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INTRODUCTION

This volume contains lectures given at the Saint-Flour Summer School of
Probability Theory during the period 7th - 23rd July, 1997.

We thank the authors for all the hard work they accomplished. Their lectures
are a work of reference in their domain.

The School brought together 81 participants, 37 of whom gave a lecture
concerning their research work.

At the end of this volume you will find the list of participants and their papers.

Finally, to facilitate research concerning previous schools we give here the
number of the volume of "Lecture Notes" where they can be found :

Lecture Notes in Mathematics

1971 : n°® 307 - 1973 : n® 390 - 1974 : n° 480 - 1975 : n® 539 - 1976

:n® 598 -
1977 : n° 678 - 1978 : n° 774 - 1979 : n® 876 - 1980 : n® 929 - 1981 : n® 976 -
1982 : n° 1097 - 1983 : n° 1117 - 1984 : n° 1180 - 1985 - 1986 et 1987 : n° 1362 -

1988 : n° 1427 - 1989 : n° 1464 - 1990 : n°® 1527 - 1991 : n° 1541 - 1992 : n® 1581 -
1993 : n° 1608 - 1994 : n° 1648 - 1995 : n° 1690 - 1996 : n° 1665

Lecture Notes in Statistics

1986 : n° 50
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Foreword

A subordinator is an increasing process that has independent and homogeneous
increments. Subordinators thus form one of the simplest family of random processes in
continuous time. The purpose of this course is two-fold: First to expose salient features
of the theory and second to present a variety of examples and applications. The theory
mostly concerns the statistical and sample path properties. The applications we have
in mind essentially follow from the connection between subordinators and regenerative
sets, that can be thought of as the set of times when a Markov process visits some
fixed point of the state space. Typically, this enables us to translate certain problems
on a given Markov process in terms of some subordinator, and then to use general
known results on the latter.

Here is a sketch of the content. The first chapter introduces the basic notions
and properties of subordinators, such as the Lévy-Khintchine formula, 1t6’s decom-
position, renewal measures, ranges - - -, and the second presents the correspondence
relating subordinators, regenerative sets, and local times and excursions of Markov
processes, which is essential to the future applications. More advanced material in
that field is developed in chapters 3-5, which concern respectively the asymptotic be-
haviour of last-passage times in connection with the Dynkin-Lamperti theorem, the
smoothness of the local times (law of the iterated logarithm, modulus of continuity)
and some geometric properties of regenerative sets including fractal dimensions and
the study of the intersection with a given set. Applications are presented in chapters
6-9. First, we describe the law of the solution of the inviscid Burgers equation with
Brownian initial velocity in terms of a subordinator, which enables us to investigate its
statistical properties. Next, we study the closed subset of [0, c0) that is left uncovered
by open intervals sampled from a Poisson point process, following the ingenious ap-
proach of Fitzsimmons et al. Then, we turn our attention to two natural regenerative
sets associated with a real-valued Lévy process: The set of passage times at a fixed
state, and the set of times when a new maximum is achieved. Some applications of
Bochner’s subordination for Lévy processes are also given. Finally we investigate the
class of subordinators that appears in connection with occupation times of a linear
Brownian motion, or, equivalently, with the zero set of one-dimensional diffusions, by
making use of M. G. Krein’s spectral theory of vibrating strings. The choice of the
examples discussed here is quite arbitrary; for instance, Marsalle [117] exposes further
applications in the same vein, to increase times of stable processes, slow or fast points
for local times, and the favorite site of a Brownian motion with drift.

Last but not least, it is my pleasure to thank Marc Yor for his very valuable
comments on the first draft of this work.



Chapter 1

Elements on subordinators

The purpose of this chapter is to introduce basic notions on subordinators.

1.1 Definitions and first properties

Let (©2,IP) denote a probability space endowed with a right-continuous and complete
filtration (F;),5,- We consider right-continuous increasing adapted processes started
from 0 and with values in the extended half-line [0, 0], where oo serves as a cemetery
point (i.e. oo is an absorbing state). If o = (ay,¢ > 0) is such a process, we denote its
lifetime by

¢ = inf{t >0: 0, =00}

and call o a subordinator if it has independent and homogeneous increments on [0, ¢).
That is to say that for every s,¢ > 0, conditionally on {¢ < (}, the increment o;,,— 0o,
is independent of F; and has the same distribution as o, (under P). When the lifetime
is infinite a.s., we say that ¢ is a subordinator in the strict sense. The terminology
has been introduced by Bochner [25]; see the forthcoming section 8.4.

Here is a standard example that will be further developed in Section 8.3. Consider
a linear Brownian motion B = (B, : t > 0) started at 0, and the first passage times

7, = inf{s > 0: B, > t}, t>0

(it is well-known that 7, < oo for all ¢ > 0, a.s.). We write F; for the complete
sigma-field generated by the Brownian motion stopped at time 7, viz. (B;ar, : s > 0).
According to the strong Markov property,

B, = Byyr,—t, s3>0

is independent of F; and is again a Brownian motion. Moreover, it is clear that for
every s > 0
Tiys — 7 = inf{u>0: B, > s}.

This shows that 7 = (7, : t > 0) is an increasing (F;)-adapted process with indepen-
dent and homogeneous increments. Its paths are right-continuous and have an infinite
lifetime a.s.; and hence 7 is a strict subordinator.



We assume henceforth that o is a subordinator. The independence and homo-
geneity of the increments immediately yield the (simple) Markov property: For every
fixed ¢ > 0, conditionally on {t < (}, the process ¢’ = (0] = 0,4+ — 01,5 > 0) is in-
dependent of F; and has the same law as 0. The one-dimensional distributions of
o

pt(dy) = P(Ut € dy,t < ()7 t>0,y€ [0,00)

thus give rise to a convolution semigroup (P;,t > 0) by

i) = [t upddy) = E(f(oct2)t <)

where f stands for a generic nonnegative Borel function. It can be checked that this
semigroup has the Feller property, ¢f. Proposition .5 in [11] for details.

The simple Markov property can easily be reinforced, i.e. extended to stopping
times:

Proposition 1.1 IfT is a stopping time, then, conditionally on {T' < (}, the process
o' = (0} = or4: — or,t 2 0) is independent of Fr and has the same law as o (under

P).

Proof: For an elementary stopping time, the statement merely rephrases the simple
Markov property. If T' is a general stopping time, then there exists a sequence of
elementary stopping times (75,),cy that decrease towards T', a.s. For each integer n,
conditionally on {7, < (}, the shifted process (or,4; — or,,t > 0) is independent of
Fr, (and thus of Fr), and has the same law as o. Letting n — oo and using the
right-continuity of the paths, this entails our assertion. [ |

The law of a subordinator is specified by the Laplace transforms of its one-
dimensional distributions. To this end, it is convenient to use the convention that
e™ % = ( for any A > 0, so that

E (exp{—Aoi},t < () = E(exp{—Ac:}), t,A > 0.

The independence and homogeneity of the increments then yield the multiplicative
property
E(exp{—-Aou1.}) = E(exp{—Ao:}) E(exp{—Ao,})

for every s,t > 0. We can therefore express these Laplace transforms in the form
E (exp{—Xo\}) = exp{—t®(N)}, t,A>0 (L.1)
where the function @ : [0,00) — [0,00) is called the Laplace ezponent of o.

Returning to the example of the first passage process  of a linear Brownian motion,
one can use the scaling property of Brownian motion and the reflexion principle to
determine the distribution of ;. Specifically, for every ¢ > 0

P(r <t) :IP’(sup Bs>1> :]P’(sup Bs>1/\/7?>

0<s<t 0<s<

P (|8 > 1/v/1)

2 t
__/ 3—3/26—1/23d8
T Jo ’



It is easy to deduce that the Laplace exponent of 7 is

®(\) = —logE(exp{—Ar}) = V2X.

1.2 The Lévy-Khintchine formula

The next theorem gives a necessary and sufficient analytic condition for a function to
be the Laplace exponent of a subordinator.

Theorem 1.2 (de Finetti, Lévy, Khintchine)(i) If ® is the Laplace erponent of a
subordinator, then there exist a unique pair (k,d) of nonnegative real numbers and a
unique measure II on (0,00) with [ (1 A z)II(dz) < oo, such that for every A > 0

() = k+d\+ (1—e7) I(dz). (1.2)

(0,00)

(i1) Conversely, any function ® that can be expressed in the form (1.2) is the Laplace
ezponent of a subordinator.

Equation (1.2) will be referred to as the Lévy-Khintchine formula; one calls k the
killing rate, d the drift coefficient and II the Lévy measure of o. It is sometimes con-
venient to perform an integration by parts and rewrite the Lévy-Khintchine formula
as

B(\)/\ = d+/0°° e*M(z)dz,  with (z) = k+ II((z,00)) -

We call I the tail of the Lévy measure. Note that the killing rate and the drift
coefficient are given by
k = &(0) , d=lim¥.

A—00
In particular, the lifetime { has an exponential distribution with parameter k > 0
(¢ = oo for k =0).

Before we proceed to the proof of Theorem 1.2, we present some well-known ex-
amples of subordinators. The simplest is the Poisson process with intensity ¢ > 0,
which corresponds to the Laplace exponent

() = (1 —e™),

that is the killing rate k and the drift coeflicient d are zero and the Lévy measure cé;,
where §; stands for the Dirac point mass at 1. Then the so-called standard stable
subordinator with index « € (0,1) has a Laplace exponent given by

@(A) = \¥ = mat;)_/ooo(l _e—)\z)x—l—adx'

The restriction on the range of the index is due to the requirement [ (1 A z) II(dz) <
co. The boundary case a = 1 is degenerate since it corresponds to the deterministic
process o; = t, and is usually implicitly excluded. A third family of examples is



provided by the Gamma processes with parameters a,b > 0, for which the Laplace
exponent is

(D()\) = alog(l + )\/b) = /000(1 _ e——)\x)ax_le_bzdx ’

where the second equality stems from the Frullani integral. We see that the Lévy
measure is II(**)(dz) = az~'e™**dz and the killing rate and the drift coeficient are
zero.

Proof of Theorem 1.2: (i) Making use of the independence and homogeneity of
the increments in the second equality below, we get from (1.1) that for every A > 0

®(}) = lim n(1- exp{—®(A)/n}) = lim nE (1 - exp{—)\al/n})

A lim * e MnP (al/n > :L') dz.

n—oo 0

Write IL,(z) = nP (al/n > x), so that

This shows that the sequence of absolutely continuous measures II,(z)dz converges
vaguely as n — oo. As each function IL,(-) decreases, the limit has necessarily the
form déy(dz)+II(z)dz, where d > 0, II : (0,00) — [0, 00) is a non-increasing function,
and 6y stands for the Dirac point mass at 0. Thus
(M)
B

and this yields (1.2) with k = II(co) and I(dz) = —dII(z) on (0,00). It is plain that
we must have [,y zll(dz) < oo since otherwise ®(A) would be infinite. Uniqueness
is obvious.

=d+ /oo e T (z)dx
0

(ii) Consider a Poisson point process A = (A;,¢ > 0) with values in (0, 00] and with
characteristic measure II + ké.,. This means that for every Borel set B C (0, 00], the
counting process N = Card{s € [0,] : A, € B} is a Poisson process with intensity
II(B) + késo(B), and to disjoint Borel sets correspond independent Poisson processes.
In particular, the instant of the first infinite point, 7o, = inf{t > 0: A; = 00}, has an
exponential distribution with parameter k (7o, = oo if k = 0), and is independent of
the Poisson point process restricted to (0,00). Moreover, the latter is a Poisson point
process with characteristic measure II.

Introduce ¥ = (%;,t > 0) by
Zt = dt+ Z As'

0<s<t
The condition [ (1A z)II(dz) < oo ensures that ¥, < co whenever ¢ < 7, a.s. It is
plain that ¥ is a right-continuous increasing process started at 0, with lifetime Toos
and that its increments are stationary and independent on [0, 700). In other words, ¥
is a subordinator. Finally, the exponential formula for a Poisson point process {e.g.
Proposition XI1.1.12 in [132]) gives for every t,A > 0

E (exp{—)%;}) = exp {—t (k +d\+ (1~ e"“)ﬂ(dx))} ,

(0,00)



which shows that the Laplace exponent of ¥ is given by (1.2). u

More precisely, the proof of (ii) contains relevant information on the canonical
decomposition of a subordinator as the sum of its continuous part and its jumps.

Proposition 1.3 (It6 [81]) One has a.s., for every t > 0:

Oy = dt+ Z Asy

0<s<t

where A = (A;,s > 0) is a Poisson point process with values in (0,00] and character-
istic measure I1 + kdo,, where 6o, stands for the Dirac point mass at co. The lifetime
of o is then given by ( = inf{t > 0: A; = co}.

As a consequence, we see that a subordinator is a step process if its drift coefficient is
d = 0 and its Lévy measure has a finite mass, II((0, 00)) < oo (this is also equivalent
to the boundedness of the Laplace exponent). Otherwise o is a strictly increasing
process. In the first case, we say that o is a compound Poisson process. A compound
Poisson process can be identified as a random walk time-changed by an independent
Poisson process; and in many aspects, it can be thought of as a process in discrete
time. Because we are mostly concerned with ‘truly’ continuous time problems, it will
be more convenient to concentrate on strictly increasing subordinators in the sequel.

Henceforth, the case when o is a compound Poisson process is implicitly
excluded.!

1.3 The renewal measure

A subordinator is a transient Markov process; its potential measure U(dz) is called
the renewal measure. It is given by

/[Om) f(z)U(dz) = IE( / ” f(at)dt) .

The distribution function of the renewal measure
U(z) = E (/00 l{al<x}dt) , x>0
A <

is known as the renewal function. If we introduce the continuous inverse of the strictly
increasing process o:

L, =sup{t >0:0, <z} = inf{t > 0: 0y >z}, z2>0,

we then see that

Uz) = E(Ly) ;

! Nonetheless, many results presented in this text still hold in the general case.
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in particular we obtain by an application of the theorem of dominated convergence
that the renewal function is continuous. It is also immediate to deduce from the
Markov property that the renewal function is subadditive, that is

Ulz+y) <U(z)+U(y) forallz,y>0.

Because the Laplace transform of the renewal measure is
1
LU =/ eU(dz) = ——,  A>0
W= o @0 = )

the renewal measure characterizes the law of the subordinator.

We next present useful estimations for the renewal measure in terms of the Laplace
exponent and of the tail of the Lévy measure, which follow from the fact that the
Laplace transforms of U and II admit simple expressions in terms of ®, and adequate
Tauberian theorems. To this end, we first state a general result. When f and ¢ are
two nonnegative functions, we use the notation f x ¢ to indicate that there are two
positive constants, ¢ and ¢/, such that ¢f < g < ¢/f. Introduce the so-called integrated
tail

¢
0

1) = /()tﬁ(m)dx = [ e T((w,00))) da
Proposition 1.4 We have
U(z) < 1/®(1/z) and ®(z)/z < I(1/z)+4d.

Proof: Recall that 1/® is the Laplace transform of the renewal measure. As ® is
concave and monotone increasing, the Tauberian theorem of de Haan and Stadtmiiller
(see [20] on page 118) applies and yields U(z) x 1/®(1/z). The second estimate
follows similarly, using the fact that the Laplace transform of the tail of the Lévy
measure is —d + ®(A)/A {by the Lévy-Khintchine formula). ]

Sharper estimates follow from Karamata’s Tauberian theorem when one imposes
that the Laplace exponent has regular variation. Recall that a measurable function
f:(0,00) = [0,00) is regularly varying at 0+ (respectively, at oo) if for every = > 0,
the ratio f(Az)/f(A) converges as A — 0+ (respectively, A — o00). The limit is then
necessarily ©® for some real number « which is called the index. When a = 0, we
will simply say that f is slowly varying. We refer to Chapter XIII in Feller [53] for
the basic theory, and to Bingham et al. [20] for the complete account. We stress that
when the Laplace exponent ® is regularly varying (at 0+ or at co) then, due to the
Lévy-Khintchine formula, the index necessarily lies between 0 and 1.

Proposition 1.5 Suppose that ® is regularly varying at 04 (respectively, at 00 ) with
index « € [0,1]. Then,

I(1+a)Ufaz) ~a®/®(1/z) as & — oo (respectively, as = — 0+),

uniformly as a varies on any fized compact interval of (0, c0).

Moreover, if a < 1, then
(1 —a)ll(az) ~ a™*®(1/z) as = — co (respectively, as = — 0+),

untformly as a varies on any fized compact interval of (0,00)
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Proof: The first assertion follows from Karamata’s Tauberian theorem and the uni-
form convergence theorem; cf. Theorems 1.7.1 and 1.5.2 in [20]. The second requires
the monotone density theorem; see Theorem 1.7.2 in [20]. n

Next, local estimates for the renewal measure in the neighbourhood of oo are given
by the renewal theorem.

Proposition 1.6 (Renewal theorem) Put E(oy) = p € (0,00]. Then for every h > 0
lim (U(z+ k) —U(z)) = h/p.

T—00

This renewal theorem is essentially a consequence of the standard renewal theorem in
discrete time (i.e. for so-called renewal processes; see e.g. Feller [53]). Recall that the
compound Poisson case has been ruled out, so ¢ is a ‘non-lattice’ process. Plainly,
it is mostly useful in the finite mean case p < oo; we refer to Doney [48] for recent
progress in the (discrete) infinite mean case.

There is also an analogue of the renewal theorem in the neighbourhood of 0+ when
the drift coefficient is positive.

Proposition 1.7 (Neveu [122]) Suppose that d > 0. Then the renewal measure is
absolutely continuous and has a continuous everywhere positive density u : [0,00) —
(0,00) given by

u(z) = d7'P(F>0:0,=1).

In particular, u(0) = 1/4.
Proof: As d > 0, the Laplace transform of the renewal measure has
/ooe_MU(dz)sz-l— as A — o0o.
0 o)) A
By a Tauberian theorem, this entails

Ule) ~e/d = eu(0) ase—0+. (1.3)

The Markov property applied at the stopping time L(z) = inf{t > 0 : 0y > z}

gives
E / 1o e(e.ote dt>
( L) {ote(@,zte]}

Jo s B € ULz +2 =)

P (az,(x) = x) Ue) + /(I " Plorw) € dy)U(z +¢ —y).

Uz +¢) — Ulz)

The second term in the sum is bounded from above by P(oy) € (z,z +€])U(e) =
o(U(e)). We deduce from (1.3) that

AP (3o =2) = d_l]P(a'L(x) =z) = lim U(z +¢) —U(z)
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(the first equality stems from the fact that L(z) depends continuously on z). In

particular, the renewal measure is absolutely continuous; we henceforth denote by

u(z) the version of its density that is specified by the last displayed formula. Note

that u(z) < 1/d and also, by an immediate application of the Markov property at

L(z), that for every =,y > 0

du(z+y) =P(Ft:ov=a+y) 2 P(F:0=2)P(FH:0n=y) = a*u(z)u(y).

(1.4)

To prove the continuity of u at ¢ = 0, fix > 0 and consider the Borel set

, = {2 >0:1/d < u(z)+n}. As uis bounded from above by 1/d, we see from (1.3)

that 0 is a point of density of B,, in the sense that m ([0,e]N B,) ~ € as ¢ — 0+,

where m stands for the Lebesgue measure. By a standard result of measure theory,

this implies that for some a > 0 and every 0 < = < a, we can find y,y" € B, such
that £ =y +y’. Using (1.4), we deduce

e) 2 auly)u(y) 2 (5 )

so that lim,_o4 u(z) = 1/d = u(0).
We next prove the continuity at some arbitrary > 0. The same argument as
above based on (1.4) yields

limsup u(y) < u(z) < 1imi$fu(y).
y—T

y—z—

On the one hand, the right-continuity of the paths shows that if y, is a sequence that
decreases towards x, then

limsup {F: 0y =y} C {Ft:0: =3z},
so an application of Fatou’s lemma gives

limsupu(y) < u(z).
y—ot

On the other hand, an application of the Markov property as in (1.4) yields that for
every € > 0

P(3t:or=2) < PEt:oy=e)P(Ft:ioy=a—¢)+P(Vt:0o,#¢).
We know that the second term in the sum tends to 0 as ¢ — 0+, so that

liminfu(y) > u(z),

y—r—
and the continuity of u is proven. Finally, we know that u is positive in some neigh-
bourhood of 0, and it follows from (1.4) that u is positive everywhere. ]

To conclude this section, we mention that large deviations estimates for the one-
dimensional distributions of o have been obtained by Jain and Pruitt [87]; see also
Fristedt and Pruitt [61] for some more elementary results in that field.
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1.4 The range of a subordinator

The range of a subordinator o is the random closed subset of [0,00) defined by
R ={o::0<t<(}.

Note that R is a perfect (i.e. without isolated points) and 0 € R. Because the paths
of o are cadlag, the range can also be expressed as

R ={o:0<t<(} | J{os-:5€ T}

where J = {0 < s < (: A, > 0} denotes the set of jump times of . To this end,
observe that {o;_ : s € J} is precisely the set of points in R that are isolated on their
right. Alternatively, the canonical decomposition of the open set R = [0,00) — R, is

R = | (0s-,05). (1.5)
seT

Recall that L. = inf{¢t > 0 : 5, > -} stands for the -continuous- inverse of &; it should
be plain that R also coincides with the support of the Stieltjes measure dL:

R = Supp(dL),
which provides another useful representation of the range.

We next present basic properties of the range that will be useful in the sequel.
First, an interesting problem that frequently arises about random sets, is the evalu-
ation of their sizes. The simplest result in that field for the range of a subordinator
concerns its Lebesgue measure. Sharper results involving Hausdorff and packing di-
mension will be presented in section 5.1.

Proposition 1.8 We have
m(RN[0,t]) = m({os:5>0}N[0,t]) = dL, a.s. forallt >0,

where d is the drift coefficient and m the Lebesgue measure on [0,00). In particular
R has zero Lebesque measure a.s. if and only if d = 0, and we then say that R is
light. Otherwise we say that R is heavy.

Proof: The first equality is obvious as R differs from {o; : s > 0} by at most
countably many points. Next note that it suffices to treat the case k =0 (i.e. { = o0
a.s.), because the case k > 0 then will then follow by introducing a killing at some
independent time.

Recall that the canonical decomposition of the complementary set R° is given by
(1.5). In particular, for every fixed ¢ > 0, the Lebesgue measure of R° N [0,04] is
Y s<t As, and the latter quantity equals o; — d¢t by virtue of Proposition 1.3. This
gives m ([0,0,) N R) = dt for all t > 0, a.s. Because the quantity on the right depends
continuously on ¢, this entails by an argument of monotonicity that

m([0,0:]NR) = m([0,0._]NR) = dt.
Replacing ¢ by L, and recalling that ¢ € [oy,—,0,] completes the proof. |

We then specify the probability that z € R for any fixed z > 0.
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Proposition 1.9 (i) (Kesten [96]) If the drift isd =0, then P(z € R) = 0 for every
z>0.

(ii) (Neveu [122]) If d > 0, then the function u(z) = d7'P(z € R) is the version of
the renewal density dU(z)/dx that is continuous and everywhere positive on [0, 00).

Proof: (i) An application of Fubini’s theorem gives
/OOIF’(QE € R)de = E(m(R)),
0

where m(R) stands for the Lebesgue measure of R. We know from Proposition 1.8
that the latter is zero as d = 0. In other words, P (z € R) = 0 for almost every = > 0.
That we may drop “almost” in the last sentence is easily seen when the renewal
measure is absolutely continuous. More precisely, let 7 be an independent random
time with an exponential distribution with parameter 1. For every fixed ¢ > 0, we
have for any Borel set A

P (o, €A) =g /0 ¥ e P(o, € A)dt < qU(A),

which implies by virtue of the Radon-Nikodym theorem that the distribution of o/,
is also absolutely continuous. Applying the Markov property at time 7/¢, we deduce
that

P (ar/q“ =& Or 0,/q4¢— = & for some ¢ > 0) = /Ooo Po,/, € dy)P(z —y € R),

and the right-hand side equals zero as P (a € R) = 0 for almost every a > 0. Letting
q go to oo, we deduce that P (2 € R) = 0 for every z > 0.

The same holds true even when the renewal measure is not absolutely continuous.
This requires a more delicate analysis; we refer to the proof of Theorem II1.4 in [11]
for details.

(ii) By Proposition 1.7, all that is needed is to check that
P(3>0:0,.=2z<0y) =0.
By the compensation formula for Poisson point processes, we have for every ¢ > 0

PEt>0:0,-=2z<o,—¢) = E (Z l{ar_zz}l{AQE})

>0
. IE( s )
(¢) /0 {or=c}dt ) ,

and the ultimate quantity is zero as the renewal measure has no atom. As ¢ is
arbitrary, this completes the proof. |

We next turn our attention to the left and right extremities of R as viewed from
a fixed point ¢ > 0:

g =sup{s<t:s€R} and D, =inf{s>t:s€R}.
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We call (D, :t>0) and (g, : t > 0) the processes of first-passage and last-passage in
R, respectively. The use of an upper-case letter (respectively, of a lower-case letter)
refers to the right-continuity (respectively, the left-continuity) of the sample paths.
We immediately check that these processes can be expressed in terms of ¢ and its
inverse L as follows :

g = o(Ly—) and D; = o(L;) for all ¢ > 0, a.s. (1.6)

We present an useful expression for the distribution of the pair (g, D;) in terms
of the renewal function and the tail of the Lévy measure.

Lemma 1.10 For every real numbers a,b,t such that 0 < a <t < a+ b, we have
P(g; € da, D, — g; € db) = NI(db)U(da) , P(g; € da, D; = 00) = kU(da).
In particular, we have for a € [0,1)

P(g; € da) = TI(t — a)U(da).

Proof: Recall from (1.6) the identities g; = or,— and D; — g; = Ay,. Then observe
that for any v > 0

op,-<a and Ly=u < o0,_<a and o, >1t.
Using the canonical expression of o given in Proposition 1.3, we see that
P(gi <a,D;— gt > b) =E (Z 1{au_<a}1{AuZ(t—-au_)Vb}> )

where the sum in the right-hand side is taken over all the instants when the point
process A jumps. The process u — o, is left continuous and hence predictable,
so the compensation formula (see e.g. Proposition XII.1.10 in [132]) entails that the
right-hand-side in the last displayed formula equals

E (/Om 1o <y T (£ — 0,) V ) =) du) - /[o,a) T(((t = 2) V b)—) U(dz).

This shows that for 0 <a <t <a+b
P(g; € da, D, — g, € db) = T1(db)U(da).

Integrating this when b ranges over [t—a, o0] yields P(g; € da) = II((t—a)—)U(da).
Since the renewal measure has no atom and the tail of the Lévy measure has at most
countably many discontinuities, we may replace II((t — a)—) by II( — a). |

A possible drawback of Lemma 1.10 is that it is not expressed explicitly in terms
of the Laplace exponent ®. Considering a double Laplace transform easily yields the
following formula.

Lemma 1.11 For every A, q > 0

®(q)

./0 e ”E (exp{—M\g:}) dt = @O+
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Proof: It is immediately seen from Lemma 1.10 that P(g; <t = D,) = 0 for every
t > 0; it follows that P(g; = t) = P(t € R). Using Proposition 1.9 and the fact that
the Laplace transform of the renewal measure is 1/®, we find

/0°° e P(g; = t)dt = ok

We then obtain from Lemma 1.10
> —qt _ — o —qt —tA — —ASTT(+
/0 e "E (exp{—Ag:}) dt /0 € (e P(g;=1t) + /[o,t)e TI(¢ s)U(ds)) di
d i —
- - dt U(ds) e~ 1t=)TI(¢ — s)e~ A+
®(g+A) +/0 /[o,t) (ds)e (t=se
d

= m + LU(g+ )\)ﬁﬁ(q)

d 1 CD(q)_
<I><q+A)+<I><q+A>< , d) '

This establishes our claim. |

One should note that Lemma 1.11 entails that the law of a subordinator is essentially
characterized by that of g,, where 7 is an independent exponential time. Specifically,
if o and ¢® are two subordinators such that, in the obvious notation, g{!) and
¢ have the same law, then there is a constant ¢ > 0 such that ®®) = c®®). This
observation will be quite useful in the sequel.



Chapter 2

Regenerative property

This chapter is mostly expository; its purpose is to stress the correspondence between
a regenerative set, the range of a subordinator, and the set of times when a Markov
process visits a fixed point. We refer to Blumenthal [21], Blumenthal and Getoor [23],
Dellacherie et al. [44, 45}, Kingman [100] and Sharpe [141] for background and much

more on this topic.

2.1 Regenerative sets

The Markov property of a subordinator has a remarkable consequence on its range.
First, note that for every s > 0, L, = inf{t > 0 : 0, > s} is an (F;)-stopping time,
and the sigma-fields (M, = Fy,),., thus form a filtration. Because L is a continuous
(M,)-adapted process that increases exactly on R, the latter is an (M,)-progressive
set. Then fix s > 0. An application of the Markov property at L, shows that,
conditionally on {L, < oo}, the shifted subordinator ¢’ = {or,+: — op,,t > 0} is
independent of M, and has the same law as 0. Recall also from (1.6) that

o(Ls) = D, = inf{t >s:te R}

is the first-passage time in R after s. We thus see that conditionally on {D, < oo},
the shifted range

Robp, = {v>0:v+ D, e R} = {0} :t >0}

is independent of M, and is distributed as R. This is usually referred to as the
regenerative property of the range. We stress that the regenerative property of R
does not merely hold at the first passage times D,, but more generally at any (M,)-
stopping time S which takes values in the subset of points in R which are not isolated
on their right, a.s. on {S < oo}. In that case, one can express S in the form S = o7,
where T' = Lg is an (F;)-stopping time. Then conditionally on {Ls < oo}, the shifted
range Rofs = {v > 0:v+ 5 € R} is independent of M5 = Fy and is distributed
as R.

The regenerative property of the range of a subordinator motivates the definition
of a regenerative set, that has been studied in particular by Krylov and Yushkevich,
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Kingman, Hoffmann-Jgrgensen and Maisonneuve. We refer to Fristedt [60] for a
detailed survey including a connection with related concepts and a comprehensive list
of references.

Consider a probability space endowed with a complete filtration (M), . Let
S be a progressively measurable closed subset of [0,00) which contains 0 and has
no isolated point. We say that & is a perfect! regenerative set if for every s > 0,
conditionally on Dy := inf {¢t > s: ¢t € S} < oo, the right-hand portion S 0 8p, of S
as viewed from D, is independent of Mp, and has the same distribution S.

We have seen above that the range of a subordinator is a regenerative set; here is
the converse.

Theorem 2.1 (Hoffmann-Jgrgensen [74], Maisonneuve [109]) Let S be a regenerative
set.

(i) There is a subordinator o such that S = R = {0, : 0 <t < (} a.s., and the inverse
L of o is an (M,)-adapted process.

(i1) If & is a second subordinator with range S, then there is a real number ¢ > 0 such
that oy = o for allt > 0, a.s.

We refer to Maisonneuve [109] or Chapter XX in Dellacherie et al. [45] for the proof.

With regards to Theorem 2.1, it will be convenient to use henceforth the notation
R instead of S to designate a regenerative set. Plainly, if & is as in Theorem 2.1(ii),
then ®()) = c¢®(\) in the obvious notation. Hence, among the one-parameter family
of subordinators having the range R, there is a unique one for which Laplace exponent
satisfies the -arbitrary- normalizing condition

®(1) = 1. (2.1)

We refer to ® as the Laplace exponent of R

The inverse L of the subordinator ¢ is called the local time on R, it can be
constructed explicitly as a function of R as follows. Recall first from Proposition 1.8
that R is called heavy if it has a positive Lebesgue measure (or equivalently if the drift
coeflicient of o is positive) and light otherwise. In the heavy case, one can express
the local time as

Ly =ada 'm([0,{inR), t>0

where m stands for the Lebesgue measure. In the light case, Fristedt and Pruitt [61]
have obtained a remarkable analogue of Proposition 1.8. Specifically, they have been
able to exhibit a deterministic measure myg on [0, 0o) (which is the Hausdorff measure
associated with some increasing function) such that

Ly = mg([0,4]NR), t>0.

!The qualification ‘perfect’ refers to the absence of isolated points and will be frequently omitted
in the sequel in the sense that, for us, a regenerative set has no isolated points. This squares with the
fact that compound Poisson processes have been ruled out in this text. For completeness, we mention
that a closed random set that has the regenerative property and possesses at least one isolated point
with positive probability, is in fact discrete a.s. and can be identified as the range of a compound
Poisson process.



19

We refer to Greenwood and Pitman [68] and Fristedt and Taylor [64] for alternative
constructions of the local time on a regenerative set.

We also stress the additive property of the local time: If S is an (M,)-stopping
time which takes values in points in R with are not isolated on their right, then on
{S < o0}, the local time L' on R’ = R o s is given by

L, = Lsys— Lg for all t > 0, a.s.

2.2 Connection with Markov processes

Consider some Polish space E and write D for the space of cadlag paths valued in
E, endowed with Skorohod’s topology. Let X = (Q, M, M, X;,0;,P*) be a strong
Markov process with sample paths in D. As usual, P* refers to its law started at z,
0, for the shift operator and (M;),, for the filtration.

A point r of the state space is regular for itself if

where T, = inf{t > 0 : X, = r} is the first hitting time of r. In words, r is regular for
itself if the Markov process started at r, returns to r at arbitrarily small times, a.s.
Applying the Markov property at the first return-time to r after a fixed time s, we
see that the closure of set of times when X visits r,

R={t>0:X,=r}

is regenerative for (2, M, M;,P7). (Conversely, it can be proved that any -perfect-
regenerative set can be viewed as the closed set of times when some Markov process
visits a regular point, see Horowitz [76].)

According to Theorem 2.1, R can thus be viewed as the range of some subordinator
o. The inverse L of ¢ is a continuous increasing process which increases exactly when
X passes at r, in the sense that Supp (dL) = R, P"-a.s. One calls L = (L;,t > 0) the
local time of X at r; its existence has been established originally by Blumenthal and
Getoor [23], following the pioneering contribution of Lévy in the Brownian case.

The killing rate of the inverse local time has an obvious probabilistic interpretation
in terms of the Markov process. One says that r is a transient state if R is bounded
a.s., so that

r is a transient state <= k>0 <= L, < 00 a.s. (2.2)

More precisely, L., has then an exponential distribution with parameter k. In the
opposite case, R is unbounded a.s., and we say that r is a recurrent state.

We next present a simple criterion to decide whether a point is regular for itself, and
in that case, give an explicit expression for the Laplace exponent of the inverse local

time. This requires some additional assumption of duality type on the Markov process.
Typically, suppose that X = (2, M, M,, X,,0,,P?) and X = (Q,M,Mt,Xt,ﬂt,Pf)
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are two standard Markov processes with state space E. For every A > 0, the A-
resolvent operators of X and X are given by

VA f(e) = E° ( /0 °° f(Xt)e‘“dt> . V(e) = B ( /0 * f()?t)e-”dt) , z€E,

where f > 0 is a generic measurable function on E. We recall that f > 0 is called A-
excessive with respect to {V*} if aVe*t* f < f for every a > 0 and limy_oo aVf = f
pointwise.

We suppose that X and X arein duality with respect to some sigma-finite measure
£. That is, the resolvent operators can be expressed in the form

Vi) = [P , 7 = [ fed.

Here, v* : E x E — [0, 00] stands for the version of the resolvent density such that, for
every z € E, the function v*(-,z) is A-excessive with respect to the resolvent {V*},
and the function v*(z,-) is A-excessive with respect to the resolvent {V/*}. Under a
rather mild hypothesis on the resolvent density, one has the following simple necessary
and sufficient condition for a point to be regular for itself (see e.g. Proposition 7.3 in

(24]).

Proposition 2.2 Suppose that for every A > 0 and y € E, the function z — v (z,y)
is lower-semicontinuous. Then, for each fized r € E and A > 0, the following asser-
tions are equivalent:

(i) v is regular for itself.

(ii) For every z € E, v*z,r) < v*(r,r) < oo.

(iii) The function x — v*(z,r) is bounded and continuous at ¢ = r.

Finally, if these assertions hold, then the Laplace exponent ® of the inverse local time
at r is given by

d(N\) = vl(r,r) /o Mr, 1), A>0.

In the case when the semigroup of X is absolutely continuous with respect to ¢,
the resolvent density can be expressed in the form

N z,y) = /oo e Mpy(x,y)dt.
0

As the Laplace transform of the renewal measure U of the inverse local time at r
is 1/®()), a quantity that is proportional to v*(r,r) by Proposition 2.2, we see by
Laplace inversion that U is absolutely continuous with respect to the Lebesgue mea-
sure, with density u given by

u(t) = epi(r,r), t>0.

Observe also that in this framework, Proposition 1.9 entails that for each fixed ¢t > 0,
the probability that ¢ € R, that is that X, = r, is proportional to p;(r,r) in the
heavy case, and is zero in the light case. Of course, this easy fact can be also checked
directly.
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Suppose for instance that X is a real-valued Brownian motion. The resolvent
density (with respect to the Lebesgue measure) is

V27t 2t

This quantity depends symmetrically on z and y, so the dual process is simply X =X.
Proposition 2.2 applies and shows that any r € R is a regular point for itself, and
the Laplace exponent of the inverse local time is always ®(\) = v/X. More generally,
when X is a so-called Bessel process of dimension d € (0,2) (see chapter XI in Revuz
and Yor [132]), then r = 0 is a regular point and the inverse local time at 0 is a
stable subordinator with index @ = 1 — d/2. Making use of the results of chapter 5,
we see for instance that the fractal dimension (both lower and upper) of the zero set
of a d-dimensional Bessel process is 1 — d/2. Alternatively, when X is a stable Lévy
process with index 3 € (1,2], then any r € R is a regular point for itself and the
inverse local time is always a stable subordinator with index o = 1 — 1/8 (see the
forthcoming Proposition 8.1).

oMz, y) = /Oooe'” L exp <_(w_—y)_2) dt = \/——12=/\exp{—\/2_)\|x——y|} .

We next turn our attention to one of the most important applications of the notion
of local time to Markov processes, namely Itd’s theory of excursions. This is a vast
topic and we shall merely recall the basic result of Ité6 and refer to the literature
for developments (cf. in particular Blumenthal [21], chapter XII in Revuz and Yor
[132], chapter 8 in Rogers and Williams [137] and also Rogers [136] for an elementary
approach).

Call excursion intervals the maximal open time-intervals on which X # r. In other
words, the excursion intervals are those that appear in the canonical decomposition
of the open set [0,00) — R. We have already pointed out that those open intervals
are precisely of the type (o(t—),o(t)) for the ¢’s such that A, > 0. It used this
observation and defined the excursion process (e;,t > 0) of X away from r, which is
a process valued in the path-space D given by

r otherwise

Recall that a point process (¢; : ¢ > 0) with values in some metric-complete sepa-
rable space is called a Poisson point process with characteristic measure y if for every
Borel set B, the counting process N¥ = Card {t € [0,-] : £, € B} is a Poisson pro-
cess with intensity u(B), and to disjoint Borel sets correspond independent counting
processes. We are now able to state It6’s description of the excursions of a Markov
process away from a point r; we focus for the sake of simplicity on the case when r is
a regular recurrent state.

Theorem 2.3 (It6 [82]) When r is a regular recurrent state, the excursion process
(et,t > 0) is a Poisson point process under P7. Its characteristic measure n is called
Ito’s excursion measure of X away from r.

We henceforth suppose that r is a regular recurrent point. The excursion measure
yields a very useful expression for the (essentially unique) invariant measure of X,
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which is well-known in the context of Markov chains. Specifically, let € € D be
a generic path; write p(e) = nf{t > 0 : €(t) = r} for its first-return time to r.
The sigma-finite measure g related to the occupation measure under Ité’s excursion
measure n by

Jran = ey ([ seetonar)

where d is the drift coefficient of the inverse local time ¢ and f > 0 any measurable
function, is an invariant measure for X. We refer to Getoor [66] or to section XIX.46
in [45] for a proof, and to Maisonneuve [112] for some applications.

Recall that a recurrent Markov process is called positive recurrent if there is an
invariant probability measure, and null recurrent otherwise. In our setting, we see
that positive recurrence is equivalent to the integrability of the first-return time to
r, p, under Itd’s excursion measure. On the other hand, the very definition of the
excursion process implies that p(e;) = A, i.e. the durations of the excursion process
coincide with the lengths of the jumps of the inverse local time o. In particular, the
comparison between Theorem 2.3 and Proposition 1.3 shows that the distribution of
p under n can be identified as the Lévy measure II of o:

n(p e dt) = II(dt).
In conclusion, we have the equivalence:

X is positive recurrent <= E(0y) < 0o <= / T(z)dz < 0. (2.3)
0

We now end this chapter by presenting a brief dictionary in which the main con-
nections between subordinators, local times of Markov processes and regenerative sets
are summarized.

Subordinator o, = L7 = inf{s: L, >t}

Local time Ly = inf{s:0, >t}

Lifetime ( = Ly

Regenerative set R ={t>0:X,=r} = {o,:5€[0,{)} = Supp(dL;)
First passage time D, =inf{s>t:s€R} = o(Ly)

Last passage time gt = sup{s<t:s€R} = o(Li—)

Probability P =P

Filtration Fi M,,



Chapter 3

Asymptotic behaviour of last
passage times

We are concerned with the process (g; : t > 0) of the last passage times in a regen-
erative set R. When R is self-similar, ¢~'g; always has a generalized arcsine law.
In the general case, we consider the asymptotic behaviour of ¢t~!g; as ¢ goes to oo,
first in distribution, and then pathwise. Special properties of the jump process of a
subordinator play a key part in this study.

3.1 Asymptotic behaviour in distribution

3.1.1 The self-similar case

We say that a regenerative set R is self-similar if for every k > 0, it has the same
distribution as kR. If we think of R as the range of a subordinator o, this is equivalent
to the condition that the Laplace exponent of o is proportional to that of ko, i.e.
®(A) = cx®(kA) for every A > 0, where ¢ > 0 is some constant that depends only
on k. Due to the normalization ®(1) = 1, this holds if and only if ®()\) = A~ for
some o € [0,1], that is if o is a standard stable subordinator of index a. The cases
o =0 and a = 1 are somewhat degenerate, as they corresponds to the situation where
R = {0} and R = [0, 00) a.s., respectively; we shall exclude them in the sequel.

Recall that g, = sup{s < t : s € R} denotes the last passage time in R before
time ¢ > 0. When R is self-similar, the distribution of t~1g; does not depend on t > 0
and can be given explicitly in terms of a.

Proposition 3.1 Suppose that ®(X) = A\* for some 0 < o < 1. Then g¢; has the
so-called generalized arcsine law, that is

a—1 — —a 3
(=) ds = smaﬂ-s"_l(l — ) %ds (0<s<1).

Pl € ds) = o)1 —«) T

For instance, when R = {t : B, = 0} is the zero set of a one-dimensional Brownian
motion B started at 0, we have ®(\) = v/ (the absence of the usual factor v/2 is due
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to the normalization (2.1) of the local time) and one gets
2
P(g; <t) = =arcsin V1 (telo,1]).
T

This is the celebrated first arcsine theorem of Paul Lévy; see e.g. Exercise 111.3.20
in [132] for a direct proof. Proposition 3.1 also applies to the particular cases when
one replaces the Brownian motion B by a Bessel process of dimension d € (0,2) (then
a =1-4d/2), or a stable Lévy process with index 8 € (1,2] (then o =1 — 1/3).

We now proceed to the proof of Proposition 3.1.

Proof: The Laplace transform of the renewal measure is given by

00 i o]
-z — o ~Az_oa—1 d
[) e U(dz) = A (@) /0 e g x

and that of the tail of the Lévy measure by
[e.e] — 1 00
—/\xH dz = /\a—l — / -z, —o d
/oe (w)da Tl-a)l ¢

We conclude by Laplace inversion and Lemma 1.10. [ ]

The distribution of the first-passage time D, = inf{s > ¢ : s € R} readily follows
from Proposition 3.1 (still in the case when ®()A) = A%). Specifically, for every 0 <
s < t, we have

g <s<<=RN(st)=0 < D, > t.

An application of the scaling property then yields for ¢ > 1

1/t
/ 2711 — s)™ds,
0

sin amr

P(Dy>t) = P(Dyy 2 1) = P(g1 < 1/t) =

™

and we deduce that the distribution of D, is given by

sin am

P(D, € dt) = 7t —1)"%dt, t>1.

s

Finally we refer to Pitman and Yor [126, 127, 129] and the references therein for
further recent remarkable results about the interval partitions of [0,00) induced by
self-similar regenerative sets.

3.1.2 The Dynkin-Lamperti theorem

We next turn our attention to the asymptotic behaviour of the last passage time in
the case when R is not necessarily self-similar. Informally, the rescaled set t=1R is the
range of the subordinator ¢7'o; its Laplace exponent is thus ®,(¢) = ®(q/t)/®(1/1),
due to (2.1). This quantity converges as ¢ — oo if and only if ® is regularly varying
at 0+, and then the limit is ¢* for some « € [0, 1], that is the Laplace exponent of a
stable subordinator with index «. In view of Proposition 3.1, one naturally expects
that t~'g, should then converge in distribution towards the generalized arcsine law
with parameter a. The Dynkin-Lamperti theorem not only provides a rigorous setting
to this informal argument, but also states a converse.
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Theorem 3.2 (Dynkin [50], Lamperti [106]) The following assertions are equivalent:
(i) t71g; converges in law ast — oo.

(i) im0 t7'E(gy) = @ € [0,1].

() lim, o1 4@'()/8(g) = a € [0,1].

(iv) @ is regularly varying at 0+ with indez o € [0,1].

Moreover, when these assertions hold, then the limit distribution of t™g, is the Dirac

point mass at 0 (respectively, at 1) for a = 0 (respectively, « =1); and for0 < a < 1,
the generalized arcsine law of parameter a that appears in Proposition 3.1.

There is also a similar result for small times; more precisely a true statement is ob-
tained after exchanging the roles of 0+ and co. We also mention that, more generally,
the limit behaviour in distribution of the pair (g, D;) can be studied, using essentially
the same arguments as below.

Proof: (i) = (ii) is obvious as ¢;/t < 1.
(ii) = (iii) On the one hand, we know from Lemma 1.11 that

gt _ (I)/(q)
/0 E(g)d =

On the other hand, we see by an Abelian theorem that (ii) entails

lim ¢ /oo e "E(g,)dt = .
0

9—0+

(iil) = (iv) When (iii) holds, the logarithmic derivative of ¢ — ¢~*®(t) can be
expressed as t — ¢(t)/t, with lim, ,o, £(¢) = 0. That is

729 () = c exp {[@ds} .

According to the representation theorem of slowly varying functions (see e.g. [20]),
this shows that ¢ — ¢t~*®(¢) is slowly varying at 0+, and hence ® is regularly varying
at 04 with index a.

(iv) = (i) Suppose first that (iv) holds with 0 < o < 1. According to Proposition
1.5, we have

o

Jim U(t2)®(1/t) = ﬁ

uniformly for « € K, (3.1)

and

. ﬁ(t:z:) oz . R
:lggo S8 - Ti—a) uniformly for z € K, (3.2)

where K stands for a generic compact subset on (0, c0).

Next, fix 0 < a < b < 1. According to Lemma 1.10, we have
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Plat < g, < bt) = / T(t — 5)dU(s)

(1 - t
et u dU( u)

Il
\\

S A Ue /) .

a:b)

Applying (3.1) and (3.2), we deduce that
(1 _3) o go— 1
INEDING! —a)

In words, t~1g, converges in distribution to the generalized arcsine law with parameter
.

tlir})lo Plat < g, < bt) = /

An easy variation of this argument applies for @ = 0, but not for & = 1 (the
quantity I'(1 — ) in (3.2) is then infinite). So suppose that a = 1, take any a € (0,1)
and observe from Lemma 1.10 that

P(t"'g, < a) = / TI(t — w)U(du) < TI(#(1 — a))U(ta).
[0,ta)
A Tauberian theorem applied to the Lévy-Khintchine formula now gives
I(s) ~s®(l/s) ass— oo, (3.3)

where I is the integrated tail of the Lévy measure. In particular [ is slowly varying.
The inequality

I(s) = I(s/2) = /S;2ﬁ(t)dt > ST0(s)/2

and the fact that I is slowly varying entail that II(s) = o(I(s)/s) = o(®(1/s)). Using
Proposition 1.4 and (3.3) gives

lim P(t7lg, <a) =0,

and the proof of Theorem 3.2 is complete. |

Theorem 3.2 is essentially an application of the estimates of Proposition 1.4 for
the tail of the Lévy measure and the renewal measure. In the same vein, the renewal
theorem readily yields the following well-known limit theorem.

Proposition 3.3 Suppose that E(oy) = p < co. Then
. 1—
thm P(t—g: €ds) = —II(s)ds, s>0,
—+00 ﬂ

and
tlirélo]P’(t—gt =0) = d/u.

Proof: This is an easy application of the renewal theorem (see Proposition 1.6) and
Lemma 1.10. ]
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3.2 Asymptotic sample path behaviour

The purpose of this section is to investigate the almost-sure asymptotic behaviour of
the last-passage-time process; here is the main result (see also [9]).

Theorem 3.4 Let f : (0,00) — (0,00) be a continuous strictly increasing function
with limy_,o, f(¢)/t = 0 and iminf, ., f(t)/f(2t) > 0. Then, with probability one,

li{nglfgt/f(t) =0 or oo

according as the integral
. U () 1) (3.4

diverges or converges.

When we specialize Theorem 3.4 to the case when R is the zero set of a one-
dimensional Brownian motion, we get liminf;_., g;/f(t) = 0 or co a.s. according

as the integral [*°/f(¢)t=2 dt diverges or converges. In particular,

log?t log?*<t
9: 0% =0 and tlimgt—oi———:oo a.s.

liminf
t—o00
for any € > 0. This result goes back to Chung and Erdds [36], see also Hobson [73]
and Hu and Shi [79] for recent developments in the same vein.

Checking Theorem 3.4 when the killing rate k is positive, is straightforward. In-
deed, R is then bounded, and so is g; a.s. On the other hand, the renewal measure
is also bounded and the integral (3.4) always converges. So with no loss of general-
ity, we may assume henceforth that k = 0. The proof of Theorem 3.4 relies on two
simple properties of subordinators. Informally, we have to compare the relative size
of a subordinator and its jumps. Our first lemma reduces this comparison to that of
certain integrals. Recall Proposition 1.3.

Lemma 3.5 For every Borel function b: [0,00) — [1,00), the events

{A; > b(0;) infinitely often as t — oo}

{/Oooﬁob(ot)dt = oo}

coincide up to a set of probability zero.

and

Proof: This is a variant of the Lévy-Borel-Cantelli lemma. Specifically, the fact that
the jump process A is a Poisson point process with characteristic measure 11 entails
that the compensated sum

t__
> Lasbon)) — /0 Mob(o,)ds  (t>0)

s<t
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is a martingale. On the event

{A; > b(0;_) infinitely often as ¢ — oo} () {/Oooﬁo b(oy)dt < oo} ,
this martingale converges to oo; whereas on the event

{A; < b(o,_) for all sufficiently large ¢} ﬂ {/Oooﬁo b(oy)dt = oo} ,

it converges to —oo. As the jumps of this martingale are bounded by 1, both events
have probability zero (see e.g. the corollary on page 484 in [144]). ]

Motivated by the preceding lemma, we then establish an easy result on the con-
vergence of integrals of a subordinator.

Lemma 3.6 Let h: [0,00) — [0,00) be a decreasing function. The following asser-
tions are equivalent.

(i) /0°° h(z)U(dz) < 0o
(i) P (/Ow h(os)dt < oo) —1

(ii1) P (/Ow h(ou)dt < oo> >0

Proof: The derivations (i)=-(ii)=(iii) are obvious. Suppose that (iii) holds and pick
e > 0 and k£ > 0 such that

P (]0‘” h(ow)dt < k) > e.

Next, consider for every integer n > 0 the stopping time

]
T, = inf {t [ hoyds > kn} ,
0

and apply the Markov property (Proposition 1.1) at time T;,. We see that conditionally
on {1, < oo}, the process ¢/ = o7,4. — or, is a subordinator distributed as o. Then,

n

using the hypothesis that A decreases, we get

P(Typr = 00 | Ty < 00) = “ h(o)dt < k| T, <oo)

J
J

(o)

0°°h( +op)dt < k| T, <oo)
(
(

p(
P
> IP’(/Oohcr Vit < k| T, <oo)
4]
IP‘(/O h(oy) dt<k)
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This shows that k™' [ h(0¢)dt is bounded from above by a geometric variable. As a
consequence, it has finite expectation and (i) follows. [ |

We point out that when one specializes Lemma 3.6 to the case when ¢ is a stable
subordinator with index 1/2, one recovers a result of Donati-Martin, Rajeev and Yor
(Theorem 6.2 in [46] and Theorem 1.3 in [131]) on the a.s. convergence of certain
integrals involving the Brownian local time. Theorem 3.4 now follows readily from
Lemmas 3.5 and 3.6.

Proof of Theorem 3.4: Write f~' for the inverse function of f, so f(4A;) > oy if
and only if A, > f~(0,_). An immediate combination of Lemmas 3.6 and 3.5 shows
that

P(f(A:) > oy infinitely often as ¢ — co) = 0 or 1

according as the integral [* T o f~*(z)dU(z) converges or diverges. By a change of
variables and an integration by parts, the latter is equivalent to the integral (3.4)
being finite or infinite. Next, recall that g, = o(L;—) for all £ > 0 a.s. It follows that
f(A¢) > oy infinitely often as t — oo if and only if f(t —g;) > g; infinitely often. We
deduce that a.s.,

liminfg,/f(t —g:) 2 1or <1

according as (3.4) converges or diverges.

First, assume that (3.4) diverges. By the subadditivity of the renewal function,
the same holds when f is replaced by ef for an arbitrary ¢ € (0,1). It follows
that liminf, . g:/f(¢ — ¢:) = 0 a.s., and because f increases, we conclude that
liminf, 00 g:/ f(t) = 0 a.s.

Finally, assume that (3.4) converges. By the same argument based on the sub-
additivity of the renewal function as above, we have that lim; .., g:/f(t — g:) = oo
a.s. It is then straightforward to derive from the assumptions lim;_., f(¢)/t = 0 and
liminf, . f(t)/f(2t) > 0 that im; .o g:/ f(t) = o0 a.5. (simply distinguish the cases
gt < t/2 and g, > t/2). ]

We now conclude this chapter with an interesting application of the techniques
developed so far to the case when the regenerative set is given in the form R =
{t>0:X, =r}, where X is some Markov process started from a regular point r.
Theorem 3.2 provides a necessary and sufficient condition for g;/t to converge in
probability; and it is natural to ask whether the convergence then holds almost surely.
To this end, the equivalence

tlim @/t =0 as. <= risatransient state
is obvious (if r is a recurrent state, then ¢; = ¢ infinitely often). The problem of the
convergence towards 1 is less obvious. Its solution is essentially a variation of a result
of Kesten on the asymptotic behaviour of the largest step of increasing random walks.
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Proposition 3.7 (Kesten [97]) The following assertions are equivalent:
(i) limyn oo ¢/t = 1 a.s.

(iii) The Markov process X is positive recurrent.

Proof: (i) < (ii) It is immediate to see that (i) holds if and only if for every € > 0,
A, < eo;_ for all sufficiently large ¢, a.s. By Lemmas 3.5 and 3.6, we deduce that

(i) < /o0 Tl(et)dU(t) < oo for every € > 0.

Similarly, (ii) holds if and only if the event {A; < koy_ for all sufficiently large t} has
positive probability for some k < co. Again by Lemmas 3.5 and 3.6, we deduce that

(i) = /Oo T(kt)dU(t) < oo for some k < co.

Because the renewal function is subadditive, an integration by parts now shows that
(1) and (ii) are equivalent.

(1) « (iii) Let us exclude the degenerate case when o is a pure drift, and recall from
Proposition 1.4 that then U(t) x t/I(t) as t — oo where I stands for the integrated
tail of the Lévy measure. On the other hand, we know from the preceding argument

that
(i) < /Ooﬁ(t)dU(t) < oo /°° “}Etd;) < oo,

where the second equivalence follows from an integration by parts.

Recall from (2.3) that X is positive recurrent if and only if E(o;) < oo, that is
if and only if I(oo) = [PTI(t)dt = J0,00) tH(dt) < co. Because [ is an increasing
function, it is plain that (i) holds in this case.

We next suppose that (i) holds. It is immediately checked that the mapping
t — t/I(t) increases, and the convergence of the preceding integral thus forces ¢II(¢) =
o(I(t)). An integration by parts shows that

[ T (% _ Zﬁ(t()lt?)) dt < oo,

and hence we must have [ TI(#)I~!(¢)dt < co. The latter is clearly equivalent to
I{00) < 00, that is to (iii). ]

In the positive recurrent case, an application of Lemmas 3.5 and 3.6 and the
renewal theorem (Proposition 1.6) shows that the sample path behaviour of the last
passage time process is specified as follows: For every increasing function f : (0, 00) —
(0,00)

P(t — g; > f(t) infinitely often as ¢ — c0) = O or 1

according as the integral [* Tl o f(#)dt converges or diverges.



Chapter 4

Rates of growth of local time

We present the remarkable law of the iterated logarithm for the local time due to
Fristedt and Pruitt, and also investigate the modulus of continuity of the local time
on a path. The independence and stationarity of the increments of a subordinator are
the key to the proper application of the Borel-Cantelli lemma.

4.1 Law of the iterated logarithm

The main result of this section is the following version of the law of the iterated
logarithm for local times.

Theorem 4.1 (Fristedt and Pruitt [61] 1) There exists a positive and finite constant

co such that .
- -1
lim sup L@ (" loglog (1 77)) = cp a.s.
t—0+ loglog ®(t-1)

The exact value of cp does not seem to be known explicitly in general. When & is
regularly varying with index o € [0,1] at oo, then cg = ¢4, where

o = a %1 —a)" 079, (4.1)

with the convention 0~° = 1; see Barlow, Perkins and Taylor [5], or [8]. The sharpest
result related to Theorem 4.1 is in Pruitt [130].

There is also a version of Theorem 4.1 for large times, which follows from a simple
variation of the arguments for small times. Specifically, suppose that the killing rate
is k = 0. Then there exists ¢, € (0,00) such that

. Li® (1 'log|log®(t™ "))
lntrligp Tog [ Tog ()| = ¢p a.s. (4.2)

!Theorem 4.1 is slightly more explicit than the result stated in [61]. Specifically, the normalizing
function there is the inverse function of ¢ — ¢ (if_1 loglog go(t_l))_l log log p(t~1), where ¢ denotes
the inverse function of ®. However, after some tedious calculation, one can check that the normalizing
function in [61] and that in Theorem 4.1 are of the same order, and therefore the two statements
agree.
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When L is the local time at a regular point for some recurrent Markov process, the
ergodic theorem asserts that if A is a positive additive functional associated with a
measure g with finite mass, then A; ~ p(E)L; as t — oo, a.s. A law of the iterated
logarithm for A thus follows from (4.2). Further developments in the direction of
a second order law, were made recently by Csdki et al. [39], Marcus and Rosen
[115, 116], Bertoin [8], Khoshnevisan [98]...

The proof of Theorem 4.1 relies on two technical lemmas. We write

_ log log ®(¢7!)
I®) = S oglog 01}

and denote the inverse function of ® by ¢.

t small enough,

Lemma 4.2 For every integer n > 2, put
logn
t, = —————— = f(t,).
(i) The sequence (t, : n > 2) decreases, and we have a, ~ e™".

(ii) The series XIP (L, > 3a,) converges

Proof: (i) The first assertion follows readily from the fact that ¢ is convex and
increasing. On the one hand, since ® increases, we have for n > 3

®(t;') = O(p(e*logn)/logn) < &(p(e"logn)) = e logn.
On the other hand, since ® is concave, we have for n > 3
®(t;') = ®(p(e"logn)/logn) > ®(p(e"logn))/logn = e".
This entails
loglog ®(¢;') ~ logn (4.3)
and then
t; loglog ®(t;1) ~ w(e™logn).
Note that if a, ~ By, then ®(ay,) ~ ®(3,) (because ® is concave and increasing). We
deduce that
Lod (t;l log log @(t;l)) ~ e"logn, (4.4)
and our assertion follows from (4.3).

(ii) The probability of the event {L;, > 3a,} = {03., < t,} is bounded from above
by
exp{ M, }E (exp{—A034,}) = exp{M, — 3a,9()\)}
for every A > 0. We choose A = ¢(e"logn); so ®(\) = e”logn and At, = logn. Our
statement follows now from (i). [ ]

Lemma 4.3 For every integer n > 2, put
2logn
n = ) b, = n)-
= Sexpln}logn) Jiew)
(i) We have b, ~ exp{—n?}.

(it) The series EP (0 (b,/3) < 2s,/3) diverges
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Proof: (i) Just note that s,, = t,2 and apply Lemma 4.2(i).
(i1) For every b,s and A > 0, we have

Plopy > s) < (1 - e““)—1 E(1 — exp{—2Aosp}),
which entails
= ___-T . (4-5)

Apply this to b = b,/3, s = 25,/3 and A = @(2exp{n?}logn), and observe that
then ®()) = 2exp{n®}logn, As = $logn and b®(A) ~ Zlogn (by (i)). In particular
e 0@ > p=3/4 for every sufficiently large n; we thus obtain

n=34 _ =473

]P(U(bn/3) < 2311/3) > T_'n_—,;/g— )

and our claim follows. |

We are now able to establish the law of the iterated logarithm, using a standard
method based on the Borel-Cantelli lemma.

Proof of Theorem 4.1: 1. To prove the upper-bound, we use the notation of
Lemma 4.2. Take any t € [tn41,1n], s0, provided that n is large enough
loglog ®(¢:1)

f(t) = ®(t,1,loglog ®(t; 1))

(because @ increases). By (4.3), the numerator is equivalent to logn, and, by (4.4),
the denumerator to e"*!log(n + 1). By Lemma 4.2, we thus have

limsup f(t.)/f(t) < e
1—0+

On the other hand, an application of the Borel-Cantelli to Lemma 4.2 shows that

Hmsup Ly, /f(t.) < 3 a.s.

and we deduce that

Le f(ta)
RO f(t) = <1‘HLSQ.3P T )) (hggogp 0 )> <3 as

2. To prove the lower-bound, we use the notation of Lemma 4.3 and observe that the
sequence (b,,n > 2) decreases ultimately (by Lemma 4.3(i)). First, by Lemma 4.3(ii),
we have

S P(0(bn/3) — 0(bns1/3) < 25,/3) > Y P(0(ba/3) < 25,/3) = o0;
so by the Borel-Cantelli lemma for independent events,

lim inf U(bﬂ-/3) U(bn+1/3) 2
n—oQo Sn

w
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If we admit for a while that

lim sup M < l, (4.6)
n—00 Sn 4
we can conclude that 3 "
lIiminf ———= o (bn/3) < —.
n—00 Sp 12

This implies that the set {s : o(f(s)/3) < s} is unbounded a.s. Plainly, the same
then holds for {s: Ly > f(s)/3}, and as a consequence:

limsup L,/ f(t) > 1/3 a.s. (4.7)
t—0+4

Now we establish (4.6). The obvious inequality (which holds for any A > 0)
P (0(bnt1/3) > sn/4) < (1 — exp{—=As,/4}) " E(1 — exp{—Ao(bny1/3)})

entails for the choice 9]
A = ¢p(2exp{n®}logn) = 2o8n

that
2b,41 exp{n?}logn
3 (1 — exp{—13log n})
By Lemma 4.3(i), the numerator is bounded from above for every sufficiently large n
by

P(0(bn41/3) > sn/4) <

Jexp{n®’ — (n+1)*}logn < e™

and the denumerator is bounded away from 0. We deduce that the series

ZP n+1/3 >8n/4)
converges, and the Borel-Cantelli lemma entails (4.6). The proof of (4.7) is now

complete.

