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PREFACE

Inequalities play a fundamental role in mathematics and its many applica-
tions. Especially in the statistics and probability literature, there are many
more limit theorems than inequalities. However, usually at the heart of a
good limit theorem is at least one good inequality. This should become clear
if one recalls the definition of the limit and the fact that a neighborhood
of a point in a specific topology is usually defined in terms of inequalities.
A limit theorem can be very illuminating. However, it only describes the
behavior of a function near a given point (possibly at infinity), whereas a
corresponding inequality would cover an entire range, oftentimes in many
or infinitely many dimensions.

Also, the nature of limit theorems is more qualitative, whereas that
of inequalities is more quantitative. For example, a central limit theorem
would state that a certain distribution is close to normality; such a statement
by itself is qualitative, as it does not specify the degree of closeness
under specific conditions. In contrast, a corresponding Berry–Esseen-type
inequality can provide quantitative specifics.

This is why good inequalities are important. A good inequality would
be, not only broadly enough applicable, but also precise enough; ideally,
it would be a solution to an extremal problem. Indeed, such results can be
used most effectively in the theory and with a greater degree of confidence
and precision in real-world applications. Such an understanding of the
role of good and, in particular, best possible bounds goes back at least to
Chebyshev. In particular, the theory of Tchebycheff systems was developed
to provide optimal solutions to a broad class of such problems. These ideas
were further developed by a large number of authors, including Bernstein,
Bennett, and Hoeffding. Quoting Bennett (J. Am. Stat. Assoc., 1962):

Much work has been carried out on the asymptotic form of the distribution of
such sums [of independent random variables] when the number of component
random variables is large and/or when the component variables have identical
distributions. The majority of this work, while being suitable for the determination
of the asymptotic distribution of sums of random variables, does not provide
estimates of the accuracy of such asymptotic distributions when applied to the
summation of finite numbers of components. [. . .] Yet, for most practical prob-
lems, precisely this distribution function is required.
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viii Preface

The contributors to this book are leading experts in the area of in-
equalities and extremal problems in probability, statistics, and mathematical
analysis. It is hoped that the material presented here will promote broader
understanding of the importance of inequalities and extremal problems, and
that it will stimulate further progress in this area.

The first two chapters of the book, written by Osękowski and devoted to
problems arising in the theory of semimartingales, have a strong analytical
component. Chapter 1 reviews the so-called method of moments, a powerful
and general technique developed in the sixties in the works of Kemperman.
The approach, based on dynamic-programming arguments and backward
induction, allows the reduction of the study of quite general estimates to
the construction of an appropriate functional sequence. This reduction is
a common point in many related areas, for example, optimal stochastic
control, optimal control theory, and Bellman function method. As an
illustration of the method, several new sharp maximal bounds for martingale
difference sequences, square function estimates, and prophet inequalities for
square-integrable martingales are presented.

Chapter 2 contains a study of a new class of optimal stopping problems
for Brownian motion and its maximal function. The classical Markovian
approach enables solving such problems of the “integral” form, yielding,
in particular, the Doob and Hardy–Littlewood inequalities. The novel
method presented in Chapter 2 enables the investigation of optimal stopping
problems of “non-integral” type, including Lorentz-norm estimates valid
for arbitrary stopping times. The approach rests on inserting an auxiliary
optimal stopping problem into the analysis and carrying out an optimization
procedure.

Chapter 3, written by Shevtsova, presents the latest and so far the best
known universal constants in the so-called nonuniform Berry–Esseen (BE)
bounds for sums of independent random variables. Such bounds work
better than their uniform counterparts in the tail zones, which are especially
important in statistical testing. To a large extent, the method is based on
the idea going back to Nagaev and further back to Cramér—to employ
the exponential tilt transform to reduce the problem of the nonuniform BE
bounds to that of the uniform ones, which latter can be tackled by using, for
example, appropriate smoothing inequalities, including ones due to Esseen
or Prawitz.
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However, this exponential-tilt reduction appears to have inherent lim-
itations, discussed in Chapter 4. Two alternative methods are suggested
there, based on novel smoothing inequalities, from which nonuniform BE
bounds can be obtained directly, without using the mentioned nonuniform-
to-uniform reduction. These new “nonuniform” smoothing inequalities,
based in part on fundamental results by Bohman and Prawitz, appear to hold
a promise of dramatically improved universal constants in nonuniform BE
bounds. As an illustration of how powerful they are, two very short proofs
of the classical nonuniform BE bound due to Nagaev are given.

The purpose of Chapter 5 is to establish new uniform BE bounds for
the Student statistic or, equivalently, for the so-called self-normalized sums,
with explicit constant factors. It is easy to see that the Student statistic
is degenerate in the sense that the linear approximation to it is just a
rescaled sum of the observations (with a nonrandom scaling factor), and
this approximation does not involve squares of the observations. For these
reason, it is possible to get a BE bound for the Student statistic involving
only the third absolute moments of the observations. However, then the
best known associated universal constants are rather large. It is shown in
Chapter 5 that BE-type bounds that are substantially better in most practical
cases can be obtained if one is allowed to use moments of order higher than
3. Chapters 4 and 5 were contributed by Pinelis.

The concluding chapter (Chapter 6) was written by de la Peña and
Ibragimov. Sharp probability and moment inequalities for random poly-
nomials, generalized sample cross-moments, and their self-normalized and
Studentized versions, in random variables with an arbitrary dependence are
discussed there. The results are based on sharp extensions of probability
and moment inequalities for sums of independent random variables to the
case of the above statistics in independent symmetric variables. The case
of statistics in dependent variables is treated through the use of measures of
dependence. The results presented in Chapter 6 are applicable in a number of
settings in statistics, econometrics, and time series analysis, including tests
for independence and problems of detecting nonlinear dependence.



CHAPTER 11
Method of Moments and Sharp Inequalities
for Martingales

Adam Osękowski
University of Warsaw, Warsaw, Poland

1.1 INTRODUCTION

The purpose of this chapter is to introduce the so-called method of mo-
ments, an efficient tool which can be used to establish sharp estimates for
martingales and other classes of processes. This technique was invented in
the sixties in the works of Kemperman (cf. [15, 16]) and applied in several
important cases: see, e.g., the works [8–11]. As we will see below, the
method rests on a dynamic-programming argument and exploits a certain
backward induction. It is also closely related to optimal stopping techniques
as well as Burkholder’s (or Bellman) method of proving semimartingale
inequalities.

Let us introduce the notation which will be used throughout this chapter.
Let (Ω,F ,P) be a probability space, filtered by (Fk)k≥0, a nondecreasing
family of sub-σ-algebras of F . Let f =(fk)

N
k=0 be a finite (Fk)k≥0-

martingale with the associated difference sequence df =(dfk)
N
k=0 defined

by df0= f0 and dfk = fk − fk−1, k=1, 2, . . . , N . Therefore, we have the
equality

fk = df0 + df1 + · · ·+ dfk, k=0, 1, 2, . . . , N.

A martingale f is called simple, if for each k, the random variable fk takes
only a finite number of values.

Our principal goal is to study sharp inequalities involving f and a certain
class of random variables Tk(f), k=0, 1, 2, . . . , N , with or without some
extra assumptions on the range of these sequences. To be more precise, fix
a Borel function T0 : R → R and a Borel function T : R3 → R. Introduce
the sequence T (f)= (Tk(f))Nk=0 inductively by

T0(f)=T0(f0) and Tk(f)=T (fk−1, Tk−1(f), dfk)

Inequalities and Extremal Problems in Probability and Statistics. http://dx.doi.org/10.1016/B978-0-12-809818-9.00001-X
Copyright © 2017 Elsevier Ltd. All rights reserved. 1



2 Adam Osękowski

for k=1, 2, . . . , N . A lot of classical objects can be obtained with the use
of the above construction. Here are four important examples.

1. Square function. Setting T0(x)= |x| and T (x, y, z)= (y2 + z2)1/2, we
see that

Tn(f)=
(

n∑
k=0

df2
k

)1/2

, n=0, 1, 2, . . . , N

is the square function associated with the martingale f .
2. Maximal functions. Take T0(x)=x and T (x, y, z)= max{y, x + z}.

Then

Tn(f)= max
0≤k≤n

fk, n=0, 1, 2, . . . , N

is the one-sided maximal function of f . Similarly, the choice T0(x)= |x|
and T (x, y, z)= max{y, |x+ z|} corresponds to the two-sided maximal
function Tn(f)= max0≤k≤n |fk|, n=0, 1, 2, . . . , N .

3. Maximal function of the difference sequence. Take T0(x)= |x| and
T (x, y, z)= max{y, |z|}. Then

Tn(f)= max
0≤k≤n

|dfk|, n=0, 1, 2, . . . , N.

4. Martingale transform. This example is a slight extension of the
above setting, as the transformation T depends on n. Fix a sequence
v=(vn)

N
n=0 of real numbers and put T0(x)= v0x, Tn(x, y, z)= y+vnz,

n=1, 2, . . . , N . If we set

T0(f)=T0(f0) and Tn(f)=Tn(fn−1, Tn−1(f), dfn)

for n=1, 2, . . . , N , then

Tn(f)=
n∑

k=0

vkdfk, n=0, 1, 2, . . . , N

is the martingale transform of f by the sequence v.

It is easy to see that in many situations we do not need the transformations
to be defined on the whole R3; in general, the pairs (fn, Tn(f)) take values in
some special set D. For example, if T (f) is the square function of f , then we
may take D=R × [0,∞); if T (f) is the one-sided maximal function, then
D= {(x, y) ∈ R

2 : x ≤ y}; we might consider square function inequalities
for nonnegative martingales, and then D= [0,∞) × [0,∞); and so on. We
do not want (and actually not need) to give here a formal definition of D;
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instead, we prefer rather to point out that in some situations, for technical
reasons, we will work with some special subsets of R

2, those in which
(f, T (f)) evolves.

A general problem we will consider can be formulated as follows. Fix the
transformations T0, T as above, suppose that V : D → R is a given function
and let N be a fixed nonnegative integer. Assume that we are interested in
studying the quantity

inf EV (fN , TN (f)), (1.1.1)

where the infimum is taken over all simple martingales f =(fk)
N
k=0. Here

the filtration and the probability space can vary. Note that there are no tech-
nical problems with the existence of the above expectations—the integrated
random variables take only a finite number of values. The question about the
efficient control of the quantity (1.1.1) is of fundamental importance to the
theory of martingales and stochastic integration. For example, if for some
fixed positive exponent p we set V (x, y)= |y|p − Cp

p |x|p and manage to
show that (1.1.1) is nonpositive no matter where f starts from, we get the
moment bound

||TN (f)||Lp ≤ Cp||fN ||Lp .

Similarly, the choices V (x, y)=λp1{|y|≥λ} − cp|x|p, V (x, y)= |y| −
K|x| log |x| − L lead to the corresponding weak-type and logarithmic
estimates between TN (f) and fN .

To study the quantity (1.1.1), we consider a more general setting in which
the martingale f and the sequence T (f) can have arbitrary length and start
from arbitrary locations. More precisely, introduce the functional sequence
Un : D → R, n=0, 1, 2, . . ., N , by

Un(x, y)= inf EV (fx
n , T y

n (f)). (1.1.2)

The infimum is taken over the class of all simple martingales (fx
k )

n
k=0 with

f0 ≡ x, and the sequence T y(f)= (T y
k (f))

n
k=0 is given by T y

0 (f)= y and
T y
k (f)=T (fk−1, T y

k−1(f), dfk), k=1, 2, . . . , n. Therefore, the sequence
T y(f) differs from T (f) only at its initial position: it starts from y instead
of T0(x). The relation of the above problem (1.1.2) to the original setting
is evident: the expression in (1.1.1) is equal to infx∈R UN (x, T0(x)), and
hence if we manage to find UN , we are done.
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The reason for considering the whole family U0, U1, . . . , UN is that it
enjoys a nice backward recurrence which in some cases can be solved
explicitly. This is described in the following statement.

Theorem 1.1.1. We have U0=V . Furthermore, for any n=1, 2, . . . , N ,
we have

Un(x, y)= inf EUn−1(x+X,T (x, y,X)), (1.1.3)

where the infimum is taken over all mean-zero simple random variables X .
In particular, Un(x, y) is the height, at d=0, of the lower boundary of the
convex hull of the graph of the function d �→ Un−1(x+ d, T (x, y, d)).

Proof. The equation U0=V is trivial. The identity (1.1.3) follows at
once by conditioning with respect to the σ-algebra F1. The geometrical
interpretation of Un(x, y) is an immediate consequence of (1.1.3).

We conclude this section with several observations.

Remark 1.1.2. It follows directly from Theorem 1.1.1 that if f =(fk)
N
k=0

is an arbitrary martingale, then the process (UN−k(fk, Tk(f)))Nk=0 is a
submartingale terminating at the variable V (fN , TN (f)). It can be shown
that it is actually the largest submartingale bounded from above by the
sequence (V (fk, Tk(f)))Nk=0 (e.g., adapt the reasoning from Chapter 2 in
[21]).

Remark 1.1.3. Motivated by the last sentence of the previous remark,
we would like to point out that the above approach is very much in the
spirit of optimal stopping techniques for Markov processes [22, 24]. Let us
explain this precisely, keeping the same notation as in the above martingale
setting. Suppose that f =(fk)

N
k=0 is a time-homogeneous Markov family

on a finite state space E ⊂ R with transition function (pij)i,j∈E . Let T (f)
be the sequence associated with f and some transformations T0, T as above,
and let D be the set in which the process ((fk, Tk(f)))Nk=0 takes its values.
Fix an arbitrary function V : D → R and study the number

inf EV (fτ , Tτ (f)), (1.1.4)

where the infimum is taken over all stopping times τ ≤ N . Note that this can
be rewritten as (1.1.1), where that infimum runs over all stopped processes
f τ =(fτ∧n)Nn=0 (if only Tτ (f)=TN (f τ ), which is satisfied in most cases).
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The classical approach to the study of (1.1.4) is to consider the auxiliary
functions

Un(x, y)= inf EV (fx
τ , T

y
τ (f)),

where the infimum runs over all stopping times τ ≤ n and the sequences fx,
T y(f) have the same meaning as in the martingale case. Then the sequence
U0, U1, . . . , UN satisfies the recurrence (cf. Chapter I in [22])

Un(x, y)= min {EUn−1(x+X,T (x, y,X)), V (x, y)} , (1.1.5)

where X is the random variable with the distribution given by P(X = y − x)
= pxy, y ∈ E. We would like to stress that this is a perfect analogue of
(1.1.3) in the Markovian setting. Roughly speaking, both identities come
from looking at all possible behaviors of df1. Indeed, (1.1.3) exploits the
fact that the difference df1 is an arbitrary mean-zero random variable. The
identity (1.1.5) comes from the observations that we have only two choices
for df1: either we stop the process (which returns the number V (x, y)),
or let it evolve according to the transition function (which gives the term
EUn−1(x+X,T (x, y,X))).

Remark 1.1.4. As we shall see below, sometimes it is of interest to
consider the problem (1.1.1) under some additional assumptions on the
range of the terminating variables fN and TN (f). Let E be a fixed subset of
R
2. Suppose we are interested in the quantity (1.1.1) where the infimum is

taken over all martingales f =(fk)
N
k=0 such that the pair (fN , TN (f)) takes

values in E. It is easy to see that the above method works also in this setting.
Indeed, we define the auxiliary sequence U0, U1, . . . , UN as above, with the
use of (1.1.2), assuming additionally that the terminal variable (fx

n , T
y
n (f))

takes values in E. Clearly, this extra restriction may affect the domain of
some of the functions Un: for instance, U0 is defined on the set E only.
However, it is not difficult to see that the assertion of Theorem 1.1.1 remains
valid: the only essential change is that in (1.1.3) one needs to take those
mean-zero variables X , for which the pair (x+X,T (x, y,X)) falls into the
domain of Un−1.

Remark 1.1.5. All the discussion above concerned the martingale setting,
but it can be easily adjusted to other related contexts. For example, suppose
we are interested in studying the quantity (1.1.1), where the infimum is
taken over all simple submartingales (fk)nk=0 (the sequence T (f) is defined
in the same manner). Then the analysis goes along the same lines as in
the martingale case and requires only some minor modifications. The only



6 Adam Osękowski

essential difference is that in the identity (1.1.3) we need to take the infimum
over the class of all simple random variables X satisfying EX ≥ 0.

Remark 1.1.6. This remark is motivated by the example 4. concerning
martingale transforms. In the above considerations we have assumed “time-
homogeneity”, that is, that there is only one transformation T which
associates with f the corresponding sequence T (f). However, in some
situations for each n there is a whole family of possible transformations
to choose from. To be more precise, suppose that T0 is a family of
some functions T0 : R → R and let T be a family consisting of some
functions T : R3 → R. For a martingale f and transformations T0 ∈ T0,
T1, T2, . . . , TN ∈ T, we define

T0(f)=T0(f0) and Tn(f)=Tn(fn−1, Tn−1(f), dfn),

n=1, 2, . . . , N . Now one can study the quantity (1.1.1), where the infimum
is taken over all simple martingales f =(fk)

N
k=0 and all choices of transfor-

mations T0, T1, . . . , TN . It is easy to adjust the above approach to this more
general setting. Introduce the auxiliary functions U0, U1, . . . , UN exactly
in the same manner as above: Un(x, y)= inf EV (fx

n , T
y
n (f)), where the

infimum runs over all simple martingales (fk)
n
k=0 and all transformations

T0, T1, . . . , Tn. Then the following version of Theorem 1.1.1 holds.

Theorem 1.1.7. We have U0=V . Furthermore, for any n=1, 2, . . . , N ,
we have

Un(x, y)= inf EUn−1(x+X,T (x, y,X)), (1.1.6)

where the infimum is taken over all mean-zero simple random variables X
and all transformations T ∈ T.

Remark 1.1.8. The final remark links the above technique to the so-
called Burkholder’s method (or Bellman function method), a powerful tool
used widely in probability and analysis to obtain various tight estimates.
Namely, in the above considerations we have worked with the finite
horizon 0, 1, . . ., N , but, obviously, all the questions formulated above
have perfect meaning if we let N =∞. There are two essential changes
which need to be taken into account: in the definition of the simplicity
of the process f , we need to assume that there is a finite deterministic
number M such that fM = fM+1= fM+2= · · · almost surely (in other
words, simplicity implies finiteness); furthermore, for such an f , there must
be TM (f)=TM+1(f)=TM+2(f)= · · · almost surely (which follows, for
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instance, from the identity T (x, y, 0)= y, satisfied in all the interesting
contexts). These two modifications allow to speak about the variable
(f∞, T∞(f)) and hence the quantity (1.1.1) makes sense. Consider the
function

U∞(x, y)= inf EV (f∞, T y
∞(f)),

where the infimum is taken over all simple martingales (fk)
∞
k=0 starting

from x. Then U∞ is the pointwise limit of the decreasing sequence U0, U1,
U2, . . . and hence in particular we have:

1◦ U∞ ≤ V .
Furthermore, letting n → ∞ in (1.1.3) implies the following property

2◦ For any simple mean-zero random variable X we have

U∞(x, y) ≤ EU∞(x+X,T (x, y,X)).

A beautiful feature, exploited by Burkholder in many papers
(cf. [3–7]), is that the existence of a function U satisfying 1◦ and 2◦—
not necessarily equal to U∞—guarantees the estimate

EV (f∞, T∞(f)) ≥ U(Ef∞, T0(Ef∞))

and hence

EV (f∞, T∞(f)) ≥ inf
x∈R

U(x, T0(x))

for any simple martingale f . Burkholder and his PhD students proved
several important martingale inequalities by finding suitable functions U
possessing the above properties 1◦ and 2◦. For more on the subject, consult
the monograph [21], Suh’s paper [25], and Burkholder’s works cited earlier.

The remainder of the chapter is devoted to examples: in the next sections
we will show how the above method can be used to obtain a number of
interesting estimates.

1.2 AN INEQUALITY FOR THE MARTINGALE DIFFERENCE
SEQUENCE

In this section we will focus on the following statement, proved by Cox and
Kemperman in [10]. Let df∗

n = max0≤k≤n |dfk|, df∗= supk≥0 |dfk| denote
the maximal function of the difference sequence.
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Theorem 1.2.1. Let N be a positive integer and let f =(fk)
N
k=0 be a

martingale. Then

P(df∗
N ≥ 1) ≤ 1

N(21/N − 1)
E|fN |. (1.2.1)

The constant (N(21/N − 1))−1 is the best possible: there is a nontrivial
martingale f for which both sides are equal.

Letting N → ∞, we immediately obtain the following.

Corollary 1.2.2. For any martingale f =(fk)
∞
k=0 we have

P(df∗ ≥ 1) ≤ 1

log 2
sup
N≥1

E|fN |

and the constant (log 2)−1 is the best possible.

It can be shown that the best constants in (1.2.1) are attained when the
left-hand side is equal to 1 (cf. [10]). Furthermore, by a straightforward
approximation, we may restrict ourselves to simple martingales. Thus, we
will be done if we establish the following fact.

Theorem 1.2.3. Let N be a positive integer and let f =(fk)
N
k=0 be a

simple martingale satisfying df∗
N ≥ 1 almost surely. Then

E|fN | ≥ N(21/N − 1) (1.2.2)

and the constant on the right can be attained for a nontrivial martingale.

Clearly, the above problem falls into the scope of the method described
in the previous section. The random variables (fn, df

∗
n) take values in

the set D=R × [0,∞). Let V : D → R be given by V (x, y)= |x|
and let T0, T be the transformations leading to the maximal function of
the difference sequence. We need to show that the quantity in (1.1.1),
where the infimum is taken over all martingales for which df∗

N terminates
in [1,∞), is equal to N(21/N − 1). To handle this problem, we fix
n=0, 1, 2, . . . , N and introduce the function Un : D → [0,∞) by (1.1.2),
that is,

Un(x, y)= inf

{
E|fn| : f0 ≡ x, y ∨ max

1≤k≤n
|dfn| ≥ 1 almost surely

}
.
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Using Theorem 1.1.1, we will identify the explicit formulae for Un. This is
the contents of the lemma below.

Lemma 1.2.4.

(i) We have U0(x, y)= |x|, y ≥ 1; for y < 1 the function U0 is not defined.
(ii) We have

U1(x, y)=

{
|x| if |x| ∨ y ≥ 1,

1 if |x| ∨ y < 1.

(iii) For n ≥ 2, we have

Un(x, y)=

⎧⎪⎨
⎪⎩
|x| if |x| ∨ y ≥ 1,

−|x|+ 2

(
1 +

1− |x|
n− 1

)−n+1

if |x| ∨ y < 1.
(1.2.3)

Proof. The first part of the lemma is evident. To study (ii) and (iii), note
that E|fn| ≥ |Efn|, and hence Un(x, y) ≥ |x| for all x, y and all n. On
the other hand, if |x| ∨ y ≥ 1, then directly from the definition of Un we
have the estimate Un(x, y) ≤ |x|. Indeed, if y ≥ 1, then take the constant
martingale f ≡ x; if y < 1, then consider the variable X taking values 1
and −1 with probabilities 1/2, and take f0 ≡ x, f1= f2= · · · =x + X .
Consequently, for all n ≥ 1 we may write

Un(x, y)= |x| if |x| ∨ y ≥ 1.

To get the formula for U1 on |x| ∨ y < 1, we apply Theorem 1.1.1. The
formula (1.1.3) becomes

U1(x, y)= inf {E|x+X| : X simple and mean-zero,P(|X| ≥ 1)= 1} ,
since we restrict ourselves to martingales satisfying df∗

1 ≥ 1 almost surely.
It is evident that the infimum is attained for the Rademacher variable
P(X =1)=P(X = − 1)= 1/2. Indeed: fix a simple mean-zero random
variable X satisfying |X| ≥ 1 almost surely. By the convexity of the
function t �→ |x + t|, the (random) point (X, |x + X|), with probability
1, lies on or above the line passing through (−1, |x − 1|) and (1, |x + 1|).
Consequently, the expectation (EX,E|x + X|)= (0,E|x + X|) also has
this geometric property, which amounts to saying that E|x + X| ≥ 1 (the
aforementioned line passes through (0, 1)). It remains to note that for the
Rademacher variable we have equality; hence

U1(x, y)= 1 if |x| ∨ y ≤ 1.
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We turn our attention to the case n ≥ 2 and assume that |x| ∨ y < 1 (for
|x| ∨ y ≥ 1 we have already shown the claim). We use Theorem 1.1.1 again
and write down (1.1.3):

Un(x, y)= inf EUn−1(x+X, y ∨ |X|),

where the infimum is taken over all mean-zero simple random variables X .
Note that there are no extra requirements on X due to the restriction df∗

n ≥ 1
almost surely; this follows at once from the fact that the function U1, and
hence also all the subsequent functions, are given on the full domain D.

So, Un(x, y) is the height, at d=0, of the boundary of the convex hull
of the graph of the function d �→ Un−1(x + d, y ∨ |d|). The function Un

is symmetric with respect to the variable x (which can be easily shown by
induction). Thus, it is enough to show the assertion for x ≥ 0. Denote the
right-hand side of (1.2.3) by Ũn(x, y). We will prove that the graph of the
function

d �→ Ũn(x, y) +

(
−1 + 2

(
1 +

1− x

n− 1

)−n+1
)
d

lies below the graph of d �→ Un−1(x + d, y ∨ |d|) and that both functions
coincide for d= − 1 and d=(1 − x)/(n − 1). This will clearly yield the
desired claim.

To show that

Ũn(x, y) +

(
−1 + 2

(
1 +

1− x

n− 1

)−n+1
)
d ≤ Un−1(x+ d, y ∨ |d|),

(1.2.4)
suppose first that n=2. The inequality becomes

2

2− x
(1 + d) ≤ x+ d+ U1(x+ d, y ∨ |d|).

We consider several cases. If d ≤ −1, the left-hand side is nonpositive,
while the right is nonnegative (and we have equality for d= − 1). If −1 <
d < 1−x, the inequality is equivalent to x(x+d−1) ≤ 0, which is evident.
Finally, for d ≥ 1 − x, some straightforward computations transform the
desired bound into (1− x)(1− x− d) ≤ 0, which is trivial (and both sides
become equal for d=1− x).
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Now, suppose that n > 2. If d ≤ −1, the inequality (1.2.4) becomes

2

(
1 +

1− x

n− 1

)−n+1

(d+ 1) ≤ 0,

which is obvious (note that for d= − 1 we get equality). If −1 < d ≤ −x,
(1.2.4) can be rewritten in the form

x+ d+

(
1 +

1 + x+ d

n− 2

)−n+2

−
(
1 +

1− x

n− 1

)−n+1

d ≥ 0.

However, even the sum of the first two terms is nonnegative: this is due to an
elementary estimate u+(1+u/(n−2))−n+2 ≥ 1 valid for u ≥ 0. Finally, if
d > −x, we put all the terms of (1.2.4) on the right and denote the obtained
expression by F (d). It is easy to check that F is a convex function that
vanishes, along with its derivative, at d=(1 − x)/(n − 1). This completes
the proof of the lemma.

Proof of Theorem 1.2.3. The above computations show that if f is a
martingale as in the statement, then E|fN | ≥ UN (EfN , 0). However, the
function x �→ UN (x, 0) attains its maximal value N(21/N − 1) at the point
x=1− (N − 1)(21/N − 1), and hence (1.2.2) holds true.

It remains to establish the sharpness of the result, which will be obtained
by constructing an appropriate example. To do this, it is convenient to
use Remark 1.1.2 and rewrite the proof of (1.2.2) just presented above in
the form

E|fN |=EV (fN , df∗
N )

≥ EU0(fN , df∗
N ) ≥ · · · ≥ EUN (f0, df

∗
0 ) ≥ N(21/N − 1).

Let us construct the process for which all the inequalities in the above
chain are actually equalities. We start with the equality EUN (f0, df

∗
0 ) ≥

N(21/N − 1): as we have noted above, it will hold if we set f0 ≡
1 − (N − 1)(21/N − 1). Now, we proceed by induction. Suppose
that we have constructed the simple martingale f0, f1, . . . , fn such that
EUN−k(fk, df

∗
k )=N(21/N − 1) for each k=0, 1, . . . , n. Suppose that

(x, y) is an atom of the variable (fn, df
∗
n). It follows from the above proof

that there is a simple, mean-zero random variable X such that

UN−n(x, y)=EUN−n−1(x+X, y ∨ |X|).
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We define fn+1 by requiring that conditionally on {(fn, df∗
n)= (x, y)},

fn+1−fn has the same distribution as X . Then by the induction hypothesis,
we get

EUN−n−1(fn+1, df
∗
n+1)=EUN−n(fn, df

∗
n)=N(21/N − 1)

and we are done.

1.3 AN INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION

In this section we will be interested in weak-type bounds for the martingale
square function, due to Cox [8]. Here is our main result.

Theorem 1.3.1. Let N be a positive integer, let f =(fk)
N
k=0 be a

martingale and let SN (f)=
(∑N

k=0 df
2
k

)1/2
be its square function. Then

P(SN (f) ≥ 1) ≤
(
1 +N−1

)N/2
E|fN | (1.3.1)

and the constant is the best possible: there is a nontrivial martingale for
which the equality is attained.

Letting N → ∞, we see that the above result yields the following
corollary.

Corollary 1.3.2. Suppose that f =(fk)k≥0 is a real-valued martingale
and let S(f)=

(∑∞
k=0 df

2
k

)1/2 denote its square function. Then

P(S(f) ≥ 1) ≤ e1/2 sup
N≥1

E|fN | (1.3.2)

and the constant is the best possible.

It can be shown (cf. [8]) that the constant in (1.3.1) is also optimal
when one restricts oneself to martingales f satisfying P(SN (f) ≥ 1)= 1.
Furthermore, a straightforward approximation argument proves that it is
enough to study simple martingales only. Therefore, it suffices to establish
the following statement.

Theorem 1.3.3. Let N be a positive integer. Then for any martingale
f =(fk)

N
k=0 satisfying SN (f) ≥ 1 almost surely, we have

E|fN | ≥
(
1 +N−1

)−N/2
. (1.3.3)
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The above theorem can be studied by the method described in
Section 1.1. We take D=R × [0,∞) and define the function V : D → R

by V (x, y)= |x|. Furthermore, we pick the transformations T0, T leading to
the square function. For n ≥ 0, let Un : D → R be given by (1.1.2), which
for the above choice of parameters becomes

Un(x, y)= inf

{
E|fn| : f0=x, y2 +

n∑
k=1

df2
k ≥ 1 almost surely

}

= inf
{
E|fn| : f0=x, y2 − x2 + S2

n(f) ≥ 1 almost surely
}
.

Lemma 1.3.4. The functions Un have the following explicit formulae.

(i) If y ≥ 1, then U0(x, y)= |x|; for y < 1, the function U0 is not defined.
(ii) We have

U1(x, y)=

{
|x| if x2 + y2 ≥ 1,√

1− y2 if x2 + y2 < 1.

(iii) For n ≥ 2,

Un(x, y)

=

{
(n−1)(n−1)/2(1−y2)n/2(n−x2−ny2)(1−n)/2 if x2 + y2 < 1,

|x| if x2 + y2 ≥ 1.

Proof. The first part is evident. To prove (ii) and (iii), observe that
E|fn| ≥ |Efn|, so Un(x, y) ≥ |x| for all n, x, and y. On the other hand,
if x2 + y2 ≥ 1, then Un(x, y) ≤ |x|, directly from the definition of Un.
Indeed, if y ≥ 1, it suffices to consider the constant martingale f ≡ x, while
for y < 1, one takes the martingale given by f0 ≡ x and f1= f2= · · · = fn,
where f1 takes values |x| ±

√
1− y2 with probability 1/2. The assumption

x2 + y2 ≥ 1 guarantees that f does not change its sign and therefore
E|fn|= |x| for all n. Consequently, we have

Un(x, y)= |x| if x2 + y2 ≥ 1.

To find the formula for Un on x2 + y2 < 1, consider first the case n=1.
Then the definition of the function becomes

U1(x, y)

= inf
{
E|x+X| : X simple and mean-zero,P(X2 + y2 ≥ 1)= 1

}
,
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where the requirement X2 + y2 ≥ 1 comes from the fact that (x +
X, (y2 + X2)1/2) must belong to the domain of U0. It is easy to see
that the above infimum is attained for X having the distribution P(X =
−

√
1− y2)=P(X =

√
1− y2)= 1/2: other choices for X return larger

values of the expectation (the reasoning is similar to that presented in the
proof of Lemma 1.2.4 and we will omit it). So, we have

U1(x, y)=
√

1− y2 if x2 + y2 < 1.

To find the formula for Un when n ≥ 2, observe that (1.1.3) yields

Un(x, y)= inf EUn−1

(
x+X, (y2 +X2)1/2

)
,

where the infimum is taken over all mean-zero random variables X (no
extra assumptions on the range of X are needed, the domain of Un, n ≥
1, is a full halfplane D). Consequently, Un(x, y) is the height, at d=0,
of the lower boundary of the convex hull of the graph of the function
d �→ Un−1

(
x+ d, (y2 + d2)1/2

)
. We have already shown the assertion for

x2 + y2 ≥ 1, so we may assume that x2 + y2 < 1. We use induction.
We will show that there is a coefficient A=An(x, y) such that the graph
of the linear function d �→ Ũn(x, y) + Ad lies below the graph of d �→
Un−1

(
x+ d, (y2 + d2)1/2

)
, and both functions are equal for some d− < 0

and d+ > 0. (Here Ũn is the function given by the expression on the right-
hand side of the equation in (iii)). This will give the claim.

We start with the case n=2 and set A=x(2− 2y2 − x2)−1/2. Consider
the inequality

Ũ2(x, y) +Ad ≤ U1

(
x+ d, (y2 + d2)1/2

)
.

One easily checks that for d±=(−x± (2− 2y2 − x2)1/2)/2 both sides are
equal (note that d− < 0 and d+ > 0, since x2 + y2 < 1). Furthermore,
we have |A| < 1, the function d �→ U1

(
x+ d, (y2 + d2)1/2

)
is continuous,

linear on (−∞, d−] and [d+,∞) (with the corresponding slopes −1 and 1,
respectively), and concave on [d−, d+]. See Fig. 1.1. This shows the claim
for n=2.

The case n > 2 is much more elaborate (cf. [8]). One can show that for
fixed x and y, there is a unique A such that

Ũn(x, y) +Ad ≤ Un−1

(
x+ d, (y2 + d2)1/2

)
(1.3.4)
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d- d+

Fig. 1.1 The graph of the function d �→ U1

(
x + d, (y2 + d2)1/2

)
for x=0.5 and y=0.1.

holds for all d ∈ R. Let us sketch the proof of this fact. Let d± be positive
and negative solutions to the equation

(x+ d)2=
1 + (n− 2)x2 − y2

n+ (n− 2)x2 − ny2
(1 + x2 − y2 + 2xd).

First one proves that there is A such that (1.3.4) becomes an equal-
ity for both d±. Having done this, we introduce the function F :
d �→ Un−1

(
x+ d, (y2 + d2)1/2

)
and check that we have equality

F ′(d−)=F ′(d+)=A; finally, one shows that there are numbers c± with
d− < c− < c+ < d+ such that the function is convex on each of the
intervals (−∞, c−], [c+,∞) and concave on [c−, c+]. We omit the tedious
verification of these properties. This gives (1.3.4) and completes the proof of
the lemma.

Proof of Theorem 1.3.3. We have shown above that for each N and any
martingale f as in the statement we have the inequality

E|fN | ≥ UN (EfN , |EfN |).

Therefore, it suffices to observe that the function x �→ UN (x, |x|) attains its
maximal value (1+N−1)−N/2 at x=(N+1)−1/2. This completes the proof:
the sharpness is dealt with exactly in the same manner as in the previous
section.

1.4 A PROPHET INEQUALITY FOR L2-BOUNDED MARTINGALES

In this section we establish another interesting estimate for finite martingales
[19], which belongs to the class of the so-called prophet inequalities. To
give the reader some motivation behind this class, assume that f =(f0, f1,
f2, . . ., fn) is a sequence of random variables and let f∗

n = max0≤k≤n fk
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stand for the one-sided maximal function of f . Put Mn=Ef∗
n and

Vn= supτ Efτ , where the latter supremum is taken over all stopping times
τ of f (i.e., all τ adapted to the natural filtration of f ). Comparisons between
the numbers Mn and Vn (under various additional structural assumptions
on f ) have been called “prophet inequalities” in the literature. Clearly, Mn

can be identified with the optimal expected return of a prophet or a player
endowed with complete foresight; on the other hand, Vn can be treated as
an optimal expected return of a player who knows only past and present,
but not the future. Prophet inequalities have played a distinguished role
in the theory of optimal stopping and have been studied intensively in the
eighties and nineties. We refer the interested reader to the works [1, 12–
14, 17, 18, 23] and consult references therein.

We will apply the method of Section 1.1 to establish the following result.
Throughout this section, f∗ stands for the one-sided maximal function of f :
f∗
n = max0≤k≤n fk, n=0, 1, 2, . . ..

Theorem 1.4.1. Let the sequence k=(kn)n≥0 be given by the conditions
k0=0 and

kn=(1 + k2n−1)/2, n ≥ 1.

Then for each N ≥ 1 and any L2-bounded martingale f =(fk)
N
k=0 we have

the inequality

Ef∗
N ≤ EfN + kN

√
Var fN . (1.4.1)

The inequality is sharp.

It suffices to study the above inequality for simple martingales only. Let
T0(x)=x, T (x, y, z)= max{x+ z, y} be the transformations correspond-
ing to the one-sided maximal function and set D= {(x, y) ∈ R

2 : x ≤ y}.
At the first glance, the inequality (1.4.1) cannot be translated into the study
of an expression of the form (1.1.1). To overcome this difficulty, we will
apply an extra homogenization argument. Namely, let us first consider an
auxiliary problem with V : D → R given by V (x, y)=x2 − y. For any
nonnegative integer n and any (x, y) ∈ D, let Un(x, y) be given by (1.1.2).
That is,

Un(x, y)= inf E
[
f2
n − y ∨ max

1≤k≤n
fk
]
,
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where the infimum is taken over all martingales f =(fk)
n
k=0 satisfying

f0=x almost surely. In contrast to the previous estimates, we do not assume
anything about the range of the terminal variable (fn, y ∨max1≤k≤n fk).

An application of (1.1.3) yields
Un(x, y)

= inf {EUn−1(x+X, (x+X) ∨ y) : X simple and mean-zero}
(1.4.2)

for n=1, 2, . . . , N. We turn to the explicit formula for Un.

Lemma 1.4.2. For any n=0, 1, 2, . . . we have

Un(x, y)=

{
(2y − kn)x− y − (y − kn/2)

2 if y − x < kn/2,

x2 − y if y − x ≥ kn/2.
(1.4.3)

Proof. We proceed using induction. If n=0, then the identity (1.4.3)
holds true, since k0=0 and U0=V . Suppose that (1.4.3) is valid for some
nonnegative n−1 and let us try to compute Un with the use of (1.4.2). To this
end, introduce the function h : R → R by h(d)=Un−1(x+ d, (x+ d)∨ y).
A direct computation shows that h(d) is given by the formula⎧⎪⎨
⎪⎩
(x+ d)2 − y if d ≤ y − x− kn−1/2,

(2y−kn−1)(x+d)−(y−kn−1/2)
2 − y if y−x−kn−1/2<d ≤ y−x,

(x+ d)2 − (x+ d)− k2n−1/4 if d > y − x.

Let us describe the convex hull of the graph of h. We easily check that

• h is continuous,
• h is convex and of class C1 on each of the intervals (−∞, y − x),

(y − x,∞),
• its one-sided derivatives at d= y − x satisfy h′(y − x−) ≥ h′(y − x+),
• h is linear on (y − x− kn−1/2, y − x).

See Fig. 1.2.

Thus, we need to find a common tangent line to the parabolas γ1 : d �→
(x+ d)2− y and γ2 : d �→ (x+ d)2− (x+ d)− k2n−1/4. A little calculation
gives that this line is

{(s, t) : t=(2y − kn)(x+ s)− y − (y − kn/2)
2},
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γ1

x1 x2y − x

γ2h

Fig. 1.2 The common tangent to the parabolas γ1 and γ2 lies below the graph of h.

and the tangency points are

(x1, γ1(x1))=
(
y − x− kn/2, γ1(y − x− kn/2)

)
,

(x2, γ2(x2))=
(
y − x− kn/2 + 1/2, γ2(y − x− kn/2 + 1/2)

)
.

Thus, by the graphical interpretation of Un and the fact that x2 is nonnega-
tive, we obtain that Un(x, y)=x2−y if x1 ≥ 0 and Un(x, y)= (2y−kn)x−
y − (x− kn/2)

2 if x1 < 0. This is precisely the claim.

Proof of (1.4.1). Consider the centered martingale f̃ =(f0 − Ef0, f1 −
Ef0, f2 −Ef0, . . . , fN −Ef0). Applying the definition of UN conditionally
with respect to F0, we get

E
(
f̃2
N − f̃∗

N

)
≥ EUN (f̃0, f̃0)=Ef̃2

0 − Ef̃0 − k2N/4.

However, f̃0 has expectation 0, so the latter expression is not smaller than
−k2N/4. Consequently,

Ef∗
N − Ef0=Ef̃∗

N ≤ Ef̃2
N + k2N/4= Var fN + k2N/4.

Applying this inequality to the rescaled martingale f/λ (where λ is a fixed
positive constant), we obtain

Ef∗
N − Ef0 ≤ λ−1Var fN + λk2N/4.

The right-hand side, as a function of λ, attains its minimum for the choice
λ=2

(
Var fN

)1/2
/kN . Plugging this value of λ above, we obtain the

desired estimate (1.4.1). The sharpness is established in a similar manner
as in Section 1.2.
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1.5 MOMENT INEQUALITY FOR MARTINGALE SQUARE
FUNCTION

The method studied above has the drawback of computational complexity
(we have already experienced it when studying the weak-type bound for
the martingale square function). However, in some cases the computations
can be simplified, by considering a slight modification of the sequence U0,
U1, U2, . . .. The purpose of this section is to illustrate this phenomenon, by
looking at the following statement.

Theorem 1.5.1. Let (Cn)n≥0 be the sequence of numbers given by
C0=1 and Cn+1=1 + C2

n/4, n=0, 1, 2, . . . . Then for any nonnegative
integer N and any martingale f =(fk)

N
k=0 we have

||fN ||1 ≤ CN ||SN (f)||1. (1.5.1)

The constant CN is the best possible.

This result can be studied with the use of the technique described in
Section 1.1, by setting V (x, y)=CNy − |x|, (x, y) ∈ D=R × [0,∞),
and letting T0, T be the transformations leading to the square function.
However, there seems to be no simple formulae for the associated functions
U0, U1, . . ., UN . To overcome this difficulty, we exploit Remark 1.1.2: if
f =(fk)

N
k=0 is a martingale starting from x, then

UN (x, |x|)=EUN (f0, S0(f))

≤ EUN−1 (f1, S1(f))

≤ · · ·
≤ EU0 (fN , SN (f))

=EV (fN , SN (f)) .

(1.5.2)

The idea is that one may search for other functional sequences (in the place
of (Uk)

N
k=0), for which the above chain of inequalities holds true (in the last

line, we allow the bound “≤”, instead of equality).

Let us state this observation separately.

Theorem 1.5.2. Let V : D → R be a given function and let N be a fixed
nonnegative integer. Suppose that (Uk)

N
k=0 is a sequence of real-valued

functions on D, which satisfies the following three conditions:

(i) We have UN (x, |x|) ≥ 0 for all x ∈ R.
(ii) We have U0(x, y) ≤ V (x, y) for all x ∈ R and y ≥ 0.
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(iii) For each k=1, 2, . . . , N there is a function Ak : R× [0,∞) → R such
that the following holds: if x, d ∈ R and y ≥ 0, then

Uk(x, y) +Ak(x, y)d ≤ Uk−1

(
x+ d, (y2 + d2)1/2

)
.

Then the inequality EV (fN , SN (f)) ≥ 0 holds true for all martingales
(fk)

N
k=0.

The proof is immediate and rests on checking that the chain (1.5.2) is
valid. We omit the details.

In the proof of Theorem 1.5.1, we will need the following technical
lemmas. For the proofs, we refer the interested reader to [20]. We assume
that C ∈ [1, 2] is a fixed parameter.

Lemma 1.5.3. For any x, d ∈ R such that |x| ≤
√
C − 1 we have

|x+ d| −
√
C
√

x2 + 1 + Cd2 ≤
√
C − 1(−1 + xd).

Lemma 1.5.4. For any y ≥ 0, d ∈ R, and x ≥
√
C − 1y we have

|x+ d| − C
√

y2 + d2 ≤ x− 2
√
C − 1y + (C − 1)d.

Lemma 1.5.5. Assume that the numbers x, y ≥ 0, and d ∈ R satisfy the
conditions x ≥

√
C − 1y and |x+ d| ≤ C

2

√
y2 + d2. Then

− C

2

√(
C2

4
+ 1

)
(y2 + d2)− (x+ d)2 − (C − 1)d ≤ x− 2

√
C − 1y.

