurities, and
not on concentrations. To illustrate the use of these equations, consider the
case in which the energy gap is so large that a negligible number of electrons
are excited from the valence band to the conduction band. The number of
conduction electrons is then equal to the number of ionized donors,

and the number of holes is equal to the number of ionized acceptors,

Substituting these equations into (6.12.10) and (6.12.11), and remembering that
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we get

where nD = ND/V and nA = NA/V, respectively. These equations show how an
increase in the impurity concentration increases the concentration of charge
carriers. Note that (6.12.13) is still valid. This means that an increase in con-
centration of donor atoms increases the electron concentration because of
(6.12.18), but it decreases the hole concentration because of (6.12.13).
Likewise, an increase in acceptor impurity concentration increases the con-
centration of holes but decreases the electron concentration. It follows that
increasing the donor concentration suppresses the ionization of acceptors and
vice versa.

6.13 Relation between Fermi level and
impurity concentration

The concentrations of electrons and holes are given by equation (6.10.11) and
(6.10.12). Since n and p can vary greatly with different impurity content, it is
clear that the Fermi level is a sensitive function of the impurity concentrations
and ionization energies. To get explicit values of concentrations in terms of the
parameters of the system, it is necessary to know how the Fermi level depends
on impurity concentrations.

In metals, where all electrons are treated by particle statistics, the Fermi level
is easily found from the condition that the number of electrons is a constant
and is therefore determined by the electron density. In semiconductors, the
situation is somewhat more complex. The number of electrons in the bands
depends on the values of the various energy levels and on the concentration
of donor and acceptor impurities. For an intrinsic semiconductor the Fermi
level is determined by the requirement that the numbers of electrons and holes
are equal, thus preserving electrical neutrality, and found to be about midway
between the top of the valence band and the bottom of the conduction band.
In extrinsic semiconductors, the Fermi level is also determined by the require-
ment of electrical neutrality. The number of electrons plus the number of
ionized acceptors must equal the number of holes plus the number of ionized
donors. That is,

where nA = NA/V and n£ = A/S/V. Putting (6.10.11), (6.10.12), (6.11.17), and
(6.11.22) into (6.13.1) gives
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where we have used the definitions of valence band and conduction band
density of states given by equations (6.10.13) and (6.10.14).

Equation (6.13.2) determines [i. If the impurity concentrations and energy
levels are known, [a, can be found by numerical or graphical procedures. Sim-
plified solutions can be found for some important special cases.

Case! Weak ionization

If (EA - |i) and (|i - ED) are large enough, or the temperature is low enough,
unity in the denominators of (6.13.2) can be neglected relative to the expo-
nentials. Then some straightforward algebra gives

The energies (Ev - ED) and (EA - Ec) differ from the gap energy by the ioniza-
tion energies for donor and acceptor impurities, respectively and section 6.9
showed that these are of the order of 0.05—0.1 eV. We can therefore get a rough
estimate of the exponential terms in (6.13.3) by assuming that the effective
mass is close to the actual electron mass and replacing the energies in the expo-
nentials by the gap energy. Doing this, and assuming a gap energy of 1 eV shows
that, unless the impurity content is extremely small, the impurity concentra-
tion completely dominates the exponential term at room temperature and we
can write (6.13.3) as

For the range of impurities encountered in practice, the position of the Fermi
level therefore depends on the relative concentration of donors and acceptors.
Increasing the donor concentration pushes the Fermi level closer to the con-
duction band while increasing the acceptor concentration pushes it towards
the valence band.

Case 2. Donor impurities only

If only donor impurities are present, then UA = 0 in (6.13.1). Furthermore, the
holes in the valence band arise only from thermal excitation from the valence
band to the conduction band and, provided the gap width is not too small,
their number will be much smaller than the number of electrons in the con-
duction band. This is readily seen from the mass action law (6.12.13). The hole
concentration can then be neglected in (6.13.1) and the charge neutrality con-
dition becomes

Substituting (6.10.11) and (6.11.22) in this equality gives

This is readily transformed into a quadratic equation for e^lkT whose solution
is
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The positive root is chosen because the left-hand side of (6.13.7) is greater than
zero.

From our earlier calculation of pc, it follows that

for most practical cases. Therefore, the square root can be expanded, retaining
only terms to the first order, to get

or

For n-type semiconductors, therefore, the Fermi level is close to the bottom of
the conduction band, provided the temperature is not extremely high.

Case 3. Acceptor impurities only

If only acceptors are present, n^ = 0 and n « p. Then (6.13.1) becomes

and from (6.10.12) and (6.11.17) we get

Proceeding as we did for the n-type semiconductor give

and for p-type conductors, we see that the Fermi level is near the top of the
valence band.

Exercises

6.1 For a two-dimensional Fermi gas, show that the average energy e of a
particle at absolute zero is related to the chemical potential \i0 at absolute
zero by e = \ia/2.

6.2 What is the percentage change of the Fermi level in copper when the
temperature changes from 0 to 500K?
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6.3 Over what energy range does the Fermi function differ from either zero
or unity by 1% at 300K? What fraction of the Fermi energy is this range? Do
the same calculations for T = 1000K.

6.4 For sodium, calculate the ratio of the electronic to the vibrational spe-
cific heat at temperatures of 0.1, 1, and 10K.

6.5 A white dwarf star is so dense that all electrons are stripped from nuclei
and can be treated by free electron theory. A typical white dwarf has an elec-
tron density of 1030 electrons/cm3. Calculate the temperature at which the
zero temperature approximation for the Fermi level fails by 1% and compare
this to the internal temperature of 10 million degrees at the center of the star.
What is the velocity of an electron at the Fermi level in the white dwarf and
what is the ratio of the Fermi velocity to the velocity of light?

6.6 79Au has a nuclear radius of 5 x 10~13cm. Assuming the nucleons can be
treated as an ideal Fermi gas, compute the Fermi energy. At what tempera-
ture is the thermal energy equal to the Fermi energy?

6.7 From the linearized Thomas—Fermi theory for a point charge in jellium,
compute the total amount of excess charge that is beyond the screening
distance X if the point charge has the same magnitude as the charge on an
electron.

6.8 For silver, compute the Thomas-Fermi screening distance and the ratio
of this distance to the nearest neighbor distance, assuming one free electron
per atom.

6.9 Show that, in Thomas-Fermi theory, the screening distance A, for the
potential of a point charge q in jellium is X = KJFS, where rs is the
Wigner-Seitz radius. What is the numerical value of the proportionality con-
stant K?

6.10 Given that pure germanium has a band gap of 0.67eV and assuming
that the effective masses of electrons and holes are each equal to the elec-
tron mass, compute the electron and hole concentrations at 300K.

6.11 Germanium has a band gap of 0.67eV and a Wigner-Seitz radius of
1.67 angstroms. Assume it contains 10"4 atomic percent of a donor impurity
whose energy level is 0.01 eV below the conduction band energy.

A. What percentage of donor impurities are ionized at 300K?
B. What is the ratio of the electron concentration of the material with

10~4 atomic percent impurity to that of pure germanium at 300K?
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Statistical-Kinetic Theory
of Electron Transport

7.1 Free electrons in external fields and
temperature gradients

The free electrons in metals and semiconductors carry charge and are respon-
sible for their electrical conductivity and for some important magnetic effects.
They also carry energy and therefore contribute to thermal conductivity. In
metals, their concentration is so high that electrons are the major contributors
to thermal conductivity. It is therefore important to study the response of free
electrons to external electric and magnetic fields and to temperature gradients.

When a system of free electrons is at equilibrium, the number of electrons
in any volume element is statistically constant and there is no net flow. This
means that macroscopic measurements will find the electron concentration
to be independent of time. Of course, the electrons are constantly moving and
there will be microscopic fluctuations in the number of electrons in a volume
element, but on the average, just as many will be entering as leaving the volume
element per second. If an electric or magnetic field acts on the system, however,
the electrons will accelerate in a direction determined by the field. A drift
motion will thereby be superimposed on the random movements of the elec-
trons, giving rise to a directional net flow.

Consider an electron with velocity v in a state labeled by the wave number
vector k. Its energy and momentum are given by

At a time t = 0, switch on an electric field E. The field exerts a force -eE on
the electron, and because the force is the time rate of change of the momen-
tum (Newton's second law of motion), we have

For a constant field, this equation is easily integrated to give k as a function
of time. Then, if the initial time is taken to be zero, (7.1.3) gives

177
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where t is the time after switching and k0 is the wave number vector before
the field was switched on. Equation (7.1.4) is valid for all the free electrons,
and it is clear that the effect of the field is to shift the entire Fermi distribu-
tion opposite to the field direction by an amount that is the same for all elec-
trons and proportional to the time. Because k = mv/h [see equation (7.1.2)], we
can rewrite (7.1.4) as

which states that the field imposes a constantly increasing velocity, opposite
to the direction of the field, on the initial velocity v0 of the electron.

An analogous situation exists if the electron is acted on by a constant mag-
netic field H. In this case, the force, in c.g.s./e.s.u. units, acting on an electron
of velocity v is given by electrodynamics as -e/cv x H, where c is the velocity
of light. From Newton's second law, the acceleration of the electron in the mag-
netic field is

If the average velocity at a time t after turning on the magnetic field is defined
by

then (7.1.6) integrates to

Therefore, the effect of the magnetic field is to superimpose a velocity on the
electron that continually increases with time and is perpendicular to both the
magnetic field and the average electron velocity. Since the wave number vector
is proportional to the velocity, equation (7.1.8) can also be written as

The average wave number vector, kav, is not the same for all electrons since it
depends on the initial value k0, so unlike the electric field, a magnetic field
does not affect all electrons equally and the overall effect is more complex than
a simple shift of all electrons in the Fermi distribution. This is a result of the
fact that magnetic forces are velocity dependent.

Equations (7.1.5) and (7.1.8) show that the electrons are constantly acceler-
ated, and the velocities would reach very high values if some mechanism did
not exist that opposes the field effects. In real metals and semiconductors, a
variety of mechanisms operate that continually undo the accelerating effects
of the external fields.
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According to quantum theory, there is no resistance whatever to the motion
of an electron in a perfectly periodic potential. Real crystals, however, are not
perfect. Anything that disturbs the periodicity may scatter electrons and con-
tribute to the resistance they meet in their flight. Electrons are scattered by
atomic vibrations, impurity atoms, vacant lattice sites, interstitials, disloca-
tions, grain boundaries, precipitates, surfaces, or anything else that upsets the
ideal crystal structure. External fields cannot accelerate electrons in solids
indefinitely. The electrons eventually interact with some imperfection, trans-
fer energy and momentum to it, and move on again in some other direction.
Each such interaction can be thought of as a collision that erases the electron's
memory of its previous response to the external field. After the collision, the
field has to start afresh to exert its influence on the electron. The result is
a balance between the field, which tries to bring the electrons away from
equilibrium, and the collisions, which try to restore equilibrium.

Let t be the average time between collisions of an electron with crystal
imperfections. This is the average time between scattering events, so the
average change in wave number vectors caused by the external field is obtained
by replacing t in equations (7.1.4) and (7.1.9) by T. That is, if we define dk =
k - k0, then

In getting (7.1.11), it is assumed that the average time between collisions is so
small that the average wave number vector has its instantaneous value.

The shift in k-vectors means that there will be a shift in the Fermi distribu-
tion. For all practically realizable fields, however, this shift will be small
because the amount of energy that the electrons can absorb from the field is
small compared to their original kinetic energy. This means that if /(k) is the
probability that an electron is in a state k, then we can write

where /0(k) is the equilibrium Fermi function and A/« /0.
Now consider a free electron gas in a temperature gradient. Because tem-

perature is a measure of kinetic energy, the average velocity in hot regions will
be greater than in cold regions. These electrons carry energy with them, so
there is a corresponding heat flow.

The shift in the Fermi distribution resulting from a temperature gradient has
two origins. First, the distribution function depends on temperature explicitly,
so if a temperature gradient exists, the distribution will vary with position.
Second, the distribution depends on the Fermi level and, to the extent that this
varies with temperature, it will vary with position. Of these two effects, the
first is the more important one in metals because the Fermi level varies only
slightly with temperature. The second effect is more important in semicon-
ductors than in metals because the Fermi level can have a greater variation
with temperature.

Note that electrons carry both kinetic energy and charge. Therefore, the heat
flow caused by a temperature gradient is accompanied by electrical effects.
Conversely, the current caused by electric and magnetic fields is accompanied
by thermal effects. The theory to be developed here describes these effects as
well as the ordinary electrical and thermal conductivity.
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7.2 The statistical-kinetic method

The theory of electron transport in metals and semiconductors can be worked
out by kinetic methods in which particle and energy fluxes are expressed in
terms of particle velocities and the particle distribution function based on
Fermi-Dirac statistics. The distribution function is then related to external
fields and temperature gradients. The methods of equilibrium statistical
mechanics are not adequate for this task and they must be supplemented in
two ways. First, because the system is not in equilibrium, the distribution func-
tion for the electrons must be modified. For fields and gradients of experi-
mental interest, the perturbed distributions are not too far from the equilibrium
results given by Fermi functions, and it is possible to find reasonably accurate
approximations for the gradients of the distribution.

Second, a more fundamental difficulty is that equilibrium statistical mechan-
ics has nothing to say about the details of transitions of electrons from one state
to another. But this is just what is needed for a theory of transport. When an
electron in a particular energy state takes part in a collision, it is scattered into
another state, and the rate at which this happens is central to transport theory.
The theory must therefore be supplemented by introducing transition proba-
bilities that give the rate at which electrons move from one state to another.
This enables equations for the flux of electrons to be derived.

The flux equations can be obtained by a kinetic argument as follows. Choose
a plane in the system across which the flux is to be calculated, and consider
a small surface area As in this plane. In a small time interval dt, an electron
of velocity v will reach the flux plane if it is anywhere within a distance Ax =
v • indt, where in is a unit vector normal to the flux plane and Ax is measured
in the in direction. Therefore, all the electrons in a volume element v-incftAs
will cross the area element As in time dt. If N(r, v, t)drdv is the number of elec-
trons at time t in a volume element dr with velocities in the range v to v + dv,
then the number that cross As in time dt with velocity v is

The total number of electrons crossing As is obtained by integrating over all
velocities.

The flux of electrons in the in direction is the number of electrons crossing
a unit area per unit time, which is just (7.2.2) divided by Asc/t Doing this to
get the flux, and multiplying by the charge per electron -e, we get the compo-
nent of the flux of charge, or electric current, that is perpendicular to our flux
plane, as

The component In is related to the flux vector I by /„ = I • im and therefore (7.2.3)
becomes

The flux of energy is obtained in a similar way. Equation (7.2.1) is multiplied
by the kinetic energy znv2/2, integrated over the velocity v and divided by Asdt
to get the energy flux J as
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For an equilibrium system, N(r, v, i) reduces to the equilibrium velocity dis-
tribution given by Fermi particle statistics. But our system is not at equilib-
rium, and for a nonequilibrium, system, N(r, v, t) is the distribution function
resulting from a balance between the effects of the fields and the collisions. To
describe the way that collisions restore equilibrium, a conditional transition
probability function A(v, v') is defined such that, if an electron has an initial
velocity v, then the probability that its velocity changes to a value in the range
v'to v' + dv' in a time dt is A(v, v'JdVdt. The physically reasonable assump-
tion is made that A(v, v') depends only on the initial and final states and is
independent of the external fields, the time, or the electron's position. The tran-
sition probabilities are called conditional because they give the probability of
going to a final state v', given the condition that they are in a specific initial
state v. (Note that these transition probabilities are special cases of the transi-
tion probabilities defined in section 2.13 to describe the time evolution of the
entropy.)

The rate at which the distribution function changes because of collisions can
now be expressed in terms of the conditional transition probabilities. We do
this by choosing a volume element dr and considering electrons with a veloc-
ity v in the range dv. Then we count the number of these electrons that leave
the volume element and subtract this from the number that enter the volume
element. This leads us to the rate of change of the distribution function.

The decrease, during time dt, in the number of electrons in volume element
dr with velocity in the range dv is the number of such electrons, given by
Mr, v, t)drdv, times the probability that one of them will jump to some other
state with velocity v' in the range dv', given by A(v, v'Jdv'dt, integrated over
all possible states with final velocity v'. This is

Similarly, the increase in the number of electrons in the volume element dr
with velocity in the range dv is the number of electrons with velocity v' in the
range dv' times the probability that such an electron will go into a state with
velocity v (in the range dv) and integrating over all possible v'. This is

If (7.2.6) is subtracted from (7.2.7) and the result divided by drdvdt, we get the
rate of change with time of JV(r, v, t).

The subscript c is put on the derivative to emphasize that this is the rate of
change resulting from collisions. Equation (7.2.8) is useful for the development
of transport theory. It contains the physical collision mechanisms in A(v, v').

7.3 The Boltzmann transport equation

If our system were left to itself, the collision derivative would eventually go
to zero and the particle distribution function would approach its equilibrium



182 STATISTICAL MECHANICS OF SOLIDS

value. However, the actions of external fields and temperature gradients impart
a drift velocity to the random motion of the particles that keeps them from
reaching a state of equilibrium. The total rate of change of the distribution func-
tion is therefore the sum of two terms: the collision derivative discussed in
section 7.2 and a drift derivative arising from fields and temperature gradients.
That is,

The first term on the right is the collision derivative discussed above, while
the second term is the drift derivative.

The drift derivative can be related to the external influences by following
the motion of a given group of electrons. At time t, the number of electrons
with positions in dr and velocities in dv is

At a later time t+ dt, the positions and velocities of all electrons in this group
have changed to

where a = dv/dt is the particle acceleration. But the number of electrons in the
group has not changed, so

Expand the left-hand side in a Taylor series and, since At can be arbitrarily
small, retain only the first-order terms. The result is

The vector derivatives are defined by

ii, i2, ia being unit vectors of a Cartesian coordinate system.
The time derivative in (7.3.5) is just the drift derivative, so

This equation connects the transport properties to the external fields through
the acceleration a, and to the temperature gradient through the derivative
9M3r.



STATISTICAL-KINETIC THEORY OF ELECTRON TRANSPORT 183

Now the time derivative of the distribution function can be written explic-
itly in terms of collision events and external fields by substituting (7.2.8) for
the collision derivative and (7.3.7) for the drift derivative into (7.3.1):

This is the Boltzmann transport equation.
If the derivative on the left of (7.3.8) is zero, the system is said to be at steady

state. In this case, all gradients and fields are constant in time because the time
dependence of the distribution function is the result of the time dependence
of the fields and gradients. The system then has a distribution function that is
independent of time, although it may have a form different than that at equi-
librium, and (7.3.8) reduces to

This is the steady state Boltzmann transport equation. Note that steady state
only means that the overall dependence of the distribution on time vanishes
and that this is the result of an equal balance between the drift and the colli-
sion terms. Between collisions the electrons are accelerated, so the distribu-
tion function is changing. During a collision the past history of collisions is
erased, so the distribution changes again. The continuous description in terms
of derivatives is an approximation to the rapidly varying and sometimes dis-
continuous changes taking place as the result of collisions.

For constant electric and magnetic fields E and H, the acceleration of an
electron with velocity v is given in terms of the Lorentz force ( in c.g.s./e.s.u.
units) by

Also, since E and H do not vary with position, the spatial derivative of the dis-
tribution function must arise from the temperature gradient and therefore

Equations (7.3.10) and (7.3.11) give us the left-hand side of (7.3.9) in terms
of the fields and temperature gradient. That is,

The right-hand side of (7.3.9), which is just the collision derivative, is more
difficult to handle because we do not have a general expression for the transi-
tion probabilities. A workable procedure is to introduce a quantity t(v) that is
defined by
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where NQ(v) is the equilibrium distribution function in the absence of fields or
gradients.

t(v) is assumed to be a function only of the electron's velocity. It has the
dimensions of time and is a measure of the rate at which the particle dis-
tribution function regresses to its equilibrium value. To see this, assume that
we suddenly switch off all fields and gradients (so that the drift derivative is
zero) at a time we call t = 0. Then integration of (7.3.13) gives

where we have written AN for the initial deviation from equilibrium [N(Q] -
N°], The interpretation of T(V) is now obvious. It is the characteristic relaxation
time for electrons of velocity v governing the approach to equilibrium of a per-
turbed distribution. Its value depends on the collision mechanism, so T should
be different for different mechanisms.

If several collision mechanisms are operating in the system, then each
mechanism contributes to the collision derivative and (7.3.13) should be
written as

where there are as many terms on the right-hand side, and as many relaxation
times, as there are collision mechanisms. Equation (7.3.15) can be put into the
simpler form of (7.3.13) by defining a combined relaxation time by

This definition allows us to derive general equations of transport without wor-
rying about the collision mechanisms beforehand. However, it should be kept
in mind that an overall relaxation time may be the result of a number of dif-
ferent processes working simultaneously. Numerical calculation of transport
coefficients from theory would require that the theory of each of the mecha-
nisms be worked out. The relaxation times are usually taken to be functions
only of the magnitude of the velocity, an assumption that is reasonable for the
scattering mechanisms encountered in solids.

Using the relaxation time concept, we now equate the right-hand side of
(7.3.12), which is just the negative of the drift derivative, to (7.3.13) and solve
for N[T, v, t) to get

The arguments in the functions N and T have been dropped for simplicity.
Equation (7.3.17) is a formal solution to the problem of determining

Mr, v, t). If T(V) is computed, the solution becomes explicit, but for the time
being we will go as far as we can without a detailed theory for the relaxation
times.

The last three terms in (7.3.17) describe the departure of the electron distri-
bution from equilibrium. This description is facilitated by a formal device in
which a vector h is defined by
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or, from (7.3.17),

Now we express the derivatives on the right-hand side of (7.3.19) in terms of
h by using (7.3.18):

Because we are dealing with systems in which the deviation from equilib-
rium is small, we have 3(v-h)/3T« dN°/dT and 3(v-h)/dv « dN°/9v and, to a
first approximation, it would seem that the departures from equilibrium can
always be neglected in evaluating derivatives of the distribution function. This
is true for the first two terms in (7.3.20). In the third term, which is the effect
of magnetic fields, however, retention of the derivative 3(v-h)/dv is essential.
This can be seen by working out the triple product in the last term:

In the first derivative on the right, we have used the fact that the kinetic energy
of an electron is e = m(vj + v2

y + v2
z)/2 to convert the velocity gradient to an energy

derivative.
From vector algebra, v x H-v = 0, so the first term on the right of (7.3.21)

vanishes. Now we can write (7.3.20) to a first-order approximation by neglect-
ing the derivatives containing v-h in the first two brackets on the right, but
using the last term of (7.3.21) for the third bracket. The result is

As long as no magnetic fields are present, derivatives of the distribution
function can be treated as if the system were at equilibrium. In the presence
of a magnetic field, however, this procedure would give a zero result for mag-
netic effects. In all magnetic terms, the departure from equilibrium must be
explicitly included in evaluating derivatives of the distribution.

7.4 Formal flux equations

The flux equation for the electric current can now be obtained in terms of the
fields and temperature gradient by substituting (7.3.17) into (7.2.4):

The function N° is just the equilibrium particle distribution in velocity for free
electrons, given by particle statistics as
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The first term in the integral in (7.4.1) refers to the equilibrium distribution,
and we would expect that this does not contribute to an electron flow. This is
actually the case because N° is symmetric in the velocity, so vN° is antisym-
metric, thereby making the integral of vN° over the velocity zero. Therefore,
(7.4.1) becomes

In the same way, the heat current vector (flux of kinetic energy) is obtained by
inserting (7.3.17) into (7.2.5):

The entire theory of steady state thermal and electrical conduction is contained
in these two flux equations. Note that all the external influences contribute to
both the electric and thermal fluxes. Thus, there is an electric current arising
not only from the electric field, but also from the temperature gradient and
the magnetic field. Similarly, the electric and magnetic fields, as well as the
temperature gradient, contribute to the heat flow.

All that is needed to extract the transport coefficients from the flux equa-
tions is a computation of the various integrals. In computing these integrals,
it will be assumed that the derivatives of the distribution function can be
replaced by the values they would have for the equilibrium distribution func-
tion unless magnetic fields are present. In the latter case, it turns out that an
approximation can be developed that relates the derivatives to those for the
equilibrium distribution. Since we are dealing with small perturbations from
equilibrium, these procedures are sufficiently accurate.

7.5 The electrical conductivity of metals

To calculate the electrical conductivity of a metal, consider a system for which
there is no magnetic field and the temperature is uniform so there is no tem-
perature gradient. Also, let the electric field have a nonzero component only
in the x-direction. Equation (7.4.3) then reduces to

The components of the current flow Iy and 7Z in the y- and z-directions vanish
because the corresponding integrals vanish as a result of their being antisym-
metric in the velocity components vy and vz, respectively. That is, the flux of
electric charge is in the same direction as the electric field.
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Since the electrical conductivity o is defined by Ix = oEx, it is given by (7.5.1)
as

The first step in evaluating this integral is to use the relation

to get

Using this, (7.5.2) becomes

If we assume that the relaxation time is a function only of the magnitude of
the velocity and not of its direction, then the integral remains unchanged if vx
is replaced by v7 or vz. Therefore, since v2 = \2

X + M2
y + vl, equation (7.5.5) can be

written as

The integrand in (7.5.6) is spherically symmetric with respect to velocity, so
dv can be expressed in spherical coordinate form as

or, using (7.5.3),

Equation (7.5.6) therefore becomes

where N in the derivative has been replaced by its equilibrium value
2m3f(e)/h3, in keeping with our restriction to small deviations from equilib-
rium, /(e) is the Fermi function from particle statistics, so the conductivity
is now expressed in terms of a Fermi integral. If only the first term in the
expression for the Fermi integral is retained, we have
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where v(u\) is the speed of an electron at the Fermi level. Since p, = znv(p,)2/2,
equation (7.5.10) can be written in terms of the Fermi energy as

Now put this into (7.5.9) and neglect the variation of |i with temperature so
that the zero temperature relation between the electron density and the Fermi
level for free electrons can be used. The result is

The electrical conductivity is now reduced to a very simple form. Note that
only the relaxation time of electrons with energy equal to the Fermi energy
appears in this equation. This is a result of using the zero temperature approx-
imation for a Fermi gas. However, the temperature dependence of the Fermi
level is so weak that this is quite a good approximation. The most important
temperature dependence arises from the scattering of the electrons by lattice
vibrations. Approximate quantum mechanical analysis shows that for this
mechanism the relaxation time is inversely proportional to temperature. Since
the electron density n is insensitive to temperature, this means that the resis-
tivity of metals increases linearly with temperature. The mass in (7.5.12)
should be interpreted as the effective mass of electrons in the conduction band
of the metal. This is also a very weak function of temperature.

For an electron density of 1022/cm3 and a specific conductivity of
lOVohm-cm, which is characteristic of most metals at room temperature,
(7.5.12) gives a value of 10"14 seconds for T. This is of the order of the mean
time between atomic vibrations. The relaxation time is a measure of the average
time between collisions, so multiplying it by the velocity of an electron with
energy (j, gives a measure of the mean free path between collisions. For a Fermi
energy of 4 eV, the room temperature mean free path between scattering events
turns out to be about 120 angstroms.

7.6 Thermal conductivity and the Wiedemann-Franz law

If the only external influence on our system is a temperature gradient, then
electrons will move from hot to cold regions because their velocities are higher
in the regions of higher temperature. As a result of this, the electron concen-
tration will increase in the direction of decreasing temperature and an electric
field will be established in the system. This internal Held induces an electron
flow in the opposite direction to that resulting from the temperature gradient.
An analysis of thermal conduction, therefore, requires the use of both the
charge flow and the heat flow equations. If the temperature gradient is along
the x-axis, the electrical potential induced by the flow of electrons is also along
the x-axis and the heat flow equation (7.4.4) is

where E'lx is the electric field induced by the temperature gradient. For a con-
stant gradient, this induced field is also constant.
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Thermal conductivity measurements are carried out under open electrical
circuit conditions. The electric current vector in (7.4.3) therefore vanishes.
Since, in the present case, VT —» dT/dx, E —> El, and H = 0, we can set I = 0
in (7.4.3) and solve for El, with the result that

Now the induced electric field ET
X can be replaced in (7.6.1) by (7.6.2) to give

the heat flow in terms of the temperature gradient alone. The result is

The 7s are integrals defined by

To evaluate these integrals, it is convenient to express them in terms of
energy rather than velocity so that the method of evaluating Fermi integrals
can be used. To do this, use (7.5.4) and (7.5.8), replace v| by v2'3 and remem-
ber that N= 2m3/(e)/A3 and v = ̂ 2ejm. The result is

Equations (7.6.8) and (7.6.10) contain temperature derivatives and these must
be converted to derivatives with respect to energy so that the series expansion
method of evaluating Fermi integrals can be used. It is easy to show that
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Also, since

equation (7.6.12) can be written as

where the function g(e) is defined by

The last equality is obtained by evaluating d\L/dT from

which is the free electron result for the variation of the Fermi level with
temperature given by equation (6.4.22).

Now substitute (7.6.14) into (7.6.8) and (7.6.10) to get

Now all the integrals 1^ to I4 can be treated by the series expansion formula for
Fermi integrals. When this formula was applied to the electrical conductivity
calculation, only the first term in the series was retained since all other terms
are negligibly small. But the thermal conductivity would vanish if only the
first term were retained. To get a nonzero result, it is necessary to retain the
first two terms of the expansion in evaluating the integrals It to 74. A straight-
forward application of the series expansion method, up to the first two terms,
to equations (7.6.9), (7.6.11), (7.6.16), and (7.6.17) gives [see equations (6.4.8)
and (6.4.9)]
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In these equations, the double primes indicate that second differentiations with
respect to energy of the quantities in the parentheses have been performed, the
second derivatives being evaluated at e = \i. That is,

and so on. Working out the derivatives according to this definition gives

We now have all the formulas we need to get the heat flow equation. First
substitute equations (7.6.18)-(7.6.21) into (7.6.3), retaining only terms to
second order in the temperature, to get

Now use equations (7.6.22)-(7.6.25) in (7.6.26). The result is

From (7.6.15), we get

Putting this in (7.6.27), and using the first-order expression (0,0 from free elec-
tron theory for |j, [equation (6.3.12)], n,0 = h2/8m(3N/nV}2'3, equation (7.6.27)
becomes

or



192 STATISTICAL MECHANICS OF SOLIDS

Table 7.1: Lorenz Number for Metals at 100°C

Metal £x10 1 3 Metal ix101

Mg
Al
Ni
Cu
Zn
Mo
Rh
Pd

2.57
2.47
2.53
2.60
2.60
3.10
2.82
2.63

Cd
Sn
W
Ir
Pt
Au
Rb
Ag

2.70
2.76
3.55
2.76
2.88
2.88
2.85
2.63

From a compilation by Wilson (1965).

This is what we were after because, by definition, the negative of the coeffi-
cient of the temperature gradient is the thermal conductivity, K:

Just as in the case for the electrical conductivity, the relaxation time enters
only through its value for e = (i.

If (7.6.30) is compared to equation (7.5.12) for the electrical conductivity, we
see that the number L, defined by

contains only fundamental constants. This is the Wiedemann-Franz law, and
the quantity L is called the Lorenz number. In the free electron theory it is a
universal constant whose value is 2.71 x 1CT13 (in c.g.s./e.s.u. units). Experi-
mental values of the Lorenz number for some metals are given in table 7.1. The
agreement between theory and experiment is quite good for a number of metals,
and this is evidence for the applicability of the free electron theory.

7.7 The isothermal Hall effect

If a magnetic field is imposed on a metal or semiconductor carrying a current,
it modifies both the current and the applied electric field. This is the basis
of the Hall effect. Its importance lies in the fact that it gives a direct ex-
perimental measure of the electron concentration and the sign of the charge
carrier. The Hall experiment is carried out by imposing an electric field in the
x-direction and a magnetic field in the z-direction on a specimen as shown in
figure 7.1.

An electron whose initial motion is in the x-direction is deflected by the
magnetic field, so its velocity has a component in the y-direction. But in the
experiment, the electric circuit is closed only in the x-direction, so there is
no current flow in the y-direction. This means that a constant field Ey is
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Figure 7.1. The isothermal Hall effect.

established in the y-direction. This is called the Hall voltage. A measure of the
effect is given by the Hall coefficient, which is defined by

where Ix is the current in the x-direction and Hz is the applied magnetic field.
The derivation of equations for the Hall coefficient is somewhat different for

metals and for semiconductors. In metals, electrons constitute the only type
of charge carrier and the electrons are degenerate so they obey Fermi-Dirac
statistics. In semiconductors, both electrons and holes can carry charge,
and because the electron density is usually much smaller than in metals, the
electron statistics are well represented by the semiclassical approximation.
However, the methodology of the derivations is the same in both cases. In this
section, we will assume we have a metal that can be treated by the one-band
effective mass model. After becoming familiar with this treatment, it is a simple
matter to extend and modify it for semiconductors.

Switching on the magnetic field has the effect of converting the electric field
vector from E^ to (Exi-i + Eyi2), which is equivalent to rotating the electric field
through an angle § given by

((> is called the Hall angle.
For the isothermal Hall effect, the temperature gradients are zero and the flux

equation (7.4.3) reduces to

The first term is just the electrical conduction oE as shown in section 7.5. The
second term requires a little more attention. As discussed in section 7.3, the
equilibrium part of the derivative 3AT/9v contributes nothing to magnetic
effects, and an explicit calculation of the departure from equilibrium must be
made. From the definition of h given by equation (7.3.18), the derivative of N
in the second term can be replaced by the derivative of v • h (since there is no



194 STATISTICAL MECHANICS OF SOLIDS

contribution to magnetic effects from the derivative of N°). That is, in the
second term of (7.7.3),

An estimate of the derivative in the integral on the right-hand side of equa-
tion (7.7.5) can be obtained by starting with equation (7.3.22). Since the
temperature gradient is zero for the present case, this equation is

A series solution of (7.7.6) can be obtained by first treating the second term as
if the magnetic field is small enough that the term in (7.7.6) containing the
derivative of v-h can be neglected to get a first approximation. Thus, if we
differentiate (7.7.6) and neglect the second term, we get

But, since e = mv2/2,

so (7.7.7) becomes

Substitution of (7.7.9) into (7.7.6) gives the first approximation to v-h as

A second approximation can be obtained by differentiating equation (7.7.10)
and treating everything but v as a constant. The result is

This approximation procedure can be continued indefinitely to get higher
approximations, but for our purposes, the second approximation given by
(7.7.11) is adequate. Actually, the first approximation is usually sufficient
because the experiment can always be done with small magnetic fields. But
we carry the second approximation through to the end of the calculation to
show that the second term in (7.7.11) turns out to be quadratic in the magnetic

so
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field and to show how higher approximations are obtained. Substituting
(7.7.11) into (7.7.5) gives

where a(If) is the integral arising from the second term in (7.7.11) and is easily
shown to be quadratic in the magnetic field. Since H = Hzi3 and E = Exi^ + Eyi2,
working out the product (v x H)-E reduces (7.7.12) to

The first integral on the right can be evaluated by using the series expansion
formula for the Fermi integral. First, write the velocity vector in terms of its
components and remember that the integral is zero for an antisymmetric inte-
grand, so only the terms quadratic in the velocity components survive. The
integral on the right of (7.7.13) therefore becomes

Also, because of spherical symmetry, v2 and v2 can be replaced by v2/3, so this
integral can be written as

Now use the relationsn N° = (2m3/.h3)/(e), v2 = (2e/m), and dv = 47tv2dv to reduce
this integral to (8rcrn2/3/j3)jT2(3/79e)v3cfeCE'xi2 - Eyii). Using the first term of the
Fermi integral expansion, this becomes (87tm2/3/!3)[-T2((i)v3(a0)][£'xi2 - Eyi^].

Now use the relation between velocity and energy to replace velocity by
Fermi level and (6.3.12) to express the Fermi level in terms of electron density.
Put the result into the right-hand side of (7.7.13) and use the definition of the
electrical conductivity given by equation (7.5.2) to get

Finally, we substitute (7.7.14) into (7.7.3) (again using the definition of the
electrical conductivity for the first term), with the result that

Writing this in component form, remembering that Iy = Iz = 0, we get
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The Hall voltage Ey contains a term linear in the magnetic field. The current,
however, does not; the lowest power of H2 it contains is 2, as can be verified
by substituting (7.7.17) for Ey into (7.7.16). Since we have assumed the mag-
netic field to be small, quadratic terms in the magnetic field will be neglected.
Equations (7.7.16) and (7.7.17) then reduce to

The Hall coefficient (7.7.1) then becomes

or, substituting for o from (7.5.12),

The Hall coefficient contains only the electron density, the velocity of light,
and the electronic charge. Furthermore, if the current were carried by holes
instead of electrons, the only effect would be to convert e to -e. Hall experi-
ments are therefore useful in determining the sign of the charge carriers as well
as their concentration.

7.8 Electrical conductivity in semiconductors

The theory developed so far in this chapter presumes that only one type of
charge carrier, namely, the electron, is present in our system. But it is obvious
that the theory is easily generalized to treat a system containing both electrons
and holes if the holes are treated as particles and we adopt the two-band effec-
tive mass model of a semiconductor. This is done by working out the flux equa-
tions for holes in the same way as for electrons. The total flux is then the sum
of the electron flux and the hole flux. Doing this for the flux of charge, the con-
ductivity of a semiconductor is given by a formula containing two terms similar
to the right-hand side of (7.5.2). The electron and hole conductivity can there-
fore be treated separately and then combined. For the contribution of electrons
to the conductivity, equation (7.5.2) is

Nc is the distribution function for electrons in the conduction band, which is
given by equation (6.10.1) with a density of states given by equation (6.10.3).
If the energy of the electron is measured relative to the energy Ec at the bottom
of the conduction band so that an energy scale e' is defined by
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then (6.10.1) and (6.10.3) become

where

and

Written in this way, the distribution function has precisely the same form
as in the preceding sections of this chapter. This means that equation
(7.5.9) is still valid if e is replaced by e' so the conductivity from the electrons
is

The kinetic energy is mc\
2/2 = e', so (7.8.6) becomes

It is not necessary to use the series expansion formula to evaluate the inte-
gral in (7.8.7) because we can adopt the semiclassical approximation, in which
the exponential in (7.8.3) is much greater than unity. That is,

so

Furthermore, we assume that T is a constant that we will call TC. This is not too
serious an approximation since the integrand in (7.8.7) is largest near the
bottom of the band and decreases rapidly as the energy increases because of
the exponential in (7.8.9). With this assumption, and using (7.8.9), the integral
in (7.8.7) becomes

Equation (7.8.7) therefore reduces to
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This is considerably simplified if we use equation (6.10.11) for the electron
concentration to get

Note that this has precisely the same form as equation (7.5.12) for the
conductivity of metals.

The conductivity due to holes, GV,, is calculated in exactly the same way
except that, instead of defining an energy scale relative to the bottom of the
conduction band, we measure energies relative to the top of the valence band
so that, instead of equations (7.8.2)-(7.8.5), we use

Now go through the same steps as for the calculation of the electron conduc-
tivity. Make the semiclassical approximation, assume t is a constant called iv,
and use equation (6.10.12) for the concentration of holes p. This results in the
hole conductivity given by

The total conductivity of an intrinsic semiconductor is the sum of the electron
and hole conductivity:

The electron and hole concentrations are temperature dependent. For an
intrinsic semiconductor, the electron and hole concentrations are equal and
their temperature dependence is given by equation (6.10.17). Using this tem-
perature dependence, equation (7.8.18) becomes

where A(T) is defined by
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Equation (7.8.19) displays the exponential dependence of the conductivity of
an intrinsic semiconductor on temperature. The factor A(T] is a slowly varying
function of temperature and depends on the relaxation times and effective
masses. In all cases the temperature variation of the exponential predominates
and the energy gap Eg can be determined with satisfactory accuracy from mea-
sured conductivity values by plotting Ino versus l/T.

An essential difference between the theory developed here and that worked
out for metals is that, in metals, only the relaxation time at the Fermi level
enters into the final equations. The energy dependence of the relaxation time
is therefore not needed for metals. In semiconductors, however, a knowledge
of the relaxation time as a function of energy is needed if we are to evaluate
the integrals accurately. We have chosen the relaxation times for electrons and
holes to be constants. But this is not the best choice that could be made. The
energy dependence of the relaxation times depends on the particular collision
processes that are operating, but one process that is always present, and that
often predominates, is the scattering of electrons by lattice vibrations. A
quantum theoretic treatment shows that the relaxation time is inversely pro-
portional to the square root of the energy and therefore to the velocity of the
electron. Therefore, VTC is a constant and we can define a distance parameter

that is independent of the energy. Since the relaxation time measures the mean
time between collisions, Xe has the interpretation of a mean free path.

Now let us calculate the electron conductivity using (7.8.21) instead of the
assumption that TC is a constant. The integral in (7.8.7) then becomes

where we have replaced Tc by Xe/v. Putting (7.8.22) into (7.8.7) gives the
electron conductivity as

In getting (7.8.23), we have used equation (6.10.11) for the electron
concentration in an intrinsic semiconductor.

If we define a mean free path for holes by "k^ = VTV, then an identical
procedure can be carried out for the hole conductivity to give

The total conductivity is the sum of (7.8.23) and (7.8.24):
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This has the same form as (7.8.18) if we formally identify the relaxation times
as follows:

Again using equation (6.10.17), the temperature dependence of the con-
ductivity for intrinsic semiconductors is given by

where A'(T) is defined by

The Hall coefficient in semiconductors can be computed in a straightforward
manner using the methods of section 7.7, the semiclassical approximation
of the distribution function, and the assumption of constant mean free path.
We leave it to the reader to show that, for electronic conduction in semicon-
ductors, the Hall coefficient is

while for conduction by holes

Note that in arriving at equation (7.8.28), or (7.8.19), the only step in which
the semiconductor was assumed to be intrinsic was that in which we took
n = p and used equation (6.10.17). This means that equations (7.8.18) and
(7.8.25) are valid for extrinsic as well as intrinsic semiconductors. Explicit
expressions for the conductivity in terms of impurity concentrations and ion-
ization energies can be obtained by an application of the formulas for the con-
centrations of electrons and holes in extrinsic semiconductors given in chapter
6. The temperature dependence of the conductivity can then be rather complex,
and the conductivity itself can vary over orders of magnitude. In general,
however, the conductivity can be thought of as arising from two effects: an
intrinsic effect due to the excitation of valence electrons across the energy gap,
and an extrinsic effect due to the ionization of donor or acceptor impurities.
Normally, the energy gap is considerably larger than the ionization energies,
so for the concentrations of impurities found in doped semiconductors the
extrinsic contribution dominates at ordinary temperatures. For small-enough
impurity concentrations, the major contribution is intrinsic. Note, however,
that even nominally pure semiconductor crystals contain some trace amounts
of impurities. This means that as the temperature is lowered, there is an extrin-
sic contribution from these impurities, and if the temperature is low enough
the crystal becomes an extrinsic conductor.
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A technical point of interest is that the use of the semiclassical approxima-
tion for the Fermi function in semiconductors is the result of the fact that the
charge carriers have energies that place them in the "Boltzmann tail" of the
distribution. The expansion of the Fermi integrals used for electron transport
theory in metals therefore cannot be used since this expansion is valid for ener-
gies close to the Fermi energy.

Exercises

7.1 For copper at 300K, take the electrical conductivity to be 6.25 x
105 ohm • cm and the density of conduction electrons to be n = 8.5 x 1022/cm3.
The conversion factor for the conductivity from practical units to e.s.u. is
o"(e.s.u.) = 9 x 1011 o(practical). Assume that the transport properties can
be described by free electron theory with an effective mass equal to the
electron mass. Use this information to do the following:

A. Compute the relaxation time for electrons at the Fermi level.
B. Compute the thermal conductivity at 300K.
C. Compute the Hall coefficient for an applied magnetic field of 2 tesla

(20,000 oersteds) applied in the z-direction in copper. What is the
Hall angle in degrees?

D. What is the increase in velocity of an electron at the Fermi energy
during one of its flight times (between collisions) in a field of
100 volts/cm? What is the increase in energy?

7.2 The mobility of electrons ue in a conductor is defined by the relation
o = J!(ie, n being the electron density. Compute the mobility for copper.
(Do not confuse the mobility with the Fermi energy.)

7.3 When an electric field acts in the x-direction on a piece of copper in
a closed circuit, the net flux of electrons across a unit area normal to the
x-axis is Ix = nevd, where n is the electron concentration and vd is the drift
velocity of the electrons in the x-direction.

A. Derive this expression and compute the drift velocity for an applied
electric field of 10volts/cm. [Note: 1 volt(practical)=10(statvolts;
e.s.u.).]

B. Find an expression for the mobility in terms of the drift velocity and
applied potential.

7.4 Given that pure germanium has a band gap of 0.67eV and assuming
that the mean free paths for electrons and holes are equal and that the
effective masses of electrons and holes are each equal to the electron mass,
solve the following problems:

A. If the conductivity at 300K is 3.8/ohm-cm, compute the mean free
path.

B. Compute the ratio of the conductivity at 400K to that at 300K.
C. Compute the electron mobility at 300K.
D. For an electrical potential of lOvolts/cm, compute the increase in

velocity and the increase in energy of an electron in the conduction
band when it travels a distance equal to the mean free path. Assume
that the kinetic energy is zero immediately after a collision.



8.1 Order-Disorder Structures

A binary order-disorder structure is denned as a two-component crystal with
the following properties:

1. At absolute zero of temperature, atoms of each component separately
occupy a sublattice of the crystal. Each of the two interpenetrating sub-
lattices contains only one type of atom. The structure is then said to be
completely ordered.

2. At sufficiently high temperatures, both types of atoms are distributed
throughout both sublattices at random. The structure is then said to be
completely disordered.

Two examples of order-disorder structures are shown in figure 8.1, in which A
represents the structure of p-brass (CuZn). If we ignore the identity of the
atoms, the structure is body-centered cubic (BCC). The BBC lattice contains
two interpenetrating simple cubic (SC) sublattices, one sublattice consisting of
the cube corners, and the other sublattice consisting of the cube centers, as
shown in figure 8.1A. In the completely ordered state, the body centers of the
unit cubes are all occupied by atoms of one type (say, Cu) while the cube
corners are all occupied by atoms of the other type (say, Zn]. The two sublat-
tices are completely equivalent, and it is immaterial which type of atom is
assigned to a given sublattice. In the completely disordered state, any site can
be occupied by an atom of either type, the probability that a given site con-
tains an atom of a given type being one half.

Figure 8.IB shows the structure of Cu3Au. The complete lattice is face-
centered cubic (when the identity of the atoms is ignored) and can be resolved
into two sublattices, one formed from the cube corner sites and the other
formed from the cube face centers. The cube corners form an SC sublattice
while the cube face centers form a body-centered tetragonal (BCT) sublattice.
The BCT sublattice contains three times as many sites as the SC sublattice.
In contrast with the P-brass structure, the two sublattices in this case are not
equivalent. In the completely ordered state, the SC sublattice sites are all
occupied by Au atoms and the BCT sublattice sites are all occupied by Cu
atoms. In the completely disordered state, the probability that a given site con-
tains an Au atom is 1/4 while the probability that a site contains a Cu atom is
3/4.
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Figure 8.1. Order-disorder lattice structures. A, Body-centered cubic stimustince of p-
brass (CuZu). B, Face-centered cubic structure of Cu3 Au.

8.2 The order-disorder transition

Consider an AB alloy of the (3-brass structure that is completely ordered at
absolute zero. The energy of the ordered state must then be lower than that of
the disordered state. This means that AB contacts are energetically favored over
AA or BB contacts. As the temperature is raised, the thermal vibrations disrupt
the perfect order of the crystal, so some AA and BB bonds will form. This is
just a result of the fact that the entropy is larger for disordered than for ordered
systems. At a given temperature, the free energy is a minimum and a balance
between the energy and entropy requirements is established, so, in general, the
crystal is partially ordered. The degree of order is bound to decrease with
increasing temperature, and a temperature must exist above which the degree
of order is negligible. However, changes in the degree of order can be observed
only if the energy of the ordered state is not too much lower than that of the
disordered state. If the energy difference is too large, the crystal will remain
ordered right up to the melting point. A system that illustrates this to an
extreme degree is sodium chloride, which may be regarded as an ordered alloy
(Na+Cl~) with an ordering energy much greater than kTm (Tm = melting point).
On the other hand, if the energy difference is very small, the crystal will be
disordered at all but very low temperatures. In general, alloys exhibiting order-
disorder behavior have an energy in the disordered state that exceeds the
energy in the ordered state by something less than the thermal energy at the
melting point. The crystal will then be disordered at all temperatures for which
the energy difference is small relative to kT.

The order-disorder transition can be observed directly in a number of alloys
by X-ray or neutron diffraction techniques. At low temperatures, the ordered
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arrangement of the alloy constituents gives rise to superlattice lines that are
not observed at high temperatures. A number of other changes in physical
properties accompany the transition from the ordered to the disordered state.
These include the electrical resistivity (which is generally increased by disor-
der), mechanical properties (elastic constants are generally decreased by dis-
order), and atomic diffusion (in p-brass, the activation energies for diffusion
are decreased by increasing disorder). In theories of the order-disorder transi-
tion, it is usually assumed that the lattice parameter remains constant, but this
is not always the case (in some alloys, the density increases by up to 5% as a
result of disordering).

A particularly important effect is that of the heat capacity. For an order-
disorder alloy, heat capacity versus temperature has a typical Debye-type curve
at low temperatures. As the temperature is increased, however, a temperature is
reached where the heat capacity increases above the Debye curve, and at a rea-
sonably well-defined critical temperature the heat capacity very quickly drops
to a value characteristic of a normal crystal. The importance of the heat capac-
ity is that it measures the absorption of energy and it is a measurable thermo-
dynamic property for which theories can be developed. Direct comparisons can
therefore be made between theoretical concepts and experimental data.

The order-disorder transition is a typical cooperative phenomenon in which
the ease of a transition increases rapidly with the extent to which it has already
occurred. A qualitative understanding of this cooperative action can be based
on the fact that an AB contact is favored over an AA or a BB contact. In a per-
fectly ordered AB alloy with two sublattices labeled a and p, all A atoms are
on a sites and all B atoms are on P sites. Now replace a B atom on a (3 site by
an A atom. This "wrong" A atom is surrounded by a sites, each containing an
A atom; z AA contacts have been created, where z is the coordination number.
But AA contacts are energetically less favorable than AB contacts, so it is now
easier for one of the A atoms on the z nearest neighbors to be replaced by a B
atom. Replacing a "right" A atom on one of the z sites by a "wrong" B atom
requires less energy than would be the case if the original P site were occu-
pied by a B atom. The existence of some disorder in the crystal thus promotes
further disorder. The conversion of unlike to like pairs absorbs heat, so equal
increases in temperature produce larger and larger increases in disorder. The
heat capacity increases ever more rapidly with temperature until a critical tem-
perature is reached at which the crystal becomes completely disordered. The
order-disorder contribution to the heat capacity then drops rapidly to zero
because, after the crystal is completely disordered, further temperature
increases can have no more effect on the degree of disorder.

The statistical mechanical problem for order-disorder systems consists of
establishing a quantitative measure for the degree of order, determining the
degree of order as a function of temperature, and computing the effect of order
on thermodynamic properties.

8.3 Description of the degree of order

Consider a two-component order-disorder alloy with composition AnBm having
two sublattices labeled a and p. In the completely ordered state all A atoms
are on the a sublattice and all B atoms are on the P sublattice. In the partially
ordered state, however, this is not true and the number of atoms of each type
on each sublattice must be specified. Let

NAa = number of A atoms on a sites
NAP = number of A atoms on p sites
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Ng$ = number of B atoms on (3 sites
NBU = number of B atoms on a sites
NA = total number of A atoms in the crystal
A/a = total number of B atoms in the crystal
A7 = total number of atoms in the crystal
JA = fraction of A atoms in the crystal
YB = fraction of B atoms in the crystal

The following relations are obvious:

Also, from (8.3.5) or (8.3.6),

The fractions of sites of a given sublattice occupied by atoms of a given type
are defined by

In a perfectly ordered crystal, all oc sites are occupied by A atoms and all P
sites are occupied by B atoms, so the occupation fractions for "right" occu-
pancy on each sublattice are unity. That is, fAa = f^ = 1. In a completely dis-
ordered crystal, fAa = JA and f^ = yB since the atoms are distributed at random.
We need a parameter to describe the crystal when the degree of order is
between these two values. Such a parameter is defined by
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Clearly, R = 1 for perfect order and R = 0 for complete disorder. Also, it should
not matter which sublattice we focus on to define our parameter. That this is
the case can be seen by starting from the relation

which follows from equations (8.3.5)-(8.3.7). Using (8.3.13), it is easy to
convert (8.3.12) to

The parameter R is therefore invariant with respect to the interchange (Aa) o
(B$). R is a measure of the degree of order defined by the occupation of atom
types on the sublattices and is called the long-range order parameter since it
describes the extent to which the sublattices are filled with "right" kinds of
atoms and says nothing about local configurations.

It is convenient to express the site occupation probabilities in terms of the
long-range order parameter. From (8.3.12) and (8.3.14),

and using (8.3.5) and (8.3.6), equations (8.3.8)-(8.3.11) give

which, when combined with (8.3.15) and (8.3.16), become

An alternate method of describing the degree of order is to count the number
of AB pairs. In a completely ordered crystal, the number of unlike pairs will
be a maximum, while in a completely disordered crystal, the number of unlike
pairs will be a minimum. Such a description is local since it is not concerned
with the occupancy of the entire sublattices, but with nearest neighbor con-
figurations. Let Q^, QBE, and Q'BB be the number of AA, BB, and AB pairs,
respectively. Then, if Q is the total number of pairs and q is the fraction of
pairs of unlike atoms, we have
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(The coordination number z is 8 for P-brass and 12 for Cu3Au.) We have put a
superscript t on the number of unlike pairs because it is sometimes necessary
to identify the sublattice that is occupied by each type of atom. In a 50-50 AB
alloy with a and (3 sublattices, for example, we will want to reserve the nota
tion QAB for the number of pairs such that an A atom is on an oc site and a B
atom is on an adjacent p site, while QBA is the number of pairs such that a
B atom is on an a site and an A atom is on an adjacent P site. In this case,
QAB = QAB + QBA- This notation is important when the crystal configuration is
explicitly described in terms of pairs because an (A on a, B on p) pair defines
a different state than a (B on a, A on P) pair. This will be the case for the quasi-
chemical method.

In a completely ordered state, q has a maximum value which we will call
qm, and in the completely disordered state, it has a minimum value q0. The
short-range order parameter o is defined by

For an AB alloy (e.g., P-brass), all pairs are unlike pairs when the alloy is com-
pletely ordered, and there are just as many like as unlike pairs for complete
disorder, so qm = 1 and q0 = 1/2. Equation (8.3.23) then gives

Note that in this case, the fraction of unlike pairs is q = (1 + o)/2 and the frac-
tion of like pairs is (1 - q) = (1 - o)/2. The short-range order parameter o is
therefore the difference between the fractions of unlike and like pairs.

The short-range order parameter is zero for complete disorder and unity for
complete order, but it is only at these two points that it equals the long-range
order parameter. The configurational state of the system is defined by num-
bering the lattice sites and specifying the type of atom on each site. For a given
set of occupation numbers [NAa, NA$, NBa, NBp] there are a great many distin-
guishable configurational states, and many sets [QAA, QBE, QAB, QBA\ of the
number of pairs are consistent with a given set of sublattice occupation
numbers. The long-range order parameter must therefore be a function of the
average short-range order parameter, the average being taken over all configu-
rational states consistent with a given set of occupation numbers.

The relation between the short- and long-range order parameters is equiva-
lent to the relation between the number of pairs and the probability of single-
site occupancy by atom type. It is important to have this relation because, first,
the site occupancy is essential for counting the number of crystal configura-
tions, and second, the energy of the crystal depends on the interactions of pairs
of atoms.

Let us first compute the average number of AA pairs in terms of the long-
range order parameter. In general, AA pairs can be formed in two ways: (1),
we can have an A atom on an oc site and another A atom on an adjacent P site
or (2) we can have an A atom on a p site and another A atom on an adjacent
P site. Note that in P-brass—type alloys, the second type of pair does not exist
because all neighbors to a p site are a sites. In Cu3Au, however, a P site has 12
neighbors, only four of which are a sites since the p sublattice has three times
as many sites as the a sublattice. Note that we are adopting the convention that
each a site has z neighbors, all of which are P sites, while each p site has z
neighbors, of which ZJA/JB are a sites and Z(JB - JA)/JB are p sites.

To get the number of pairs of type 1, choose an atom on an a site. This atom
is surrounded by z P sites, each of which has a probability /^p of containing an
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A atom. The number of such AA pairs around our chosen site is therefore zfA$,
and multiplying this by the total number of A atoms on a sites gives the total
number of AA pairs of type 1 as

where (8.3.20) has been used to replace/^, and (8.3.8) along with (8.3.15) was
used to replace NAa

To get the number of AA pairs of type 2, choose an A atom on a P site, which
has Z(JB - YA)/YB neighbors that are |3 sites. Of these, the probability that one is
occupied by an A atom is fA$. Since the number of (3 sites containing A atoms
is A/Ap, the number of pairs of type 2 is

The factor of 1/2 is included because, since the A atoms in the pair are both
on the same sublattice, the number of pairs would otherwise be counted twice.

Adding (8.3.25) and (8.3.26) gives the total average number of AA pairs

Proceeding in the same way, we get the average number of BB and AB pairs as

Dividing (8.3.29) by Q = zN/2 gives the average fraction of unlike pairs

From (8.3.23), the average short-range order parameter is

and substitution of (8.3.30) into (8.3.31) gives the relation between the short-
range and long-range order parameters. For an AB alloy, yA = yB and (8.3.30)
becomes

also, from (8.3.24),
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so that

Equation (8.3.30) can be used to compute qm and q0because when R = 1, o
can be unity only if q = qWt and when R = 0, o can be zero only if q = q0. Thus,

For an AB alloy, this gives qm = 1 and q0 = 1/2 as expected. For a Cu3Au-type
alloy, this gives qm = 1/2 and q0 = 3/8.

It must be emphasized that the averages considered here are not statistical
mechanical averages over states. They are simple arithmetic averages consis-
tent with a given value of R. The relations given between the short- and long-
range order parameters are not true in general for the statistical thermodynamic
values of these quantities, except within the framework of the Bragg-Williams
approximation, which will be developed subsequently.

The long- and short-range order parameters do not provide a complete spec-
ification of the nature of the ordering because they neglect the occupation of
next neighbors, next nearest neighbors, triplets of sites, and so on. Descriptions
of order that go beyond the pair description described here have been used,
but they lead to theories that are quite complex and pose serious calculational
difficulties. The simpler approach given here is a reasonably satisfactory basis
for the description of order-disorder systems because it is normally the first
and most important term in the more complex theories. The important physi-
cal insights are contained in the simple description based on the long-
and short-range order parameters, and it yields good qualitative and even
semiquantitative results. Our next task is to incorporate this description into
a statistical mechanical framework from which the equations for the thermo-
dynamic properties as a function of order can be obtained.

8.4 The order-disorder partition function

The central problem of the statistical mechanics of order-disorder systems is
the evaluation of the partition function in terms of the order parameters. In the
theory of monatomic crystals there was no need to consider the occupancy of
lattice sites since the interchange of two identical atoms did not alter the
quantum state of the crystal. But for alloys it is necessary to take the distribu-
tion of atoms into account because the exchange of unlike atoms among sites
does give a new quantum state. Each such distribution constitutes a different
configurational state of the system. We therefore construct a canonical ensem-
ble in which R is identical for every member of the ensemble, but the members
have different configurations, consistent with a given value of R. The partition
function for this ensemble can then be evaluated provided certain approxima-
tions are made. This gives the Helmholtz free energy as a function of the degree
of long-range order. The free energy is then minimized with respect to R to get
the equilibrium degree of order as a function of temperature.

Let Z(R) be the partition function for a given value of the long-range order
parameter:
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where Wr is the potential energy of the rth configurational state (for a given R)
and E[ is the vibrational energy of the crystal when its atoms are arranged in
the rth configuration. The sum is taken over all configurational and vibrational
states of the system.

The vibrational energy of the rth configuration is given by

where nt are the integers that specify the quantum levels of the normal modes
of vibration and vj is the frequency of the y'th normal mode of the crystal with
a configuration r. The vibrational partition function is given by (see section
4.3)

where e£ is the zero point energy of the rth configuration. Equation (8.4.1) can
be written as

and it is clear that a complete evaluation of the partition function requires an
analysis of the dependence of the normal mode frequencies on the configura-
tional state. Such an analysis would be very difficult to carry out, and no com-
plete theory in which the vibrations are treated along with the configurational
states has been constructed. Instead, it is assumed that the vibrational and con-
figurational parts of the problem can be separated. This is done by working
with the configurational partition function defined by

It is then assumed that the thermodynamic functions computed from Zc can
be added to those obtained from the vibrational states. In practice, this means
that when experimental data are examined some estimate of the vibrational
contribution must be made. This estimate is subtracted from the data, and the
difference is compared to that computed from theory based on Zc. Such an
approach can be successful only if the vibrational partition function is much
less sensitive to the degree of order than is the configurational partition func-
tion. That this is approximately correct for many alloys arises from the fact
that the order-disorder transition usually occurs at temperatures above the
Debye temperature. For p-brass, for example, the effect of order on the heat
capacity is most pronounced at temperatures from 550 to 750K. In this tem-
perature range the heat capacity is well represented by the high-temperature
approximation (see chapter 4), the leading term of which is independent of the
frequency spectrum. Furthermore, it was shown in chapter 4 that the thermo-
dynamic properties, particularly the heat capacity, are insensitive to the precise
form of the frequency distribution function. Therefore, an analysis based on
the separation of configurational and vibrational partition functions will give
results that are at least semiquantitatively correct.

To get the degree of order at equilibrium, we just minimize the Helmholtz
free energy obtained from Zc with respect to R. That is, we solve the equation
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where

The equilibrium value of R is then inserted back into the free energy function
to give the equilibrium Helmholtz free energy.

To evaluate the configurational partition function, the potential energy Wr
must be known. This means that we need to know how the energy depends on
the configurations. The basic assumption made in order-disorder theory is that
the energy consists of nearest-neighbor pairwise contributions. In metals, the
conduction electrons are not localized, and the crystal energy is volume depen-
dent, so the pairwise assumption seems like a rash one that is justified only
by the fact that it is too hard to do anything else. However, pseudopotential
theory shows that it is often possible to express the energy of a metal as arising
from pairwise interactions, providing the crystal volume is constant. Volume
changes accompanying the order-disorder transition are usually quite small,
so this condition is met in many alloys of interest. The remaining problem
is that interactions among atoms that are not nearest neighbors are ignored.
But the interaction energy falls off rapidly with distance. For these reasons,
representing the energy by sums of nearest neighbor interactions works well
enough to yield the important features of the order-disorder transition.

Let -VAA, -VBB, and -\AB be the nearest-neighbor interaction energies for
AA, BB, and AB pairs, respectively. Then the configurational energy is given
by

the number of pairs QAA, QgB, and QAB being those for the configuration labeled
by r. The interaction energies are chosen so that v^, VBB, and \AB are positive
constants since the state of zero energy is taken to be that in which all atoms
are very far apart.

To this point, the discussion applies to a binary order-disorder alloy of any
stoichiometric composition, but we now particularize the theory to the case of
a 50-50 AB alloy. For this case, equation (8.4.8) can be written in several alter-
nate ways that are often useful. Since q = QAB/Q is the fraction of unlike pairs
and since the total number of pairs is given by (8.3.21), we have

In a 50-50 alloy, QAA = QBB, so (8.4.9) gives

Using this equation and the definition of the fraction of unlike pairs, equation
(8.4.8) becomes

The ordering energy is defined by
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This is the energy change accompanying the formation of one AB pair by the
interchange of atoms from an AA and a BB pair. With this definition (8.4.11)
becomes

where

is the average energy of pure A and pure B. From (8.4.13) and (8.3.24), the con-
figurational energy can be written in terms of the short-range order parameter

It is understood in this equation that the short-range order parameter is that
which is consistent with the configuration r.

Another expression for the energy that is often used is obtained by assign-
ing a parameter S, to each lattice site such that S, = +1 if the site contains an A
atom and S; = -1 if it contains a B atom. For two adjacent sites labeled i and
/, the product S;S; is always +1 if the sites contain like atoms and -1 if they
contain unlike atoms. Therefore,

the summation being carried out over all nearest neighbor pairs. From (8.4.16)

and putting this into (8.4.13) gives

Finally, the energy can be written in another useful form by defining two para-
meters otj and (3; such that ot; = 1 if the ith site of the a sublattice contains an
A atom and is zero otherwise. Similarly, (3,- = 1 if the ;'th site of the (3 sublattice
contains an A atom and is zero otherwise. Also let a parameter y,y = 1 if two
lattice sites i and j are adjacent and be zero otherwise. Then
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the sum being over all i and / because there is a term +1 for every nearest-
neighbor AA pair, all other terms being zero. The sum in (8.4.19) is taken over
all lattice sites of both sublattices. Comparing (8.4.19) with (8.4.13) gives

Accurate evaluation of the conflgurational partition function is difficult
because knowledge is required of the number of configurations that have a
given energy, subject to the restriction that the long-range order is fixed. This
poses a complex combinatorial problem, and approximation methods must be
used. Two general approximation methods will be presented in this chapter:
the Kirkwood method and the quasichemical method.