3. The two preceding parts show that
limsup L/ f(t) € [1/3,3¢]  a.s.
t—0+

By the Blumenthal zero-one law, it must be a constant number cg, a.s. [ ]

To conclude this section, we mention that the independence and homogeneity of
the increments of the inverse local time are also very useful in investigating the class
of lower functions for the local time. We now state without proof the main result in
that field, which has been proven independently by Fristedt and Skorohod. See [57),
[67], or Theorem IIL.9 in [11], where the result is given in terms of the rate of growth
of the subordinator.

Proposition 4.4 (i) When d > 0, one has limy_qy L;/t = 1/d a.s.
(ii) When d = 0 and f : [0,00) — [0,00) is an increasing function such that

t — f(t)/t decreases, one has

Uminf L,/ f(t) = 0 as <= f(2)I(dz) = oo.
t—0+ 0+

Moreover, if these assertions fail, then lim;_ o4 Li/f(t) = co a.s.
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4.2 Modulus of continuity

Once a law of the iterated logarithm has been established for a continuous process,
it is natural to look for information on its modulus of continuity. Again we have a
general result that holds for any local time of a Markov process.

Theorem 4.5 For every T > 0, we have a.s.
_ -1 -1
{ (Lrsi = L) @ (1 log @t >>} <1

lim sup
t—0+

orer log ®(17)

and

- (Lr4t — Lr) @ (t ' log (1))
hﬂazf{o;:l;z log B(-1)

}21/6

Theorem 4.5 has been obtained in a less explicit form by Fristedt and Pruitt [62],
following an earlier work of Hawkes [69] in the stable case. The bounds 1/6 and 12
are clearly not optimal, and a much more precise result is available under the condition
that @ is regularly varying with index « € [0, 1] at oco: In that case, one has a.s.

) (Lryi = L) @ (t og ®(t71)) |
A5 {oii‘é’f log ®(t-) -

where cg is the constant that appears in Theorem 4.1; see e.g. [8]. Whether or not
this identity holds in any case is an open problem.

To start with, we write
log ®(t71)
t = —-—
90 =3 (tlog ®(t1)) "

and recall that ¢ stands for the inverse function of ®. We then introduce for every
integer n > 2:

t small enough,

n

tn) = (ner)

»a(n) = g(t(n)).

@
Lemma 4.6 (i) The sequence (t(n) : n > 2) decreases. Moreover we have:

log®(t(n) ™) ~n , @F(n) log®(t(n)™)) ~ ne"

, ap~e ",

(i1) For n large enough and any t € [{(n + 1),t(n)], we have
a(m)f3 < glt) < 3o(n +1).

Proof: (i) follows from an argument similar to that in Lemma 4.2.

(i) Since @ increases, we have
log @(¢(n)~!)

t) > .
90 2 G+ 1) -Tlog O(t(n + 1))
We know from (i) that the numerator is equivalent to n, and the denumerator to

(n 4 1)e™*!. Using (i) again, we deduce that for n large enough, g(¢) > a(n)/3. The
proof of the second inequality is similar. n

Next, we establish the following upper bound.
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Lemma 4.7 We have for every p > 0

limsup{ sup (Lr4¢e— L;) /g(t)} < 12, a.s.

t-0+ |0<r<o,

Proof: Consider for every n € N and every integer j = 0,1,---,[p/a(n)] the event
Ajn = {0(43)a(n) — Tja(n) < t(n)}.

By the Markov property of o, we have for every A > 0

P(A;n) = P (Usa(n) < i(")) < exp{At(n)}E (eXP{—)\Usa(n)})
= exp{At(n) — 3a(n)®(N)} .

The choice A = p(ne™) together with Lemma 4.6(i) yield
HD(A]”) S exp{n - 3ne"a(n)} = 0(6_2"');

so that (using again Lemma 4.6(i)) P (Uj Ajn) = o(e™™). Hence 3", P (U]- Ajn> < oo.
We conclude that o(;1a)a(n) — Tja(n) > t(n) for all large enough n and all integers
j < [p/a(n)], as.

We now work on the event that

imsup{ sup (Lowc— L) fa(0)] = 12.

t—04 0<7<0,

Then, for some arbitrarily large n, we can find ¢ € [t(n +1),t(n)] and 7 € [0, 0,] such
that L+, — L; > 12¢(t). On the other hand, we have (j — 1)a(n) < L, < ja(n) for
some integer j < [p/a(n)]. By Lemma 4.6(ii), this implies

Loye > (= Da(n) +129(t) > (G~ Va(n) + da(n) =  +3)a(n);
and therefore we then have both
Tja(ny 27 and  O(gaye@m) < T +t.
In conclusion, we must have o(jy3)an) — Tjan) < t < t(n); and we know that the

probability of the latter event goes to zero as n — oo. [ ]

The first part of Theorem 4.5 derives from Lemma 4.7 by an immediate argument
of monotonicity. Similarly, the second part is a consequence of the following lemma.

Lemma 4.8 We have for everyn > 0:

liminf{ sup (L,pt— L;) /g(t)} > 1/2, a.s.

t—0+ 0<r<oy
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Proof: We keep the notation of Lemma 4.6. Consider for every n € N and every
integer j = 0,1,---,[n/a(n)] the event

Bin = {0(+1)a(m)/2 = Tjatyj2 2 t(n)} .

By the independence and stationarity of the increments of o, we have

(ﬂB,n) = P(B,,)e)] < exp{—a—(nn—)(l —IP’(BOn))} .

To estimate the right-hand side, we apply (4.5) with b = a(n)/2, s = t(n) and
A = p(ne™), so ®(A) = ne™. Using Lemma 4.6(1), we get

exp{—2n/3} — exp{—n}
1 — exp{—n}

- P(BOn) = IPJ(a-a.(n)/Z < t(n)) < ~ exp{—2n/3} .

Applying Lemma 4.6(i) again, we deduce that

(ﬂBm) = O (exp {-nexp{n/2}}) .

and the right-hand side induces a summable series.

Applying the Borel-Cantelli lemma, this entails that a.s., for every sufficiently
large integer n, we are able to pick an integer j € {0,1,---,[n/a(n)]} such that

O(j+1)a(n)/2 — Tjatnyjz < Hn).

Writing 7(n) = 0ja(n)/2, We thus have L () = ja(n)/2 and Ly(m)44n) > (J + 1)a(n)/2.
This forces

Lrmy+in) — Lrmy > a(n)/2 = g(t(n))/2.

As a consequence, for every ¢ € [{(n-+1),t(n)], Lemma 4.6(ii) and an obvious argument
of monotonicity yield

Lrgiry+e = ey > g(H(n+1))/2 > ¢(2)/6;

which establishes the lemma. |

The law of the iterated logarithm specifies the rate of growth of the local time at
the origin of times. By the regenerative property and the additivity of the local time,
we see that for any stopping time 7' which takes its values in the subset of points in
‘R which are not isolated on their right, the rate of growth of L at time T is the same
as at the origin. Theorem 4.5 can be combined with a condensation argument due
to Orey and Taylor [124] to investigate the maximal rate of growth on a path. More
precisely, it is immediate from the first part of Theorem 4.5 that

. (L7—+t — LT) P (t_l log (I)(t_l))
hﬁg}:p log ®(¢-1)

< 12, forall™ >0,
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and the second part, combined with the condensation argument (cf. [124] for details),
yields that a.s.

_ ~1 -1
limsup(LT” L)@t log @(t71))

> 1/2 f >0.
t—0+ log ®(¢-1) > 1/2, or some T > 0

An instant 7 for which the preceding lower bound holds, is referred to as a rapid
point for the local time, in the terminology of Kahane [90]. Adapting arguments of
Orey and Taylor [124] for Brownian motion, Laurence Marsalle [118] has obtained
interesting results about the Hausdorff dimension of the set of fast points when ® is
regularly varying at oo.

It is also natural to investigate the minimal rate of growth of the local time at
instants 7 € R which are not isolated on their right R (otherwise the rate of growth
is plainly zero). To this end, Marsalle [118] (extending earlier results of Fristedt [59]
in the stable case) has shown recently that under some rather mild conditions on
the Laplace exponent @, the minimal rate of growth has the same order as 1/®(1/t).
Specifically, one has a.s.

t—0

limsup (Lry¢ — L) ®(1/t) > 0 for every 7 € R not isolated on its right.
+

and
limsup (Lrys — L;) ®(1/t) < o0 for some 7 > 0.
t—0+
An instant 7 which fulfils the preceding conditions is referred to as a slow point.

Finally, we mention that functional (i.e. d la Strassen) laws of the iterated loga-
rithm for certain local times have been obtained by Marcus and Rosen [115], Cséki et
al. [40] and Gantert and Zeitouni [65].



Chapter 5

Geometric properties of
regenerative sets

This chapter is concerned with two geometric aspects of regenerative sets. We first
discuss fractal dimensions and then consider the intersection with a given Borel set.
The intersection of two independent regenerative sets receives special attention.

5.1 Fractal dimensions

5.1.1 Box-counting dimension

The box-counting dimension is perhaps the simplest notion amongst the variety of
fractal dimensions in use; see Falconer [52]. For every non-empty bounded subset
F C [0,00), let N.(F) be the smallest number of intervals of length (at most) ¢ > 0
which can cover F'. The lower and upper boz-counting dimensions of F' are defined as

. R T . BT logNe(F)
dimp(F) = limipf =729 dima(F) = limsup 57—,

respectively. When these two quantities are equal, their common value is referred to
as the box dimension (or also the Minkowski dimension) of F'.

Following Blumenthal and Getoor [22], we next introduce the so-called lower and
upper indices of the Laplace exponent ¢

. . _ .. log®(N)
— . [ — —

ind(®) = sup {p >0: Ahrn PN = oo} = 11Arnmf log)

_ . ) B X log ®())
— . [/ — —

ind (®) = inf {p >0: }\hm d(AN)A P = 0} = hr;xsup log )\’

with the usual convention sup § = 0. For instance, in the stable case ®(\) = A%, the
lower and upper indices both equal «; and for a Gamma process, both the lower and
upper indices are zero. Making use of Proposition 1.4, it is easy to exhibit a Laplace
exponent such that ind (®) = a and ind (®) = b for arbitrary 0 <a < b < 1.
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Theorem 5.1 We have a.s. for everyt > 0

dimp(RN{0,4]) = ind(®) and dmp(RN[0,¢]) = nd(®).

Proof: The argument for the upper dimension is essentially a variation of that for
the lower dimension, and we shall merely consider the latter. As we are concerned
with a local path property of subordinators, there is no loss of generality in assuming
that the killing rate is k = 0. Fix € > 0 and introduce by induction the following
sequence of finite stopping times: 7(0,¢) = 0 and

T(n+1,e) = inf{t > T(n,e) : 0y — o(ne) > €}, n=0,1,---

Because the points o7(o.), 0T(1,¢), - ** are at distance at least € from each others, we
see that for every fixed ¢ > 0, if T'(n,e) < t, then the minimal number of intervals of
length & that is needed to cover RN[0,1] cannot be less than n+1. On the other hand,
it is clear from the construction that the intervals [O’T(nys),UT(nye) + ] have length ¢
and do cover R. We conclude that

N.(RN[0,4]) = Card{n € N: orpe <t} . (5.1)

Next, introduce an independent exponential time 7 with parameter 1. The Markov
property of o applied at time T'(n,¢) and the lack of memory of the exponential law
entail that

P (UT(n+1,e) ST 07(me) < T) = P (UT(n+l,e) — O0T(ne) ST = 0T(ne) | 0T(n,e) < T)
= ]P’ (UT(I,E) S T) .

In other words, the random variable in (5.1) has a geometric distribution with param-
eter P (UT(LE) < T) =P(g, > ¢), ie

P(N,(RN[0,7]) > n) = (1 —P(g, <&)". (5.2)

In order to estimate the left-hand side, recall from Lemma 1.11 that the Laplace trans-
form of g, is ®(1)/®(1+"). It follows from the same argument based on the Tauberian
theorem of de Haan and Stadtmiiller that we used in the proof of Proposition 1.4,
that

P(g, <e) < 1/®(1/e), (e — 0+). (5.3)

Pick first p > ind (®), so (by (5.3)) there is a sequence of positive real numbers
€n | 0 with lim,_. e, ?P(g,r < €,) = 00. It now follows from (5.2) that

lim P (N, (RN0,7]) > &;7) = 0,

n—+00

and this forces (by Fatou’s lemma)

- log N. (RN [0, 7])

e—0+ logl/e =f &8

We have thus proven the upper bound dimg(R N [0,¢]) < ind (®) a.s.
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To establish the converse lower bound, we may suppose that ind (®) > 0 since
otherwise there is nothing to prove. Then pick 0 < p < ind (®) and note that the
series 3 2™ /®(2") converges. We deduce from (5.2) and (5.3) that

f: P(N,-» (RN[0,7]) £ 2™) < oo

so by the Borel-Cantelli lemma and an immediate argument of monotonicity

log N. (RN [0,7]) S

T g1 2
This shows that dimg(R N [0,1]) > ind (®) a.s. [ |

5.1.2 Hausdorff and packing dimensions

Lower and upper box-counting dimensions are attractively simple notions which are
rather easy to work with in practice. However they are not always relevant in dis-
cussing fractal dimension, due to the following fact (see Proposition 3.4 in [52]): The
closure F of a set F' has the same lower and upper box-counting dimensions as F. In
particular, a countable dense subset of {0,1] has box-dimension 1, which is a rather
disappointing feature.

This motivated the definition of modified boz-counting dimensions (see Falconer
[52], section 3.3):

dimvp(F) = inf{supd—imB(Fi) L F

W
-

N

s

s
—

dim yp(F)

i

inf{supai—xHB(Fi) : F

.
1l
—

N

s

3
N —

It is clear that in general

di_mMB(F) < dimB(F) and EMB(F) < EI—I-I—IB(F)

—— K

and these inequalities can be strict. Nonetheless, the box dimension and its modified
version always agree for regenerative sets.

Lemma 5.2 We have a.s. for everyt > 0
d}_mB(Rﬂ [O,t]) = di_mMB(’Rﬂ [O,t]) and MB(R n [O,t]) = EMB(RO [O,t]) .

Proof: The random set R N [0,1] is compact and an immediate application of the
Markov property shows that

@B(Rn[oat]mv) = di_mB(Rﬂ[Ovt]) ) EB(RQ[OJ]OV) = HB(RH[OJ])

for all open sets V' that intersect R N[0,¢]. Our claim follows from Proposition 3.6 in
Falconer [52]. [ |
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Taylor and Tricot [148] introduced the so-called packing dimension dimp, which
in fact coincides with the upper modified box-counting dimension dim yg; see Propo-
sition 3.8 in [52]. Combining Lemma 5.2 and Theorem 5.1 thus identifies the packing
dimension of a regenerative set with the upper index of its Laplace exponent, which
is a special case of a general result of Taylor [147] on the packing dimension of the
image of a Lévy process. We refer to Fristedt and Taylor [63] for further results on
the packing measure of the range of a subordinator.

We next turn our attention to the so-called Hausdorff dimension; let us first briefly
introduce this notion and refer to Rogers [133] for a complete account. Fix p > 0. For
every subset F' C [0,00) and every € > 0, denote by C(g) the set of all the coverings
C = {I;,i € T} of E with intervals I; of length |I;| < ¢ (here Z stands for a generic at
most countable set of indices). Then introduce

P p
me(F) = 016%‘:)1621 )"

Plainly m2(F') increases as € decreases to 0+, and the limit is denoted by

p
mP(F) = 1€1>r{)101€l‘1:f Z|I| [0, o0].
It can be shown that the mapping F' — m?(F) defines a measure on Borel sets, called
the p-dimensional Hausdorff measure. It should be clear that when F' is fixed, the
mapping p — mP(F) decreases. Moreover, it is easy to see that if m?(F) = 0 then
m? (F) = 0 for every p' > p; and if m?(F) > 0 then m? (F) = oo for every p' < p.
The critical value

dimy(F) = sup{p > 0: m*(F) < oo} = inf{p > 0 : m*(F) = 0},

is called the Hausdorff dimension of F. We now identify the Hausdorff dimension of
‘R with the lower index of its Laplace exponent.

Corollary 5.3 (Horowitz [73]) We have for everyt >0 dimyg (RN[0,t]) = ind (®)

a.s.

Proof: The upper bound follows from Theorem 5.1, Lemma 5.2 and the obvious fact
that

for all bounded sets.

To prove the lower bound, we may suppose that ind (®) > 0 since otherwise there is
nothing to prove. The argument is based on the fact that the local time is a.s. Holder-
continuous with exponent p on every compact time interval, for every p < ind (®).
To establish the latter assertion, note first by an application of the Markov property
of o at L, that for every p > 0 and s, > 0:

B ((Leys = L)P) <E(LY).
It follows that

E((Liys — L)) < p/o 2P 'P(L, > z)de = p/ooo " 'P(o, < s)dz.
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Using the obvious inequality
P(o, < 5) < eE(exp{—s7'0,}) = exp{l — 2®(s71)},

we get

E ((Liss — Le)?) < el'(p + 1)®(s71) 7.

The Holder-continuity now derives from Kolmogorov’s criterion and the very definition
of the lower index.

Next, consider a covering of RN[0,¢] by finitely many intervals [aq, by, - -, [an, b2,
where ag < by < -+ < a, < b, (there is no loss of generality in focussing on finite
coverages, because R N [0,] is compact). Observe that Ly, , = L,, fori =1,---,n.
Since L is a.s. Holder continuous with exponent p on [0,1], we deduce that

n

S(bi—ai)? > KY (Lyy— La)) = KLy, > KL, >0 as.
=0

=0

where K > 0 is a certain random variable. This shows that the p-Hausdorff measure
of R N [0,1] is positive a.s., so its Hausdorfl dimension is at least p. |

To summarize the main results of this section, there are two natural fractal dimen-
sions -which may coincide- associated with a regenerative set. The lower dimension
agrees both with the Hausdorff dimension and the lower (modified) box-counting di-
mension; it is given by the lower index of the Laplace exponent. The upper dimension
agrees both with the packing dimension and the upper (modified) box-counting di-
mension; it is given by the upper index of the Laplace exponent.

There exist many further results in the literature about Hausdorff dimension and
subordinators; see section IIL.5 in [11] and [58] and references therein. To this end,
we also recall that Fristedt and Pruitt [61] have been able to specify the exact Haus-
dorff measure of the range; which provides a remarkable refinement of the result of
Horowitz. In a different direction, the multifractal structure of the occupation mea-
sure of a stable subordinator has been recently considered by Hu and Taylor [78].

5.2 Intersections with a regenerative set

5.2.1 Equilibrium measure and capacity

We are concerned with the probability that a regenerative set R intersects a given
(deterministic) Borel set B. As R only differs from {c; : t > 0}, the set of points that
are visited by the subordinator o, by at most countably many points, it is readily
seen that

P(RNB #0) = P(o, € B for some t > 0) .

This connection enables us to investigate the left-hand-side using the classical poten-
tial theory for Markov processes; see Chapter VI in Blumenthal and Getoor [23], Berg
and Forst [6], and the references therein. To this end, it will be convenient to use the
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notation P* for the law of the subordinator started from z € R, viz. the distribution
of z + o under P = P°.

For the sake of simplicity, we will assume that the renewal measure is absolutely
continuous and that there is a version of the renewal density that is continuous on
(0,00). As a matter of fact, the results of this section hold more generally under
the sole assumption of absolute continuity for the renewal measure; the continuity
hypothesis for the renewal density just enables us to circumvent some technical dif-
ficulties inherent to the general case. The probability that a bounded Borel set B is

hit by o can be expressed in terms of renewal densities and the so-called equilibrium
measure of B as follows (cf. Theorem VI(2.8) in [23]).

Proposition 5.4 Suppose that U is absolutely continuous with a continuous density
on (0,00), and write u(t) for the version of U(dt)/dt such that v =0 on (—o0,0] and
u 1s continuous on (0,00). Let B C (—o0,00) be a bounded Borel set. There is a
Radon measure pp, called the equilibrium measure of B, with Suppup C B, and such
that for every z € (—o00,00)

P? (o) € B for somet > 0) = /

(=00,00

) u(y — z)up(dy).
Proof: The argument is a variation of that of Chung (cf. Chapter 5 in [35]). Fix z
and introduce the last-passage time in B,

v = sup{t > 0:0; € B},

and note that o, € B whenever 0 < v < co. Then consider for every ¢ > 0 and
every bounded continuous function f : R — [0, 00) the quantity

I(E) = 5—11Ez <L f(o-t)l{'ye(t,t-}—s)}dt) .

The continuity of f and the identity
— T -1 v
I(e) = E (e /(7_5)+ f(ai)dt>

make clear that
5l—i>%l+l(6) = E°(f(04-),0 <y < o0). (5.4)

On the other hand, an application of the Markov property shows that
1) = B ([ o tvntondt) = [ foty -0 idy, (55

with ¥.(y) =PY(0 <y < ¢).

It is readily seen from the resolvent equation (cf. [11] on page 23) that u is positive
n (0,00). First take the function f in the form

f@):{g@wa—m) ify>az

0 otherwise
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where g is a continuous function. As z is arbitrary, we see from (5.4) and (5.5) that

the measure e '), (y)dy converges weakly towards some Radon measure, say pug. We
then deduce that

P?(0,- € dy,0 <y < o0) = u(y — z)pup(dy)

(recall that u is continuous except at 0 and that u(0) = 0). In particular pp has
support in B and

P (0; € B for somet >0) = P*(0 <y < o00) = /_o:ou(y—:v)ug(dy),

which establishes our claim. [ |

The total mass of the equilibrium measure is called the capacity of B, and is
denoted by
Cap(B) = pp(R) = up(B).
The set B is called polar if it has zero capacity, i.e. its equilibrium measure is trivial.
We see from Proposition 5.4 that B is polar if and only if for every starting point
z € R, the subordinator ¢ never visits B at any positive instant. The capacity can
also be expressed as

Cap(B) = sup {p(]R) : ¢(R— B) =0 and /Ru(x —y)p(dy) < 1} ,

see Blumenthal and Getoor [23] on page 286. As an immediate consequence, one
obtains the following characterization of Borel sets B C (0, 00) that do not intersect
a regenerative set R:

P(BNR=0) =1 < supUp(z) = co Vu probability measure with x(B) =1,

zeR (56)
where Up(z) = [u(y — x)p(dy).

5.2.2 Dimension criteria

The preceding characterization of polar sets is not always easy to apply, as it requires
precise information on the renewal density. Our purpose in this section is to present
more handy criteria in terms of the Hausdorff dimension (recall section 2.3). We
refer to Hawkes [70] for further results connecting the polarity of sets and Hausdorff
measures.

In order to present a simple test for non-intersection, we need first to estimate the
probability that R intersects a given interval.

Lemma 5.5 The following bounds hold for every 0 < a < b

U(b) — Ula)

U(2b—a)— Ula)
Ub—a) '

< P(RN[a,b] #0) < U(b—a)
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Proof: Applying the Markov property at D, =inf{z > a:z € R} = o1, we get

U(b) -— U(a) =E (./L l{o,e(a,b]}dt) /[‘a . ]P(O‘La S d:r)lE (/0 l(age(a—z,b——z]}dt>

/[  P(D: € d)U(b—2)
< P(D, <hU(b—a).

I

Il

Since the events {D, < b} and {R N (a,b] # 0} coincide, the lower bound is proven.

A similar argument yields the upper-bound. More precisely
U@2b—a)—Ula) = /[a’%_a] P(D, € dz)U(2b—a — z)
/[ B(Da € d2)U(2b—a —) > B(D, S HU(b—a).
a,b

This entail
is entails U(2b— a) - Ula)

U(b—a) ’

and since the renewal function is continuous, our claim follows. |

P(RN (a,b] £ 0) <

Proposition 5.6 (Orey [123]) Suppose that the renewal measure has a locally bounded
density u on (0,00). Let B C (0,00) with dimy(B) <1 —1ind(®). Then RN B =0

a.s.

Proof: As dimyg(B) < 1 — ind(®), there is p < 1 — ind(®) such that the p-
dimensional Hausdorff measure of B is zero. This means that for every ¢ > 0, one
can cover B with a family of intervals ([a;, b;] : ¢ € T) such that

Zlbl ——ai|” S [ (57)

i€l
We then invoke Lemma 5.5 to get

bi - ai) —_ U(ai)
U(b, — ai)

P(RNB#0) < Y P(RN[a;,b] #0) < ZU(2
T T

With no loss of generality, we may (and will) suppose that for some ¢ > 1, 1/¢ < a; <
b; < c for every 7. As U is Lipschitz-continuous on [1/c, 2c], the right-hand side in the
ultimate displayed equation is less than or equal to

bi—ai

YT

K3

for some finite constant number M.

By Proposition 1.4, we know that there is a constant number k£ > 0 such that
1/U(t) < k®(1/t). The very definition of the upper index entails that ®(1/t) =
o(t*~!). We conclude that

P(RNB#Q) <CS|b; — ail,

1€l
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and by (5.7), the right-hand side can be made as small as we wish. [ ]

We then give a test for intersection with positive probability.

Proposition 5.7 (Hawkes [70]) Suppose that the renewal measure has a decreasing
density u on (0,00) with respect to the Lebesque measure. Let B C (0,00) with
dimy(B) > 1 —ind (®). Then P(RN B # §) > 0.

Proposition 5.7 follows from (5.6) and the following variation of Frostman’s lemma.

Lemma 5.8 Under the hypotheses of Proposition 5.7, there is a probability measure
u with compact support K C B such that p*u is a bounded function.

Proof: Pick p strictly between 1 — ind (®) and dimg(B). According to Frostman’s
lemma (see e.g. Theorem 4.13 in [52] and its proof), there is a probability measure p
with compact support K C B such that

sup ly — =["u(dy) < oo.
220 J[0,00)
Applying Proposition 1.4 and the hypothesis that the renewal density u decreases, we

get
U(t) c
<—> < —F".
vt <=7 < B
On the other hand, we know from the very definition of the lower index that ®(1/¢) is
bounded from below by ¢*~! for all small enough ¢ > 0. In conclusion u(t) = O(¢~*)

and our claim follows. ]

We point out that, since the Laplace transform of the renewal measure is 1/®, the
renewal density exists and is decreasing if and only if A/®(A) is the Laplace exponent
of some subordinator (this is seen by an integration by parts), and then Propositions
5.6 and 5.7 are relevant. For instance, recall that the zero set of a d-dimensional
Bessel process (0 < d < 2) can be viewed as the range of a stable subordinator with
index 1 — d/2. We deduce that a d-dimensional Bessel process never vanishes a.s.
on a time-set B C (0,00) with Hausdorff dimension strictly less than d/2, whereas
it vanishes with positive probability on a time-set with Hausdorff dimension strictly
greater than d/2.

5.2.3 Intersection of independent regenerative sets

We finally consider the intersection of two independent regenerative sets, say R()
and R®. It should be clear that the closed random set R = R N R? inherits the
regenerative property, and our main concern is then to characterize its distribution.
The case when both R and R are heavy is straightforward. Specifically, write
d™ and d® for the positive drift coefficients of R and R?, respectively, and recall
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that the renewal densities u(*) and u(® are continuous and positive on [0, 00) (cf.
Proposition 1.9). Because R and R(® are independent, we have for every z > 0

P(z€R) = P(ze RW)P(z € R?) = aWa@u®(2)u®(a).

The right-hand side is a continuous everywhere positive function of z; we conclude
by an application of Proposition 1.9 that R is a heavy regenerative set whose renewal
density is proportional to uMu(?), We present below a more general result.

Proposition 5.9 (Hawkes [71]) Let R®) and R® be two independent regenerative
sets and R = RO N RO, Suppose that RV and RP both possess renewal densities
u® and u® which are continuous and positive on (0,00), and that R does not reduce
to {0} a.s. Then R has a renewal density given by u = cuWu® | where ¢ > 0 the
constant of normalization.

Proof: The idea of the proof is the same as for Proposition 5.4. We assume first
that R is bounded, and hence so is R. Introduce the last passage times

¥V = sup{t >0: oM e RPY | 4@ = sup{t>0: o e RWY

which are positive and finite by assumption. Note also that the largest point of R can
be expressed as the common value g,, = o(!) (’y(l)—) =q® (7(2)—3. Take a bounded
continuous function f : [0,00) x [0,00) — [0,00), and consider for every ¢ > 0 the
quantity

1) = B (= [“ds [ itf (o, 00) 1meuuraroetirn) -

On the one hand, we can write I(¢) as

P " Q) (2
E (5 /w)_s ds L@m dtf (o, 0! ))
and then apply the theorem of dominated convergence to get
lim 1) = E(f(goe.92)) (58)

On the other hand, taking conditional expectation (i.e. an optional projection)

yields
ey = B (e s [T at (o000 Var)

with ¥, ; = P ('y(l) €(s,s+e),7Pe(t,t+e) | FO® .7-}(2)). An application of the
Markov property shows that

Yo = (o) — o)
where 1).(y) denotes the probability that the random sets

{v >0:00 +ye R(z)} and {v >0:0P —ye R(l)}
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are both non-empty and contained into (0,¢). We thus have

E (5—2 /000 ds /Ooo dtf (‘751)7@(2)) 1/)5(09) _ Ut(z)))
/0oo /0 " £y, 2)u® (y)u® ()2, (y — 2)dydz | (5.9)

I(e)

Next, take the function f in the form

0:2) = T3 e )

where A : (—0c0,00) — [0,00) is a continuous bounded function and ¢ a continuous
function with compact support included into (0, 00). We deduce from (5.8) and (5.9)
that the measure e~%¢),.(z)dz converges weakly as ¢ — 0+ towards ¢, for some ¢ > 0.
Finally take f in the form f(y, z) = f(z) to get

P (goo € dt) = cuD(t)uP (t)dt.

The comparison with Lemma 1.10 entails that the renewal measure U(dt) of R is
absolutely continuous with a density proportional to u(Vu(?,

Proposition 5.9 is thus proven when R is bounded. The case when R™ is
unbounded follows by approximation, introducing a small killing rate in o). u

To apply Proposition 5.9, it is crucial to know whether R N R®) = {0} a.s.
Because a renewal measure is a Radon measure on [0, 00), Proposition 5.9 entails that
if R® and R both possess renewal densities u") and u? which are continuous and
positive on (0, c0), then

/ uD(2)u?(z)dz = c0o = RWNRE) = {0} as.
o+

By a recent result in [16], the necessary and sufficient condition for R N R® = {0}
a.s. is that the convolution u * u® is unbounded. I know no examples in which
u® % u® is unbounded and fy, uM(z)u®(z)dz < co. See also Evans [51], Rogers
[135] and Fitzsimmons and Salisbury [56] for results in that direction.

The problem of characterizing the distribution of the intersection of two indepen-
dent regenerative sets in the general case seems still open. We refer to [16] for the
most recent results, and to Hawkes [71], Fitzsimmons et al. [54], Fristedt [60] and
Molchanov [120] other works this topic. See also [14] for another geometric problem
on regenerative sets involving the notion of embedding, which is connected to the
preceding.



Chapter 6

Burgers equation with Brownian
initial velocity

This chapter is adapted from [15]; its purpose is to point out an interesting connec-
tion between the inviscid Burgers equation with Brownian initial velocity and certain
subordinators. Applications to statistical properties of the solution are discussed.

6.1 Burgers equation and the Hopf-Cole solution

Burgers equation with viscosity parameter ¢ > 0
Owu + 0y (u2/2) = ed’u (6.1)

has been introduced by Burgers as a model of hydrodynamic turbulence, where the
solution u.(z,t) is meant to describe the velocity of a fluid particle located at z at
time ¢. Although it is now known that this is not a good model for turbulence, it still
is widely used in physical problems as a simplified version of more elaborate models
(e.g. the Navier-Stokes equation). A most important feature of (6.1) is that it is
one of the very few non-linear equations that can be solved explicitly. Specifically,
Hopf [75] and Cole [37] observed that applying the transformation v = 2¢log g to the
potential function v given by 9,7 = —u,, yields the heat equation d,g = €d2,g. This
enables one to determine g and hence u,.

The asymptotic behaviour of the solution u. of (6.1) as £ tends to 0 is an interesting
question. Roughly, u. converges to a certain function uq = u, which provides a (weak)
solution of the inviscid limit equation

dpu + 0, (u?/2) = 0. (6.2)
More precisely, u can be expressed implicitly in terms of the initial velocity u(:,0)

as follows (cf. Hopf [75], and also [142] and [140] for a brief account). Under simple
conditions such as u(-,0) = 0 on (—o0,0) and liminf,_,, u(z,0)/z > 0, the function

s — /:(tu(r, 0)+r—z)dr (6.3)
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tends to oo as s — oo, for every > 0 and ¢t > 0. We then denote by a(z,t) the largest
location of the overall minimum of (6.3). The mapping z — a(z, ) is right-continuous
increasing; it is known as the inverse Lagrangian function. The Hopf-Cole solution to
(6.2) is given by

z — a(z,t)

u(z,t) = ;

(6.4)

6.2 Brownian initial velocity

Sinai [140] and She et al. [142] have considered the inviscid Burgers equation when
the initial velocity is given by a Brownian motion; see also Carraro-Duchon [33] where
(6.2) is understood in some weak statistical sense. More precisely

u(-,0) =0 on (—o00,0], and (u(z,0),z >0) is a Brownian motion (6.5)
is enforced from now on. Qur main purpose is to point out that for each fixed ¢t > 0,

the inverse Lagrangian function is then a subordinator; here is the precise statement.

Theorem 6.1 For each fized t > 0, the process (a(z,t):z > 0) is a subordinator
started from a(0,t). Its Laplace exponent ® is given by

V22 +1-1

2 '
In other words, (a(z,t) — a(0,t) : ¢ > 0) has the same distribution as the first passage
process of a Brownian motion with variance t* and unit drift.

®(q) =

One can prove that the random variable a(0,t) has a gamma distribution, which
completes the description of the law of the inverse Lagrangian function. As this is not
relevant to the applications we have in mind, we omit the proof and refer to [15] for
an argument (see also Lachal [105] for the law of further variables related to a(0,t)).

Theorem 6.1 has several interesting consequences; we now briefly present a few,
and refer to [18] for some further applications connected to the multifractal spectrum
of the solution (see also Jaffard [86]).

The discontinuities of the Eulerian velocity u are a major object of interest. Call
z > 0 an Eulerian regular point if u is continuous at z, and an Eulerian shock point
otherwise. In the latter case the amplitude of the jump u(z,t) —u(z—,t) is necessarily
negative (see (6.4) and Theorem 6.1); from the viewpoint of hydrodynamic turbulence,
it corresponds to the velocity of the fluid particle absorbed into the shock. For each
fixed ¢t > 0, let us write

At) = (a(x,t) —a(z—,t),z > 0)

for the process of the jumps of the inverse Lagrangian function taken at time ¢, and
recall from (6.4) that u(z,t) — u(z—,1) = —1A,(t).

Proposition 1.3 and the Lévy-Khintchine formula

V2¢+1-1 = \/%/Ooo (1—e™) y= 2 exp {~y/2} dy

yield the following statistical description of the shocks.
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Corollary 6.2 For each fized t > 0, A(t) is a Poisson point process valued in (0, 0c0)
with characteristic measure

1 y
o exp {-ﬁ} dy (y > 0).

Next, we turn our attention to the fractal properties of the so-called Lagrangian
reqular points, that are the points y > 0 for which there exists some z > 0 such
that the function (6.3) reaches its overall minimum at y = a(z,t) and nowhere else.
A moment of reflection shows that the set R, of Lagrangian regular points can be
viewed as the range of the inverse Lagrangian function on its continuity set, i.e.

R. = {a(z,t) : z > 0 regular Eulerian point } .

As R, only differs from the range of a(+,t) by at most countably many points, we thus
obtain as an immediate application of section 5.1 the following.

Corollary 6.3 The Hausdorff dimension and the packing dimension of R, both equal
1/2 a.s.

That the Hausdorff dimension of R, is 1/2 was the main result of Sinai [140]; see also
Aspandiiarov and Le Gall [1].

Finally, we mention that Theorems 4.1 and 4.5 respectively yield the law of the
iterated logarithm and the modulus of continuity of the Lagrangian function a —
z(a,t), that is the inverse of the function @ — a(z,t); the precise statements are left
to the reader. The relevance of the Lagrangian function in hydrodynamic turbulence
stems from the fact that it can be viewed as the position at time ¢ of the fluid particle
started from the location a. This can be seen from the identity 0;z(a,t) = u(z(a,t),t)
that follows easily from (6.4) and (6.2).

6.3 Proof of the theorem

Let © denote the set of cadlag paths w : [0, 00) — RU{oo} such that lim,_,., w(s) = oo;
we write X; : w — w(s) for the canonical projections. Consider also the shift operators
(85 : s 2 0) and the killing operators (ks : s > 0)

X, ifr<s
o0 otherwise

X7003=Xr+s 5 Xroks:{

For every z € R, let P* stand for the law of the Brownian motion with variance #?
and unit drift started at x, which is viewed as a probability measure on 2. We next
introduce the indefinite integral of X

S
I, = / X.dr, s3>0,
0
its past-minimum function

m, = min I, s>0
0<r<s
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and the largest location of the overall minimum of 1

a=max{s>0: [, =m,}.

Plainly, a is not a stopping time. Nonetheless, there is a Markov type property at
a which is a special case of the so-called the Markov property at last passage times,
and this provides the key to the proof of Theorem 6.1.

Lemma 6.4 For every v > 0, the processes X ok, and X 08, are independent under
P-%, and the law of X 08, does not depend on z.

Proof: The proof is based on the fact that, loosely speaking, splitting the path of
a Markov process at its last passage time at a given point produces two independent
processes; and more precisely, the law of the part after the last passage time does not
depend of the initial distribution of the Markov process. We refer to [44] on pages
299-300 and the related references quoted therein for a precise and much more general
statement.

Consider the integral process reflected at its past minimum, I — m. The additive
property of the integral I,,, = I, 41,06, and the strong Markov property of Brownian
motion readily entail that the pair (X, I — m) is a strong Markov process; see the proof
of Proposition V1.1 in [11] for a closely related argument. On the other hand, it should
be clear that for every & > 0, we have a < co and X, = 0, P~®-a.s. In particular
a can be viewed as the last passage time of (X, I — m) at (0,0), and it now follows
from the aforementioned Markov property at last-passage times that the processes
(X,I —m)ok, and (X,I —m) o0, are independent and that the law of the latter
does not depend on z. This establishes our claim. |

We are now able to prove Theorem 6.1.

Proof: Fix z >0 and ¢ > 0. We know from (6.5) that (fu(s,0) +s—z:s>0)is a
Brownian motion with variance ¢* and unit drift started at —z; it has the law of X =
(X, : s > 0) under P~*. In this framework, we can make the following identifications:
The function (6.3) coincides with the integral s — I,, and the inverse Lagrangian
function evaluated at z is simply a(z,t) = a. Moreover, it is readily seen that for
every 0 < z <z, a(z,t) only depends on the killed path X ok,.

Write X' = X 04,, I, = f§ X|dr, and for y > 0, a’(y,t) for the largest location of
the overall minimum of s — I} — ys. We then observe the identity

alz +y,t)—a = d(y,t). (6.6)

More precisely, a(z+y,t) is the largest location of the overall minimum of s — I, — sy.
This location is bounded from below by a(z,t) = a, so that a(z+y,t)—a is the largest
location of the overall minimum of s — I 4, — (a + s)y. Because Iy, = I, + I, (6.6)
follows.

According to Lemma 6.4, X" and X ok, are independent. We deduce from (6.6)

that the increment a(z +y,t) —a(z,t) is independent of (a(z,t) : 0 < z < z). Because
the law of X’ does not depend on z, the same holds for a'(y,t) = a(z +y, ) — a(z,t).
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We have thus proven the independence and homogeneity of the increments of the
inverse Lagrangian function.

Next, introduce T' = min{s > 0 : X, = 0}, the first hitting time of 0 by X. By
the strong Markov property, X = X o 7 is independent of X o kr and has the law
P°. The very same argument as above shows that

a(z,t) = T + a(0,t) (6.7)

where @(0,t) stands for the largest location of the minimum of s — I, = f¢ X,dr.
Because @(0, ) is independent of T' and has the same law as a(0,t), the decompositions
a(z,t) = (a(z,t) — a(0,t)) 4+ a(0,t) and (6.7), and the independence of the increments
property show that 7' and a(z,t) — a(0,t) have the same law. In other words, the
process (a(z,t) — a(0,t) : z > 0) has the same one-dimensional distributions as the
first passage process (T : > 0) of a Brownian motion with variance ¢* and unit drift
started at zero. Because both have independent and homogeneous increments, we
conclude that these two processes have the same law.

Finally, the assertion that the Laplace exponent of the first passage process of a
Brownian motion with variance ¢? and unit drift is given by ®(q) = ¢=2 (\/2t2q +1-— 1)
is well-known; see e.g. Formula 2.0.1 on page 223 in Borodin and Salmimen [26].



Chapter 7

Random covering

We consider the closed subset R of the nonnegative half-line left uncovered by a family
of random open intervals formed from a Poisson point process. This set is regenerative;
one can express its Laplace exponent in terms of the characteristic measure of the
Poisson point process. This enables us to determine the cases when R is degenerate,
or bounded, or light, and also to specify its fractal dimensions. The approach relies
on the correspondence between regenerative sets and subordinators.

7.1 Setting

Consider a Poisson point process £ = (¢;,t > 0) taking values in the positive half-line
(0, 00); let p denote its characteristic measure. This means that if (M), stands for
the completed natural filtration generated by ¢, then for every Borel set B C [0, 00),
the counting process Card{0 < s <t:{¢, € B}, t > 0, is an (M,)-Poisson process
with intensity p(B). Recall that this implies that to disjoint Borel sets correspond
independent Poisson processes.

We associate to each ¢t > 0 the open interval I; = (¢,t + ¢;) (of course, there are
only a countable numbers of times when ¢; € (0,00), so there are countably many
non-empty intervals). We then consider the closed set of points in [0, 00) which are
left uncovered by these random intervals:

R = [0,00)— U L.

t>0

For short, we will refer to R as the uncovered set in the sequel. If u((e, 00)) = oo for
some ¢ > 0, then the set {t : {; > ¢} is everywhere dense a.s., and it follows that R =
{0} a.s. This trivial case is henceforth excluded, and we denote by 7i(z) = u((z, 0)),
z > 0, the tail of p.

The problem of finding a necessary and sufficient condition for R to reduce to {0},
was raised by Mandelbrot [113] and solved by Shepp [143]. Previously, Dvoretzky
asked a closely related question on covering the circle with random arcs; see chapter
11 in Kahane [91] for further references on this topic. To tackle this question, we will
follow a method due to Fitzsimmons, Fristedt and Shepp [55], which also enables us
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to settle many other natural questions about R. The approach relies on the following
intuitively obvious observation:

Lemma 7.1 If0 is not isolated in R a.s., then R is a perfect regenerative set.

Proof: We first verify that the uncovered set is progressively measurable. Take any
0 < s <t and note that

s, )] C UL < [stC U I, for some large enough n .
v2>0 0<v<t,fy>1/n

Indeed, the interval I, does not intersect [s,t] for v > ¢; and from any cover of [s, ]
by a family of open intervals, we can extract a cover by a finite sub-family. Next,
fix an integer n. The Poisson point process £ restricted to (1/n,o0) is discrete (since
7i(1/n) < co); and it can be easily deduced that the event

{[s,t] is covered by (I, : €, >1/n and 0 < v < t)}

is M;-measurable. Hence, the event {[s,t] is covered by ([,,v > 0)} is also M;-
measurable. Writing G; = g;+ = sup{u <t¢:u € R}, the equivalence

Gi<s <= [s,{]CJ L,
v2>0

shows that the right-continuous process (G : t > 0) is adapted, and thus optional. It
follows that R = {¢: t — G; = 0} is progressively measurable.

We next check that R has no isolated points a.s. For any fixed ¢ > 0, it is easily
seen that D, = inf{s > ¢ : s € R} is an announceable stopping time . It is well
known that a Poisson point process does not jump at an announceable stopping time,
so the shifted point process ¢ = (ZD‘__H,S > 0) is again a Poisson point process with
intensity p. Since the collection of intervals (I, : 0 < v < D;_) do not cover D,_,
they do not cover any s > D,_ either. In other words, s > D;_ is covered by the
intervals (I, : v > 0) if and only s — D,_ is covered by ((v,v+ £,) : v > 0). We know
by assumption that 0 is not isolated in R a.s., and this implies that D,_ is not isolated
in R either. Any positive instant in R which is isolated on its left can be expressed
in the form D;_ for some rational number ¢t > 0. We conclude that R has no isolated
points a.s.

Finally, we establish the regenerative property. Let T' be an arbitrary (M,)-
stopping time, which is a right-accumulation point of R a.s. on {T < co}. Then T is
not a jump time of £, for if it were, then It would be a right-neighbourhood of T'. As
a consequence, conditionally on {T' < oo}, the shifted point process ¢' = (¢r,;,t > 0)
is independent of Mr and is again a Poisson point process with intensity x. By the
same argument as in the preceding paragraph, an instant s > T is covered by the
intervals (I, : ¢ > 0), if and only s — T is covered by ((¢,t+¢}):t > 0). This shows
that R is regenerative. [ ]

Specifically, consider the process X, = sup{s + 4, — u,0 < s < u}, u > 0; note that X is
adapted with cadlag paths and no negative jumps. In this setting D;_ coincides with the limit of
the increasing sequence of stopping times inf{s > ¢: X, < 1/n}, n=1,2, --.
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7.2 The Laplace exponent of the uncovered set

Lemma 7.1 enables us to identify the uncovered set as the range of some subordinator
o, whenever 0 is not isolated in R. This will allow us to derive information on R
from known results of subordinators, if we are able to characterize ¢ in terms of the
characteristic measure u of the Poisson point process. This motivates the main result
of this section, which provides an explicit formula for the Laplace exponent ® of o.
Recall that 7 denotes the tail of u.

Theorem 7.2 (Fitzsimmons, Fristedt and Shepp [55]) If

/Olexp{/tlﬁ(s)ds}dt = o0,

then R = {0} a.s. Otherwise, R is a perfect regenerative set, and the Laplace ezponent
of the corresponding subordinator is given by

1 _ oo ¢ { 1— }
) —c/o e " exp /ty(s)ds dt, A>0,

where ¢ > 0 1s the constant of normalization (recall that ®(1) =1).

Using the fact that the Laplace transform of the renewal measure is 1/®, one can
rephrase the statement as follows: When the uncovered set is not trivial, the renewal
measure is absolutely continuous with density

u(t) = cexp {/tlﬁ(s)ds} , t>0. (7.1)

For instance, when the tail of the characteristic measure is (z) = Bz~! for some
B > 0, then exp {ftl ﬁ(s)ds} = ¢, We get from Theorem 7.2 that R reduces to

{0} a.s. if # > 1, and otherwise ®(\) = A7 that is R is the range of a stable
subordinator of index 1 — 3.

Proof: We will prove the theorem first in the simple case when the Poisson point
process is discrete, and then deduce the general case by approximation. So we first
suppose that Z(0+) < oo; in particular the integral in Theorem 7.2 converges. Then £
is a discrete Poisson point process and R plainly contains some right-neighbourhood
of the origin. A fortiori 0 is not isolated in R a.s., and by Lemma 7.1, R is a heavy
regenerative set.

A fixed time t > 0 is uncovered if and only if £, < t — s for every s < t; which
entails that

PteR) = exp{—/otﬁ(t~s)ds} >0.

It then follows from Proposition 1.9(ii) that the renewal density of R at ¢ is propor-
tional to exp{— f§ i(t — s)ds}, which is the same as (7.1), and this proves the theorem
in the discrete case.

We then deduce the general case when 7(0+) = oo by approximation. For every
integer n > 0, let £") = (¢, :¢ > 0 and £, > 1/n) denote the discrete Poisson point
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process restricted to (1/n,00), and R(™ the corresponding uncovered set. We know
that the Laplace exponent associated with R(™ is given by

1 © t_ 1
@T(/\)—cn/o e exp{/t a(sVvn )ds}dt.

For every s > 0, (s Vn™!) increases to 7i(s) as n — oo. It follows that the probability
measure on [0, co),

1
cre texp {/ (s Vv n_l)ds} dt
t

converges in the weak sense towards

1
coot” b exp {/ ﬁ(s)ds} dt
¢

(where c,, is the normalizing constant) if f; exp {ftl '/I(s)ds} dt < 00, and towards the
Dirac point mass at 0 otherwise. Considering Laplace transforms, we deduce that for
every A > 0, lim,_, ®™(X) = ®(®)()), where

1 B { 1 if f3 exp {ft s)ds}dt ,
Co fo ©

_— = 7.2
D) )) Mexp {ft s)ds} dt otherwise. (7:2)

On the other hand, (R(") tn € N) is a decreasing sequence of random closed sets
and R = NR™. As a consequence, we have

ng) =sup{s <t:s e R™M} — sup{s <t:seR} = G (as n — 00).
We deduce from Lemma 1.11 that for every A > 0

=) _t 1
/0 E(p{-AGN d = gy (7.3)

Suppose first that [ exp {ft ds} dt < co. We see from (7.2) that ®()()) goes
to oo as A — oco. Together with (7.3), this forces P(G; = 0) = 0 for almost every
t > 0; which means that 0 is not isolated in R. We then know from Lemma 7.1 that
R is regenerative; comparing (7.3) and Lemma 1.11 shows that its Laplace exponent
must be ® = @()

Finally, suppose that f) exp {ftl ﬁ(s)ds} dt = 00, s0 lim,_,, ®™(X) = 1 for every
A > 0. We deduce from (7.3) that P(G;, = 0) = 1 for almost every ¢t > 0, that is
R = {0} as. [ ]

7.3 Some properties of the uncovered set

We suppose throughout this subsection that

/Olexp{/tlﬂ(s)ds}dt < o0,

that is that R is not degenerate to the single point {0}, a.s. We immediately get the
following features.
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Corollary 7.3 R is heavy or light according as the integral [y Ti(t)dt converges or
diverges.

Proof: We know from Proposition 1.8 that a regenerative set is heavy or light ac-
cording as the drift coefficient 4 is zero or positive. On the other hand, recall that

d = A1im Ao
According to Theorem 7.2, we have by an integration by parts

?I)-(/\T)- =c/000 (1—e—/\t)ﬁ(t)eXp{/tlﬁ(s)ds}dt, A>0;

and we deduce by monotone convergence that

% = c/oooﬁ(t)exp {/tlﬁ(s)ds} dt = cexp {/Olﬁ(s)ds} — cexp {—/100 p'(s)ds} .

We conclude that d = 0 iff f) 7(s)ds = oco.

Alternatively, one may also deduce the result from Proposition 1.9 and the easy
fact that the probability that the point 1 is left uncovered equals exp {—— 5 ﬁ(s)ds}.
n

Corollary 7.4 If [{° exp {—— X ﬁ(s)ds} dt = oo, then R is unbounded a.s. Otherwise,
R is bounded a.s. and the distribution of the largest uncovered point

goo = sup{s >0:s€ R}

is given by
1 0 1
_ -t = : - -
P(go € dt) = k™l exp {/t p(s)ds}dt, with k = /0 exp {/t u(s)ds} dt.

Proof: According to (2.2), the probability that R is bounded equals 0 or 1 according
as the killing rate k = ®(0) is zero or positive. It follows immediately from Theorem

7.2 that - ,
k=0 < /1 exp{—/1 ﬁ(s)ds} = 0.

When R # {0} is bounded a.s., the formula for the distribution of g, follows from
Lemma 1.11 and the expression (7.1) for the density of the renewal measure. u

Motivated by the limit theorem 3.2 for the process of the last passage times in R,
we next investigate the asymptotic behaviour of the Laplace exponent ®.

Corollary 7.5 For every o € (0,1}, the following assertions are equivalent:
(1) #(s) ~ (1 —a)s™! as s — oo (for o = 1, this means that fi(s) = o(s™1)).
(i1) @ s regularly varying at 0+ with indez o.
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Proof: Recall from Proposition 1.5 that @ is regularly varying at 0+ with index « if
and only if the renewal function U is regularly varying at co with index a. We know
from (7.1) that U has a decreasing derivative u, so the monotone density theorem
applies and (ii) holds if and only if u is regularly varying at co with index e — 1 (cf.
[20] on page 39).

Using again (7.1), we have

t17u(t) = cexp {/j ((1 —a)s7! — ﬁ(s)) ds} ,

and it is then plain from the theorem of representation of slowly varying functions (cf.
[20] on page 12) that (i) implies that u is regularly varying at oo with index a — 1.
Conversely, suppose that u is regularly varying at oo with index o — 1, so that by the
theorem of representation of slowly varying functions

/t ((1 —a)s! - 7[(5)) ds = c(t) + /j e(s)s™ds,

1

where lim; o, ¢(t) € R and lim; ., e(t) = 0. It then follows readily from the mono-
tonicity of 7 that this representation is possible only if (i) holds. |

We next turn our attention to the fractal dimensions of the uncovered set, which
are given by the lower and upper indices of the Laplace exponent, see Theorem 5.1.

Corollary 7.6 The lower and upper indices are given by

1 S E(s)ds
. _ i 17 7 =0 =1-1i e
ind(®) = sup {p : tl_1)r(ﬂ_t exp {/t H(S)ds} = 0} =1 h?_l,(s)\-:p ( log 1/¢ )
. ‘ ‘ 1 . fE(s)ds
~ _ — _ _ 1 Ji pls)ds
md (@) = inf{p: fim ' exp{ [ Fs)ds) = o0} =1 hﬁéﬁf( logl/t )

Proof: For the sake of conciseness, we focus on the lower index. We get from the
formula for ® in Theorem 7.2

oo 1
sup {p : }Lrglo )\”/0 e Mexp {/t 'ﬂ(s)ds}dt = 0}
) 1
A p—1 —t - —
sup {p : /\11—>I£lo)\ /0 € exp{/t/A p(s)ds}dt = O} .
Using the immediate inequality

/Ooo e exp {/t/l/\ 'ﬂ(s)ds} dt > e lexp {/1;/\ ﬁ(s)ds} ,

1
ind (®) < sup {p : tﬁr& P exp {/t ﬁ(s)ds} = 0} .

To prove the converse inequality, we may suppose that there is p > 0 such that

1
i 1-p I —
tl_l’%}'_t exp {/t u(s)ds} =0

ind (@)

we deduce
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(otherwise there is nothing to prove). Recall that the renewal measure has density u
given by (7.1), so that u(t) = o(¢*~') and then U(t) = o(t*) as t — 0+, for every £ > 0.
Applying Proposition 1.4, this entails limy_o, A7?®()) = 0o, and thus ind ($) > p. B

The identification of the uncovered set in terms of a subordinator o enables us
to invoke results of section 3.2 to decide whether a given Borel set B C (0,00) is
completely covered by the random intervals. Typically, recall Propositions 5.6 and
5.7 which are relevant as the renewal density u is a decreasing function (by (7.1)). If
the Hausdorff dimension of B is greater that 1 —ind (®), then the probability that B
is not completely covered is positive. On the other hand, if the Hausdorff dimension of
B is less that 1 —ind (®), then B is completely covered a.s. Of course, (5.6) provides a
complete (but not quite explicit) characterization of sets which are completely covered
by the random intervals.

Finally, let us mention an interesting problem raised by Pat Fitzsimmons (private
communication). It is easily seen that the uncovered set R is an infinitely divisible
regenerative set, in the sense that for every integer n, R can be expressed as the in-
tersection of n-independent regenerative sets with the same distribution. Conversely,
can any (perfect) infinitely divisible regenerative set be viewed of as a set left uncov-
ered by random intervals sampled from a Poisson point process? Kendall [93] gave a
positive answer in the heavy case. The light case seems to be still open.



Chapter 8

Lévy processes

Real-valued Lévy processes give rise to two interesting families of regenerative sets: the
set of times when a fixed point is visited, and the set of times when a new supremum
is reached. Some applications are given in the special case when the Lévy process has
no positive jumps. Some applications of Bochner’s subordination to Lévy processes
are also discussed.

8.1 Local time at a fixed point

Throughout this chapter, (X; : ¢t > 0) will denote a real-valued Lévy process, i.e. X
has independent and homogeneous increments and cadlag paths. For instance the
difference of two independent strict subordinators is a Lévy process. For every z €
R, write P® for the distribution of the process X + z; it is well-known that X =
(Q, M, My, Xy, 0,,P%) is a Feller process (see e.g. [11], Chapter I). The purpose of
this section is to study the regularity of a fixed point r, and then to determine the
distribution of its local time. To this end, we need information on the resolvent
operator V4.

To start with, recall that the characteristic function of X; can be expressed in the

form .
E° (elxxt) = e YW AeR,t>0,

where U : R — C. One calls ¥ the characteristic exponent of X; it can be expressed
via the Lévy-Khintchine’s formula (which is more general than that which we discussed
in Section 1.2 in the special case of subordinator):

, 1 i .
() = iah+ 50X+ /R(1 — € 4 iAr T (upcry)A(d) (8.1)
where a € R, b > 0 is called the Gaussian coefficient, and A a measure on R— {0} with

J(1 A |z)A(dz) < oo called the Lévy measure. It follows that for every Lebesgue-
integrable function f and ¢ > 0, we have
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/Ooo e ¢ /_O:O ei/\yf(y)EO (e_i)‘X‘) dy) dt
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In other words, if F(g) stands for the Fourier transform of an integrable function g,
then
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Fim = SO (5.2)

We are now able to prove the following basic result which goes back to Orey [123].

Proposition 8.1 ! Suppose that the characteristic exponent U satisfies
[+ wo)rtan < oo

for some (and then all) ¢ > 0. Then every point r € R is regular for itself and the
Laplace exponent ® of the inverse local time is given by

1 o d\
——=cf —, >0,
B(q) [wq+wu> ‘

where ¢ > 0 is the constant of normalization.

Proof: The function

v'l(x) — i/oo _Lw/\_d)\ cR
T o )wgro) TS

is continuous and its Fourier transform is A — 1/ (¢ + ¥(})). By Fourier inversion,
we deduce from (8.2) that

Vi) = [ fwpity - a)dy.

!We mention for completeness that Bretagnolle [30] has established a sharper and much more
difficult result: a necessary and sufficient condition for 0 to be regular for itself is

0 1 ..
/—oo bite (T‘I’(’\)) dA < oo and X has unbounded variation.



64

In other words, the ¢g-resolvent operator of X has a continuous density kernel v¥(z,y) =
v?¥(y—x) with respect to the Lebesgue measure. Plainly X =—Xisalsoa Lévy process
and the very same calculations show that its g-resolvent operator is given by

Vif(a / Fy)vi(z —y)dy .

Hence, X and X are in duality with respect to the Lebesgue measure, and the condi-
tion (iii) of Proposition 2.2 is fulfilled. This yields our statement. n

It is easily seen that when local times exist, they can be expressed as occupa-
tion densities, in the sense that the local time at level r € R is given by L(r,-) =
lim, 04+ (2¢)7" Jo 1{jx,-r<e}dt. See section V.1 in [11] for details. A major problem in
this field is to decide whether the mapping (r,t) — L(r,t) has a continuous version.
This has been solved in a remarkable paper by Barlow [4], see also [3] and Marcus
and Rosen [114] in the symmetric case.

Proposition 8.1 provides a simple expression for the Laplace exponent & of the
inverse local time, which is explicit in terms of the characteristic exponent ¥. This
enables one to directly apply the general results proven in the preceding chapters; here
is an example. Suppose for simplicity that X is symmetric and that the condition of
Proposition 8.1 is fulfilled. We should like to express the condition

® is regularly varying with index p € (0,1) (at 0+, resp. at co) (8.3)

in terms of ¥. This question is motivated for instance by the Dynkin-Lamperti the-
orem 3.2. Alternatively, (8.3) has an important réle in the law of the iterated loga-
rithm for local times (which has been considered in particular by Marcus and Rosen
[115, 116]). The assumption of symmetry ensures that the characteristic exponent ¥ is
an even real-valued function. We write W' for the so-called increasing rearrangement
of ¥, viz.

Ul(z) = m(AeR:¥(N) < z) (z 2 0)

where m refers to the Lebesgue measure. By Proposition 8.1, we have

1 1 s
— 4’ ( —(a+a)t ) T
50 /[o,oo)q+1‘ (z) /[Om) /0 @)t 4l ()
e —qt T
/D e LU (1) dt

I

I

where LU1(t) = Jio,00) €AW (2) is the Laplace transform of the measure with dis-
tribution function W1. Because ® is regularly varying with index p if and only if 1/®
is regularly varying with index —p, we deduce from a tauberian theorem that (8.3)
holds if and only if the indefinite integral of LT, [ LUT(¢)dt, is regularly varying
with index p (at oo, resp. at 0+). Plainly, the indefinite integral of LU has a de-
creasing derivative, so by the monotone density theorem, the latter is equivalent to
LT varying regularly with index p — 1 (at oo, resp. at 0+). We then again invoke a
tauberian theorem to conclude that

(8.3) <= ! varies regularly with index 1 — p. (at 0+, resp. at oo).
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More precisely, the preceding argument shows that when (8.3) holds, then
®(q) ~ q/T(q) (at 0+, resp. at oo)

for some positive finite constant number ¢’ which can be expressed explicitly in terms
of our data.

8.2 Local time at the supremum

We next turn our attention the supremum process S. = sup{X, : 0 < s < -}. It is easy
to check that the so-called reflected process S — X is a Feller process; see Proposition
VL1 in [11]. The closed zero set of the reflected process

R={t>0:X=5]

coincides with the set of times when the Lévy process reaches a new supremum. It
is known as the ladder time set. There is a simple criterion due to Rogozin [133] to
decide whether 0 is regular for itself with respect to the reflected process:

R is perfect <= / t7'PY(X, > 0)dt = co.
0+

See also [13] for an equivalent condition in terms of the Lévy measure of X.

We henceforth suppose that R is perfect; the Laplace exponent of the ladder time
set can be expressed as follows:

®(q) = exp {/Ooo (e_t - e_qt) t'PUX, > O)dt} , ¢=>0. (8.4)

Formula (8.4) is a special case of a result of Fristedt (see e.g. Corollary VI.10 in [11]
and the comments thereafter), and goes back to Spitzer in discrete time. The main
drawback of (8.4) is that it involves the probabilities P°(X; > 0) which are usually not
known explicitly. For instance, Bingham [19] has raised the question of determining
the class of Laplace exponents which can arise in connection with ladder time sets.
This interesting problem seems to be still open. 2

As an example of an application of (8.4) motivated by Chapter 4, we consider the
question of whether the Laplace exponent of a ladder time set has the asymptotic
behaviour that is required in the Dynkin-Lamperti Theorem 3.2.

Proposition 8.2 For each fized o € [0,1], ® is regularly varying with indez o at 0+
(respectively, at oo) tf and only if

1 gt
lim?/ Po(X, > 0)ds = « as t — oo (respectively, as t — 0+). (8.5)
0

*By an application of the Frullani integral to (8.4), one sees that the function ¢ — ¢/®(q) must
be the Laplace exponent of a subordinator; cf. the proof of Theorem 8.3 below. In particular ladder
time processes form a strict sub-class of subordinators.
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Proof: We know from Theorem 3.2 that ® is regularly varying with index « at 0+
(respectively, at oo) if and only if lim ¢®'(¢)/®(¢) = a as ¢ — 0+ (respectively, as
q — 00). According to (8.4), the logarithmic derivative of ® is given by

®'(q) /  _gtpo
= P°(X; > 0)dt.
q)(q) 0 € ( t = )
By a Tauberian theorem, the right-hand side is equivalent to a/q if and only if (8.5)
holds. |

One refers to (8.5) as Spitzer’s condition; it has a crucial réle in developing fluc-
tuation theory for Lévy processes, in particular in connection with estimates for the
distribution of first passage times and for the asymptotic behaviour of the time spent
by the Lévy process in the positive semi-axis. See Chapter VIin [11]. It is natural to
compare (8.5) with the apparently stronger condition

limP%(X, >0) = o as t — oo (respectively, as t — 0+). (8.6)

We will refer to (8.6) as Doney’s condition, for Doney [47] has recently proven that
the discrete time versions of (8.5) and (8.6) are equivalent, settling a question that
has puzzled probabilists for a long time. We present here the analogous result in
continuous time.