(1.5.3)

Equipped with the above statements, we are ready to introduce a family
of special functions; the author obtained these objects as the result of an
elaborate experimentation. For a fixed 1 ≤ C ≤ 2, let UC : R×[0,∞) → R

be given by

UC(x, y)=

{
C
2

√
(C

2

4 + 1)y2 − x2 if |x| ≤ C
2 y,

−|x|+ Cy if |x| > C
2 y.

(1.5.4)

We will also need an auxiliary function AC on R× [0,∞), defined by

AC(x, y)=

{
−C

2 x/
√

(C
2

4 + 1)y2 − x2 if |x| ≤ C
2 y,

−C2

4 sgnx if |x| > C
2 y.
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Let (Cn)n≥0 be the sequence introduced in the statement of
Theorem 1.5.1 and let N ≥ 0 be fixed. For any k=0, 1, 2, . . . , N , let
Uk =UCN−k and Ak =ACN−k . Finally, put V (x, y)=CNy − |x|. We will
show that the sequence (Uk)

N
k=1 has all the necessary properties listed in

Theorem 1.5.2.

Lemma 1.5.6. The conditions (i) and (ii) of Theorem 1.5.2 are satisfied.

Proof. The property (i) is trivial: we have UN (x, |x|)=UC0(x, |x|)= 0.
The condition (ii) also has a simple proof. Indeed, for |x| ≥ CNy/2 we
get equality, so we may assume that |x| < CNy/2. Furthermore, we may
restrict ourselves to nonnegative x. Rewrite the majorization in the form

CNy ≥ x+
CN

2

√(
C2
N

4
+ 1

)
y2 − x2 (1.5.5)

and observe that the right-hand side, as a function of x ∈ [0, CNy/2], is
increasing: its derivative equals

1− CN

2

1√
(C

2
N

4 + 1) y
2

x2 − 1
≥ 0.

Hence, it suffices to show (1.5.5) for x=CNy/2; but then both sides are
equal.

We turn to the third condition of Theorem 1.5.2.

Lemma 1.5.7. For any k=1, 2, . . . , N , any x, d ∈ R and any y ≥ 0 we
have

Uk−1

(
x+ d,

√
y2 + d2

)
≥ Uk(x, y) +Ak(x, y)d. (1.5.6)

Proof. Denote C =CN+1−k, so that CN−k =2
√
C − 1. The function

Uk−1 is defined by the right-hand side of (1.5.4), while the formulas for
Uk and Ak read

Uk(x, y)=

{
−
√
C − 1

√
Cy2 − x2 if |x| ≤

√
C − 1y,

|x| − 2
√
C − 1y if |x| >

√
C − 1y.

and

Ak(x, y)=

{√
C − 1x/

√
Cy2 − x2 if |x| ≤

√
C − 1y,

(C − 1) sgnx if |x| >
√
C − 1y.
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Suppose first that x ≤
√
C − 1y. If |x+ d| ≤ C

2

√
y2 + d2, then

Uk−1(x+ d,
√

y2 + d2)= − C

2

√(
C2

4
+ 1

)
(y2 + d2)− (x+ d)2

≤ −
√
C − 1

√
C(y2 + d2)− (x+ d)2

(simply square both sides to verify the latter bound). The discriminant
of the quadratic function d �→ C(y2 + d2) − (x + d)2 is nonpositive
(because of the assumption x ≤

√
C − 1y), so the function H(d)=

−
√
C − 1

√
C(y2 + d2)− (x+ d)2 is concave. Thus H(d) ≤ H(0) +

H ′(0)d, or

Uk−1(x+ d,
√

y2 + d2) ≤ −
√
C − 1

√
Cy2 − x2 +

√
C − 1

xd√
Cy2 − x2

,

which is precisely (1.5.6).

Next, assume that x ≤
√
C − 1y and |x+ d| > C

2

√
y2 + d2. The bound

(1.5.6) becomes

|x+ d| − C
√

y2 + d2 ≤
√
C − 1

√
Cy2 − x2

(
−1 +

xd

Cy2 − x2

)
.

By homogeneity, we may assume that Cy2 − x2=1. Then the above
inequality is precisely the assertion of Lemma 1.5.3. Therefore, all we
need is the verification of the assumption |x| ≤

√
C − 1 appearing in the

statement of the lemma. But this follows from

x2=Cx2 − (C − 1)x2 ≤ C(C − 1)y2 − (C − 1)x2=C − 1.

Next, we turn to the case |x| ≥
√
C − 1y. Since Uk(x, y)=Uk(−x, y)

and Ak(x, y)= − Ak(−x, y), we may restrict ourselves to nonnegative x.
Now, if |x + d| > C

2

√
y2 + d2, the inequality (1.5.6) is precisely the

assertion of Lemma 1.5.4. On the other hand, if |x + d| ≤ C
2

√
y2 + d2,

then the claim follows from Lemma 1.5.5.

The two lemmas above yield the validity of (1.5.1). In contrast to
the preceding estimates, it can be shown that equality holds for trivial
martingales only. For the detailed proof of the sharpness, we refer the reader
to [20].
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1.6 AN INEQUALITY FOR MARTINGALE TRANSFORMS

The final example we will study here is the following weak-type bound for
martingale transforms.

Theorem 1.6.1. Suppose that N is a positive integer. Then for any
martingale f =(fk)

N
k=0 and any deterministic sequence v=(vk)

N
k=0 with

values in {−1, 1},

P

(∣∣∣∣∣
N∑

k=0

vkdfk

∣∣∣∣∣ ≥ 1

)
≤ 2E|fN |.

The constant is the best possible.

This result was originally established by Burkholder in [2], slightly
different proofs can be found in [3, 4]. It turns out that the optimal constant
is attained for martingales f such that the left-hand side is 1 (cf. [3]).
Therefore, it is enough to establish the following statement, to study which
Remark 1.1.4 will be used.

Theorem 1.6.2. Suppose that N is a positive integer and let f =(fk)
N
k=0

be a martingale such that

P

(∣∣∣∣∣
N∑

k=0

vkdfk

∣∣∣∣∣ ≥ 1

)
=1

for some deterministic sequence v=(vk)
N
k=0 with values in {−1, 1}. Then

we have

E|fN | ≥ 1/2, (1.6.1)

and the lower bound cannot be improved.

It is easy to see that we may restrict ourselves to simple martingales,
and then we are in the situation described in Remark 1.1.6. For each n, we
have two transformations to choose from (corresponding to the choice of
vn ∈ {−1, 1}). That is, we take T0= {T0−, T0+}, where T0±(x)= ± x,
and, for n ≥ 1, we set Tn= {T−, T+}, where T±(x, y, z)= y ± z. Let
V : D=R × R → R be given by V (x, y)= |x| and define the associated
sequence Un by

Un(x, y)= inf E |fn| ,
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where the infimum runs over all martingales (fk)nk=0 starting from x such
that

P

(∣∣∣∣∣y +
n∑

k=1

vkdfk

∣∣∣∣∣ ≥ 1

)
=1

for some deterministic sequence v=(vk)
n
k=1 with values in {−1, 1}. The

identity (1.1.6) implies that for any n ≥ 1 we have

Un(x, y)= inf EUn−1(x+X,T±(x, y,X)), (1.6.2)

where the infimum is taken over all simple, mean-zero random variables X
and all choices T± for the transformation.

Lemma 1.6.3. The functions U0, U1, . . ., UN admit the following explicit
formulae.

(i) We have U0(x, y)= |x| if |y| ≥ 1; for |y| < 1 the function is not defined.
(ii) We have

U1(x, y)=

{
1− y2 − |xy| if |x|+ |y| < 1,

|x| if |x|+ |y| ≥ 1.

(iii) For n ≥ 2,

Un(x, y)=

{
(x2 − y2 + 1)/2 if |x|+ |y| < 1,

|x| if |x|+ |y| ≥ 1.

Proof. The formula for U0 is evident. To prove the second and the third
part of the lemma, observe that E|fn| ≥ |Efn| and hence Un(x, y) ≥ |x| for
all n, x, and y. On the other hand, if |x| + |y| ≥ 1, then there is a simple,
mean-zero random variable X and a number ε ∈ {−1, 1} such that x +X
has the same sign as x and |y + εX| ≥ 1. To see this, suppose first that
|y| ≥ 1; then the random variable X ≡ 0 has all the required properties. If
|y| < 1 and |x| + |y| ≥ 1, then we consider four cases, depending on the
signs of x and y. If, say, x, y ≥ 0, then we put ε=−1 and consider X taking
values in the set −x, 1 + y; the remaining three possibilities are handled
similarly. Plugging the martingale (x, x + X,x + X, . . . , x + X) into the
definition of Un(x, y), we see that Un(x, y) ≤ |x| and thus Un(x, y)= |x|
for n ≥ 1 and |x|+ |y| ≥ 1.

Therefore, it remains to check the formula for Un(x, y) for |x|+ |y| < 1.
If n=1, (1.6.2) can be rewritten in the form

U1(x, y)= min{U+
1 (x, y), U−

1 (x, y)}. (1.6.3)
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Here U±
1 (x, y) are given by

U±
1 (x, y)= inf{E|x+X|}

and the infimum is taken over all simple centered random variables X such
that |y ± X| ≥ 1 almost surely. Now, the infimum defining U+

1 (x, y) is
attained for the random variable X with the distribution P(X = − y+ 1)=
(1+y)/2, P(X = −y−1)= (1−y)/2 (modify appropriately the argument
used above in the proof of Lemma 1.2.4), and hence

U+
1 (x, y)=

1 + y

2
|x− y + 1|+ 1− y

2
|x− y − 1|=1 + xy − y2.

For U−
1 (x, y) we proceed analogously and obtain U−

1 (x, y)= 1− xy − y2;
combining this with (1.6.3) yields the second part of the lemma.

If n=2, we use the formula (1.6.2) again. One easily checks that for
|x|+ |y| < 1 and d ∈ R we have

x2 − y2 + 1

2
+ xd∓ yd ≤ U1(x+ d, y ± d). (1.6.4)

To show this, note we may take ∓=− and ±=+, replacing y with −y, if
necessary. If |x+ d|+ |y + d| ≤ 1, the inequality becomes

x2 − y2 + 1

2
+ xd− yd ≤ 1− (y + d)2 − |(x+ d)(y + d)|,

which is equivalent to (|x+ d|+ |y+ d|)2 ≤ 1. If |x+ d|+ |y+ d| > 1, we
must show that

x2 − y2 + 1

2
+ xd− yd ≤ |x+ d|,

or
∣∣|x+d|−1

∣∣ ≤ |y+d|. By assumption, |y+d| ≥ 1−|x+d|; furthermore,

|y + d| ≥ |d| − |y| ≥ |d|+ |x| − 1 ≥ |x+ d| − 1.

This gives (1.6.4), which in turn, in the light of (1.6.2), implies U2(x, y) ≥
(x2−y2+1)/2 (for |x|+|y| < 1). To see that we actually have equality here,
we consider an appropriate example. If d ∈ {(1−x− y)/2, (x+ y− 1)/2},
then |x+ d|+ |y + d|=1 almost surely and hence both sides of (1.6.4) are
equal (again, with the choice ∓=−, ±=+). Therefore, if X is a mean-zero
random variable taking values in the set {(1 − x − y)/2, (x + y − 1)/2},
then

x2 − y2 + 1

2
=EU1(x+X, y +X)
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and hence the assertion for n=2 is proved. To show that the functions U3,
U4, . . . are equal to U2, it suffices to verify that the function U2 is concave
along the lines of slope ±1 (we omit the straightforward calculation).
Therefore, when applying (1.6.2), we see that the optimal choice for X is
X ≡ 0 (and any transformation T±).

Proof of Theorem 1.6.2. It is easy to see that for any N ≥ 1 and any
x ∈ R we have UN (x,±x) ≥ 1/2; this proves the validity of (1.6.1).
To show that the bound is optimal, we may argue as in Sections 1.2–1.4,
but we can also provide a simple example. Namely, the nonnegative mar-
tingale f starting from 1/2 and satisfying f1= f2= · · · =1/2 +X , where
P(X =−1/2)= 3/4 and P(X =3/2)= 1/4, enjoys E|fN |=1/2 and |df0−
df1 − df2 − df3 − · · · − dfN |=1 almost surely.
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CHAPTER 22
On a Class of Optimal Stopping Problems
of Nonintegral Type

Adam Osękowski
University of Warsaw, Warsaw, Poland

2.1 INTRODUCTION

The purpose of this chapter is to study a class of “nonintegral” optimal
stopping problems for Brownian maximal functions. This type of problems,
being very natural and interesting, does not fall into scope of general
methodology and its analysis requires the development of novel ideas.
Though we will focus on the maximal setting only, we strongly believe that
the arguments can be carried over to a much wider setting, for instance for
a more general class of diffusions. This seems to be a wide area awaiting
further research.

We begin by providing the main setup in which we work. Suppose that
(Ω,F ,P) is a complete probability space, equipped with a filtration (Ft)t≥0.
Let B = (Bt)t≥0 be an adapted, standard Brownian motion starting from 0
and denote by B∗ = (B∗

t )t≥0 its (two-sided) maximal function, given by
B∗

t = sup0≤s≤t |Bs|. We will be interested in comparing the sizes of B and
B∗ stopped at a certain adapted Markov time τ . More precisely, introduce
the set

E = {(x, y) ∈ R× [0,∞) : y ≥ |x|}, (2.1.1)

the state space of the process (B,B∗). Suppose that G : E → R is a fixed
Borel function (called gain function) and assume that we are interested in
showing the inequality

EG(Bτ , B
∗
τ ) ≤ 0 (2.1.2)

for all stopping times τ (typically, one restricts oneself to stopping times
satisfying certain boundedness properties depending on G, guaranteeing
that the above expectation exists). This problem can be treated by means
of optimal stopping theory, by considering the quantity
Inequalities and Extremal Problems in Probability and Statistics. http://dx.doi.org/10.1016/B978-0-12-809818-9.00002-1
Copyright © 2017 Elsevier Ltd. All rights reserved. 29
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supEG(Bτ , B
∗
τ ), (2.1.3)

the supremum being taken over all stopping times τ as above. There
is a well-known general methodology to study problems of this type.
Roughly speaking, one extends the problem (2.1.3) to the case in which
the process (B,B∗) starts at an arbitrary point (x, y) ∈ E. Then, denoting
the corresponding supremum in (2.1.3) by U(x, y), one exploits Markovian
arguments and shows that the obtained value function U : E → R ∪ {∞}
enjoys certain structural properties (it satisfies an appropriate majorization
and a partial differential equation on a part of its domain). These conditions
enable an explicit identification of U , and (2.1.2) follows once one checks
that U(0, 0) ≤ 0. A more detailed description of the method will be provided
in Section 2.2.

The above approach has turned out to be very efficient in a number of
important estimates. We will mention four examples in the following.

1. Doob inequalities. In [7], Graversen and Peskir used the approach to
prove that the inequality

||B∗
τ ||Lp ≤ p

p− 1
||Bτ ||Lp , 1 < p < ∞, (2.1.4)

holds true for all stopping times τ ∈ Lp/2. Clearly, this estimate is
of the form (2.1.2), when both sides are raised to the power p and all
the terms are moved on the left-hand side (one has to take G(x, y) =

yp −
(

p
p−1

)p
|x|p). We refer the reader to the works [12, 14], where the

problem is presented from a wider perspective. Consult also the survey
[1] by Burkholder, where a related approach is developed.

2. Hardy-Littlewood inequalities. For p = 1, the inequality (2.1.4) does not
hold with any finite constant. Hence it is natural to ask about a substitute
for this result in this limiting case. Graversen and Peskir [8] studied the
LlogL estimate

||B∗
τ ||L1 ≤ KE|Bτ | log |Bτ |+ L(K), K > 0,

where τ is an arbitrary stopping time belonging to Lp/2 for some p > 1.
There are two questions which can be asked:

1◦ For which K there is a finite constant L(K) such that the above
inequality holds?

2◦ For K as in 1◦, what is the optimal (i.e., the least) value of L(K)?
Graversen and Peskir answered both these questions, by considering
G(x, y) = y −K|x| log |x| − L(K) and showing that the corresponding
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gain function U satisfies U(0, 0) ≤ 0 if and only if K > 1 and
L(K) ≥ K2/(K − 1)e.

The paper [8] contains the analysis of the related sharp LlogL bound

||B∗
τ ||L1 ≤ KE|Bτ | log+ |Bτ |+ 1 +

1

eK(K − 1)
, K > 1,

in which the positive part of the logarithm is considered. The proof again
exploits the above machinery applied to the gain function G given by
G(x, y) = y−K|x| log+ |x| − L̃(K). We also refer the interested reader
to Peskir’s paper [13] which contains the analysis of a related LlogL
estimate in which the contribution of B is measured along the whole
path (from 0 to τ ). See also the work of Gilat [5] devoted to the study of
the above LlogL bounds from an analytic point of view.

3. Mixed norm estimates. The paper [11] contains further extension of
(2.1.4) to the case of different Lp spaces: for any q > 1 and any
p ∈ (0, q), Peskir identified the best constant Cp,q such that the inequality

||B∗
τ ||Lq ≤ Cp,q||Bτ ||Lp

holds for any stopping time τ ∈ Lp/2 (the description of Cp,q is a bit
complicated, we refer to [11] for the definition). At the first glance the
above method does not work here, since the inequality is not of integral
form (i.e., it cannot be rewritten as (2.1.2) for any choice of G). To
overcome this difficulty, Peskir exploited a homogenization trick. First
he studied the estimate

E(B∗
τ )

q ≤ E|Bτ |p + L(p, q),

which is of the form (2.1.2) and hence can be handled with the use of the
above arguments. Then, using Brownian scaling (for any c, the process
B̃ = cB·/c2 is a Brownian motion), one gets the estimate

E|B∗
τ |q ≤ cq−p

E|Bτ |p + c−pL(p, q).

It remains to optimize over c to get the proof of the Lp → Lq estimate.
See [12, 14] for the presentation of the problem from a wider point of
view, consult also the works of Gilat [6] and Jacka [9] which are devoted
to the study of the above problem for p = 1.

4. The last example presented here is not exactly of the form (2.1.3), but
it is closely related to the subject and can serve as a natural object for
the further studies, so we have decided to include a brief discussion here.
The problem concerns optimal stopping of the diameter of the Brownian
motion; more precisely, one can study the above moment, logarithmic
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and mixed norm inequalities in which the maximum process (B∗
t )t≥0

is replaced by the “diameter process” (Dt)t≥0 = (sup0≤s≤tBs −
inf0≤s≤tBs)t≥0. To the best of our knowledge, there are two results in
this direction. Dubins et al. [4] proved that for any integrable stopping
time τ we have

||Dτ ||1 ≤
√
3||Bτ ||2

and the constant
√
3 is best possible. The corresponding LlogL and weak-

type estimates were studied by Osękowski [10]; as the formulation and
the constants involved are quite complicated, we refer the interested
reader to that paper.

In this chapter we will present a study of related maximal inequalities
involving weak Lorentz norms. For any p ∈ [1,∞) and any random variable
ξ, we define

||ξ||Lp,∞ = sup
λ>0

[
λp

P(|ξ| ≥ λ)
]1/p

.

These norms (actually, quasinorms) are a little more difficult to handle (from
the viewpoint of the above approach), since they are not integral, that is,
|| · ||Lp,∞ does not depend directly on any expression of the type EΦ(| · |) for
some function Φ. However, the situation is easy if one wants to bound weak
norms from above: it suffices to control the probabilities P(| · | ≥ λ) for each
λ. For example, Doob’s maximal inequality for martingales (cf. [2]) implies
that for any p ∈ [1,∞) and any τ ∈ Lp/2 we have

||B∗
τ ||Lp,∞ ≤ ||Bτ ||Lp

and the constant 1 is the best. The situation get significantly harder if one
wants to provide lower bounds for || · ||Lp,∞ . Our main contribution is to
show how to deal with this type of problems and illustrate the approach by
proving the following two statements. The first result is a sharp comparison
of weak norms.

Theorem 2.1.1. For any 1 < p < ∞, any q ∈ [1, p], and any stopping
time τ ∈ Lp/2 we have

||B∗
τ ||Lq,∞ ≤ p

p− 1
||Bτ ||Lp,∞ . (2.1.5)

For any p, q as above, the constant p/(p− 1) cannot be improved.

The second statement compares weak and strong norms of stopped
B and B∗.



Optimal Stopping Problems 33

Theorem 2.1.2. For any 1 ≤ q < p < ∞ and any stopping time τ
we have

||B∗
τ ||Lq ≤

(
p

p− q

)1/q p

p− 1
||Bτ ||Lp,∞ (2.1.6)

and the constant on the right-hand side is the best possible.

In the next section we present the general method of solving the optimal
stopping problems (2.1.3). Section 2.3 contains the description of certain
special stopping times which will turn out to be extremal in (2.1.5) and
(2.1.6). The remaining two sections are devoted to the proofs of our two
main results.

We should emphasize here that although we focus on sharp estimates
for Brownian motion, Theorems 2.1.1 and 2.1.2 hold true for general
cadlag martingales X and their maximal functions X∗ (even without the
assumption of the continuity of paths). This follows at once from appropriate
embedding theorems (and the fact that if a martingale X is embedded
into a Brownian motion B, then the maximal function X∗ is majorized by
the maximal function B∗). Alternatively, one can check that the reasoning
presented in Sections 2.4.2 and 2.5.2 can be extended to the general setting
with no difficulty.

2.2 ON OPTIMAL STOPPING OF A PROCESS AND ITS MAXIMAL
FUNCTION

In this section we will describe the general approach used in the study of
optimal stopping problems for Brownian maximal functions. For a detailed
discussion on the subject we refer the interested reader to the monograph
[14]. Recall the state space E of the process (B,B∗) given by (2.1.1). Let
G : E → R be a given gain function and suppose that we are interested in
computing the quantity

supEG(Bτ , B
∗
τ ), (2.2.1)

where the supremum is taken over all stopping times τ such that the above
expectation exists. Observe that X = (B,B∗) is a two-dimensional Markov
process which can change (increase) in the second coordinate only after
hitting the diagonal y = |x| in E. Off the diagonal, the process X changes
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only in the first coordinate and thus we may identify it with B. Therefore, the
infinitesimal generator of the process can be formally described as follows:

LX =
∂2

∂x2
for |x| < y,

∂

∂y
= 0 for |x| = y,

where ∂/∂y stands for the right-hand partial derivative with respect to
variable y. That is, the generator of X acts on C2 functions f : E → R,
satisfying

∂f

∂y
(x, |x|) = lim

h↓0

f(x, |x|+ h)− f(x, |x|)
h

= 0.

The first step toward the solution of (2.2.1) is to extend the problem
so that the process X can start from arbitrary points from E (this enables
the use of Markovian arguments). The extension is straightforward: for any
x ∈ R and y ≥ |x|, the process

(Bt, B
∗
t )

(x,y) =

(
x+Bt, y ∨ sup

0≤s≤t
|x+Bs|

)
starts from the point (x, y), is Markov under P and hence the class
Px,y = Law((Bt, B

∗
t )

(x,y)|P), (x, y) ∈ R × [0,∞), is a Markovian family
of probability measures on the canonical space. Now we extend (2.2.1) and
define the associated value function U : E → R ∪ {∞} by

U(x, y) = sup
τ

Ex,yG(Bτ , B
∗
τ ), (2.2.2)

where Ex,y is the expectation with respect to Px,y. Sometimes we will write
E instead of E0,0: the lack of subscripts means that we work in the initial
setting in which both B and B∗ start from 0. We believe that this will not
lead to any confusion.

The reason for extending the original stopping problem (2.2.1) to (2.2.2)
is that the resulting value function enjoys certain structural properties
which make its explicit identification possible. To describe these properties,
introduce the continuation set

C = {(x, y) ∈ E : U(x, y) > G(x, y)}
and the stopping set

D = {(x, y) ∈ E : U(x, y) = G(x, y)}.
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Clearly, it suffices to find the shape of the continuation region C and the
formula for U restricted to this set. To this end, one exploits standard
Markovian argumentation and shows that on the continuation set, the value
function U must satisfy LXU = 0. Furthermore, if (x, |x|) ∈ C, then
∂U
∂y (x, |x|) must be zero. The final comment is that under mild regularity
conditions on G, the function U is differentiable at the common boundary
of C and D (sometimes in the literature this property is called the principle
of smooth fit). These analytic conditions generally determine U only up to
one degree of freedom (expressed in terms of the optimal stopping boundary
solving a nonlinear differential equation). The maximality principle [12]
tells us how to specify the correct U among all the available candidates.

In most examples (see, e.g., the estimates discussed in Section 2.1),
the gain function G is of the form G(x, y) = Ψ(y) − Φ(|x|), where Ψ,
Φ : [0,∞) → R are nondecreasing Borel functions and Φ is convex. In such
a case, the solution to the problem (2.2.2) is based on the following two-step
procedure.

Step 1. The first step is to use an informal argumentation to get the
candidate Ũ for the value function. Fix a starting point (x, y) and look at
the definition of U(x, y):

U(x, y) = sup
τ

[
Ex,yΨ(B∗

τ )− Ex,yΦ(|Bτ |)
]
.

By the symmetry of the gain function G, we see that U must also have this
property: U(x, y) = U(−x, y) for all (x, y) ∈ E. How can we identify
U? Informally speaking we would like to choose τ such that Ex,yΨ(B∗

τ )
is relatively big, while Ex,yΦ(|Bτ |) is relatively small. However, as time
increases, so does the quantity Ex,yΦ(|Bt|), since Φ is convex; in a sense we
experience some sort of a “cost of observation”. On the other hand, before
reaching the “diagonal” y = |x|, the process B∗ stays at the same level
and hence so does Ex,yΨ(B∗

t ). This suggests that we cannot let the process
(B,B∗) get too far from the “diagonal” y = |x|, since it would be “too
expensive” to come back to the diagonal in order to offset the cost spent
to travel all that way. In other words, for sufficiently large y there should
be a threshold γ(y) ≥ 0 such that if the process (B,B∗) reaches the set
[−γ(y), γ(y)] × {y}, we should stop it instantly. In other words, it seems
plausible that the stopping region is of the form

D = {(x, y) : |x| ≤ γ(y), y ≥ y0}
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Fig. 2.1 The continuation and stopping regions.

for some number y0 ≥ 0 and some function γ : [y0,∞) → R to be found.
See Fig. 2.1 which illustrates the geometry of the sets C and D. We have
Ũ(x, y) = Ψ(y) − Φ(|x|) on D (from the very definition of the stopping
region), and Ũxx = 0 on C. Hence Ũ(x, y) = A(y) + B(y)|x| on C,
for some unknown coefficients A(·), B(·). To identify these, we exploit the
principle of smooth fit. If y ≥ y0 (that is, ([−y, y]×{y})∩D �= ∅, comparing
the left- and right-hand derivatives Ux−(·, y), Ux+(·, y) at |x| = γ(y)
implies that

Ũ(x, y) = Ψ(y)− Φ(γ(y))− Φ′(γ(y)+)(|x| − γ(y))

for |x| ≥ γ(y). When y < y0, we are forced to take U(x, y) = U(y0, y0).
Indeed, if we set σ = inf{t : B∗

t ≥ y0}, then we see that the process
((Bt, B

∗
t ))t≤σ lives in the continuation region and hence, by Itô’s formula,

U(x, y) = Ex,yU(B0, B
∗
0) = Ex,yU(Bσ, B

∗
σ) = U(y0, y0).

Thus, we have reduced the problem of identifying U to that of finding the
formula for the boundary curve γ. This task is handled with the use of the
requirement Ũy(x, |x|) = 0, which leads to a differential equation for γ. See
the monograph [14] for many examples, consult also Section 2.5.

Step 2. The second part of the analysis is to verify rigorously that
Ũ has all the necessary properties (which in turn implies that Ũ = U ).
Typically, the argument exploits Itô’s formula to prove that for any stopping
time τ as in the original problem, the process Z =

(
Ũ(Bτ∧t, B∗

τ∧t)
)
t≥0

is a supermartingale. Combining this with the majorization property
Ũ ≥ G, guaranteed by the construction, one proves that

Ex,yG(Bτ , B
∗
τ ) ≤ Ex,yŨ(Bτ , B

∗
τ ) ≤ Ex,yŨ(B0, B

∗
0) = Ũ(x, y). (2.2.3)
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This proves U ≤ Ũ , and the reverse estimate is usually obtained by
considering appropriate example. In many cases, the stopping time τD =
inf{t ≥ 0 : (Bt, B

∗
t ) ∈ D} gives equality in (2.2.3) and hence U ≥ Ũ , from

the very definition of U . Sometimes some minor modifications are necessary
to ensure that the stopping time enjoys an appropriate integrability. Since our
motivation comes from the estimate (2.1.2), we will mostly be concerned
with the case when the pair (B,B∗) starts from the origin (0, 0).

2.3 A FAMILY OF IMPORTANT EXAMPLES

We start with presenting a certain class of stopping times which will serve
as extremal examples in the estimates (2.1.5) and (2.1.6). Somewhat similar
objects appear in the works of Dubins et al. [4], Dubins and Schwarz [3],
Wang [16], and Peskir [13]. Fix constants a > 0, c ∈ (0, 1) and let

τ = τa,c = inf{t ≥ 0 : B∗
t ≥ a, |Bt| = cB∗

t }.
We see that the stopping time τ can be split into two parts: first we wait
until the maximal function B∗ reaches the level a (note that at the time this
happens, we have |B| = B∗ = a) and then we wait until |Bt|/B∗

t drops to
the level c. Put p = (1− c)−1 > 1. We will prove the following.

Lemma 2.3.1. For any r ∈ (0, p) we have τ ∈ Lr/2. Furthermore, we
have ||Bτ ||Lp,∞ = ca and for any λ > 0 the distribution function of |Bτ |
satisfies

P(|Bτ | ≥ λ) = min{||Bτ ||pLp,∞/λp, 1}. (2.3.1)

Proof. Clearly, we have

P(|Bτ | ≥ λ) = 1 if λ ≤ ca. (2.3.2)

So, suppose that λ > ca and consider the function U : R × [0,∞) → R

given by

U(x, y) =

⎧⎪⎨
⎪⎩
(ca/λ)p if y ≤ a,

p(c/λ)p(x− cy)yp−1 if a < y ≤ λ/c,

1 if y > λ/c.

It is easy to see that the pair (Bτ∧t, B∗
τ∧t) evolves over the set on which

Uxx = 0. Furthermore, we have Uy(y, y) = 0 for any y ≥ 0. Consequently,
by Itô’s formula, we have

EU(Bτ∧t, B
∗
τ∧t) = U(0, 0) = (ca/λ)p.
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The function U is bounded and the process U(Bτ∧t, B∗
τ∧t) converges almost

surely to U(Bτ , B
∗
τ ), so Lebesgue’s dominated convergence theorem yields

EU(Bτ , B
∗
τ ) = (ca/λ)p. Finally, we have U(Bτ , B

∗
τ ) = 1{B∗

τ≥λ/c} =
1{|Bτ |≥λ} and hence we obtain

P(|Bτ | ≥ λ) = (ca/λ)p if λ > ca.

Combining this with (2.3.2), we get that ||Bτ ||Lp,∞ = ca and the second
part of the lemma follows. To deduce the first part, note that we have
B∗

τ = |Bτ |/c and hence ||B∗
τ ||Lp,∞ = ||Bτ ||Lp,∞/c = a. However, for any

r < p we have Lr ⊂ Lp,∞; thus ||B∗
τ ||Lr < ∞ and the assertion follows

from Burkholder-Davis-Gundy inequality (cf. [15]).

2.4 PROOF OF THEOREM 2.1.1

We are ready to establish the first of the two theorems announced in
Section 2.1. Fix p ∈ (1,∞). Clearly, when proving (2.1.5), it is enough
to consider q = p, since ||B∗

τ ||Lq,∞ ≤ ||B∗
τ ||Lp,∞ . We want to show that the

least constant Cp, for which

sup
τ∈Lp/2

[
||B∗

τ ||Lp,∞ − Cp||Bτ ||Lp,∞

]
≤ 0 (2.4.1)

is equal to p/(p − 1). Clearly, no manipulations on the left-hand side
of (2.4.1) transform it into the form (2.1.3), so the general methodology
does not work. It is easy to get rid of the weak norm of the variable B∗

τ .
Namely, by homogeneity and Brownian scaling, it is enough to establish the
inequality

sup
τ∈Lp/2

[
P(B∗

τ ≥ 1)− Cp
p ||Bτ ||pLp,∞

]
≤ 0. (2.4.2)

However, due to the appearance of the term ||Bτ ||Lp,∞ , the problem persists.
The idea is to replace the troublesome term with a slightly smaller quantity
so that the expression gets the appropriate form and such that the extremal
stopping times in both cases will be the same. To be more precise, fix a
continuous, nondecreasing function Φ : [0,∞) → [0,∞) and consider the
inequality

sup
τ∈Lp/2

[
P(B∗

τ ≥ 1)− EΦ(|Bτ |)
]
≤ 0. (2.4.3)

The problem (2.4.3) can be studied with the use of optimal stopping
techniques, since it corresponds to the choice G(x, y) = 1{y≥1} − Φ(|x|).
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Suppose we have successfully established (2.4.3) and assume that for any
nonnegative random variable X we have the inequality

EΦ(X) ≤ Cp
p ||X||pLp,∞ . (2.4.4)

Then the estimate (2.4.2) will follow. Of course, it is absolutely not clear
whether such a function Φ exists and how to search for it. A crucial (but
a little imprecise) observation is that if we search for best constant Cp,
then there must be an optimal (or almost optimal) nontrivial stopping time
τ which will give equality in (2.4.1); if Φ has all the required properties,
then τ must necessarily be (almost) optimal in (2.4.3) and must also return
equality in (2.4.4) (with X = |Bτ |).

We split the remainder of this section into two parts. The first part is
informal and serves as a description of intuitive arguments which lead to the
discovery of the special function Φ. The second part is devoted to a formal
proof of Theorem 2.1.1.

2.4.1 On the Search for Φ
We should stress here that the reasoning we are going to present will be
informal: the arguments leading to the formula for Φ will be based on a
number of assumptions and guesses (e.g., we will treat the value function
of the optimal stopping problem (2.4.3) as a smooth function). The formal
verification of all the properties will be postponed to the next subsection.

A lot of information about Φ is contained in the estimate (2.4.4). We can
rewrite this inequality in the form

∫ ∞

0
Φ′(λ)P(X ≥ λ)dλ ≤ Cp

p ||X||pLp,∞ .

It is clear that if we fix ||X||Lp,∞ , then the left-hand side is maximized
by a random variable with the distribution satisfying P(X ≥ λ) =
min{||X||pLp,∞λ−p, 1}. This strongly suggests that the optimal stopping
time τ in (2.4.1) should have the property that |Bτ | has this distribution.
In the light of the examples analyzed in the preceding section, it is natural
to conjecture that the stopping region for the problem (2.4.3) is

D = {(x, y) ∈ E : y ≥ a, x ≤ cy},
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where c = 1−p−1 and a > 0 is a fixed constant. Combining this information
with the discussion in Section 2.2, we see that the value function of the
problem (2.4.3) should be equal to

U(x, y) =

⎧⎪⎨
⎪⎩
1{y≥1} − Φ(|x|) if y ≥ a, x ≤ cy,

1{y≥1} − Φ(cy)− Φ′(cy)(|x| − cy) if y ≥ a, x ≥ cy,

1{a≥1} − Φ(ca)− Φ′(ca)(a− ca) if y < a.

It seems reasonable to assume that a = 1; otherwise there might be problems
with ensuring the continuity of U . Under this condition, we have

U(x, y) =

⎧⎪⎨
⎪⎩
1− Φ(|x|) if y ≥ 1, x ≤ cy,

1− Φ(cy)− Φ′(cy)(|x| − cy) if y ≥ 1, x ≥ cy,

1− Φ(c)− Φ′(c)(1− c) if y < 1.

(2.4.5)

Now, the equality Uy(y, y) = 0 for y ≥ 1 implies Φ′′(cy) = 0 and hence
Φ is linear on [c,∞): Φ(y) = αy + β there. What about the interval [0, c)?
A little thought and experimentation suggests that we should take Φ(c) = 0
and extend Φ to the whole [0,∞) by setting Φ ≡ 0 on [0, c]. This implies
αc + β = 0, and the inequality U(0, 0) ≤ 0 (which we want to have at
the very end), implies α ≥ p. We assume that actually equality holds here:
α = p, and this gives us the final formula for Φ: Φ(y) = p(y − 1 + p−1)+.

2.4.2 Proof of Theorem 2.1.1
Now we are ready for the formal proof of the weak-type estimate. Let U be
the special function constructed in the preceding subsection. Directly from
the above analysis, we have Uy(y, y) = 0 for any y ≥ 0. Furthermore, it
is easy to see that for a fixed y, the function x �→ U(x, y) is concave on
[−y, y]. Therefore, by Itô’s formula, for any stopping time τ ∈ Lp/2 and
any t ≥ 0 we have

EU(Bτ∧t, B
∗
τ∧t) ≤ U(0, 0) = 0.

Clearly, we have U(x, y) ≤ A(1 + |x|+ y) for some universal constant A;
furthermore, the condition τ ∈ Lp/2 implies that B∗

τ ∈ Lp, by Burkholder-
Davis-Gundy inequality. Consequently, if we let t → ∞ above, Lebesgue’s
dominated convergence theorem yields

EU(Bτ , B
∗
τ ) ≤ 0. (2.4.6)

On the other hand, we have the majorization

U(x, y) ≥ 1{y≥1} − Φ(|x|), |x| ≤ y. (2.4.7)
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Actually, for y ≥ 1 both sides are equal; if y < 1, the inequality is equivalent
to Φ(|x|) ≥ 0, which is evident. Combining (2.4.7) with (2.4.6) yields

P(B∗
τ ≥ 1)− EΦ(|Bτ |) ≤ 0.

This implies

EΦ(|Bτ |) =
∫ ∞

0
Φ′(λ)P(|Bτ | ≥ λ)dλ

≤ p

∫ ∞

1−p−1

||Bτ ||pLp,∞

λp
dλ =

(
p

p− 1

)p

||Bτ ||pLp,∞

and hence we get (2.4.2), with Cp = p/(p− 1).

It remains to verify that the constant p/(p − 1) cannot be improved in
(2.1.5) (for general p, q as in the statement of the theorem). This time it
suffices to deal with the case q = 1. Consider the example from Section 2.3,
with c = 1− p−1 and a = 1. We have

||B∗
τ ||L1,∞ ≥ P(B∗

τ ≥ 1) = 1 =
p

p− 1
||Bτ ||Lp,∞ ,

which completes the proof.

2.5 PROOF OF THEOREM 2.1.2

As in the preceding section, it is convenient to split the reasoning into two
parts. In the first part we construct the appropriate auxiliary optimal stopping
problem and present the informal search for its solution. The second part is
devoted to the rigorous proof of the estimate (2.1.6).

2.5.1 An Auxiliary Optimal Stopping Problem
Due to certain technical reasons, throughout this subsection we assume that
q > 1; the case q = 1 will be obtained via standard limiting arguments.
Clearly, in the study of (2.1.6), the method described in Section 2.2 cannot
be applied directly. The first problem is that both sides of (2.1.6) involve
norms with different exponents p and q; the second issue is the appearance
of the weak norms. To deal with the first difficulty, fix K > 0 and consider
the problem

sup
τ

[
||B∗

τ ||
q
Lq −K||Bτ ||pLp,∞

]
, (2.5.1)



42 Adam Osękowski

where the supremum is taken over all stopping times τ ∈ Lp/2. We expect
that after an appropriate choice of the constant K, the solution to (2.5.1) will
establish the original statement. To handle the weak norms, we consider the
auxiliary stopping problem

sup
τ

E
[
(B∗

τ )
q −KΦ(|Bτ |)

]
, (2.5.2)

where the supremum is taken over the same class of stopping times as
previously, and Φ : [0,∞) → [0,∞) is a C1 nondecreasing convex function
which will be specified later. Obviously, this problem can be studied with
the use of the general methodology: suppose temporarily that we have
successfully solved it and let us proceed with the analysis of (2.5.1). If Φ
is chosen so that

EΦ(X) ≤ ||X||pLp,∞ (2.5.3)

for any nonnegative random variable X , then

sup
τ

[
||B∗

τ ||
q
Lq −K||Bτ ||pLp,∞

]
≤ sup

τ
E
[
(B∗

τ )
q −KΦ(|Bτ |)

]
. (2.5.4)

Now, we make analogous remark to that from the preceding section. If there
is a stopping time τ for which the supremum in (2.5.2) is attained and for
which we have EΦ(|Bτ |) = ||Bτ ||pLp,∞ , then we have equality in (2.5.4) and
hence we should be done.

The above analysis reduces the problem to that of finding an appropriate
function Φ. The key information on this object is contained in the inequality
(2.5.3). If Φ is of class C1 and nondecreasing, as we have assumed above,
we may rewrite this inequality in the form∫ ∞

0
Φ′(λ)P(X ≥ λ)dλ ≤ ||X||pLp,∞ .

Clearly, the left-hand side is maximal when we take the variable X with the
distribution P(X ≥ λ) = min{||X||pLp,∞λ−p, 1}. So, the extremal stopping
time τ should be chosen so that |Bτ | has this distribution. In the light of the
examples presented in Section 2.3, we get that the stopping region of the
problem

U(x, y) = sup
τ∈Lp/2

Ex,y

[
(B∗

τ )
q −KΦ(|Bτ |)

]
(2.5.5)

should be equal to

D =
{
(x, y) ∈ R× [0,∞) : y ≥ a and |x| ≤ cy

}
,
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where c = 1 − p−1 and a is a certain positive constant. Now recall the
discussion presented at the end of Section 2.2. It implies that U should be
given by the formula

U(x, y) =

⎧⎪⎨
⎪⎩
yq −KΦ(|x|) if y ≥ a, |x| ≤ cy,

yq −KΦ(cy)−KΦ′(cy)(|x| − cy) if y ≥ a, |x| ≥ cy,

aq −KΦ(ca)−KΦ′(ca)(a− ca) if y < a.

The equality Uy(y, y) = 0 is equivalent to saying that KΦ′′(cy) =
q

c(1−c)y
q−2 for y ≥ a. Solving this differential equation, we get that if

y ≥ ca, then

KΦ(y) =
yq

cq−1(1− c)(q − 1)
+ αy + β,

for some constants α, β at our disposal. We take them so that Φ(ca) =
Φ′(ca) = 0, and obtain

KΦ(y) =
yq − q(ca)q−1y + (q − 1)(ca)q

cq−1(1− c)(q − 1)
.

We extend Φ to the whole [0,∞) by setting Φ ≡ 0 on [0, ca]. Thus, finally,
we get that

Φ(y) =

(
yq − q(ca)q−1y + (q − 1)(ca)q

Kcq−1(1− c)(q − 1)

)
+

.

To get the value of the constant K, we return to the inequality (2.5.3) and
recall that the random variable |Bτ |, with τ being the extremal stopping
time, should give equality there. As we have computed in Section 2.3,
the stopping time τ corresponding to the above choice of D satisfies
||Bτ ||Lp,∞ = ca, so we get

(ca)q =

∫ ∞

ca
Φ′(λ) · (ca)

p

λp
dλ =

q
p−q (ca)

q − q
p−1(ca)

q

Kcq−1(1− c)(q − 1)
.

Hence, recalling that c = 1− p−1, after some straightforward computations
we obtain

K =
q

p− q

(
p

p− 1

)q

.

Plugging all this information into the definition of U , we see that this
function is given by the formula
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U(x, y)

=

⎧⎪⎨
⎪⎩
yq − yq−q(ca)q−1y+(q−1)(ca)q

cq−1(1−c)(q−1) if y ≥ a, |x| ≤ cy,

pyq + pcp+1−qap − pq
q−1 |x|yq−1 + pqaq−1|x| if y ≥ a, |x| ≥ cy,

aq if y < a.

This time we do not specify the value of the parameter a. In contrast with
the weak type estimate from the previous section, we need the whole family
of auxiliary optimal stopping problems (2.5.5) (corresponding to different
choices of a) to establish the desired inequality.

2.5.2 Formal Proof of (2.1.6)
Suppose first that q > 1. Take an arbitrary stopping time τ ∈ Lp/2 and
let a = ||Bτ ||Lp,∞ · p

p−1 . Let U be the function constructed in the previous
section. One easily checks that U is of class C1, for each y the function x �→
U(x, y) is concave on [−y, y] and we have Uy(y, y) = 0. Consequently, Itô
formula yields

EU(Bτ∧t, B
∗
τ∧t) ≤ U(0, 0) = aq

for any t ≥ 0. We have U(x, y) ≤ A(1 + |x|q + yq) for some universal
constant A (depending only on p, q, and a) and, by Burkholder-Davis-Gundy
inequality, we get B∗

τ ∈ Lp ⊂ Lq. Consequently, letting t → ∞ above, we
obtain

EU(Bτ , B
∗
τ ) ≤ aq (2.5.6)

in the light of Lebesgue’s dominated convergence theorem. On the other
hand, we have U(x, y) ≥ yq − KΦ(|x|) on E. This is clear from the
very construction when y ≥ a, for remaining (x, y) the majorization is
equivalent to

aq ≥ yq − Φ(|x|),
which is evident: Φ is nonnegative and y < a. Therefore, (2.5.6) and (2.5.3)
yield

E(B∗
τ )

q ≤ KΦ(|Bτ |) + aq ≤ K(ca)q + aq

=
p

p− q
aq =

p

p− q

(
p

p− 1

)q

||X||qLp,∞ .