8.5 The Kirkwood method

In 1938 J.G. Kirkwood presented a method by which the conflgurational free
energy Ac can be developed as a series in the long-range order parameter.
Within the framework of the assumptions given above, namely, the nearest-
neighbor pairwise formula for the conflgurational energy and the separability
of the configurational and vibrational effects, the theory yields an exact series
expansion. However, the series does not converge with great rapidity, and
mathematical complexities limit the usefulness of including high-order terms.
But it is the simplest theory that is at least formally exact, and it illuminates
the nature of the approximations that must be made to make the calculations
tractable.

Let W be the unweighted average of the energy over all configurational states
for a given degree of long-range order. That is,

where g(R) is the total number of configurational states consistent with a given
long-range order parameter R. g(R) is easily evaluated since it is just the number
of ways of arranging NAa atoms of type A and NBa atoms of type B on the a sub-
lattice and NAp A atoms and NB$ B atoms on the P sublattice. For an AnBm alloy,
this is

From section 8.3, the occupation numbers for A and B atoms on a and P sites
are related to the long-range order parameter by

For the case of a 50-50 AB alloy, (8.5.3)-(8.5.5) reduce to
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and (8.5.2) becomes

Now expand the exponential in the partition function in a Taylor series about
W . The result is

The configurational partition function, and therefore the configurational free
energy, is now obtained by substituting (8.5.9) into (8.4.5) to get

Equation (8.5.10) is an expansion in terms of the moments of the energy, which
are defined by

In terms of the moments, (8.5.10) is

Taking the logarithm of (8.5.12) to get the free energy gives a result that con-
tains an inconvenient logarithm of the sum over the /th moments. This can be
dealt with by the following device: define a power series in x = (—1/JcT) by the
relation

where the Bn are to be determined in terms of the M;. Differentiate both sides
of (8.5.13) with respect to x to give

The Bn are readily evaluated by equating equal powers of x in both series.
The result is
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This is considerably simplified by using the fact that from the definition of the
moments (8.5.11) we get

so we can solve (8.5.15) for the Bs to get

Now put these values of the Bs into the left-hand side of (8.5.13) and replace
x by its definition -IlkT. The result, to the fourth order in ~L/kT, is

Finally, using (8.5.18), the configurational free energy is obtained from the
logarithm of equation (8.5.12):

The problem of computing the configurational free energy is thereby reduced
to that of computing the moments of the energy. Note that equation (8.5.19) is
not restricted to 50-50 alloys since there was no step in the derivation that used
such a limitation. The alloy stoichiometry enters in the computation of the
moments and the number of configurations g(R). The series has been written
only up to the third moment term, and even this is of higher order than is really
useful, not only because higher moments are more difficult to compute, but
also because the resulting equations get very cumbersome.

We now apply the method to the binary AB alloy by choosing the appropri-
ate expressions for g(R) and the average energy W. g(R) is then given by (8.5.8).
To get rid of the factorials in (8.5.8), use Stirling's approximation so that

The average energy W is related to the order parameter by taking the average
of equation (8.4.15):

Since the average short-range order parameter is R2 for a 50-50 alloy [equation
(8.3.34)], equation (8.5.21) is
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W(0) is defined by the value of the average energy at zero long-range order so

Substitution of (8.5.20) and (8.5.23) into (8.5.19) gives the free energy in
terms of the long-range order parameter:

where Q has been replaced by Nz/2. This gives the configurational free energy
for a given R, since the moments are functions of R. If the value of R corre-
sponding to equilibrium is inserted into (8.5.24), the configurational contribu-
tion to all of the thermodynamic properties can be obtained.

To get the equilibrium degree of order as a function of temperature, just set
the derivative of Ac with respect to R equal to zero. This gives

The configurational energy can be derived from an application of equation
(4.4.4), which for the present case is

From the derivation of this equation, it is clear that the differentiation is purely
formal and that all quantities except 1/kT are treated as constants in the dif-
ferentiation. Then, dividing (8.5.24) by kT and applying (8.5.26) gives

for the configurational energy. The configurational entropy is

The heat capacity is the derivative of (8.5.27) with respect to temperature:
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The infinite series in these formulas are convergent, and although the conver-
gence is not very rapid, useful equations are obtained by truncating the series
at various points.

8.6 The Bragg-Williams approximation

In the Bragg—Williams approximation, all terms containing second and higher
moments are neglected. This is equivalent to assuming that the configurational
energy is equal to its arithmetic average, as can be seen by comparing equa-
tion (8.5.27) to equation (8.5.22) in which the first two terms are W = W(0] -
Nz\/R2/2. At first sight, this is a crude assumption, but the Bragg—Williams
approximation succeeds in displaying the main qualitative features of the
order-disorder transition and its mathematical development is simple. We will
therefore treat the Bragg—Williams method in some detail. Methods of solving
the order-disorder problem to a higher degree of accuracy are presented further
below.

Neglecting all terms containing M2 and higher order moments, equations
(8.5.24), (8.5.25), (8.5.27), (8.5.28), and (8.5.29) reduce to

The relation between the thermodynamic quantities and the degree of order
can be shown more clearly if we remove the constants that clutter up the above
equations by defining the following quantities:

The quantities a, and u are the dimensionless free energy and energy, respec-
tively, measured from the energy of the completely disordered crystal in units



218 STATISTICAL MECHANICS OF SOLIDS

of Nzv/4. s is a dimensionless entropy, and ty is a dimensionless temperature.
Using these definitions, equations (8.6.1)—(8.6.5) give

Figure 8.2 shows u and s as functions of the degree of order. The configura-
tional entropy increases from zero at perfect order to the entropy of mixing for
a random solution (2ln 2) at complete disorder. Similarly, the dimension-
less configurational energy decreases from zero for the completely disordered
crystal to unity at perfect order.

In figure 8.3, the dimensionless free energy is shown as a function of R for
several different temperatures ranging from (]> = 0.8 to 0 = 1.05. This figure
shows that for values of ty < 1, there is a minimum in the free energy-order
curve for each temperature. This minimum defines the equilibrium value of R
at that temperature.

As the temperature is raised, the minimum shifts to lower values of R until,
at 0 = 1, the minimum coincides with R = 0. Also, for <|) < 1, as R —> 0 the free
energy-order curve approaches a zero slope. This means that above <)> = 1 there
is no nonzero value of R for which the slope of the free energy temperature
curve is zero, so § = 1 defines a critical temperature above which there is

Figure 8.2. Reduced energy and entropy as a function of order in the Bragg-Williams
approximation.
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Figure 8.3. Free energy as a function of order in the Bragg-Williams approximation.

long-range order. From (8.6.9), this critical temperature Tc is defined by
1 = 2kTc/zv, or
no

At the critical temperature the first and second derivatives of the free energy
with respect to the long-range order parameter, as well as the order parameter
itself, are zero. Equation (8.6.15) for the critical temperature is easily derived
from these conditions.

The equilibrium degree of order as a function of temperature is given by
(8.6.11) or, equivalently, by (8.6.2). At high temperatures Ft is small, so the log-
arithms can be approximated by the first three terms of their series expansions.
That is, In (1 + R] = R - R2/2 + R3/3, and In (1 - R) = - R - R2/2 - R3/3, so for
high enough temperatures (8.6.11) becomes

or

When R = 0, <j> = 1 which is the same result as (8.6.15).
A more accurate high-temperature approximation can be obtained by includ-

ing more terms in the expansions of the logarithms. Thus, if we take
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then (8.6.11) becomes

This equation is a good approximation up to about R = 1/2, where it is in error
by 6%.

Equation (8.6.11) can be written in another form that is convenient for getting
numerical solutions of R versus §. From the definition of the hyperbolic
tangent,

it is easy to see that (8.6.11) can be converted to

or, solving for 0,

so that numerical values of § versus R can be calculated from standard tables
of the hyperbolic tangent. But with the modern ubiquity of microcomputers,
it is now just as easy to use (8.6.11) directly. A graph of R versus (j) is shown
in figure 8.4, which shows that at low temperatures R decreases slowly with
temperature, but as the temperature increases, the decrease in R becomes more
and more rapid. R changes from 0.8 to zero in a range of fy corresponding to
only 27% of the range from absolute zero to the critical temperature.

With the help of the numerically computed values of R as a function of $,
the energy, entropy, and free energy are readily determined as functions of tem-
perature. These are shown graphically in figure 8.5 in the dimensionless forms
denned by equations (8.6.10)-(8.6.13).

The energy and entropy at first rise slowly with increasing temperature, and
then for <|> > 0.4 they increase very rapidly. The free energy is almost constant
until 0 is about 0.5 and then steadily drops to the value characteristic of a
random solution at fy = 1. This behavior is typical of cooperative phenomena.

At low temperatures, R/§ is large, so a low-temperature approximation can
be obtained by using the following series expansion for the hyperbolic tangent:

For values of ty as high as 0.9 (corresponding to R = 0.53), the third term in this
series is only 6% of the second term. For jR > 0.5, therefore, it is sufficiently



Figure 8.4. Long-range order versus reduced temperature in the Bragg-Williams
approximation.

Figure 8.5. Reduced energy, entropy, and free energy as a function of reduced
temperature in the Bragg-Williams approximation.
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accurate to retain only the first two terms of the expansion, and (8.6.21) then
becomes

or

To get the heat capacity from this, the derivative dR/d§ must first be evaiuated
from (8.6.11), which we write as In (1 + R) - In (1 - R) = 2R/$, so that cffi/(l +
R) + dfl/(l -R) = 2dR/$ - 2Rd§/§ 2, from which we get

Putting this into (8.6.14) gives

This is a form that allows the heat capacity to be computed as a function of
temperature from the numerical values of R versus Q.

Note that the maximum value of the Bragg-Williams configurational
heat capacity is l.SJc per atom, as can be seen by differentiating the high-
temperature expression for the R versus § relation and substituting it into
(8.6.14). That is, from (8.6.19),

so, as <)) goes to unity, dR/dty goes to 3/2 and the heat capacity goes to 3Nk/2.

8.7 The second moment approximation

The Bragg-Williams approximation reproduces the general features of order-
disorder systems, but its results are, at best, only semiquantitative. Its limita-
tions are a result of neglecting the correct distribution of the configurational
energy and replacing all energies of the distribution by the average energy. A
more accurate theory is obtained by retaining the second moment in the Kirk-
wood method. To do this, an explicit calculation of M2 as a function of order
is required. The calculation is a lattice-counting exercise whose result is (see
appendix 6)

and the configurational free energy, energy, and entropy are then obtained to the
second moment approximation by inserting (8.7.1) into (8.5.24), (8.5.27), and
(8.5.28) and neglecting all terms containing third and higher order moments.

To get the equilibrium order parameter as a function of temperature from
(8.5.25), the derivative of M2 with respect to R is needed. From (8.7.1) this is



ORDER-DISORDER ALLOYS 223

Also, the second moment approximation to the heat capacity requires that we
put the derivative of M2/kT with respect to T into equation (8.5.29). From
(8.7.1) this derivative is

Substitution of (8.7.2) into (8.5.25) and neglecting higher moments gives the
equilibrium relation between long-range order and temperature as

and using (8.7.3) in (8.5.29) gives the second moment approximation to the
heat capacity as

The numerical methods of computing the thermodynamic functions are
somewhat more cumbersome than in the Bragg-Williams case. The critical
temperature, however, is easily obtained from a high-temperature approxima-
tion by expanding the logarithms in (8.7.4) to the third order just as in the
Bragg-Williams case. Equation (8.7.4) then gives

The critical temperature Tc is obtained from (8.7.6) by setting R = 0 to get

from which

The appropriate root to be chosen in (8.7.8) is determined by requiring that
it reduce to the Bragg-Williams result when the second term on the right of
(8.7.7) is neglected. Without this second term, 4/z would not appear under the
radical in (8.7.8) and the right-hand side would reduce to (1 ± l)/2. Choosing
the positive sign would then give the Bragg— Williams result for Tc, so we must
take (8.7.8) to be

From the definition of the critical temperature in the Bragg— Williams approx-
imation, we have
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Combining this with (8.7.9) gives a relation between the critical temperatures
computed from the second moment and the Bragg—Williams approximations:

For z = 8, this becomes

For a given ordering energy, the second moment approximation therefore gives
a lower critical temperature than the Bragg-Williams approximation.

The numerical computations for the Bragg-Williams case can he used as a
basis for computing the temperature variation of the long-range order parame-
ter from (8.7.4) by treating R as the independent variable and defining a func-
tion f(R) by

This is just the ratio of the temperature to the critical temperature in the
Bragg-Williams approximation as given by equation (8.6.22), so f(R) = (|)(BW)
is known when Bragg-Williams calculations are made.

Using (8.7.13) in (8.7.4) gives

From the definition of the Bragg—Williams critical temperature,

and from (8.7.11)

where K is determined by (8.7.11) and is 1.172 for z = 8. Using (8.7.15) and
(8.7.16), we rewrite (8.7.14) as

Solving this for T I Tc gives
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where the positive square root was taken to ensure that T I Tc — > 1 as R — > 0.
Equation (8.7.18) provides a convenient way to get numerical values for the
order-temperature relation.

An important difference between the Kirkwood and Bragg— Williams approx-
imations for the heat capacity can be seen immediately by examining (8.7.5).
Above the critical temperature, R = 0 and dR/dT '= 0, so (8.7.5) gives

The configurational heat capacity does not immediately vanish above the crit-
ical temperature, but falls off as T2. That is, the ordering phenomenon con-
tributes to the heat capacity even when the long-range order parameter is zero.
This is a result of the fact that short-range order persists even after there is no
long-range order, and the short-range order vanishes only when the tem-
perature is increased above that needed to get rid of long-range order. The
Bragg-Williams approximation completely misses this phenomenon since it
predicts a complete vanishing of the heat capacity as soon as the critical tem-
perature is exceeded.

Now let us compute the heat capacity at the critical temperature. From the
high-temperature approximation (8.7.6), and using the relation

it is easy to show that

Put this in (8.7.5), set R = 0, and use (8.7.20) to get the maximum configura-
tional heat capacity:

for z=8, K = 1.172, and

In the second moment approximation, therefore, the peak in the heat capacity
curve is higher than in the Bragg-Williams approximation.

8.8 The quasi-chemical approximation

In the quasi-chemical method, it is assumed that the order-disorder crystal can
be treated as if it were composed of independent pairs of AA, BB, and AB
atoms. That is, in computing the number of ways of distributing the pairs on
sublattices, the fact that the existence of one pair places conditions on the dis-
tribution of other pairs is ignored. The result is that the order-disorder transi-
tion is treated as an exchange of atoms that converts like pairs into unlike pairs.
This is analogous to a bimolecular gas phase reaction. Such a procedure works
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for 50-50 AB alloys, but for more complex structures the "molecules" have to
be groups of atoms larger than pairs. We will therefore restrict ourselves to AB
alloys with two sublattices.

If the usual course of derivation is followed, we would determine the number
of complexions g(H) from these assumptions, and this would permit a calcu-
lation of the free energy to be made. In this procedure, it is assumed that g(R)
is proportional to the number of ways of putting pairs in the crystal such that
the pairs are independent. We will take an alternate course that starts with the
energy and turns out to be very convenient.

In a 50-50 AB alloy, the energy for the Mi configuration can be written as

as can be seen by combining the definition of the ordering energy given by
equation (8.4.12) with the expression for the conservation of the number of
pairs, which is Q = Q^ + QBB + (QAB + QBA) = QAA + QBE + QAB, QAA = QBE, Q =
2Q/L4+ QAB- Note that we are using the notation in which QAB(QBA) is the number
of pairs such that an A(B) atom is on an a site while a B(A) atom is on a p site.

For a crystal with a given long-range order parameter, the configurational
energy is just the statistical mechanical average of (8.8.1):

From here on, the bars indicate that the average is statistical mechanical, not
arithmetic. The average is taken over all g(R) configurations consistent with a
given R.

The configurational free energy can be obtained from the energy by inte-
grating (8.5.26) to get

From the relation between the free energy and the partition function, the high-
temperature limit of the free energy is

because at high temperatures the exponential in the partition function goes to
unity and the sum of unity over all configurations is just the number of con-
figurations. Equation (8.8.4) is therefore

To integrate this, Uc is needed as a function of temperature. In the quasi-chem-
ical method, this is obtained by treating the formation of pairs as a chemical
reaction of the type

That is, a pair such that an A atom is on an a site and another A atom is on
an adjacent p site reacts with a pair in which two adjacent sites contain B atoms
to give two pairs, one of which has an A on a and a B on p while the other
has a B on a and an A on p.
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The energy change accompanying the conversion of two like pairs (AA) and
(BB) to two unlike pairs (AB) and (BA) is

Since vibrational effects are ignored, the free energy of Lhe reaction is just the
transformation energy -2v. Then, from the theory of the equilibrium constant
for gas reactions,

This formula treats the pairs as independent, so it certainly cannot be correct.
However, the quasi-chemical model leads to more accurate results than does
the Bragg-Williams approximation, which completely neglects the statistical
mechanical weighting of pair formation. Actually, it turns out that the quasi-
chemical model gives results that are similar to the Kirkwood second moment
approximation.

Equation (8.8.8) is useful because it can be converted to a form that gives
QAA as a function of R. Therefore, the energy (8.8.2) and finally the free energy
(8.8.6) can be obtained as functions of the long-range order parameter. The
equilibrium relation between R and T can then be obtained in the usual way
by minimizing the free energy, and this solves the problem of getting the ther-
modynamic properties as functions of temperature.

The number of pairs that have an A atom on an a site is zNAa. Therefore,

Similarly,

To forestall any confusion, note that in the present case it is correct to relate
the statistical mechanical average to the occupation numbers of atoms on sites,
whereas in relating the short- and long-range order in section 8.3 the average
number of pairs were arithmetic averages. The reason for this is that in section
8.3 the occupation numbers were used to describe the simultaneous occupa-
tion of adjacent sites and required a product of probabilities that were not
weighted. In the present case, however, we are counting the number of atoms
in a crystal with atoms distributed according to the distribution function of an
ensemble.

Now let x be defined by

Then, if (8.8.9) and (8.8.10) are solved for QAB and QBA, and the result substi-
tuted into (8.8.9), remembering that for an AB alloy QAA = QBB we get

This is a quadratic equation for Q^, whose solution is
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where we have used equation (8.3.5). The positive root was chosen because
the number of AA pairs has to be positive. Recalling equations (8.5.3) and
(8.5.4) for the relations between NAa, NAp, and R (for the case of AB alloys), this
becomes

Putting (8.8.14) into (8.8.2) gives the energy in terms of R as

This is the integrand of the free energy expression (8.8,5), which now becomes

The change of variable to a defined by

transforms the integral in (8.8.16) to

The right-hand side is the result of reducing the integrand on the left-hand side
to partial fractions.

Performing the integrations and substituting into (8.8.16) gives the free
energy as

To get the equilibrium Ft versus T relation, set the derivative of (8.8.19) equal
to zero:

The derivatives on the right-hand side are readily evaluated. From (8.8.17),

and from (8.5.20),
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Substitution of (8.8.21) and (8.8.22) into (8.8.20) gives the desired functional
relation between the equilibrium value of the long-range order parameter and
the temperature:

The critical temperature is determined by expanding the logarithms in series
for small R and letting R —» 0 as follows:

When R -» 0, a2 -> e2v/H\ so (8.8.24] gives

It is of interest to compare the values of the critical temperatures given by
the various approximations. Table 8.1 gives the critical temperature in units of
v/k for a crystal with z = 8. The agreement between the Kirkwood second
moment approximation and the quasi-chemical approximation is good. It can
be considerably improved by including third moments in the Kirkwood
method. In fact, if the free energy given by (8.8.19) is expressed in series form
by expanding the logarithms in (a - 1) and then expanding a in v/kT, it can
be shown that the result is identical to the Kirkwood series up to terms cubic
in v/kT. Thus, although the quasi-chemical method is based on a simplified
physical model, its accuracy is comparable to that of the Kirkwood method for
practical purposes.

Equation (8.8.23) can be used to compute the long-range order parameter as
a function of temperature as follows: solving for a, (8.8.23) gives

so a table of a versus R can be constructed. From (8.8.17),

Table 8.1: Critical Temperatures According to Various
Approximations

Approximation kTJv

Bragg-Williams 4
Kirkwood (second moment) 3.414
Quasi chemical 3.476
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and from a versus R, the temperature can be computed in units of \/k. Com-
bining (8.8.27) with (8.8.25), we can get the reduced temperature as

Once R is computed as a function of T, the free energy and the other thermo-
dynamic functions can he obtained from (8.8.20).

8.9 Comparison with experiment

Experimental data on both the degree of order and the heat capacity exist for
p-brass as a function of temperature. These data allow a sensitive test to be
made of the statistical theories of the order-disorder transformation. The most
direct test is a comparison of the experimental long-range order parameter1

with theoretical values and this is shown in figure 8.6. The Bragg-Williams
curve (BW) is the same as in figure 8.4. The quasi-chemical curve (QC) was
computed from equation (8.8.30), using a table of ot versus R computed from
equation (8.8.27).

Figure 8.6 shows that both the Bragg-Williams and the quasi-chemical the-
ories reproduce the general features of the order-disorder transition in that the
degree of order changes slowly at low temperatures, but as the temperature is
increased, the crystal becomes ever more rapidly disordered. Both theories,
however, predict a change from the ordered to the disordered state that is
spread out over a larger temperature range than is actually the case. The data

Figure 8.6. Comparison of order-disorder data to theory for CuZn. Expil: experimental
data; BW: Bragg-Williams approximation; QC: quasi-chemical estimation.
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show that the onset of disorder is precipitous, taking place over a relatively
narrow range of temperature. The theories capture the overall shape of the tran-
sition, but not the rapidity of its appearance with increasing temperature. The
quasi-chemical method clearly is an improvement over the Bragg-Williams
method, but not sufficiently so to yield the rapid change in order over a short
temperature range shown by the data.

Experimental values for the heat capacity are shown in figure 8.7 along with
calculations from Bragg-Williams and the quasi-chemical theories. The
Bragg-Williams curve was computed from equation (8.6.28). The quasi-chem-
ical curve was obtained by differentiating equation (8.8.15) with respect to tem-
perature to get an expression for the heat capacity. The resulting equation
contained both a and its derivative with respect to <|>, so a table of a versus (fi
was computed from equation (8.8.27) and numerically differentiated to get the
needed derivative.

Figure 8.7 shows that the heat capacity resulting from the order-disorder
transition goes to a much higher value than that of either the Bragg-Williams
or the quasi-chemical theories. Also, the calculated values display a transition
that takes place over a larger temperature range than that shown by experi-
ment. This is consistent with the results shown in figure 8.6. The statistical
theories underestimate both the sharpness of the transition and its magnitude.
An important feature of the data is that the order-disorder contribution to the
heat capacity does not instantly vanish immediately above the transition tem-
perature. There is an appreciable tail at high temperatures. The interpretation
of this is that, although the long-range order vanishes above the critical tem-
perature, there is still some short-range order, and its decrease with tempera-
ture yields a contribution to the heat capacity. The quasi-chemical theory is

Figure 8.7. Comparison of Bragg-Williams (BW) and quasi-chemical (QC) heat capacity
to experiment for CuZn: Tc =740K.
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much better than the Bragg-Williams in this regard since it does show a resid-
ual short-range order heat capacity above the critical temperature while the
Bragg-Williams theory does not.

A few minor points need to be noted about our use of the experimental data.2

First, the data were for an alloy containing 0.475 atomic percent zinc rather
than 0.50. Second, the critical temperature for the heat capacity data was taken
to be 740K rather than the 736K used for the order parameter plot of figure 8.6.
The reason for this was that the raw heat capacity data fit this value well. Third,
the experimental data were at constant pressure rather than at constant volume.
But the difference between constant volume and constant pressure values of
the heat capacity of metals and alloys is always less than 1% or 2% even at
high temperatures, and the experimental data are less accurate than that.
Finally, the order-disorder contribution to the heat capacity was obtained by
subtracting the classical value of 3k per atom from the experimental data.
Again, the error introduced by this procedure is less than that in the experi-
mental data.

There are several possible origins for the discrepancy between the theories
and experiment. The most obvious one is that the theoretical calculation of the
number of complexions is not accurate. In the Bragg-Williams approximation,
the site occupation probabilities are taken to be independent of each other. In
the quasi-chemical approximation this is improved somewhat by counting
pairs, but these pairs are then taken to be independent. The actual number of
complexions is difficult to compute since the occupation probabilities of all
sites are related.

Another source of the discrepancy is the nearest neighbor approximation for
the interaction energies. Even if we grant the possibility of expressing the
energy in pairwise form through pseudopotential theory, interactions among
atoms that are farther apart than nearest neighbors should be taken into
account. These can have an appreciable effect on the order-disorder transition.

A third source of error that has been considered is the neglect of the vibra-
tional contribution to the free energy, and this has been reported to give an
improvement by raising the maximum heat capacity. But because of the insen-
sitivity of the heat capacity to the vibrational distribution function in the region
of the transition temperature, it is hard to see how including the lattice vibra-
tions could have a major effect on the theoretical results.

Exercises

8.1 Take the critical temperature of p-brass to be 740K and find

A. the ordering energy, and
B. the temperature at which the long-range order parameter is equal to

0.1.

8.2 If the long-range order parameter of a 50-50 order-disorder alloy is 0.05,
what is the average fraction of unlike (AB) pairs?

8.3 Show that, for a 50-50 order-disorder alloy, as the temperature
approaches the critical temperature the rate of decrease of the long-range
order with temperature approaches infinity.

8.4 If the ordering energy of a 50-50 AB alloy with the CsCl structure is 1/2
the energy of an AB bond, use the Bragg—Williams approximation to

A. show that the energy of the completely disordered crystal is 1.5 times
the average energy of pure A and pure B, and
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B. show that an ordering energy of 1/2 that of an AB bond is completely
unrealistic by computing the critical temperature, assuming that the
average cohesive energy of A and B is 5 eV/atom.

8.5 The fully ordered BCC structure of 50-50 (3-brass consists of a set of par-
allel planes alternately occupied by Cu atoms (cube centers) and Zn atoms
(cube corners). Consider a plane P midway between a Cu plane (on the left)
and a Zn plane (on the right). On the right-hand side of the plane P inter-
change all Cu atoms and Zn atoms. This forms a Cu-Cu antiphase domain
boundary. A Zn-Zn antiphase domain boundary is formed by interchanging
all Cu and Zn atoms on the left-hand side of the P plane. Using the simple
pair-bond energy assumptions of Bragg-Williams theory and the critical tem-
perature of 740K, compute the energy change (per atom in a plane) in going
from a perfectly ordered crystal to a crystal having one Cu-Cu and one Zn-
Zn antiphase domain boundary (given an atomic surface density of 1.15 x
1015; atoms/cm2 = 1.15 x 1019 atoms/m2).

8.6 Consider a crystal of 50-50 (5-brass containing edge dislocations such that
the extra half planes are (111) planes. The dislocations are formed by trans-
porting either an a half plane or a |3 half plane from a (111) surface to the
interior of the crystal. Derive a formula for the average energy per disloca-
tion as a function of long-range order, assuming the number of dislocations
formed by moving an a half plane equals the number formed by moving a P
half plane. Neglect atomic relaxation and elastic effects. (Hint: The key to
this problem is in carefully setting it up with an initial drawing so that the
a and P planes are properly and consistently identified.) Note that this order-
disorder contribution to the dislocation energy is proportional to the area of
the half plane. This is different than the elastic or atomic relaxation contri-
butions which are proportional to the length of the dislocation line.

Notes

1. NorvellJ.C., and J. Als-Nielsen; 1970; Physics Review; vol. 2, p. 277.
2. The data were taken from Hultgren, Ralph, P.D. Desai, D.T. Hawkins, M.

Gleiser, and J. Chipman; 1973; Selected Values of the Thermo dynamic Prop-
erties of Binary Alloys; American Society for Metals, Metals Park, Ohio.



Magnetic Order

9.1 Magnetic response

When a material is placed in a magnetic field, it can respond in a number of
ways, all of which have their origin in the interaction of the field with the
angular momenta of the components of the atoms. This response is measured
by the isothermal magnetic susceptibility %r, which is defined by

where H is the applied external field and M is the magnetization, defined as
the magnetic moment per unit volume. (For anisotropic crystals, the suscepti-
bility is a tensor that is related to the crystal structure. This effect will be
ignored.)

There is always a diamagnetic response. In this case, the applied magnetic
field induces currents in the electron systems of the atoms with an associated
magnetic field that opposes the external field. The induced magnetic moments
in a diamagnetic material therefore are in the opposite direction of the applied
field, and the diamagnetic susceptibility is negative. The diamagnetic effect is
small and essentially independent of temperature and will not be treated here.

The atoms or electrons in a material may have permanent magnetic moments
of their own, as is the case for conduction electrons in a metal, or for atoms or
ions with an odd number of electrons or partially filled inner shells. A mag-
netic dipole tends to line up in the direction of an applied field, so the mag-
netic susceptibility is positive. That is, the moments in a paramagnetic material
tend to line up in the same direction as the applied field.

In some materials, the magnetic moments on different atoms interact with
each other to such an extent that the direction of a magnetic dipole is strongly
influenced by the direction of the magnetic dipoles on its neighbors. If the
interaction is such as to align the moments in the same direction, the mater-
ial is ferromagnetic. Iron is the most important example of a ferromagnetic
material. It is body-centered cubic, and its magnetization can be understood
by assuming that each site can exist in one of two spin states, corresponding
to two magnetic moments pointing in opposite directions. At low temperatures
the interaction between these states causes the magnetic moments to line up
in the same direction, thereby giving rise to strong internal fields. As the tem-
perature is raised, increasing thermal agitation and entropy oppose the inter-
action energy, thereby decreasing the number of moments that are aligned in
the same direction. Ferromagnetism in iron is therefore an order-disorder phe-
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nomenon analogous to that in (3-brass, in which each site can have one of two
kinds of atoms. When a ferromagnet is completely ordered, all moments on
atomic sites are in the same direction. When it is completely disordered, the
two possible spin states are distributed at random on the lattice.

In a paramagnetic material the interaction among the magnetic moments is
so small that they can be treated as independent, and any long-range ordering
is the result of the response of the material to an external magnetic field. The
field applies a torque that induces the moments to line up in the same direc-
tion. But in ferromagnetic materials, the interaction among the atomic moments
is so strong that magnetic ordering occurs in the absence of any external field
and produces very large magnetizations. Paramagnetic effects still exist in fer-
romagnets, but they are much smaller than the ferromagnetic magnetization.

The response of a ferromagnet to external magnetic fields is complex. It is
highly nonlinear and even depends on the magnetic and thermal history of the
material. A major reason for this is that the ferromagnet consists of regions,
called domains, whose net magnetic moments are in different directions. When
the material is fully magnetized, all the atomic moments in a domain are par-
allel, but the moments are not parallel for all domains. At the domain bound-
aries, there is a mismatch of the orientation of the moments and a consequent
domain boundary energy. Domain boundaries in ferromagnets are analogous to
antiphase boundaries in order-disorder alloys. If the domains are mobile, the
domain structure is the result of the balance between the energy of the inte-
rior of the domain and the domain boundary energy, but it also depends on
the history and microstructure of the material. For example, a strong external
magnetic field can line up the domains so that their net moments are parallel.
The relaxation of domains to lower energy configurations can be inhibited by
grain boundaries or inclusions, while high temperatures can increase the
mobility and therefore accelerate the relaxation of domains.

At a macroscopic level therefore, the net magnetization is a complex phe-
nomenon dependent on details of history and microstructure. But within a
domain these effects can be ignored because the direction of the moments, for
a given crystal structure, is determined only by their magnetic interactions (and
the external field, if present) as modified by the randomizing tendencies of the
temperature. The statistical mechanical theory of ferromagnetism developed
by ignoring the existence of domains therefore applies to the individual
domains.

Ferromagnetic ordering and order-disorder in alloys are both examples of
cooperative second-order phase changes, and we will exploit the similarities
between the two phenomena.

The analogy between order-disorder alloys and ferromagnets is the result of
adopting the Ising model of a ferromagnet, in which it is assumed that the mag-
netic energy is the result of the interaction of nearest neighbor spins. These
can take on only two values and adjacent spins can only be parallel or antipar-
allel. This is equivalent to a binary order-disorder alloy whose lattice points
can only have A or B atoms and adjacent sites can consist of either like or
unlike pairs. But the Ising Hamiltonian is a truncated approximation of the
energy of the spin interactions. The full Hamiltonian has a more complex form
than that of the scalar nearest-neighbor interaction energy of order-disorder
theory. Also, interacting spins can have relative directions that are not neces-
sarily parallel or antiparallel. Despite these caveats, the analogy is useful.

The body-centered cubic structure of iron can be divided into two sublat-
tices just as in the case of (i-brass, and the completely magnetized state of iron
is that state in which each sublattice is occupied by moments arising from spin
states that have the same direction. An antiferromagnetic material is one in
which the fully ordered state corresponds to two equivalent sublattices having
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moments in opposite directions. This means that, in the fully ordered state,
each lattice site is surrounded by moments of opposite sign. If the two sublat-
tices are not equivalent, the substance is ferrimagnetic.

9.2 Paramagnetism of independent moments

The total angular momentum of an atom is determined by the sum of the orbital
and electron spin, where the sum is performed according to the quantum rules
for angular momenta. The total angular momentum gives rise to a magnetic
moment whose z component is given by

where ufl = eh/2me is the Bohr magneton, me is the electron mass, and g is the
gyromagnetic ratio, which depends on the total spin: it is 1 for a moment that
arises only from orbital electronic motion and 2 for a pure spin moment. Ms is
the azimuthal quantum number of the total angular momentum. It can take on
the values from -S to +S in integral steps, S being the total spin quantum
number, which is always either an integer or a half integer.

The z-axis can always be chosen to be in the direction of the field, and the
energy of the atomic moment in the applied field is

where H is the magnitude of the applied field.
These energy states determine the statistical mechanical average for the total

magnetization per unit volume of an assembly of identical independent
moments. These moments may be attached to atoms, ions, or molecules, but
we will refer to them as atoms. The total magnetization is just the atomic
moment given by (9.2.1), times the number of atoms per unit volume n. Since
the energy and the magnetization are proportional to the azimuthal quantum
number, it is only necessary to find the statistical mechanical average of Ms.
This average is given by

The sums are taken over the allowed values of Ms ranging from —S to +S.
Note that only the magnetic energy has been included in equation (9.2.3).

The rest of the crystal energy, which includes vibrational energy contributions,
has been left out because we take them to be independent of the applied mag-
netic field, and they therefore appear in the same way in the numerator and
denominator and cancel out. Using (9.2.3) assumes that the magnetic field does
not affect the lattice vibrations and that it affects the potential energy only
through the additive term given by (9.2.2). An analogous assumption was used
in order-disorder theory, in which it was assumed that the lattice vibrations
could be treated independently of the degree of order.

The denominator in (9.2.3) is the magnetic contribution to the partition func-
tion. To facilitate its evaluation, the partition function is written as follows:
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with x and y defined as

The partition function is written this way so that it can be summed by using
the formula for the sum of a geometric series, as can be seen by writing it out
explicitly:

The bracketed expression is just a geometric series whose sum is known, so
(9.2.6) is Z= (x~s - xs+1/l - x) = (e^-e-^/l - e^) = (e(s«/2)y _ e-(s+i/2)7/e7/2 _ e-y/2))

and therefore the partition function is

The average Ms follows directly from the partition function by using the
same technique as that leading to equation (4.4.4). Differentiation of equation
(9.2.4) with respect to y gives

Dividing this by Z gives - Ms, as is evident by comparing (9.2.8) to (9.2.3):

To get our final answer, it is now only necessary to differentiate the loga-
rithm of (9.2.7) and equate it to Ms. But rather than the reduced variable y, it
is customary to use a variable z defined by

so that (9.2.7) becomes

The variable z is introduced because it is more convenient for comparing the
quantum result to the classical limit.

Since S(d InZ/dz) = d luZ/dy, differentiation of the logarithm of (9.2.7) gives

The function in the braces is called the Brillouin function and is denned by
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Figure 9.1. Brillouin function.

Ms is therefore written as

The statistical mechanical average for the magnetization per atom is obtained
by taking the average of (9.2.1) and using (9.2.14). Multiplying the result by
the number of atoms per unit volume gives the paramagnetic magnetization as

The form of the Brillouin function is given in figure 9.1, which shows that
the magnetization approaches a maximum value for high z; that is, at low tem-
peratures there is a saturation value for the magnetization.

The classical limit of the quantum result is obtained by neglecting quanti-
zation so that the angular momenta can take on any value rather than just a
discrete set. This is equivalent to letting the quantum number S become very
large. For large S, (2S + 1)/2S —> 1, so the first term in the Brillouin function
(9.2.13) goes to coth(z). The limit of the second term is readily obtained from
the definition of the hyperbolic cotangent.
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Figure 9.2. Direct temperature dependence of the Brillouin function.

For small X, ex -> 1 + X and e~x -» 1 -X, so coth X -> 1/X. In the Brillouin
function, the argument becomes small as S becomes large, so applying (9.2.16),
the second term in (9.2.13) goes to 1/z and we get

This limiting function, L(z), is called the Langevin function and is shown as
the curve labeled "S = infinity" in figure 9.1. Note that the role of S in the def-
inition of the variable z was ignored in getting the limit of the second term.
The reason for this is that the classical result was obtained by applying statis-
tical mechanics without quantization to a classical system with an arbitrary
unit moment. In making the connection to the quantum result, we see that Su.s
plays the role of the unit moment. To make the classical limit consistent with
the quantum result, we want the unit moment to have the same value in both
cases, and this is done by formally taking S = 1 in the definition of z in equa-
tion (9.2.17).

The temperature dependence is displayed by plotting the Brillouin function
against 1/z as in figure 9.2, which shows that the magnetization decreases
rapidly with increasing temperature.

The asymptotic magnetization is reached only at quite low temperatures
because the Bohr magneton is small, and even at fields as high as 10* gauss z
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is still only of the order of 10"2 at ordinary temperatures and does not approach
unity until the temperature decreases to about a few degrees Kelvin. For ordi-
nary temperatures and magnetic fields that are not beyond the usual labora-
tory range, it is therefore sufficiently accurate to take z as small and expand
the hyperbolic cotangent function accordingly. The power series expansion
is

Applying this to the Brillouin function, the first term in the expansion cancels
out, so ignoring terms in z3 and higher gives

The high-temperature result for the magnetization is now obtained by putting
(9.2.19) into (9.2.15) and using the definition of z in (9.2.10), with the result
that

The coefficient of H in (9.2.20) is the paramagnetic susceptibility of a system
of independent atoms at temperatures that are not too low and fields that are
not too high. The paramagnetic susceptibility is independent of the field only
in the high-temperature, low-field approximation. In general, it is a function
of the field and the temperature as determined by the Brillouin function. Exper-
imentally, it is found that the paramagnetic susceptibility is indeed inversely
proportional to the absolute temperature, a relation that is known as Curie's
law.

Note that although we have labeled this the high-temperature approxima-
tion, it is valid down to quite low temperatures for ordinary magnetic fields.
At very low temperatures and/or very high fields, z becomes very high and the
Brillouin function approaches unity, as shown by its definition (9.2.16), so
(9.2.15) gives the magnetization as

This is the paramagnetic saturation magnetization, which is the result of all
moments being aligned in the same direction such that further increases in the
field cannot increase the magnetization.

9.3 Para magnetism of free electrons

In a metal, half the electrons have a spin equal to 1/2 and the other half have
spin -1/2. Despite this equality, there is a paramagnetic response of the elec-
tron gas because the energy of electrons with spin parallel to an applied field
H is increased by \LBH while those with spin opposite to the field have their
energy decreased by -|J,BH. The effect of the external field on the electron dis-
tribution is shown in figure 9.3, in which the energy of the electrons is plotted
against the density of states. The density of states in energy is still given by
equation (9.3.1) [same as equation (6.3.3)]:
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Figure 9.3. Energy shift due to spin orientation of free electrons in a magnetic field.

with

The Fermi level u,0 is related to the number density n = N/V of electrons by

The effect of temperature on the Fermi level is very small and can be ignored,
so the number of electrons can be computed by taking the Fermi function to
be unity up to the Fermi level, after which it is zero. The number of electrons
with spins parallel to the field is then

while the number of electrons with spins opposite to the applied field is
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The excess number of electrons with spins parallel to the field is (N+ - AL).
Taking the difference of (9.3.4) and (9.3.5) gives

The term uBH is always small relative to the Fermi energy, and the integral is
centered on the Fermi energy, so its value is

The magnetization is just this number of excess spins in the parallel direc-
tion times the moment of an electron, which is just the Bohr magneton. There-
fore, if Me is the magnetization of the conduction electrons,

From equation (9.3.1) for the density of states and using (9.3.3) to express the
result in terms of the number of electrons per unit volume, (9.3.8) becomes.

The coefficient of H is the paramagnetic susceptibility of a system of n free
electrons per unit volume, which is independent of temperature. It is easy to
verify from (9.3.9) that the susceptibility of conduction electron is much
smaller than the paramagnetic susceptibility of ions at laboratory temperatures.

9.4 Ferromagnetism: mean field theory

Consider a ferromagnet in which only nearest neighbor interactions of the spins
exist. The magnetic energy at a site is determined by the interaction of its spin
with the magnetic field arising from the particular configuration of spins on its
z nearest neighbors, as well as by any external fields that may be present. In
the effective mean field approach of Weiss, each such particular configuration
of neighbors is replaced by its statistical mechanical average. That is, it is
assumed that each spin is subject to an effective internal magnetic field that is
proportional to the overall magnetization of the crystal. If Mj is the magneti-
zation arising from ferromagnetic interactions, then the internal field at each
site is assumed to be

where y is a constant that measures the strength of the internal field.
Using (9.4.1) reduces our problem to one that is identical to that for

independent paramagnetic atoms. Formally, the mean field assumption is
equivalent to treating each atom as if it were an independent magnetic moment.
The only difference is that, instead of using only the external field H, the inter-
nal field HJ is added to it and the total field (H + Hj) appears in the Brillouin
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function. Therefore, equation (9.2.15) for the ferromagnetic mean field case
becomes

but, with z of equation (9.2.10) now being replaced by x, which is defined by

The first point to note is that, since the maximum value the Brillouin func-
tion can have is unity, there is a maximum value for the magnetization M; given
by nSg^B. This saturation magnetization is independent of the external field
and is the same as that for a paramagnet in extremely high external fields. Just
as in the paramagnetic case, once all moments are in the same direction, no
further increase in field can increase the magnetization.

The second important point is that there is a temperature above which the
spontaneous magnetization vanishes. To see this, apply the high-temperature
approximation to equation (9.4.2). The result is just like equation (9.2.20)
except that H is replaced by (H + yM;), so

It is convenient to define a constant with the dimensions of temperature, Tc,
by

so that, using this definition, (9.4.4) gives

or, solving for the magnetization,

where Cis a constant defined by C= Tc/y. Equation (9.4.7) shows that the high-
temperature approximation can hold only for temperatures above Tc.

If there is no external field, the total ferromagnetic magnetization reduces
to the spontaneous magnetization, which we will call M], and (9.4.7) gives
MfiT - Tc) = 0 (high T), which states that the spontaneous magnetization is
zero at temperatures above Tc.

Since there is no spontaneous magnetization above Tc, (9.4.7) is a paramag-
netic response to the external field. This equation is the Curie-Weiss law.
Tc is called the Curie temperature and marks the transition of a ferromagnet
from the ferromagnetic to the paramagnetic state as the temperature is raised
above Tc.

To examine this transition a little more closely again use the high-
temperature (low x) approximation, but now retain the first three terms in the
expansion given by (9.2.18). The Brillouin function is then approximated by
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Put this into (9.4.2) and, using the definition of the Curie temperature, write
the result as

where K is a constant that is readily evaluated from the definition of rc.When
the external field is zero, M/becomes the spontaneous magnetization M|, and
upon solving for M}, (9.4.9) gives

This is the asymptotic form for the temperature dependence of the spontaneous
magnetization as the temperature approaches the Curie temperature. There is
clearly no solution for the spontaneous magnetization for temperatures higher
than Tc, thereby verifying that there is a transition from the ferromagnetic to
the paramagnetic state at the Curie temperature. If the external field is retained,
a solution above Tc can be shown to exist which would reduce to the
Curie— Weiss law.

It is easy to verify from equation (9.4.10) that as the temperature approaches
Tc, the temperature derivative goes to

The derivative becomes infinite as T goes to Tc. This behavior is characteristic
of a second-order phase transition. Although the mean field theory correctly
displays the Curie-Weiss law and the existence of a second-order ferromag-
netic to paramagnetic transition, the agreement of experiment with the func-
tional form (9.4.10) and the exponent in (9.4.11) is only approximate.

Let us now examine the low-temperature limit. At low temperatures x is
large, and we can write the hyperbolic cotangent from (9.2.16) as follows:

where only the first two terms of the result of the division have been retained.
Applying (9.4.12) to the Brillouin function gives Bs(x) = I - l/Se~x/s[l - (2S +
l)e"2*], so neglecting the third term, (9.4.2) becomes

Since x is inversely proportional to T, this result states that at low tempera-
tures the magnetization differs from unity by a term of the form e-

consl/T. Exper-
imentally, it is found that at low temperatures the magnetization varies with
temperature as (1 - T~3/2). Thus, although the mean field theory provides an
approximate overall picture of ferromagnetism, it does not give the correct low-
temperature limit for the magnetization.
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9.5 The Ising model for ferromagnetism

In the Ising model of a ferromagnetic crystal, it is assumed that the spin at an
atomic site can take on one of only two values. The two different spin states
are labeled +1 (up) and -1 (down), and in the absence of any external field, the
ferromagnetic energy is written as

where s, and s,- can only have values +1 or -1, E{s] is the energy for a given dis-
tribution of spins on the lattice sites, / is a constant, and the summation is
taken over all nearest neighbor pairs in the crystal because it is assumed that
the spins are subject to nearest neighbor interactions only.

Equation (9.5.1) states that nearest neighbors with parallel spins (s, and s;
have the same sign) have an energy of interaction -|/| while antiparallel nearest
neighbors (s, and s;- have opposite signs) have an interaction energy equal to
+|/|. For ferromagnetic materials /is positive, so parallel spins are energetically
favored. (For negative /, antiparallel spins would be favored and the crystal
would be an antiferromagnet.)

The energy given by (9.5.1) is a simplification of the Hamiltonion given by
an analysis of the exchange energy including spin. The correct Hamiltonian
takes the vector character of the spins into account, whereas (9.5.1) is equiva-
lent to retaining only the z components of the spin angular momentum and
neglecting interactions among the cross components of the spins. Without this
simplification, the theory would be extremely difficult to deal with. The Ising
model itself is troublesome enough.

The statistical mechanical problem is to use the energy given by (9.5.1) along
with a count of the number of complexions to get the degree of magnetization
and the thermodynamic properties of a ferromagnet. The Ising model can actu-
ally be solved exactly in one and two dimensions but not in three dimensions.
The one-dimensional result shows that there is no spontaneous magnetization.
The two-dimensional case can be solved for certain lattices in the absence of
an external field and does exhibit spontaneous magnetization.

The crystal is taken to be monatomic with all lattice sites being geometri-
cally equivalent. That is, the atoms on the sites differ only by their spin states,
and every site has the same number and arrangement of neighbors. This con-
dition is fulfilled by iron, which is the prototypical ferromagnetic material.
Equation (9.5.1) is then formally equivalent to equation (8.4.18) except for a
constant term that can be defined away to zero by a proper choice of reference
states. Since (8.4.18) is the energy of an order-disorder alloy, the three-
dimensional ferromagnetic Ising model is equivalent to nearest-neighbor order-
disorder theory. All the statistical mechanics based on (9.5.1) will have the
same structure as that for the 50-50 order-disorder alloy. Iron and |3-brass both
have a body-centered cubic lattice, so the analogy is complete. It is only nec-
essary to identify the role of the spontaneous magnetization, and this is done
as follows:

Let

N = total number of atoms (lattice sites)
N+ = number of atoms with spin up (s,= 1)
AL = number of atoms with spin down (s, = -1)

Clearly,
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and the fraction of excess spin-up atoms is defined by

The spontaneous magnetization is proportional to the excess number of up
spins per unit volume. For electron spin, the magnitude of the magnetic
moment is equal to the Bohr magneton, and it can be positive or negative
depending on the sign of the spin. The spontaneous magnetization of the
crystal (net moment per unit volume) is therefore

Now take N+ to correspond to the number of "rightly" occupied sites (NAa +
JVBp) in the 50-50 AB alloy and let N. correspond to the number of "wrongly"
occupied sites (NA$ + NBa). From equations (8.5.6) and (8.5.7), the long-range
order parameter for the AB alloy can be written as

Therefore, R corresponds to the fraction of excess spin-up (positive spin)
atoms, and the Ising theory of a ferromagnet is equivalent to the AB order-dis-
order theory if we make the following replacements:

Rm is defined to be the magnetic ordering, so the magnetization (9.5.4) now
reads

with n being the number of atoms per unit volume. Rm is just the magnetiza-
tion per atom in units of Bohr magnetons.

The entire theory of the order-disorder transition can be translated to the fer-
romagnetic case. For example, the Bragg—Williams approximation as expressed
by equations (8.6.10)-(8.6.14), (8.6.22), and (8.6.28) are completely applicable
if R is taken to be Rm and § is defined as $ = kT/zJ. The critical temperature for
the ferromagnetic transition in the Bragg-Williams approximation is then

The units of spontaneous magnetization are taken to be in Bohr magnetons
per unit volume, so equation (9.5.7) divided by n\iB is the same as the
Bragg-Williams equation for R versus § in the order-disorder theory of p-brass.
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The calculation of the spontaneous magnetization in the mean field approx-
imation starts with equation (9.4.2), for which it is assumed that S = 1/2 and
g = 2, so dividing (9.4.2) by n\LB to get the magnetization in reduced units gives

where x is given by putting H= 0 in equation (9.4.3) since we are computing
spontaneous magnetization. That is,

The critical temperature (9.4.5) is now given by

Since Sg= 1 and H=0, x becomes [from (9.4.3)]

where ms = Msln\iB is the magnetization in units of Bohr magnetons per atom
and <|> is the reduced temperature T/TC. The Brillouin function for S = 1/2 is

The last equality is the result of using the identity

Equation (9.5.9) therefore reduces to

Equation (9.5.14) is identical in form to equation (8.6.21). The Bragg-Williams
approximation to the Ising model is therefore fully equivalent to the mean field
theory.

A comparison of experimental data1 for the magnetization of iron, nickel,
and cobalt with the mean field theory as computed from (9.5.14), taking S =
1/2, is shown in figure 9.4. The agreement is quite good (except, of course, in
the low-temperature limit, which does not show up on the scale of figure 9.3).
In fact, the theory clearly describes the magnetization of ferromagnets better
than it describes the degree of long-range order in CuZn. The reason for this
is that long-range interactions among atoms in brass are more important than
long-range interactions among spins in ferromagnets. The nearest neighbor
approximation is therefore better in the ferromagnetic case than in the order-
disorder case.

Since ferromagnetism is analogous to the order-disorder transition, a similar
heat capacity effect should be expected and in fact does exist, as shown by the
experimental data for iron in figure 9.5. Just as for the order-disorder case, the
difference between the heat capacities at constant volume and constant pres-
sure is neglected and the classical value of 3k is subtracted out.2

The shape of the heat capacity curve is very similar to that for the order-
disorder transition. It shows a very large rise and a tail above the Curie
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Figure 9.4. Comparison of mean field theory to experiment.

temperature that is the result of short-range magnetic order that is not captured
by the mean field theory. The points on the plot are restricted to the tempera-
ture range for which the a (body-centered cubic) phase is stable. At higher tem-
peratures, iron transforms to the y (face-centered cubic) phase and this
complicates the interpretation of the heat capacity data.

9.6 Antiferromagnetism: mean field theory

Manganese oxide is a prototypical antiferromagnetic material. It has the NaCl
structure consisting of two interpenetrating face-centered cubic structures, one
occupied by the Mn2+ ions and the other by the O2~ ions. The Mn2+ ions carry
magnetic moments whose directions lie in (111) planes, and in the fully
ordered state all moments in a given (111) plane are lined up in the same direc-
tion while the moments in adjacent (111) planes are in the opposite direction.
The interaction between a moment of one Mn2+ ion and the nearest Mn2+ neigh-
bors on adjacent Mn2+ planes is such as to give a lower energy for antiparallel
alignment. Note that this interaction is equivalent to a negative exchange
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Figure 9.5. Heat capacity of iron due to magnetic ordering.

energy that acts through the Mn2+ nearest neighbor O2 ions. The existence of
the O2" ions can be ignored when visualizing the geometry of the magnetic
interactions. An Mn2+ ion on a given (111) plane in the Mn2+ face-centered cubic
structure has six Mn2+ neighbors in its own plane and six more on neighbor-
ing Mn2+ planes.

In MnF2, the Mn2+ ions are at the sites of a body-centered cubic structure
embedded in the rutile structure of the salt. The body-centered cubic structure
consists of two interpenetrating simple cubic sublattices, each of which is fer-
romagnetic when fully ordered. The ordering on these sublattices is opposite
to each other, so the crystal is antiferromagnetic. In this case, the interactions
of the ions that are nearest neighbors are antiferromagnetic, and the ferromag-
netic ordering is the result of next nearest neighbor interactions.

Within each of the two equivalent sublattices, labeled A and B, there are
ferromagnetic interactions between each ion and za neighbors, while across
sublattices there are antiferromagnetic interactions between an ion and zb
neighbors. In the mean field approach, the magnetic moment on each ion is
subject to an internal field that has two components, one arising from interac-
tions with moments on its own sublattice and the other from interactions on
the other sublattice. Thus, the internal magnetic fields HA and HB at ions on
the A and B sublattices are given by
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In these equations, MA and MB are the magnetizations of the A sublattice and
the E sublattice, respectively, and y/and ja are positive constants. The first term
is positive because A-A interactions and B-B interactions are ferromagnetic and
tend to line up adjacent moments in the same direction, while the second term
is negative because A-B interactions are antiferromagnetic and tend to line up
the moments in opposite directions. Since the two sublattices are equivalent,
the same mean field constants jf and ya appear in both equations. The magne-
tization of each sublattice can be treated in exactly the same way as the ferro-
magnetic case with internal fields given by (9.6.1) and (9.6.2). The result for
the A sublattice is that instead of (9.4.2) we get

but with x of equation (9.4.3) now being replaced by

Similarly, the magnetization for the B sublattice is

with xg defined by

instead of equation (9.4.3). (As before, His the magnitude of the external field.)
The total magnetization of the material is the sum of that for the two

sublattices:

In the absence of an external magnetic field, the total magnetization is zero
because there are just as many ions with a given spin as with an opposing spin.
This is obviously true for the fully ordered state but is also true for partially
ordered states because the probability of finding a given spin on one sublattice
is equal to the probability of finding the opposite spin on a site of the other
sublattice. But the magnetization on each sublattice is described by molecular
field theory in the same way as ferromagnetism because equations (9.6.3) and
(9.6.5) taken separately are completely analogous to the ferromagnetic case.
This means that there is a critical temperature above which the spontaneous
magnetization vanishes on each sublattice and the crystal is paramagnetic
instead of antiferromagnetic. In the paramagnetic region, the first term in the
high-temperature expansion of the Brillouin function, equation (9.4.8), is suf-
ficient, so (9.6.3) and (9.6.5) are well approximated by

Putting in the definitions of XA and XB, these equations become
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the constant C being defined by

Equations (9.6.10) and (9.6.11) are easily put in the form

Adding the last two equations and solving for the total magnetization
MT = MA + MB gives

where i is the paramagnetic susceptibility defined by

TN is a constant with the dimension of temperature and is given by

TN is called the Neel temperature. Since, in an antiferromagnetic crystal, the
antiferromagnetic coupling constant is greater than the ferromagnetic coupling
constant, the Neel temperature is positive. Note the similarity to the Curie-
Weiss law for the paramagnetic susceptibility of ferromagnetic materials.
The forms of (9.4.7) and (9.6.16) are the same except for the sign in the
numerators.

In the absence of an external field, the total magnetization of an antiferro-
magnet is zero, so it does not show the critical temperature behavior typical
of a ferromagnet. However, the temperature dependence of the heat capacity
is similar to that of a ferromagnet and displays the typical rapid rise and nearly
immediate drop at a critical temperature that is characteristic of a second-order
phase transition. The reason for this is that on each sublattice of an antiferro-
magnet the atomic moments are in the same direction as the molecular inter-
nal field, so the energy has the same sign on both sublattices. In fact, with
respect to the energy and heat capacity, each sublattice can be treated just as
if it were a ferromagnet. It would suffice to compute the energy of one sublat-
tice and then multiply by 2 to get the total energy.

9.7 Spin waves

The theory of ferromagnetism worked out so far gives a good physical picture
of the consequences of strong interactions among magnetic dipoles and
describes the magnetic ordering transition and the high-temperature magneti-
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zation reasonably well. However, both molecular field theory and the Ising
model give incorrect results for the temperature dependence of the spon-
taneous magnetization at low temperatures. A different approach, based on
analysis of the spatial variation of spin orientations, provides a powerful tool
for the study of magnetic ordering and reproduces the correct low-temperature
result.

Let us recall that the energy for the Ising model, given by (9.5.1), is a sim-
plification of the exchange Hamiltonian for a system of interacting spins.
Quantum theoretic analysis for a system of N spins gives this Hamiltonian, in
zero external field, as

where the S, is now the quantum mechanical spin operator associated with the
spins on the ith lattice point. As usual, all but nearest neighbor interactions
are ignored and the sum is over all nearest neighbor pairs.

At absolute zero all the spins are parallel in a ferromagnet, and the vector
product of the spin operators on two adjacent sites becomes the scalar opera-
tor S2. This is the ground state energy of the ferromagnet. Since only nearest
neighbor interactions are nonzero, and all sites are equivalent, all S,- have the
same magnitude S and the ground state Hamiltonian is proportional to S2. As
the temperature is raised above absolute zero, thermal fluctuations will kick
some spins out of their parallel positions, giving rise to excited states. A low-
lying excited state would be one in which just a single spin would reverse its
orientation and be antiparallel to all other spins. At low temperatures most
spins are in a parallel configuration, with only a few being out of line. But it
turns out to be energetically more favorable if the transition from one spin
direction to its opposite is gradual rather than abrupt. That is, the difference
in orientation between neighbors is relatively small, and the orientation of
spins changes gradually as we go through the crystal, at least at low tempera-
tures. This can be described in terms of a wave of spin orientation existing in
the crystal. The spatial variation of the spin orientation is then a superposi-
tion of regular sinusoidal waves just as the thermal motion of an atom in a
crystal can be described as the superposition of displacement waves. Magne-
tization can be described in terms of these spin waves just as the thermal prop-
erties of crystals can be described in terms of normal mode lattice waves.

A semiclassical approach to the origin of spin waves starts with equation
(9.7.1) but treats the S, as if they were classical vectors rather than quantum
mechanical operators such that multiplying them by ft gives their angular
momentum. The magnetic dipole moment of the j'th spin is

The energy of a magnetic moment in a magnetic field is the scalar product of
the dipole moment and the applied field such that

and summing over the lattice gives

where H, is the field at i arising from the moments of its neighbors. The factor
of 1/2 is introduced to prevent double counting of the interactions. For the sum
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of (9.7.3) over the lattice to have the form (9.7.1), the internal field at i must
be

From classical mechanics, H, exerts a torque on the moment at i, which is
given by [4.; x H,, and this torque is equal to the rate of change of the angular
momentum. That is, the equation of motion for the angular momentum is

Using (9.7.2) and (9.7.5), this becomes

This is the equation of motion we want to solve to get semiclassical spin wave
solutions. To do this, let us write (9.7.7) in component form:

In the ground state, all spins are in the same direction, and if we label this
the z-direction, then for all spins St = Sf= S. For these low-lying states the devi-
ation from the ground state is small (low temperatures). Then the x- and y-
components of the spins are small compared to the z-components. This means
that in equations (9.7.8)-(9.7.10) all products of x- and y-components can be
neglected and z-components can be replaced by the ground state value S. These
equations then become

In these equations, z is the usual notation for the number of nearest neighbors
to a central site and is not to be confused with the z-component of a Cartesian
coordinate.

Wavelike solutions exist for these equations, as can be seen by assuming
special solutions for Sf and SJthat have the form of lattice waves:
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Just as for the expansion of vibrational displacements in terms of lattice waves,
the ks are vectors in reciprocal lattice space with 3AT values given by k =
(27i/A/1/3)(n1b1 + rz2b2 + n3b3), where n,, n2, n3 are integers with values ranging
from 0 to A/1'3 and ba, b2, b3 are the reciprocal lattice unit vectors denned by
a, -b^St,.

Now follow the usual procedure of substituting (9.7.14) and (9.7.15) into
(9.7.11) and (9.7.12) to determine the conditions under which such solutions
can exist. The result of the substitution is

These are two equations in the two unknowns u and v. They have a solution
if the determinant of the coefficients is zero. Therefore, we must have

1 = R, • - R; is the vector connecting a lattice site to its/th neighbor. Evaluating
the determinant gives

The frequency o> has been given the argument k because (9.7.19) shows that
there are 3JV solutions, one for each k vector in the first Brillouin zone.

Since the frequency is real, only the real part of the exponential is retained,

This is the dispersion relation for spin waves. The spin waves are a complete
set of special solutions of the equations of motion, so the general solution for
the spin at any site is a linear combination of the spin waves.

For small wave number vectors, the series expansion of the cosine gives an
approximation to the second order as



MAGNETIC ORDER 255

6j being the angle between the vectors k and 1. In this approximation, (9.7.20)
is

For cubic crystals the vectors 1 all have the same magnitude 1, and if a is the
edge of the elementary unit cell, 1 = a/2. Also, the average of (cos6/)2 is 1/3,
and we finally get the long-wavelength approximation to the dispersion rela-
tion as

Just as phonons are the result of quantized lattice vibrations, the quantization
of spin waves leads to excitations with energy ftK>(k), and the energy of mag-
netization is a sum of the energies of these quantized excitations. A rigorous
quantum mechanical analysis shows this to be the case. The quantized spin
wave excitations obey Bose-Einstein statistics and are called magnons. The
Bose-Einstein statistics tell us that the number of magnons with energy cen-
tered on h co(k) and k vectors in the range k to k + dk is

Remember that the magnons are excitations above the ground state, and that
in the ground state all spins are parallel so the magnetization has its maximum
value. The magnons represent spins that are in the opposite direction and give
rise to a demagnetization. The spontaneous magnetization is therefore obtained
by computing the moment per unit volume for the magnons and subtracting
the result from the magnetization for the completely ferromagnetic state. The
moment per unit volume for magnons is readily obtained by multiplying
(9.7.24) by the atomic moment g\iB, dividing by V, and integrating over all wave
number vectors k:

The integration should be performed over the Brillouin zone, but an easy
way to get a good approximation is to recognize that the integrand is large for
low frequencies and becomes smaller for increasing frequencies. In fact, at low
temperatures the integrand goes to zero as co increases. We therefore approxi-
mate (9.7.25) by integrating over spherical coordinates and replacing the upper
Brillouin zone limits by infinity. Therefore, (9.7.25) can be written as

This is still a complicated integral to evaluate, but for the low-temperature
approximation (9.7.23), it can be written as
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where A is defined by

Now the integral can be put into a standard form by a transformation of vari-
ables given by

so that (9.7.27) becomes

The integral has the value (0.0587) 4n2, so using the definition of A in (9.7.28),
equation (9.7.30) becomes

In the completely ferromagnetic state, the magnetization is ngnBS, and sub-
tracting (9.7.31) from this gives the total magnetization as

r = no3 is just the ratio of the volume of the elementary cube to the atomic
volume. It is 2 and 4 for the body-centered cubic and face-centered cubic struc-
tures, respectively.

Equation (9.7.32) states that at low temperatures the spontaneous magneti-
zation of a ferromagnet approaches its maximum value as T3/2 as the tempera-
ture is decreased, a result that agrees with experiment.