Theorem 8.3 The conditions of Spitzer and Doney are equivalent.

Proof: We shall only prove the theorem for 0 < o < 1 and t — 0+, and we refer
to [17] for the complete argument. The implication (8.6) = (8.5) is obvious, so we
assume that (8.5) holds. Notice that the case when X is a compound Poisson process
with a possible drift is then ruled out; this ensures that P°(X, = 0) = 0 for all ¢ > 0,
and as a consequence, the mapping ¢ — P°(X, > 0) is continuous on (0, c0).

Introduce the Laplace exponent ® of the dual ladder time set which corresponds
to the Lévy process X = —X. This means

d(q) = exp{/oo —e_qt tT'PO(X, <O)dt}
_ exp{ /0 (e =) 171 (1 = PO(X, > 0)) dt}
= q/%(q),

where the last equality follows from the Frullani integral. As a consequence, (8.4)
yields

PN 2 0)dt = ¥(0)/8(0) = ¥(q)B(a)/g. (8.7)

We know from Proposition 8.2 that @ is regularly varying at oo with index a,
and also that ® is regularly varying at oo with index 1 — . Because ® and ®
are Laplace exponents of subordinators with zero drift, we obtain from the Lévy-
Khintchine formula that

V() = [ e (Te) | by = [ e Tz,
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where II (respectively, ﬁ) is the tail of the Lévy measure of the ladder time process

of X (respectively, of X). We now get from (8.7)
0 _ = —
P(X, > 0) = /(O‘t) f(t—s)sd (-T(s))  forae. ¢>0. (8.8)

By a change of variables, the right-hand side can be re-written as
— - (1 - ) ( T (tu) )
t (1 — d{-TII(¢ = = d| - .
(1) (11 = w))ud (i) /(0,1) AN

Now, apply the second part of Proposition 1.5. For every fixed € € (0,1), we have
uniformly on u € [e,1 — €] as t — 0+:

M)  we ﬁ(t(l—u))_}(l—u)a‘l
o(1/t) T(l-a) 31/ T(a)

Recall P°(X, > 0) depends continuously on t > 0. We deduce from (8.8) that

1-e
: : 0 > > @ _ a—1 —ad
limpt P(X, 2 0) 2 prr—s _a)/e (1 —u)lu=odu,

and as € can be picked arbitrarily small, liminf;_oy P°(X; > 0) > o. The same
argument for the dual process gives liminf, .o, P°(X; < 0) > 1 — «, which establishes
(8.5). [ ]

If, as usual, we denote by o the inverse local time at 0 of the reflected process S— X,
then it is easy to check from the stationarity and independence of the increments of
X that the time-changed process H = X o o = § 0 0 is again a subordinator. One
calls H the ladder height process; it has several interesting applications in fluctuation

theory for Lévy processes. We refer to sections 4 and 5 of chapter VI in [11] for more
on this topic.

8.3 The spectrally negative case

Throughout this section, we suppose that the real-valued Lévy process X has no
positive jumps, one sometimes says that X is spectrally negative. The degenerate
case when either X is the negative of a subordinator or a deterministic drift has no
interest and will be implicitly excluded in the sequel. We refer to Chapter VII in [11]
for a detailed account of the theory of such processes.

The absence of positive jumps enables to use the same argument as that in section
1.1 to show that the first passage process of X

oy = inf{s >0: X, >t} (t>0)

is a subordinator. The inverse of ¢ coincides with the (continuous) supremum process
S of X, s0 S serves as a local time on the set of times when X reaches a new supremumn,
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that when S = X. In other words, S is proportional to the local time at 0 of the
reflected process S — X.

As usual, we denote the Laplace exponent of o by ®. Note that if T stands for an
independent exponential time, say with parameter ¢ > 0, then

PO (ST > I) = PO (O'z < T) — EO (exp{_qar}) — e-—x(ﬁ(q)

for every > 0, so that St has an exponential distribution with parameter ®(q).
By taking ¢ sufficiently large, we see that for every fixed ¢t > 0, S; has a finite
exponential moment of any order. As a consequence, though X may take values of
both signs, its exponential moments are finite. This enables us to study X using the
Laplace transform instead of the Fourier transform. More precisely, the characteristic
exponent can be continued analytically on the lower half-plane {z € C: 3(2) < 0}.
We then put (X)) = W(—iA) for A > 0, so that

E°(exp{A\X.}) = exp{ty(\)}, A>0.

Invoking Holder’s inequality, we see that the mapping ¢ : [0,00) — (—o0,00) is
strictly convex. On the other hand, we also deduce from the monotone convergence
theorem that lim)_.. ¥(A) = co.

We are now able to specify the Laplace exponent ®.
Proposition 8.4 We have ® o o(\) = X for every A > 0 such that (1) > 0.

Proof: It follows from the independence and stationarity of the increments that the
process

exp{ A X, — ¥(N)s}, s>0

is a nonnegative martingale. As X cannot jump above the level ¢, we must have
Xo, =ton {o; < 0o}. On the other hand, the assumption that ¥»(A) > 0 ensures that
the martingale converges a.s. to 0 as s — oo on the event {o; = co}. An application
of the optional sampling theorem at the stopping time o; yields

E° (exp {M — ¥(N)o1},0, < 00) = 1.

o0

Recall the convention e~ = 0; the preceding identity can be re-written as

exp {—At} = E°(exp {—9(N)a,}) = exp {—t®((N))},

which establishes our claim. n

In comparison with (8.4), Proposition 8.4 provides an explicit expression for the
Laplace exponent @ directly in terms of our data (namely, ¥) which is much easier to
deal with. For instance, it is immediately seen that ® is regularly varying with index
p € [0,1] if and only if ¢ is regularly varying with index 1/p (which forces in fact p
to be greater than or equal to 1/2). In the same vein, the lower and upper indices of
® are given by

jol
=
I

sup {p >0: /\lim bMATVe = 0}

md(®) = inf {p >0 Jim A = oo} .
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As another example of application, we derive the following extension of Khint-
chine’s law of the iterated logarithm (see also [10] for further results in the same
vein).

Corollary 8.5 There is a positive constant ¢ such that
X®(t ' log | log t])

ki = .S.
oxt T logllogd] ©w

Proof: Consider the functions

@ (t'loglog ®(t71)) o ®(t7'loglog ®(¢71))
I = —ogloga ) and () = g (- loglog 9(-1))

The function s — s/ log log s is monotone increasing on some neighbourhood of co
and the function ¢t — ®(¢7" loglog ®(¢~")) decreases. We deduce that the compound
function f decreases on some neighbourhood of 0. Moreover, it is easily seen that

log log ®(¢~! log log ®(¢ ")) ~ loglog ®(t~")
(cf. the proof of Lemma 4.2), so that f(t) ~ f(t) as t — 0+.

Because the supremum process S is proportional to the local time at 0 of S— X, we
deduce from Theorem 4.1 that limsup,_q, S;f(t) = ¢ a.s. for some positive constant
c. By an obvious argument of monotonicity, we may replace S by X in the preceding

identity. So all that we need now is to check that

®(tlog |logt|)

f@t) ~ Tog [log ] (t—0+).
On the one hand, it is easily seen from the Lévy-Khintchine formula for ¢ that
limsup,_,,, A"24(A) < oo, which in turn implies that liminfy_., A~/2®()\) > 0. On
the other hand, recall that @ is concave, so that limsup,_,,, A7'®()) < co. We deduce
that
loglog ®(t7!) ~ log|logt]  ast— 0+,

and then, since @ is concave and increasing, that
o (t‘l log log @(t‘l)) ~ ®(t ' log |logt|) ast— 0+ .

Our claim follows. | |

We refer to Jaffard [86] and the references therein for further results on the regu-
larity of the paths of Levy processes, in particular precise information on their mul-
tifractal structure.

8.4 Bochner’s subordination for Lévy processes

Bochner [25] introduced the concept of subordination (after which subordinators were
named) of Markov processes as follows. Let M = (2, M, M, M;, 6;, P*) be some time-
homogeneous Markov process and 0 = (0y : t > 0) a subordinator that is independent
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of M. The process M = (Mt =M, :t> 0) obtained from M by time-substitution
based on o (with the convention that M., = T where T is a cemetery point for M)
is referred to as the subordinate process of M with directing process o. It is easily
seen that the homogeneous Markov property is preserved by this time-substitution,
in the sense that the process M = (Q M, M., M,,6,, P’”) is again Markovian, where
M, = M,, and 0, = 6,,,. More precisely, the semigroup (Qt 1t > O) of M is given in
terms of the semigroup (Q: : t > 0) of M and the distribution of o by

Qlady) = [ Qula,dy)Bloy € db). (8.9)

We refer to Feller [53], Bouleau [27] and Hirsch [72] for more on this topic. See also
Bakry [2], Jacob and Schilling [84, 85], Meyer [119] and the references therein for
applications in analysis (in particular to the Riesz transform and the Paley-Wiener
theory); and Bouleau and Lépingle [28] for applications to simulation methods.

We now consider the special case when the Markov process is a Lévy process, i.e.
M = X. In order to avoid problems related to killing, we will also suppose that o
is a strict subordinator. From an analytic viewpoint, this means that the semigroup
(Q: : t > 0) is a Markovian convolution semigroup, namely

Qui(@) = [ fla+y)P(X, € dy)

for every Borel bounded function f. It follows from (8.9) that (Qt it 2> 0) is also

a Markovian convolution semigroup, i.e. the subordinate process X is again a Lévy
process.

Because the law of a Lévy process is specified by the characteristic exponent ¥, it is
natural to search for an expression of the characteristic exponent U of the subordinate
Lévy process X. To this end, observe first that ¥ maps R into C; = {z € C : Rz > 0},
and second (from the Lévy-Khintchine formula) that the Laplace exponent @ of a
subordinator can be continued analytically on C,; we will still denote by & this
extension. It should be clear that

E (e‘z"’) = ¢ 1%() for any z € C,..
As X and o are independent, we then get
E? (exp {iAX;,}) = E(exp {~¥(N)a:}) = exp {-t®(¥(N))} ,

which proves the following statement:

Proposition 8.6 (Bochner [25]) Let X be a Lévy process with characteristic exponent
U and o an independent subordinator with Laplace ezponent ®. Then the subordinate
process X = X oo is a Lévy process with characteristic exponent

U =300,

We refer to the second chapter of Chateau [34] for a study of the so-called subordi-
nation process, in which the subordinator o is viewed as a parameter.
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We now quote without proof a result of Huff [80], who has been able to make
explicit the Lévy-Khintchine formula (8.1) for the subordinate process X. In the
obvious notation, we have

i = da+/( B (X Xl < DTd) b= ab,
0,00

A(de) = dA(de) + /(Om) PO (X, € dz)TI(dt).

Here is a classical example of Proposition 8.6 due to Spitzer [145]. Suppose that
(X,Y) is a planar Brownian motion and let o be the first-passage process of ¥ (see
Section 1.1). Thus, the characteristic exponent of X is ¥(A) = 2)% for A € R and the
Laplace exponent of o is ®(g) = 4/2¢ for ¢ > 0. The characteristic exponent of the
subordinate process X = X o o is thus ¥(\) = |A|, i.e. X is a standard symmetric
Cauchy process. In the more general case when o is a stable subordinator of index
a € (0,1) independent of X, then X is a symmetric stable process with index 2a. See
Molchanov and Ostrovski [121] and also Le Gall (107, 108] for connections with the
so-called cone points of planar Brownian motion.

We now end this chapter with an application of the subordination technique to the
so-called iterated Brownian motion. Consider Bt = (B*(¢),¢ > 0), B~ = (B~ (t),t >
0) and B = (By,t > 0) three independent linear Brownian motions started from 0.
The process Y = (Y;,¢ > 0) given by

v _{ B*(By) ifB, >0
‘1B (-B) B, <0

is called an iterated Brownian motion. Its study has been motivated by certain limit
theorems and a connection with partial differential equations involving the square of
the Laplacian, and has been undertaken by numerous authors (cf. Khoshnevisan and
Lewis [99] for a list of references). Our purpose here is to investigate the supremum
process of Y,

Y:=sup{Y;:0<s <t} (t>0)

via Bochner’s subordination. To this end, we consider the supremum processes S,
S~, S and I, of BY, B~, B and —B, respectively. Observing that

S*(S;) = sup{Y,: 0 < s <tand B, >0},

and a similar relation for S=(I;), we see that the study of ¥ reduces to that of the
compound processes ST 0 .S and S~ o I, via the identity

Y = ($ToS)v(s7ol). (8.10)

Next, we introduce the right-continuous inverse of S, 0. = inf{s : S, > -}, and
recall that o is a stable subordinator with index 1/2, more precisely with Laplace
exponent ®(\) = v/2X. The inverse o+ of S* has the same law as o and is independent
of 0. By an immediate variation of Proposition 8.6 (involving Laplace transform
instead of Fourier transform), & = o o ot is a subordinator with Laplace exponent
®(A) = (8\)Y4. Plainly o o ot is the right-continuous inverse of S* o S and we
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conclude that the right-continuous inverse of the supremum of an iterated Brownian
motion can be expressed as

inf{t:Y,>-} = dWAc?

where o and ¢® are both subordinators with Laplace exponent ®.

An application of the law of the iterated logarithm for the inverse of a stable
subordinator (see Theorem 4.1) now gives

S+OSt

Hm P g Tlog 1777

= 2%/1373/% 4. (8.11)

both as t — 04 and t — oco. Using (8.10), one can replace ST o S; by Y, (or even
by Y;) in (8.11), which establishes the law of the iterated logarithm for the iterated
Brownian motion proven previously by Cséaki et al. [38] and Deheuvels and Mason
[41] for large times, and by Burdzy [31] for small times. We refer to [12] for further
applications of this technique.



Chapter 9

Occupation times of a linear
Brownian motion

We consider the occupation time process A. = [ f(B;)ds where B is a linear Brownian
motion and f > 0 a locally integrable function. The time-substitution based on the
inverse of the local time of B at 0 turns A into a subordinator. This enables us to
derive several interesting properties for the occupation time process and for linear
diffusions.

9.1 Occupation times and subordinators

Let B = (B;,t > 0) be a one-dimensional Brownian motion started from 0. To agree
with the usual normalization, we call the process

.1t
b = 51—1}&%/0 1{!Bs|<5}d8, t>0

Lévy’s local time! of B at 0. Consider a locally integrable function f : R — [0, 00)
and the corresponding occupation time process of B

13
At:/Of(Bs)ds, t>0.

(More generally, we might have considered the additive functional associated with
some Radon measure p, see e.g. section X.2 in Revuz and Yor [132], but for the sake
of simplicity, we will stick to the case when u(dz) = f(z)dz is absolutely continuous.)

Let 7(t) = inf{s : £; > ¢} be the right-continuous inverse of £. A routine argument
based on the additivity, the fact that ¢ only increases on the zero-set of B and the
strong Markov property, shows that the time-changed process

(1)
gy = A‘r(t) = o f(Bs)dS ) t>0

is a subordinator.

!This means that the local time at 0 in the sense of section 2.2 is L; = 2~ /24, in order to agree
with (2.1).
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Results on subordinators can be very useful in investigating occupation times. To
this end we need information on the Laplace exponent ® and the Lévy measure II of
o; and this motivates the next section.

9.2 Lévy measure and Laplace exponent

9.2.1 Lévy measure via excursion theory

Our first purpose is to express the Lévy measure of o in terms of Ité’s excursion
measure. The obvious hint for this is that, since the occupation time A is a continuous
process, the jumps of the subordinator ¢ = A o 7 correspond to the increments of A
on the intervals of times when B has an excursion away from 0.

Recall the setting of section 3.2 and specialize it to the Brownian case. Let n be
the measure of the excursions of B away from 0, that is the characteristic measure of
the Poisson point process

[ Braoys  HO0<s< () —1(t-)
els) = { 0 otherwise

We denote the generic excursion by € = (e(s) : s > 0) and its first return time to 0 by
p(e) =inf {s > 0: ¢(s) = 0}.

Proposition 9.1 The drift coefficient and the killing rate of o are d =0 and k = 0,
respectively. The Lévy measure of o coincides with the distribution of fp(ﬁ) f(e(s))ds
under n, i.e.

(dz) = n ( /O "D f(e(s))ds € dm) .

Proof: We split the time interval [0,7(1)] into excursion intervals. Since Brownian
motion spends zero time at 0, we have

(1) 7(t)-7(t-)
[y = [ gmaas = 5 [T 1B

o<i<1 /(=) 0<t<1

> [ s

0<t<1

where e = (e, : ¢ > 0) is the excursion process (see above). Applying the exponential
formula for Poisson point processes (see e.g. Proposition 12 in section XIL.1 in [132]),

we get
(e,)
E% [exp{—A Z /p
0<t<1

- exp{—n (1 ——exp{—/\/p(e) f(e(s))ds})}
exp{—/wm) 1 —e ) (/ Fle(s))ds € dw)} .
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Comparison with the Lévy-Khintchine formula establishes the claim. n

Another useful observation which stems from excursion theory is the following
independence property.

Corollary 9.2 Let f,f- : R — [0,00) be two locally integrable functions with
Supp(fy) € [0,00) and Supp(f-) C (—o00,0], respectively. Then the subordinators

7(t) (%)
of = /0 f+(Bs)ds and of = /0 f-(B;)ds
are independent. If moreover f_(z) = fi(—z), then ot and 0~ have the same law.

Proof: We know from the foregoing that ¢* and o~ are two subordinators in the
same filtration, both with zero drift and zero killing rate. They are determined by their
jump processes. Since jumps correspond to increments of the occupation times on an
interval of excursion of B away from 0, o+ jumps only when the excursion process
e takes values in the space of nonnegative paths, whereas ¢~ jumps only when e
takes values in the space of non-positive paths. In particular, ¢t and ¢~ never jump
simultaneously. By a well-known property of Poisson point processes, their respective
jump processes are independent. Because ot and ¢~ are both characterized by their
jumps, they are independent.

Finally, the excursion measure is symmetric, that is n is invariant by the mapping
€ — —e. It follows that ¢t and o~ have the same Lévy measure, and hence the same
law, whenever f_(z) = fy(—2). |

9.2.2 Laplace exponent via the Sturm-Liouville equation

The main result of this subsection characterizes the Laplace exponent ® in terms of
the solution of a Sturm-Liouville equation.

Proposition 9.3 For every A > 0, there exists a unique function yy : R — [0,1] such
that:

® Y\ s a convex increasing function on (—o00,0), and a convex decreasing function on

(0, 00).

o y) solves the Sturm-Liouville equation y" = 2\yf on both (—o00,0) and (0,0), and
y)\(O) =1.
The Laplace exponent of o is then given by

(A = 5 (51 (0-) —y3(04)) -

[NCR

Proof: We present a proof due to Jeulin and Yor [89], which is based on stochastic
calculus. One can also establish the result by analytic arguments that rely on the
Feynman-Kac formula and Proposition 2.2; see e.g. It6 and McKean [83], Jeanblanc
et al. [88] and Pitman and Yor [128].
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The existence and uniqueness of y, is a well-known result on the Sturm-Liouville
equation; see for instance Dym and McKean [49]. By stochastic calculus (more pre-
cisely, by an application of the It6-Tanaka formula), the process

M= (B exo {5 04(0-) 04D &= [ S(BYas), e 20,

is a local martingale. Because M, < exp {% (yA(0—) — ¥4 (04)) t} for every s < 7(t),

we can apply Doob’s optional sampling theorem for M at time 7(t). Since £, =1
and B, = 0, we get

2 (e {3 040 0= [ s(Bas}) = 1.
that is
exp {~10(1)} = E° (exp{—A / T“’f(&)ds}) = exp {~3 (10-) ~ s (0+)) 1}

This completes the proof. |

The solutions of Sturm-Liouville equations are not explicitly known in general
(see however the hand-book by Borodin and Salminen [26] for a number of explicit
formulas in some important special cases). Nonetheless one can deduce handy bounds
for the Laplace exponent @ in terms of the function f that will be quite useful in the
sequel.

Corollary 9.4 Put F(z) = [y f(t)dt (x € R) and
¢
G(t) = 2/ (F(z) — F(~z))dz, t>0,
0
so G in a convez increasing function on [0,00). We write H(s) = inf{t > 0 : G(¢) >

s}, s >0, for its inverse. Then we have

1

(i) 20 =< o7y

As a consequence, if U stands for the renewal measure of ¢ and I for the integrated
tail of its Lévy measure (c.f. Lemma 1.4), then

x

(ii) U(z) < H(z) and I(z) < 1)

Proof: (i) We first suppose that f vanishes on (—o00,0) and start with the integral
Sturm-Liouville equation:

y;(:v)=1+:cy;(0+)+2)\/0x (/OtyA(s)f(s)ds> dt, z>0,A>0. (9.1)

Using the fact that 0 <y, < 1, we deduce the inequality

ey (04) < 142 [ (/Ot f(s)ds) dt = 1+ \G(z).
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Using this with = H(1/X) gives —y}(0+)H(1/}) < 2.

To establish an lowerbound, we use the fact that y, decreases on [0, 00) in (9.1)
to get

n(@) = 233 (04) > 1424 [*([(@)f(s)ds) db = 14 M (2)G(z)

Specifying this for ¢ = H(1/)\) gives —y,(0+)H(1/A) > 1.
We have thus established that
1< —y;(O-{-)H(l//\) < 2, A>0
in the special case when f vanishes on (—o0,0). By a symmetry argument, the bounds
1 < yi(0-)H(1/A) < 2, A>0
hold when f vanishes on (0,00). It is immediate to deduce that
T = $0-) ~504)
in the general case; and our statement then derives from Proposition 9.3.

(i) The estimate for the renewal measure now follows from Lemma 1.4. Since we
know that the drift of & is zero, the second estimate also follows from Lemma 1.4. B

A sharper estimate for ® has been obtained in the form of a Tauberian type
theorem by Kasahara?, under the condition that the indefinite integral F' of f is
regularly varying. We quote the result for completeness and refer to Kotani and
Watanabe [102] on page 240 for details of the proof. Thanks to Corollary 9.2, we may
restrict our attention to the case when f vanishes on (~o0,0).

Proposition 9.5 Suppose that f =0 on (—00,0). Then ® is regularly varying at 0+

(respectively, at oo) with indez o € (0,1) if and only if F is regularly varying at co

(respectively, at 04 ) with indezx (1/a) — 1. In that case,

o F(l — a)
I'l+a)

where [ is a slowly varying function at co (respectively, at 0+ ) such that an asymptotic

inverse of t — zF(z) is ¢ — z*I(x).

o(A) ~ (a(l - a)) AUAX) (A= 04),

9.2.3 Spectral representation of the Laplace exponent

The so-called spectral theory of vibrating strings, which has been chiefly developed
by M. G. Krein and his followers, is a most powerful tool for investigating the Sturm-
Liouville boundary value problem that appears in Proposition 9.3. In this subsection,
we will merely state the -tiny- portion of the theory that will be useful for the applica-
tions we have in mind; and refer to Dym and McKean [49] for a complete exposition.

2There is a typographical error in the definition of the constant Dy on p. 70 of [92]; see Kotani-
Watanabe [102].
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Proposition 9.6 (Krein) Let yy be the function which appears in Proposition 9.3.

(i) There exists a unique measure v on [0,00) with [ig.)(1 + &)~ v(d€) < oo, such
that for every A > 0:

2 _ / v(dE)

vA(0-) = 95(04+)  Joeo) A+
(ii) There exists a unique measure ¥ on [0,00) with [ ., (1 + €)7'9(df) < oo, such
that for every A > 0:

¥y (0—) —y3(0+) / v(d€)
2\ [O0) A+ &

When f vanishes on (—o0,0), the measure f(z)dz is sometimes called a string (in fact
Krein’s theory deals with a completely general family of measures). The measure ;v in
Proposition 9.6(i) is then known as the spectral measure of the string, and the measure
27 in (ii) coincides with the spectral measure of the so-called dual string dF(z), where

F' is the right continuous inverse of the distribution function F(z) = f§ f(z)dz.

Krein’s theory yields the following remarkable formulas for the Laplace exponent
® of o and the tail of its Lévy measure II, which seem to have been first observed by
Knight [101] (see also Kotani and Watanabe [102] and Kiichler [103]).

Corollary 9.7 Suppose that f =0 on (—00,0). We have
(i) There exists a unique measure v on [0,00) with fo ) (1+&)'w(d€) < oo such that
1 v(d¢)
= —_, A>0.

As a consequence, the renewal measure U(dz) of o is absolutely continuous with den-
sity u given by

u(z) = /[0 o e %y (d¢), z>0.

EZ)tThere exists a unique measure U on [0,00) with [ o) (1 + &)7'0(d€) < oo such
a
T(z) =/{ )e-rﬁa(dg), x>0
0,00

Proof: (i) The first assertion follows immediately from Propositions 9.3 and 9.6. To
get the second, just recall that the Laplace transform of the renewal measure is 1/®,
so that by Fubini’s theorem

(i1) Recall that o has zero drift. By an integration by parts in the Lévy-Khintchine
formula, we get

o0 _ , _ _ ;
/ e_MH(CC)d:c N s - A=)~ (04) (by Proposition 9.3)
° A 2
v(d
= /[O'oo) ’)’\(_fg (by Proposition 9.6 (ii))

Il

/0 T ( /[Om) e-ﬁwa(dg)) dr  (by Fubini).
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As the tail of the Lévy measure is decreasing and the Laplace transform of the spectral
measure continuous, this establishes our claim. [ ]

In particular, the renewal measure and the Lévy measure both have completely
monotone densities (Hawkes [71] observed that these two properties are equivalent for
any subordinator). It seems there is no purely probabilistic proof for this remarkable
feature.

It is immediately checked that ¢ — logu(z) is a decreasing convex function on
(0,00). In particular, the renewal density can also be expressed in the form

u(z) = cexp {/: ﬁ(t)dt}

for some decreasing locally integrable function z : (0,00) — R. In other words, & is
the tail of some measure on (0, 00), and the comparison with Theorem 7.2 shows that
the range of o can be thought of as the set left uncovered by certain random intervals
issued from a Poisson point process with characteristic measure u. It would be quite
interesting to have probabilistic evidence of this fact.

9.3 The zero set of a one-dimensional diffusion

The material developed in the preceding section can be applied to the study of the
zero set of a regular linear diffusion in natural scale®, using Feller’s construction that
we now recall.

For the sake of simplicity, we focus on the case when the speed measure is abso-
lutely continuous, though this restriction is in fact superfluous. So let f > 0 be a
locally integrable function such that the support of f is an interval which contains
the origin. The occupation time process A; = [5 f(B;)ds increases exactly when the
Brownian motion B visits Supp(f) and the time-changed process

X; = By, t20, where a(t) = inf{s: A, > t},

is a continuous Markov process. One calls X = (X;,t > 0) the diffusion in Supp(f)
with natural scale and speed measure f(z)dz. Its infinitesimal generator is Gg =
39"/ f with the Neumann reflecting condition at the boundary.

When one time-changes Lévy’s local time £ of the Brownian motion by «, one
obtains a continuous increasing process which increases exactly on the zero set of X.
Using the approximation

¢ him (71 ds = 1i 1/t1 L 4
w0 = Jig 5o [ Lamicods = Jim 2 [ Loico s

we see that £,y is an additive functional of the diffusion. Hence, the local time L of
X at 0 must be L. = ¢/, for some normalizing constant ¢ > 0. We thus have

L_l(t) = inf{s >0:Ls> t} = inf{s >0: Za(s) > t/c} = AT(t/C) .

3Since we are only concerned with the zero set of the diffusion, this induces no loss of generality.
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In other words, the inverse local time of the diffusion coincides with the subordinator
o up to a linear time-substitution.

As a first example of application, we present an explicit formula for the fractal
dimensions of the zero set of the diffusion X in terms of its speed measure. Recall
from Theorem 5.1 that the fractal dimensions are given by the lower and upper indices
of the Laplace exponent.

Corollary 9.8 The Hausdor[f and packing dimensions of R = {t > 0: X; =0} are
given by

dimg(R) = sup {p <1: lim :cl_l/”(F(:p) - F(-z)) = oo}

z—0+

dimp(R) = inf {p <1: Il_i}& 27V (F(z) — F(—z)) = 0}
where F(z) = [ f(t)dt.

Proof: For the sake of conciseness, we shall only consider the Hausdorfl dimension
which coincides with the lower index

ind (®) = sup {p <1: Alim (MNP = oo}

(cf. chapter 3). We know from Corollary 9.4 that ®()) < 1/H(1/)), where H is the
inverse function of the indefinite integral G(z) = 2 Jg (F(t) — F(—t))dt. 1t follows
immediately that

ind () = sup {p <1 :JLi}& G(z)z? = oo} .
Finally, the obvious bound
¢ (F(z/2) = F(-2/2)) < G(z) < 2z (F(z) — F(-z))

completes the proof. |

As a second illustration, we will use features on random covering to derive a result
originally due to Tomisaki {149], which provides an explicit test to decide whether
two independent diffusion processes ever visit a given point simultaneously. We first
introduce some notation.

Let X = (X,;:t>0)and Y = (¥, :t > 0) be two independent regular diffusions
in natural scale; for the sake of simplicity, we shall assume that both X and Y start

from 0. Their speed measures are denoted by dFx and dFy, respectively; we also
write for ¢ > 0

Gx(t) = 2]; (Fx(z) = Fy(=2))de , Cy(t) = z/ot (Fy(z) — Fy(—2)) do

and Hx and Hy for the inverse functions of Gx and Gy. Recall that Hx and Hy are
concave and increasing.
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Corollary 9.9 (Tomisaki [149]) (i) The probability of that X, = Y; = for some t > 0
equals one if

1
/ H (OHL(t)dt < o
0
and 0 otherwise.
(ii) The probability of the event {X; = Y; = 0 infinitely often as t — oo} equals one if

1 oo
/ Hy()Hy(H)dt < 0o and / HY (O HY (#)dt = oo
0 1
and 0 otherwise.

Proof: Let Ry and Ry be the zero sets of X and Y, respectively. Denote by ox the
inverse local times of X at 0. According to the observation made at the end of sub-
section 8.2.3, the range Rx of ox can be viewed as the set left uncovered by random
intervals issued from a Poisson point process with characteristic measure gx. Idem
for Ry with a characteristic measure py. Because X and Y are independent, the
intersection of their zero sets can thus be thought of as the closed subset of [0, 00) left
uncovered by random intervals issued from a Poisson point process with characteristic
measure fx + py.

(i) We apply Theorem 7.2. The probability that Rx N Ry reduces to {0} is one if

[ e { [ (o) +m (o) ds}dt = oo (9.2)

and zero otherwise. Writing ux and uy for the renewal density of Rx and Ry and
applying (7.1), we see that (9.2) is equivalent to

/01 wx(V)uy (£)dt = oo

Recall from Corollary 9.7 that ux decreases, so the latter is also equivalent (in the
obvious notation) to

1
/0 U (t)d (—uy (2)) = 0.
Using then the estimate of Corollary 9.4(ii), we deduce that
1
(9.2) = /O Hx()d (~uy () = oo.
Finally, integrate by parts and apply again Corollary 9.4(ii) to derive

(92) /01 HY (8 HY (1) dt = oo

ii) The proof rests upon similar arguments and Corollary 7.4. =
g

In the literature, there exist many other examples of applications of the spectral
representation of the Laplace exponent ®. See in particular Bertoin (7], Kasahara
[92], Kent [94, 95], Knight [101}, Kotani and Watanabe [102], Kiichler [103], Kiichler
and Salminen [104], Tomisaki [149], Watanabe [150, 151] and references therein.
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Abstract.

These notes have been the subject of a course I gave in the summer 1997 for the school in
probability theory in Saint-Flour. I review in a self-contained way the state of the art,
sometimes providing new and simpler proofs of the most relevant results, of the theory of
Glauber dynamics for classical lattice spin models of statistical mechanics. The material
covers the dynamics in the one phase region, in the presence of boundary phase transitions, in
the phase coexistence region for the two dimensional Ising model and in the so-called
Griffiths phase for random systems.



1. Introduction

The aim of these notes is to present in a unified way progresses made in the last
years in the theory of a special class of symmetric Markovian evolutions for lattice
Gibbsian random fields, better known as Glauber dynamics or, in case of +1 vari-
ables, stochastic Ising models. Such evolutions, besides being interesting as models
of non-equilibrium statistical mechanics, are important in many other different ar-
eas like images reconstruction, Monte Carlo Markov Chains methods and stochastic
optimization.

The fact that in the thermodynamic limit the number of degrees of freedom
diverges, poses new and challenging mathematical problems when one studies e.g.
the ergodic properties or the large deviations in presence of a phase transition, and it
requires the development of a new techniques like, for example, infinite dimensional
logarithmic Sobolev inequalities for Gibbsian random fields. Moreover a detailed
analysis of the dynamics poses new interesting questions in the theory of Gibbsian
random fields itself.

This interplay between dynamical and equilibrum problems turned out to be
quite fruitful in both directions and, in my opinion, it represents one of the most
interesting aspect of the subject.

Although the theory of Gibbsian random fields, i.e. equilibrium statistical me-
chanics, is clearly very important for our purposes, by no means these notes are
intended as an introduction to this difficult subject. Rather, I have tried to present
(but in general not to derive with the notable exception of a selfcontained and el-
ementary discussion of finite size mixing conditions) as clearly as possible all the
results concerning Gibbs measure of lattice spin models needed to study our Markov
processes. Then, based on these results, I develop in a selfcontained way the analysis
of the ergodic properties of the Glauber dynamics, its behaviour in the presence of
a phase transition or when the interactions in the original model are random. Most
of the results presented here are not new but some of them are quite recent and
many of their proofs have been revisited and, hopefully, considerably simplified.

Unfortunately, due to space—time problems, I have not been able to cover all
the interesting aspects of Markovian dynamics in models of classical statistical me-
chanics. I have in fact left out important and very lively topics like the microscopic
description of metastability and the difficult subject of conservative Kawasaki-type
dynamics. The choice of the topics presented here is largely based on my own
research in the last few years.

I would like to finish this brief introduction with a short overview of the notes.
In section 2 I recall some basic facts of lattice Gibbsian random fields and I introduce
two important notion of mixing for them. In particular I provide a new, elementary
proof that exponential decay of covariences in a finite large enough region implies
the same property on any regular (e.g. cubic) region of the lattice.

In section 3 I introduce the Glauber dynamics, its graphical representation and
two relevant analytic quantities for the study of its ergodic behaviour, namely the
spectral gap and the logarithmic Sobolev constant. For the necessary background
in the theory of finite Markov chains, I definitely suggest the excellent notes by
Saloff-Coste [SC].

In section 4 I discuss and provide a new proof for the main results concerning the
exponential ergodicity in the absence of a phase transition.



97

In section 5 I discuss without proofs the question of a boundary phase transition
for the solid—on—solid approximation of the three dimensional Ising model and its
consequences on the rate of exponential convergence to equilibrium for the associated
Glauber dynamics.

In section 6 I discuss the behaviour of Glauber dynamics for the two dimensional
Ising model in the presence of a phase transition. In particular I provide a new and
simpler proof of a sharp lower bound on the spectral gap with plus of free boundary
conditions.

In section 7 I apply all the results of section 4 and 6 to analyze the behaviour of the
dynamics for a particular random ferromagnet, namely the dilute Ising model.

In section 8 I conclude the notes with a list of open problems.

Acknowledgments
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Bernard in particular, for their very kind hospitality in Saint Flour and the whole
staff of the school for providing an excellent environment for the meeting. During
the preparation of these notes and also during their presentation in Saint Flour I
benefit from the comments and criticism of several colleagues. To all of them go my
hearthly thanks.



2. Gibbs Measures of Lattice Spin Models

2.1 Notation

The lattice. We consider the d dimensional lattice Z¢ with sites * = {z1,...,24}
and norm
|z| = max |z}
i€{1,...,d}
The associated distance function is denoted by d(-,-). Sometimes we will need
another distance, in the sequel denoted by da(-,-), defined by

d 1/2
(o) = (3 los = wil?)

By Qr, we denote the cube of all z = (z1,...,z4) € Z%such that z; € {0,...,L—1}.
If z € Z%, Qr(x) stands for Qr +z. We also let By, be the ball of radius L centered
at the origin, i.e. By, = Qar+1((—L,...,—L)).

A finite subset A of Z¢ is said to be a multiple of Qy, if there exists y»Q; such
that A is the union of a finite number of cubes Qr(z; + y) where x; € LZ%.

If A is a finite subset of Z? we write A CC Z%. The cardinality of A is denoted
by |A|. F is the set of all nonempty finite subsets of Z?. We define the exterior
n-boundary as 9 A = {x € A°: d(z,A) < n}. Given r € Z, we say that a subset
V of Z% is r-connected if, for all y,z € V there exist {z1,...,2n} C V such that
z1 =y, Zn=zand |z,41 — x| <rfori=2,... n.

The configuration space. Our configuration spaceis 2 = SZd, where S = {—1,1}, or
Qy = SV for some V C Z%. The single spin space S is endowed with the discrete
topology and Q with the corresponding product topology. Given o € 2 and A C Z¢
we denote by o the natural projection over Q. If U, V are disjoint, oyny is the
configuration on U UV which is equal to ¢ on U and n on V.

If f is a function on 2, A; denotes the smallest subset of Z¢ such that f(o)
depends only on oa,. f is called local if Ay is finite. F, stands for the o—algebra
generated by the set of projections {n;}, z € A, from Q to {—1,1}, where 75 : 0 —
o(x). When A = Z¢ we set F = Fza and F coincides with the Borel o—algebra on
Q2 with respect to the topology introduced above. By ||f]|cc we mean the supremum
norm of f. The gradient of a function f is defined as

(Vaf)(o) = f(o%) = f(o)
where o® € Q is the configuration obtained from o, by flipping the spin at the site

z. If A € F we let
IVAfP = (Vaf)?

z€EA
We also define
M= IVaflioo

z€Z4
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2.2 Gibbs Measures

Definition 2.1. A finite range, translation—invariant potential {Jj}aer is a real

function on the set of all non empty finite subsets of Z¢ with the following properties

(1) Ja=Jays forall ACF and all z € Z°

(2) There exists r > 0 such that J4 = 0 if diam A > r. r is called the range of the
interaction.

(3) Il = X as0lJal < o0

Given a potential or interaction J with the above two properties and V € F, we
define the Hamiltonian Hy, : Q — R by

H{(o)=— Z JAHO’(III)

AiANV#D  z€A

For o,7 € Q we also let H{i’T(a) = H{(oy7y:) and 7 is called the boundary con-
dition. For each V € F, 7 € Q the (finite volume) conditional Gibbs measure on
(Q,F), are given by

T (Z‘J,"")_1 exp| —Hy (0)] if o(z) = 7(z) for all z € V©
wy (o) = : (2.1)
0 otherwise.

where Z‘i”' is the proper normalization factor called partition function. Notice that
in (2.1) we have adsorbed in the interaction J the usual inverse temperature factor
B in front of the Hamiltonian. In most notation we will drop the superscript J if
that does not generate confusion.

Given a measurable bounded function f on , py(f) denotes the function
o = pu$(f) where ug, (f) is just the average of f w.r.t. ug. Analogously, if X € F,
i (X) = pi,(Ix), where Ix is the characteristic function on X. pZ(f,g) stands
for the covariance or truncated correlation (with respect to p,) of f and g. The set
of measures (2.1) satisfies the DLR compatibility conditions

prlpv (X)) =pi(X) VXeF VVcAcczd (2.2)

Definition 2.2. A probability measure p on (2, F) is called a Gibbs measure for
Jif
ulpy (X)) = w(X) vXeF VV eF (2.3)

Remark. In the above definition we could have replaced the o—algebra F with Fy
(see section 2.3.2 in [EFS]).

The set of all Gibbs measures relative to a fixed given potential J will be denoted
by G. It can be proved that G is a nonempty, convex compact set. We will say that
the discrete spin system described by the potential J exhibits a phase transition if
G contains more than one element. The reader is refered to [Geo| and [EFS] for a
much more advanced discussion of Gibbs measures.

The most famous example of lattice spin system is certainly the Ising model.
For this model the potential J takes the following values

1 if A= {z,y} with da(z,y) <1
Ja=pB{ h if A= {z} (2.4)
0 otherwise
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where (3 represents the inverse temperature and h the external magnetic field.

For the Ising model in dimension greater than one it is well known (see e.g
[Pf]) that there exists a finite value 8., called the critical point, such that there is
a unique Gibbs measure for any h # 0 or any 3 < G.. If instead h = 0 and 8 > 3,
there is a phase transition. In particular the so called spontaneous magnetization
is non zero. Namely there exist two Gibbs measures denoted by ui, that can be
obtained as thermodynamic limit as L — oo of the finite volume Gibbs measures
uﬁB’Li respectively and such that m*(8) = uf_ (c(0)) = P (¢(0)) > 0. Here the
supercript £ in ug’f denotes the special boundary conditions for which all the
boundary spins are all equal to either plus or minus one. In this notes we will refer
to ui as the plus and minus phase respectively.

2.3 Weak and Strong Mixing Conditions

As a next step we define two similar, but at the same time deeply different, notion
of weak dependence of the boundary conditions for finite volume Gibbs measures
(see [MO]). These notion will be denoted in the sequel weak and strong mizring
(not to be confused with the classical notion of strong-mixing for random fields)
respectively. They both imply that there exists a unique infinite volume Gibbs
state with exponentially decaying truncated correlations functions. Actually the
validity of our strong mixing condition on e.g. all squares implies much more,
namely analyticity properties of the Gibbs measure, the existence of a convergent
cluster expansion (see [O] and [OP]) and good behaviour under the renormalization—
group transformation known as the “decimation transformation” (see [MO3] and
[MO4]). Moreover, and this is our main motivation, both notion play a key role
in the discussion of the exponential ergodicity of a Glauber dynamics for discrete
lattice spin systems.

Roughly speaking, the weak mizing condition implies that if in a finite volume
V we consider the Gibbs state with boundary condition 7, then a local (e.g. in a
single site y € V°) modification of the boundary condition 7 has an influence on
the corresponding Gibbs measure which decays exponentially fast inside V' with the
distance from the boundary 81V

Strong mizing condition, instead, implies, in the same setting as above, that
the influence of the perturbation decays in V exponentially fast with the distance
from the support of the perturbation (e.g. the site y).

This distinction is very important since, even if we are in the one phase region
with a unique infinite volume Gibbs state with exponentially decaying truncated
correlation functions, it may happen that, if we consider the same Gibbs state in a
finite volume V', a local perturbation of the boundary condition radically modifies
the Gibbs measure close to the boundary while leaving it essentially unchanged in
the bulk and this “long range order effect” at the boundary persists even when V
becomes arbitrarily large. We will refer to this phenomenon as a “boundary phase
transition”. It is clear that if a “boundary phase transition” takes place, then our
Gibbs measure may satisfy a weak mixing condition but not a strong one.

A “boundary phase transition” is apparently not such an exotic phenomenon
since, besides being proved for the so called Czech models [Sh] {in dimension 3 and
higher), it is also expected (see section 5) to take place for the three dimensional
ferromagnetic Ising model at low temperatures and small enough magnetic field
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(depending on the temperature). On the contrary, for finite range two dimensional
systems and for regular volumes (e.g squares) we do not expect any “boundary phase
transition” since the boundary is one-dimensional and, unless the interaction is long
range, no phase transition occurs. Thus in two dimensions weak mixing should be
equivalent to strong mixing. That is precisely the content of theorem 2.5 below.

We conclude this short introduction with a warning. It may happen, also for
very natural model like the Ising model at low temperature and positive external
field, that strong mixing holds for “regular” volumes, like all multiples of a given
large enough cube, but fails for other sets (see [MO1]). This fact led to a revision
of the theory of “completely analytical Gibbsian random fields” (see [DS]) and it
plays an important role in the recently much debated issue of pathologies of renor-
malization group transformations in statistical mechanics (see [EFS]).

Let us now define our two conditions. We first recall that the variation distance
between two probability measures pi, g2 on a finite set Y is defined as :

= pall = 5 3 la(y) = pia(y)

vey (2.5)
sup [pu1(X) — pa(X)|
XCY

Il

Given A C V cC Z% and a Gibbs measure py on {ly, we denote by uj, o the
projection of the measure i, on Q4, i.e.

poalo) = > wi(n)

mNa=0oaA

We are now in a position to define strong mixing and weak mixing.

Definition 2.3. We say that the Gibbs measures py satisfy the weak mixing con-
dition in V with constants C' and m if for every subset A C V

sup || a — wyAll < C Yoo ey (2.6)
oT T€A, yedTV

We denote this condition by WM (V,C, m).

Definition 2.4. We say that the Gibbs measures py satisfy the strong mixing
condition in V' with constants C and m if for every subset A C V and every site
yeVe

sup [|ufa — Al < CemmHAY) (2.7)

We denote this condition by SM(V,C,m).

Remark. It is clear that either one of the above properties becomes interesting when
it holds with the same constants C' and m for an infinite class of finite subsets of
7% e.g. all cubes.

It is a relatively easy task to show that strong mixing is more stringent than weak
mixing in the sense that, for example, strong mixing for all cubes implies weak
mixing for all cubes.

Let us in fact fix a cube (), a subset A C @1 and a pair of boundary conditions 7
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and 7. Let also {r;}}.; be a sequence of interpolating configurations between 7 and
7' such that n < 8FQyr, 741 differs from 7; at exactly one site y; € 9fQr, 11 =7
and 7, agrees with 7/ on 8} Q. Then, using SM(Qr,C, m), we write

6,8 — 1o, all <Y lugts — 15, Al
[3

< Z Ce~md(A,y:)

SZ Z Ce—mdz,y)

€A yeat Q.

i.e. WM(QL,C,m).

The converse of the above result, namely weak mixing implies strong mixing, is in
general expected to be false in dimension greater than two. In two dimensions we
have instead the following (see [MOS])

Theorem 2.5. In two dimensions, WM(V,C,m) for every V. CC Z% implies
SM(Qr,C’',m') for every square Qr, for suitable constants C' and m'.

Remark. It is very important to notice that it is known, by means of explicit
examples, that the above result becomes false if we try to replace in the above
theorem for all squares with for all finite subsets of Z? (see [MOL1]).

We conclude this paragraph by discussing the validity of the above conditions for
the Ising model (2.4). In two dimensions it has been proved (see [Hi], [MO1] and
particularily [ShSch]) that condition W M (V, C,m) holds true for any set V CC Z?
everywhere in the one-phase region ¢.e. whenever the external magnetic field h is
different from zero or the inverse temperature § is smaller than the critical value 3.,
with constants C' and m depending on 8 and h. Thanks to theorem 2.5 the same
holds for SM(Qr,C’,m’') for all integers L.

In higher dimensions weak mixing for every finite set V is known to holds for
any 8 < . (see [Hi]) or for large enough § and arbitrary non-zero external field &
(see [MO1]). Strong mixing for all cubes has been proved instead for small enough
B or large enough Bh (see [MO1]). Moreover, as we have already anticipated, there
is strong evidence if not a proof that strong mixing for all cubes is false if 3 is large
and A is small enough depending on 3 (see section 5).

2.4 Mixing properties and bounds on relative densities

In this paragraph we first show that strong mixing is equivalent to the exponential
decay of finite-volume covariances, uniformly in the boundary conditions (see con-
dition SMT(V, C,m) below). Then we prove two useful equilibrium results on finite
volume Gibbs measures. The first one is what was called in [MO1] “effectiveness”
of the strong mixing condition and it implies that in order to verify strong mixing
on, e.g. all cubes, it is sufficient to verify it for a finite class of subsets. The second
result says that a power-law decay of covariances with a large enough power de-
pending on the dimension implies exponential decay (absence of intermediate rates
of decay of covariances). We finally conclude with a simple bound on the relative
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density between the projection over certain sets of two different Gibbs measures,
once one assumes exponential decay of correlations.
Before going on we need the following definition:

Definition 2.6. GivenV CC Z% n,a > 0, we say that the condition SMT(V,n, c)
holds if for all local functions f and g on Q such that d(Af, Ay) > n we have

fgglu@(ﬂ DI < 1AsllAg] | flloollglloo exp[—a d(Af, Ag)]

With the above notation we have

Theorem 2.7. The following are equivalent
i) There exist C,m and Lo such that SM(A,C,m) holds for all A multiples of

QL
ii) There exist l,m and Lo such that SMT(A,l,m,) holds for all A multiples of

Qr,

Proof. Let us first show that ¢) — ¢4). For this purpose we choose L € Z in such
a way that Qr is a multiple of @Qr,. Thanks to proposition 2.9 below it is enough
to prove condition SMT(V, L/2, m') for some m’ > 0 independent of L and all sets
A C By, which are multiple of Q,, provided that L was chosen large enough.

We choose a multiple I; of Lo in such a way that L?/3 < l; < L/8, we fix a set
A C Bz, multiple of Q1 and we partition it into disjoint cubes as follows

A= U?=1Bi s B; = Qh (.’L‘,) NA; T; € llzd + T

for a suitable z.
We also set Af = U;erB; VI C {1...n}. Given now two arbitrary functions f and
g, with d(Af,Ag) > L/2, let

Is={ie{l...n}: B;NAs #0} I}:{l...n}\If
and similarly for g. Notice that, because of our choice of [1, we have

d(Ar,, A1) > L/2 -2, > L/4 (2.8)

Now we write, using the DLR equations,

pr(fe) =3 BAO)HA () F(O)[1F , (0) - u?’\',; (9)]
(@:") , (2.9)
< [ lloollglloo sUR IR, pry = s,

so that, using a simple telescopic argument

v
sup |3 (£ 9)l < Ifllcoliglioo D supllik,. a,, = Hare s, I (2.10)
T yEAIf T f f
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We can now apply property SM(C, m,AI;) to estimate each term in the sum ap-
pearing in the r.h.s of (2.10). We get

RHS of (210) < |[fllollgllacCL ™4 < | flloollglloo|Agl[Ag e~ 407 42)/8

(2.11)
namely SMT(A, L/2,m/8), provided that L is large enough depending on m.

In order to prove the converse, namely ) — ), we first need some additional
notation.

Given any two measures 4 and v on (2, F), and given V € F such that for,
each X € Fy, v(X) = 0 implies u(X) = 0, we define the Fyy —measurable function

du ploe Q: oy =ny}
— Q 2.12
dviv v{oeQ: oy =nv} ne ( )
where 0/0 means 0. We have, of course,
=t ) vieF (213)
)= dvlv v '

With this notation we have the following result

Lemma 2.8. Let A C V CC Z% and let x € V¢ such that d(z,A) > r. If
U = V\A, we have

dui;
sup Hl - ﬂ:—
TEN dpy,

< 16”JH T —VZHU -V HU 2.14
R T T

Assuming the lemma let us complete the proof of the theorem.

Let V' be a multiple of Qr,, let A C V and let A be the smallest subset of V con-
taining A which is also a multiple of Lo. Thanks to (2.14), property SMT(V,l, m)
and the simple bound

| (e Vel | e VoY )| < (21 + 1) 2etl I gmU=d(z.v))

we get

v v
lv,a — By all < 67,4 = 134l

rad
<[t- Gl
dui 1A lleo
< (2r + 1)2e21 Z gmi—md(z,y) (2.15)
z€A
< A(2r +1)420101 3 gmi-ma(a)
T€EA

for a suitable constant A depending on Lo and m. Clearly (2.15) proves SM(V, C, m)
with C = A(2r + 1)2¢e20Wllem . O
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Proof of lemma 2.8 Let 1 €  be the configuration with all spins equal to +1, and
let
Wy, a(o) = log Z§ — log Zg“l“‘

It is easy to show that

duy,
Hl — ﬂ S CZHVIWV‘AHOOHVmWV,A”oo fOI‘ 3.11 T € Q

duy

ol

which, using the trivial bound |V, Wy alleo < 4||J]|, gives

Hl duy

P
14

H < VIV Wy Al for all 7 € Q
o0

By proceeding as in Lemma 3.1 of [MO2] one can show that

IVaWy alleo < Sl Z 21l gup | MTU(E_V”HU e~ VyHu )|
yea TEQ

which completes the proof of the lemma. O

The next key result (see also [DS], [O], [MO1] and [Yo1]) says that in order to prove
exponential decay of covariances for all sets V multiple of a given cube @Q; it is
sufficient to verify such property only for a finite class of sets.

Let F; be the class of all subsets of Z¢ which are multiple of Q; and denote by
FP the class of all sets V € F such that V' C By. Then we have

Proposition 2.9. Given o > 0 there exist positive integers I(d,r, o, || 7],
y1(d, 7, || J||), m(d, r, ) such that if | > [ and SMT(V,1/2,a) holds for all V € F,
then SMT(V,v1l,m(d,r,a)) holds for all V € F;.

Proof. Given a positive integer [ define the non-negative, bounded, translation in-
variant function fi(z —y) on Z< by

filz —y) = sup sup |uf (he, hy)] (2.16)
VeF e

where hy = e V=H,

The proof is then based on the following key lemma

Lemma 2.10. Given o > 0 there exist I(d,r,«) such that, if | > [ and
SMT(V,1/2,a) holds for all V € FP, then there exists C(a,d,r, ||J||) such that

filz —y) < Cem 9@V Vd(z,y) >4l +7

Let us assume for a moment the lemma and let us complete the proof of the propo-
sition.

We fix an integer [, a set V € F, a boundary condition 7 and two functions f and
g with zero puf,(-) mean and d(Ag,Ag) > 61 + 2r. Without loss of generality we
assume V = UT_,Q;(x;) with z; € [Z%. Let also V1 (V3) be the union of those cubes
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{Qi(=:)}i=, that intersect the support of f (g). Clearly d(V1,V2) > 4l +r. Then we
write

Wy (F)] = |3 (fuv\n, (9))]
< N lloolltv\v (9115

where in [|uy\v; (9)]|%, the supremum over the boundary condition in 8; (V'\ V;) has
to be taken only over configurations that agree with 7 in 8 V. In order to bound
lpv\vs (9)15 we use the following simple formula valid for any pairs of sets A C B
and any function f that depends only on the spins in A

sup  sup  |wa(H) —pp(Nl= sup D upm)uG(f) — uh(F)]

(2.17)

T O0;0Bc=Tpgc O,0pB¢c=Tpgc

< sup [pa(f) - wh ()]

ogc=npgc

< sup 6% (f) = 14 (f)]
T zegm 4 4 (2.18)
oy 3 BN

7 (h
z€8F ANB #a(hs)

<efMlsup >~ |ul(ha, £)
i z€dt ANB

If we apply (2.18) to (2.17) we get that the r.h.s. of (2.17) is bounded from above
by

159 < 1o sup 3 oy ()] (219)
T zeVy
where hy; = hg — u{,\vl (hg). We can at this point repeat the previous steps for each
term i\ v, (hzg)| and write

i, (hag)| = 1w, (9 v, (hz))|
<lglloosup Y v, (has hy)| (2.20)
T yeVs
where Vy = V3 U V4.

Notice that, by construction, V' \ Vj is still a multiple of @Q;. Therefore we can use
lemma 2.10 in order to estimate |u,\y, (hs, hy)|. We get

65 (£, 9)] < 1 flloo lglloce™®M D" fi(z — y) (2.21)

TEVY
yEV2

and property SMT(V,5l,/11) follows from lemma 2.10 provided that [ is taken
large enough. [

Proof of Lemma 2.10. Let
Fi(n)= sup fi(z)

z; |z|>n
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Then the proof follows from the following recursive formula valid for | > 2r, any
integer n > 4{ + r and a suitable constant k(d,r):

Fy(n) < e®Wlg(d, ) A Fy(n — 4l — 1) (2.22)

where

A= sup  swp s Y (kb (2.22)
VEFY zeQinaf Q, €L 2€07 By

Let us in fact assume (2.22). Then it follows immediately that
16| J]] 1)t

Fi(n) < [k(d, e A0 | il

(2.24)

LAI’-’LT‘

< [kt e a7 o,

where |-| denotes the integer part.
Let us now assume SMT(V,1/2,a) for all V € F?. Then A(l) < e~ %! for all [ large
enough and therefore it is possible to find I(d, r,a) and C(a, d,r,||J||) such that for
alll >1

Fi(n) < Ce~1om

Thus the sought exponential decay of f;(x) follows.

Let us prove (2.22). We fix n > 4l + r, two sites z,y with d(z,y) > n, a set
V € F; and a boundary configuration 7. Without loss of generality we assume that
V =UL,Qi(z:), z; € 1Z%, 1 = 0 and that z € Q;(z1) U9 Qi(x1). Next we set

A=V NBy
B = B3\ By

and we observe that by construction € A, y € C and that neither h, nor h, depend
on the spins in B. Therefore, using the DLR equations together with the Markov
property of our Gibbsian field and by denoting with h, the function hgy — i (hs)
and similarly for l_zy, we can write

|y (e, hy)’ = !H{/(ﬁwﬁy”

= 1§ (o (hy)pa(hs))] (2.25)
< lralhe)liZ e (hy)lIZe
where || - ||7, means that we take the supremum over all configuration ¢ that agree

with 7 outside V. We claim at this point that

lnatha)llg, < e*171AQ)

lnc(ry)lize < %" fi(z —y) (2.26)
2€8;FCNB

< B lg(d, r)I% Fy(n — 4l —7)
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for a suitable constant k(d, r), so that (2.22) follows from (2.25) and the arbitrariness
of z,y, V and 7.

In turn (2.26) follows at once from formula (2.18) and the obvious bound |Bs;\ By| <
k(d,r)l*t. O

Remark. In the sequel for any given a > 0 we will denote by m(«) the constant
m(d,r, @) given in the above proposition.

Remark. With some extra work and using once more the Markov property, one
can actually replace the basic assumption “SMT(V,1/2, «) holds for all V € F” of
proposition 2.9 with “SMT(Q,,1/4,a) holds”.

Remark. It is clear from the proof of lemma 2.10 that if we would have replaced
in the hypothesis of the lemma “for all V' € .7-",0” with “for all V C By;” we would
have derived the exponential decay of the covariances u7, (hs, hy), uniformly for all
V and 7 and not just for all V € F.

It clearly follows from (2.23), (2.24) that in order to get the exponential decay of
the function f;(z) it is enough to assume that k(d,r)A(1)I¢"! < 1. In particular this
is the case if ) ;4 |z|(@=1) f,(x) < oo since, by the definition of f;(z — y),

A(l) < sup Z filz —2)

TEQ 2€0; By

Let us formalize all that in the next proposition

Proposition 2.11. Fix Ly < oo and assume that for all sets V' multiple of Qp,
and all functions f and g on § such that d(Af, Ag) > n we have

fggiu(/(f, DI < A5 1[Ag[ 1| flloollgllood(r)

with limg, o n2@D¢(n) = 0. Then there exists | and m such that SMT(V,l,m)
holds for all V' multiple of Qr,,.

We conclude this part concerning Gibbsian fields with a last useful result

Proposition 2.12. For each m > 0 there exists C(d,r,m) such that the following

holds. Let ACC Z%, Ay C A and By C 9;fA. Let A= AU} A and assume that
(i) mdy = md(Ag, Bo) > max{C, 100||J||, 10 (log|Bo| + 1) }

(11) SMT(A\Ao, d() — 27‘, m) holds

then for each pair of configurations o, T € ) which agree on 9;f A\ By, we have

h-

< em(m/9)do 2.27
dp B (227

[ee]

Ao

Proof. For each n € Q4,, consider the event F,, = {0 € Q: o4, = n}. Choose a
pair of configurations o, 7 which agree on 9 A\ By. Then there exists a sequence of
interpolating configurations v; € 2 for ¢ = 1,...,n such that n < |By|, ;41 differs
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from «; at exactly one site, v; = ¢ and v, agrees with 7 on 8 A. Thus, for each
n € 14,, We can write

pa(F ) wy (Fy)
- sl ] LA 228)
=2 M4 77)
If we define X
F,
a= sup Ng( n)
CEQ,IEBo,WEQAD /J,A (F"I)

then it is easy to check that, if a < & and a|By| < 1 then the RHS of (2.28) cannot
exceed ea|Bol|, so if we show that, for instance, a < e~(™/?)d the proposition
follows.

Let then, for z € Z¢, g, = exp(—V,Hg\4,)- By lemma 2.8, and the SMT property
given in the hypotheses, we find

a < sup e S 2NIAL 1A, | 190 lloollgylloo €™ oe B5) <
z€Bo yEAo
< (2r+1)%e 20171 gyp Z e~ (lz—y|-2r)

TzE€Bg yEAo

In the second inequality we have used the fact that Ay, is contained in a ball of
center z and radius 7, and the fact that ||gz]lcc < exp(2||J]|). Finally, using the
hypothesis on dg, we easily get

a< e~ (m/2)do



3. The Glauber Dynamics

In this section we define the Markov process that will be the main object of our
investigation. In what follows the interaction J is fixed and, whenever confusion
does not arise, it will not appear in our notation.

3.1 The Dynamics in Finite Volume.

The stochastic dynamics we want to study is determined by the Markov generators
Ly, V cC Z9, defined by

(Lv o) =Y cs(z,0)(Vaf)o) o€Q (3.1)
zeV
The nonnegative real quantities c;(z, o) are the transition rates for the process.
The general assumptions on the transition rates are

(H1) Finite range interactions. If o(y) = o’(y) for all y such that d(x,y) < r, then
cy(z,0) =cy(z,d’)
(H2) Detailed balance. For all o € Q and z € Z¢,

exp[—H{z(0)]cs(z,0) = exp[—H{z}(az)]cJ(z, o) (3.2)
(H3) Positivity and boundedness. There exist positive real numbers ¢,, and cjs such
that
0<cm < ingc‘](x,a) and supcy(z,0) <cp (3.3)
, z,0

(H4) Translation invariance. If, for some k € Z4, o'(y) = o(y + k) for all y € Z4
then cy(z,0') = cy(x + k,0) for all z € Z¢

Three cases one may want to keep in mind are

cs(z,0) = min{e~(V=He=D) 1} (3.4)
-1
es(2,0) = ulyy(0%) = [ 14T H) | (35)
1
cs(@,0) =3 [1+ e_(V’H{”})(")] (3.6)

The first two examples correspond to the so called Metropolis and heat-bath dy-
namics respectively.

We denote by L7, the operator Ly acting on L2(£2, du7,) (this amounts to choose
7 as the boundary condition). Assumptions (1), (2) and (3) guarantee that there
exists a unique Markov process whose generator is L{,, and whose semigroup we
denote by {T7(t)}t>0. L7 is a bounded selfadjoint operator on L?(£2, dul,). The
process has a unique invariant measure given by uj, which is moreover reversible for
the process.