This completes the proof of (2.1.6) in the case q > 1. Letting q ↓ 1 we
immediately get the assertion in the limit case Lp,∞ → L1. To show that the
inequality is sharp, we exploit the exemplary τ from Section 2.3 with a = 1
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and c = 1 − p−1. Directly from the construction we see that B∗
τ = |Bτ |/c

and hence, by Lemma 2.3.1,

||B∗
τ ||Lq = c−1||Bτ ||Lq = c−1

(
q

∫ ∞

0
λq−1

P(|Bτ | ≥ λ)dλ
)1/q

=

(
p

p− q

)1/q

=

(
p

p− q

)1/q p

p− 1
||Bτ ||Lp,∞ .

This completes the proof of Theorem 2.1.2.
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3.1 INTRODUCTION AND FORMULATION OF THE MAIN
RESULTS

3.1.1 Notation
For 0 � δ � 1 by F2+δ denote the set of all distribution functions (d.f.’s)
on R satisfying ∫

xdF (x) = 0,

∫
|x|2+δdF (x) < ∞.

Let X1, X2, . . . , Xn be independent random variables (r.v.’s) with d.f.’s
F1, F2, . . . , Fn ∈ F2+δ for some δ ∈ [0, 1],

σ2
j = EX2

j , β2+δ, j = E|Xj |2+δ, j = 1, 2, . . . , n, B2
n =

n∑
j=1

σ2
j > 0,

�n =

n∑
j=1

β2+δ, j

B2+δ
n

, τn=

n∑
j=1

σ2+δ
j

B2+δ
n

, Ln(z)=

n∑
j=1

EX2
j 1(|Xj |>z), z�0,

ϕ(x) =
1√
2π

e−x2/2, Φ(x) =

∫ x

−∞
ϕ(t)dt,

Fn(x) = P(X1 + · · ·+Xn < xBn),

Δn(x) = |Fn(x)− Φ(x)|, Δn = sup
x∈R

Δn(x), n ∈ N.

Note that �n = τn = 1 for δ = 0. The quantities �n and Ln(z) are called
the Lyapunov and the Lindeberg fractions, respectively. It is easy to see that
�n � τn and
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1

Bn

∫ Bn

0
Ln(z)dz =

n∑
j=1

[
EX2

j 1(|Xj | > Bn) +
E|Xj |31(|Xj | � Bn)

Bn

]

�
n∑

j=1

β2+δ, j

Bδ
n

= B2
n�n

for every δ ∈ [0, 1].

3.1.2 A Short Historical Review of the Uniform Estimates
In the present subsection a short review of the estimates for the Kolmogorov
distance Δn are given, which will also have its uses in the next sections.

First of all one should cite a celebrated Berry–Esseen inequality (see,
e.g., [55]) which states that under the above conditions, for every δ ∈ [0, 1]
there exist absolute constants C0(δ) such that

Δn � C0(δ)�n for every n ∈ N and F1, . . . , Fn ∈ F2+δ. (3.1.1)

Inequality (3.1.1) was proved for the first time with δ = 1 independently
by Berry [3] (in the i.i.d. case) and Esseen [11] (in the general situation).
For δ = 0 inequality (3.1.1) is trivial, since in this case �n = 1 and Δn is
always bounded. For 0 < δ < 1 inequality (3.1.1) may be deduced from the
estimate

Δn � A1(δ)
(
�n + (�n)

1/δ
)
,

obtained by Esseen [12], where A1(δ) depends only on δ. Inequality (3.1.1)
may also be deduced from the estimate

Δn � A2

B2
ng(Bn)

n∑
k=1

EX2
kg(Xk), n ∈ N, g ∈ G (3.1.2)

with g(x) = |x|δ, which was proved by Katz [19] in 1963 in the i.i.d. case
and generalized by Petrov [54] in 1965 to the non-i.i.d. case, where A2 is an
absolute constant and G is a set of all even functions g : R → R+ such that
both g(x) and x/g(x) do not decrease on R+.

In 1966 Osipov [43] (see also [2, 8, 14, 49–51, 57]) proved an estimate

Δn � A3 inf
ε>0

n∑
k=1

[
EX2

k1(|Xk| > εBn)

B2
n

+
E|Xk|31(|Xk| � εBn)

B3
n

]
,

(3.1.3)
for all F1, . . . , Fn ∈ F2 and n ∈ N, where A3 is some absolute constant.
The proof of (3.1.3) given in [43] was self-contained and independent of
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Katz–Petrov’s inequality (3.1.2). However, as it can easily be made sure, the
greatest lower bound on the right-hand side of (3.1.3) is attained at ε = 1,
more precisely,

EX21(|X| > 1) + E|X|31(|X| � 1) = EX2min{|X|, 1}(1(X ∈ B)

+ 1(X /∈ B)) � EX21(X ∈ B) + E|X|31(X /∈ B)

for arbitrary measurable B ⊂ R and every r.v. X with EX2 < ∞
(apparently, this fact was noticed for the first time by Loh [27]), so that
inequality (3.1.3) is a corollary to the estimate

Δn � A3

n∑
k=1

[
EX2

k1(|Xk| > Bn)

B2
n

+
E|Xk|31(|Xk| � Bn)

B3
n

]
=

1

B3
n

∫ Bn

0

Ln(z)dz,

(3.1.4)

which, in its turn, trivially follows from Katz–Petrov inequality (3.1.2) with
g(x) = min{|x|/Bn, 1} ∈ G. Applying the same reasoning as in [50, 56],
Korolev and Popov [24] proved the function g(x) = min{|x|/Bn, 1} to
be extremal in (3.1.2) (i.e., minimizing the right-hand side of (3.1.2)),
yielding A2 = A3, and established an upper bound A3 � 2.011, improving
the previous estimates in [2, 8, 14, 49–51]. In 2015, this bound was
slightly improved by Dorofeyeva and Korolev [22] to A3 � 1.8627. Since
C0(δ) � A3, inequality (3.1.3) (or (3.1.2)) yields a uniform upper bound for
C0(δ) � 1.8627 which holds for all δ ∈ (0, 1].

Inequality (3.1.3) can be regarded as a natural convergence rate
estimate in the Lindeberg–Feller theorem, since for uniformly asymp-
totically negligible random summands, satisfying the Feller condition
lim
n→∞

max
1�k�n

σ2
k/B

2
n = 0, the left- and right-hand sides of (3.1.3) either

are both infinitesimal or none of them tends to zero. Indeed, the right-hand
side of (3.1.3) does not exceed A3(ε + B−2

n Ln(εBn)) which can be made
arbitrarily small iff the Lindeberg condition, sup

z>0
lim
n→∞

Ln(z) = 0, holds.

On the other hand, the Lindeberg condition is equivalent to that the CLT
and the Feller condition hold.

There are a lot of works devoted to the estimation of the constant C0(1)
in the classical Berry–Esseen inequality (3.1.1) (e.g., see the historical
reviews in [21, 25, 69]). During the last decade, by the efforts of Shevtsova,
Korolev [21, 25, 26, 65, 67, 68, 70], and Tyurin [75–79] the upper bound
for C0(1) was lowered to 0.469 in the i.i.d. case and to 0.5583 in the general
case [70]. Moreover, in [70] there were evaluated the constants in the so-
called Berry–Esseen-type inequalities with an improved structure in the
form
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Δn �
{
min{0.3723(�n + 0.5τn), 0.3057(�n + τn)}, F1, . . . , Fn ∈ F3,

min{0.3322(�n + 0.429τn), 0.3031(�n + 0.646τn)}, F1 = · · · = Fn ∈ F3,

(3.1.5)

improving the pioneer results in [21, 25, 26]. It is interesting to note that the
factors of the Lyapunov fraction �n in (3.1.5) are strictly less than the lower
bound

C0(1) �
√
10 + 3

6
√
2π

= 0.4097 . . .

for the absolute constant C0(1) in the classical Berry–Esseen inequality,
discovered by Esseen [13].

In [71] there were proposed generalizations of (3.1.5) to the case of
arbitrary δ ∈ (0, 1] in the form

Δn � inf
s∈R+

Cs(δ) · (�n + sτn), F1, . . . , Fn ∈ F2+δ, n ∈ N, (3.1.6)

yielding the upper bounds for C0(δ) � infs�0(1 + s)Cs(δ) due to �n � τn.
These bounds remain the best known up till now. The infimums over s ∈ R+

in (3.1.6) are attained at some s = s0(δ) ∈ [0, 1] within the framework of the
numerical method used in [71] (see Table 3.2). Moreover, in [71] there were
also computed the values of s = s1(δ) that minimize the constants Cs(δ)
themselves, still within the framework of the method used (see Table 3.2).
The lower bounds for the constants Cs(δ) which hold true even in the
asymptotic sense were discovered in [69, 71]. For example, in [71] in
terms of the so-called conditional upper asymptotically exact constant it
was proved that

inf
s�0

Cs(δ) � sup
γ>0,m∈N∪{0}

γδ/2
(
e−γ

m∑
k=0

γk

k!
− Φ

(m− γ
√
γ

))
, 0 � δ � 1.

(3.1.7)

In particular, for δ = 1 with m = 6 and γ = 6.4206 . . . we have

inf
s�0

Cs(1) � 0.266012 . . . =
2

3
√
2π

+ 0.0000505 . . .

The values of the lower bounds in (3.1.7) for some other values of δ are
given in the second column of Table 3.1.

A more detailed historical review of the uniform estimates can be found
in [21, 23, 25, 66].
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Table 3.1 Lower Bounds for infs�0 Cs(δ) Given in (3.1.7) (Second Column)
and Upper Bounds for the Constants Cs(δ) From (3.1.6) for Some s ∈ [0, 1]
and δ ∈ (0, 1) Originally Obtained in [70, 71]

Upper Bounds (i.i.d. Case) Upper Bounds (Non-i.i.d. Case)

δ Cs(δ) � s0 Cs0(δ) s1 Cs1(δ) s0 Cs0(δ) s1 Cs1(δ)

1 0.26601 0 0.4690 0.646 0.3031 0 0.5583 1 0.3057

0.9 0.2698 0.410 0.3514 0.626 0.3073 0.52 0.37046 1 0.3108

0.8 0.2819 0.6356 0.3166 0.6356 0.3166 0.15 0.49939 1 0.3215

0.7 0.2961 0.5830 0.3306 0.5830 0.3306 0.06 0.5572 1 0.3367

0.6 0.3128 0.5131 0.3492 0.5131 0.3492 0.02 0.60313 0.859 0.3557

0.5 0.3328 0.4444 0.3728 0.4444 0.3728 0.01 0.6432 0.834 0.3795

0.4 0.3568 0.3652 0.4025 0.47 0.4022 0.02 0.6828 0.806 0.4091

0.3 0.3862 0.2823 0.4399 0.52 0.4384 0.04 0.7229 0.778 0.4457

0.2 0.4232 0.1920 0.4868 0.58 0.4828 0.06 0.7666 0.748 0.4905

0.1 0.4714 0.0744 0.5439 0.63 0.5372 0.08 0.81388 0.710 0.5454

Table 3.2 Values of (1 + s0(δ))Cs0(δ)
From [70, 71] Rounded Up, Which Serve as the Best
Known Upper Bounds for the Constants C0(δ)
in (3.1.6)

I.i.d. Non-i.i.d. I.i.d. Non-i.i.d.

δ C0(δ) � C0(δ) � δ C0(δ) � C0(δ) �
1 0.4690 0.5583 0.5 0.5385 0.6497

1− 0.4748 0.5591 0.4 0.5495 0.6965

0.9 0.4955 0.5631 0.3 0.5641 0.7519

0.8 0.5179 0.5743 0.2 0.5798 0.8126

0.7 0.5234 0.5907 0.1 0.5842 0.8790

0.6 0.5284 0.6152 0 0.5410 0.5410

3.1.3 Nonuniform Estimates: History, Problem Statements,
Formulation of the New Results

Investigation of the dependence of the remainder term Δn(x) on n and
x started as far back as by Cramér [10] for i.i.d. random summands with
exponentially decreasing tails. For distributions satisfying the power-type
moment conditions considered in the present study, historically the first
estimate for Δn(x), apparently, was obtained by Esseen [12] in the i.i.d.
case with δ = 1 in the form

Δn(x) � A4

(
β3,1
σ3
1

)
· ln(2 + |x|)
(1 + |x|3)√n

, x ∈ R,
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where A4(·) depends only on the argument inside the brackets. By use
of a new smoothing inequality, Meshalkin and Rogozin [29] proved ex-
istence of absolute constants A5 and A6 such that for all n � 1 and
F1 = · · · = Fn ∈ F3

Δn(x) � A5 ·
β3,1
σ3
1

√
n
· max{lnn, ln(2 + |x|)}

1 + |x|3 , x ∈ R,

sup
x∈R

(1 + x2)Δn(x) � A6 ·
β3,1
σ3
1

√
n
.

The results of [12, 29] were further reinforced by Nagaev [33] (in the
i.i.d. case with δ = 1) and Bikelis [5] (in the non-i.i.d. case with arbitrary
0 < δ � 1), who used the methods of the theory of large deviations to prove
existence of such absolute constants K0(δ) that

sup
x

(
1 + |x|2+δ

)
Δn(x) � K0(δ)�n, n ∈ N, F1, . . . , Fn ∈ F2+δ.

(3.1.8)
To be more precise, in [5] Bikelis obtained a nonuniform extension of
Osipov’s inequality (3.1.4) in the form

Δn(x) � A7

(1 + |x|)3B3
n

∫ (1+|x|)Bn

0

Ln(z)dz

= A7

n∑
k=1

[
EX2

k1(|Xk| > (1 + |x|)Bn)

(1 + |x|)2B2
n

+
E|Xk|31(|Xk|�(1 + |x|)Bn)

(1 + |x|)3B3
n

]
(3.1.9)

for all n ∈ N and F1, . . . , Fn ∈ F2 with some absolute constant A7, which
trivially yields (3.1.8) with

K0(δ) = A7 · sup
x>0

1 + x2+δ

(1 + x)2+δ
= A7 for every δ ∈ [0, 1].

It is worth mentioning that in 2001 Chen and Shao [8] reproved inequal-
ity (3.1.9) (still with an unknown constant) by Stein’s method.

In 1977 Ahmad and Lin [1] proved an estimate

Δn(x) � A8 ·
n∑

k=1

EX2
kg(Xk)

B2
ng((1 + |x|3)Bn)

, n ∈ N, F1, . . . , Fn ∈ F2, g ∈ G,

with some absolute constant A8, which generalizes the Katz–Petrov inequal-
ity (3.1.2), since g((1+ |x|3)Bn) � g(Bn) for g ∈ G, and also yields (3.1.8)
with δ = 1. In 1979 Petrov [56] deduced a nonuniform analogue of his
inequality (3.1.2)
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Δn(x) � A9 ·
n∑

k=1

EX2
kg(Xk)

(1 + |x|)2B2
ng((1 + |x|)Bn)

, n ∈ N, g ∈ G,

(3.1.10)
with A9 = A7 by noting that the right-hand side of Bikelis’ estimate
(3.1.9) does not exceed the right-hand side of (3.1.10) for every
g ∈ G. On the other hand, inequality (3.1.9) follows from (3.1.10) with
g(u) = min

{
1, |u|

(1+|x|)Bn)

}
∈ G. Moreover, inequality (3.1.10) also

reinforces the above mentioned result of [1]. Upper bounds for the constant
A7 were considered in papers [24, 34, 35, 73]. The best known upper bounds
for A7 are obtained in [24]: A7 � 39.32 in the i.i.d. case and A7 � 47.65
in the general situation. Moreover, in [24] it is also demonstrated that for
|x| � 10 we have A7 � 24.13 in the i.i.d. case and A7 � 29.62 in the
general situation.

The first upper bounds for the absolute constants K0(δ) were obtained
by Paditz [45–48]. In particular, in his first work on this topic [47] which
was published only in 1978, Paditz obtained an estimate for K0(1) which
exceeded 1955. Later he proved [48] the bounds

K0(0.9) � 820.4, K0(0.7) � 569.5, K0(0.5) � 376.7,
K0(0.3) � 241.4, K0(0.1) � 151.3.

In his dissertation [46], Paditz demonstrated that K0(1) � 114.7.
Michel [31] showed that in the i.i.d. case K0(1) � C0(1) + 8(1 + e).
With the account of the upper bound C0(1) � 0.469 [70] this inequality
yields K0(1) � 30.22. In his dissertation [74], Tysiak obtained the estimates

K0(1.0) � 32.88, K0(0.9) � 29.83, K0(0.8) � 27.21, K0(0.7) � 25.06,
K0(0.6) � 23.41, K0(0.5) � 21.94, K0(0.4) � 20.58, K0(0.3) � 19.32,

K0(0.2) � 18.17, K0(0.1) � 17.05.

Mirakhmedov [32] stated that Michel’s estimate K0(1) � C0(1)+ 8(1+ e)
held true in the non-i.i.d. case as well. However, the computations in [32, 74]
contained some inaccuracies (see remarks in [52, 53]). Later, Paditz and
Mirakhmedov [53] announced a corrected estimate K0(1) � 32.153. In
1989, Paditz [52] provided an analytical representation and described an
algorithm of computation of K0(δ) for every δ ∈ (0, 1] and, in particular,
obtained an upper bound K0(1) � 31.935.

Recently, an interest to the problem of estimation of the constants K0(δ)
rose again which lead to publication of a series of works [16, 17, 36, 38, 70],
where by use of a new inequality (3.1.6) the upper bounds for the constants
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K0(δ) were improved substantially. In particular, for δ = 1 there were given
the estimates K0(1) � 18.12 in the i.i.d. case [38] and K0(1) � 22.25 in
the non-i.i.d. case [16, 17].

Nonuniform analogues of the uniform estimates with an improved
structure like (3.1.6) were obtained in the i.i.d. case by Gavrilenko [15] with
δ = 1 and by Nefedova and Shevtsova [37] with arbitrary δ ∈ (0, 1]. In
particular, in [37] there was announced an estimate

sup
x∈R

(1 + |x|3)Δn(x) � 15.77 · β3,1 + σ3
1

σ3
1

√
n

= 15.77(�n + τn),

F1 = · · · = Fn ∈ F3, n ∈ N,

which was sharper than the classical Nagaev–Bikelis bound (3.1.8) with the
best known value of K0(1) = 18.12 [38] for distributions with large values
of the third normalized absolute moment β3,1/σ3

1, due to the less factor of
the Lyapunov fraction �n (recall that �n � τn).

However, as it was noticed by Pinelis [59], the cited works [16, 17, 36,
38, 52, 53] contained inaccuracies, so that “the best possibly correct” upper
bound for K0(1) in the non-i.i.d. case seemed to be 114.7 [46].

In paper [70] for δ = 1 and in the present study for arbitrary δ ∈ (0, 1] the
mentioned inaccuracies are corrected, and by use of inequalities (3.1.5) and
(3.1.6), here we give an analytical representation and describe an algorithm
of computation of the absolute constants Ks(δ) for arbitrary s ∈ [0, 1] and
δ ∈ (0, 1] such that

sup
x∈R

(1 + |x|2+δ)Δn(x) � min
s∈[0,1]

Ks(δ)(�n + sτn),

F1, F2, . . . , Fn ∈ F2+δ, n ∈ N. (3.1.11)

The values of the constants Ks(δ) for some s ∈ [0, 1] and δ ∈ (0, 1]
obtained in the present study are given in Table 3.3 (for s > s1(δ) we put
Ks(δ) = Ks1(δ)). The case 0 < s < 1 is considered here for the first time.
In particular, for δ = 1 the following estimates are obtained: in the i.i.d. case

sup
x∈R

(1 + |x|3)Δn(x) � min {17.36�n, 15.70(�n + 0.646τn)}

�
{

17.36�n, �n/τn < 6.07,
15.70(�n + 0.646τn), �n/τn � 6.07.
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Table 3.3 Upper Bounds for the Constants Ks(δ)
in (3.1.11) for Some s ∈ [0, 1] and δ ∈ (0, 1)
Obtained in Corollary 3.4.5

Non-i.i.d. Case I.i.d. Case

δ K0(δ) Ks1(δ) s1 K0(δ) Ks1(δ) s1

1 21.82 18.19 1 17.36 15.70 0.646

0.9 20.07 16.65 1 16.24 14.61 0.619

0.8 18.53 15.34 1 15.20 13.61 0.625

0.7 17.14 14.20 1 14.13 12.71 0.570

0.6 15.91 13.19 0.859 13.15 11.90 0.498

0.5 14.84 12.30 0.834 12.26 11.17 0.428

0.4 13.92 11.53 0.806 11.43 10.51 0.350

0.3 13.10 10.86 0.778 10.66 9.93 0.273

0.2 12.35 10.28 0.748 9.92 9.42 0.183

0.1 11.67 9.77 0.710 9.18 8.97 0.074

and in the non-i.i.d. case

sup
x∈R

(1 + |x|3)Δn(x) � min {21.82�n, 18.19(�n + τn)}

�
{

21.82�n, �n/τn < 5.01,
18.19(�n + τn), �n/τn � 5.01,

The problem of studying the dependence of the remainder term Δn(x)
on n and x, of course, could not be left out of the attention of Kolmogorov,
who introduced [20] the functions

D∗(x, δ) = lim sup
�→0

sup
n�1, F1,...,Fn∈F2+δ : �n=�

Δn(x)/�,

D∗(x, δ) = sup
n�1, F1,...,Fn∈F2+δ

Δn(x)/�n, x ∈ R,

for δ = 1 and posed a problem of evaluation of D∗(x, δ) and D∗(x, δ). It is
easy to see that for every 0 < δ � 1

D∗(x, δ) � D∗(x, δ), x ∈ R, sup
x∈R

|x|2+δD∗(x, δ) � K0(δ),

so that, inequality (3.1.8) yields D∗(x, δ) = O(|x|−2−δ), x → ∞. The
question on the exactness of the estimates for D∗(x, δ) implied by (3.1.8)
with respect to n and x was studied by Osipov and Petrov [44], Bikelis [6],
Heyde [18], Michel [30], Maejima [28], Petrov [58], and Rozovsky [63].
In 1990, Chistyakov [9] managed to prove that for δ = 1
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lim
|x|→∞

|x|3D∗(x, 1) := lim
|x|→∞

lim sup
�→0

sup
n�1, F1,...,Fn∈F3 : �n=�

|x|3Δn(x)/� = 1,

(3.1.12)

where the least upper bound is attained on a sequence of identical distribu-
tions. Chistyakov’s result (3.1.12) also yields a lower bound K0(1) � 1. In
2013, Pinelis [59] improved this lower bound to

K0(1) � sup
F1∈F3, x∈R

|x|3Δ1(x)
σ3
1

β3, 1
� 1.0135 . . . ,

by consideration of the Bernoulli distribution with parameter p = 0.08 and
letting x → 1− p. However, as it will be proved below (see also [41] for the
case δ = 1), for every 0 < δ � 1

sup
n�1, F1,...,Fn∈F2+δ

lim sup
|x|→∞

|x|2+δΔn(x)/�n � 1.

In 1989, Nikulin in his abstract [39] (see also [40, 42]) proposed
a modification of Paditz’ method, which allows to replace the absolute
constant K0(1) in (3.1.8) in the i.i.d. case with δ = 1 by a nonincreasing
function CN (t) such that for every t � 0

sup
|x|�t

|x|3Δn(x) � CN (t) · �n, F1 = · · · = Fn ∈ F3, n � 1,

and also computed the values of CN (t) for some t. In particular, he showed
that lim

t→∞
CN (t) � 1 + e. The latest fact allows to conclude that

lim sup
|x|→∞

sup
n�1, F1=···=Fn∈F3

|x|3Δn(x)/�n � 1 + e < 3.72,

whence, in addition to (3.1.12), it follows that lim sup
|x|→∞

|x|3D∗(x, 1) � 1+ e

in the i.i.d. case.

In 2010 Nikulin [41] sharpened CN (t) for finite t, in particular,
he showed that CN (3.18) � 28.41, CN (5) � 16.03, CN (8) � 7.26,
CN (10) � 5.74. In the same paper [41] the asymptotic behavior of CN (x)
as x → ∞ was investigated for every fixed n � 1 and it was shown that in
this situation lim

x→∞
CN (x) = 1, that is,

sup
n�1, F1=···=Fn∈F3

lim sup
|x|→∞

|x|3Δn(x)/�n � 1.
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In papers [37, 38] it was stated that

lim sup
|x|→∞

sup
n�1, F1=···=Fn∈F2+δ

|x|2+δΔn(x)/�n � 1, 0 < δ � 1,

that is, that in the i.i.d. case lim sup
|x|→∞

|x|2+δD∗(x, δ) = 1. However, the proof

of this statement contains inaccuracies (see remarks in [59]), so that the
correct upper bound is 1 + e, at the present time.

The mentioned inaccuracies were corrected in [70]. Following the
reasoning of [70], in this study we give an analytical representation and
describe an algorithm of computation of nonincreasing positive functions
Qs(t, δ), Q∗

s(t, δ) � sQs(t, δ) of the argument t � 0 (Q∗
0(t, δ) ≡ 0) such

that for every 0 < δ � 1, t � 0, n � 1, and F1, F2, . . . , Fn ∈ F2+δ

sup
|x|�t

|x|2+δΔn(x) � min
0�s�1

(Qs(t, δ)�n +Q∗
s(t, δ)τn)

� min
0�s�1

Qs(t, δ)(�n + sτn), (3.1.13)

sup
|x|�t

|x|2+δΔn(x) � Q0(t, δ)�n. (3.1.14)

The constructed functions satisfy

lim
x→∞

Qs(x, δ) = 1 + e = 3.7182 . . . , lim
x→∞

Q∗
s(x, δ) = 0,

δ ∈ (0, 1], s ∈ [0, 1].

Estimates (3.1.13) and (3.1.14) in the non-i.i.d. case and with arbitrary
s ∈ [0, 1] are considered in the present work for the first time.

Inequality (3.1.13) yields the following upper bounds for the Kol-
mogorov functions

sup
|x|�t

|x|2+δD∗(x, δ) � Q0(t, δ), t � 0,

lim sup
|x|→∞

|x|2+δD∗(x, δ) � 1 + e, δ ∈ (0, 1].

From [59] it also follows that sup|x|�t |x|3D∗(x, 1) > 1.0135 for
0 � t < 0.02. The values of Qs(t, δ) for some t > ts(δ), t = 0, and
δ ∈ (0, 1] are given in Table 3.6 for s = 0 and in Table 3.7 for s = s1(δ).
In particular, with δ = 1 and s = 0 the following estimates hold:
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sup
|x|�t

|x|3Δn(x) �

⎧⎪⎪⎨⎪⎪⎩
21.26�n, t � 0,
17.19�n, t � 4,
12.35�n, t � 5,
7.36�n, t � 10,

F1, F2, . . . , Fn ∈ F3, n ∈ N,

sup
|x|�t

|x|3Δn(x) �

⎧⎪⎪⎨⎪⎪⎩
16.90�n, t � 0,
14.58�n, t � 4,
11.56�n, t � 5,
5.85�n, t � 10,

F1 = · · · = Fn ∈ F3, n ∈ N.

It is worth mentioning that the functions Qs(t, δ) and Q∗
s(t, δ) con-

structed in the present work have the following properties for every
0 < δ � 1:

1. Qs(t, δ) does not increase in t � 0 for every s ∈ [0, 1];
2. Qs(0, δ) = Ks(δ)− Cs(δ) for every s ∈ [0, 1];
3. Qs(t, δ) = Qs(0, δ) for t � ts(δ) and Qs(t, δ) < Qs(0, δ) for t > ts(δ)

(the values of ts(δ) are given in Tables 3.4 and 3.5);
4. Qs(t, δ) = Qs1(t, δ) for every s ∈ [s1(δ), 1] and t � 0;
5. Qs(t, δ) � Qr(t, δ) for all 0 � r � s � 1 and t � 0;
6. in the i.i.d. case Q0(t, 1) � CN (t) for all t � 0;
7. usually, Q∗

s(t, δ) is substantially smaller than sQs(t, δ), already for the
moderate t > 0.

In [59] Pinelis proposed a new approach to computation of the constants
K0(1) based on the Prawitz smoothing inequality [61] similarly to the
modern method of computation of the absolute constant C0(1) in the clas-
sical Berry–Esseen inequality. Pinelis’ approach does not use the truncation
techniques, which is crucial for Nagaev–Paditz method. Pinelis [59] also
suggested that his approach would allow to improve the upper bounds for
K0(1) in (3.1.8) considerably, but it still needs some more analytical results
for practical realization and comparison with the known bounds. The same
ideas based on traditional Berry–Esseen–Zolotarev smoothing inequalities
are described in [7, § 18].

The method employed in the present work is based still on the Nagaev–
Paditz ideas and is aimed for (i) correcting inaccuracies in the preceding
works; (ii) perfecting the Nagaev–Paditz method to get as good bounds as
possible; (iii) demonstration of effective application of new Berry–Esseen-
type inequalities (3.1.6). The idea underlying the constructive method
of proving nonuniform estimates, which was described by Paditz [52]
and which allows to get numerical estimates of the absolute constants,



On the Absolute Constants in Nagaev–Bikelis-Type Inequalities 59

Table 3.4 Optimal Values of t0(δ), a0(δ), b0(δ), γ0(δ), That
Deliver Minimum in (3.4.27), and Corresponding Values of
Q0(δ) From Theorem 3.4.4 and K0(δ) = Q0(δ) + C0(δ)
From Corollary 3.4.5
δ t0(δ) a0(δ) b0(δ) γ0(δ) Q0(δ) K0(δ)

Non-i.i.d. Case With s = 0

1.0 3.3640 11.5566 1.6357 0.4985 21.26 21.82

0.9 3.3953 10.3229 1.6293 0.4923 19.51 20.07

0.8 3.4188 9.2513 1.6226 0.4837 17.95 18.53

0.7 3.4355 8.3069 1.6153 0.4750 16.55 17.14

0.6 3.4410 7.4937 1.6076 0.4670 15.30 15.91

0.5 3.4330 6.8019 1.5999 0.4595 14.19 14.84

0.4 3.4090 6.2205 1.5925 0.4521 13.23 13.92

0.3 3.3762 5.7090 1.5849 0.4446 12.35 13.10

0.2 3.3397 5.2403 1.5768 0.4367 11.54 12.35

0.1 3.2995 4.8110 1.5680 0.4283 10.79 11.67

I.i.d. Case With s = 0

1.0 3.3023 8.3760 1.5554 0.5234 16.90 17.36

0.9 3.2956 7.6637 1.5486 0.5190 15.75 16.24

0.8 3.3012 6.9928 1.5420 0.5139 14.68 15.20

0.7 3.3420 6.2928 1.5344 0.5082 13.61 14.13

0.6 3.3879 5.6537 1.5260 0.5021 12.62 13.15

0.5 3.4266 5.0918 1.5167 0.4956 11.72 12.26

0.4 3.4650 4.5764 1.5056 0.4858 10.88 11.43

0.3 3.4973 4.1114 1.4925 0.4763 10.09 10.66

0.2 3.5360 3.6733 1.4763 0.4671 9.34 9.92

0.1 3.5933 3.2481 1.4553 0.4579 8.60 9.18

consists in the appropriate partitioning of the real line into domains of
“small”, “moderate”, and “large” values of x. The following partitioning
is traditionally used:

(i) “small” values of x: 0 � x2 � t2;
(ii) “moderate” values of x: t2 � x2 � cn(x; δ, a, b);

(iii) “large” values of x: cn(x; δ, a, b) ∨ t2 � x2 < ∞,

where t > 0, a > 0, b > 1 are auxiliary free parameters, cn(x; δ, a, b) is
some monotonically increasing function of x (in particular, see [52, 64]). Let

cn(x; δ, a, b) =
b2

2(b− 1)
ln

|x|2+δ

a�n
.
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Table 3.5 Optimal Values of ts(δ), as(δ), bs(δ), γs(δ),
That Deliver Minimum in (3.4.26) With s = s1(δ) Which
Is the Minimal Point of Minimum of Cs(δ) (Given in the
Sixth Column), and Corresponding Values of
A∗

21(ts(δ), δ, as(δ), bs(δ), γs(δ), 0) From Theorem 3.4.1 and
of the Constants Qs(δ) From Theorem 3.4.4 and
Ks(δ) = Qs(δ) + Cs(δ) From Corollary 3.4.5
δ ts(δ) as(δ) bs(δ) γs(δ) s A∗

21 Qs(δ) Ks(δ)

Non-i.i.d. Case With s = s1(δ)

1.0 3.8814 8.4284 1.6038 0.4950 1.000 0.210 17.88 18.19

0.9 3.9202 7.4457 1.5916 0.4884 1.000 0.126 16.34 16.65

0.8 3.9460 6.6372 1.5798 0.4822 1.000 0.077 15.02 15.34

0.7 3.9620 5.9560 1.5681 0.4762 1.000 0.048 13.86 14.20

0.6 3.9707 5.3694 1.5563 0.4700 0.859 0.030 12.83 13.19

0.5 3.9700 4.8687 1.5447 0.4636 0.834 0.019 11.92 12.30

0.4 3.9585 4.4422 1.5335 0.4568 0.806 0.012 11.12 11.53

0.3 3.9348 4.0805 1.5229 0.4495 0.778 0.008 10.41 10.86

0.2 3.8980 3.7735 1.5132 0.4415 0.748 0.005 9.79 10.28

0.1 3.8437 3.5071 1.5036 0.4287 0.710 0.004 9.22 9.77

I.i.d. Case With s = s1(δ)

1.0 3.7030 6.9292 1.5400 0.5209 0.646 0.166 15.40 15.70

0.9 3.7535 6.2497 1.5320 0.5119 0.619 0.071 14.30 14.61

0.8 3.7898 5.6539 1.5230 0.5042 0.625 0.028 13.29 13.61

0.7 3.8134 5.1303 1.5130 0.4972 0.570 0.010 12.38 12.71

0.6 3.8244 4.6717 1.5025 0.4907 0.498 0.003 11.55 11.90

0.5 3.8227 4.2710 1.4914 0.4844 0.428 0.001 10.79 11.17

0.4 3.8081 3.9213 1.4801 0.4780 0.350 0.001 10.11 10.51

0.3 3.7812 3.6147 1.4685 0.4714 0.273 0.001 9.49 9.93

0.2 3.7398 3.3493 1.4571 0.4645 0.183 0.001 8.93 9.42

0.1 3.6830 3.1200 1.4460 0.4571 0.074 0.001 8.43 8.97

3.2 AUXILIARY STATEMENTS

The proof is based on the following truncation of the r.v.’s Xj , j =
1, 2, . . . , n:

Xj = Xj1(|Xj | � y) =

{
Xj , if |Xj | � y,
0, otherwise,

where y > 0 is a truncation parameter to be chosen later. Denote

F y
n (x) = P

( n∑
j=1

Xj < x

)
, x ∈ R.
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For another parameter h � 0 introduce the following notation:

fj(h) = EehXj = E exp {hXj1(|Xj | � y)} , j = 1, 2, . . . .

First, let us provide several auxiliary statements.

Lemma 3.2.1. For arbitrary values of the parameters h � 0 and y > 0
and for every j = 1, 2, . . . we have

hσ2
j−

β2+δ, j

y1+δ

(
1+hy+

(hy)2

2

)
�m1, j := EXje

hXj �hσ2
j+

β2+δ, j

y1+δ
ehy,

(3.2.1)

σ2
j −

β2+δ, j

yδ
(1 ∨ hy) � m2, j := EXj

2
ehXj � σ2

j +
β2+δ, j

yδ
ehy, (3.2.2)

m3, j := E|Xj |3ehXj � β2+δ, jy
1−δehy, (3.2.3)

1 +
h2σ2

j

2
− β2+δ, j

y2+δ

(
hy +

(hy)2

2
+

(hy)3

6

)
� fj(h) := EehXj

� 1 +
h2σ2

j

2
+

β2+δ, j

y2+δ
ehy, (3.2.4)

fj(h) � 1− hβ2+δ, j

y1+δ
. (3.2.5)

Proof. The proof of all the estimates except the lower bounds in (3.2.2)
and (3.2.4) can be found in [38]. The lower bound for m2, j in (3.2.2) follows
from the inequality ex � 1 + x, x ∈ R, with further estimation of the
appearing truncated moments of the r.v. Xj :

m2, j − σ2
j = EXj

2
ehXj − EX2

j � E
(
Xj

2
(1 + hXj)

)
− EX2

j

= −EX2
j 1(|Xj | > y) + hEX3

j 1(|Xj | � y)

� −E|Xj |2+δ
(
y−δ1(|Xj | > y) + hy1−δ1(|Xj | � y)

)
� −β2+δ, j(y

−δ ∨ hy1−δ).

To prove the lower bound in (3.2.4), it suffices to notice that by inequality
ex � 1 + x+ x2/2 + x3/6, x ∈ R, we have

fj(h)� E

(
1 + hXj +

(hXj)
2

2
+

(hXj)
3

6

)
� 1− h

∣∣EXj

∣∣+ h2

2
EXj

2 − h3

6
E
∣∣Xj

∣∣3 ,
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and to estimate the moments

|EXj | = |EXj1(|Xj | � y)| = |EXj1(|Xj | > y)|
� E|Xj |1(|Xj | > y) � β2+δ, j/y

1+δ,

EXj
2 − σ2

j = −EX2
j 1(|Xj | > y) � −β2+δ, j/y

δ,

E|Xj |3 = E|Xj |31(|Xj | � y) � β2+δ, j y
1−δ.

Lemma 3.2.2 (see [62]). For every r � 2 + δ and s � 1

n∑
j=1

(
σj
Bn

)r

� τ r/(2+δ)
n ,

n∑
j=1

(
β2+δ, j

B2+δ
n

)s

� (�n)
s.

The following almost evident statement is well-known in the literature
(see, e.g., [55, proof of theorem 7 in Ch. 5, § 3]).

Lemma 3.2.3. For an arbitrary value of the truncation parameter y > 0
we have

sup
x∈R

|F y
n

(
x
)
− Fn

(
x
)
| �

n∑
j=1

P(|Xj | > y).

The following lemma trivially follows from the Lagrange formula (for
the complete proof see, e.g., [38]).

Lemma 3.2.4.

1◦. Let q > 0 and A > 0. Then

sup
v�A

|Φ(v)−Φ(qv)| � 1

2
max

{
q2−1,

1− q2

q2

}
·(vϕ(v))

∣∣∣∣
v=max{1,Amin{1,q}}

.

2◦. Let a ∈ R and A > 0. Then

sup
v�A

|Φ(v + a)− Φ(v)| � |a|ϕ(min{(A+ a)+, A}).

Lemma 3.2.5 (see [4]). For every d.f. F with zero mean and unit
variance

sup
x∈R

|F (x)− Φ(x)| � sup
x>0

(
Φ(x)− x2

1 + x2

)
= 0.54093654 . . . =: κ.

(3.2.6)
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Lemma 3.2.6. For arbitrary r.v. X with E|X|3 < ∞ and a := EX ,
σ2 := EX2 we have

E|X − a|3 � E|X|3 + 3|a|σ2 + a2E|X| − |a|3, (3.2.7)
E|X − a|3 � M(|a|/σ) · E|X|3, (3.2.8)

where

M(t) =

⎧⎪⎪⎨⎪⎪⎩
(
1− 3

2 ·
√

b(t)−1

t−2−1

)−1
, b(t) = 9−6t2−2t4

18t2(1−t2) , 0 < t �
√
3/2,

1, t ∈ {0} ∪ (
√
3/2, 1),

0, t = 1,

with equality attained at a (sequence of) two-point distribution(s).
Moreover, the function M(t) monotonically increases for t � t0 :=

1
6

√
3(8− 2

√
7) = 0.4750 . . . and monotonically decreases for t0 � t �√

3/2, so that

max
t∈[0,1]

M(t) = M(t0) =
17 + 7

√
7

27
< 1.3156.

Inequality (3.2.7) is trivial (see, e.g., [23, 38]). Inequality (3.2.8) is given
in [72] and improves the similar “uniform” inequalities with universal abso-
lute constant M in [38, 60]. However, in the present work inequality (3.2.8)
is used only with the “universal” constant M = (17 + 7

√
7)/27.

3.3 CASES (I) AND (III)—“SMALL” AND “LARGE” x

In the case (i), that is, for 0 � |x| � t, according to (3.1.6), we have

|x|2+δΔn(x) � Cs(δ)(�n + sτn)t
2+δ, (3.3.1)

while in the case (iii), that is, for

x2 � cn(x; δ, a, b) :=
b2

2(b− 1)
ln

|x|2+δ

a�n

the following result holds. For a > 0, b > c � 1 denote

ψn(x; δ, a, b, c) =
b2

2(b− c)
ln

|x|2+δ

a�n
.
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Then cn(x; δ, a, b) = ψn(x; δ, a, b, 1), and the functions cn(x; δ, a, b),
ψn(x; δ, a, b, 1) have the same signs.

Theorem 3.3.1. Assume that x ∈ R, a > 0, and b > c � 1 are such that

cn(x; δ, a, b) > 0 and x2 � max{(2π)−1, ψn(x; δ, a, b, c)}.

Then for arbitrary n ∈ N and F1, . . . , Fn ∈ F2+δ

|x|2+δΔn(x) �
(
b2+δ + a

( a�n
x2+δ

)c−1
exp

{
b2+δ

a

})
�n.

In particular, with c = 1 and x2 � max{(2π)−1, cn(x; δ, a, b)}, b > 1,
a > 0 we have

|x|2+δΔn(x) � P (δ, a, b)�n, where P (δ, a, b) = b2+δ + a exp

{
b2+δ

a

}
.

Remark 3.3.2. It can be made sure, that the function P (δ, a, b) of the
argument a > 0 attains its minimum value for every fixed δ and b at the
point a = b2+δ, so that

inf
a>0, b>1

P (δ, a, b) = inf
b>1

b2+δ(1 + e) = 1 + e, 0 < δ � 1.

Proof of Theorem 3.3.1. Without loss of generality assume that x � 0.
Since Δn(x) = max

{
(1 − Fn(xBn)) + (Φ(x) − 1), (Fn(xBn) − 1) +

(1−Φ(x))
}
, and the quantities Fn(xBn)− 1 and Φ(x)− 1 are nonpositive

for every x ∈ R, we have

Δn(x) � max
{
1− Fn(xBn), 1− Φ(x)

}
.

For all x � max{(2π)−1/2,
√

ψn(x; δ, a, b, c)} we have

1− Φ(x) � ϕ(x)

x
=

e−x2/2

x
√
2π

� e−x2/2 �
( a�n
x2+δ

)b2/(4(b−c))
.

Noting that b2

4(b−c) � c for b � c and that a�n/x2+δ � 1 due to the condition
ψn(x; δ, a, b, c) > 0, we obtain

1− Φ(x) �
( a�n
x2+δ

)c
.

On the other hand, for 1− Fn(xBn) we have

1− Fn(xBn) � 1− F y
n (xBn) +

∣∣F y
n (xBn)− Fn(xBn)

∣∣
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with the truncation parameter y = xBn/b, b > 1. By Lemma 3.2.3 and by
Markov’s inequality we have

∣∣F y
n (xBn)− Fn(xBn)

∣∣ �
n∑

j=1

P(|Xj | > y) �
n∑

j=1

b2+δβ2+δ, j

x2+δB2+δ
n

=
b2+δ�n
x2+δ

.

Denote

h :=
1

y
ln

x2+δ

a�n
=

2(b− c)

bxBn
ψn(x; δ, a, b, c).

Now using again Markov’s inequality and the upper bound in (3.2.4) for
fj(h) = EehXj from Lemma 3.2.1 with the given h, we obtain

1− F y
n (xBn) = P(hX1 + · · ·+ hXn � hxBn) � e−hxBn

n∏
j=1

fj(h)

� e−hxBn

n∏
j=1

(
1 +

h2σ2
j

2
+

β2+δ, je
hy

y2+δ

)

� exp

{
− hxBn +

h2B2
n

2
+

ehy

y2+δ

n∑
j=1

β2+δ, j

}

= exp

{
− 2(b− c)

b
ψn(x; δ, a, b, c)

+
2(b− c)2

b2x2
ψ2
n(x; δ, a, b, c) +

b2+δ

a

}
.