Exercises

9.1 If the Debye temperature of a paramagnetic salt is 400K, and there are
10 times as many atoms as magnetic moments, at what temperature is the
lattice heat capacity equal to the paramagnetic heat capacity of the system
of independent moments if the external field is 10,000 gauss? Use low-
temperature approximations. (Note: This requires an approximate numerical
calculation.)

9.2 Find the formulas for the entropy of the system of independent spins in
a paramagnetic salt in a magnetic field H. Compare this to the entropy of the
system in the absence of the magnetic field. Use the low-temperature approx-
imation throughout. (Note: This is the basis of cooling materials to very low
temperatures by adiabatic demagnetization.)

9.3 As stated in section 9.5, the ferromagnetic Ising model is isomorphic
•with the order-disorder ising model. Write equation (8.7.6) for the high tern-
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perature approximation to the temperature dependence of the order para-
meter in the second moment approximation in the notation appropriate to a
ferromagnet. Show that the magnetization becomes zero with a temperature
dependence of °cT1/2 as the temperature approaches the critical temperature.
Do the same for the Bragg-Williams approximation.

9.4 Iron has a ferromagnetic critical temperature of 1040K and a Wigner—
Seitz radius of 1.41 angstroms. Compute the mean field parameter. Note that
the ratio of the internal to the applied magnetic field is high.

Notes

1. Data were taken from American Institute of Physics Handbook (1957).
2. The data were taken from Hultgren, Ralph, P.O. Desai, D.T. Hawkins, M.

Gleiser, andj. Chipman; 1973; Selected Values of the Thermodynamic Prop-
erties of the Elements; American Society for Metals, Metals Park, Ohio.



Phase Equilibria

10.1 Phase equilibria in one-component systems

Consider a one-component system in equilibrium in field-free space so that the
only external force acting on it is pressure and its only thermodynamic vari-
ables are temperature, pressure, and volume. Over the temperature and pres-
sure ranges of interest, the system can exist in gas, liquid, and solid phases,
but assume that there is only one solid phase. For each phase, the pressure,
temperature, and volume are connected by an equation of state. The first step
in understanding the possible equilibria among these phases is to determine
the conditions of temperature and pressure under which the phases can
coexist. Quite a lot can be learned by simple applications of thermodynamics.

From the phase rule, if the solid, liquid, and gas phases exist simultaneously,
then there are no degrees of freedom. That is, there is only one pair of values
of temperature and pressure at which the three phases can coexist. In a pres-
sure—temperature diagram, this pair of values is represented by a point called
the triple point.

If two phases coexist, then there is one degree of freedom, which means that
either the pressure or the temperature, but not both, can be freely chosen. This
corresponds to a curve in the pressure—temperature diagram for each pair of
phases solid-liquid, solid-vapor, and liquid-vapor. For brevity, let us call these
the S-L, S-V, and L-V curves. The three curves obviously meet at the triple
point since each pair of curves (S-L and S-V, S-V and L-V, S-L and L-V) must
intersect.

If only one phase is present, then there are two degrees of freedom and there
must be three areas in the phase-temperature diagram, one for each possible
phase, within which the pressure and temperature can be independently
varied. These considerations lead to pressure-temperature phase diagrams for
one-component systems of the type shown in figure 10.1.

We can go further by applying the condition that the chemical potentials in
two phases at equilibrium must be equal. Now assume that two phases A and
B are in equilibrium and that an infinitesimal amount of material is transferred
from phase A to phase B because of an infinitesimal change in pressure and
temperature. From the Gibbs-Duhem equation (1.15.10), the chemical poten-
tial in each phase is
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Figure 10.1. Pressure-temperature phase diagram for a one-component system.

where the bars indicate that the quantities are per molecule. That is,

The chemical potentials in the two phases must be equal after as well
as before the transfer, so their changes (10.1.1) and (10.1.2) are equal and
therefore

or

AS and AV are the entropy and volume changes per molecule for the phase
transformation of A to B. From equation (1.15.6),
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HA and HB being the enthalpies per molecule in the phases A and B, respec-
tively. Fromjiie equality of the chemical potentials in the two phases, (10.1.6)
gives AS = AV/T and (10.1.5) becomes

AH = HB - HA is the enthalpy, or latent heat, per molecule of the transfor-
mation. Equation (10.1.7) is the Clapeyron equation. When applied to the
solid-liquid transition in our one-component system, (10.1.7) gives

while for the liquid-vapor and the solid-vapor transitions

AHf, AHV, AHS, and AV^, Ayv, &VS are the enthalpies and volumes of fusion,
vaporization, and sublimation, respectively. Equations (10.1.8)-(10.1.10)
define the melting point, boiling point, and sublimation curves, respectively.

Since the enthalpy of transformation is independent of the path, we have

In general, AHS > AHV > AH/ > 0 and AVS > AVV > AV/ > 0, so the slopes of the
coexistence lines in the pressure-volume diagram are positive. In a few special
cases, such as antimony and water, the molecular volume is greater in the solid
phase than in the liquid phase, in which case the melting point curve has a
negative slope.

For temperature ranges that are not too large, the enthalpy of fusion and
volume of fusion can both be taken as independent of temperature and (10.1.8)
can be integrated between two temperatures to give an approximate expression
for the melting point as

An alternate approximation can be made by inverting (10.1.8) to read

Numerical values of the right-hand side of (10.1.13) are usually quite small.
That is, it takes a lot of pressure to change the melting point by one degree. It
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is therefore often sufficiently accurate to compute (10.1.13) for a given
temperature and use that value to get the effect, of pressure on melting
temperatures near that value. For temperatures near the melting point Tm, the
change in melting point as a function of change in pressure can therefore be
written as

The solid-vapor and liquid-vapor Clapeyron equations can also be integrated
approximately by recognizing that, for temperatures not too near the critical
point, the volume per molecule in the vapor is much larger than in either the
liquid or the solid, so both the volumes of sublimation and vaporization can
be replaced by the vapor volume. Then, if the vapor is assumed to be dilute
enough to follow the ideal gas law, we have

Vg being the volume per molecule in the gas phase. Putting (10.1.15) into
equations (10.1.9) and (10.1.10) gives

These are the Clausius—Clapeyron equations for vaporization and sublimation,
respectively. If the enthalpies of vaporization and sublimation do not vary
much with temperature, these equations can be readily integrated.

Note that the basic constituent of the one-component system has been
referred to as a molecule. Of course, the above development applies to atomic
as well as molecular systems. In what follows, the general term "molecule"
will still be used, but the theories will be written as if the system were com-
posed of atoms. This means that internal degrees of freedom of molecules will
be ignored. A diatomic molecule, for example, will be assumed to move as a
unit, with respect to either translation or vibration. If the internal degrees of
freedom are the same in the two phases, then the theory applies unchanged.
This would be the case for vibrations in a diatomic molecule for which the
chemical bond in the molecule is much stronger than the intermolecular inter-
actions. Since the effect of the intermolecular forces on the intramolecular
vibration frequencies is small, the molecule has a vibrational energy, and there-
fore a vibrational partition function, that is very nearly the same in the solid,
liquid, and vapor phases. The situation is a bit more complex for rotational
degrees of freedom. In the solid, the rotation is often restricted by nearest neigh-
bor interactions and does not come into play. However, the molecule can rock
back and forth in its restricted position, giving rise to librational degrees of
freedom. In the gas phase, the molecule can rotate freely and the rotational
term must be included in the partition function while librations are excluded.
No general rule can be given for the contributions of rotations to the partition
function of a liquid. The rotations of most molecules will be restricted while
those of some molecules may not be. Even for the restricted rotations, there is
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a difference from the solid because we expect the amplitudes of librations are
greater in the liquid.

The following developments can to be applied to molecular solids by
adding in the effects of the internal degrees of freedom. Assuming a complete
separation of internal and external motions, this means that when the partition
function that neglects the internal motions is obtained, it is simply multiplied
by partition functions representing the internal degrees of freedom.

10.2 The van der Waals model

Real gases follow the ideal gas law only at low densities or high temperatures.
To go beyond the ideal gas representation, it is necessary to include nonzero
intermolecular interactions in the theory of the equation of state. A simple
approach is provided by the van der Waals theory of molecular gases, which
is based on the following assumptions:

1. The potential energy of any two molecules in the gas arises form a
central-force, pairwise potential that depends only on the distance
between the molecules and is the same for all pairs.

2. The potential energy of the gas is a sum of the interactions for all pairs
of molecules.

3. The pair potential consists of a hard sphere repulsion and a relatively
long-range attraction such as the attractive part of the Lennard-Jones
potential.

4. For their motion in the gas, only the volume outside of the hard-sphere
radii is available to the molecules.

5. The configurational partition function can be evaluated by expanding
the Boltzmann factor about the mean energy and retaining just the first
term. This is the same procedure as followed in the Bragg-Williams
order-disorder theory.

These assumptions amount to applying two simple corrections to the ideal gas
law to take into account the repulsive and the attractive forces acting between
molecules. The repulsive force is included by making the volume occupied by
the molecules, regarded as hard spheres, unavailable to the molecular centers.
Thus, the volume in the ideal gas law is replaced by the "free" volume, which
is less than the actual volume. The attractive forces are included by recogniz-
ing that, when they are present, less pressure needs to be exerted on the gas
to maintain a given volume. The pressure in the ideal gas law must therefore
be increased by an amount that corrects for the decrease resulting from the
intermolecular attractions. Since two molecules are involved in an interaction,
this increase in gas pressure is proportional to the square of the density. From
these simple considerations, the ideal gas law is modified to read

where a and b are constants representing the attractive and repulsive effects
of the intermolecular forces, respectively.

The van der Waals model is unexpectedly rich in results. Not only does it
provide a reasonable equation of state for gases that are not too dense, but also
it provides a description of the gas-liquid phase transition that displays all the
qualitative features of real gas-liquid equilibria. This is done by simply ignor-
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ing the fact that the model was designed for the gas phase only and using it to
also describe liquids.

An elementary statistical mechanical derivation based on the above as-
sumptions gives not only the equation of state, but also all thermodynamic
functions.

The molecular masses and temperature conditions for the systems we are
interested in are such that the semiclassical approximation (2.14.20) for the
partition function is quite accurate:

where A = h/(2nmkT)1'2 is the thermal wavelength and Zq is the configurational
partition function defined by

The first task is to evaluate the integral in (10.2.3). In a van der Waals gas,
the potential energy is assumed to be a sum of pairwise interactions that consist
of a hard sphere repulsion and a relatively long-range attraction such as the
attractive part of the Lennard-Jones potential. That is,

where the sum is over all pairs and the central, pairwise potential between two
molecules i and j a distance r,y apart is

R is the hard sphere radius of the molecule. A schematic plot of the van der
Waals potential is shown in figure 10.2.

The configurational partition function (10.2.3) is then

Now use assumption 5 above and replace the sum of potential functions over
all pairs by its average value. This can be done as follows.

First, consider the interaction of one molecule, labeled oc, with all other mol-
ecules in the gas. Draw a spherical shell around this molecule at a distance
ra from its center and define a function pa(r) such that the number of molecules
in the shell is

pa(r) is the radial distribution function and measures the deviation from a
random distribution of molecules since, if the molecules were distributed
totally at random, pa(r) would be unity. The potential energy of the central mol-
ecule in the field of all the others is therefore
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Figure 10.2. The van der Waals potential.

(Unity has been neglected relative to AT.) Equation (10.2.8J is the average
interaction of the a molecule with the rest of the gas because the radial
distribution function describes the average density of molecules as a function
of distance from the central molecule. Since all molecules are alike, the total
average potential energy of interaction is obtained by multiplying (10.2.8) by
the number of molecules and dividing by 2 to avoid double counting. That is,

where

and the configurational integral (10.2.6) becomes
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Because of the assumption of hard sphere repulsions, each integral in
(10.2.11) ranges only over the free volume of the gas. This excludes a volume
Nb, where b is the volume excluded per molecule. Thus, each integral in
(10.2.11) has the value (V - Nb), and

and the partition function for the van der Waals model is

The Helmholtz free energy is

Stirling's approximation has been used on the factorial. The pressure is

Remember that W is an average attractive potential, so it is a negative quan-
tity. Replacing it with a positive quantity according to a = -W, (10.2.15) is seen
to be the van der Waals_ equation given by (10.2.1), in which, in terms of the
volume per molecule, V is

The van der Waals equation can be put into a reduced, universal form by
finding the pressure, temperature, and volume for which both the first and
second derivatives of the pressure with respect to volume vanish. That is, we
look for P=PC,T=TC,V = Vc such that

Differentiating (10.2.16) and setting the results equal to zero gives

Pc, Tc, V c are called the critical pressure, temperature, and volume, res-
pectively, and they define a critical point for the van der Waals equation of
state for reasons that will soon be apparent. At the critical point, the van der
Waals equation (10.2.16) is
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Equations (10.2.18]-(10.2.20) are readily solved to give the critical parameters
in terms of the van der Waals constants as

If a reduced pressure, temperature, and volume are defined by

then, from (10.2.16),

or

Note that these results do not depend on the precise form of the attractive
potential, but only on the fact that it exists.

The van der Waals equation is cubic in the volume, so for a given pressure,
there can be one, two, or three distinct unequal roots, as shown in figure 10.3
for different reduced temperatures.

Above the critical temperature, f= 1, the isotherm is single valued, corre-
sponding to a single (gas) phase for all values of pressure and volume. When
the critical temperature is unity, there is an inflection point as defined by
equation (10.2.17). Below the critical temperature, there is a range of volumes
for which the pressure has three values for each volume.

Let us examine this case in more detail, using figure 10.4. Above the
maximum, there is only one pressure for each volume, the volume is low, and
it takes a large increase in pressure to produce a small change in volume. In
this region, the curve is the P-V isotherm for a liquid. Below the minimum,
the curve is again single valued, the volume is high, the compressibility is high,
and the isotherm is that for a gas.

Above the critical point, the liquid and gas phases can change into each
other by continuous changes in temperature and pressure. This is not possible
for solid-vapor or solid-liquid transitions. The liquid and the gas are both
fluid phases with full translational and rotational symmetry, so there is no
discontinuous symmetry change in going from one to the other. A solid,
however, has a lower symmetry since it is a discrete periodic structure
whose translational and rotational symmetries are restricted. A fluid with full
symmetry cannot continuously be transformed to a solid whose symmetry is
much lower.

Between the minimum and the maximum, only two of the three pressures
for a given volume can correspond to physical reality. The reason for this is
that between the minimum and maximum pressures, the van der Waals curve
states that the volume increases with increasing pressure. This is contrary to
the stability criterion of equation (1.14.21).
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Figure 10.3. Isotherms for a van der Waals fluid.

Although there are two volumes for every pressure that do not violate the
stability condition, only one pair of volumes between the minimum and
maximum corresponds to an equilibrium between the liquid and the gas phase
since only one pair satisfies the requirements of equality of chemical poten-
tials and equality of pressures. These equilibrium volumes can be found by a
construction proposed by Maxwell in 1875, just two years after van der Waals's
thesis in which he presented his equation from considerations based on the
classical kinetic theory of gases. This construction starts with the volume as a
function of pressure as shown in figure 10.5, in which a line parallel to the
volume axis is drawn between the gas and liquid phases starting at a point
labeled 1, going through the point M, and terminating at the point 2.

From the Gibbs—Duhem equation (1.15.10) for constant temperature, the
change in chemical potential of a one-component system is related to the
change in pressure by

Therefore, the line integral of (10.2.25) along the van der Waals isotherm
between the two points 1 and M gives



268 STATISTICAL MECHANICS OF SOLIDS

Figure 10.4. P-V isotherm for a van der Waals fluid below Critical temperature Tc.

and the line integral from M to 2 is

But the line integral around a closed curve is just the area within the curve,
and since the pressure is constant along the line parallel to the pressure axis
and contributes nothing to the area integral, (10.2.26) is the area enclosed by
the curve from 1 to Mback to 1, while (10.2.27) is the area within the curve
going from M to 2 back to M. This means that the chemical potentials at 1 and
2 can be equal only if the two areas are equal. This is the Maxwell equal area
construction. For a given temperature, it fixes the only pressure at which the
two phases are in equilibrium. In figure 10.4 the tie line drawn to give equal
areas gives the equilibrium pressure for the coexistence of the liquid and vapor.
(Note that there is some lack of rigor in this derivation because it is assumed
that equilibrium thermodynamic relations are valid even in the volume range
where the system is unstable.)

Although the points between 1 and the minimum, and between the
maximum and 2, are not in thermodynamic equilibrium, they do not violate
the stability condition of equation (1.14.21) since the volume decreases with
pressure in these regions. These are regions of metastability: the first region
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Figure 10.5. V-P isotherm for a van der Waals fluid below the critical temperature.

corresponds to possible superheating in which the system remains liquid above
the boiling point, and the second region represents possible supercooling in
which the system remains gaseous below the boiling point.

Of course, there is a construction similar to figure 10.4 for every tempera-
ture, and the locus of all points like V-L and V2 can be found. Also, the locus
of all points at which the maxima and minima occur can be obtained by setting
the derivative of the pressure with respect to volume equal to zero. The phase
diagram thus obtained is shown in figure 10.6. The maximum is the critical
point above which there is only one fluid phase. The region below the critical
point and to the left of the solid curve is the region in which the system is a
liquid, while below the critical point and to the right of the solid curve is the
vapor region. This solid curve is called the binodal, and it separates two phase
from one phase regions. The dotted curve is called the spinodal. Inside the
spinodal the system is unstable, while the area between the two curves are
ranges of pressure and volume for which the system is metastable.

If a system is in the liquid region below the critical point, increasing the tem-
perature at constant pressure will move the system to the equilibrium curve,
some of the liquid will vaporize, and two phases will coexist. As more heat is
put into the system, all the liquid will evaporate and the system moves into
the gas region. (This presumes that no superheating or supercooling takes
place.) An interesting result is that a liquid can be converted to a gas without
ever going through a two-phase condition by first raising the pressure at con-
stant volume to bring the system above the critical point, then raising the
volume at constant pressure to a volume well to the right, and then lowering
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Figure 10.6. The van der Waals phase diagram.

the pressure at constant volume to a point below the critical point and to the
right of the binodal.

10.3 Sublimation

An attractive feature of the van der Waals theory is that a single model
describes both the liquid and the gas phases. From a specific assumption about
molecular interactions, a single partition function is derived that leads directly
to a phase transition. It displays a specific case giving rise to a phase change
and shows that the possibility of phase equilibria is built right into statistical
mechanics.

In many cases phase equilibria are more easily studied by adopting differ-
ent models for each phase and finding the conditions under which the sepa-
rate models yield equilibrium among the phases. A relatively simple example
is the equilibrium between a gas and a solid below the critical point. The P-T
sublimation curve can be derived by adopting the harmonic model (or one of
its approximations) for a solid, and a gas model, such as the ideal gas or the
van der Waals gas, for the vapor.

Consider a monomolecular solid in equilibrium with its vapor. It is assumed
that there is no association in the vapor, so that it consists of free molecules.
The solid will be represented by the Debye theory while the gas will be
assumed to be ideal and all internal degrees of freedom of the molecules are



PHASE EQUILIBRIA 271

ignored. Using this model, the conditions under which the chemical potentials
of the two phases are equal can be obtained.

The Helmholtz free energy for the model is obtained by using the Debye
distribution function in equation (4.3.15). Adding PVC to this and dividing by
the number of molecules gives the chemical potential of the crystal as

where |o,c is the chemical potential of the crystal Vc is its volume per molecule
and E0 is the zero point energy per molecule of the crystal.

The chemical potential of the gas is given by equations (3.4.2) and (3.4.18) as

Ng and Vg are the number of molecules and the volume of the gas phase.
Now all that needs to be done is to equate the two chemical potentials. But

first let us transform the integral in the expression for the chemical potential
of the solid using an integration by parts to get

so that (10.3.1) becomes

with Df{QD/T) being the Debye energy function defined by equation (4.8.5).
Equating (10.3.2) and (10.3.3) gives

which is the equilibrium pressure-temperature relation between a solid and
its vapor. This is an integrated form of the Clapeyron equation for sublimation
(10.1.10), as can be shown by differentiating it to get

In this differentiation, it is assumed that the volume of the crystal is constant.
For real crystals, the thermal expansion is small, and for the harmonic crystal
model it is zero. This assumption is therefore consistent with Debye theory
and is also not too far from reality.

From equation (3.4.35), the enthalpy of the ideal gas per molecule is 5kT/2,
and from (4.8.7) the second and last terms add up to the negative of the crystal
energy, which when added to the third term gives the negative of the crystal
enthalpy. Therefore, (10.3.5) is
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where the heat of sublimation is the enthalpy of the gas minus the enthalpy of
the crystal, per molecule:

Making use of the ideal gas law for the vapor in the left-hand side of (10.3.6)
and solving for the derivative of the pressure gives

This is the Clapeyron equation for sublimation. It has been derived from
the Debye theory with the heat of sublimation given explicitly by the model.
The Debye theory is therefore consistent with thermodynamics for the vapor-
solid phase transition, and (10.3.4) is indeed an integration of the Clapeyron
equation.

The volume per molecule in the gas phase is much larger than in the crystal,
so using the ideal gas law, (10.3.8) can be written as

which is just the Clausius-Clayperon equation (10.1.17).
Note that the zero point energy is negative, so the enthalpy of sublimation

is positive. Of course, the zero of energy must always be taken to be the same
for both phases. This is automatic in the above development since the zero of
energy for the harmonic crystal was taken to be that of molecules at infinite
separation in the gas phase.

10.4 The liquid state

The theory of liquids is complicated by the fact that liquids do not have a rigid
periodic structure like that of a crystal, nor the dilute nature of a gas, which
can be described by pair interactions of randomly moving molecules. The inter-
mediate nature of a liquid, in which the density is similar to that in solids, but
molecular mobilities are much greater, makes it more difficult to arrive at
rigorous theories for which numerical computations can be made. Formally
correct theories have been constructed, but these are restricted to liquids in
which the molecules interact according to pairwise central forces. Calculations
from such theories require considerable simplification, and they are difficult
to extend to noncentral force systems.

There are two classes of simplified models that are useful. One class is based
on theories of gases, and the other on theories of solids. The van der Waals
model treats the liquid as if it were a dense gas and is successful in qualita-
tively describing the liquid-vapor transition. Here, our interest is in the solid-
liquid transition, and we therefore adopt a model that is closer to the solid
state.

A relatively simple approach, called the method of significant structures,
was developed in 1964 by Eyring et al.,1 which assumes from the start that a
liquid has a mixture of solidlike and gaslike characteristics. While lacking the
rigor of more advanced methods, this approach has the advantage of provid-
ing a good physical description of liquids from which calculations can readily
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be made. The results are in adequate agreement with experiment. The devel-
opment below is a variation of Eyring's model.

The method starts with the observation that X-ray analysis of liquids shows
that they exhibit strong short-range order and that the nearest neighbor dis-
tances between molecules are very close to those of the solid. For increasing
separation distances, the correlation between molecular positions decreases
rapidly. That is, each molecule has an immediate environment that is similar
to that in the solid state, but there is no long-range order. Also, the density
increase on melting varies from about 10% to 20%. This is not too far from the
difference in the density of closely packed and randomly packed spheres,
which is about 14%. Furthermore, the heat of fusion is a small fraction of the
heat of vaporization, being about 2-5% for metals, and about 5-20% for
molecular solids. This accords with the idea that vaporization is the result of
complete separation of the molecules and that the liquid intermolecular
distances are not too different from those of the solid.

All this is true for systems that are not too near the critical point. As the
critical point is approached, the distinction between liquid and vapor vanishes
and the heat of vaporization approaches zero. Our interest is in melting at
temperatures and pressures far below the critical point, and the models we
construct are restricted to such conditions.

But, while the short-range order in a liquid is close to that of a solid, mole-
cules in the liquid are much more mobile, as shown by its fluidity and much
greater diffusion coefficients. Also, a number of the lattice sites in solids near
the melting point are known to be vacant, the fraction of vacant sites in metals
being of the order of 10~3, so if a liquid is solidlike, it must contain more vacan-
cies than the crystal phase. If the decrease in density on melting is an indica-
tion of vacancy concentration, the liquid state must contain about an order of
magnitude more vacancies than the solid. The simplest physical model of a
liquid in accord with this description describes the liquid as containing a
number of holes, or vacancies, and a mixture of molecules that are solidlike
with molecules that are gaslike. Adopting the viewpoint that molecules adja-
cent to vacancies are gaslike, their number is approximately the number of
vacancies times the coordination number, which is usually about 10-12. The
fraction of gaslike molecules in the liquid can then be as much as 10%. This
leads to the following model.

During any small increment of time, most molecules are surrounded by a
number z\ of nearest neighbors. While this number may be less than that in the
solid, It is sufficient to enclose the central molecule in a cage within which it
has vibrational degrees of freedom as in a solid. But the liquid also contains a
number of holes of molecular size (vacancies). The molecules next to these
holes can easily escape into it. They therefore have translational degrees of
freedom like molecules in a gas. Of course, the particular molecules that are
solidlike or gaslike change with time, but in keeping with the ergodic hypoth-
esis, the time average is replaced by an ensemble average, so the continually
changing structure can be replaced by the most probable structure. The parti-
tion function for the liquid is then taken to be the product of two partition
functions: one for a solid containing Ns molecules and JVV vacancies, and the
other for a gas containing Ng molecules, Ng + Ns = AT"; being the total number of
molecules in the liquid. The partition function representing the "solid" is taken
to be just that for the harmonic crystal.

The partition function of the liquid is then

so the Helmholtz free energy is
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The "solid" partition function, Zs, is given by equation (4.3.12), the product
being taken over 3ATS vibrational degrees of freedom. The high-temperature
approximation is adequate, so expanding the exponential and retaining only
the first two terms, (4.3.12) gives

The corresponding Helmholtz free energy, in the continuum notation, is

Eg being the zero point energy per solidlike molecule.
Using the Debye distribution function gives

where ©B is a Debye characteristic temperature for the solidlike portion of the
liquid phase.

From the semiclassical partition function for an ideal gas, equation (3.4.18),
the partition function for the "gas," is

This differs from the ideal gas partition function through the exponential factor
because the gaslike molecules move in an average potential El, which is
assumed to be constant. In the ideal gas, the background potential was assumed
to be zero.

We assume that the volume available to the "gas" is the total volume of the
"liquid" minus the volume of the "solid," so

This is often called the "free volume" since it is the volume over which mol-
ecules in the liquid are treated as a gas. From the physical picture of the liquid
as a solid-vacancy-gas mixture, the number of gaslike molecules is the number
of vacancies times the coordination number, and the "gas" volume is the
volume of a vacancy plus its nearest neighbors, all multiplied by the number
of vacancies. That is,

and

Vi = VI/NI being the volume per molecule of the liquid. In (10.4.9) it is assumed
that the volume per atom of the neighbors to the vacancy is just that of the
liquid as a whole.
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In the Eyring theory the vacancy formation volume, Vv, is taken to be the
molecular volume of the liquid. If there is not too much relaxation of molecules
around the vacancy from the positions they have when there is no vacancy, and
if this relaxation is confined to first nearest neighbors, this is not a bad approx-
imation, but it cannot be adopted as a general rule. For large, spherical mole-
cules that interact via pairwise central forces with strong repulsions and whose
attractive range is short relative to intermolecular distances, very little relax-
ation occurs and the vacancy formation volume is very close to the molecular
volume. The C60 fullerene molecule is an excellent example of this. However, it
is known from theory and experiments on point defects that the relaxations
around vacancies in metals with small ion cores, such as sodium, are quite large
even in the solid state. In such cases, the "gaslike" volume per molecule is
somewhat larger then the overall molecular volume of the liquid. But no great
error is introduced if the vacancy formation volume is replaced by the liquid
molecular volume in (10.4.9) because it contributes less than 10% to the total
volume of gaslike molecules. Also, while the vacancy formation volume is less
than the liquid molecular volume, the molecular volume of gaslike molecules
(around the vacancy) is somewhat greater because of the presence of the vacancy,
so there is some resulting compensation of errors. Thus, we take (10.4.9) to be

From the theory of point defects, the vacancy concentration is determined
by the Gibbs free energy of vacancy formation, G{, by

Using (10.4.8) and (10.4.9), equation (10.4.6) gives the Helmholtz free energy
for the gaslike molecules as

The sum of (10.4.5) and (10.4.12) gives the Helmholtz free energy. To get the
Gibbs free energy, two terms must be added. The first is the usual PVteim. But
if the vacancy model is taken seriously, this is not enough; the theory of point
defects tells us that each vacancy contributes an amount -kT to the Gibbs free
energy [see equation (15.3.22)]. Adding these two terms to the sum of (10.4.5)
and (10.4.12) gives the Gibbs free energy as

Dividing through by the total number of molecules gives the chemical poten-
tial of the liquid as
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fg and fs being the fraction of gaslike and solidlike molecules, respectively.
For liquids of low density, the vacancy formation free energy is low so that

the number of vacancies, and therefore the number of gaslike molecules, is
high. For high densities, the formation free energy is high, the number of
vacancies is small, and most of the molecules are solidlike. Equation (10.4.14)
therefore exhibits a continuous change from solidlike to gaslike behavior as
a function of decreasing density.

10.5 Communal entropy

The statistical number of complexions for molecules in a gas is fundamentally
different than for molecules occupying lattice sites in a crystal. In the gas, the
molecules can be anywhere throughout the gas volume and therefore are indis-
tinguishable. This is the origin of the divisor N! in the semiclassical configu-
rational integral. In a lattice, however, molecules can be labeled, so the Nl does
not appear because there is only one way of placing molecules on a lattice in
a perfect crystal.

The gas therefore has a configurational entropy term arising solely from the
indistinguishability of molecules. In a monomolecular gas, using Stirling's
approximation for the factorial, the partition function is

where V is the volume per molecule. If the molecules were fixed on a lattice,
the volume would not be shared by all the molecules. Each molecule would
move in its own volume formed by the cage of its nearest neighborhood and
the N\ term would be absent. Then the partition function would be

Calculating the entropies corresponding to the two partition functions (10.5.1)
and (10.5.2), for example, from the negative derivative of the Helmholtz free
energy with respect to temperature, shows that they differ by a term

which arises directly from the factor e in (10.5.1). This is called the commu-
nal entropy,

There is no obvious way of deciding whether or not liquids have communal
entropy. The most reasonable description is that at low temperatures and high
densities molecules are restricted to their surrounding cages and there is little
or no communal entropy. This would certainly be expected in glasses, where
molecular mobility is very low. As the temperature goes up or density goes
down, the molecules become more mobile and at least some of them can escape
from their immediate location. The communal entropy would gradually
increase to its full gaslike value.

In the model presented above, it is assumed that there is a communal entropy
for the gaslike molecules moving in the free volume of the liquid given by Ngk.
In this model there is an additional configurational entropy resulting from the
presence of vacancies. The number of ways of distributing AT; vacancies and N,
molecules on N, + N; sites is
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and, within the approximation that the number of vacancies is much less than
the number of molecules, the corresponding entropy is Nyk. The sum of the
communal entropy and that arising from the distribution of vacancies can be
regarded as an effective communal entropy given by

The vacancies contribute only about 10% to this, which is within the error
range of the model.

10.6 Vibrations and melting

It is obvious that the crystal vibrations play an important role in the process
of fusion. As the temperature of a solid increases, the increasing vibrational
amplitudes have two related effects: the vacancy concentration increases and
the molecules are less tightly bound to their neighbors. In the vicinity of a
vacancy, the mobility becomes high and molecules find it easier to exchange
places. The vacancy and its neighbors are like an incipient puddle of liquid.
At the melting point, the vibrations have such a large amplitude that the
long-range order of the solid is destroyed and the system becomes liquid. It is
therefore of interest to estimate the vibrational amplitudes at the melting point.
To do this, harmonic vibration theory will be used even though there is an
appreciable anharmonic effect at the melting point.

Let Ak be the normal modes of a monatomic crystal. Then the displacement
of an atom at R is given by

The sum is taken over all k-vectors, which is equivalent to summing over all
normal mode frequencies.

The magnitude of the square of the displacement is

The statistical mechanical average of (10.6.2) gives the average for the square
of the total atomic displacement:

From the theory of the simple harmonic oscillator of angular frequency to,
the amplitude and the total energy are related by

so the mean square amplitude of the kth oscillator is related to its energy by
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At high temperatures, each oscillator has an energy kT, so using this value for
the average energy Bk, substitution of (10.6.5) into (10.6.3) gives

Now convert the sum to an integral in the usual way through the use of
the frequency distribution function. Using the Debye model, this is given by
equations (4.7.19) and (4.7.23), so in the Debye theory we can write

For purposes of calculation, let us divide (10.6.7) by the square of the nearest
neighbor distance X. Then, if the nearest neighbor distance is expressed in
Angstroms and the atomic mass M is expressed in units of the proton mass,
evaluating the constants in (10.6.7) gives

At the melting point Tm, define fm to be the square root of the ratio on the left
hand side of (10.6.8) and write

fm can be computed from the known Debye temperatures, melting points,
nearest neighbor distances, and atomic masses.

An alternate approach to estimating the amplitude of the vibrations at the
melting point starts from a consideration of the forces holding the crystal
together. The potential energy of a crystal as a function of lattice parameter is
shown in figure 5.1. It is reasonable to assume that the same general form holds
for the interaction between individual atoms. This is certainly true for central
pairwise forces, and for any crystal, the displacements are harmonic for small
amplitudes, so the parabolic form for the atomic interactions near equilibrium
is a good approximation. Let us represent the force between two atoms by a
curve that is the negative derivative of the usual type of potential function.
Such a curve, computed from the universal energy equation of (5.1.16), is
shown in figure 10.7.

The force is zero at the equilibrium separation, negative (repulsive) for
smaller values, and positive (attractive) for larger values. The important point
to note is that, if the displacement becomes large enough to reach the point of
maximum force, then any further increase in the distance between the two
atoms results in a decreasing force of attraction and the interatomic distance
tends to increase. Clearly, vibrational amplitudes that approach the maximum
in the force curve should disrupt the crystal structure. It follows that, at the
melting point, the fractional atomic displacements should be near the value at
maximum interatomic force. This value is easy to calculate from the universal
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energy equation. The maximum in the force curve occurs at a = 0.9, so from
the definition of a given by equation (5.1.15), we have

with

and L is defined by equation (5.1.14).
Since Debye temperatures and the parameters in the universal energy equa-

tion are known, the fractional vibrational atomic displacement can be esti-
mated in two ways: from equations (10.6.9) and (10.6.10). The results of such
computations for a number of metals are shown in table 10.1, the second
column being computed from equation (10.6.9) and the third from equation
(10.6.10). The agreement between the two methods of calculation is remark-
able considering that harmonic theory is being used for displacements that are

Figure 10.7. Force between two atoms simulated from the universal energy curve.
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Table 10.1: The Ratio of Root Mean Square
Vibrational Amplitudes to the Nearest Neighbor
Distance for Some Simple Metals

Metal fa (force) /„ (RMS)

Li
Na
Al
K
Ca
V
Cr
Fe
Ni
Cu
Rb
Sr
Mo
Pd

Ag
Cs
Ba
Ta
W
Pt
Au
Pb

0.18
0.21
0.15
0.19
0.17
0.19
0.17
0.16
0.17
0.17
0.22
0.16
0.16
0.16
0.16
0.19
0.16
0.19
0.16
0.15
0.13
0.16

0.29
0.24
0.19
0.23
0.20
0.19
0.16
0.17
0.18
0.17
0.22
—

0.15
0.14
0.15
0.22
0.20
0.18
0.16
0.14
0.13
0.14

RMS = root mean square.

anharmonic and lends strong support to the idea that melting occurs when the
atomic vibrational displacements reach a critical fraction of the interatomic
distance. Table 10.1 shows that the amplitude of vibration at the melting point
is about a quarter to one half the half-neighbor distance. This represents a large
excursion from the mean position and indicates that the atomic vibrations are
rather violent at the melting point.

Equation (10.6.9) is a form of the Lindemann equation, which was proposed
as an empirical relation between melting point and Debye temperature in 1910.
Before 1975, there was no theoretical foundation for the Lindemann formula,
but David Goodstein gave a problem in his 1975 text2 based on the same argu-
ments that led to equation (10.6.9), and this was explicitly presented in
Andrew Zangwill's text in 1988.3

Now let us consider the surface of a solid. Because an atom in the surface
has fewer nearest neighbors than in the bulk, the normal modes of vibrations
associated with the surface will have lower frequencies and the vibrational
amplitudes of the surface atoms will be greater than those in the bulk. A rough
estimate is that, since there are half as many nearest neighbors to an atom in
the surface, the force constants will have about half the value of those in the
bulk, so the frequencies will be less than those in the bulk by a factor of about
A/2 and the root mean amplitude will be about 40% more than in the solid. This
is consistent with experimental estimates that compare X-ray diffraction and
LEED data, which show that the vibrational amplitudes in the surface of metals
are 50-100% greater than in the bulk solid.4 The atoms on a solid surface there-
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fore have vibrational amplitudes at the melting point that are comparable to
the amplitudes in the liquid phase.

As the temperature increases, the amplitudes of the vibrations and the mean
displacements of the atoms increase. This effect is greater for the surface atoms
than for the bulk atoms because they are more weakly bound. When the surface
displacements become large enough, the crystalline structure breaks down and
the surface layer melts. Now the atoms in the second layer are more weakly
bound and will have larger displacement amplitudes than those in the bulk,
although the difference will not be as great as for the first layer. The second
layer will then melt, but at a higher temperature than the melting temperature
of the first layer. This effect propagates into the surface, but after a few layers
the thermodynamic melting temperature is needed to get amplitudes that cause
further melting.

For the model of a liquid as a mixture of gaslike and solidlike molecules,
there are two different kinds of molecular motions to be considered. For mol-
ecules around a vacancy, it is assumed that the vibrational amplitudes have
become so large that the molecules move rather freely and have gaslike prop-
erties. The large amplitudes associated with surfaces support this idea. For the
solidlike molecules, there are two different factors that make the vibrations
different from those in the crystal. The first is that the number of nearest neigh-
bors in the liquid may be different from that in the solid; the second is that
the interatomic spacings are different (usually higher), so the atoms are vibrat-
ing in a potential well different from that in the solid.

10.7 Melting

The fusion curve relating pressure to temperature is obtained by equating the
chemical potential of the liquid and solid states at the melting point. The chem-
ical potential of the liquid is given by equation (10.4.14). Again adopting the
high-temperature Debye approximation, but this time for the crystal, the
Helmholtz free energy is given by a form just like equation (10.4.5). Adding
the PV term to get the Gibbs free energy and dividing through by the number
of molecules, the chemical potential of the solid is

EO, Vc, and ©D are the zero point energy per molecule, the volume per mole-
cule, and the Debye temperature, respectively, in the crystal.

Equating (10.7.1) to (10.4.14) at the melting point Tm and zero pressure gives
the zero pressure melting point in terms of the material parameters of the
system through the relation

where Hm is the zero point contribution to the heat of melting per molecule
denned by

Equation (10.7.2) can be used to estimate the fraction of gaslike atoms in the
liquid. To do this, a value of the Debye temperature for solidlike molecules in
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Table 10.2: Fraction of Atoms in Liquid Metals That
Have Gaslike Properties: Computed from Equation
(10.7.2)

Metal Fraction of "Gas" Atoms

Na 0.11
Mg 0.09
Al 0.14
K 0.11
Cr 0.12
Mn 0.13
Fe 0.12
Co 0.14

Ni 0.13

Cu 0.13

Zn 0.13

the liquid must be known. From the discussion in section 10.6, a reasonable
assumption is that this is lower than that in the solid by at least A/2 . For
purposes of calculation, we will indeed assume that ©/, = Qc

D/^2 . Since the
Debye temperature appears as a logarithmic function, errors in its estimation
do not lead to serious errors in the final results. With this assumption, fg can
be estimated from known values of the molecular volume, Debye temperature,
melting point, and heat of fusion. The results are shown in table 10.2 for a
number of metals. The results are much the same for all metals, and imply that
the vacany concentration in liquids is about 10~2, which is about an order of
magnitude greater than in the solids, as expected. Using these values for the
fraction of gaslike molecules, the melting curve of P~Tm could be computed by
equating the chemical potentials at nonzero pressure provided the volume of
melting is known.

10.8 Regular solution theory of binary alloys

When two metals are mixed and brought to equilibrium, the resulting system
can have a variety of forms. The two components could retain their identities
so that the system is just a mixture of the pure components, or they might dis-
solve in each other to form a solid solution with no trace of the original metals.
These are two extreme cases corresponding to zero mutual solubility to com-
plete miscibility. In general, the system will consist partly of pure metals and
partly of solid solutions and/or intermetallic compounds. Often, there are
several kinds of structures and compounds that can form, so a binary phase
diagram can be rather complex. But the principles of binary phase equilibria
can be illustrated by analyzing a simple system in which the metals either stay
in their original state or form solid solutions with a single structure. It is
assumed that the solutions have no long-range order and that the crystal energy
is a sum of pairwise nearest neighbor interactions.

An analysis of simple 50-50 order-disorder alloys has been given in chapter
8, and the methods presented there can readily be adapted to arbitrary com-
positions. The Bragg—Williams approximation is sufficient to bring out the
important factors controlling alloy formation. Equation (8.4.8) is valid for the
energy for any configuration of A and B atoms distributed on a lattice, with
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pairwise, nearest neighbor interactions. However, since the crystal is now
assumed to be completely random, there is no need to identify sublattices and
the superscript on the total number of AB pairs is no longer needed. Thus, we
write for the energy of the alloy

where -VAA = energy of an AA pair, -VBB = energy of a BB pair, and -MAB = energy
of an AB pair. The subscripts no longer refer to sublattices and the Qs are the
total number of the three kinds of pairs in a binary solid solution of arbitrary
composition. Just as in order-disorder theory, the minus signs are introduced
to make the vs positive constants.

The equilibrium composition is obtained by minimizing the free energy of
a random solution of arbitrary composition. Since the volume is being main-
tained constant and the pressure is assumed to be zero, the Helmholtz and
Gibbs free energies are equal.

In a random solution, the probability that a site is occupied by an atom of a
particular kind is just the atom fraction. That is, if x is the probability that a
site contains an A atom, and 1 - x is the probability that it contains a B atom,
then

NA and NB being the number of A and B atoms in the solution, respectively.
The number of AA pairs is obtained by writing the probability that a site

contains an A atom, multiplying by the number of nearest neighbor pairs
connected to it and by the probability that a neighbor also contains an A atom.
The result must then be divided by 2 to correct for double counting. The same
procedure holds for BB and AB pairs except that in the case of unlike pairs
the result is not divided by 2. That is,

N= NA + NB being the total number of atoms. Putting (10.8.4)-(10.8.6) in (10.8.1)
gives the energy of the homogeneous alloy phase as

A slight rearrangement of this gives
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The Helmholtz free energy is the energy minus TS, the entropy term, which
is obtained from the statistical count. The number of ways of putting NA atoms
of type A and NB of type B on N sites is

so, using Stirling's approximation, the entropy is

which is just the entropy of mixing of an ideal, random solution.
The free energy of the alloy is

where v, which may be called the "alloying energy," is denned by

A regular solution is one whose free energy is defined by equation (10.8.11).
The first point to note is that the first two terms in (10.8.11) refer to the

energies of pure A and B. That is, for a mixture of pure A metal containing NA
atoms and pure B containing NB atoms, the energy of the mixture is

and since there is no entropy of mixing for the pure metals, the difference in
free energy between the homogenous alloy and the mixture is

The entropy of mixing is always positive, and its contribution to the free energy
is negative for all x. If v is positive, then the attraction between unlike atoms
is greater than the average attraction between like atoms, the free energy is neg-
ative for all x, and the system forms solid solutions for all compositions. If v
is zero, then there is no preference for any particular type of pairs, the entropy
term dominates, the free energy is always negative, and again, there is solid
solution formation for all concentrations. For negative v, like atoms are more
strongly attracted than unlike atoms. The range of solid solubility then depends
on temperature since the relative values of thermal energy and alloying energy
determines the sign of the free energy. If the alloying energy is not too nega-
tive, then at a sufficiently high temperature the entropy term dominates, the
free energy is negative, and solid solutions will form. At low temperatures, or
for alloying energies that are strongly negative, solid solutions will not form
and the system consists of a mixture of the pure metals.

The free energy as a function of composition is shown for a series of tem-
peratures in figure 10.8. The units are arbitrary: the energy of pure A is defined
to be zero. The straight line labeled Mx represents the free energy of mixtures
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Figure 10.8. Free energy versus composition for a binary alloy: regular solution theory.

of pure A and pure B and is a simple linear function of composition. The free
energy of the solid solution displays two minima for all temperatures until a
maximum temperature is reached (represented by Tc in the figure) where the
two minima coalesce.

The two minima in each free energy curve for temperatures below Tc repre-
sent solid solutions that are stable with respect to alloys of other compositions.
If, for a given temperature, these minima are lower than the free energy of a
mixture of the pure metals, then they represent equilibrium and the stable
system is a mixture of the two alloys with the compositions at the free energy
minima.

For temperatures equal to or higher than Tc, there is only one minimum,
which becomes wider and flatter with increasing temperature. This indicates
that at high temperatures the two metals form solid solutions over the entire
range of composition except very near to pure B, where the entropy of mixing
is insufficient to overcome the positive free energy of pure B. Tc is a critical
temperature above which a single solid solution phase exists over a wide range
of composition and below which the system separates into two solid solution
phases. This is summarized in the phase diagram shown in figure 10.9, which
is a plot of the temperature versus composition obtained from the minima in
figure 10.8. The critical temperature corresponds to the maximum in the figure,
above which there is only one phase. Below the critical temperature, any point
inside the curve represents a temperature and composition at which the system
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Figure 10.9. Phase diagram for a binary solid solution.

is a mixture of two solid solution phases. For any point to the left of the curve,
the system is a mixture of a solid solution and pure A, while points to the right
of the curve denote mixtures of a solid solution and pure B.

Exercises

10.1 Assume that in a column of ice, such as in a glacier or ice cap, the
pressure varies linearly with height. Derive the differential equation for the
variation of the melting point of the ice with distance from the surface.
Assume that the heat of fusion and the compressibility of ice and water are
constant.

10.2 Find the relation between temperature and pressure for a Debye crystal
in equilibrium with its vapor if the vapor is assumed to be a Fermi-Dirac
gas instead of a semiclassical gas. Derive the equation for the heat of subli-
mation and compare it to that in which the vapor is an ideal gas. Use the
zero temperature approximation for the Fermi gas.

10.3 Derive equations for the entropy and energy for a van der Waals
fluid. Compare the energy result with that of an ideal gas and interpret the
result.
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10.4 The equation of state of a real gas is often written as a series called the
virial expansion. This series is P/kT = n + Bz(T)n2 + B3(T)n3 + . . . , where
n = M V is the density and B; is called the ;'th virial coefficient. For a van der
Waals fluid, find the second virial coefficient in terms of the van der Waals
parameters. Use reduced pressures, volumes, and temperatures throughout
and derive the second virial coefficient at the critical temperature.

10.5 An early model took liquids to be like solids but with a lower Debye
temperature. That is, the fraction of atoms with "gaslike" properties was
taken to be zero. With this model, estimate the ratio of the liquid Debye tem-
perature to that in the solid for magnesium from the fact that the heat of
melting is O.OSeV and the melting point is 923K.

10.6 For a two-component regular solution, find the equation for the most
stable compositions as a function of temperature.

Notes
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Critical Exponents and the
Renormalization Group

11.1 Equivalent models

The order-disorder transition and ferromagnetism have their origins in quite
different manifestations of atomic interactions and are exhibited in quite dif-
ferent kinds of material. But, as shown in chapter 9, both can be described by
the Ising model with considerable success. In fact, there are other phenomena
that are different from either magnetism or order-disorder that can also be
described by similar models. These include adsorption of atoms or molecules
on surfaces, absorption of gases in solids, and the attachment of impurities to
dislocation cores. A simple description of such phenomena is provided by the
lattice gas model, and this model is easily shown to be equivalent to the Ising
model. The fact that the same model can describe such varied systems implies
that there are some important similarities among them that do not depend on
the specific nature of the systems or the interaction energies involved. This, in
fact, turns out to be the case and is most clearly apparent in the neighborhood
of critical points. The statistical mechanics of the lattice gas is described in
appendix 7, and specific applications are given in chapter 12. Here, the model
and its connection to the Ising model are described.

Divide the system into cells such that, at most, only one molecule can occupy
a given cell and a cell can either be occupied or empty. This is described by
defining a parameter that is unity if a cell is occupied by a molecule and zero
otherwise. Also, the energy of the system is assumed to be a sum of nearest-
neighbor pairwise interactions. Thus, if -K is the energy of interaction of a
nearest neighbor pair and if e/ = 0 if the /th cell is empty and et = 1 if the ;'th
cell is occupied, then the energy of the system is

The sum is over all pairs, and W(r) is the energy of the system in a particular
configuration labeled by the index r. Sometimes, as in adsorption of a gas on
a surface, there is an energy of interaction of a molecule with a cell, and a term
must be added to (11.1.1) that is the number of occupied cells times the energy
of interaction. If this interaction energy is called -e, then instead of (11.1.1) the
energy is

288
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The magnetic Ising model follows from equation (9.5.1), which is the magnetic
energy in the absence of any external magnetic field. If an external field exists,
then a term must be added to (9.5.1) that is the interaction of spins with the
external field:

with s; = +1, -1 for spins up or down, respectively.
The identification of the lattice gas with the Ising ferromagnet is made by

identifying e; with

so that when s;- = +1, e;- = 1 and when s;- = -1, e, = 0. With this identification,
(11.1.2) immediately takes on a form identical to (11.1.3).

The systems best described by the lattice gas model are those in which the
description of cells as being occupied or unoccupied is a natural one, such as
ferromagnets or order-disorder alloys, in which the cells are of atomic size.
Chemisorption, in which a surface has a fixed number of sites to which at most
one atom can be attached and the adsorbed atoms cannot wander about the
surface, is also well described as a lattice gas.

11.2 Critical points

For systems that exhibit critical points, experimental data show that physical
properties near the critical point vary with temperature according to power
laws such as the following.

For the heat capacity of a magnet or an order-disorder alloy:

For spontaneous magnetization of a ferromagnet or degree of order of an
order-disorder alloy:

For the susceptibility of a ferromagnet:

The a, a', y, y', P, P' are called critical exponents. It is conventional to use the
prime when the critical temperature is approached from above. The values are
given for three different systems in table 11.1.1
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Table 11

System

Fe
Ni
|3-Brass
Theory

.1: Values of Critical Exponents

cc = a'

0.12 ± 0.01
0.1 ±0.03
0.1 + 0.1

0.11

P = P'

0.34 + 0.02
0.33 ± 0.03

0.305 + 0.005
0.33

7=Y'

1.333 + 0.015
1.32 ±0.02

—

1.24

It is an experimental fact that the critical exponents for a given property are
the same for an approach to Tc from above or below. Also, it is found that
within the limits of experimental error there is a relation among the critical
exponents that is

The long-range order parameter in order-disorder alloys, magnetization and
magnetic susceptibility in ferromagnets, and compressibility in gas-liquid
systems all show divergent power law behavior near the critical point.

One reason that the study of critical points is important is that it lays bare
the commonalities among different systems. These commonalities are most
evident in the critical point exponents. For a given property, the critical expo-
nent does not depend on the particular system. Thus, all ferromagnets and all
50-50 binary order-disorder alloys have the same critical exponents. Further-
more, systems exhibiting quite different phenomena often have the same crit-
ical point exponents. Order-disorder alloys and ferromagnets, for example,
have the same critical point exponents for corresponding properties. This
means that the critical exponents represent very general physics that are inde-
pendent of many of the important characteristics of the systems, such as atomic
constitution and interaction energies, that control their detailed behavior. The
similarities of temperature dependence near critical points are related to the
fact that equivalent models can be used to describe widely different systems,
as described above.

Also, the results of calculations of the values of critical point exponents
are sensitive to details of the theoretical models used to describe them. Thus,
while mean field theory gives an overall magnetization-temperature curve
that agrees well with experiment when plotted over the entire range of tem-
perature, this is not true when the neighborhood of the critical temperature is
examined on a fine scale. Critical points are therefore sensitive tests of the
applicability of theoretical calculations. It is a remarkable fact that this sensi-
tivity is relative to the methods and approximations used to get numerical cal-
culations, not to the fundamental model itself. The evidence is quite strong
that the Ising model yields a good description of the important features of crit-
icality if accurate methods of solution can be found. Disagreements of the
values of critical exponents with experiment rise from the shortcomings of
approximate solutions. Thus, mean field theory gives wrong answers for these
values, but accurate numerical calculations based on the Ising model can do
quite well.

Let us start by examining the neighborhood of critical points in mean field
theories. Expanding the hyperbolic tangent for small values of the argument in
equation (8.6.21) [or equation (9.5.14)] gives the temperature dependence of
the order parameter (or the magnetization) for high temperatures just below
the critical point as
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from which

where R is either the long-range order parameter for a 50-50 binary alloy, or
the magnetization of a ferromagnet. Since TIT,, is close to unity and does not
vary much, the temperature dependence of the order parameter is controlled
by the square root. The mean field critical exponent for long-range order (or
magnetization) is therefore 1/2, but the experimental value is close to 1/3.

The magnetic susceptibility for temperatures above the critical point is
readily obtained from equation (9.4.6) as follows:

which gives the susceptibility as

Mean field theory therefore gives unity for the critical exponent for the
susceptibility and is in obvious disagreement with experiment, which gives
4/3.

Critical exponents are also important in fluid phase transformations and,
in fact, are analogous to those in magnetic and order-disorder systems. Just as
the susceptibility is the response of the system to an external magnetic field,
so the compressibility is the response of a system to external pressure. That
is, the susceptibility and compressibility are thermodynamically analogous
quantities.

The van der Waals model is a mean field theory in the same sense as the
Bragg-Williams model. The compressibility of the van der Waals fluid near the
critical point can be obtained by starting with the reduced van der Waals equa-
tion and expanding it as a power series in the volume about the critical volume.
That is, we compute, to the second order,

Getting the derivatives from (10.2.23), (11.2.6) becomes

so the bulk modulus is

The reciprocal of this is the compressibility, which to first order is
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so the critical exponent for the compressibility of a van der Waals fluid is unity,
just as for the susceptibility of a mean field magnet.

Note that as the fluid approaches the critical point, the compressibility
diverges and it becomes easy for liquid to vaporize into gas and for gas to con-
dense into liquid. This is the origin of the critical opalescence observed near
the critical point, since the system can form droplets or vaporize with very
small fluctuations in temperature or pressure. It is analogous to the rapid
change from order to disorder in a binary alloy as the temperature increases to
its critical value.

Although mean field theory yields divergencies in physical properties near
the critical point, the calculated critical exponents do not agree with experi-
mental values. The critical exponents obtained from mean field theory of a =
0, p = 0.5, and y = 1 are not in accord with the data shown in table 11.1.

A theory for critical exponents should show that the physical quantities
indeed diverge according to a power law near the critical temperature, that
they are the same for temperature changes above and below the critical point,
that they are connected by equation (11.2.1), and that they do not depend on
the atomic constitution of the system. This task has been accomplished by
scaling and renormalization theory in a general and straightforward way, as
shown below. A complete theory would also permit the calculation of specific
values of the critical exponents. While this can also be done with scaling and
renormalization theory, the calculations require heavy mathematical and
numerical work.

11.3 Landau theory and the Kirkwood expansion

A description of second-order phase transformations was developed by Landau
as a series expansion of the free energy in the order parameter. The theory is
quite general in that it only requires that an order parameter can be defined.
This includes not only order-disorder and magnetic systems but also any
system that can be modeled as a lattice gas and even gas-liquid systems. In the
latter case, the order parameter is taken to be the difference between the liquid
and gas density, which is high at low temperatures, low at high temperatures,
and vanishes at the critical point. Here, the discussion is first restricted to Ising
lattice systems.

Landau assumed that the Gibb's free energy can be written as a power series
in the order parameter. For symmetry, only even powers are allowed. To see
this for the case of ferromagnets or order-disorder (O-DJ alloys, remember that
the order parameter is just the magnetization per atom given by

and the corresponding order parameter for O-D alloys is

In both cases, an exchange in the occupation of lattice sites changes the sign
of the order parameter but nothing else. All physical equations must therefore
be even functions of the order parameter.
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To the fourth order, the Landau expansion for the Ising model is

The first term in the expansion is just the free energy at zero order. In general,
the coefficients are functions of pressure as well as temperature.

A considerable amount of information can be extracted from this simple idea,
as shown in Landau and Lifshitz (1958). Here, the critical exponent for the
magnetization (order-disorder parameter) will be derived as an example of the
use of Landau theory, and its connection to the Kirkwood second moment
expansion given in chapter 8 will be noted.

At the transition point, a(T) must be zero because, below the transition tem-
perature, there must be a minimum in free energy as a function of order, and
this can only occur if a(T) < 0. But above the transition temperature a zero
value of the order parameter must be a stable state, and this can only happen
if a(T) > 0. Otherwise, there would be a minimum at some positive value of
the order parameter that is lower than that at zero order. Thus, at the transi-
tion temperature, a(T) must vanish, and this determines the critical tempera-
ture as

Near the critical temperature, it is assumed that the coefficients in (11.3.3)
can be expanded in the temperature difference (Tc - T). Actually, since the
higher order terms drop off rapidly as the critical temperature is approached,
we expand only the coefficient of the quadratic term, retain only the first two
terms, and write (11.3.3) as

a0, QI, and c(Tc] being constants. The order parameter at thermodynamic
equilibrium is obtained by minimizing the free energy with respect to R to
get

Note that at the critical temperature and above the long-range order parameter
must be zero, so aa = 0. Then

so the critical exponent is 1/2 and Landau theory gives the same result as mean
field (Bragg-Williams) theory. In general, all critical exponents obtained from
the Landau expansion to the fourth order are the same as those derived from
mean field theories.

Note that the Kirkwood expansion is just like this. Up to the second moment
approximation, the Kirkwood expansion for the Helmholtz free energy is given
by (8.5.24) and (8.7.1) as
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For magnets, R is the magnetization in units of the Bohr magneton and the
ordering energy v is twice the exchange energy.

Now expand (11.3.8) to the fourth order in R. The log terms in the entropy
reduce to

so (11.3.8) gives, for the free energy per atom (or spin),

Comparing this to the Landau expansion (11.3.3) shows that

All the results of Landau theory have their counterpart in the Kirkwood expan-
sion. From (8.7.6), for example, it is easy to show that the critical exponent for
the order-disorder parameter is 1/2. The Kirkwood expansion has somewhat
less generality since it was derived for the Ising model, but it has the advan-
tage of providing explicit expressions for the thermodynamic properties.

A similar approach to that of Landau can be applied to the liquid-vapor tran-
sition for a monocomponent fluid by expanding the pressure as a function of
reduced temperature and reduced volume near the critical point. Remember-
ing that the first and second derivatives of pressure with respect to volume
vanish at the critical point, and neglecting all terms beyond the third-order
term in the volume, this gives

Very close to the critical point, the first two terms give a sufficient approxi-
mation, and since the higher order terms approach zero faster than the first-
order term, they are approximately zero relative to the first-order term. That is,
it is sufficiently accurate to take

There are three solutions of (11.3.13) for the volume. One is the critical point
at which V = 1, and the other two are the solutions of the quadratic equation
(11.3.13). These are

The positive and negative signs correspond^ to volumes above and below the
critical point, which we denote by VG and VL, respectively. Since the recipro-
cal of the reduced volume is the reduced density, the difference in the densi-
ties of the liquid and vapor phases near the critical point is
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Therefore, since the radical can be neglected relative to unity in the denomi-
nator near the critical point,

so the critical exponent for the liquid-vapor transition is 1/2. Note that this is
a mean field result and is equal to the mean field critical exponent for magne-
tization. Both experiment and more sophisticated theories show that the crit-
ical exponent for fluid densities, magnetization, and order-disorder in alloys
are the same and close to 1/3.

11.4 Fluctuations and correlation length

Let us take a closer look at the relation between fluctuations and the diver-
gence of physical properties near critical points. This is most easily done in
the language of the Ising model for ferromagnets, although the results are more
generally applicable.

For a magnetic system with magnetization M in the presence of an external
field_H, a change in the magnetization dM results in a magnetic work term
HdM. The field is analogous to pressure and the moment is analogous to
volume.

The isothermal susceptibility is defined by

For a system of N spins, each of which can be ±1 (up or down), and each having
the same moment |i, the magnetization M is the statistical mechanical average
of all possible arrangements of up and down spins. For a particular spin con-
figuration, the magnetization is the total magnetic moment per unit volume.
That is,

the sum being over all dipoles. The energy for the configuration {s,J in an exter-
nal field H is
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where +\ist is defined as the magnetic moment in the direction of the field. The
partition function is

and the magnetization of the system is

so the susceptibility is

or

where

This is completely analogous to the relation between heat capacity and fluc-
tuations in energy given by equation (2.17.4). The heat capacity and the mag-
netic susceptibility are called response functions since they measure the
response of the system to a change in external fields (temperature and mag-
netic field).

The magnetic susceptibility is directly related to fluctuations in magnetic
moments. From (11.4.2), equation (11.4.6) is

or

The divergence of the susceptibility means that fluctuations must be large near
the critical point. The reason for this is that near the critical point the differ-
ence in energy among the possible distributions is of the order of the thermal
energy, so large excursions from the mean distribution can take place without
much cost in energy. The susceptibility is expected to increase rapidly as the
temperature is increased from T < Tc toward Tc, and this is observed.

Completely analogous reasons account for the rapid increase in the heat
capacity of order-disorder alloys as the temperature approaches the critical
temperature from above. The ordering energy is about equal to the thermal
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energy, and large relative fluctuations in energy can occur, giving rise to
increasing heat capacity.

The summand in (11.4.8) is a measure of the correlation of spins on differ-
ent sites and leads to the definition of the pair correlation function as

If the spins are completely uncorrelated, then the average of the product
equals the product of the averages and Clf = 0. The greater the degree of corre-
lation, the larger the pair correlation function. If (11.4.9) is written in the
form

It is obvious that the correlation function measures the deviation of site occu-
pation from its average value.

If the system has translational symmetry and is isotropic, then the correla-
tion function depends only on the magnitude of the distance between the two
sites. That is,

where q = \i — j\.
For a fully ordered crystal, (11.4.11) is obviously true. For partially ordered

crystals, it is also true since the macroscopic crystal properties are indepen-
dent of the choice of the lattice sites. Equation (11.4.8) can then be expressed
in terms of the correlation function as

where the N/2 accounts for the fact that q can be measured from each of the
AT spins with the index i, but each i must not be counted twice.

At very high temperatures, when there is no order at all, the correlation func-
tion is zero. As the temperature approaches the critical temperature from
above, the correlation function increases, diverging at the critical point.

The correlation function measures the fluctuations. If there is complete dis-
order, the thermal energy dominates and there is little fluctuation from the
average. If there is complete order, again there is little fluctuation because the
ordering energy dominates. Near the critical point, the system is rapidly chang-
ing from complete disorder to complete order; the fluctuations and the corre-
lation function are large.

The concept of a correlation length is associated with that of the pair corre-
lation function. At very high temperatures the distance over which there is a
correlation between spins is extremely small. This becomes large as the criti-
cal temperature is approached from above, going to infinity for a fully ordered
crystal.

Some insight into the dependence of correlation on the distance between
sites can be obtained by assuming that the correlation function falls off expo-
nentially with distance in the form
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This defines i; as the correlation length in units of the lattice spacing. Now let
us make the additional assumption that q is a continuous rather than a dis-
crete variable. This is not a bad assumption when q » 1, and since the tem-
perature range of interest is near the critical point where the correlation length
is large, the results are valid except for small q.

Now substitute (11.4.13) into (11.4.12) and replace the summand by an inte-
gral accounting for the three dimensionality by taking the differential of
volume to be 4nq2dq:

Combining this with (11.2.5) and solving for the correlation length gives

For a system with spin 1/2 and g = 2, equation (9.4.5) is

(n = N/V, the number density of spins). Equation (11.4.15) therefore becomes

so the critical exponent for the correlation length is 1/2 in mean field theory.
More accurate treatments of mean field theory give the same critical exponent.
Also, the critical exponent is the same for T< Tc as well as for T> Tc, although
the proportionality constants are not the same. Experimental values are close
to 2/3, which is in agreement with theories that go beyond the mean field
approximation.

Equations (11.4.11) and (11.4.13) show that the correlation function is the
same in an expanded or contracted lattice as in the original lattice if both the
distance q and the correlation length ^ are measured in terms of the new lattice
spacing. Also, equation (11.4.14) shows that changing the scale of the correla-
tion length does not change the temperature dependence of the divergence of
the susceptibility near the critical point. That is, if the lattice is expanded or
contracted, the correlation function, the correlation length, and the suscepti-
bility each scale with the changes of length. While these results were obtained
for mean field theory, they turn out to be generally true.