3.2. Infinite Volume Dynamics.

Let 4 be a Gibbs measure for the interaction .J. Since the transition rates are
bounded and of finite range, the infinite volume generator L obtained by choosing
V = Z%in (3.1) is well defined on the set of functions f such that |||f]|| is finite. We
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can then take the closure of L in C(Q), the metric space of all continuous functions
on §) with the sup—distance, and get a Markov generator (see, for instance Theorem
3.9 in Chapter I in [L]) or take the closure in L2(£2, du) and get a selfadjoint Markov
generator in L?((2, u) (see Theorem 4.1 in Chapter IV of [L]) that will be denoted by
L. In the latter case, since the generator is self-adjoint on L?(€2, du) the associated
Markov process is reversible w.r.t. the Gibbs measure . We conclude with a general
result relating the set of invariant measures of the infinite volume Glauber dynamics
with the set of Gibbs meaures for the given interaction J (see Theorems 2.14, 2.15,
2.16, 5.12 and 5.14 in [L])

Theorem 3.1. Assume (H1)...(H4). Then
a) If d =1 or d = 2 the set of invariant measures for the above Markov process
coincides with the set of Gibbs measures G
b) If d > 3 then
i) any invariant measure which is also translation invariant is a Gibbs measure
ii) the set of Gibbs measures coincides with the set of reversible invariant
measures
iii) If the process is attractive (see paragraph 3.4 below) then the process is
ergodic if and only if there is no phase transition

3.3. Graphical Construction.

We describe here a very convenient way, introduced in [Sch], to realize simultane-
ously on the same probability space all Markov processes whose generator is L, as
the initial and the boundary conditions vary in €2. As a byproduct of the construc-
tion we will get, in a rather simple way, a key result which shows that “information”
propagates through the system at finite speed.

We associate to each site z € Z? two independent Poisson processes, each
one with rate cpr, and we assume independence as z varies in Z?. We denote
the successive arrival after time t = O of the two processes by {tf,}n=12.. and
{tznJn=12.. We say that at time ¢ there has been an upmark at z if t}, =t
for some n and similarly for a downmark. Notice that with probability one all
the arrival times are different. Next we associate to each arrival time ¢ ,, where
* stands for either + or —, a random variable U7, uniformly distributed in the
interval [0,1]. We assume that these random variables are mutually independent
and independent from the Poisson processes. This completes the construction of
the probability space. The corresponding probability measure and expectation are
denoted by P and E respectively.

Given now V ccC Z¢, a boundary condition 7 € € and an initial condition
1 € Qy, we construct a Markov process {oV JT’"}DO on the above probability space
according to the following updating rules. Let us suppose that ¢ = t} ,, for some
z € V and n € Z; and that the configuration immmediately before ¢ was o. Then:

i) The spin o(y) with y # z does not change

ii) If o(z) = —1 and the mark was a downmark then o(z) does not change. Simi-
larly if o(z) = +1 and the mark was an upmark
i) If o(x) = —1 and the mark was an upmark then we flip o(z) if and only if

¢3(x,0) > Ut cp. Similarly if o(x) = +1 and the mark was a downmark.
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One can easily check that the above continuous Markov chain on Qy has indeed the
correct flip rates ¢’ (z, o) so that the above construction represents a global coupling
among all processes generated by L, as the boundary condition 7 and the initial
condition 7 vary. In order to investigate how the process atV ’J’T’"(a:) at site x is
affected by a faraway change either in the boundary condition 7 or in the initial
configuration 7, let us introduce, for any given integer I, the event E(z,t,l) that
there exists a collection of sites {xo,...z,} and times {io,...t,} such that

i) 0<tg<...<t, <t and at each time t; there is a mark at site z;
ii) d(zo,z) >, d(z;,zi+1) < r and z,, = z, where r denotes the range of the local
flip rates.
By construction, if the event E(z,t,1) occurred, then the spin JtV’J’T’"(m) does not
depend on the spin 7(y) if d(z,y) > | and similarly for 7(y). The probability of the
event F(z,t,1) can be estimated from above by

P(E(z,t,0) < Y @r+1)™P(Z > n) (3.7)
n>[l/r]

where Z is a Poisson random variable with mean 2tcps. An elementary calculation
shows that
]P’(Z > n) < e*n(log(n/2th)—1) (3.8)

As a consequence we get that the r.h.s of (3.7), as a function of [, for any given fixed
time ¢ tends to zero, as I — oo, faster than an exponential. Moreover there exists a
constant ko, depending only on the dimension d, the range r and cjs, such that the
r.h.s of (3.7) is smaller than e~ for all [ > kot.

Let us formalize all what we said in a lemma.

Lemma 3.2. There exists a constant ko depending on d, r and cps, such that for
all local function f and allt > 0
i) for all pairs V; cC Z% and V, CC Z4, with d(VE,Ag) > kot, 1 = 1,2,

sup || () = T () flloo < Il flll ™

T1,T2ER

ii) for all V-.CC Z* with d(V®, Af) > kot and all 01,05 € Qy, with 0,(z) = 05(x)
for all z such that d(z,Ay) < kot,

SlelgiT(f(t)f(m) =Ty (&) f(o2)] < I lle”
Proof. We use the global coupling defined above. More precisely we write

T3 (8)f (1) = T (8)f (02) = E(f (077 ™) = f(a>777%)) (3.9)

and notice that, by a simple telescoping argument,

sup [f(@) = F)] <Y 1V floox (o(2) # n(z))
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Therefore the absolute value of the r.h.s of (3.9) can be bounded from above by

lIFIl sup B(of "7 (z) # o)™ (2)) (3.10)
zGAf

Using the hypotheses of the lemma we get that each term in the sum appearing in
the r.h.s of (3.10) can be bounded from above by

P(E(x,t,1))
with { > kot. Thus the lemma follows from (3.7) and (3.8). O

We conclude by observing that, in our particular framework, one could construct
directly the infinite volume dynamics using the global coupling constructed above
together with lemma. 3.2, without appealing to the much more general results of [L].

3.4 Attractive Dynamics for Ferromagnetic Interactions.

Let us introduce a partial order on the configuration space 2 by saying that o < g
iff o(z) < n(z) Vo € 2% A function f : Qv +— R is called monotone increasing
(decreasing) if o < o' implies f(o) < f(o') (f(o) > f(d')). An event is called
positive (negative) if its characteristic function is increasing (decreasing). Given two
probability measures u, u' on Qv we write p < g’ if u(f) < p/(f) for all increasing
functions f (with u(f) we denote the expectation with respect ).

Then the dynamics defined by the transition rates cy(z, o) is said to be attrac-
tive if 0 <7 and o(z) = n(x) imply that

U(W)CJ(% 7]) < O'(II)CJ(:II, U)

An example of attractive dynamics are the Metropolis and Heat Bath dynamics for
a (generalized) Ising model, in which the interaction J = {Ja}acr is & one and
two-body ferromagnetic interaction of the form

J>0 if A= {z,y} with da(z,y) <7
Ja=19h if A= {z}
0 otherwise

An very useful consequence of attractivity is the following momnotonicity property
in the boundary condition and in the initial configuration of the Markov process
o7 given by the graphical construction

P(oy "M < o) 7™M) =1 V1 <mand Vi <y (3.11)

Such property follows immediately from the updating rules which govern the evolu-
tion of the Markov process oy ”™". In turn (3.11) implies

(1) If f is an increasing function on Qy then Ty (t) f is also increasing for all £ > 0
(2) If p1, p2 are two probability measures on Qy such that p; < p2 then

p1 T3 (t) < poT3(t) for allt > 0

Moreover (3.11) allows us to define a standard coupling between two finite volume
Gibbs measures which preserve the order of the b.c. Take in fact two boundary
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T1,72

conditions 71 < 73 and let vy be the unique invariant measure of the coupled
process (o}, 6)""™) on the set { (o,7): o < n}. Then we have

(1) vip™{(o1,02) : 01 =0} = pi} (o) for all o € Qy

(2) vi2 " {(01,02) 102 =0} = pjF (o) for all 0 € Qy

(3) vi#'™{(0o1,02) : 01 < 02} =1 s0 that p < .

In particular, from (3) it follows that any finite volume Gibbs measure uI, is an
FKG-measure i.e. satisfies (see chapter II.2 of [L])

vy (f9) > vy (Fui(9)

for any increasing functions f and g.

3.5 Spectral Gap and Logarithmic Sobolev Constant
A fundamental quantity associated with the dynamics of a reversible system is the
gap of the generator, i.e.

gap(L},) = infspec (—L%, [ T+)

where T is the subspace of L%*(Q,du?,) orthogonal to the constant functions. The
gap can also be characterized as

, EG(f, f)
ap(LY) = inf N ACAT A 3.12
gap(Li) fer?*(@,duy) Vary (f) (312)

where £ is the Dirichlet form associated with the generator L,
T 1 T
&N =52 D uy(0)cl,0) (Vo) o) (3.13)
og€Qy zeV

and Vary, is the variance relative to the probability measure 13- When the transition
rates are chosen as in (3.6), it is easy to verify that the Dirichlet form takes a
particularly simple form

E7(f, 1) = 3 Wy (Vv 1) (3.14)

By simple spectral theory, for any f € L2?(£2,duj,), one gets the following bound
on the Markov semigroup 77 (¢) in terms of the spectral gap

T3 () f = 1y (D, < e728PEVE )13 0

where || f[|2,,; denotes the L*(Q, du,) norm.
Quite bad is the analogous bound in the || - ||o norm. In finite volume and for
general f, the best one can get using only the spectral gap is

AN

ITG 0 f = 1% (Hlloo < [inf 55 ()] ™ 2ITHO)F = 1 (Fllzy

_ . (3.15)
[inf 7, (o)) 2em 82D | £,

IA

MY,
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Notice that the factor [inft7 ,u{,(cr)]_l/2 is usually exponentially large in the size
of V' and therefore the above bound becomes meaningful only for extremely large
times. For local functions the above estimate can be slightly improved. Let in fact
f be alocal function. Then, using lemma 3.2, one can safely replace the original set
V by a “ball” of radius kot around the support of f, Ay (see (3.20)...(3.21) below
for details). However the prefactor multiplying the negative exponential is still very
large, of the order of exp(Ct?) so that the resulting bound is practically useless.

Much more powerful are the estimates obtained through “hypercontractive
bounds” on the Markov semigroup. For this purpose, we define the logarithmic
Sobolev constant cs(L7,) associated with the generator L], as the infimum over all
¢ such that, for all positive functions f

uy (f2log f) < c&€G(f, f) + uf () log /3, (f2) (3.16)

More generally, given a probability measure v on §2, we denote by ¢s(v) the smallest
constant ¢ such that, for all positive local functions f

v(f2log f) < S v(Vv £%) + (f2) 1og Vo) (3.17)

Notice that if we take v = uJ, then c¢,(u],) coincides with the logarithmic Sobolev
constant associated with the generator L, corresponding to the rates (3.6). Even if
the transition rates are different from those given in (3.6) we can estimate c¢,(L7,)
in terms of ¢s(u7,) as follows:

C C
T e (LY) < es(uf) < eg(LY) (3.18)
CM C

m

Finally we set

cs(Ly) = sup cs(L7,)
T . (3.19)
Cs (/J'V) = Sup Cs(ll'V)
T
The role of the logarithmic Sobolev constant in the analysis of the exponential
ergodicity of the dynamics is clarified by the following theorem
Theorem 3.3. Assume

supsupcs(Lp,) < ¢ < +o0
L T

Then:
a) there exists a positive constant m and for any local function f there exists a
constant Cy such that

sup sup ITE, (6)f — 1B, (f)llo < Cre™™

b) There exist positive a and ly such that SMT(By,ly, ) holds for all L
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c¢) The infinite volume dynamics is exponentially ergodic in the || - ||oo—norm and
there exists a unique Gibbs measure p with covariances decaying exponentially
fast.
Proof.

a) Let us fix a cube By, a boundary condition 7 € Q and a local function f such
that up, (f) = 0. Without loss of generality we assume that 0 € Ay. For any ¢t > 0
let also I, = min{l : d(Ay, Bf) > kot} where ko is the constant appearing in lemma
3.2 and let Ay = Bj,aL. Then we write

1T, ®)flleo < 1T, (6)f — TX, (Mo + ITF, (8) flloo (3.20)

The first term in the r.h.s of (3.20) is smaller than ||| f|||e~ because of lemma 3.2.
In order to estimate from above the second term we use the following trivial bound
valid for any ¢ > 1, any V CC Z¢, any positive probability measure v on 2y and
any function f

1£lleo < [inf ()] "7 Fllg, (3.21)

where || f||q,» denotes the LY(Qy, dv) norm.

Given € € (0,1), we take v as the marginal on 4, of the Gibbs measure pup
and apply (3.21) to T7,(t)f. Using once more lemma 3.2 and the trivial bound
inf, pf (o) > e W=Vl we get

TR, () flloo < A DITR, (8)fllgup,
< A OITE, O f gz, + A DIIfle™ (3.22)
= AW DNTp, (1 =) fillguy, + At DlIf e

where

A(t, q) — 62||J|[oo|At|/q and fi = TéL (Et)f

Notice that so far we never used the key assumption of the theorem, namely bound-
edness of the logarithmic Sobolev constant. It is at this stage that such hypothe-
sis becomes crucial. Thanks in fact to Gross’s integration lemma (see e.g [DeSt])
we have that the Markov semigroup 77 (t) maps L%((2,du7,) contractively into
LI(Q,dul,) for any 2 < ¢ < 14 et/¢(LV) | Thus

Al I3, (L= 0 fullgus, < Alt. @)l fllzg,

. 3.23
< A(ta‘I)“fHZ,ugL e~ gap(Lp, )et ( )
forall 2 < ¢ <1+ e=at/esLs,)  gGince sup, supy ¢s(Lp,) < ¢® < +oo we
can apply the above inequality with ¢ = g¢(t) = 1 4 e(!1=9)¥/<" and get that
lim;, o A(t,q(t)) = 1. In order to conclude the proof of the first part of the theorem
it is enough to recall a well known result (see e.g [SC]) that says that

gap(Ly,) > cs(LY) ™



117

b) To prove exponential decay of covariances we proceed as in Lemma 3.1 of [SZ].
Let fix a box By, and a boundary condition 7 and let f and g be two local functions
with zero p%, —mean and supports Ay, A, contained in By. Let [ = [d(Af, Ay)/2]
and let t = kl—o, ko being the constant appearing in lemma 3.2. Let also A; = {z €
By : d(z,Ay) <1} and take Ay = Bp \ A;. Then, using reversibility, we write

B, (f9)l = U, (Th, (t)(f9))]

b . s (3.24)
< B, (975, 2) N + 115, () (f9) — Th, (1) Th, (9lleo
The first term in the r.h.s of (3.24) is bounded from above by
lgllauug, 1172, €~ &2 52) (3.25)

Since gap(Lp,) > 1/cg° and ”9”2,%L < |lgllc We get, remembering the definition
of ¢, that (3.25) is bounded from above by

i

llglloo [[fllooe Fos (3.26)

The second term in the r.h.s of (3.24), thanks to lemma approx and our choice of
time t is bounded from above by

|5, () fg — TL, (O F TF, (B)glloo + |1 T5, () — TF, (£) fllso |9l so
+ 1175, (©)9 = TF, ©)glloo| Flloo
< (I1£gll+ Nglloo LN + 1 lloo gl e
< 4llglloo | FlloolAs||Agle %o

(3.27)

Take now [y such that

e T 4 4e” o <1

and set & = min[(2koc®) 7L, (2ko) ~1]. With this choice and using (3.26), (3.27) the
r.h.s of (3.24) is bounded from above by

lglloo [1f ool AsllAgle™

if Il > lg. Thus SMT(By,lo, c) follows.

¢) To prove exponential ergodicity of the infinite volume dynamics we fix a local
function f with 0 € Ay and set, for any time ¢, A; = B;, where I; was defined at
the beginning of the proof. Then, thanks once more to lemma 3.2, for any 7 € Q
we have

Sup IT(@)f (o) = T(t)f(n)] < sup T, (8)f (o) = T, (O F ()] + 2l flle™
< 2Cpe™™ + 2| fllle”™*

where in the last step we used the bound (3.23). Thus the infinite volume dy-
namics is exponentially ergodic and therefore (see theorem 3.1) there in no phase
transition. O
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Remark. Notice that, in the proof of the exponential decay of covariances, we could
have assumed the (apparently) weaker condition

irLlf iITlf gap(Lp,) >0

It is remarkable that such a weaker hypotheses implies the stronger one used in the
theorem above (see [MO1], [MO2] and [SZ]). This issue will be illustrated in the
next section (see theorem 4.6).

Remark. It is worthwhile to observe that exponential ergodicity in the || - ||oo—norm
for all local functions f, i.e.

IT®)f = u(f)lleo < Cre™™*

for some finite constant Cy and some m > 0 independent of f, implies that the
spectral gap of the infinite volume generator L on L%(Q, du) is larger or equal to m.
Here p denotes the unique invariant measure of the Glauber dynamics and therefore
the unique Gibbs state for the interaction J.

Let us in fact assume exponential ergodicity in the || - ||oc—norm with rate m > 0
for all local functions and let d € (0,1). Let also Ppg sm] be the spectral projection
of the interval [0,dm] associated to the selfadjoint generator L. Then necessarily
P sm)f = 0 for all local functions f with zero y—mean. If not we would get the
contradiction

1 Po,sm1fll2,ue ™ < IT() fllzu < Cpe™™  WE>0

for any local function f with zero p—mean. To finish the argument it is sufficient
to observe that, since the continuous functions are dense in L2(f2,du), for any f €
L*(£2,dp) there exists a sequence f(™) of local functions such that limsup,,_, . ||f —

f(n)Hlu =0.

3.6 From Single Spin Dynamics to Block Dynamics.

We will also consider a more general version of the finite volume dynamics discussed
so far in which more than one spin can flip at once. Let D = {V3,...,V,} be an
arbitrary collection of finite sets V; € F and let V = U;V;. Then we will denote by
block dynamics with blocks {V1,...,V,} the continuos time Markov chain in which
each block waits an exponential time of mean one and then the configuration inside
the block is replaced by a new configuration distributed according to the Gibbs
measure of the block given the previous configuration outside the block. More
precisely, the generator of the Markov process corresponding to D is defined as

A CAGES) (3.28)

From the DLR condition (2.2) it follows that L7, is self-adjoint on L2(%2,du}),
i.e. the block dynamics is reversible w.r.t. the Gibbs measure u,, so that u7, rep-
resents its unique (in finite volume) invariant measure.
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3.7 General Results on the Spectral Gap

In this section we collect some technical results to be used in the next sections.
Although most of the results presented here are rather simple and some of them
can actually be found in the literature, we thought however useful, also for future
purposes, to put them together in a sort of primitive tool-box for the subject.

We begin by proving a simple, but important result relating the spectral gap for
the single-site Glauber dynamics to the spectral gap of a block—dynamics defined
on the same set V. This simple, but in our approach very important result can be
roughly understood as follows. The relaxation time (= inverse of the spectral gap)
of a single—site Glauber dynamics for a given finite volume Gibbs measure is not
larger than the largest among the relaxation times of the same dynamics restricted
to each of the blocks of some block—dynamics for the same Gibbs measure times the
relaxation time of the block—dynamics itself. More precisely

Proposition 3.4. Let D = {V4,...,V,} be an arbitrary collection of finite sets
V; € F and let V = U;V;. For any given boundary condition 7 € ), let LY, be given
by (3.1) with transition rates satisfying (H1),(H2),(H3) and let L}, be given by
(3.28). Then for any f € L%(Q,du7,) we have

Vary, (f) <
(gap(Lp) ™ inf Inf gap (LY))” Zuv(ff) > Nucy(,0) [f(0%) = f(o)]

. UEQ z€V

(3.29)
where N, = #{¢ : V; 2 z}. In particular
-1
gap(L}) > gap(L}) inf inf gap(L,) (sup #{i: V; > z}) (3.30)
i peQ Yo \gev

Proof. Let
g= mf 1nf gap(LY )

Thanks to (3.12), (3.30) follows 1mmed1ately from (3.29). In turn (3.29) is proven
if we can show that

ER(f ) < Zuv(a)Z#{z Vi 3 z}es(z,0) [f(e) - (@) (3:31)

UGQ zeV

for all f € L%(Q,dul;). But, using (3.28), we find

E5(f ) = 1) ZVarv,(f)
o'ee (3.32)

BNl U)sti (£, )

c'eQ
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On the other side, again because of (2.2),

PNEACODIR AN
o'eQ %
= 2 O i) Y (o) [(0%) ~ (o)
o'eQ i 0EQ z€V;

< % S o uy(0) > #{i: Vi 3 z}es(,0) [f(07) — f(0)]

oEQ z€V
(3.31) and the proposition follows. [

Next we provide three lower bounds on the spectral gap of the block dynamics with
just two blocks.

Proposition 3.5. Let V CC Z¢, and let A, B be two (possibly intersecting) subsets
of V such that V.= AU B. Let D = {A, B}. Assume that

duy
duy,

<e<l1 (3.33)

6$BH&
Then the gap for the block dynamics on D satisfies
. Vs
inf gap(Lp) 2 1 Ve
Proof. The action of the semigroup Tp(t) associated to the block dynamics is given
by
[ee] t"
To(t)f =) E(LD)"f
n=0

Using the explicit expression for Lp and some elementary combinatorics, it is not
difficult to show that

toi)f =3 B e LS, () (3.34)
n=0 :

Xe{A,B}

Since (14)® = pa (and similarly for B) the last summation (over X) in (3.34) can
be written as

n—1
3 (" ; 1) (Aks1+ Brg)f (3.35)
k=0

where

Lk/2] o M’;—Ztk/% lk/2] Mg—zuc/zj

Ay, = (paopup) By = (up o LA)

b

If now g is an arbitrary bounded measurable function on 2, such that pv(g) =0
we get

larsraglloo < lleviBraglle + lbvieBrag — pappiag|co (3.36)
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By the DLR property (2.2) the first term on the RHS of (3.36) is equal to uy (g) = 0.
Furthermore, since the interaction has range r, the function h = puppag is Fy. ot B
measurable. This fact together with hypothesis (3.33) and the trivial observation
that ©a and py agree on Fy. implies

luveprag — papsraglleo < ellupraglo < ellagllso (3.37)

Iterating this inequality we get, for each bounded measurable f with uy (f) =0,

[ 4kflloo < (VO 2 lIflloo 1Bkflloo < (vE)* 3 flloo (3.38)
Thus, we get that the sup norm of (3.35) is not greater than

1o =575 (1 + VA"

which, inserted back into (3.34) yields
ITo(t) flloo < [Ifllocde ™% ‘th (1+\f) = [|flloode™3/2e=(1=VEN OO

Corollary 3.6. Let V, A and B be as in Proposition 3.5. Let also Ag = ANd} B,
withs > 7, By = BﬂafA and A = AUG} A. For eachm > 0 there exists C(d, r, m)
such that 1'f

(i) mdy = md(Ag, Bo) > max{C, 100||J||, 10 (log |Bo| + 1) }
(ii) SMT(A\ Ay, do — 2r, m) holds
then 1
inf LY > -
inf gan(Liapy) 2 5
Proof. Thanks to Proposition 3.5 it is sufficient to show that

dpy

1
< - 3.39
TEQ dI“LV — 4 ( )
By the DLR property (2.2) we have
LHS of (3.39) <  sup - d“f:“ (3.40)
T,0€Q : Tyc=0oyc dMA Ao

At this point we can use Proposition 2.12 and obtain the result. O

Remark. It is important to observe that, while it is very likely that a block dynamics
with few large blocks will have a spectral gap larger than the spectral gap of a single
spin flip dynamics, precisely the opposite may happen for the logarithmic Sobolev
constant ¢,(L%). To see this fix a finite set V and consider the covering D with just
one block eqaul to V itself. Then clearly gap(L}) = 1 since E5(f, f) = Vary,(f)
but ¢;(Lp) > sup, — log(u{,(nv)) (1- ,u{,(nv)). To prove it let us consider, for
any 7 € €2, the test function

-1/2 .
folo) = { ()™ ifov =y
€ otherwise
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where € > 0 is a positive number that eventually will be sent to zero. Then an
explicit computation shows that

lim Vary, (fo) = 1 - uy (nv)

lim i3 (/2 1og(£.)) = —% log (1, (nv))
1

. T 2
gl_l;%l'LV(fa)

so that, necessarily, ¢;(L3) > —3log(uf,(nv)) (1 — ufy(nv)) for all n € Q. We
conclude by observing that, for non pathological models, the above lower bound
is of the order of log(]V]), in agreement with the general uppr bound proved in
proposition 3.9.

Proposition 3.7. Let V, A, B be as in Proposition 3.5. Let
N =|0fAnB|A|6FBN A
Then there exists k = k(d, ) such that
inf gap(Li4,py) 2 exp[ k[l J|lv V]

Proof. We can assume N = |0} AN B|. Consider a new interaction J° such that A
and V\ A are decoupled, i.e.

JY = {Jx if XNorANB =10
0 otherwise

We have clearly Y 5. |[Jx — J%|| = 0 unless z is in a neighborhood of radius r of

90 AN B, hence
D> x = Ikl < BN
z€V X>Oz

for some k; which depends on d and r. This implies that for all functions f on €,

LT py (1 £) = exp(=4ka||J|IN) E]4% (£, ) (3.41)
Vary" (f) < exp(4ks]|J|N) Var), " (f) (3.42)

From (3.41), (3.42) and the variational characterization of the gap (3.12), it follows
that

T 0
gap(L{; ) > exp[~8ka[|J|[N] gap(L7, ) (3.43)

In order to estimate the gap for the block-dynamics with couplings J°, we just
notice that the hypotheses of Proposition 3.5 are satisfied with e = 0, and thus

0
gap(L{JA’;,}) >1. O

The second important result is a very general lower bound on the spectral gap of
Glauber dynamics in an arbitrary set V CC Z?. Tt says that the spectral gap is
always larger than a negative exponential of |V|£'§—1 Notice that if V' is cube then
|V|% is simply its surface. In this case the bound is certainly optimal, at least
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in our general setting, since it is known that for several models of lattice discrete
spins in the phase coexistence region, the activation energy between different stable
phases is proportional to the surface of the region in consideration (see [M] and
[CGMS] for more precise statements for the Ising model). Apparently the situation
for continuous spins systems can be very different. For Heisenberg models, in fact,
it is believed on the basis of spin-wave theory (see [B1], [B2]) that, at least for cubic
regions, the spectral gap does not go to zero faster than the inverse of the volume.
It is a challenging problem to actually prove it!

Theorem 3.8. Let d > 2. There exist k(d,r, 1), such that, for each A CC Z% and
for each T € Q, we have (c,, was defined in (3.3))

d—1
gap(L}) > cmexp[ —k ||| AT ] (3.44)
Proof. For each non—negative integer n, let
(Kn) = the inequality (3.44) holds for all A € F such that |A| < (3/2)"

We want to show, that (K,) holds for all n € Z,, by proving that there exists
no(d,r) € Zy such that (K,,) holds, and such that, for all n > ng, (K,) implies
(Kn+l)'

Assume then that K,_; holds, and take any A such that (3/2)""! < |A| < (3/2)".
Let v = |A|. Using a geometric lemma proved in [CMM1] (see Proposition Al.1
there), it is possible to write A as the disjoint union of two subsets X and Y, such
that

(a) v/2 — kT < |X|<v/2

d—1

(b) 6-(X,Y)| < kv 2
where

5,(A,B)= (8 ANB)U (87BN A)

and k; depends only on d and r. There exists then no(d, r) such that if n > ng (and
thus v > (3/2)™ 1), then |Y| < (2/3)|A]. So we can apply the inductive hypothesis
to both X and Y. Moreover proposition 3.4 shows that

Inf gap(L}) > inf Wei{n}gY} gap(Liy) inf gap(Lix,yy) (3.45)

where, as usual, the last term refers to the block dynamics. By Proposition 3.7 we
know that

d—1
: T > —kz”J”’UT
Inf gap(Lixy)) 2 €

for some ko = ko(d,r). Together with the inductive hypothesis on X and Y, this
gives d—1 d—1
inf gap(L}) > e exp[ ~KIJI|[Y 1" — ko707 ] (3.46)

Since Y| < (2/3)v, we have

ko

d—1
inf gap(L}) > cexp| —k||J|lv = ifk > ———0p—
inf gap(L}) > cm exp[ k|| J[jv "7 ] Ty
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In this way we have shown that (K,,) implies (K,41) for all n > ng(d, r).
All is left is to prove (Kp,). For this purpose we observe that

LT
e~ 2=l < *7——((—0% < 2M=TIIAL for all 7.5 A, J, (3.47)
KA

Choose now any A with volume not exceeding (3/2)™ and let Ly be the generator
of the heat-bath dynamics with J = 0, i.e.

Ia=) Liy =D ({5 -

TEA TEA

Since all f{w} commute, it follows that gap(EA) = gap(f{m}) =1 (the last equality
can be checked via an explicit calculation). From (3.3), (3.12) and (3.47), it now
follows that

gap(Ly") > gap(La) e S ¢ e=mt 1 > ¢ exp [ — (6 + &1)||]1(3/2)™ ]

which implies (Ky,) (and then (3.44)), if we take k > (6 + x1)(3/2)". O

3.8 General Results on the Logarithmic Sobolev Constant

Here we recall two well known results concerning the logarithmic Sobolev constant.

Proposition 3.9. For each A CC Z% we have
¢o(LR) < |4+ (4] + 21082) Al | (gap(L})) "

Proof. The proposition follows from (3.12), Proposition 3.10 below, and from a
trivial estimate on inf, p} (o).
a

Proposition 3.10. Let Q be a finite set, let u be a probability measure on (9, 2%)
and assume

= inf >0
po = inf p(z)
Then, for each positive function f on ), we have

p(f*log f) < (4+ 2log ug ') Var(f) + u(f?) log /u(f?)

Proof. We can assume p(f?) = 1. If we let f = pu(f)(1 + g), we find u(g) = 0 and
1(g%) = Var(f)/u(f)?. Let A be the set of all z € Q such that |g(z)| < 1. We can
then write

p(f*log f) = p(f*log f Ta) + pu(f*log f Lac) (3.48)
Let’s denote by X; respectively X, the first and the second term in the RHS of
(3.48). Using the inequalities log(1 + g) < g and log u(f) < log u(f?) <0, we get
X1 < p(f)2ullg + 29 +9°)14]

< u(f)*[3u(g®) + ulgla) | = 3 Var(f) + u(f)2u(ga) (3.49)
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To take care of the last term we remember that p(g) = 0, so pu(gla) = —u(glac)
which implies

|u(gLa)| < pllg|Tac) < ((g®)p(Lae))? < u(g?)
Thus we get X7 < 4Var f. As for X,, we write

X, < (igg log f(z) ) p(f*Mae) < log || flloo p(f2Tac) (3.50)

Finally we observe that || f||oo is bounded by (u(f?)/po)/? = ug(l/z) while

p(f?0ae) = p(f)?u((1 + 29 + g°)Mac) < 4u(f)’p(g®) = 4 Var(f)
This concludes the proof. [

Proposition 3.11. Given a finite set V CC Z% and two probability measures on
Qv, 11 and vy, assume ||§%;HOO \Y ||%’:%Hoo <e. Then

cs(v1) < e2cq(v2) (3.51)
Proof. Inequality (3.51) follows immediately from the bound

va(|Vy £?) < en (Vv f1?)
and the identity

v(f*log f%) = v (f*)log(va(f*)) = minvi (f*log £* — log(a) f* — f* + a)

together with the observation that the expression f2log f2 — log(a)f? — f% + a is
non-negative for all positive f and a (see [HS]). O

3.9 Possible Rates of Convergence to Equilibrium
We conclude this general section on the dynamics with a discussion of the possible
rates of convergence to equilibrium when the infinite volume process is ergodic.
The flavour of the results discussed below is that, for local functions f, either the
convergence of T'(t) f to u(f) is very slow (e.g a small inverse power of the time) or
it is exponentially fast.

Let us first consider the attractive case. Define

p(t) = P(a,}(0) # o; (0)) (3.52)

where P is the global coupling constructed in section 3.3, ;% denotes the dynamics in
infinite volume starting from the configuration identically equal to +1 and similarily
for o; . It is easy to see that if p(t) tends to zero as ¢ — oo then the infinite volume
dynamics is ergodic. In fact, for any local function f, we can write

S;lngt(f)(U) - L))l = S;l}})lE(f(Uf) ~ fleD)I
< IFI sup P(o7 () # 0 (2))
zE€Af

= [If1ll o(t)
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where we used (3.10) and (3.11) together with translation invariance.
The main result on the absence of intermediate speed of relaxation to equilib-
rium in the attractive case can then be formulated as follows (see [Hol])

Theorem 3.12. There exists two constants ¢ and ty depending only on the flip
rates and on the range of the interaction r such that, t¢p(t) < e for some t > to
implies that p(t) decays to zero exponentially fast.

Proof. The proof is based on the following key inequality valid for all ¢ > 0:

p(2t) < Ctlp(t)? +e™* (3.53)

for a suitable constant C.
Let us in fact assume (3.53) and define

u(t) = 24(Ctt + 1) (p(t) v e/?)

Then, by explicit calculation, u(2t) < u(t)? and thus, if there exists a time t, such
that u(tg) < 1, then u(f) tends to zero exponentially fast. The existence of a time
to with the above property is precisely the assumption appearing in the theorem.

To prove (3.53) let v;°~ be the joint distribution of o' and o, given by
the graphical construction. Because of (3.11) »,~ is above the diagonal i.e.
v ((€,m); € > 1) = 1. Let now x; be the characteristic function of the event
that o} () = o, (z) for all |z| < kot, where ko appears in lemma 3.2. Then, using
the Markov property, we can write p(2t) as:

p(2t) = P(03,(0) # 03(0))
= [ w6 &) (O £ of ) (350
+ [ (€)1 - x)B(EF0) £ of 0)
The first term in the r.h.s of (3.54) is bounded from above by e~ because of lemma

3.2. To bound the second term we observe that, because of monotonicity in the
starting configuration,

I

P(05(0) # of (0)) < p(2)

for any £ > £'. Moreover

(2kot + 1)%p(2)

N =

[wi e - <

because of translation invariance and the definition of p(t). Thus (3.53) follows and
the theorem is proved. 0O

Let us now examine the more difficult, non-attractive case. The analogous of theo-
rem 3.12 reads as follows (see [Yol])
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Theorem 3.13. Assume that for some Ly, some positive non—increasing function
¢(t) satisfying 3, n*4=Vep(n) < oo, any set V multiple of Qr, and any local
function f

sup ui, (175 (1) f = 1y (N)1) < Ifllo [A£] 6(2) (3.55)

Then there exists Ly, a positive constant m and for any local function f there exists
a constant C'(f) = C'(|Af|, [|flloc) such that for any set V multiple of Qr;

sup [ T7(8)f = i ()l < C'(1) ™

Proof. The idea of the proof is to show that the assumption of the theorem is
sufficient to guarantee that there exists L{ such that property SMT(V,l,m) for
some / and m and all sets V' which are multiple of Q; holds. Once the exponential
decay of covariances is available then we get, thanks to theorem 4.6 below, that
there exits a finite constant c¢;° such that

sup ¢s(LY) < oo
T

for all sets V' multiple of Qr;. Thus the thesis follows from theorem 3.3.

In order to prove strong mixing we first establish some form of decay for covari-
ances of the Gibbs measure uj,. For this purpose let f and g be two local functions
with supports contained in the set V multiple of Qr, and let { = d(Af, Agy). Formula
(3.24) written for ui,, together with (3.55), gives the following bound

115 (£39)] < llglloo 1/ lloo |8 £16(2k510) + [LFI Mlll1A£] [Agle™ ™

i.e. the decay of covariances for large values of [ is governed by the function ¢(2) A
e~t. To conclude the proof we appeal to proposition 2.11. O

The above result indicates that a power law decay to equilibrium in the L! sense
is enough to get exponential ergodicity. One possibility to establish such a weaker
decay is through generalized Nash inequalities (see e.g [SC] and [BZ]).

Let cy(Lg, @), @ > 0 and Ly < oo, be the smallest constant c such that the
following inequality holds for all sets V multiple of 1, and all local function f:

Vary, (F)1F* < c€5(L DR VreQ (3.56)

With the above notation we have the following result

Theorem 3.14. Assume that ¢y (Lo, ) < oo for some finite Ly and some a <
(6d — 2)~!. Then the conclusions of theorem 3.13 hold.

Proof. Let us fix a set V multiple of Qr,, a boundary condition 7 € Q and a local
function f with zero mean w.r.t. the Gibbs measure pj,.

Thanks to theorem 3.13 it is sufficient to bound the decay rate to equilibrium
of T{(t) f in the L'(du7, )-sense, uniformly in V. For this purpose define

fe=Ty @) f
Ut = Var(,(ft)
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An explicit computation gives

g = =2Ey(fe, fr) < — e (3.57)

2 .
en ()|l fell*

for some o < (6d — 2)~!, because of (3.56) together with the assumption of the
theorem.

Unfortunately, contrary to the LP-norms, the seminorm ||| ;||| is not obviously
bounded from above by |[|f|||. However, thanks to lemma 3.2, it is quite simple to
check that

el < At £l

for a suitable constant A. We have in fact that

7l = 3 sup | E(7 (@ 77") = £ 7))
Y
<D IVeflloosupB(oy"" ™™ (2) # 07 7(x))
Yy z n

S EAAN+I_IVeflloo Do supP(o)*" ™" (2) # 07" (x))

yid(z,y)2kt "
< 2(kt)4IF1I

if the constant k is chosen large enough. In the last step we used the bound (3.8)
in order to estimate IP’(U,}/’J’T’"y(x) # atV’J’T‘"(:c)) when d(z,y) > kt.
Thus (3.57) reads
i < =2(en(@)AJf])P%) T ¢+
Since 2da < 1, this differential inequality implies
uy < Cyt~(172do)/a (3.58)

for a suitable constant Cy depending only on || f||oc and |Ay|.
To conclude the proof it is enough to write

T T —(1— 1/2
py (15 () F)]) < w/? < [Cpt= (2] (3.59)
and notice that the r.h.s of (3.59) satisfies the hypothesis of theorem 3.13. O

We conclude with an example of a spin system whose infinite volume dynamics is
ergodic but with an algebraic decay to equilibrium (see [Ho2]).

Let us consider the two dimensional Ising model (see (2.4)) at the critical tem-
perature ¢.e. we take d = 2 and a two-body ferromagnetic interaction of the form

Ja = {,gc if A= {z,y} with da(z,y) <1

otherwise

where 3, = %log(l + \/5)
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It is well known (see e.g [MCoy]) that the above system has a unique infinite
volume Gibbs measure y with polynomially decaying correlations functions. More

precisely
e 1081 (((0,0)0((@1,0)] _ 1
z1-00 log(z1) K

where o((x1,z2)) denotes the spin at the site z = (z1,z2). Given now a time ¢, let
z = (| kot],0). Then, using reversibility together with lemma 3.2, we can write

w(0(0)o (@) = w(Tt/2)o(0)r())
< w((T(t/2)0(0)) (T(t/2)o(x))) + 26~
< 1 T(/2)00) e | T(t/2)0 ()l + 26~
= Tt/ (O3, + 20~
log(I T/ (0) ) 1
tl—lglo log(t) = 4

Thus the relaxation to equilibrium is not exponential.



4. One Phase Region

In this section we discuss the main results on the exponential ergodicity in the
absence of a phase transition. In this case equilibrium is reached by an homogeneous
process: far apart regions equilibrate in finite time without exchanging almost any
information, very much like an infinite collection of non-interacting continuous time
ergodic Markov chains.

We first discuss the attractive case and we prove exponential ergodicity of the
infinite volume dynamics under the weak mixing condition (see definition 2.3). Then
we turn to the general case and prove exponential ergodicity uniformly in all cubes
under the strong mixing condition (see definition 2.4). We refer the reader to [MO1],
[SZ], [LY], [La], [MO2], [Yol] and references therein to have a complete overview of
related results under similar assumptions.

4.1 The Attractive Case

In this first paragraph we assume that the dynamics is attractive. In this case it is
not difficult to check that condition WM (V,C,my) for all V cC Z¢ is equivalent
to the following

There exist positive constants C and m such that, for any integer L
w5, (0(0) = pp, (0(0)) < Ce™F (4.1)

Indeed, by the very definition of variation distance, WM (V, C,m) for all V cc Z4
trivially implies (4.1). To see the converse, let v{’~ be the joint representation
above the diagonal of the two Gibbs measures u$ and py, given by attractivity (see
section 3.4) and set, for any z € V, I, = d(z,8;7V). Then, thanks to attractivity
and finite volume ergodicity, we can write

sup Hl""\-/l,A - N{ZAH = Ssup sup |N(/‘,A(X) - ”‘{/%A(X”

T1,T2 71,72 XEFA
< sup lim P(o}"™" % (z) # 0, ™" () for some z € A)
T1,Tg 100
: Vo + V- +
< lim S P(o) (@) # 0 ()
TEA
=Y v (o) # (=)
z€EA
< Y Ui o) £ 1(w)
TEA
< Z Ce—md(z,aj'V)
zEA
< Z C«e—md(z,y)
TEAYEITV

Thus WM (V, C,m) holds.
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Theorem 4.1. In the attractive case the following are equivalent:
i) WM(V,C,m) for all V CC Z¢
ii) There exists a positive constant m and for any local function f there exists a
constant C'y such that:

IT(f) = w(Hlloo < Cre™™

Proof. Let us first show that i) — ii). For this purpose and as in section 3.9 we
define

p(t) = P(a; (0) # o7 (0))

As in theorem 3.12, if p(¢) decays exponentially fast to zero then the theorem follows.
Moreover, thanks to theorem 3.12, the exponential decay of p(t) follows once one is
able to show that p(t) goes to zero faster than t~%. In order to prove such a weaker
decay of p(t) let us first show, as a preliminary step, that under our assumption
p(t) = 0 ast — co.

Lemma 4.2. Under the same assumption of theorem 4.1 p(t) — 0 as t — co.

Proof. Using the attractivity of the dynamics, for any V CC Z¢ such that 0 € V
and any t > 0

p(t) < P(o""*(0) # 07 (0)) (4.2)
where atv "% denotes the dynamics in V with plus boundary condition and initial
condition identically equal to +1 and similarily for (ftV "7, If we pass to the limit

t — o0 in (4.2) and use finite volume ergodicity, we get

limsup p(t) < 2[u;(0(0)) — uy ((0))] (4.3)

t—o00

Finally, by taking V' as a large cube centered at the origin and using weak mixing,
we get that the r.h.s of (4.3) can be made arbitrarily small. O

As a second step, using weak mixing, we will establish a powerful recursive inequality
satisfied by p(t) which, combined with lemma 4.2, will show that t%p(t) — 0 as
t — oo.

Lemma 4.3. Under the same assumption of theorem 4.1, for all t > 0 and all
LeZy
p(2t) < 2(2L +1)%(t)? + 2Ce~™F

Remark. Although our inequality is apparently very similar to the one appearing
in the proof of theorem 3.12 on the absence of intermediate speed of convergence
to equilibrium, the differences between the two are actually quite deep and mainly
consists in the freedom of the parameter L that in the proof of theorem 3.12 was
fixed and of the order of the time ¢.

Proof. We write p(2t) as:
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p(2t) = / du(n) [P(05(0) — 03,(0))] + / du(n) [P(03,(0)) — 05,(0))]  (4.4)

and we show that each one of the two integrals is bounded by a half of the r.h.s. of
the recursive inequality.

Let ;™" be the joint distribution of o; and oy given by the graphical construc-
tion. Because of (3.11) v is above the diagonal i.e. v;"((€,7); € > 1) = 1.
Then, using the Markov property, we can write:

[ ) p(e30) # 4,0)] = [ duto) [t e,€) 0 B(o50) £ 0f )

4 / dyu(n) / (€ €)1 — x2) P(05(0) # of (0))

(4.5)
where X, is the characteristic function of the event that £(z) = ¢/(z) for all |z| < L.
By attractivity and traslation invariance, the second term in the r.h.s. of (4.5) can
be bounded from above by:

L+ %) [ dulrt "(€0) # €0) < LAV (46
Let now, for any given 7 € Qp, , X, be the characteristic function of the event :

&(z) = &(z) = 7(2) Ve

XL = j{: XLJ

TEQR,

Thus

and therefore the first term in the r.h.s. of (4.6) can be written as:
[antn S [aire.) s plof©) # of ) (47)
TE€QE,

Attractivity allows us to bound the quantity E(o}(0) # afl(O)) by imposing extra
plus and minus boundary conditions outside the cube Br. More precisely :

P(0}(0) # of (0)) < B 4(0) # 0¥ (0) (48)
Thus (4.7) is bounded from above by :

/ du(n) Y. / v (€, €)X P(oP 2T (0) # a1 TT(0) <

TEQE

/ autn) 3 vPEG) = 70) Vi € Qo) PP T(0) £ 0PETT(0))]  (49)

TEQE,
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We use at this point attractivity to write
P(o7""7(0) # 07 77(0) = 2E(o7 5T (0) — 074 7T(0))

and we notice that, since f(r) = ]E(Uf ©+7(0)) is an increasing function of 7 and
p < pfh, , then

/ () / 6 E)1(€) = [ dutn)s ()
< / dih, () E(f (@)
— [ dup, ) EEE0)

= up, (2(0))

where we used the Markov property and the reversibility of af L '“JEGL' A
similar reasoning shows that

[ aut) [ a6 €)5(6) 2 uz, (0(0)
Thus the r.h.s of (4.9) is bounded from above by
ub, (0(0) ~ 15, (0(0) < CemE (4.10)
because of the weak mixing assumption. O

As a final step we combine together lemma 4.2 and lemma 4.3.

Lemma 4.4. If, for some positive m and C, p(2t) < 2(2L + 1)%p(t)? 4+ 2Ce~™L
forallt >0 and all L € Z, and if lim;_,, p(t) = 0, then

. d _
At =0
Proof. Assume that ¢ is so large that
4
2(=—log(p(t)) + 1)?+ Ce™)\/p(t) < 1 (4.11)
and set L(t) =[ — 2 log(p(t))]. Then

4
p(2t) < 2(~—log(p(t) + 1) p(t)? + 2 GBI < p()d

Let now to be so large that p(tg) < 1 and (4.11) holds for all ¢ > t5. One gets at
once that for alln € Z,

p(2M0) < plte) D"
from which the lemma follows. O

Once lemma 4.4 is available then we can apply theorem 3.12 and conclude that p(t)
must decay exponentially fast.
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ii) — i).
Clearly iz) together with attractivity imply that the infinite volume dynamics is

ergodic with a unique invariant measure p (see Corollary 2.4 in chapter III of [L]).
Thus we write:

ph,(0(0) = pp, (0(0) = [pg,(c(0) — u(@0)] + [ue(0) — pp,(@(0))] )
(4.12
Let us estimate /‘EL (¢(0)) — u(o(0)). By adding and subtracting the term E(o;"(0))
and using the exponential convergence to equilibrium together with attractivity, we
get

0 < ph,(0(0) — u((0) < Ce™™ + uf (0(0)) —E(o7F(0)) (4.13)

We now choose the time t as t = k; 'L where the constant ko appears in lemma 3.2
and add and subtract the term E(UfL’J“’“L(O)). Using lemma 3.2 the r.h.s. of (4.13)
can be bounded from above by :

Ce—ko_lmL+26_k(’_1L—f—p,EL(U(O)) _ ]E(a.tBL,+,+(O)) < Ce_k(J_lmL+26_k0_1L

since, by attractivity, pf; (o(0)) < E(a7%(0)).
In conclusion we have shown that uf (0(0)) — p(c(0)) is smaller than Ce~Fko 'mL 4

2¢=%o 'L The same argument applies also to the other term in the r.h.s. of (4.12)
w(@(0)) — pp,(0(0). O

4.2 The General Case: Recursive Analysis

Here we prove exponential ergodicity under a strong mixing assumption on the
family of all parallelepipeds with ratio between the smallest and the largest side
greater than a given fixed constant. For simplicity we carry out our analysis in two
dimensions but the extension to higher dimension is straightforward.

Let R(l1,l2) denote the rectangle

R(ly,lp) ={(z1,22) €Z* 0 < 2y < 11 =1, 0 < mp < Ip—1 } 5 li,lo € Zy

and let Ry be the family of “fat” rectangles with “size” smaller than L, namely
those rectangles R(ly,ly,z) = R(l1,12) + z, z € Z?, with I3 Aly > 0.1(1; V I3) and
Iy vig < L.

Let also ) )
g(L) = min mingap(LF)

(L) = up es(pg)

where gap(L%) and cs(u%) have been defined in (3.12) and (3.19) respectively.
With the above notation we will prove the following key recursive bounds.
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Theorem 4.5. Assume SMT(R,l,m) for all R € UL>lRL Then there exists a
positive constant k = k(d,r,||J||) such that

9(2L) = (1 - \/——)Q(L)

for all L large enough. In particular infy, g(L) > 0.

Theorem 4.6. Assume SMT(R,l,m) for all R € Uy, Rr. Then there exists a
positive constant k = k(d,r,||J||) such that

k
cs(2L) < (1+ ﬁ)cs(L)

for all L large enough. In particular supy, ¢s(L) < oc.

Proof of theorem 4.5. The second part of the theorem is a straightforward conse-
quence of the recursive bound. Thus we concentrate on what happens to the gap
when one doubles the length scale. In order to have a clear understanding of what
will follow let us consider first the trivial case of zero interaction, J4 = 0V A CC Z¢,
in e.g two dimensions. Let us take a cube Q21 and divide it into two equal ver-
tical non-overlapping rectangles R;(L,2L). Then formula (3.30) naturally allows
us to compute the ratio between the spectral gap in @21 and the spectral gap in
R;(L,2L), i = 1,2, in terms of the spectral gap of the block dynamics in Q,z, with
blocks R;(L,2L), i = 1,2. Since the interaction is zero this last quantity is exactly
equal to one either by exact computation or because of proposition 3.5, and we get
that spectral gap in Q21 is equal to that in either one of the two rectangles. We
can at this point repeat the whole procedure for each one of the two rectangles and
prove finally that the gap does not change when we double the scale. When the
interaction is present and strong mixing holds one could be tempted to proceed in
exactly the same way. However in the interacting case a lower bound on the spectral
gap of the block dynamics with just two blocks is no longer that simple unless the
two blocks overlap a little bit and one can appeal to proposition 3.5. On the other
hand if the two rectangles overlap then an error term due precisely to the overlap
appears in the formula comparing the single site dynamics with the block dynamics
(see (3.29) and (3.30)). In particular, without any particular effort, one would get
immediately a bound like

g(2L) > %g(L)

which already implies that g(L) > L~ for a suitable @ > 0 and any L large enough.
The way out to show that the factor % can be actually replace by 1 — —\}% is to
“spread out” over a non-zero fraction of the starting volume @57, the error term in
(3.29). This appears to be a new idea and in our opinion leads to a rather simple
proof of both theorems 4.5, 4.6. Let us now explain the details.

If (L) = g(2L) there is nothing to prove so we suppose that g(2L) < g(L). Let
us consider a rectangle R = R(l1,l3) € Rgr and assume, without loss of generality,
that the longest side is l;. Since we are assuming that g(2L) < g(L) necessarily
L <y <2L.
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We set d = [V/L] and, for any integer 1 < n < ﬁ, we cover R with the following
two rectangles

RZOPZ{.Z‘QR; lz/2+(n—1)d<$2 < lz—l}

R ={z € R; 0 < z3 < l3/2+ nd)}

Notice that, since I; > 0.1l; and l; > L, we can use our assumption and apply

proposition 2.12 to get that

dﬂTRtOP d»u';top
sup Hl - z < sup 1- 2
reQ dugp ot RbetnRY? lloo = 1 neq:rpe=nge Al peop 107 RENRLT (oo
< e—2CVL

for any L large enough and a suitable positive constant C independent of L.
Thus, thanks to (3.12), (3.29), (3.33) and proposition 3.5, for any f € L*(Q,du3,)
we get

1
Varg(f) < )\(T,L,Rﬁl"p,Rf:’t){Sﬁ(f, H+ Euﬁ( Z CJ(:E,U)Ivzflz)} (4.14)
T€RLFPNREot
where

A(T,L,Ri"p,RZOt) =(1- e—G\/f)—l(gap(L;wp) A gap(L;{bot))ﬂ

Notice that, as n varies, the strips RIP N R%* are disjoint. Therefore, if we average
(4.14) over n € [1,s%] and use the trivial bound

[L/10d]
> 5iR( D0 @ o)VafP) < ER(£S)
n=1 J)ER:,OPPIR',’LM
we get
T L — 0] 0 T
Va‘rR(f) < (1 + [m] 1) sup A(Ta L7 sz p’ REL t)gR(fa f) (415)
1<n< i
ie
Cy .
T > 1 o+ T op T ot .
gap(Lp) = (1= —%) | _ min  (gap(Lier) A gap(Lisar) (4.16)

for a suitable positive constant C;.

Let us now fixn € [1, ﬁ] and examine the spectral gap of the bottom rectangle
RZ°| the reasoning being similar for the top one.
There are two cases to analyze:
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a) l; < L In this case one easily verifies that R%t ¢ Rs 1, and thus, by defini-
tion,

gap(Lpsoc) 2 9(3L)
b) l; > %L. In this case Rz"t € Ryr, but now the longest side is [, and the shortest
one is smaller than % +nd+ 1 which in turn is smaller than 1.2L since

lo < 2L and

L
TLdSE‘

In conclusion we obtain that the r.h.s of (4.16) is larger than

Cy . -
[1 - ﬁ] (g(§L) A R(l1 xr'l;l)lgﬁzz, gap(LR(hh))) (4-17)
I <1.2L,1,>3/2L

In (4.17), without loss of generality, we kept the longest side always along the second
coordinate direction.

Let us finally apply the lower bound (4.16) to an arbitrary element R(l1,l2) € Ror,
such that l; < 1.2L and l; > 3/2L and let us repeat the previous two—cases analysis.
Since I; < 1.2L, case b) above is no longer possible and thus we get immediately
from (4.16) that

min gap(Li, 1)) = (1 - \/—) ( L) (4.18)

R(l1,l2) € Ry,
1, <1.2L,1,>3/2L

By combining (4.17) with (4.18) we finally get

g(2L) = m71zn gap(Ly) > (1 - %) g(EL) (4.19)

In order to conclude the proof of the theorem it is enough to iterate two more times
(4.19). O

Proof of theorem 4.6. We proceed exactly as in the proof of theorem 4.5 but instead
of using block—dynamics with two blocks in order to relate the logarithmic Sobolev
constant on scale 2L to that on scale L we use conditional expectation. The reason
for this is that, contrary to what happens for the spectral gap, the Dirichlet form
of a block dynamics with few large blocks may have a logarithmic Sobolev constant
much larger than the logarithmic Sobolev constant of a corresponding single spin
flip dynamics (see the remark at the end of the proof of corollary 3.6).

If ¢;(2L) = cs(L) there is nothing to prove so we suppose that ¢;(2L) > cs(L).
Let us consider a rectangle R = R(ly,l2) € Roy, and assume, without loss of general-
ity, that the longest side is l5. Since we are assuming that ¢,(2L) > ¢,(L) necessarily
L < ly < 2L. Let also d, R°P, R%* be as in the proof of proposition 4.5. Then, for
any non-negative f € L2(, u%) such that p%(f?) = 1, we write

pr(f*log f) = uk (Hpsot (f* log f))

1
< [ supca(upued)] SHR(IV R fI?) + #R(97 108 9n)
ne(1,L/10d) "

(4.20)
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1
where g, = (MEZM (fH))2.
Notice that Ay, C REP\ R and that, as in the proof of theorem 4.5, our
assumption implies

< e—ZC\/f

o0

RyP\Rbet
for any L large enough and a sultable positive constant C' independent of L.

Thus we can use proposition 3.11 to estimate from above the second term in
the r.h.s of (4.20) by

- T 1 T T
Wh(gh10g9n) < (Lt €Y )ea(uon) SR (1Y piongnl®) + 1 (92) log (/R (93) )
(4.21)
Notice that the last term in the r.h.s of (4.21) is zero because of the identity p%(g92) =

pR(f?) = 1.

In conclusion the r.h.s. of (4.20) is bounded from above by

1 T
sup s (Wper) 5 R IV Rzer £17) +
nel1,L/10d] (4.22)
(1+e ) sup cs(puer)] 5 MR(IVRfopgnI )
n€l1,L/10d)

In order to conclude the proof we need an estimate of the term |V Rior gn|? in term
of quantities like |V RioP f|%. This estimate is provided by the following key lemma.

Lemma 4.7. In the same hypotheses of theorem 4.6 there exist two positive con-
stants k1 and ko such that

IV riergnl® < Hhpor 1V geon £17) + krgaor (IV gorneon £12) + €75V E o (1 o £17)
for all L large enough.

Let us postpone the proof of lemma 4.7 and let us conclude the proof of proposition
4.6. If we insert the bound of lemma 4.7 into (4.22) we get our final estimate

pp(f*log f) <

1
14 e heVL sup Cs(Uhoot) V Cs(UTiop )| =R (|V RFIP)+
( )5 o) Vst VRIS

1
ka4 sup  Cs(pheop )| =145 (|V moot ~ piop F12

[nE[l,L/IOd] (epiee)] 2 IV ryernnier I17)
for suitable constants ks, k4 and all L large enough independent of f.

By averaging inequality (4.23) over n € [1,L/10d] as in the proof of theorem 4.5,
we get our final bound

T 2 ﬁ’_
pr(flog f) < (1+ \/Z) ne[ls,lélilod][CS(MRbOt)VCS(MRMD)} pR(IVefI?) (4.24)
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for a suitable constant ks, any L large enough and any non-negative f € L*(Q, p%)
with p%(f?) = 1. By definition, such inequality implies that

k
_5) sup [Cs (,UITRZM) Vs (M;%;Op)] (4.25)

cs(2L) < (1+
VL' ne,L)10d]

for any L large enough.

At this point we continue exactly as in the proof of theorem 4.5 after (4.16)

and conclude that
k7

VL

for any L large enough and a suitable constant k7. Two more iterations of (4.26)
suffice to conclude the proof of the theorem. O

e2L) < (14 e (L) (4.26)

In order to conclude our analysis of the logarithmic Sobolev constant we have to
prove lemma 4.7. This seemingly technical point is however a key part of the whole
approach and its proof requires a new recursive argument that we present in the
following lemma.

Lemma 4.8. Given R € Ry, and m > 0, define k,,(R) as the smallest constant k
such that

Ve [RUD I < kR(VIP) + 30 e ™= Mup (0, 0)  (427)

YyER

for all T € Q, z € 87 R and f € L*(Q0,du%), r being the range of the interaction.
Let also ki, (L) = suppeg, km(R).
Then, in the same hypothesis of theorem 4.6 there exist two positive constants mg
and a such that

km(2L) < (14 e F)km(L)

for any m < mg and any L large enough.

Corollary 4.9. In the same hypothesis of theorem 4.6 there exist two positive
constants k and m such that, for any rectangle R(l1,l3) with Iy Alz > 0.113 Vs, for
allT € Q, z € 0FR and f € L?(Q,du%)

| Var/HR(F) P < k(uR(Vaf 1) + D e ™ Vg (v, f1%) (4.28)

YyER

Proof of the Corollary. It follows immediately from lemma 4.8 that the
supy, km(L) < oo if m is small enough. Thus the statement for “fat” rectangles
with large enough size follows from lemma 4.8. The statement for “fat” rectangles
with small size is obviously true if we take the constant &k large enough. [

Proof of Lemma 4.7. Take z € R!P. Then, if z ¢ 0; R, we compute directly
|V29n? to found that
{vzgniz = )u"]-{l;ot(]vzfl2)
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If instead z € 0;F R%* we apply corollary 4.9 and get
Vagnl® < E(0hoc (V1) + D e ™ ¥ g 1V, f1))
yeRELot

for a suitable constant k£ and m. By summing over x € R!°P we get the sought
bound. 0O

Proof of Lemma 4.8. Given m > 0 and L large enough, we suppose that k,,(2L) >
km(L). Let us consider a rectangle R = R(l1,l2) € Ror and assume, without loss of
generality, that the longest side is /2. Since we are assuming that k,,(2L) > k., (L)
necessarily L < l < L. Let us also fix z € 7R and f € L?(Q,du}). A simple
computation (see e.g {Z] or [MO2]) shows that

Ve £l =2/( f)e| Vo]l (4.29)

where (g)z = 3(9(c®) + g(0)).
Thus, if

IVaur(f?)] < 2/(\/R(f?))e] A
then
IVar/uR(f2)] < A (4.30)

Let us compute |VuR:(f2)|. For this purpose let R;, i = 1,2, 3 be the rectangles in
R defined by

Rl:{($17$2)€Z2;0Sx1Sll_l,OS-Z'zS %}

Rz:{(xh!ﬁz)GZ?;OSml <lL-1, % < zp < 342
l

Rs = {(z1,72) € 2% 0 < 3y < I — 1, 52 <z <y}

Then , depending whether the second coordinate x5 of the site z lies in the interval
I = (=00, 23], I = (313, §15] or I3 = (}l2,00), we write, using (2.2),

Veui(f)| = Vo (uk, () i 22l i=1,23 (4.31)

Let us consider for shortness only the first case, x5 € I1, the other ones being similar.
A simple computation shows that

IVarg (g, (P < | 8R((he — Dk, ()] + | 15 (Vark, (f2)] (4.32)
where h; = ‘gfi . Notice that, since d(z, R\ Ry) > 0.1l3 > 0.1L, for any L
R |R\R;

large enough our assumption together with proposition 2.12 implies

|he — oo < e L
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for a suitable constant C independent of 7, L and z. Thus the first term in the r.h.s
of (4.32) can be bounded from above by

=" i (P Vs (72)
ke_CLm\/Varg(m) (4.33)
ke—cL< \/@)z{Var}(f)}%

Fe 8\ Jur () e {uR (VR IR}

for a suitable constant k. In the above steps we used the simple bounds valid for
any non-—negative g

IN

IA

IN

A

| 1513 9)] < IIhllcoy/20% (9)/Vark (v3)

I duf

2|7 oo
Wy,
T

IA

Varh (\/uf (£2)) < Varg (f)

T* d/*l'-rz T
Varg (9) < |52 |, Vark (o)
HR
(3.12) and the fact that sup supper, gap(Ly) ™! < oo.

Let us bound from above the second term in the r.h.s of (4.32). We observe
that each R;, i = 1,2, 3, either belongs to Rs s, Or it belongs to R2r but with the
shortest side smaller than L, depending whether l1 is smaller or larger than 3L
Thus we can use the deﬁmtlon of k(L) km(R) together with (4.29) to write

IVaii, (F2)]
< 2\ /ug, (7))o VER D 1R, (Vaf2) + 32 emmlovlyn (17, 12 )7 (4:34)
YyER,
with

SUD Ry ipeRgy km(R)  iflp > %L
(x) hs
km(3L) otherwise

Above, as in the proof of theorem 4.5, without loss of generality we kept the longest

side always in the second direction. A final Schwartz inequality together with (2.2)
gives

%([vzﬂRl (.f )
<

2(1\/1R(F))e VERL(D{pR(Vf1P) + D e ™= Yup (19, ] 1% (4.35)

yER,
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In conclusion, if we combine together (4.30), (4.33) and (4.34) we get

Vo 1R (F2)? <
(ke (VRS + VEL D {BR(Va ) + D e ™5V un (9, f) )}%}

YyER
< 3ke LR (IVRS®) + (1 + ke L)k, (L) { R (Vo £1?)
+ 3 emmlevlug 1V, £12)}

YER
(4.36)

where, without any harm, we have extended the summation over y € R; to the
whole rectangle R.
Observe that

3ke™CEpR(VRSP) < e @DEY 7 emmiemslun (1, £1%)
yER

if m is small enough compared to the constant C and CL is large enough. Thus the
r.h.s of (4.36) is smaller than

k(D) (1 + e~ O WR(IVaf 1) + D e ™=V up (v, £1%)}
yER

i.e.

km(R) < kp(L)(1 4 e~ (©79E) (4.37)

If we now reapply the whole procedure to an arbitrary rectangle in Roz but with
the shortest side smaller than L, we get from (4.37) that

3
Kn(L) < (14 8 b (C1)

In conclusion

ko (R) < (l+e“(0/3)L)2km(gL) VR € Ras (4.38)

provided that L is large enough and m small enough.
Two iterations of (4.38) suffices to conclude the proof. O

We conclude by stating one final result, whose proof can be given along the same
lines of the previous ones, that will turn out to be quite useful when discussing
systems with random interactions.