For x2 � ψn(x; δ, a, b, c) we have

1− F y
n (xBn) � exp

{
−2c(b− c)

b2
ψn(x; δ, a, b, c) +

b2+δ

a

}
=
( a�n
x2+δ

)c
exp

{
b2+δ

a

}
,

whence it can easily be seen that the obtained majorant for 1− F y
n (xBn) is

no less than the majorant for 1−Φ(x). Summing the obtained estimates for
1− F y

n (xBn) and
∣∣F y

n (xBn)− Fn(xBn)
∣∣ we arrive at the statement of the

theorem.
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3.4 CASE (II)—“MODERATE” x

First of all, note that for x2 � cn(x; δ, a, b) we have (see (ii))

�n � x2+δ

a
exp

{
−2(b− 1)

b2
x2
}

=: L(x). (3.4.1)

Without loss of generality assume that x > 0. Redefine the parameters

y = γxBn, h =
(1− γ)x

Bn
, γ ∈ (0, 1).

By S∗
n = X∗

1 + · · · + X∗
n denote a sum of independent r.v.’s X∗

j with the
d.f.’s

P(X∗
j < u) =

1

fj(h)

∫ u

−∞
eht dP

(
Xj < v

)
, u ∈ R, j = 1, 2, . . .

Note that

E(X∗
j )

r =
EX

r
j e

hXj

fj(h)
=

mr, j

fj(h)
, r = 1, 2, E|X∗

j |3 =
m3,j

fj(h)
.

It is easy to check that

1− Φ(x) = exp

{
h2B2

n

2

}∫ +∞

x
e−hBnvdΦ(v − hBn), (3.4.2)

1− F y
n (xBn) =

n∏
j=1

fj(h)

∫ +∞

x
e−hBnvdP(S∗

n < vBn), (3.4.3)

so that with the account of Lemma 3.2.3 we have

Δn(x) =
∣∣1− Φ(x) +

(
Fn(xBn)− F y

n (xBn)
)
+ F y

n (xBn)− 1
∣∣

�
∣∣Fn(xBn)− F y

n (xBn)
∣∣+ ∣∣1− Φ(x) + F y

n (xBn)− 1
∣∣

�
n∑

j=1

P(|Xj | > y) +

∣∣∣∣( exp

{
h2B2

n

2

}
−

n∏
j=1

fj(h)

)

×
∫ +∞

x
e−hBnvdP(S∗

n < vBn)

∣∣∣∣
+

∣∣∣∣exp{h2B2
n

2

}∫ +∞

x
e−hBnvd (Φ(v − hBn)− P(S∗

n < vBn))

∣∣∣∣ .
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Applying Markov’s inequality to the first term and integrating by parts the
second one we obtain

Δn(x) � �n
γ2+δx2+δ

+

∣∣∣∣ n∏
j=1

fj(h)− eh
2B2

n/2

∣∣∣∣e−hxBnP
(
S∗
n � xBn

)
+ 2 exp

{
h2B2

n/2− hxBn

}
· sup
u�x

∣∣P(S∗
n < uBn)− Φ(u− hBn)

∣∣
=

�n
γ2+δx2+δ

+ I1 · I2 + 2 exp
{
− (1− γ2)x2/2

}
I3,

where

I1 :=

∣∣∣∣ n∏
j=1

fj(h)− eh
2B2

n/2

∣∣∣∣ exp{− hxBn

}
, I2 := P

(
S∗
n � xBn

)
,

I3 := sup
u�x

∣∣P(S∗
n < uBn)− Φ(u− hBn)

∣∣.
We will estimate I1 by a quantity (J1(x)�n+J∗

1 (x)τn)x
−2−δ, I2 by (J2(x)+

J∗
2 (x)τn), and I3 by (J3(x)�n+J∗

3 (x)τn)x
−2−δ exp

{
(1−γ2)x2/2

}
, where

Jk(x), J
∗
k (x), k = 1, 3, J2(x), J

∗
2 (x)L(x) are some nonnegative functions,

which do not increase for x � t and may also depend on δ and on the
parameters a, b, γ.

Let us formulate a statement that will be multiply used below: the
function g(x) := xr exp{−sx2} is decreasing either for x �

√
r/(2s),

if r > 0, or for all x � 0, if r � 0, and hence, if x � t � 0, then either for
t �

√
r/(2s) and r > 0, or for r � 0 and all t � 0 we have

xr exp{−sx2} � tr exp{−st2}, s > 0. (3.4.4)

In what follows we assume that the parameters b > 1, γ ∈ (0, 1), and
t > 0 satisfy the following conditions:

2(b− 1)/b2 > γ(1− γ), (3.4.5)
t2 � b2/(b− 1), (3.4.6)

t2 � 1.5
[
2(b− 1)/b2 − γ(1− γ)

]−1
, (3.4.7)

t2 � 2(1− γ)−2, (3.4.8)
t2 � 6 + δ/(1− γ2), (3.4.9)
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and, in addition, in the non-i.i.d. case:

t2 � (2 + δ)b2

2(2− δ)(b− 1)
, (3.4.10)

4(b− 1)

(2 + δ)b2
> γ(1− γ), (3.4.11)

or, in the i.i.d. case:

t2 � 2(1− δ)

δ

[
4(b− 1)

δb2
− γ(1− γ)

]−1

. (3.4.12)

Observe that condition (3.4.11) in the non-i.i.d. case is stronger than
condition (3.4.5). Positivity of the right-hand sides of inequalities (3.4.7)
and (3.4.12) follows from condition (3.4.5). Moreover, conditions (3.4.6),
(3.4.5) and (3.4.7), (3.4.8), (3.4.9), respectively, imply that

x2−δL(x) decreases for x � t, (3.4.13)

x1−δeγ(1−γ)x2

L(x) decreases for x � t, (3.4.14)

x2e−(1−γ)2x2/2 decreases for x � t, (3.4.15)

x6+δe−(1−γ2)x2/2 decreases for x � t. (3.4.16)

3.4.1 Estimation of I1
Let us bound

I1 =

∣∣∣∣ n∏
j=1

fj(h)− exp
{
h2B2

n/2
}∣∣∣∣e−hxBn =

∣∣∣∣ n∏
j=1

e−h2σ2
j/2fj(h)−1

∣∣∣∣e−(1−γ2)x2/2

from above. Prawitz [62] proved that for arbitrary Cj � Aj > 0, Bj ∈ C

such that |Bj | � Cj , j = 1, 2, . . . , n, the inequality∣∣∣∣ n∏
j=1

Bj −
n∏

j=1

Aj

∣∣∣∣ � 1

2

⎛⎝ n∏
j=1

Cj +

n∏
j=1

Aj

⎞⎠ ·
n∑

j=1

|Bj −Aj |
Aj

.

holds. Let Aj := 1, Bj := e−h2σ2
j/2fj(h), then by (3.2.4) (see Lemma 3.2.1)

we have

Bj � e−h2σ2
j/2

(
1 +

h2σ2
j

2
+

β2+δ, j

y2+δ
ehy

)
� 1 +

β2+δ, j

y2+δ
ehy−h2σ2

j/2

� exp

{
β2+δ, j

y2+δ
ehy

}
=: Cj ,
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obviously, Cj � 1. Now using the Prawitz inequality with Aj , Bj , and Cj

specified above, with the account of �n � L(x) (see (3.4.1)), we obtain∣∣∣∣ n∏
j=1

e−h2σ2
j/2fj(h)− 1

∣∣∣∣ � 1

2

(
1 + exp

{
B2+δ

n

y2+δ
�ne

hy

})
n∑

j=1

∣∣∣e−h2σ2
j/2fj(h)− 1

∣∣∣ � A1(x)

n∑
j=1

∣∣∣e−h2σ2
j/2fj(h)− 1

∣∣∣ ,
where

A1(x) :=
1

2

(
1 + exp

{
eγ(1−γ)x2

L(x)

(γx)2+δ

})
=

1

2

(
1 + exp

{
1

aγ2+δ
exp

{
−
(
2(b− 1)

b2
− γ(1− γ)

)
x2
}})

� A1(t)

for x � t by condition (3.4.5). Hereinafter the symbols A(x), Aj(x), A
∗
j (x),

Âj(x), Â
∗
j (x), j = 1, 2, . . . , stand for nonnegative functions of x, also

depending on δ and on the parameters a, b, γ.

Let us now construct two-sided bounds for (e−h2σ2
j/2fj(h) − 1),

j = 1, . . . , n. As it follows from what was said above,

e−h2σ2
j/2fj(h)− 1 � β2+δ, j

y2+δ
ehy−h2σ2

j/2 � β2+δ, j

y2+δ
ehy.

On the other hand, the lower bound (3.2.4) for fj(h) and an elementary
inequality ex � 1 + x+ 0.5x2ex, x � 0, imply that

e−h2σ2
j/2fj(h)− 1 = e−h2σ2

j/2
(
fj(h)− eh

2σ2
j/2

)
�e−h2σ2

j/2

(
1 +

h2σ2
j

2
−β2+δ, j

y2+δ

(
hy+

1

2
(hy)2+

1

6
(hy)3

)

−
(
1 +

h2σ2
j

2
+

h4σ4
j

8
eh

2σ2
j/2

))

= −β2+δ, j

y2+δ
e−h2σ2

j/2
(
hy +

1

2
(hy)2 +

1

6
(hy)3

)
−

h4σ4
j

8
.
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Further, observe that

σ4
j � β2+δ, j σ

2−δ
j � β2+δ, j B

2−δ
n = β2+δ, j

( y

γx

)2−δ
,

and hence,

e−h2σ2
j/2fj(h)− 1 � −β2+δ, j

y2+δ

(
hy +

(hy)2

2
+

(hy)3

6
+

(hy)4

8(γx)2−δ

)
.

Comparing the obtained lower and upper bounds, we conclude that for every
j = 1, . . . , n∣∣∣e−h2σ2

j/2fj(h)− 1
∣∣∣ � β2+δ, j

y2+δ
max

{
ehy, hy+

(hy)2

2
+
(hy)3

6
+

(hy)4

8(γx)2−δ

}
.

Thus, for I1 we finally obtain

I1 � A1(t)e
−(1−γ2)x2/2

n∑
j=1

β2+δ, j

y2+δ
max

{
ehy, hy +

(hy)2

2
+

(hy)3

6

+
(hy)4

8(γx)2−δ

}
= A1(t)A2(x)�n/x

2+δ,

where

A2(x) := max

{
e−(1−γ)2x2/2

γ2+δ
,

(
γ−1−δ(1− γ)x2 + γ−δ(1− γ)2

x4

2

+ γ1−δ(1− γ)3
x6

6
+ (1− γ)4

x6+δ

8

)
e−(1−γ2)x2/2

}
� A2(t)

by condition (3.4.16).

3.4.2 Estimation of supu |P(S∗
n − ES∗

n < u
√
DS∗

n)− Φ(u)|
When estimating I2 and I3 we will meet the expressions like

I = sup
u∈R

∣∣∣∣P(S∗
n − ES∗

n√
DS∗

n

< u

)
−Φ(u)

∣∣∣∣ = sup
u∈R

∣∣∣∣P (S∗
n < u)−Φ

(
u− ES∗

n√
DS∗

n

)∣∣∣∣.
The aim of the present section is to obtain an estimate of the form

I � J(x)�n + J∗(x)τn,
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in the case (ii), where J(x), J∗(x) are some nonnegative functions,
such that the functions J(x)L(x), J∗(x)L(x), x2+δe−(1−γ2)x2/2J(x),
x2+δe−(1−γ2)x2/2 J∗(x) do not increase for x � t.

Since the r.v.’s X∗
j have all power-type moments, we may use the Berry–

Esseen inequality (3.1.6) with δ = 1, which yields

I � min
q�0

Cq(1)

( n∑
j=1

E|X∗
j − EX∗

j |3

(DS∗
n)

3/2
+ q

n∑
j=1

(DX∗
j )

3/2

(DS∗
n)

3/2

)
,

in particular, one can take q = 1, Cq(1) = 0.3057 in the non-i.i.d. case, and
q = 0.646, Cq(1) = 0.3031 in the i.i.d. case (see (3.1.5)).

For the sake of conveniences of further references, first of all, observe
that by estimates (3.2.5) and (3.4.1) we have

fj(h) � 1− hβ2+δ, j

y1+δ
= 1− (γ−1 − 1)β2+δ, j

(γx)δB2+δ
n

� 1− (γ−1 − 1)�n
(γx)δ

� 1− (γ−1 − 1)(γx)−δL(x) =: A3(x) � A3(t) (3.4.17)

due to (3.4.13). In the i.i.d. case one can take

A3(x) = 1− (γ−1 − 1)(γx)−δ(L(x))1+2/δ � A3(t)

still due to (3.4.13). Now bound
(
EX∗

j

)2
= (m1, j/fj(h))

2 from above.
With the account of (3.2.1), (3.4.1), and Lemma 3.2.2 we have

1

B2
n

n∑
j=1

(
EX∗

j

)2 � 1

B2
nA

2
3(t)

n∑
j=1

(
hσ2

j +
β2+δ, je

hy

y1+δ

)2

=
1

A2
3(t)

n∑
j=1

(
(1− γ)x ·

σ2
j

B2
n

+
eγ(1−γ)x2

(γx)1+δ
· β2+δ, j

B2+δ
n

)2

=
1

A2
3(t)

[
(1− γ)2x2

n∑
j=1

σ4
j

B4
n

+
2(1− γ)xeγ(1−γ)x2

(γx)1+δ

×
n∑

j=1

σ2
j

B2
n

· β2+δ, j

B2+δ
n

+
e2γ(1−γ)x2

(γx)2+2δ

n∑
j=1

(
β2+δ, j

B2+δ
n

)2 ]
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� 1

A2
3(t)

[
(1− γ)2x2τ4/(2+δ)

n +
2(1− γ)

γ1+δ
x−δeγ(1−γ)x2

�2/(2+δ)+1
n

+
e2γ(1−γ)x2

(γx)2+2δ
�2n

]
� A∗

4(x)τn +A4(x)�n,

where

A∗
4(x) :=

(1− γ)2

A2
3(t)

x2(L(x))(2−δ)/(2+δ),

A4(x) :=
1

A2
3(t)

[
2(1− γ)

γ1+δxδ
eγ(1−γ)x2

(L(x))2/(2+δ) +
e2γ(1−γ)x2

L(x)

(γx)2+2δ

]
.

Observe that the function

A∗
4(x)L(x) = (1− γ)2A−2

3 (t)x2(L(x))4/(2+δ)

=
(1− γ)2x6

A2
3(t)a

2/(2+δ)
exp

{
− 8(b− 1)

(2 + δ)b2
x2
}

decreases for x � t, if

t2 � 3(2 + δ)b2

8(b− 1)
.

However, this condition follows from (3.4.6) and (3.4.10), since

3(2 + δ)

8
� max

{
1,

2 + δ

2(2− δ)

}
=

{
1, δ � 2/3,
2+δ

2(2−δ) , δ � 2/3.

The function

A4(x)L(x) =
1

A2
3(t)

[
2(1− γ)

γ1+δxδ
(L(x))2/(2+δ) · eγ(1−γ)x2

L(x)

+
e2γ(1−γ)x2

L2(x)

(γx)2+2δ

]
decreases for x � t by (3.4.13) and (3.4.14). In what follows we shall also
use the fact that the functions

x2+δe−(1−γ2)x2/2A∗
4(x) =

(1− γ)2x4e−(1−γ2)x2/2

A2
3(t)a

(2−δ)/(2+δ)
x2

× exp

{
−2(2− δ)(b− 1)

(2 + δ)b2
x2
}
,
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x2+δe−(1−γ2)x2/2A4(x) =
1

A2
3(t)

[
eγ(1−γ)x2

L(x)

γ2+2δxδ
e−(1−γ)2x2/2

+
2(1− γ)

γ1+δ
x2e−(1−γ)2x2/2(L(x))2/(2+δ)

]
decrease for x � t by (3.4.16), (3.4.10) and (3.4.15), (3.4.13), (3.4.14). In
the i.i.d. case, taking into account that

n∑
j=1

σ4
j

B4
n

=
1

n
= τ2/δn ,

n∑
j=1

σ4
j

B4
n

· β2+δ, j

B2+δ
n

=
�n
n

= τ2/δn �n,

n∑
j=1

(
β2+δ, j

B2+δ
n

)2

=
�2n
n

= τ2/δn �2n,

one can put A4(x) := 0,

A∗
4(x) :=

(L(x))2/δ−1

A2
3(t)

[
(1− γ)x+

eγ(1−γ)x2

L(x)

(γx)1+δ

]2
,

and observe that

A∗
4(x)L(x) =

(xδL(x))2/δ

A2
3(t)

[
1− γ +

eγ(1−γ)x2

L(x)

γ1+δx2+δ

]2
� A∗

4(t)L(t)

by (3.4.13) and (3.4.14). Decrease of the function

x2+δe−(1−γ2)x2/2A∗
4(x) =

(L(x))2/δ−1

A2
3(t)

[
(1− γ)x3+δe−(1−γ2)x2/2

+
eγ(1−γ)x2

L(x)

γ1+δ
xe−(1−γ2)x2/2

]2
for x � t follows from (3.4.13), (3.4.16), and (3.4.14).

Furthermore, by virtue of (3.2.4) we have

(fj(h))
−1 � 2− fj(h) � 1−

h2σ2
j

2
− β2+δ, je

hy

y2+δ
.

Thus, taking into account Lemma 3.2.2, we obtain

1

B2
n

n∑
j=1

σ2
j

fj(h)
� 1

B2
n

n∑
j=1

σ2
j

(
1−

h2σ2
j

2
− β2+δ, je

hy

y2+δ

)
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�
n∑

j=1

(
σ2
j

B2
n

− (1− γ)2x2

2
·
σ4
j

B4
n

− eγ(1−γ)x2

(γx)2+δ
·
σ2
j

B2
n

· β2+δ, j

B2+δ
n

)

� 1− (1− γ)2x2

2
τ4/(2+δ)
n − eγ(1−γ)x2

(γx)2+δ
�2/(2+δ)+1
n

� 1−A∗
5(x)τn −A5(x)�n,

where

A∗
5(x) := (1− γ)2x2(L(x))(2−δ)/(2+δ)/2,

A5(x) := (γx)−2−δeγ(1−γ)x2

(L(x))2/(2+δ).

Observe that the function

A∗
5(x)L(x) =

(1− γ)2

2
x2(L(x))4/(2+δ) =

(1− γ)2x6

2a4/(2+δ)
exp

{
− 8(b− 1)

(2 + δ)b2
x2

}

decreases for x � t by (3.4.6) and (3.4.10)
(
since 3(2+δ)

8 �max
{
1, 2+δ

2(2−δ)

})
,

while the function

A5(x)L(x) = (γx)−2−δ(L(x))2/(2+δ) · eγ(1−γ)x2

L(x)

decreases for x � t by (3.4.13) and (3.4.14). Moreover, the functions

x2+δe−(1−γ2)x2/2A∗
5(x) = (1− γ)2x4e−(1−γ2)x2/2 · xδ(L(x))

2−δ

2+δ /2,

x2+δe−(1−γ2)x2/2A5(x) = x2e−(1−γ)2x2/2 · γ−2−δx−2(L(x))2/(2+δ)

decrease by (3.4.16), (3.4.10) and (3.4.15), (3.4.13), respectively. In the i.i.d.
case one can put A5(x) := 0,

A∗
5(x) := (1− γ)2x2(L(x))2/δ−1/2 + (γx)−2−δeγ(1−γ)x2

(L(x))2/δ.

As this is so, we have

A∗
5(x)L(x) =(1− γ)2(xδL(x))2/δ/2 + (γx)−2−δeγ(1−γ)x2

L(x) · (L(x))2/δ

� A∗
5(t)L(t)

by (3.4.13) and (3.4.14). Decrease of the function

x2+δe−(1−γ2)x2/2A∗
5(x) = (1− γ)2x4e−(1−γ2)x2/2 · xδ(L(x))2/δ−1/2

+ γ−2−δe−(1−γ2)x2/2(L(x))2/δ

for x � t follows from (3.4.16) and (3.4.13).



On the Absolute Constants in Nagaev–Bikelis-Type Inequalities 75

Finally, using the lower bound (3.2.2) for m2, j = fj(h)E
(
X∗

j

)2 together
with inequalities (3.4.17) and (3.4.1), we obtain

DS∗
n

B2
n

=
1

B2
n

n∑
j=1

(
E
(
X∗

j

)2 − (
EX∗

j

)2)
� 1

B2
n

n∑
j=1

(
σ2
j − β2+δ, jy

−δ(1 ∨ hy)

fj(h)
−
(
EX∗

j

)2)

� 1−A∗
5(x)τn −A5(x)�n − 1 ∨ γ(1−γ)x2

A3(t)(γx)δ
�n−A∗

4(x)τn−A4(x)�n

=: 1−A6(x)�n −A∗
6(x)τn,

where

A6(x) = A4(x) +A5(x) +
1 ∨ γ(1− γ)x2

A3(t)(γx)δ
, A∗

6(x) = A∗
4(x) +A∗

5(x).

Observe that for the inequality

A7(x) := 1− (A6(x) +A∗
6(x))L(x) � A7(t)

to hold true, it is sufficient that for x � t the function

1 ∨ γ(1− γ)x2

A3(t)(γx)δ
L(x) =

x2 ∨ γ(1− γ)x4

A3(t)aγδ
exp

{
−2(b− 1)

b2
x2
}
,

was decreasing. But this function, according to (3.4.4), is, indeed, decreasing
due to (3.4.6). For the decrease of the function x2+δe−(1−γ2)x2/2A6(x) it is
sufficient that for x � t the function

1 ∨ γ(1− γ)x2

A3(t)(γx)δ
x2+δe−(1−γ2)x2/2 =

x2 ∨ γ(1− γ)x4

A3(t)γδ
e−(1−γ2)x2/2,

was decreasing. But this function is, indeed, decreasing due to (3.4.16).
Thus, if A7(t) > 0, then we have

DS∗
n/B

2
n � 1−A6(x)�n −A∗

6(x)τn � A7(x) � A7(t), (3.4.18)
B2

n − DS∗
n

DS∗
n

� A6(x)�n +A∗
6(x)τn

A7(t)
, (3.4.19)

with the functions x2+δe−(1−γ2)x2/2A6(x), x2+δe−(1−γ2)x2/2A∗
6(x) being

nonincreasing for x � t.
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Further, by Lemma 3.2.6 we have

n∑
j=1

E|X∗
j − EX∗

j |3

� min

⎧⎨⎩
n∑

j=1

MjE|X∗
j |3,

n∑
j=1

(
E|X∗

j |3 + 3E(X∗
j )

2|EX∗
j |+ E|X∗

j |(EX∗
j )

2
)⎫⎬⎭,

where Mj := M
(∣∣EX∗

j

∣∣/√E(X∗
j )

2
)

with the function M(·) defined in
Lemma 3.2.6. In the i.i.d. case with σj = 1, j = 1, n, by (3.4.17) and by
Lemma 3.2.1 (see (3.2.1) and (3.2.2)) we obtain

(EX∗
1 )

2

E(X∗
1 )

2
=

(EX1e
hX1)2

EehX1EX1
2
ehX1

� (h+ y−1−δehyβ2+δ,1)
2

A3(t)[1− (1 ∨ hy)y−δβ2+δ,1]

=
[(1− γ)xn−1/2 + (γx)−1−δeγ(1−γ)x2

�nn
−1/2]2

A3(t)[1− (1 ∨ γ(1− γ)x2)(γx)−δ�n]

� [(1− γ)x(L(x))1/δ + (γx)−1−δeγ(1−γ)x2

(L(x))1+1/δ]2

A3(t)[1− (1 ∨ γ(1− γ)x2)(γx)−δL(x)]
=: a(x),

with a(x) � a(t) for x � t in view of (3.4.13) and (3.4.14). Thus, with the
account of the properties of the function M(·) (see Lemma 3.2.6) we have
for every j = 1, . . . , n

Mj �

⎧⎨⎩M
(√

a(t) ∧ 1
6

√
3(8− 2

√
7)
)

in the i.i.d. case,
17+7

√
7

27 < 1.3156 in the non-i.i.d. case.

However, the majorant M(
√

a(t)∧ 1
6

√
3(8− 2

√
7))E|X∗

1 |3 in the i.i.d. case
turns out to give not so precise estimate for E|X∗

1 −EX∗
1 |3 as the expression

E|X∗
1 |3+ · · · which appears in the second argument of the minimum above.

Now let us estimate the sums of moments entering into the upper
bound for the sum of centered third-order absolute moments by use of
Lemma 3.2.1. Start with the last term. We have

n∑
j=1

E|X∗
j |(EX∗

j )
2 � max

1�j�n
E|X∗

j |
n∑

j=1

(EX∗
j )

2 � max
1�j�n

√
E(X∗

j )
2

n∑
j=1

(EX∗
j )

2.
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The sum
∑n

j=1(EX
∗
j )

2 has already been bounded from above by
(A4(x)�n +A∗

4(x)τn)B
2
n. By (3.2.2) we have for every j = 1, 2, . . . , n

E(X∗
j )

2 =
m2, j

fj(h)
�

σ2
j + β2+δ, jy

−δehy

A3(t)
=

B2
n

A3(t)

(
σ2
j

B2
n

+
eγ(1−γ)x2

(γx)δ
· β2+δ, j

B2+δ
n

)
� B2

n

A3(t)
A8(x),

where

A8(x) :=

{
(L(x))2/(2+δ) + (γx)−δeγ(1−γ)x2

L(x) in the non-i.i.d. case,
(L(x))2/δ

(
1 + (γx)−δeγ(1−γ)x2

L(x)
)

in the i.i.d. case,

moreover, A8(x) � A8(t) by (3.4.13) and (3.4.14). Hence,
n∑

j=1

E|X∗
j |(EX∗

j )
2 � (A9(x)�n +A∗

9(x)τn)B
3
n,

where A9(x) := A4(x)
√

A8(t)/A3(t), A
∗
9(x) := A∗

4(x)
√

A8(t)/A3(t),
and the functions A9(x)L(x), A∗

9(x)L(x), x2+δe−(1−γ2)x2/2A9(x),
x2+δe−(1−γ2)x2/2 A∗

9(x) do not increase for x � t.

Consider the second term

3
n∑

j=1

E
(
X∗

j

)2 ∣∣EX∗
j

∣∣ = 3
n∑

j=1

m2, j

fj(h)
· |m1, j |
fj(h)

� 3

A2
3(t)

n∑
j=1

(
σ2
j +

β2+δ, je
hy

yδ

)(
hσ2

j +
β2+δ, je

hy

y1+δ

)

=
3B3

n

A2
3(t)

n∑
j=1

(
σ2
j

B2
n

+
β2+δ, j

B2+δ
n

· e
γ(1−γ)x2

(γx)δ

)

×
(
(1− γ)x

σ2
j

B2
n

+
eγ(1−γ)x2

(γx)1+δ
· β2+δ, j

B2+δ
n

)
=

3B3
n

A2
3(t)

(
(1− γ)x

n∑
j=1

σ4
j

B4
n

+
eγ(1−γ)x2

(γx)1+δ

(
γ(1− γ)x2 + 1

) n∑
j=1

σ2
j

B2
n

· β2+δ, j

B2+δ
n

+
e2γ(1−γ)x2

(γx)1+2δ

n∑
j=1

β2
2+δ, j

B4+2δ
n

)
� 3B3

n

A2
3(t)

(
(1− γ)xτ4/(2+δ)

n
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+
eγ(1−γ)x2

(γx)1+δ

(
1 + γ(1− γ)x2

)
τ2/(2+δ)
n �n

+
e2γ(1−γ)x2

(γx)1+2δ
�2n

)
� B3

n

(
A∗

10(x)τn +A10(x)�n
)
,

where

A∗
10(x) : = 3A−2

3 (t)(1− γ)x(L(x))(2−δ)/(2+δ),

A10(x) : =
3

A2
3(t)

(
eγ(1−γ)x2

(γx)1+δ

(
1 + γ(1− γ)x2

)
(L(x))2/(2+δ)

+
e2γ(1−γ)x2

L(x)

(γx)1+2δ

)
.

Moreover, the functions

A∗
10(x)L(x) = 3A−2

3 (t)(1− γ)x(L(x))4/(2+δ),

A10(x)L(x) =
3

A2
3(t)

(
1 + γ(1− γ)x2

(γx)1+δ
eγ(1−γ)x2 · (L(x))1+2/(2+δ)

+
e2γ(1−γ)x2

L2(x)

(γx)1+2δ

)
decrease for x � t by (3.4.13) and (3.4.14), and the functions

x2+δe−(1−γ2)x2/2A∗
10(x) =

3(1− γ)

A2
3(t)

x3+δe−(1−γ2)x2/2(L(x))
2−δ
2+δ ,

x2+δe−(1−γ2)x2/2A10(x) =
3

A2
3(t)

(
x1−δ

γ1+2δ
e−(1−γ2)x2/2L(x)

+

(
1 + γ(1− γ)x2

)
γ1+δ

e−(1−γ)2x2/2 · x(L(x))2/(2+δ)

)
decrease by (3.4.16), (3.4.13) and, respectively, by (3.4.15), (3.4.6), (3.4.10)(

with the account of 3(2 + δ)/8 � max
{
1, 2+δ

2(2−δ)

})
(3.4.14). In the non-

i.i.d. case one can take A10(x) := 0,

A∗
10(x) :=

3(L(x))2/δ−1

A2
3(t)

(
(1− γ)x+

eγ(1−γ)x2

(γx)1+δ

(
1 + γ(1− γ)x2

)
L(x)

+
e2γ(1−γ)x2

(γx)1+2δ
(L(x))2

)
,
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with the functions A∗
10(x)L(x) and

x2+δe−(1−γ2)x2/2A∗
10(x) =

3(L(x))2/δ−1

A2
3(t)

(
(1− γ)x3+δe−(1−γ2)x2/2

+
xL(x)

γ1+δ

(
1 + γ(1− γ)x2

)
e−(1−γ)2x2/2

+
x1−δ

γ1+2δ
e−(1−γ)2x2/2 · eγ(1−γ)x2

(L(x))2
)

being decreasing for x � t due to (3.4.13), (3.4.14), and, respectively,
to (3.4.16), (3.4.13), (3.4.15), (3.4.14).

Finally, let us consider the first term
n∑

j=1

E|X∗
j |3 =

n∑
j=1

m3, j

fj(h)
�

n∑
j=1

y1−δehyβ2+δ, j

A3(t)
=

(γx)1−δ

A3(t)
eγ(1−γ)x2

�nB
3
n

=: A11(x)�nB
3
n,

with

A11(x)L(x) =
γ1−δx3

A3(t)a
exp

{
−
(
2(b− 1)

b2
− γ(1− γ)

)
x2
}

� A11(t)L(t)

by (3.4.7). Moreover, for all x > 0 we have

x2+δe−(1−γ2)x2/2A11(x) =
γ1−δx3e−(1−γ)2x2/2

A3(t)

� γ1−δu3e−(1−γ)2u2/2

A3(t)

∣∣∣
u=x∨

√
3

1−γ

=: Â11(x),

where the function Â11(x) does not increase for all x � 0.

Thus, for every 0 � α � 1 we obtain

�∗n :=

n∑
j=1

E|X∗
j − EX∗

j |3

(DS∗
n)

3/2
� A

−3/2
7 (t)min

{
M ·A11(x)�n, (A11(x) +A10(x)

+A9(x))�n +(A∗
10(x) +A∗

9(x))(α�n +(1− α)τn)
}

� A12(x)�n +A∗
12(x)τn, (3.4.20)

where
A12(x) := A

−3/2
7 (t)min

{
M ·A11(x), A11(x) +A10(x) +A9(x) + α(A∗

10(x)

+A∗
9(x))

}
,

A∗
12(x) := (1− α)A

−3/2
7 (t)(A∗

10(x) +A∗
9(x)),
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with the functions A12(x)L(x), A∗
12(x)L(x), x2+δe−(1−γ2)x2/2A∗

12(x)
being nonincreasing for x � t, and

x2+δe−(1−γ2)x2/2A12(x)

� A
−3/2
7 (t)min

{
M · Â11(x), Â11(x)

+ x2+δe−(1−γ2)x2/2
(
A10(x) +A9(x) + α(A∗

10(x) +A∗
9(x))

)}
=: Â12(x) � Â12(t).

Also observe that the sum A12(x) + A∗
12(x) attains its minimum value at

α = 1, while the value α = 0 minimizes the factor at the Lyapunov fraction
�n in (3.4.20).

Further, using estimates (3.2.2) and (3.4.18), and the Minkowski inequal-
ity we obtain

n∑
j=1

(DX∗
j )

3/2

(DS∗
n)

3/2
�

n∑
j=1

(E(X∗
j )

2)3/2

(DS∗
n)

3/2
= (DS∗

n)
−3/2

n∑
j=1

(m2, j

fj(h)

)3/2

� A
−3/2
7 (t)

A
3/2
3 (t)B3

n

n∑
j=1

(
σ2
j +

ehyβ2+δ, j

yδ

)3/2

= (A3(t)A7(t))
−3/2

n∑
j=1

( σ2
j

B2
n

+
eγ(1−γ)x2

(γx)δ
β2+δ, j

B2+δ
n

)3/2

� (A3(t)A7(t))
−3/2

[
eγ(1−γ)x2

(γx)δ

( n∑
j=1

(β2+δ, j

B2+δ
n

)3/2
)2/3

+

( n∑
j=1

σ3
j

B3
n

)2/3]3/2

�
(
τ
2/(2+δ)
n + (γx)−δeγ(1−γ)x2

�n
A3(t)A7(t)

)3/2

� A13(x)�n +A∗
13(x)τn, (3.4.21)

where A∗
13(x) ≡ 0,

A13(x) :=

(
(L(x))2(1−δ)/(6+3δ) + (γx)−δeγ(1−γ)x2

(L(x))1/3

A3(t)A7(t)

)3/2

,

with the function

A13(x)L(x) =

(
(L(x))2/(2+δ) + (γx)−δeγ(1−γ)x2

L(x)

A3(t)A7(t)

)3/2
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being monotonically decreasing for x � t by (3.4.13) and (3.4.14), and the
function

x2+δe−(1−γ2)x2/2A13(x) = (A3(t)A7(t))
−3/2[(

x2+δe−(1−γ2)x2/2(L(x))(1−δ)/(2+δ)
)2/3

+ γ−δ
(
x4−δe−(1−γ)2x2 · eγ(1−γ)x2

L(x)
)1/3]3/2

being monotonically decreasing for x � t by (3.4.16), (3.4.13), (3.4.15), and
(3.4.14). In the i.i.d. case we have DX∗

j /DS
∗
n = 1/n for every j = 1, . . . , n,

so that
n∑

j=1

(DX∗
j )

3/2

(DS∗
n)

3/2
=

1√
n
= τ1/δn � (L(x))1/δ−1τn,

and hence, one can put A13(x) ≡ 0, A∗
13(x) := (L(x))1/δ−1. The functions

A∗
13(x)L(x), x

2+δe−(1−γ2)x2/2A∗
13(x) are, obviously, decreasing for x � t.

Thus, by use of inequality (3.1.5) and with the account of (3.4.18),
(3.4.20), and (3.4.21), we arrive at the estimate

I = sup
u∈R

∣∣P(S∗
n − ES∗

n < u
√

DS∗
n

)
− Φ(u)

∣∣ � A14(x)�n +A∗
14(x)τn,

(3.4.22)
for every 0 � α � 1 and q � 0, where

A14(x) := Cq(1)
(
A12(x) + qA13(x)

)
,

A∗
14(x) := Cq(1)

(
A∗

12(x) + qA∗
13(x)

)
.

Moreover, the functions A∗
14(x)L(x), A14(x)L(x), x

2+δe−(1−γ2)x2/2A∗
14(x)

do not increase, and

x2+δe−(1−γ2)x2/2A14(x) � Cq(1)
(
Â12(x) + qx2+δe−(1−γ2)x2/2A13(x)

)
=: Â14(x) � Â14(t)

for x � t.

Running ahead, we should mention that in the extremal point the
expression ρ = (A12(x) + A∗

12(x))/(A13(x) + A∗
13(x)) varies within the

range 3.3–4.9 in the non-i.i.d. case and 16–32 in the i.i.d. case, as the
structural parameter s ∈ [0, s1(δ)] of the resulting estimate (3.1.11) grows,
so that q = s1(1) is an optimal (i.e., minimizing the factor of �n) choice.
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To be more precise, we take q = 1, Cq(1) = 0.3057 in the non-i.i.d. case,
and q = 0.646, Cq(1) = 0.3031 in the i.i.d. case (see (3.1.5)). So, in what
follows we assume q to be constant.

3.4.3 Estimation of I2
Estimate the expression I2 = P (S∗

n � xBn) . With the account of (3.4.22)
we have

I2 �
∣∣∣∣P(S∗

n < xBn)− Φ

(
xBn − ES∗

n√
DS∗

n

)∣∣∣∣+Φ

(
− xBn − ES∗

n√
DS∗

n

)
� A14(t)L(t) +A∗

14(x)τn +Φ

(
ES∗

n − xBn√
DS∗

n

)
.

Construct a negative upper bound for

ES∗
n − xBn√
DS∗

n

=
ES∗

n − hB2
n − γxBn√
DS∗

n

.

By use of the upper bound (3.2.1) for m1, j = EXje
hXj = fj(h)EX

∗
j , the

lower bounds (3.2.5), (3.4.17) for fj(h) as well as Lemma 3.2.2, we obtain

ES∗
n − hB2

n =

n∑
j=1

m1, j − hσ2
j fj(h)

fj(h)

�
n∑

j=1

1

fj(h)

(
hσ2

j +
β2+δ, je

hy

y1+δ
− hσ2

j fj(h)

)

� 1

A3(t)

n∑
j=1

(
hσ2

j (1− fj(h)) +
β2+δ, je

hy

y1+δ

)
� 1

A3(t)

n∑
j=1

(h2σ2
jβ2+δ, j

y1+δ
+

ehyβ2+δ, j

y1+δ

)

=
Bn

A3(t)

n∑
j=1

(
(1− γ)2x1−δ

γ1+δ
·
σ2
j

B2
n

· β2+δ, j

B2+δ
n

+
eγ(1−γ)x2

(γx)1+δ
· β2+δ, j

B2+δ
n

)
� (A15(x)�n +A∗

15(x)τn)Bn, (3.4.23)
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where

A15(x) =

⎧⎨⎩ (1−γ)2x1−δ(L(x))
2

2+δ +x−1−δeγ(1−γ)x2

A3(t)γ1+δ in the non-i.i.d. case,

A−1
3 (t)(γx)−1−δeγ(1−γ)x2 in the i.i.d. case,

A∗
15(x) =

{
0 in the non-i.i.d. case,
A−1

3 (t)(1− γ)2γ−1−δx1−δ(L(x))2/δ in the i.i.d. case,

and the functions A∗
15(x); A15(x)L(x); x2+δe−(1−γ2)x2/2A15(x);

x2+δe−(1−γ2)x2/2A∗
15(x) do not increase for x � t, respectively, due

to (3.4.13); (3.4.13) and (3.4.14); (3.4.16), (3.4.13); also (3.4.16), (3.4.13).
Thus, for the nominator of the quantity under consideration we have

ES∗
n − xBn = ES∗

n − hB2
n − γxBn � −A16(x)Bn,

where

A16(x) = γx− (A15(x) +A∗
15(x))L(x) � A16(t).

In what follows assume that A16(t) > 0.

In addition to the lower bound DS∗
n � A7(t)B

2
n (see (3.4.18)) we will

also need an upper bound for DS∗
n. By use of the upper bound (3.2.2)

for m2, j , the lower bounds (3.2.5) and (3.4.17) for fj(h), and the identity
(1− z)−1 = (1− z)−1z + 1 we obtain

DS∗
n �

n∑
j=1

E
(
X∗

j

)2
=

n∑
j=1

m2, j

fj(h)
�

n∑
j=1

σ2
j + ehyy−δβ2+δ, j

1− hy−1−δβ2+δ, j

=

n∑
j=1

((
1− hβ2+δ, j

y1+δ

)−1hβ2+δ, j

y1+δ
+ 1

)(
σ2
j +

ehyβ2+δ, j

yδ

)

�
n∑

j=1

(
hβ2+δ, j

A3(t)y1+δ
+ 1

)(
σ2
j +

ehyβ2+δ, j

yδ

)

= B2
n

n∑
j=1

(
σ2
j

B2
n

+
eγ(1−γ)x2

(γx)δ
· β2+δ, j

B2+δ
n

+
(1− γ)x−δ

A3(t)γ1+δ
·
σ2
j

B2
n

· β2+δ, j

B2+δ
n

+
(1− γ)eγ(1−γ)x2

A3(t)γ1+2δx2δ
·
β2
2+δ, j

B4+2δ
n

)
� A17(x)B

2
n � A17(t)B

2
n,
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where

A17(x) =1 +
eγ(1−γ)x2

L(x)

(γx)δ
+

(1− γ)x−δ

A3(t)γ1+δ
(L(x))1+2/(2+δ)

+
(1− γ)eγ(1−γ)x2

A3(t)γ1+2δx2δ
(L(x))2,

and in the i.i.d. case one can take

A17(x) = 1 +
eγ(1−γ)x2

L(x)

(γx)δ
+

(1− γ)x−δ

A3(t)γ1+δ
(L(x))1+2/δ

+
(1− γ)eγ(1−γ)x2

A3(t)γ1+2δx2δ
(L(x))2+2/δ,

with the inequality A17(x) � A17(t) being true due to (3.4.14) and (3.4.13)
in both cases.

Thus, under assumption that A16(t) > 0, we have
xBn − ES∗

n√
DS∗

n

� A16(t)√
A17(t)

, (3.4.24)

and hence, Φ
(
(ES∗

n − xBn)/
√

DS∗
n

)
� Φ

(
− A16(t)/

√
A17(t)

)
in view

of monotonicity of the function Φ(u), u ∈ R. So, under assumption that
A16(t) > 0, we finally obtain

I2 � A14(t)L(t) +A∗
14(x)τn +Φ

(
−A16(t)/

√
A17(t)

)
.

3.4.4 Estimation of I3
Let us estimate

I3 = sup
u�x

∣∣P(S∗
n < uBn

)
− Φ

(
u− hBn

)∣∣
from above. We have

I3 = sup
u�x

∣∣∣∣P(S∗
n − ES∗

n√
DS∗

n

<
uBn − ES∗

n√
DS∗

n

)
± Φ

(
uBn − ES∗

n√
DS∗

n

)
± Φ

(
uBn − ES∗

n

Bn

)
− Φ

(
u− hBn

)∣∣∣∣
� sup

v∈R

∣∣P(S∗
n − ES∗

n < v
√

DS∗
n

)
− Φ(v)

∣∣
+ sup

v�(xBn−ES∗
n)/

√
DS∗

n

∣∣∣∣Φ(v)− Φ

(
v
√

DS∗
n

Bn

)∣∣∣∣
+ sup

u�x

∣∣Φ(u− ES∗
n/Bn)− Φ

(
u− hBn

)∣∣ =: I31 + I32 + I33.
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By inequality (3.4.22) we have

I31 = sup
v∈R

∣∣∣P(S∗
n − ES∗

n < v
√

DS∗
n

)
− Φ(v)

∣∣∣ � A14(x)�n +A∗
14(x)τn.

For I32 by (3.4.24) we have

I32 = sup
v�(xBn−ES∗

n)/
√

DS∗
n

∣∣∣∣Φ(v)− Φ

(
v
√

DS∗
n

Bn

)∣∣∣∣
� sup

v�A16(t)/
√

A17(t)

∣∣∣∣Φ(v)− Φ

(
v
√

DS∗
n

Bn

)∣∣∣∣.
By use of statement 1◦ of Lemma 3.2.4 under the assumption that A16(t) >
0, as well as of the estimate 1 ∧

√
DS∗

n/Bn � 1 ∧
√

A7(t) =
√

A7(t)
(see (3.4.18)) and observing that the function uϕ(u) decreases for u � 1,
we obtain

I32 � max

{
DS∗

n

B2
n

− 1,
B2

n − DS∗
n

DS∗
n

}
A18(t),

A18(t) =
uϕ(u)

2

∣∣∣
u=1∨A16(t)

√
A7(t)/A17(t)

.

In view of Lemma 3.2.1 we have

DS∗
n

B2
n

− 1 =

n∑
j=1

DX∗
j − σ2

j

B2
n

�
n∑

j=1

E(X∗
j )

2 − σ2
j

B2
n

=

n∑
j=1

m2, j − σ2
j + σ2

j (1− fj(h))

B2
nfj(h)

� 1

B2
nA3(t)

n∑
j=1

(
ehyβ2+δ, j

yδ
+

hσ2
jβ2+δ, j

y1+δ

)

=
(γx)−δ

A3(t)

n∑
j=1

(
β2+δ, j

B2+δ
n

eγ(1−γ)x2

+
1− γ

γ
·
σ2
j

B2
n

· β2+δ, j

B2+δ
n

)

� (γx)−δ�n
A3(t)

(
eγ(1−γ)x2

+
1− γ

γ
τ2/(2+δ)
n

)
� A19(x)�n +A∗

19(x)τn,
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where

A19(x) =

⎧⎨⎩
eγ(1−γ)x2

+(γ−1−1)(L(x))2/(2+δ)

A3(t)(γx)δ
in the non-i.i.d. case,

A−1
3 (t)(γx)−δeγ(1−γ)x2 in the i.i.d. case,

A∗
19(x) =

{
0 in the non-i.i.d. case,
A−1

3 (t)(γx)−δ(γ−1 − 1)(L(x))2/δ in the i.i.d. case.