The correlation length as a function of T/TC for T> Tcis shown in figure 11.1.
At high temperatures the correlation length is small, but as the temperature
approaches the critical temperature it diverges rapidly. Clearly, because parts
of the system that are farther apart than the correlation length are essentially
independent, blocks of crystal that have dimensions of the correlation length
look alike. Also, such blocks are representative of the whole system.

11.5 The monatomic Ising chain

The three-dimensional Ising model has not been solved exactly and to date
can only be studied by various approximate methods. The Kirkwood and
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Figure 11.1. Mean field correlation length as a function of temperature.

Figure 11.2. One-dimensional array of interacting spins.

quasi-chemical approximations are examples of such methods. However, exact
solutions exist for both the one-dimensional Ising chain and the two-
dimensional Ising lattice. The solution of the two-dimensional problem is
complex and requires lengthy advanced mathematical manipulation, but the
one-dimensional problem is straightforward.2 It is reproduced here primarily
for the insight it gives into the correlation length. The Ising chain of N spins
is shown in figure 11.2.

In the nearest-neighbor Ising approximation, adjacent spins have an inter-
action energy -/ if the spins are alike and +/ if they are unlike. The energy of
the chain for a particular configuration of spins is therefore

where the spin variables can take on one of the two values s;- = +1 and the chain
is assumed to have free ends. The partition function is
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the sum being over all possible sets of spins (s) = (s^ s2, s3, ...}. This partition
function can be evaluated exactly as follows. Write out the exponential and
sum over all configurations explicitly as

The variable s^ occurs only in the first term of the exponential, and (11.5.3)
can be written as

But the first sum is independent of s2. That is,

whether s2 = +1 or -1. Continuing this process with the other sums, up to the
(N - l)st spin, gives

The Helmholtz free energy is therefore

where only terms proportional to N have been retained because for large N
they are the only ones that matter.

The pair correlation function can be evaluated by the following device.
Define a function Z(Ji, /2, ...) by

This is just like the partition function (11.5.2) except that each spin pair is
assigned its own energy. When the algebra is done, we will set all J, = /.

Now choose the spin j = 1 and differentiate (11.5.8) with respect to /j to get

Differentiate with respect to /2, and then with respect to /3 up to Jq. The result
is
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where the last equality is the result of the fact that s;s; = 1. Obviously,

which is obtained from (11.5.8) just as (11.5.7) is obtained form (11.5.2).
Because (9/9u) coshu = sinhu, differentiating (11.5.11) gives

Combining (11.5.10) and (11.5.12) gives

Now set the Jf = /;• = / and divide through by the partition function (11.5.6) to
get

The left-hand side of (11.5.14) is just the pair correlation function (11.4.9)
because the mean value of the spin for the one-dimensional case is always zero.
That is,

As expected, this depends only on the distance between the two sites.
The correlation function decreases with increasing separation of the two

sites, and the rate of decrease is greater for higher values of JlkT. That is, the
correlation is weaker for higher temperatures. If a correlation length ^ is defined
by the relation (but now for a one-dimensional system)

then using (11.5.15) allows us to write

Plots of the correlation function for different values of//AT are shown in figure
11.3. Each curve is labeled with its correlation length, longer correlation
lengths corresponding to lower temperatures.
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Figure 11.3. Correlation function for the one-dimensional Ising model.

The correlation function decreases with distance between sites in a quasi-
exponential manner, the rate of decrease being more rapid for higher temper-
atures. Just as in the three-dimensional case, the correlation is small at high
temperatures, but as the temperature is lowered the correlation among spins
extends over many lattice spacings. While these results were obtained for a
one-dimensional case, their general features are applicable in two and three
dimensions as well.

From the properties of the tanh, the correlation length goes to zero as J/kT
goes to zero and becomes infinite as J/kT becomes infinite. That is, for zero
interaction constant or infinite temperature there is no correlation, while for
zero temperature or infinitely strong interactions there is complete correlation.

11.6 Renormalization of the one-dimensional Ising model

The most important physical result of the development so far is that near the
critical point the details of the site occupancy at the level of individual lattice
sites cannot matter very much for the physical properties near the critical
point. What is important is the interaction of large blocks or patches of the
crystal interacting over a large distance. This is because the correlation factor
and the correlation length diverge as the critical temperature is approached.
To see this clearly, recall that near the critical temperature the system is highly
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disordered such that in any given cluster of sites there is a close balance
between the number of spin-up and spin-down sites. As the critical point is
approached, the size of the clusters for which this is true increases and what
matters is the overall degree of this small imbalance rather than which partic-
ular sites have spins up or down. In some sense, it should be possible to average
out a lot of information about site occupancy and still retain essential physi-
cal information near the critical point. This in fact turns out to be the case.
While an exact solution of the three-dimensional Ising model is still not attain-
able, and even the two-dimensional case requires lengthy and complicated
mathematics, a great deal of progress can be made by approximate methods
that suppress the detailed site occupancy information. The methodology for
doing this is called renormalization theory. It derives its name from the fact
that it attempts to find a partition function that refers to the interaction of
blocks or clusters of spins that look just like the partition function that refers
to individual site spins except that the interaction constants and temperature
are replaced by other quantities. The use of these new quantities "renormal-
izes" the partition function.

The greatest value of renormalization theory is, of course, in three dimen-
sions where exact solutions are not available. However, the basic ideas are most
easily introduced by using a renormalization procedure to solve the one-
dimensional Ising lattice.

The energy of the chain for a given configuration of spins js,) is given by
equation (11.5.1), and the partition function is given by (11.5.3), but now it is
convenient to use periodic boundary conditions for which site N is next to
site 1.

The spins on odd-numbered sites interact only with spins on even-numbered
sites. Thus, the only terms in the partition function that include site number
1 are those that couple site 1 to site 2 and site AT. The contribution of site 1 to
the partition function is therefore

with p = 1/kT. This can be put in a form that looks like a term in the original
partition function. That is, constants a(l) and b(2) can be found such that

To find the constants a and b, consider the two possible cases: the two spins
are the same such that s2Sjv = 1, s2 + SN = +2, or the two spins are different such
that s2sN = -1, s2 + sjv = 0. For the first case,

while for the second case,

Solving (11.6.3) and (11.6.4) for a(l) and b(2) gives b(2) = lln[cosh(2p/)], a(l)
= In2 + b(l). An index 1 has been included in these equations because we will
apply this procedure successively. Define a new interaction constant by
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so that (11.6.2) becomes

A similar procedure can be carried out for every odd-numbered site in the
chain so that each odd-numbered site sums to a similar form and the contri-
bution of the odd-numbered sites to the partition function is

the sum in the exponential being only over all even-numbered sites.
The partition function for the entire chain is obtained by putting (11.6.7) into

(11.5.3). Only the even-numbered sites in the partition sum survive, so

which looks just like an Ising partition function with a new interaction con-
stant. This means that the same treatment can be applied to (11.6.8). That is,
we pick out every other site and sum over them just as in getting (11.6.7). A
new interaction constant, /2, is defined that has the same relation to /j as /a has
to /in equation (11.6.6).

This process is called decimation and can be carried out indefinitely until
the entire chain is summed. At each stage of decimation the interaction con-
stant is related to that of the preceding stage by

An important point is that, because

the renormalized interaction constant is never greater than the old one and for
small P (high temperature) it is less than the old one. Thus,

so for all n and at high temperatures, the interaction constant gets progressively
smaller with increasing decimation steps.

Note that when the argument of the cosh is infinity, the cosh is infinity, so
the equality holds in (11.6.11). Likewise, when the argument of the cosh is 0,
2cosh = 2, so again the equality holds in (11.6.11). Thus, at zero temperatures
and at infinite temperature, all successive (5/j, are equal. These are called fixed
points. For any (3/n between zero and infinity, (11.6.11) shows that as n —* °o,
the interaction constant goes to zero so the P/n goes to the fixed point zero. This
is a stable fixed point. The fixed point at infinity is unstable since large values
of p/j, get smaller with increasing n. They are closely related to critical points.

Let us go through this explicitly. Rewrite (11.6.8) as

where
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is the partition function of the decimated chain. Renumber the sites in (11.6.13)
so they have consecutive indices from 1 to AT/2 and apply the decimation pro-
cedure again to give

The factor 1/4 in the exponential outside the sums is the result of the fact that
only half as many sites are involved in the second decimation. The multiple
sum in (11.6.14) is defined to be a partition function for the second decima-
tion by

Continuing this process, the partition function becomes

so the free energy per spin is

and the recursion relation for the a(j) is

with

The hyperbolic cosine approaches unity as its argument approaches zero, and
the terms in (11.6.17) therefore converge to zero as n —» °°. This is a critical
point at which correlation is complete. Decimation moves the system closer to
criticality.

The sum is taken to infinity because we want the free energy in the ther-
modynamic limit of N —> °°. Also, the terms converge, so a very large Nis equiv-
alent to infinity in the summation.

The decimation procedure has resulted in a series of convergent terms
that can be truncated at any point to give a solution in terms of renormalized
interaction constants, each higher order of truncation giving a more accurate
solution.

11.7 The Kadanoff construction

In 1966 Kadanoff proposed a method to take advantage of the fact that near
the critical point physical properties are not sensitive to details of site
occupancy. This method is a generalization of the decimation procedure used
above for the one-dimensional Ising chain. It consists of choosing a set of sites
around each lattice site and treating these clusters as if they were single sites
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on a lattice of expanded size. From, this "renormalized" lattice it is possible to
get the relations among the critical exponents without explicit calculation. As
an example, consider a square lattice whose sites are occupied by spins (or
atoms) which are labeled 0 and can be either up or down. Now group the sites
into sets of four sites as shown in figure 11.4A. Consider each such set as a
new "spin" (or "atom") that we now label x, and place these on a lattice with
twice the lattice spacing of the original lattice. This is called the Kadanoff con-
struction, and the new lattice is said to be a renormalization of the original
lattice.

The renormalized lattice of figure 11.4B can be renormalized again, and
indeed the process can be continued indefinitely, giving a series of Kadanoff
constructions that consecutively wipe out more and more of the site-specific
details.

Now consider a d-dimensional Ising lattice, with an external magnetic field
H, and Hamiltonian

E{s] being the energy for a specific configuration of spins denoted by is}. Let
us renormalize this in the same sense as the square lattice. If the initial lattice
spacing is a, the first renormalization results in a lattice with a larger spacing
ba where b is the lattice renormalization ratio (which had the value 2 for the
square lattice treated above) and the number of original lattice sites in each of
the blocks that define the renormalized lattice is bd. Thus, if the number of
sites in the original lattice is N, the number of sites in the renormalized lattice
is N, = N/bd.

A block spin variable in the renormalized lattice is defined as some function
of the site variables in the original lattice by

where sf is the spin on the jth site of the kth block in the original lattice. The
function /can be defined in a variety of ways. Three common methods are the
average, in which the block spin is taken to be the arithmetic mean of the spins
in the block, the majority rule, in which the block is assigned a spin equal to
that of the majority of spins, and the decimation rule in which the block spin
is the same as that on a particular site in the block. This is the method that
was used above for the one-dimensional Ising chain.

Let us define the block spins by

where the sum is over all sites in the block k and s, is the average spin of the
block, defined by

This is just the majority rule since



Figure 11.4. Block renormalization of a square lattice. B, Original lattice. A, Lattice
after renormalization.
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The Kadanoff construction is useful only if the energy of the renormalized
lattice can be expressed in terms of block spins. To do this, we make an
assumption:

Assumption 1: The block spins have the same form for the Hamiltonian as the
site spins. That is,

where Jl and Hl are new constants, to be determined, which refer to the inter-
action among blocks and of blocks with the external field. This assumption
could be regarded as a condition imposed on the block spins that defines the
new interaction constants.

It turns out that it is not possible in general to construct a block Hamilton-
ian that has the same functional form as the original because the lattice renor-
malization can result in interactions that are farther apart than nearest neighbor
blocks and that couple more than two sites at a time. Equation (11.7.6) is the
result of ignoring all but nearest-neighbor block interactions. Thus, accepting
this assumption is equivalent to ignoring all but nearest neighbor interactions
among blocks in the renormalized lattice.3

Consider the correlation length: in the original lattice it is expressed in units
of the lattice spacing a as

In the renormalized lattice it is expressed in terms of the renormalized lattice
spacing ba as

Because the system after renormalization is the same as the original system,
the two correlation lengths must be the same at the same physical point. But
a length described in units of the old lattice spacing is equivalent to a point
decreased by a factor 1/fe in units of the new lattice. This means that

when each length is measured in units of its own lattice spacing.
The magnetic field in the renormalized lattice is also scaled, as can be seen

by summing (11.7.3) over all blocks to get

and recalling that the energy of interaction of the spins with the field is

so in the new lattice, the block spins interact with the external field as if it had
the value
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In the renormalized lattice the correlation length is smaller. This is equiva-
lent to the renormalized system being at a higher temperature and farther away
from the critical point. The renormalized system therefore has a different
temperature, as well as different interaction constants from the original. The
temperature always appears in combination with the interaction constants in
the Hamiltonian, so it is convenient to define a reduced Hamiltonian from
(11.7.6) by multiplying through by p and defining reduced interaction con-
stants by

where

are a reduced reciprocal temperature and a reduced magnetic field, respec-
tively. Similarly, for the renormalized lattice

Note that the partition function of the renormalized lattice is

the sum being over all possible sets of values of block spins. The free energy
corresponding to (11.7.16) is

with fid-i, HI] being the free energy per block of the new lattice. In the
original lattice, the free energy is

where flj, H) is the free energy per spin site. If the free energy per site of the
physical system is to be the same in the original and the renormalized repre-
sentation, then

so the free energy per site scales as follows:
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In the analysis of critical phenomena, physical properties near the critical
point vary with temperature according to powers of the difference between
temperature and the critical temperature. It makes sense to recognize this by
defining a parameter t by

The free energy can always be written as a function of this parameter rather
than the temperature itself, so we can write

Similarly, for the renormalized lattice

where tt refers to the new lattice:

Now we introduce another assumption.

Assumption 2: The reduced temperature and reduced magnetic field scale
according to

At this stage, this can be regarded either as an assumption or as a definition of
the quantities m and n. But m and n must be greater than unity since the renor-
malized temperature and magnetic field are greater than that in the original
lattice, so this much, at least, is an assumption that requires future theoretical
justification. With these scaling assumptions, (11.7.24) becomes

Thus far, there has been no restriction on the value of b, and it can be given
any value greater than unity. It is convenient to choose b as

since |f| is always less than unity, bm> 1, and since it is assumed that m > 0,
then b > I.

For comparison of theory with the experimental scaling laws, we define two
new constants in terms of m and n by

and
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Using these definitions, (11.7.27) becomes

These scaling equations are sufficient to get the relations among the critical
exponents for the heat capacity, the magnetization, and the susceptibility. The
heat capacity per spin is just the second derivative of the free energy per spin:

From (11.7.31), as the magnetic field goes to zero, /^l, H/|£|A goes to a
constant, so the second derivative becomes proportional to -oc, which is the
critical exponent for the heat capacity:

Note that this result holds both for temperatures above and below the critical
temperature because the same answer is obtained from (11.7.32).

The magnetization is just the derivative of the free energy with respect to
the magnetic field. Differentiation of (11.7.30) with respect to H then shows
that the magnetization varies as

so the critical exponent for the magnetization is

The susceptibility is the derivative of the magnetization with respect to the
magnetic field, which is the second derivative of the free energy with respect
to the magnetic field, so as the field goes to zero,

Again, (11.7.36) and (11.7.37) hold on both sides of the critical point. The
critical exponent for the susceptibility is therefore

From (11.7.38) and (11.7.36) we get

This is the experimental result we were trying to account for.

11.8 The renormalization group

The above development is based on Kadanoff s argument that a renormalized
Hamiltonian, and therefore a renormalized free energy, must exist for the
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renormalized lattice that reproduces the essential physics near the critical
point. However, there is a problem with both of the assumptions arising from
this plausibility argument. For the first assumption, it has already been pointed
out that renormalization of a pairwise, nearest-neighbor Ising Hamiltonian is
not recovered when the lattice is renormalized according to the Kadanoff con-
struction. It has also been pointed out that the assumption of the scaling of the
reduced temperature and magnetic field was yet to be justified. Both of these
defects are removed by the generalization introduced by K. G. Wilson in 1971
known as the renormalization group, for which he was awarded the Nobel
prize. The theory is applicable to more complicated Hamiltonians than the
simple pairwise Ising model we have been using. (Actually, the use of more
general Hamiltonians simplifies the theory.) Thus, let us consider systems that
have N spin variables and Hamiltonians of the form

The first term is independent of spins and is included for purposes of sym-
metry because, after a renormalization, constant terms can appear, as was the
case for the one-dimensional Ising chain. The second term is the interaction
with the external field, and the succeeding terms are the interactions of the
spins with each other, <ij> denoting a sum over all pairs of spins, <ijk> denot-
ing a sum over all triplets, and so on. At this stage, it is not assumed that the
pairs, triplets, and so forth, are nearest neighbors. Equation (11.8.1) can be
written compactly as

where the Kn are constants and the Sn{s] are functions such that Sj depends
on the spins occupying each point on the lattice, S2 depends on the pair-
wise occupations, S3 on the triplet occupations, and so on. Now let us renor-
malize the lattice by a Kadanoff construction. The set of constants [Kn] in the
original lattice is then changed to a new set [K$] in the renormalized lattice.
Let this change be represented by the symbol fla. That is, R2 is an operator such
that

R! is called the renormalization operator for the first Kadanoff construction.
A sequence of renormalization operators can be defined, one for each of
a sequence of Kadanoff constructions, each renormalizing the lattice from
the previous construction. Thus, if IK?'] is the set of coupling constants for
a second renormalization, then

and in general, for the rth renormalization,

All quantities in (11.8.5) have the same interpretation as the corresponding
quantities in (11.8.2), except that they refer to the renormalized lattice.
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In the preceding section, the Kadanoff lattice renormalization changed the
scale of the lattice by a factor b. It is not necessary to have the same change
of scale for successive renormalizations, and we will sometimes recognize this
by calling the change of scale for the rth renormalization br. Clearly, the same
lattice is obtained from two renormalizations with two changes of scales as
from one renormalization with a combined change of scale. That is, if IXn+1)] =
RM[K(^], then [Kl^l]] = Rr+1Rr[Kl^l]], so the renormalization operator for a change
of scale of brfc/ equals the product of the individual operators, or

Equation (11.8.5) is the recursion relation for successive renormalization and
is the basis for calculating successive renormalized coupling constants from
the constants of the original lattice.

The set of all renormalization operators is called the renormalization group
since (11.8.6) is a group property. However, the Rr do not form a true group
because there is no inverse renormalization operation, and they would more
appropriately be called a semigroup.

Repeated scaling gives ever smaller correlation lengths, when measured in
the renormalized lattices, so the correlation lengths accompanying a sequence
of M renormalizations, each of which has the same scale factor b, are

There are at least two values of the correlation length that remain constant
upon renormalization: zero and infinity. If the set of coupling constants for
which either of these two cases is true is labeled [K%], then these constants
maintain their values upon renormalization such that

The sets of constants for which (11.8.8) is satisfied define the fixed points.
The fixed point for which the correlation length is zero is called a trivial fixed
point, while that for which the correlation is infinity is called a critical fixed
point. The nomenclature arises from the fact that the correlation length
approaches infinity as the system approaches criticality.

In a sequence of renormalizations, the set of coupling constants may or may
not approach a critical point. All sets that approach a critical point upon con-
tinued renormalization are said to be in the basin of that critical point, and the
changing values of the set of coupling constants are said to flow toward the
critical point. This nomenclature arises from thinking of the coupling constants
as parameters defining a geometric space and the set of constants as a vector
in this parameter space.

11.9 Scaling and the renormalization group

The scaling relations obtained by the semi-intuitive treatment of the Kadanoff
construction are easily obtained more rigorously from the theory of the renor-
malization group. Let us assume that, just as in the preceding section, the only
parameters of interest are the reduced temperature and reduced magnetic field,
and denote them by tr and Hr for the rth renormalization.
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Just as in Lhe preceding section, we are looking for a relation between the
free energy of the original and the renormalized lattice. To this end, define the
partition function corresponding to the Hamiltonian (11.8.2). This is

the sum being over all possible configurations of the spins s,. The corre-
sponding free energy per spin site in units of kT is

In the renormalized lattice, the partition function is

with a corresponding free energy per site given by

If renormalization is to represent the physical system, then the free energy
per spin must be the same before and after renormalization, so

This is equivalent to (11.7.20) except that, because of the use of a series
of pair, triplet, and so on, interactions, the difficulty of generating new
coupling constants that had no counterpart before renormalization is
removed.

Let us consider the same case as before, namely, when the free energy is a
function only of reduced temperature and external magnetic field. Then
(11.9.5) is

The renormalized temperature and magnetic field are functions of the original
Tand H. Denote this functional relationship by defining two functions R$ and
R(H] such that

At a fixed point, the temperature and external field do not change upon renor-
malizing, so (11.9.7) gives
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Close to a fixed point, (11.9.7) can be expanded in a Taylor series about T* and
H*. Retaining only the linear term, this gives

The coefficients in (11.9.9) and (11.9.10) define the transformation matrix for
renormalization near a fixed point. Although the derivatives are constants with
respect to temperature and magnetic field, they obviously depend on the lattice
scaling parameter b.

Let us assume that this matrix is symmetric.4 That is, the temperature and
external magnetic field are not linked. Then, (11.9.9) and (11.9.10) reduce to

where

and

Now apply the renormalization group property by taking a second renormal-
ization, denoted by (2), and compare the two renormalizations (1) and (2) to
the renormalization (1, 2) that takes the system directly from the original to
the second renormalized lattice. Then it must be true that

such that

as would be expected from the group property of a series of renormalizations.
For simplicity, let us modify the notation slightly to make the F transforma-
tion coefficients explicit functions of the scale factor b, and let us give the scale



316 STATISTICAL MECHANICS OF SOLIDS

factor its index to identify the number of the renormalization. Also, it is
obvious that (11.9.17) and (11.9.18) hold for any two renormalizations r and
r', and that they all have the same functional form of the scaling length. That
is, (11.9.17) and (11.9.18) become

The simplest way these equations can hold is for the transformation coeffi-
cients to be powers of the scaling factor. That is, taking the scaling factor to be
the same for every renormalization, we must have

Putting these in (11.9.11) and (11.9.12), we recover the scaling relations
(11.7.25) and (11.7.26), and therefore the relation among the critical exponents
given by equation (11.7.39).

Let us pause to look at what has been accomplished here. First, it has been
shown that the physical parameters indeed diverge as the temperature
approaches the critical point according to power laws. Second, the critical
exponents for a given property are the same for approaches to criticality both
from below and from above the critical temperature. Third, the observed alge-
braic relation among the critical exponents has been derived. Finally, an enor-
mous amount of universality has been found for critical phenomena. There was
nothing of a specific nature that depends on the particular atomic constitution,
so the results are valid for a wide variety of systems. They are not even
restricted to magnetic systems since the arguments hold equally well for lattice
gases and order-disorder systems. Clearly, the general features of the approach
to criticality depend on the general properties of correlations over large dis-
tances. In fact, the critical exponents and the relations among them depend
only on the dimensionality of the system and the symmetry of the Hamilton-
ian. All systems that have the same dimensionality and for which the Hamil-
tonian have the same symmetry are said to belong to the same universality
class. Specific numerical values for the physical parameters certainly depend
on the constitution of the system, but the functional forms of the approach to
criticality depend only on the universality class.

11.10 Numbers

The foregoing analysis has yielded an enormous amount of physical insight
without any numerical calculation. However, a comparison of theoretical
values of the critical exponents with experiment is important to demonstrate
that the theory is correct in detail as well as conceptually. Both series expan-
sion methods and renormalization calculations have been developed for this
purpose.

Except for the Ising chain, numerical computations based on renormaliza-
tion are difficult because the recursion relations for the partition function and
the Hamiltonian become quite complicated. Nevertheless successful calcula-
tions have been performed. A relatively straightforward and efficient approach
combines renormalization group theory with Monte Carlo methods. Also,
advanced series expansion methods that go beyond the Kirkwood expansion
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in chapter 8 have been worked out. The agreement of Monte Carlo and series
expansion computations with each other and experiment is additional evi-
dence that critical exponent theory is very successful The values listed as
"Theory" in table 11.1 were computed by these methods.

Exercises

11.1 From the Landau theory, get the relation for the temperature depen-
dence of the order parameter to the second order in (Tc— T).

11.2 From the relation between the Landau expansion and the Kirkwood
second moment approximation, find the variation of the long-range order
parameter as a function of temperature near the critical point by minimiz-
ing the Landau free energy.

11.3 Show that the relation among critical exponents, equation (11.7.39), is
correct for mean field theory of a three-dimensional Ising lattice.

Notes

1. Tables of values of critical exponents for a variety of experimental systems
and theoretical calculations are given in Stanley (1971), Yeomans (1992),
Binney et al. (1993), and Chaikin and Lubensky (1995).

2. See Plischke and Bergersen (1971) for the solution of the one-dimensional
Ising ferromagnet including the external magnetic field.

3. An explicit demonstration of this for the two-dimensional square lattice can
be found in Yeoman (1992, pp. 132-136).

4. This is often true. In those cases for which it is not, the scaling laws we are
about to derive are the same and can be obtained from an analysis of the
non-symmetric transformation matrix. See, for example, Goldenfeld (1992,
p. 255).



Surfaces and Interfaces

12.1 Basic concepts

The boundary between any two phases is not sharp, but contains a transition
region in which there is a continuous change in composition from one phase
to the other. Of course, all the laws of thermodynamics apply to the system as
a whole, and at equilibrium, the temperature, pressure, and chemical poten-
tials are constant throughout the system. But because of the spatial variation
of the densities of the components, the energy per unit volume (and other
thermodynamic functions per unit volume) varies with position over a finite
distance in the transition region. The total energy is therefore different than
that of the sum of the energies of the two phases taken separately.

Two ways of assigning thermodynamic properties to a planar interface sep-
arating two phases were introduced by J. Willard Gibbs. In the first method,
the system is divided into three parts by constructing two planar surfaces par-
allel to the interface, as shown in figure 12.1, which represents two phases, A
and B, in contact across a planar interface in a large container. It is assumed
that the system is in thermodynamic equilibrium and all external fields, includ-
ing gravitation, are zero. The planes are chosen in such a way that the con-
centration of components varies sensibly with position only between them.

Thus, to the left of the plane AA' the system has the properties of the bulk
phase A, while to the right of plane BB' it has the properties of bulk phase B.
In between the planes AA' and BB', the composition varies from that in one
phase to that in the other. Since the range of interatomic forces is short, the
thickness of the region that defines the interface is small. But thermodynamic
quantities can be defined for that region and identified with the interface by
first choosing some mathematical surface that is parallel to and near the region
of the physical interface. It turns out that all interfacial thermodynamic quan-
tities are independent of the precise location of the mathematical surface if
they are defined as follows.

Consider a fictitious system in which each phase is homogeneous right up
to the mathematical surface. That is, each phase has the same energy, free
energy, entropy, and composition density that it has in the bulk phase right up
to the surface. For any component i, the number of molecules in the interface
is defined as the number of molecules in excess of that which would exist if
the two phases kept their bulk composition right up to the mathematical
surface. That is, the number of molecules in the interface, N°, is defined by
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Figure 12.1. The interface between two phases.

Nt is the total number of molecules of component i, nf and nf are the bulk
concentrations of component i in phases A and B, respectively, measured as if
each phase had its bulk properties right up to the Gibbs reference surface, and
VA, VB are the volumes of the two phases, measured up to the mathematical
surface separating the two phases. Note that since these are the actual volumes,
there is no excess volume associated with the interface. The area of the inter-
face will be denoted by o, and interfacial quantities will be identified by a
superscript o.

Similarly, let the Gibbs free energies for the two phases in this fictitious
system be GA and GB. The Gibbs free energy of the interface G° is then defined
by

where G is the total Gibbs free energy of the real system. Similar defini-
tions hold for all other extensive thermodynamic functions. Note that such
definitions are independent of the precise choice of the mathematical surface
because, if the chosen surface is moved parallel to the interface, what is
gained on one side by the translation is lost on the other. Also, because of
the way the surface is defined, there is no excess volume associated with the
interface.

An important consequence of this definition is that it leads to a fully con-
sistent thermodynamics of interfaces. Because the laws of thermodynamics are
linear and they hold for each quantity on the right-hand side of (12.1.2), then
by subtraction they must hold for the difference on the left-hand side.

For systems in which there is very little mutual solubility between the
phases, it is more convenient to use the alternative approach that defines
a geometric surface of separation between the two phases in terms of one
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component of the system. A definition of the surface is constructed by choos-
ing one of the components of the system to use as a reference and labeling it
component 1. Now construct a surface such that the total amount of compo-
nent 1 on each side of the interface is the same as if the bulk phases extended
right up to the interface with no change in concentration of this reference com-
ponent. This is called the Gibbs reference surface. A crystal with a perfect
planar surface in contact with a gas is a good approximation to this, the solid
surface being the reference plane. This is a special case of the previous defin-
ition, and an excess free energy is defined just as in equation (12.1.2). (Note
that, by definition, the excess amount of the reference component at the inter-
face NI = 0.) All other interfacial thermodynamic quantities are defined rela-
tive to the Gibbs reference surface.

The reference phase boundary, and therefore the excess interface concentra-
tions, depend on which component is defined to have a zero excess interface
concentration. Although the choice of the reference component is arbitrary, it
is often dictated by convenience and clarity of interpretation. For a pure solid
or liquid in contact with a gas phase, for example, the best choice of reference
component is that of the pure condensed phase because the variation of con-
centration with position near the interface is quite small for the condensed
phase. If one of the phases is a dilute solid or liquid solution while the other
phase is a gas or a concentrated solution, the best choice is the major compo-
nent of the dilute solution.

When an interface is present, the total free energy of the system contains a
work term that depends on the area of the interface. The reason for this arises
from the fact that the interatomic forces in the bulk are different than those at
the interface. Thus, if the interface is extended, work must be done to bring
atoms from the bulk to the interface. A simple analysis of this can be made by
referring back to figure 12.1. The Gibbs surface is somewhere between the two
planes AA' and BB', and an interfacial phase is sometimes defined as the
product of the area of this surface and the distance between AA' and BB'. There
is a degree of ambiguity in this definition, and it is not needed to construct a
consistent thermodynamics of interfaces.

Let a uniform pressure be the only external force acting on the system. Then
in any plane parallel to the Gibbs surface, all properties are uniform and the
force per unit area is just the pressure P. In a plane perpendicular to the Gibbs
surface, however, the force is not the same at all points because the composi-
tion varies in that plane. Now increase the area of the interface by do. This can
be done in three ways. The first is to add both A and B material to the A and
B sides of the container in figure 12.1 while keeping the length of the system
constant. This increases the interface area while maintaining the composition
of the system constant and increasing the amount of the constituents. Alter-
natively, the area can be increased while maintaining the amount of material
constant by transferring material in such a way as to decrease the systems
length while increasing its cross-sectional area. Finally, if an external stress is
applied to the system, it will deform, thereby changing the interfacial area. In
general, the area can be changed by any of these processes, or any combina-
tion of them, and the thermodynamic formalism must reflect this.

An interfacial area increase will be accompanied by a corresponding increase
in volume with a corresponding PV work done on the system given and a cor-
responding change in the amount of constituents dNt. Since atoms must be
brought from the bulk phases to the interfacial phase when the area is
increased, or since work must be done if the area changes in response to a
stress, there is additional work that is proportional to the increase in interface
area. The work associated with an increase of the area of the interface phase
is proportional to the increase in area, so we write
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where the proportionality constant y has the dimensions of energy per unit
area, or force per unit length, and is called the interfacial tension.

The interfacial tension y is assumed to be independent of the surface area
and to be the same for any of the three processes that can change the interfa-
cial area. This assumption is obviously true if the area is increased by trans-
ferring material in the absence of internal stresses and the interface separates
two fluid phases. The molecules in fluids are mobile, and they can readjust to
give equilibrium states that require that the energy per unit area of the inter-
face be a constant. Liquids cannot support shear, so the only stress that can be
applied is hydrostatic pressure. In principle, the surface tension is not con-
stant with respect to changes in pressure because the resulting changes in
volume change the intermolecular distances and therefore the intermolecular
interaction. However, if the pressure is low enough to be within the limits of
linear elasticity, this effect can be neglected. For fluid systems, it will be
assumed that the interfacial tension is the same and independent of interfacial
area no matter how the area is altered. From the third method of changing the
interfacial area, it is clear that y is the force acting on a unit line parallel to,
and in the interface.

Interfaces that include solid phases must be treated with more care. Not only
can they react to external forces anisotropically, but also internal stresses can
arise from the structural mismatch at interfaces. This is true both for the inter-
face between two different solids and for the interface between two different
crystallographic planes of the same solid. It is often the case that the extension
of a solid-solid interface by any of the three methods described above main-
tains the local structure at the interface constant. One way of doing this is to
have dislocations take up the crystallographic mismatch at the interface so that
the energy per unit area is independent of area. For some phenomena, the effect
of internal stresses and strains can be ignored. This is often the case for solid-
fluid interfaces since the solid surface is then affected by the other phase only
in a minor way. In the physical adsorption of inert gases on solid surfaces, for
example, it is sufficient to treat the solid surface as being homogeneous and
isotropic in two dimensions.1

For a solid-liquid system, there are three interfaces: between the solid and
the liquid, between the liquid and its vapor, and between the solid and the
vapor. Each interface has its own surface tension, which is identified with
appropriate subscripts. Consider such a system in which the liquid is a drop
on a solid surface that does not chemically react with it. In general, the drop
forms an angle 6 with the solid, as illustrated in figure 12.2.

Figure 12.2. Surface forces at a liquid drop on a solid surface.
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The three interfacial tensions are forces per unit length acting parallel to each
interface, and at equilibrium, the forces must sum to zero. This means that the
surface tension of the solid-vapor interface must balance the forces from the
solid-liquid and liquid-vapor interfaces. That is,

This is Young's equation.
For a contact angle of it the liquid becomes a spherical drop (neglect-

ing gravity), while a contact angle of 0 corresponds to the spreading of
the liquid into a flat film. For this latter case, wetting, there is no solid-
vapor or liquid-vapor interface and the total interfacial free energy of the
system is ysj. If this is lower than the solid-vapor (ysv + y/») then the liquid will
spread and wet the solid. This leads to the definition of the spreading coeffi-
cient w as

If the spreading coefficient is negative, the liquid will remain as a spherical
drop on the surface. (Actually, because of the influence of gravity, it will form
a lens, rather than a sphere.) But if the spreading coefficient is positive, the
liquid will spread spontaneously; w = 0 defines the wetting transition. Note
that using (12.1.4) gives the spreading coefficient as

so for complete wetting, w = y/v.

12.2 Thermodynamics of interfaces

Let us consider a system for which internal stresses and anisotropy, as well as
external fields, either do not exist or can be ignored. Then, when an interface
is present, the interfacial work term (12.1.3) must be added to the differential
of energy, so equation (1.13.6) must be modified to read

Using (12.2.1) in the definitions of the Helmholtz and Gibbs free energies gives

and therefore

Note that now chemical potentials must be defined as derivatives in which the
interfacial area is held constant. That is,
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Let us recall equation (1.15.8) and derive the analogous equation when an
interface is present. Integration of (12.2.1) by Euler's theorem gives

and using the definition of the Gibbs free energy G = U - TS + PV gives

But from (1.15.8), the sum in (12.2.7) is just the Gibbs free energy of the system
in the absence of the interface. The surface tension is therefore seen to be the
free energy of the surface per unit area. There is nothing on the right-hand side
of (12.2.7) that refers to the mathematical interface, so this verifies that the
surface tension does not depend on how its location is chosen.

For the Gibbs free energy, substitute its sum according to (12.1.2) into (12.2.7)
and for the number of molecules use (12.1.1) in the form Nt = Nf+ A/"t + AT?to
get Ga + GA + GB = yo + £,H-jN?+ S -̂iV? + E^Ni which reduces to

The difference between the interfacial and bulk concentrations of the
systems components is closely related to the surface tension through the Gibbs
adsorption isotherm, which can be obtained from (12.2.8). Start with the dif-
ferential of (12.2.8):

Also, from

it follows that

or

and comparing (12.2.12) with (12.2.9) shows that, at constant temperature,
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Dividing through by the surface area gives

where F; = Nf/o is the surface concentration of species i. This is the relation
between the surface tension and the excess surface concentrations in terms of
the chemical potentials of the components of the system. Equation (12.2.14) is
the Gibbs adsorption isotherm.

For a two-component, two-phase system in which one of the components
is present in small amounts, the Gibbs surface is chosen such that the major
component has zero excess surface concentration. In this case, (12.2.14)
reduces to

the subscript 2 labeling the minority component. From the theory of dilute
solutions, the chemical potential of the component present in small amounts
is related to its concentration c2 by |0.2 = const + kTlnc2, and (12.2.15) becomes

This is the Gibbs adsorption isotherm for a dilute two-component system. Note
that if increasing the concentration decreases the surface tension, the solute
will be preferentially adsorbed at the surface, and vice versa.

For small changes in the concentration of a dilute solution, the derivative
can be replaced by a finite ratio so that (always remembering that the temper-
ature is kept constant)

and for very small concentrations, Ay = y - y0 and Ac2 = c2, so this becomes

That is, for very dilute solutions the change in surface tension is directly pro-
portional to the excess surface concentration.

The Gibbs adsorption isotherm is applied to the case of the adsorption of
a pure gas on a solid by taking the solid to be the reference component. We
assume the gas has a very low solubility in the solid. In this case, the Gibbs
surface is practically identical to the solid surface. Equation (12.2.14) then
reduces to a form similar to that of (12.2.15) but with the excess surface con-
centration being that of the gas. The chemical potential can be taken as that
of the gas phase, and if the pressure is not too high, this is proportional to
kTlnP, and equation (12.2.16) gives

Fg is the excess surface concentration of gas, that is, the amount of gas adsorbed
on the surface per unit area.
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Consider an adsorbed film on a substrate in which the film material is insol-
uble. The surface tension of the pure substrate is y0 and the surface tension
when the film is present is 7. The film pressure n is defined by

This definition ensures that the sign convention is the same as that for three
dimensions. That is, a positive pressure means a force acting on the system. The
surface pressure is the change in the force per unit length on a line parallel to
the surface when adsorbate is present. It is also the negative of the excess free
energy of the surface with adsorbate over the free energy of the pure surface.

For liquid substrates, the film pressure can be measured by floating a bar on
the surface and measuring the force on it, the adsorbate being confined by the
bar and the edges of a pan containing the substrate. Two-dimensional phase
diagrams can be obtained by measuring the film pressure as a function of the
surface area. Typical systems that have been experimentally studied in this
way consist of fatty acids floating on water. In these systems, the carboxyl
groups are attracted to the water, leaving hydrocarbon chains sticking out of
the surface, which interact via van der Waals forces.

For a gas adsorbed on an inert solid substrate, experimental values of the
spreading pressure can be obtained as a function of the amount of gas on the
surface from adsorption isotherms by using the integrated form of the Gibbs
adsorption isotherm (12.2.18):

If the surface area is increased by an amount do for both the clean surface and
that containing adsorbate, while holding temperature and volume constant,
then the free energy of adsorption is increased by

where ^ads is the Helmholtz free energy of adsorption. This gives another def-
inition of the film pressure:

The area can also be increased while holding the temperature and pressure
constant, in which case the spreading pressure is the derivative of the Gibbs
free energy with respect to area at constant temperature and pressure:

These equations are often applied to two dimensional phases, since they are
correct in principle even if there is no substrate. The subscript ads is then
dropped.

12.3 Thermodynamics of adsorption on solid surfaces

Consider a solid surface in equilibrium with a monocomponent gas that does
not dissolve to any appreciable extent in the solid. Because of the existence of
surface forces, gas will be adsorbed on the surface and the nature of this adsorp-
tion will depend on the nature of the interaction forces between the gas and
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the solid. There are two primary modes of adsorption: physical and chemical.
Physical adsorption is the result of van der Waals type forces. It is character-
istic of the adsorption of the rare gases on solid surfaces, but also occurs in
many other systems in which there is no chemical reaction between the solid
and the gas, for example, the adsorption of nitrogen on alkali halide or oxide
surfaces. The binding energy of the gas molecule to the surface is weak, of the
order of lOkcal/mole, and the adsorption takes place rapidly. Also, the surface
film of gas that results from the adsorption can be a monolayer or can consist
of a number of molecular layers, and the adsorbed molecules generally have a
high transverse mobility on the surface. The adsorbed molecules have the same
chemical formula as in the gas. That is, if the gas is diatomic, then the adsorbed
molecules are also diatomic and there is very little distortion of the geometry
of the molecule. Chemisorption, on the other hand, is the result of the forma-
tion of chemical bonds between the surface atoms and the gas molecules. This
binding energy is high, of the order of lOOkcal/mole, and the adsorption is
often slow because an activation energy of chemical reaction must be over-
come. The surface film is a monolayer, and its molecules have no surface mobil-
ity. Also, the adsorbed molecule sometimes loses the character it had in the
gas phase. Diatomic hydrogen on metals, for example, dissociates into atoms
that react with the surface atoms of the solid.

For a given solid-gas system, the lower the temperature and higher the pres-
sure, the more gas will be adsorbed on the surface. Both the adsorption
isotherm (amount adsorbed as a function of pressure at constant temperature)
and the adsorption isobar (amount adsorbed as a function of temperature at
constant pressure) depend on the heats of adsorption. Some care must be taken
in denning these heats since they depend on the experimental conditions of
measurement.

In an experiment in which a small amount of gas is transferred from the gas
phase onto the solid surface while both the pressure and the temperature are
held constant, the heat evolved is given by the first law of thermodynamics as

The PdV term is the work done on the system as a result of the decrease in
volume accompanying the adsorption of N" molecules of gas on the surface.

From the ideal gas law, PdV = -kT dNa so from (12.3.1) a differential heat
of adsorption can be defined as

If the experiment is done at constant temperature and volume so that no PdV
work is done, then the ArTterm does not appear and instead of (12.3.2), equa-
tion (12.3.1) leads to a differential heat qa given by

Both qd and qst are differential heats of adsorption since they are the heats
evolved per atom for an infinitesimal increment of gas adsorbed. From (12.3.2)
and (12.3.3) it is clear that qst is the enthalpy change per molecule accompa-
nying adsorption while qj is the energy change. qst is called the differential
isosteric heat of adsorption.

The connection between the heat of adsorption and the adsorption isotherm
is readily obtained by considering two equilibrium states of the system that are
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at different pressures and temperatures but contain the same distribution of
gas molecules in the surface and gas phase. That is, we consider a small
reversible change in pressure and temperature, dP and dT, while holding the
amount of gas adsorbed on the surface constant. For equilibrium in the initial
state, the Gibbs free energy of the gas phase must equal that of the adsorbed
surface phase. But this must also be true for the final state, and this means that
the change in free energies per molecule in the gas and adsorbed phases must
be equal. That is, dGg/Ng = dG°/Na, or

sg and vg being the entropy and volume per molecule in the gas phase, and sa

the entropy per molecule in the adsorbed phase. The left-hand side of (12.3.4)
is just a bulk thermodynamics result, while the right-hand side follows from
(12.2.12) for the case of constant surface concentration and constant surface
area. Therefore,

Equation (12.3.5) refers to a phase change from the gas to the adsorbed phase,
and the entropy change is therefore equal to the enthalpy change of the system
divided by the temperature, so (12.3.5) becomes

hg and h° being the enthalpy per molecule in the gas phase and adsorbed phase,
respectively, so (hg - ha) is just the isosteric differential heat of adsorption of
equation (12.3.2). Equation (12.3.6) is just the Clapeyron equation for the equi-
librium between the gas and the adsorbed phase. Using the ideal gas law to
replace vg, (12.3.6) becomes

where qsl = (hg - If) is the isosteric differential heat of adsorption. This is the
Clausius-Clapeyron equation for the gas-adsorbed layer equilibrium.

The differential heat of adsorption can be determined from sets of isotherms
by using (12.3.7) directly, but it is more convenient to have an integral form.
If the differential heat of adsorption is assumed to be independent of temper-
ature, this form easily follows by integrating (12.3.7) between two states (Plt
TJ and (P2> T2) to get

so the differential heat of adsorption is readily obtained from points on two
different isotherms corresponding to the same amount of gas adsorbed.

gst is the enthalpy change on adsorbing an incremental amount of gas and
varies with the amount adsorbed. This variation can arise from two sources:
first, the adsorbed molecules interact with each other and the energy of this
interaction varies with surface concentration; second, the adsorption sites on
the surface may not, and usually do not, have the same energy, so the heat of
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adsorpLion is different for different sites. The integral heat of adsorption is
defined as the total heat released for adsorbing the total amount of gas up to a
given amount adsorbed and is just the integral of the differential heat:

Equation (12.2.19), which defines the surface pressure, is still valid, with y0
being the surface tension of the pure solid and 7 being the surface tension of
the solid surface containing adsorbed gas. Since the surface tension of the pure
solid is independent of pressure, dn = -d(y- y0), so for this case (12.2.18) can
be written in integral form as

The surface pressure of a gas on a solid can therefore be obtained experimen-
tally from measurements of the amount of gas adsorbed on the surface as a
function of pressure.

Some care must be taking in performing the numerical (or graphical) inte-
gration necessary because at low pressures y/P becomes very large. But it is
easy to show that for physical adsorption at low pressures the adsorbed gas
follows the two-dimensional ideal gas law:

so an analytic integration can be performed in the low-pressure region.

12.4 Adhesion and cohesion

The process of surface formation can be schematically represented as in figure
12.3, which represents the separation of two phases A and B in contact across
an interface to give two phases separated an infinite distance from each other.
Each phase has its own surface, with none of the phase of the other material
adsorbed on it.

This separation process can be represented as A\B —> A\ + B\, which simply
indicates that an interface has been broken to yield two surfaces. The energy
needed to effect this separation is called the energy of adhesion and is obvi-
ously the difference between the interfacial energy and the surface energies.
That is, if EA, Ej, E%B are the surface energy of phase A, surface energy of phase
B, and interfacial energy of the interface, respectively, then the energy of adhe-
sion £"adh (AS) is

where the energies have been identified by subscripts in an obvious fashion.
If the two phases are the same so that initially there is no interface, then sep-

Figure 12.3. Separation of two semi-infinite phases across an interface to form two
surfaces.
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aration across a plane to form two surfaces is represented as AA —> A \ + A\,
and the corresponding energy is just that required to form two surfaces of
A. The energy of separation is then called the energy of cohesion and is given
by

Clearly, this is just a special case of (12.4.1) because when A = B the interfa-
cial energy is zero and adhesion reduces to cohesion.

It is unfortunate that common usage refers to both the energy defined by
(12.4.2) and the energy required to separate a condensed phase into its con-
stituent molecules to infinity as the energy of cohesion. To avoid confusion,
we will use the term energy of surface cohesion.

In a similar fashion, the free energies and entropies of adhesion and surface
cohesion are given in terms of the interfacial or surface quantities as

Again, the equations for surface cohesion are special cases of these equations
given by setting the interfacial quantities equal to zero.

One reason for relating the adhesion (or surface cohesion) quantities to the
interfacial (or surface) quantities is that it leads naturally to a method of com-
puting the surface quantities because the adhesion energy is just the sum of all
intermolecular interactions across the interfacial plane. (For surface cohesion,
the surface cohesive energy is just the sum of all intermolecular interactions
across an arbitrary plane in the homogeneous phase.) A method of doing this
was first given in 1939 by Fowler and Guggenheim, who actually treated only
the liquid-vapor interface, though the method is easily generalized to include
any two phases whose molecules interact according to pairwise central forces.
This was done in 19542 and subsequently further developed and applied to a
number of systems.3

Consider two semi-infinite phases with plane surfaces of equal area that are
parallel to each other and a distance z apart as in figure 12.4. Take a molecule
at point X in phase B at a distance / from a slab of thickness df in phase A.
The slab dfis parallel to the surfaces of the two phases. On this slab, trace an
annular ring whose inner and outer circumferences, on the side closest to the
molecule at X, are at distances r and r + dr from X. This ring has a radius rsin
6 and width dr/sin0, 6 being the angle between /and r, so the volume of the
ring is 2nrdrdf.

Let e^efr) be the energy of interaction of a molecule of A with a molecule of
B when the two molecules are a distance r apart and let nA be the average
number density of A molecules in the annular ring. Then the energy of inter-
action of the molecule x with the annular ring is 2nnAzAB(r)rdrdf and the energy
of interaction of molecule x with the entire semi-infinite phase A is obtained
by first integrating over r from / to infinity and then over / from / to infinity to
get

The total interaction of phase B with phase A is then obtained by multiplying
the above result by nB, the average number density of B molecules in the slab
dj and integrating from / = z to infinity. This gives the energy of adhesion of
the two phases when z is the equilibrium distance between the two parallel
surfaces as
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Figure 12.4. Interaction of two phases across a plane surface.

The difficulty in computing the energy of adhesion from this equation, even
when the intermolecular potential energy is known, is that the local average
densities are functions of distance from the surfaces. In fact, a complete theory
for fluid-fluid interfaces would relate the average densities to pair correlation
functions, which would be different in the bulk and near the surfaces. For inter-
faces with a solid phase, the integrals over the solid phase should be replaced
by a lattice sum. Also, the calculation takes into account only the potential
energy of interaction and ignores any entropy changes arising from the change
in the vibrational frequencies near the surface. Nevertheless, approximations
to (12.4.5) are very useful in exposing the origins of surface properties and the
relations among them.

The simplest approximation that can be made is to assume that the average
densities are constant and equal to their bulk values right up to the surfaces.
Then they come out of the integral and (12.4.5) becomes

where

and z = ZAB is the perpendicular distance between the plane going through the
average centers of the molecules in surface A to the corresponding plane in
surface B. The energy of separation is then just the energy of adhesion, which
is related to the surface energies by (12.4.1) and therefore
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If A and B are the same phase, the energy of cohesion becomes the energy of
surface cohesion and instead of (12.4.8) we have

for phase A and

for phase B. The Ks are integrals just like (12.4.7) except that they contain the
intermolecular potentials and distances for a single phase.

Equations (12.4.8)-(12.4.10) provide a relationship between the interfacial
and surface energies in terms of intermolecular distances and potentials. To
get this, just take the ratio of the energy of adhesion to the geometric mean of
the energies of cohesion and solve for the interfacial energy to get

with

The interfacial and surface free energies of adhesion can be treated similarly
by remembering that the free energy of adhesion is the work required to sep-
arate the two surfaces to infinity. Then the force between the two phases, across
a plane parallel to the two surfaces, is obtained in the same way as the energy
of adhesion except that the intermolecular potential is replaced by the force of
attraction between two molecules in a direction perpendicular to the interface.
This is -cos90£V3r) = -(flr)(d£AB/dr).

To obtain the free energy of adhesion, the work required to separate the two
phases from z to infinity must be calculated. This is just the integral of the
force from z to infinity, so the free energy of adhesion is given by

Equations for the free energies that are similar to those above hold for the
energies, except that wherever surface energy appears it is replaced by the
interfacial or surface tension, and the energy integrals are replaced by work
integrals. The result corresponding to (12.4.11) is

with

and
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LA(ZAA] and LB(zBB) have the same form as (12.4.16) except that the inter-
molecular force and distance between planes are for AA and BB interactions,
respectively.

The utility of (12.4.11) and (12.4.14) lies in the fact that, for phases that are
similar, both *P and <t> can be expected to be close to unity, and if the inter-
molecular potential is known, it can be calculated explicitly. The results are
particularly simple for inverse power potentials. For a 6 - m potential of the
form

the requirement that the force at equilibrium be zero yields a relation between
attractive and repulsive constants given by

c/4B being the equilibrium distance between an A and a B molecule, so the inter-
molecular potential and force can be written as

Put these in (12.4.7) and (12.4.16) and perform the integrations. Also, make the
assumption that ZAB = dAB, ZAA = dAA, and zm = dBB. That is, we assume that the
equilibrium distance of approach between two planes of molecules is the same
as the equilibrium distance of approach of two isolated molecules. Then

with expressions for KA(dAA), KB(dBB), LA[dju^, and LB(dBB) that are similar. KB
and KF are constants that are the same for the three interfaces A\A, B\B, and
A\B, so if ratios are taken according to (12.4.12) and (12.4.15), the constants
drop out and two parameters can be defined:

This development displays the origin of the interfacial tension in the inter-
molecular forces. It is not sufficiently accurate to yield good numerical results
for the interfacial energies or tensions separately (except in special cases such
as the surface tension of nonpolar spherical molecules whose intermolecular
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energy is accurately described by a simple inverse power law and whose pair
distribution functions are known.) However, it has been quite successful in
describing the relation between interfacial and surface tensions by equation
(12.4.14) because taking ratios often cancels out deficiencies in the theory. For
nonpolar liquids of spherical molecules whose sizes are not too different, <D =
1. Values of 3> for such systems can be computed from (12.4.24). If the inter-
molecular attractive constants are not known, their ratio in (12.4.24) is taken
to be unity and the ratio containing the intermolecular distances is calculated
by assuming that the distance of closest approach for unlike molecules is the
arithmetic mean of those for the like molecules. This is a hard sphere model
for the diameters and is rather good for spherical molecules.

12.5 Critical point and critical exponent for surface tension

At the critical point, the interface between the liquid and vapor phases of a
liquid vanishes, so the interfacial energy and interfacial tension will both go
to zero. The above theory can be used to relate this to the liquid and vapor
densities and thereby get the critical exponent for interfacial tension from that
for the fluid density. Start with equation (12.4.6) as applied to the liquid-vapor
interface of a one-component system and solve for the interfacial energy.
That is,

Note that the subscripts now refer to different phases of the same material, each
phase being a monomolecular system with the same intermolecular potential
within and across the phases. Remember that the surface energy is one half the
energy of surface cohesion, so (12.5.1) can be written as

If the K's are all assumed to be the same, thereby ignoring the differences in
their dependece on molecular diameters, (12.5.2) can be written as

The interfacial energy is therefore proportional to the square of the difference
in densities between the liquid and vapor phase.

From equation (11.3.16), the critical exponent for the fluid density in mean
field theory is 1/2. More generally, it is written as (3 (which experiment and
more accurate theory gives as close to 1/3), so the interfacial energy approaches
the critical point with a critical exponent equal to twice that of the fluid density
transition and of magnetization. That is,

The critical exponent for the interfacial tension is easily obtained by start-
ing from the thermodynamic relation
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All thermodynamic relations apply to interfacial quantities, so let us use
(12.5.5) for the surface tension near the critical point and write

For a temperature near the critical point (12.5.6) can be integrated (keeping the
volume of the system constant) to give

Since the temperature T is very close to the critical temperature, it can be taken
equal to Tc, so

For the mean field value of P = 1/2 the critical exponent for the surface tension
is 2, but for the more accurate value of p = 1/3 it is 1.67.

At first glance, it would seem that the critical exponent for the surface
tension could be obtained in exactly the same way as for the surface energy.
That is, instead of starting with (12.4.6), simply start with the analogous equa-
tion for interfacial tensions. These include integrals that are again functions of
the product of densities, so the critical exponent would be the same as for the
energy. However, these integrals contain the force between two molecules
rather than the energy, and they represent a process in which two phases are
separated to infinity. Applying this process to a vapor means that a fictitious
wall must be constructed to contain the vapor as it is removed from the liquid
surface. The calculation of the integrals for vapor phases is therefore far from
straightforward, and the calculation of the surface tension from thermody-
namic relations is preferred.4 This difficulty does not arise in calculating the
energy integrals because all that is required in this case is to add up interac-
tions in phases that are in contact.

An examination of equations (12.5.4) and (12.5.8) shows that the surface
tension is related to the liquid and vapor densities by

or,

The constant is independent of temperature, but is different for different sub-
stances. If the mean field value of 1/2 is used for p, the exponent in (12.5.10)
becomes 1/4 and the result is Mcleod's equation, whereas if we take P = 1/3,
the exponent is 1/5.

Although (12.5.10) grew out of an analysis near the critical point, it is found
to hold even at temperatures far from the critical point for many liquids.
Because of this, an interesting quantity can be defined. Let us neglect the vapor
density since this is always at least several orders of magnitude lower than the
liquid density at ordinary temperatures and pressures, and replace the number
density of the liquid by the molecular volume v. Call the result Por. That is, if
we take P = 1/2,
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Por is called the parachor, and it is of interest because it is an additive mole-
cular property in the sense that the parachor of a molecular liquid is the sum
of parachors of its constituents. This means that a set of numbers can be found
for each atom, each group, and each type of bond (carbon-carbon double bond,
triple bond, six-membered carbon ring) that add up to give the parachor of any
molecule. "Group parachors" can be constructed from the atomic parachors
that correctly reproduce the molecular parachors for a very large number of
substances. This is useful in estimating the surface tension. As an example,
the surface tension of polymers, both in the solid and in the melt, is important
for polymer uses as well as for processing. The additivity of the parachor has
been found to be valid for a large number of polymer systems.5

Altough the parachor was originally defined as in equation (12.5.11), the
theory of critical exponents shows that it would be better to use an exponent
of 1/5 and define a parachor by

The fact that experimental data have been successively analyzed with an expo-
nent of 1/4 does not invalidate the theory leading to an exponent of 1/5 because
the ratio of the two parachors is proportional to y1'20, and this varies slowly
among liquid systems because most of them have surface tensions that are not
too different. That is, the experimental data cannot distinguish between the
two exponents.

The derivation of (12.5.9) is based on that of Fowler and Guggenheim (1956)
and leads to a critical temperature exponent of 1.67 for the surface tension. But
this derivation did not treat the dependence of the surface energies on density
accurately. A more accurate treatment (Rowlinson and Widom, 1982) yields a
critical exponent of 1.26.

12.6 Monolayer adsorption: Langmuir isotherm

Let us adopt the simplest model of a solid surface, which is that it consists of
atomic sites all of which are equivalent, and consider a system in which this
surface is in equilibrium with a pure ideal gas.

Because of the existence of interatomic forces, some of the gas molecules
will be adsorbed on the surface. The simplest result of this interaction would
be that each surface site could adsorb one molecule, that when a molecule is
adsorbed it could not move laterally over the surface, and that the maximum
number of molecules that could be adsorbed equals the number of surface sites.
These conditions are satisfied by the phenomenon of chemisorption at low
pressures, for which the energy of adsorption is very high because it is the
result of the formation of a chemical bond between the surface atoms and the
adsorbate molecules. The low pressure and the high energy of adsorption make
the interaction between adsorbed molecules and molecules in the gas phase
sufficiently small that multilayer adsorption is negligible. Also, the lateral
interactions among molecules can be neglected since these are assumed to be
of the van der Waals type and are small relative to the energy of interaction
with the surface.

Our task is to get the fraction of monolayer coverage as a function of pres-
sure. To do this, assume that the energy of an adsorbed molecule relative to a
molecule at rest in the gas phase is the same for all adsorbed molecules. Further
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assume that the molecules are bound to the surface as three-dimensional har-
monic oscillators, but with a vertical frequency that differs from the two equal
lateral frequencies. The partition function for a molecule on the surface is
therefore

where zp and zv are the vibrational partition functions for the lateral and ver-
tical vibrations, respectively, and -Wa is the energy of adsorption including the
zero point energy of the vibrations. The adsorption energy is negative, so Wa
is a positive quantity.

The vibrational partition functions are

vp and VT being the vibration frequencies in the directions parallel and per-
pendicular to the surface. These expressions are obvious special cases of equa-
tion (4.3.12). Let the number of adsorbed molecules be N° and let M equal the
number of adsorption sites on the crystal surface. The partition function Z0 for
the adsorbed phase is then the number of ways of distributing N* molecules
among M sites (with a site either being empty or containing one molecule)
times the product of partition functions given by (12.6.1) for all adsorbed mol-
ecules:

If the molecule has internal degrees of freedom, such as intramolecular vibra-
tions, these can be included simply by multiplying (12.6.4) by the appropriate
partition functions.

As usual, the Helmholtz free energy is A = -JcTlnZ, so if we take the loga-
rithm of (12.6.4), use Stirling's approximation on the factorials, and multiply
by -kT, we get the Helmholtz free energy of the adsorbed phase as

The chemical potential is obtained from (12.6.5) by differentiation with respect
to AT0:

At equilibrium, the chemical potential of the adsorbate must equal that of
the gas phase. This is just the Gibbs free energy per molecule, which from equa-
tion (3.4.19) is
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Equating (12.6.6) and (12.6.7), using the ideal gas law PVg = NgkT, and solving
for the fractional coverage JVYM gives the Langmuir adsorption isotherm:

The same result can be obtained from the lattice gas theory of appendix 7
by taking the cells in equation (A.7.13) to represent sites on the surface and
assume they all have the same binding energy, ignoring all cell-cell interac-
tion. The vibrational contribution to (A. 7.13) is represented by Einstein modes
perpendicular and parallel to the surface.

P0 is a constant that depends only on temperature and is given by

From (12.6.8), P0 is the pressure at which half the sites on the surface are occu-
pied. At low pressures, P « P0 and the fractional coverage is proportional to
the pressure. At high pressure, P » P0 and the fractional coverage approaches
unity. The form of the Langmuir isotherm is shown in figure 12.5. Experimental
data for chemisorption of simple gases on solids are well represented by the
Langmuir isotherm.

The extension of this model to the adsorption of several species is trivial
because we neglect the interactions among molecules on the surface as well as
in the gas phase. The total partition function is then the product of partition

Figure 12.5. The Langmuir adsorption isotherm.
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functions for all the species, the total Helmholtz free energy is the sum of the
individual free energies, and the total pressure is the sum of the partial pres-
sures. The adsorption isotherm for each species is just like the Langmuir
isotherm except that the pressure is replaced by the partial pressure of that
species. If Nf is the number of molecules of type i adsorbed on the surface,
then the total number of adsorbed molecules is

and the relation between the fraction of the sites covered by molecules of type
i and the partial pressure of species i is

where Pio is just like (12.6.9) except that it refers to the molecule of species jf.
Because of the assumed independence of the molecules, if the surface has

several different kinds of sites they can be treated independently. A surface,
for example, may contain steps so that a molecule that adsorbs at the corner
of a step has a different energy of adsorption and vibrational energy than a
molecule adsorbed at a site on a flat region. Each set of sites will then yield an
isotherm just like that of (12.6.8) except that N° becomes Nf, the number of
molecules adsorbed on the sites of type j, and M becomes M/, the number of
such sites.

It often happens that the adsorbed species is not the same molecule as in the
gas phase because the strong interaction with the surface induces chemical
reaction. This is the case with many catalysts. An important example is the
adsorption of hydrogen on metals. In the gas phase, hydrogen has the molec-
ular form H2 but on the surface it usually has the atomic form H. The deriva-
tion leading to (12.6.8) must then be modified because the chemical potentials
given by (12.6.6) and (12.6.7) must refer to the same amount of material. Since
each molecule contains two atoms, the chemical potential of the gas phase
given by (12.6.7) must be equated to twice that for the adsorbed phase given
by (12.6.6). Doing this and solving for Nfi/(M- N% gives

where A7g is the number of hydrogen atoms on the surface and the constant Ph
is given by a form identical to (12.6.9) with all quantities referring to the hydro-
gen molecule:

The mass, of course, is that of the hydrogen molecule. Note that (12.6.13) is
just the square root of (12.6.9) because of the factor of 1/2 in the exponent of
(12.6.13), which is a direct result of the hydrogen molecule's dissociation into
atoms.

Solving (12.6.12) for NH/M gives the fractional coverage of the M sites with
hydrogen atoms as
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The dissociation of the molecule into atoms on the surface has a strong effect
on the form of the adsorption isotherm.

12.7 Monolayer adsorption: mobile layer

If the molecules adsorbed on a surface are not tightly bound, they can move
laterally over the surface with two degrees of translational freedom. This is the
case when the binding arises from the physical van der Waals interactions
rather than from chemical reaction. The binding is then not strong enough to
localize the molecules at specific sites. But at low pressures a monolayer model
can still be used, so it is of interest to determine the adsorption isotherm for a
monolayer in equilibrium with its vapor.

The simplest model for a mobile layer is that of the two-dimensional ideal
gas given in chapter 2. To get the adsorption isotherm, the partition function
for the adsorbed phase is needed, and this can be obtained from the ideal gas
assumption. This means that, in the gas and surface phases, the total partition
functions are just products of molecular partition functions corrected, of
course, for the indistinguishability of the molecules in each phase as given in
section 3.9.