Proposition 4.10. Fix Lo and let A be a multiple of Qr,. Assume that there
exists m > 0 such that SMT(V,Ly/2,m) holds for all subsets V of A that are
multiples of Qr,. Then there exists two positive constants § and e = e(m) such
that, if Lge_m‘/L_0 < g, then

. o1 ,
infgap(L}) > 5 infgap(Lg, )



143

Moreover, if gap(Lg, ) > e~™%o, then

sup s (pp) < 2supcs(pg, )
T T



5. Boundary Phase Transitions

In this section we analyze more closely the problem of the exponential ergodicity
in the uniform norm of the dynamics for three dimensional systems in the one phase
region.

Already in [MO1] (see also [MOS]) it was discussed the possibility that, even
if the interaction is such that there is no phase transition and weak mixing holds,
in a finite large enough cube @) one could have some sort of “boundary phase
transition” which could slow down dramatically the approach to equilibrium.

We will provide here a substantial evidence that this phenomenon happens in
the three dimensional Ising model at low temperature and nonzero magnetic field
h (see (2.4)) for which weak mixing holds. More precisely if 3 is large enough we
will argue that it is possible to tune the magnetic field as a function of 8 in such a
way that the gap in the spectrum of the generator of the dynamics in a finite cube
with suitably chosen boundary conditions becomes exponentially small in the side
of the cube. Notice that, for the same value of the thermodynamic parameters weak
mixing holds i.e. theorem 4.1 applies and the gap of any attractive infinite volume
Glauber dynamics is bounded away from zero. Actually the same arguments that
proved theorem 4.1 could be used to show that the thermodynamic limit of the gap
in finite cubes with + boundary conditions is bounded away from zero [SchYo] (see
also section 5.3 below).

In order to clarify the discussion, let us consider the three dimensional Ising
model in a cube @, of side L, at low temperature and small, positive external field
h. As boundary conditions we take — on the bottom face V of the cube and free
(i.e. absent) on the other faces. Since the magnetic field is positive and the temper-
ature is very low, the typical configurations of the systems will be mostly plus spins
(plus phase) away from the bottom face. Thus there will be, with large probability, a
unique Peierls contour (i.e. a connected union of dual plaquettes separating nearest
neighbor spins of opposite sign) I' separating the plus bulk phase from the minus
boundary conditions on the bottom face, and it is quite clear that the statistical
properties of such a contour will play an important role in the mixing properties of
the Gibbs measure of the system and on the rate of approach to equilibrium of an
associated Glauber dynamics. Unfortunately a detailed analysis of the probability
distribution of the contour I' and its dynamical propertie requires quite deep ideas
and technology like the Pirogov-Sinai theory (see e.g. [Zha]). Such analysis becomes
simpler in of uses the so called solid-on-solid (SOS) approximation for I

5.1 The Solid-on-Solid Approximation

We approximate the contour I' with a two dimensional surface ¢ = {¢(z)}zev,
where the random variable ¢(z) € N represents the height of the surface at z above
the bottom face of the cube, and we assume that the probability distribution of the
surface with 1 boundary condition outside V is that of the solid-on-solid model
(SOS)

1
wy? (p) = —g exp [~ HY |
Zy
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where
J
HyY () = 5 > le@ =@l +hd el@) +J D lel@) - @)l (5.1)
z,yEV; z€V zEV yeve
le—yl=1 fz—yl=1

The SOS approximation corresponds to taking the original Gibbs measure and con-
ditioning on the event that for any £ = (x1, 3, —1) in V there exists a non—negative
integer (z) such that

_ -1 ifn < p(z)
o(z1,22,1) = {+1 ifn > ¢(x)

Although strictly speaking the above event has a very small probability w.r.t the
original Ising Gibbs measure, the SOS model is considered a reasonable approxima-
tion at very low temperatures (large values of J).

A kinetic version of the model is readily obtained by considering a Glauber
dynamics for it, namely a single spin Markov process on the configuration space
Q = NY, reversible with respect to //"[} (¢) and such that each move consists in
replacing at some site z, ¢(z) with ¢(z) £ 1 (but the new ¢ has to be non—negative)
with rates that satisfy H1, H3, H4 and are reversible w.r.t the Gibbs measure ,u"l,”/’.

Two cases one may want to keep in mind are () is the characteristic function,
s =+ and p®° = p(z) + 5)

c(x, '3 3) = min{e_JvasH(?w(W) , 1} X{cpz,s c Q}

and
-1
c(a,5) = [1+ xp(T0sa YV (9))] X" € )

where .
AcHYY(9) = HE, (p(2) + 5) — HE, (0(2)).

As before we will denote by Ll‘;”/’ the corresponding generator in the region V' with
boundary conditions . It is worthwhile to mention that, with above choice of the
jump rates, the dynamics becomes attractive.

For the SOS model described by (5.1), and variants of it, it has long been real-
ized (see e.g. [ BEF], [FP1], [FP2] and more recently [LM], [BDZ], [DM]) that the
relevant statistical properties of the surface ¢ are determined by the competition
between the attraction to the wall due to the external field A and the “entropic
repulsion” from the wall. Although the techniques to rigorously study these com-
peting effects are quite involved, nevertheless the basic ideas can be understood in
simple terms.

Imagine that the relevant configurations of the SOS Gibbs measure are “flat”
rigid surfaces at certain height, with isolated small fluctuations that we assume to
be only up or down parallelepipeds of unit base and certain length. Let us denote
by ®(k) the set of such surfaces which sit at height ¥ € N. Clearly, if ¢ € ®(k), the
downward fluctuations cannot be longer than k itself because of the presence of the
wall under the surface. Thus, if k < k/, the cardinality of ®(k’) is larger than that
of ®(k). Having this in mind one can then try to compute the value of £ such that
u’{,‘lp (@(k)) takes its maximum, or, what is the same, compute the ratio
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' (B (k)
i’ (2(k — 1)

where ) means free (i.e. absent) boundary conditions. One easily gets from (5.1)
that A(k) is approximately (neglecting the boundary conditions) given by

AE) =

Mk) ~ exp(—hL? + L%e~%7%)

where the term —hL? takes into account the energy one has to pay in order to lift
up by one unit a rigid flat interface, while the term L2e~*7* represents the entropy
gain obtained by increasing by one the height. Notice that the factor e=%/* is the
energy one has to pay in order to create a downward fluctuation of length k, namely
a fluctuation which can be present in a surface ¢ € ®(k) and not in a surface
pe®k-1).

The above computation suggests that, when L is very large and the magnetic
field h is decreased from value e=%7(*=1) to the new value e=*/%, the average height
of the surface should jump from k& — 1 to k. Thus there should exist a critical value
hi_1(J) between e~*/*~1 and e~4/* such that, for h = hf_,(J), the surface is
undecided whether to stay at height £ — 1 or k. It is such a situation that we call
“layering phase transition”.

In [DM] the phenomenon of “layering phase transition” was proved for the first
time. Their result was then extended and improved in [CM1]. Let us recall the main
result of [CM1], since it plays an essential role in our analysis of the non equilibrium
case.

Theorem 5.1. There exists J(} such that for all J > Jy there are positive numbers
{hL(J)Yemas | with kmaeqe = | €700 |, such that the following holds fork = 1,. . ., kmaa
1) ie—tle < hz(J) < 4e—4Jk

i) if h3(J) < h < h}_;(J) (define hy(J) = +00) then
a) there exists a unique Gibbs measure
b) there exist m(J, h) > 0, C(J, h) > 0 such that for any L > |8/h + 1|

o lug? (p(z0)) — 15 (¢(0))| < C(J, h)e ™ML

where ug’g’(cp(zo)) denotes the expected value of the height of the surface
at the center zo of the square Q1 with boundary conditions .
ili) if h = hj(J) there are at least two distinct extreme Gibbs measures.

Remark.
a) Notice that, although the spins ¢(z) are unbounded, ii.b) above is nothing else
but weak mixing in the attractive case (see section 3.1).
b) In [LMaz] the restriction k¥ < k.4, was removed and the proof of ii.b) was
considerably simplified.

A byproduct of the results of [CM1] is that if A} (J) < h < h}_,(J) then the typical

configurations of the Gibbs measure pgf are, in a sense that can be made precise,
“flat” surfaces at height k. On the other hand, at h = h}(J) and with free boundary
condition, in [CM1] it was proved that the +1 random variables
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. 1
o(a) = sign(p(e) = k - 5)

behave roughly as a two dimensional Ising model at low temperature with zero
external field and free boundary conditions, i.e a system in the phase coexistence
region.

The associated Glauber dynamics in a square Qr, of side L, with boundary
conditions ¢ and magnetic field h, was then studied in [CM2]. The main result of
[CM2] is

Theorem 5.2. In the same setting as in Theorem [CM1] we have, for all k =

L..., kmaa,

i) if hi(J) < h < hi_,(J) then there exist Lo(J, h), x(J, h) > 0 such that

h, >
[2f inf gap(Lg)) 2 K(J, h)

ii) if h = hj(J), then there exist positive constants Cy(J,h), Ca(J, h) such that
for all L > 10/h

Ch(J, h) e7207*E < gap(LA?) < Cy(J, h) e~ 107 E
where () means free boundary conditions.

Proof. The proof of i) goes as follows. Since the SOS system is two dimensional
one can adapt the arguments of [MOS] to transform the weak mixing condition ii.b)
of theorem 5.1 into the strong mixing condition of section 2.3 and then use the
recursive analysis of the proof of theorem 4.5 to get i).

To prove part ii), namely to find an upper bound on gap(L Ri (), (2)) one uses
the “look for the bottleneck” approach, i.e. one takes advantage of the variational
characterization for the gap (3.12) and choose an appropriate test function f which
illustrates how the system, in order to relax to equilibrium, has to make an excursion
to a very unlikely region of the phase space.

Given p € ) we set

o(z) = sign(p(z) — k — 1/2)
and, for U CcC Z2
My(o) = My(o(e) = 3. o)
my (o) =my(o(p)) = U™ My (o) .

In analogy with the solution of the similar problem for the two dimensional Ising
model in the phase coexistence region, we take as a test function

flo) =x{Mq, () > 0} — x{Mq,(p) < 0}.
Using (3.3), we find
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Eq-(£,f) <sup2 (,0,8) =" {| Mg, (¢)] < 2}
(5.2)

< 2em (4, h3) el (1Mo, (#)] < 2},
while

Ry, R0 Ry,
Varg,’ () = ngt" (Mg, (9) # 0} — (ug {Mq, (v) > 0} — utk," (Mo, (¢) < (E})
5.3)
The sougth upper bound now follows from the following two estimates valid for any
L large enough. These bounds should be compared with the analogous ones for the
two dimensional Ising model with free boundary conditions in the phase coexistence
region (see (6.24) and (6.30)).

h},0 1
NQkL {IMQL(‘P)l < 2} <e 1z JL

and
hy, 1
NQkL {peQq, : Mg, (o(p)) <0} >e LJL

0 —i
i Mo € Qq, : Mo, (0(p)) > 0} > em507%

5.2 Back to the Ising Model

Going back to the 3D Ising model discussed above, we can conclude that there is a
very good evidence that for three dimensional systems satisfying the weak mixing
condition it is possible to have at the same time

%\nf gap(L3) =0  and gap(Lya) > 0

due to the occurrence of some sort of “boundary phase transition”. Theorem 4.5 or
theorem 4.6 imply that in this situation the system cannot satisfy strong mixing.

It is interesting to better understand how the expected value of some local
observable over the dynamics in a finite cube @, at time ¢ is affected by the phe-
nomenon of boundary phase transition. As before we consider this problem for the
three dimensional Ising model (2.4) in @ with the boundary conditions described
at the beginning of this paragraph, 8 >> 1 and h = h}(6). Here, in analogy with
the SOS approximation, the critical value hj(5) should be such that the height of
the Peierls contour I" above the bottom face V' is undecided between level £ and
k + 1. Without loss of generality we will consider the average magnetization in the
center zg of the cube.

Our first claim is that up to time T' = ko—lL, ko being the constant appearing
in lemma 3.2

T3, (t) o(zo) — g, (o(z0))lleo < Ce™* (5.4)
with C independent of L.
To prove (5.4) we write
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1T, (B)o(z0) — ug, (0@l < 117G, (B)o(z0) — T (t)o(20) oo
+ 1T (t)o (z0) ~ 17 (o(20))lloo (5.5)
+ | (o(20) — ug, (0(20))]

where p” is, as before, the unique infinite volume Gibbs state. Because of lemma
3.2

ITG, (B)o (o) ~ TV (t)o(zo)llo < e Vi<ks'L

Using weak mixing together with theorem 3.3, the second term in the r.h.s of (5.5)
is bounded from above by Cie~™¢ for all t > 0 and suitable constants C; and m;.
Finally, thanks again to weak mixing, the third term in the r.h.s of (5.5) is bounded
from above by Cye™™2L < Che~™2kot and (5.4) follows.

For times ¢ larger than kg 1L but smaller than el , where ¢ is a small positive
constant, we conjecture that

T4, ()0 (0)(+) = T4, () (0)(-) 2 e™* (5.6)

for a suitable m’ > 0 independent of L, where + and — denote the two configurations
identically equal to +1 and —1 respectively. In order to justify (5.6), we observe
that the analysis of the SOS model (see [CM2]) for h = h}(J) shows that, with very
high probability (larger than 1—e~°L, ¢ > 0), any interface T starting below (above)
height k does not jump to height k41 (k) before a time which is exponentially large
in L. Therefore, the difference in the 1.h.s of (5.6) should be bounded from below,
using monotonicity, by the difference of magnetizations at z = o computed with
the Gibbs states in the parallepiped V' x [k, L — 1] with plus and minus b.c. on the
bottom face and free b.c. on the remaining faces. Such a difference can be shown
to be exactly of the order of the r.h.s of (5.6).

5.3 Recent Progresses

We conclude by discussing some recent progresses on the relaxation properties of
the d-dimensional Ising model at low temperature and very small positive magnetic
field h. Although our discussion indicates that one may have

: ~ ,—CL

1111_fgap( oL) e

for the three dimensional Ising model at low enough temperature and suitably chosen
small magnetic field h, it is also clear that for many natural boundary conditions,
e.g plus b.c. of free b.c., such a patology should not occur, since no large contour is

present in the system. The next theorem (see [Yo2] and also [SchYo]) goes exactly
in this direction.
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Theorem 5.3. Consider the standard d-dimensional Ising model given by (2.4).
There exists Bo(d) such that for any 8 > By and any hg > 0 there exists a ¢ > 0
such that if h > 0 and

min § h + T } >h
IEQL{ Z W)y 2 ho
v€Q
da(z,y)=1
then gap(Ly,) > c. Moreover, if the Glauber dynamics is attractive, there exist
two finite positive constants C1, Cy independent of L such that

1T, (OF — g, (Hlleo < Culllfllle™

The reader may at this point be quite confused about what is known and what it
remains to prove in the absence of a phase transition even for the simplest model
like the Ising model. We thus summarize the results for the latter in dimension
greater than one in the one phase region, i.e. when either the magnetic field A is
different from zero or the inverse temperature 3 is strictly smaller than the critical
value ..

i) The simplest case is two dimensions. Here weak mixing holds and therefore,
thanks to theorem 4.1, we have infinite volume exponential ergodicity in the
Il - loo norm. Moreover, thanks to theorems 2.5 and 2.7, the assumptions of
theorem 4.6 hold and therefore, thanks to theorem 3.3, exponential ergodicity
in any finite cube holds with constants independent of the size of the cube. One
can say that in two dimensions the problem of the exponential ergodicity in the
one phase region is fully solved.

ii) In higher dimension one still knows that weak mixing, and thus exponential
ergodicity in infinite volume, holds for any § < 8. and any h (see [Hi]) or for
any large enough 8 (much larger than the critical value 3;) and any h # 0 (see
[MO1]). However there is no result concerning weak mixing in the region of
non-zero h and (3 just above B.. Analogously strong mixing and thus the strong
form of exponential ergodicity given by theorems 4.6 and 3.3 for cubes or “fat”
parallelepipeds, has been proved only deep inside the one phase region i.e. at
high temperature (8 << ;) or for hj3 large enough. Moreover, contrary to the
two dimensional case, we conjecture (but not prove) that strong mixing fails
for (B large enough and suitably small h. For these special values of the ther-
modinamic parameters, the relaxation time in a large cube should drastically
depend on the boundary conditions.



6. Phase Coexistence

So far we have discussed the relaxation to equilibrium of the Glauber dynamics
in the one phase region. A natural question arises as to what happens when the
thermodynamic parameters (e.g inverse temperature and the external magnetic field
in the Ising model) are such that we do have a phase transition in the thermodynamic
limit.

To be more concrete, let us consider the usual Ising model (2.4) in d-dimensions
d > 2 without external field and let us suppose that the inverse temperature 3 is
larger than the critical value .. Then, thanks to theorem 3.1, any associated infinite
volume Glauber dynamics is not ergodic and it is rather natural to ask how this
absence of ergodicity is reflected if we look at the dynamics in a finite, but large
cube @ of side L, where ergodicity is never broken.

A first partial answer was provided in [Th] few years ago for very low temper-
atures. In [Th] it was proved that, if the boundary conditions are free, i.e. absent,
then the relaxation time to equilibrium, that in a first approximation can be taken
equal to the inverse of the gap in the spectrum of the generator L‘J,LT of the dynamics,
diverges, as L — oo, at least as an exponential of the surface L%~ 1.

The reason for such a result is the presence of a rather tight “bottleneck” in the
phase space. When in fact the boundary conditions are either free or periodic, the
energy landscape determined by the function H, éz (o) has only two absolute minima,
corresponding to the two configurations identically equal to either +1 or to —1. Thus
the dynamics started e.g. from all minuses, in order to relax to equilibrium, has to
reach the neighborood of the opposite minimum by necessarily crossing the set of
configurations of zero magnetization. Since the Gibbs measure gives to the latter
a very small weight, of the order of a negative exponential of the surface of Qr,

. (see e.g. [P]), a kind of bottleneck is present and the result follows by rather simple
arguments (see section 6.5 below).

The same reasoning also suggests that if the double well structure of the Gibbs

measure is completely removed by the boundary conditions, e.g. by fixing equal
to +1 all spins outside @, or if we measure the relaxation to equilibrium of a
function f which is even w.r.t a global spin flip ¢ — —o, then the relaxation time
should be much shorter than in the previous case since there are no bottlenecks to
cross. Actually in this case the interesting but unproven conjecture, is that, at least
in two dimensions with plus boundary conditions, the relaxation time will diverge,
as L — oo, like L2. The proof of the above conjecture would have some very nice
consequences on the analysis of the speed of relaxation to equilibrium for the infinite
volume dynamics started in one of the pure phases of the system, e.g the plus phase,
for which it has been predicted (see [FH]) a stretched exponential decay of the form
e=Vtind=2anda pure exponential law in d = 3.
In this section, following [M], [CGMS] and [MM], we consider the above and other
related questions for the two dimensional Ising model at inverse temperature 5 above
the critical one 8. and without external field. We will first prove a lower bound on
the gap in the spectrum of the generator L(JQZL of the Glauber dynamics with -+
boundary conditions of the form:

gap(LgT) > e™* (6.1)
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where § = 6(L) is such that limy_,, (L) = 0. Such a bound, although quite
far from the conjectured L? law, is in any case much larger than the upper bound
obtained in [Th] with free boundary conditions. We will also show how to use
(6.1) to derive an upper bound on the time autocorrelation functions of the infinite
volume dynamics started in the plus phase.

Then we will compute exactly the asymptotics of the gap with open boundary
conditions and show that

. 1 7.0
Jim — 7L log(gap(Lg, ) = 73 (6.2)
where 73 denotes the surface tension in the direction of e.g. the horizontal axis (see
e.g [Pf] for a precise definition) and @ denotes free (i.e. absent) boundary conditions.

In this case, the picture of the relaxation behaviour to the Gibbs equilibrium measure
that comes out of our analysis (see also [MM] for an important improvement), is the
following: the system first relaxes rather rapidly to one of the two phases and then
it creates, via a large fluctuation, a thin layer of the opposite phase along one of the
sides of A. Such a process requires already a time of the order of ef78L_ After that,
the opposite phase invades the whole system by moving, in a much shorter time
scale the interface to the side opposite to the initial one and equilibrium is finally
reached. The time required for this final process can be computed to be of the order
of L? at least in the SOS approximation described in section 5 (see [Po]).

Once this picture is established it is not difficult to show that, under a suit-
able stretching of the time by a factor a(L) ~ e®8(0L  the magnetization in
the square (J; behaves in time as a continuous Markov chain with state space
{=m*(B), +m*(B)} and unitary jump rates , where m*(8) is the spontaneous mag-
netization (see Theorem 6.1 of [M]).

The key ingredients of our analysis (sse [M] and [CGMS]) are
(¢) a geometric bound on the gap in the spectrum of the generator of the dynamics
in a rectangle
(1) some detailed equilibrium estimates related to the large fluctuations of an hor-
izontal interface of length L
(ii1) a precise estimate of the equilibrium probability of having anomalous magneti-
zation

m(o) € (=m*(8), m*(B))-

The first one (i) is borrowed from a clever technique to bound from below the gap
of symmetric Markov chains on complicated graphs introduced in [JS1], [JS2] in the
framework of hard computational problems. It is important for us that its validity
is independent of #. The second, at least for the Ising model, is nowdays available
for any temperature below the critical one (see [CGMS]) thanks to the powerful
methods of duality (see [Pf]). The third, after the extension of [Io1] and [Io2] of the
basic results of [DKS], is also available for any 3 > 3. (see [CGMS)).

6.1. Some Preliminary Key Equilibrium Results

Given the two dimensional lattice Z?% let Z2 = Z* + (1/2,1/2) denotes its dual. For
z,y € R? [z,y] is the closed segment with z,y as its endpoints. The edges of Z2 (Z2)
are those e = [r,y] with z,y nearest neighbors in Z? (Z2). Given an edge e of Z2,
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e* is the unique edge in Z?2 that intersects e. We denote by £, the set of all edges
such that both endpoints are in A and by &£, the set of all edges with at least one
endpoint in A.

Given A C Z? we define A* as the set of all x € Z?2 such that d(z,A) = 1. The set
of the dual edges is defined as

Ex ={e* e € &y}
Notice that, in general, £ C Ex- (the equality holds, for instance, in the case of
rectangles). We also define the boundary 6A = {e* : e € EA\En}
We will often consider our model on a (2L + 1) x (2M + 1) rectangle

RLYM:{(ml,asz)EZZ:—LlegL, —M <z, <M}

and thus Ry j, coincides with By,.
Given V CC Z? and some boundary condition (b.c.) 7 € Q, we consider the
generalized Ising hamiltonian

, 1
Hy (0)=—5 >, J@u(@ow) - Y J@ul@rw) 63)
[T,:],ggv [m,ya]c"‘yeév
The coupling J have been introduced for technical reasons, but our main result is

for J = B, B> [, (see section 2). We always assume 0 < J(z,y) for all z,y.
For further convenience we define the hamiltonian with free boundary conditions

1
H (o) = -3 > J(@y)o(z)o(y) (6.4)
[oleev
When J(z,y) = B for all z,y, we substitute the superscript J with (3.

When V is a rectangle V = R,y and 7 € Q, we define the [k],, boundary condition
by (let z = (z1,z2))

) = {15 2z r ©9

so, in particular, [0}, b.c. means 7 on the top side of the rectangle and +1 on
the remaining three sides. A rectangle V has a é—boundary dV consisting of a top,
bottom, left and right side, that we denote respectively with 6,V 6V, §;V and 4, V.
So, for instance

5tRL,M = {e: [m,y]* : [:1773/] = [(ij)v(jaM+1)} Jj= —L""vL}

In the following we will often choose J = 3 everywhere with the exception of one or
more sides of a certain rectangle where we take J = €03, e(1. So, we introduce the



154

notation
1 JWwa:ﬂ{EHMwVGM
e \Vs T, 1 otherwise
, _ e if [z,y]* € SA\GA
Jo(Viz,y) ﬂ{ 1 otherwise (6.6)
Je(Viz,y) =8 { 1 otherwise

if [z, y]* € 6A\SpA
1 otherwise

We are now in a position to state the three main equilibrium estimates that are
crucial for our analysis of the spectral gap of the generator with plus or free boundary
conditions. The corresponding proofs can be found in [CGMS].

Proposition 6.1. Let 8 > . and let e, € (0,1]. Given a positive integer L we
set M = |eL] , k= |eL/10|. Let A = Ry ar+ (0, k) be a vertical translate of Ry, u
contained in By, and let A be a vertical translate of R n (with M < N < L) such
that the bottom sides of A and A coincide. We also let

Apot = (z = (z1,22) EA: 2o <M — 3k + h)

Take Jo = J(Br). Then there exists Ly = Lo(B,,¢) and m = m(B, a,€) such
that if L > Ly
(2) If the horizontal sides of A do not touch the horizontal sides of By, then

sup |uf> T (4) — P <e ™ VAe R, (6.7)
n

(i4)
T (A) = p T (A) <e™ VA€ R, (6.8)

To state the next result we have to introduce the notion of plus *-chain for a given
configuration o.

We say that {z',...,2"} is a plus *-chain for o if d(z**!,2*) = 1 and o(z?) =
+1 Vi.

Proposition 6.2. In the same assumptions as in Proposition 6.1, let

AtOp =A \ Aot
Amiddle = {2 = (z1,22) € A : |22 — h| < 2k}

and consider the event
A= {o€Q:3 aplus *chain {z',...,2"} C Atop such that z; = —L, o7 = L }
There exists Lo = Lo(B, a,€) such that if L > Lq then

inf /LX;J’[O]"(A) > e—ﬂ(rg+l4s)(2L+l) (69)
n
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Moreover, if VA° o0l denotes the conditional measure u =0 ]"( lA) then there exists
m = m(B, o, ¢) such that, for any L > Ly

sup vy "(B) — i *(B) |[< e VBe A,
n

sup [vje (B) — pfo By | < et v BeF,
n

middle

In order to formulate our last equilibrium bound we define ma (o) = ﬁ Y sen o)
Then we have (see [CGMS])

Proposition 6.3. Let 8 > 3. and m € (—m*(8), m*(3)). Then

lim inf —E@LlTl) log [ugg{ mg, (o) =m }] > p(m)

“(8) = (m| v my)
plm) = 2w\/ 2m* ()

and the constant w is the value of the Wulff functional W, on the Wulff curve (see
e.g. [Pf] or [DKS]). The singularity point m, satisfies the equation

where

1, jmB) —m _ -

2"\ " 2me(B)

6.2 A Geometric Bound on the Spectral Gap

In this part, following [M], we establish via some geometric ideas (see e.g. [SC] for
a review) a basic estimate on the spectral gap in a rectangle R(l, ) which, besides
being of independent interest, will play an important role in the determmamon of
the exact asymptotics in the thermodynamic limit of the spectral gap gap(LQL)
Although we believe that our bound can be derived by other means we think that
our derivation is a good illustration of how these geometric techniques work in our
context. In what follows we will omit for simplicity in all the notation the boundary
condition 7, the interaction J and the set A.

We start by introducing the set of canonical paths in Q24 between configurations o
and ) with o # 7. Let us first order the sites in A as follows

<y if z9<ys or z1 <y; and z3 = Y

Given now 0,1 € Qv we define the path v(o,n) as the sequence of configurations
obtained from ¢ by adjusting one by one, in increasing order, the values of its spins
to those of of . More precisely, if z!,...,z™ are the sites in A ordered as above
and such that o(z?) # n(z®), then y(o,n) = (¢°...0™) where ¢ = o and for
i=1,...,n,

) = {10 HT S (011
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Next, for any allowed transition of the Glauber dynamics 0 — ¢ and any f we set

e = (0,0%), Q(e) = ,LL(O')C(JZ, U) ) fle) = f(gm) - f(O') (6'12)

and we say that the transition e belongs to the canonical path « if, for some 4,
e = (o%,0'*1). Finally we define the constant p, as

pa = sup Z ﬂ(;)(lgn) (6.13)

EE’Y(” n)
Then we have the following inequality
11
|A| [N

Although the proof of (6.14) can be found in [SC], we reproduce it below because
of its simplicity. Write

gap(Ly) > (6.14)

Var(f) = %Zu(v)u(n)[f(a) ~ )P
= —Zu(o uml Y foP

e€v(a,n)
LAl Y Q) (e’
|Aloag (£, 1)

and (6.14) follows from the variational characterization of the spectral gap (3.12).
With the above notation our result for the the two dimensional Ising model
with Hamiltonian (6.3) reads as follows

IA

Theorem 6.4. Let A = Ry p with L < M and assume that for any [z,y] € Ea
J(z,y) < B. Then, uniformly in the boundary conditions T,

oa < c—1 4B8(2L+1)

lnfgap( ) > —c e 4L+

Al

where the constant c,, has been defined in (3.3).

Remark. The above estimate on the spectral gap is a very bad one for temperatures
above the critical one, t.e. 8 < f,, since in this case strong mixing holds (see the
discussion at the end of section 2.3) and theorem 4.5 applies. At low temperature,
instead, when the infinite volume dynamics is not ergodic, it gives the right depen-
dence on the size of the set A, namely a negative exponential of the surface and
not of the volume. However the constant appearing in the exponential is wrong by
a factor 2 even in the limit 8 — oo. A more precise bound will be discussed in
section 6.4.
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Proof. The proof is based on a nice idea (see [JS1]) to bound the number of canonical
paths that use a given transition e. Given a transition e = (£,£%) we define an
mjective mapping ® from the set of all the canonical paths that use the transition
e, ['(e), to Q2 as follows:

(M) =oly) i y<u

(M) =ny) i y=za
where o and 7 denote the starting and end point of 4. It is clear that ® is iniective.
In fact the knowledege of the transition e = (¢,£%) together with ®(v) allow us to

reconstruct completely the initial and final configurations o and n and thus the path
itself, simply because

a(y) = &(y) Vy>=x
o(y) = ¢(v)(y) Vy<z

and similarly for 7.
Let now ¢y be the smallest constant such that for any transition e and any
canonical path v € I'(e), v = v(a,n),

W@() Q) > %#(a)ﬂ(n) (6.15)

Then we have

oa < co (6.16)
Using (6.15) we can in fact estimate the r.h.s. of (6.13) by:

cosup » _ p(@(y))
¢ yeT(e)
Since the map ® is injective and u is a probability measure, the above sum is not
greater than one and (6.16) follows.
In order to estimate the constant cy, let e = (£,£%) and v = v(o,n) € [(e) be
given. Then, by direct inspection

|H(o) + H(n) — H(E) — H(®(7))| < sup J(z,y)4(2L +1) < 48(2L + 1)

z,y]€EEA

so that

(o) p(n) plo)p(n) < o=14B(2L41)

n@RE) — u@M)uE)eE,z) =™

Thus the constant ¢y can be taken equal to

o = C;Ll o4B(2L+1)

and the theorem follows. O
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Remark. It is amusing to observe that, if one applies the above construction to the
one dimensional case, one gets sup, pa < oo even if the energy H(o) is replaced by
a more general expression like

1

H(o) = —5 Y Iz —yho(z)oy)
z,yEA

provided that Y =<0 [J(]z — y])| < co. Therefore in this case the spectral gap in
y

a segment of length L in Z has a lower bound which is only proportional to L~*
without any negative exponential of L.

On the other hand it is known that a long range potential J(|z — y|) satisfying the
above condition is not able to induce any phase transition, the reason being that the
energy between two semi-infinite lines is finite uniformly in the spin configuration.
Thus, in some sense, the geometric approach is able to capture, at least at the
level of the exponential, some (but certainly not all) of the physical aspects of the
presence (absence) of a phase transition in the Ising model.

6.3 A Lower Bound on the Spectral Gap with + B.C.

Here we prove the bound (6.1) for any 8 > f. in a slightly more general case than
the one discussed at the beginning of the section, namely when the b.c. are plus and
the boundary coupling is weak or zero on three sides of the square By, and strong
on one. More precisely

Theorem 6.5. Let 8> f3;, 6 € [0,1] and let Js = J§'(Bg). Then
; 1 Istyy —
ngr;o -7 log(gap(Ly"™)) =0

Proof. Given € € (0,1) and 6 € [0,1] let & = e V 4. It easily follows from a rough
estimate on the relative density of the two Gibbs measures u;{ "+ and ui“’J“ that

J, Cm _
gap(LA"+) > ﬁe CeL gap(L,‘{“’+)

for a suitable constant C.
Let now D, be the covering of the square A = By, with thin horizontal rectangles
Ri,...,R,, where

Ri={zeh —L<my<—L+ L]}

and each Rf, i = 2...n is a vertical translate of the previous one by an amount
—LZLJ. Thanks to (3.30) and theorem 6.4, we have

1
Jos 3 a)T as
gap(L3™") 2  inf gap(Ly:") gap(Ly, ™)
1
> SL7%en e~ gap(LE™)

and therefore, due to the arbitrariness of €, in order to prove (6.1), it suffices the
following key result
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Lemma 6.6. For any ¢, € (0,1] and any 8 > (3,
iILlfgap(L{;:+) >0 (6.17)

Proof. The lemma follows immediately if we can show that, in the above range of
parameters, there exists a finite time ¢{g and a number r € (0, 1) such that for any
large enough L the semigroup generated by L%i"L at time ¢ =t is a contraction in
the sup norm, with norm less than 1 — . In more probabilistic terms if

Sl;pllEDE Flofe) < (1 =) flloo (6.18)

for any f such that uX“"*'( f) = 0. Here EP=(f(0/)) denotes the average of f over
the block dynamics at time ¢ starting from 7.

In the present case, namely full plus b.c., we choose t; = 1. Let then {¢;} be
the random times at which the initial configuration o is updated. Since the number
n of rectangles depends only on ¢ and not on L, (6.18) follows if we show that there
exists a number § € (0,1) such that, for any L large enough:

S%p,EDE (F(oT)tn <1 <tnp1)| < (1= 0)|flloo (6.19)

for any f such that ,u/J\“’Jr( f) = 0. We will now concentrate on the proof of (6.19).
Notice that, because of the definition of the block-dynamics, the following “multiple
integral” formula holds

ED: (flof_)ltn <1< tnt1) =

DR F T CA Y R CA RN R CACARCED
i1...in€{1...n}

where the factor nin stands for the probability that during the first n updatings the
rectangles R;, ... R;_ are chosen in the given order. Notice that in the above formula
we did not specify explicitly that each rectangle R; has plus boundary conditions
on those sites that are not in A. In other words each configuration o; is identically
equal to +1 outside A.
In turn, in order to prove (6.19), it is sufficient to show that there exist § such that,

for all large enough L,

Supl/duéj,"(al)/duljﬁ’gl(az)"'/du}{af"‘lf(dn)‘
n

IN

(1-8)lfllo (6:21)

Notice that in the above formula each configuration o;, i = 1...n, is equal to the
initial condition 5 above the top side of R;.

For later purposes it is useful at this point to write down the expression of the
constant 7 of (6.18) in terms of §. A simple computation gives

= Pltn <1< tpy1)n "8 (6.22)
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Let us finally prove (6.21). Define recursively

550 = [ g [l ) =1

and observe that

1) llgilloo < NI lloo- )
ii) g; depends only on the spins o(z) with z € (Uilek) \ Rj+1

Because of i), ii) above, we can write, using (6.7) and (6.8) (remember that on the
bottom and lateral sides of Ry the b.c. are +)

sup| [ dugiy ™ 0) [ aufy ™ (oo) . [ auge ™ fon)] =

up | 72 ()]

Il

(6.23)

Jo,[0]4 (0] Ja,[0],
sup{nuRl Olo(g1) — pps i (g0)] + s ()1}
n

IA

IA

- [0
[1£lloe™™E + supnumug;(gzn

for a suitable m = m(e) and any L large enough. In the last step we used the DLR
equation (2.2) to write

J&v 0 ‘]0()
”RlLERz (91) = UR1L51]22 (92)

If we iterate n — 1 times the above reasoning and use the fact that u,‘{“”L( 5 =0,
we get

sup|/duR“l’"(01)/du 2071 ( 02).../duf{;’o"_lf(an)| < ne” ™| flloo

Thus (6.21) follows with § = 1 — ne™™*L and the lemma is proved. [

Remark. It is interesting to notice that our lower bound on the spectral gap with
plus boundary conditions on a square A = @ allows one to estimate from below
the probability of events like |ma (o) — m| < 2/|A}, m < m*(0), in terms of the
probability of the event m,(s) < m, with a negligeable error in the leading expo-
nential behaviour.

Let us in fact define f(o) = x(ma(o) > m). Then we have

Var{(f) = pf (ma(0) > m) uf (ma(o) < m)

EL(F, 1) < enl Al (|ma(o) - m| < ,i—|>

and therefore, by the Poincaré inequality £ (£, f) > gap(L}) Var} (f), we get

I ma(e) = m < (1) 2 e gan(ER)i (ma(o) > m) i (ma (o) < m)
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If we finally use our lower bound on gap(LX) together with the observation that
limz o0 pf (ma(o) > m) =1 for any m < m*(3) and any 8 > 8, (see e.g. [I02]),
we get that for any ¢ > 0 and any L large enough

—5L, +

HE(Ima(@) = m| < 50 > et (ma (o) < m)

6.4 A Lower Bound on the Spectral Gap with Free B.C.
Here we show that, for any 8 > 3.,

1
im B0V <
LII_I)I(}O BOLTD) log(gap(Llz,)) < 73 (6.24)
To prove (6.24) we first replace the free b.c. with weak plus b.c. More precisely we
fix a small number ¢ € (0, 1), that will be put equal to zero after the limit L — oo,
and bound from below gap(L%’L@) by

0 Cm J9 .+
gap(LEY) > e Ol gap(Ly, ™)

where C is a numerical constant. Such a bound follows in a straightforward way
from the very definition of the spectral gap. Then we proceed exactly as in the
proof of the lower bound with full plus b.c. and reduce the problem to bound from
below the gap of the block dynamics associated with the covering D, and coupling
Je. Notice that, for simplicity, the small constant « giving the boundary couplings
is the same as that fixing the height of the rectangles of the covering D.. As in the
case of full plus b.c. this amount to choose a finite time ¢y and bound from above
the contraction constant r in (6.18). However, contrary to the case of plus b.c., if we
choose ¢ independent of L here we cannot expect that the constant r stays bounded
away from zero uniformly in the side L, since we know (see section 6.5 below) that
gap(Lg’L@) shrinks to zero as L — co much more rapidly than e~CL, at least if ¢ is
small. Thus we have to proceed slightly more carefully than before.

First of all we fix {5 = 2 and observe that

1 1
gap(LP) > —Slog(1—r1) 2 5r

Next we define S to be the event that up to time ¢ = 1 only the first rectangle R,
has been updated and, for any function f, we set

him) = pEP* (F(o1=)IS) = puz, ™ (£)
where p = L P(t; <1 < t5) and notice that
i) f1 does not depend on the spins in the first rectangle R,
i) || f1lleo < pllflloo
i) (f1) = 0 8 py= " () = 0
Moreover
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sup | EP* f(015)| < (1 = )| flloo + sup | EP* f(o7y)]
n n

< (1 - p’rl)”f“oo
where 71 is the smallest constant such that

SI:IPIIEDE Flei)l < (1 =r)lfllo (6.25)

for all f that do not depend on the spins in R; and such that ,uJ"+( f) = 0. Thus
r > pry and it is enough to prove

-1 < .
A ﬂ(2L+1) 0g(r1) < 7s (6.26)
In order to establish (6.26) we proceed exactly as in the case of full plus b.c. and we
bound from below the constant ¢ defined in (6.21). Using the same notation of the
proof of (6.21) and remembering that on the bottom and lateral sides of the first
rectangle we have plus b.c., we write, thanks to proposition 6.1, 6.2

sup| i, " (g1)]
n
< sup{ g, ()] g, 01 14)] + gy (A% | 7l
n
Ju, n Jé"; n
< sup{uge, ™ () [, (91 14) — S (o) + L S o]}

Jo, c
+sup g, (A1 o
n

< sup{ug, ™ (A) [ flloo + i SF(90)1] + it 7 (A1 oo )
n

(6.27)
where A is the event appearing in proposition 6.2. It is important to observe
that we have been able to use proposition 6.2 to bound from above the error term

|u£’[o]”(gl |A)— “{2115(}%2 (91)| because, by construction, the function g; does depend
only on the spins o (x) with z € (Rl)mlddle

It is important to understand the reasoning that led us to introduce the event A.
Let us suppose that the initial configuration 7 is 1dent1ca11y eqaul to —1. In this case

the typical configurations of the Gibbs measure pz 7,0 consists of a sea of minus
spins with a thin layer of plus spins attached to the lateral and bottom boundary
and small islands of pluses in the bulk. Thus the first updating will not modify
substantially the initial configuration and similarly for the successive updatings.
One possibility to drastically change the initial configuration and make a transition
to configurations where now the majority of the spins are +1 is via a large deviation
in the first updating. The event A not only does the job but, apparently, is also an
efficient way to make the transition in the sense that the lower bound one gets on
the spectral gap is of the same order of the upper bound of the next section.

Let us now bound the remaining terms in the r.h.s. of (6.27). Notice also that

i
the Gibbs measure ui{l’t[f}]{z has 7 b.c. on his top side, plus b.c. with boundary
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coupling 3 on its bottom side and weak plus b.c. on its lateral sides. Thus we can
write

[0] [0
”RluRZ (91) = /J’RlL[JI]{Z (92)

To estimate the remaining term p Ri’u lll (g2) we can at this point proceed exactly as
in the case with full b.c. since we have them on the bottom side. The final result is

| 131 (g2)] < me= ™R flloo + | e (F) = w7 () (6.28)

To estimate the last term in the r.h.s. of (6.28) we observe that, since f does not
depend on the spins in Ry, we can apply once more proposition 6.1 and get

) = 7 )] < e oo (6.29)

In conclusion we have obtained that

sup g, ()] < sup {7 (4) 27 € oo+ i (4% ko

< (1 = e Prs(+1) LD () _ gno=m(Ly)| ]|,

for any L large enough, because of proposition 6.2. Thus the constant § in this new
case can be bounded from below by e #7s(1+14e)2L+1) Ty turn, using (6.22) and

the arbitrariness of the constant €, the above lower bound on § immediately implies
(6.26). O

6.5. Upper Bound on the Spectral Gap with Free B.C.

Here we show that, for the two dimensional Ising model

— B0y > 6.30
Jim — 6(2L+1) log(gap(Lg,)) > 75 (6.30)

At the end of this paragraph we will also discuss an extension to higher dimensions.
Following [M], let A = B, and let fa(o) be the trial function

fa(o) = x{ma(o) > 0} — x{ma(o) < 0} (6.31)

If we plug fa in the variational characterization of the gap (3.12) we get

{|mA () < |A| }

,60
—uﬁ@{m,\ (c) =0}
Therefore
1 8,0 L 8,0 2
IR 1 : <=
dim ~grap ) (e UR) 2 Jim - e toe (W (Ima(o)] < 7))
:Tﬁ

because of proposition 6.3. O
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Remark Notice that up to (6.32) our argument was completely dimension indepen-
dent. Unfortunately, in dimensions higher than two there is yet no precise bound
of the probability that the magnetization is close to zero. However there is a bound
(see [P]) that says that, for any d > 2, there exists 8y < +oo such that for any
B > Bo the r.h.s of (6.32) is exponentially small in L3, i.e. the surface of the cube
A. Moreover there are good chances that Gy coincides with the critical temperature.
Alternatively one could use the result of [Th]. If we combine such bounds with the
very general lower bound of theorem 3.8 we get that for any d > 2 and low enough
temperature

1
lim i3 log(— log(gap(Lg’g))) =d-1

L—oco lOg

6.6 Mixed B.C.

We would like to conclude our analysis of the spectral gap of the two dimensional
stochastic Ising model at low temperature by discussing the case of “mixed” b.c.,
i.e. b.c. that do not have a definite sign.

Remember that, when the b.c. where free i.e. absent, the spectral gap was very
small because of the presence of a very narrow “bottleneck” in the phase space, while
for plus b.c. the spectral gap was much larger because the bottleneck is either absent
or much wider. This phenomenon can be associated to the fact that in the case of
free b.c. the two phases are equally likely while in the case of plus b.c. the plus
phase is chosen by the b.c.

It is then natural to ask whether it is possible to have intermediate situations
in which a bottleneck for the Glauber dynamics is still present but nevertheless the
b.c. are able to choose the phase. The main result in this direction is the following
one (see [HiYo}).

Given the square Qr and a configuration 7 € 2, define

v (1) = max{| Z 7(z)|; A is a connected subset of 9exQr }
TEA
where 0exQr = {z € Q%; d2(z,QL) = 1}. Then we have

Theorem 6.7. Let d = 2 and define a class Qp(9) (0 < 9 < 1) of boundary
conditions by
Vi(r)

Qo(W) ={r € Q,h}rgr;s;p Al 9}

Then, for every ¥ < 9 < é— and « €]0,1 — 89, there exist 5y > 0 such that for every
T € Qo(V) and B > By

gap(LY7) < c(B)e~PoL

for a suitable constant ¢(3) independent of T.

6.7 Applications

Here we discuss some additional results and applications that follow from the spec-
tral gap estimates established so far.
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Let us first consider the standard two dimensional Ising model at inverse tem-
perature 8 > (. and zero external field k. We denote by u'[j_ denote the so called
“plus phase”, i.e. the infinite volume Gibbs measure obtained as thermodynamic
limit of the finite volume Ising Gibbs measure with plus b.c., and by || ”zui the

L2?-norm w.r.t ,u,i. Let also T#(t) be the Markov semigroup of an attractive Glauber
dynamics (e.g. the heat-bath dynamics) for the above model. Then we have

Theorem 6.8. Let o € [0,00) be given. Then there exists ¢ < 4+oo such that for
any local function f

172 =1 (Dl e < AN VE21

Proof. Using the reversibility of the semigroup T%(t) w.r.t the Gibbs measure uﬁ
we write

1207 - ()12
= [a{ [ s ©sm - @56}
< [ @) [ o) @ 1) - T 05 )]
= [ 4oy [ ) (s o8 - £ ™))
<I9S J ) [ i) p(of (@) # o7 @)
=71 [ dulln) [ ol ) B (o270) # 027 0)
<20 [ ol () B(o270) # o (0)

(6.33)
where we have used the standard inequality

1£(0) = £ < D IVaS loox(o () # n(x))

together with translation invariance.
Let us now bound the factor [ duf (n) P(c}"(0) # af’+(0)) in the r.h.s of (6.33).
Using monotonicity together with reversibility and denoting by m* () the sponta-
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neous magnetization, m*(3) = 5 (o(0)), we have
[ (o # o (0) =
~ [ ) [p(of* © = +1) - p(of"(0) = +1)]
< B(oP B 0) = 41) - L(m*(8) + 1)

= S {B (PP 0) - m*(9)}

(6.34)

where af L84+ denotes the dynamics in By, with plus boundary conditions and
starting from the configuration identically equal to plus one. Thanks to (3.15),
L2 — B+
(o7 74 0) < wgf (n(0)) + &7 T tERL) (635)

If we plug (6.35) into (6.34) we obtain that the r.h.s. of (6.34) is bounded from
above by:

_ tgap(LAt 1 _ — 8.+
S (WG 0)) = e (8)) ™8 THERIEL) < 2 ey 90—t (g 56)
because of the well known bound
0 < wi(n(0)) — m*(8) < Cyexp(—mL) (6.37)

valid for any 8 > [. and suitable constants C;, m. We now choose the size L
depending on ¢ as:

L= 2ﬁk’£ﬂ (6.38)

and apply (6.1) to (6.36). We get that, for any large enough ¢, the r.h.s of (6.36) is
bounded from above by 3C;¢~2%. If we finally plug this bound in the r.h.s of (6.33)
we get the sought polynomial decay. [

The above result as an interesting consequence in terms of coercive inequality for the
Glauber dynamics in the plus phase. Denote by Sf (f, f) and Varli (f) the Dirichlet

form and variance of a local function f w.r.t the Gibbs measure ui. Then

Corollary 6.9. In the same hypotheses of theorem 6.8, for any § > 0 there exists
a finite constant ¢ such that for any local function f

Var? (1)1 < c€8(4, ) II£I1%

Proof. Given a local function f with p'fL (f) =0, let dps()) be its spectral measure
w.r.t the selfadjoint operator —LP in L?(Q, u’i) Then, for any § > 0 and ¢ > 0, we
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have

Var? (f) :/0 dps(N)

le e} o0
< e/ dps(N)e™> +t/ dps(A)A
0 0

(6.39)
= | T° )11} 5 +tE5(1, )

(K
< eld) 175 + e )

because of theorem 6.8. It suffices now to optimize the choice of t to get the final
result. O

As a next topic we consider in more details the dynamics in a finite square Q@ with
free b.c. and large B. For notation convenience, in what follows o] will always
denote g2r AP

As we said at the beginning of the section, the slow relaxation process to equilib-
rium is due to the presence of a bottleneck in the configuration space that somehow
separates configuration with positive magnetization from those with negative mag-
netization. It is however clear that if the flip rates are invariant under a global spin
flip 0 — —o and f is function that is even w.r.t such a sign inversion, then the relax-
ational behaviour of f(o}) should not be affected by the presence of the bottleneck.
In particular one would expect that functions that are even under global spin flip,
i.e. they do not distinguish between the two phases, will relax to their equilibrium
value in a time much shorter than the global relaxation time Ty, given by the
inverse of the spectral gap. More precisely, if we denote by Teontour the inverse of
the spectral gap in the spectrum of the generator LQ’L restricted to the invariant
subspace of functions that are even with respect to a global spin flip, we expect
that Teontour << Tspin- Since even functions can be thougth of as functions of the
broken lines in the dual lattice separating regions of plus spins from regions of mi-
nus spins (Peierls contours), one could say that Teontour characterizes the relaxation
process as t — oo of the probability distribution of the Peierls contours generated
by the dynamics at time £.
The main result of [MM] concerning this new time scale goes as follows

Theorem 6.10. There exists a positive constant (3, such that for any 8 > 3,

Jim z1og(——?ﬂi“—) >0

Tcontour

Using the above result one can draw some interesting consequences that make the
picture found in [M] more precise. The first one says that, under the dynamics, any
initial configuration relaxes to one of the two phases within a time scale of the order
of L?T¢ontour much shorter than T spin. More precisely we have (see theorem 3.1 in
(MM])
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Theorem 6.11. Let t, = 108L%2Teontour- There exist positive constants (3,, L,
such that for any 8 > 8, and any L > L,

supP(o # of # o7) < e”Wtl vy,
7

The second one (see theorem 3.2 in [MM]) says that, once the system decides to
jump from one phase to the opposite one, then, with large probability, it does it on a
time scale not larger than L3T ¢onour, again much shorter than the average time one
has to wait in order to see the jump. One could say that in our case the Glauber
dynamics has a behavior similar, in some sense, to that of a finite dimensional
reversible Markov processes with invariant measure having a symmetric double well
structure in the low noise regime.

In order to formulate the result, let us define recursively, for a fixed small 6,
the following sequence of stopping times:

So = 0
t; = inf{t > s;_1; | |m(of)| — m*(B) | > 26}
si = inf{t > t;; | |m(o])| — m*(B) | <6}

where m(c) denotes the (normalized) magnetization of o, ie m(s) =
= > zeq,, 9(z). We also define the random variable v(n) as

v(n) = min{s; |m(o7,) +m*(B)| < 6}
Then we have:

Theorem 6.12. Let ty be as in theorem 6.11. Then there exist positive constants
Bo, Lo and c such that for any 8 > 8, and any L > L,
i)

SUD P (Su(y) — tu(y) 2 Lito) < €™

i)

(Su(+))) —0

i 1 1 E
P A .

Remark. If n is such that m(n) > m*(8)—24, then we may call s, (n) —t, () and s, ()
the time scale of the last excursion before leaving the set {o;m(c) > —m*(8) + 6}
and the transition time for 7 respectively. Thus we may conclude that the last
excursion occurs on a time scale much shorter than the average transition time, at
least if the dynamics starts from the plus configuration.

We conclude this part by stating two last results on the time-dependent magneti-
zation m(oy') (see [M]). The first one concerns the large deviations of m(o}) and
makes a precise connection with analogous results for the equilibrium magnetization
obtained in the framework of a rigorous justification on the Wulff construction (see
[Sh], [Io1], [Io2], [Pf] and [CGMS]).

Let p € (—m*(8), m*(03)) and let pr be a sequence of integers such that
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lim PL _ 0
LS00 L2

pr—L?*=0 mod 2
Let also 7,, () be the stopping time

oo (m) =inf {t > 0; m(o}) < pr}
Then we have (see theorem 5.1 in [M])

Theorem 6.13. For any 3 large enough and any pr, as above:
lim —1—1 E(7p, (+)) = li —Ll POV 0)= Vo
A, 5 108 E(re, (+)) = lim — 7 log g, (p ) =9(pV0)

Remark The rate function 1 (p) can be computed easily in terms of the Wulff func-
tional.

The second result makes more precise the picture of the Glauber dynamics as a
symmetric double well Markov chain jumping from one phase to the opposite one in
a time scale Tepin. Let M be the two state space {—m*(3),m*(5)} and let Y; be a
continuous time Markov chain on M with unitary jump rate for both states. Then
(see theorem 6.1 in [M]) we have

Theorem 6.14. For any (3 large enough and for any ¢ € (0, m;(ﬁ)) there exists
a(L) = a(L, B,¢€) such that
i) for any choice of timest; < t2 < ... < t; and numbersm; € M,i=1...k

ngr;o]P’“ﬂm(aZ(L)tl) —m|<eg,..., Im(UZ(L)tk) —mg| <¢)
= F'V(Y't1 =m,.. .,Y(tk) = mk)

where P# (P¥) denotes the probability over the Glauber dynamics (the chain
Y. ) with initial distribution the invariant measure ugg ).
ii)
1
lim AL log(a(L)) = 73

L—oo



7. Glauber Dynamics for Random Systems

In this final section we discuss what happens to the relaxational properties of the
Glauber dynamics when we remove the assumption of translation invariance of the
interaction, see definition 2.1, and consider in particular random interactions. The
simplest example of such a system is the (bond) dilute Ising ferromagnet. In this
case the couplings between nearest neighbor spins, that in (2.4) were assumed to
be constant, become a collection of i.i.d random variables {J;, } that take only two
values, Jgy = 0 and J;,, = (8 with probability 1—-p and p respectively, independently
for each pair of nearest neighbors z,y € Z% In a more pictorial form one starts
from the standard Ising model and removes, independently for each bond [z, y], the
coupling J,, with probability 1 — p.

Since the {J;y} are uniformly bounded, at sufficiently high temperatures
(i.e. sufficiently small values of §) Dobrushin’s uniqueness theory applies and de-
tailed information about the unique Gibbs measure and the relaxation to equilibrium
of an associated Glauber dynamics are available using the concept of complete an-
alyticity [DS], [SZ], [MO1] and [MO2]. This regime is usually referred to as the
paramagnetic phase and, at least for the two dimensional dilute Ising model, it is
known to cover the whole interval 8 < 3. where (3, is the critical value for the “pure”
Ising system.

There is then a range of temperatures, below the paramagnetic phase, where,
even if the Gibbs state is unique, certain characteristics of the paramegnetic phase
like the analyticity of the free energy as a function of the external field disappear.
This is the so called Griffiths’ regime [G] (see also [F] for additional discussion on
this and many other related topics). This “anomalous behavior” is caused by the
presence of arbitrarily large clusters of bonds associated with “strong” couplings Jg,
which can produce a long-range order inside the cluster. Even above the percolation
threshold, 7.e. when one of such clusters is infinite with probability one, there may
be a Griffiths phase for values of 8 € (8., B.(p)), where (. is the critical value for
the Ising model on Z% and B.(p) the critical value of the dilute model above which
there is a phase transition (see [F]). What happens is that for almost all realizations
of the disorder J and for all site x there is a finite length scale I(J, x), such that
correlations between o(z) and o (y) start decaying exponentially at distances greater
than I(J, z).

In [BD] an “elementary” approach was given to the problem of uniqueness of
the equilibrium state of disordered systems in the Griffiths regime (see also [FI}).
In another paper [D] Dobrushin prepared the mathematical background for the
study of (arbitrary order) truncated correlation functions for spin glasses. Bounds
on T,(p) have been obtained in [ACCN] and [OPG]. More recent references where,
at least for the statics, the situation has been considerably cleared up are [DKP],
[GM1], [GM2], [GM3] and [Be]. In particular, under suitable conditions on the
couplings distribution, one proves that the infinite volume Gibbs state is unique
with probability one and the static correlation functions decay exponentially fast
uniformly in the size of the system and its boundary conditions.

The effect of the Griffiths’ singularities on the dynamical properties are much
more serious since, as we will see, the long time behaviour of any associated Glauber
dynamics is dominated by the islands of strongly coupled spins produced by large
statistical fluctuations in the disorder (see [B1], [B2] for a non rigorous treatment
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and [GZ1], [GZ2], [CMM1], [CMM2] ). In what follows we will analyze in some
detail the simple case of the dilute Ising model. Although at first sight such a model
is a very special one, it is important to say that most of the results, particularily
those concerning the dynamical behaviour inside the Griffiths phase, apply with
minor changes to a much wider class of models (see [CMM1], [CMM?2)).

7.1 The dynamics in the paramagnetic phase

In this first part we assume 3 < (., where G, is the critical value for the “pure” Ising
model (2.4), while the parameter p is an arbitrary value in the interval [0, 1]. It is not
difficult to see that in this case, for any couplings configuration {J;,} there exists
a unique infinite volume Gibbs measure with exponentially decaying correlations
functions. Let us in fact consider, for an arbitrary configuration J = {J,,}, the
quantity

uz; (0(0)) — pg; (2(0)) (7.1)
It is a well known fact that (7.1) is an increasing function of each coupling Jy,.
Therefore, since Jg,, < B, (7.1) is bounded from above by the analogous quantity
computed for the pure Ising model with constant coupling 3. Thus, since 8 < .,
(7.1) decays exponentially fast in L uniformly in the configuration J. In particular
weak mixing holds (see (4.1)) uniformly in J. Uniqueness of the infinite volume
Gibbs measure then follows from a simple argument (see for details in a more general
case [Be]).

Let us now consider an attractive Glauber dynamics for the dilute Ising model
like the heat bath dynamics or Metropolis. All the general results of section 3 apply
without change also to this random case. Moreover, using the fact that weak mixing
holds uniformly in J, we could repeat word by word the proof of theorem 4.1 and
get exponential ergodicity in the || - ||oo norm uniformly in J.

We can conclude that, as long as § < ;, the dynamical dilute Ising model does
not behave differently from the corresponding pure model at inverse temperature (.

7.2 The Dynamics in the Griffiths Phase: P < P,

Here we consider the more interesting case of 8 > . but we assume that p is below
the percolation threshold p. for the d-dimensional independent bond percolation on
Z¢ (see e.g. [Gri]). It is not difficult to convince oneself that in this case there still
exists with probability one a unique infinite volume Gibbs measure. Let us in fact
denote by {W;} the connected components of the set

W = {z € Z%: y such that dy(z,y) = 1 and J,, = 5} (7.2)

and let us call “regular” any site z that does not belong to the set W. It is well known
that if p < p. all W; are finite with probability one. Therefore, with probability one,
the infinite volume Gibbs measure is simply the product of the Ising Gibbs measure
at inverse temperature 3 and free boundary conditions for each component W; and
the Bernoulli measure of parameter % for each site z € W€,

Although the situation might appear, and indeed is, quite simple, it is never-
theless very instructive to analyze the relaxational properties of the dynamics in
this case. We will see in fact later on that many (but not all) of the features of the
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case p < p. remain true also for values of p slightly above the percolation threshold
Dc-

Let us first observe that, with probability one, the Glauber dynamics in our
case is a product dynamics for each of the clusters {W;} and for each of the “regular”
sites x € W€. Thus, if we consider a local function f that for simplicity we can take
as the spin at the origin, mo(o) = 0(0), we get that

177 (t)moll 2oy < €720t (7.3)
where, for any z € Z¢,
\ = 1 if z is regular
z gap(L‘{{,?) ifxeWw;

Notice that in (7.3) we used the obvious property u’(mg) = 0 valid because of
the simmetry 0 — —o. Since the clusters W; are finite with probability one, we
can immediately conclude that ||T7(t)mo||2(,s) converges exponentially fast to its
equilibrium value but with an exponential rate, Ao in our case, that depends on the
chosen local function, 7y, through its support. It is important to outline here two
important features of the dynamics in the present case

i) ind =2 for any 8 > B or in d > 3 and any (3 large enough, inf; A\, = 0 with
probability one. By ergodicity we have in fact that, with probability one, for
any L > 1 we can find z(L) such that Qr(z(L)) = W; for some 4. Thanks to
the results of section 6 the spectral gap of the cluster W; is thus exponentially
small in L%, In particular the spectral gap of the infinite volume dynamics
is zero. We can say that such non—uniformity of the rates ), is a first signal of
the Griffiths phase.

ii) the fact that local functions relax exponentially fast although with a non-
uniform rate is a specific feature of the dilute model and it does not extend
to more general systems in which the interaction between clusters of strongly
interacting spins is weak but non zero (see next section for more details)

Although the analysis of the relaxation to equilibrium for a fixed realization of
the random couplings {Jy} is certainly interesting, much more relevant from the
physical point of view is the same analysis when one takes average over the disorder.
It is here that the differences between the dynamics in the paramagnetic phase and
in the Griffiths phase appear more pronounced.

Let us denote by E(-) the average w.r.t the disorder and let us compute upper
and lower bounds on E(l'TJ(t)W()']LZ(#J))‘ For this purpose, for any = € Z¢, it is
convenient to denote with Cj the set

C, = { r  if z is regular (7.4)

W, ifzeW;
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Then, remembering theorem 3.8, we can write

E(IT” (t)ollz2(ur) < Z P(Co = V)e~ 82p(LY ")t

vccze
Z ]P’(C _ V)e_te—c(li)lvl%1
0=
vecczd (7.5)
421
< Z C —m(p yn— te—c(Bm " d
n>1

< Ci(p, ,B)e‘CZ (p,B) log(t) EEa

for suitable constants Cy, Ca. In the third inequality above we used the well known
fact (see e.g. [Gri]) that

P(Col =n) < C(p)e™™®P"  Vp<p,

Notice that the same computation carried out at 8 < 8. would have led to a pure
exponential decay since (see theorem 4.1 a) of [SchYo])

inf " so0 v
Juf, gap(Ly') > B <Be

Let us now turn to the proof of a lower bound on the same quantity. We assume
B > B if d = 2 or B large enough if d > 3 but, contrary to the proof of the upper
bound, we don’t need to restrict ourselves to values of p below the percolation
threshold; we just need p < 1.