Notice that in both cases the functions x2+δe−(1−γ2)x2/2A19(x),
x2+δe−(1−γ2)x2/2A∗

19(x) do not increase for x � t in view of (3.4.15),
(3.4.16), and (3.4.13).

Thus, with the account of the estimate (B2
n −DS∗

n)/DS
∗
n � (A6(x)�n +

A∗
6(x)τn)/A7(t) (see (3.4.19)), we conclude that

I32 � max

{
A19(x)�n +A∗

19(x)τn,
A6(x)�+A∗

6(x)τn
A7(t)

}
A18(t) � A20(x)�n +A∗

20(x)τn,

where

A20(x) = A18(t) ·max
{
A19(x) + αA∗

19(x), (A6(x) + αA∗
6(x))/A7(t)

}
,

A∗
20(x) = (1− α)A18(t) ·max

{
A∗

19(x), A
∗
6(x)/A7(t)

}
, 0 � α � 1,

and the functions x2+δe−(1−γ2)x2/2A20(x), x
2+δe−(1−γ2)x2/2A∗

20(x) do not
increase for x � t. Notice that the value α = 1 minimizes the sum
A20(x)+A∗

20(x) of the factors of �n and τn, and the value α = 0 minimizes
the factor A20(x) of �n.

Finally, consider

I33 = sup
u�x

∣∣∣∣Φ(u− ES∗
n

Bn

)
− Φ

(
u− hBn

)∣∣∣∣
= sup

v�x−hBn

∣∣∣∣Φ(v + hB2
n − ES∗

n

Bn

)
− Φ

(
v
)∣∣∣∣ .

Taking into account that x − hBn = xγ � γt > 0, and using statement 2◦
of Lemma 3.2.4, we obtain

I33 �
∣∣hB2

n − ES∗
n

∣∣
Bn

ϕ

(
min

{(
γt+

hB2
n − ES∗

n

Bn

)
+

, γt

})
.

The lower bound for hB2
n−ES∗

n was constructed while estimation of I2. Let
us now bound this quantity from above. By use of the lower bound (3.2.1)
for m1, j = EXje

hXj = fj(h)EX
∗
j we have
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hB2
n − ES∗

n =

n∑
j=1

(
hσ2

j −
m1, j

fj(h)

)
=

n∑
j=1

hσ2
j fj(h)± hσ2

j −m1, j

fj(h)

� 1

A3(t)

n∑
j=1

(
hσ2

j (fj(h)− 1) +
β2+δ, j

y1+δ

(
1 + hy +

(hy)2

2

))
.

Estimate the expression hσ2
j (fj(h)− 1) by inequality (3.2.4) to obtain that

n∑
j=1

hσ2
j (fj(h)− 1) �

n∑
j=1

hσ2
j

(
h2σ2

j

2
+

β2+δ, je
hy

y2+δ

)

=
(hy)3

y1+δ

n∑
j=1

(
σ4
j

2y2−δ
+

σ2
jβ2+δ, je

hy

h2y4

)

� (hy)3

y1+δ

n∑
j=1

β2+δ, j

(
1

2(γx)2−δ
·
σ2−δ
j

B2−δ
n

+
eγ(1−γ)x2

(1− γ)2x2(γx)4
·
σ2
j

B2
n

)
� (hy)3A(x)

n∑
j=1

β2+δ, j

y1+δ
,

where

A(x) =
1

2
(γx)δ−2(L(x))(2−δ)/(2+δ) +

eγ(1−γ)x2

γ4(1− γ)2x6
(L(x))2/(2+δ)

=
a−(2−δ)/(2+δ)

2γ2−δ
exp

{
−2(2− δ)(b− 1)

(2 + δ)b2
x2
}

+
a−2/(2+δ)

γ4(1− γ)2x4
exp

{
−
(

4(b− 1)

(2 + δ)b2
− γ(1− γ)

)
x2
}
.

Moreover, A(x) � A(t) for x2 � t2 under assumption (3.4.11). In the i.i.d.
case one can take

A(x) =
1

2
(γx)δ−2(L(x))2/δ−1 +

eγ(1−γ)x2

γ4(1− γ)2x6
(L(x))2/δ

=
x4/δ−2

2γ2−δa2/δ+1
exp

{
−2(2− δ)(b− 1)

δb2
x2
}

+
x4/δ−4a−2/δ

γ4(1− γ)2
exp

{
−
(
4(b− 1)

δb2
− γ(1− γ)

)
x2
}

� A(t)
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due to (3.4.6) and (3.4.12). Further, under the assumption that A(t) � 1/6,
we have

hB2
n − ES∗

n � 1

A3(t)

n∑
j=1

(
(hy)3

6
· β2+δ, j

y1+δ
+

β2+δ, j

y1+δ

(
1 + hy +

(hy)2

2

))

=

(
1 + hy +

(hy)2

2
+

(hy)3

6

) n∑
j=1

β2+δ, j

A3(t)y1+δ
�

n∑
j=1

β2+δ, je
hy

A3(t)y1+δ
.

On the other hand, while estimation of I2 (see (3.4.23)) it was proved that

ES∗
n − hB2

n � 1

A3(t)

n∑
j=1

(
h2σ2

jβ2+δ, j

y1+δ
+

ehyβ2+δ, j

y1+δ

)
� (A15(x)�n +A∗

15(x)τn)Bn,

where the functions A∗
15(x), A15(x)L(x), x2+δe−(1−γ2)x2/2A∗

15(x),
x2+δe−(1−γ2)x2/2A15(x) decrease for x � t. Comparing the previous
estimates for ES∗

n − hB2
n with the just constructed upper bound for

hB2
n − ES∗

n, we conclude that

|hB2
n − ES∗

n|
Bn

� 1

A3(t)Bn

n∑
j=1

(
h2σ2

jβ2+δ, j

y1+δ
+

ehyβ2+δ, j

y1+δ

)
� A15(x)�n +A∗

15(x)τn,

min

{(
γt+

hB2
n − ES∗

n

Bn

)
+

, γt

}
� γt− (A15(t) +A∗

15(t))L(t) = A16(t),

in view of (A15(t) + A∗
15(t))L(t) > 0 and A16(t) > 0. Since the normal

density ϕ(u) decreases for u > 0, we have

I33 �
(
A15(x)�n +A∗

15(x)τn
)
ϕ
(
A16(t)

)
.

Finally, for every x from the domain (ii) under consideration we ob-
tain that

|x|2+δΔn(x) � �n
γ2+δ

+ |x|2+δI1 · I2 + 2|x|2+δe−(1−γ2)x2/2 · I3

� �n
γ2+δ

+A1(t)A2(t)�n
(
A14(t)L(t) +A∗

14(x)τn

+Φ
(
−A16(t)/

√
A17(t)

))
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+ 2Â14(t)�n + 2t2+δe−(1−γ2)t2/2
(
A∗

14(t)τn +A20(t)�n

+A∗
20(t)τn + (A15(t)�n +A∗

15(t)τn)ϕ(A16(t))
)

� A21(t)�n +A∗
21(t)τn, (3.4.25)

where
A21(x) = A21(x, δ, a, b, γ, α) = γ−2−δ + 2Â14(x) +A1(x)A2(x)

(
A14(x)L(x)

+ Φ
(
−A16(x)/

√
A17(x)

))
+ 2x2+δe−(1−γ2)x2/2 (A20(x)

+ A15(x)ϕ
(
A16(x)

))
,

A∗
21(x) = A∗

21(x, δ, a, b, γ, α) = A1(x)A2(x)A
∗
14(x)L(x)

+ 2x2+δe−(1−γ2)x2/2
(
A∗

14(x) +A∗
20(x) +A∗

15(x)ϕ
(
A16(x)

))
,

for every 0 � α � 1, with α = 1 minimizing the sum of the factors
A21(x) +A∗

21(x) of �n and τn in (3.4.25), and α = 0 minimizing the factor
A21(x) of �n.

Summarizing the above said we arrive at the following theorem.

Theorem 3.4.1. Assume that t > 0, t2 � x2 � cn(x; δ, a, b), 0 < γ < 1,
a > 0, b > 1 are such that A(t) � 1/6, A3(t) > 0, A7(t) > 0, A16(t) > 0,
and conditions (3.4.5)–(3.4.11) in the non-i.i.d. case, or (3.4.5)–(3.4.9),
(3.4.12)*** in the i.i.d. case, are fulfilled. Then for every n ∈ N and
F1, F2, . . . , Fn ∈ F2+δ we have

|x|2+δΔn(x) � min
0�α�1

(
A21(t, δ, a, b, γ, α)�n +A∗

21(t, δ, a, b, γ, α)τn
)
.

Remark 3.4.2. The functions A21(t, δ, a, b, γ, α)�n, A∗
21(t, δ, a, b, γ, α)

are rather cumbersome, which argues for imperfectness of the method used,
but they are given in the explicit form in terms of elementary functions
which allows a fast evaluation by use of a computer.

Remark 3.4.3. It can be made sure that in Theorem 3.4.1 we have:
A(t) → 0, A3(t) → 1, A7(t) → 1, A16(t) → ∞ as t → ∞, so that all
the conditions of Theorem 3.4.1, except (3.4.5) and (3.4.11), are trivially
satisfied for t → ∞ with every fixed a, b, γ. Moreover, for fixed a, b, γ, α,
surely under assumption (3.4.11) (which is stronger than (3.4.5), we have

lim
t→∞

A21(t, δ, a, b, γ, α) = γ−(2+δ) � lim
γ→1−

γ−(2+δ) = 1,

lim
t→∞

A∗
21(t, δ, a, b, γ, α) = 0.

Condition (3.4.11) is obviously fulfilled as γ → 1− for every fixed b > 1
and 0 < δ � 1.
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3.4.5 The Main Result
For s > 0 let

Qs(δ) = inf
t, a, b, γ

{Cs(δ)t
2+δ ∨A21(t, δ, a, b, γ, 0) ∨ P (δ, a, b)}, (3.4.26)

where the greatest lower bound is taken over the set of all possible values of
the parameters t, a, b, γ satisfying conditions of Theorem 3.4.1, and

A∗
21(t, δ, a, b, γ, 0) � sCs(δ)t

2+δ, t � 1/
√
2π, a � P (δ, a, b)/κ

(the quantity κ = 0.54 . . . is defined in (3.2.6)). For s = 0 let

Q0(δ) = inf
t, a, b, γ

{
C0(δ)t

2+δ ∨ (A21(t, δ, a, b, γ, 1)

+A∗
21(t, δ, a, b, γ, 1)) ∨ P (δ, a, b)

}
, (3.4.27)

where the greatest lower bound is taken over the set of all possible values
of the parameters t, a, b, γ satisfying conditions of Theorem 3.4.1, and t �
1/

√
2π, a � P (δ, a, b)/κ.

Theorem 3.4.4. For all s � 0, n ∈ N, and F1, F2, . . . , Fn ∈ F2+δ

we have

sup
x∈R

|x|2+δΔn(x) � min
0�s�1

Qs(δ)(�n + sτn).

Corollary 3.4.5. Inequality (3.1.11)

sup
x∈R

(1 + |x|2+δ)Δn(x) � min
0�s�1

Ks(δ)(�n + sτn)

holds for all n ∈ N and F1, F2, . . . , Fn ∈ F2+δ with Ks(δ) = Qs(δ) +
Cs(δ).

Remark 3.4.6. For every 0 < δ � 1 the optimal values of the parameters
t, a, b, γ satisfy

Qs(δ) = Cs(δ)t
2+δ = A21(t, δ, a, b, γ, 0) = P (δ, a, b), 0 < s � 1,

Q0(δ) = C0(δ)t
2+δ = A21(t, δ, a, b, γ, 1) +A∗

21(t, δ, a, b, γ, 1) = P (δ, a, b).

Usually the value of A∗
21(ts, δ, as, bs, γs, 0) is considerably smaller than

sQs(δ) (see Table 3.5).

Table 3.4 contains the values of the constants Q0(δ), K0(δ) for some
δ ∈ (0, 1] in the non-i.i.d. case (an upper part), as well as in the i.i.d.
case (a lower part). The optimal values t0(δ), a0(δ), b0(δ), γ0(δ) of the
parameters t, a, b, γ, delivering minimum in (3.4.27) are also given in
Table 3.4.
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Table 3.5 contains the values of the constants Qs(δ), Ks(δ) for some
δ ∈ (0, 1] with s = s1(δ) (this value of s minimizes the constant Cs(δ) in the
uniform estimate). Also Table 3.5 contains the optimal values ts(δ), as(δ),
bs(δ), γs(δ) of the parameters t, a, b, γ, that deliver minimum in (3.4.26)
for the specified s = s1(δ), as well as the value of A∗

21(t, δ, a, b, γ, 0)
in the optimal point (with the specified t, a, b, γ). It is worth mention-
ing that the constants Ks(δ), Qs(δ) do not satisfy the relation similar
to C0(δ) = (1 + s)Cs(δ), which is true for the constants Cs(δ) from
the uniform estimates, because the functions A12(x) and A20(x) contain
some operations of minimum and maximum resulting to that the sums
A12(x) + A∗

12(x) and A20(x) + A∗
20(x) for every α < 1 are greater than

the same sums with α = 1.

The optimization algorithm in (3.4.26) and (3.4.27) has been realized
for every δ ∈ [0, 1] and s � 0 in Matlab 7.12.0 by use of the procedure
fminsearch(. . . ) with the arguments t, a, b, γ.

Proof of Theorem 3.4.4. For the sake of brevity we shall omit the
arguments of the functions A21(t, δ, a, b, γ, α) and A∗

21(t, δ, a, b, γ, α). It
suffices to prove that for an arbitrary set of the parameters t, a, b, γ satisfying
the conditions of the theorem, for all α ∈ [0, 1], s � 0, x ∈ R, n � 1, and
F1, . . . , Fn ∈ F2+δ the inequality

|x|2+δΔn(x) � t2+δCs(δ)(�n + sτn) ∨ (A21�n +A∗
21τn) ∨ P (δ, a, b)�n

holds. Fix t and x. Then there are two possibilities:

1. |x| � t, then |x|2+δΔn(x) � t2+δCs(δ)(�n + sτn) for every 0 � s � 1
by (3.1.6);

2. |x| > t, then for the given a, b, n, and F1, . . . , Fn ∈ F2+δ there are three
possibilities:
a. cn(x; δ, a, b) � 0, or, in an equivalent form, a�n � |x|2+δ, whence,

by (3.2.6), we conclude that Δn(x) � κ � P (δ, a, b)/a �
P (δ, a, b)�n/|x|2+δ;

b. 0 < cn(x; δ, a, b) < x2, that is, x2 � (2π)−1 ∨ cn(x; δ, a, b) and
thus the conditions of Theorem 3.3.1 are met, according to which,
|x|2+δΔn(x) � P (δ, a, b)�n;

c. x2 � cn(x; δ, a, b). Taking also into account the condition x2 � t2,
by Theorem 3.4.1 we obtain |x|2+δΔn(x) � A21�n+A∗

21τn for every
0 < γ < 1 satisfying the conditions of the theorem and for arbitrary
α ∈ [0, 1].



92 Irina Shevtsova

Theorems 3.3.1–3.4.4 allow to describe an algorithm of evaluation of the
functions Qs(t, δ), Q

∗
s(t, δ) for every 0 < δ � 1, that guarantee the validity

of inequality (3.1.13):

sup
|x|�t

|x|2+δΔn(x) � inf
s�0

{Qs(t, δ)�n +Q∗
s(t, δ)τn} � inf

s�0
Qs(t, δ) (�n + sτn) ,

t � 0,

for all F1, . . . , Fn ∈ F2+δ and n � 1.

Theorem 3.4.7. For all 0 < δ � 1, n ∈ N, F1, . . . , Fn ∈ F2+δ, and
every t � 0 inequality (3.1.13) holds with

Qs(t, δ) :=

{
Qs(δ), t < ts(δ),
inf
a, b, γ

max
{
A21(t, δ, a, b, γ, 0), P (δ, a, b)

}
, t � ts(δ),

Q∗
s(t, δ) :=

{
sQs(δ), t < ts(δ),
A∗

21(t, δ, a(t), b(t), γ(t), 0), t � ts(δ),
for s ∈ (0, 1],

where ts(δ) � 1/
√
2π is the optimal value of the parameter t in (3.4.26);

the greatest lower bound is taken for every t � ts(δ) over the set all possible
values of the parameters a, b, γ, satisfying the conditions of Theorem 3.4.1,
and the conditions

A∗
21(t, δ, a, b, γ, 0) � sA21(t, δ, a, b, γ, 0), a � P (δ, a, b)/κ

(the quantity κ = 0.54 . . . is defined in (3.2.6)); a(t), b(t), γ(t) being the
values of the parameters a, b, γ, that deliver minimum in the definition of
Qs(t, δ).

For s = 0 inequality (3.1.13) holds with Q∗
0(t, δ) = 0 and

Q0(t, δ) =

⎧⎪⎨⎪⎩
Q0(δ), t < t0(δ),

inf
a, b, γ

{
(A21(t, δ, a, b, γ, 1)+A∗

21(t, δ, a, b, γ, 1)) ∨ P (δ, a, b)
}
,

t � t0(δ),

where t0(δ) � 1/
√
2π is the optimal value of the parameter t in (3.4.27),

and for t � t0(δ) the greatest lower bound for is taken over the set of
all possible values of the parameters a, b, γ, satisfying the conditions of
Theorem 3.4.1, as well as the condition a � P (δ, a, b)/κ.

Moreover, for every s ∈ [0, 1] and 0 < δ � 1

lim
t→∞

Qs(t, δ) = 1 + e = 3.7182 . . . , lim
t→∞

Q∗
s(t, δ) = 0.
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Corollary 3.4.8. For all 0 < δ � 1, F1, . . . , Fn ∈ F2+δ, n ∈ N, and
every t > 0

sup
|x|�t

(
1 + |x|2+δ

)
Δn(x)

� inf
s�0

{
Qs(t, δ)�n +Q∗

s(t, δ)τn +min
{Qs(t, δ)�n +Q∗

s(t, δ)τn
t2+δ

,

min
0�q�1

Cq(�n + qτn)
}}

.

Proof of Theorem 3.4.7. For the sake of brevity we shall omit the
arguments of the functions A21(t, δ, a, b, γ, α) and A∗

21(t, δ, a, b, γ, α). It is
easy to see that for all s, t � 0

sup
|x|�t

|x|2+δΔn(x) � sup
x∈R

|x|2+δΔn(x) � Qs(δ)�n + sQs(δ)τn

by Theorem 3.4.4. Thus, it suffices to prove that for arbitrary t � ts(δ),
s � 0 and every n ∈ N, F1, . . . , Fn ∈ F2+δ, |x| � t, α ∈ [0, 1], and a, b, γ,
satisfying the conditions of the theorem, the inequality

|x|2+δΔn(x) � (A21�n +A∗
21τn) ∨ P (δ, a, b)�n.

holds. Fixing t, a, b yields two possibilities:

1. cn(t; δ, a, b) � 0. Then for |x| � t there are three possibilities:
(a) cn(x; δ, a, b) � 0, or, in an equivalent form, a�n/|x|2+δ � 1,

whence by (3.2.6) we conclude that Δn(x) � κ � P (δ, a, b)/a �
P (δ, a, b)�n/|x|2+δ.

(b) 0 < cn(x; δ, a, b) � x2. Since we also have x2 � t2 � (2π)−1, by
Theorem 3.3.1 we conclude that |x|2+δΔn(x) � P (δ, a, b)�n.

(c) cn(x; δ, a, b) � x2 � t2. In this case, by Theorem 3.4.1, for all α ∈
[0, 1] we have

|x|2+δΔn(x) � A21�n +A∗
21τn.

2. cn(t; δ, a, b) > 0. Since cn(x; δ, a, b) > cn(t; δ, a, b) > 0 for all |x| � t,
there are two possibilities for cn(x; δ, a, b):
(a) 0 < cn(x; δ, a, b) � x2. Since we also have x2 � t2 � (2π)−1, by

Theorem 3.3.1 we conclude that |x|2+δΔn(x) � P (δ, a, b)�n.
(b) cn(x; δ, a, b) � x2 � t2, then Theorem 3.4.1 yields

|x|2+δΔn(x) � A21�n +A∗
21τn.
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Let us find the limiting values of the functions Qs(t, δ), Q∗
s(t, δ) as t →

∞. On one hand, for every 0 < δ � 1, s � 0, and t � 0 we have

Qs(t, δ) � inf
a>0, b>1

P (δ, a, b) = 1 + e.

On the other hand, for fixed δ, a, b, γ, α by Remark 3.4.3 we have

lim
t→∞

A21(t, δ, a, b, γ, α) = γ−(2+δ), lim
t→∞

A∗
21(t, δ, a, b, γ, α) = 0,

and hence, for every s ∈ [0, 1]

lim
t→∞

Qs(t, δ) � lim
t→∞

Q0(t, δ)

� inf
a, b, γ

lim
t→∞

(A21(t, δ, a, b, γ, 1) +A∗
21(t, δ, a, b, γ, 1))∨

P (δ, a, b)

= inf
a, b, γ

max
{
b2+δ + a exp

{
b2+δ/a

}
, γ−(2+δ)

}
= 1 + e,

where the greatest lower bound is taken over the set of all a > 0, b > 1,
γ ∈ (0, 1) satisfying the conditions a � P (δ, a, b)/κ and (3.4.11), and is
attained at a = b2+δ (such a choice of a is possible for every b > 1, because
κ < 1 + e) and letting, first, γ → 1−, and then b → 1+.

Remark 3.4.9. Since in the definition of Qs(t, δ) with t > ts(δ),
s > 0, the maximum of A21 and P is minimized, the optimal value is
attained, when A21(t, δ, a, b, γ, 0) = P (δ, a, b), and hence, Qs(t, δ) =
P (δ, a(t), b(t))= A21(t, δ, a(t), b(t), γ(t), 0)�A∗

21(t, δ, a(t), b(t), γ(t), 0)/
s = Q∗

s(t, δ)/s for every s > 0 by the conditions of minimization. Thus,

Q∗
s(t, δ) � sQs(t, δ), s � 0, t � 0.

Remark 3.4.10. Generally speaking, the function Q∗
s(t, δ) has a disconti-

nuity at t = ts(δ) for every s > 0, since

lim
t→ts(δ)−

Q∗
s(t, δ) = sQs(δ) = sA21(ts, δ, as, bs, γs, 0)

� A∗
21(ts, δ, as, bs, γs, 0),

where ts = ts(δ), as = a(ts), bs = b(ts), γs = γ(ts), and the values
of A∗

21(ts, δ, as, bs, γs, 0) are usually considerably smaller than sQs(δ) for
s > 0 under consideration (see, e.g., Table 3.5).

The values of the functions Qs(t, δ) for some δ ∈ (0, 1] and t � ts(δ),
t = 0 are given in Table 3.6 for s = 0 and in Table 3.7 (in the third and
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Table 3.6 Upper Bounds for Q0(t, δ) From Theorem 3.4.7 (Q∗
0(t, δ) ≡ 0)

for Some t � 0 and δ ∈ (0, 1]

t\δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Non-i.i.d. Case With s = 0

0.0 21.26 19.51 17.95 16.55 15.30 14.19 13.23 12.35 11.54 10.79

3.6 19.78 18.33 16.98 15.73 14.57 13.49 12.48 11.55 10.68 9.88

3.7 19.17 17.77 16.46 15.26 14.13 13.09 12.12 11.21 10.38 9.60

3.8 18.57 17.19 15.91 14.73 13.65 12.65 11.73 10.88 10.08 9.34

3.9 17.87 16.54 15.32 14.20 13.17 12.22 11.34 10.53 9.79 9.08

4.0 17.19 15.93 14.77 13.70 12.72 11.81 10.98 10.21 9.49 8.84

5.0 12.35 11.55 10.81 10.13 9.49 8.90 8.36 7.86 7.41 6.99

6.0 9.60 9.05 8.54 8.07 7.65 7.26 6.92 6.62 6.32 6.07

7.0 8.44 7.91 7.44 7.03 6.69 6.42 6.22 6.04 5.88 5.72

8.0 8.02 7.55 7.13 6.75 6.43 6.15 5.94 5.80 5.67 5.55

9.0 7.67 7.24 6.86 6.52 6.22 5.96 5.74 5.60 5.49 5.39

10.0 7.36 6.98 6.63 6.33 6.05 5.81 5.59 5.44 5.34 5.25

50.0 4.56 4.50 4.44 4.38 4.33 4.28 4.23 4.18 4.14 4.10

∞ 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72

I.i.d. Case With s = 0

0.0 16.90 15.75 14.68 13.61 12.62 11.72 10.88 10.09 9.34 8.60

3.6 15.85 14.80 13.84 12.95 12.11 11.32 10.58 9.87 9.21 8.58

3.7 15.54 14.52 13.57 12.69 11.86 11.08 10.35 9.66 9.01 8.40

3.8 15.22 14.22 13.29 12.42 11.61 10.84 10.12 9.45 8.81 8.21

3.9 14.90 13.92 13.01 12.15 11.36 10.60 9.90 9.24 8.61 8.03

4.0 14.58 13.61 12.72 11.89 11.10 10.37 9.68 9.03 8.42 7.86

5.0 11.56 10.81 10.11 9.46 8.85 8.28 7.76 7.27 6.83 6.43

6.0 9.22 8.66 8.13 7.65 7.21 6.81 6.45 6.12 5.83 5.60

7.0 7.52 7.12 6.77 6.46 6.18 5.94 5.77 5.65 5.54 5.44

8.0 6.47 6.24 6.05 5.92 5.80 5.69 5.58 5.48 5.38 5.28

9.0 6.05 5.93 5.82 5.72 5.62 5.52 5.43 5.33 5.24 5.16

10.0 5.85 5.75 5.65 5.56 5.47 5.38 5.30 5.22 5.13 5.05

50.0 4.25 4.23 4.22 4.20 4.18 4.16 4.14 4.12 4.10 4.09

∞ 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72

subsequent columns) for s = s1(δ). For Q∗
s(t, δ) with s > 0 the following

upper bounds can be used

Q∗
s(t, δ) �

{
sQs(t, δ) � sQs(δ), ∀t � 0,
A∗

21(t, δ, a(t), b(t), γ(t), 0)�A∗
21(ts, δ, as, bs, γs, 0), t � ts(δ).
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Table 3.7 Upper Bounds for Q∗
s(t, 1) (the Second Column) and Qs(t, δ) (the Third

and Subsequent Columns) From Theorem 3.4.7 for Some t � ts(δ) and δ ∈ (0, 1]
With s = s1(δ) Which Is the Minimal Point of Minimum of Cs(δ) (Values of s1(δ)
Are Given in Table 3.5)

t\δ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Non-i.i.d. Case With s = s1(δ)

ts(δ) 0.210 17.88 16.34 15.02 13.86 12.83 11.92 11.12 10.41 9.79 9.22

3.9 0.199 17.76 16.34 15.02 13.86 12.83 11.92 11.12 10.41 9.78 9.08

4.0 0.150 17.10 15.87 14.73 13.68 12.71 11.81 10.97 10.20 9.49 8.83

5.0 0.006 12.34 11.55 10.81 10.12 9.49 8.90 8.36 7.86 7.41 6.99

6.0 0.001 9.60 9.05 8.54 8.07 7.65 7.26 6.92 6.62 6.32 6.07

7.0 0.001 8.47 7.91 7.44 7.03 6.69 6.42 6.22 6.04 5.88 5.72

8.0 0.001 8.02 7.55 7.13 6.75 6.43 6.15 5.94 5.80 5.67 5.55

9.0 0.001 7.67 7.24 6.86 6.52 6.22 5.96 5.74 5.60 5.49 5.39

10.0 0.001 7.36 6.98 6.63 6.33 6.05 5.81 5.59 5.44 5.34 5.25

50.0 0.001 4.56 4.50 4.44 4.38 4.33 4.28 4.23 4.18 4.14 4.10

∞ 0 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72

I.i.d. Case With s = s1(δ)

ts(δ) 0.166 15.40 14.30 13.29 12.38 11.55 10.79 10.11 9.49 8.93 8.43

3.9 0.100 14.82 13.88 12.99 12.15 11.35 10.60 9.90 9.24 8.61 8.03

4.0 0.077 14.51 13.58 12.71 11.88 11.10 10.37 9.68 9.03 8.42 7.86

5.0 0.005 11.55 10.81 10.11 9.46 8.85 8.28 7.76 7.27 6.83 6.43

6.0 0.001 9.22 8.66 8.13 7.65 7.21 6.81 6.45 6.12 5.83 5.60

7.0 0.001 7.52 7.12 6.77 6.46 6.18 5.94 5.77 5.65 5.54 5.44

8.0 0.001 6.47 6.24 6.05 5.92 5.80 5.69 5.58 5.48 5.38 5.28

9.0 0.001 6.05 5.93 5.82 5.72 5.62 5.52 5.43 5.33 5.24 5.16

10.0 0.001 5.85 5.75 5.65 5.56 5.47 5.38 5.30 5.22 5.13 5.05

50.0 0.001 4.25 4.23 4.22 4.20 4.18 4.16 4.14 4.12 4.10 4.09

∞ 0 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72

Values of s = s1(δ), Qs(δ), and A∗
21(ts, δ, as, bs, γs, 0) are given in the

sixth, eighth, and seventh columns of Table 3.5, respectively. As it can be
seen from Table 3.7, with the account of Qs(t, δ) � 1 + e, t � 0, for all
t � ts(δ) under consideration the values of Q∗

s(t, δ) are substantially smaller
than the values of sQs(t, δ) with s = s1(δ).

In view of the great importance of the case δ = 1 we also evaluate
Q∗

s(t, 1) = A∗
21(t, 1, a(t), b(t), γ(t), 0) for s = s1(1) and some t � ts(1)

(see the second column in Table 3.7). In particular, we have
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Corollary 3.4.11. For all F1, . . . , Fn ∈ F3 and n ∈ N

sup
|x|�t

|x|3Δn(x) �

⎧⎪⎪⎨⎪⎪⎩
17.88(�n + τn), t � 0,
17.88�n + 0.21τn, t � 3.89,
17.10�n + 0.15τn, t � 4,
12.34�n + 0.006τn, t � 5.

For every F1 = · · · = Fn ∈ F3 and n ∈ N

sup
|x|�t

|x|3Δn(x) �

⎧⎪⎪⎨⎪⎪⎩
15.40(�n + 0.646τn), t � 0,
15.40�n + 0.166τn, t � 3.71,
14.51�n + 0.077τn, t � 4,
11.55�n + 0.005τn, t � 5.

Theorem 3.4.7 also yields upper bounds for the Kolmogorov function

D∗(x, δ) = sup
n�1, F1,...,Fn∈F2+δ

Δn(x)/�n, x ∈ R.

Corollary 3.4.12. For every 0 < δ � 1 we have

sup
|x|�t

|x|2+δD∗(x, δ) � Q0(t, δ), t � 0,

1 � lim sup
|x|→∞

|x|2+δD∗(x, δ) � 1 + e < 3.7183,

sup
n�1, F1,...,Fn∈F2+δ

lim sup
|x|→∞

|x|2+δΔn(x)/�n � 1.

Proof. The first two upper bounds for D∗(x, δ) follow from the definition
and the properties of the function Q0(t, δ). The lower bound for D∗(x, δ)
follows from [9] (see (3.1.12)). To prove the third upper bound it suffices to
note that for fixed n ∈ N and F1, . . . , Fn ∈ F2+δ the value of the Lyapunov
fraction �n also remains fixed (separated from zero and from infinity), and
hence, for arbitrary fixed a > 0, b > c > 1 the conditions

x2 � b2

2(b− c)
ln

|x|2+δ

a�n
� 1

2π
,

which guarantee the validity of Theorem 3.3.1, are fulfilled for all suffi-
ciently large |x|. Thus, by Theorem 3.3.1, for every a > 0 and b > 1 with
c = (b+ 1)/2 ∈ (1, b) we have
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lim sup
|x|→∞

|x|2+δΔn(x)/�n

� b2+δ + a exp
{b2+δ

a

}
× lim sup

|x|→∞

( a�n
x2+δ

)(b−1)/2
= b2+δ.

Now letting b → 1+, we obtain the claim.
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CHAPTER 44
On the Nonuniform Berry–Esseen Bound

Iosif Pinelis
Michigan Technological University, Houghton, MI, United States

4.1 UNIFORM AND NONUNIFORM BERRY–ESSEEN (BE)
BOUNDS

Suppose that X1, . . . , Xn are independent zero-mean random variables
(r.v.’s), with

S := X1+· · ·+Xn, A :=
∑

E |Xi|3 < ∞, and B :=
√∑

EX2
i > 0.

Consider

Δ(z) := |P(S > Bz)− P(Z > z)| and rL := A/B3,

where Z ∼ N(0, 1) and z � 0; of course, rL is the so-called Lyapunov
ratio. Note that, in the “iid” case (when the Xi’s are iid), rL will be on the
order of 1/

√
n.

In such an iid case, let us also assume that EX2
1 = 1.

Uniform and nonuniform BE bounds are upper bounds on Δ(z) of the
forms

cu rL and cnu
rL

1 + z3
, (4.1.1)

respectively, for some absolute positive real constants cu and cnu and for
all z � 0.

Apparently the best currently known upper bound on cu (in the iid case)
is due to Shevtsova [44] and is given by the inequality

cu � 0.4748. (4.1.2)

On the other hand, Esseen’s example [8] with iid Xi’s, n → ∞, z
appropriately close to 0, and

P(X1 = 1− pEss) = pEss = 1− P(X1 = −pEss) (4.1.3)

with pEss := 2 −
√
10/2 = 0.4188 . . . showed that cu cannot be less

than 3+
√
10

6
√
2π

= 0.4097 . . .. A similar lower bound on the BE constant for

Inequalities and Extremal Problems in Probability and Statistics. http://dx.doi.org/10.1016/B978-0-12-809818-9.00004-5
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“interval” probabilities of the form P(S ∈ I) for intervals I ⊆ R (instead
of the probabilities P(S > Bz)) was recently shown by Dinev and Mattner
[6] to be

√
2
π = 0.7978 . . ., which is almost twice as large as 0.4097 . . ..

Thus, the optimal value of cu is already known to be within the rather
small interval from 0.4097 to 0.4748 in the iid case (in the general, non-
iid case the best known upper bound on cu appears to be 0.5600, due to
Shevtsova [46]; a slightly worse upper bound, 0.5606, had been obtained by
Tyurin [50]).

4.2 THE BOHMAN–PRAWITZ–VAALER SMOOTHING
INEQUALITIES

To a significant extent the mentioned best known uniform BE bounds are
based on the smoothing result due to Prawitz [43, (1a, 1b)], which states
the following. There exists a nonempty class of functions M : R → C

such that

M(t) = 0 if |t| > 1 (4.2.1)

and for any r.v. X , any real T > 0, and any real x,

G

(
MT (−#)EeiX#

)
(x) � P(X < x)− 1

2
� P(X � x)− 1

2

� G

(
MT (#)EeiX#

)
(x), (4.2.2)

where

MT (#) := M(#/T ), (4.2.3)

G(f)(x) :=
i

2π
p.v.

∫ ∞

−∞
e−itxf(t)

dt

t
, (4.2.4)

and p.v. stands for “principal value”, so that

p.v.

∫ ∞

−∞
:= lim

ε↓0
A↑∞

(∫ −ε

−A
+

∫ A

ε

)
;

here and subsequently, the symbol # stands for the argument of a function.
Of course, the upper and lower bounds in (4.2.2) must take on only real
values; this can be provided by the condition that

M1 := ReM is even and M2 := ImM is odd. (4.2.5)

Note also that the upper and lower bounds in (4.2.2) easily follow from each
other, by changing X to −X .
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Inequalities (4.2.2) may be compared with the corresponding well-
known inversion formula

P(X < x) +
1

2
P(X = x)− 1

2
= G(EeiX#)(x) (4.2.6)

for all real x; see, for example, [12, (2)].

The function M(#), whose rescaled version MT (#) is the multiplier
of the c.f. EeiX# in the upper and lower bounds in (4.2.2), is the Fourier
transform of the function M̌(#) := 1

2π

∫∞
−∞ e−it#M(t) dt, which may

be considered as a bounding smoothing kernel—since, in view of (4.2.1),
the spectral decomposition of M̌ does not have components of frequencies
greater than 1. So, the factors M(±#/T ) in the bounds in (4.2.2) filter out
the components of the function G(EeiX#) (in (4.2.6)) of frequencies greater
than T and thus make the function smoother and flatter, especially if T is
not large. Therefore, the inverse Fourier transform M̌(#) of M(#) may be
referred to as a bounding smoothing filter.

Another way to look at such smoothing is through the Paley–Wiener
theory, which implies that the Fourier spectrum of a function is contained
in the interval [−T, T ] iff the function is (the restriction to R of) an entire
analytic function of exponential type T and hence rather slowly varying
if T is not large; see, for example, [7, Section 43]. On the other hand,
from an analytical viewpoint, the presence of the factors M(±#/T ) is
useful, because one then needs to bound the values EeitX of the c.f. of
X only for t ∈ [−T, T ], which is a much easier task unless T is too
large.

One particular bounding smoothing filter M was given by Prawitz [43]
and can be defined by the formula

M(t) = [(1− |t|)πt cotπt+ |t| − i(1− |t|)πt] I{|t| < 1} (4.2.7)

for all t �= 0 [43]; here and subsequently, it is tacitly assumed that the
functions of interest are extended to 0 by continuity. For this particular
multiplier M , which was shown in [43] to have a certain optimality property,
the corresponding smoothing kernel M̌(#) := 1

2π

∫
R
e−it#M(t) dt is given

by the formula

M̌(x) =
2πx sinx

(
2π(x+ 2π)− x2ψ′ ( x

2π

))
− (1− cosx)

(
x3ψ′′ ( x

2π

)
+ 4π2(x+ 4π)

)

4π3x3
.
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−4p 2p 4p
x

−0.05

0.1

M(x) for x /∈ {−2nπ : n ∈ {0} ∪ N}, where
ψ is the digamma function, defined by
the formula ψ(z) = Γ′(z)/Γ(z); this
kernel is asymmetric and alternating in
sign; also,

∫∞
−∞ M̌(x) dx = M(0) =

1; a part of the graph of this kernel M̌
is shown here on the left.

Remark 4.2.1. The derivative M ′ of the Prawitz bounding smoothing
filter M as in (4.2.7) is a function of bounded variation. So, twice integrating∫
R
e−it#M(t) dt by parts and using the Riemann–Lebesgue lemma, one can

easily see that the corresponding bounding smoothing kernel M̌ is such that
x2M̌(x) − sinx → 0 as |x| → ∞ and hence

∫
R
|M̌(x)| dx < ∞. Thus,

Prawitz’s particular M is the Fourier transform of a function M̌ ∈ L1(R).

Earlier, inequalities of the form (4.2.2) were obtained by Bohman [3] for
another class of functions M . Another approach to Prawitz’s results was
demonstrated by Vaaler [52].

4.3 NONUNIFORM BE BOUNDS: NAGAEV’S RESULT
AND METHOD

The classical result by Nagaev [21] is that in the “iid” case

|P(S > z
√
n)− P(Z > z)| � cnu

E|X1|3
(1 + z3)

√
n

(4.3.1)

for all real z � 0, where cnu is an absolute constant. Bikelis [2] extended this
result to the case of non-iid Xi’s. Nagaev’s method involves the following
essential components:

• truncation;
• Cramer’s exponential tilt, together with a uniform BE bound;
• an exponential bound on large deviation probabilities.

First, truncated versions of Xi, say X
(y)
i , are obtained, such that X(y)

i � y

for some real y > 0 and all i (the r.v.’s X
(y)
i may, in some variants of

this approach including [21], be improper in the sense that they may
take values that are not real numbers). The truncation is done in order to
make the exponential tilt and an exponential inequality possible. The value
of the truncation level y is chosen (i) to be large enough so that the tails of
the truncated sum S(y) := X

(y)
1 + · · ·+X

(y)
n be close enough to those of S

and, on the other hand, (ii) to be small enough so that the exponential tilt and
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the exponential inequality result in not too large a bound. In some variants,
including the ones in [2, 21], two different truncation levels are used.

Take any positive real number z0. Given a uniform BE bound cu rL as in
(4.1.1), one obviously has the nonuniform BE bound cnu

rL
1+z3 for z ∈ (0, z0)

and any real cnu � cu(1 + z30). So, without loss of generality z � z0. Two
main cases are then considered:

Case 1: z0 � z < c
√

ln(
√
n/E|X1|3) (“moderate deviations”);

Case 2: z � z0 ∨ c
√

ln(
√
n/E|X1|3) (“large deviations”);

here c is a positive constant.

In Case 1, of moderate deviations, the exponential tilting is performed,
which may be presented as follows. Take some real h > 0 and let
X̃1 = X̃

(h,y)
1 , . . . , X̃n = X̃

(h,y)
n be any r.v.’s such that

Eg(X̃1, . . . , X̃n) =
E ehS

(y)

g(X
(y)
1 , . . . , X

(y)
n )

EehS(y)
(4.3.2)

for all bounded (or for all nonnegative) Borel-measurable functions
g : Rn → R. Equivalently, one may require condition (4.3.2) only for Borel-
measurable indicator functions g; clearly, such r.v.’s X̃i do exist. It is also
clear that the r.v.’s X̃i are independent. These r.v.’s, the X̃i’s, may be referred
to as the tilted or, more specifically, h-tilted versions of the X

(y)
i ’s. Clearly,

without the truncation, the tilted versions of the original r.v.’s Xi may not
exist, since EehS may be infinite even if E|Xi|3 < ∞ for all i. Using (4.3.2)
with g(x1, . . . , xn) = e−h(x1+···+xn) I{x1 + · · · + xn > x}, it is easy
to see that

P(S(y) > x) = EehS
(y)

∫ ∞

x
du he−huP(x < S̃ � u) (4.3.3)

for all real x, where S̃ := X̃1 + · · ·+ X̃n.

Similarly, one can write

P(BZ > x) = EehBZ

∫ ∞

x
du he−huP(x < BZ +B2h � u) (4.3.4)

for all real x, since any h-tilted version of the r.v. BZ has the distribution
N(B2h,B2).

At that, good choices for y and h are of the form αx and ηx/B2, for
some real parameters α and η in (0, 1).
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So, to bound |P(S(y) > z
√
n) − P(Z > z)| (cf. (4.3.1)), one can

demonstrate sufficient closeness of the terms EehS and P(x < S̃ � u)
in (4.3.3) to the corresponding terms EehBZ and P(x < BZ +B2h � u) in
(4.3.4).

For each i, one notices that

E|X(y)
i |3ehX

(y)
i � ehyE|Xi|3 (4.3.5)

and then shows that EehX
(y)
i is close enough to 1 and, somewhat more

precisely, to EehZ
√

EX2
i , and that the mean and variance of X̃i are close

enough to hEX2
i and EX2

i , respectively. So, one shows that EehS(y) is close
to EehBZ , and the first two moments of S̃(y) are close enough to those of
BZ +B2h. Using now a uniform BE bound as in (4.1.1)—but for the X̃i’s
rather than the Xi’s, one shows that P(x < S̃ � u) is close enough to
P(x < BZ +B2h � u).

In Case 2, of large deviations, instead of the exponential tilting and
a uniform BE bound, one employs an exponential inequality to bound
P(S(y) > x) and hence P(S(y) > x) − P(BZ > x) from above; for the
lower bound on the latter difference, one simply uses −P(BZ > x).

4.3.1 A Historical Sketch of the Problem of Nonuniform
BE Bounds

The constant factors cnu in the mentioned papers [2, 21] were not explicit.
All papers known to this author with explicit values of cnu followed the
scheme of proof given by Nagaev [21], as delineated earlier.

Apparently the first such explicit value of cnu was greater than 1955, as
reported by Paditz [26]. In his dissertation [25], a much better value, 114.7,
was presented. Later, Paditz [27] showed that cnu < 31.935.

Michel [17] showed that in the iid case cnu � cu+8(1+e), which would
be less than 30.2211, assuming the mentioned value 0.4748 for cu, obtained
in the later paper by Shevtsova [44].

Again in the iid case, Nefedova and Shevtsova [22] briefly stated that
they had gone along the lines of the proof in [27] except using a better value
for cu (namely, 0.4784, obtained in [15]) in place of such a value (namely,
0.7915 [47]) used in [27], to get 25.80 for cnu.

Once again in the iid case, Nefedova and Shevtsova claimed in [23] that
cnu < 18.2. However, there appears to be an error there. Namely, the first
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inequality in [23, (14)] is equivalent to the reverse of the last inequality
on page 75 there, which latter is in turn equivalent to the condition x2 �
cn(x; δ, a, b, c) in [23, Theorem 1], which is also equivalent to the second
display on [23, page 75]; the expression cn(x; δ, a, b, c) is defined in the first
display on page 70 of [23].