For a one-component ideal gas, the partition function is just the product of
molecular partition functions for three degrees of translation, corrected for
indistinguishability:

Ng is the number of molecules in the gas phase, and zg is the partition func-
tion for the molecule, which is given by

For the surface phase, the partition function is a product of two-dimensional
partition functions, but it also contains the energy of adsorption —W. Thus, we
have

N° is the number of molecules in the surface phase, and za is the partition func-
tion for a molecule on the surface, which is given by

Now go through a familiar drill. Write down the Helmholtz free energy for
the surface phase from Ac = -kTlnZa, differentiate with respect to the number
of surface molecules to get the chemical potential, and set the resulting chem-
ical potential of the surface phase equal to that for the gas phase as required
by equilibrium. Then solve for the number of molecules on the surface (using
Stirling's approximation and the ideal gas law). The result is
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This isotherm is very different from the Langmuir isotherm. The number of
molecules adsorbed is proportional to pressure at all pressures, not only for P
—> 0. In fact, (12.7.5) imposes no limit on the amount that can be adsorbed. The
difference between (12.7.5) and the Langmuir isotherm is a stark example of
the strong effect of indistinguishability on physical results.

In practice, the mobile monolayer has limited applicability to real systems
and can be used only at very low pressures. A major reason for this is that, for
the monolayer to be mobile, the interaction of the molecules with the surface
must be weak. In fact, this interaction is of the same magnitude as that between
gas molecules when they come into contact. A molecule approaching the
surface can therefore bind to a molecule already on the surface with a proba-
bility comparable to that for binding at the surface, thereby giving rise to mul-
tilayer adsorption. Only at low coverage, when the probability is controlled by
the amount of available surface rather than by the binding energies, can the
mobile monolayer assumption be expected to hold accurately.

12.8 Multilayer adsorption: BET isotherm

In multilayer adsorption, some of the sites on a surface are empty and others
have only one molecule on them. But there are also sites for which there are
two or more molecules stacked on top of each other, and there are patches of
the surface that have multilayer islands on them. This poses a difficult statis-
tical mechanical problem because the interaction energies of the molecules
with each other in both the vertical and lateral directions vary with their posi-
tions in the layers. The problem is enormously simplified if the lateral inter-
actions are ignored, and we will do this. Taking the vertical variations into
account still leaves too many unknown parameters, but at least a formal solu-
tion can be obtained. However, the usual assumptions will be adopted that lead
to the Brunauer, Emmett, and Teller (BET) isotherm right away. These assump-
tions state that the first layer interacts with the surface site with an energy that
is characteristic of the interaction between the solid and a gas molecule. But
we take all molecules on top of those in the first layer to have the same inter-
action with molecules beneath them, and this interaction is characteristic of
the molecular interactions in the liquid phase. Our system is then a surface
containing M equivalent sites in equilibrium with a gas of a single species. The
sites on the surface can have any number of molecules stacked on them, and
since the energies of the molecules are independent of each other, each mole-
cule can be assigned a molecular partition function. The molecules adsorbed
directly on the surface have a partition function of the form

while all other molecules have partition functions given by

In these equations, EI and EL are the interaction energies of molecules on the
surface layer and in all other layers, respectively, and the vibrational contri-
butions to the partition functions are designated by zl (vj) and ZL (vj.
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If lateral interactions are ignored, then the existence of adjacent patches of
adsorbate is irrelevant and our system is one in which only the stacking of mol-
ecules on a site need to be considered. In fact, the BET assumptions result in
two classes of molecules (those that are adsorbed in the first layer and those
that are adsorbed in all other layers), and this greatly simplifies the statistical
count for the number of complexions. If Nj is the number of molecules in the
first layer, then the number of ways of distributing Nt indistinguishable mole-
cules among M sites, such that there is only one molecule per site, is just the
Fermi-Dirac statistical count and is given by

Let the number of molecules in all layers but the first be called NL, so that
the total number of adsorbed molecules is

Now let us count the number of ways of putting down the ATL molecules on the
surface. These molecules all have the same partition function, and any number
of them can go on top of those in the first layer, so the number of complexions
is the number of ways of putting NL indistinguishable molecules in N-i boxes
with no restrictions on the number of molecules per box. This is just the
Bose-Einstein statistical count. Therefore,

The canonical partition function is obtained from the above equations first
by multiplying (12.8.3) and (12.8.5) together and multiplying the result by the
molecular partition functions (12.8.1) and (12.8.2), each raised to the power of
the number of molecules to which they refer. The result is then summed over
all sets of integers NI and NL consistent with a given N° and M. There are two
conditions that must be satisfied when performing this sum. The first is given
by (12.8.4), and the second is that the number of molecules in the first layer
must be equal to or less than the number of sites. These restrictions on N-i and
NL make it hard to compute this sum, but they can be removed by using the
grand canonical partition function, thereby greatly simplifying the calculation.
The grand partition function is just the canonical partition function multiplied
by the Boltzmann factor of the chemical potential and then summed over all
values of N°. That is,

Since summing over all N" means that NI can take all values from 0 to M, and
NL can take all values from 0 to infinity, (12.8.6) is

where (12.8.3) and (12.8.5) have been used for the number of complexions and
absolute activity is defined as usual by
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From equation (A.4.6),

so the second sum in (12.8.7) is

and putting this in (12.8.7) gives

But this sum is just the binomial expansion of (1 + B)M where B is

so the grand partition function reduces to

The adsorption isotherm is now easily obtained since the statistical mechani-
cal average for the total number of molecules in the adsorbed phase is (see
section 2.15)

The differentiation is readily carried out with the aid of equations (12.8.8),
(12.8.12), and (12.8.13), with the result that

where n" is the number of adsorbed molecules per surface site and x and c are
given by

Equation (12.8.15) can be expressed in terms of the gas pressure because the
adsorbed phase is in equilibrium with the gas phase, so the absolute activity
in (12.8.16) is the same as that of the gas. Taking the gas to be ideal, this is
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A being defined as the coefficient of the pressure in (12.8.17). Putting this in
(12.8.15) gives the BET adsorption isotherm as

the constants AI and AL being given by

The form of equation (12.8.18) is shown in figure 12.6 along with experi-
mental data for the adsorption of nitrogen on BaSO4.

6 At low pressures, the
curve is similar to that of the Langmuir isotherm, while at high pressures
the amount adsorbed increases very rapidly with pressure. In fact, equation
(12.8.18) shows that the amount adsorbed goes to infinity as ALP goes to unity.
But this is just the phenomenon of condensation, so the pressure P0 for which
A[f0 = 1 is just the saturation vapor pressure. That is, the pressure at which
the liquid condenses is given by

and therefore (12.8.18) can be written as

Figure 12.6. Adsorption isotherm for nitrogen on barium sulfate at 77.5K:
comparison of experimental data with BET theory.
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which explicitly shows that there is condensation of the liquid when the sat-
uration vapor pressure is reached.

While we were after a theory of multilayer adsorption, we have also arrived
at a theory of the vapor liquid transition and shown that condensation can be
regarded as the final result of multilayer adsorption. The constant c is related
to condensation because, within the assumptions of the theory, it is defined by
the free energy difference between a molecule in the liquid and a molecule in
the first monolayer, as can be seen by writing it out in terms of its definition
by equations (12.8.1), (12.8.2), and (12.8.16), which give

(AL - AI) being the free energy difference per molecule between the liquid
phase and the first adsorbed layer. At low pressures, P can be neglected rela-
tive to P0 in the first factor in the denominator of (12.8.21), and then the equa-
tion reduces to the Langmuir monolayer form.

Equation (12.8.21) is often written in the following linear form so that a com-
parison with experiment can be made by measuring the amount of gas adsorbed
as a function of pressure at a constant temperature:

Equation (12.8.23) can be used to measure the specific surface area of powders
from experimental adsorption isotherms. This is easily done because, if s and
t are the slope and intercept, respectively, then it follows that

But this is just the number of sites, which is the number of molecules adsorbed
for a full monolayer, so if the area occupied by a molecule sitting on the surface
is known, the area of the powder can be determined. The area of the molecule
sitting on the surface is calculated from the mean interatomic distances in the
liquid phase, which are obtained from liquid density data and the analysis of
adsorption on a variety of surfaces. This was done for the data of Morabito (see
note 6), with a resulting surface area of 4.152 mVgm for the BaSO4 powder. The
solid curve in figure 12.6 was computed from the values of M= 0.00158 moles
and c = 36.64. The agreement of the theory with experiment is quite good up
to a pressure given by P/P0 ~ 1/3. This is typical of the results for nonreacting
gases on inert powders. The linear plot used to determine the surface area and
isotherm constants is taken only for P/P0 < 1/3.

A great many experimental isotherms have been measured for the adsorp-
tion of gases such as nitrogen, oxygen, and the rare gases on finely divided
powders of solids such as titanium dioxide, barium sulfate, and lead chromate.
Plots of the results according to (12.8.23) display excellent linearity in pres-
sure ranges corresponding to P/P0 > 0.05 and P/P0 < 0.35. The failure of
the theory at very low pressures arises from surface heterogeneity. There are a
small number of sites for which the deviation of the energy of adsorption from
the average is so large that the assumption that all sites have the same energy
is completely wrong. The theory fails at high pressures because of the assump-
tion that all layers above the first have the same adsorption energy. This is
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obviously incorrect. The second layer still feels the influence of the surface,
and this influence falls off only gradually with distance from the surface. The
energy of adsorption decreases with each layer until it becomes equal to the
energy of condensation. There is experimental evidence that it takes about four
or five layers before the energy of adsorption levels off to that for condensation.

On an atomic scale, solid surfaces are not uniform. The surfaces of even the
most carefully prepared single crystals contain steps and ridges and can expose
more than one crystal plane orientation. With care, surfaces can be prepared
in which the atoms form a two-dimensional periodic array, but these usually
contain rows and furrows of atoms that have different local surroundings, so
there are differences of energy among the various kinds of sites. The energy of
a solid surface therefore varies from point to point on any solid surface, and
the degree of this variation is of great intrinsic and technological interest. This
inhomogeneity is much more extreme for solid powders that are prepared by
grinding or deposition from the vapor or from solution.

12.9 Segregation of impurities at interfaces

Consider an interface, which might be a free surface; the boundary between
two fluids, a fluid and a solid, or two different solids; or the grain boundary
in a single phase. Let the system contain an impurity that, because of the dif-
ference in the atomic environment, will have a concentration at the interface
that is different than that in the bulk.

To be specific, let the interface be a planar grain boundary in a metal that
contains some impurity at a low concentration. The simplest model for segre-
gation of the impurity to the grain boundary is that of the ideal lattice gas in
which the boundary contains M sites and the bulk phase contains L sites, each
of which can accommodate one impurity, and the impurity atoms do not inter-
act with each other. The procedure consists of writing the formulas for the
two-dimensional ideal lattice gas to represent the grain boundary and the three-
dimensional ideal lattice gas to represent the bulk. Equating the chemical
potentials in these two expressions yields the grain boundary concentration as
a function of the bulk concentration.

Let the binding potential energies of the impurity to a cell in the bulk and
in the grain boundary be —ws and —WG, respectively. Also, assume that the atoms
are Einstein oscillators. In the bulk all three degrees of freedom have the same
frequency VB, while in the grain boundary each atom has one vertical mode
with frequency vv and two modes parallel to the surface, each with frequency
vp. The energy for an atom in a cell of the bulk phase is therefore

and for the grain boundary

Now write equation (A.7.13) for the bulk phase, taking all v(k) to be the same
and equal to VB of equation (12.9.1). The result is
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NI being the total number of impurity atoms in the bulk phase such that Cs =
N]/L is the probability that a cell in the bulk contains an impurity.

Similarly, the probability that a cell in the grain boundary is occupied is
given by lattice gas theory as

CB and CG are the atomic concentrations in the bulk and boundary phases,
respectively.

Solving (12.9.3) and (12.9.4) for the chemical potentials and using (0,G = j^B
gives the concentration at the grain boundary relative to that in the bulk as

where Ws is the segregation energy defined by

Equation (12.9.5) is the Mclean isotherm, which has been used to analyze data
on grain boundary segregation with some success.

If the concentration of impurity in the bulk phase is small, then it can be
neglected relative to unity in the denominator of the right-hand side of (12.9.5),
and solving for the boundary concentration gives

with

Equation (12.9.7) has the same form as the Langmuir isotherm given by
equation (12.9.8), with the bulk concentration of impurity playing the role of
the pressure. This form is observed for the segregation of oxygen to grain
boundaries in molybdenum. However, data for the segregation of a number of
impurities to grain boundaries in iron indicate that both lateral and multilayer
interactions are important and the Langmuir-Mclean approach is too simple.
The data have been analyzed by the same types of isotherms as those used
for gas adsorption on solid surfaces. An interesting note is that in some
systems, multilayer segregation at grain boundaries leads to second phase
formation just as the BET isotherm leads to liquid condensation on a solid
surface.7

Exercises

12.1 Assume that the surface tension of a dilute solution varies linearly with
concentration according to y = 40 - 400c, where the surface tension is in
ergs/cm2 and the concentration is in moles/cm3. Show that the excess surface
concentration varies linearly with concentration and compute the propor-
tionality constant at room temperature (300K).
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12.2 Provided that the concentration is not too low and the chain length is
not too high, the surface tension of an aqueous solution of a fatty acid is a
logarithmic function of the concentration. That is, y = a + bin c, where b is
about the same for all fatty acids and a is a constant specific for each acid.
(This is Szyszkowski's rule, which is valid for fatty acids up to a chain length
of six carbon atoms.) Prove that the amount of fatty acid adsorbed at the
surface of the solution is approximately independent of the concentration of
the solution and is about the same for all acids.

12.3 Consider a dilute protein solution in water that forms a protein layer
on the surface having 10~6gm/cm2 of protein. At 20°C the surface tension of
water in the absence of the protein is 72.00 ergs/cm2 whereas with the protein
monolayer the surface tension is 71.90 ergs/cm2. Compute the molecular
weight of the protein using the Gibbs adsorption isotherm for dilute
solutions.

12.4 Assume that O = 1 in the Girifalco-Good equation (12.4.14). If the
spreading coefficient is zero, what is the relation between the two surface
tensions ys and y; in a solid-liquid interface? (Approximate the interfacial
tension between a condensed phase and the vapor by the surface tension of
the condensed phase.)

12.5 Assume that 0 = 1 in equation (12.4.14). What are the two possible
values of the ratio JA/JB if the interfacial tension is the mean of the two surface
tensions?

12.6 Using equation (12.4.14), derive <t> in terms of the ratio of the two
surface tensions if JAB = YB ~ YA (with JB > JA). This last equality is Antonoff s
rule for two liquids that are partially soluble in each other. Note that
Antonoff's rule states that the spreading coefficient is zero.

12.7 Show that the Lennard-Jones potential [equation (12.4.17) with m = 12]
can be written as £ = 4e [(o/r)12 - (o/r)8], where 21/6 o is the distance between
molecules at which the energy of interaction is a minimum and -e is the
minimum energy of interaction.

12.8 Consider a gas adsorbed on a heterogeneous surface that consists of
three patches, each patch having a different energy of adsorption. Assuming
immobile adsorbed molecules, derive the analog of the Langmuir adsorption
isotherm theory for this system. Get equations for the total amount adsorbed,
and for the ratios of the amount adsorbed on each patch, as a function of
pressure.
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The Theory of Random Flight

13.1 Introduction

The theory of the random motion of a particle through space has a variety of
uses. Two important applications are to molecular or atomic diffusion, and to
the statistics of long chain molecules. To clarify the concept of random flight,
consider a particle that, starting from a fixed point R0 = 0, can move a distance
r in any direction. After the first jump, the particle can again move in any direc-
tion, but with the same distance r. That is, the motion of the particle consists
of a number of N sequential jumps in an arbitrary direction, but all having the
same magnitude. The particle is said to have executed a random flight of N
equal-sized steps that are defined by the set of vectors (r)N = r^ r2, r3? . . . , TN,
each having a magnitude r, after which it has moved a distance R.

Each step is called a jump, and the distance from the starting point after N
jumps is called the total displacement. An example of a random flight in two
dimensions is shown in figure 13.1. For a general random flight, the jump dis-
tances do not necessarily all have the same magnitude.

Two important properties of a random flight that arise in physical applica-
tions are the scalar distance R = I R I between the starting point and end point
of the flight, and the probability PN(R) that a flight will result in the particle
having traveled a specific distance R, which will be called the total displace-
ment vector. Clearly, these can only be computed if the probability pfa) that
the particle will move through a vector r/ on the ;'th jump is specified. The
random flight in one or two dimensions is called a random walk, and this term
is often loosely applied to the three-dimensional random flight. The analogy
between solid state diffusion and polymer chains is obvious from figure 13.1.
In diffusion, each jump of the random flight represents the motion of an atom
from one lattice position to another, while in the polymer each step represents
the position of a monomer unit relative to a previous one in the chain. Each
possible random flight for a given number of jumps is called a conformation
for the AT-step flight. The number of conformations is particularly important
for polymer statistics since it gives the chain contribution to the entropy of
polymer systems.

The meanings of the probabilities in the diffusion and the polymer are anal-
ogous but different. For the case of a diffusing particle, the probabilities can
be defined either by the repeated flights of a single particle, or by a separate
flight for a large number of separate particles. For both cases, each flight is gov-
erned by the same probability jumps. In the first definition, assume that the
flight is repeated M times, each flight starting from the same origin and having
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Figure 13.1. Two-dimensional random flight.

the same number of jumps. Then the probability p/r,-) is the limit of the ratio
of the number of times the jfth jump goes through the vector r,- to the total
number of repetitions M, as M —> °°. Similarly, -FV(R) is the ratio of the number
of flights for which the total displacement vector is R to the total number of
flights M, as M —> °°.

For the second definition, it is assumed that a large number of particles all
start out under identical conditions and each executes a random flight of the
same number of steps. Again, the probabilities are defined as ratios, but this
time as ratios of the number of realizations of the vector r;- in the ensemble of
flights to M, as M —> <*>, or of the ratio of the number of flights in the ensemble
with displacement R to the total number of flights M, as M —> °° [for PN(R)]. In
analogy with the ergodic theorem, it is assumed that these two definitions yield
the same results.

Completely analogous definitions hold for the flight representing polymer
chains, but the definition based on an ensemble of chains is clearer and more
useful. Note that when the probabilities of interest are used to compute statis-
tical mechanical averages, they are ensemble quantities in the usual sense.

In the general case, it is not necessary that the individual jump probabilities
be centrosymmetric or the same for all jumps, although only some simple cases
in which the probabilities have convenient mathematical properties lead to
results that can be easily calculated.

13.2 The mean square total displacement

Let the probability that, on the /th step, a particle will move through a vector
TJ be denoted by p/(r;), and starting at the position R = 0, let it execute a random
flight through vectors r^, r2, r3,. . . , rN. The distance traveled by the particle
after N steps is given by
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and the average vector distance traveled by the particle is

For the case in which the probabilities of forward jumps are equal to those for
reverse jumps, that is,

the average of the vector defined by (13.2.1) vanishes, but the scalar distance
it travels is not zero. It is given by the average of the magnitude of the vector
R, whose square is

or

where the products between different jump vectors have been separated from
those for the same jump vector.

If the forward and reverse probabilities are not equal, then the mean vector
distance is not zero. This case is of interest for the motion of particles in the
presence of external fields that bias the jump probabilities in a particular direc-
tion as well as for polymers in which steric hindrance restricts the orientation
of monomer units.

Taking the average of (13.2.5) and writing out the scalar products in the
second term gives

with Qy being the angle between the Mi and /th jump vectors as shown in figure
13.2.

In most cases of physical interest, the lengths of the unit jumps in a random
flight are independent of each other and uncorrelated with the angle between
jump vectors. The average of their product is then equal to the product of their
averages and (13.2.6) reduces to

If each jump has the same magnitude r, then
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Figure 13.2. Angular relationship between jump vectors.

If, for every possible jump in a given direction, there is also a possible jump
in the opposite direction with equal probability, then the averages of the cosine
terms vanish and (13.2.8) is

This is the standard result for a simple uncorrelated random flight with unit
steps of magnitude r. Its clearest application is to interstitial diffusion in a
cubic crystal. The flight is said to be uncorrelated because the probability of a
jump does not depend on the probability of the previous jumps.

The root mean square distance defined by (13.2.8) is a measure of the "size"
of the random flight since its cube is a measure of the volume over which the
flight took place. Note that the root mean square distance increases only as
the square root of the number of jumps and is therefore much smaller than the
contour length Nr of the jump sequence.

In general, a jump probability can depend on the preceding jump, and the
cosine terms then do not necessarily vanish. The mean square displacement is
then written from (13.2.7) as

where fN is called the correlation coefficient and is defined by

Qii is called the correlation angle between the jumps i and j. The second term
in (13.2.11) can be put in a form that simplifies its calculation for a number of
important special cases by writing the sum in terms of partial sums as

as is evident from writing out a few terms of the double sum in equation
(13.2.11).
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Now make use of the following identity from spherical trigonometry:

In this formula, ot;,1?2 is the angle between a plane defined by r, and r/+1 and a
plane defined by ri+1 and ri+2. For the case of twofold symmetry, for every aw,2
between two such planes there is an angle n - oCj,1?2. The average of the last term
in (13.2.13) then vanishes, so

Since the two angles on the right-hand side of (13.2.14) are independent, the
average of the product is the product of the averages, and since the average is
the same for both angles,

Then, from (13.2.14) and (13.2.15),

so for all j,

and the correlation coefficient becomes

Then, using equations (A.4.1) and (A.4.2) in appendix 4, equation (13.2.17)
reduces to

where q = cos0for simplicity of notation.
For many applications the number of jumps is very large, and it is suffi-

ciently accurate to take the limit as N — > °°. Then (13.2.18) becomes

0 is called the correlation angle. Correlation can have a powerful effect on the
random flight. This is simply demonstrated by considering a flight in which
all correlation angles are the same and using equation (13.12.18) to calculate
the correlation factor as a function of the number of jumps for different values
of the correlation angle. For 0 = it/2 the particle executes a random walk on a
simple cubic lattice and the correlation factor is unity for all values of N. For
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Figure 13.3. Correlation factor for various correlation angles.

smaller angles, however, there is a dependence on N that is stronger as the
angle decreases, until at 9 = 0 the correlation factor is equal to N.

Figure 13.3 shows the correlation factor as a function of N for angles from
re/3 to 7i/9. In every case, the correlation factor approaches a limit with increas-
ing N, becoming essentially constant within a relatively short number of jumps.
This limit is close to unity for angles near 6 = fl/2 and increases with decreas-
ing angle. For very small correlation angles, it takes an increasing number of
jumps for the correlation factor to approach a constant value, and in the limit
of zero angle the correlation factor is just the total number of jumps. The cor-
relation factor as a function of N for small values of 6 is shown in figure 13.4.

Clearly, the root mean square distance can be greatly increased by correla-
tion. For polymers, this means that, on the average, molecular chains are less
compact the smaller the bond angle between the monomer units.

13.3 Random flight on a lattice

A simple but important example of random flight is the motion of a particle
that jumps from one site to another on a lattice. An illustration of this is shown
in figure 13.5 for a two-dimensional square lattice. A particle starting from a
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Figure 13.4. Correlation factor for small correlation angles.

lattice point labeled 0 has a given probability that it will jump to an adjacent
site on the lattice. In general, the probability can vary with the position of the
particle and the direction of the jump. The jump vector r, goes from the (i -
l)th site to an adjacent j'th site. Since the projections of the particle motion
along the coordinate axes go through a random walk, it is sufficient to analyze
the one-dimensional case. This is then applied to each of the three axes of
the Cartesian coordinate system and combined to give the two- or three-
dimensional case.

A particle going through a random walk along the x-axis has a probability p
that it will move to the right and a probability q that it will move to the left
each time it makes a jump. It is assumed that these two probabilities can be
different, but that they are the same for every jump. Of the total number of N
jumps, nR will be in the positive x-direction and nL will be in the negative
direction. We want the probability that the particle will have gone a distance
X in the positive direction after AT jumps. If x is the jump distance, then X is
given by

where m is the net number of steps in the positive x-direction:
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Figure 13.5. Random walk on a two-dimensional lattice.

Note that if N is even (odd) then the difference m is even (odd), as is obvious
from the fact that

To get the probability that the sequence of N jumps will contain nR positive
and nL = N- nR negative jumps, first get the number of ways of putting N objects
into two piles of nR and nL each. Multiplying this by the probability that a given
sequence will result in nR positive and nL negative steps gives the desired prob-
ability as

This is the binomial, or Bernoulli, distribution, so called because the prefactor
is just the coefficient in the binomial expansion
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Since the two probabilities must sum to unity, this shows that (13.3.4) is
normalized.

The mean distance and mean square distance traveled after N jumps are
defined by

These averages can be evaluated by the following device. Consider the bino-
mial expression

or

Now differentiate (13.3.9) with respect to r| to get

and let T| = 1 to get

so from (13.3.6),

The average displacement is proportional to the difference of the forward and
reverse probabilities and is zero when the probability of a jump is the same in
both directions.

To get the mean square displacement, multiply (13.3.10) by T|, again differ-
entiate with respect to r\ and then set r\ = 1. Using the result in (13.3.7) gives

For many applications of physical interest, the number of jumps is very large.
Polymer chains can contain thousands of monomer units, and measurable dif-
fusion in crystals involves an enormous number of jumps. It turns out that in
the limit of large N, the binomial distribution approaches a Gaussian distri-
bution and can be treated as a continuous function of nR. Let us show this by
taking the logarithm of the binomial distribution and expanding it in a power
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series about the value of nR = nR for which the distribution is a maximum,
treating nR as if it were a continuous variable. Then, from (13.3.4),

and the Taylor expansion of this is

To get the derivatives of the factorials, note that

In the limit of large N, this difference approaches the derivative, so

and therefore

and the second derivative is

The position of maximum probability is readily obtained by setting (13.3.18)
to zero. The result is

This relation simplifies the expression for the second derivative at the
maximum nR to

Now put the values of the derivatives in the expansion (13.3.15) to get, up
to the second order,

Equation (13.3.20) is also the probability that the particle has moved nL steps
to the left, and the probability that the net number of steps to the right is m,
as well as the probability that it has moved nR to the right, since these proba-
bilities are all the same. Our objective is to get the probability distribution func-
tion for the net distance traveled, so using (13.3.3) we write (13.3.22) as
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The product of the jump probabilities can be related to distances by using
(13.3.12) and (13.3.13) which give

and substituting this in (13.3.23) gives

where we have adopted a continuum notation with X = mx, and the standard
deviation ox is defined as

Note that since the probability distribution is symmetric about its maximum, the
maximum is equal to the average. That is, X= X.

The probabilities represented by equation (13.3.25) must sum to unity. In the
discrete notation, normalization is achieved by simply summing over all pos-
sible jump sequences. In the continuum notation, the segments are as if they
were infinitely close together and the sum is replaced by an integral over all
possible distances. To be consistent with this, (13.3.25) must be a probability
density such that

is the probability that, after N jumps, the particle is between X and X + dX.
The pre-exponential constant is determined by the requirement that the

probability be normalized over all positive and negative values of the argu-
ment. This then converts (13.3.23) to the normalized Gaussian distribution for
the probability density:

If the probability of a jump is the same for both the forward and reverse direc-
tions, then the mean displacement X is zero. In diffusion applications, a
nonzero mean displacement is the result of forces acting on the system that
depend on position, such as gravity, electric forces, or varying internal stresses.
In applications to polymers, the difference in forward and reverse probabili-
ties corresponds to an asymmetry in the possible orientations a monomer unit
can assume relative to other units in the chain.

The Gaussian is a good approximation to the binomial distribution for sur-
prisingly small values of N, as shown in figure 13.6, which is a comparison of
the binomial distribution, represented by the marker points, and the Gaussian
distribution, represented by the solid curve, for N= 100 and p = q = 1/2.
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Figure 13.6. Comparison of binomial and Gaussian distributions for N = 100.

The agreement between the curve and the points is excellent. It must be
noted that the percentage error for values of the number of steps far from the
mean is very large. However, this does not matter since the probability is prac-
tically zero for these ranges of X (or m) and contributes very little to any phys-
ically important property of the distribution. The continuum approximation is
increasingly accurate for increasing numbers of total steps.

The transition to three dimensions is trivial. If the jump vector is expressed
in Cartesian coordinates, and the components of the random motions along the
coordinate axes are statistically independent, then the probability that the par-
ticle will have traveled a distance R after N jumps is

with

The three-dimensional Gaussian distribution is therefore
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If the random flight is on a cubic lattice with the magnitudes of the compo-
nents of the unit jumps all being equal, then the standard deviations are the
same for all three directions and (13.3.31) is

An interesting point is that, for a body-centered cubic lattice, the unit jump
is from a central to a corner atom; the components of the jump therefore all
have the same magnitude, and the probabilities for the jump components are
not independent. In fact, the probability for a forward (or backward) diagonal
jump is just the same as the probability that a jump component (in the x-
direction, say) will be in the forward (backward) direction. The one-dimen-
sional random walk is therefore fully equivalent to a three-dimensional random
flight on a body-centered cubic lattice. The difference between the two is that
a particle can move to the right in four ways on a body-centered cubic lattice,
but only one way on a one-dimensional lattice. To get the total number of flights
in three dimensions, the result for the one-dimensional walk must therefore be
multiplied by 4N. This concept is important in counting the number of con-
formations in simple random walk models of polymer chains.

Note that one- and two-dimensional random walks are appropriate for mod-
eling diffusion along dislocation cores and on surfaces (or grain boundaries),
respectively.

13.4 Reflecting and absorbing barriers

Some important physical phenomena can be modeled by random flights in the
presence of reflecting or absorbing barriers. A reflecting barrier is a plane such
that whenever the migrating particle hits it, the particle has unit probability of
returning to the position it had previous to the jump. An absorbing barrier is
a plane such that any particle that meets it vanishes and has zero probability
of migrating any farther. If the random flight is on a lattice, the barrier plane
must be one of the lattice planes on which the flight takes place.

An example of a physical random flight with a reflecting barrier is the dif-
fusion into a crystal of a layer of impurity or tracer atoms deposited on a crystal
surface. Another example is that of a polymer chain adsorbed on a surface. An
example of a random flight with an absorbing barrier is the diffusion of atoms
through a crystal to a crystal surface, where it escapes into the gas phase or is
immobilized by a chemical reaction.

Figure 13.7 illustrates the effect of a barrier by the two-dimensional square
lattice. Again, it is sufficient to consider the motion in the x-direction sepa-
rately, and again, we denote the number of lattice units in the x-direction by
m. Let the barrier be at the lattice plane m = mB; without loss of generality, we
can take mB > 0. If the reflections at the barrier were ignored, then the proba-
bility that the particle would have traveled a distance X = mx would be given
by (13.3.28), but with the restriction that X is to the left of the barrier. But the
presence of the barrier introduces another set of jump sequences since each
sequence that reaches the barrier is reflected. The number of these extra
sequences can be computed by recognizing the symmetry of the system, which
states that a particle at the barrier has the same chance of reaching C as it would
have of reaching the mirror image C' if the barrier were not there. This means
that the extra number of sequences can be computed from the probability that
a particle reaches the image point C'. This image point is at the position m, =
2mB - m, or X, = 2XB - X. Therefore, the probability of reaching the image point
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Figure 13.7. Random walk in the presence of a barrier.

PN(2mB - m) must be added to the probability Pjv(m). That is, the probability
of reaching m in the presence of the reflecting barrier is

In continuum notation for large AT this is

The generalization to three dimensions using (13.3.32) is obvious:

A subscript BR has been added to identify the fact that the reflecting barrier is
present.

If the barrier absorbs particles instead of reflecting them, then each time a
particle reaches the barrier it disappears, so a number of sequences that would
have brought the particle to C (in the absence of the barrier) are lost. Again,
using the fact of symmetry, the number of lost sequences is just the number
that would reach the image point C' if the barrier were not there. This means
that from the probability computed as if the barrier were not there, we must
subtract the probability that the particle reaches the image point. Then, instead
of (13.4.2) we have
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and in three dimensions,

with the subscript denoting an absorbing barrier.
Note that in all these equations, the distance variable is restricted to the left

of the barrier.

13.5 The Markoff method

A general method of analyzing random flights is based on the Markoff theory
of random variables as presented by Chandresekar.1 The method, based on an
analysis of the Fourier transform of jump probabilities, is very powerful. It
includes all the above presentations as special cases and also leads to a general
result of surprisingly wide applicability. Again, we look for the probability that,
after N jumps, the particle will have traveled a distance R. That is, we want
the probability that after AT steps, the particle will have arrived in a volume
element dR centered on R denned by

Initially, no restrictions are placed on the individual jump probabilities. The
general approach is to assign a probability to each step of the random flight,
multiply them together to get the probability for R, and integrate over all values
of r, that satisfy (13.5.1). That is,

where p/r;)dry is the probability that the /th step will bring the particle into the
volume element dr; and PW(R) is the probability that after AT steps the particle
will be in the volume element dR . The symbol A indicates that the integra-
tions are carried out only over the values of T/ that satisfy the inequality (13.5.1).
Pjv(R) is the displacement probability for N steps.

Define A^k) by

This is just the Fourier transform of the displacement probability and is
called the characteristic function of the random walk. It has the important
property that, because R = 2r/, the transform of the total displacement proba-
bility is the product of the transforms for the individual step probabilities.
From these, the total displacement probability can be computed by taking the
inverse Fourier transform to get
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with

This reduces the random flight problem to that of finding the Fourier trans-
form of the individual flight probabilities.

A case of particular interest is that in which all the individual jump proba-
bilities are equal, such that pyfa) = p(r). (Note that these probabilities can be a
function of the jump vector, but they are all the same function of r.) Then
(13.5.5) reduces to

The analyses of the preceding sections are restricted to cases of this sort.
The Fourier transform, and therefore the displacement probability, can be

evaluated for a number of special cases for the jump probability function that
are of physical interest. A simple instance is that of the freely jointed flight
that is defined by the conditions that each step can take any direction but only
one length r,. For this case, the jump probability of the j'th step is the delta
function

This just states that on the j'th jump the particle can go off at any angle with
equal probability, but can only move the prescribed distance r/. The prefactor
normalizes the probability since integrating the delta function in spherical
coordinates gives 47tr/. Putting this in (13.5.5) gives

The integral can be evaluated in spherical polar coordinates, letting 6 be the
angle between the vectors r, and k:

so (13.5.8) becomes
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Put (13.5.10) into (13.5.4) to get

For a flight of equal steps, with all r, = r, (13.5.10) and (13.5.11) become

The function (sinx)/x is important in diffraction and in other aspects of solid
state theory as well as in the theory of random flights. It has a maximum value
of unity at x = 0 and is small for values of x away from zero, as shown in
figure 13.8. This means that for large N the integrand in (13.5.12) is very
close to zero except for small values of kr. A series expansion about kr = 0 is
then useful.

Dividing the series expansion of the sine by its argument gives

retaining only the first two terms in (13.5.14) gives

The right-hand side of (13.5.15) is just the first two terms of the expansion of
the exponential function, so

The larger the AT, the better this approximation. It is quite good even for rather
small values of N.

The difference between the two functions in (13.5.16) decreases rapidly with
increasing N and is small even for relatively small values of N. For N= 20 the
maximum error incurred by using the exponential function is about 5.5%,
while for N= 100 the maximum error is 0.1%. For a flight of 200 steps, the
error reduces to 0.05%.

It is therefore sufficiently accurate to put (13.5.16) into (13.5.13) to get

This integral can be evaluated by using spherical polar coordinates with
k • R = kRcosQ and dk = Znk2 sinQdQdk so that
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Figure 13.8. The function (slm)/x.

but

and therefore

This is a known integral.2 The result is
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The vector notation has been dropped because the probability depends only
on the magnitude of the displacement vector.

This provides the simplest model of a polymer chain, each jump corre-
sponding to the length of a monomer unit, which is assumed to be able to take
on any orientation relative to its adjacent units.

This rather general method can be used for other cases by following the same
route as that which led to (13.5.19) but using, the appropriate step
probabilities.

Another case of interest is that in which the particle can jump in any direc-
tion and the probability that the jump will be of a given length is Gaussian.
That is, the probability that the ML step will have a length r is

with r2 being the mean square jump distance. It is easy to show that, with this
jump probability, the probability that after N steps the particle will be at a dis-
tance R from its starting point is

for large N. To arrive at (13.5.21), first substitute (13.5.20) into (13.5.5). The
integrals are then readily performed to give

where the average of the square of the jump distance is defined by

Putting (13.5.22) into (13.5.4) again gives integrals that are easily performed,
with the result given by (13.5.21). This result provides an appropriate model
for diffusion in a liquid, for which the jump of a molecule to a new position
can take place in any direction and the length of the jump is distributed around
a distance for which the probability of the jump is a maximum.

13.6 The general solution

The cases given above, in which a normal distribution of total displace-
ments is obtained as the limit of the product of probabilities for individual
displacements, are special cases of the central limit theorem. This theorem
states that, given a set of N random events, each with a given probability of
occurring, the probability distribution of the compounded event approaches
the normal (Gaussian) distribution as AT becomes large. This theorem can be
understood by considering a generalization of the process leading to equation
(13.5.19). Start by examining the characteristic function, given by (13.5.6) and
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recognizing that the integral in (13.5.6) is always less than unity because, in
the absence of the exponential function the integral is unity and the magni-
tude of the real part of the exponential is always less than unity. The charac-
teristic function is therefore a product of terms that are always less than unity,
so as N becomes large, this product gets small.

Expand the exponential in (13.5.6) to get

From the definition of the average and moments of a distribution, (13.6.1) can
be written as

where Q is defined by

and, in keeping with the usual definitions, the sth moment is defined by

That (13.6.2) is well approximated by an exponential function for large N
can be seen by first using the binomial expansion to get

Now consider the expansion of the exponential function

As N —> o=, (13.6.5) approaches (13.6.6), so for large N, the characteristic func-
tion becomes

Retaining only the first two terms for Q in (13.6.3), this reduces to

To get the probability distribution for the total displacement, substitute (13.6.8)
into (13.5.4):

The only obstacle to evaluating this integral is the quadratic term in the expo-
nential, because the second moment has the form
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and the mixed (nondiagonal) terms prevent the integral from being separated
into a product of integrals, each integrand being a function only of one k -
component. However, it is always possible to rotate axes to reduce any qua-
dratic form to a sum of squares. That is, a coordinate system exists for which
the last three terms in (13.6.10) vanish. Let us assume that we have chosen
such a coordinate system. Then (13.6.9) becomes

where

with similar definitions for PN(Y) and P^Z]. Equation (13.6.12) is a known inte-
gral,3 so taking the product of (13.6.12) with the similar results for the PN(Y)
and PN(Z) gives the final result that

If the mean displacement for the individual jumps is zero, then (13.6.13)
reduces to a Gaussian form similar to those derived for the special cases given
above. In the general case, when there is an asymmetry in the jump probabil-
ities, there is a "drift" displacement, defined by the nonzero averages of the
unit jumps, that is superimposed on the Gaussian probability distribution. This
occurs, for example, in Brownian motion or gas diffusion in a gravitational
field or in solid state diffusion in the presence of nonuniform stresses.

An important special case is that in which there is no drift displacement and
the probability has sufficient symmetry that the second moments in the three
directions are equal. That is,

This would be the case if the jump probabilities were a function only of the
magnitude of the individual jumps, or for a random flight on a lattice where
the probability of a jump was the same for the three components of the jump.
Using (13.6.14) in (13.6.13) gives

This is just like (13.5.21), which is the result for the case of a Gaussian form
for the individual jumps. Equation (13.6.15) shows that the jump probabilities
need not be restricted to a Gaussian form to yield a Gaussian distribution for
the total displacement, but depends only on the jump probabilities having a
sufficient degree of symmetry.
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13.7 Self-similarity

A long random flight can be divided into sections, each section consisting of
a long sequence of contiguous jumps. That is, if N is large enough, the flight
can be subdivided into a large number of sections for each of which the number
of jumps is large. For this case the sections "look like" the total flight in the
sense that its conformation is similar and that the probability distributions of
the displacements are similar. To quantify this, consider a flight of M steps,
each with the same symmetric jump probability, and with JVa large enough
that the displacement probability distribution is given by (13.6.15). After the
JVjth step, let the particle execute another random flight of JV2 steps whose
probability distribution is again given by a form like (13.6.15). This can be
continued 05 times until the flight makes a total of N steps given by

The probability distribution for the displacement distance for the /th section
is

and the probability distribution for the entire flight is the product

If the NJ are all equal, then (13.7.3) becomes the same as (13.6.15). This means
that, for a very long chain, the smaller sections act as if they were unit jumps
with a Gaussian jump probability, but each of these sections has a Gaussian
displacement probability of its own. As N —» °°, the flight can be subdivided
into parts each of which is similar to the whole, and each of these parts can
be subdivided into subsections that are similar to the sections. This is the
phenomena of self-similarity in which scaling up or down results in systems
that are similar to the original system in important respects. For diffusion, this
means that the path of a diffusing particle looks the same at any scale of
resolution, and for polymers, this means that a subsequence of polymer units
looks very much like the total polymer chain. Of course, these statements are
meant to apply to the averages of flight paths or conformations, and are valid
only if the smallest section considered is not too small.

The above conclusions were based on flight paths whose jump probabilities
had a high degree of symmetry, but self-similarity occurs even when this is
not the case. Consider, for example, a flight in which the possible jumps are
restricted to a small range of angles. This would be the case in a polymer chain
in which the relative orientation of two adjacent monomers is restricted by
chemical bond angles, as illustrated for in figure 13.9.

The chemical bond requires the angle between the first and second segments
to be either 6 or -8. This is also true of succeeding pairs of segments, but it is
clear that after a sufficient number of segments, the chain can have any of a
wide variety of conformations and can even fold back on itself. In three dimen-
sions, there is the added factor that the orientation of a pair of segments is
defined by two angles, 6 and $, only one of which is fixed by bond angle
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Figure 13.9. Bond angles and coiling in a polymer chain.

requirements. It does not take too many segments in the chain (or steps in a
flight) before coiling through almost any region of space can occur. This can
be treated by defining a distance (or number of segments) such that the
probability of the orientation between two such distances is nearly spherically
symmetric. The phenomenon of self-similarity then holds. This is why linear
polymers can be modeled as looping strands of cooked spaghetti.

13.8 The diffusion equation from random flights

Let us adopt the multiparticle interpretation of the random flight. That is, it is
assumed that a very large number of particles all start from the same point and
each executes a random flight, and assume that the number of jumps is very
large. Then the probability distribution Pu(R) is taken to be the fraction of the
flights for which the total displacement is R. Also, assume that the displace-
ments are sequential jumps in time and let the average number of jumps per
unit time be defined by

This is called the average jump frequency,
It is assumed that the number of jumps and the time are both large enough

that continuum approximations are valid. That is, R is always much larger than
interatomic distances, and t is always much larger than the time between
jumps. It is also assumed that the average jump frequency is independent of
time. Equation (13.6.15) now represents diffusion from a point source, and we
write it as
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where the constant D is defined by

In keeping with the temporal continuum approximation, the subscript AT on
the probability distribution has been dropped. P(R) is proportional to the con-
centration of particles a distance R from a point source at time t after diffusion
begins.

If (13.8.2) is differentiated with respect to time, the result is

and taking the Laplacian of (13.8.2) gives

Comparing (13.8.4) and (13.8.5) shows that

Figure 13.10. Diffusion profile from a point source for two different times.
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But this is just the diffusion equation for a system of noninteracting particles
in the absence of fields. This shows that (13.8.2) is the solution of the macro-
scopic diffusion equation for the spreading of a point source. In fact, (13.8.3)
can be used to derive the diffusion equation for any starting distribution of
particles, thereby connecting the macroscopic diffusion theory to microscopic
events. This will be done explicitly in chapter 17, using the concept of transi-
tion probabilities.

Equation (13.8.2) shows that the concentration of particles around a point
source spreads out with time although it remains Gaussian. This is illustrated
in figure 13.10 for one dimension. Two curves are shown, one corresponding
to a later time than the other.

Exercises

13.1 Consider a one-dimensional random walk in which the probability
p is very much less than the probability q. Show that the probability that
the displacement to the right is nR after N jumps will be, for nR «
N, Pjv(flfl) = [(Np)nR/nRl\e~Np This is the Poisson distribution for a very large
number of events, each having a very small probability. (Hint: start with the
binomial distribution, take limits and use Stirling's approximation.)

13.2 Show, for a one-dimensional random walk of equal steps x, that
when the probabilities of forward and backward jumps are equal, the
mean square fluctuation of the displacement is AX2 = X2 -X2 =x2N

13.3 For a one-dimensional random walk, what is the mean square fluctua-
tion if the probability of a forward jump is twice that of a backward jump?

13.4 Derive equation (13.3.4) for the probability distribution of the dis-
placement in a one-dimensional random walk by the Markoff method. Hint:
To do this, the probability of forward and reverse jumps must be written as
a probability density. That is, the probability that the /th jump will result in
a displacement between Xj and xs + dxj is P^x^dx/ = [p8(Xj - x) + <j8(x; + x]]dx.
Also, you will need the definition of the Dirac delta function as

which is just the orthonormality condition for the complete set of plane
waves.

13.5 Consider a very long random flight whose probability distribution
function for the displacement is given by a Gaussian with a zero mean
displacement. From the concept of self-similarity, we write the probability
distribution as another Gaussian with a mean unit displacement of f and a
number of jumps N = A/Xco. The probability that the total displacement is R
must of course be the same for both the standard and the self-similar descrip-
tions. Find the ratio of the mean square jump distance in the self-similar
description to that in the standard description by requiring that the total root
mean square displacement is the same in both descriptions and also by
requiring that distances in the probability density for the self similar descrip-
tion scale according to l/o>.



374 STATISTICAL MECHANICS OF SOLIDS

Notes

1. Chandrasekhar (1954).
2. See, for example, p. 495 of Gradshteyn I.S., and I.M. Ryzhik; 1965; Table of

Integrals, Series and Products, Academic Press, New York.
3. See p. 307 of Gradshteyn and Ryzhik (ibid.).



Linear Polymer Chains

14.1 Polymer chains and random flight

The salient fact about polymer chains is that, on a molecular scale, they are
very long. Linear polymers consist of chains whose lengths can vary from hun-
dreds to many thousands of monomer units. The statistical mechanics of
systems composed of such large molecules can be quite complex and, if
pursued with a degree of rigor and completeness, soon becomes intractable to
analytic methods.

But it is the great length of the polymer chain that distinguishes it from other
systems, and it is of interest to focus on this fact. Accordingly, it is customary
to adopt a simple model that assumes that a polymer chain consists of a large
sequence of identical segments joined together at their ends by chemical bonds,
each segment being rigid, but having at least some freedom to rotate in space
relative to its adjoining segments. Such a chain has many possible conforma-
tions, and the analogy to a random flight is clear. Figure 13.1 is then inter-
preted as a possible conformation of a long-chain molecule, and figure 13.2
then shows the angular relation among adjacent monomer segments. In this
model, all the results of random flight theory carry over to polymer statistics.

However, some caveats are in order because polymer segments consist of
groups of atoms and are not geometric lines. There are intramolecular interac-
tions among these groups that are not accounted for in the theory of random
flights. An important effect of these interactions is that segments cannot go
through each other, although this is a possibility that is included in random
flight theory. A modification that takes this into account would require the
theory of self-avoiding random flights, which is considerably more complex
and does not have the neat simplicity of the theory presented in chapter 13. A
second important effect is that the interaction of segments modifies the jump
probabilities by a Boltzmann factor of the interaction energy, so they are not
fully random in the sense defined in chapter 13.

These caveats are not fatal. The conformations of a random flight are sur-
prisingly open, and the number of jumps in which segments cross is not large,
so the random flight is a reasonable approximation. Also, the interaction en-
ergies can be included in the construction of the partition function. For
elementary theories this is done by adopting a mean field approximation
equivalent in principle to Bragg-Williams alloy theory. Thus, a simple
approach based on random flights for the conformations of polymer chains
yields theories that display the physical effects of long chain length in an infor-
mative manner. The unique contribution of chain length to thermodynamic
properties arises from the relation between the number of possible chain
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conformations and entropy, a connection that is absent in systems consisting
of atoms or small molecules.

14.2 Persistence length

Because of the property of self-similarity, discussed in chapter 13, the Gauss-
ian form for the distribution of end-to-end distance has a wide applicability
and is sufficient for a coherent description of chain statistics. A formal descrip-
tion of this fact can be expressed in terms of a quantity called the persistence
length, which is a measure of the minimum distance between two segments at
which the correlations between them are negligible.

If the average cosine of the angle between two segments vanishes, there is
no correlation between the segments, so a definition of the persistence length
starts with equation (13.2.16), which gives the angle between two segments
separated by j bond lengths. We rewrite this as

where 6, is the angle between any two segments that are / segments apart
in the chain sequence.

Unless cos0 = ±1 (corresponding to a rigid linear rod), the right-hand side of
(14.2.1) approaches zero as the number of bond lengths increases. For all phys-
ically realistic cases, therefore, the correlation between segments decreases as
the number of unit segments between them increases and eventually becomes
very small. The length at which segments are essentially uncorrelated can be
used to define a multisegment, consisting of a number of unit segments. By the
principle of self-similarity, the chain can then be thought of as a chain of uncor-
related multisegments. The length of a multisegment is clearly important. A
parameter describing this length can be obtained in terms of the average of the
cosine of the angle between two unit segments as follows.

For some other separation k, (14.2.1) is

Also, cos9;+i = cos0 , and therefore

This is just the property of an exponential, so (14.2.2) can be written as

with

np is a measure of the decrease in the correlation between segments as they get
farther apart in the chain. When multiplied by the length of a segment 1, it is
called the persistence length, which is defined by
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The persistence length is characteristic of the linear polymer chain under con-
sideration. The correlation between segments decreases rapidly in units of the
persistence length. A quantitative measure of this is obtained by writing, from
(14.2.4),

This ratio gives the fractional decrease in average correlation angle with
increasing separation between segments, relative to the average correlation
angle for adjacent segments. It decreases rapidly when measured in units of
the number of segments in a persistence length, / = 1/1.

For 7= 2 the correlation between segments, as measured by the average cosine
of the correlation angle, has decreased to 36.5% of its value between adjacent
segments, has gone down to 13.5% for j = 3 and is less than 5% for / = 4.

A plot of the persistence length, in units of 1, is shown in figure 14.1. For
very small angles, the persistence length is very high and the chain takes on
the properties of a rigid rod as the correlation angle goes to zero. But the per-
sistence length decreases rapidly with increasing angle until, for angles
approaching jt, it becomes less than the length of a unit segment, since this
represents a freely jointed chain.

In terms of the persistence length, equation (13.2.19) for the correlation factor
is given by

Figure 14.1. Persistence length as a function of correlation angle.
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The persistence length is closely related to the effect of correlation on the size
of a polymer molecule. The simplest measure of molecular size is the root mean
square end-to-end distance given from equation (13.2.10) as

The second factor on the right is the root mean square distance for an ideal
freely jointed chain, so the square root of the correlation factor measures the
expansion of molecular size arising from correlations in the directions between
segments. This expansion is the result of the restrictions on the free random
flight imposed by the fact that a segment cannot have every possible orienta-
tion relative to its neighbors. Some regions of space are therefore unavailable,
so the chain spreads out over a larger volume than would be the case for a
freely jointed chain.

The expansion factor, as measured by V/, is shown as a function of the
average correlation angle in figure 14.2. For high degrees of correlation (small
angles) the expansion factor is quite large, but rapidly decreases to unity for
large correlation angles.

A physically important point is that, regardless of the correlations among
adjacent segments and the bond angle relations between them, a long-enough

Figure 14.2. Expansion factor as a function of correlation angle.
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chain is totally flexible in the sense that it can twist and coil throughout space,
provided the scale of resolution examined is larger than the order of the per-
sistence length. A length of the multisegment can be denned to describe this
by requiring that, in terms of this new segment, the root mean square distance
is the same as for a freely jointed chain. That is, we define a length lk by the
relation

where the last equality arises from the fact that the number of multisegments
Nk is less than the number of unit segments Nby the factor l/lk. Nl is the contour
length of the chain, and lk is called the Kuhn length.

Note that there is a bit of physical ambiguity in the definition of the
Kuhn length because, for a chain of correlated segments, it is never pre-
cisely true that the correlation factor can be denned to unity by using larger
segments. However, as pointed out above, only a rather short string of persis-
tence lengths suffices for the correlations to become very small. Mathemati-
cally, there is no ambiguity since the Kuhn length is defined as the mean square
length divided by the contour length. Use of Kuhn segments permits simple
models to be used, such as the freely jointed chain or the beads-on-a-string
model, that are appropriate for the large-scale properties of long polymer
chains.

The angular relations among the segments within a distance of the order of
a persistence length are ignored in this approach, but it must be remembered
that the multisegment defining the persistence length is not a rigid, linear
entity. Rather than regarding the chain as a sequence of larger rigid rods when
viewed on a scale larger than that of unit segments, it is physically more appro-
priate to regard it as a random coil of limp spaghetti. That is, on the scale of
persistence lengths, the chain is very flexible.

14.3 Chain length fluctuations

The root mean square end-to-end distance is a good measure of the size of a
chain molecule. However, the number of possible chain configurations is very
large, many of them having an end-to-end distance far from the root mean
square. It is therefore of interest to determine the degree of fluctuation of size
from the root mean square length. This is measured by the average difference
between the square of the end-to-end distance and the mean square distance.
Thus, the relative fluctuation AH is defined as

so all that is necessary is to compute the fourth moment of the distribution of
end-to-end distances. To do this, let us use equation (13.5.19) for the freely
jointed chain in the form

The fourth moment is given by
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the standard deviation being related to the mean square distance by

Using (14.3.3) and (14.3.4), equation (14.3.1) gives A4= 2/3, A(2/3)1/4= 0.904.
This shows that the fluctuations in end-to-end distance are large.

Let us get the ratio of the probability of having a specified end-to-end dis-
tance to that of having the root mean square distance. If we let R = RKMS + 8,
then

This gives the relative probability of a fluctuation. A plot of (14.3.5), as a func-
tion of 2&/Rs, is shown in figure 14.3. From the curve the probability that a
fluctuation in length will occur that deviates from the root mean square value

Figure 14.3. Fluctuations for a Gaussian chain. RMS: root mean square.
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by 50% is about 15%, again showing that fluctuations from the root mean
square distance are substantial.

14.4 Density in a polymer chain

The interactions among segments will be of importance for the partition
function. For segments that are adjacent, these interactions can be quite strong.
But even segments that are far apart in the chain sequence can approach
each other because of coiling, so some measure of the average distance between
segments is of interest. This can be obtained as an average density of seg-
ments in the volume taken up by the chain. Since a linear measure of the size
of the molecule is the root mean square end-to-end distance, an average
chain volume is approximately the cube of this. Ignoring unimportant
geometrical numerical factors, the volume over which the chain spreads is
approximately

so the number of segments per unit volume is

Compare this to the hypothetical case in which the chain is tightly coiled, with
each segment taking up a volume of P such that the density of segments = 7~3.
Then the ratio of the segment density in a random flight chain to that in a
tightly coiled chain is AT1'2. That is, the chain becomes looser and more spread
out with increasing chain size. For a chain consisting of 10,000 segments, for
example, the segment density over the volume of the chain is only 0.01 of that
in a tightly coiled chain. Most segments, therefore, will not be close to each
other and will interact to a negligible degree. Of, course, this is true only for
free, isolated chains. In a condensed phase, there will be considerable inter-
action among segments from different chains. The relatively open structure of
chains implies that, in a condensed phase, there is plenty of room for differ-
ent chains to intertwine and that the random walk results can still be a decent
approximate method of describing chain length even though the overall seg-
ment density will be much higher than for an isolated chain.

14.5 Partition function of a polymer chain

Consider a polymer chain made up of N monomer units. Each monomer unit
consists of a carbon skeleton to which are attached hydrogen atoms and one
or more chemical groups, as shown in figure 14.4.

The chemical groups can rotate about the bond angle 6. The rotation is
described by the azimuthal angle $. In general, the rotation is not completely
free, but is restricted by steric hindrance such that a potential barrier exists at
certain values of the relative angles between groups on different monomer
units. The potential energy of the chain can be classified as follows:

1. The sum of chemical bond interactions of each atom with atoms adja-
cent to it: this depends only on the distance between adjacent atoms.



382 STATISTICAL MECHANICS OF SOLIDS

Figure 14.4. Monomer units in a polymer chain.

It includes the minimum of the bond interaction energies and the
atomic vibrational energies. To a good approximation, this energy is
independent of the chain conformation.

2. The rotational energy arising from the interaction between adjacent
groups on the chain: if the rotational barrier is high, this reduces to
librational energies. If the barrier is low relative to thermal energy, this
becomes the energy of free rotation. The rotational energy arises from
physical interactions and is a function of the relative angles between
the groups. This is also nearly independent of chain conformation,
although the relative rotation between adjacent groups is influenced by
the orientation of groups farther away.

3. The physical, van der Waals type of interactions among atoms that
are not adjacent to each other: it is convenient to separate this into
two parts, interactions among nonadjacent atoms on the same mon-
omer unit and interactions among nonadjacent atoms on different
monomer units. The latter interaction is a strong function of chain con-
formation.

To a first approximation, the energy of a polymer chain can be divided into
three parts: the energy of the unit segments, the energy of interaction among
adjacent segments, and the energy of interaction among segments that are not
adjacent. Let us call these Elr E2, E3, respectively. The first of these can be taken
as a constant characteristic of the units making up the chain. The bond angle
0 between two adjacent segments can vary (because of thermal fluctuations)
over a small range, thereby giving a variation in the distances between the parts
of the two segments. This can be approximated by a quadratic function of the
distance between the two segments and is a vibrational energy contribution to
E2. There is also a rotational energy contribution arising from the fact that, even
though the bond angle can vary only between narrow limits, a segment can
rotate through an angle <]) about an axis defined by the extension of the pre-
ceding segment in the chain. But this rotation is not completely free because,
as a segment rotates, its atoms can come close to atoms in the preceding
segment. The result is a potential energy of rotation that is a function of the
azimuthal rotation angle §. Depending on the number and nature of the chem-
ical groups attached to the skeletal atoms, the rotational potential can have
multiple minima.
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The third energy, E3, is the van der Waals repulsion among atoms on differ-
ent monomer units and gives rise to the excluded volume. It is often approxi-
mated by assigning a single energy of interaction between two segments,
thereby replacing interactions among atoms by a kind of average over the atoms
in a segment. The partition function for a single chain is then

The parameters R, 9, <|> define the configuration of the polymer chain, and E/
denotes the ;'th quantum state for a given configuration. The number of con-
figurations for a given energy has been factored into two parts that are assumed
to be independent. The first, W(R), is the number of ways that the chain can
achieve an end-to-end distance R, as given by random walk models. The second
is the number of ways that adjacent segments can be oriented relative to each
other for a given energy. It will be assumed that the chain has a single bond
angle such that W(Q, §) = W(§). If the segments can rotate freely about this bond
angle, then W(Q, <j>) = W(Q) = 1. The inner sum is over all configurations for a
given energy while the outer sum is over all energy levels.

This is a rather formidable form for the partition function, but it can be
readily transformed to the point where simplified models can be applied. The
energies in (14.5.1) are taken to be independent such that the partition func-
tion can be factored into

in an obvious notation. Our interest is in properties that strongly depend on
chain length, so we will focus on Z3 and write it explicitly as

A basic task of polymer statistics is to evaluate this partition function.

14.6 Excluded volume

The models of chain configuration discussed so far are based on random flights
for which the segments can interpenetrate. But a polymer chain is more accu-
rately modeled by a self-avoiding flight in which no jump that either brings
the particle to a point that was previously visited, or that crosses any previous
jump vector, is allowed. This ensures that each segment occupies a volume
that is unavailable to other segments. The possible configurations of a chain
are therefore more limited than those for a fully random walk. The conse-
quences of this are collectively called the excluded volume effect,

It is obvious that there must be a relation between the excluded volume and
the size as measured by the root mean square end-to-end distance. An estimate
of the root mean square distance, relative to that for a fully random walk, can
be obtained from a simple mean field approximation to the partition function
by first replacing the sum over states by the most probable state. That is, the
partition function (14.5.3) function is approximated by

where W(E) is the number of configurations with the most probable end-to-end
distance R and E is the total energy of the most probable chain. This most
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probable distance is not the same as the most probable root mean square dis-
tance of a random walk because it includes the effect of the Boltzmann factor
of the energy. To get the most probable state, the partition function (14.6.1),
will be written for an arbitrary R, and the Helmholtz free energy obtained from
this partition function will be minimized with respect to R.

It will be assumed that the number of conformations for an arbitrary R is
proportional to the Gaussian probability distribution. That is,

Wtot being the total number of possible configurations of the chain. Recall that
the general derivation of the Gaussian distribution requires that the jump prob-
ability be the same for each jump. This is clearly not true for the first members
of the sequence of jumps for a self-avoiding flight. Also, for any number of
jumps, the probability that a self-avoiding flight results in a very small value
of R is very low because this would require the superposition of many seg-
ments. However, for jumps later in the sequence, each jump sees, on the
average, a similar environment, so the Gaussian becomes more accurate with
increasing N. Since it is only valid for large JVin any case, and since the most
probable root mean square distance results in a rather open structure (as shown
in section 14.4), we can adopt it as an approximate representation even for a
self-avoiding walk.

In accord with the discussion of section 14.5, the energy can be separated
into two parts: that which is the result of interactions among the segments, and
all other energy contributions. Thus, the energy can be written as

E0 being the energy in the absence of the excluded volume effect and AE
being the interaction energy among all segments in the chain. It is at this
point that the mean field approximation is made by assuming that the total
segment interaction energy can be replaced by the average interaction of
one segment with all the others. This average interaction energy is propor-
tional to the average density, p °= N/R3 of segments, so if e is the average
interaction energy per segment, then, again ignoring unimportant geometric
factors,

the effective volume of the chain being represented by R3.
K is a proportionality constant with the dimensions of volume whose value

is determined by the fact that the smallest possible increase in density is the
reciprocal of the volume of one segment, and for such an increase the energy
of interaction of one segment with the rest of the system is e. That is, (1/N)
(dAE/dp) = e/(l/P). Comparing this with the derivative of (14.6.4) shows that
K=P. Then (14.6.4) is

The partition function (14.6.1) for arbitrary R is then



hand the Helmoltz free energy is

where the last term does not depend on R. Differentiating (14.6.7) with re_spect
to R, setting the derivative equal to zero, and solving gives the value of jR that
minimizes the free energy. That is,

Note that in getting (14.6.8), the standard deviation has been replaced by its
random walk value according to o = (M2/3)1/2. The excluded volume effect
therefore changes the dependence of the end-to-end distance on N from N112 to
the faster A/3'5. That is, because of the excluded volume, the chain becomes
larger as the number of segments increases, relative to the unmodified random
flight value. The ratio of the size taking into account excluded volume relative
to that for a fully free random walk chain is

Let us revisit the estimate of the segment density of section 14.4, taking into
account the excluded volume. Since, from (14.6.7), the volume is proportional
to N315, relative to a tightly coiled chain, the segment density is proportional
to AT4'5. That is, the chain becomes looser with increasing N faster than for the
case of a fully free random walk. This is expected since the mean field para-
meter is repulsive because it describes the resistance to overlap of segments.

14.7 The force ensemble and chain elasticity

The linear dimensions of free polymer chains are much smaller than the
contour length because they are extensively coiled. This means that, if a force
is applied to a polymer chain, it can stretch by a large amount. The extreme
elasticity of rubbers and gels arises from this fact. An understanding of this
phenomenon starts with the study of a single chain subject to a tensile force.
The resistance to an external force in a solid polymer has two sources. For a
system in which there is no cross-linking, the chains interact through van der
Waals forces that provide the reaction to an applied force. This can be quite
substantial because the chains are long and tangled up with each other. In
chains that are cross-linked in the condensed phase, the specimen is essen-
tially one giant molecule and chains are prevented from slipping past each
other by the cross-links. The elastic properties depend on the density of cross-
links since the possible extension of the specimen is determined by the average
distance between links. If this distance is short, then the chains cannot stretch
very much and the system is relatively stiff. If the distance between links is
long, then the chains can stretch quite a lot. This is the case for rubber.
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Assume that a tensile force Fx is applied to the ends of a polymer chain in
the direction of the end-to-end vector R. In complete analogy with the pres-
sure partition function (see section 2.16), a force ensemble can be denned that
has a force partition function given by

Fx is the force exerted 012 the chain, so the sign in the exponential is positive,
just as in the magnetic case, where the outer sum is over all possible values of
the end-to-end distance and Z(RX) is the canonical partition function for a chain
of length Rx given by

The Gibbs free energy for the force ensemble is given by

This separates the force into two parts: the variation of the energy with elon-
gation and the variation of entropy with elongation. From (14.7.7),

STATISTICAL MECHANICS OF SOLIDS386

which is just the canonical partition function (14.5.1) in a slightly different
notation. The subscript x indicates that the x-axis of the coordinate system has
been chosen to lie along the line of the applied force, and the sum is over all
quantum states for a given value of Rx.