Let A = Q@ and let © be the set of all interactions J € © such that

(a) Jgy = B for all {z, y} such that {z,y} C A
(b) Jzy = 0 for all {z,y} which intersect both A and A¢ (the boundary edges)

If we denote by ma = |A|"' Y _ s o(x) the normalized magnetization in A, we can
write (remember that u” (o) = 0)

E(IT (Omollz2gur) > EIT? (6 mallzaqery 2 P®) inf [T () mallzaery  (7:6)

Choose J € © and let
Fr={0€Q: mp(o)> %}

Then we have
177 (8) mall Lz oy > Vi(Fa) [IT7(2) MAllL2(u7 (- | Fa))
and
IT7(#) mall 2 ¢ may = 1T @) mallir o payy 2 87 (@7 @) ma | Fr) - (7.7)

For 0 € Q, let {n{ }:>0 be the process associated with 77 (¢) with initial condition
ng = o, and let {n}'}+>0 be the stationary process (the one with initial distribution
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p”). Consider the events
Gli={3s€[0,¢]: |ma(n) —1/2| <1/(100)} o€

For each o € Fy, if |A| > 100, we have

- Mg

At

N =

1
ma(ng) 2 546z e — Tog, =
which implies

1 3 1 3 _
W (T () ma | Fa) 2 5 - / w(do | Fa) Prob(GS, ) > 5 — Su” (F) ™ Prob(G%

(7.8)
If t1,ts,... are the (random) times at which the stationary process 7}’ is updated
inside A and n, is the number of updates up to time ¢, we have, for all j € Z,

P(GY,) < ju{Ima(0) - 1/2] < 1/(100)} +Prob{n, > j}  (7.9)
which, taking j = k|A|t with k& = 2¢ps, can be bounded by
KIAlE ' {Ima(o) — 1/2] < 1/(100)} + e IA¥

< k|A[temeBLTH | o=k IAlE (7.10)

for suitable positive constants C(8), k' thanks to the results of section 6.5. Moreover,
because of the same results,

p! (Fp) >

for any L large enough.
Take now L = L; as the smallest integer for which C(8)L4~! > 4logt. In this way
we find

W(T7 (£ ma | Fy) > % (7.11)

for all t large enough. From (7.6) ...(7.11) it follows
1 _
E||T7 (t)moll 20y > 3 P(©) > exp[ k" (logt) 7T |

for a suitable positive constant k”.

Thus we can conclude that, for any 8 > . in d = 2 or for any (3 large enough
in higher dimensions there exists two positive constants C;, Cy such that, for any
large enough time ¢

d_ d
e-Cl log(t)d-1 <E HTJ(t)WOHLZ %) < 6—C2 log(t) -1

We would like to conclude this part with a short discussion of the almost sure scaling
law of gap(LQ ) as L — oco. Such a discussion is instructive since it represents a
main guideline for the coming analysis of the dynamical dilute Ising model above
the percolation threshold.
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The starting observation is the following. For any L > 1 and any J let

J, L) = Cy
v(J, L) ﬁ%’i' |

Since the probability distribution of the volume of the cluster Cy containing the
origin has an exponential tail for any p < p., it follows from standard arguments
that there exists a positive constant k = k(p) and a set © of measure one such that
for any J € © there exists Lo(J) such that for any L > Lo(J)

i) v(J,L) < klog(L)

ii) there exists z = z(L, J), with |z| < L/2, such that C; = @;(z) and all couplings
inside the cube Q(z), I = (k~'logL)Y/?, are equal to 8 and all couplings
connecting a point inside Q;(z) with one of its nearest neighbors outside it are
zero. By construction Q;(z) C Qr if L is large enough.

It follows immediately from i) above, theorem 3.8, proposition 3.9 and the simple
observation that ; 5

gap(Lg)) = Jnin gap(Lg!)
7.12)
J,r J, (
es(Lg)) = max c, (L3

since the couplings among disjoint clusters are zero, that for any J € © and any
L > Lo(J)
d—1 d--1
J,r —kv(J,L)"d —k'log(L)™d
gap(Ly7) > e >e
er (7.13)

= " d=1
cs(Lé’Z) < kv(J, L)ekv(J,L) T < k' log(L) A

for suitable constants &, k', k. Again, using the results of section 6.5 and ii) above,
one also obtain an upper bound on the spectral gap of the same order but with
a different constant k in the usual range of inverse temperature 4. Similarily for
the logarithmic Sobolev constant. We can thus conclude that, almost surely, the

d—1
spectral gap in the box @Qp shrinks, as L — oo, roughly as e~klos(L)" T We can
actually go further and estimate also the probability of a large deviation from the
“typical” behaviour. Using (7.13) we can write for any ¢ € (0,1]

d—1
P(cs(LGT) > L) < P(ku(J, L) D T > L)
< L4P(|Co| > k. log(L)7T) (7.14)

< o=k 1og(L)TT
for suitable constants k., k) and any L large enough.
In the next final section we will see how to extend the above simple analysis to
a much more complicate situation in which one connected component of the set of
non-regular sites W is infinite.

7.3 The Dynamics in the Griffiths Phase: P > P,

Here we analyze the more complex case when § > . and p > p. but there still exists
a unique infinite volume Gibbs state. More precisely, following [CMM1], we make
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the following assumption (recall definition 2.6 in section 2) that easily implies (see
[Be]) almost sure uniqueness of the infinite volume Gibbs measure and exponential
decay of the average (over the disorder) of the absolute value of covariances.

(H) There exist Lo € Z4, a > 0, 9 > 0 such that for all L > Lg
P{SMT(Qy,L/4,0)} > 1 — e~

Notice that the above assumption is quite general and flexible in that it does not
assume anything specific on the couplings (e.g. that strong couplings do not perco-
late).

Tt is rather elementary to show that hypothesis (H) holds as long as p < p..
Much more interesting and less trivial is the problem of showing that it holds also for
some value of p above the percolation threshold. The following result (see [CMM2])
provides a partial answer in two dimensions. For an extension to higher dimensions

we refer the reader to [ACCMM)]. Rember that in two dimensions p. = 3.
Theorem 7.1. If )
8 < { %\/log(%p_—l) ifp>1/2
00 ifp<1/2
then hypothesis (H) holds.
The picture below illustrates the region described in theorem 7.1.
T=T,
T
T=pTc
Region described by
Theorem 7.1
=-2/log(1-1/2p)
0 P=1/2 P 1

Fig. 1
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Using hypothesis (H) we will now state the main results (see [CMM1]}) concerning
the relaxational properties of the dynamics, almost surely and in average, and the
growth of the logarithmic Sobolev constant in the cube Qr as L — oo.

Theorem 7.2. Assume (H). Then

(a) If d > 1 there exists a set © C © of full measure such that for each J € ©
there exists a unique infinite volume Gibbs measure yu’. Moreover there exists
a constant k and, for each J € © and for any local function f there exists
0 < to(J, f) < oo such that for all t > tg

I77(©)f = w7 (Hlloe < exp| ~t exp[ —k (logt) T (loglog)®~1]|  (7.15)

(b) Assume d > 2. Then there exists a constant k and for any local function f
there exists 0 < ¢o(f) < 0o such that, if t > to(f) then

E|IT7 (#)f = 1 (f)lloo < exp[—k (log#) 7T (loglogt)~*] (7.16)

Remark. The almost sure speed of relaxation to equilibrium is faster than any
stretched exponential, i.e. a decay like e~Ct" with § < 1, and , as the next theorem
shows, it cannot be improved in general. Also the bound (b) on the relaxation
for the averaged dynamics in the bounded case is, apart from the technical factor
(loglogt)?, optimal (see theorem 7.3 below).

Recall now that mo(c) = ¢(0) and that, by simmetry, u”/(m) = 0. Then we have

Theorem 7.3. For each d > 2 there is 1(d) > 0 such that the following holds: if
B > B1(d) is such that for almost all J there exists a unique Gibbs measure p’, then

(a) for all large enough t,
E||T7 (t)mol| 2y > exp[ —k (log )77 | (7.17)

for some k which depends on d, p; and ps.

(b) Assume p > p. and choose the transition rates of the heat-bath dynamics given
in (3.5). Then there exists k > 0 and a set ©¢ of positive probability such that
for all J € ©q there exists 0 < to(J) < oo such that for all t > ty, we have

d—1
T (£)mo|oo > exp[—t exp[ —k (log ) “T*] ] (7.18)
Theorem 7.4.
(i) Assume (H). Then there exist Cy, C2 and L; depending on d, a and ¥ such

that for all L > L4,

P{c,(L},) > Crexp[Caf (loglog L)+ *(log L)“T | } < L72¢  (7.19)
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(ii) Assume (H) and d > 2. Then for any € € (0, 1] there exist positive constants
C3 and L, depending on d, r, o, ¥, Jy and € such that for all L > Ly

P{cs(LY,) > L° } < exp[ —Cs (loglog L) ~%(log L) 7T] (7.20)

Remark. Using (i) together with the Borel-Cantelli lemma, it follows that, with
probability one, c; (L(JQL) does not grow faster than the exponential appearing in
(7.19). Such a growth is, apart from the loglog L factor, optimal if one compares
it with the almost sure growth obtained for p < p.. Similar comment apply also to
the bound on the probability of a large deviations of cS(LéL).

7.4 A Coarse Graining Description Above P,

This paragraph represents really the core of the analysis of the dynamical dilute Ising
model in the Griffiths phase above the percolation threshold. We give a deterministic
upper bound on the logarithmic Sobolev constant ¢, (,uX’T) in the cube A = Q.

For this purpose, recall first the result at the end of section 7.2. There we
proved that if sup; |[W; N Qr| < v where {W;} are the connected components of the
set of non-regular sites W, then

d—1
cs(uy) < Croef?y T (7.21)

for suitable constants Cy and C; independent of L and v. A key ingredient for the
proof of the above bound was the observation that the connected components of W
are non-interacting since they are separated from each other by a “safety belt” of
regular sites, i.e. sites completely decoupled from their complement. Unfortunately,
when p is larger than p., the same approach becomes useless since the non-regular
set W has exactly one infinite connected component (the percolating cluster) with
a positive density so that v will typically be of the same order of magnitude as the
original volume |Qy|.

It is however very important to observe that, thanks to some of the results
of section 4.2, the above conclusions in the non percolating regime remains true,
modulo some irrelevant constant factors, even if the value J;y = 0 is replaced by a
very small number Jp,;,, provided that |Jmi||[W N QL] < 1.

This remark suggests how to transpose to the dilute model above the percolation
threshold the previous ideas. In a certain sense, if the coupling J are such that
truncated correlations functions decay exponentially fast on a length scale Iy < L,
then our original model behaves, after a suitable “coarse-graining”, quite closely
to the same dilute model below the percolation threshold. Let us in fact make a
coarse—grained description of the model on a new scale Iy < L, by replacing sites
with disjoint cubes C; of side Iy and declare “regular” those cubes C; in which
truncated correlations decay exponentially fast with rate o > 0. In this way, if B is
a collection of “non-regular” cubes C; surrounded by a safety—belt of regular cubes,
then the effective interaction of B with any other region outside the safety—belt will
be not larger than |B|exp(—alg). Thus, if I is chosen so large that the effective
interaction among the connected components of the set W, of non-regular cubes
C; is much smaller than one, e.g. if |W,|exp(—aly) < 1, then our system, on scale
lo, will behave like a diluted Ising model even if, strictly speaking, the regular cubes
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are connected by non-zero couplings. In particular we will be able to apply the
results of Section 4.2 and, as a consequence, we will get the bound (7.13) on the
spectral gap, with v equal to the volume of the largest connected component of the
set Wi,. Moreover, if the probability p;, that a cube C; of side Iy is non-regular is
very small, i.e. if assumption (H) holds, then the net effect of the coarse—graining
will be that of replacing the original parameter p > p. with a new, renormalized
one, py, < Pe.

Although the above reasoning looks quite appealing from a physical point of
view, it is still unsatisfactory for the following reason. In a typical configuration of
J, the volume of the set W;, N Qy, is roughly p(lo) L%, where p(ly) is the probability
that a cube C; is not regular. Using our basic assumption (H), p(lp) ~ exp(—1dlo)
so that the minimal scale lo satisfying |W,| exp(—alg) < 1 becomes of order log L.
This unfortunately is a too large scale: since v is at least Ig, the corresponding
bound (7.21) on the logarithmic Sobolev constant, becomes at least of the order of
a power of L.

In order to overcome this difficulty, we appeal to Proposition 4.10. More pre-
cisely we introduce an intermediate length scale I; < L and we assume that the J
in A are such that the hypotheses of Proposition 4.10 apply for [;. If this is the
case, then Proposition 4.10 basically allows us to replace the initial cube A = Q.
with a smaller cube @y, (z), for a suitable z € A. Once we have reduced the initial
scale L to the new scale /1, we make the coarse-grained analysis on scale [y < [, on
the new cube @, (z) and proceed as explained before.

The advantage of the above two-scale analysis is twofold. First of all the
shortest scale Iy is now at most of the order of logl; instead of log L. If we assume
(H) it follows from the Borel-Cantelli lemma that in a typical configuration the
intermediate scale I; can be taken already of the order of log L. Thus we see that,
with probability one, the smallest scale becomes [y ~ loglog L with an enormous
gain in precision. We conclude this short heuristic discussion by observing that it
is precisely the coarse-grained analysis on scale loglog L that is responsible for the
various loglog L factors in Theorem 7.4.

We are now ready for a precise formulation of our results. Remember that F; is the
class of subsets of Z¢ which are multiple of Q;.

Definition 7.5. A cube C = Qi(z) is said to be a—regular if, letting n(l) =
11/(2v1)], SMT(Qn(y),n/2,a) holds for all y € Q;(x) where the constants v; and
m(a) are those appearing in Proposition 2.9.

We immediately observe that, thanks to proposition 2.9 and the second remark
after its proof, if V' € F,qy (i.e. if | is a multiple of the integer 2v1) is the union of
a—regular cubes of side length [ then, if [ is large enough depending on 8 and d,
SMT(V,1/2,m(c)) holds.

Definition 7.6. Let l € Z,, let & > 0, let A be a multiple of Q; and write A =
U, Qi(z;) for some n € Z and z; € I1Z%. Let K be the set of all i € {1,...,n}
such that Q(z;) is not a—regular and define
W(A,l,a) = {.’IJ eA: dz(ac,UieKQl(m,-)) < 2[}
v(A,l, @) = the cardinality of the largest connected component of W (A, [, @)
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Proposition 7.7. Choose the transition rates cy as in (3.6). Then, for each o > 0
there exists I(d, o, 3) and k(d, @) such that the following holds for all integers lo > |
which are multiples of 27y,: let V be a multiple of @, and let v = v(V,lp, @)
(see Definition 7.6) and let m = m(d,«) be the decay rate given by Proposition
2.9. Assume that mly > max{200dg, C,10(1 + log |W(V,lo, @}|)} where C is the
constant appearing in Corollary 3.6. Then,

irelggap(L‘T/) > exp[— k(2dﬂv a +ld Y] (7.22)

Proof. Write V. = |J;_, C;, where C; = Qy,(y;) for some y; € l[pZ%. Let B =
W(V,lg,) and let A be the union of all those (a-regular) cubes C; such that
d(C;,Cj) > o for all C; which are not a—regular. Let also Ag = AN 3[;3 and
By = BN3dFA, r=1. By Proposition 3.4 we have

J,r 1 J,T . J,r
> _ ] ) .
Inf gap(Ly") 2 5 [ inf De‘&f 5 gap(Lp") | inf gap(Liy py) (7.23)

The proof of the Proposition can then be organized in the following steps:

(a) We can use Corollary 3.6 to show that the gap of the block dynamics generator
L{; B} is at least 1/2. In order to show that 3.6 does indeed apply to our case, we
first notice that d(Ao, Bo) > lo, which, together with the trivial inequality |Bp| <
[W(V,lo, @)|, implies the hypothesis (i) of 3.6. Then we observe that A\Ag can be
expressed as a union of a—regular cubes C;. So, by Proposition 2.9, the property
SMT(A\ Ao, lo/2,m) holds.

(b) Since the set A is a union of a—regular cubes of side lenght ly, property
SMT(V,lo/2,m(a)) holds for any subset V of A which is a multiple of @;,. Thus,
using Proposition 4.10, one proves that gap(Li’T) is bounded from below by a quan-
tity which does not depend on the size of A:

J, T 1, . J,T - d-1
gap(L") > 5 in ci%fA gap(LET) > Cre™C2b (7.24)

(¢) For what concerns the gap of LL™, we write B as the disjoint union of its
connected components By, ..., Bh. Smce LB:,T commutes with LJ]T for all ¢ # 7, it
follows that

gap(Lg) = _inf gap(L37)

From (7.23), (a), (b) and (c), together with Theorem 3.8 (for the dynamics (3.6) we
can take ¢, = 1/2 in (3.3)) and the fact that trivially ||J™|| < 2d8, we get

gy Lol (k2dp)Bi T ~Cal27!

mf gap(Ly") > 7 Mg infe : , Crem @b 7}
T

In order to obtain (7.22) we now observe that by definition of v, we have |B;| < v,

and that the minimum of the two quantities in braces is greater than their product
if Iy is such that both terms are less than 1. O
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Theorem 7.8. If the transition rates are given by (3.6), then for each o > 0 there
exist I, C; and C, depending on d, 3 and « such that the following holds for all
positive integers lo > | multiples of 2y;: let I, be a multiple of Iy and let A be a
multiple of Q;, so that we can write

A=UL, Bi=Ui, G (7.25)
where B; = Qi,(z;) and C; = Qi (y;) for some z; € 1Z% and y; € 1oZ% Let
v = v(A,ly, ) (see Definition 7.6), and let m = m(d,r,a). Assume that

(i) For eachi € {1,...n} the cube B; is a—regular

(ii) kv T < mdli, where k(d, @, 3) and § are the constants appearing in Theorem
3.8 and Proposition 4.10 respectively
(iii) 30dlogly < mly < (1;)Y/d)

Then we have a1
sug cs(up™) < Cy exp[Cy (v T +1§71)]
TE

Proof. Since A is the union of a—regular cubes B;, for any I C {1,...,n} property
SMT(V,11/2,m(c)) holds for V = {J;.; Bi. Therefore, thanks hypothesis (ii) and
to proposition 4.10

sup ¢s (L") < 2sup sup cs(Lg7)
reQ TEN B;EA ’

<cC [4 + 419(2dB + 21og 2) ] gupA gap(L{;’:)‘l
i€

We now observe that hypothesis iii) allow us to apply proposition 7.7 above to any
cube B; in A. Thus

sup gap(L]f,’iT)_1 < exp[-i—k(Qdﬁvﬁi‘;—1 +137H)]
B;€eA

and the result follows. O

7.5 Proof of the Main Results Above P,

In this final part we prove our main results above the percolation threshold, namely
theorem 7.2, 7.3 and 7.4. First we need the following simple estimate.

Lemma 7.9. Assume (H). Then there exist Ly € Z,, ¥ > 0 such that for all
L > LO; ,
P{Qr is a—regular} > 1 —e %L

Proof. The probability that @1, is not a—regular is bounded by

P{SMT(Qn(y),n/4, ) does not hold for some y € @1} <
< L2 e~ 9L/(3m)

<e 'L

if L is greater than some Ly, O
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Proof of Theorem 7.4. We give the proof in the special case of L which is a power of
2, which is enough to prove Theorem 7.2. We also assume, without loss of generality,
that the constant v; of proposition 2.9 is also a power of 2. A proof which works
for all L requires a modification of Theorem 7.8 where one considers more general
coverings of A with cubes and cuboids with slightly different sidelengths. This
generalization is straightforward.

Part (i). We are going to use the key deterministic estimate of cs(,ué’:) given in
Theorem 7.8. The idea is to prove that with probability greater than 1 —3L~2, it is
possible to choose the two parameters in Theorem 7.8, lg, I; in such a way that the
deterministic upper bound on ¢, (uél) given in that proposition is not greater than

exp| C(loglog L)%(log L) ]

for a suitable constant C. More precisely we define [y and [; as those powers of 2
(they are uniquely defined) such that

60d 120d 3d 6d
- < _— — < —_— .
— loglogL <lp < — loglog L 5 logL <l; < X7 log L (7.26)

where m = m(a) (see Proposition 2.9) and ¥’ is given in lemma 7.9. We then take
v, =g log L (7.27)

Since Iy divides /3 and {; divides L, we can write @ as in (7.25). We now observe
that, if L is large enough, the hypotheses (i) — (iii) of Theorem 7.8 are satisfied for
all J € © =nZ_,0;,, where

©, = {J : each B; is a—regular}

O ={J: v(QL,lo, @) < v,}
and v(Qr, lo, @) has been defined in 7.6. By Theorem 7.8, (7.26) and (7.27), for any
J € O, we have

cs(ué’Z) < exp[ C(loglog L)?log L |

for a suitable constant C'. In order to prove the theorem it is therefore sufficient to
estimate from above P(@C).

From Proposition 7.9, it follows
P(65) < Lie~?h < -2 (7.28)

for all L large enough. Let p(I) be the probability that a cube @Q; is not a—regular.
Then p(I) goes to zero as | — oo, and a standard estimate for 2—dependent site
percolation implies
—d
P(05) < L% (k1 p(lo) ™" < L% (7.29)

for L large enough, where k; and k; are two suitable geometrical constants. This
completes the proof.
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Proof of part (ii). The proof is the same as in part (i), with a different choice of
the three basic parameters lg, [; and v,. More precisely we define I and {; as those
powers of 2 (they are uniquely defined) such that (let again m = m(a))

(d 1)m loglogL <y < (;201‘%; loglog L (log L) T <y < 2(log L)d 1

Given € € (0,1) we then let

d
elog L\ -1
Ve = (2.]002 ) (730)

where Cy appears in Theorem 7.8. Write Qr, as in (7.25) and define the events C:),
©; as in the proof of part (i). Thanks to Theorem 7.8, we get

cs(u‘é’Z) < C,L3 exp(Czlg) < L¢ vJed (7.31)

for all L sufficiently large. In order to prove (7.20) it is therefore sufficient to bound
from above P(@C). As before, we find

P(6%) < Lie=%'h — d exp[—ﬁ’(logL)d;il] (7.32)
and
P(05) < L% (k1p(lo))*>**o " < exp[ —C5 (loglog L)~%(log L) 7*1] (7.33)

for a suitable constant C3 and all L large enough. Clearly (7.32) and (7.33) complete
the proof of (ii). O

Proof of Theorem 7.2. The proof of the almost sure bounds (part (a)) is a simple
consequence of Theorem 7.4. Let © be the set of interactions J such that for each
J € © there exists Ly(J) such that for all L > L;(J) (C is given in Proposition 7.4)
(i) cs(L},) < exp[C (log L) (loglog L)? ]

(i) SMT(BL,v1(2L + 1), @) holds

Using Theorem 7.4, (H) and the Borel-Cantelli lemma, one can check that P(6) = 1.
Moreover, thanks to (ii) and (iii), for all J € © there exists a unique infinite volume
Gibbs measure that in the sequel will be denoted by u’. Let, in fact, f be any
local function on {2, and take L large enough such that By D Ay. Then, given two
arbitrary boundary conditions 7 and 7, and using a telescopic interpolation between
them, we get

sup ]u (f) — Z’(f)| <18FBL| sup  ||Valug, (e =
T,n€E z€dF By,

W8T (has ) l (7:34)

=1|0BL| sup sup
NBL( z)

z€d By TEQ

where hy = exp[-V,Hp, ]
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Therefore, if L is larger than L;(J) and if d(Ay, (Br)¢) > y1(2L + 1) + 1, we can
use SMT(Bpr,v1(2L + 1), ), and write

sup | g, () = w5 (£) | < KL Al Fllooe™ @m0 (7.35)

™n

for a suitable constant k, and the uniqueness follows. At this point, in order to
prove inequality (7.15), we simply appeal to (3.23) .

Proof of part (b). Let Ly = |kqt| for some k; > ko such that L; is a power of 2
(ko is given in Lemma 3.2) and, for simplicity, let A; = Bg,. For any € € (0, 1), let
O(t, €) be the set of interactions J such that

(i) es(LF,) < L§

(ii) SMT(As, (log L) 7T, ().
We can write, for any 7 € €,

ET7®#)f - 1’ (Hlleo < NFNP(OE,€)°) + eop 1T (8 F = wxy (oot

HITI O F ~ T O floo + sup |27 (F) — w” (F)]
JEO(t,e)

(t,e
(7.36)
We denote by X1, X3, X3 and X4 the four terms on the RHS of (7.36). The last two

terms, using lemma 3.2 and property SMT(A¢, (log L) i ,m(a)) are exponentially
small in £:
X3+ Xy < Cf e 2 (737)
Furthermore, we have
P(O(t,e)°) < P{c,(L},) > L* }+ (738)
+ P{ SMT (A4, (log L)7% () does not hold } '

Of the above two terms the first one is estimated via (ii) of Theorem 7.4, which
implies
d
P{c,(L3,) = L° } < exp[—Cj (loglog L) ~*(log L) 77| (7.39)

provided that ¢ is large enough. The second term in the RHS of (7.38) can be
bounded from above, using Proposition 2.9, by the probability that there exists a

cube Q,;(x) in A4, with I = [(log L)ﬁ], which is not a—regular. Using Proposition
7.9 such a probability is bounded from above by

L exp[—9' (log L) 77] (7.40)
provided that ¢ is so large that L; > Lo. In this way we have obtained
X1 < Il | expl ~Cs (loglog Li)~*(log L) 77] + L exp(—d(log Lo)ar] | (7.41)
As for X3, we use (3.23) and the fact that now ¢,(L§,) < L, and we get

X, < 2|f|| exp[ &£~ (7.42)
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for any ¢ sufficiently large. From (7.37), (7.41) and (7.42) we get that for large ¢ the
dominant term in (7.36) is the first one and, by consequence (7.16) follows. O

Proof of the lower bound, Theorem 7.3

It is enough to prove part b) since part a) has already been proved in section 7.2.
The main idea for the lower bound on the a.s. relaxation of the spin at the

origin can be divided into two distinct parts. The first part consists in showing that,

with positive probability, for any L large enough, there exists a local function fr,,

with Ay, C BrNCy, Co being the cluster of the origin, whose relaxational behaviour
is not faster than exp[ —t exp[ —k (log L)d—;l )

The second part amounts to proving that the influence of the slow relaxation of
fr on the spin at the origin is not smaller than a negative exponential of L. This im-

plies a lower bound on ||T” (¢)7|| o of the order of exp [—mL —t exp[ —k (log L) T ]

and the result (remember that u’(mg) = 0 by symmetry) follows by optimizing over
L < t. Let us now implement these sketchy ideas.

We say that a path v = (xo,...,z,) connects x to y if
To=1T, Tpn=1y da(ziy zig1) =1 and Jeigiza =0 Vi=0,...,0-1

We will then write v : £ — y and set |y] = n. Given a configuration J of the
random couplings, a local function f and a finite set A C Cy, where Cp is the
cluster containing the origin, we set

d?(A) =sup inf |y|; e€l(f)= m; e’ (A) = inf e’(f) (7.43)
w€A 5:0s Var’ (f) FEL?(@,dn”)
AfCA

(both the Dirichlet form and the variance are with respect to the unique infinite
volume Gibbs measure). With the above definition we have the following two key
results.

Lemma 7.10. Under the same assumptions of part (b) of Theorem 7.3 there exists
a set © C O of positive measure and two positive constants k and Lg such that for
each J € © and any L > Ly there exists f such that

Af c Cy
d?(As) < kL
e’ (f) < exp|~h(log L) T*]

Lemma 7.11. There exists m > 0 such that for any t > 1 and any local function
f such that Ay C Gy

177 (B)molloo > (BA7]) " exp[-~md? (Ag) = 2¢” (F)t]

Before proving the two lemmas we complete the proof of part (b) of the theorem.
For this purpose choose .J in the set of positive measure given by Lemma 7.10, define

L(t) =texp [—(log t)%‘l] and assume that ¢ is so large that L(¢) > Lg. If we apply
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Lemma 7.11 to the function f given by lemma 7.10 for L = L; and use the upper
bound on e’(f) given in Lemma 7.10 we immediately get the sought lower bound
on [T (t)mol|co-

Sketch of the proof of Lemma 7.10. A detailed proof of the lemma is given in
[ACCMM]. Here we only sketch the main ideas. Fix ¢ small enough and E large
enough. Let I(e, E, L) be the event that inside the cube By there exists a smaller
cube Qi(z), I > elog(L), such that all the couplings inside @Q;(x) are equal to 3, all
but one the boundary couplings are zero and @Q;(z) is connected to the origin by a
path vy of length smaller than EL. Using the fact that p > p. one can prove that
the probability of I(e, E, L) is strictly bounded away from zero uniformly in L.

Let now f(0) = I{mg,(z)(0) > 0} where mg,(;)(0) denotes the (normalized)
magnetization in ;(z). Notice that Ay C Q;(z) C Br. If we compute e’(f) and
use the estimates of section 6.5 together with the symmetry under global spin flip,
we get

eu |Qu(@)| ' { Img, @) — 1/2| < 1/100}

e’(f) < Vol (7)

<exp [—k(log L) s

for a suitable constant & depending on ¢ and any L large enough. [

Proof of Lemma 7.11. For any given J we set F/(x,t) = T7(t)7,(1). Notice that,
since the nearest neighbor coupling J;, are non—negative, the heat-bath dynamics
is attractive (see section 3.4) so that F'/(z,t) is a non-increasing function of ¢ and
177 (t)molloo = F7(0,t). Next we define m = m(8) by

inf inf T (V)ma(0) = T (1) 7my(n) = 2e™™ (7.44)
da(z,y)=1 o,neEN
J=2y=F  a(y)=1n(y)=—1
a(2)2n(z) Yoty

Thanks to attractivity the quantity in (7.44) is non-negative, and, in particular, it
is strictly positive with our choice of the transition rates.
Fix now a local function f and a path v = (zo,...,%;) C Co. The result of the

lemma is then a direct consequence of the following three simple inequalities valid
for any t > 1 (see [CMM1] for a proof).

FI(0,t) > e ™ F/(z;,1) (7.45)
1T/ = 07 () agury < 4Var'(5) 3 F(a,1) (7.46)
TEAy
J
17005 = 17 (g 2 ) epl2e7 (1) (7.47)

In fact, for any local function f such that Ay C Cp, if we sum(7.45) over z € Ay
and use (7.46) and (7.47), we get

1

S exp[~md’ (A) — 2¢” (f)t] (7.48)

FI(0,0) 2 i expl-ma’ (A7) =27 (1)) >

O



8. Open Problems

We conclude these notes with a partial list of open problems.

Pb. 1 Prove (or disprove) the exponential ergodicity of the infinite volume dynamics
for a general non-attractive system satisfying only the weak mixing condition
of section 2 in dimensions d > 3.

Pb. 2 Discuss the validity of the strong mixing condition of section 2 for the three
dimensional Ising model for 8 < f3. or 8 > 8. and h # 0.

Pb. 3 Prove the analogous of theorem 5.2 for the true three dimensional Ising model
without making the SOS approximation.

Pb. 4 Analyze the relaxational properties under a Glauber dynamics for the Ising
model at the critical point (h = 0, 8 = ;). Such an interesting and difficult

point was only marginally touched in these notes in the example at the end of
section 3

Pb. 5 Consider a Glauber dynamics for the two dimensional Ising model in a box Q,
at low temperature, zero external field and plus boundary conditions. Prove
that the spectral gap, as a function of L, shrinks as L=2. Use then such a bound
to prove (or disprove) the conjectured (see [FH] and [OG]) e~V? decay of the
time autocorrelation of the spin at the origin for the infinite volume Glauber
dynamics in the plus phase (see section 6.7). Discuss the same problem in three
dimension. Here the conjectured decay is no longer a stretched exponential eVt
but, rather, a pure exponential. In particular the Glauber dynamics in the plus
phase should have zero spectral gap in two dimensions and positive spectral
gap in three dimensions. We refer the reader to [CSS] for some related results
in a simplified context (zero temperature dynamics).

Pb. 6 This question has been posed to me by R.Dobrushin. Consider a Glauber
dynamics for the two dimensional Ising model in the phase coexistence region
and run the dynamics starting from a configuration which is all pluses except
a large (e.g. spherical) bubble of minuses centered at the origin. As time goes
on the bubble will shrink under the influence of the external plus spins and the
question is whether, under a suitable time-dependent rescaling, it will reach
asymptotically in time a limiting shape and whether the limiting shape has
anything to do with the Wulff shape (see [DKS]).

Pb. 7 Improve theorem 6.10 by showing that in the phase coexistence region the
spectral gap of the generator in a large box By, with free boundary conditions

restricted to the subspace of even functions shrinks not faster than an inverse
power of L.

Pb. 8 Consider the two dimensional spin glass for which the random couplings take
value +J with equal probability. Extend to such model part a) of theorem 7.3

when J > ., B. being the critical value of the two dimensional Ising model
(see [RSP] for an heuristic approach).
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1 Preface

These notes are based on lectures delivered at the Saint Flour Summer School in July
1997. The first version of the notes was written and edited by Dimitris Gatzouras.
The notes were then expanded and revised by David Levin and myself. I hope that
they are useful to probabilists and graduate students as an introduction to the subject;
a more complete account is in the forthcoming book co-authored with Russell Lyons.

The first 10 chapters are devoted to basic facts about percolation on trees, branch-
ing processes and electrical networks, with an emphasis on several key techniques:
moment estimates, the use of percolation to determine dimension, and the “method
of random paths” to construct flows of finite energy. These 10 chapters are the “in-
troductory climb” alluded to in the title.

More advanced topics start in Chapter 11, where the method of random paths is
refined in order to establish the Grimmett-Kesten-Zhang Theorem: Simple random
walk on the infinite percolation cluster in Z%, d > 3 is transient.

Chapters 12 and 13 contain a regularity property of subperiodic trees, and its
application to random walks on groups. In Chapter 14 we discuss capacity estimates
for hitting probabilities; these are used in Chapter 15 to derive intersection-equivalence
of fractal percolation and Brownian paths.

In Chapter 16 we analyze the phase transition in a broadcasting model considered
by computer scientists: A random bit is propagated, with errors, from the root of a
tree to its boundary, and the goal is to reconstruct the original bit from the boundary
values. Remarkably, the same model arose independently in genetics, as a mutation
model, and in mathematical physics, where it is equivalent to the Ising model on a
tree. In Chapter 17, the Ising model on a tree is used to construct a nearest-neighbor
process on Z that is “less predictable” than simple random walk.

In Chapters 18 and 19, we study the speed and recurrence properties of tree-
indexed processes; in particular, we relate three natural notions of speed (cloud speed,
burst speed, and sustainable speed) to three well-known dimension indices (Minkowski
dimension, packing dimension, and Hausdorff dimension). In Chapter 20 we consider a
dynamical variant of percolation, where edges open and close according to independent
Poisson processes. At any fixed time, the random configuration is a sample of Bernoulli
percolation, but we focus on exceptional random times when the number of infinite
open clusters is atypical. There are striking parallels between the study of these
exceptional times for dynamical percolation, and the study of multiple points for
Brownian motion. We conclude in Chapter 21 by describing some results on stochastic
domination between randomly labeled trees, and stating some open problems for other
graphs.

I was first drawn to thinking about general trees in a lecture of I. Benjamini in
1989, when H. Furstenberg noted that certain trees that appeared in the lecture could
be interpreted (via b-adic expansions) as Cantor sets with different Hausdorff and
Minkowski dimensions. I. Benjamini and I proceeded to examine relations between
properties of trees and properties of the corresponding compact sets; these connections
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had unexpected uses later (see Chapter 15). For example, consider a subset A of the
unit square in the plane and the corresponding tree T'(A, b) in base b. Then A is hit by
planar Brownian motion (i.e., it has positive logarithmic capacity) iff simple random
walk on T'(A, b) is transient.

We then learned that a year earlier, R. Lyons (building on works of Furstenberg,
Shepp, Kahane and Fan) had established some remarkably precise connections be-
tween random walks, percolation and capacity on trees. R. Lyons and R. Pemantle
had already used these ideas to determine the sustainable speed of first-passage per-
colation on trees.

The point of view of these lectures was largely developed in the ensuing collabora-
tion with Itai Benjamini, Russell Lyons and Robin Pemantle, whose influence pervades
these notes. Other coauthors whose insights and ideas are represented here include
Chris Bishop (see Chapter 15), Will Evans, Claire Kenyon, and Leonard Schulman
(see Chapter 16), Olle Haggstrom and Jeff Steif (see Chapter 20).

In fact, probability on trees is a rich and fast-growing subject, so the account pre-
sented in these notes is necessarily incomplete. Natural complements are the two con-
ference proceedings volumes: Trees, edited by B. Chauvin, S. Cohen and A. Rouault
(Birkhéuser 1996) and Classical and Modern Branching Processes, edited by K. B.
Athreya and P. Jagers (Springer 1996). Continuum random trees are fascinating ob-
jects studied in several papers by David Aldous; Tom Liggett is writing a detailed
account of the contact process on trees. Superprocesses, which can be obtained as
scaling limits of branching random walks, have been studied by numerous authors. I
apologize to the many researchers whose results involving probability on trees are not
described here.

Acknowledgements Iam grateful to the participants in the St. Flour summer school
for their comments and to the organizer, Pierre Bernard, for his warm hospitality.

I am greatly indebted to Dimitris Gatzouras and David Levin for their help in
preparing these notes. I thank Itai Benjamini, Dayue Chen, Amir Dembo, Nina Gan-
tert, David Grabiner, Olle Higgstrom, Davar Khoshnevisan, Elon Lindenstrauss, El-
hanan Mossel, Oded Schramm and Balint Virag for their comments on the manuscript.

Yuval Peres
Jerusalem, December 1998



2 Basic Definitions and a Few Highlights

A tree is a connected graph containing no cycles. All trees considered in these notes
are locally finite: the degree deg(v) is finite for each vertex v, although deg(v) may
be unbounded as a function of v.

Why study general trees?

1. More can be done on trees than on general graphs. Percolation problems, for
example, are easier to analyze on trees. The insight and techniques developed
for trees can sometimes be extended to more general models later.

2. Trees occur naturally. Some examples are:

(a) Galton-Watson trees. Let L be a non-negative integer-valued random
variable and set Zp = 1, Z; = L, and Z,; = $27, LE"H), where the LZ(")
are i.i.d. copies of L. Then Z, is the number of individuals in generation n
of a Galton-Watson branching process, a population which starts with one
individual and in which each individual independently produces a random
number of offspring with the same distribution as L. The collection of all
individuals form the vertices of a tree, with edges connecting parents to
their children.

(b) Random spanning trees in networks. A spanning tree of a graph G
is a tree which is a subgraph of G including all the vertices of G. There
are several interesting algorithms for generating random spanning trees of
finite graphs.

3. Trees describe well the complicated structure of certain compact sets in R%.
Examples include Cantor sets on intervals and fractal percolation, a collection
of nested random subsets of the unit cube described below.

Example 2.1 Fractal Percolation is a recursive construction generating random
subsets {A,} of the unit cube [0,1]¢. Tile Ay = [0,1]¢ by b¢ similar subcubes with
side-length b~!. Generate A; by taking a union of some of these subcubes, including
each independently with probability p. In general, A, will be a union of b-adic cubes
of order n (cubes with side-length b~™ and vertices with coordinates of the form kb").
An41 is obtained by tiling each such cube contained in A, by b¢ b-adic subcubes of
order n + 1, and taking a union which includes each subcube independently with
probability p. The limit set of this construction N2, A, is denoted by Qu(p).

There is a tree associated with each realization of fractal percolation. The vertices
at level n correspond to b-adic cubes of order n which are contained in A,, and a
vertex v at level n is the parent of a vertex w at level n + 1 if the cube corresponding
to v contains the cube corresponding to w. A
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Figure 1: A realization of A; and A, for d =2, b = 2.

Let Q3(3) C [0,1]* denote the limit set of fractal percolation with b = 2, d = 3,
and p = ;. In Chapter 15, we will see that the random set Q3(1) is intersection-
equivalent in the cube to the Brownian motion path started uniformly in the cube.
By this we mean the following: if [B] denotes the range {B(t) : t > 0} of a three-
dimensional Brownian motion started uniformly in [0,1]3, then for some constants
Co,C1 > 0 and all closed sets A C [0,1]3,

GCoP(@s(1/2)NA#0) < P(BINA#D) < CP(Qs(1/2)NA#0).

Consequently, hitting probabilities for Brownian motion can be related to hitting
probabilities of Qg(%). This gives a new perspective on the classical study of intersec-
tions and multiple points of Brownian paths.

For example, consider two independent copies Q3(3) and Qg(%) Then the intersec-
tion @3(3) N Q5(3) has the same distribution as Q3(1). Since the tree corresponding
to Qs(}) is a Galton-Watson tree with mean offspring 2, it survives with positive
probability. Hence Q3(i) # (0 with positive probability, and intersection-equivalence
shows that two independent Brownian paths in R? intersect with positive probability,
a result first proved in [21].

It also follows that three Brownian paths in space do not intersect (as first proved
in [22]). By intersection-equivalence, it is enough to show that the intersection of the
limit sets of three independent fractal percolations, which has the same distribution as
Qg(%), is empty a.s. But the tree corresponding to Qg(%) is a critical Galton-Watson
process and hence dies out, see Chapter 3.

Infinite family trees arising from supercritical Galton-Watson Branching processes,
(Galton-Watson trees in short) play a prominent role in these notes.

Question 2.2 In what ways are Galton- Watson trees like reqular trees?
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First we establish a simple property of regular trees.

Example 2.3 Simple random walk {X,},>o on a graph is a Markov chain on the
vertices, with transition probabilities

1 lf w~v,
P(Xpp =w|Xn=v) = { Seg(u) otherwise

The notation u ~ v means that the vertices u and v are connected by an edge. Now
suppose the graph is a tree, and let |v| stand for the distance of a vertex v from the
root p, i.e., |v] is the number of edges on the unique path from p to v. On the b-ary
tree,

b-{l— D= Z+—1

(We have an inequality here because X, may be at the root.) Hence the distance
of the random walk on the tree from the root stochastically dominates an upwardly
biased random walk on Z. It is therefore transient and will visit 0 only finitely many
times. After the last visit of the random walk to the root,

B[] — Xal | Xa] 2 (1) +

b-1

E[|Xn+ll - IXnI ’Xn] = m»

and the strong law of large numbers for martingale differences implies that, almost
surely, n7! | Xp| = &1 A
One specific case of Question 2.2 is

Question 2.4 On a Galton-Watson (GW) tree with mean m = Y, kp, > 1, is simple
random walk transient on survival of the GW process?

We will see later that the answer is positive; this was first proved by Grimmett and
Kesten {1984).

For a tree I, denote I';, = {v:|v] = n}. Define the lower growth and upper
growth of I as gr(7T) := liminf |T;|'/" and gr(T) = limsup T, |'/™ respectively. If
gr(l') = gr(T"), we speak of the growth of the tree I' and denote it by gr(D).

Question 2.5 Is gr(I') > 1 sufficient for transience of simple random walk on I'? Is
it necessary?

The answer to both questions is negative. An analogous situation holds for Brown-
ian motion on manifolds, where exponential volume growth is not sufficient and not
necessary for transience.

Example 2.6 (3—-1 tree) The 3-1 tree I' has gr(I') = 2 (actually |I',| = 2"), but
simple random walk is recurrent on it. I can be embedded in the upper half-plane,
with its root p at the origin. The root has two offspring, and for n > 1, each level I',
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Figure 2: The 3-1 Tree.

has 27 vertices which can be ordered from left to right as v7,...,v}. For k < 271,
each v} has only one child, while for 2"~! < k < 2" each v has three children.

Observe that for any vertex not on the right-most path to infinity, the subtree above
it will eventually have no more branching (because “powers of 3 beat powers of 2”).
The random walk on I' will have excursions on left-hand branches, but must always
return to the right-most branch (because of recurrence of simple random walk on the
line). If these excursions are ignored, then we have a simple random walk on the
right-most path, i.e., on Z*, which is recurrent. A

It is even easier to construct transient trees of polynomial growth: E.g., replace every
edge at level k of the ternary tree by a path consisting of 2% edges. Simple random
walk on the resulting tree, considered just when it visits branch points, dominates an
upward biased random walk on the integers, whence it is transient.

On the other hand, positive speed implies exponential growth:

Theorem 2.7 Define the speed of a random walk as lim, n™!|X,,|, when this limit
exists. If the speed of simple random walk on a tree T exists and is positive, then T
has ezponential growth, i.e., gr(I') > 1.

This follows from Theorem 5.4 below.

Example 2.6 suggests that gr(I') does not give much information on the behavior
of a random walk on I'. The growth gr(T') barely takes into account the structure of
I', and a more refined notion is required.

A cutset II is a set of vertices such that any infinite self-avoiding path from
emanating the root p must pass through some vertex in II. The branching number



201

of a tree I is defined as

br(l') = sup{ A>1: inf Y A Mo } (1)

II cutset vell

The function inf{ YAl I a cutset} is decreasing in A and positive at A = 1.

vell
The boundaryeof a tree I', denoted AI', is the set of all infinite self-avoiding
paths (rays) emanating from the root p of I'. A natural metric on the boundary oT
is d(&¢,n) = e™™, where n is the number of edges shared by £ and 7. dimg(dT) will
denote the Hausdorff dimension of OT" with respect to this metric d. Because an open
cover of 9" corresponds to a cutset of [, and vice-versa, the Hausdorff dimension of
Or is related to the branching number of T by

logbr(I") = dimg(al').
Similarly, gr(T') is related to the Minkowski dimension dim,(0I") by
loggr(l') = dimp (7).
Generally, br(T") < gr(I'), since for A > gr(I') we must have
i1711f|f‘n|)\"” = inf S Ak =,
v€ln

using the fact that I',, is itself a cutset yields the inequality. If OT" is countable, then
br(I") = 1, because dimg A = 0 for countable sets A. For the 3-1 tree in Example 2.6,
AT is countable, and consequently br(I') = 1.

As an indication that the branching number br(I") contains more information about
the tree than the growth gr([), we mention two results that we shall prove later, in
Chapters 7 and 13.

Bernoulli(p) percolation on a tree I is the random subgraph of I' obtained by
independently including each original edge of I' with probability p, and discarding
each with probability 1 — p. The retained edges are called open, and P, is the
probability corresponding to this process (see Chapter 4 for the formal definition of
the probability space.) The first quantity of interest in percolation is

pe(T") = inf{p € [0,1]: Pp(p ¢ 00) > 0}, 2

where {p <+ oo} denotes the event that the root p is connected to oo, i.e., that there
is an infinite self-avoiding path emanating from p, that consists of open edges.

Theorem 2.8 (R. Lyons 1990) For an infinite and locally finite tree I,

pe(l) =

1
br(l)’
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Theorem 2.9 (R. Lyons 1990) If br(T') > 1, then simple random walk on T is
transient.

We close with an equivalent description of the branching number br(I') of a tree I'.
If u, v are vertices in I" so that v is a child of u, denote by uv the edge connecting them.
A flow § on I' from the root p to oo is an edge function obeying 6(uv) = ¥ 0(vw),
where the sum is over all children w of v. This property is known as Kirchhoff’s
node law. Imagine the tree as a network of pipes through which water can flow
entering at the root. However much water enters a pipe must leave through the other
end, splitting up among the outgoing pipes (edges). Define 8(v), for a vertex v # p,
to be the amount of flow that reaches v, i.e., §(v) := 6(uv) for u the parent of v. The
strength of a flow 0, denoted | 6], is the amount flowing from the root, Dvivmp O(V)
When 0] =1, we call § a unit flow.

Lemma 2.10 For a tree T,
br(I') = sup{A > 1 : 3 a nonzero flow 6 from p to co : Vv, O(v) <A1}, (4)

Proof. This follows directly from the Min-cut/Max-flow Theorem, which in our
setting says that

sup{ | 8] : 6(v) < pid Yv} = _inf Z Al (5)
vell

IT cutset

For details, see Lyons and Peres (1999). o

Remark: As mentioned above, br(I') < gr(I') = liminf,|[',|"/" . In general, to get
an upper bound for br(I') one can seek explicit ‘good’ cutsets. To get lower bounds
use either

(i) Theorem 2.8, which in particular says that br(I') > 1/p.(T), or

(ii) find a good flow 6 on T such that 6(v) < A=l for all v; then br(T') > X. (Recall
that 6(v) denotes the flow from the unique parent of v to v.)

A flow 6 on I' induces a measure p on T for cylinder sets [v] = {¢ € oI :
¢ passes through v}, define u([v]) as 6(v). If [v1], .. ., [v,] are disjoint cylinders (which
means that no v; is an ancestor of another), and [v] = UX,[v;] (i.e., the {v;} form a
cutset for the subtree I'” rooted at v), then Kirchhoff’s node law implies (by induction
on n) that u([v]) = Xi_; u([vi]). Countable additivity can be proven using the com-
pactness of OI': Cylinders form a basis consisting of open sets and are also closed in
the natural topology on OI'. Thus countable additivity follows from finite additivity.



3 Galton-Watson Trees

Let L be a non-negative integer-valued random variable and let p, = P(L = k)
for £k = 0,1,2,.... To avoid trivial cases, we assume throughout that p; < 1. Let
{Lg”)}i,neN be independent and identically distributed copies of L, set Zy = 1, and
define

Zowr = { S LMY i 2,50,
0 if Z,=0.
The variables Z,, are the population sizes of a Galton-Watson branching process. The
tree associated with a realization of this process has Z, vertices at level n, and for
1 < Z,, the ’th vertex in level n has LE"H) children in level n + 1.
Generating functions are an indispensable tool in the analysis of Galton-Watson
processes. Set f(s) = E[s!] and define inductively

fU(S)=S7 fl(S)If(S), fn+1(s):fofn(5)7 OSSSI

It can be verified by induction that f,(s) = E[s?"] for all n, that is, f, is the generating
function of Z,. Note that f(s) = 32, pes® and f/(1) = E[L] = m. We always have
f"(s) > 0for s >0, so f is convex on R*.

Define ¢ to be the smallest fixed point of f in [0,1]. Note that if po = 0, then
g = 0. Observe that lim, P(Z, = 0) = lim,, f,(0) < ¢, and since lim,, f,(0) must be a
fixed point of f, it follows that ¢ = lim,, P(Z, = 0). So

g = P(Z, — 0) = probability of extinction.

Since f is convex, if 1 > m = f'(1), then ¢ = 1. If instead 1 < m = f(1), then
g < 1. Thus, a Galton-Watson process dies out a.s. if and only if m < 1.

A property of trees A is inherited if all finite trees have property A, and all
the immediate descendant subtrees I'® of I have A when T' has A. (The immediate
descendant subtrees I'® of T' are the subtrees of I" rooted at the children of the root
p-)

Example 3.1 The following are all inherited properties:
1. {T: sup, |I'yx| < oo}
2. {T': |T',| grows polynomially in n}.

3. {T': ' finite or br(T") < c}. A

Proposition 3.2 (0-1 Law) Let P be the probability measure on trees corresponding
to a GW process with m > 1. If A is inherited, then

P(A | non-estinction) € {0,1}.
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Proof. We have

PlLe€AlZy=k <P <_rk]{r<i) cA}| 2, = k) =P( € A).
Thus,
P(Te A) =) nP(L € AlZi=k) < f(P(T € A)).
k

Convexity of f implies that the only numbers z € [0, 1] satisfying z < f(z) are
z =1 and all z € [0,¢]. Since A holds for all finite trees, P(T' € A) > ¢. So
PT e A)e{q1}. 0

Observe that m™"Z, is a non-negative martingale and hence converges to some
finite random variable W < co. If m < 1, then Z,, = 0 eventually, so a.s. W = 0. The
case m > 1 is treated by the following theorem.

Theorem 3.3 (Kesten and Stigum (1966a)) When m > 1,
P(W > 0| non-eztinction) =1 if and only if E[Llog" L] < .

A conceptual proof of Theorem 3.3 appears in Lyons, Pemantle, and Peres (1995).

Hawkes (1981), under the assumption that E[Llog® L] < oo, proved that for
Galton-Watson trees T,

P(dimg (0T) = logm | non-extinction) = 1.
This is equivalent to
P(br(I') = m | non-extinction) = 1. (6)

R. Lyons discovered a simpler proof without the assumption E[L log? L] < co, which
is given below in Corollary 5.2. Because a.s. m™Z, — W, where 0 < W < oo, it
follows that a.s. gr(I') < m. This, together with the general inequality br(I') < gr(I")
and (6), implies that a.s. given non-extinction, o

m = br(T") < gr(T) < g¥(T) < m.

4 General percolation on a connected graph

General (bond) percolation on a connected graph G is a random subgraph G(w)
of G such that, for any edge e in G, the event that e is an edge of G(w) is measurable.
Independent {p.} percolation is the percolation obtained when each edge e is
retained (or declared open) with probability p., independently of other edges (and
removed or declared closed otherwise). We already discussed in Chapter 2 the special
case of Bernoulli(p) percolation where all probabilities p, are the same, p. = p
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Formally, the sample space for a general bond percolation is Q = {0, 1}, where
E is the edge set of the graph G. The o-field F on Q is generated by the finite-
dimensional cylinders, sets of the form {w € Q : w(e;) = zy,...,w(en) = z,} for
z; € {0,1}. The probability measures Py} and P,, corresponding to independent
{pe} percolation and Bernoulli(p) percolation respectively, are product measures on
(Q, F).

We write the event that vertex sets A and B are connected by a path in G(w) by
{A + B}; when G is an infinite tree I, we write {p <> 0T} for the event that there
is an infinite path emanating from p with all edges open.

The connected components of open edges in percolation are called clusters, and
the cluster containing v is denoted by C(v). Define

C := {Jv € G with |C(v)| = o0};

C is the event that there is an infinite cluster somewhere in the percolation on G. We
write Cc when there is a possibility of ambiguity.
For Bernoulli(p) percolation, at any fixed vertex v,

P,(|C(v)] = 00) > 0if and only if P,(C) = 1. (7

One implication in (7) follows immediately from Kolmogorov’s zero-one law: C does
not depend on the status of any finite number of edges, hence P,(C) € {0,1}. To see
the other implication, assume P,(C) = 1 and take a ball B, (v) large enough so that

P, (there exists an infinite path intersecting By, (v)) > 0.

Then clearly
P,(0B,(v) <» c0) > 0.

Because B,(v) is finite, the event that all edges in B,(v) are open has positive prob-
ability. By independence of disjoint edge sets,

Py(IC(v)] = o0)

IV

P,(all edges in B,,(v) are open and 0B, (v) ¢ c0)
P,(all edges in B,(v) are open)P,(9B,(v) ¢+ c0)
> 0.

Alternatively, one can use the FKG inequality for the events A = {all edges in B, (v)
are open} and B = {there exists an infinite path connecting B,(v) to co}, as both
these events are increasing. See Grimmett (1989) for details.

For Bernoulli{p) percolation on an arbitrary graph G, the critical probability
(already mentioned in the case of trees) is

po(G) =inf{ p: P,(C) = 1}.

For this definition to make sense, p — P,(C) must be non-decreasing. This can be
seen by by coupling the measures P, for all p together, see Grimmett (1989).



5 The First-Moment Method

The first moment method is straightforward but useful. For general percolation on a
tree I with root p, it asserts that

P(p ¢ 00) < 3 P(p ) ®)

vell

for any cutset II. For Bernoulli(p) percolation on the tree, the inequality becomes

Py(p+r00) < 3 P
vell

When p < 1/br(T"), this can be made arbitrarily small for appropriate choice of cutset.
This proves

Proposition 5.1 For any locally finite T,

1
br(T) " )

p(T) >

In general there is equality here, as advertised previously in Theorem 2.8. The proof
of equality is in §7.

Corollary 5.2 Let T be a GW tree with mean m > 1. Almost surely on non-
extinction, br(T) = m and p.(T) = 1/m.

Proof. Let Pgw be the distribution of T on the space of rooted trees 7, and let
Zn = |Ty,] be the size of level n of T. Given t € T, let P,, be Bernoulli(p) percolation
on t.

Observe that

m > gr(T) > gr(T) > br(T) >

pe(T) . (10
The first inequality follows since Z,/m" converges to a finite random variable, the
middle inequalities hold in general, and the right-most is the content of Proposition
5.1. Thus it is enough to show that for p > m™!

Pow (t : Ppi(|C(p)| = 00) > 0 | non-extinction) = 1. (11)

Combine the measures Pgw and P,;: Given the Galton-Watson tree T, perform
Bernoulli(p) percolation on T and let 7" be the component of p in the percolation. 7"
is itself a Galton-Watson tree, where the number of individuals in the first generation
is Z} = ©2,Y;, where {Y;} are i.i.d. Bernoulli(p) random variables. Because E[Z]] =
mp > 1, with positive probability 7" is infinite:

P(IT'| = 00) = [ Pp(IC(p)| = 00})dPGw(t) > 0.
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We conclude that the integrand must be positive with positive P gy -probability:
Pow (t @ Ppi(|C(p)| = o0) > 0) > 0.

Since the set
{t : Ppu(ICp)| = 00) = 0}

defines an inherited property, Proposition 3.2 implies that (11) holds. This proves
that a.s. on survival, p.(T) = m~!, whence (10) yields that br(T) = m. O

Kahane and Peyriére (1976) calculated the dimension of the limit set of fractal
percolation; their methods were different. The proof above is due to R. Lyons.

Question 5.3 (Héggstréom) Suppose simple random walk {X,}n>0 on T has posi-
tive lower speed, i.e., for some positive number s

P (lin}linf% > s) >0. (12)

Is it necessarily true that br(l') > 17
The answer is positive, and the proof relies on the first-moment method again.

Theorem 5.4 If (12) holds, then br(T') > /s where
I(s) = %[(1 + s) log(1 + s5) + (1 — s) log(1 — s)] .
Proof. By (12) above, there exists L such that
P(| X, >nsforalln>L)>0.
Define a general percolation on I by
F(u))z{vel": |v] < L or X, = v for some n < Ivls‘l} .

More precisely, if e(v) denotes the edge from the parent of v to v, we retain e(v) if
|v] < L or if X,, = v for some n < |v|s~!. By the definition of this percolation,

Plpeor o) >P (| X, >nsforalln>L)>0. (13)
On the other hand, we claim that if S,, is simple symmetric random walk on Z, then

for |v| > L,

P(p +» v) = P(X, = v for some n < |v|s™!) <P ( max |S,| > |v|) . (14)

n<ju|s~

Consider a particle on I" which moves with X when X moves along the unique path
from p to v, but remains stationary during excursions (possibly infinite) of X from
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this path. This particle performs a simple random walk on the path with (possibly
infinite) holding times between moves. The probability on the left in (14) is the chance
that this particle reaches v before time |v|s~!, which is at most the chance that simple
random walk on Z travels distance |v| from the origin in the same time. This proves

(14).
By the reflection principle,

P (m<a]%(|5n[ > SN) <2P (m<a.13]cSn > sN) < 4P(Sy > sN) < 4eNG) |

where I(s) is the large deviations rate function for simple random walk on Z (see,

e.g., Durrett 1996). Thus for |v] > L we have

Plper o) < doxp (-i12)

s
Combine this with (13) and (8) to conclude that if A = e!(9)/s_ then

0<P(pe00) <Y Plperv) <4 Al
vell vell

for any cutset II at distance more than L from the root. Hence br(I') > e!(s)/s,
Conjecture 1 Under the assumptions of Question 5.3 above

br(I') — 1 ) 1+s
< —t— .€. ry> .
S“br(F)-i—l’ "€ br()_l—s

Remark. Very recently, this conjecture was proved by B. Virag (1998).

Recall that for simple random walk on the b-ary tree, the speed a.s. equals

O

b1
b+1°

Example 5.5 Take a binary tree and a ternary tree rooted together. The simple

random walk on this tree does not have an a.s. constant speed.

A

The Fibonacci tree I'gy, is a subtree of the binary tree. We label vertices as (L) and
(R) (for “left” and “right”). The root is labeled (L). Every vertex labeled (L) has
two offspring, one labeled (L) and one labeled (R). Every vertex labeled (R) has one

offspring, which is labeled (L).
Exercise 5.6 Justify the name Fibonacci tree. Also, show that
br(l"ﬁb) = gr(Fﬁb) = (1 -+ \/5)/2

Hint: Use a two state Markov chain to define a ‘good’ flow.
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Figure 3: The Fibonacci tree.

6 Quasi-independent Percolation
Consider Bernoulli(p) percolation on a tree I'. If v and w are vertices in I, then

Plpel P u)P(p ¢ w)
pllp peru)Tip o w

P(p & d porw) = -

(p u and p w) p|u/\wt P(p<——>u/\’w)

?

where v Aw is the vertex at which the paths from the root p to v and w separate. This
turns out to be a key property of independent percolation, and we therefore make the
following definition.

A quasi-independent percolation on a tree I' is any general percolation so that
for some M < oo and any vertices u,v € T,
P(p© u)P(p & w)

Plp+ vAw) (15)

Plp+vandpe w) <M

Example 6.1 Percolation induced by i.i.d. labels.

1. Let E be the edge set of a tree T, and let {X.}eer be iid. {—1,1}-valued
random variables with P(X, = 1) = 1/2. Write path(v) for the unique path
in T from the root to v. A tree-indexed random walk {S,} is defined for

vertices v of [' by
So= 3 X

e€path(v)

Define I'(w) = {v: S,(w) € [0,b)}. For b = 2, this is equivalent to Bernoulli(1/2)
percolation: the only infinite paths in I'(w) are those for which each 1 is followed
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by —1, and each —1 by 1 (with 1 in the first step). For b > 2, the corresponding
percolation process is not independent, but it is quasi-independent.

2. Let {U.} be a collection of i.i.d. random variables, uniform on [0, 1), indexed by
the edges of I". Define

INw) = {v : for path(v) = eje;y - - - ey, U, (w) = max Ue, (w) } :
This is not quasi-independent.
For more on tree-indexed processes, see Chapter 18 and the survey article by Pemantle
(1995). A

7 The Second Moment Method

For general percolation on a tree, the cutset sums (8) bound P(p > 9I') from above.
We get lower bounds by using the second moment method, which we describe next.
By our standing assumption about local finiteness of trees,

{p & a0} = N{p < I}

We extend the definition of the boundary 9T to finite trees by

5T = leaves of I, i.e., vertices with no offspring if I is finite,
" | infinite paths starting at p if T is infinite.

Consider the case I finite first. Let u be a probability measure on 8I" and set

1
Y = w(@)l 0y ——mr .
ZGZBF (e }P(PHZ)
Then E[Y] = ¥ p(z) =1, and
z€ol

EY?] = E|Y 3 w@nb) 5 Hoemnfoen)

z€dT year (p < 2)P(p < y)
Plpeozandp < y)
= () p(y) :

zgryezaF P(p An x)P(p > y)

(16)
Thus, in the case of quasi-independent percolation,
1

EY’ ] < M Y we)uly) g—— - 17
:c,yze:aF PlpeozAy) (17)
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In the case of independent percolation, there is an equality with M = 1 in (17).
Define the energy of the measure p in the kernel K as

Ex(p) = Y K(x,y)n(m)u(y)=/6F /BFK(%y)u(dw)u(dy)-

z,y€dl’
When the kernel is

1

Kloy) = P(p <z Avy)

for z,y € oT,

(17) can be rewritten as

E[Y? < MEk ().
By the Cauchy-Schwarz inequality,
(E[Y])’ = (E[Y 1{y>q))* < E[YYP(Y > 0),
and consequently

EN) 1 1

P(Y >0) > BV 2 MEG

Since P(p +> oT') > P(Y > 0),

1 1
P(peo o) > —
(00 ) 2 3 e

The left-hand side does not depend on p, so optimizing the right-hand side with
respect to p yields

1
P(p+~0ol')> — sup
( ) pip(0r)=1 8[{ (/J,)

- %cap,{(ar) , (18)

where we define the capacity of 0T in the kernel K to be

1
Capg(0l') = su —.
pK( ) u:u(@l’%:l gK (M)

For T infinite, let u be any probability measure on dI'. u induces a probability
measure on [, : for a vertex x € T',,, set

p(z) = p(infinite paths through z) .

By the finite case considered above,




212

Each path £ from the root p to 0o must pass through some vertex z in ', ; write x € &
if the path £ goes through vertex . If z € £ and y € 7, then £ A 7 is a descendant of
x A y. This implies that K(z,y) < K(&,7) for z € € and y € n. Therefore,

I

/ar/arK(g’")d“(f)d“(") 2 / / K (&, n)du(€)dp(n)

I’yGF”zEE YyEN

Y K(z,y)u@)ny)

z,y€ln
1 1

MP(pe Ty

v

v

Hence

11
Porol,) > — ——
(p )‘Mﬁx(u)

for any probability measure p on 8I'. Optimizing over p and passing to the limit as
n — 00, we get )
P(peor) > M—Capk(al’) . (19)

To summarize, we have established the following proposition.