So, for any given X,n, b, c, δ satisfying all the conditions of [23,
Theorem 1], the first inequality in [23, (14)] and the last inequality on [23,
page 75] can both hold only for one value of a. This incorrect inequality in
[23, (14)] is also used for [23, (16)].

Working along lines quite similar to those in [23], Grigor’eva and Popov
[10, 11] claimed that cnu < 22.2417 in the general, non-iid case. However,
there appears to be the same kind of errors there: compare [10, (9) and (11)]
with [23, (14) and (16)], respectively.

Finally, Shevtsova [45] showed that cnu � 17.36 in the iid case and
cnu � 21.82 in the general case.

On the other hand, it follows from a result by Chistyakov [5, Corollary 1]
that cnu is necessarily no less than 1, and this lower bound on cnu is
asymptotically exact in a certain sense for z → ∞. Apparently, this has
been the best known lower bound on cnu. However, it is easy to improve
this bound slightly and show that necessarily

cnu > 1.0135; (4.3.6)

this can be done by letting X1 have the centered Bernoulli distribution with
parameter p = 8/100 and then letting n = 1 and z ↑ 1− p.

However, as it was shown by Bentkus [1], the best constant factor for
n = 1 will be 1 if 1 + z3 in (4.3.1) is replaced by z3; it is also conjectured
in [1] that the same constant factor, 1, will be good for all n.

Thus, in the non-iid case the apparently best known lower bound on cnu
is over 21 times smaller than the best established upper bound on cnu, and
this gap factor is over 17 in the iid case.

4.3.2 Possible Improvements of Nagaev’s Method
A crucial component of the mentioned method offered by Nagaev [21] and
used in the subsequent papers [2, 9, 17, 18, 22–27, 49] is an exponential
inequality. However, the exponential bounds used in all of those papers
are not the best possible ones. An optimal exponential bound, in terms of
the first two moments and truncated absolute third moments of the Xi’s
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was given by Pinelis and Utev [42]. In fact, the paper [42] provided a
general method to obtain optimal exponential bounds, along with a number
of specific applications of the general method.

However, even the best possible exponential bounds, say for sums of
independent r.v.’s, can be significantly improved.

The reason for this is that the class of exponential moments functions is
very small (even though analytically very simple to deal with). Using a much
richer class of moments functions, Pinelis [31] obtained the following result.
Let X1, . . . , Xn be independent random variables (r.v.’s), with the sum S :=
X1 + · · · + Xn. For any a > 0 and θ > 0, let Γa2 and Πθ stand for any
independent r.v.’s such that Γa2 has the normal distribution with parameters
0 and a2, and Πθ has the Poisson distribution with parameter θ. Let also
Π̃θ := Πθ − EΠθ = Πθ − θ. Let σ, y, and β be any positive real numbers
such that ε := β

σ2y ∈ (0, 1). Suppose that
∑

i EX
2
i � σ2,

∑
i E(Xi)

3
+ �

β, EXi � 0, and Xi � y, for all i. Here and subsequently, we employ the
usual notation

x+ := 0 ∨ x and x− := 0 ∧ x = −(−x)+.

Let ηε,σ,y := Γ(1−ε)σ2 + yΠ̃εσ2/y2 . Then it is proved in [31] that

Ef(S) � Ef(ηε,σ,y) (4.3.7)

for all twice continuously differentiable functions f such that f and f ′′ are
nondecreasing and convex. A corollary of this result is that for all x ∈ R

P (S � x) � inf
t∈(−∞,x)

E(ηε,σ,y − t)3+
(x− t)3

� c3,0 P
LC(ηε,σ,y � x), (4.3.8)

where c3,0 := 2e3

9 ≈ 4.46 and the function R � x �→ PLC(η � x) is defined
as the least log-concave majorant over R of the tail function R � x �→
P(η � x) of a r.v. η. The bounds in (4.3.7) and (4.3.8) are much better than
even the best exponential bounds (expressed in the same terms).

A trade-off here is that the bounds given in (4.3.8) are significantly
more difficult to deal with, especially analytically, than exponential bounds.
However, this can be done, as shown in the following discussion. In
accordance with what was pointed out above, one needs an exponential
bound (or a better one) only in Case 2, of large deviations, when z � z0
∨ c

√
ln(

√
n/E|X1|3), which implies

E|X1|3/
√
n � e−z2/c2 . (4.3.9)
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Also, by (4.3.8), for any real τ < 1,

(1− τ)3P(S(y) > x) �
∞∑
j=0

Qj
λj

j!
e−λ,

where

x := Bz = z
√
n, y = αx, α ∈ (0, 1), Qj :=

(α1

z

)3
E(Z + uj)

3
+,

α1 :=
√

1− az20/α, a :=
E(y ∧ (X1)+)

3

z3
√
n

, uj := α
(
j − τ

α
− λ

)
z,

λ :=
a

α3
. (4.3.10)

Assume now that τc2 � 2, where c is as in (4.3.9). Since z � z0,
one has

Q0 � C0
E|X1|3
z3
√
n
, (4.3.11)

where

C0 := ez
2
0/c

2

E(Z − τz0)
3
+; (4.3.12)

here one uses the fact that eβt2E(Z − t)3+ is decreasing in t � 0 provided
that β � 1/2; in fact, this decrease is fast, especially when β < 1/2. Note
also that E(Z − t)3+ =

(
t2 + 2

)
ϕ(t) − t

(
t2 + 3

)
Φ̄(t) for all real t, where

ϕ and Φ̄ are the density and tail functions of Z.

Next, since Eg(βZ) is nondecreasing in β � 0 for any convex function g,

Qj � (α1/z0)
3E(Z + uj0)

3
+, where uj0 := α(j − τ/α− λ)z0.

Using now the identity E(Z + t)3+ = t3 + 3t+ E(Z − t)3+ for all real t and
the decrease of E(Z − t)3+ in t ∈ R, one has

∞∑
1

Qj
λj

j!
e−λ � C1(a)

E|X1|3
z3
√
n
, (4.3.13)

where

C1(a) :=

(
α1

αz0

)3
[ ∞∑

1

(u3j0 + 3uj0)
λj−1

j!
+ E(Z − u10)

3
+

+E(Z − u20)
3
+

λ2−1

2!
eλ
]
e−λ
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with λ as defined in (4.3.10). The sum
∑∞

1 in the above expression of C1(a)
is easy to evaluate explicitly. Also, since the left-hand side of (4.3.1) can
never exceed 1, without loss of generality

a � amax (4.3.14)

with amax = 1/cnu; working a bit harder, one may assume (4.3.14) with
amax significantly smaller than 1/cnu. Next, it appears that for values of the
parameters α and τ that have a chance to be optimal or quasioptimal, the
factor C1(a) will be decreasing in a ∈ [0, amax]. Therefore and in view of
(4.3.11) and (4.3.13), one will have

P(S(y) > x) � C0 + C1(0+)

(1− τ)3
E|X1|3
z3
√
n

(4.3.15)

with C0 as in (4.3.12) and C1(0+) = (αz0)
−3E(Z + (α − τ)z0)

3
+. One

can improve the above estimates by partitioning the interval [0, amax] into
a number of smaller subintervals and then considering the corresponding
cases depending on which of the subintervals the value of a is in.

Thus, it is shown that P(S(y) > x) can be appropriately bounded using
the better-than-exponential bound in (4.3.8), and at that in a rather natural
manner and incurring almost no losses. It should be clear that the expression
on the right-hand side of inequality (4.3.15) will become a term in a bigger
expression that is an upper bound on the left-hand side of (4.3.1). That latter,
bigger expression will then have to be (quasi)minimized with respect to z0,
α, η, τ , and the other parameters, subject to the necessary restrictions on
their values.

Also, one can use ideas from [19, 20, 39, 40] to improve the estimation
of the effect of truncation, as compared with the way that was done in the
mentioned papers [2, 9, 17, 18, 21–27, 49], as well as more “synthetic” ways
to bound moments of the tilted distribution—cf. results in [32, 33, 35, 36].

In addition, as in [23], one can use the uniform bound 0.3328(E|X1|3 +
0.429)/

√
n from [44], which is smaller than the previously mentioned

bound of the classical form cuL = cuE|X1|3/
√
n with cu = 0.4748. There

are a few other potentially useful modifications. Thus, the improvements
concern every one of the three major ingredients of Nagaev’s method listed
on page 106. By utilizing the above ideas, one may hope to improve the up-
per bound on cnu to about 10 in the iid case and to about 12 in the
general case. When and if such an objective is attained, the gap between the
available upper and lower bounds on cnu will be decreased about 1.5 times.
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However, significant further progress after that seems unlikely within
the framework of the method of [21]. One of the main obstacles here is the
factor ehy as in (4.3.5). Since good choices for y and h turn out to be αx
and ηx/B2 with α and η somewhat close to 0.5, this factor will then be
something like ez

2/4, which is large for large enough z.

Yet, the factor ehy is the best possible one in (4.3.5) (even assuming that
X

(y)
i = Xi and hence X

(y)
i is zero-mean). Such a large factor is necessary

when Xi has a two-point distribution highly skewed to the right. On the
other hand, certain considerations suggest that the least favorable situation
in Case 1 of moderate deviations is when n is very large but z is not so, and
then the mentioned least favorable distribution (for the uniform BE bound)
given by (4.1.3) is only slightly skewed. This creates a significant tension in
using the exponential tilt.

One may try to reduce the factor ehy by decreasing α and hence y—but
this will increase fast the effect of truncation, which is (at least roughly)
proportional to 1/α3.

Even if one were able to get rid of the factor ehy altogether, the corre-
sponding uniform BE bound on the rate of convergence to the probability
P(x < BZ+B2h � u) in (4.3.4) would still seem relatively too large, since
this probability itself is less than P(x < BZ + B2h) = P (Z > (1− η)z)
and therefore is rather small for what appears to be the least favorable
values of z, such as 2.5 to 3.5 (and values of η typically not too far from
0.5). In contrast, the mentioned asymptotic lower bound by Esseen [8]
(recall (4.1.3)) is attained for z close to 0; furthermore, the corresponding
asymptotic expression is rather highly peaked near the maximum and is thus
much smaller outside of a neighborhood of the maximum point.

Yet another apparently powerful cause of tension is as follows. After the
Xi’s have been truncated, a natural bound on |P(S(y) > x)− P(BZ > x)|,
obtained via either the exponential tilt or a Stein-type method, decays in an
exponential rather than power fashion; see, for example, the results [4, 30],
which imply an upper bound of the form c(λ)E|X1|3

eλz
√
n

for real λ > 0, say in
the iid case. The factor 1/eλz decays much faster than 1/(1 + z3) when z
is large. However, the former factor may be much greater than the latter,
especially if λ is not large and z is not very large. For instance, if λ = 1/2

as in [4], then maxz>0
1

eλz

/
1

1+z3 = 10.8 . . . , attained at z = 5.9719 . . . .
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In the next section, a new approach to obtaining nonuniform BE bounds
is described, based on the Fourier method, complemented by extremal
problem methods.

4.4 A NEW WAY TO OBTAIN NONUNIFORM BE BOUNDS

Take any function h ∈ C1 such that (the limit) G(h) exists (and is) in R

and h(t)/t → 0 as |t| → ∞; here and in what follows, Ck denotes the class
of all k times continuously differentiable complex-valued functions defined
on R. Take any x ∈ R. Note that G(1)(x) = 1

2 signx—say, by (4.2.6) with
X = 0. So, writing G(h) = h(0)G(1) + G (h− h(0)) and evaluating the
p.v.-integral in the expression for G (h− h(0)) by parts, one has

xG(h)(x) =
1

2
h(0)x signx+ iG(Λh)(x) (4.4.1)

if x �= 0, where the linear operator Λ is defined by the formula

(Λh)(t) := −t
d

dt

h(t)− h(0)

t
= −h(0)− [h(t) + h′(t)(−t)]

t
(4.4.2)

for t �= 0. In fact, identity (4.4.1) holds for x = 0 as well, in view of the
definitions of G and Λ. By induction, for all k ∈ N := {1, 2, . . . }

(Λkh)(t) = −k! t−k

⎛⎝h(0)−
k∑

j=0

h(j)(t)
(−t)j

j!

⎞⎠
= (−1)k

∫ 1

0
[h(k)(t)− h(k)(αt)] kαk−1 dα (4.4.3)

if h ∈ Ck and t �= 0, and hence (Λkh)(0) = 0. So, iterating (4.4.1), one has

G(h)(x) =
h(0) signx

2
+

(
i

x

)k

G(Λkh)(x) (4.4.4)

for all real x �= 0, all k ∈ N, and functions h such that

h ∈ Ck, G(h) exists in R,

and h(j)(t)/t → 0 for all j = 1, . . . k as |t| → ∞. (4.4.5)

More generally,

G(h)(x) =
h(0) signx

2
+

i

2π

k∑
j=1

h(j)(0+)− h(j)(0−)

j(ix)j
+

(
i

x

)k

G(Λkh)(x)

(4.4.6)
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for all real x �= 0, all k ∈ N, and all functions h such that

h ∈ C(R), h ∈ Ck(R \ {0}), G(h) exists in R, and

for each j ∈ {1, . . . k} there exists h(j)(0±) ∈ R

and h(j)(t)/t → 0 as |t| → ∞. (4.4.7)

The condition h ∈ Ck(R \ {0}) in (4.4.7) can be slightly relaxed, to the
following:

h ∈ Ck−1(R\{0}) and h(k−1)is of locally bounded variation on R\{0},
(4.4.8)

with G(Λkh)(x) then understood as G(Λ̃kh)(x) + (−1)kG̃(h(k−1))(x),
where (Λ̃kh)(t) := −k! t−k

(
h(0)−

∑k−1
j=0 h

(j)(t) (−t)j

j!

)
for t �= 0 and

G̃(h(k−1))(x) := i
2π p.v.

∫∞
−∞ e−itx dh(k−1)(t)

t .

Identity (4.4.4) immediately implies

Theorem 4.4.1. Take any k ∈ N and any real T > 0 and x � 0. Let
X be any r.v. with E|X|k < ∞. Let f denote the c.f. of X . Let M be as in
(4.2.2), with the additional requirement that M ∈ Ck. Then

− ikG
(
Λk rT,−

)
(x) � xkP(X > x) � xkP(X � x) � −ikG

(
Λk rT,+

)
(x), (4.4.9)

where

rT,±(#) := MT (∓#)f(#). (4.4.10)

Remark. Condition E|X|k < ∞ in Theorem 4.4.1 implies f ∈ Ck, so
that (4.4.5) holds with g = rT,±.

As was mentioned, the Prawitz smoothing filter M given by (4.2.7)
provides the tightest, in a certain sense, upper and lower bounds in (4.2.2) on
the d.f. of X . However, it is not smooth enough to be used in Theorem 4.4.1
in the most interesting in applications case k = 3. Namely, that M is
not even in C1—whereas one needs M ∈ C3 in Theorem 4.4.1 for
k = 3. There are a number of ways to develop such a smooth enough
smoothing filter. Some of them can be based on Proposition 4.5.1 in
Section 4.5 of this paper; see, for example, the function M = M0,2 given by
formula (4.5.4).

The identity (4.2.6) can be rewritten in the following more general and
hence sometimes more convenient form.
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Proposition 4.4.2. Let L be any complex-valued function of bounded
variation on R, and let � be its Fourier–Stieltjes transform, so that �(t) =∫∞
−∞ eitx dL(x) for all real t. Assume also that L is regularized so that
2L(x) = L(x−) + L(x+) for all x ∈ R and extended to [−∞,∞] so
that L(±∞) = limx→±∞ L(x). Then

L(x)− 1

2
[L(∞)− L(−∞)] = G(�)(x) for all real x. (4.4.11)

This follows immediately from (4.2.6), because (i) both sides of (4.4.11)
are linear in L and (ii) any regularized function of bounded variation on R is
a linear combination (with complex coefficients) of regularized distribution
functions.

Suppose that � : R → C is a function which may depend on a number of
parameters. For brevity, let us say that the function � is a quasi-c.f. if it can
be represented as a linear combination of k c.f.’s with (possibly complex)
coefficients such that the length k of the combination and the coefficients
are bounded uniformly over all possible values of the parameters.

Clearly, the product of two quasi-c.f.’s is a quasi-c.f. Also, any linear
combination of two quasi-c.f.’s is a quasi-c.f. Moreover, one has the
following simple proposition.

Proposition 4.4.3. Take any natural m. Let N denote the c.f. of a r.v.
Y whose distribution may depend on a number of parameters. Suppose
that E|Y |m is (finite and) bounded uniformly over all possible values of the
parameters. Then the mth derivative N (m) of N is a quasi-c.f.

Proof of Proposition 4.4.3. Let us exclude the trivial case when
E|Y |m = 0. If m is even or EY m

+ = 0 or EY m
− = 0, then Ñ (m)(#) :=

EY meiY #

EY m is a c.f., and N (m) = (imEY m)Ñ (m), so that N (m) is a quasi-c.f.
In the remaining case one has EY m

+ > 0 and EY m
− > 0, so that one can

similarly write N (m)(#) = imEY m
+

EY m
+ eiY #

EY m
+

+ (−i)m EY m
−

EY m
− eiY #

EY m
−

.

A quick proof of Nagaev’s nonuniform BE bound (4.3.1)
It can be easily obtained based on Theorem 4.4.1. Indeed, let T = cT

√
n/β3,

where β3 := E|X1|3 and cT is a small enough positive real constant. Let
A <

	
B mean |A| � CB for some absolute constant C. Let X := S/

√
n. If

T � 1 then 1 <
	

β3√
n

. So, for all real x � 0, by the Markov and Rosenthal
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inequalities, (1 + x3)P(X � x) � 1 + E|X|3 <
	

1 + β3√
n

<
	

β3√
n

and

similarly (1 + x3)P(Z � x) <
	

β3√
n

, whence (4.3.1) follows. It remains to

consider the case T > 1. Note that then n > (β3/cT )
2 � 3 and hence

n � 4 provided that cT � 1/
√
3. In view of the uniform BE bound,

Theorem 4.4.1, and (4.4.3), in order to prove (4.3.1) it is enough to show
that G

(
r′′′1,f (α#)− r′′′1,g(α#)

)
<
	

β3/
√
n and G

(
r′′′2,f (α#)

)
<
	

β3/
√
n

over α ∈ (0, 1], where rj,f (#) := Mj(
#
T )f(#), j = 1, 2, the Mj’s are

as in (4.2.5), M is (say) as in (4.5.4), f is the c.f. of X := S/
√
n, and

g(#) := e−#2/2 (so that g may be considered as a special case of f ).
One has

r′′′j,f (#) =

3∑
q=0

(
3

q

)
1

T q
M

(q)
j

(
#

T

)
f (3−q)(#). (4.4.12)

By (4.5.4) and (4.5.6), M1 is the c.f. of a distribution with a finite fourth mo-
ment, whereas M2 = κM ′

1. Hence, by Proposition 4.4.3, M (q)
j is a quasi-c.f.

for each pair (j, q) ∈ {1, 2}×{0, 1, 2, 3}, and then so is M (q)
j (#T ). Similarly,

f is the c.f. of the r.v. X with E|X|3 <
	

1 + β3√
n

<
	

1, by the Rosenthal
inequality and the case condition T > 1. So, again by Proposition 4.4.3,
f (3−q) is a quasi-c.f. for each q ∈ {0, 1, 2, 3}. Thus, M (q)

j (α#T )f (3−q)(α#)

is a quasi-c.f. and, by Proposition 4.4.2, G
(
M

(q)
j

(
α#
T

)
f (3−q)(α#)

)
<
	

1,
for each (j, q) ∈ {1, 2} × {0, 1, 2, 3}. Therefore and because T > 1,

G

((
3

q

)
1

T q
M

(q)
j

(
α#

T

)
f (3−q)(α#)

)
<
	

1

T q
� 1

T

<
	

β3√
n

for each (j, q) ∈ {1, 2} × {1, 2, 3}; (4.4.13)

note that q = 0 is not included here.

It remains to show that G1α(f
′′′ − g′′′) <

	
β3√
n

and G2α(f
′′′) <

	
β3√
n

for
α ∈ (0, 1], where

Gjα(h)(x) := G

(
Mj

(
α#

T

)
h(α#)

)
(x). (4.4.14)

For j ∈ {0, 1, 2, 3}, introduce f
(j)
1 (t) :=

(
d
dt

)j
f1(t) and f

(j)
1n (t) :=

f
(j)
1 (t/

√
n), where f1 denotes the c.f. of X1.
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Similarly, starting with g1 := g in place of f1, define g
(j)
1n , and then

let d(j)1n := f
(j)
1n − g

(j)
1n and h

[j]
1n :=

∣∣∣f (j)
1n

∣∣∣ ∨ ∣∣∣g(j)1n

∣∣∣; omit superscripts (0)

and [0]. Note that f = fn
1n and hence

√
nf ′′′ = f31 + f32 + f33, where

f31 := (n − 1)(n − 2)fn−3
1n

(
f
(1)
1n

)3
, f32 := 3(n − 1)fn−2

1n f
(1)
1n f

(2)
1n ,

and f33 := fn−1
1n f

(3)
1n ; do similarly with g and g1 in place of f and

f1. By Proposition 4.4.3, Mj

(
α#
T

)
f33/β3 is a quasi-c.f. and hence, by

Proposition 4.4.2, Gjα(f33) <	 β3, for j ∈ {1, 2}.

So, it suffices to show that G1α(f3k − g3k) <
	

β3 and G2α(f3k) <
	

β3

for k ∈ {1, 2}. This can be done in a straightforward manner using the
following estimates for j ∈ {0, 1, 2, 3} and |t| � T : M1 <

	
1, M2(

t
T ) <	

|t|
T <

	
|t|β3/

√
n, h1n(t)n−j � e−ct2 (where c is a positive real number de-

pending only on the choice of cT ), h[1]1n(t) <	 |t|/√n, h[2]1n(t) <	 1, |d(j)1n (t)| <	
β3(|t|/

√
n)3−j , and hence fn−j

1n (t) − gn−j
1n (t) <

	
|t|3e−ct2β3/

√
n; cf., for

example, [28, Ch. V, Lemma 1]. For instance, |f31 − g31| <
	

n2(D311 +

D312), where D311(t) :=
(
|fn−3

1n − gn−3
1n |

(
h
[1]
1n

)3)
(t) <

	
|t|3e−ct2 β3√

n

( |t|√
n

)3
and D312(t) :=

(
hn−3
1n

(
h
[1]
1n

)2|d(1)1n |
)
(t) <

	
e−ct2

( |t|√
n

)2
β3
( |t|√

n

)2, so that

G1α(f31 − g31) <	
∫∞
−∞(t6 + t4)e−ct2β3

dt
|t| <	 β3.

Of course, the above argument is rather crude and yet it demonstrates that
the method based on the smoothing inequalities (4.4.9) is quite effective. It
also strongly suggests that this method can be used further, in order to obtain
an explicit and appropriately small upper bound on the constant factor cnu.

Let us now discuss some of the refinements that could be used within the
general framework of the above quick proof of (4.3.1). There, in particular,
we needed to bound

L(H) :=

∫ 1

0
[G (H(α#)) (x)−G (H(#)) (x)] 3α2 dα, (4.4.15)

where H is of the form M1(
#
T )(f3k − g3k) or M2(

#
T )f3k for k ∈ {1, 2}—

recall (4.4.9), (4.4.10), and (4.4.3). Tacitly, that bounding was then done
using the trivial inequalities

|L(H)| � 2 sup
α∈(0,1]

|G (H(α#)) (x)| � 2
1

2π

∫ ∞

−∞
|H(t)| dt|t| , (4.4.16)
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where in turn we used the definition (4.2.4) of G and the trivial identity
|e−itx| = 1 for real t and x; the integral in (4.4.16) exists even in the
Lebesgue sense, since |f3k(t)− g3k(t)| = O(|t|) and |M2(t)| = O(|t|).

In fact, the factor 2 in the last bound in (4.4.16) on |L(H)| can be
removed, so that one has

|L(H)| � 1

2π

∫ ∞

−∞
|H(t)| dt|t| . (4.4.17)

Indeed, first of all note here that the factor α can be easily moved, in a way,
from the argument of the general and hard to control function H into that of
the much simpler and more specific exponential function, using the simple
identity

G (H(α#)) (x) = G (H(#))
(x
α

)
, (4.4.18)

which implies that

L(H) =
i

2π

∫ ∞

−∞
I(tx)H(t)

dt

t
, (4.4.19)

where

I(u) :=

∫ 1

0
(e−iu/α − e−iu) 3α2 dα. (4.4.20)

Now (4.4.17) follows immediately from

Proposition 4.4.4. The expression g(u) := |I(u)|2 is even in u ∈ R and
(strictly) increases from 0 to 1 as |u| increases from 0 to ∞; in particular, it
follows that |I(u)| ∈ [0, 1) for all real u. Moreover, the function g has the
following generalized concavity property: −u3

(
u−5g′(u)

)′ is completely
monotone in u > 0 (in Bernstein’s sense—see, e.g., [29, Chapter 2]); in
particular, g(v1/6) is concave in v > 0.

Thus, the conclusion in Proposition 4.4.4 that |I(u)| ∈ [0, 1) for all real
u can be seen as a rather sophisticated replacement for the trivial identity
|e−itx| = 1 for real t and x, which latter was used to obtain the rightmost
bound in (4.4.16).

Moreover, one can easily obtain (and then use in (4.4.19)) an upper bound
on |I(u)| which is significantly less than 1 for small enough values of |u|.
This can be done by closely bounding the values of |I(u)| for a finite number
of values of u and then using the monotonicity property of |I| provided by
Proposition 4.4.4.
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u

1

Fig. 4.1 Graphs of Re I , Im I , and |I|.

Graphs of Re I , Im I , and |I| over the interval [−6π, 6π] are shown in
Fig. 4.1. It seems plausible that g(u) is concave in u > 0; however, that
probably would be hard to prove.

Proof of Proposition 4.4.4. Note that I(−u) = I(u) for all real u. So,
the function g = II is indeed even.

Take now any real u > 0. Integrating by parts and then changing the
integration variable, one has

iu−3I(u)

= u−2

∫ 1

0
e−iu/α α dα = E(u) := E3(u), where Ej(u) :=

∫ ∞

u
e−iz dz

zj

(4.4.21)

for j > 0. So, g(u) = u6 E(u)E(u),

g1(u) :=
1

2
u−5g′(u) = 3E(u)E(u)− u−2Re

(
eiuE(u)

)
,

u3g′1(u) =
1

u2
− Re

(
(4 + iu)eiuE(u)

)
=

1

u2
− Re

(
(4 + iu)

∫ ∞

u
e−i(z−u) dz

z3

)
=

1

u2
− Re

(
(4 + iu)

∫ ∞

0
e−iv dv

(v + u)3

)
=

∫ ∞

0
e−uss ds− Re

(
(4 + iu)

∫ ∞

0
e−iv dv

∫ ∞

0

1

2
e−(v+u)ss2 ds

)
.

Noting now that
∫∞
0 e−ive−vs dv = 1

s+i and Re 4+iu
s+i = 4s+u

s2+1 for all real
s > 0, and introducing w1(s) := 2 s−s3

s2+1 and w2(s) :=
−s2

s2+1 , write



On the Nonuniform Berry–Esseen Bound 121

2u3g′1(u) =

∫ ∞

0
e−usw1(s) ds+

∫ ∞

0
e−usw2(s)u ds

=

∫ ∞

0
e−usw1(s) ds+

∫ ∞

0
e−usw′

2(s) ds = −2

∫ ∞

0
e−us s5 ds

(s2 + 1)2
,

which verifies the last sentence of the statement of Proposition 4.4.4; the
second equality in the above display was obtained by taking the integral∫∞
0 e−usw2(s)u ds by parts. Moreover, it follows that g1(u) is decreasing

in u > 0. At that, g1(∞−) = 0, since E(∞−) = 0. So, on (0,∞) one has
the following: g1 > 0 and hence g′ > 0, and therefore g is increasing. Since
g is even and obviously continuous, it follows that indeed g(u) increases in
|u|. Clearly, g(0) = |I(0)|2 = 0. It remains only to show that g(∞−) = 1.
Toward that end, integrate by parts to obtain the recursive relation Ej(u) =
−ie−iuu−j + ijEj+1(u) for all j > 0. In particular, it follows that E3(u) =
−ie−iuu−3 + 3iE4(u) and E4(u) <	 u−4 + |E5(u)| � u−4 +

∫∞
u

dz
z5 <

	
u−4.

Thus, E(u) = E3(u) = −ie−iuu−3 + O(u−4) = −iu−3
(
e−iu + o(1)

)
and

g(u) = u6 |E(u)|2 → 1 as u → ∞.

One could also use a better upper bound on |f(t)| for a given real value
of t, where f is the c.f. of a r.v. X , say with EX = 0, EX2 = 1, and a given
value of ρ := E|X|3. Since

|f(t)| =
√

E2 cos tX + E2 sin tX = sup
θ∈[0,2π]

(cos θ E cos tX + sin θ E sin tX)

= sup
θ∈[0,2π]

E cos(tX − θ), (4.4.22)

the best upper bound on |f(t)| under the given conditions is

S(t, ρ) := sup{|f(t)| : EX = 0,EX2 = 1,E|X|3 = ρ} (4.4.23)
= sup{E cos(tX − θ) : EX = 0,EX2 = 1,E|X|3 = ρ,

card suppX � 4, θ ∈ [0, 2π]}

= sup

{
4∑
1

pj cos(txj − θ) :

4∑
1

pj = 1,

4∑
1

pjxj = 0,

4∑
1

pjx
2
j = 1,

4∑
1

pj |xj |3 = ρ,

p1, . . . , p4 � 0, θ ∈ [0, 2π]

}
;
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card supp denotes the cardinality of the support of (the distribution of) X;
for the second equality here, one can use the known results by Hoeffding
[13] or Karr [14] or, somewhat more conveniently, Winkler [53] or Pinelis
[38, Propositions 5 and 6(v)]. Thus the optimization problem reduces to one
in nine variables: p1, . . . , p4, x1, . . . , x4, θ; in fact, one can easily solve the
linear (or, more precisely, affine) restrictions

∑4
1 pj = 1,

∑4
1 pjxj = 0,∑4

1 pjx
2
j = 1,

∑4
1 pj |xj |3 = ρ for p1, . . . , p4, and then only five variables

will remain: x1, . . . , x4, θ, with the additional restrictions on x1, . . . , x4 to
provide for the conditions p1, . . . , p4 � 0. For any given pair of values of
(t, ρ), it will not be overly hard to find a close upper bound on the supremum
S(t, ρ). A difficulty here is that one has to deal with two parameters, t and
ρ, and obtain a close majorant of S(t, ρ) with, at least, discoverable and
tractable patterns of monotonicity/convexity in t and ρ, if not with a more
or less explicit expression. Apparently the main difficulty in dealing with
S(t, ρ) will be that the target function cos(t# − θ) oscillates, whereas the
function (#− w)3+ in (say) [37, Lemma 3.4] is monotonic.

Similar methods can be used to find a good upper bound on |f(t)−g(t)|,
where g = e−#2/2, the c.f. of the standard normal r.v. Z; in particular, one
can start here by writing

|f(t)− g(t)| = sup
θ∈[0,2π]

(
E cos(tX − θ)− E cos(tZ − θ)

)
= sup

θ∈[0,2π]

(
E cos(tX − θ)− g(t) cos θ

)
in place of (4.4.22). At this point, one also has an option to use Stein’s
method to bound E cos(tX − θ)− E cos(tZ − θ).

4.5 CONSTRUCTIONS OF THE SMOOTHING FILTER M

The following proposition was somewhat implicit in the paper [3] by
Bohman.

Proposition 4.5.1. Let p be any symmetric probability density function
(p.d.f.) such that the function #p(#) is integrable on R. Take any real

κ � κ∗ :=
1∫

R
|x|p(x) dx. (4.5.1)

Let p̂ stand, as usual, for the Fourier transform of p
(
so that p̂(#) =∫

R
eix#p(x) dx

)
, and let then p̂′ denote the derivative of p̂ (which exists,

since
∫
R
|x|p(x) dx < ∞). Then the function

M := p̂+ iκp̂′ (4.5.2)
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is such that inequalities (4.2.2) hold for all r.v. X , all real T > 0, and all
real x.

Because of the symmetry of p, in the conditions of Proposition 4.5.1 the
function p̂ = ReM is even and κp̂′ = ImM is odd, so that conditions
(4.2.5) hold. In order to satisfy the conditions (4.2.1) and M ∈ C3 as well,
one may choose the symmetric p.d.f. p0,2 defined by the formula

p0,2(x) :=
32π3

3

1− cosx

x2 (x2 − 4π2)2
(4.5.3)

for real x /∈ {−2π, 0, 2π} and then let M be as in (4.5.2) with p = p0,2:

M = M0,2 := p̂0,2 + iκp̂0,2
′ (4.5.4)

with any

κ � κ0,2 :=
1∫

R
|x|p0,2(x) dx

= 0.3418 . . . . (4.5.5)

Then M0,2 ∈ C3, since M ′′′ = p̂′′′ + iκp̂′′′′ and∫
R

x4 p0,2(x) dx < ∞. (4.5.6)

Moreover, it is clear that p0,2 is the restriction to R of an entire analytic
function of exponential type 1; so, by the Paley–Wiener theory (see, e.g., [7,
Section 43]), the condition (4.2.1) holds as well, with M0,2 in place of M .
In fact,

ReM0,2(t) = p̂0,2(t) =

(
2 + cos 2πt

3
(1− |t|) + sin 2π|t|

2π

)
I{|t| < 1} and

(4.5.7)
ImM0,2(t) = κp̂0,2

′(t)

= −κ
sign t

3

[
2π(1− |t|) sin 2π|t|+ 4 sin2(πt)

]
I{|t| < 1}

(4.5.8)

for all real t. Graphs of p0,2, ReM0,2, and ImM0,2 with κ = κ0,2 are shown
in Fig. 4.2.

More generally, in order that a function M as in (4.5.2) satisfy the
conditions (4.2.1) and M ∈ C3, it suffices that p̂ be smooth enough and
such that (4.2.1) holds with p̂ in place of M . Therefore, the following well-
known characterization is useful.
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Fig. 4.2 Graphs of p0,2, ReM0,2, and ImM0,2 with κ = κ0,2.

Proposition 4.5.2. [See, e.g., [16, Theorem 4.2.4]] A function f : R →
C is the c.f. of an absolutely continuous distribution on R if and only if
f(0) = 1 and f = g ∗ g− for some (possibly complex-valued) function
g ∈ L2(R). Here and in the sequel, as usual, the symbol ∗ stands for the
convolution, the bar denotes the complex conjugation, g−(#) := g(−#),
and g− := (g)− = g−.

Indeed, take any smooth enough nonzero function g : R → C such that
g(t) = 0 for all real t /∈ [a, b], where a and b are any real numbers such
that a < b. Then, by Proposition 4.5.2, the function f := g ∗ g−/‖g‖22 is
the c.f. of an absolutely continuous distribution on R, f is smooth enough,
and f(t) = 0 for all real t /∈ [−T, T ], where T := b − a. At that, if g is
real-valued, then f is even. To spell-out the “smooth enough” condition and
conclusion here, one can easily check that, if g ∈ Cj and h ∈ Ck for some
j and k in N and (say) |g(t)| + |h(t)| = 0 for some real T > 0 and all real
t /∈ [0, T ], then g ∗ h ∈ Cj+k, with (g ∗ h)(j+k) = g(j) ∗ h(k).

One can use Propositions 4.5.1 and 4.5.2 to optimize properties of the
filter M—say by taking g to be an arbitrary nonzero real-valued spline of
a high enough order and/or with a large enough subintervals of the interval
[0, T ], extending g to R by letting g(t) := 0 for all real t /∈ [0, T ], letting then
f := g ∗ g−/‖g‖22, defining M as in (4.5.2), and finally (quasi)optimizing
with respect to the parameters of the spline.

While the construction described in Proposition 4.5.1 is comparatively
simple, it appears somewhat too rigid and wasteful. Indeed, in order that
the imaginary part M2 = κp̂′ of the function M in (4.5.2) be thrice
differentiable (as needed or almost needed in the quick proof beginning on
page 116), the real part M1 = p̂ of M must be four times differentiable;
equivalently (cf. (4.5.6)), the density p must have light enough tails so
that

∫
R
x4 p(x) dx < ∞. Together with the filtering condition (4.2.1), the
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condition of extra smoothness of M1 = p̂/extra lightness of the tails of
p may result in a smoothing filter M which is not as good as it can be,
thus compromising the quality of the approximation by the upper and lower
bounds in (4.4.9).

A more flexible and potentially better construction of the smoothing filter
M can be given as follows. As in Proposition 4.5.1, let us start with an
arbitrary symmetric p.d.f. p, whose Fourier transform p̂ is intended to be
M1 = ReM . Accordingly, let us assume right away that

p̂(t) = 0 if |t| > 1; (4.5.9)

cf. (4.2.1). Note that the smoothing filter as in (4.5.2) is the Fourier transform
of the function

x �→ p(x)(1− κx), (4.5.10)

which differs relatively much from the “original” p.d.f. x �→ p(x) when |x|
is large.

To address this concern, let us replace the “large” factor x in (4.5.10) by a
“tempered” and, essentially, more general factor G(x) such that G : R → R

is a strictly increasing odd function of bounded variation, whose Fourier–
Stieltjes transform d̂G(#) =

∫
R
eix# dG(x) satisfies the condition

d̂G(t) = 0 if |t| > γ, (4.5.11)

for some real γ > 0. The no-high-frequency-component condition (4.5.11)
implies, by the mentioned Paley–Wiener theory, that the function G is the
restriction to R of an entire analytic function of exponential type γ and, in
particular, is infinitely many times differentiable. Without loss of generality,
assume that the function 1

2 +G is a d.f.

As mentioned earlier, instead of the “harsh” tilting (4.5.10) of the p.d.f.
p, we consider the “tempered” tilting:

x �→ p̃(x) := p(x) (1− κG(x)) , (4.5.12)

for any real

κ � κ∗ :=
1

2
∫∞
0 p(x)G(x) dx

. (4.5.13)

Note that 0 � G(x) < 1
2 = G(∞−) for all real x > 0; also, as discussed

previously, the condition (4.5.9) implies that p is the restriction to R of an
entire analytic function, and so, p > 0 almost everywhere on R. Therefore
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and by the symmetry of p, one has 0 <
∫∞
0 p(x)G(x) dx < 1

2

∫∞
0 p(x)

dx = 1
4 and hence κ∗ > 2 and κ > 2. It follows that there exists a unique

root xκ ∈ (0,∞) of the equation

1− κG(xκ) = 0. (4.5.14)

Hence, p̃ � 0 on the interval (−∞, xκ] and p̃ � 0 on [xκ,∞), so that the
function

F̃ (#) :=

∫ #

−∞
p̃(y) dy (4.5.15)

is nondecreasing on (−∞, xκ] and nonincreasing on [xκ,∞). At that,
F̃ (∞−) = 1, since p is an even p.d.f. and the bounded function G is odd;
also, clearly F̃ (−∞+) = 0. Moreover, F̃ (0) = 1

2 − κ
∫ 0
−∞ p(x)G(x) dx =

1
2 + κ

∫∞
0 p(x)G(x) dx = 1

2 + κ
2κ∗

� 1. It follows that

I{y � 0} � F̃ (y) for all real y. (4.5.16)

Let now X be any r.v. and let f be its c.f.:

f(#) := EeiX#. (4.5.17)

Then P(X � x) = E I{x−X � 0} � EF̃ (x−X), by (4.5.16); that is,

P(X � x) �
∫
R

F̃ (x− y)P(X ∈ dy), (4.5.18)

for all real x. Define now M as the Fourier transform of p̃, so that

M = ˆ̃p, M1 = ReM = p̂, and M2 = ImM = iκ p̂G, (4.5.19)

by (4.5.12). Note that the Fourier–Stieltjes transform of the function∫
R
F̃ (#−y)P(X ∈ dy) is the Fourier transform of

∫
R
p̃(#−y)P(X ∈ dy),

which in turn is ˆ̃pf = Mf . Then, in view of Proposition 4.4.2, (4.5.18)
means that the last inequality in (4.2.2) holds for T = 1; that it holds for
any real T > 0 now follows by simple rescaling, since (4.5.16) obviously
implies I{y � 0} � F̃ (Ty) for all real y and all T > 0. Similarly or using
the reflection x �→ −x, one can see that the first inequality in (4.2.2) holds
as well.

To compute M2 in (4.5.19), we need to express p̂G in terms p̂ and d̂G.
To simplify the derivation, assume the condition p̂ ∈ C1, as well as the
previously stated conditions (4.5.9) and (4.5.11); these conditions will hold
in the applications anyway. Then one can see that for all real u
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p̂G(u) =
i

2π
p.v.

∫ ∞

−∞
p̂(u− s) d̂G(s)

ds

s

=
i

2π

∫
R

p̂(u− s)− p̂(u)

s
d̂G(s) ds; (4.5.20)

the latter equality here holds because the function G was assumed odd,
and hence the function d̂G is even; the latter integral in (4.5.20) may be
understood in the Lebesgue sense, in view of the conditions p̂ ∈ C1 and
(4.5.11). It follows from (4.5.20), (4.5.9), and (4.5.11) that

p̂G(t) = 0 if |t| > 1 + γ. (4.5.21)

To verify the first equality in (4.5.20), one can write

p(x)G(x) =

(
1

2π

∫
R

e−itxp̂(t) dt

) (
i

2π
p.v.

∫ ∞

−∞
e−isx d̂G(s)

ds

s

)
=

1

2π

∫
R

e−iux du
i

2π
p.v.

∫ ∞

−∞
p̂(u− s) d̂G(s)

ds

s
;

the second equality here is justified because of the second equality in
(4.5.20) and the inequality

∣∣∣∫
R

p̂(u−s)−p̂(u)
s d̂G(s) ds

∣∣∣ � 2γ I{|u| � 1 + γ}
max|t|�1 |p̂′(t)| for all real u.

Note that the first integral in (4.5.20) is a convolution. One can also
integrate by parts to represent p̂G as a convolution-smoothing of the
derivative p̂′:

p̂G =
i

2π
p̂′ ∗ ˜̂dG, (4.5.22)

where˜̂
dG(t) : = p.v.

∫ t

−∞
d̂G(s)

ds

s
:= lim

ε↓0

∫
(−∞,t)\(−ε,ε)

d̂G(s)
ds

s

=

∫ −|t|

−γ
d̂G(s)

ds

s
I{|t| < γ} (4.5.23)

for all real t. This follows because for all real u∫
R

p̂(u− s)− p̂(u)

s
d̂G(s) ds =

∫
R

d̂G(s)
ds

s

(∫ u−s

u
p̂′(v) dv I{s < 0}

−
∫ u

u−s
p̂′(v) dv I{s > 0}

)
=

∫ ∞

u
p̂′(v) dv

∫ u−v

−∞
d̂G(s)

ds

s
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−
∫ u

−∞
p̂′(v) dv

∫ ∞

u−v
d̂G(s)

ds

s

=

∫
R

p̂′(v) dv
˜̂
dG(u− v),

since the function d̂G is even. The latter condition or (4.5.23) also shows
that the function ˜̂

dG is even. Moreover, since d̂G(s) → 1 as s → 0, (4.5.23)
yields ˜̂

dG(t) ∼ ln |t| (4.5.24)

as t → 0; thus, the function ˜̂
dG is mildly singular in a neighborhood of 0.

For instance, ˜̂
dG(t) ≡ (1 − |t| + ln |t|)(I{|t| < 1} if d̂G(t) ≡ (1 − |t|)

(I{|t| < 1}.

Note also that in the case (prevented by the condition (4.5.11)) when
d̂G = 1 on R, the function −2i p̂G would be the Hilbert transform of the
function p̂; see, for example, [48, Chapter V].

It follows from (4.5.19) and (4.5.21) that

M2(t) = 0 if |t| > 1 + γ. (4.5.25)

This condition on M2 is obviously weaker than the condition

M2(t) = 0 if |t| > 1, (4.5.26)

following from (4.2.1) and (4.2.5). However, by (4.5.19) and (4.5.9), one
still has M1(t) = 0 if |t| > 1, whereas the condition (4.5.26) was used in the
quick proof beginning on page 116 only to bound two terms, G2α(f31) and
G2α(f32). Therefore, one may expect the adverse impact of the weakening
of the condition (4.5.26) to (4.5.25) to be rather limited and likely more than
compensated for by the advantages provided by the more flexible construc-
tion of the smoothing filter M , with the tempered tilting of M1. Moreover,
the latter construction is, essentially, more general. Indeed, for instance, one
may always include G into the scale family (Gα)α>0 :=

(
G(#α )

)
α>0

, and
then the tempered tilting (4.5.12) will be close to the harsh tilting (4.5.10)
for large α > 0 provided that G′(0) �= 0. Indeed, Gα(x) ∼ G′(0)

α x for each
real x �= 0 as α → ∞; of course, at that the value of κ = κα in (4.5.12)
with G = Gα will be quite different from that in (4.5.10); in fact, the value
of κ∗ in (4.5.13) with G = Gα will then be asymptotically equivalent to the
value of κ∗ in (4.5.1) times α

G′(0) , provided that
∫
R
|x|p(x) dx < ∞. At that,
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the value of γ in (4.5.11) for G will be replaced by the corresponding value
γα := γ

α for Gα, so that γα → 0 as α → ∞.