Note that the probability that the chain has energy E(RX) and length Rx is

and the probability that the chain has a length Rx regardless of the energy is

and from thermodynamics,

From this,



But the sum over the products is just the expansion of a multinomial accord-
ing to the multinomial theorem, so
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which gives the force-elongation relation if the partition function can be found
as a function of the applied force.

Note that for the pressure ensemble, the PV work term had a negative sign,
whereas for the force ensemble the work term has a positive sign. The reason
for this is that a positive pressure is defined as compressing the system but the
tension force is defined as positive if it expands the system.

For a random flight model of the chain, the mean end-to-end distance is zero,
but this is obviously not necessarily the case when a force is applied to the
chain. In a freely jointed chain there is no excluded volume effect, so E3 = 0.
Also, W (0, (|>) = 1 and we take all the other energy terms to be independent of
chain configuration. In addition, these energy terms are assumed to be the
energy of one segment times the number of segments. That is, all energy terms
except EI of section 14.5 are neglected. Then (14.7.1) simplifies to

where zs = Sse
 es/kT is the partition function for a single segment. Our task is

now reduced to finding W(RX), which is the number of conformations of
the chain that give an end-to-end distance of Rx. This can be done as
follows.

Each segment of the chain is represented by a vector rf of length 1. If xy is the
x-component of the jfth segment, then

Now let us collect all x/ that have the same values into groups and rewrite
as

where M- is the number of seements whose x-comDonent is xt and n is the
numuer ot possible values or Xk. Then (14.7.11) is

and W(xk) is the number of ways that the segments can be distributed to give
a set of xk that add up to R. If Nk is the number of segments with a projection
xt on R, then W[x>) is just the number of ways of putting N objects in boxes
such that Nit are in the kth box. Then

(14.7.12)



which is the contribution of the force to the partition function.
For the freely jointed chain, the components x; can take on all values between

-1 < x, < +1. The sum in (14.7.17) can therefore be replaced by an integral and
evaluated as follows:

where Fx = FJ/kT.
This procedure can also be applied to the case of the restricted jointed chain.

If each segment can take on any azimuthal angle relative to the preceding
segment, but can only take on longitudinal angles between -Qs and +6S, then
the x, can take on a continuum of values between -/cos6, and +7cos9,, so

As the argument approaches infinity, the Langevin function approaches unity.
Therefore, as would be expected, the maximum extension of the chain is equal
to the contour length Nl, which is reached only for an infinite force acting on
the chain.

For forces that are small relative to 1/kT, the force-extension relation
is linear, as can be seen from the expansion of the Langevin function as
follows:
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where z, is denned by

we getinstead ot (14.7.18)

which gives the same form as (14.7.19) except that now

becomesso (14.7.16) 1

(freely jointed chain)

The mean length of the chain can now be obtained from (14.7.10) by perform-
ing the indicated differentiation of the partition function. This gives

The factor in the brackets is the Langevin function, which is defined by
L(y) = coth y - 1/y, so
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but Fx = FJ cos 6/fcT, so

389

so

For a freely jointed chain with 6S = 0, the x-component of the mean square end-
to-end distance, in the absence of anv force, is

so (14.7.25) can be written as

Using (14.7.21) this can also be written as

which shows that for small strains Young's modulus is a linear function of tem-
perature and depends only on the bond angle and root mean square distance
of the undeformed chain.

The plot of RX/NL versus Fx in figure 14.5 displays the initial linear region
for small forces, with a slope that decreases with increasing force until the
maximum extension is reached.

14.8 Elastomers

Elastomers are substances that can be reversibly deformed to a very large
extent. Rubber, the prototypical elastomer, can be stretched to several times its
original length, the strain being fully reversible, so the material recovers its
original dimensions on removal of the force. The molecular structure that is
responsible for this consists of long, flexible chains cross-linked into a network.
The chains can stretch by uncoiling, and the network structure prevents chain
slipping that would result in permanent deformation. A schematic represen-
tation of such a structure is shown in figure 14.6. •

Consider a system consisting of a macroscopic specimen of rubber in
the form of a rectangular parallelepiped of cross-sectional area oriented on a
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Figure 14.5. Theoretical extension-force curve for a polymer chain.

Cartesian coordinate system such that, in the absence of any force, its length
lies along the x-axis with a value L0. Now apply a tensile force Fx along the x-
axis so that the specimen stretches in the x-direction to a new value L. The
thermodynamic equations (14.7.6)-(14.7.9) are valid for this system, except
that we now replace the mean distance Rx by L and therefore

Another useful thermodynamic relation is the Maxwell reciprocity relation,
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Figure 14.6. Chain structures for elastomers.

which is the analog of equation (1.16.8). (Again, the difference in sign between
the pressure and force equations arises from the definition of pressure acting
on the system as compression and force acting as tension.)

Using (14.8.5), equation (14.8.4) gives

By measuring the force as a function of both extension and temperature, the
last term in (14.8.6) can be obtained experimentally, and therefore the energy
contribution can be derived from data. It is found that the energy contribution
is very nearly zero. This is reasonable because the segment density in rubber
is comparable to the molecular or atomic density of other condensed systems
and the deformation arising from changes in distances among segments is small
relative to dimensional changes arising from uncoiling. Therefore, to a good
approximation, the force-extension relation for rubber is an entropy effect and
is given by

the major contribution to this being the conformational entropy of the
chains.

The conformational entropy of a single chain is determined by the number
of different conformations that have an end-to-end distance R and is propor-
tional to the probability density P(R). The entropy of an ensemble of chains is
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proportional to the product of the probabilities for all possible values of R, the
proportionality constant being the total number of conformations for all pos-
sible values of R multiplied by Boltzmann's constant. Upon deforming the
system, the probability that a chain has a given value of jR changes although
the proportionality constant does not. The entropy change is therefore the sum
of the entrorw changes for each chain:

W(Rj) is the number of ways to form a chain with end-to-end distance fl, for
the undeformed state, and W(R*i) is the corresponding probability in the
deformed state. Note that for rubber a chain is defined as the number of seg-
ments between two cross-links. The cross-links determine both the number and
contour length of chains. Since we are assuming that the chains are Gaussian,
both probabilities in (14.8.11) are proportional to Gaussian probabilities
according to

where N, is the number of chains with initial length Rt and AS; is the change
in conformational entropy of a single chain upon deformation, which is given
by

before deformation, and

after deformation.
After deformation each point R moves to R* and R2 = X2 + Y2 + Z2 goes to

where the Xs are defined by

and

Putting these into (14.8.13) gives the probability in terms of the relative elon-
gations and the original distances as

Therefore, adopting the continuum notation, (14.8.11) can be written as
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The entropy change depends only on the deformation and the number of
chains.

For rubber, the volume changes are negligible and will be taken to be con-
stant. This means that

Summing these for all Mchains according to (14.8.10) gives, in the continuum
notation,

N(X), N(Y), N(Z) being the number of chains with components of the end-to-
end distance given by X, Y, Z, and we have assumed that all chains deform in
the same way. The_mtegrals are proportional to mean square lengths. That is,
[ N(X)X2dX = MX2> and so on, so (13.8.19) becomes

but X2 = Y2 = Z2 = R2/3 and a2 = R2/3. Therefore, (13.8.20) is

Since both the force and the elongation are taken to be along the x-axis, from
(14.8.22) the y- and z-dimensions must shrink according to A,y = Xz = 1/VA,X and
f14 R 711 rfirliirfis tn

Now the force-elongation relation can be obtained from (14.8.9) as

It is convenient to divide through by the prefactor on the right-hand side of
(14.8.24) to give a reduced force F™ denned by

A plot of this relation is shown in figure 14.7 along with experimental points
given by L.R.C. Treloar.1 The experimental force data were given per initial unit
area in kg/cm.2 These were divided by 3.32 to give a dimensionless reduced
force that matches (14.8.25) at intermediate elongation values.

The theory does fairly well up to elongations of five and higher. This is good
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Figure 14.7. Comparison of theory and experiment for the elongation of rubber.

evidence that the stretching of rubber is indeed determined by the entropy of
coils, at least at elongations that are not too high. The deviations between
theory and experiment arise form several sources, the main ones being the
failure of the Gaussian probability for the end-to-end distances of the chains,
and possible entanglements of chains that hinder complete uncoiling. Note that
rubberlike elastic properties are often found in long chain systems without
cross-linking because of entanglements that can act as cross-links if the force
is not too high.

For a specimen of initial length L and cross-sectional area A Young's
modulus, which is the stress per unit strain, is given by

Using (14.8.24) and the definition of the relative elongations, this becomes

In the limit of small forces, the relative elongations go to unity and we have
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Young's modulus depends only on the number of chains per unit volume,
and these can be measured from a simple elongation experiment. This is equiv-
alent to determining the average molecular weight of a chain because the
density p is related to the molecular weight Mw through Avagadro's number
Navby

This remarkable result states that measurements of moduli can give data on
the number of chains per unit volume and their molecular weight.

14.9 The Flory correction

In a network, there is a contribution to the entropy that is proportional to the
number of ways that cross-links can be formed. The length of a chain is defined
as the distance between cross-links such that, for M chains, the number of
cross-links is M/2. A cross-link can occur only if two chain segments are close
enough together. Following Flory, we assume that, in a cross-link, the segments
must be within a volume 5V. The number of ways of forming a cross-link is
proportional to the probability that two segments are within this volume. But,
assuming equal accessibility to all space in the volume 17, this probability is
proportional to 8V/V. Upon deformation, the volume changes to V* but 5V does
not. So for the deformed system, the entropy for a cross-link is proportional
to 6V/V*. Thus, the ratio of the total number of ways of forming M/2 cross-
links in the deformed system to that in the undeformed system is (V/V*)M/2 =
(A.xA,yA,z)~

M/2 and the corresponding entropy change is -(M/2)jfcTln(A,xXjAz)
Adding this to (14.8.21) gives the corrected entropy as

14.10 Solutions and gels

Elastomers can absorb surprisingly large amounts of certain liquids without
dissolving because dissolution is prevented by the existence of cross-links.
Rubber exposed to hydrocarbons, for example, swells considerably. A gel is
essentially a solution containing a fraction of polymer that cannot go below a
value dictated by the existence of the cross-links. A relatively simple lattice
theory of solutions containing polymers has been given by Paul Flory and M.L.
Muggins2 that describes such solutions reasonably well and is applicable to
gels.

Let the system be a liquid solvent in contact with a polymer that has absorbed
some solvent. If the polymer has no cross-links, then the system may have any

so

Note that this correction has no effect on the force strain relation for rubber
given by (14.8.24) because volume is conserved and the first term is a constant.
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composition, depending on the chemical potentials of the components. The
possible compositions can range from dilute to highly concentrated solutions.
With cross-linking, the possible compositions are restricted since very dilute
solutions are prevented from being formed.

The lattice model regards space as being divided into cells of equal size, each
of which can accommodate either a solvent molecule or a polymer segment. Any
differences in size are ignored, so the molecular fractions of segments and of
solvent molecules are equal to their respective volume fractions. The polymer
chains are treated as connected strings of beads, each bead taking up the same
volume as a solvent molecule. The beads on a string are laid out in a connected
set of lattice sites, and all lattice sites not occupied by beads are taken up by
solvent molecules. It is assumed that the solution is random in the sense that
solvent molecules and polymer segments can occupy all sites with equal prob-
ability consistent with the requirements that a chain is a connected set of seg-
ments. Also, a mean field approximation is used for the interaction energies.
The procedure is to compute the entropy of mixing from the statistical count,
and the energy from mean field theory, and get chemical potentials from the
resulting free energy. This determines the composition of the system.

Let M2 be the number of polymer molecules, each having N segments, so that
the number of sites occupied by polymer segments is M2Nand the total number
of sites is MT = M^ + NM2 where Ml is the number of sites occupied by solvent
molecules. Then the site fractions, also equal to the volume fractions, are given
by

To get the entropy of mixing, count the number of ways of arranging Mj solvent
and M2 polymer molecules on the MT lattice sites. Do this by counting the
number of ways of putting the first chain on the lattice, then the second chain,
and so on. When all chains have been inserted, then put in the solvent mole-
cules. But after all the chains are in, there is only one way of putting in solvent
molecules on the lattice, so only a count for the chains is needed.

Let w-i be the number of ways of putting in the first chain, w2 the number of
ways of putting in the second chain after the first is in place, and so on. Then
the statistical count is

Wj being the number of ways of putting the /th chain on the lattice after (/ + 1)
chains have been inserted. The M2\ corrects for the indistinguishability of iden-
tical polymer chains. The calculations proceeds by expressing wj+l in terms of
w/ as follows.

After putting in the ;th chain, the number of occupied sites is jN and the
fraction of occupied sites at this stage is oc; = jN/MT. Then the first segment of
the (/ + l)st chain can be placed in the lattice in (MT - jN) ways since this is
the number of empty sites. The second segment can only go into one of the
nearest neighbors of the first segment, and assuming a random distribution,
this can be done in z(l - ot;-) ways, z being the number of nearest neighbors,
since (1 - a,) is the probability that a site is empty. In laying down the second
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segment, only (z - 1) nearest neighbor sites are available, so this can be done
in (z - 1)(1 - a,) ways. The number of ways of putting in the third segment is
a bit more involved because the first two segments can leave either (z - 1) or
(z - 2) vacant nearest neighbor sites for the third segment. Thus, the average
number of sites not available to the third segment is between 1 and 2. Call this
T|, so the number of ways of laying down the third segment is (z - r])(l - oc;).
Now assume that the number of ways of putting down all subsequent segments
is also (z - r|)(l - oty). That is, the number of sites excluded is the same for all
segments except for the first. (Actually, it is customary to approximate even
further by taking T| = 1 for all segments on the grounds that the theory is quite
approximate anyway, but let us carry the theory forward a bit before making
this approximation.) The statistical count for putting down (N - 1) segments
of the chain on the lattice is then

or, since I

Taking logarithms gives

Now take the product of (14.10.6) for all chains (i.e., for /=0 to/ = M2 - 1) to get

For a coordination number of z = 12, varying T| from 1 to 2 or replacing z by
(z - 1) changes the log term by about 5%, so it is sufficiently accurate to write
(14.10.7) as

But

and



This is just a random mixing entropy, similar to that for any random solution.
Just as in Bragg-Williams theory, assume nearest neighbor interactions such

that -Vn, -v22, -vi2 are the energies of interaction for solvent-solvent nearest
neighbors, segment-segment nearest neighbors, and solvent-segment interac-
tions, respectively. Counting the number of contacts is somewhat different than
in Bragg-Williams theory because segments are attached to each other. Two of
the nearest neighbors to a polymer segment are sure to be occupied by polymer
segments, so each segment has (z — 2)/i contacts with a solvent molecule. The
energy of solvent-polymer interactions is therefore JVM2(z - 2)/iv12, since NM2
is the number of polymer segments. Similarly, the energy of segment-segment
contacts is (ATM2/2)(z - 2)/2v22, and for solvent-solvent contacts the energy is
(M1/2)z/1v11. The factor of 1/2 corrects for double counting. Adding these
together gives the energy of the solution as
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Using Stirling's approximation and doing a bit of algebra finally gives

so the number of complexions (14.10.3) is

1 ne entropy ot mixing is me entropy ot me solution minus me entropy ol me
pure constituents. But the configurational entropy of pure liquid is zero, so
only the entropy of pure polymer is needed. The statistical count for the pure
polymer is just (14.10.10) for MI = 0. Remembering that MT = NM2 + MI, we
then get

Taking the difference between (14.10.11) and (14.10.10) and multiplying by
Boltzmann's constant gives the entropy of mixing.

For pure solvent and pure polymer, respectively, the energies are (M1/2)z\/ll and
(M1/2)zv11. Subtracting these from (14.10.13) gives the energy of solution for-
mation as

Let
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The energy parameters are all about the same magnitude, and it is cus-
tomary to neglect the last term in (14.10.16). This recognizes the fact that the
theory is approximate and that there is a degree of uncertainty in the defini-
tion of the number of nearest neighbor sites. Then, the energy of mixing sim-
plifies to

The free energy of solution, from (14.10.17) and (14.10.12), is

The theory developed so far is appropriate to a solution of polymer without
cross-links in a solvent. Two modifications to (14.10.18) are needed to apply
it to a rubber-solvent gel. The first is that the network is one giant molecule,
so M2 = 1 and the last term in (14.10.18) is trivially small and can be taken to
be zero. The second is that the entropy of stretching must be included. Note
that the site fractions /j and /2 are still volume fractions since the site fraction
for the polymer refers to the number of polymer segments.

A gel forms when cross-linking restricts the amount of liquid that can go into
solution. The solvent molecules increase the volume by swelling the chains,
but because of cross-linking the swelling is the result of stretching of chains
and not of pushing chains apart indefinitely. In the solution theory leading to
(14.10.18), stretching of the chains is not taken into account and the entropy
term is just an entropy of mixing. To apply this to gel formation in cross-linked
polymers, the entropy of stretching the chains must be added to the lattice con-
figurational energy of the chains. From (14.9.1) (which includes the Flory cor-
rection), this is

Mp is now the number of chains as defined by the average distance between
cross-links. In a cross-linked polymer this is not the same as the number of
molecules, an obvious but important fact that modifies the configurational
entropy of placing the polymer segments on a lattice.

We assume that the system is isotropic and swells equally in all directions.
For such a uniform, homogeneous expansion from dimensions Xp, Yp, Zp for
the nnre nnlvmer to X*. Y*. Z* fnr the solution

and

Then
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since, in this model, volume fractions are equal to molecular fractions. The
stretching entropy (14.10.19) for the gel is then

Multiplying this by T and subtracting it from (14.10.17) (leaving out the last
term) gives the Helmholtz free energy of the gel as

Figure 14.8. Polymer swelling as a function of chain length.

The gel is formed by immersing the rubber in solvent so (14.10.22) is the dif-
ference in free energy between gel and solvent. At equilibrium, the chemical
potential of solvent in gel and chemical potential of pure solvent must be equal.
This means that



Find this mean square deviation for an elastomer in which the force-elon-
gation relation is the result of configurational entropy changes of the elas-
tomer coils.

14.5 What is the average molecular weight of the chains in an elastomer
whose Young's modulus in the limit of small elongations is 10BPa and whose
density is 0.85gm/cm3 at 300 K?

14.6 Show that the configurational entropy of a deformed elastomer under
linear tensile stress is always less than the entropy of the undeformed
system.
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Differentiating (14.10.22) according to (14.10.23) and setting the result equal
to zero gives (zv/kT)fl + ln(l - /2) + /2 - (/2/2N) + (1/N)/? = 0, or

The ratio % = zv/kT is called the interaction parameter.
For simplicity, no subscript has been added to indicate that /2 is now the

molecular fraction of polymer segments (or volume fraction of polymer) for a
gel in equilibrium with solvent. Since /2 is also the ratio of the volume of dry
polymer to the volume of the gel, the swelling ratio is just l//2. A plot of this
swelling ratio as a function of chain length in number of monomer units,
assuming a value of 0.5 for the interaction parameter, is shown in figure 14.8.
Swelling increases rapidly with increasing chain length at first, but slows down
after a chain length of about a thousand segments.

The chain length in (14.10.24) is the distance between cross-links, and its
reciprocal is the number of links per chain. The density of links can therefore
be obtained from swelling experiments if the interaction parameter is known.
Conversely, if the chain length is determined in some other way, such as mea-
suring Young's modulus, then a swelling experiment yields the value of the
interaction parameter.

Exercises

14.1 If the correlation angle between adjacent segments of a linear chain mol-
ecule is TC/4, get the expansion factor, persistence length, and the Kuhn length
(in units of the segment length). Use the long chain limit.

14.2 For a Gaussian chain, what is the ratio of the probability that the end-
to-end distance will be twice the root mean square distance; to the proba-
bility that it will equal to the root mean square distance?

14.3 For a chain consisting of 20,000 segments, find the ratio of the volume
of a Gaussian, taking into account the excluded volume effect, to a tightly
coiled chain. Compute this ratio if the mean field interaction energy per
segment is 2kT.

14.4 Given a force Fx acting along the x-direction of a rectangular paral-
lelepiped specimen, show that the mean square deviation in the length along
the x-axis is
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Notes

1. The experimental data were read off a curve in Munk (1989, p. 428), which
was from Treloar, L.R.G.; 1958; The Physics of Rubber Elasticity; Oxford Uni-
versity Press, New York.

2. See Flory (1953), chapters 12 and 13.



Vacancies and Interstitials
in Monatomic Crystals

15.1 Choice of ensemble

It is generally agreed that the lattice vacancy is the predominant type of point
defect in simple metals and rare gas solids. Direct and indirect measurements
of the vacancy concentration as a function of temperature exist that support
this contention. The concentration of point defects other than vacancies is
relatively low in close-packed hexagonal and face-centered cubic structures
because their formation requires large lattice distortions. In more open struc-
tures, however, such as body-centered cubic and the diamond structure char-
acteristic of semiconductors, interstitials may be important.

Point defects have a number of important effects on crystal properties. They
often control the mechanisms of diffusion, they contribute to electrical and
thermal resistivity, they play a role in the growth of voids during plastic defor-
mation, and they affect the conductivity of semiconductors. Through their
interaction with dislocations and other internal stress sources, they have an
effect on the mechanical properties of metals and on microstructure. Also,
because of their critical role in diffusion, they are important in the properties
of nucleation, growth, and phase transformations. In ionic crystals, they are
responsible for the electrical conductivity.

In this chapter, the statistical mechanical theory of a pure monatomic crystal
containing vacant lattice sites and atoms in interstitial positions is developed.
We first treat crystals in which the monovacancy is the only defect. This allows
us to present the theory in its most transparent form. The theory of crystals
with more complex point defect systems is a simple extension of this and is
treated later.

The theory of point defect concentration is not a classical thermodynamic
theory in any sense. As required by the phase rule of Gibbs, the pressure
and temperature are sufficient to fix all thermodynamic properties of a one-
component system. Point defect theory, therefore, requires statistical mechan-
ics and crystal structure, and the statistical mechanics is needed to account for
the very existence of point defects. This is quite a different situation than, for
example, the theory of the heat capacity in which statistical mechanics pro-
vided a method of computing a true thermodynamic quantity from microscopic
considerations. The defect functions are statistical mechanical rather than ther-
modynamic quantities.

In working out the statistical mechanics of defect crystals, it turns out to be
most convenient to use the pressure ensemble. The reason for this is that, in
an ensemble in which vacancies or interstitials enter into the definition of state,
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the volume varies over the members of the ensemble. Also, defect concentra-
tion formulas are always expressed in terms of the Gibbs free energy, and the
thermodynamic independent variables are temperature and pressure. The
equations can be derived in a simple and elegant way from the pressure ensem-
ble, and no unique calculational difficulties arise.

The pressure ensemble represents a system at a temperature T and pressure
P with a volume that can vary, although the average volume is fixed. For con-
venience, the basic pressure ensemble equations are rewritten in the following
form:

In these equations, JVj{V}) is the number of systems in an ensemble of X
members whose volume is V) and whose energy is Et. fj(V,) is just the proba-
bility of occurrence of such a member system in the ensemble. The pressure-
ensemble partition function is ZP, which determines the Gibbs free energy G
of the system by equation (15.1.3).

15.2 The vacancy concentration

The problem before us is to compute the concentration of vacancies in a
monatomic crystal in equilibrium. To do this, consider an ensemble of X crys-
tals, all of which have the same number N of identical atoms. Each crystal can
have any volume V, and any number of vacancies Nv and can exist in any of a
set of quantum states with energy E/. The probability that a crystal exists in a
state characterized by particular values of V), Nv, and £/ is given by the pres-
sure ensemble as

The probability /(Nv, Et, V,) that the crystal has the values (JVV, £), V}) is just
(15.2.1) multiplied by the number of distinct wave functions for a crystal with
AT, vacancies in a state with volume V,- and energy Ef. This degeneracy factor
will be written as w(N^)n(Nv, E/, V,). w(ATv) is the number of configurational com-
plexions (statistical count), which is the number of ways of distributing N
atoms and Nv vacancies on the lattice, and Q(NV, E/, Vj) is the degeneracy of a
crystal containing Nv vacancies, except for the configurational contribution.
Multiplying equation (15.2.1) by this factor gives

Summing (15.2.2) over all values of energy and volume for a given number of
vacancies gives the probability that the crystal has Nv vacancies as
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In performing the sum, £2 depends only on the number of vacancies (for a
given energy and volume) and not on the configuration of their distribution
over the crystal lattice. We also assume that all lattice sites are equivalent in
the sense that the energy and volume do not depend on the distance between
vacancies. This ignores the possibility of the existence of divacancies, which
will be considered in section 15.6.

It is convenient to define a free energy G(JVV) by

and to write (15.2.3) as

The free energy defined by (15.2.4) does not include the configurational
entropy term arising from the configurational statistical count w(Nv). The use
of such a free energy simplifies the development of the theory and will be iden-
tified by braces for its argument.

Because the sum of the probabilities is unity and because the free energy of
the crystal is related to ZPby (15.1.3), summation of (15.2.5) over all values of
A/, gives

G is the total Gibbs free energy of a crystal and G(ATV) is the Gibbs free energy
of a crystal containing N» vacancies except for the configurational contribution
of the vacancies.

Equations (15.2.5) and (15.2.6) are the two basic relations of the statistical
mechanics of vacancies and enable us to obtain the thermodynamic functions
of a crystal containing vacancies as well as the vacancy concentration formula.

As usual, we identify the most probable value with the equilibrium value
and therefore maximize (15.2.5) to obtain the equilibrium number of vacan-
cies. Therefore, if we require that

where JVV is the number of vacancies at equilibrium, then applying (15.2.7) to
(15.2.5) gives

In performing these differentiations, the number of atoms is held constant so
that vacancies are formed by transferring atoms from an internal lattice site to
the surface.

The derivative on the right-hand side of equation (15.2.8) is similar to a
partial atomic free energy. It is the increase in Gibbs free energy upon adding
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one vacancy to the crystal, excluding the configurational contribution, and is
therefore called the free energy of vacancy formation, which we designate
byG£

To get the left-hand side of (15.2.8), we note that the number of ways of putting
N atoms and JV, vacancies on (N + JVJ lattice sites is

which shows that the vacancy concentration increases with temperature
according to a Boltzmann factor of the free energy of vacancy formation, as
expected. The number of vacancies in a crystal is usually much smaller than
the number of atoms even near the melting point, so AT, is sometimes neglected
in the denominator when writing (15.2.13).

Equation (15.2.13) is often derived more simply by more elementary
methods. However, the method used here clearly shows the nature of the quan-
tities involved, provides a sound basis for investigating the thermodynamic
functions of a crystal containing vacancies, and is readily generalized to
systems containing a more complex array of point defects.

It is clear that the method of finding the equilibrium number of vacancies by
maximizing /(JVV) of equation (15.2.5) is completely equivalent to finding the
maximum term in the sum (15.2.6) that gives the crystal free energy. In fact,
adding the configurational entropy to the configurationless free energy gives the
free energy for a crystal containing an arbitrary number of vacancies ATV as

The above method is equivalent to minimizing this expression. That is, the
equilibrium number of vacancies is determined by

where the derivative refers to a change in the number of vacancies in the crystal
interior by transferring atoms to or from the surface. Using (15.2.14) and

Putting (15.2.9) and (15.2.12) into (15.2.8) gives the vacancy concentration
formula:

Using Stirling's approximation, (15.2.10) gives

from which
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(15.2.15) directly saves us from the cumbersome notation that results when
the pressure ensemble probability functions are written for complex systems.
Therefore, these equations will be used to determine equilibrium defect
distribution functions from now on.

15.3 The crystal free energy

The analysis of the thermodynamics of crystals containing vacancies requires
an expression for the free energy that contains the vacancy concentration. Such
an expression could be derived from (15.2.6) if we knew how to perform the
sum over all possible configurations. But, in general, this cannot be done exactly,
and it is usual to assume that the sum can be replaced by its largest term and
that this term is that for the equilibrium concentration of vacancies. It is, of
course, a general rule in statistical mechanics that, for systems containing a large
number of atoms, sums over all possible configurations can be replaced by the
term with the most probable distribution because the fluctuations from the most
probable value are very small (see section 2.17). The present case provides an
instructive example because it is particularly easy to perform the sum within
the approximation of a Gaussian distribution of fluctuations. The procedure con-
sists of showing that the sum in (15.2.6) can be written as a Gaussian distribu-
tion about the equilibrium vacancy concentration, and that the spread of the
distribution contributes a negligible amount to the free energy. It is then only
necessary to take the nonconfigurational part of the free energy as linear in the
vacancy concentration to get the desired result.

We write (15.2.6) in the form

where h(Nv) is defined by

It will now be shown that A(A/v) forms a very narrow Gaussian distribution
about the equilibrium value Nv. Using this distribution, (15.2.6) is then
summed to find the crystal free energy.

To get the Gaussian form of (15.3.2), start with the ratio of h(Nv) to its most
probable value:

The deviation from the mean number of vacancies is

Take GjJVJ to be linear in JVV so that

From (15.2.10), the ratio of the statistical counts is



First consider the values of h(Nv) for which AJVV is small relative to ATV. With
this restriction, it is easy to show that h(Nv) has a Gaussian form by first taking
logarithms of (15.3.8), doing a little algebra, and using Stirling's approxima-
tion to get
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so using (15.3.5) and (15.3.6), equation (15.3.3) becomes

or, since the exponential is given by (15.2.13),

Now expand the logarithms with retention of only the first term [ln(l + x) ~x].
Equation (15.3.9) then becomes

or, since Nv « N, to a sufficient approximation,

so that

which is the Gaussian distribution we were after.
Let us compute the exponential in (15.3.10) for A/VV/NV = 10"4, a value for

which the above derivation is certainly valid. Then, since Nv in crystals at tem-
peratures for which the vacancy concentration is detectable is at least of the
order of 1016, AATV is about 1012. These values give e~10 for the exponential in
(15.3.10), which is certainly negligible. This shows that (15.3.10) is indeed a
very sharply peaked distribution.

All this was assuming AATV is small. What happens if it is not small? We can
in fact show that h(Nv) decreases with increasing deviation from the equilib-
rium A/5, whether the deviation is negative or positive, so h(Nv) is even smaller
than the above computation for large deviations from equilibrium. To do this,
first consider positive values of AAL and rewrite (15.3.8) as

or
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But every factor in (15.3.12) is less than unity, and the more of them there are,
the smaller the value of (15.3.12). This shows that h[Nv) decreases with increas-
ing AJV, for all positive values of AA7».

If AA/v is negative, we write (15.3.11) in the form

or

To evaluate the sum, replace it with an integral as follows:

and therefore (15.3.15) becomes

From the definition of h(Ny] given by (15.3.2), taking logarithms of (15.3.16)
results in

Again, each factor in this product is less than unity, and the more factors
in the product, the smaller h(Nv). We have therefore shown that /i(ATv)
decreases with increasing magnitude of AJVV, whether the deviation is positive
or negative. Since h(Nv) is very small even for small deviations, a negligible
error is made if the Gaussian distribution (15.3.10) is adopted for all values
of AATV.

Now put (15.3.10) into (15.3.1) to get

The log in the first term on the right can be approximated by the first term in
its series expansion and the second term can be expressed in terms of the free
energy of vacancy formation by using (15.2.13). Doing this, (15.3.17) and
(15.3.18) gives

All that remains is to evaluate the first log term. This is easily done from
(15.2.11), which gives
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and putting this into (15.3.17) gives

where the last term in (15.3.17) has been neglected relative to JVV. This was the
term that arose from the fluctuations from the most probable state and is indeed
small since it goes as the ratio of the log of the number of vacancies to their
number. Taking G(JVV) to be linear in the number of vacancies, that is,

G° being the free energy of a vacancy free crystal, we finally get1

Equation (15.3.21) states that each vacancy contributes an amount to the
configurationless free energy G{JVV) that is equal to the free energy of vacancy
formation. This means that we assume the vacancy concentration to be low
enough that the vacancies do not influence each other. Vacancy concentrations
are of the order of 1(T4 atomic percent in simple crystals; this justifies the form
of (15.3.21) and the approximations based on assuming NV/N « 1 and In A/,
« AT,. However, A7v/iV was not taken to be zero relative to unity in using equa-
tion (15.3.18). Doing so would have yielded a zero contribution of vacancies
to the crystal free energy rather than —kT per vacancy as displayed in equation
(15.3.22).

This remarkably simple result enables us to obtain all the thermodynamic
functions of a crystal as a function of vacancy concentration and to derive the
differential relations among the vacancy formation quantities. In this connec-
tion, it is interesting to note from (15.3.20) that the last two terms represent
the configurational contribution to the crystal free energy. Thus, the configu-
rational entropy due to the vacancies is

As will be shown below, the existence of this term means that the crystal
entropy is not just the sum of the entropy of a vacancy free crystal and the
entropy of vacancy formation.

15.4 Vacancies and thermodynamic functions

The vacancy contributions to all the other thermodynamic functions can be
found from equation (15.3.22) through the usual thermodynamic formulas.
These formulas define the entropy, volume, energy, enthalpy specific heat at
constant pressure, specific heat at constant volume, thermal expansion, and
compressibility of defect formation as follows.

The entropy of vacancy formation:



From this point on, the bar over the JVV will be dropped for the sake of conve-
nience, with the understanding that all vacancy concentrations in the thermo-
dynamic formulas refer to statistical equilibrium.
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The volume of vacancy formation:

The energy of vacancy formation:

The enthalpy of vacancy formation:

The heat capacity at constant pressure of vacancy formation:

The specific heat at constant volume of vacancy formation:

The thermal expansion of vacancy formation:

The compressibility of vacancy formation:

These definitions ensure that the defect formation quantities will follow the
usual rules of thermodynamics. However, it is not generally true that the defect
quantities defined above give the contribution per vacancy to the correspond-
ing crystal quantities. Although this is true for the energy and enthalpy, for
example, it is not true for the entropy and the free energy.

To use (15.4.1)-(15.4.8) in conjunction with (15.3.22), we need the deriva-
tives of the vacancy concentration with respect to pressure and temperature.
From (15.2.13), and using the definitions of the defect formation quantities,
we get
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Using (15.4.1)—(15.4.10), it is only a matter of a little algebra to derive the
crystal thermodynamic functions in the following forms:

The entropy:

or

where S, is the vacancy configurational entropy given by (15.3.23) and the
superscript o refers, as usual, to a hypothetical defect-free crystal.
The volume:

The energy:

The enthalpy:

The heat capacity at constant pressure:

The thermal expansion:

The compressibility:

In deriving (15.4.17) and (15.4.18), terms quadratic in Nv were neglected and
the following approximation was used:

The heat capacity at constant volume can now be obtained from equation
(1.18.18) using (15.4.16)-(15.4.18) by treating all vacancy contributions as
small compared to the corresponding crystal quantities, and retaining terms
only to the first order in the vacancy concentration. The result is easy to get
but rather cumbersome, and it is not reproduced here.

With the above formulas, the effect of vacancies on the thermodynamic func-
tions can be investigated. Note that, only for the volume, the energy and the
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It is this form that is used in the experimental determination of vacancy for-
mation energies and volumes. The formation energy is obtained by measuring
a quantity that is proportional to the vacancy concentration as a function of
temperature at constant (usually atmospheric) pressure. The formation energy
is then obtained from an Arrhenius plot of lnJV¥ versus 1/T. The formation
volume is obtained from a plot of InA/, versus P at constant temperature.

The applicability of these methods is simple when the formation energy,
entropy, and volume are independent of the temperature and pressure, at least
within the accuracy of the experiments. The question of the variation of the
Gibbs free energy of vacancy formation with temperature or pressure is there-
fore of considerable importance. If an Arrhenius plot, or a plot of lnJVv versus
P, exhibits a curvature, two causes may be operative. The first is that the tem-
perature or pressure dependencies of the vacancy formation quantities are
being reflected in the curvature. The second is that a process other than
vacancy formation may be affecting the measurement. Such processes might
include, for example, impurity-vacancy binding or divacancy formation.
Without some theoretical guide, it is difficult to distinguish between these two
possibilities.

It is important to note that a linear Arrhenius plot does not in itself guaran-
tee that [4 is independent of temperature. If the vacancy formation energy is
linear in the temperature, the Arrhenius plot will still be linear. Likewise, if
the volume of vacancy formation is linear in the reciprocal of the pressure, the
InJV, versus P plot will be linear.

This and the following section develop a theory of the vacancy formation
quantities in such a way as to give some physical insight into the factors that
determine them. It will also be shown that, for most monatomic crystals, the
entropy, energy, and volume of vacancy formation are constants to a good
degree of approximation.

To get the Gibbs free energy of formation, and therefore all the other forma-
tion quantities, we start with (15.2.9). Since we are dealing with crystals in
which the vacancy concentration is small, we will take the derivative in
(15.2.9) to be independent of the vacancy concentration. It then becomes equal
to the difference in free energy between a crystal having one vacancy and a
crystal having no vacancies. Thus,

where G1 is the Gibbs free energy of a crystal containing a single vacancy and
G° is the Gibbs free energy of a perfect crystal.

The reason that it is legitimate to define G1 and G" in this way is that G|JVV}
does not include the configurational contribution to the crystal free energy.

15.5 The vacancy formation functions

The vacancy concentration formula (15.2.13) is often written, with the aid of
(15.4.3), as

enthalpy can the vacancy effect be written as an incremental addition of the
vacancy formation quantities. For the other thermodynamic functions, the
formulas are more complex.
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Thus, we can use canonical ensemble theory to calculate the Helmholtz free
energy and add to it PV to get

where the superscript 1 again refers to a crystal containing one vacancy and
the superscript o refers to a perfect crystal.

The Helmholtz free energies are given by equation (4.3.13) as

in obvious notation.
It is clear from the above that all of the vacancy formation quantities defined

in (15.4.1)-(15.4.6) refer to differences between a perfect crystal and a crystal
containing one vacancy. That is,

where, again, the I refers to a crystal containing one vacancy and the o to a
perfect crystal.

Because of the presence of V{ in front of the derivatives in (15.4.7) and
(15.4.8), the thermal expansion and compressibility are not given by simple
difference formulas, but rather by

The entire apparatus of canonical ensemble theory and the quasi-harmonic
theory of crystals is now available for the computation of the vacancy forma-
tion quantities and, therefore, for the vacancy concentration as a function of
temperature and pressure.

The Debye temperature represents the maximum normal mode vibration fre-
quency, so for temperatures above QD the hv/kT are all small. In the high-
temperature limit the formulas (15.5.5) and (15.5.6) can be considerably sim-
plified. Since vacancies exist in appreciable concentrations only at high tem-
peratures, it is sufficiently accurate to adopt the approximation that
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With this approximation, (15.5.5) and (15.5.6) become

From the above and equations (15.5.2)-(15.5.4), the Gibbs free energy can now
be written as

From the derivation of (15.5.19), the first two terms constitute the Helmholtz
free energy of vacancy formation:

so, using the thermodynamic relations

gives

and therefore comparing (15.4.3) to (15.5.19) requires that

In deriving (15.5.23)-(15.5.25), the physically reasonable assumption is made
that the vibration frequencies and zero point energies are explicit functions of
the volume only and depend on the temperature and pressure only implicitly
through the volume.

To investigate the temperature dependence of the free energy of vacancy for-
mation, we will expand it in a Taylor series, retaining terms to the second order
in the temperature and pressure. The origin of the expansion will be taken at
zero pressure and the melting point temperature to give
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where the tilde signifies values at zero pressure and the melting temperature.
The heat capacity at constant pressure in the fourth term was introduced by
means of the thermodynamic relation

Experimental measurements of the vacancy concentration as functions
of temperature and pressure in face-centered cubic metals show that [7{s 1 eV,
S£ ~ k, and V^ = Va/2, where Va is the atomic volume. The accuracy of the
measurements is not sufficient to detect any temperature or pressure variation
from the quadratic terms in (15.5.27). Indeed, if it is assumed that the thermal
expansion and compressibility of a crystal containing a vacancy are of the
same order as that measured for a real crystal, then a simple calculation
shows that the last two terms are negligible relative to PVj up to pressures
of about 50,000 atmospheres. Welch2 has shown that for copper, o{ and K{
are actually quite close in value to cc° and K°. His calculations were based
on atomistic considerations in which ion-core interaction energies, electron
distributions, and lattice vibrations were analyzed for perfect and defect
crystals.

An estimate of the fourth term in (15.5.27) can be made from an analysis of
the heat capacity of defect formation. The heat capacities at constant pressure
and constant volume are related to each other by

The appearance of this equation can be simplified by using the definitions
of the defect formation quantities in the preceding section to give

Using (15.5.13) and (15.5.14) and taking the thermal expansion and the com-
pressibility to have about the same values in the perfect and defect crystal, it
is easy to show that, to an excellent approximation,

Applying the high-temperature Debye approximation for the heat capacity in
section 4.8 to both the defect and perfect crystal gives
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For copper, &D/Tm = 0.23 and y= 2, so according to (15.5.37) the vacancy for-
mation heat capacity is about -0.05k at the melting point.

This calculation is very rough, since it ascribes the entire heat capacity of
vacancy formation to the elastic image field volume, which is based on linear
elasticity theory. The relaxation of atoms right around the vacancy, however,
is too large to be described by linear elasticity theory. A more rigorous calcu-
lation would start with the atomic interaction force constants for the atoms
around the vacancy and proceed to a calculation of the altered vibration

&o differs from ©1, because the Debye temperature varies with dilatation.
Placing an interior atom on the surface increases the volume of a crystal by
one atomic volume. The vacancy formation volume is less than this, however,
because the atoms around the empty site relax inward toward the vacancy. This
gives rise to a relaxation volume VR, which is negative; thus, if Va is the atomic
volume.

The relaxation volume consists of two parts. As the crystal relaxes, any
spherical surface surrounding the vacancy and anchored in the atoms sweeps
out a volume AV°. This is equal to VR only if the crystal is infinite. The dis-
tortion around the vacancy induces an elastic stress field throughout the
crystal. The crystal surface, however, must be stress free, so image forces give
rise to an additional contribution, A I/7, to the relaxation volume, which is called
the image volume. Thus,

AV*° and AV7 can be computed from elasticity theory by methods developed by
J.D. Eshelby.3 Both AV°° and AV7 are negative for vacancies in noble metals. For
the copper vacancy AV°° = -0.326V, and AV7 = -0.16Va. Of the three terms in
(15.5.34), only AV7 produces a dilatation, and therefore it is the only volume
change that affects the Debye temperature. Using the Gruneisen assumption
fsee chanter 5l. we therefore have

Combining (15.5.31), (15.5.32), and (15.5.35), we get

Since AV7« V, this can be written as
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frequencies from these force constants. Such calculations have been done in
attempts to compute the entropy of vacancy formation. They are fraught with
problems, however, and the precise results are sensitive to the details of the
models used.

For our purposes, we take (C()v to be negligible, since no improvement in
our model will increase the value of -0.05k to the point where the fourth term
in (15.5.27) needs to be retained, at least for close-packed structures. We will
therefore write, for close packed crystals,

or

so Arrhenius plots can indeed be expected to be linear and yield the energy of
vacancy formation, and ln.Wv versus P plots will give the vacancy formation
volume.

The validity of (15.5.38) depends on the image volume being small and on
the thermal expansion and compressibility of the region around the vacancy
not being too greatly different from that of the perfect crystal. Although this
seems to be the case in close-packed crystals, it is not true for the more open
body-centered cubic structure. In sodium, which has a very small ion core,
the relaxation around a vacancy is so large that a vacancy is similar to a small
puddle of liquid.

15,6 Vacancies, divacancies, and interstitials

Up to this point, it has been assumed that the vacancy is the only defect in our
monatomic crystal. For the noble metals, both experimental and theoretical
considerations give the result that the free energy of vacancy formation is con-
siderably less than that of other defects. However, other point defects certainly
must exist, and their importance relative to monovacancies can be expected to
vary from one material to another. In aluminum, for example, it appears that
nearly 40% of the vacant lattice sites are tied up in divacancies at the melting
point, whereas in copper at the melting point only about 0.2% of the vacan-
cies are in divacancies.

Most quantitative information about point defects in metals is based on work
in face-centered cubic systems. In these systems, only vacancies, and some-
times divacancies, need to be taken into account at equilibrium because
the free energy for interstitial formation is so high. But there is no reason
to expect these results to carry over to more open structures. In sodium, for
example, the ion-core radius is small relative to the nearest neighbor
distance, so the free energy of interstitial formation can be expected to be much
smaller than in close-packed metals. Unfortunately, there has not been enough
research done to identify the nature and number of all the point defects present
in such systems, but there are strong indications that the alkali metals have a
variety of point defects that do not exist in appreciable numbers in close-
packed crystals. In general, the smaller the ratio of the ion radius to the nearest
neighbor distance, the greater the variety and complexity of point defects that
can be expected.

This section considers the coexistence of vacancies, divacancies, and inter-
stitials in a pure monatomic crystal. The defect concentrations will be deter-
mined by a straightforward generalization of (15.2.15):
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where Nv, AT2v and AT; are the number of vacancies, divacancies, and interstitial
atoms, respectively, and G(V, 2V, I) is the Gibbs free energy of a crystal con-
taining AT atoms, JVV vacancies, AT2v divacancies, and Nj interstitials. This free
energy is given by

where G{V, 2V, /) is the Gibbs free energy except for the configurational con-
tribution and w[V, 2V, I) is the number of ways of distributing AT atoms, JVV
vacancies, N2v divacancies, and AT/interstitials on a lattice of L normal sites and
LI interstitial sites where

and L/is a small multiple of L, depending on the crystal structure. Note that
we have assumed that there is only one kind of site that can be occupied by
an interstitial atom. The configurationless free energy is given in terms of a
partition function which is completely analogous to (15.2.4).

In (15.6.1), the differentiations are performed while holding the number of
atoms constant so that vacancy and divacancy formation processes consist of
removing atoms from the interior of the crystal and placing them on the surface,
while the formation of an interstitial consists of taking an atom from the surface
and placing it in an interior interstitial position.

Equations (15.6.1) and (15.6.2) give the following conditions of defect
pmiiliVirinm •

where G(, G^», and Gf are the free energies of formation of a vacancy, a diva-
cancv. and an interstitial, resoectivelv. denned bv



G{ is the free energy change on bringing an atom from an interior lattice site
to the crystal surface, G{v is the free energy change on bringing two adjacent
atoms from the interior to the surface, and G{is the free energy change on taking
an atom from the surface and placing it in an interstitial position.

As usual, we will assume that the concentration of defects is low enough
that interactions among them can be ignored and the formation free energies
can be taken to be independent of concentration.

The statistical count w(V, 2V, I] is obtained by first counting the number of
ways A/2V divacancies can be placed on L lattice sites, then counting the number
of ways A/, vacancies can be placed on the remaining available lattice sites, and
finally counting the number of ways N, interstitials can be placed on L/ inter-
stitial sites. In performing this count, the restriction is imposed that the dif-
ferent types of defects cannot be nearest neighbors, since this would produce
a new kind of defect. Getting the statistical count is straightforward, although
it requires some care. A detailed analysis is given in chapter 16, which gener-
alizes our approach to include dilute alloys. The result is that w(V, 2V, I) is
the product of three terms:

Using these approximations gives

In these equations, z is the number of nearest neighbors to a lattice site, z' is
the number of nearest-neighbor lattice sites to a vacancy pair, z, is the number
of nearest-neighbor interstitial sites surrounding a vacancy, and z/ is the
number of interstitial sites that are nearest neighbors to a vacancy pair, defined
such that (z/ + 2) is the number of interstitial sites around a divacancy that are
not available to interstitials.

The process of differentiating the statistical count is a bit tedious but straight-
forward. It is only necessary to use Stirling's approximation and approxima-
tions of the form ln(l + x) = x for small x, and to take the number of defects as
small relative to the number of sites. The product in (15.6.11) is treated in the
following way:

where
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There is a relation between the vacancy and the divacancy concentrations
because two vacancies can combine to form a divacancy, and conversely, a diva-
cancy can dissociate into two monovacancies. This process can be represented
in the notation of chemical reactions as V+ V -o V \. The equilibrium constant
governing the equilibrium concentrations for this reaction is defined by
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Combining these with (15.6.4)-(15.6.6), we get the defect concentrations as

From (15.6.18) and (15.6.19), the right-hand side of this is given by

The quantity Gw, defined by

is the binding free energy of the divacancy since it is the free energy change
upon separating a divacancy into two monovacancies. Equation (15.6.22) is
usually written as

The total concentration of vacant sites, NT
V, is given by

or, using (15.6.18) and (15.6.19),
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Having obtained the equilibrium concentration of defects, we can now derive
the crystal free energy in a manner completely analogous to that used in arriv-
ing at (15.3.22). If we write the configurationless free energy G{ V, 2V, 1} as linear
in the defect concentrations,

and put this, along with (15.6.2), into (15.6.14), and then use
(15.6.18)-(15.6.20), the result is

This is a straightforward generalization of (15.3.22). Just as in section 15.4, we
can now get all the thermodynamic crystal functions in a form that displays
the defect concentrations. These are listed below.

The heat capacity at constant at constant pressure, the thermal expansion,
and the compressibility are just like equations (15.4.16), (15.4.17), and
(15.4.18), except that there are three bracketed terms on the right, one for each
defect.

15.7 Some numerical results

A variety of experimental methods have been used to determine the values of
energies and entropies of defect formation. These include measurement of the
electricity resistivity of quenched and irradiated metals, comparison of dilato-
metric and X-ray measurements of thermal expansion, determination of stored
energy release of irradiated and cold-worked specimens, diffusion measure-
ments, and internal friction studies.

The various methods agree in that they give roughly comparable results. The
accuracy of any of the results, however, is open to question, despite the fact
that they represent a considerable amount of careful and highly competent
research. There are two reasons for this. First, defects are present in low con-
centrations, and very sensitive experimental methods must be used to see their
effects. Second, in most materials a rich variety of point defects, as well as
more extended defects such as dislocations and grain boundaries, exists. The
question of sorting out all the defects and their interactions on the measure-
ments is a very difficult one, so often uncertainty is inherent in the interpre-
tation of the experiments.

Despite the difficulties, valuable information on the defect parameters has
been obtained. Table 15.1 shows these parameters for some metals. Most of the
values have been reduced to one significant figure. For those values that seem
better established, two significant figures are retained.

Figure 15.1 shows the vacancy concentration in copper as a function of tem-
perature according to equation (15.6.18) using the parameters in table 15.1 for
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Table 15.

Metal

Ag
Cu
Au
Ni
Al

1: Point Defect Parameters in Metals

(4 (eV)

1
1.05
0.87
1.4
0.65

From an analysis by Seeger A.,

stitials in Metals"; Proceedings
A. Seeger, D. Schumacher, W.
Amsterdam.

S4 (eV)

0.4k
0.5k
1.5k
0.8k

(7w(eV)

0.1

0.3
0.3

Slv

2k
1k

and H. Mehrer; 1970; "Vacancies and Inter-
of the Julich Conference (September, 1968);

Schilling, and J. Diehl, Eds.; North-Holland,

Figure 15.1. Variation of vacancy concentration with temperature in copper.
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G( = L7{ - TS{. The atomic fraction of vacancies near the melting point is of the
order of 10~4, and it decreases rapidly with temperature. This curve shows why
the effects of an equilibrium concentration of vacancies are observable only at
high temperatures. Because of the low concentration of monovacancies and the
low divacancy binding energy, the divacancy concentration is quite small in
copper. Also, because of the high formation energy for interstitials, their con-
centration is negligible. Thus, in copper at equilibrium, the monovacancy is
the predominant point defect.

Since the volume of vacancy formation is positive, the application of pres-
sure decreases the vacancy concentration. This effect is shown in figure 15.2,
in which the ratio of the vacancy concentration (at the melting point) at pres-
sure P to that at zero pressure is plotted against pressure according to

which is readily obtained from (15.5.1). V{ was taken to be one half the atomic
volume of copper, and Tm is its melting point.

The percentage vacancy contribution to the heat capacity of copper is dis-
played in figure 15.3, which was computed from

Figure 15.2. Variation of vacancy concentration with pressure in copper.
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This equation follows from (15.4.16) since H{ = Ut, at zero pressure and (C()P
can be shown to be negligible from the calculations in section 15.5. Also, the
high-temperature value of 3Nk was used for the heat capacity of the perfect
crystal, which is sufficiently accurate at temperatures where the vacancy con-
centrations become important. Note that vacancy formation increases the heat
capacity since vacancy creation requires energy.

The contribution of vacancies to the thermal expansion of copper at zero
pressure is shown in figure 15.4, which was obtained from equation (15.4.17),
in which (cc{ - ce°) in the right-hand bracket was neglected. Since the thermal
expansion of copper is about 70 x 10~s, we see that the vacancies contribute
about 0.07% to the thermal expansion of copper. The contribution to the
compressibility is even smaller.

Although these figures show that the contributions of point defects to the
thermodynamic properties of pure copper are small, and generally not
detectable with any accuracy using available experimental methods, this must
not be taken as being true for all metals. The effects are proportional to the
defect concentrations, and in many metals they are considerably higher than
in copper. As an example, the concentrations of vacancies and divacancies in
aluminum are shown as functions of temperature in figure 15.5, and these are

Figure 15.3. Vacancy contribution to the heat capacity of copper.



Figure 15.4. Vacancy contribution to thermal expansion in copper.

Figure 15.5. Vacancy and divacancy concentrations in aluminum.
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much higher than in copper. The total concentration of vacant sites at the
melting point is about 1CT3, which is a factor of 10 greater than for copper. It
is interesting to note that nearly 40% of the vacant sites are tied up in diva-
cancies, so divacancies can by no means be neglected in aluminum. Thus,
point defects make significant and measurable contributions to the thermody-
namic properties of at least some metals.

Figures 15.6—15.8 display the vacant site contributions to the heat capacity,
thermal expansion, and compressibility of aluminum. The percentage increase
in heat capacity was computed from (15.7.2). The contributions to the thermal
expansion and compressibility were computed from equations just like
(15.4.17) and (15.4.18), but containing terms for vacancies and divacancies that
are identical in form. The energies of formation for vacancies and divacancies
were taken from table 15.1. The volume of formation of a vacancy in aluminum
was taken to be half the atomic volume, and the volume of formation of the
divacancy was taken to be equal to the atomic volume. This assumes that the
relaxation volume around a divacancy is twice that for a vacancy. The vacant
site contributions to the heat capacity are much higher than for copper. In fact,
the defect contributions are larger than the error in a decent experiment and
therefore contribute measurable amounts.

The thermal expansion coefficient of aluminum at 800K is about 10"4, which
means that the vacant sites contribute nearly 10%. This is a large effect. The

Figure 15.6. Vacant site contribution to heat capacity of aluminum.



Figure 15.7. Vacant site contribution to thermal expansion of aluminum.

Figure 15-8. Varant sitp rnntrihntinn tn rnmnrp«ihilitv of aluminum
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effect is positive because each vacant site increases the crystal volume by about
half an atomic volume.

Vacant sites make the crystal softer so they increase the compressibility.
The compressibility of aluminum is about 0.7 x 10~12cm2/dyne, so near the
melting point the vacant sites add about 10% to the compressibility of
aluminum.

Exercises

15.1 What is the fractional concentration of vacancies in aluminum at the
melting point? Compare this to the fraction of atoms having "gaslike" prop-
erties in the theory of melting given in chapter 10 (table 10.2).

15.2 Assume that the change in vibrational frequencies upon creating
a vacancy in a metal can be described by an Einstein model and that one
degree of freedom per nearest neighbor atom is altered by the vacancy. For
aluminum, what is the fractional change in the vibration frequency of each
of the altered degrees of freedom? How does this compare with the estimate
of the frequency change for atoms at a surface given in chapter 10?

15.3 What is the average distance between vacancies, in units of half the
lattice parameter, at the melting point, in aluminum and in copper?

15.4 Because an atom at a surface has fewer nearest neighbors, the fraction
of vacant surface sites is expected to be larger than in the bulk. For copper,
compute the atomic fraction of vacancies at a surface, at the melting point,
if the energy of vacancy formation at the surface is one half that in the bulk.
Ignore entropy terms.

15.5 In the regular solution theory of chapter 10, it was assumed that the
crystal energy was a sum of nearest neighbor interactions. Assuming that
these interactions are the same in the presence and the absence of vacancies,
derive a formula for the formation energy of a vacancy as a function of
composition. Ignore the entropy of vacancy formation and all relaxation
effects. Assume that every site is surrounded by the average atomic
composition.

15.6 For a 50-50 order-disorder alloy, derive the formation energy of a
vacancy as a function of the long-range order parameter, assuming each site
has an average environment and that the interaction energies are the same
in the absence or presence of a vacancy. Ignore entropy terms and all
relaxation effects. (Refer to chapter 8.)

Notes

. There has been considerable interest in this result recently. See Johnson,
R.A.; 1994; Physics ReviewB; vol. 50, p. 799; Landsberg, P.T. and S.G. Cana-
garatna; 1997; Physics Review B; vol. 55, p. 5531; and Fahnle, M.; 1998;
Physical Status Solidil; vol 45, p. Rl. These authors were apparently
unaware that this result, along with its generalization to dilute alloys con-
taining a variety of point defects (see chapter 16), was published in 1973 by
Girifalco, L.A.; (1973); Statistical Physics of Materials; John Wiley, New
York.
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2. Girifalco, L.A., and D.O. Welch; 1967; Point Defects and Diffusion in
Strained Metals; Gordon and Breach, New York. From Welch's equation
3.22, $s 1.34(3° and oc{ = 0.95a°.

3. Eshelby, J.D.; 1956; "The continuum theory of lattice defects", in Solid State
Physics; F. Seitz and D. Turnbull, Eds.; Academic Press, New York; pp.
79-144.



Point Defects in Dilute Alloys

16.1 General comments

This chapter is devoted to an analysis of point defect equilibria in binary alloys
for which the concentration of one of the constituents is much smaller than of
the other. In such alloys, the minority constituent can itself be regarded as a
defect or an impurity.

Our attention will be restricted to one-center and two-center defects, that is,
to alterations in the local composition from that of the pure perfect crystal that
involve either one atom or an adjacent pair of atoms. The perfect crystal is
taken to be one in which all lattice sites are occupied by atoms of the type of
the major constituent and all interstitial sites are empty. It will be assumed that
all lattice atomic sites are equivalent and that all interstitial sites are equiva-
lent. The results can be easily generalized to crystals in which atoms or inter-
stitial sites are arranged on two or more nonequivalent sublattices, and to
crystals containing more than one type of impurity.

The normal lattice on which the atoms in the perfect crystal are distributed
will be called the L lattice and contains L sites, while the interstitial lattice is
called the L' lattice and contains L' sites. The possible one- and two-center
defects will be denoted as follows:

V a vacant lattice site (the monovacancy)
1/2 two adjacent vacant L sites (the divacancy)
B an impurity atom on an L site (the substitutional impurity)
S2 two impurity atoms on adjacent L sites (the substitutional di-impurity)
BV an impurity atom on an L site adjacent to a vacant L site (the

vacancy-lattice impurity complex)
A' a major constituent atom at an L' site (the interstitial)
A'2 two major constituent atoms on adjacent L' sites (the di-interstitial)
B' an impurity on an L' site (the interstitial impurity)
B'2 two impurity atoms on adjacent L' sites (the impurity di-interstitial)
A'B' a major constituent atom and an impurity atom on adjacent L' sites (the

host-impurity interstitial complex)
A'V a major constituent atom on an L' site adjacent to a vacant site (the

interstitial-vacancy complex)
A'B a major constituent atom on an L' site adjacent to an impurity on an L

site (the impurity interstitial complex)
BB' an impurity atom on an L site adjacent to an impurity on an L' site (the

lattice-interstitial di-impurity)

431
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The first five of these defects occur only on the atomic lattice and will be called
substitutional defects; the second five occur only on the interstitial lattice and
will be called interstitial defects; the last three have one center on the atomic
lattice and the other on the interstitial lattice and will be called mixed-lattice
defects.

It is implicit in the definition of these defects that they are surrounded by
atoms of the major constituent (A atoms) on the L lattice, and in fact, the imme-
diate environment of these defects should enter into their definitions. This can
be seen by the fact that if two vacancies are brought close enough together,
they form a divacancy. There is a limit to how close defects can approach each
other without losing their identity and being transformed into something else,
so there is a minimum number of A atoms surrounding a defect that must be
included in its definition. In general, the stronger the lattice distortion around
a defect, the larger this minimum number. Thus, in a close-packed structure,
the region defining an interstitial will be larger than defining a vacancy because
the interstitial distorts the lattice considerably while the atomic displacements
around a vacancy are smaller.

Just as in chapter 15, the analysis here is based on the pressure ensemble.
However, we now consider a system consisting of the impurity alloy in equi-
librium with a gas phase containing A and B atoms. This will permit us to
investigate not only the internal defect equilibria, but also the solid-vapor
equilibrium and its coupling to the defect equilibria. It turns out that the
results can be separated into those that depend on the existence of the vapor
and those that do not, and the internal defect equilibria are the same whether
or not the vapor is present. This means that the resulting formulas for the inter-
nal equilibria are valid even if the impurity has a concentration that is not in
equilibrium with its vapor. Thus, much is gained and nothing is lost by using
a pressure ensemble that includes the vapor phase. We therefore write the
Gibbs free energy G of a crystal containing NA atoms of type A (host atoms),
Nfl atoms of type B (impurity atoms) and ATW defects of type i (as listed above),
in equilibrium with a gas containing NA atoms of type A and A7J atoms of type
B, as

In this equation, the total numbers of A atoms and of B atoms are constant.
G{NA, NB, ATH} is the Gibbs free energy of a crystal containing NA atoms of type
A, NB atoms of type B, and N^ defects of type (i), except for the configurational
contribution arising from the distribution of atoms and defects on the L and L'
lattices. It is defined by a form completely analogous to (15.2.4). GS(N'A, N§) is
the free energy of the gas phase.

The equilibrium defect concentrations are again obtained by finding the most
probable distribution, which is equivalent to determining the maximum term
in the sum of (16.1.1). The Gibbs free energy of the system is

in complete analogy with (15.2.14), and the thermodynamic Gibbs free energy
of the system is given by (16.1.2) when the [NA, NB, A/yj, A/if, A/f] have their most
probable values, which are determined by
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where the variation is taken with respect to changes in the gas and crystal com-
position. Since the system (crystal + gas) is closed, a change in crystal com-
position can only take place with a corresponding change in the gas phase. For
example, decreasing the number of vacancies in the crystal by unity corre-
sponds to a transfer of an A atom in the gas to a vacant site in the crystal. In
general, changing the number of i type defects involves a transfer of A and B
atoms to or from the gas phase.

Equation (16.1.3) is valid for any arbitrary variation of crystal composition
and can therefore be applied to any specific process of defect formation. For
our purposes, it is convenient and instructive to use (16.1.3) in conjunction
with specifically defined variations that describe defect formation. Equation
(16.1.3) will therefore be applied to (16.1.2) in the usual way to give

with the understanding that the derivatives refer to changes in the statistical
count and the free energies accompanying a particular process of defect
formation. The subscript P specifies the process to which the variation is
applied.

16.2 The statistical count for substitutional defects

In this section the statistical count is derived for a dilute alloy containing sub-
stitutional defects only. This will make the notation a little easier and make
the equations look less complex. The results are then easily generalized to the
case containing interstitial and mixed types of defects in an obvious way. Also,
in many metals, the formation energy of interstitials is enough higher than
that of vacancies that interstitial type defects are not present in large
concentrations.

We are given a lattice of L equivalent sites containing NA A atoms, NB
B atoms, Nv monovacancies, N2v divacancies, JV2B impurity pairs, and NBv
impurity-vacancy complexes. The alloy is dilute and therefore

The total number of lattice sites is

The total number of B atoms and of vacant sites is
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The way to get the statistical count is to remember that it is the number of
states for which the crystal has a given energy spectrum. Thus, it can be com-
puted by starting with a crystal having an allowed distribution of defects and
counting the number of permutations among them that do not change the
energy. A method for doing this was proposed by A. B. Lidiard and R. E.
Howard,1 but their result depends on the order in which the calculation for
different defects is made, and the statistical count contains some configura-
tions in which the number of di-defects are not properly computed. In the limit
of small concentrations, the errors introduced by these factors vanish, so
correct formulas are obtained for dilute alloys with a small number of defects.
Nevertheless, it is desirable to have a method of counting the number of com-
plexions that removes these errors.

Such a method is readily developed by first defining "core fields" for the
defects as the number of sites a defect must occupy to retain its identity, as
discussed in section 16.1. Let Za be the number of such sites for one-center
defects (vacancy, impurity) and Z2 be the number of such sites for two-center
defects (di-vacancy, di-impurity, vacancy-impurity complex). In the simplest
case, where the defect is defined by requiring that only nearest neighbors to
the defect must be occupied by A atoms, Zt = z + 1 and Z2 = z' + 2, where z is
the number of nearest neighbors to a lattice site and z' is the number of nearest
neighbors to a pair of adjacent sites. The total number of sites pre-empted by
the defects is

The number of complexions is just the number of ways the defects can be
moved about in the crystal without having any overlap of their core fields.