Proposition 7.1 Let I" be finite or infinite, P the probability measure corresponding
to a quasi-independent percolation onT', and K the kernel on 0T defined by K(z,y) =
P(p xzAy)t. Then

1
P(p < ol) > MCapK(af‘), (20)
where M =1 in the case of independent percolation.

For Bernoulli percolation, we have already proven that p.(I') > 1/br(T") in Proposition
5.1, using the first-moment method. We will now prove the reverse inequality, thus
showing equality. For convenience, we restate the result.

Theorem 2.8 (R. Lyons 1990) For Bernoulli(p) percolation on a tree T,

pc(r) = 1/br(r) :

Proof. Take p > 1/br(T) and 1/p < A < br(I"). By Lemma 2.10, there exists a unit
flow p from p to the boundary satisfying u(v) < CA~I*! for each vertex v € I'. We
may identify p with a probability measure on 9I' (see the discussion following Lemma
2.10).

Consider the kernel
= plérnl

1
K(n) = P oEAD
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The energy Ex(u) of p in the kernel K is given by

o Jg? €11 = S [ [ )it

Since the set of pairs (£,7) with £ A = v is contained in the set of pairs (£, 7) with
v € £, v € 7, the right-hand side above is not larger than

S PP = S Y ()

n=0 |lv|=n

ZP‘" > A7)

lv]=n

=C Z(P)\)""N(Fn)-

n=0

IN

The last sum is finite since Ap > 1. Applying Proposition 7.1 yields

P(p ) >C(1-1/xp) >0

8 Electrical Networks

The basic reference for the material in this chapter is Doyle and Snell (1984). Here
we will not restrict ourselves to trees, but will discuss general graphs.

While electrical networks are only a different language for reversible Markov chains,
the electrical point of view is useful because of the insight gained from the familiar
physical laws of electrical networks.

A network is a finite connected graph G, endowed with non-negative numbers
{c}, called conductances, that are associated to the edges of G. The reciprocal
re = 1/c. is the resistance of the edge e. A network will be denoted by the pair
{G,{cc}). Vertices of G are often called nodes. A real-valued function h defined on
the vertices of G is harmonic at a vertex = of G if

> Ehy) =h(z), where mp =3 cay. (21)

y~z 'z Yy~

(Recall that the notation y ~ = means y is a neighbor of z.)

We distinguish two nodes, {a, z}, which are called the source and the sink of the
network. A function V' which is harmonic on G \ {a, z} will be called a voltage. A
voltage is completely determined by its boundary values, V,,V,. In particular, the
following result is derived from the maximum principle.

Proposition 8.1 Let h be a function on a network G which is harmonic on G\ {a, 2}
and such that h(a) = h{z) = 0. Then h must vanish everywhere on G.
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Proof. We will first show that ~ < 0. Suppose this is not the case. Then h(z,): =
maxgh > 0. By harmonicity on G \ {qa,z}, if ¢ ¢ {a,z} belongs to the set A =
{z:h(z) = maxgh} and y ~ z , then y € A also. By connectedness, a,z € A, hence
h(a) = h(z) = maxgh > 0, contradicting our assumption. Thus h < 0, and an
application of this result to —h also yields A > 0. m]

This proves that given boundary conditions h(a) = z and h(z) = y, if there
is a function harmonic on G \ {a,z} with these boundary conditions, it is unique.
To prove that a harmonic function with given boundary values exists, observe that
the conditions (21) in the definition of harmonic functions form a system of linear
equations with the same number of equations as unknowns, namely (number of nodes
in G) — 2; for such a system, uniqueness of solutions implies existence.

A more informative way to prove existence is via the probabilistic interpretation
of harmonic functions and voltages. Consider the Markov chain on the nodes of G
with transition probabilities

¢
pzyZP(Xer:len:x'): =
T
This process is called the weighted random walk on G with edge weights {c.}, or
the Markov chain associated to the network (G, {c.}). This Markov chain is reversible
with respect to the measure :

TzDay = Cay = TyDyg -
A special case is the simple random walk on G, which has transition probabilities

1

Py = og (@) fory ~z

and corresponds to the weighted walk with conductances ¢,y = 1 for y ~ z.
To get a voltage with boundary values 0 and 1 at z and a respectively, set

V> = P,({X,} hits a before z),

where P is the probability for the walk started at node z. For arbitrary boundary
values V, and V,, define
Vo=V, + V7 (Va— Vo).

Until now, we have focused on undirected graphs. Now we need to consider also
directed graphs. An edge in a directed graph is an ordered pair of nodes (z,y),
which we denote by € = z7.

A flow § from a to z, previously discussed when the underlying graph is a tree, is a
function on oriented edges which is antisymmetric, (%) = —8(y*), and which obeys
Kirchhoff’s node law ¥°,,, 0(viv) = O at all v & {a, z}. This is just the requirement
“flow in equals flow out” for any node # a, z. Despite notational differences, it is easily
seen that these definitions generalize the ones given earlier for trees.
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Observe that it is only flows that are defined on oriented edges. Conductance and
resistance are defined for unoriented edges; we may of course define them on oriented
edges by cgy = g = Coy and T = Ty = Tgy.

Given a voltage V on the network, the current flow associated with V is defined
on oriented edges by

v, ~ Ve

I(e) = , where €= 2y .
Te

Notice that I is antisymmetric and satisfies the node law at every z ¢ {a, z}:
S I(@y) = cay(Vy — Vi) = 0.

y~T Yy~

Thus the node law for the current is equivalent to the harmonicity of the voltage.
The current flow also satisfies the cycle law: if the edges €3, ..., &, form a cycle,
ie., & = T;-1%; and z, = o, then

S ored(€;) =0.
=1

Finally, by definition, a current flow also satisfies Ohm’s law: if & = 77,

rel(€) =V, = Vz.

The particular values of a voltage function V are less important than the voltage
differences, so fix a voltage function V on the network normalized to have V, = 0.

By definition, if @ is an arbitrary flow on oriented edges satisfying Ohm’s law
rz0(2Y) =V, — V; (with respect to the voltage V), then 8 equals the current flow I
associated with V.

Define the strength of an arbitrary flow 6 as

101 =2 0(az).

~a

Proposition 8.2 (Node law/cycle law/strength) If 6 is a flow from a to z sat-
isfying the cycle law

S ref(E) =0
=1
for any cycle € ...,6m, and if |0] = |I|, then 0 =1.

Proof. The function J = @ — I satisfies the node-law at all nodes and the cycle law.
Define

s

he) =2 J(&)re; s

-
1
-
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where €, . ..,€&, is an arbitrary path from a to z. By the cycle law, J is well defined.
By the node law, it is harmonic everywhere, except possibly at a and z. Now |8 =
| I'| implies that J is also harmonic at a and 2. By the maximum principle, A must
be constant. This implies that J = 0. O

Given a network, the ratio (V, — V,)/ | I|, where I is the current flow corresponding
to the voltage V, is independent of the voltage V' applied to the network. Define the
effective resistance between vertices a¢ and z as

Vo — V2

R(a(—)z)::—ul—“—.

We think of effective resistance as follows: replace the whole network by a single edge
joining a to z and require that the two networks be equivalent, in the sense that the
amount of current flowing from a to z in the new network is the same as in the original
network if we apply the same voltage to both.

Next, we discuss the probabilistic interpretation of effective resistance. Denote

P(a — 2):= P,(hit z before returning to a) .

For any vertex x
‘/a - Vz
Vo= Vo

If pyy = czym; ! are the transition probabilities of the Markov chain, then

P, (hit z before a) =

Pla—2) = ) puPo(hit z before a)

ca_:cva*‘/z'

Ta ‘/a_‘/z

1 -
= -—————————%(%_‘G)gl(ax)
1 |I]

Tq ‘/a_‘/z

I

7. R(a & 2)

~a

Call [R(a +» z)] ! the effective conductance, written as C(a <> z). Then

Pla—2) = %C(a ©z). (22)

The Green function for the random walk stopped at z, is defined by
Gla,z) = E,[# visits to & before hitting 2].

(The subscript in E, indicates the initial state.) Then G(a,a) = m,R(a + 2),
since the number of visits to a before visiting 2 has a geometric distribution with
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parameter P(a — 2). It is often possible to replace a network by a simplified one

without changing quantities of interest, for example the effective resistance between
a pair of nodes. The following laws are very useful.

Parallel Law. Conductances in parallel add: Suppose edges e; and ey, with con-
ductances ¢; and ¢ respectively, share vertices v; and v, as endpoints. Then both
edges can be replaced with a single edge of conductance c¢; + ¢; without affecting the
rest of the network. All voltages and currents in G \ {e1, e2} are unchanged and the
current I(€) equals I(€}) + I(€,). For a proof, check Ohm’s and Kirchhoff’s laws with
1(é) .= 1(é)) + I(€y).

Series Law. Resistances in series add: If v € G\ {a, 2} is a node of degree 2 with
neighbors v; and vy, the edges (vi,v) and (v,vs) can be replaced by a single edge
(v1,vq) of resistance 7,,, + T4y,. All potentials and currents in G \ {v} remain the
same and the current that flows from v, to v, equals I(#7%) = I(9w5). For a proof,
check again Ohm’s and Kirchhoff’s laws, with I(7793) := I(970) = I(00%).

Glue. Another convenient operation is to identify vertices having the same voltage,
while keeping all existing edges. Because current never flows between vertices with
the same voltage, potentials and currents are unchanged.

Example 8.3 Consider a spherically symmetric tree I, a tree in which all vertices
of T, have the same number of children for all n > 0. Suppose that all edges at the
same distance from the root have the same resistance, that is, r, = r; if [e] = 4,7 > 1.
Glue all the vertices in each level; This will not affect effective resistances, so we infer
that

R(p+I'n) = erl

and T,
P(p—Ty)= L
Z ri/ T4l
Therefore the corresponding random walk on I is transient iff § ri/|ITi| <oc0. A
i=1

Theorem 8.4 (Thomson’s Principle) For any finite connected graph,
R(a > z) =inf {£(F): 6 a unit flow from a to z },

where £(6): = ¥ [0(e)]?re. The unique minimizer in the inf above is the unit current

flow.

Note: The sum in £(#) is over unoriented edges, so each edge {z,y} is only consid-
ered once in the definition of energy. Although 6 is defined on oriented edges, it is
antisymmetric and hence 6(e)? is unambiguous.
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Proof. By compactness, there exists flows minimizing £(6) subject to | @] = 1. By
Proposition 8.2, to prove that the unit current flow is the unique minimizer, it is
enough to verify that any unit flow # of minimal energy satisfies the cycle law.

Let the edges €1,...€, form a cycle. Set y(€;) = 1 for all 1 < ¢ < n and set v
equal to zero on all other edges. Note that 7 satisfies the node law, so it is a flow, but
> v(€) =n #0. For any € € R, we have that

0<EWB+ey) - i(061)+6) — 0(&)%re; —leE (&) +O(e).

I\DI'—‘

n
By taking ¢ — 0 from above and from below, we see that Y r.,0(€;) = 0, thus verifying
i=1

that 0 satisfies the cycle law.
To complete the proof, we show that the unit current flow I has £(I) = R(a +» 2):

Srd@ = 5E T (V WV)

=3 chzy(% —Vy)?
= ST X, - VI,

Since [ is antisymmetric,
1 - -
5 2 2 (Vy = Vo) I(dh) = = 2 Ve 3 I(a). (23)
Tz Yy z Yy

Applying the node law and recalling that | I| = 1, we conclude that the right-hand
side of (23) is equal to
V.= Ve

"I" =Ra ¢ 2).
O

Let a, z be vertices in a network, and suppose that we add to the network an edge
which is not incident to a. How does this affect the escape probability from a to z?
Probabilistically the answer is not obvious. In the language of electrical networks,
this question is answered by:

Theorem 8.5 (Rayleigh’s Monotonicity Law) If {r.} and {r.} are sets of resis-
tances on the edges of the same graph G, and if ro < ro for all e, then

R(a ¢ z;r) < Rla+ 27').

Proof. Note that ilelf S refle)? < irgf > 746(e)? and apply Thomson’s Principle (The-
orem 8.4). i
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Corollary 8.6 Adding an edge weakly decreases the effective resistance R(a ¢ z). If
the added edge is not incident to a, the addition weakly increases the escape probability
Pla—z) =[m,R(a < 2)] L.

Proof. Before we add an edge to a network we can think of it as existing already

with ¢ = 0 or r = co. By adding the edge we reduce its resistance to a finite number.
O

Thus, combining the relationship (22) and Corollary 8.6 shows that the addition
of an edge not incident to a (which we regard as changing a conductance from 0 to 1)
cannot decrease the escape probability P(a — 2).

Exercise 8.7 Show that R(a ¢+ 2) is a concave function of {r.}.
Corollary 8.8 The operation of gluing vertices cannot increase effective resistance.

Proof. When we glue vertices together, we take an infimum over a larger class of
flows. m]

Moreover, if we glue together vertices with different potentials, then effective resistance
will strictly decrease.

9 Infinite Networks

For an infinite graph G containing vertex a, let {G,} be a collection of finite connected
subgraphs containing a and satisfying U,G, = G. If all the vertices in G \ G, are
replaced by a single vertex z,, then

Ria > 00):= lim R(a ¢ 2z, in Gn U {2n}).
Now

C(a ¢ c0)

Ta

P(a — o0) =

A flow on G from a to infinity is an antisymmetric edge function obeying the node
law at all vertices except a. Thomson’s Principle remains valid for infinite networks:

R(a ¢+ oo) = inf { £(6) : 6 a unit flow from a to 0o }. (24)
Let us summarize the facts in the following proposition.
Proposition 9.1 Let (G, {c.}) be a network. The following are equivalent.
1. The weighted random walk on the network is transient.
2. There is some node a with C(a <> 00) > 0 (equivalently, R(a <> 00) < 00).

3. There is a flow 8 from some node a to infinity with | 6| > 0 and £() < oo.
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In particular, any subgraph of a recurrent graph must be recurrent.
Recall that an edge-cutset I separating a from z is a set of edges so that any path
from a to z must include some edge in II.

Corollary 9.2 (Nash-Williams (1959)) If {Il,} are disjoint edge-cutsets which
separate a from z, then

Rlaz) > (Z ce> . (25)

n e€ll,

In an infinite network (G, {c.}), the analogous statement with z replaced by oo is also
valid; in particular, if there exist disjoint edge-cutsets {I1,} that separate a from oo
and satisfy

then the weighted random walk on (G, {c.}) is recurrent.

Proof. Let 6 be a unit flow from a to z. For any n

D cer D ebe)' > (Z x/ax/ﬁlb’(e)o = (Z |9(6)|> > |6]*=1,

e€ll, e€Il, ecll, e€ll,

because II, is a cutset and || = 1. Therefore

;reﬁ(e)2 >33 rbe)? > (Z ce>_ .

7 ecll, n eell,
O

Example 9.3 (Z? is recurrent) Take r, = 1 on G = Z? and consider the cutsets
consisting of edges joining vertices in 90, to vertices in 801,11, where O,, = [—n, n]*.
Then by Nash-Williams (25),
1
Rao0)> Y ——— =00.
( )2 XH: 42n+1)

Thus simple random walk on Z? is recurrent. Moreover, we obtain a lower bound for
the resistance from the center of a square 0O, = [—n, n|? to its boundary:

R(0 < 00,) > clogn.
In the next chapter, we will obtain an upper bound of the same type. AN

The Nash-Williams inequality (25) is useful, but in general is not sharp. For example,
for the 3-1 tree in Example 2.6, the effective resistance from the root to oo is infinite
because the random walk is recurrent, yet the right-hand side of (25) is at most 1 for
any sequence of disjoint cutsets (prove this, or see Lyons and Peres 1999).
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Example 9.4 (Z3 is transient) To each directed edge & in the lattice Z3, attach an
orthogonal unit square O, intersecting € at its midpoint m.. Define 6(€) to be the
area of the radial projection of O, onto the sphere dB(0, %), taken with a positive
sign if € points in the same direction as the radial vector from 0 to m,, and with a
negative sign otherwise. By considering a unit cube centered at each lattice point
and projecting it to 8B(0, i), we can easily verify that @ satisfies the node law at all
vertices except the origin. Hence 6 is a flow from 0 to co in Z3. It is easy to bound
its energy:

2
£(6) <3 Cyn? (%) <

By Proposition 9.1, Z3 is transient. This works for any Z¢, d > 3. An analytic
description of the same flow was given by T. Lyons (1983).
A

Exercise 9.5 Fiz k > 1. Define the k-fuzz of an undirected graph G = (V, E) as the
graph Gy = (V, Ey) where for any two distinct vertices v,w € V, the edge {v,w} is
in By iff there is a path of at most k edges in E connecting v to w. Show that for G
with bounded degrees, G is transient iff Gy is transient.

A solution can be found in Doyle and Snell (1984, §8.4).

10 The Method of Random Paths

A self-avoiding path from a to z is a sequence of vertices vy, ..., v, such that vy = a
and v, = z, adjacent vertices v;_; and v; are connected by an edge, and v; # v; for
t # j. If ¢ and ¢ are two self-avoiding paths from a to z, define

| N | = number of edges in the intersection of ¢ and 1.

If € is the oriented edge pointing from vertex v to w, let € be the reversed edge
pointing from w to v. If 4 is a measure on the set of self-avoiding paths from a to z,
define
ple) =p(p : p3e)=p(p: p>3€orp>e)
The Nash-Williams inequality yields lower bounds for effective resistance. For
upper bounds the following result is useful. Assume that r. = 1 for all e; the result
can be extended easily to arbitrary resistances.

Theorem 10.1 (Method of random paths)
Ria ¢ 2) = inf " [u(e)]? = inf B[l N vl],

where the infimum is over all probability measures p on the set of self-avoiding paths
from a to z, and ¢ and ¢ are independent paths with distribution . Similarly, if there
is a measure p on infinite self-avoiding paths in a graph G with E [ e Ne| ] < oo,
then simple random walk on G 1is transient.
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Remark. The useful direction here is R(a > 2) < 3 u(e)? for all p.
Proof. The second equality is trivial: write |¢ N 9| as T, 1{psepse)-
Given a probability measure p on the set of self-avoiding paths from a to z, define
0(&) = ple: 928 —pp:¢37%)
= E.[1{¢3¢} -1{p> %}
By definition, € is antisymmetric. To see that § obeys the node law, observe that
> 0(vw) =E, | Y. 1{p 3 v} - 1{p > tw}|.

Assume v ¢ {a,2}. If, for a sample path ¢, a term in the sum is nonzero, then ¢
must use either an edge directed to v or an edge directed from v. But because ¢ is
a self-avoiding walk which terminates at z, it must also use exactly one other edge
incident to v, in the first case directed away from v and in the second case directed to
v. Hence the net contribution of ¢ to the sum is zero. We conclude that 6 is a flow.

Clearly, @ is a unit flow, i.e..

161 =X 6az) =1.

T~a

so we can apply Thomson’s principle:
Ria ¢ 2) < T [0)P < X [u(e)]*

The other inequality R(a ¢ z) > inf, 3" pu(e)? will not be used in these notes, so
we only sketch a proof. Let I denote a unit current flow. Then

R(a ¢ 2) = I(e)

Notice that a unit current flow is acyclic. Define a Markov chain by making transitions
according to the flow I normalized. This chain then defines a measure on paths and
(&) = I(€), because I is acyclic. For details, see Lyons and Peres (1999). a

Example 10.2 In Z2, consider the boundary 00, = {z € Z% |z|; = n} of the
square 0, = [—n,n|?. Using Nash-Williams we have seen that

R(0 < O,) > clogn.

Now define a measure p on self-avoiding paths in O, as follows: Pick a ray 7 em-
anating from the origin in a random uniformly distributed direction, and let p be
the distribution of the lattice path that best approximates ¢. By considering edges e
according to their distance from the origin, we also get

%:[N(e)]Q < kz:qk (%)2 < Clogn.
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So in Z? we have
clogn <R(0 + 00,) < Clogn.

A

Example 10.3 In Z3, define u analogously, but this time on the whole infinite lattice.
Now

2
R0+ 00) <3 cik? (%) < 0.
p

A

Example 10.4 (Wedges in Z*) Given a non-negative and non-decreasing function
f, consider the wedge

Wi={(z,9,2):0<y<z 0<z< f(z)}.

By Nash-Williams, the resistance from the origin to oo in W; satisfies
1
RO 00)>2Cy —v.
00 0= Co Trmy

In particular, if this sum diverges, then W; is recurrent. The converse also holds: A

Theorem 10.5 (T. Lyons 1983) If >, [kf(k)]™' < oo, then the wedge W is tran-
sient.

Proof Idea. Choose a random point (Uy, U,) according to the uniform distribution
on [0,1]* and find the lattice path closest to {(k, U1k, Usf(k))}32,. The completion
of this proof is left as an exercise. O

11 Transience of Percolation Clusters

The graph Z3 supports a flow of finite energy, described in Example 9.4, and hence
simple random walk in three dimensions is transient. Equivalently, if each edge of
Z? is assigned unit conductance, then the effective conductance from any vertex to
infinity is positive. If a finite number of edges are removed, then the random walk on
the infinite component of the modified graph is also transient, because the effective
conductance remains nonzero.

A much deeper result, first proved by Grimmett, Kesten, and Zhang (1993), is that
if d > 3 and p > p.(Z%), then simple random walk on C,.(Z%,p) is transient, where
Coo(Z4,p) is the unique infinite cluster of Bernoulli(p) percolation on Z¢. Benjamini,
Pemantle and Peres (1998) (hereafter referred to as BPP (1998)) gave an alternative
proof of this result and extended it to high-density oriented percolation. Their argu-
ment uses certain “unpredictable” random paths that have ezponential intersection
tails to construct random flows of finite energy on Co(Z¢, p).



224

Let G = (Vg, Eg) be an infinite graph with all vertices of finite degree and let
vy € Vig. Denote by T = T(G, vy) the collection of infinite oriented paths in G which
emanate from vg. Let T; = T1(G,v) C T be the set of paths with unit speed,
i.e., those paths for which the n* vertex is at distance n from .

Let 0 < ¢ < 1. A Borel probability measure p on T(G,vp) has exponential
intersection tails with parameter ¢ (in short, EIT({)) if there exists C' such that

px uw{(p,9) : o Nyl > n} < CC" (26)

for all n, where |@ N 9| is the number of edges in the intersection of ¢ and . If
such a measure p exists for some basepoint vy and some ¢ < 1, then we say that G
admits random paths with EIT(C). By the previous chapter, such a graph G must be
transient.

Theorem 11.1 (Cox-Durrett 1983, BPP 1998) For every d > 3, there erists
¢ < 1 such that the lattice Z¢ admits random paths with EIT(C).

Proof: For d > 4, we will show (following Cox and Durrett 1983, who attribute
the idea to Kesten) that the “uniform distribution” on Y1(Z¢,0) has the required
EIT property; for d = 3 such a simple choice cannot work, and we will delay the
proof to Chapter 17. Let d > 4, and define u to be the distribution of the random
walk with i.i.d. increments uniformly distributed on the d standard basis vectors
(1,0,...,0),...,(0,...,0,1). Let {X,} and {Y,,} be two independent random walks
with distribution p. It suffices to show that the number of vertex intersections of
these two walks has an exponential tail. Since | X, |1 = n for all n, we can have
X, =Y, only if n = m. The process {X,, —Y,} is a mean 0 random walk in the d — 1
dimensional sublattice of Z¢ consisting of vectors orthogonal to (1,1,...,1), and its
increments generate this sublattice. Since d —1 > 3, the random walk {X,, — ¥, } is
transient, and (26) holds with

(:=P[En>1 X,~Y,=0], and C = 1.
0

Proposition 11.2 (BPP 1998) Suppose that the directed graph G admits random
paths with EIT(C), and consider Bernoulli(p) percolation on G. If p > ( then with
probability 1 there is a vertez v in G such that the open cluster C(v) is transient.

Proof. The hypothesis means that there is some vertex vy and a probability measure
pon T = Y(G,uv) satisfying (26). We will assume here that y is supported on Yi;
the general case is treated in BPP (1998).

For N > 1 and any infinite path ¢ € T1(G,vy), denote by ¢y the finite path
consisting of the first N edges of ¢. Consider the random variable

In = . p’Nl{LpN is open} du(y) . (27)
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Except for the normalization factor p=", this is the u-measure of the paths that stay
in the open cluster of vy for N steps.

Since each edge is open with probability p (independently of other edges), E(Zy) =
1, but we can say more. Let By be the o-field generated by the status (open or closed)
of all edges on paths ¢y with ¢ € Y. It is easy to check that for each ¢ € T,
the sequence {p‘Nl{(pN is openy } is @ martingale adapted to the filtration {By}n>1.
Consequently, {Zn}n»1 is also a non-negative martingale. By the Martingale Con-
vergence Theorem, {Zy} converges a.s. to a random variable Z.. In fact, we now
show that {Zy} is bounded in L?, and hence converges in L?. Since each edge is open
with probability p (independently of other edges), E(Zy) = 1. The second moment
of Zx satisfies

E(Z})

I

E/I'1 T p—2N1{<PN and ¢y are open} dﬂ‘(‘P) dﬂ(l/f)
—lerp|
/T/T p~ " dp(p) du(y)

= Srtux (o) vl = ). o)

IA

By (26), the sum on the right-hand side of (28) is bounded by ¥, C (g)k which
does not depend on N and is finite since { < p.
On the event {Z > 0}, the cluster C(vp) is infinite, and by Cauchy-Schwarz,

(EZ%)’
EZZ

P(IC(vo)| = 00) > P(Ze0 > 0) >

Since EZ% is bounded, by Fatou’s Lemma the right-hand side is positive. Thus with
positive probability C(vp) is infinite, and it remains to prove that C(v) is a.s. transient
on this event.

We will construct a flow of finite energy on C(vg). For each N > 1, and every edge
€ directed away from vy, define

fn(e) = [rp‘Nl{WN is open}l{é'etp)v} du(p) - (29)

If € is directed towards v, let f(&) = —f(%€), where ‘€ is the reversal of €. Let
B(vg, N) denote the set of all vertices within distance N of vg. Then fy is a flow
on C(vg) N Blvg, N + 1) from v to the complement of B(vg, N), i.e., for any vertex
v € B{vg, N) except vy, the incoming flow to v equals the outgoing flow from v. The
strength of fy (the total outflow from v) is exactly Zy.

Next, we estimate the expected energy of fiy by summing over edges directed away
from wy:

EZ fN(é)2 = EA_ /T P_2N1{<p,v,z/w are open} Z Licepn)l{eeyn} du(ep) du(y)
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IA

[ e 0l due) du(w)
= i_o: kp~Fpx p{(p,9) < lo N9 = kY. (30)

Again using (26) and p > ¢, from (30) we conclude that

r e 2 (N oo
E;fN(é) g}ék(p) =C < o0, (31)

where C does not depend on N.

For each directed edge € of G, the sequence {fy(€)} is a {By}-martingale which
converges a.s. and in L? to a nonnegative random variable f(&). The edge function
f is a flow with strength Z,, on C(v), and has finite expected energy by (31) and
Fatou’s Lemma.

Thus

P[C(vp) is transient] > P[Z,, > 0] > 0,

so the tail event {Jv : C(v) is transient} must have probability 1 by Kolmogorov’s
zero-one law. a

Theorem 11.3 (Grimmett, Kesten and Zhang 1993)  Consider Bernoulli(p)
percolation on Z%, where d > 3. For all p > p,, the unique infinite cluster is a.s.
transient.

Proof. It follows from Theorem 11.1 and Proposition 11.2 that the infinite cluster is
transient if p is close enough to 1.

Recall that a set of graphs B is called increasing if for any graph G that contains
a subgraph in B, necessarily G must also be in B.

Consider now percolation with any parameter p > p. in Z% Following Pisztora
(1996), call an open cluster C contained in some cube Q a crossing cluster for Q if
for all d directions there is an open path contained in C joining the left face of Q to
the right face. For each v in the lattice NZ¢, denote by Oy (v) the cube of side-length
5N/4 in Z%, centered at v. Let A,(N) be the set of v € NZ¢ with the following
property: The cube Oy (v) contains a crossing cluster C such that any open cluster
in On(v) of diameter greater than N/10 is connected to C by an open path in Oy (v).

Proposition 2.1 in Antal and Pisztora (1996), which relies on the work of Grimmett
and Marstrand (1990), implies that A,(N) stochastically dominates site percolation
with parameter p,(N) on the stretched lattice NZ?, where p,(N) — 1as N — co. By
Liggett, Schonmann and Stacey (1996), it follows that A,(N) stochastically dominates
bond percolation with parameter p*(N) on NZ¢, where p*(N) — 1 as N — oco. This
domination means that for any increasing Borel set of graphs B, the probability
that the subgraph of open sites under independent bond percolation with parameter
p*(N) lies in B, is at most P[A,(N) € B]. If N is sufficiently large, then the infinite
cluster determined by bond percolation with parameter p*(N) on the lattice NZ¢,
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is a.s. transient. The set of subgraphs of NZ¢ that contain a transient subgraph is
increasing, so Ap(V) contains a transient subgraph /T,,(N ) with probability 1. Observe
that A,(N) is isomorphic to a subgraph of the “3N%fuzz” of the infinite cluster Cp
in the original lattice, so by Rayleigh’s monotonicity principle, we conclude that Cp is
also transient a.s. (See Ex. 9.5, or §8.4 in Doyle and Snell (1984) for the definition and
properties of the k-fuzz of a graph.) Alternatively, it can be verified that ﬁ,,(N ) is
“roughly isometric” to a subgraph of C,, and therefore C, is transient a.s. (see Soardi
1994). O
Remark. Hiemer (1998) proved a renormalization theorem for oriented percolation,
that allowed him to extend the result of [6] on transience of oriented percolation
clusters in Z¢ for d > 3, from the case of high p to the whole supercritical phase for
oriented percolation.

Recall that a collection of edges I1 is a cutset separating vy, from oo if any infinite
self-avoiding path emanating from vy must intersect II. Nash-Williams proved that
if {II,}22, is a sequence of disjoint cutsets separating vy from infinity in a connected
transient graph, then 3, |II,|7! < oo.

The following extension of Theorem 11.3 provides finer information about the
permissible growth rates of cutsets on supercritical infinite percolation clusters.

Exercise 11.4 Show that for d > 2,

d
inf{g: 3 a flow f 3 0 from 0 to co on Z¢ with Z|f(e)|q<oo}=3—_—f.

Theorem 11.5 (Levin and Peres 1998) Let Co.(Z%,p) be the infinite cluster of
Bernoulli(p) percolation on Z¢. Then for d > 3 and p > p.(Z%), a.s.,

d
inf{g: 3 a flow f # 0 from 0 to oo on Co(Z¢,p) with Y _ |f(e)|? < oo} = 1
Corollary 11.6 Let d > 3 and p > p.(Z%). With probability one, if {I,} is a
sequence of disjoint cutsets in the infinite cluster Coo{Z%, p) that separate a fized verter
vp from oo, then &, [T, < oo for all B> 7.

Proof. Pick > 757, and let f be a unit flow on Coo(Z9,p) with ¥ |f(e)|*** < oo,

which exists by Theorem 11.5. Observe first that

Eup(f) = 3 If @O >3 5 [£(e))'*,

ecEq n ecll,

since the {II,} are disjoint. By Jensen's inequality, for all n > 1,

1 1 1+4 1
T 2 @M 2 (e X 1) 7 = a7
M| &5, M| &5,
Multiplying by |II,| and summing over n establishes the Corollary. w

Remark. Theorem 11.5 was recently sharpened by Hoffman and Mossel.



12 Subperiodic Trees

For a tree I', let TV denote the subtree of I' rooted at vertex v that contains all
descendants of v. I' is N-subperiodic if for any vertex v € IT' there exists a 1-1
adjacency preserving map f: T — T/®) with |f(v)| < N.

Example 12.1 Ezamples of subperiodic trees.

e b-ary trees for any integer b > 2.
e The Fibonacci tree I'g, described in Exercise 5.6.
e The tree of all self-avoiding walks in Z¢.

e Directed covers of finite connected directed graphs: to every directed path of
length n in the graph corresponds v € ' with |v] = n; extensions of the path
correspond to descendants of v.

e Universal covers of undirected graphs: to every non-backtracking path of length
n in the graph corresponds v € I' with |v| = n; extensions correspond to de-
scendants, as above.

A
Suppose that b > 2 is an integer. For a closed nonempty set A C [0, 1], define a
tree I'(A, b) as follows. Consider the system of b-adic subintervals of [0, 1]; those which
have a non-empty intersection with A form the vertices of the tree. Two vertices are
connected by an edge if one of the corresponding intervals is contained in the other
and their orders differ by one (i.e., the ratio of lengths is b). The root of this tree is
[0,1]. Clearly, I'([0, 1], b) is the usual b-ary tree. If bA(mod 1) C A, i.e., A is invariant
under the transformation = — bz(mod 1), then T'(A, b) is 0-subperiodic.

Theorem 12.2 (Furstenberg 1967) For I' which is subperiodic, gr(I') exists and
gr(T) = br(T"). Furthermore,

inf $(br(T), 1) > 0,

where S(\,TT) = 3 A7l for a cutset II.
vell

Corollary 12.3 (Furstenberg’s formulation) Let A C [0,1] be a compact set. If
bA(mod 1) C A, then
dimg(A) = dimy (A) =

for some B, and moreover, HP(A) > 0, where HP denotes 3-dimensional Hausdorff
measure.
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Proof of Theorem 12.2. We will give the proof for I' O-subperiodic. The N-
subperiodic case can be reduced to the O-subperiodic case; this reduction is left as an
exercise. Assume first that I' has no leaves.

Suppose that for some finite cutset II,

S(AI) < 1. (32)

Denote d = max |v]. By O-subperiodicity, for any v € II, there exists a cutset II(v) of
I'” such that
T Aok <
weIl(v)
In other words,
S ATl <yl
well(v)
Replace v in II by the vertices in II(v) to obtain a new cutset II in [’ with S(X, II) < 1.
Given n, repeat this kind of replacement for every vertex v in the current cutset with
|v] < n to get a cutset II* such that all vertices u € I1* satisfy n < |u| < n+d. Then

T, A" < S\ TT*) < 1.

This inequality depends on the assumption of no leaves. Thus || < A" for all
n, whence gr([') < A. Since (32) holds for any A > br(I"), we infer that gF(T") < .
Therefore
gr(T) < br(T) < gx(D).
Finally, consider A; = br(T"). If S(A,II) < 1 for some finite cutset II, then we

could find A < A; such that S(\II) < 1, and the preceding argument would yield
that gr(T") < X < Ay, a contradiction. Thus for all cutsets II,

S(br(T),O) > 1.

If T has leaves, create a modified tree I by attaching to each leaf an infinite path.
I is periodic as well, and so the theorem can be applied to it, yielding br(I") = gr(I").
But since br(T') = br(I) and gr(T") < gr(I”), we have

br(T) < gr(T) < gr(l) < gr(I") = br(I) = br(T),
and hence gr(I") = br(T"). O

Exercise 12.4 Construct a subperiodic tree with superlinear polynomial growth (more
precisely, construct a subperiodic tree T such that |T, | tooco as n — oo, but |T,,| =
O(n?) for some d < oo.

(Hint: build a subtree of the binary tree where all finite paths are labeled by words
in the Morse sequence 0110100110010110. ... This sequence is obtained by iterating
the substitution 0 — 01, 1 +— 10. Alternatively, use a lexicographic spanning tree in
Z? as described in the next chapter.)
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Exercise 12.5 Does every subperiodic tree with exponential growth have a subtree
without leaves that has bounded pipes?

(Hint: Consider the subtree T of the binary tree T3, containing all self-avoiding paths
from the root in T, with the property that for every n > 100, any n? consecutive
edges on the path contain a run of n consecutive left turns.)

13 The Random Walks RW,

For a graph G, fix an origin o, and define |e| as the length of a shortest path from o to
an end-vertex of e. We will define a family of processes RW as weighted random walks
on G. Specifically, each edge e is assigned conductance A~ll. We will mostly consider
the case where I is a tree and o is the root p, although we will also consider these
processes defined on Cayley graphs of groups. By fine tuning A, we obtain random
walks that explore the graph better than the simple random walk. The following
result is stronger than Theorem 2.9 mentioned in Chapter 2.

Theorem 13.1 (R. Lyons 1990) RW, is transient on a tree T' if A < br(T'), and
recurrent if A > br(T").

Proof. If A > br(T'), then for any € there exists a cutset IT such that 3 ,eq A7 < €.
By Nash-Williams (for just one cutset)

1

1
A e
vell

R(p > 00) >

Letting € | 0 shows that R{p <> 0o) is infinite, and hence the walk is recurrent.
If A < br(I") choose A < A, < br(I') so that there exists a unit flow 6 from p to oo
with 8(e) < CA;'9. Then

EG) =Y rel0(eP <Y A" Y d(e)Cr M =CY (Ai) > 6(e) < o0,

le]=n le]=n.
since f is a unit flow. 0

Let G be a countable group with a finite set of generators S = {(gi, ... gn,). With
every generator we include its inverse, so S = S~!. The Cayley graph of G has as
vertices the elements of the group, and contains an (unoriented) edge between u and
v if u = g;v for some g; € S. Each element g € G can be represented as a word in the
generators, g = g1 - * - §i(m); let |g| be the minimal length of words which represent
g, and let G, = {g € G : |g| = n}. The growth gr(G) := lim, |G,|"/* exists for such
groups, and the group is of exponential growth if gr(G) > 1.

Corollary 13.2 (R. Lyons 1995) RW, on the Cayley graph of a group G of ezpo-
nential growth is transient for A < gr(G) and recurrent for A > gr(G).
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Proof. The second statement follows from the Nash-Williams inequality. For the first,
we will show that random walk on a subgraph is transient; by Rayleigh’s Monotonicity
Principle, this is enough. We will use the lexicographic spanning tree I in G. Assign
g its lexicographically minimal representation g = gy - Gi(m) Where m = |g| and
if g = gj) - gjem) is another representation of g, then at the smallest k such that
i(k) # j(k) we have i(k) < j(k). The edge gh is in T if | |g| — |h| | = 1 and either g
is an initial segment of h or h is an initial segment of g. Let the identity be the root.
Since there is a unique path from the root to any element in I', and T contains all
elements of G, it is indeed a spanning tree. One can check that it is O—subperiodic.
Observe that |T'y| = |Gy, so gr(l') = gr(G). Since T is subperiodic, Theorem 12.2
implies that br(I') = gr(G). By Theorem 13.1, for A < gr(G) the biased walk RW, is
transient on I', hence also on G. 0

Open Problem 1 For 1 < X < gr(G), is it true that

T, €]
speed(RW) ._Jl)r{’lo - >0, a.s. ?

Here |v| denotes the distance of v from the identity.

We remark that there exist groups of exponential growth where the speed of simple
random walk is 0 a.s. An example is the simple random walk on the lamplighter
group; see Lyons, Pemantle and Peres (1996).

14 Capacity

In Chapter 6 we considered capacity on the boundary of a tree. We now generalize
the definition to any metric space X equipped with the Borel o-field B. A kernel F
is a measurable function F' : X x X — [0, co]. For a measure x on (X, B), the energy
of 1 in the kernel F' is defined as

&) = [ [ Fl@,y)du(@)duly).

We will mostly consider F' of the form F(z,y) = f(|x — y|) for f non-negative and
non-increasing; we write £ for £r in this case. Define the capacity of a set A in the
kernel F' as

Capr(A) = [ inf spuo]*l.

pip(A)=1

The first occurrence of capacity in probability theory was the following result.

Theorem 14.1 (Kakutani 1944a, 1944b) If A C R? is compact with 0 ¢ A and
B is a Brownian motion, then

Po(B hits A) > 0 if and only if Capg(A) >0,



232

where G is the Green kernel

_ [ ey d>3,
G(x,y) - {10g+ (Ix_y'—l) d=2.

R. Lyons discovered connections between capacity and percolation on trees, already
discussed in Chapter 6. Let {p.} be a set of probabilities indexed by the edges of
a tree I'. Let path(v) denote the unique path from the root to v, and let F be the

kernel
F,y) = I ot (33)

e€path(zAy)

If p. = p, then F(z,y) = p~®¥l. More generally, if P is the probability measure
corresponding to independent {p.} percolation, then F(z,y) = [P(p > = A y)] "
A. H. Fan proved that on an infinite tree of bounded degree, P(p <> 8T') > 0 iff
Capp(dT") > 0. This was sharpened by R. Lyons to a quantitative estimate.

Theorem 14.2 (R. Lyons 1992) Let P be the probability measure corresponding to
independent {p.} percolation on a tree I' and F the kernel defined in (33). Then

Capp(dT) < P(p > L) < 2Capp(aT). (34)

Consider Brownian motion in dimension d > 3. One obstacle to obtaining quanti-
tative estimates for Brownian hitting probabilities with capacity in Green’s kernel is
translation invariance of that kernel: If B is a Brownian motion started at the origin,
then P(Bhits A + ) becomes small as z — oco. If we had a scale invariant kernel
instead, we would have more hope, as P(B hits cA) = P(B hits A) for any ¢ > 0.
Hence we use capacity in the Martin kernel

_ Gy _ (_ll \*7
wle) = et = (251) ()

for d > 3.

Theorem 14.3 (Benjamini, Pemantle, and Peres 1995) Let B be a Brownian
motion in R? for d > 3, started at the origin. Let K be the Martin kernel defined in
(85). Then for any closed set A in RS9,

%CapK(A) < Po(B hits A) < Capg(A).

Remark. An analogous statement holds for planar Brownian motion, provided it is
killed at an appropriate finite stopping time (e.g., an independent exponential time, or
the first exit from a bounded domain) and the corresponding Green function G(z,y)
is used to define the Martin Kernel.
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Theorem 14.4 (BPP 1995) Let {X,} be a transient Markov chain on a countable
state space S with wnitial state p € S, and set

G(z,y)

G(z,y) = B, [él{y}(){n)] and K(z,y) = G(p mh

Then for any initial state p and any subset A of S,
1
ECapK(A) < P,({X.} hits A) < Capg(A).

Exercise 14.5 Verify the analogous result for the stable—% subordinator and the kernel

[ @t=-9"? 0<s<t,
G(S’t)'_{o s>t>0.

Problem: Find the class of Markov processes for which the above estimate (for
suitable kernel G and resulting K') holds.

Proof of Theorem 14.4. To prove the right-hand inequality, we may assume that
the hitting probability is positive. Let 7 = inf{n : X,, € A} and let v be the measure
v(A) = P,(7 < oo and X, € A). In general, v is a sub-probability measure, as T
may be infinite. By the Markov property, for y € A,

/G(r y)dv(z) = Y P,(X, = 2)G(z,y) = G(p,y),

TEA

whence [, K(z,y)dv(z) = 1. Therefore Ex(v) = v(A), Ex(v/v(A)) = [v(A)]7Y; con-
sequently, since v/v(A) is a probability measure,

Capg(A) > v(A) = P,({X,} hits A).

This yields one inequality. Note that the Markov property was used here.
For the reverse inequality, we use the second moment method. Given a probability

measure g on A, set )
= auly
= 10 (X .
? /Anzz:u &G0

E,[Z] =1, and the second moment satisfies

E,[Z%] = E // Zzl{z} m) 1) (Xn )G—?;—(E;—ZL((%
(:c

m=0n=0 ’d

Observe that

5By 3 1 (X)L (X0) = 3 PylXn = 2)G(z.9) = G(p,2)Gl,0).
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Hence

/A Glz,v) du(@)du(y) = 26k (1),

BiZ)<2 [ G0

A
and therefore

(B,[2)* _ 1
B, (27 = %xn)’

P,({X,} hits A) > P,(Z > 0) >

We conclude that P,({X,} hits A) > $Capg(A). o

The upper bound on P(p ¢ OI') obtained by the first moment method (8) is
not sharp enough to prove Theorem 14.2. For example, take the binary tree with
Bernoulli(p) percolation for p = 1; if I';, = {v: |v] < n}, then the first-moment method
yields an upper bound of 1 for any n, while Capp(8',) = 2(n + 2)~'. However, we
can use Theorem 14.4 to give a short proof of Theorem 14.2.

Proof of Theorem 14.2. The first inequality was already proven in Proposition 7.1.

It remains to prove the right-hand inequality in (34). Assume first that T is finite.
There is a Markov chain {V;} hiding here: Embed T in the lower half-plane, with
the root at the origin. The random set of r > 0 leaves that survive the percolation
may be enumerated from left to right as V1, V5, ..., V,. The key observation is that
the random sequence p, V3, V5, ..., V;, A, A, ... is a Markov chain on the state space
o' U {p, A}, where p is the root and A is a formal absorbing cemetery.

Indeed, given that V; = z, all the edges on the unique path from p to z are retained,
so that survival of leaves to the right of z is determined by the edges strictly to the
right of the path from p to z, and is thus conditionally independent of V;,..., Vi_;.
This verifies the Markov property, so Theorem 14.4 may be applied.

The transition probabilities for the Markov chain above are complicated, but it is
easy to write down the Green kernel. Clearly, G(p,y) equals the probability that y
survives percolation, so

Glpy)= 11 ..

e€path(y)

If z is to the left of y, then G(z,y) is equal to the probability that the range of the
Markov chain contains y given that it contains z, which is just the probability of y
surviving given that x survives. Therefore,

G(J:, y) = H pe ’
e€path(y)\path(z)

and hence

K(z,y) = S00) I »

G(p’ y) e€path(zAy) ‘
Now G(z,y) = 0 for x on the right of y; thus (keeping the diagonal in mind)

F(z,y) < K(z,y) + K(y,z)
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for all z,y € 9T, and therefore
Er(aT) < 2Ek(AT).

Now apply Theorem 14.4 to A = oI":

Capp(9T') > CapK(BF) > P({Vk} hits OI') = 1 P(p« or).

This establishes the upper bound for finite T".
The inequality for general I" follows from the finite case by taking limits. O
Remark. The inequality (34) was recently sharpened by Marchal [68].

The notation £ has appeared twice, once as a functional on flows and once as a
functional on measures. As discussed following Lemma 2.10, measures on the bound-
ary of a tree correspond to flows on the tree; we shall see that the energy of a measure
on JI' is (up to an additive constant) the same as the energy of the corresponding flow
on I': Given a measure y on OT', let 8 be the corresponding flow: #(uv) = u(£ : v € £),
where u is the parent of v. Observe that

= ;TEG(G)Q = Xe:Te /ar /ar 1esey Lnserdp(€)dp(n) .

Moving the sum inside the integral, the above equals

LoceriTe / / odu(€)du
/31" /(9FZ {6507]}7‘ dﬂ dﬂ or Jor Z " ,U' ,U'

e<éAn

By the series law for resistances, we are left with

= / / R(p < & An)du(€)du(n) - (36)

ar Jor

Now if

1/Clpv)+1=1/P(p+v), (37)
then substituting in (36) yields

Ex(p) =1+E&(0), (38)

where K(£,n) = 1/P(p < &£ An). By taking infimum on both sides of (38) and
applying Thomson’s Principle, we can rewrite Theorem 14.2: If the correspondence
(37) holds for resistances {r.} and an independent {p.} percolation P, then

1 2

)SP(PHOO)SW

1+ R(p & 0 p > 00) (39)

It is easily checked that in the case of Bernoulli(p) percolation, the correspondence
(37) is preserved by taking ¢, = (1 — p)~!p/!, where e is the edge connecting v to its
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parent. In this case the weighted random walk on the resulting network is RWy .
Thus, (39) implies that percolation occurs at p if and only if RW,, is transient.

Consider a Cantor set A in the unit interval and the corresponding tree I'(A, b).
We shall see that simple random walk on this tree is transient iff A, considered as a
subset of R?, is non-polar for Brownian motion. In particular, transience of I'(A, b) is
independent of b. The following theorem can be found in Benjamini and Peres (1992)
in a special case, and in Pemantle and Peres (1995b) in general.

Theorem 14.6 Let ' be a subtree of the b%-adic tree and let f : (0,00) — (0,00)
be a non-increasing function with f(0+) = co. Let ¥ be the canonical map from the
boundary of the b%-adic tree to [0,1]¢; U~ is base-b representation of points in [0, 1]%.
Let dist(v,w) = b=l for v,w € OU and let dist(z,y) be Euclidean distance for
z,y € [0,1]%. Then

Cap;(0I') < Cap;(¥(aI)),

where Cap; stands for capacity in the kernel F(z,y) = f(dist(z,y)). This means
there exist constants ¢ and C, depending on b and d only, such that

cCap;(¥(aT')) < Cap;(dr') < C Cap,(¥(d)).
Exercise 14.7 Consider Bernoulli(p) percolation on an infinite tree I'. Prove that

P, (component of p is transient) > 0 iff Py,3(p > 9T) > 0,

k

1P when le| = k.

where p, =

Hint: An infinite tree T is transient iff Capj;a,(07) > 0. The kernel |z Ay| is obtained
by applying f(r) = —log, r to the distance between z and v.

Proof of Theorem 14.6 For v € T, let u(v) = u(€ : £ > v). We will prove that
Ep(p) < E(nT7), ie,

Er(p)
c(b,d) < W < C(b,d) (40)

for some constants 0 < ¢(b,d) < C(b,d) < oo, depending on b and d only. This will
yield Cap(dI') < Cap;(¥(dT')), proving the theorem.

bt F6R) - F5H), k> 1
h(’“)={ £(1), k=0

In the following, write u < w if w is a descendant of u. Then

lzny|

) = [, [ 3 h8) due)iut) = S h®) [[ duta)auty)

T o k=0
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Breaking up the region of integration and observing that z Ay > v iff x > v and
y > v, the above is equal to

o)

) S [ [ due)dut) = S0 T W0 = 3 A0S,

[v|=F v|=k k=0

where Sy = Si(u) = ¥ [u(v)]?. Note that
|vj=k

Y P <Y P <ot Y [ww)?,
Ju|=h+1 [o]=k ol =k+1

Le., Sk41 < Sk < 048kt
We claim that in [0, 1]¢,

RE N k)1 A (2)dp i (y)
~ Ju(r) \I:(ar)::?] TR L gt zja—ypy AT~ (2)dp ¥ (y)

This holds because for the largest k yielding a non-zero term in the sum above,
b~* < |z — y| and thus the sum is bounded below by f(|z — y}).

For vertices v, w at the same level of T, set x(v,w) = 1 iff ¥(v) and ¥(w) are the
same or adjacent subcubes of [0,1]¢, and x(v,w) = 0 otherwise. Then

px p{(Em): 2O - <FE< 30 Y u(w)uw)x(v,w). (41)

|vl=k—1 |wj=k—1

Now use the standard inequality 2u(v)p(w) < [u(v)]? + [p(w)]? and the fact that the
number of cubes adjacent to a given cube is bounded above by 3¢, to deduce that

pox p{(&,m): [T (€) — (n)| < b'7F} < 348,y < 39Sk
It follows that

Er(p¥) < (36)‘1;’1(/6)51« = (3b)%s(w)

For the reverse inequality, choose [ so that b > v/d. Then |v A w| = k + | implies
that |¥(v) — ¥(w)| < b~*, and consequently
E(pu™) > S fOF) uxp{lorw|=k+1}
k=0
= > FO7) [Seri(p) = Seraa(w)] -
k=0

Using summation-by-parts shows that the right-hand side above is equal to

h(k)Ski(p) = b*dlzh )Sk(u) = b€ ().

Mg

x>
1l
=)



15 Intersection-Equivalence

This Chapter follows Peres (1996). Throughout this chapter we work in [0, 1]¢ and all
processes considered are started according to the uniform measure on [0, 1]¢, unless
otherwise indicated.

Lemma 15.1 If B is a Brownian path (killed at an exponential time for d = 2), then
P(BNA #0) < Cap,(A)

for any Borel set A, where

-1y crg
R AR A (42)

Proof. (for d > 3). Denote by K the Martin kernel, see (35). By Theorem 14.3,

1
P(B hits A) = /PO(B hits A — )dz > / Capg(A — z)dz .
o oy

Because £ (p) < Cy€y(p) for any measure p on [0, 1)¢, the right-hand side above is
bounded below by

1 1
Q—C;[O I/Jd Cap,(A — o)dz = 55-Cap, (A).

The upper-bound is a consequence of the probabilistic potential theory developed
by Hunt and Doob. There exists a finite measure v such that

P, (B hits A) = /A g(lz - yDdv(y) and  v(A) = Cap,(A).
(see, e.g., Chung (1973).) Then

P(B hits A) = / P, (B hits A)dz = / 9(|z — y|)dzdv(y) < Cav(A),

[0,1]¢ A {o,1}¢

where Cy is a constant depending only on d. Note that this proof extends to any initial
distribution 7 for B(0) with a bounded density; more generally a bounded Greenian
potential suffices. a

Shizuo Kakutani, generalizing a question of Paul Lévy, asked which compact sets
A satisfy P(A N By N B, # @) > 0, where B, By are independent Brownian paths in
R¢ (d =2 or 3)?

Evans (1987) and Tongring (1988) gave a partial answer:

If Cap,z(A) > 0, then P(AN B, N By # 0) > 0. (43)
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They also found a necessary condition involving the Hausdorff measure of A. Later
Fitzsimmons and Salisbury (1989) gave the full answer: Cap,.(A) > 0 is necessary as
well as sufficient in (43). Furthermore, in dimension 2, their very general results yield
the equivalence

Capi(A) >0 & P(ANBN...NBy#0)>0. (44)
This led Chris Bishop to make the following insightful conjecture:

Conjecture 2 (Bishop) Let B denote a Brownian path. Then for any nonincreasing
gauge f and any closed set A, the event that Cap;(AN B) > 0 has positive probability
iff Capy,(A) > 0.

We will present a proof of this below. Applying Kakutani’s Theorem 14.1 to A’ =
AN B, and B, shows that

P(ANBiNBy#0) >0 < Cap,(AN By) >0 with positive probability. ~ (45)
Bishop’s Conjecture (with f = g) along with (45) imply that
Capyz(A) >0 & P(ANB NB, #0)>0.
Hence Bishop’s Conjecture and Kakutani’s Theorem together give (44).

Theorem 15.2 Let f be a non-negative and non-increasing function. Consider in-
dependent {p.} percolation on the 2%-ary tree, with p, = py whenever |e| = k and with
pr---pk = 1/f(27%). Let Qq(f) C [0,1])¢ be the set corresponding to OT in [0,1]4,
where I' is the component of the root in this percolation. (This component may be
finite, whence Qq(f) =0.) Then, for any closed set A C [0,1]¢,

Cap,(A) = P(AN Qu(f) # 0). (46)
For f = g in particular, Qq(f) is intersection-equivalent to Brownian motion, i.e.,
P(ANQalg) #0) < P(ANB £0). (47)
Proof. By Theorem 14.2,
P(ANQ(f) #0) = Ppy(p© N(A,2) < Cap,(3(A,2),  (48)

where the constants in < are universal, namely 1 and 2. Theorem 14.6 with b = 2
yields
Cap;(0I'(A,2)) = Caps(A), (49)

where the constants in < depend on d. Combining (48) and (49) establishes (46).
Finally, use (46) and Lemma 15.1 to prove (47). a
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Corollary 15.3 Let f and h be non-negative and non-increasing functions. If a
random closed set A in [0,1]% satisfies

P(ANA #0) < Cap,(A) (50)
for all closed A C [0,1]¢, then
P(Cap;(ANA) >0) >0 if and only if Capg,(A) >0 (51)
for all closed A C [0,1)¢. In particular, Bishop’s conjecture is true.

Proof. Enlarge the probability space where A is defined to include independent limit
sets of fractal percolations Q4(f) and Qa(h). By Theorem 15.2

P(ANANQa(f) #0]|A) >0 if and only if Caps(ANA) >0,
it follows that
P(Cap;(ANA)>0)>0 ifand only if P(ANANQqu(f) #0) >0. (52)
Conditioning on Qu(f) and then using (50) with AN Qq(f) in place of A gives
P(ANANQu(f) #0) >0 if and only if P(Cap,(ANQa(f))>0)>0. (53)
Conditioning on Qq(f) and applying Theorem 15.2 yields
P( Capy(ANQq(f)) >0) >0 if and only if P(ANQq(f) N Qa(h) £0)>0. (54)
Since Qq(f) N Q4(h) has the same distribution as Q4(fh), Theorem 15.2 implies that
P(ANQa(f) N Qa(h) # 0) > 0 if and only if Cap,,(A) > 0. (55)
Combining (52),(53),(54), and (55) proves (51). O
Corollary 15.4 Suppose {A;} are independent random closed sets in [0, 1)¢ satisfying
P(A;N A #0) < Cap,, (A)
for all closed A C [0,1]¢ and some g; non-negative and non-increasing. Then
P(AiN...NANA#0)>0 & Cap, ,(A)>0.

Example 15.5 A.s., two independent Brownian paths in R* do not intersect.
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This is a well-known result of Dvoretsky, Erdds and Kakutani (1950); we will show
how it follows from intersection-equivalence. Let B; and B, be two independent
Brownian paths in R*, started uniformly in the cube [0, 1]* and intersected with that
cube. Each is intersection-equivalent to Q4(g), and thus

P((0,1]* N Bi N By # 0) < P(Qu(9) N Qulg) # 0), (56)

where Q4(g) is an independent copy of Q4(r~?). Because Q4(g) N Q4(g) has the same
distribution as Q4(g?),

P([0,1]' N BN B, # 0) < P(Qa(9%) #0). (57)

Since the edge probabilities in the percolation corresponding to g2(r) = r—* are all
pr = 1/16, the tree corresponding to Q4(g?) is a critical branching process and thus
dies out almost surely:

P(Qu(g") #0)=0. (58)
Putting together (57) and (58) shows that the two paths never intersect. A

Corollary 15.6 (Lawler (1982, 1985), Aizenman (1985)) Let B; and B, be in-
dependent Brownian paths intersected with [0, 1]?, considered as sets in [0,1]%. Then

1 d<3
P(dist(B1, By) < ¢) = { ~oge @=4
et d>4

Proof. We will prove the cases d > 4; the other cases are handled similarly. Let g be
the Greenian potential (42), and write Q4(p) instead of Q4(g), where p = 227¢. For a
closed set C' and € > 0, let C* be the set of points within distance ¢ from a point in
C. Conditioning on B§ and applying Theorem 15.2 gives

P(dist(By, B;) <€) = P(B,NBS#0) = P(Qu(p) N BS#0). (59)
Now conditioning on [Q4(p)]¢ and again applying Theorem 15.2 yields
P(Qu(p) N Bs #0) = P([Qa(p)*N By # 0) < P([Qu(p)) N Qulp) #0), (60)

where @d(p) is an independent copy of Qu(p).
Combining (59) and (60) shows that

P(dist(By, By) < €) =< P([Qu(p)) N Qu(p) # 0). (61)

Next let €/2 < 27% < € and choose £ so that 2¢ > v/d. Then P([Qq(p)]*NQu(p) # 0) is
at most the probability that Q4(p) and Q4(p) both intersect the interior of the same
binary cube of side-length 2=+8 and this is bounded below by

c¢? - P(the construction leading to Qq(p?®) survives for k + £ generations),  (62)
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where ¢ = 1 — g > 0 is the probability of survival of the (supercritical) branching
process associated to the construction of Q4(p).

The probability in (62) may be estimated via standard branching process argu-
ments, but we use percolation instead. Consider Bernoulli(p?) percolation on the
2¢-ary tree T and write the probability as P,2(p + Tiys). Since the minimal energy
measure on 0T} is the uniform measure u, Theorem 14.2 yields that

1 _ 1 — £r(n)
Ppo Tp)  Capp(ly)
where F (v, w) = p~*"*l. We have
k . .
Er(p) = 1+ 3 Z(p Ju()p(w) = 1+ (p7 = p" )u(v)pw).
v,weTy j=1 J=1 jvAw|>>5

Since |v A w| > j if and only if |v| > j and |w| > j,

k 2 k
+Z(p‘j~p1‘j)<2u(v)) = 2_: p ~pi)2Y,

[v]2j

where the last equality holds because 4 is the uniform measure. We conclude that
Ep(p) = X1 (p2%) 7 and

1 - k ifp=2-¢
Py(p & T}) (2%p)~F ifp <279,
Recall that p = 22~¢ and hence the probability in (62) is equal to
(k407! < |loge|™! if d =4, because p? =2 for d =14,
Po(p ¢ Tppe) <
- k+8)  gd—4 ifd>4.

For the reverse inequality, recall (61):

P(dist(By, By) < €) < P([Qa(0)]° N Qu(p) # 0) .

Let Q%~'(p) denote the union of all binary cubes of side-length 2!=* in the (k= 1)th
step of the construction of Qa(p), and recall that €/2 < 27% < e. Then [Qu(p)]*
is contained in the union of 3¢ translates Q5'(p) 4+ z of Q% !(p) and therefore the
probability P([Qa(p)]c N Qa(p) # ) is bounded above by

3%P(the construction leading to Q4(p®) survives to the (k — 1)th generation).

The proof is now concluded by using the previous calculation for this probability. O
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Figure 4: Tree with 4,— spins at the vertices.

16 Reconstruction for the Ising Model on a Tree

This chapter follows Evans, Kenyon, Peres and Schulman (1998).

Consider the following broadcast process. At the root p of a tree T, a random
£1 valued “spin” o, is chosen uniformly. This spin is then propagated, with error,
throughout the tree as follows: For a fixed e € (0,1/2], each vertex receives the spin
at its parent with probability 1 — ¢, and the opposite spin with probability €. These
events at the vertices are statistically independent. This model has been studied in
information theory, mathematical genetics and statistical physics; some of the history
is described below.

Suppose we are given the spins that arrived at some fixed set of vertices W of the
tree. Using the optimal reconstruction strategy (maximum likelihood), the probability
of correctly reconstructing the original spin at the root is clearly at least 1/2; denote
this probability by %é. We will establish a lower bound for A = A(T, W, €) in terms
of the the effective electrical conductance from the root p to W (Theorem 16.2), and an
upper bound for A which is the maximum flow from p to W for certain edge capacities
(Theorem 16.3.) When T is an infinite tree, these bounds allow us to determine (in
Theorem 16.1) the critical parameter €, so that, denoting the nth level of T by Ty,

we have

lim A(T.T: >0 if e<e 63

noro (T, ) =0 if e>e.. (63)
As we explain below, vanishing of the above limit is equivalent to extremality of
the “free boundary” limiting Gibbs state for the ferromagnetic Ising model. For the
special case of regular trees, the problem of determining e, was open for two decades,
and was finally solved in 1995 by Bleher, Ruiz and Zagrebnov [12].

The random spins {o,} that label the vertices of T as described above, can be
constructed from independent variables {7} labeling the edges of T', as follows. For
each edge e, let P[n. = —1] = ¢ =1 — Py, = 1]. Let o, be a uniformly chosen spin,
and for any other vertex v let

Oy 1= UpHnea (64)
4
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where the product is over all edges e on the path from p tov. Given oy = {0, : v € W},
the strategy which maximizes the probability of correctly reconstructing o,, is to de-
cide according to the sign of E{o, | ow); with this strategy, the difference between
the probabilities of correct and incorrect reconstruction is

A(T,W,e) =E[P(0, =1 | ow) — P(0, = -1 | ow)|. (65)

Alternatively, A(T, W, €) can be interpreted as the total variation distance between
the conditional distributions of ow given o, =1 and given o, = —1; see below. The
dependence between o, and oy is also captured by the mutual information

P[op =z,0w =y
I(op;0w) ZP =z,0w = y]log Plo, = 2Plow = 4]

Theorem 16.1 Let T be an infinite tree with root p, and suppose its vertices are
assigned random spins {0,}, using the flip probability ¢ < 1/2 as in (64). Consider
the problem of reconstructing o, from the spins at the n'th level T,, of T.