4.6 ANOTHER CONSTRUCTION OF SMOOTHING INEQUALITIES
FOR NONUNIFORM BE BOUNDS

The construction described in this section may be more effective than the
one introduced in Section 4.4.

Let us say that a function F is a scaled distribution function (scaled d.f.,
for brevity) if F = λF0 for some real λ � 0 and some d.f. F0. For any
scaled d.f. F , one can rewrite (4.2.2) in the following formally more general
way: again for any real T > 0 and any real x,
1

2
F (∞−) +G (MT (−#)fF (#)) (x) � F (x−) � F (x+) � 1

2
F (∞−)

+G (MT (#)fF (#)) (x), (4.6.1)

where fF denotes the Fourier–Stieltjes transform
∫
R
eix# dF (x) of F , and

MT and G(f) are still as in (4.2.3) and (4.2.4).

Take any natural k and any r.v. X such that E|X|k < ∞, and introduce
the functions LX , FX , GX , F̂X , ĜX defined by the formulas

LX(x) := xk
(
P(X > x) I{x > 0} − P(X < x) I{x < 0}

)
,

FX(x) :=EXk I{X � x}, GX(x) :=E(x+ ∧X)k,

F̂X(t) :=EXkeitX , ĜX(t) :=

∫ 1

0
kαk−1EXkeitαX dα

for all real x and t; of course, the definition of the function LX makes sense
even without the condition E|X|k < ∞.

Note that

L−X(#) = (−1)k+1LX(−#), F̂−X(#) = (−1)kF̂X(−#), and

Ĝ−X(#) = (−1)kĜX(−#). (4.6.2)

For a moment, consider the particular case when the r.v. X is nonnega-
tive. Then

(i) LX = GX − FX ;
(ii) FX and GX are scaled d.f.’s, with FX(∞−) = EXk = GX(∞−);

also, GX is continuous on R;
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(iii) F̂X and ĜX are the Fourier–Stieltjes transforms of FX and GX ,
respectively;

To check item (ii) on this list, use the dominated convergence. To verify
item (iii) concerning ĜX and GX , note that GX(x) = μ ((−∞, x]) for all
real x and

∫
R
eitxμ( dx) = ĜX(t) for all real t, where μ is the nonnegative

measure defined by the condition
∫
R
hdμ = E

∫
R
kzk−1 I{0 < z � X}

h(z) dz for all bounded and/or nonnegative Borel functions h : R → R; the
relation between F̂X and FX is only easier to check.

Removing now the temporary assumption that the r.v. X is nonnegative
and recalling (4.6.1), one has

G

(
MT (−#)ĜX+

(#)
)
(x)−G

(
MT (#)F̂X+

(#)
)
(x)

� LX+
(x+) � LX+

(x−) (4.6.3)

� G

(
MT (#)ĜX+

(#)
)
(x)−G

(
MT (−#)F̂X+

(#)
)
(x) (4.6.4)

for all real x. Using these inequalities (with −X and −x in place of X
and x) together with the parity properties (4.6.2) and G (f(−#)) (−x) =
−G(f)(x), one obtains the “negative” counterpart of the upper bound in
(4.6.4):

LX−(x+) = (−1)k+1L(−X)+

(
(−x)−

)
� (−1)k+1

[
G
(
MT

(
(−1)k+1#

)
Ĝ(−X)+(#)

)
(−x)

−G
(
MT

(
(−1)k#

)
F̂(−X)+(#)

)
(−x)

]
= G

(
MT

(
(−1)k#

)
ĜX−(#)

)
(x)

−G
(
MT

(
− (−1)k#

)
F̂X−(#)

)
(x). (4.6.5)

To proceed further, suppose that for some real constant κ

the function (M(#)− κ) /#is in L1([−1, 1]); (4.6.6)

this condition was assumed in [43] and will be satisfied in the applications,
usually with κ = 1; it is even unclear whether the conditions (4.6.1), (4.2.1),
and (4.2.5) can ever all hold without (4.6.6). Introducing the functions

Mj,T (#) := Mj(#/T )

for j ∈ {1, 2} (cf. (4.2.3) and (4.2.5)) and using (4.6.6) and the fact that∣∣∣∫ A
ε

sin zu
u du

∣∣∣ is bounded uniformly over all real z and all ε and A such that
0 < ε < A, one can easily show (cf. [43, (5)]) that the limit G(Mj,T f)(x)
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exists (and is) in C for any j ∈ {1, 2}, any real T > 0, any characteristic
function (c.f.) f , and any real x. This allows one to recombine the terms in
the upper bounds in (4.6.4) and (4.6.5) to see that for any real x � 0

xkP(X � x) = LX+
(x−) = LX+

(x−) + LX−(x+)

� G
(
MT (#)ĜX+

(#)
)
(x)−G

(
MT (−#)F̂X+

(#)
)
(x)

+G
(
MT

(
(−1)k#

)
ĜX−(#)

)
(x)−G

(
MT

(
− (−1)k#

)
F̂X−(#)

)
(x)

= G
(
M1,T [ĜX+

+ ĜX− − F̂X+
− F̂X− ]

)
(x)

+ iG
(
M2,T

[
ĜX+

+ (−1)kĜX− + F̂X+
+ (−1)kF̂X−

])
(x)

= G
(
M1,TEX

k(WX − VX)
)
(x) + iG

(
M2,TE|X|k(WX + VX)

)
(x),
(4.6.7)

where

VX(#) := eiX# and WX(#) :=

∫ 1

0
VX(α#)kαk−1 dα

=

∫ 1

0
eiαX#kαk−1 dα; (4.6.8)

here we also used the obvious identities F̂X±(#) = EXk
±e

iX#, ĜX±(#) =∫ 1
0 kαk−1EXk

±e
iαX# dα, Xk

+ +Xk
− = Xk, and Xk

+ + (−X−)k = |X|k.

Quite similarly to the upper bound on xkP(X � x} in (4.6.7), one can
derive the corresponding lower bound on xkP(X > x}, with −M2,T in
place of M2,T . Thus, one obtains

Theorem 4.6.1. Let M be any function such that the condition (4.6.1)
holds for all d.f.’s F , all real x, and all real T > 0, as well as the conditions
(4.2.1), (4.2.5), and (4.6.6). Then for all real x � 0 and all r.v.’s X such that
E|X|k < ∞∣∣∣xkP(X � x) −G

(
M1,T EXk(WX − VX)

)
(x)

∣∣∣
� iG

(
M2,T E|X|k(WX + VX)

)
(x), (4.6.9)

where WX and VX are as in (4.6.8); inequality (4.6.9) also holds with
P(X > x) in place of P(X � x).

Remark 4.6.2. Introducing the c.f. of X ,

f(#) := EeiX#,
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and its kth derivative f (k), one has EXkVX = i−kf (k) and (EXkWX)(#) =

i−k
∫ 1
0 f (k)(α#)kαk−1 dα, whence, concerning the left-hand side of (4.6.9),

EXk(WX − VX)(#) = i−k

∫ 1

0
[f (k)(α#)− f (k)(#)]kαk−1 dα. (4.6.10)

Somewhat unfortunately, when k is odd the expression of the function
E|X|k(WX +VX) in the right-hand side of (4.6.9) in terms of the c.f. f (cf.,
e.g., [34]) is much less convenient than the expression for EXk(WX − VX)
in (4.6.10)—and the case most interesting in the applications is that of
k = 3.

However, there is a simple and apparently rather effective way to deal
with this inconvenience:

Proposition 4.6.3. Under the conditions of Theorem 4.6.1,∣∣∣∣G(
M2,T E|X|k(WX + VX)

)
(x)

−i−k

∫ 1

0
kαk−1G

(
M2,T (#) [f (k)(α#) + f (k)(#)]

)
(x) dα

∣∣∣∣
� c2,p

π

2k − p

k − p
E

|X−|k
(|X−|+ x)p

1

T p

� c2,p
π

2k − p

k − p

(
E|X−|k−p

∧ E|X−|k
xp

)
1

T p
(4.6.11)

for all p ∈ (0, k) and all real x > 0, where

c2,p := sup
u∈R

|u|p|N̂2(u)|

and N̂2 is the Fourier transform of the function N2(#) := M2(#)/#.

Proof of Proposition 4.6.3. Note that the left-hand side of the first
inequality in (4.6.11) equals

LHS : =
∣∣∣G(

M2,T E|X|k(WX + VX)
)
(x)−G

(
M2,T EXk(WX + VX)

)
(x)

∣∣∣
= 2

∣∣∣G(
M2,T EXk

−(WX + VX)
)
(x)

∣∣∣ ;
cf. (4.6.10). Further, by (4.2.4),

LHS =
1

π

∣∣∣∣∫
R

e−itxM2(t/T )

t
EXk

−

(∫ 1

0
kαk−1eiαtX dα+ eitX

)
dt

∣∣∣∣
=

1

π

∣∣∣∣EXk
−

∫
R

N2(u)

(∫ 1

0
kαk−1eiαTu(X−x) dα+ eiTu(X−x)

)
du

∣∣∣∣
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=
1

π

∣∣∣∣E|X−|k
(∫ 1

0
kαk−1N̂2 (αT (X − x)) dα+ N̂2 (T (X − x))

)
du

∣∣∣∣
� c2,p

π
E

|X−|k
T p|X − x|p

(∫ 1

0
kαk−1−p dα+ 1

)
=

c2,p
π

E
|X−|k

(|X−|+ x)p
2k − p

k − p

1

T p
;

here we used the equality |X − x| = |X−|+ x, valid for any real x > 0 on
the event {X− �= 0}. Thus, the first inequality in (4.6.11) is verified, and the
second inequality there follows because |X−|+x � |X−|∨x for x > 0.

Remark 4.6.4. For instance, for Prawitz’s particular function M as in
(4.2.7), N2(#) = −π(1 − |#|)+, so that N̂2(x) = −π

( sinx/2
x/2

)2 for real

x �= 0, whence c2,2 = 4π and c2,1 = 4π supx>0
sin2 x/2

x . It follows that for
k = 3 the second upper bound in (4.6.11) is 16

(
E|X−|

∧ E|X−|3
x2

)
1
T 2 if p

is taken to be 2, and it is no greater than 3.6231
(
E|X−|2

∧ E|X−|3
x

)
1
T with

p = 1. Here one can obviously further bound the moments of |X−| from
above by the corresponding moments of |X|; these bounds can be obviously
improved if the distribution of X is symmetric.

For simplicity, let us consider here the iid case and accordingly let X :=
S/

√
n, so that X is a zero-mean unit-variance r.v. Then, with k = 3 and

p = 2,

E
|X−|3

(|X−|+ x)2
� E|X−|

∧ E|X−|3
x2

� 1
∧ E|X|3

x2
� 1

∧ 2 + β3/
√
n

x2

(4.6.12)

by the Rosenthal-type inequality (see, e.g., [4, Lemma 6.3] or [41, (12)])

E|X|3 � 2 + β3/
√
n, (4.6.13)

where β3 := E|X1|3; this may be compared with E|Z|3 = 2
√

2
π ≈ 1.6,

where Z ∼ N(0, 1). In view of Markov’s inequality and the mentioned
value 0.4748 of cu, (4.6.13) also yields (4.3.1) for all real x � 0 with cnu =
4.5 in the “small n” case when β3√

n
� 2

3 . So, if one recalls (Subsection 4.3.1)
that the apparently best known upper bound on cnu in the iid case is over
17 and thus considers the value 4.5 for cnu satisfactory at this point, then
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without loss of generality (w.l.o.g.) β3√
n

< 2
3 . Moreover, comparing the

desired nonuniform bound 4.5 β3

(1+x3)
√
n

with the known uniform bound
0.4748 β3√

n
, one sees that w.l.o.g. x > x0 := ( 4.5

0.4748 − 1)1/3 = 2.039 . . . .

Another upper bound on the term E |X−|k
(|X−|+x)p , which is apparently better

than the upper bound in (4.6.12), is as follows. Again, let us consider
the case of principal interest, when k = 3. At that, to be specific,
take p = 2.

Consider the function h(#) := hx(#) := |#−|3
(|#−|+x)2 , for any given real

x > 0. Then it is easy to see that |h′′′(u)| � 6
x2 for all real nonzero u. Hence,

by Tyurin’s result [51, Theorem 2],

E
|X−|3

(|X−|+ x)2
� ψ(x) + β3/

√
n

x2
, (4.6.14)

where ψ(x) := x2E |Z−|3
(|Z−|+x)2 , so that the function ψ is increasing on the

interval (0,∞), from ψ(0+) = 0 to ψ(∞−) = E|Z−|3 =
√

2
π =

0.797 . . . < 0.8.

Thus, the upper bound in (4.6.14) is less than 0.8+2/3
x2
0

< 0.36 < 1 and
hence indeed significantly less than the upper bound in (4.6.12). Note also
that the increase of ψ is rather slow; in particular, ψ(3.5) ≈ 0.35, whereas
certain considerations show that the most “difficult” values of x are between
x0 ≈ 2 and about 3.5.

One can also try to use the more accurate upper bound
1

αpT p||X−|+ x|p sup{up|N̂2(u)| : u � αTx} (4.6.15)

on N̂2 (αT (|X−|+ x))—instead of the bound 1
αpT p||X−|+x|p sup{|u|p

|N̂2(u)| : u ∈ R}, essentially used in the proof of Proposition 4.6.3. At
that, one may want to utilize a function M with its imaginary part M2

smoother than that of the Prawitz particular function, so that the Fourier
transform N̂2 of the function N2(#) := M2(#)/# be decreasing faster.

In Section 4.4, a quick proof of (4.3.1) was given. Using Theorem 4.6.1
in this section (with k = 3), we can now give the following, yet quicker
proof of (4.3.1), in which we have fewer terms to bound than in the “quick
proof” in Section 4.4.
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A quicker proof of Nagaev’s nonuniform BE bound (4.3.1)
Let T = cT

√
n/β3, where cT is a small enough positive real constant. Let

A <
	

B mean |A| � CB for some absolute constant C. Let X := S/
√
n. If

T � 1 then 1 <
	

β3√
n

. So, for all real x � 0, by the Markov and Rosenthal

inequalities, (1+x3)P(X � x) � 1+E|X|3 <
	

1+ β3√
n
<
	

β3√
n

and similarly

(1 + x3)P(Z � x) <
	

β3√
n

, whence (4.3.1) follows.

It remains to consider the case T > 1. Note that then n > (β3/cT )
2 � 3

and hence n � 4 provided that cT � 1/
√
3.

In view of the uniform BE bound, Theorem 4.6.1 (with M as in (4.2.7),
say), (4.6.10), Proposition 4.6.3, and Remark 4.6.4, in order to prove (4.3.1)
it is enough to show that G1α(f

′′′ − g′′′) <
	

β3√
n

and G2α(f
′′′) <

	
β3√
n

for

α ∈ (0, 1], where f is the c.f. of X := S/
√
n, g(#) := e−#2/2, and

Gjα(h)(x) := G

(
Mj

(
α#

T

)
h(α#)

)
(x).

For j ∈ {0, 1, 2, 3}, introduce f
(j)
1 (t) :=

(
d
dt

)j
f1(t) and f

(j)
1n (t) :=

f
(j)
1 (t/

√
n), where f1 denotes the c.f. of X1.

Similarly, starting with g1 := g in place of f1, define g
(j)
1n , and then

let d(j)1n := f
(j)
1n − g

(j)
1n and h

[j]
1n :=

∣∣∣f (j)
1n

∣∣∣ ∨ ∣∣∣g(j)1n

∣∣∣; omit superscripts (0)

and [0]. Note that f = fn
1n and hence

√
nf ′′′ = f31 + f32 + f33, where

f31 := (n − 1)(n − 2)fn−3
1n

(
f
(1)
1n

)3
, f32 := 3(n − 1)fn−2

1n f
(1)
1n f

(2)
1n , and

f33 := fn−1
1n f

(3)
1n ; do similarly with g and g1 in place of f and f1. By

Remark 4.2.1 and Proposition 4.4.3, Mj

(
α#
T

)
f33/β3 is a quasi-c.f. and

hence, by Proposition 4.4.2, Gjα(f33) <	 β3, for j ∈ {1, 2}.

So, it suffices to show that G1α(f3k − g3k) <	 β3 and G2α(f3k) <	 β3 for
k ∈ {1, 2}.

This can be done in a straightforward manner using the following
estimates for j ∈ {0, 1, 2, 3} and |t| � T : M1 <

	
1, M2(

t
T ) <

	
|t|
T <

	

|t|β3/
√
n, h1n(t)n−j � e−ct2 (where c is a positive real number depending

only on the choice of cT ), h
[1]
1n(t) <

	
|t|/√n, h[2]1n(t) <

	
1, |d(j)1n (t)| <
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β3(|t|/
√
n)3−j , and hence fn−j

1n (t) − gn−j
1n (t) <

	
|t|3e−ct2β3/

√
n; cf., for

example, [28, Ch. V, Lemma 1]. For instance, |f31−g31| <	 n2(D311+D312),

where D311(t) :=

(
|fn−3

1n − gn−3
1n |

(
h
[1]
1n

)3
)
(t) <

	
|t|3e−ct2 β3√

n

(
|t|√
n

)3
and

D312(t) :=

(
hn−3
1n

(
h
[1]
1n

)2
|d(1)1n |

)
(t) <

	
e−ct2

(
|t|√
n

)2
β3

(
|t|√
n

)2
, so that

G1α(f31 − g31) <	
∫∞
−∞(t6 + t4)e−ct2β3

dt
|t| <	 β3.
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CHAPTER 55
On the Berry–Esseen Bound
for the Student Statistic

Iosif Pinelis
Michigan Technological University, Houghton, MI, United States

5.1 SUMMARY AND DISCUSSION

Consider the self-normalized sum

T :=
S

V
,

where

S :=

n∑
1

Xi, V :=

√√√√ n∑
1

X2
i ,

and X1, . . . , Xn are independent zero-mean random variables (r.v.’s).
It is assumed that T = 0 on the event {V = 0}. For any p ∈ (0,∞),
introduce also

βp :=

n∑
1

E |Xi|p and β̃p :=

n∑
1

E |X2
i − EX2

i |p/2,

assuming that 0 < β3 < ∞ (and hence 0 < β2 < ∞).

Let Φ be the standard normal distribution function.

Theorem 5.1.1. One has

|P(T � z)− Φ(z)| � A3
β3

β
3/2
2

+A4
β̃
1/2
4

β2
+A6

β̃6

β3
3β

3/2
2

(5.1.1)

for all z ∈ R and for all triples τ := (A3, A4, A6) of absolute constants
belonging to the set T := {τ1, τ2, τ3} of triples, where

τ1 := (2.02, 1.10, 0.15),

τ2 := (16.25, 2.27, 4.83× 10−6),

τ3 := (1.37, 40.54, 43.65).
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The triple τ1 = (2.02, 1.10, 0.15) of the constant factors A3, A4, A6 was
obtained trying to minimize the sum A3 + A4 + A6 of the constants; for
details, see the proof (in Section 5.2) of Theorem 5.1.1 and especially the
table at the end of that proof. The triple τ2 was obtained trying to minimize
the effect of the sixth-order moments of the Xi’s. The triple τ3 was designed
to work best when β̃4 and β̃6 are very small, that is, when the distribution of
each Xi is close to the symmetric distribution on a symmetric two-point set.
The triples τ1, τ2, τ3 will be used in this paper to compare the upper bound
in (5.1.1) with one due to Shao [19].

In the i.i.d. case, that is, when the r.v.’s X1, . . . , Xn are independent
copies of an r.v. X , one can improve the values A3, A4, A6 of the absolute
constants in (5.1.1); in this case, let us assume without loss of generality that

EX2 = 1.

Introduce

ρ3 := E |X|3, ρ4 :=
√

E(X2 − 1)2, ρ6 :=
E |X2 − 1|3

E |X|3 . (5.1.2)

Theorem 5.1.2. If X,X1, . . . , Xn are i.i.d. r.v.’s with EX = 0,
EX2 = 1, and E |X|3 < ∞, then

|P(T � z)− Φ(z)| � A3ρ3 +A4ρ4 +A6ρ6√
n

(5.1.3)

for all z ∈ R and for all triples τ := (A3, A4, A6) of absolute constants
belonging to the set T̃ := {τ̃1, τ̃2, τ̃3, τ̃1.1} of triples, where

τ̃1 := (1.93, 1.06, 0.14),

τ̃2 := (15.54, 2.11, 4.72× 10−6),

τ̃3 := (1.27, 50.15, 54.10),

τ̃1.1 := (2.35, 0.99, 0.11).

For each i = 1, 2, 3, the triple τ̃i in Theorem 5.1.2 is to be compared with
the triple τi in Theorem 5.1.1; the triple τ̃1.1 is a modification of τ̃1, which
will be used in a comparison with the bound in (5.1.9).

For n � 2, the Student statistic

t :=
X
√
n√

1
n−1

∑n
1 (Xi −X)2

,
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where X := 1
n

∑n
1 Xi, can be expressed as a monotonic transformation of

the self-normalized sum T :

t =

√
n− 1

n

T√
1− T 2/n

. (5.1.4)

Therefore, one immediately has

Corollary 5.1.3. Theorems 5.1.1 and 5.1.2 hold if P(T � z) − Φ(z) is
replaced there by P(t � z)− Φn(z), where

Φn(z) := Φ
( z√

1 + (z2 − 1)/n

)
. (5.1.5)

A Berry–Esseen type of bound of the optimal order for the Student
statistic of i.i.d. Xi’s was obtained in 1996 by Bentkus and Götze [2], using
a Fourier transformation method. This was extended to the non-i.i.d. case by
Bentkus et al. [1], whose result can be rewritten as follows:∣∣∣P(t � z)− Φ

(
z
√

n
n−1

)∣∣∣ � C2γ2 + C3γ3, (5.1.6)

where C2 and C3 are absolute constants,

γ2 :=
1

β2

n∑
1

EX2
i I

{
|Xi| >

√
β2
2

}
,

γ3 :=
1

β
3/2
2

n∑
1

E |Xi|3 I
{
|Xi| �

√
β2
2

}
. (5.1.7)

Note that t ∼ T as n → ∞. The function Φn, defined by (5.1.5), may
be considered as an improper distribution function, with the “impropriety”
1−

(
Φn(∞)−Φn(−∞)

)
= 2

(
1−Φ(

√
n)

)
∼

√
2
πn e−n/2 for large n, which

is much less than 1√
n

. If n is not very large, the tail probability 1−Φn(z) may
be much greater than 1−Φ(z), which appears to correspond qualitatively to
the fact that the tail of the Student distribution is significantly heavier than
the standard normal tail when the number of degrees of freedom (d.f.) is not
large. This heuristics appears to be confirmed by Fig. 5.1, for n = 10; the
pictures for n = 5 and n = 20 look quite similarly.

It appears that on the interval [1.5,∞) the tail function 1 − Φn(·) is
closer to that of the Student distribution than the tail functions 1−Φ(·) and
1−Φ

(
·
√

n
n−1

)
are. So, while the method of the proof (given in Section 5.2)

appears to allow one to obtain analogs of Theorems 5.1.1 and 5.1.2 for
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Fig. 5.1 Logarithms of the ratios of the tail functions 1 − Φ(·) (longest dashes), 1 − Φn(·) (medium dashes), and
1 − Φ

(
·
√

n
n−1

)
(shortest dashes) to the tail function of the Student distribution with n − 1 d.f.

P(t � z) − Φ(z) in place of P(T � z) − Φ(z) or P(t � z) − Φn(z),
such analogs will not be pursued here.

Anyway, the following proposition shows that Φn(z) differs from Φ(z)
by much less than 1/

√
n, uniformly in z ∈ R.

Proposition 5.1.4. For all n > 1 and z ∈ R we have

|Φ(z)− Φn(z)| <
C

n− 1
, where (5.1.8)

C :=
(
k − 1

2

)
e−k

√
k

π
= 0.162 . . . and k := 1 +

√
3

2
;

this constant factor, C, is the best possible in (5.1.8).

One may be concerned that it is more natural to compare the distribution
function of the statistic t

(
as in (5.1.4), for general zero-mean Xi’s

)
, not

with Φ or Φn, but with the distribution function (say Fn−1) of Student’s
distribution with n − 1 d.f.—that is, with the distribution function of the
statistic t for i.i.d. standard normal Xi’s. However, as shown in [15],

|Fn−1(z)− Φ(z)| < C̃

n− 1
with C̃ = 0.158 . . .

for all n � 5 and z ∈ R. Therefore and in view of Proposition 5.1.4,
Fn−1(z) differs from Φn(z) by much less than 1/

√
n, uniformly in z ∈

R. Thus, Corollary 5.1.3 is quite relevant, notwithstanding the mentioned
concern.
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In the i.i.d. case, Nagaev [7, 1.18] stated an inequality, which reads as
follows (in the conditions of Theorem 5.1.2): for all z ∈ R,

|P(T � z)− Φ(z)| <
(
4.4E |X|3 + EX4

E |X|3 + E |X2 − 1|3
) 1√

n
. (5.1.9)

Clearly, EX2 = 1 implies 1 � E |X|3 � (EX4 EX2)1/2 = (EX4)1/2,
whence ρ4 � (EX4)1/2 � EX4

E |X|3 and ρ6 � E |X2 − 1|3; here the ρj’s
are as in (5.1.2). So, the bound in (5.1.9) is greater than that in (5.1.3) with
the triple τ = τ̃1.1 of constants A3, A4, A6. Besides, there are a number of
mistakes in the proof of (5.1.9) in [7]. It is also stated in [7], again in the
i.i.d. case, that

|P(T � z)− Φ(z)| < 36E |X|3 + 9√
n

.

Using Stein’s method, Shao [19] obtained a tighter and more general bound,
also with explicit constants but without the i.i.d. assumption:

|P(T � z)− Φ(z)| � 10.2γ2 + 25γ3 (5.1.10)

� 25βp/β
p/2
2

for all p ∈ [2, 3], with the same γ2 and γ3 as in (5.1.7). More recently, a
Berry–Esseen bound for T was obtained in [3] for i.i.d. standard normal
Xi’s by means of Malliavin calculus.

Let us compare the bounds in (5.1.1) and (5.1.10). At that, let us restrict
the attention to i.i.d. r.v.’s X,X1, . . . , Xn.

Consider first the case when X has a two-point zero-mean distribution,
so that P(X ∈ {−a, b}) = 1 for some positive real numbers a and b; that is,

P(X = b) =
a

a+ b
= 1− P(X = −a).

This case appears especially interesting, as any zero-mean distribution can
be represented as a mixture of two-point zero-mean distributions—see, e.g.,
[13]. Without loss of generality, assume that b � a and ab = 1. Then b � 1
and EX2 = 1, and hence the bound in (5.1.1) (with the triple τ = τ3
of constants A3, A4, A6) is no greater than (16.25ρ3 + 2.27ρ4 + 4.83 ×
10−6 ρ6)/

√
n, where again the ρj’s are as in (5.1.2), so that ρ3 = b4+1

b(b2+1) ,
ρ4 = b − 1/b, and ρ6 = (b − 1/b)3. On the other hand, if b >

√
n/2, then

the bound in (5.1.10) is no less than 10.2 b
b+1/b � 5.1 > 1. So, without loss

of generality b � √
n/2 and hence the bound in (5.1.10) equals 25ρ3/

√
n.
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Thus (preferably with the help of the Mathematica command Reduce or
similar tools), one finds that the bound in (5.1.10) will be less than the
bound in (5.1.1) only if b > 1158; that is, only if the “asymmetry index”
b/a is greater than 11582 = 1, 340, 964 > 106; moreover, the inequality
b � √

n/2 implies that n must be no less than (2b)2 > (2 × 1158)2 =
5, 363, 856 > 5 × 106. One concludes that, for i.i.d. Xi’s with a common
two-point distribution, (5.1.1) is better than (5.1.10) unless both the sample
size n and the asymmetry index are very large. Also, in the “symmetric”
case when b = a = 1, the bound in (5.1.1) (with τ = τ3) reduces to
1.37/

√
n, which is 25

1.37 > 18 times as small as the bound in (5.1.10)
(
for

n � (2b)2 = 4
)
.

While the two-point distributions may be of particular interest, they are
of a bounded support set, and hence all their moments are finite. On the
other hand, one may object that the bounds given in Theorems 5.1.1 and
5.1.2 will be infinite and hence useless if the fourth-order moments of the
Xi’s are infinite. However, this concern is easily addressed via truncation.

For a minute, let X denote any zero-mean r.v. If the distribution of X
is continuous, then for each b ∈ [0,∞] there is some a ∈ [0,∞] such
that the r.v. Xa,b := X I{−a < X < b} is zero-mean; the same holds
in the case when the distribution of X is symmetric (about 0)—then one
can simply take a = b. If the zero-mean distribution of X is not continuous
or symmetric, one can use randomization, say as in [13], to still find, for
each b ∈ [0,∞], some a ∈ [0,∞] and some zero-mean r.v. Xa,b such that
P(−a � Xa,b � b) = 1 and Xa,b = X on the event {−a < X < b}; let
us refer to any such r.v. Xa,b as a zero-mean truncation of the zero-mean r.v.
X .

(
One could similarly base an appropriate construction on the so-called

Winsorization (−a)∨(X∧b) instead of the truncation X I{−a < X < b}.
)

Now let X1, . . . , Xn be zero-mean r.v.’s as in Theorem 5.1.1 or
5.1.2. Respectively, let B(X1, . . . , Xn) denote (for any of the triples
τ1, τ2, τ3, τ̃1, τ̃2, τ̃3, τ̃1.1), either one of the bounds in (5.1.1) or (5.1.3), as it
depends on (the individual distributions of) the Xi’s. So, B(X1, . . . , Xn)
denotes the bound in (5.1.1) under the conditions of Theorem 5.1.1, and it
denotes the bound in (5.1.3) under the conditions of Theorem 5.1.2. The
following corollary of Theorems 5.1.1 and 5.1.2 is immediate:

Corollary 5.1.5. Under the conditions of Theorem 5.1.1 or 5.1.2, for
each i ∈ {1, . . . , n} let Xai,bi

i be a zero-mean truncation of Xi. Then for all
z ∈ R
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|P(T � z)− Φ(z)| � P
( n⋃

1

{Xi /∈ (−ai, bi)}
)
+B(Xa1,b1

1 , . . . , Xan,bn
n ).

(5.1.11)

Note that the upper bound in (5.1.11) can be expressed only in terms of
the individual distributions of the Xi’s (rather than their joint distribution),
since

P
( n⋃

1

{Xi /∈ (−ai, bi)}
)
= 1−

n∏
1

P
(
Xi ∈ (−ai, bi)

)
.

So, when the bound in (5.1.1), (5.1.3), (5.1.6), or (5.1.10) can be computed,
usually the “truncated” bound in (5.1.11) can be computed as well.

One may want to compare the bound in (5.1.11) with that in (5.1.10) or
even with the “truncated” version of the latter bound:

1−
n∏
1

P
(
Xi ∈ (−ai, bi)

)
+ 10.2γ̃2 + 25γ̃3, (5.1.12)

where γ̃2 and γ̃3 are obtained from γ2 and γ3 by replacing the Xi’s with
their zero-mean truncations Xai,bi

i , as in Corollary 5.1.5.

Let us make such a comparison when the Xi’s are i.i.d. with a common
distribution, which is either the Student distribution with d > 0 degrees of
freedom or the (centered) Pareto distribution with the density

fs(x) := s
(
x+

s

s− 1

)−s−1
I
{
x > − 1

s− 1

}
,

where s is a parameter with values in the interval (1,∞). Clearly, Student’s
distribution with d degrees of freedom is symmetric, with heavy tails for
small d and light ones for large d, whereas the Pareto distribution with
parameter s is highly skewed to the right, with a heavy right tail for small
s > 1 and a light one for large s. In keeping with the “i.i.d.” assumption, let
us consider the “truncated” bounds in (5.1.11) and (5.1.12) with b1 = · · · =
bn =: b and, accordingly, a1 = · · · = an =: a; note that in each of the two
cases under consideration (Student’s or Pareto’s), the value of a is uniquely
determined by that of b. Then, moreover, let us (numerically) minimize
the “truncated” bounds in b. The results are shown in Figs. 5.2 and 5.3.
There, the graphs are shown: of the bound in (5.1.1) (longest dashes), of the
minimized “truncated” bound in (5.1.11) (a bit shorter dashes), of the bound
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Fig. 5.2 The bounds in the case of Student’s distribution with d degrees of freedom.

in (5.1.10) (yet shorter dashes), and of the minimized “truncated” bound
(5.1.12) (shortest dashes)—for sample sizes n ∈ {10, 100, 1000, 10,000},
d ∈ [2.5, 20], and s ∈ [3.5, 20]; at that, for the bounds in (5.1.1) and (5.1.11)
the triple τ2 = (2.02, 1.10, 0.15) of constant factors in (5.1.1) is used.

Figs. 5.2 and 5.3 suggest the following.

1. Predictably, the truncation helps significantly only when the tails are
heavy enough—that is, for small enough values of the parameters d and
s. Predictably as well, the truncation is more useful with the bound in
(5.1.1) than it is with that in (5.1.10).

2. For Student’s and Pareto’s distributions, even the minimized “truncated”
bound in (5.1.12) is nontrivial (i.e., less than 1) only if n is greater than
1000 (or even a few thousands). In fact, this bound is not much less than
0.5 even for n = 10,000 and light tails. For instance, for n = 10,000
and Student’s distribution with d = 20 d.f., the bound in (5.1.10) and
the minimized bound in (5.1.12) are both ≈ 0.417, whereas the bound
in (5.1.1) and the minimized bound in (5.1.11) are both ≈ 0.055

(
again,

with τ = τ2 = (2.02, 1.10, 0.15)
)
.
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Fig. 5.3 The bounds in the case of Pareto’s distribution with parameter s.

3. Fig. 5.3, for the Pareto case, as well as other considerations (see e.g.,
[12, 13] and discussion therein) suggest that the Student statistic may not
be appropriate for statistical inference when the underlying distribution
is significantly skewed. Alternative statistics, “correcting” for the asym-
metry, were offered and considered; see [12, 13] and discussion therein.

4. If the tails are very heavy, then even the minimized “truncated,” “a-bit-
shorter-dashes” bound in (5.1.11) is not much less than 1 even if n is as
large as 1000 and the underlying distribution is symmetric. This may be
in broadly considered agreement with the fact, established in [6], that if
the underlying distribution is in the domain of attraction of a stable law
with index α < 2, then the limit distribution of the self-normalized sum
and, equivalently, that of the Student statistic is not normal.

5. For all considered values of n, d, and s, the minimized “truncated”
bound in (5.1.11) is significantly less than that in (5.1.12). Note also
that the bound in (5.1.11) can be further improved by considering triples
of constants other than τ = τ2 = (2.02, 1.10, 0.15); for instance, one
may take the minimum of the three versions of the bound in (5.1.11)
corresponding to the three triples τ1, τ2, τ3. Moreover, when the tails
are light enough, even the “nontruncated” bound in (5.1.1) significantly
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improves both on the “truncated” and “nontruncated” bounds in (5.1.12)
and (5.1.10). Thus, especially with the truncation tool, getting smaller
constant factors may be more effective than insisting on the “optimal”
order of moments even for the price of much greater constants.

In [17], Berry–Esseen-type bounds on the rate of convergence to normal-
ity for general nonlinear statistics that are smooth enough functions of sums
of independent random vectors were obtained, which yield in particular such
bounds for self-normalized sums. It is shown in [17] that the bounds in the
present paper, obtained by specialized methods, are usually better than the
corresponding consequences of the general results in [17].

It appears that, with the smaller (or much smaller) constant factors than in
the preceding results, the bounds presented in this paper may be approaching
the state of being of use in adequate statistical practice. There are additional
resources to tap into. For instance, the proofs of Theorems 5.1.1 and 5.1.2
rely to a large extent on Selberg’s [18] hybrid between the Chebyshev and
Cantelli bounds. One can similarly try to use and/or develop much more
accurate (but also much more complicated) upper bounds on large deviation
probabilities such as ones given and discussed in [14]; however, then the
proofs can be expected to be much harder to produce or read.

5.2 PROOFS

Proof of Proposition 5.1.4. Introduce Λ(a, z) := Φ(ua,z), where a ∈
(0, 1) and ua,z := z√

1+a(z2−1)
, so that Φn(z) = Λ( 1n , z) and Φ(z) =

Λ(0, z). By the mean value theorem, for some b = bz ∈ (0, a),

Λ(a, z)− Λ(0, z)

a
=

∂Λ

∂a
(b, z) =

ub,z(1− u2b,z)ϕ(ub,z)

2(1− b)
,

where ϕ is the standard normal density function. So, to prove inequality
(5.1.8), it suffices to note that supu∈R |u(1 − u2)ϕ(u)| = 2C and 1

1−b <
1

1−a = n
n−1 for b ∈ (0, a) and a = 1

n . That the constant factor C is the best
possible in (5.1.8) follows because, by l’Hospital’s rule, Λ(a,z)−Λ(0,z)

a ∼
∂Λ
∂a (a, z) as a ↓ 0.

The proof of Theorem 5.1.1 is based, in part, on the following two
lemmas.
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Lemma 5.2.1. Take any λ, r∗, a, b in (0,∞). Take any c and r in (0,∞)
such that

c � λ

r
and r � r∗.

Let Y by any r.v. such that EY = 0 and σ :=
√
EY 2 ∈ (0,∞). Then

P(Y � c) � ψ
(
r∗,

λ

σ

)
r, where ψ(u, v) :=

u ∧ v

v2 + (u ∧ v)2
. (5.2.1)

Also,

P
(
Y /∈ (−a, b)

)
� 4σ2 + (a− b)2

(a+ b)2
. (5.2.2)

Proof of Lemma 5.2.1. By the condition c � λ
r and Cantelli’s inequality,

P(Y � c) � P(Y � λ
r ) � σ2

σ2+(λ/r)2 = r2

r2+v2 , where v := λ/σ.

Note that r
r2+v2 increases in r ∈ [0, v] and decreases in r ∈ [v,∞). So, if

r∗ � v, then the condition r � r∗ implies r
r2+v2 � r∗

r2∗+v2 = ψ(r∗, v). If
now r∗ � v, then r

r2+v2 � v
v2+v2 = ψ(r∗, v), so that the inequality in (5.2.1)

holds in this case as well. As for inequality (5.2.2), it is due to Selberg [18];
see also, for example, [5, p. 475].

Lemma 5.2.2. For any positive real numbers x, x1, x2 such that x �
x1 ∨ x2, one has

x1Φ(x) � Φ
∗
(x2), (5.2.3)

where

Φ := 1− Φ,

Φ
∗
(x) := 0.17 I{0 < x < 0.752}+ xΦ(x) I{x � 0.752}.

Proof of Lemma 5.2.2. It is well-known that the function Φ is log-
concave; see, for example, [4, 10]. So, the function L defined on
(0,∞) by the formula L(x) := ln

(
xΦ(x)

)
is concave, and hence

L(x) � L(x0) + L′(x0)(x − x0) for any x and x0 in (0,∞). Also,
L′(0.751) > 0 > L′(0.752) and L(0.752) + L′(0.752)(0.751 − 0.752) <
ln 0.17. This implies that L < ln 0.17 on (0,∞) and L is decreasing on
(0.752,∞), whence sup{xΦ(x) : x � z} � Φ

∗
(z) for all z ∈ (0,∞). Now

the lemma follows.

Proof of Theorem 5.1.1. This proof uses some of the ideas in the
proof of (5.1.9) in [7], which were previously presented in [8, 9]. As
mentioned before, there are a number of mistakes of various kinds in
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the proof in [7]. For instance (in the notations of [7]), a bound on∣∣∣Φ(
(1−ε)rσ√
nσn(r)

)
− Φ

(
(1−ε)r√

n

)∣∣∣ analogous to that on
∣∣∣Φ(

rσ√
nσn(r)

)
− Φ

(
r√
n

)∣∣∣
in [7, (1.12)] is missing there. As for the bounds in [8, 9], when the constants
in them are explicit, the expressions for those bounds contain not only
characteristics of the individual distributions of the Xi’s but also those of
their joint distribution.

Without loss of generality, assume that

β2 = 1.

Take any

κ ∈ (0,∞), ε4 ∈ (0, 12), ε3 ∈ (0,∞), ε2 ∈ (0, 1),

θ3 ∈ (0, 1), θ4 ∈ (0,∞)
(5.2.4)

and introduce

Δ := Δ(z) := P(T � z)− Φ(z) (5.2.5)

and also

r3 := β3, r4 := β̃
1/2
4 , r6 :=

β̃6
β3
3

, (5.2.6)

ε := κr4, ε̃4 :=
ε4
κ
. (5.2.7)

It suffices to show that

|Δ| = |Δ(z)| � A3r3 +A4r4 +A6r6,

where without loss of generality let us assume that

z > 0.

Consider the following three cases.

Case 1 (“small n”): ε � ε4 or r3 � ε3.
Note that

ε � ε4 ⇐⇒ r4 � ε̃4.

So,

|Δ| � 1 �(A3,1 r3) ∨ (A4,1 r4) ∨ (A6,1 r6)

�A3,1 r3 +A4,1 r4 +A6,1 r6, where (5.2.8)

A3,1 :=
1

ε3
, A4,1 :=

1

ε̃4
, A6,1 := 0.



On the Berry–Esseen Bound for the Student Statistic 151

Case 2 (“large n” and “large deviations”): ε < ε4, r3 < ε3, and
z � θ3

r3
∧ θ4

r4
.

Then, by (5.2.1) and (5.2.5),

|Δ| � (P1 + P2) ∨ Φ(z),

where

P1 := P
(
T > z, V > 1− ε2

)
� P(S > (1− ε2)z) �

(
ψ(ε3, θ̃3)r3

)
∨

(
ψ(ε̃4, θ̃4)r4

)
,

θ̃j := (1− ε2)θj ,

P2 := P
(
V � 1− ε2

)
= P

( n∑
1

(EX2
i −X2

i ) � ε̃2

)
� ψ(ε̃4, ε̃2)r4,

ε̃2 := ε2(2− ε2).

Note also that the currently assumed case conditions ε < ε4, r3 < ε3,
and z > θ3

r3
∧ θ4

r4
imply z > θ3

r3
> θ3

ε3
or z > θ4

r4
> θ4

ε̃4
. So, Lemma 5.2.2

yields

Φ(z) �
[
Φ
∗ (

θ3
ε3

)
r3
θ3

]
∨

[
Φ
∗ (

θ4
ε̃4

)
r4
θ4

]
.

Thus,

|Δ| �A3,2 r3 +A4,2 r4 +A6,2 r6, where (5.2.9)

A3,2 := ψ
(
ε3, θ̃3

)
∨

[
Φ
∗ (

θ3
ε3

)
1
θ3

]
,

A4,2 :=
[
ψ

(
ε̃4, θ̃4

)
+ ψ (ε̃4, ε̃2)

]
∨

[
Φ
∗ (

θ4
ε̃4

)
1
θ4

]
,

A6,2 := 0.

Case 3 (“large n” and “moderate deviations”): ε < ε4, r3 < ε3, and
z < θ3

r3
∧ θ4

r4
.

In this case, note that

{T � z} = {Tz � z}, whereTz := S−z
(√

1 + η−1
)

and η := V 2−1.

Note also that the expression S − z
(√

1 + η − 1
)

for Tz is convex in
(S, η), so that its linear approximation

(
at the point (ES,E η)=(0, 0)

)
Sz := S − zη/2

never exceeds Tz , whence

δ :=
Tz − Sz

z
= 1 +

η

2
−

√
1 + η � 0.
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Therefore and because P(T � z) = P(Tz � z), one has

P
(
Sz � (1− ε)z

)
− P(δ > ε) � P(T � z) � P(Sz � z).

In view of (5.2.5), it follows that

Δ � BE +D(1) and

−Δ � BE + P(δ > ε) +D(1− ε) + D̃ε,

where

BE := sup
u∈R

∣∣∣P (
Sz � u

)
− Φ

( u

σz

)∣∣∣,
σz :=

√
ES2

z =

√√√√ n∑
1

EX2
i,z,

D(u) :=
∣∣∣Φ(uz)− Φ

(uz

σz

)∣∣∣, (5.2.10)

D̃ε := sup
x�0

[
Φ(x)− Φ

(
(1− ε)x

)]
. (5.2.11)

Thus,

|Δ| � BE + P(δ > ε) +D(1) ∨D(1− ε) + D̃ε. (5.2.12)

Note also that

Sz =

n∑
1

Xi,z,

where

Xi,z : = Xi − zYi/2 and Yi := X2
i − EX2

i ,

whence

η =

n∑
1

Yi.