Now consider a single impurity pair. If all other defects are held in fixed
positions, the number of configurations that can be generated by moving the
pair, without changing the crystal energy, is just the number of ways of dis-
tributing the pair on the available sites, which is (z/2)(L - A). This is obtained
from the fact that the first atom of the pair has (L - A) sites available to it and
that atom is always attached to another that can go on any of the z nearest
neighbors to the first atom. This gives z(L — A) possible configurations. But the
two atoms are identical, and exchanging them does not give a new configura-
tion, so the result must be divided by 2. Since the number of di-impurities is
N2B, the total number of configurations generated by the permutation of impu-
rity pairs is [(z/2)(L - A)]N2B. This, however, clearly includes configurations
that differ only by an interchange of impurity pairs and therefore must be
divided by N2B! to give the number of configurations of indistinguishable
impurity pairs (for each configuration of all other kinds of defects) as
(l/Ar2B!)[(z/2)(L-A)]~-

There is obviously a factor of this kind for every type of defect, so the total
statistical count is

This can be reduced to a more compact form by labeling the defects with the
running index (i) so that N(i) is the number of defects of type i (i = 2B, 2V, Bv,
B, v) and defining a "rotational factor" to/, which is unity for one-center defects,
z for two-center defects consisting of unlike species, and z/2 for pairs con-
sisting of identical species. CO, is called the defect rotational factor because it
describes the degree of indistinguishability produced by rotating the defect.



where the product is over all defects of type i. Equation (16.2.8) is obviously
a general result in that any defect, whether of the substitutional, interstitial, or
mixed type, contributes a factor to the statistical count of the form

In applying this formula, it is only necessary to determine the number of lattice
sites available to the defect and the rotational factor co,.

The derivatives of the statistical count will be needed in the following
section. They are given by

16.3 Defect concentration formulas for
substitutional defects

Now that the statistical count has been determined, the defect concentrations
can be obtained from equation (16.1.4). In applying (16.1.4), it is only neces-
sary to specify the process for making the defect by transfers of atoms to or
from the gas phase.

To create a vacancy, either an A atom or a B atom can be removed from its
lattice position in the crystal and transferred to the vapor. If an A atom is trans-
ferred, then (16.1.4) is written as

where the arguments in the free energies have been omitted for convenience.
The derivative of the statistical count for this process only involves the

vacancy contribution, so from (16.2.10),

The first term on the right of (16.3.1) is the free energy change on forming a
vacancy by removing an A atom from the crystal and transferring it to the vapor
phase. This free energy will be denoted by G{(A). The right-hand side of (16.3.1)
will therefore be written as
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If Stirling's approximation for the factorials is used in the form

equation (16.2.6) can now be written as
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where \IA is the chemical potential of component A in the gas phase. That is,

because the vacancy formation process adds an A atom to the vapor at con-
stant temperature and pressure. It is evident that Gf

v(A] + \1A = G[A is the free
energy of vacancy formation as it is usually denned. This can be seen by writing
the derivative in (16.3.3) as

where G{NA, JVJ is the free energy of a crystal containing NA A atoms and AT,
vacancies before the transfer and G{NA — 1, JVV + 1} is the free energy of the
crystal after the transfer that then contains one less A atom and one more
vacancy. However, since at equilibrium \LA is also the chemical potential of the
crystal, G{NA - 1, A/, + 1) + \iA = G{NA, Nv + 1], which is the free energy of a
crystal containing NA A atoms and ATV + 1 vacancies. Therefore,

This is just the conngurationless free energy of formation at constant number
of atoms as it is usually denned. Equations (16.3.2) and (16.3.3) can now be
combined according to (16.3.1) to get

where kA is the absolute activity defined by \A = e>iA/kT.
We adopt the notational convention that parentheses in the subscript of the

defect formation quantities indicate that the defect is formed by transfers to
the vapor phase. The quantities without parentheses in the subscript indicate
defect formation by transfers to the surface.

Now consider the process of forming a vacancy by removing a B atom from
the crystal and transferring it to the vapor. This increases the number of vacan-
cies and decreases the number of B atoms, so changes in the statistical counts
of both the vacancies and the B atoms must be accounted for. Therefore, for
this process, (16.2.8) gives

Since

the change in the Gibbs free energy for this process is

where |1B is the chemical potential of B.
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For the process under consideration, (16.1.4) is

so (16.3.5)-(16.3.7) give

where A,fl = exp([iB/kT) is the absolute activity of the impurity.
The definition of the vacancy formation free energy in this case is completely

analogous to that in (16.3.3), so [G((B) + |IB] is the free energy change on remov-
ing a B atom from the interior of the crystal and placing it on the surface,
leaving behind a vacant site.

The equilibrium concentration of B atoms can be obtained by combining
(16.3.4) and (16.3.8) to give

This equation determines the equilibrium solubility of B in A for a crystal in
equilibrium with its vapor and shows that there is a close connection between
solubility and defect formation. Since we are restricted to dilute solutions,
Gl(A) must always be sufficiently greater than G;(fl) to satisfy the condition that
NB « L.

To get the equilibrium concentration of divacancies, consider the process in
which two vacancies come together to form a divacancy, leaving the number
of all other defects and the composition of the gas unchanged. In this case,

because the process destroys two vacancies and creates a divacancy. Only the
free energy of the crystal changes in this process since the gas is unaffected,
so the application of (16.1.4) gives

The derivative on the right-hand side of (16.3.11) is the free energy of binding
for a divacancy because it represents the free energy difference of a bound pair
and a separated pair of vacancies. It will be written as

Placing this in (16.3.11) and evaluating the derivatives of the statistical count
gives
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In a similar way, if we go through the process of forming a di-impurity from
two isolated impurities, we get

where GBB is the binding free energy for an impurity pair.
Finally, if the process of forming an impurity-vacancy complex by bringing

together an isolated vacancy and an isolated B atom in the crystal is applied
to (16.1.4), the result is

This is an appropriate place to point out that the lack of precision in the def-
inition of the number of sites excluded from the statistical count has very little
consequence. As long as all concentrations are small, A is small relative to the
total number of lattice sites and can usually be neglected.

All the equilibrium concentration formulas for substitutional defects have
now been obtained. The numbers of one-center defects can be eliminated from
the expressions for the two-center defects by using (16.3.4) and (16.3.9). A
summary of the defect concentration formulas is given below, where the atomic
concentrations N(i}/(L - A) are written as C(i) to abbreviate the notation:

In these equations, we have defined the following:

The free energy of divacancy formation:

The free energy of impurity atom dissolution:
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The free energy of impurity-vacancy complex formation:

Equations (16.3.16)—(16.3.23) were obtained for a dilute binary alloy in equi-
librium with its vapor. However, only the last three of these equations contain
parameters that depend on the vapor-solid equilibrium. The first five equations
describe the internal defect equilibria and are valid even if the crystal is not
in equilibrium with its vapor, provided only that the crystal composition is a
constant. In this case, of course, CB is not given by (16.3.21) but is given in
terms of the total impurity concentration, the concentration of di-impurities,
and vacancy-impurity complexes as CB = C\ - CBv - 2C2B. This partial equilib-
rium is quite common and represents a metal containing a small amount of a
second, nonvolatile component whose vapor pressure is never high enough to
alter the crystal composition. Equations (16.3.16)-(16.3.20) can therefore be
taken to describe a system that is only in internal equilibrium, or also in equi-
librium with its vapor. If external equilibrium is in effect, the concentrations
involving B atoms are given by (16.3.21)-(16.3.23).

Note that the formation free energies were defined relative to the gas phase,
since we were considering a crystal in equilibrium with its vapor. The vapor-
crystal equilibrium is often neglected in defect studies, and the formation free
energies are then defined by forming the defect by transferring atoms to or from
the surface. The two definitions lead to the same defect concentration formu-
las when only internal equilibria are considered. This is ensured by the pres-
ence of the absolute activities in (16.3.16)-(16.3.20).

The total concentration of vacant sites and of B atoms is given by

or,

It is sometimes necessary to compute CB and CBB from the total amount of B
in the alloy. This is readily done by solving (16.3.31) to obtain

where

and

The free energy of di-impurity formation:



440 STATISTICAL MECHANICS OF SOLIDS

This gives CB, and then C2B can be computed from (16.3.20).
When the impurity concentration is low enough, the computation can be

simplified since CB can be replaced by C| in the bracketed term of (16.3.31),
provided the di-impurity binding free energy is not too large. Then, solving for
CB gives

Once CB is computed from (16.3.32) or (16.3.35), the other defect con-
centrations can be obtained from (16.3.16)-(16.3.20).

16.4 Internal equilibria for substitutional defects

For a monatomic metal with a nonvolatile impurity, the point defect concen-
trations are governed by (16.3.16)-(16.3.20), along with (16.3.32), which relates
the internal defect equilibria to the total amount of impurity. From (16.3.17),
(16.3.19), and (16.3.20), we have

These equations have the form of equilibrium constants for chemical reactions.
In fact, a reaction can be defined in which two vacancies come together to form
a divacancy, along with its converse in which a divacancy dissociates into two
vacancies. In chemical reaction notation this is represented by

and the right-hand side of (16.4.1) is seen to be just the equilibrium constant
for this reaction. Similarly, two impurity atoms can form a di-impurity, or a
di-impurity can dissociate. The corresponding reaction is

with (16.4.3) as its equilibrium constant. The vacancy-impurity reaction is

and its equilibrium constant is given by (16.4.2).
This scheme clearly shows the interdependence of the defect concentrations.

For example, adding B atoms to the crystal shifts the reaction (16.4.6) to the
right according to (16.4.2), thereby increasing the number of impurity-vacancy
complexes and the total number of vacant sites. Also, adding B atoms shifts
the reaction (16.4.5) to the right, creating more impurity pairs. A rise in tem-
perature, however, decreases the ratio of impurity pairs to single impurity
atoms since the equilibrium constant defined by (16.4.3) decreases with
increasing temperature.



The addition of impurities has a significant effect on the defect equilibria.
In figure 16.1 the defect concentrations in aluminum are plotted for a total
impurity concentration of 10~3 atomic fraction. For these calculations, the data
in table 15.1 were used, and it was assumed both the divacancy and di-
impurity binding energies were 0.2eV and that the binding entropies were
zero. The figure shows that between 10% and 20% of the impurity is tied up
in vacancy pairs and that between 3% and 12% are in vacancy-impurity com-
plexes, depending on the temperature. The impurity has also increased the
total number of vacant sites. In fact, at low temperatures, the majority of vacant
sites are in impurity-vacancy complexes. Even at high temperatures, the
impurity has increased the number of vacant sites by over 10%.

The magnitude of the effect of impurities on the defect equilibria depends,
of course, on the impurity concentration, but also on the values of the binding
energies. These are not known with any accuracy, but they range from 0 to
about O.SeV.

16.5 Quenched-in resistivity of dilute binary alloys

The electrical resistivity of a metal has its origins in deviations from the per-
fect crystal structure, which results in the scattering of electrons. Since point

Figure 16.1. Defect concentrations in impure aluminum.
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defects in metals scatter electrons, the electrical resistivity can be used to study
defect properties.

The electrical resistivity is a function of temperature, impurity content, and
defect concentration. At normal temperatures, the effect of temperature is large
since many lattice vibrations of all wavelengths are excited. At low tempera-
tures, however, only a few phonons of long wavelength are active. Thus, the
resistivity decreases with decreasing temperature. Because of the existence of
impurities and defects, the resistivity retains a measurable value even at very
low temperatures. It is this temperature-independent intrinsic resistivity that
is of interest for defect studies.

For purposes of illustration, consider a pure metal containing only vacan-
cies and dislocations. We assume the dislocation density to be independent of
temperature. Now consider the following experiment. The metal is maintained
at some high temperature Tq long enough to ensure that defect equilibrium is
established. The temperature of the metal is then suddenly changed to a lower
temperature 7). The resistivity is then measured at liquid helium temperatures.
It will be assumed that Tf is low enough to immobilize the defects and that the
rate of quenching from Tq to 7} is so rapid that all defects present at Tq are
present at 7}. The electrical resistivity of the quenched specimen can then be
written as

where p(D) is the resistivity arising from the fixed defects such as grain bound-
aries and pv(Tg) is the specific resistivity per atomic fraction of vacancies at
temperature T?. Phonon contributions do not appear since we are making mea-
surements at liquid helium temperatures. [Whatever residual phonon contri-
bution exists can be lumped into p(D) if all measurements are made at the same
temperature.]

The vacancy concentration is characteristic of that at the initial temperature
Tq. Now if another identical metal sample is held at 7} long enough to ensure
defect equilibrium, its vacancy concentration will be Cv(7y) and the resistivity,
measured at liquid helium temperature, will be

We assume that T) is low enough that vacancies have a low mobility and do
not anneal out while bringing the specimen to liquid helium temperature.
Taking the difference between (16.5.2) and (16.5.1) gives

(Ap)T, is called the quenched-in resistivity. Note that 7} can be chosen to have
a value for which Cv(7}) is negligible. The quenched-in resistivity is then pro-
portional to the vacancy concentration at the quench temperature Tq, and sub-
stituting the vacancy concentration formula into (16.5.3) gives

Now replace G{ by U( - TS{ and take logarithms. The result is



POINT DEFECTS IN DILUTE ALLOYS 443

Therefore, the vacancy formation energy can be obtained from experimental
data by plotting ln(Ap)T, versus 1/T and computing the slope. In general, pv is
not known with any accuracy, so S{ cannot be obtained from the intercept of
such a plot. Thus, while the quenched-in resistivity can give defect formation
energies, it leads to unreliable results for total defect concentrations unless it
is combined with some other kind of data.

The idealized experiment described above is difficult in practice, the major
problem being the inability to achieve an infinitely fast quench. Thus, in a real
experiment, the defect concentration is not characteristic of that at tempera-
ture Tq since some of the defects are lost as the specimen cools. Nevertheless,
by performing the experiment at several quenching rates and extrapolating the
results to infinite quenching rates, significant data can be obtained. In fact,
careful experiments have been done on pure gold and on gold containing
known amount of impurity. It is therefore worthwhile to consider the case of
the dilute binary alloy, using the results of section 16.3.

For a dilute substitutional alloy, the point defect contribution to the resis-
tivity is the sum of contributions from vacancies, divacancies, solute atoms,
vacancy-solute complexes, and solute-solute pairs. The obvious generalization
of (16.5.3) for this alloy is that the defect and impurity contributions to the
resistivity at the temperatures Tq and 7} are given by

In this equation, the defect concentrations are given by (16.3.16)-(16.3.20)
and pv, p2v, PS,, PS,, pB, p2B are the specific resistivities (per atom fraction) of
vacancies, di-vacancies, vacancy-impurity complexes, and impurity pairs,
respectively. It is obvious that for an impure metal, a plot of m(Ap)r, versus
1/T is not linear.

Careful measurement of the quenched-in resistivity have been made by J.
Bass on pure gold and on gold containing tin or silver as impurities.2 These
experiments were analyzed according to (16.5.6)-(16.5.8) in conjunction with
(16.3.16)-(16.3.20).3 Since a number of the parameters in the above equations
were unknown, the best fit of the equations to the data had to be obtained by
a computer-programmed parametric curve-fitting process. The deviation from
a linear Arrhenius plot produced by a small amount of tin was remarkable. In
fact, detailed analysis showed that the large deviation from linearity at low
temperature is the result of the existence of tin-tin pairs. The values for the
binding energies that were consistent with the data are U" = 0.2eV, UBB = 0.2,
and f/Bv = O.SeV. Clearly, careful and detailed quenching experiments can give
valuable results.

16.6 Some general theory

In this section, the basic theory of defect concentrations in a dilute alloy is
summarized. The results obtained above for substitutional defects are general-
ized to include all the substitutional, interstitial, and mixed-lattice defects
described in section 16.1.

with
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In section 16.2, it was pointed out that any defect, whether of the substitu-
tional, interstitial, or mixed-lattice type, contributes a factor to the statistical
count given by equation (16.2.9). Accordingly, for the general case,

where the product is now taken over all types of mono- and di-defects. This
equation looks as if it applies only to crystals for which the number of inter-
stitial sites equals the number of atomic lattice sites because the same L appears
in every factor. However, it is easily applicable to the more general case in
which L and L' are not equal by letting L always be the number of substitu-
tional sites and appropriately redefining the rotational factors <%.

Examination of equations (16.3.16}-(16.3.23) shows that all defect concen-
trations can be written in the following two equivalent forms:

These formulas are also correct for interstitial and mixed-lattice defects. The
Gy) are the defect-free energies of formation referring to the vapor phase
while Gw are defect-free energies of formation referring to the crystal surface.
The A,(j) are products of the absolute activities, and the <% are the rotational
factors, generalized when necessary to account for the inequality of L and L'.
The interpretations of the <%, X(i), G({j, and Gu are obtained in precisely the
same way for interstitial and mixed-lattice defects as for substitutional defects.
Binding free energies also exist in the general case that are analogous to those
already defined for substitutional one- and two-center defects.

Not all of the possible one-center and two-center defects will be important
in all alloys. The concentration of each type of defect depends on its free energy
of formation, and it is necessary to know the free energies in order to know
which defects predominate in a particular system. For close-packed metals, the
vacancy is the major intrinsic defect, and many impurities enter the lattice sub-
stitutionally. However, there is strong evidence that cadmium dissolves in lead
by the so-called dissociative mechanism, in which the cadmium exists in both
substitutional and interstitial sites, despite the fact that lead has the face-
centered cubic structure. Furthermore, it appears that there is a strong attrac-
tion between an interstitial cadmium impurity and a vacancy. In lead that con-
tains small amounts of cadmium impurity, therefore, the defects that must be
considered are V, V2, B, B2, B', B'2, BV, B'V, and BB'. Of these, it is probably
safe to assume that B2, B2, and BB' are in much smaller concentrations than are
any of the others. It is of interest to write out the concentration formulas for
the dissociative mechanism explicitly since diffusion experiments exist that
have been interpreted by this mechanism. Applying equation (16.6.2) gives
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These equations represent full equilibrium in which the impurity concentra-
tion is determined by the metal vapor in contact with the crystal. To obtain the
internal equilibrium equations, consider the following reactions:

The first three of these reactions represent the usual formation of di-defects
from monodefects. The last reaction represents the transfer of the impurity
among the substitutional and interstitial sites. Applying the law of mass action
to the above reactions gives

KI, K2, K3, and K4 are equilibrium constants that are readily obtained by sub-
stituting (16.6.4)-(16.6.9) into the left-hand sides of (16.6.14)-(16.6.17). These
equations, along with the vacancy concentration formula, completely deter-
mine the conditions of internal equilibrium, and it is easy to show that
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These equations are valid for both the full-scale equilibrium and the case in
which no metal atoms can be transferred to the vapor such that only internal
equilibrium exists.

For the case of full-scale equilibrium, it is clear that we have arrived at the
statistical thermodynamics of the solubility of slightly soluble additions to a
monatomic crystal. In fact, the total concentration of solute Gf is given by

where the terms on the right-hand side are given by equations (16.6.5)-(16.6.9).
These equations contain chemical potentials that are determined by the partial
pressures of A and B in the gas phase, so they describe the effect of pressure
on solubility. Let us derive this relation explicitly for the case in which the
concentrations of pairs can be ignored such that the solute exists only as atoms
at regular lattice or interstitial sites. Then, using (16.6.6) and (16.6.7), (16.6.23)
becomes

If the vapor is an ideal gas, then the absolute activities are given in terms of
the partial pressures PA and PB as [see equation (3.4.25)]

where A^ and AB are the thermal wavelengths for gas A and gas B,
respectively.

For interstitial solution, the solubility is proportional to the partial pressure
of the solute, but for substitutional solution, the solubility depends on the ratio
of the partial pressures of solute and solvent because a vacant A site must be
created to accommodate a solute atom.

It must be stressed that metals and alloys are often not in equilibrium with
their vapor phases, and in those cases the impurity concentration is a constant
independent of pressure. It is then related to the internal equilibria through
equations (16.6.20)-(16.6.22). These, along with (16.6.23), give four equations
in four unknowns that must be solved to get the individual concentrations CB,
CB>, CBv, and CBv If we include the effects of impurity pairs, which were
neglected in the above discussion, the situation becomes more complex and
seven simultaneous equations must be solved to get the individual concentra-
tions of defects involving the impurity.

16.7 Thermodynamics of the dilute alloy

The contribution of all one- and two-center defects to the thermodynamic func-
tions can be obtained by a generalization of the method used for vacancies in
chapter 15. This method consists of writing the free energy of the crystal as a
sum of a configurationless part and the contribution from the configurational
entropy. The defect concentration formulas are then substituted into the
configurational contribution, and finally, the configurationless free energy is
expressed as a linear function of defect formation free energies.



At this point, we wish to express the configurationless free energy as a linear
function of the number of defects, choosing the perfect crystal containing only
A atoms as the reference state. Starting with a perfect crystal, each vacancy
that is formed increases the free energy by (G^j - \i.A) since the number of A
atoms is not changed by vacancy formation, and G^j represents a free energy
for removal of the A atom to the vapor phase. The free energy to add a B atom
to the perfect crystal is (Gj, - [\.A) since Gf is the free energy to exchange a B
atom in the gas phase with an A atom in the crystal, and [LA is the free energy
required to maintain the number of A atoms constant. In a similar way, the
change in free energy upon adding defects of all the types can be obtained
from the definitions of the formation energies G^. When this is done, and
G[NA, NB, N(Q] is written as a linear function of these free energy changes,
it is found that the first three terms in (16.7.5) reduce to G°{NA}, the con-
figurationless free energy of a perfect crystal containing NA atoms of type A.
(Note that this is just the total free energy of the perfect crystal since in this
case the statistical count is unity.) The defect contributions to G{NA, NB, N^}
are canceled by the second and third terms in (16.7.5). Therefore, we can write
(16.7.5) as
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The crystal free energy is

This is a generalization of equation (15.2.14). The configurationless free
energy on the right-hand side of (16.7.1) is the same as that in (16.1.2)
and is determined from the following partition function of the pressure
ensemble:

where the sum is over all energy states and over all possible volumes of the
crystal.

Now substitute (16.6.1) into (16.7.1) to get

But from (16.6.2),

This equation is a generalization of equations (15.3.22) and (15.6.28).

so (16.7.3) becomes



Exercises

16.1 A planar trivacancy in a face-centered cubic metal consists of three
nearest-neighbor vacant sites on a (111) plane. Write the statistical count
for this trivacancy as a function of trivacancy concentration. Also get
the statistical count if the tri-defect consists of two vacancies and one
impurity atom, all being nearest neighbors.

16.2 For a pure monatorm'c crystal in equilibrium with its vapor, derive
the explicit relation for the difference between the free energy to create a
vacancy by transferring an atom to the gas phase and transferring an atom
to the crystal surface, as a function of temperature and vapor pressure.
Assume that the vapor is a monatomic ideal gas.

16.3 Henry's law states that, for a dilute solution in equilibrium with
its vapor, the partial pressure of the solute component, at constant
temperature, is directly proportional to its concentration. Show that this
follows from the theory of point defects in dilute alloys and find the pro-
portionality constant. Hint: use the formula for the impurity concentration
for an alloy in equilibrium with its vapor and assume the vapor is an ideal
gas.
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The thermodynamic functions can now be obtained from (16.7.6) by appli-
cation of formulas having the same form as equations (15.4.1)—(15.4.8). The
results are

These are generalizations of equations (15.4.11)—(15.4.18). In these equations,
the left-hand sides represent crystal properties obtained from GC[NA, NB, JVyj]
by the usual thermodynamic formula. The thermodynamic functions labeled
(i) are derived from the defect formations free energies Gw by equations that
are totally analogous to the ordinary relations of thermodynamics.

In the equations for the thermal expansion and compressibility, terms to the
second order in the defect concentrations were neglected.
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Diffusion in Simple Crystals

17.1 The empirical laws of diffusion

The phenomenological description of diffusion is embodied in Pick's two laws,
which are empirical statements that relate the diffusive flow of matter to con-
centration gradients. To illustrate these laws, consider a single-phase dilute
binary alloy in which the constituents are inhomogeneously distributed and
let Cbe the concentration of the minor constituent. The concentration is a func-
tion of position and time and the concentration gradient induces a flow of
matter. Pick's first law states that the flux of the diffusing species in a given
direction has a magnitude proportional to the concentration gradient in that
direction. That is, i f / j is the flux along the xl axis, then

where D-i is a proportionality factor called the diffusion coefficient. The nega-
tive sign expresses the fact that diffusion occurs from regions of high concen-
tration to regions of low concentration.

If (xt, x2, x3) are the points in a Cartesian coordinate system with unit vectors
(ii, i2, is), then we would expect that an equation similar to (17.1.1) to hold for
each of the three directions along the coordinate axes. For isotropic systems
such as gases and liquids, this turns out to be the case. Furthermore, for such
systems the diffusion coefficient is experimentally found to be the same in all
directions. In nonhomogeneous systems, however, such as crystals with a low
degree of symmetry, the diffusion coefficient is not the same in all directions.
Also, the flux in one direction can depend on the flux in other directions. These
results can be described by a generalized Pick's first law as

450
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Similarly, the fluxes in the other two directions of the Cartesian coordinate
system are given by
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These equations can be written in a compact form by defining the flux vector
T o t ?

and the diffusion dyadic D as

(see appendix 8). Then the equations (17.1.2)-(17.1.4) give the generalized
Pick's first law as

Pick's second law is obtained from (17.1.7) by application of the equation of
continuity, which states that

This is just an expression of the law of the conservation of matter and states
that any change in concentration in a volume element is the result of the dif-
ference in matter flow in and out of the volume element.

Combining (17.1.7) and (17.1.8) gives a generalized form of Pick's second
law:

Note that if the diffusion dyadic is independent of position, then (171.9)
reduces to

The set of quantities DK is the diffusion tensor and is equivalent to the diffu-
sion dyadic.

As shown in appendix 8, it is always possible to refer a crystal dyadic to
principle axes so that the dyadic has only diagonal components Dlt D2, D3.
When this is done, the diffusion dyadic has the form

In isotropic and cubic systems this takes a particularly simple form since
Dl = D2 = D3 = D. If D is a constant independent of position and time, the sim-
plification is even greater and Pick's laws become

Recall that the theory of random flights yielded equation (13.8.6) for the change
in time of the probability distribution function for the atomic displacement.
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This is fully equivalent to equation (17.1.13). An alternate, and somewhat more
general, connection between diffusion and random flight is given in sections
17.2 and 17.3.

The value of these results lies primarily in the fact that they can be used to
compute the distribution of the diffusing species in space and time. Thus, if
the initial boundary conditions are known, (17.1.13) can be solved for C(r, t).
Also, it is possible to set up experimental conditions corresponding to partic-
ularly simple solutions of (17.1.13), thereby making it possible to determine
the diffusion coefficient from experiment.

The purpose of theory at this point is to provide a derivation of Pick's laws
from statistical-kinetic theory and to relate the diffusion coefficient to the atom-
istic mechanisms responsible for diffusion. First, the method of transition prob-
abilities will be used to show that the diffusion coefficient is proportional to
the mean square of atomic displacements per unit time. Then the mean square
displacements will be related to the defect concentration and to the atomic
jump frequencies. The detailed treatment is restricted to simple systems but is
sufficient to illustrate the general principles of the statistical mechanical theory
of diffusion.

17.2 Transition probabilities and Pick's laws

Consider a. volume element dr centered about a point defined by the position
vector r in a material medium. The diffusion through this volume element can
be described by counting the number of particles of the diffusion species enter-
ing and leaving the volume element per unit time. To do this, define a condi-
tional transition probability density per unit time A(r|R) such that A(r|R)dRdt
is the probability that, if a particle is at r, it will move a distance R into the
volume element dR during the time dt. Since the number of particles in dr is
C(r, t}dr, then the number of particles leaving dr in time dt is

To get the number of particles entering the volume element dr, consider a
volume element dR about a point (r - R). The number of particles moving from
this volume into dr during time dt is the number of particles in dR times the
probability that a particle will move from (r - R) to r, which is

Integrating this over all R gives the number of particles entering the volume
element dr in time dt as

The difference between (17.2.3) and (17.2.1) gives the increase in the number
of particles in dr, during time dt, as a result of particles moving out of dr and
particles moving into dr. If this difference is divided by dr and dt, the result
is the rate of increase of the concentration at r at time t. Therefore,
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Now let us assume that the transition probability is very small for large R
compared to the distances over which diffusion is measured. This is certainly
true for crystals in which diffusion takes place via jumps of atomic dimen-
sions. It is even true for gases and liquids in which the magnitude of R is of
the order of the mean free path. Therefore, Pick's laws can be obtained from
(17.2.4) by expanding the first term in a Taylor series and retaining only the
first two terms as follows:

Now assume that the transition probability is independent of position r. This
will be true for the cases we are now considering. Then, substituting (17.2.5)
into (17.2.4) gives

Remember that the concentration is evaluated at r and is independent of
R. Also, since the transitional probabilities are assumed to be independent
of position, it is natural to take them to be the same for migrations R and
-R in opposite directions. Then the first integral in (17.2.6) vanishes and we
get

Let the components of R and r in a Cartesian coordinate system be (X^, X2, X3)
and (xlt x2, X3), respectively. Then

and (17.2.7) can then be written as

where

These are the mean values of the quadratic migration distance products per
unit time, the averages being taken over all possible migration distances.

Equation (17.2.9) has precisely the form of Pick's second law for the case of
constant diffusion coefficients, and comparison with (17.1.10) shows that the
components of the diffusion dyadic are given in terms of the migration dis-
tance averages as



454 STATISTICAL MECHANICS OF SOLIDS

If the coordinate axes are chosen to be the principle axes of diffusion, then
only the diagonal terms in (17.2.11) are nonzero and equation (17.2.9) becomes

and the principle diffusion coefficients are given by

Equation (17.2.12) is a fundamental relationship that connects the diffusion
coefficient to the mean square particle displacement per unit time. It is this
result that enables the macroscopic diffusion coefficient to be understood in
terms of atomic mechanisms.

When all the D,- are equal (as in isotropic systems or cubic crystals) (17.2.12)
becomes

where X2 = X\ = Xj = XZ
3. The diffusion coefficient is often expressed in terms

of R2 instead of X2. Since

we have, for an isotropic or cubic medium,

and we write (17.2.14) as

where

Note that the statistical interpretation of Pick's first law follows directly from
a comparison of (17.2.17) to the equation of continuity. For the cubic or
isotropic case, we immediately get

with D given by (17.2.18).
Let us remember that, in deriving these results, the conditional transition

probability was assumed to be isotropic and independent of position. This is
a strong assumption, and since it is necessary if the theory is to yield Pick's
laws, it is worthwhile to pause and consider its physical implications. Clearly,
a constant transition probability implies that the material is homogeneous over
the distances at which diffusion is measured. This means that there must
be no external fields and no temperature gradients and that variations in



DIFFUSION IN SIMPLE CRYSTALS 455

concentrations are small enough so as to have a negligible effect. These are the
kinds of systems for which Pick's laws hold. If fields or temperature gradients
exist, or if the variations in concentrations are sufficiently large, then the tran-
sition probability depends on position. The diffusion coefficients are then also
functions of position. Furthermore, the gradient terms in the Taylor expansion
of the transition probability no longer integrate to zero, and the diffusion equa-
tions then have linear terms that are proportional to fields and to gradients of
the concentration and temperature. The theory then becomes somewhat more
complex.

17.3 Atomic jumps and the diffusion coefficient

Diffusion in crystals takes place by discrete atomic jumps in which an atom
moves from one lattice site to another. The simplest diffusion system consists
of a dilute interstitial impurity in a cubic metal, as exemplified by carbon in
iron. In such a system, an impurity atom at an interstitial site spends most of
its time executing small vibratory motions about its mean position. Occasion-
ally, however, the impurity atom acquires a large amount of energy as the result
of local thermal fluctuations and jumps to an adjacent interstitial site. Conse-
quently, the impurity atom wanders through the crystal in a tortuous path that
is the sum of a large number of random jumps.

The motion of a vacancy takes place in a similar fashion, the elementary
vacancy jump consisting of the movement of an atom adjacent to the vacant
site. In tracer movement by a vacancy mechanism, the tracer atom moves by
jumping into an adjacent vacancy. In all these cases, the length of the dis-
placement vector over a period of time is the sum of elementary vectors of the
same length. Thus, if R is the overall displacement of a diffusing entity per
unit time, then

where r; is the elementary jump vector for the Mi jump and F is the number
of jumps per unit time.

The diffusion coefficient is proportional to the square of the displacement,
so we need to square (17.3.1) to get

Now rewrite this by separating out the terms for which i = j:

The second term on the right can be written in terms of partial sums as

The validity of (17.3.4) is readily seen by writing out the terms on the right-
hand side as a square array and regrouping terms. The factor of 2 arises because
the sum is over both i and j. Using (17.3.4), equation (17.3.3) becomes
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Now let us restrict ourselves to cubic monatomic crystals for which all the
jump vectors have the same magnitude r. Then the first sum is just r times the
number of jumps per unit time F, and the second sum consists of terms given
by

where QiJ+i is the angle between the iih and the (:' = ;')th jump. Equation (17.3.5)
can therefore be written as

In this equation R is the magnitude of the displacement of a single atom per
unit time. To obtain the mean square displacement that appears in the transi-
tion probability theory, it is only necessary to average (17.3.7) over a large
number of atoms, each atom making F jumps per unit time. That is,

where

It is obvious that we have been treating diffusion as a random flight just as
in chapter 13, for the special case of solid state diffusion, by a somewhat dif-
ferent route. The method of getting from (13.2.11) to (13.2.19) is clearly com-
pletely valid for the present case, and / is the correlation factor given by
equation

For solid state diffusion, the correlation factor is determined by the crystal
structure and the diffusion mechanism. In general, computation of / is diffi-
cult, but for simple diffusion mechanisms it is a constant near unity.

For diffusion of an interstitial impurity in a cubic crystal, it is clear that cos9
= 0, since for every possible atomic jump in a given direction, there is also a
possible jump in the opposite direction. In this case, therefore, /= 1, and dif-
fusion is said to occur by an uncorrelated random flight of the impurity atoms.
Physically, this means that successive jumps of an interstitial impurity are
completely independent. This is a consequence of the fact that the jump fre-
quency F is much smaller than the vibration frequencies of the crystal normal
modes. An impurity therefore stays at an interstitial site long enough to lose
all memory of its preceding jump. Clearly, if we regard a vacancy as a diffu-
sion entity, its migration is also uncorrelated and /= 1 for vacancy diffusion.

Diffusion of a substitutional tracer atom by a vacancy mechanism is another
matter, however. After a tracer atom jumps into a vacant site, the vacancy is
still next to the tracer atom. Furthermore, the time it takes the vacancy to move
away from the tracer is comparable to the time it takes the tracer to move back
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into the vacancy. Therefore, the probability that a tracer will move back to the
site it has left is greater than the probability that it will move to some other
site. This means that the jump probabilities are not equal in all directions; the
jumps are correlated because the direction of a jump depends on the direction
of the preceding jump and cos9 is not zero. Detailed calculations show that
/= 0.72 for the body-centered cubic structure and/= 0.78 for the face-centered
cubic structure.1

Combining (17.3.8) with (17.2.18) shows that the diffusion coefficient is
given by

For the case of interstitial diffusion, r = r/, the distance between interstitial
sites; /= 1, and T = F; is the jump frequency for interstitial atoms. Therefore,
we write the diffusion coefficient as

A similar formula holds for the diffusion of vacancies:

In this equation, rL is the distance between nearest neighbor sites and Fv is the
jump frequency for a vacancy.

For self-diffusion by a vacancy mechanism, Y = rvCv, where Cv is the atom
fraction of vacant sites. This is so because F is the actual number of jumps an
atom makes per second. Of course, an atom cannot move unless a vacancy is
next to it, so the jump frequency for an atom into a vacancy, Fv. must be mul-
tiplied by the probability Cv that a site is vacant. Thus, for self-diffusion

It is found experimentally that diffusion coefficients in crystals have an
Arrhenius-type dependence on temperature and pressure of the form

where D0, Q*, and V* are constants. A major purpose of the application of sta-
tistical mechanics to diffusion is the derivation of this experimental result, and
the interpretation of the pre-exponential factor D0 and of the heat and volume
of activation Q* and V*. All that remains to achieve this goal is to develop the
theory of the jump frequency.

17.4 The jump frequency in one dimension

During an atomic jump, an atom passes from one equilibrium position to
another. It is clear that, in the process of doing this, the atom meets strong
repulsive forces from its neighbors, so it must surmount an energy barrier. The
migrating atom only occasionally acquires enough energy to climb this barrier.
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This energy is a local thermal fluctuation consisting of the coming together
of phonons of sufficient energy and the correct directionality to move the
atom over the barrier. To introduce the method of dealing with this situation,
we consider a one-dimensional analog of the jump process as shown in figure
17.1.

This represents a single particle of mass m moving in one dimension in a
one-dimensional periodic potential. The single particle represents the diffus-
ing atom, and the periodic potential is the analog of the interaction energy of
this atom with the rest of the crystal. The equilibrium positions of the particle
are at the minima of the periodic potential, and the difference between the
maximum energy EM and the minimum energy E0 is the activation barrier. The
difference (EM - E0) is taken to be large enough that most of the time the par-
ticle vibrates about the bottom of the well in accord with Hooke's law. When
the particle acquires an energy equal to or greater than (EM - E0) by thermal
interaction with its surroundings, it climbs out of the well and moves over the
barrier to enter a new position adjacent to its old one. We want to know how
often the particle will do this, and the answer will be sought by using classi-
cal statistical mechanics.

Assume that the top of each barrier is flat enough that a very small, but
nonzero, distance 1 can be defined such that the potential energy is very nearly
constant over this distance. When crossing through this distance 1 the particle
will have a mean velocity v given by classical statistical mechanics as

Out of some long time interval t, the particle spends most of its time near
the bottom of the well and a small amount of time in one of the regions 1 at
the top of a barrier. Let TB be the time it spends near an energy minimum and

Figure 17.1. Diffusion of a particle in a one-dimensional periodic potential.

Performing the integrations gives



where XM is the position of the maximum. §(x) is the potential energy of the
particle as a function of the distance measured from the position of the energy
minimum. In the region /, this energy is very nearly constant. That is,
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1(7) be the time it spends in one of the regions at the top of a barrier. Also, let
T be the average time it takes the particle to pass through the distance 1. Then
[t(7)]/T is just the total number of crossings the particle makes from one well
to another in the total time t. Dividing this number by T then gives the number
of jumps per unit time, which is just the definition of the jump frequency.
Therefore,

But the mean velocity is

so (17.4.3) becomes

Furthermore, T is very nearly equal to TB since a jump is a relatively rare occur-
rence. Using this fact and (17.4.2), equation (17.4.5) becomes

The ratio i(I)liB can be obtained from the basic axiom of statistical mechanics
that states that time averages are equal to ensemble averages, so the time a
system spends in any group of states is proportional to the partition function
for those states. Therefore,

where the numerator is the partition function when the particle is in the region
1 at the top of the barrier and the denominator is the partition function when
the particle is in the region around the bottom of the energy well. In the clas-
sical limit, the sums become integrals over coordinates and momenta. The
integrals over momenta are the same for both partition functions, so (17.4.7)
becomes, in the classical limit,

so the integral of the numerator of (17.4.8) becomes
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In the region near the bottom of the well, the particle is harmonically bound
to the energy minimum such that

where B is the Hooke's law force constant.
The integral in the denominator of (17.4.8) should be taken over the bottom

of the well and part of the way up its walls. However, the exponential factor
rapidly approaches zero as §(x) becomes large, so a negligible error is intro-
duced if the integration is taken from -°° to °°. Using (17.4.11), the denomina-
tor in (17.4.8) then becomes

Substituting (17.4.10) and (17.4.12) into (17.4.8) gives

Combining this with (17.4.6) gives the jump frequency formula as

But the pre-exponential factor is just the vibration frequency of the particle at
the bottom of the well, so (17.4.14) can be put in the more usual form

where

is called the activation energy for migration.
The physical interpretation of (17.4.15) is straightforward. The particle

vibrates near the bottom of the well v times per second. To climb out of the
well it must acquire an energy equal to or greater than the well height Um. The
probability that the particle can do this is given by the Boltzmann factor of
the activation energy. The product of this probability with the vibration fre-
quency gives the jump frequency.

This one-dimensional example illustrates the application of statistical
mechanics to the theory of the jump frequency. In real crystals, of course,
atomic migration is a many-body process involving the motion of many atoms.
The migrating atom acquires its energy from the motion of other atoms. Also,
as the atom approaches the energy barrier, it interacts with other atoms that
move as a result of the interaction. The following section takes up the jump
frequency in a many-body system.

17.5 Many-body theory of the jump frequency

The many-body theory of the jump frequency can be developed as a
generalization of the method of the preceding section. The system under
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consideration is a single vacancy in an otherwise perfect monatomic crystal,
and the temperature is taken to be high enough that the semiclassical version
of statistical mechanics can be used when needed.2

In accord with the semiclassical description, the system is represented by a
point in configuration phase space. This space is defined by the coordinates of
the system so that at any particular time the configuration phase point has the
coordinates (q-i, q2, qit . . . , c^w). Most of the time the atoms vibrate about their
mean positions, and the harmonic approximation can be used to express the
potential energy of the system as

where Ofy is the angular frequency of the j'th normal mode whose coordinate is
q,, m is the mass of an atom, and <|>0 is the potential energy of the system when
all atoms are at their equilibrium positions.

Occasionally, however, an atom next to the vacancy will acquire enough
energy to jump into it. In the process of jumping, the atom will pass through
an energy barrier separating the initial and final equilibrium positions. The
midpoint is a critical position; if the atom reaches this midpoint with a nonzero
velocity, it will move into the vacancy, leaving a vacancy behind, and an atomic
jump will have occurred. The coordinates of all the atoms when the migrating
atom is at the critical position will be called the activated state for atomic
migration. Actually, there is not just one activated state; there is an entire
ensemble of them since many "midpoint configurations" are consistent with
the requirement that the migrating atom be in a proper position with sufficient
velocity to move into the vacancy. The ensemble of activated states is just a
subensemble of the complete ensemble of the system.

It can be expected that the activated states are all close together in the same
sense that the normal states are all close together. The activated state of lowest
energy will be that in which the migrating atom is midway between its initial
and final position, and all other atoms are at rest at equilibrium positions. Of
course, these equilibrium positions will be different than those for the normal
states because the migrating atom at the top of the energy barrier interacts
strongly with the surrounding atoms and pushes them to new positions.

In terms of the configuration phase space, the migration process can be
described as follows: the phase point representing the system spends most of
its time executing small motions around a region whose potential energy is
given by (17.5.1). That is, it moves through the ensemble of normal states. Occa-
sionally, however, the phase point leaves that 3JV-dimensional well to jump
into a similar adjacent well. In doing this, it passes through a region of con-
figuration phase space representing the subensemble of activated states. If we
let (c/i, q2, <73) be the coordinates of the migrating atom and choose the coordi-
nate system such that ga is along a line joining the initial and final positions,
it is clear that the configuration region corresponding to the activated state will
have a very small extension along the c/j-axis. Call this extension 8 and let Vj
be the average velocity of the migrating atom along the qa when it is in the acti-
vated region. Then the mean time the phase point spends in the activated
region during a migration is given by

Now let t(8) be the total time the phase point spends in the activated region
out of a long time t. Then x(8)/T is the number of times an atom crosses the
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activated region during the time T, and dividing this by the total time T gives
the jump frequency for a vacancy as

or, using (17.5.2),

Replacing v, by Pi/m, where PI is the average momentum of the moving atom
along the migration direction in the activated region, gives

The average momentum is readily obtained from equation (2.14.26) as

The integration is taken from zero to infinity because we are averaging only
over the positive momenta that take the moving atom across the barrier. Per-
forming the integration gives

Thus, eauation (17.5.5) now reads

Just as in the one-dimensional case, we now invoke the equivalence of time
and ensemble averages and replace the ratio of times in (17.5.8) by a ratio of
partition functions. Now, however, the pressure canonical ensemble will be
introduced for this purpose because the volumes of the member systems of the
ensemble are not the same in the normal and activated states. Also, the final
results can then be easily expressed in terms of Gibbs free energies, thereby
facilitating the treatment of the effect of pressure on diffusion. Therefore,

where Z* is the pressure canonical partition function for the activated region
and ZP is the pressure canonical partition function for the normal crystal. These
are given by
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The sum in (17.5.10) is over all volumes and energy states of the normal crystal,
but the sum in (17.5.11) is taken only over the activated states. G is the Gibbs
free energy of the normal crystal and G* is the Gibbs free energy of the acti-
vated state as defined by the sum in (17.5.11). It is convenient to separate the
pressure term from these free energies and to write

where A, Vand A*, V* are the Helmholtz free energy and volume of the normal
state and the activated state, respectively.

Using (17.5.8)-(17.5.13), the vacancy jump frequency is now

where

is called the volume of vacancy migration.
Equation (17.5.14) can be put into a simpler and more useful form by eval-

uating the exponentials of the Helmholtz free energies using canonical ensem-
ble theory. This states that

The sum in (17.5.16) is taken over all states of the normal crystal, while the
sum in (17.5.17) is taken only over all activated states. In the semiclassical
approximation, (17.5.16) becomes (see section 2.14)

[Remember that A is the thermal wavelength defined in equation (2.14.21).]
Assuming that the crystal is harmonic, the quadratic potential of (17.5.1)
can be substituted into the integral of (17.5.18) to give ]e~^qVtTdq = e^°/kTl...
Je-^/2*V^/2i^ .. d^dqz... This multidimensional integral separates into a
product of 3N one-dimensional integrals all of the form

and substituting this into (17.5.18) gives



Now combine (17.5.27), (17.5.21), and (17.5.14). The result is
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Equation (17.5.17) can be treated in a similar way by writing it in the semi-
classical approximation as

where the integration is now carried out over all coordinates in the activated
region of phase space and <|>*(g) is the potential energy in that region. Written
out explicitly, the integral in equation (17.5.22) is

The integral over dql is taken only over a length 8 since this was defined as
the thickness of the activated region along the direction of migration; xa is the
value of q-i at the minimum activated configuration. Since 8 is small and
we will later take the limit as 8 —> 0, the potential <j>*(g) will be taken to be
independent of q-i over the length 8. The integral over qt is therefore readily
performed and (17.5.23) becomes

The harmonic approximation will again be used to express the potential
energy as a function of coordinates in the activated region as

where 0J is the potential energy when the migrating atom is midway between
its initial and final positions and all other atoms are at the mean positions in
the activated region. The cofare normal mode frequencies of the activated state.
Using (17.5.25) in (17.5.24) and evaluating the integrals gives

so (17.5.22) becomes

where
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where

is the entropy of activation. The Gibbs free energy of vacancy migration is
defined by

is the vacancy migration energy and the angular frequencies have been
replaced by the ordinary frequencies v = d)/2n.

Another form of (17.5.28) can be written by making use of the identities

The reason for doing this is that it can easily be shown (see problem 4.5 of
chapter 4) that the high-temperature approximation for the entropy of a
harmonic svstem is

Thus, (17.5.30) and (17.5.31) give

where S and S* are the entropies of the normal and activated states, respec-
tively. Equation (17.5.28) therefore becomes

so an alternative form for the jump frequency is

This derivation for the jump frequency was carried out for vacancy motion for
the sake of definiteness. But obviously, similar results can be obtained in a
similar manner for other diffusion mechanisms. In particular, the jump fre-
quency for an interstitial is

Gf being the Gibbs free energy of motion for an interstitial, defined in com-
plete analogy with Gf.
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It is important to note that the free energies of motion are not free energies
in the usual sense. G is the free energy of the crystal and has its usual meaning.
However, G* is defined in terms of restricted partition sums. Furthermore, it
refers to a system having one less degree of freedom than the crystal in its
normal state. This missing degree of freedom is responsible for the factor kT/h
in the jump frequency formulas.

Often, it is the temperature dependence of the jump frequency that is of
major interest. It is then more convenient to retain the jump frequency in the
form (17.5.28) rather than (17.5.38) since the free energy of motion is linear in
the temperature. The appearance of the formula is simplified by defining an
effective frequency by

so that (17.5.28) becomes

Similarly, for interstitial diffusion, we can write

where Uf and Vf are the energy and volume of interstitial migration.
It must be stressed that this treatment of the jump frequency is based on

equilibrium statistical mechanics. The activated state is one of the states in
the ensemble representing the complete equilibrium, and in computing
the jump frequency, we have just counted the frequency with which the system
moves from one set of states to another in the ensemble. In applying this theory
to diffusion in a concentration gradient, it is assumed that the deviation
from equilibrium caused by the nonzero gradients is not sufficient to seriously
affect the equations derived on an equilibrium basis. The theory developed
here, therefore, does not touch the fundamental question of irreversible
processes, and in those cases in which irreversibility is of prime importance,
such as diffusion in a temperature gradient, the present theory may need
modification. In many cases, however, particularly when the diffusing mater-
ial is present in small quantities or gradients are small, the theory is quite
satisfactory.

Migration energies are often of the order of an electron volt, and effective
frequencies are of the order of 1013 cycles per second. This means that an inter-
stitial or a vacancy makes about 108 jumps per second at 1000K. This number
decreases rapidly with decreasing temperature.

17.6 The diffusion coefficient

The results obtained so far are sufficient to give the diffusion coefficient as an
explicit function of temperature and pressure. Substituting (17.5.41) and
(17.5.42) into (17.3.12)-(17.3.14) gives



This formulation of the diffusion coefficient has been successful in treating dif-
fusion data in a large number of systems. The energy of activation can be deter-
mined from diffusion experiments carried out at a series of temperatures since
the slope of InD versus 1/T gives Q*. The volume of activation is determined
using data on the diffusion coefficient as a function of pressure, but at a con-
stant temperature, from a plot of InD versus P. Precise diffusion experiments
are difficult to perform, but a number of systems have been carefully studied.
For cubic metals, the pre-exponential factor is of the order of unity (ranging
from 0.05 to 2), while the energies of activation are usually several electron
volts and the volumes of activation are roughly equal to the atomic volume.

Exercises

17.1 For vacancy migration in a simple crystal, take the migration energy
to be 1 eV and the migration volume to be 10~23 cm3. Compute the vacancy
jump frequency for a vacancy at 500K and at 1000K at zero pressure and at
50,000atm. Take the effective frequency to be 1013/sec.

For self diffusion:

For vacancy diffusion:

According to equation (15.5.1) the vacancy concentration is a Boltzmann
factor containing formation energy, pressure, and entropy of vacancy forma-
tion. All three of the diffusion coefficients can then be written in the experi-
mentally observed form given by (17.3.15) where now the pre-exponential
factors, heats and volumes of activation are as follows.

For interstitial diffusion:
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17.2 If the effective frequency for vacancy migration is 1013/sec, compute the
entropy of vacancy migration at 1000K and 1500K.

17.3 Assume that self-diffusion in a simple metal takes place by both a
vacancy and a divacancy mechanism. Show that the effective activation
energy, denned as the slope of the Arrhenius plot, is the weighted average
of the individual activation energies. Assume the pressure is zero.

17.4 Assume that the migration energy for self-diffusion in aluminum is
the same for vacancies and di-vacancies and that the activation energy for
diffusion by the vacancy mechanism is 28.8 kcal/mole. What is the activa-
tion energy for self-diffusion by the di-vacancy mechanism if the divacancy
binding energy is O.SeV?

Notes

1. See chapter 3 in Manning (1968) and appendix E in Borg and Dienes (1988).
2. This method was first presented by Vineyard, G.H.; "The Frequency Factors

and Isotope Effects in Solid State Rate Pmcesses"; 1957; Journal of Physi-
cal Chemical Solutions; vol. 3, p. 121.



Appendix 1
Combinatorial Problems in Statistical Mechanics

A. Ensemble statistics

In ensemble statistics, it is necessary to compute the number of complexions
of the ensemble for a given distribution of the X member systems among
the possible states of a system. A distribution is defined by the set of integers
(A/,) = (N-i, A / 2 , . . . , NI•...) such that A/,- is the number of member systems in the
/th quantum state. The number of complexions is just the number of ways of
realizing this distribution.

Since the members of the ensemble are macroscopic systems, they are dis-
tinguishable from one another. Therefore, we need to count the number of ways
of arranging X distinguishable systems such that A7j are in state \, N2 are in
state 2, . .. , NJ are in state/, and so on, with the condition that the total number
of systems is

Clearly, this is equivalent to putting X marbles in boxes such that N-i are in the
first box, A/2 are in the second box, and so on, without regard to the order of
the arrangement of marbles in a particular box. Call this number W.

First, let us show that the number of ways of putting the marbles in the boxes
in such a way that the ordering of the marbles is taken into account is XI. For
this case, each box would have a set of compartments that hold one marble
each, and a permutation of the marbles among compartments would count as
a new complexion. If the marbles are put in position one at a time, the first
marble could go in any compartment and could therefore be placed in Xways,
The second marble could be placed in only (X - 1) ways, since one compart-
ment is already occupied, and the total number of ways of placing the two
marbles is X(X - 1). The third marble can be placed in (X - 2) ways, and the
total number of ways of placing three marbles is X[X— 1)(X- 2). This process
is continued until all X marbles are placed, giving XI as the total number of
ways of arranging X marbles in boxes in such a way that, within a box, each
ordering of the arrangement of marbles is a different complexion. But we are
not really interested in this problem; we want W, in which the arrangement
within the boxes is neglected. Obviously, Wis smaller than X\, and if we mul-
tiply W by the number of ways of ordering A/i marbles in the first box (which
is NI\), the number of ways of ordering N2 marbles in the second box (which
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is AT2!), and so on, we will get the total number of possible permutations that
include ordering (which is XI). That is, WNJNJ . . . = XI, so

This is the number of complexions for an ensemble for a given distribution of
member systems among states.

B. Maxwell-Boltzmann statistics

In particle statistics, all particle states are divided into groups such that the /th
group consists of states with nearly the same energy in a range Ae;- centered on
e;- where Ae;- <K e;-. We want to calculate the total number of complexions of the
system of Nparticles when NI are in the first group, N2 are in the second group,
and so on. In the Maxwell-Boltzmann case, the particles are distinguishable
and there is no limit to the number of particles in each group. The desired
number of complexions is denoted by WMB.

First, calculate the number of ways of putting AT particles in groups such that
there are A/,- in the /th group. This is obviously just like the ensemble case, and
the result is

But there is a difference between the present problem and that for ensembles.
In the ensemble problem all states in a /-group were identical, whereas in the
present problem all states in a /-group are different, although they all have very
nearly the same energy. Also, there is no limit to the number of particles that
can go into a particular state in any /-group. To get the right number of com-
plexions, (A.1.3) must therefore be multiplied by the number of ways of arrang-
ing Nj particles among the number of states in each /-group. If the /th group
has CO; states, then A/} particles can be put in these states in cof' ways. This is so
because one particle can be put in any one of co; states; a second particle can
also be placed in any of the co; states since any number of particles can occupy
a particular state and the number of ways of placing the two particles is CD/.
Continuing this process, N/ particles can be put in the co; states in cof; ways.
Therefore, to get WUB, multiply (A.I.3) by oof1, cof2, and so on. That is,

C. Fermi-Dirac statistics

Again, N particles are to be distributed among particle states that are divided
into groups such that the /th group contains Nt particles, and we want to
compute the number of ways of doing this. And again, the energies of the states
in the /th group are in a range Ae; centered on the energy e;. But now the par-
ticles are not distinguishable and there can be at most only one particle in a
given state.
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First, consider one group, say, the y'th, that has CD, states, and calculate the
number of ways of putting N, particles in this group of states. If the particles
were distinguishable, this would be just ro;-!/(co; - N,)! because the first particle
could be placed in o»; ways, the second in (ro; - 1) ways, and so on, and the last
in (c% - Nj + 1) ways. The product of all these gives

But the particles are not distinguishable, and the above expression must be
corrected to get the right number of complexions. This correction consists of
dividing (A.I.5) by A/,! because that many of the permutations of the particles
among the states count as the same arrangement when the particles are indis-
tinguishable. The number of ways of putting AT; particles in the /-group for the
Fermi-Dirac case is therefore

To obtain the total number of complexions for all /-groups, just take the
product of (A.1.6) over all/. There is no need to worry about permutations from
one /-group to another because the particles are indistinguishable and the N,
are fixed numbers, so any interchange of particles among the groups does not
give a new complexion. The desired result, the number of complexions for
Fermi—Dirac particles, is therefore

D. Bose-Einstein statistics

Bose-Einstein particles are indistinguishable and there is no limit to the
number of particles that can be in any one state. We want the number of ways
of distributing AT such particles among states so that there are N; in the group
that has cfly states. Just as in the Fermi-Dirac case, first compute the number of
complexions for one group, labeled /, and then take the product over all /. This
procedure is valid because the particles are indistinguishable.

Now pick out a group labeled /. Each distribution of the AT,- particles among
the CO; states in this group can be represented by the following scheme:

The vertical lines separate the particle states, and the numbers between the
lines label the particles in each state. The states are numbered by the index k,
which runs from unity to co;, the total number of states in the group. Thus, the
distribution represented above is the one in which particles 3 and 5 are in the
first state, particle 7 is in the second state, there are no particles in the third
state, particles 1,2, and 9 are in the fourth state, particle 23 is in state 5, and
so on. Clearly, if the particles were distinguishable, the number of complex-
ions would be the number of ways of permuting the integers 1 to Nj and the

k =
3, 5 5 \, 2, 9 23

\ 2 3 4 5 6 . . .
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vertical lines separating the states. This would give all possible distributions
of distinguishable particles.

There are a total of oo; vertical lines, but in our scheme, the first one must be
kept in place so that we do not have any particles that are not in some state.
Therefore, only (co;- - 1) lines can be permuted. Therefore, the total number of
objects (lines plus integers) to be permuted is (A7j + co;- - 1) and the total number
of permutations is (A/, + co; - 1)!. This is greater than the number of complex-
ions for they'th group for two reasons. First, the permutation of a set of symbols
consisting of a line and the integers following it with another such set does
not alter the combined distribution in the ;'th group. (E.g., in the distribution
shown above, permuting the vertical line and the integers 1, 2, 3 following it
as a set, with the vertical line and the integer 23 as a set, does not give a new
distribution of indistinguishable particles.) There are (co; - 1) such sets of
symbols, so our first result must be divided by (o>; - 1)!. Second, permutations
of the Nj particles with each other leaves everything unchanged because the
particles are indistinguishable, so we must divide through by JV,!. The number
of ways of putting the AT; particles in the y'th group is therefore (N; + co; -
l)!/AT;!(co; - 1)! Taking the product over all / gives the number of complexions
for the Bose-Einstein case as



Appendix 2
The Method of Undetermined Multipliers

Lagrange's method of undetermined multipliers is used frequently in physical
problems to determine maxima or minima of certain functions subject to sub-
sidiary conditions. In this appendix, a brief description of the mathematics
involved is presented without encumbering the analysis with physical
applications.

We are given a function F of a number of variables ylt y2,..., and so on:

The variables are themselves functions of a set of parameters XL X2, . . . , and
so on. That is,

Now we want to find the functional form of equations (A.2.2) that gives F a
stationary value (makes F maximum or minimum). Throughout the search for
this functional form, the xs are taken to be given and to remain constant.

If F is to be stationary, then any variation of F, resulting from a variation in
the ys, must be zero. That is,

where r is the total number of ys. If the yt were all independent, each coeffi-
cient of 8y/ would have to be zero because the variations 8y- are completely
arbitrary. The problem would then be solved. All we need do is set each partial
derivative equal to zero. We are much more interested in the case in which the
y, are not completely independent, but in which some functions of the y- and
the X; exist that must also be stationary. Let us assume that we have two such
functions G^ and G-, whose form is known and that we write as
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We require GI and G2 to be constants, and they are therefore stationary with
respect to a variation in the ys, so

The 7; are not independent because of the relations (A.2.4) and (A.2.5], which
give us two relations among the y,. But this lack of complete independence can
be taken into account in the following manner. Multiply the variations in Gl
and G2 by the constants QJ and a2 to get the obvious relations

If these are added to 8F, we have

This is obviously true for any constants QJ and a2. This means that
(A.2.6), and (A.2.7) can be combined according to (A.2.9) to get

and this equation will be true regardless of the values of a^ and a2, so we can
give these constants any value we choose. Now let us take aa and a2 to have
values that satisfy the simultaneous equations

the derivatives being evaluated at the values of ya and yz that make F station-
ary. Once this is done, the first two terms in (A.2.10) vanish and y1 and y2 are
fixed. Equation (A.2.10) then becomes

The derivatives, of course, all being evaluated at values of y, for which F is sta-
tionary. But now all the remaining y,- are independent because there were only
two conditions on the y, and two of the y, have been fixed. This means that all
of the coefficients of 5y, in (A.2.13) are zero and we have for all i
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This is the solution to our problem. Since F, G1( and G2 are known functions
of the y,-, and since G^ and G2 contain the parameters x;, (A.2.14) can be solved
for yi in terms of the x/. These solutions still contain at and a2, but these mul-
tipliers can be removed by substituting the solutions y- = y,-(x;; QI, a2) into (A.2.4)
and (A.2.5) and solving for QI and a2. In actual applications to physical prob-
lems, the undetermined multipliers often have important physical interpreta-
tions, so they are usually retained in the functional form of the y;. The
generalization to any number of subsidiary conditions with corresponding
multipliers a1; a2, a 3 , . . . is obvious.

In the theory of the canonical ensemble, F corresponds to InWjJV,), the y cor-
respond to the NJ, and the x, correspond to the E/. The subsidiary functions Gr
and G2 correspond to the number of systems in the ensemble and to the total
energy of the ensemble.

The above procedure tells us the conditions for the function F to be sta-
tionary, but it does not tell us whether it is at a maximum or a minimum. But
this decision can be made by recognizing that, if a function has a maximum,
then in the immediate neighborhood of the maximum it approximates a
parabola that is concave downward while in the neighborhood of a minimum
it approximates a parabola that is concave upward. Therefore, if the function
is expanded to the second order in a Taylor series about its stationary value,
then it is at a maximum if the coefficient of the quadratic term is negative and
at a minimum if the coefficient of the quadratic term is positive. Applying this
to our case, the function we want to investigate is (F + atGi + a2G2) since this
is the function whose stationary value is given by (A.2.14). Call this function
L such that

Denote the values of y for which L is stationary by yf. At these values of the
Yt, equation (A.2.14) holds and we will call L" the stationary value of (A.2.15).
Now expand (A.2.15) in a Taylor series about the stationary value up to the
second order, remembering that the linear terms vanish because of (A.2.14).
The result is

We restrict ourselves to functions L that are sums of functions for each y.
That is, we take L to have the form

where each fs is a function of only one y. This is the type of function met with
in the application of Lagrange's undetermined multipliers to the problem of
finding the most probable distribution. The mixed derivatives in (A.2.16) then
vanish and we have

So the recipe is simple: find the second derivative of L at the stationary point.
If it is negative, the point is a maximum; if it is positive, the point is a
minimum.
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In statistical mechanics, the functions Gt and G2 are usually linear in the y;
(i.e., in ensemble theory both the number of systems in the ensemble and the
ensemble energy are linear in Nit the number of systems in each state j). Equa-
tion (A.2.18) then simplifies further because the second derivatives of G! and
G2 vanish and (A.2.18) reduces to

In general, different second derivatives for different is can have different
signs, so our functions (L or F) can have a maximum with respect to some vari-
ables and a minimum with respect to others. This would be the situation at a
saddle point. For our applications, the derivatives generally have the same sign
for all i.



Appendix 3
Stirling's Approximation

If AT is a large, positive integer, Stirling's approximation states that N! is approx-
imately given by

We can show that this is approximately correct by using the relation between
a sum and an integral. Since Inx is a monotonic increasing function of x, then

These inequalities can be made obvious by graphing the function Inx and com-
paring it to the summed areas of the unit stepwise divisions representing the
sums in (A.3.2). From (A.3.2) it follows that

Performing the integrals, and recognizing that the sum in the middle is InN!,
we get

If unity is neglected relative to AT, equation (A.3.1) follows immediately. It is
trivial to show that the outside terms in (A.3.4) differ by a quantity of order
InN. For very large numbers, the logarithm is much smaller than the number,
so the greater N, the more accurate is (A.3.1).