(i) If 1 —2e > br(T)"Y2 then inf,51 A(T, Tn,€) > 0 and inf,5, I(0,;07,) > 0.
(ii) If 1 — 2e < br(T)/2 then inf, 5, A(T, Ty, €) = 0 and inf,>1 I(o,;01,) = 0.

The tail field of the random variables {o,}yer contains events with probability strictly
between 0 and 1 in case (i), but not in case (i1).

Thus in the notation of (63), €. = (1—br(T)~'/2)/2. As mentioned above, this was
already known when T is a b+1 - regular tree (for which br(T) = b). Theorem 16.1 is
considerably more general. Simple examples show that at criticality, when 1 — 2¢ =
br(T)~'/2, asymptotic solvability of the reconstruction problem is not determined by
the branching number; in this case there is a sharp capacity criterion, proved in [75],
that we will not develop here. To see the relevance of the quantity 1 — 2¢ appearing in
Theorem 16.1, note the following equivalent construction of the random variables {, }:
Perform independent bond percolation on T’ with parameter v = 1—2¢ (the probability
of open bonds), and independently assign to each of the resulting percolation clusters
a uniform random spin (the same spin is assigned to all vertices in each cluster). This
is a special case of the Fortuin-Kasteleyn random cluster representation of the Ising
model (see, e.g., [32]); on a tree, it is elementary to verify the equivalence of this
representation with the construction (64).

"The following two theorems contain estimates of reconstruction probability and
mutual information, that imply Theorem 16.1.

Theorem 16.2 Let T be a tree with root p, and let W be a finite set of vertices in T.
Given € € (0,1/2], denote v := 1— 2¢, and consider the electrical network obtained by
assigning to each edge e of T the resistance (1 — v?)y~2l¢l. Then

A(T, W,e) 1
1(op;0w) }Z 1+R(p < W)’ (66)

where R denotes effective resistance.
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Figure 5: Majority vote can disagree with maximum likelihood.

The proof of this theorem is based on reconstruction by weighted majority vote, i.e.,
reconstruction according to the sign of an unbiased linear estimator of the root spin.
We relate the variance of such an estimator to the energy of a corresponding unit flow
from p to W. We find it quite surprising that on any infinite tree, reconstruction using
such linear estimators has the same threshold as maximum-likelihood reconstruction.

Next, we present an upper bound on A and I(o,;ow). Say that a set of vertices
W, separates p from W if any path from p to W intersects W;. For a vertex v of
T, denote by |v| the number of edges on the path from v to p.

Theorem 16.3 Let W be a finite set of vertices in the tree T. For any set of vertices
W) that separates the root p from W, we have

AT W2 <2(1— T 1—92) <23 42 (67)

vEW) vEW;
and
I(op;0w) < Z I{op;04) < Z A2 (68)
vEWL veEW,

In view of the mincut-maxflow theorem, (68) is an upper bound on mutual information
in terms of the maximum flow in a capacitated network. Theorem 16.3 is proved by
comparing the given tree T to a “stringy tree” T which has an isomorphic set of paths
from the root to the vertices of W1, but these paths are pairwise edge-disjoint. We
show that A(T,W,e¢) < A(T ,W1i,¢€) by constructing a noisy channel that maps the
spins on W in T to the spins on W in T.

Symmetric trees: Recall that a tree T is spherically symmetric if for every
n > 1, all vertices in T}, have the same degree. For such a tree, the effective resistance
from the root to level n is easily computed, and we infer from Theorems 16.1-16.3

that ok

i -1
(2+20-% 3(5,;—') < I(ozior,) < juf [Ty (69)
and (1 — 2¢.)~% = liminf, | T M.

The example in Figure 5 shows that even on a regular tree, majority vote can
disagree with maximum likelihood when the spin configuration or, is given.

Given the boundary data in Figure 5, the root spin o, is more likely to be —1
than +1 provided that e is sufficiently small, since o, = +1 requires 4 spin flips, while
0, = —1 requires only 3 spin flips.
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Organization of the rest of the chapter.

Next, we present background on the Ising model and some references to the statis-
tical mechanics and genetics literatures. Then we infer Theorem 16.1 from Theorems
16.2-16.3. After collecting some facts about mutual information and distances between
probability measures, we prove the conductance lower bound for reconstruction, The-
orem 16.2, and the upper bound, Theorem 16.3. Extensions and unsolved problems
are discussed at the end of the chapter.

Background

Let G be a finite graph with vertex set V. In the ferromagnetic Ising model with
no external field on G, the interaction strength J > 0 and the temperature t > 0
determine a Gibbs distribution G = G;, on {+1}" which is defined by

G(o) = Z(t) " exp(d_ Jouo,/t), (70)

ur~Y

where the normalizing factor Z(t) is called the partition function. If the graph G is a
tree, then this is equivalent to the Markovian propagation description in the beginning
of the chapter, for an appropriate choice of the error parameter €. Indeed, if u ~ v
are adjacent vertices in a finite tree with o, = o,, then flipping all the spins on one
side of the edge connecting u and v will multiply the probability in (70) by e=27/.
Thus if we define € by

€ _ -2t 71
1 —€ € ’ ( )

then the distributions defined by (64) and (70) coincide. For an infinite graph G, a
weak limit point of the Gibbs distributions (70) on finite subgraphs {G,} exhaust-
ing G, (possibly with boundary conditions imposed on ¢4g, ), is called a (limiting)
Gibbs state on G. See Georgii [30] for more complete definitions, using the notion
of specification.

For any infinite graph with bounded degrees, the limiting Gibbs state is unique
at sufficiently high temperatures, i.e., the limit from finite subgraphs exists and does
not depend on boundary conditions. When G = T is a tree, this means that

Jim Elo, | o7, =1] =0 (72)

at high temperatures. Some graphs admit a phase transition: below a certain critical
temperature, multiple Gibbs states appear and the limit in (72) is strictly positive.
The critical temperature ¢} for this transition on a regular tree T was determined in
1974 by Preston [79]; his result was generalized in 1989 by Lyons [59] who showed that
tanh(J/t}) = br(T)~!; in the equivalent Markovian description, the critical parameter
¢/ for an all + boundary to affect o, in the limit, satisfies 1 — 2¢} = br(T)!.

In general, a Gibbs state is extremal (or “pure”) iff it has a trivial tail, see Georgii
([30], Theorem 7.7). The tree-indexed Markov chain (64) on an infinite tree T is the
limit of the Gibbs distributions (70) on finite subtrees, with no boundary conditions
imposed; hence it is called the free boundary Gibbs state on T. In 1975 Spitzer
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([82], Theorem 4) claimed that on a b+1-regular tree T®), the free boundary Gibbs
states are extremal at any temperature. A counterexample, due to T. Kamae, was
published in 1977 (see Higuchi [42]). Kamae showed that the sum of spins on 7%,
normalized by its L? norm, converges to a non-constant tail-measurable function,
provided that 1—2¢ > b=*/2. Tn 1978, this result was put in a broader context by Moore
and Snell [69], who showed it followed from the 1966 results of Kesten and Stigum [51]
on multi-type branching processes. Moore and Snell noted that it was open whether
the free boundary Gibbs state on T® is extremal when b1 < 1—2¢ < b~'/2. Chayes,
Chayes, Sethna and Thouless [14] successfully analyzed a closely related spin-glass
model on Tj; by a gauge transformation, this is equivalent to the Ising model with i.i.d.
uniform {+1} boundary conditions. Although these boundary conditions are quite
different from a free boundary, they turn out to have the same critical temperature.
Bleher, Ruiz and Zagrebnov [12] adapted the recursive methods of Chayes et al [14]
to the extremality problem, and showed that the free boundary Gibbs state on T® is
extremal whenever 1 — 2e < b~'/2. Shortly thereafter, a more streamlined argument
was found by Ioffe [44]. Theorem 16.1 was first established in [24]. After learning of
that result, Ioffe [45] found an elegant alternative proof for the upper bound.

Genetic reconstruction and parsimony

Tree-indexed Markov chains as in the introduction have been studied in the Mathe-
matical Biology literature by Cavender [13], by Steel and Charleston [84], and others.
In that literature the two “spins” are often called “colors”, and correspond to traits
of individuals, species, or DNA sequences. The “broadcasting errors” (color changes
along edges) represent mutations, and one attempts to infer traits of ancestors from
those of an observable population.

Proof of Theorem 16.1
(i) From v =1 — 2¢ > br(T")~'/2 it follows that

R(p > 00) :=supR(p + T,,) < o0

when each edge e is assigned conductance v%°; see (39) and Theorem 2.8. There-
fore by (66),

igflA(T, Tpy€) > inf L

> 0
1+ Rp o Tn) ~ 1+ R(p & 00)

and similarly inf,>, I(0,; 07,) > 0, as asserted. In particular, o, is not indepen-
dent of the tail field of {o,}, so this tail field is not trivial.

(ii) If v = 1 — 2e < br(T)~/2 then infy e ¥ = 0, so Theorem 16.3 implies that
inf,»1 A(T, Ty, €) = 0 and inf,» I(0,;01,) = 0.

Next, fix a finite set of vertices Wy. For each w € Wy and n > |w|, denote by
T,.(w) the set of vertices in T, which connect to p via w. Then Lemma 16.4(iii)
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implies that for sufficiently large n,

Howe;01,) < Y. 10wy, 0mnw)) = 9. (0w, 0 (w)) s (73)
weWy weW)p

since the conditional distribution of o7, () given ow, is the same as its condi-
tional distribution given o,

For any finite Wy, the right-hand side of (73) tends to 0 as n — oo; It follows
that the tail of {0, } is trivial.

O

Mutual Information: Definition and Properties

Let X,Y be random variables defined on the same probability space which take
finitely many values. The entropy of X is defined by

H(X):=-> P[X =z]logP[X = 1]

and the mutual information I(X;Y) between X and Y is defined to be

I(X;Y) = HX)+ HY) = H(X,Y) = Y. P[X = 2,Y = y]log Pl?)[(X:xTI’f[/Y::ygl] .

We collect a few basic properties of mutual information in the following lemma. See,
e.g., Cover and Thomas [15] §2.

Lemma 16.4 (i) I(X;Y) > 0, with equality iff X and Y are independent;

(ii) Data processing inequality: If X — Y — Z form a Markov chain (i.e., X and
Z are conditionally independent given Y ), then I1(X;Y) > I(X; Z).

(iii) Subadditivity: If Y1,...,Y, are conditionally independent given X, then
I(X; (N, ..., Y) <5, I(X;Y)).

The assumption of conditional independence in part (iii) cannot be omitted, as is
shown by standard examples of 3 dependent random variables which are pairwise
independent (e.g., Boolean variables satisfying X = Y; + ¥; mod 2). Nevertheless,
inequality (68) in Theorem 16.3 extends (iii) to a setting where this conditional inde-
pendence need not hold.

Distances between probability measures

Let v, and v_ be two probability measures on the same space 2. (In our applica-
tion () is finite, but it is convenient to use notation that applies more generally.) Set
V= "—‘*% and denote f = %t, g= %—7 so that f 4 g = 2 identically. Suppose that ¢
is uniform in {£1}, and X has distribution v,. Inferring ¢ from X is a basic problem
of Bayesian hypothesis testing. (In our application, £ will be the root spin 0, and X
will be some function of the spin configuration oy on a finite vertex set w.)

There are several important notions of distance between v, and v_, that can be
related to this inference problem:
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e Total variation distance Dy (vi,v.) := 1 [|f — g|dv can be interpreted
as the difference between the probabilities of correct and erroneous inference.
Indeed, among all functions f of the observations, the probability of error P[§ #
¢] is minimized by taking £ = 1 if f(X) > g(X), and £ = —1 otherwise. We
then have

8=PE=¢-PE£E = ([E v~ [Ega) = [If ~glav. (70
o x* distance D, (v;,v.) := 3{[(f — g)?dv}'/? represents the L? norm of the
conditional expectation E(¢| X) = 1(f(X) — g(X)).

e Mutual information between £ and X,

1
Dy(vs,v-) = 1(§ X) = 5 [(f10g f + glogg) dv (75)
is a symmetrized version of the Kullback-Leibler divergence (see Vajda [86]).

e The Hellinger distance

g(ve,vo) /(\[ Va)idv = 2(1 - /\/—dy) (76)

derives its importance from the simple behavior of the Hellinger integrals

Inty(vy,v.) = /\/};du

for product measures:
Intg(vy X pg, vo X p_) = Intg(ve,v_)Intgy(us, po) . (77)

These distances appear in different sources under different names and with different
normalizations. We collect here some well known inequalities between them, that will
be useful below. For more on this topic, see, e.g., Le Cam [56] or Vajda [86].

Lemma 16.5 With the notation above,
(i) D2 < Dy < Dy < /Dy
(ii) Df( < D; < sz(

(iii) If v and v_ are measures on IR, then

{/xd(lq_ —1/_)}2 = {/a:[f(x) —g(z)]dy}2 §4/m2dy~D§.

Proof.
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(i) The left-hand inequality follows from | f(z) — g(z)] < 2, and the middle inequality
from Cauchy-Schwarz. The right-hand inequality follows from the identity f —

9=(/f—+39) - (Vf+/9) and the concavity relation 3@—5 <JHe=1

(ii) Setting ¥ = (f — ¢)/2, the assertion follows from the pointwise inequalities

log(1 — ) < ¢*. (78)

2 1 1—
%g——g—wlog(1+w)+ 2¢

Here the left-hand inequality is verified for ¥ € [0,1) by comparing second
derivatives, and the right-hand inequality follows from log(1 + y) < y.

(iii) This is just the Cauchy-Schwarz inequality.

O

Finally, we interpret the data processing inequality in terms of distances. Suppose

that we are given transition probabilities on the state space, i.e., a stochastic matrix

M (the entries of M are nonnegative and the row sums are all 1). Write M*u(y) :=
Yo M(z,y)p(z) . Then Lemma 16.4 (ii) implies that

Di(M*vy, M*v_) < Dr(vy,v_).

An analogous inequality holds for total variation:

Dy(Mve, M) = 230 |Mu,y) ~ Mv_(3)]
< XS M@yl (z) ~ v (@)

= %Z lvy(z) — v_(z)| = Dy (vq,v-). (79)

Conductance lower bounds: Proof of Theorem 16.2
Recall that each edge e was assigned the resistance
R(e) := (1 —%)y~%. (80)

Say that a set of vertices W is an antichain if no vertex in W is a descendant of
another.

Lemma 16.6 Let W be a finite antichain in T. For any unit flow u from p to W,
the weighted sum

5, = Y Ao

81
veW 7|U| ( )
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satisfies B[S, |o,] = 0, and

E[S2) = E[S2 |0, = 1+ Y R(e)u(e)?. (82)

Consequently,
m#in E[SZ] =14+R(pe W), (83)

and the minimum is attained precisely when p is the unit current flow from p to W.

Proof. From the product representation (64), we infer that
Eo, | Up] = O'p’Y!Ul

for any vertex v. The formula for E[S,|o,] follows by linearity. For any two ver-
tices v, w in T, denote by path(v,w) the path from v to w. Also, write path(v) for
path(p,v). Clearly,

E[O’vdw] — ,y|path('u,w)| — ,y|vt+]w|—2|v/\w| , (84)

where v A w, the meeting point of v and w, is the vertex farthest from the root p
on path(v) Npath(w). The percolation representation can also be invoked to justify
(84).
It is now easy to determine the second moment of S,,:
E[s?] = po)u(w) o - w(v)p(w) (85)
“w

| ylw T w 2lvAw|
v,weW fyl fyl I v,weW ’Yl !

Next, insert the identity

L Z R(e)

ecpath(u)

with 4 = v A w, into (85). Changing the order of summation, and using the fact that
W is an antichain, we obtain

E[Sﬁ] =1+ Z R(e) Z l{eEpath(v/\w)}u(U):U’(w) . (86)

v,weEW

Since path(v A w) = path(v) N path(w) and

Z 1{e€path(vAw)}N(U)N(w) = ( Z 1{e€path(v)}ﬂ(v))( Z l{eepath(w)},u'(w)) = ,U‘(e)za
weW

v,weW veW

(86) is equivalent to (82). Finally, (83) follows from Thomson’s principle. O

Proof of Theorem 16.2: We may assume that W is an antichain. (Otherwise,
remove from W all vertices which have an ancestor in W.) Let p be the unit current
flow from p to W for the resistances R(e) as in the preceding lemma, and let S, be
the weighted sum (81). In order to apply Lemma 16.5, denote by v, the conditional
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Figure 6: A tree T and the corresponding stringy tree 7.

distribution of S, given that o, = 1; define v_ analogously by conditioning that
0, = —1, so that v = (v4 + v_)/2 is the unconditioned distribution of S,. We then
have by Lemma 16.5(iii) that

2 {fxd(y*” — V‘)}2 (E[Sy|o, =1 —E[Su|0, = "1])2
Dylvssv) 2 =g, = IE[S?] '

Applying Lemma 16.6, we deduce that

1

2 > -
Dylvev) z mmeawy

(87)
By Lemma 16.5, the difference A = A(T, W, €) between the probabilities of correct
and incorrect reconstruction, satisfies A = Dy (v,,v_) > Di(zq., v_), and the mutual
information between o, and ow also satisfies 1(0,;0w) = Dy(vy,v_) > Di(vy,v-).
In conjunction with (87), this completes the proof. a

Mincut upper bound: Proof of Theorem 16.3

Definition. A noisy tree is a tree with flip probabilities labeling the edges. The
stringy tree T associated with a finite noisy tree 7T is the tree which has the same set
of root-leaf paths as T but in which these paths act as independent channels. More
precisely, for every root-leaf path in T', there exists an identical (in terms of length and
flip probabilities on the edges) root-leaf path in T, and in addition, all the root-leaf
paths in T are edge-disjoint.

Theorem 16.7 Given a finite noisy tree T with leaves W, let TA’, with leaves W and
root p, be the stringy tree associated with T. There is a channel which, for £ € {£1},
transforms the conditional distribution oy, | (05 = &) into the conditional distribution

ow | (0, = €). Equivalently, we say that T dominates T.
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a3 ()

Figure 7: Y is dominated by T.

Remark A channel is formally defined as a stochastic matrix describing the con-
ditional distribution P(Y | X) of the output variable ¥ given the input X, see [15].
Often a channel is realized by a relation of the form ¥ = f(X, Z), where f is a de-
terministic function and Z is a random variable (representing the “noise”) which is
independent of X.

Proof: We only establish a key special case of the theorem: namely, that the tree
T shown in Figure 7, is dominated by the corresponding stringy tree Y. The general
case is derived from it by first allowing the flip probabilities to vary from edge to edge,
and then applying an inductive argument; see [25] for details.

Given 0 < a < 1, to be specified below, we define the channel as follows:

O'; = 5’1
o = 02 with probability «
2 - g1 with probability 1 — o

To prove that (3,, 0}, 03) has the same distribution as (o,, 01, 02), it suffices to show
that the means of corresponding products are equal. (This is a special case of the fact
that the characters on any finite Abelian group G form a basis for the vector space of
complex functions on G.) By symmetry

E(0,) = E(01) = E(02) = E(0,0103) = E(5,) = E(0}) = B(03) = E(3,0{03) = 0
and thus we only need to check pair correlations. Clearly, E(6,07) = E(o,01) and
E(G,61) = v% whence E(G,03) = v* = E(0,02) for any choice of . Finally, since
E(0156;) = v* < 7% = E(0102) and

E(0}5,) =1> 7,

we can choose « € [0,1] so that E(ojo}) = E(0102); explicitly,

a=(1-7%)/(1-+%. (88)
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This proves that T dominates . a

Proof of Theorem 16.3: We first prove (68). Since W, separates p from W, the
data processing inequality (Lemma 16.4 (ii)) yields I(o,; ow) < I(0,; ow,). Let T} be
the tree obtained from T by retaining only W, and ancestors of nodes in W;. Let T}
be the stringy tree associated with 7;. From Theorem 16.7 applied to T} and the data
processmg inequality, we obtain I(o,;ow,) < I(0;; 04 ) Since the spins on leaves of

T, are conditionally independent given o, subadd1t1v1ty (Lemma 16.4 (iii)) gives

Hopom,) < D 1(0p50) -

dEW,

But due to the definition of the stringy tree, the mutual information between o, and
0y is identical to the mutual information between o, and ¢, in T}, hence the left
inequality in (68).

Since E(0,0,) = vl for each v, the right-hand inequality in (68) follows from the
right-hand inequality in (78).

We now turn to the total variation inequality (67). Recall that A(T,W,e), the
difference between the probabilities of correct and incorrect reconstruction, equals
Dy (VW W, %), the total variation distance between the two distributions of the spins
on W given o, = £1.

By (79), Theorem 16.7, and Lemma 16.5,

Dy (v, ") < Dy(v}*,v") < D (I/W1 qu) < \/DH(V+ ,I/WI)

Now, DH(qu_V 1 v™) on the stringy tree ’T\l is easily calculated using the mul-

tiplicative property of Hellinger integrals: I/KV ! is just the product over w € W,

of v¥, the distribution of o, given o, = 1, and similarly oM = [T, v®. Since

Inty(v¥,v?) = /1 —42¥l the left-hand inequality in (67) follows; the right-hand
inequality there is a consequence of the standard inequality [](1 — z;) > 1— Y ;. O

Remarks and unsolved problems

1. Reconstruction at criticality. It is shown in [12, 44] that on infinite regular
trees, lim, A(T,T,,¢.) = 0. On general trees, Theorem 16.2 implies that finite
effective resistance from the root to infinity (when each edge at level ¢ is assigned
the resistance (1—2¢)~%) is sufficient for lim, A(T, Ty, €) > 0. In [75], a recursive
method is used to show this condition is also necessary.

2. Multi-colored trees and the Potts model. The most natural generaliza-
tion of the two-state tree-indexed Markov chain model studied in this chapter
involves multicolored trees, where the coloring propagates according to any finite
state tree-indexed Markov chain. For instance, if this Markov chain is defined
by a g x ¢ stochastic matrix where all entries off the main diagonal equal €, then
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the g-state Potts model arises. The proof of Theorem 16.2 extends to general
Markov chains, and shows that the tail of the tree-indexed chain is nontrivial
if br(T) > A%, where ) is the second eigenvalue of the transition matrix (e.g.
for the g-state Potts model, Ay = 1 — ge). However, unpublished calculations of
E. Mossel indicate that this lower bound is not sharp in general. Furthermore,
we do not know a reasonable upper bound on mutual information between root
and boundary variables. In particular, it seems that the critical parameter for
tail triviality in the Potts model on a regular tree is not known.

3. An information inequality. @ Theorem 16.3 implies that the spins in the
ferromagnetic Ising model on a tree satisfy

I(oy;ow) < Z I(oy;0u),

weW

for any vertex v and any finite set of vertices WW. Does this inequality hold on

other graphs as well?

More generally, are there natural assumptions (e.g., positive association) on

random variables X,Yi,...Y, that imply the inequality I(X;(Y3,...,Yq)) <
"L I(X,Y;) 7

17 Unpredictable Paths in Z and EIT in Z3

The goal of this chapter is to complete the proof of Theorem 11.1, by exhibiting a
probability measure on directed paths in Z® that has exponential intersection tails.
We construct the required measure in three dimensions from certain nearest-neighbor
stochastic processes on Z that are “less predictable than simple random walk”.

For a sequence of random variables S = {S,},>0 taking values in a countable set
V, we define its predictability profile {PREs(k)}r>1 by

PRES(k‘) = sup P[Sn+k =X | So, ey Sn] 5 (89)

where the supremum is over all x € V, all n > 0, and all histories Sy, ..., Sp.

Thus PREg(k) is the maximal chance of guessing S correctly k steps into the
future, given the past of S. Clearly, the predictability profile of simple random walk
on Z is asymptotic to Ck~1/2 for some C > 0.

Theorem 17.1 (Benjamini, Pemantle, and Peres 1998) For any o < 1 there
exists an integer-valued stochastic process {Sp}n>0 such that |S, — Sp—1| =1 a.s. for
all n>1 and

PREs(k) < Co,k™®  for some C, < 00, forall k > 1. (90)

After Theorem 17.1 was proven in BPP (1998), Haggstrom and Mossel (1998) con-
structed processes with lower predictability profile. They showed that if f is non-
decreasing and >, (f(lc)k)f1 < 00, then there is a nearest-neighbor process S on Z
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with PREg(k) < Cf(k)k~!. (For example, f(k) = log'*(k) satisfies this summability
condition.)

Hoffman (1998) proved that this result is sharp: if a nondecreasing function f
satisfies 3, (f(k)k)™! = oo, then there is no nearest—neighbor process on Z with
predictability profile bounded by O(f(k)k™1).

We prove Theorem 17.1 using the Ising model on a tree. We follow Haggstrom and
Mossel (1998), who improved the original argument from BPP (1998). The following
lemma, is the engine behind the proof. Let T be the b-adic tree of depth N, and fix
0 < e < 1/4. We will assign to the vertices of T +1 labels {o(v)}yer according to an
Ising model (see Chapter 16). For the root p, set o(p) = 1, and for a vertex w with
parent v, let

_fJ o(v)  with probability 1 — e
o(w) = { —o(v) with probability e

Lemma 17.2 Denote by Yy := 3 ey, 0(v) the sum of the spins at level N. There
exists Cy < 0o such that for all N > 1 and all xz € Z,

G
P ==

Proof. By decomposing the sum Y4, into b parts corresponding to the subtrees of
depth M rooted at the first level, we get

b )
Yarr = ZU(U]')Y}S})’

j=1
where {o(v;)}_, are b i.i.d. spins with

+1 with probability 1 — €
—1 with probability e

3

o(v)) :{

and {Ylg)}gzl are i.i.d. variables with the distribution of Y}, independent of these
spins. Consequently, the characteristic functions

Y () = E(e™)
satisfy the recursion

V(D) = ((1=- Yu(d) + Var(—2))"
RYa(N) +i(1 — 26)3F (N)° (91)

where $ denotes real part, and & imaginary part. For 8,()\) := arg }A’n(/\), define

a

s
= < < —: _
Jo={0< A< 51 0V < o,

k=0,~--,n—1}

and
In = Jn \ Jn+1 .
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We will evaluate the integral of Yyy()) over (0,7/2] by using the decomposition

- ( U Ik> Udw.
k=0
Rewrite (91) as
Prrr () = |Par(V)[ [cos Bar () + i(1 — 2€) sin b (V)] (92)

and infer, for 0 < 0)(A\) < Z, that

< 2%
Oarr+1(A) = barctan ((1 — 2¢) tan ()M(/\)).
Since arctan is concave in [0, 00) and arctan 0 = 0,
arctan ((1 - 26)04) > (1 — 2¢) arctan(c)
for any a > 0. Therefore
If 00N < 2 , then = Z bOrr(A) > Oar11(N) > b(1 — 2€)0x(N). {93)
If X\ € I, then applying (93) for M = n — 1 shows that
320,00 > o (94)
Using (92) with M = n together with (94), we find that for A € I,,,
Farr (V] < (cos?(55) + (1 26)251112(211)))% < (1-2 siHZ(%))% <emo, (95)
where g := sin’*(Z). Inductive use of (92) for A € I, and N > n gives
[P (V)] < eme™ ™" (96)
Since 6y(\) = A, (93) implies that 6(\) > b¥(1 — 2¢)*|A| for A € J, and k < n.
Therefore

[l < 1l € 5 (7)
By (96),

o [t =2 (P70 < 20 e )

Inserting (97) yields

= / 1Pv(N) |d/\<( (Zb‘k e o), (98)
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In order to evaluate the sum in the right hand side of (98), we define
r=max{k : peb"F >1}.

Separating the contributions of £ > r and k < r, we obtain that

N-1 N )
SobRe ety N < Sk <Y b (99)
k=r k=r k=0
and -
kg—oeb =k k —b"k —r k —bk
Zb <Zb <Y bre (100)
k=0

Furthermore, since gebN"‘l < 1, we have that

1
T —. 1
R (101)

Combining (98), (99), (100), and (101) we see that

1 Cy
v, b
%/i“ﬂw-wﬁ—m
where i
0, — HEEe b + T Ve )

14
and ¢ was defined after (95). Using the inversion formula we conclude that

1 ™
P[Yy = 1] = _./ Yx(Ae™d) < 2—/ FaO)]dA < o

bNe(l — 2¢)N°
O

Proof of Theorem 17.1. For all N > 0, we will define a process S up to time
M = 2% with the required properties. A process defined for all times will then exist
by consistency of the finite dimensional distributions.

Fix a small € > 0. We assign spins {o,} to the vertices of the binary tree T of
depth N, according to the Ising model (described before Lemma 17.2) with error rate
€, but we take o, to be random uniform in {+1}, rather than fixing it. Enumerate
the vertices at depth N from left to right as vy, v1,...,va, and set

n
=Y o
k=1

We claim that {S,} has the desired predictability profile. To see this, ix 0 <n < M
and 0 < k < M —n. Observe that S, x = S, + 377 n+10(v]) If we now take the
unique h satisfying 21 < k < 22, there will exist a vertex w at level N — A for
which all of the descendants at depth N are in the set {vny1,. .., Upyi}. It follows (by
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conditioning on the spins of all v; which are not descendants of w and on the spin of
w) that

sup P[Snyx = 2[S0, ..., Sp] < sup P[Y}, = z]. (102)
z€Z T€EZ

Applying Lemma 17.2 and (102) we get

Cy

PREg(k) < =——2—
s(k) < 2he(1 — 2€)n

(103)

and the proof is complete. O

The process S serves as a building block for Z?-valued processes whose predictabil-
ity profiles are controlled.

Corollary 17.3 For each 3 < o < 1, there is a Z*-valued process ® = ®*? such that
the random edge sequence {®,..1Pp}nx1 is in Ty, and

Vk>1 PREs(k) < C(a,d)k™@ e, (104)

Proof. Let W] = (S +k)/2forr =1,...,d— 1, where SO are independent copies
of the process described in Theorem 17.1. For r = 1,...,d — 1, define clocks
n+d—1—-r

tn) = |,

and let D(n) :==n — L] W -
Write @, = (W, (), - -5 W& | D(n)). It is then easy to see that

tg-1(n)’

k d-1 C k —a(d-1)
PREgs (k) < [PRES(Ld — 1J)] < (d i 1) < Cfey, d)k—a(c#l) )

O

The last ingredient we need to prove that Z® admits paths with exponential inter-
section tails is the following.

Lemma 17.4 Let {T',} be a sequence of random variables taking values in a countable
set V. If the predictability profile (defined in (89)) of T satisfies Y32, PREr(k) < oo,
then there exist C < oo and 0 < § < 1 such that for any sequence {vp}n>o in V and
al > 1,

P#{n>0:T,=v,} > < C#. (105)

Proof. Choose m large enough so that .32, PREr(km) = 8 < 1, whence for any
sequence {vy}n>o ,

P[3k> 1 Dot = Vngim| Do, Ta] <4 forall n>0. (106)

If n is replaced by a stopping time 7 and the o—field generated by I'y,...,['; is
replaced by the usual stopping time o-field, then (106) remains valid. This can be
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seen by decomposing the probability according to the value of 7, and checking that
the bound holds in each case. Hence, it follows by induction on r > 1 that for all
j€{0,1,...,m—1},

Pl#{k>1: Tjipm = vjiam} 2 1] < B (107)
If #{n >0 : T, = v,} > £ then there must be some j € {0,1,...,m — 1} such that
#{k>1: Tjtbm = Vjrem} = €/m —1.

Thus the inequality (105), with § = Y™ and C = mp~!, follows from (107). m|
Proof of Theorem 11.1 for d =3: The process @ constructed in Corollary 17.3
with @ > 1/2 and d = 3 satisfies Y, PREs(k) < oo, and hence by Lemma 17.4, the

distribution g of the edge sequence {®,_1®,}%, has exponential intersection tails.
]

18 Tree-Indexed Processes

Label the vertices of a tree I' by a collection of i.i.d. real random variables {X,},er.
Given I' and the collection {X,},er, we define the tree-indexed random walk

{Sv}vel" by
Su = Z Xw;
w<y

where w < v means that v is a descendant of w.

The simple case where I' is a binary tree and X, = %1 with probabilities p and
1 — p was considered by Dubins and Freedman (1967).

We want to determine the speed of tree-indexed random walks, or at least recognize
when the speed is positive.

There are several ways to define speed for tree-indexed walks and the answers
depend on the definition used. Here are three notions of speed.

Definitions of Speed
e Cloud Speed

Scloud = hr{n mgx Sv;

1
n |vl=n
o Burst Speed

Sburst = sup lim —;
gear vEE |v|

e Sustainable Speed

. Sfu
Sgust := sup lim —;
£edlr veet U[
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These speeds are a.s. constant by Kolmogorov’s zero-one law. The first two were
studied by Benjamini and Peres (1994b), while the third was studied earlier by Lyons
and Pemantle (1992).

Assumptions. Throughout this chapter we will assume that each variable
X, is not a.s. constant, E[X,] = 0 and E[e***] < oo for all A > 0. (108)

These assumptions can be relaxed, but they make the ideas of the proofs more trans-
parent.

In general, Scioud = Sburst = Ssust - L he following examples shows that the inequali-
ties may be strict.

Example 18.1 Consider the 3-1 tree I' in Example 2.6. It follows from Theorem
18.4 below that on this tree

Scoud > 0 but Sburst = Ssust = 0.

Example 18.2 Let n; < my < ... be a sequence of positive integers. Construct a
tree I' as follows: The first n, levels of I are as in the 3-1 tree. To each vertex v in
the n;-th level of T, attach a copy of the first ny — ny levels of the 3-1 tree, with v
as its root. Continue by attaching a copy of the first ng, 1 — ng levels of the 3-1 tree
to each vertex at level n; of I'. For any choice {n;}, the tree T has positive packing
dimension; in particular, dim;(0T) = dimp(0T') = log2. However, if the n; increase
sufficiently fast, then the Hausdorff dimension of oI is 0, as in the 3-1 tree. Thus in
this case Theorem 18.4 yields that sgoug = Spurst > 0, but sgyst = 0.

Notation. Denote by {S, }n>0 the ordinary random walk indexed by the non-negative
integers with i.i.d. increments distributed like X,. Let I(-) be the rate function for
the random walk {S,}, defined by

1 -
I(a) = lim ~logP(S, > na) (a>0).

Theorem 18.3 (Hammersley (1974), Kingman (1975), Biggins (1977)) Let
T be a GW tree with mean m > 1. Suppose that the vertices of ' are labeled by random
variables X, that satisfy (108). On the event that I' survives, a.s. all speeds coincide
and equal s* :=sup{s : I(s) < logm}.

Proof. The inequality sqeua < s* is easy: By the definition of s*, for any € > 0 there
is & > 0 such that I(s* +€) > logm + §. Therefore,

P(S, > n(s* 4 €)) < e "logm+d) — ppne=nd

Consequently,

P(S, > n(s* +€) for some v € I'; | non-extinction ) <
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where ¢ is the probability of extinction. The proof is concluded by invoking the
Borel-Cantelli Lemma.

For the reverse inequality, let a < s* be given. Using the strict monotonicity of
the rate function and the definition of s*, choose € so that I(a) +2¢ < logm. For each
k>1and M € [1,00], we define a new embedded branching process as follows: start
from the root of I', and take the set of offspring I'(v, k, M) of a vertex v to consist of
all its descendants w in ' that satisfy

o lwl=Jv|+kinT;
e S, >S5, + ka.
e S, >S5, — M for all v on the path from v to w.

(Here M = oo means the last requirement holds automatically.) Since E|T'(v, k, 00)| =
m*P[S > ka), the definition of I yields that for sufficiently large &,

E[T(v, k,00)| > mFe *(@+d 5 o

By choosing M large, we can ensure that the embedded process has mean offspring
1
mwmthzyﬁaW@H>1.

Thus for large k, M, the embedded process is supercritical. Therefore sge > a with
positive probability. Since

{T:T finite or sgys < a on '}

is an inherited property, Proposition 3.2 implies that P[sss > a| survival ] = 1.
Hence, given survival, we have that a.s.,

" 2 Scloud = Sburst = Ssust > 5™ . a
We have already encountered two of the following definitions:
o The upper Minkowski dimension of 8T, written dim,,(8T), is log g¥(T").
e The Hausdorff dimension of OI', written dimg(8T), is log br(T).

e The Packing dimension of 9T, is defined by

dimp(dT) := inf {sup dim(30'?)},

where the infimum extends over all countable collections {I"¥} of subtrees of I
such that oI' C U or®,
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Theorem 18.4 Suppose that T' is an infinite tree without leaves, and the vertices of
' are labeled by random variables X, that satisfy (108). Then

() Scloud > 0 & dimy,(8T) > 0.
(11) Sburst > 0 & dlmp(ar) > 0.

(iii) ssust > 0 < dimg(8T) > 0.

Proof. (i) The implication “=” is easy: By Cramér’s theorem on large deviations,
(108) implies that I(a) > 0 for any a > 0. Therefore

> P(S, > na for some v € I';) < 3" |T,| P(S, > an) < 3Tl e™@,
n n n

which is finite since dimp/(8T") = 0 means that ' has subexponential growth. Thus
by Borel-Cantelli

P({S, > na for some v €'y} i0. ) = 0

for any a > 0.

For the implication “«<”, observe that because we assumed I" has no leaves, there
exists at least one descendant in I'y, for each v € I',. Denote the leftmost such
descendant by w(v). The |I';| paths from vertices v € T, to the corresponding w(wv)
are disjoint. Since dimys(0L) > 0, if we choose ¢ sufficiently small, then

T, > e™2)+2d for infinitely many n (109)

By Cramér’s theorem, P(S, > 2ne) > /2944 for large n.
Write I, = {v € [';: S, > —ne}. By the Weak Law of Large Numbers,

[T "E|T,| = P(S, > —ne) — 1
and therefore P(|I",| < |T'4|/2) — 0. Denote
Ay i={3w €Ty, : Sy > ne}.
Then
PA] < P(ITh| < [Tal/2) + P(L4| > [Tal/2 and Sy — S, < 2ne Vo € T).
The right-hand side is at most

P(IT,| < [Tal/2) + (1 e—n[1<2e)+e])*Fni/2,

which tends to zero along a subsequence of n values by (109). Taking stock, we infer
that P(A, i.0.) > lim, P(4,) = 1, S0 Sqoud > €/2 a.s.
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(ii) The implication “=" is easy again: if dimp(dI') = 0, then given € > 0 we can
find a cover JOI'™ of 8" with dimp(8T®) < € for all i. As in the proof of (i),

Scloud(r(i)) < €
for some € and all 7. Whence
Sburst(F(i)) < Scloud(r(i)) <¢€

for all 7 and s0 spurst(I') < €. Here € can be made arbitrarily small because ¢ may be
taken arbitrarily small.
For the reverse implication “<”, let d = dimp(9T") > 0. Pick € > 0 small and let

I' = {v € [:dimp (I'(v)) > d — €} ;

here I'(v) = {w € I"w < v or w > v}.
Now p € I, so I # § and dimp(OT”") > d — €. Actually, it is easy to see from the
definition of packing dimension that

dimp (T (v)) >d—€ forallvel’.

By (i) and the definition of cloud-speed, with probability one we can find for each
v € I' a vertex w = f(v) € I'(v) with w > v and S,, > |w|B for some fixed 3 > 0.
The sequence p, f(p), f(f(p)), ... is a sequence of vertices {v;};>o along a ray of I'
such that g

Vi

>0, foralli > 1.
fvil

(iii) was proved by Lyons and Pemantle (1992) in the following sharp form:
I(Ssust) = log br(T) = dimg (A7) .

(For the other speed notions there is no analogous exact formula.)

The inequality (ssust) < logbr(T') is proved using the first-moment method (see
the proof of Theorem 5.4). For the other inequality, fix a so that I(a) < dimy(dT")
and then choose k such that P(S‘k > ka) > br(I')*. Consider a compressed tree I'[k]
whose fth level is the kfth level of T', with the induced partial order. It is easy to
see that dimy (OT'[k]) = kdimy(OT). Define a general percolation on I'[k] in which
the edge vw is retained if S, — Sy > ka. This general percolation process is not
independent; however, for each fixed k, it is quasi-independent. By proposition 7.1,
this percolation survives with positive probability, whence sgs > a. It follows that
I(Ssust) > log bI‘(F) o

Exercise 18.5 Suppose that ' is an infinite tree without leaves, and its vertices are
labeled by i.i.d. variables X, ~ N(0,1). Denote d = dimy(0T'). Prove that

\/ d/2 < Scloud < \/ﬁ

and both bounds can be achieved.
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Hint: Use the ideas in the proof of (i) and optimize, or see [9]. These bounds were
sharpened by Benassi (1996).

Consider an infinite tree I' again, label its vertices by i.i.d. real-valued random
variables {X,}ver, and let {S,},er be the corresponding tree-indexed random walk.
The following question is mostly open.

Open Problem 2 (Bouncing Rays) Suppose that there a.s. exists a ray & € 9T
such that limeignf Sy > —o00. Must there a.s. exist a ray £ € O with lir? Sy = +00?
v vel’

The only cases for which the answer is known (Pemantle and Peres 1995a) are when
e X, = +1 with probability 1/2 each, or when
e X, ~ N(0,1).

In these cases there is an exact capacity criterion on the tree for the property to hold.
Even in these special cases the proofs are complicated.

19 Recurrence for Tree-Indexed Markov Chains

This chapter is based on Benjamini and Peres (1994a). For a tree I' and a vertex
v, denote by I'” the subtree consisting of v and its descendants. We are given a
countable state-space G and a set of transition probabilities {p(z,y):z,y € G}. the
induced I'-indexed Markov chain is a collection of G-valued random variables {5, }yer,
with some initial state S, := zy € G and finite-dimensional distributions specified by
the following requirement: if w € I and v is the parent of w, then

P(SwzyIS,,:x, Suforu¢1“,,)=P(Sw=y|S,,=$)=p(:n,y).

We may think of the state-space G as a graph, with vertices the elements of G and
an edge between z and y iff p(z,y) > 0. If p = {p(z,y):z,y € G} is irreducible, i.e.,
for any z,y € G there exists an n such that p™(x,y) > 0, then the associated graph is
connected.

Definitions. A tree-indexed Markov chain is recurrent if it returns infinitely often
to its starting point with positive probability:

P(S, = S, for infinitely many v € T") > 0.
A stronger requirement is ray-recurrence: {S,},er is ray-recurrent if
P(3¢€dl: S, =S, for infinitely many v € £) > 0.

In general, recurrence does not imply ray-recurrence (even when G = Z3). Indeed,
the 3-1 tree has exponential growth (which yields recurrence for G = Z%), yet it has
a countable boundary (which precludes ray-recurrence on any transient G).
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The probabilities in the definitions of recurrence and ray-recurrence may lie strictly
between 0 and 1, even when the indexing tree is a binary tree. If G is a group and the
transition probabilities are G-invariant, then there are zero—one laws for both notions
of recurrence.

Given a state space G, an irreducible stochastic matrix p = {p(z,y): z,y € G}
and a finite subset F' of G, write p(pr) for the spectral radius of the substochastic
matrix pr = {p(z,y):z,y € F'}. We then define

p(G,p) = sup p(pr).
F finite

Then )
P(3 £ € T with bounded trajectory) >0 < br(l) > ——

p(G,p)’
Simple random walk on Z has spectral radius 1, but we can make a quantitative
statement on rays with bounded trajectories: For the I'-indexed simple random walk
on Z,

1
br(l') > —————F——
(0> S+ )
is sufficient for the existence of a ray with trajectory in {0, 1,...,b—1} to have positive
probability, and
1
br(T") >

~ cos(m/(b+1))
is necessary.

Finally, we note that recurrence of a I'-indexed Markov chain on G is related to
a comparison of the Minkowski dimension of I and the spectral radius of G, while
ray-recurrence is related to a comparison of packing dimension and spectral radius.
In particular, dimp(0') < —log[p(G,p)] implies non-recurrence and dimp(0l') <
—log[p(G, p)] implies non-ray-recurrence.

More details on the notions described in this chapter, and some amusing examples,
can be found in (8, 9]. Benjamini and Schramm [10] give an application of tree-indexed
Markov chains to a problem in discrete geometry.

20 Dynamical Percolation

This chapter is based on Haggstrém, Peres, and Steif (1997).

Consider Bernoulli(p) percolation on an infinite graph G. Recall that each edge is,
independently, open with probability p. As before, P, = P, will denote this product
measure. Write C for the event that there exists an infinite open cluster. Recall that
by Kolmogorov’s 0-1 law, the probability of C is, for fixed G and p, either 0 or 1. As
remarked previously, there exists a critical probability p. = p.(G) € [0, 1] such that

_ | 0 forp<p.
Pp(c)-{l for p > p..
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At p = p, we can have either P,(C) = 0 or P,(C) = 1, depending on G.

In this chapter we consider a dynamical variant of percolation. Givenp € (0, 1), we
want the set of open edges to evolve so that at any fixed time ¢ > 0, the distribution
of this set is P,. The most natural way to accomplish this is to let the distribution
at time 0 be given by P,, and to let each edge change its status (open or closed)
according to a continuous time, stationary 2-state Markov chain, independently of all
other edges. For an edge e of G, write n:(e) = 1 if e is open at time ¢, and n;(e) = 0
otherwise. The entire configuration of open and closed edges at time ¢, denoted 7;,
can then be regarded as an element of X = {0,1}¥ (where E is the edge set of G).
The evolution of 7, is a Markov process, and can be viewed as the simplest type of
particle system. Each edge flips (changes its value) at rate

_ if 7,(e) = 0
A“’“‘?)"{If—p i (0) = 1

and the probability that two edges flip simultaneously is 0. Write ¥, (or ¥,) for
the underlying probability measure of this Markov process, and write C; for the event
that there is an infinite cluster of open edges in 7. Since P, is a stationary measure
for this Markov process, Fubini’s theorem implies that

{ ¥, ( C; occurs for Lebesgue a.e. 1) =1 if P,(C)
1

=1
W, (~C; occurs for Lebesgue a.e. t) =1 if P,(C)=0

where —C; denotes the complement of C;. The main question studied here is the
following,

Question 20.1 For which graphs can the quantifier “for a.e. t” in the above state-
ments be replaced by “for every t”?

For p # p,, the answer is all graphs.
Proposition 20.2 For any graph G we have

{ W,(C, occurs for every t) =1 if p> p(G) (110)

W, (=C; occurs for everyt) =1 if p<p(G).
Notation: For 0 < a < b < oo and any edge e of a graph G, we abbreviate

25700) = 3, O

and write C[igfb} for the event that there is an infinite cluster of edges with infj, 4 7(e) =

1. Analogously, define supy, 7, and let Ci7 be the event that there is an infinite
cluster of edges with supy,yn(e) = 1.

Proof. (i) Suppose p > p.. Let 0 < € < p — p, and observe that for every edge e,

‘Ilp{ ['51577(6) = 1} =pexp(—(1 —p)e) >p—e€>p..
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Since the events {inf{o,e]n(e) = 1} are mutually independent as e ranges over the
edges of G, it follows from the definition of p, that W, [Ci#f)] = 1 and therefore

¥, (C, occurs for all ¢ € [0, 6]) =1.

Repeating the argument for the intervals [ke, (k + 1)€] with integer k¥ and using count-
able additivity, we obtain the supercritical part of the proposition.

(ii) A similar argument proves that for p < p, there is never an infinite open cluster.
We take € € (0,p. — p) and find that

\I'p{ S[;l}])n(e) = 1} =1-—(1—p)exp(—pe) < p+ pe < p.. (111)

Therefore \IIP(C[S(;’, f]) = 0, whence there is a.s. no infinite cluster for any ¢t € [0, ¢].
Countable additivity concludes the argument. 0O

At the critical value p,(GQ) the situation is more delicate.

Theorem 20.3 There exists a graph Gy with the property that at p = p.(G) we have
P;,(C) =0 but ‘IIG,,,( Ut>0 Ct) = 1. (The latter probability is 0 or 1 for any graph.)
There also exists a graph Gy such that for p = p.(G2) we have Pg,,(C) = 1, yet
Y6, p(Nt>0Ct) = 0.

The graphs for which percolation problems have been studied most extensively are
the lattices Z¢, and trees. On Z?, the critical value p, is 1/2 and P, (C) = 0 (see
Kesten (1980)); for d > 2 the precise value of p.(Z¢) is not known. Hara and Slade
(1994) showed that P, (C) = 0 for Z¢ if d > 19, and it is certainly believed that this
holds for all d.

Theorem 20.4 Let G be either the integer lattice Z¢ with d > 19 or a regular tree.
Then ¥gp, (—Cy occurs for every t) = 1.

Remark. It is not known whether G = Z? can be included in Theorem 20.4. Let 6(p)
denote the P,-probability that the origin is in an infinite open cluster. The proof of
Theorem 20.4 for G = Z¢ with d > 19 uses more information than just f(p,) = 0; it
also uses that ¢ has a finite right derivative at p.. In Z? it is known that (p.) = 0,
but Kesten and Zhang proved that the right derivative of 8 is infinite at p,.

Next, we consider dynamical percolation on general trees. In Chapter 14, we proved
R. Lyons’ criterion for P,(C) > 0 in terms of effective electrical resistance (see (39));
effective resistance is easy to calculate on trees using the parallel and series laws. Here
we obtain such a criterion for dynamical percolation.

For an infinite tree I' with root p, as before we write I',, for the set of vertices
at distance exactly n from p, the nth level of I'. Recall that a tree is spherically
symmetric if all vertices on the same level have equally many children.
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Theorem 20.5 Let {1} be a dynamical percolation process with parameter 0 < p < 1
on an infinite tree I'. Assign each edge between levels n — 1 and n of T' the resistance
p~"/n. If in the resulting resistor network the effective resistance from the root to
infinity is finite, then Wr ,-a.s. there ezist times t > 0 such that T has an infinite
open cluster, while if this resistance is infinite, then a.s. there are no such times. In
particular, if T is spherically symmetric, then

¥r,(UsoCy) = 1 if and only if

(112)

Recall R. Lyons’ criterion for the percolation probability on a general tree I" to be
positive: Suppose that 0 < p < 1 and assign each edge between levels n — 1 and n
resistance p~". Then Pr,(C) > 0 iff the resulting effective resistance from the root
to infinity is finite. Thus a spherically symmetric tree I' with p = p.(T") € (O 1) has
Wr 5 (UssoCt) = 1 but Pr,(C) = 0 iff the series in (112) converges but 350, B =o0.

In the course of the proof of Theorem 20.5, we obtain bounds for the probablhty
that there exists a time ¢ € [0, 1] for which there is an open path in 7; from the root to
the nth level I',,. For example, on the regular tree T* with p = 1/k, this probability is
bounded between constant multiples of 1/logn. (The probability under Py that an
open path exists from p to the nth level of T, is bounded between constant multiples
of 1/n; this follows from Kolmogorov’s theorem on critical branching processes, see
Athreya and Ney (1972).) For a general tree these bounds, given in Theorem 20.9,
can be expressed in terms of the effective resistance from the root to I',, and the ratio
of the upper and lower bounds is an absolute constant.

For a graph with ¥¢ ,(U;50C:) = 1 but Pg,(C) = 0, the set of percolating times
at criticality has zero Lebesgue measure, so it is natural to ask for its Hausdorff
dimension. For spherically symmetric trees there is a complete answer.

Theorem 20.6 Let p € (0,1) and let T be a spherically symmetric tree. If the set of
times {t € [0,00) : C; occurs} is a.s. nonempty, then ¥,-a.s. this set has Hausdorff
dimension

o] p—nna—l
n=1 an|

(Note that this series converges for =0 by (112).)

sup{aE[O,l]: <oo}.

Here are some interesting trees with Wr ,(Ui0C;) = 1 but Prp(C) = 0:

Example 20.7 Let I’ be the spherically symmetric tree where each vertex on level
n has 4 children if n = 1,2,4... is a power of 2, and 2 children otherwise. Then it is
easily seen that n2" < |[,| < 2n2" for all n > 0. Combining Theorem 20.6 with the
result of R. Lyons quoted after Theorem 20.5, we see that ¥, /;-a.s. the set of times
for which percolation occurs on I' has Hausdorfl dimension 1 but Lebesgue measure
0. A
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Example 20.8 Let 0 < p, 3 < 1, and suppose that I" is a spherically symmetric tree
with |Ty| = p™n?*°() as n — oco. Then Theorem 20.6 implies that ¥,-a.s. the set of
times for which percolation occurs on I'" has Hausdorff dimension 3. A

Since we will introduce an auxiliary random killing time 7, we denote the under-
lying probability measure P rather than ¥,. The event that there is an open path
from the root to 8T in 7, is denoted {p <» AT'}.

Theorem 20.9 Consider dynamical percolation {n:} with parameter 0 < p <1 on a
tree T' which is either finite or infinite with Pr,(C) = 0. Let 7 be a random variable

with an exponential distribution of mean 1, which is independent of the process {n;}.
Let

p—n 1 __pn+1
T n+l 1-p

h{n) forn>0. (113)

Then the event A= {3t € [0,7] : p & OT'} satisfies for some constant C

£0ap, (4T) < P(4) < 20Cap, (41), (114)
Remarks:

(i) It is easy to verify that h is increasing and h(n) < p~™ for all n. These properties
also follow from the interpretation of k given in Lemma 20.10(iii) below. In the
sequel, we will sometimes write h(v) instead of A(|v|) when v is a vertex.

(ii) The event A is easier to work with than the perhaps more natural event
B={3te€[0,1] : p ¢ ar}. Noting that P(B) < P(A|r > 1) < P(A)/e"! and
P(A) < Y2, *P(B) =P(B)/(1 — e7!), we obtain

1—e?!
2

Cap,(0') < P(B) < 2eCCap,(dT) .

We will only prove the lower bound in Theorem 20.9; consult [37] for the other
inequality. We will need a lemma concerning the behavior of a pair of paths.
Notation: Denote by {v & w} the event that there is an open path in 7, between
the vertices v and w. Similarly, when « is a ray of the tree, {p & x} means that z is
open at time t. Thus {p < aI'} = U {e &z} For s> 0 let T,(s) := /os l{péu} dt

z€edl
be the amount of time in [0, s] when the path from the root to v is open.

Lemma 20.10 Let u and w be vertices of I'. With the notation of Theorem 20.9 in
force,

(i) E[Ty(r)] = p!

(i) E[Tu(r) | Tu(r) > 0] = E[Ty(r) | p & w] = h(w)p!
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(ili) P(Ty(r) > 0) = h(w)™!

(iv) E[T,(1)Ty,(7)] = 2h(u A w)pithvl
Proof: Let g=1-p.

(i) This is immediate from Fubini’s Theorem.

(ii) The first equality follows from the lack of memory of the exponential distribution.
Verifying the second equality requires a calculation:

E[T.(7) | p & w]

/0 Podw|pd wP(r>t)dt

o] _ _ — +q€7t)|w|+100
+getyulet gy — ZBHaE )T e
Jy e Gl + g o

(iii) The required probability is the ratio of the expectations in (i) and (ii).
(iv) Since the process {r;} is reversible,

E[L.(NTu(r)] = E /0 /0 Loty Loy 9 45

= 2// (p & u)P pé)w]p(—i)u)e“tdtds. (115)
Observe that for t > s,
P(péw [ péu) -——piwl_l”’\wlP(p@)u/\w | p(—s—>u/\w).
Change variables f = t — s in (115) to get that E[T,(7)T,,(7)] equals
= gplvl-lurw /ODO/OOOP(/) & u)e_s_t—P (p & unw | p Sun w) di ds

= 2pI=PMIRIT, ()] E[Turn(7) | 0 & w A w].
Substituting parts (i) and (ii) of the lemma into the last equation proves (iv).

O

Proof of lower bound in Theorem 20.9. We prove the theorem when I' is a
finite tree; the general case then follows by an appropriate limiting procedure. The
lower bound on P(A) is proved via the second moment method. Let 41 be a probability
measure on OI', and consider the random variable

=3 T(npMu). (116)

vedl



272

Lemma 20.10(i) implies that E(Z) = 1. Part (iv) of the same lemma gives

E[Z]= Y Y E[L(NTu(n)p " Mu(v)u(w) = 284(n). (117)

vedll wedl
Using the Cauchy-Schwarz inequality we find that

E[Z]? 1

P(A) 2 P(Z>0) 2 g7 = 5500

Taking the supremum of the right-hand side over all probability measures y on OT"
proves the lower bound on P[A] in (114). O
We include the statement of one result from Peres and Steif (1998).

Theorem 20.11 Let I' be an infinite spherically symmetric tree, p = p.(T') € (0,1)
and T* denote the set of times in [0,00) when there are at least k infinite clusters.
Suppose that P,(C) = 0. Let

00 p—nna—l
ac:=sup{a€[0,1]:z T <oo}.
n=1 n
Then for all k, the Hausdorff dimension of T* is
max{0,1 — k(1 —a.)} ¥,-as.. (118)

21 Stochastic Domination Between Trees

For a tree I with total height V < oo, label its vertices by i.i.d. random variables
{Xy}ver. If B C RV is a Borel set, we write

P(B;TI')=P(3£ €0l : (Xy)vee € B).

For two such trees I' and I" of height N < oo, labeled by {X,},er and {X]},er
respectively, we say that [ stochastically dominates I if for any Borel set B C R,

P(B;T) < P(B;T").

To verify that one tree dominates another, it suffices to consider the case where the
X, are i.i.d. uniform random variables in [0, 1], since other random variables can be
written as functions of these.

Recall that a tree I' is spherically symmetric if all vertices in I',, have the same
number of offspring.

Theorem 21.1 (Pemantle and Peres 1994) Let I be a spherically symmetric tree

and I' another (arbitrary) tree. Then I'" stochastically dominates T iff |T',| < |T,| for
alln > 1.
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r I
Figure 8: T" is dominated by I".

Example 21.2 Two trees of height 2.

Let T be the tree of height 2 in which the root has two offspring and each of these
three offspring. Let I" be the tree for which the root has three offspring and and each
of these two offspring.

Then it is not clear a priori which tree dominates. The result above yields that T’
is dominated by I". AN

Stochastic domination between trees is well understood only for trees which are
either spherically symmetric or have height two. Already for trees of height three, the
domination order is somewhat mysterious, as the following example from Pemantle
and Peres (1994) demonstrates.

Example 21.3 Comparison between a tree T and T with vertices glued.

Consider the trees T and T” in the next figure, where 7" is obtained from T by gluing
together the vertices in the first generation.

T T
Intuitively, it seems that T should dominate 7", but this is not the case. If

B = ([0,1/2] x [0,1] x [0,2/3)) U ([1/2,1] x [0,1/2] x [0,1])

and the X, are uniform on [0, 1], then the probability that (X, , X,, X.,) € B¢ for
all paths (p,v1,v2,v3) in T is 1075/7776, while the corresponding probability for T" is
only 998/7776. A

A consequence of Theorem 21.1 is that, among all trees of height n with |I'y| =
k, the tree T(n, k) consisting of k£ disjoint paths joined at the root is maximal in
the stochastic order. If the common law of the X, is p and B C R", then 1 —
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P(B;T(n,k))=(1- ,u"(B))k, where p" is n-fold product measure; thus for any tree
I of height n,
1-P(B;T) > (1 - u*(B))".

The definition of P(B;I") extends naturally to any graded graph I', a finite graph
whose vertices are partitioned into levels 1,...,n and oriented edges allowed only
between vertices in adjacent levels. The following is a natural conjecture.

Conjecture 3 For any graded graph T of height n, let K (T) be the number of oriented
paths that pass through every level of T' and let X, be i.i.d. random wvariables with
common law p. Then for any B C R™,

1-P(B;T) > (1 - p*(B)*".

If B is upwardly closed (that is, x€ B and y>x coordinate-wise imply y€B), then the
conjecture is an easy consequence of the FKG inequality. The case n = 2 corresponds
to a bipartite graph; Conjecture 3 for this case is due to Sidorenko (1994), who stated
it (and proved it in many special cases) in the following analytic form:

Sidorenko’s Conjecture: Let f : [0,1]2 — [0, 00) be a nonnegative bounded measur-
able function and consider the bipartite graph with vertices Xy,..., X, and Yy, ..., Y,,.
If E is the edge-set of this graph, then

/. . ./XINIY f(@s, y5)dzy .. dzpdy . . dym > (// f(z, y)dwdy) " . (119)

For the bipartite graph consisting of three vertices X,Y, Z and two edges XY and
X Z, the conjecture reads

///f(m,y)f(:v, 2)dzdydz > <// f(a, y)dxdy)2

and can be easily proved using the Cauchy-Schwarz inequality.

Exercise 21.4 Prove Sidorenko’s conjecture for the bipartite graph with four vertices
and three edges, XY, XZ, and WZ. (Hint: use Holder’s inequality with p = 3 and
q=23/2.)

Sidorenko proved his conjecture for bipartite graphs with at most one cycle, and for
bipartite graphs where one side has at most four vertices. For general finite bipartite
graphs, it is still open whether (119) always holds.

We conclude with yet another problem: In the statement of Theorem 16.7 we
defined an information-theoretic domination relation between trees. It would be quite
interesting to compare that relation with the stochastic domination relation studied
in this chapter.
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Geometric aspects of diffusions on manifolds”

E. NELSON

"Stochastic mechanics and random fields"

O.E. BARNDORFF-NIELSEN
"Parametric statistical models and likelihood"

A. ANCONA

"Théorie du potentiel sur les graphes et les variétés"

D. GEMAN
"Random fields and inverse problems in imaging"
N. IKEDA

"Probabilistic methods in the study of asymptotics"

D.L. BURKHOLDER

"Explorations in martingale theory and its applications"

E. PARDOUX

"Filtrage non linéaire et équations aux dérivées partielles

stochastiques associées"”
A.S. SZNITMAN
"Topics in propagation of chaos"

M.I. FREIDLIN

"Semi-linear PDE's and limit theorems for
large deviations"

J.F. LE GALL

"Some properties of planar Brownian motion"

D.A. DAWSON

"Measure-valued Markov processes"

B. MAISONNEUVE

"Processus de Markov : Naissance,
Retournement, Régénération"

J. SPENCER

"Nine Lectures on Random Graphs"

D. BAKRY

"L'hypercontractivité et son utilisation en théorie
des semigroupes"”

R.D. GILL

"Lectures on Survival Analysis"

S.A. MOLCHANOV

"Lectures on the Random Media"

(LNM 1362)

(LNS MS50)

(LNM 1427)

(LNM 1464)

(LNM 1527)

(LNM 1541)

(LNM 1581)



1993

1994

1995

1996

1997

289

P. BIANE

"Calcul stochastique non-commutatif”
R. DURRETT

"Ten Lectures on Particle Systems"

R. DOBRUSHIN

"Perturbation methods of the theory of
Gibbsian fields"

P. GROENEBOOM

"Lectures on inverse problems"

M. LEDOUX

"Isoperimetry and gaussian analysis"

M.T. BARLOW

"Diffusions on fractals"

D. NUALART

"Analysis on Wiener space and anticipating
stochastic calculus”

E. GINE
"Decoupling and limit theorems for
U-statistics and U-processes”
"Lectures on some aspects theory of the bootstrap"
G. GRIMMETT
"Percolation and disordered systems"
L. SALOFF-COSTE
"Lectures on finite Markov chains"

J. BERTOIN

"Subordinators : examples and applications"

F. MARTINELLI

"Lectures on Glauber dynamics for discrete spin models"
Y. PERES

"Probability on Trees : an introductory climb"

(LNM 1608)

(LNM 1648)

(LNM 1690)

(LNM 1665)

(LNM 1717)