The following table shows that Stirling's approximation is a good one for
remarkably small values of N:

N
50
100
200
300
400
500
600

InN!
148
363
864
1415
2000
2611
3242

NlnN
146
360
860
1411
1997
2607
3238
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However, there are times when (A.3.1) is not sufficiently accurate even for large
values of N because of cancellations occurring in ratios of factorials. It is then
necessary to use the following more accurate formula:

This approximation neglects terms of order AT3 and smaller. Derivations of this
formula can be found in The Mathematics of Physics and Chemistry by Henry
Margenau and George M. Murphy (1956) and Elements of Pure and Applied
Mathematics by Harry Lass (1957).



Appendix 4
Sums and Integrals

In this appendix, we evaluate certain sums and integrals that are useful in
statistical mechanics. The sums are

Equation (A.4.1) is just the geometric series and can be proven by starting
with the partial sums

Multiply this by x to get

Now subtract (A.4.8) from (A.4.7) and solve for S^n). The result is
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Since x < 1, taking the limit of (A.4.9) as n —> °° gives (A.4.1). Also, differenti-
ating (A.4.9) gives

Equation (A.4.2) can be obtained from this by taking the limit for infinite n,
but it is easier to differentiate (A.4.1) with respect to x to get

from which (A.4.2) follows immediately.
Equations (A.4.3) and (A.4.4) can be obtained by expanding the function

/(x) = x2 in a Fourier series in the interval -7t to +TC. The result is

Letting x = 0 in this equation gives (A.4.3), and letting x = n gives (A.4.4).
A similar procedure works for (A.4.5). Expand /(x) = x4 in a Fourier series

to get

Letting x = TC, (A.4.13) becomes

Replacing the first sum on the right by Tt/6 according to (A.4.4) and solving for
the second sum gives (A.4.5)

To evaluate (A.4.6), note that it has the form of a Taylor expansion, so a func-
tion F(x) exists such that

with the derivatives evaluated at x = 0 being given by

It is easily verified that the function whose derivatives at x - 0 are given by
(A.4.16) is
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because dFldx^ (C + /)!/(l -x)c+i+\ so (dF/dx'^ = (C + f]\. The sum S6 of equa-
tion (A.4.6) is therefore just the function F(x) of equation (A.4.17).

Now we want to prove the following:

In (A.4.22), j and n are positive integers.
Equation (A.4.18) is just the Gauss integral and is obtained by first changing

variables to u = xa1'2 to get

which can be squared to give

Now transform to polar coordinates so that r2 = u2 + v2, dudv = 2nrdr, which
transforms (A.4.24) to

Changing variables to y = r2, this becomes

from which (A.4.18) follows.
Equation (A.4.19) is obtained from (A.4.18) by differentiating A^ with respect

to a:

which is just (A.4.19) since the integrand is an even function.
To prove (A.4.20), transform the integration variable to u = x112 so that
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Comparing this with (A.4.19) shows that (A.4.20) is correct.
Differentiation of (A.4.20) gives

which proves (A.4.21).
The proof of (A.4.22) starts with the variable transformation y = jx so

that

Equation (A.4.22) then follows from a successive integration by parts. That is,

Putting this result in (A.4.30), we get (A.4.22).
Two integrals in the Debye theory of crystals are

Equation (A.4.31) can be obtained by using the series expansion

so that

Now let y = nx so that (A.4.33) can be written as

The integral can be evaluated by successive integration by parts:
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Thus, (A.4.35) becomes

The sum was evaluated above and is given by (A.4.5). Using this result in
(A.4.36), we recover (A.4.31).

Equation (A.4.32) can be obtained by integration of (A.4.31) by parts. Thus,

which reduces to (A.4.31).



Appendix 5
Fermi Integrals

If g(e) is a monotonically increasing function of e whose value is zero when e
is zero, and /(e) is the Fermi function defined by

then the Fermi integral is defined by

or

Equation (A.5.3) is obtained from (A.5.2) by an integration by parts, and F(e)
is HfifinoH hv

Since g(e) is given, F(e) is a known function. Examples of Fermi integrals are
those with g(e) given by -Je and e3/2, which are used in getting the Fermi energy
and energy as a function of temperature for a gas of free electrons.

From the form of the Fermi function, the derivative df/de is practically zero
for all energies except in the vicinity of the Fermi energy, near e = \i. This means
that a rapidly converging series can be obtained by expanding F(e.) in a Taylor
series about \i. Start with the Taylor expansion:

Fr(uJ being the rth derivative of F(E] evaluated at e = \i. That is,
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Equation (A.5.3) can now be written as

Ir being defined by

Now let us work on this integral. From the definition of the Fermi function,
the derivative is

Define a variable z by

so that (A.5.9) becomes

Using this in (A.5.8) and putting the result in (A.5.7) gives

where the Jr are integrals defined by

First note that for all reasonable temperatures, \i/kT is large, and since the
integrand is very small for large z, the lower limit can be replaced by — °° with
practically no loss of accuracy. Next note that if r is odd, the integrand in
(A.5.13) is antisymmetric, while if r is even, it is symmetric. This is so because
the derivative of the Fermi function is symmetric about z:

as can be verified with a little algebra. This means that the integrals Jr all vanish
if r is odd, whereas if r is even, so r = 2n where n is any positive integer, we
can write
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The integral in the last of these equations can be related to known functions
by expanding the denominator and integrating term by term. According to the
binomial theorem,

so (A.5.15) becomes

The integrals are standard forms given by (A.4.21) and therefore
reduces to

This is what we were after because the sums can be evaluated. The sum for
n = 1 has already been given in appendix 4 by (A.4.3) and has the value 7t2/12.
Putting this in (A.5.18) for n = 1, we get

Thus, we can write (A.5.7) to an approximation including the terms for r = 0
and r = 2 as

This is ordinarily sufficiently accurate. A more general treatment starts with
recognizing that the sums in (A.5.16) are closely related to the Riemann zeta
function, which has been extensively studied and whose values are known.
Numerical values of all the integrals J2n can then be obtained.

The widespread use of personal computers provides an alternate method
of obtaining the expansion coefficients in (A.5.7) since it is a simple matter
to evaluate the integral /2I, numerically. Doing this for n = 1 to 4 gives the
following results:

n
I
2
3
4

Jj2n\
1.64494
1.89406
1.97099
1.99137



APPENDIX 5 487

Note that these coefficients are all of the order of unity, so the rapid conver-
gence of (A.5.11) is not the result of rapidly decreasing values of the expan-
sion coefficients, but is due to the fact that the ratio of kT to the Fermi energy
is small. The functions g(e), and therefore F(E), are usually small powers of E,
so when their derivatives are evaluated at e = u, the ratio kT/[i then becomes
the expansion variable. Since this ratio is of the order of 0.05 or less even for
temperatures above 1000 K, rapid convergence is assured.



Appendix 6
Kirkwood's Second Moment

The second moment of the energy in Kirkwood's order-disorder theory is
defined by

For a 50-50 AB alloy, the second moment can be expressed in terms of the long-
range order parameter R as

To show that this is the case, we follow the derivation given by Nix and
Shockley (Review of Modern Physics; vol. 10, pp. 1-71; 1938). Let the index i
represent a pair of nearest neighbor sites and define a parameter p,- such that
Pi = 1 whenever both sites of the pair are occupied by A atoms and p, = 0 other-
wise. (Note that one of these sites is always an a site while the other is always
a (3 site.) For any configuration of the crystal, the total number of AA pairs is
therefore

where the sum is taken over all pairs in the crystal.
From the definitions in chapter 8, the energy of the Mh configuration is

and putting this in (A.6.1) gives

Since the sum divided by the number of configurations is just the average over
all configurations, (A.6.5) is written more concisely as
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Taking the supra average gives

and remembering that the number of unlike pairs is QAB = Q - QAA - QBB =
Q - 2QAA, this becomes

Using (A.6.3) in (A.6.8) gives the second moment in terms of the pt as

For a particular pair of sites labeled i, the probability that the a site contains
an A atnm ic inct

and the probability that the p site contains an A atom is

The probability that p, is unity is therefore (ro,wjj), and the probability that pt is
zero is (1 - raw$). The average value of p, is therefore

Note that ra is the probability that the a site is rightly occupied (A on a) and
that this is equal to the probability that the p site is rightly occupied (B on P).
Similarly, w$ is the probability that a p site is wrongly occupied (A on P). That
is, ra = ip = r and wa = w$ = w are the probabilities that a site is rightly or wrongly
occupied, respectively.

A little more work is needed to get the average of the square of the p, so that
the double sum in (A.6.9) can be computed. To this end, note that there are
four different kinds of terms:

1. i and / represent the same pair of sites;
2. i and / represent two pairs, each having the same ex site but different p

sites;
3. i and ;' represent two pairs, each having the same p site but different a

sites; and
4. i and j represent two pairs with no sites in common.

For each of these types of terms, we need to know their number for which the
average of the product p/p; and the product of the average p, are unity. The
product of the averages is always given from (A.6.12) as r2w2, so we only need
to now concentrate on computing the average of the product.

For type 1 sites, the total number of pairs is Q and the probability that p,
(and therefore p;p;-, since the same sites are in both sums) is unity, is just rw
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(i.e., the probability that A is on a and A is on (3) so for pairs i, j of type 1, the
contribution to (A.6.9) is

where the first term is from the average of the product and the second term is
from the product of the averages [see equation (A.6.12)].

Now consider pairs of sites of type 2 in which the pairs have a common a
site. For these pairs, there are a total of AT/2 a sites. For each of these ot sites
there are z(z - 1) ways of choosing an adjacent p site. The total number of terms
in the double sum over these types of sites is then z(z - 1)M2 = (z - 1)Q. Of
these, we want the fraction for which p^j = 1. But this is just the probability
that the a site is rightly occupied, times the probability that two adjacent (3
sites are wrongly occupied. That is, ppj = 1 for a fraction rawpWp = rw2 of the
sites, so for sites of type 2, the contribution to (A.6.9) is

The same analysis for type 3 sites gives

Again, the first terms in (A.6.14) and (A.6.15) arise from the average of the
product, while the second terms are from the product of the averages.

The remaining sites are of type 4, in which none of the sites overlap. Clearly
Pip, is unity for sites of this type only if all four sites are occupied by A atoms.
Consider the a sites. The number of these is AT/2, and rJV/2 of them contain A
atoms (rightly occupied), so the probability that a site is rightly occupied is
just r. But the probability that another a contains an A atom is [(rN/2) -
l]/[(N/2) - 1] because one of the a sites is already occupied by an A atom. The
probability that there are A atoms on both oc sites is therefore

Going through the same analysis for the p sites requires that both p sites be
wrongly occupied for ppj to be unity and the probability that this is the case
is given by w[(wN/2) - 1]/[(M2) - 1].

Multiplying these last two expressions together gives the fraction of terms
for which ptpj = 1 in the double sum for sites of type 4, and multiplying the
result by Q2, the number of terms in the double sum, gives the contribution of
pairs of type 4 to (A.6.9) as

This expression can be considerably simplified by doing a little algebra and
dropping terms in AT2 relative to terms in AT1 and terms in AT1 relative to unity.
The result is
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Now let us add (A.6.13), (A.6.14), (A.6.15), and (A.6.19) to get the total con-
tribution to (A.6.9) so that we finally get the remarkably simple equation for
the second moment:

In arriving at this, we used the fact that r + w = 1 and Q = zN/2. Using the
expressions (A.6.10) and (A.6.11) for r and w in terms of the long-range order
parameter R, we recover equation (A.6.2), which is the desired result.



Appendix 7
The Generalized Lattice Gas

Just as for the simple lattice gas that is equivalent to the Ising model, divide
the system into cells such that, at most, only one molecule can occupy a given
cell and a cell can either be occupied or empty. Let the total number of mole-
cules be AT and the total number of sites be M. Also, define a parameter that
describes the occupancy of a cell as e, = 0 if the y'th cell is empty, and e; = 1 if
the /th cell contains a molecule. Note that

Instead of restricting ourselves to nearest neighbor interactions, let the poten-
tial energy of interaction of two atoms in two cells labeled i and j be —v,j. That
is, it is still assumed that the system can be described by pairwise central inter-
actions, but these include all pairs and not just nearest neighbors. Note that vj?
is a constant. We also assume that there is a binding energy of an atom to a
cell given by -v°and that this can be different for every cell. If either of the two
cells i and / are empty, then the interaction energy and binding energy are both
zero, so the Hamiltonian of the system is

The first term on the right is a double sum over all i and j that are not equal
and is multiplied by 1/2 to avoid double counting. The argument {e,e;} is
attached to the Hamiltonian to remind us that, because the molecules interact,
the energy depends on the particular distribution of the molecules in the cells.
To simplify the notation we account for the fact that a molecule does not inter-
act with itself by defining v;? = 0.

This model is particularly useful for analyzing the distribution of atoms in
such systems as impurities in crystals, at grain boundaries or at dislocations,
or in stress fields, as well as the relative concentration of atoms in solutions.
In such problems, the statistical average of the occupation of cells by atoms is
of critical importance. It then turns out that it is convenient to choose a spe-
cific site labeled k and to separate the Hamiltonian into two parts: one that
contains k and one that does not. Equation (A.7.2) is therefore written as
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where

and

Equation (A.7.4) is the Hamiltonian for the interaction of a molecule with cell
k and with all other molecules in the rest of the crystal (which is zero if the
site is unoccupied) and (A. 7.5) is the potential energy of all other molecules
in the rest of the crystal, except for their interaction with the molecule in cell
k. Let us shorten the notation to reflect these definitions. Then, the energy for
tVip Zrtli rpll is

where v(l) is defined by comparing (A.7.6) and (A.7.4).
Now construct the grand canonical partition function, using (A.7.6) and

(A.7.5) for the Hamiltonian

|j, being the chemical potential. As usual, sums over possible states are indi-
cated by braces.

The inner sum is over all possible distributions of the molecules in the
cells, there being one such distribution for each set )e,-e;). The total number
of distributions is just the number of ways of putting N molecules in M
cells, so

The outer sum is over all possible numbers of molecules, up to the number of
sites, but since Mis very large (infinity in the thermodynamic limit), the sum
is over all positive integers.

Our aim is to get the thermodynamic probability that the cell k is occupied.
This is just the statistical mechanical average of the occupation index e^ and
given by

where /{e,-e;} is the grand canonical distribution function given by

so written out explicitly, (A.7.9) is
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If only nearest neighbor molecules interact then all terms that do not contain
k cancel out, the only surviving terms being sums over the possible values of
ek, so (A. 7.11) reduces to

Since the possible values of e^ are zero and unity, this reduces to

This has the same form as the Fermi—Dirac distribution because each "par-
ticle" (cell) can exist in only one of two states.

In this form, the lattice gas model neglects any kinetic energy contributions
to the partition function, which, because the molecules are bound to cells, will
consist of vibrations. This is not easy to do in the general case because a factor
must be included in the partition function that contains the normal modes v,,.
This factor is

In general, the sum in the exponential is not a sum over lattice cells, so the
separation of terms between those that include a cell k and those that do not
is not possible. But in the special case of the Einstein approximation, such a
separation can be made because then each vibrational mode is attached to a
molecule. The vibrational energy is then included by adding the term E;U(1 +
1/2)hvf to the binding energy of the molecule to the cell. The molecule may
have different frequencies in different directions, as would be the case when
it is bound to a surface or a dislocation line; v°k is then reinterpreted to include
the vibrational term. There are cases in which this is an excellent approxima-
tion. One of these is when the number of molecules is much less than the
number of cells, so there is no coupling among the molecules and the mole-
cules do vibrate independently. Another is when the molecules are tightly
bound such that the vibrational spectrum can be divided into two parts: a
vibration within cells and vibrational modes among cells. This, for example,
would be the case for chemical adsorption on a surface. In both cases, however,
it is still assumed that the cells only provide sites for occupancy and have no
physical properties other than a binding energy. That is, it is assumed that any
vibrational energy associated with the cells is the same whether or not the
cells are occupied. This is often a reasonable assumption, especially at high
temperatures.



Appendix 8
Dyadic s and Crystal Symmetry

A.8.1 Dyadic algebra

A dyadic is an operator whose properties are most easily understood by writing
it as the juxtaposition of two vectors. Thus, given two vectors A and B, the
dyadic D is an operator defined by

A is called the antecedent of the dyadic, and B is called the consequent.
If A and B are written in terms of the unit vectors ij, i2, i3 in a Cartesian co-

ordinate system so that

and

then the dyadic D = AB is

The pairs of unit vectors iris are called dyads. The components of the dyadic
are defined by

Two dyadics are equal if their corresponding components are equal. Thus,
D = D' means that Drs = D'rs. AB is called the conjugate dyadic of BA and is often
designated by a subscript c. Thus, if D = AB, then its conjugate is Dc = BA.

The sum of two dyadics is found by adding their components. Thus, F = D
+ E means Frs = Dre + EFS. A multiplier on the left of a dyadic is called a pre-
factor, while a multiplier on the right is called a postfactor. Pre- and post-
factors can be scalars, vectors, or dyadics, and the multiplication can be scalar
multiplication, scalar or vector products, or dyadic multiplication.
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A dyadic operating on a scalar simply multiplies the dyadic as follows:

Both the pre- and postdot products of a dyadic with a vector are vectors. That
is,

where (C-A) and (B-C) are scalar products of C and A and of B and C,
respectively.

Both the pre- and postcross products of a vector with a dyadic are dyadics.
Thus,

Dyadic algebra is therefore noncommutative. It is clear from the above that
all of dyadic algebra and analysis follows directly from the rules of vector
algebra and analysis.

If both the pre- and postdot product of a dyadic D = AB is formed with two
vectors f and g, the result is a scalar. That is,

This equation illustrates the economy of dyadic notation in that it bypasses
the need to identify coordinate axes by subscripts.

The last sum in (A.8.1.12) is called a quadratic form. Such quantities arise
frequently in physical applications, particularly in the theory of harmonic
vibrations.

A dyadic D is symmetric if D,.s = Dsr and antisymmetric if Drs = -Dsr. In general,
a dyadic is neither symmetric nor antisymmetric, as is evident from equation
(A.8.1.4). However, the sum

is always symmetric, and the difference

is always antisymmetric.
Note that the DSI are the components of the dyadic that is conjugate to D so

that the (A.8.1.13) and (A.8.1.14) are equivalent to

Obviously,
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so a dyadic is always easily decomposed into symmetric and antisymmetric
parts.

In component form, (A.8.1.13) and (A.8.1.14) give

which is equivalent to (A.8.1.17). Note that it is only for symmetric dyadics
that the order of writing the two vectors that define the dyadic is immaterial,
because in general, Drs(=ArBs) and Dsr(=AsBr) are not equal.

The symmetry or antisymmetry of a dyadic is preserved under a rotation of
axes. That is, if a dyadic with components Dm is symmetric (or antisymmetric)
in a coordinate system defined by the orthogonal unit vectors ir, then it is also
symmetric (or antisymmetric) in a coordinate system with orthogonal vectors
en, which are the result of the linear coordinate transformation

To show this, we need to recall some results from the theory of linear
transformations.

The am are the direction cosines between the two sets of unit vectors since
the dot products of the two sets of vectors are

A vector F is expressed in the two-coordinate systems in terms of its compo-
nents and the unit vectors in the two systems as

Substituting (A.8.1.19) into (A.8.1.21) gives

so equating coefficients of the unit vectors gives the transformation equation
for the vector components as

It is also easy to show that

and
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The dyadic D is

and substituting (A.8.1.25) into (A.8.1.27) gives the components of the trans-
formed dyadic as

or, in component form,

If Drs = DST, then interchanging the subscripts r and s in the sum in (A.8.1.29)
shows that D'nn, = D'mn. Similarly, if Drs = -Dsr, then interchanging subscripts in
the sum shows that D'nm = -D'mn. The symmetry properties are preserved under
a rotation of axes.

The close relationship between dyadics and matrices is evident from equa-
tion (A.8.1.4). In fact, dyadics are made formally equivalent to 3 x 3 square
matrices and to second rank tensors by defining a rule for multiplying dyadics
by treating their components as the components of matrices and then apply-
ing the rules of matrix multiplication. The entire algebra and calculus of
dyadics then follows from their representation in component form.

A.8.2 Principle axes

A symmetric dyadic has the important property that a coordinate system can
always be found in which only the diagonal components of the dyadic are
nonzero. That is, if a dyadic is

where the unit vectors define an arbitrary Cartesian coordinate system, and if

then another Cartesian system, defined by the unit vectors e^ e2, e3 can always
be found such that

This can be demonstrated by starting with the fact that the sets of unit vectors
in and e,, are related by (A.8.1.19) and (A.8.1.25). Not all the transformation
coefficients ars are independent. Because the unit vectors are orthogonal in both
coordinate systems, (A.8.1.25) gives



APPENDIX 8 499

from which it follows that

Since this equation is invariant with respect to an r, s interchange, only six of
these nine equations among the transformation coefficients are independent.

To show that a transformation of the form (A.8.1.25) always exists that trans-
forms a symmetric dyadic (A.8.2.1) into the diagonal form (A.8.2.3), carry out
the transformation by substituting (A.8.1.25) into (A.8.2.1) to get

Then, if (A.8.2.6) is to have the diagonal form (A.8.2.3), corresponding com-
ponents must be equal and we should have

There are 12 unknowns that must be determined if (A.8.2.7) is to be valid:
the three components D'mn and the nine transformation coefficients, the origi-
nal components Drs and the original coordinate system being regarded as given.
Equation (A.8.2.7) represents a set of nine equations of which only six are inde-
pendent because of the symmetry requirement of equation (A.8.2.2). When
added to the six independent equations of (A.8.2.5), we have 12 independent
equations to find our 12 unknowns. Thus, a diagonal form can always be found
for a symmetric dyadic. The axes defined by the en are called the principal
axes. This result is often stated by saying that a symmetric dyadic can always
be transformed to its principle axes.

The isomorphism of dyadic to matrix algebra is clear, and the problem of
finding the diagonal form of a dyadic is equivalent to that of diagonalizing a
3 x 3 matrix to find its eigenvalues. The above development shows that diag-
onalization is possible for any dyadic (or matrix) provided that it is symmet-
ric. If in addition none of the eigenvalues of the matrix are equal, then
diagonalization is possible even for nonsymmetric dyadics.

A.8.3 Dyadics in crystals

In material media, dyadics couple two vectors that denote properties of, or
processes in, the material. The diffusion equation, for example, can be written
as

where the diffusion dyadic D connects the flux J of an atomic or molecular
species to the gradient of the concentration (see chapter 17). Such dyadics are
properties of the material, and if the material is a crystal, they must reflect the
crystal symmetry. The effects of crystal symmetry are readily found by sub-
jecting the dyadic to the crystal symmetry operations.

First, consider a dyadic D that is expressed in its principle axes as
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and define its component in an arbitrary direction by

n being a unit vector in the given direction, which is related to the unit vectors
er of the principle axes by

Hi, n2, and n3 being the direction cosines of the vector n referred to the prin-
ciple axes.

Combining (A.8.3.2) and (A.8.3.4) according to (A.8.3.3) gives

The utility of this result is readily illustrated applying it to equation
(A.8.3.1). That is, the component of flux in the n direction is

In particular, consider a medium for which all Drr are equal to the same con-
stant D. Then (A.8.3.6) is

But the sum in (A.8.3.7) is just the unit vector n, so we have

so the flux in a particular direction is proportional to the component of the
gradient of concentration in that direction.

Equation (A.8.3.8) states that a medium for which the principle components
of diffusion are all the same has the same diffusion coefficient in all directions.
That is, the medium is isotropic. Note that while the above was applied to dif-
fusion, similar results hold for any property or process in which two vectors
are linked by a dyadic. That is, in isotropic systems, dyadics have the same
component in all three principle directions and are the same in all Cartesian
coordinate systems.

This is not generally true for crystals. To see the effect of crystal symmetry,
start with a cubic crystal, take the coordinate axes to be along the three cubic
crystallographic directions, and write out the dyadic as

Cubic symmetry requires that rotation by 90° about any of the three unit vectors
must leave the dyadic unchanged. For example, if a rotation about i3 is per-
formed such that i.! goes to i2 and i2 goes to -i,, or if a rotation about i2 brings
ii to i3 and i3 goes to —i1( the dyadic must have the same components before
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and after the rotations. That is, D is invariant with respect to either of the
transformations:

and

Now apply the first of these to (A.8.3.9) by simply replacing ij by i2 and i2 by
-ii to get

But the dyadic is invariant with respect to this rotation, so the coefficients of
corresponding dyads in (A.8.9) and (3.12) must be equal. This gives

Combining some of these equations simplifies the set (A.8.3.13) to

The diffusion dyadic (A.8.3.9) therefore reduces to

Now apply the rotation (A.8.3.11) to (A.8.3.15). The result is

and equating coefficients of the dyads in (A.8.3.15) and (A.8.3.16) shows that
D33 = DU and D12 = D21 = 0. Therefore, in cubic crystals, the dyadic becomes

where Z?n = D22 = D33 = D is the same for all directions. The dyadic in a cubic
crystal is isotropic just as in a noncrystalline medium, and any set of
Cartesian coordinates defines a set of principle axes.

Now take a hexagonal crystal and choose a set of axes such that ij and i2 are
in the basal plane and i3 is perpendicular to the basal plane. The crystal is
symmetric with respect to a 60° degree rotation about i3 in the basal plane, so
the dyadic is invariant with respect to a rotation defined by



and the antisymmetric crystal dyadic vanishes.
Application of similar procedures to other crystal systems shows that the

results for tetragonal and trigonal systems are just like those for the hexagonal.
Dyadics in systems of lower symmetry have three independent principle
components.

A.8.4. Symmetry of the diffusion dyadic

There is no general proof that all crystal dyadics must be symmetric. It can be
shown that thermodynamics requires that dyadics that represent equilibrium
thermodynamic properties must be symmetric to satisfy the law of conserva-
tion of energy, but diffusion is not an equilibrium process. However, the sym-
metry of the diffusion dyadic can be demonstrated by remembering that in a
diffusion experiment, it is always the divergence of the flux that is measured
rather than the flux itself. All that we can measure is the difference in the
amount of material entering and leaving a volume element. This is illustrated

Similarly, if there is a reflection across the i;, i2 plane that leaves the crystal
invariant, we find that

and equating coefficients in equations (A.8.3.19) and (A.8.3.21) gives

and assume that the unit vectors can be chosen such that the crystal has a
reflection plane defined by the coordinate axes i2, i3 that leaves the crystal
invariant. That is, changing i^ into -it leaves the crystal dyadic unchanged.
Then (A.8.3.20) becomes

provided we take D12 = _D21.
In a hexagonal crystal the dyadic has two independent components, one

associated with the basal plane and the other with the direction perpendicu-
lar to the basal plane. The principle axes consist of any two perpendicular axes
in the basal plane and a third axis perpendicular to the basal plane.

Note that in arriving at (A.8.3.19) we assumed that the dyadic was symmet-
ric while no such assumption was needed for the cubic case because it was
isotropic. Equation (A.8.3.19) is therefore correct only for symmetric dyadics.
For dyadics that are not symmetric, results such as (A.8.3.19) are valid only
for the symmetric part of the dyadic. But crystal dyadics are usually symmet-
ric. Consider a crystal dyadic that is antisymmetric with components D^s. Since
DK = -Dsr, there are no diagonal components and the antisymmetric dyadic has
the form
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On making the interchange in (A.8.3.9) according to (A.8.3.18) and equating
coefficients as before, we get
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by the fact that it is always Pick's second law that is used to analyze diffusion
experiments.

With this in mind, let us separate the diffusion dyadic into its symmetric
and antisymmetric parts and write

and put this into Pick's second law to get

The components of D are Dmn, and since Dmn = -Dnm, all diagonal components
vanish. Then if we expand the second term on the right of (A.8.4.2), we find
that it vanishes identically because the order of taking a second-order deriva-
tive is immaterial and the off-diagonal elements are antisymmetric. Pick's
second law then reduces to

This equation tells us that only the symmetric part of the diffusion dyadic con-
tributes to the change in concentration with time and the antisymmetric part
is unobservable, so we may as well take the diffusion dyadic to be symmetric.
Then the symmetry consideration given above for a symmetric dyadic holds
for the diffusion dyadic.
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Additional Readings

The literature on the topics treated in this book is enormous. The number
of books on thermodynamics or statistical mechanics alone is staggering.
Below, I offer some selections that readers would find useful for further
studies.

Chapter 1

Callen, Herbert B.; (1961); Thermodynamics; John Wiley, New York.
Fermi, Enrico; (1936); Thermodynamics; Prentice-Hall, New York; reprinted by

Dover Publications, 1956.
Gaskell, David R.; (1995); Introduction to the Thermodynamics of Materials;

Taylor and Francis, Washington, D.C.
Glasstone, Samuel; (1947); Thermodynamics for Chemists; van Nostrand, New

York.
Guggenheim, E.A.; (1949); Thermodynamics; North Holland, Amsterdam;

Interscience, New York.
Landau, L.D., and E.M. Lifshitz; (1958); Statistical Physics; Pergamon Press,

London.
Margenau, Henry, and George M. Murphy; (1956); The Mathematics of Physics

and Chemistry; chapter 1; van Nostrand; New York.
Slater, J.C.; (1939); Introduction to Chemical Physics; chapters 1 and 2;

McGraw-Hill, New York,
van Ness, H.C.; (1969); Understanding Thermodynamics; McGraw-Hill, New

York; reprinted by Dover Publications, 1983.
Zemanski, Mark W.; (1957); Heat and Thermodynamics; McGraw-Hill, New

York.

Chapters 2 and 3

Bowley, Roger, and Mariana Sanchez; (1996); Introductory Statistical Mechan-
ics; Clarendon Press, Oxford.

Chandler, David; (1987); Introduction to Modern Statistical Mechanics; Oxford
University Press, Oxford.

Eyring, H., D. Henderson, B.J. Stover, and E.M. Eyring; (1964); Statistical
Mechanics and Dynamics; Wiley, New York.

Fowler, R.H.; (1936); Statistical Mechanics; Cambridge University Press,
Cambridge.
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Fowler, R.H., and E.A. Guggenheim; (1930); Statistical Thermodynamics; 2nd
printing with corrections, 1949; Cambridge University Press, Cambridge.

Girifalco, L.A.; (1973); Statistical Physics of Materials; John Wiley, New York.
Hill, T.L.; (1960); Statistical Mechanics; Addison-Wesley, Reading, Mass.
Kittel, Charles, and Herbert Kroemer; (1980); Thermal Physics; Freeman, San

Francisco.
Landau, L.D., and E.M. Lifshitz; (1958); Statistical Physics; Pergamon Press,

London.
Mayer, J.E., and M.G. Mayer; (1952); Statistical Mechanics; John Wiley, New

York.
McDonald, D.K.C.; (1963); Introductory Statistical Mechanics for Physicists;

John Wiley, New York.
McQuarrie, Donald A.; (1976); Statistical Mechanics; Harper & Row, New York.
Reif, F.; (1965); Fundamentals of Statistical and Thermal Physics; McGraw-

Hill, New York.
Schrodinger, E.; (1952); Statistical Thermodynamics; Cambridge University

Press, Cambridge; Reprinted by Dover Publications, 1989.
Tolman, R.C.; (1938); Statistical Mechanics; Oxford University Press,

Cambridge University Press, Cambridge.
Wannier, G.H.; (1966); Statistical Physics; John Wiley, New York.

Chapters 4 and 5

The texts cited above contain much material on the harmonic theory and equa-
tion of state of crystals. Additional readings are:.

Born, M., and K. Huang; (1954); Dynamical Theory of Crystal Lattices; Claren-
don Press, Oxford.

Callaway, Joseph; (1974); Quantum Theory of the Solid State; chapter 1; Aca-
demic Press, New York.

de Launay, Jules; (1956); "The Theory of Specific Heats and Lattice Vibrations";
in Solid State Physics, vol. 2; F. Seitz, and D. Turnbull, Eds.; Academic Press,
New York, pp. 219-303.

Gschneider, Karl A.; (1964); "Physical Properties and Interrelationships
of Metallic and Semimetallic Elements"; in Solid State Physics, vol.
16; F. Seitz, and D. Turnbull, Eds.; Academic Press, New York, pp. 276-
426.

Weinreich, Gabriel; (1965); Solids: Elementary Theory for Advanced Students;
John Wiley, New York.

Chapters 6 and 7

Blatt, Frank J.; (1968); Physics of Electronic Conduction in Solids; McGraw-
Hill, New York.

Raimes, S.; (1963); The Wave Mechanics of Electrons in Solids; North-Holland,
Amsterdam.

Wilson, A.H.; (1965); The Theory of Metals, 2nd ed., Cambridge University
Press, Cambridge.

Chapter 8

Fowler, R.H., and E.A. Guggenheim; (1956); Statistical Thermodynamics;
chapter 13; Cambridge University Press, Cambridge.
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Guttman, L.; (1956); "Order-Disorder Phenomenon in Metals"; in Solid State
Physics, vol. 3; F. Seitz, and D. Turnbull, Eds.; Academic Press, New York,
pp. 146-243.

Muto, T., and Y. Takagi; (1955); "The Theory of Order-Disorder in Alloys"; in
Solid State Physics, vol. 1; F. Seitz, and D. Turnbull, Eds.; Academic Press,
New York, pp. 193-282.

Chapter 9

Cusack, N.; (1958); The Electrical and Magnetic Properties of Solids; Long-
mans, Green, London.

Fowler, R.H.; (1936); Statistical Mechanics, 2nd ed.; chapter 12; Cambridge
University Press, Cambridge.

Chapters 10 and 11

Binney, J.J., N.J. Dowrick, A.J. Fisher, and M.E.J. Newman; (1993); The Theory
of Critical Phenomena: An Introduction to the Renormalization Group;
Clarendon Press, Oxford.

Chaiken, P.M., and T.C. Lubensky; (1995); Principles of Condensed Matter
Physics; Cambridge University Press, Cambridge.

Goldenfeld, Nigel; (1992); Lectures on Phase Transitions and the Renormal-
ization Group; Addison-Wesley, New York.

Goodstein, David L.; (1975); States of Matter, Prentice-Hall, Englewood Cliffs,
N.J.; reprinted by Dover Publications, 1985.

Ma, Shang-Keng; (1976); Modern Theory of Critical Phenomena; Addison-
Wesley, New York.

Plischke, Michael, and Birger Bergersen; (1994); Equilibrium Statistical
Physics, 2nd ed.; chapters 3-6; World Scientific, Singapore.

Stanley, Ff. Eugene; (1971); Introduction to Phase Transitions and Critical Phe-
nomena; Oxford University Press, Oxford.

Yeomans, J.M.; (1992); Statistical Mechanics of Phase Transitions; Clarendon
Press, Oxford.

Chapter 12

Adamson, Arthur W.; (1967); Physical Chemistry of Surfaces, 2nd ed.; Inter-
science, New York.

Davis, W. Ted; (1996); Statistical Mechanics of Phases, Interfaces and Thin
Films; VCH Publishers, New York.

Sutton, A.P., and R.W. Balluffi; (1995); Interfaces in Crystalline Materials;
Clarendon Press, Oxford.

Zangwill, Andrew; (1988); Physics at Surfaces; Cambridge University Press,
Cambridge.

Chapter 13

Chandrasekhar, S.; (1943); "Stochastic Problems in Physics and Astronomy";
Reviews of Modern Physics; vol. 15, No. 1, pp. 1—89; Reprinted in Selected
Papers on Noise and Stochastic Processes," Dover Publications, 1954. pp.
3-92.
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Holland, Amsterdam.
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Nostrand, New York.
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absorbing barrier, 361-363
absorption, 288
acceptors, 163, 167, 168, 171
activated state for atomic migration,

461, 466
normal modes for, 464

activity, 342
and impurities, 437
and point defects, 436, 437, 439
and solid solubility, 446

adhesion and cohesion, 328-333
energy of adhesion, 328, 330
energy of surface cohesion, 329,

331, 333
adiabatic walls, 3, 4
adiabatic process, 6, 7
adsorption, 288, 321

activation energy for, 326
differential heat of, 326
of dissociated molecules, 331
energy of, 335, 336, 339
free energy of, 325
integral heat of, 328
isosteric heat of, 326, 327
and mobile layer, 339-340
multilayer, 340-345
thermodynamics of, 325—328

adsorption isotherm, 325, 326
for mobile monolayer, 340
for multilayer adsorption, 340—345

aluminum, crystal properties and
vacancies, 428
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427

aluminum, total vacancy
concentration in, 427

alloying energy, 284
alloys, dilute binary, 431, 432, 439

diffusion in, 450

thermodynamics of, 446—448
anharmonicity, 280

and Gruneisen assumption, 129-
134

anharmonic potential, 136
antiferromagnet, 235, 245

critical temperature for, 250
internal field in, 249
mean field theory for, 248-251
magnetization in, 250
Neel temperature, 251

Arrhenius law for diffusion, 457
atomic jumps, 455—457

and diffusion, 453, 455-457
energy barrier for, 457, 458,

461
and thermal fluctuations, 458

atomic jump vector, 455
atomic levels and band formation,

159-160

band theory, 159-162
and electrical conduction, 160

band width, 159
(3-brass, 203, 204
BET isotherm, 340-345
binding energy of electrons to

impurities, 162, 163
binding free energy of two center

defects, 438-439, 440, 444
binodal curve, 269, 270
block spins, 306, 308, 309
Bohr magneton, 236, 239, 242, 246,

247, 294
Boltzmann transport equation, 181,

183
and Lorentz force, 183

Bose-Einstein statistics, 72, 75, 83,
255
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Bose-Einstein statistics (cont.)
and grand canonical ensemble,

81-83
and multilayer adsorption, 341
and phonons, 119-121

Bosons, 70
Bragg-Williams theory, 209, 213,

222, 223, 225, 227, 262, 291,
375, 398

and ferromagnets, 246, 247
and regular solutions, 282
and thermodynamic quantities,

217-219
Brillouin function, 237, 238, 239,

240, 242, 244, 247, 250
Brownian motion, 369
bulk modulus, 29, 127, 131, 133,

134, 139
of crystals, 131-132
of fluid near critical point, 291
of free electrons, 154

Carnot cycle, 11-12
canonical ensemble, 41, 42-44

and Helmholtz free energy, 52
for order-disorder alloys, 209
partition function, 49
and thermodynamics, 48-53

canonical pressure ensemble, 41,
63-64, 403, 432

and atomic migration, 462
and Gibbs free energy, 64
partition function, 64
and point defects, 403, 404, 447

characteristic function for random
flight, 363, 367-368

chemical potential, 20-21
in Debye model, 271
free electrons, 144, 146
in gels, 400
and Gibbs adsorption isotherm,

324
grand canonical ensemble, 63
of ideal gas, 76, 79, 272, 336
and impurity concentration in

semiconductors, 174-175
and interfaces, 322, 339
of liquids, 275
and Maxwell construction, 267-

268
and particle statistics, 75, 144
and solubility, 446
and Thomas-Fermi theory, 156

chemisorption, 289, 326, 335, 337
Clapeyron equation, 260, 271, 272

for surface-gas equilibrium, 327
Clausius-Clapeyron equation, 261,

272
for surface-gas equilibrium, 327

collision derivative, 181, 182, 184
communal entropy, 276-277
complexions, 42, 43, 276

in Bose-Einstein statistics, 72
for canonical ensemble, 42
for defect crystals, 433-437, 444
and entropy, 54, 69-71
for extrinsic semiconductors, 167—

169
for Fermi-Dirac statistics, 71
for general point defects, 444
for grand canonical ensemble, 61
for Maxwell-Boltzmann statistics,

72
and particle statistics, 71-72
substitutional defects, 433-435,

436, 437
compressibility, 29, 127, 131, 134,

135, 141
analogy to susceptibility, 291
of crystals, 131, 132
of fluid near critical point, 291
of free electrons, 154
point defect contribution to, 412,

422
condensation and physical

adsorption, 343
conduction band, 160, 163, 165, 166,

167
conformational entropy of

elastomers, 391
contact angle, 322
continuity equation ,451, 454
contour length in polymer chains,

379, 385, 388
in rubber, 392

continuous string, 99—100
copper -gold, 202-203
cooperative phenomena, 204, 235
copper, crystal properties and

vacancies, 424—425
copper, vacancy concentration in,

424
correlation angle, 352, 353, 377
correlation energy, 125
correlation factor, 352, 353, 354,

for diffusion, 456, 457
correlation function, 297, 298, 300

and expansion factor, 378
for Ising model, 301, 302
and surfaces, 330
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correlation length, 298, 299,
for Ising model, 301, 302
and renormalization, 308

critical exponents, 289, 290, 306,
311, 316

and correlation length, 298
for ferromagnet or order-disorder

alloy, 293, 311
relations among, 311, 316
for surface tension, 333-335
for van der Waals model, 292

critical opalescence, 292
critical point, 273, 288, 289-293,

302, 303, 305, 310, 316
for ferromagnets and order-

disorder alloys, 294
for surface tension, 333-335
in van der Waals model, 265, 266,

269
critical temperature

in antiferromagnets, 250, 251
in |3-brass, 232
in Bragg-Williams theory, 219, 220,

223, 224
and correlation function, 297
comparison by various methods,

229
ferromagnetic, 246
in Landau theory, 293
second moment approximation,

223, 224, 225
for surface tension, 333-335
in van der Waals model, 266

cross links, 385, 389, 395, 399
and contour length, 392
and gels, 395, 396

crystal energy, 126, 128, 136, 137,
139

for nearly free electron metals,
125

universal energy curve for, 126-
128

Curie temperature, 243, 244, 247
Curie-Weiss law, 243, 244, 251

de Broglie relation, 84
Debye energy and heat capacity

functions, 113, 132, 271
Debye model, 108, 270, 278, 416

chemical potential in, 271, 281
experimental tests of, 116—118
frequency distribution, 111, 133,

274
Gruneisen assumption and, 134—

136

high temperature approximation,
113-114

low temperature limit, 114-115
Debye temperature, 111, 133, 136,

274, 278, 279, 280, 281, 414,
417

relation to Einstein temperature,
116

in order-disorder alloys, 210
Debye T6 law, 115, 152
decimation, 304

and critical point, 305
and renormalization, 304, 307
and partition function, 305

defect concentration formulae, 406,
421, 438, 440

defect equilibria, 440
effect of impurities on, 421, 441

defect rotational factor, 434, 444
density of states, 77-78

in conduction bands, 164
for electrons and holes, 166
of free electrons, 145, 146
of ideal gas, 77, 78
in k-space, 85
in a magnetic filed, 240
in momentum space, 85
in semiconductors, 166
for standing elastic waves, 109-

111
two dimensional, 87
representations of, 84-86
for valence bands, 164
in velocity space, 85

detailed balanced, 55
dielectric constant in silicon and

germanium, 163
diamagnetism, 234
diathermic walls, 4
di-defects, 434, 438
diffusion, 403

Pick's first law, 450, 451
Pick's second law, 451
heat of activation, 457
of interstitial impurity, 455, 457
in order-disorder alloys, 204
and point defects, 403
point source, 371
principle axes of, 454
and random flight, 352, 349, 451,

452
tracer atoms, 456
and transition probability, 452-455
of vacancies, 455, 456
volume of activation, 457
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diffusion coefficient, 273, 450, 451,
466-467

and activation energy, 457
and atomic jumps, 455-457
interstitial diffusion, 457
and mean square displacement,

454
self diffusion, 457
temperature and pressure

dependence, 457
vacancy diffusion, 457

diffusion dyadic, 351
and migration distances, 453

diffusion equation and random
flight, 371-372

diffusion in a liquid, Gaussian
model, 367

diffusion tensor, 451
dislocations, 143, 288, 321, 361, 403,

422, 442
distribution function. See also

probability distribution
Bose-Einstein, 72, 75
for electrons and holes, 163, 164,

196, 197
for electrons in external fields, 180
Fermi-Dirac, 71, 73, 75, 155
for free electrons, 146, 147, 148
Maxwell-Boltzmann, 69, 72, 73,

74, 75
rate of change of, 181, 183
semi-classical, 73, 75, 197

divacancies, 405, 418, 420, 432, 433,
440

in aluminum, 426
concentration of, 437
free energy of binding, 421, 437

donors, 163, 167, 168, 169, 171
drift derivative, 182
drift velocity, 182, 184
Dulong-Petit law, 152

effective mass, 144, 153, 161, 164,
196

Einstein function, 105, 108, 109
superposition of, 107-108

Einstein heat capacity model, 106-
107

Einstein oscillators, 107-108
Einstein temperature, 107

relation to Debye temperature, 116
elastic continuum model, 108

frequency distribution, 109-111
elasticity of polymer chain, 385-389
elasticity of rubber, 389-395

and entropy, 391-393, 399
Flory correction for, 395

elastic string, 99-100
elastomers, 389-395
electrical conductivity, 152, 160,

177, 179, 186, 187, 188, 190,
195

in intrinsic semiconductors, 196—
201

in extrinsic semiconductors, 200
in metals, 188
and point defects, 403, 441
temperature dependence in metals,

442
temperature dependence in

semiconductors, 198, 199, 200
electric field induced by temperature

gradient, 189
electronic heat capacity, 152-153
electron-ion interaction, 162—163
electron scattering, 179, 180, 441
electron spin in extrinsic

semiconductors, 168, 169
electron transport equations, 184
energy gap, 160, 163, 165
energy levels in solids, 159—161

impurities in semiconductors and,
162

crystal vibrations, 101
particle in a box, 77, 145

ensemble, 41-42
of activated states, 466

ensemble parameters and
thermodynamics, 52, 53

enthalpy, 10
entropy, 13

and equilibrium conditions, 14
of free electrons, 151, 152
high temperature approximation

for harmonic crystal, 465
and number of complexions, 69—

71
in order-disorder alloys, 203
and randomness, 54
statistical mechanical, 50, 53, 54,

62, 70
statistical mechanical and the

second law, 54-56
time dependence of, 55

entropy of mixing, 284, 396, 398,
399

equal a priori probabilities, 43
equation of state, 28-31

of copper, 129
free electron gas, 153-155
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and heat capacity relations, 28, 29
high temperature approximation

for solids, 132
ideal gas, 80
low temperature approximation for

solids, 132
of Mie and Gruneisen, 131
two dimensional ideal gas, 88
and universal energy curve for

solids, 128, 129, 132
equilibrium, 1-2

absolute, 1, 24
and ensemble parameters, 46
conditions of, 22
and entropy, 14
and free energy, 14-16
internal, 1, 432, 439, 445, 446
metastable, 24
partial, 2

equilibrium constants
for extrinsic semiconductors, 171-

172
and order-disorder alloys, 227
for point defects, 440-441

equipartition of energy, 106
ergodic hypothesis, 41, 273, 350,

459, 462
Euler's theorem, 25, 323
exchange energy, 125
excluded volume in polymers, 383-

385
exclusion principle, 160
expansion factor, 378
Eyring model of liquids, 273, 275

Fermi-Dirac statistics, 71, 73, 75, 83,
145, 152, 168

for extrinsic semiconductors, 169-
170

and grand canonical ensemble,
81-83

and phonons, 119-121
and surface adsorption, 341

Fermi distribution, 145-148
in an electric or magnetic field,

178, 179
in a temperature gradient, 179

Fermi energy, 146, 150, 152, 156,
165, 195

impurity concentration and, in
semiconductors, 173—175

in intrinsic semiconductors, 166,
171

in a magnetic field, 241
and screening distance, 159

temperature dependence of, 151,
154, 155, 190

Fermi function, 145, 149, 187, 241
for impurity levels, 170
for holes, 164

Fermi integral, 149, 150, 166, 189,
190, 195

Fermi level (see Fermi energy)
Fermi momentum, 155, 156
fermions, 70
ferrimagnetism, 236
ferromagnetism, 234, 235, 245, 249,

251, 288
critical point, 293
domains, 235
ground state, 252
heat capacity data, 247
internal field, 242
mean field theory, 242-244, 247
partition function for, 296
spontaneous magnetization, 244,

246
Pick's laws of diffusion, 450, 451,

454, 455
and transition probability, 452—455

film pressure, 325
fixed points and renormalization,

304, 313, 314, 315
fluctuations, 64-67

deviations from most probable
distribution, 66

and correlation length, 295-298
and diffusion, 455
and electrical conduction in

semiconductors, 160
and energy, 65
and magnetic susceptibility, 296
and polymer chain length, 379-

380
and vacancy concentration, 407-

408
flux of electrons, 180, 186
flux equations for electrons, 185-186

and Hall effect, 193
for holes, 196

force ensemble, 386
Fourier transform and random flight,

363, 364
Fourier's law, 38
free electrons, 125, 143, 148, 155,

157, 177
average energy of, 148, 151
chemical potential for, 147, 151
compressibility of, 154
density of states for, 145
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free electrons (cont.)
energy distribution of, 145
entropy of, 152
equation of state for, 154
in external fields, 177-179
in extrinsic semiconductors,

167-172
heat capacity of, 151, 152
in intrinsic semiconductors, 163-

167
temperature dependence of energy,

151
in a temperature gradient, 179
velocity of, in external fields, 178

free energy and equilibrium, 14-16
free volume, 262, 265, 274
frequency variation with volume,

130, 137
frequency distribution in the

harmonic model, 103—104
fusion, 260

gels, 385, 395-400
chemical potential in, 400
interaction parameter, 400

Gibbs adsorption isotherm, 323-324,
325

Gibbs-Duhem equation, 26, 258, 267
Gibbs free energy, 15

and equilibrium, 16
Gibbs-Helmholtz equations, 17
Gibbs reference surface, 319, 320
Girifalco-Good equation, 331, 347
grain boundary, 345, 361, 422, 442
grand canonical ensemble, 41, 60-64

and multilayer adsorption, 341
and particle statistics, 81—84
partition function, 63, 82, 342

grand canonical pressure ensemble,
41

Gruneisen assumption, 139-134
and Debye model, 134-136

Gruneisen constant, 130, 135, 136,
137, 139, 417

Gruneisen equation, 131
Gruneisen parameter, 131, 137-139,

141
theory of, 137-139
values of, 140

gyromagnetic ratio, 236

Hall angle, 193
Hall coefficient, 192, 196, 200

in semiconductors, 200
Hall effect, 191-196

harmonic model, 92, 101, 137, 270
Debye model, 108-112
and diffusion, 461, 464
Einstein model, 26

harmonic oscillator, 94, 97, 101
heat capacity, 9, 17, 31, 18, 93, 131

of antiferromagnets, 251
at constant pressure, 134
and equation of state, 28-31
Einstein model, 106-107
of ferromagnets, 247
of free electrons, 151, 152
and harmonic model, 104-105
high temperature limit for

harmonic crystal, 105-106
low temperature limit for

harmonic crystal, 106, 151
in metals, 152
vacancy contribution to, 424, 427

heat, 4, 8
mechanical equivalent of, 3-4

heat flow equation, 191-192
Helmholtz free energy, 15

and equilibrium, 15
and partition function, 53
relation to ensemble parameter, 53

holes, 160, 162, 163, 165, 196
and electrical conductivity, 198
energy distribution for, 164, 165,

166

ideal gas, 2, 76, 261, 262, 271
density of states for, 77, 78
energy of, 79, 154
energy levels for, 77
entropy, 78, 80
equation of state, 2, 80
Gibbs free energy of, 76, 78
partition function for, 76, 78, 274,

276
temperature, 2-3
two dimensional, 87-88, 328, 339

impurity, 431, 432
diffusion of, 361
dissociative mechanism for

cadmium in lead, 444
energy levels in semiconductors,

162
pairs, 433, 440
segregation of, 345-346

interfaces, 318, 319, 320
and adhesion, 328
and concentration, 320
energy of, 329, 333
free energy of, 319, 323, 331
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thermodynamics of, 322-325
interfacial phase, 320
interfacial tension, 321, 322, 332, 333
interstitials, 403, 418

diffusion of, 455
migration of, 466

intrinsic resistivity, 442
ionization energy, 163, 200
ionization reactions in

semiconductors, 171-173
Ising chain, 298-302, 299, 305, 312,

316
renormalization of, 302-305

Ising model, 235, 245, 247, 252, 288,
289, 290, 292, 303, 312

and fluctuations, 295
Landau expansion for, 293
partition function for, 298-301

isothermal process, 6
irreversible process, 5, 7

jellium model, 157
jump frequency, 371, 455, 456, 465

effective frequency in, 466
for an interstitial, 465
many-body theory of, 460-466
one-dimensional model, 457-460

jump probability, 350, 351, 359, 351,
352, 355, 359

and drift displacement, 369
Fourier transform for, 363, 364
for freely jointed flight, 364
and Gaussian distribution, 369,

370, 384
Gaussian model, 367
vacancy mechanism, 457

Kadanoff construction, 305-311, 312,
313

Kirkwood expansion, 316
and Landau theory, 292-295

Kirkwood method for order-disorder
alloys, 213, 225, 298

second moment approximation,
222, 227, 293

Kuhn length, 379

Lagrangian multipliers, method of,
44-45, 61

for extrinsic semiconductors, 169
for grand canonical ensemble,

61
Lame constants, 135
Landau theory of ordering, 292-295
Langevin function, 239, 388

Langmuir adsorption isotherm, 335-
339, 344, 346

Laplace's equation, 157
lattice gas, 288, 289, 337, 345, 346
lattice renormalization, 306, 308, 309

and correlation length, 308
and partition function, 309

Legendre transformation, 19
Lennard-Jones potential, 125, 263,

332
librations, 261, 261

in polymer chains, 382
Lindemann equation, 280
Linear chain, 93-99

equations of motion, 93, 94
frequencies in, 97-99

liquid state, 272-276
Lorenz number, 192

magnetic domains, 235
magnetic effects and electron

transport, 185
magnetic moment, 236
magnetic susceptibility, 234, 291

analogy to compressibility, 32
critical point for, 289
divergence of, 296
and fluctuations, 295-296

magnetic systems
ordering in, 235
thermodynamics of, 31, 31

magnetization, 234, 235, 236, 245,
246, 247, 291, 292

classical limit for paramagnet, 238
critical point for, 289
experimental data for iron, nickel,

cobalt, 247
and internal field, 242
for free electrons, 242
for paramagnetism, 237, 238, 240
saturation for ferromagnet, 243
saturation for paramagnet, 238
and spin waves, 252, 255, 256

magnons, 255
Markoff method for random flight,

363-367
mass action laws in extrinsic

semiconductors, 171-173
Maxwell distribution of velocities,

86-87
Maxwell equal area construction,

267, 268
Maxwell reciprocity relations, 27,

29, 390
McLean isotherm, 346
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McLeod, equation, 334
mean field theory, 242-244, 247,

248, 252, 290, 291, 292, 295,
375

in polymers, 383
in gels, 396

mean free path, 188
and diffusion, 453
for electrons and holes in

semiconductors, 199
mean velocity of migrating atom,

458, 461
mechanical equivalent of heat, 3—4,

8
melting, 273, 281-282

and crystal vibrations, 277-281
heat of, 273, 282
and vacancies, 273

melting point, 261, 278, 280, 281
metastable states, 24, 268, 269
microcanonical ensemble, 41
microscopic reversibility, 55
Mie-Gruneisen equation of state,

131
mobile monolayers, 339-340
monolayer adsorption, 335-339
Monte Carlo, 316, 317

Neel temperature, 251
normal modes, 101, 130, 131, 136,

277, 414, 456
activated state, 464
in linear chain, 93-100
in order-disorder alloys, 210
at a surface, 280-281

n-type conductor, 163

order-disorder alloys
analogy with ferromagnet, 235,

245, 246, 291
configurational energy, 211, 213,

216, 217, 226
configurational entropy, 216
configurational states, 213
critical point for, 289
domains in, 235
heat capacity of, 216, 223, 296
moment expansion of free energy,

215
moment expansion of partition

function, 214
partition function, 209-210, 213,

214, 226
thermodynamic quantities and

degree of order, 217, 220

order-disorder transition, 203, 204,
217, 288

critical temperature for, 204, 293
and heat capacity, 204, 210, 222
heat capacity data, 231
and physical properties, 204

order-disorder structures, 202-203
ordering energy, 203, 211, 226
order parameter, 205, 206, 207, 208,

209, 212
and average energy, 215
experimental data, 230
and free energy, 216
temperature dependence of, 216,

219, 220, 222, 223

parachor, 335
paramagnetism, 235, 236-240, 251

of free electrons, 240-242
partition function for, 236, 237

paramagnetic susceptibility, 240-242
of free electrons, 242
in antiferromagnet, 251

particle statistics and
thermodynamics, 74-76

partition function, 46
for adsorbed molecule, 336, 339,

340
configurational, 59, 263, 264
and force ensemble, 386
ideal gas, 59, 274, 276
Ising model, 299-300, 303, 304
for a liquid, 273
for a ferromagnet, 296
for order-disorder alloys, 209-210
for paramagnetism, 236, 237
for polymer chains, 381-383
and renormalized lattice, 309, 314
semiclassical, 57, 58, 263
two dimensional ideal gas, 88
van der Waals model, 265

periodic boundary conditions, 95,
96

persistence length, 376, 377, 379
and polymer chain size, 378

phase diagram, 259,
for regular solution, 286
for van der Waals fluid, 270

phase equilibria
gas-liquid, 262, 268, 270, 271, 272,

291, 294, 295, 344
gas-solid, 266, 270
liquid-solid, 272
second order, 244, 251, 292
stability conditions for, 23—24
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thermodynamics for one
component system, 258-262

triple point, 258
two dimensional, 325

phase rule, 22, 23, 258, 403
phase space, 56, 461, 464
phonon gas, 119-121
photons, 119, 121, 255
physical adsorption, 326
point defects, 157, 159, 275, 403,

406, 418
in aluminum, 441
binding free energy, 438^139, 440,

444
and chemical potential, 436
core fields of, 434
and electrical resistivity, 422
and electron scattering, 179
equilibrium, 419, 421
experimental results, 422-429
formation, 433, 436
formation quantities, 416, 444
general theory of, 443-446
interstitial, 432, 433
internal equilibria, 432, 439, 446
mixed lattice type, 432
and quenched-in resistivity, 443
statistical count for, 420, 433
substitutional, 432, 433
substitutional concentration

formulas, 435-440
and thermodynamic functions, 422
two-center defects, 434, 438
types of, 431-432

Poisson's equation, 155, 157
Poisson's ratio, 135, 156
polymer chains, 349, 354, 357, 361

density in, 381
elasticity of, 385-389
entropy of, 376
excluded volume in, 383—385
freely jointed, 367, 377, 379, 388,

389
partition function of, 381-383, 385
and random flight, 350, 375, 383
and self similarity, 370

pressure ensemble. See canonical
pressure ensemble

probability distribution. See also
distribution function

canonical, 43^5
in coordinates or momenta, 60,

155
definitions, 47—48
in extrinsic semiconductors, 170

free electrons, 145
grand canonical, 61, 81
semiclassical, 57

p-type conductor, 163

quantum statistics, conditions for,
75, 144

quasi-chemical method, 225-230,
299

and critical temperature, 229
equilibrium constant, 227
free energy in, 228
free energy of reaction, 227
order parameter temperature

dependence, 228, 229
quenched-in resistivity, 441-443

and vacancy formation energy,
443

radial distribution function, 263, 264
random flight, 351, 352

and Bernoulli (binomial)
distribution, 356, 359

and central limit theorem, 367-
369

and characteristic function, 363
and diffusion, 456
and diffusion equation, 371-372
and Gaussian distribution, 359,

360, 367, 369
general solution, 367-369
on a lattice, 354-361
and polymer chain, 375, 383
and probability distribution

function, 358, 359
self-avoiding, 375, 384

random solution, 283
entropy of, 284

reciprocal lattice, 100-101
reciprocity relations of Maxwell, 27,

29, 390
reflecting barrier, 361-363
regular solution theory of binary

alloys, 282-286
relaxation, 417

around point defects, 275
relaxation time for electrons ,183,

184, 187, 188
and crystal vibrations, 188
in semiconductors, 199, 200

renormalization, 292, 316
and block spins, 306, 308, 309
and one-dimensional Ising model,

302-305
and recursion relations, 305, 316
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renormalization group, 311—313, 315
and scaling, 313-316

renormalization operator, 312, 313
renormalization theory, 303

and fixed points, 304
transformation matrix, 315

renormalized lattice, 306, 308, 309,
310, 312, 313, 314

resistivity. See a/so electrical
conductivity

temperature dependence in metals,
188

response functions, 296
reversible process, 6
rotational barrier in polymers, 382
rotations, 361-362
rubber, 385, 389, 391, 395

entropy effect in stretching of, 391,
392

Flory correction, 395
force-elongation relation, 393-394

Sacker-Tetrode equation, 80
scaling, 292, 298, 308, 309, 310, 311,

313, 315, 316
and renormalization group, 313—

316
and self similarity, 370

screening, 143, 159
segregation at interfaces, 345-346
segregation energy, 346
self-similarity, 370-371, 376
semiclassical approximation, 56-60,

197
conditions for, 75, 144
partition function for, 58-59

semiconductors, 145, 159, 160
extrinsic, 167-172, 200
impurity levels in, 162-163
intrinsic, 163-167, 166
and mass action law, 171-173
two-band model, 163

significant structures, method of, 272
solid solution, 282, 284, 285, 286,

446
solid surface, 280
solubility, 437

free energy of, 438
statistical thermodynamics of, 446

solutions of polymers, 395-400
spinodal curve, 269
spin operator, 252
spin waves, 251—256

frequency dispersion of, 254—255
spontaneous process, 5

spreading coefficient, 322
state, 1, 34

microscopic and macroscopic, 36-
37

thermodynamic, 16, 35-36
state distribution, 42
state function, 2, 6, 26
statistical count (see complexions)

entropy and, 54, 69-71
for point defects, 444
substitutional defects, 433-435,

436, 437
steric hindrance, 351, 381
sublattice, 202, 204, 206, 207, 212,

213, 235, 249
sublimation, 260, 261, 270-272

heat of, 272
substitutional defects, 435-440

internal equilibria for, 440-441
surface area from BET isotherm, 344
surface concentration, 324
surface energy, heterogeneity of, 345
surface free energy, 323, 325
surface melting, 280-281
surface phase, 327

Clapeyron equation for, 327
surface pressure, 88, 325, 328
surface tension, 321, 324, 325

critical point and critical exponent
for, 333-335

and the parachor, 335

temperature, 2-3
absolute, 3, 12
empirical, 2
ideal gas, 2
relation to ensemble parameter, 52
statistical mechanical, 52, 62

thermal conductivity in metals, 152,
179,188-192

thermal energy, 131, 134
thermal expansion, 29, 30, 93, 131,

134, 136, 139, 271
and vacancies, 425, 427

thermal wavelength, 59, 78, 263, 463
thermodynamic efficiency, 11, 12
thermodynamic potentials, 16, 19, 20
thermodynamic stability, 23, 24
Thomas-Fermi equation, 156

linearized, 157
Thomas Fermi theory, 155-159

and point defects, 157
time averages, 40
transition probability, 55, 180, 181

and diffusion, 452, 455, 456
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and Pick's laws, 452—455
triple point, 258

uncertainty principle, 57
Universal energy curve, 126, 138,

139, 278
scaling factor for, 127, 128, 139
and vibrational amplitudes, 279

universality class, 316

vacancies, 403, 418, 436
concentration formula, 406
contribution to crystal free energy,

410
formation volume, 275
Gibbs free energy of formation,

275, 276
and liquid theory, 273, 274, 275,

276, 277
and melting, 277
relaxation around, 418
and thermodynamic functions,

410-413
vacancy concentration, 403, 404-

407, 413
in aluminum, 426
in copper, 423,
and diffusion coefficient, 457, 467
and Gaussian distribution, 407-

409
total, 421, 427, 433
in liquids, 282

vacancy diffusion, 456
vacancy formation, 402-407

configurational entropy of, 410
energy from quenched-in

resistivity, 443
entropy of, 410, 418
free energy of, 406, 410, 418, 436,

437
thermodynamic functions of, 410-

411
vacancy formation functions, 413-

418
and canonical ensemble, 414
and quasi-harmonic crystal theory,

414

temperature and pressure
dependence, 413-416

vacancy mechanism for diffusion,
456-457

vacancy migration, 461
entropy of, 465
free energy of, 465
volume of, 463

valence band, 160, 163, 164-166,
167, 198

van der Waals equation, 262, 265
reduced form of, 266

van der Waals isotherm, 267
and Maxwell construction, 268

van der Waals model, 262-270,
272

and critical point, 265, 266, 269
Helmholtz free energy for, 265
partition function for, 265

vaporization, 260, 261, 273
heat of, 273

vibrations
amplitudes of, 278, 280
in crystals, 92, 93, 129, 134, 136,

152
elastic string, 99-100
and electrical conductivity, 167,

188
linear chain, 99
in liquids, 281
and melting, 277-281
in order-disorder alloys, 210

Weiss effective mean field, 242
wetting, 322
Wiedemann-Franz law, 188, 192
Wigner-Seitz radius, 125, 127,

139
work, 6-8

Young's equation, 322
Young's modulus, 389, 394

and polymer molecular weight,
395, 400

zero point energy, 131, 132, 133,
141, 271, 272, 281,415