By a recent result of Shevtsova [20],

BE � 0.56
β3,z
σ3
z

, (5.2.13)
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where

β3,z :=

n∑
1

E |Xi,z|3 �
n∑
1

E
(
|Xi|+

z

2
|Yi|

)3
� β3

(1− α)2
+

(z

2

)3 β̃6
α2

,

(5.2.14)
for any

α ∈ (0, 1); (5.2.15)

the second inequality in (5.2.14) follows from the elementary inequality
(a + b)3 � a3

(1−α)2 + b3

α2 for all a and b in [0,∞) and α ∈ (0, 1). Recalling
also the condition z < θ3

r3
∧ θ4

r4
and definitions (5.2.6), one has

β3,z � 1

(1− α)2
r3 +

θ33
8α2

r6. (5.2.16)

Next,

σ2
z =

n∑
1

EX2
i,z = 1+

(z

2

)2
β̃4−z

n∑
1

EX3
i � 1−zβ3 > 1−θ3. (5.2.17)

So, (5.2.13) and (5.2.16) yield

BE � 0.56

(1− θ3)3/2

( 1

(1− α)2
r3 +

θ33
8α2

r6

)
. (5.2.18)

Further, since 0 < ε < ε4 <
1
2 , one has

δ > ε ⇐⇒ η /∈ [2ε− 2
√
2ε, 2ε+ 2

√
2ε].

So, by (5.2.2), (5.2.6), and (5.2.7),

P(δ > ε) � 4r24 + 16ε2

32ε
=

1 + 4κ2

8κ
r4. (5.2.19)

Next, by (5.2.10), for any u ∈ [0,∞),

D(u) � uz
∣∣∣ 1
σz

− 1
∣∣∣ϕ( uz

σz ∨ 1

)
, (5.2.20)

where ϕ is the standard normal density function. By the equalities in (5.2.17)
and the case conditions ε < ε4 and z < θ3

r3
∧ θ4

r4
,

|σ2
z − 1| � zβ3 +

(z

2

)2
β̃4 = zr3 +

(z

2

)2
r24 � zr3 +

(z

2

)2
ε̃4r4 (5.2.21)

and

|σ2
z − 1| � zr3 +

(z

2

)2
r24 � θ3 + θ24/4. (5.2.22)
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Writing
∣∣∣ 1
σz

− 1
∣∣∣ = |σ2

z−1|
σz+σ2

z
, and using (5.2.20) and (5.2.21), one has

D(u) � D1(u) +D2(u),

where

D1(u) := r3
v2ϕ(v)

u
ρ2, D2(u) := r4

ε̃4
4

v3ϕ(v)

u2
ρ3,

v :=
uz

σz ∨ 1
, ρj :=

(σz ∨ 1)j

σz + σ2
z

.

If σz � 1, then by (5.2.17) for j = 2, 3,

ρj =
1

σz + σ2
z

� ρ∗ :=
1

1− θ3 +
√
1− θ3

.

If σz > 1, then by (5.2.22) for j = 2, 3,

ρj =
σj
z

σz + σ2
z

=
1

σ1−j
z + σ2−j

z

� ρ∗∗,j :=
1

σ1−j
∗ + σ2−j

∗
,

where

σ∗ :=
√

1 + θ3 + θ24/4.

Note also that

sup
v>0

vjϕ(v) = sj :=
1√
2π

(j

e

)j/2

for j = 2, 3. Therefore, recalling also the condition ε < ε4, one has

D(1) ∨D(1− ε) � r3
s2

1− ε4
(ρ∗ ∨ ρ∗∗,2) + r4

ε̃4
4

s3
(1− ε4)2

(ρ∗ ∨ ρ∗∗,3).

(5.2.23)

Next, let us estimate D̃ε. First here, one can use a special-case l’Hospital-
type rule for monotonicity, such as [11, Proposition 4.1], to see that for each
x ∈ (0,∞) the ratio Φ(x)−Φ((1−t)x)

t increases in t ∈ (0, 1). On the other
hand, for each t ∈ (0, 1) the expression Φ(x) − Φ

(
(1 − t)x

)
attains its

maximum in x ∈ (0,∞) at x = xt, where

xt :=

√
−2 ln(1− t)

t(2− t)
.
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On recalling also the definition (5.2.11) of D̃ε and the conditions 0 < ε <
ε4 <

1
2 , it follows that

D̃ε � R(ε4)ε = R(ε4)κr4, where R(ε4) :=
Φ(xε4)− Φ

(
(1− ε4)xε4

)
ε4

.

(5.2.24)

Collecting (5.2.12), (5.2.18), (5.2.19), (5.2.23), and (5.2.24), one bounds
|Δ| in Case 3 as follows:

|Δ| �A3,3 r3 +A4,3 r4 +A6,3 r6, where (5.2.25)

A3,3 :=
0.56

(1− θ3)3/2(1− α)2
+

s2(ρ∗ ∨ ρ∗∗,2)

1− ε4
,

A4,3 :=
1 + 4κ2

8κ
+

ε̃4s3(ρ∗ ∨ ρ∗∗,3)

4(1− ε4)2
+R(ε4)κ,

A6,3 :=
0.07

α2

( θ23
1− θ3

)3/2
.

Collecting now the bounds (5.2.8), (5.2.9), (5.2.25) on |Δ| in Cases 1–3,
one concludes that in all of the three cases

|Δ| �A3 r3 +A4 r4 +A6 r6, where (5.2.26)
Ap := Ap,1 ∨Ap,2 ∨Ap,3

for p = 3, 4, 6.

Now one can arbitrarily select positive “weights” w3, w4, w6 and then
try numerical minimization of (say) w3A3 + w4A4 + w6A6 with respect to
all the parameters: α, ε4, ε3, ε2, κ, θ3, θ4, within their specified ranges—
recall (5.2.4) and (5.2.15). The target function here is complicated, and so,
it is hardly possible to find the global minimum. Even though the numerical
minimization is imperfect, it should be clear that the bound in (5.2.26) holds
for all the allowable values of the parameters as specified in (5.2.4) and
(5.2.15). The following table shows the values of the parameters α, ε4, ε3,
ε2, κ, θ3, and θ4 found by the mentioned numerical minimization for each
of a few selected triples (w3, w4, w6), as well as the resulting triple τi of
the coefficients (A3, A4, A6), corresponding to the so obtained values of the
parameters.

Now Theorem 5.1.1 is completely proved.
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w3 w4 w6 α ε4 ε3 ε2 κ θ3 θ4 Triple

1 1 1 1013
5000

2513
104

387
125

2951
104

1187
5000

439
1250

43,307

104
τ1

1 1 106 8067
104

1079
2500

34,883

104
1181
104

4739
5000

349
104

35,127
5000 τ2

1 10−4 10−4 8
625

119
104

34,039

104
31

5000
4159
104

927
2500

5799
104

τ3

Proof of Theorem 5.1.2. This proof is quite similar to that of Theo-
rem 5.1.1. The only essential difference that, instead of the constant 0.56
in (5.2.13) one can now use the better constant 0.4748, according to a recent
result of Shevtsova [21]; then, respectively, the value 0.07 = 0.56/8 can be
replaced by the smaller value 0.4748/8. The following table is similar to the
one presented in the proof of Theorem 5.1.1.

w3 w4 w6 α ε4 ε3 ε2 κ θ3 θ4 Triple

1 1 1 138
625

3177
104

1323
250

31
100

3357
104

3771
104

21,851
5000 τ̃1

1 1 106 8177
104

167
500

10,207
5000

1279
104

7021
104

369
104

36,927
5000 τ̃2

1 10−4 10−4 61
5000

7
400

29,837
5000

1
200

609
104

797
2000

38,337

104
τ̃3

1 10 1 2873
104

759
2500

10,143

104
276
625

186
625

809
2000

1601
500 τ̃1.1
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6.1 INTRODUCTION

A number of problems in nonparametric inference in statistics and econo-
metrics involve estimating the tail probabilities of test statistics. Several
studies have discussed applications of semiparametric and nonparametric
bounds for the P -values of test statistics in several contexts including
nonparametric t-tests, Hotelling’s T 2 test, sign tests, signed-rank tests, and
permutation tests against serial dependence [18–20, 23–26, 49].

The interest in estimates for the tail probabilities of commonly used test
statistics is motivated in part by the fact that the exact distributions of the
statistics are frequently unknown. Even if known, the exact distributions of
the test statistics are usually difficult to compute and have to be obtained by
relying on computationally intensive algorithms or Monte-Carlo techniques,
as in the case of permutation t-tests or linear signed-rank statistics [19, 20].
Furthermore, large sample approximations (e.g., normal approximations)
require special regularity assumptions on the distribution of the observations
such as existence of the second or higher moments or identical distribution
(see, among others, [10, 27, 29, 48, 9, Section 5.2], the discussion in [35]
and the references therein).

One should also note the importance of estimates for the tail probabilities
of statistics (that hold under minimal assumptions) in the context of
statistical inference in models driven by innovations with heavy tailed dis-
tributions. The latter problems are closely related to the study of robustness
of statistical and econometric procedures and models in economics, finance,
and related fields to nonnormality and fat-tailedness assumptions (see, e.g.,
[26, 42, 43], and the discussion in the books by Embrechts et al. [27],
Inequalities and Extremal Problems in Probability and Statistics. http://dx.doi.org/10.1016/B978-0-12-809818-9.00006-9
Copyright © 2017 Elsevier Ltd. All rights reserved. 159
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McNeil et al. [46], and Ibragimov et al. [35]). As is well documented in
the empirical literature, a number of key economic and financial variables
and indicators, including financial returns, have fat-tailed distributions and
do not satisfy assumptions required for applications of standard inference
methods (see the above monographs and references therein). In studies of
the latter models with infinite variances, it is often usually assumed that
the error distributions belong to the domain of attraction of stable laws.
The limiting distributions for test statistics in such setups are nonstandard
and involve functionals of stable processes; therefore, one has to rely on
computationally intensive Monte-Carlo simulations to compute the critical
values of the tests. Furthermore, the convergence of the test statistics in such
models is typically very slow, hence providing inadequate approximations
for finite samples (see, e.g., [1, 59] and the above references, including
[9, 10, 48] for the discussion of problems with applications of autocorre-
lation function-based analysis in the case of heavy-tailed time series with
infinite variances and higher moments, nonlinear dependence, and volatility
clustering, as is typical for financial returns and foreign exchange rates).

In this chapter, we discuss sharp extensions of several (of the best known)
probability and moment inequalities for sums of independent symmetric
random variables (r.v.’s) to the case of random polynomials, generalized
sample cross-moments, and their self-normalized and Studentized analogs.
We also present extensions to the case of dependent r.v.’s through the
use of measures of dependence. The results are of particular importance
in situations when the observations exhibit heavy tails. We also discuss
applications to self-normalized LIL’s [11, 14, 15] and conservative testing
procedures. The results presented in the chapter are applicable in several
settings in statistics, econometrics, and time series analysis, including tests
for independence and problems of detecting nonlinear dependence.

Throughout the chapter we focus on two general structures. The first
concerns random polynomials and generalized sample cross-moments im-
portant in detecting nonlinear dependence and tests for independence
(and their self-normalized counterparts under symmetry assumptions) in
independent r.v.’s and the second involves extensions to the case of statistics
in dependent r.v.’s using measures of dependence. For ease of reference, the
chapter is organized as follows: Section 6.2 presents a survey of probability
inequalities for sums of independent r.v’s. Section 6.3 contains the main
inequalities obtained in the chapter with Section 6.3.1 dealing with sharp
probability inequalities for random polynomials and their self-normalized
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and Studentized versions in independent r.v.’s and Section 6.3.2 dealing
with extensions of the results in Sections 6.2 and 6.3.1 to the case of
dependent r.v.’s through measures of dependence. Section 6.3.3 presents
sharp moment inequalities for random polynomials and sample cross-
moments and discusses their applications. Section 6.6 is devoted to proofs.

6.2 SHARP PROBABILITY INEQUALITIES FOR SUMS OF
INDEPENDENT R.V.’s AND THEIR SELF-NORMALIZED
ANALOGS

Let X1, . . . , Xn be r.v.’s on a probability space (Ω,�, P ). A question of key
interest in the calculation of P -values is to accurately estimate the tail prob-
abilities P (

∑n
i=1Xi > x) , x ∈ R. There are several results approximating

tail probabilities. As examples we cite the works of Bernstein, Prokhorov,
Bennett, Hoeffding, and Eaton-Pinelis [5, 6, 21, 22, 24, 33, 49, 50, 52, 57].
Among others, the book by de la Peña et al. [16] and the chapters by
Shao [53] and Jing et al. [37] provide inequalities for self-normalized sums
and their Studentized versions and reviews on recent developments in the
area.

In what follows we present a review of the inequalities that we will be
citing as well as the results for which we will provide extensions in later
sections.

1. Hoeffding’s inequalities [24, 33]. Let X1, . . . , Xn be independent r.v.’s
with EXi = 0, i = 1, . . . , n, such that |Xi| ≤ di ∈ R (a.s.), i = 1, . . . , n,
and let D2 =

∑n
i=1 d

2
i . Then

P

(
n∑

i=1

Xi > x

)
≤ exp

(
− x2

2D2

)
, (6.2.1)

x > 0.
Let Z be the standard normal r.v., φ(u) = 1√

2π
e−

u2

2 ,Φ(u) =∫ u
−∞ φ(t)dt = 1√

2π

∫ u
−∞ e−

t2

2 dt, and let K be the class of twice
differentiable even functions f : R → R such that f ′′ is nonnegative and
convex and K be the class of functions f ∈ K such that f : R+ → R is a
nondecreasing function. The classes K and K are quite wide and contain,
for example, the functions f(x) = |x|t, t ≥ 3; f(x) = (|x| − u)t+, t ≥ 3,
u ≥ 0 (here and in what follows, w+ = max(w, 0), w ∈ R); f(x) = eh|x|,
h > 0, and f(x) = cosh hx, h �= 0.
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2. Eaton-Pinelis inequalities [21, 22, 49]. Let X1, . . . , Xn be independent
r.v.’s with EXi = 0, i = 1, . . . , n, such that |Xi| ≤ di ∈ R (a.s.), i =
1, . . . , n, and let D2 =

∑n
i=1 d

2
i . Then the following inequalities hold:

P

(
n∑

i=1

Xi > x

)
≤ 1

2

Ef(|Z|)
f
(
x
D

) , (6.2.2)

f ∈ K,x > 0,

P

(
n∑

i=1

Xi > x

)
≤ inf

0<u<x/D

∫ ∞

u

(
(t− u)3

/( x

D
− u

)3)
φ(t)dt,

(6.2.3)
x > 0.

The use of the results in [25, 34] gives that for all independent mean-zero
r.v.’s X1, . . . , Xn such that |Xi| ≤ di ∈ R (a.s.), i = 1, . . . , n,

P

(
n∑

i=1

Xi > x

)
≤ 1− Φ

(
x

D
− 1.5D

x

)
, (6.2.4)

x > 0 (see the proof of Proposition 6.3.1 in this chapter). Pinelis [49]
obtained the following estimates:

P

(
n∑

i=1

Xi > x

)
≤ 2e3

9

(
1− Φ

( x

D

))
≤ e3

9

φ
(
x
D

)
D

x
, (6.2.5)

x > 0 (the second inequality in (6.2.5) was conjectured by Eaton [22]).
Pinelis [49] also proposed the following alternative to (6.2.3):

P

(
n∑

i=1

Xi > x

)
≤ min

(
1/2, D2/(2x2), inf

0<u<x/D

∫ ∞

u(
(t− u)3

/( x

D
− u

)3)
φ(t)dt

)
, (6.2.6)

Dufour and Hallin [20] noted that bounds (6.2.3) and (6.2.6) can be
improved when the number of the r.v.’s is taken into account and proved
an inequality from which it follows that under the above conditions,

P

(
n∑

i=1

Xi > x

)
≤ min

(
1/2, D2/(2x2), B(x/D, n)

)
, (6.2.7)
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where

B(y, n) = 21−n inf
0≤c<y

n∑
m=0

Cm
n fc[(n/4)

−1/2(m− (n/2))]/(y − c)3,

(6.2.8)

fc(t) = [(|t| − c)+]
3, Cm

n = n!/(m!(n−m)!). Inequalities (6.2.2)–(6.2.7),
with the right-hand side expressions multiplied by 2, hold for |

∑n
i=1Xi|

as well.

From the results obtained by Eaton [21, 22] it also follows that the
following inequality holds:

Ef

(
n∑

i=1

ciXi

)
≤ Ef(Z) (6.2.9)

for all f ∈ K, independent r.v.’s X1, . . . , Xn with EXi = 0, i = 1, . . . , n,
such that |Xi| ≤ 1 (a.s.), i = 1, . . . , n, and constants ci ∈ R, i = 1, . . . , n,
such that

∑n
i=1 c

2
i = 1 (see also Pinelis [49]).

Edelman [24, 25] and Pinelis [49] applied inequalities (6.2.1), (6.2.3)–
(6.2.5), and (6.2.9) and methods used for their proof to obtain statisti-
cally important estimates for the tail probabilities of the t-statistic and
the Hotelling T 2 statistic. Dufour and Hallin [20] performed numerical
comparisons of bounds of the type (6.2.3), (6.2.4), (6.2.6), and (6.2.7) and
showed that estimates (6.2.6) and (6.2.7) are substantially superior to their
competitors. The authors also discussed applications of the Eaton-Pinelis-
type bounds to one-sample permutation t-tests, permutation t-tests against
regression and against first-order autocorrelation and to testing procedures
based on linear signed-rank statistics.

It is of interest to note here a relation of probability inequalities (6.2.1)
and (6.2.2)–(6.2.7) to the finding by Loretan and Phillips [45, Table 1]
that, for typical test sizes, the critical values of the sample split prediction
test for covariance stationarity of heavy-tailed time series are lower than
in the standard case of time series with innovations having forth moment.
For example, from inequality (6.2.4) it follows that if X1, . . . , Xn are
independent symmetric r.v.’s (not all degenerate), then

P

⎛⎝ n∑
i=1

Xi

/(
n∑

i=1

X2
i

)1/2

> x

⎞⎠ ≤ 1− Φ(x− 1.5/x),
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x > 0, that implies, in particular, that

P

((∫ 1

0
dU s

γ/2

)−1

U s
γ/2(1) > x

)
≤ 1− Φ(x− 1.5/x),

where U s
γ/2(1) is a symmetric stable process with characteristic exponent

γ/2, 0 < γ < 4. The latter inequality implies, for example, that the
critical values zα of the sample split tests of size α% for time series with
innovations having Pareto-type tail behavior with tail index γ, 0 < γ < 4,

which involve convergence to
(∫ 1

0 dU s
γ/2

)−1
U s
γ/2(1) are dominated by the

quantities
(
qα +

√
q2α + 6

)
/2, where qα is the (1 − α)%-quantile of the

standard normal distribution: Φ(qα) = 1− α.

6.3 MAIN INEQUALITIES
6.3.1 Inequalities for Random Polynomials, Generalized Sample

Cross-Moments, and Their Self-Normalized and
Studentized Versions in Independent R.V.’s

Let, as before, Z be the standard normal r.v., φ(u) = 1√
2π
e−

u2

2 , and let

Φ(u) =
∫ u
−∞ φ(t)dt = 1√

2π

∫ u
−∞ e−

t2

2 dt. Let ci ∈ R, rki ∈ {0, 1}, k =

1, . . . , i − 1, i = 1, . . . , n, and let X1, . . . , Xn be a sample of independent
r.v.’s. Consider the random polynomials

Vn =

n∑
i=1

ciX
r1i
1 . . . X

ri−1,i

i−1 Xi (6.3.1)

and their self-normalized versions

Wn =

n∑
i=1

ciX
r1i
1 . . . X

ri−1,i

i−1 Xi

/(
n∑

i=1

c2iX
2r1i
1 . . . X

2ri−1,i

i−1 X2
i

)1/2

.

(6.3.2)

The class of the above polynomials Vn includes the generalized sample
cross-moments V GC−M

n =
∑n

i=1 ciXi+h1
Xi+h2

. . . Xi+hm
, 0 ≤ h1 <

· · · < hm (in r.v.’s X1, . . . , Xn+hm
). The statistics V GC−M

n , in turn,
include, as subclasses, the sample auto-covariances (1/n)

∑n
i=1XiXi−1

and the sample cross-moments (1/n)
∑n

i=1Xi+h1
Xi+h2

. . . Xi+hm
, 0 ≤

h1 < · · · < hm, arising in a number of important settings in statistics,
econometrics, and time series analysis, including tests of independence and
problems of detecting nonlinear dependence (see [32, 8, Section 12.1.2]
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for applications of sample cross-moments of order m = 3 and their self-
normalized analogs in tests for nonlinear dependence).

The following propositions give sharp generalizations of Hoeffding-
and Eaton-Pinelis-Dufour-Hallin estimates (6.2.1) and (6.2.2)–(6.2.7) to
the case of random polynomials Vn and their self-normalized analogs Wn.
The inequalities for the self-normalized statistics Wn hold under the only
assumption of symmetry of the innovations. For example, no assumptions
on boundedness of the r.v.’s or finiteness of their moments are needed. This
property is central in the case of observations coming from a heavy-tailed
population. At the same time, using standard symmetrization inequalities for
martingales, the bounds presented in this section can also be extended to the
nonsymmetric case, at the cost of increasing constants on their right-hand
sides.

Proposition 6.3.1. Let X1, . . . , Xn be independent r.v.’s such that
EXi = 0, |Xi| ≤ di ∈ R (a.s.), i = 1, . . . , n, and let D2 =∑n

i=1 c
2
i d

2r1i
1 . . . d

2ri−1,i

i−1 d2i , then the following inequalities hold for the
random polynomials Vn defined in (6.3.1):

P (Vn > x) ≤ exp

(
− x2

2D2

)
, (6.3.3)

x > 0,

P (Vn > x) ≤ 1

2

Ef(|Z|)
f
(
x
D

) , (6.3.4)

f ∈ K,x > 0,

P (Vn > x) ≤ e3

9

φ
(
x
D

)
D

x
, (6.3.5)

x >
√
2D,

P (Vn > x) ≤ 2e3

9

(
1− Φ

( x

D

))
, (6.3.6)

P (Vn > x) ≤ min(1/2, D2/(2x2), B(x/D, n))

≤ min

(
1/2, D2/(2x2), inf

0<u<x/D

∫ ∞

u(
(t− u)3

/( x

D
− u

)3)
φ(t)dt

)
≤ 1− Φ

(
x

D
− 1.5D

x

)
(6.3.7)



166 Victor H. de la Peña and Rustam Ibragimov

x > 0, where B(y, n) is defined in (6.2.8). The same inequalities, with the
right-hand side expressions multiplied by 2, hold for |Vn|.

Proposition 6.3.2. Let X1, . . . , Xn be independent symmetric r.v.’s (not
all degenerate), then the following inequalities hold for the self-normalized
random polynomials Wn defined in (6.3.2):

P (Wn > x) ≤ exp

(
−x2

2

)
, (6.3.8)

x > 0,

P (Wn > x) ≤ 1

2

Ef(|Z|)
f(x)

, (6.3.9)

f ∈ K,x > 0,

P (Wn > x) ≤ e3

9

φ(x)

x
, (6.3.10)

x >
√
2,

P (Wn > x) ≤ 2e3

9
(1− Φ(x)), (6.3.11)

P (Wn > x) ≤ min(1/2, 1/(2x2), B(x, n))

≤ min

(
1/2, 1/(2x2), inf

0<u<x

∫ ∞

u
((t− u)3/(x− u)3)φ(t)dt

)
≤ 1− Φ

(
x− 1.5

x

)
(6.3.12)

x > 0, where B(y, n) is defined in (6.2.8). The same inequalities, with the
right-hand side expressions multiplied by 2, hold for |Wn|.

The following proposition gives analogs of estimates (6.2.1) and (6.2.7)
for the tail probabilities of t-statistics in the random polynomials Vn

(Studentized random polynomials) that can be applied in testing serial
independence of observations (see Section 6.3). Similar analogs of other
exponential inequalities for sums of independent r.v.’s hold as well. The
results refine and generalize those obtained by Edelman [24, 25] and
Pinelis [49]. As in the case of the self-normalized random polynomials
Wn, the estimates for the Studentized polynomials hold under the minimal
assumption of symmetry of the underlying r.v.’s.

Proposition 6.3.3. Let X1, . . . , Xn be independent symmetric r.v.’s
(not all degenerate), Vn be as in (6.3.1) and let V n = (1/n)Vn,
s2 =

∑n
i=1(ciXi+h1

Xi+h2
. . . Xi+hm

− V n)
2/(n− 1), then
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P (
√
n V n/sn > x) ≤ exp(−nx2/[2(n− 1 + x2)]), (6.3.13)

P (
√
n V n/sn >x) ≤ min

(
1/2,

1 + (x2 − 1)/n

2x2
, B

(
x

(1 + (x2 − 1)/n)1/2
, n

))
,

(6.3.14)

x > 0, where B(y, n) is defined in (6.2.8). The same inequalities, with the
right-hand side expressions multiplied by 2, hold for |√n V n/sn|.

6.3.2 Extensions of the Results in Sections 6.2 and 6.3.1 to the
Case of Dependent R.V.’s Through Measures of Dependence

de la Peña et al. [12] obtained sharp estimates for tail probabilities and
expected values of statistics in dependent r.v.’s in terms of measures of
dependence of the r.v.’s.

Let φ2
Y1,...,Yn

and δY1,...,Yn
denote the following measures of depen-

dence for absolutely continuous or discrete r.v.’s Y1, . . . , Yn with the one-
dimensional distribution functions Fk(yk), k = 1, . . . , n, and the joint
distribution function F (y1, . . . , yn):

φ2
Y1,...,Yn

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

(dF (y1, . . . , yn))
2

dF1(y1) . . . dFn(yn)
− 1

=

∫ ∞

−∞
· · ·
∫ ∞

−∞

(
dF (y1, . . . , yn)

dF1(y1) . . . dFn(yn)

)2

dF1(y1) . . . dFn(yn)− 1

(multivariate analog of Pearson’s φ2 coefficient),

δY1,...,Yn
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
log

(
dF (Y1, . . . , Yn)

dF1(y1) . . . dFn(yn)

)
dF (y1, . . . , yn)

(relative entropy), where the integrals are in the sense of Lebesque-Stiltjes
and dF (y1,...,yn)

dF1(y1)...dFn(yn)
is to be taken to be 0 if dF1(y1) . . . dFn(yn) = 0

in the former case and to be 1 if dF1(y1) . . . dFn(yn) = 0 in the latter
case. In the case of absolutely continuous r.v.’s Y1, . . . , Yn the multivariate
measures δY1,...,Yn

and φ2
Y1,...,Yn

were introduced by Joe [38, 39]. In the
bivariate case, the measures φ2

Y1,Y2
and δY1,Y2

are commonly known as
Pearson’s φ2 coefficient and the mutual information between Y1 and Y2,
respectively. The reader is referred to, among others, [12, 36, 38–41] for the
review of properties of (multivariate) dependence measures φ2 and δ, related
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dependence concepts and inference procedures for them. If (Y1, . . . , Yn)′ ∼
N(μ,Σ), then [39] φ2

Y1,...,Yn
= |R(2In − R)|−1/2 − 1, where In is the

n× n identity matrix, provided that the correlation matrix R corresponding
to Σ has maximum eigenvalue less than 2 and is infinite otherwise (|A|
denotes the determinant of a matrix A). In addition to that, if in the above
case diag(Σ) = (σ2

1, . . . , σ
2
n), then δY1,...,Yn

= −0.5 log(|Σ|/
∏n

i=1 σ
2
i ).

In the case of two normal r.v.’s Y1 and Y2 with correlation coefficient
ρ, (φ2

Y1,Y2
/(1 + φ2

Y1,Y2
))1/2 = (1− exp(−2δY1,Y2

))1/2 = |ρ|.

de la Peña et al. [12] showed that the following complete decoupling
estimates hold for the tail probabilities of arbitrary statistics h(Y1, . . . , Yn)
in r.v.’s Y1, . . . , Yn:

P (h(Y1, . . . , Yn) > x) ≤ P (h(ξ1, . . . , ξn) > x) + φY1,...,Yn

(P (h(ξ1, . . . , ξn) > x))1/2 , (6.3.15)

P (h(Y1, . . . , Yn) > x) ≤
(
1 + φ2

Y1,...,Yn

)1/2
(P (h(ξ1, . . . , ξn) > x))1/2 ,

(6.3.16)

P (h(Y1, . . . , Yn) > x) ≤ (e− 1)P (h(ξ1, . . . , ξn) > x) + δY1,...,Yn
,
(6.3.17)

where ξ1, . . . , ξn denote independent copies of the dependent r.v.’s
Y1, . . . , Yn. The latter results and inequalities (6.2.1) and (6.2.2)–(6.2.7)
for sums of independent r.v.’s imply corresponding sharp probability
inequalities for sums of dependent r.v.’s. The following sharp analogs of
Hoeffding’s inequality (6.2.1) and Pinelis-Dufour-Hallin estimate (6.2.7)
for dependent r.v.’s hold: If Y1, . . . , Yn are r.v.’s with EYi = 0, i = 1, . . . , n,
such that |Yi| ≤ di ∈ R (a.s.), i = 1, . . . , n, then

P

(
n∑

i=1

Yi > x

)
≤ exp

(
− x2

2D2

)
+ φY1,...,Yn exp

(
− x2

4D2

)
, (6.3.18)

P

(
n∑

i=1

Yi > x

)
≤ (1 + φ2

Y1,...,Yn
)1/2 exp

(
− x2

4D2

)
, (6.3.19)

P

(
n∑

i=1

Yi > x

)
≤ (e− 1) exp

(
− x2

2D2

)
+ δY1,...,Yn , (6.3.20)
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P

(
n∑

i=1

Yi > x

)
≤ min

(
1/2, D2/(2x2), B(x/D, n)

)
+ φY1,...,Yn min

(
1/

√
2, D/(

√
2x), (B(x/D, n))1/2

)
, (6.3.21)

P

(
n∑

i=1

Yi > x

)
≤ (1 + φ2

Y1,...,Yn
)min

(
1/

√
2, D/(

√
2x), (B(x/D, n))1/2

)
, (6.3.22)

P

(
n∑

i=1

Yi > x

)
≤ (e− 1)min

(
1/2, D2/(2x2), B(x/D, n)

)
+ δY1,...,Yn , (6.3.23)

x > 0, where B(y, n) is defined in (6.2.8).

From inequalities (6.3.15)–(6.3.17) it follows that estimates similar to
those in Propositions 6.3.1–6.3.3 and involving the measures of dependence
φ2 and δ hold also for the random polynomials Vn and their self-normalized
and Studentized analogs Wn and

√
n V n/sn in dependent r.v.’s. For

example, the following propositions give analogs of inequality (6.2.7) for
Vn,Wn and

√
n V n/sn.

In the inequalities throughout the rest of the chapter, the extremal cases
of the estimates +∞ ≤ +∞,−∞ ≤ +∞, and −∞ ≤ −∞ are considered
to be valid inequalities; we, therefore, usually do not include assumptions
on finiteness of moments of the summand r.v.’s that ensure finiteness of
moments of sums of the r.v.’s into formulations of the results.

Proposition 6.3.4. Let X1, . . . , Xn be absolutely continuous or discrete
mean-zero dependent r.v.’s such that |Xi| ≤ di ∈ R, i = 1, . . . , n, then the
following inequalities hold for the random polynomials Vn defined in (6.3.1)
in r.v.’s X1, . . . , Xn:

P (Vn > x) ≤ min(1/2, D2/(2x2), B(x/D, n))

+ φX1,..., Xn
min(1/

√
2, D/(

√
2x), (B(x/D, n))1/2),

(6.3.24)

P (Vn > x) ≤ (1 + φ2
X1,..., Xn

)1/2min(1/
√
2, D/(

√
2x), (B(x/D, n))1/2),

P (Vn > x) ≤ (e− 1)min(1/2, D2/(2x2), B(x/D, n)) + δX1,..., Xn
,

x > 0, where D2 =
∑n

i=1 c
2
i d

2r1i
1 . . . d

2ri−1,i

i−1 d2i .
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Proposition 6.3.5. Let X1, . . . , Xn be absolutely continuous or discrete
symmetric dependent r.v.’s (not all degenerate), then the following inequali-
ties hold for the self-normalized random polynomials Wn defined in (6.3.2)
in r.v.’s X1, . . . , Xn:

P (Wn > x) ≤ min(1/2, 1/(2x2), B(x, n))

+ φX1,...,Xn
min(1/

√
2, 1/(

√
2x), (B(x, n))1/2), (6.3.25)

P (Wn > x) ≤ (1 + φ2
X1,...,Xn

)1/2min(1/
√
2, 1/(

√
2x), (B(x, n))1/2),

P (Wn > x) ≤ (e− 1)min(1/2, 1/(2x2), B(x, n)) + δX1,...,Xn
,

x > 0.

Proposition 6.3.6. Let X1, . . . , Xn be symmetric r.v.’s (not all
degenerate) and let

V n = (1/n)Vn, s2 =

n∑
i=1

(ciXi+h1
Xi+h2

. . . Xi+hm
− V n)

2/(n− 1).

It follows that

P (
√
n V n/sn > x) ≤ min{1/2, (n− 1 + x2)/(2nx2), B(n1/2x/(n−1 + x2)1/2, n)}

+ φX1,...,Xn
min{1/

√
2, (n− 1 + x2)1/2/((2n)1/2x),

(B(n1/2x/(n− 1 + x2)1/2, n))1/2}, (6.3.26)

P (
√
n V n/sn > x) ≤ (1 + φ2

X1,...,Xn
)1/2 min{1/

√
2, (n− 1 + x2)1/2/((2n)1/2x),

(B(n1/2x/(n− 1 + x2)1/2, n))1/2},
P (

√
n V n/sn > x) ≤ (e− 1)min{1/2, (n− 1 + x2)/(2nx2),

B(n1/2x/(n− 1 + x2)1/2, n)}+ δX1,...,Xn
,

x > 0. The same inequalities, with the right-hand side expressions
multiplied by 2, hold for |√n V n/sn|.

Note again that essentially only the condition on symmetry of the r.v.’s
X1, . . . , Xn is required for the estimates in Propositions 6.3.5 and 6.3.6
to hold. It is also emphasized here that bounds (6.3.24)–(6.3.26) for the
statistics Vn,Wn and

√
n Vn/sn in dependent r.v.’s become exactly the

analogs of the Eaton-Pinelis-Duffour-Hallin inequalities given by (6.3.7),
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(6.3.12), and (6.3.14) in the case φ2
X1,...,Xn

= 0, that is, in the case of the
statistics in independent r.v.’s.

6.3.3 Sharp Moment Inequalities for Random Polynomials,
Sample Cross-Moments, and Their Applications

The following result extends inequality (6.2.9) to the case of the random
polynomials Vn in independent mean-zero r.v.’s. The results give sharp
generalizations of the Khintchine-Marcinkiewicz-Zygmund-type inequali-
ties obtained, in the case of sums of independent r.v.’s, by Eaton [21, 22],
Pinelis [49], and Figiel et al. [28] (see, among others, [13, 51] and references
therein for results and a review of moment inequalities for sums for
independent r.v.’s and their extensions to the dependent case and [31] for
their econometric applications).

Again, let K be the class of twice differentiable even functions f : R → R
such that f ′′ is nonnegative and convex. In what follows, ε, εt, t ∈
{. . . ,−2,−1, 0, 1, 2, . . .}, denote independent symmetric Bernoulli r.v.’s.

Proposition 6.3.7. Let f ∈ K,X1, . . . , Xn be independent r.v.’s such
that EXi = 0, |Xi| ≤ 1, i = 1, . . . , n, and let X̃1, . . . , X̃n be independent
symmetric r.v.’s such that EX̃2

i = 1, i = 1, . . . , n, then

Ef(Vn) ≤ Ef

(
n∑

i=1

ciεi

)
≤ Ef

(
n∑

i=1

ciX̃i

)
. (6.3.27)

If, in addition to the above,
∑n

i=1 c
2
i = 1, then

Ef(Vn) ≤ Ef(Z). (6.3.28)

According to de la Peña et al. [13] showed, the best constants in the
Khintchine-Marcinkiewicz-Zygmund inequalities for powers of generalized
cross-moments V GC−M

n in symmetric r.v.’s are the same as in the case
of sums of independent r.v.’s. According to the following proposition, the
same result holds for the Khintchine-Marcinkiewicz-Zygmund inequalities
as well as for Dharmadhikari-Jogdeo-type [17] inequalities for the random
polynomials Vn.
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Proposition 6.3.8. The best constants A∗
1(t,m), B∗

1(t,m), A∗
2(t), and

B∗
2(t) in the following Khintchine-Marcinkiewicz-Zygmund inequalities

A(t,m)E

(
n∑

i=1

c2iX
2r1i
1 . . . X

2ri−1,i

i−1 X2
i

)t/2

≤E

∣∣∣∣∣
n∑

i=1

ciX
r1i
1 . . . X

ri−1,i

i−1 Xi

∣∣∣∣∣
t

≤B(t,m)E

(
n∑

i=1

c2iX
2r1i
1 . . . X

2ri−1,i

i−1 X2
i

)t/2

(6.3.29)

for all independent symmetric r.v.’s X1, . . . , Xn with finite t-th moment,
t > 0, are given by A∗(t,m) = 2t/2−1, 0 < t ≤ t0, A

∗(t,m) = E|Z|t, t0 ≤
t ≤ 2, A∗(t,m) = 1, t ≥ 2, B∗(t,m) = 1, 0 < t ≤ 2, B∗(t,m) =
E|Z|t, t ≥ 2, where t0 is the nontrivial solution of the equation Γ((t0 +
1)/2) = Γ(3/2),Γ(x) is the Gamma function: Γ(x) =

∫ +∞
0 tx−1e−tdt.

The best constant C∗(t,m) in the following Dharmadhikari-Jogdeo-type
inequality

E

∣∣∣∣∣

n∑

i=1

ciX
r1i
1 . . . X

ri−1,i

i−1 Xi

∣∣∣∣∣

t

≤ C(t,m)nt/2−1
n∑

i=1

|ci|tE|X1|tr1i . . . E|Xi−1|tri−1,iE|Xi|t

(6.3.30)

for all independent symmetric r.v.’s X1, . . . , Xn with finite t-th moment,
t ≥ 2, is given by C∗(t,m) = E|Z|t.

Using estimate (6.3.30) and Hölder’s inequality, we obtain the fol-
lowing result that generalizes the results obtained in [3, 4] and gives
a sharp estimate for the greatest order, in n, that moments of general-
ized moving averages

∑n
i=1Xi+h1

. . . Xi+hm
and sample cross-moments

(1/n)
∑n

i=1Xi+h1
. . . Xi+hm

in independent mean-zero r.v.’s Xi can attain.
As usual, the notation an = O(bn) for two nonnegative sequences (an) and
(bn), n ≥ 1, means that an ≤ Cbn, n ≥ 1, for some constant C that does
not depend on n.

If t1, . . . , tk > 2, t =
∑k

s=1 ts, 0 ≤ h
(s)
1 < · · · < h

(s)
m , s =

1, . . . , k;X1, . . . , Xn+hm
, where hm = maxs=1,k h

(s)
m , are independent

identically distributed r.v.’s with EX1 = 0 and E|X1|t < ∞, then

E

k∏
s=1

∣∣∣∣∣
n∑

i=1

Xi+h
(s)
1
Xi+h

(s)
2

. . . Xi+h
(s)
m

∣∣∣∣∣
ts

= O(nt/2).
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The following proposition gives an estimate for the rate of convergence
in the central limit theorem for moments of random polynomials Vn =
Xr1i

1 . . . X
ri−1,i

i−1 Xi (introduced in Section 6.3.1) with equal coefficients that
generalizes the classical results of [47, 58] for sums of independent r.v.’s.

Proposition 6.3.9. If 3 ≤ t < 4, X1, . . . , Xn are independent identically
distributed symmetric r.v.’s with EX2

1 = 1, E|X1|t < ∞, then

|E|n−1/2Vn|t − E|Z|t| = O(n1−t/2). (6.3.31)

6.4 APPLICATIONS IN HYPOTHESIS TESTING

In the present and the next sections, we deal with applications of the
estimates considered above to several problems in statistical inference. The
applications are motivated by the fact that, as discussed before, the class of
random polynomials Vn includes the generalized moving averages and sam-
ple cross-moments frequently arising in statistical and econometric studies.

6.4.1 Permutation Tests Against Serial Correlation
and Tests for Independence

Let 0 ≤ h1 < · · · < hm. Consider the problems of testing that cross-
moments of a stationary time series Xt, t = 0, 1, 2, . . . , with symmetric
univariate distributions equal zero: H0: EXh1

Xh2
. . . Xhm

= 0, for
example, that the r.v.’s are uncorrelated EX1X2 = 0. These problems,
arise, in particular, in tests of independence and in problems of detecting
nonlinear dependence (see, for instance, [32] and Section 12.1.2 in [8] for
tests for nonlinear dependence based on third moments of the time series Xt

with m = 3). The above problems are also naturally connected to testing
H0: ρ = 0 against HA: ρ > 0 in the first-order autoregressive model

Xt = ρXt−1 + ut, (6.4.1)

t = 0, 1, . . . , n, where u0, u1, . . . , un are independent random disturbances
with possibly nonidentical distributions symmetric about 0 (one evidently
has EXh1

Xh2
. . . Xhm

= 0, 0 ≤ h1 < · · · < hm, e.g., EX1X2 = 0
under H0). Testing H0 can be essentially reduced to testing that the mean
of the series Yt = Xt+h1

Xt+h2
. . . Xt+hm

, t = 1, 2, . . . , (respectively,
Yt = XtXt+1, t = 1, 2, . . .) is zero. As in the above standard setup,
the testing procedures for these problems can be based, therefore, on the
t-statistics

√
n V

(1)
n,m/s

(1)
n,m (the superscript (1) refers to the moving average

form of the statistics), where
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V
(1)
n,m = (1/n)

n∑
i=1

Xi+h1
Xi+h2

. . . Xi+hm

and

(s(1)n,m)2 =

n∑
i=1

(
Xi+h1

Xi+h2
. . . Xi+hm

− V
(1)
n,m

)2/
(n− 1).

Evidently, under the null hypothesis, the tail probabilities of the Studentized
generalized moving averages V

(1)
n,m/s

(1)
n,m, for example, the Studentized

sample auto-covariances

V
(1)
n,1

/
s
(1)
n,1 =

√
(n− 1)/n

n∑
i=1

XiXi+1

/(
n∑

i=1

(
XiXi+1 − 1/n

n∑
i=1

XiXi+1

)2)1/2

,

satisfy the inequalities in Proposition 6.3.3. This implies that, when applying
the above testing procedures in the latter setup one can in fact drop the
terms accounting for dependence among the summands Yt in estimates
(6.5.1)–(6.5.6) (and similar generalizations of other estimates for the tail
probabilities of the t-statistics in independent r.v.’s). We then have that

P
(√

n V
(1)
n,m

/
s(1)n,m > x

)
≤ 1− Φ

(
n1/2x/(n− 1 + x2)1/2

−1.5(n− 1 + x2)1/2/(n1/2x)
)
, (6.4.2)

P
(√

n V
(1)
n,m

/
s(1)n,m > x

)
≤ 2e3

9

(
1− Φ

(
n1/2x/(n− 1 + x2)1/2

))
,

(6.4.3)

P
(√

n V
(1)
n,m

/
s(1)n,m > x

)
≤ min

{
1/2, (n− 1 + x2)/(2nx2),

B(n1/2x/(n− 1 + x2)1/2, n)
}
, (6.4.4)

where B(y, n) is defined in (6.2.8). Consequently, one can use, in particular,
the following conservative critical region for the test H0: ρ = 0 against
HA: ρ > 0 with level α:

√
n V

(1)
n,m/sn,m > y

(i)
α , i = 1, 2, 3, where y

(i)
α , i =

1, 2, 3, are such that

1− Φ

(
n1/2y(1)α

/(
n− 1 +

(
y(1)α

)2)1/2

− 1.5

(
n− 1 +

(
y(1)α

)2)1/2
/(

n1/2y(1)α

))
< α, (6.4.5)
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2e3

9

(
1− Φ

(
n1/2y(2)α

/(
n− 1 +

(
y(2)α

)2)1/2
))

< α, (6.4.6)

min

{
1/2,

(
n− 1 +

(
y(3)α

)2)/(
2n
(
y(3)α

)2)
,

B

(
n1/2y(3)α

/(
n− 1 +

(
y(3)α

)2)1/2

, n

)}
< α, (6.4.7)

and B(y, n) is defined in (6.2.8).

One can also consider the sign-based tests of independence in the time se-
ries Xt, using the fact that, under independence, E sign(Xh1

)sign(Xh2
) . . .

sign(Xhm
) = 0, 0 ≤ h1 < · · · < hm (in particular, E sign(X1)sign(X2) =

0), where sign(Xt) is the sign of Xt defined by sign(Xt) = 1 if
Xt > 0, sign(0) = 0 and sign(Xt) = −1 otherwise. The latter testing
procedures can be based on the statistics

√
n V

(1,sign)
n,m /s

(1,sign)
n,m , where

V
(1,sign)
n,m = (1/n)

n∑
i=1

sign(Xi+h1
)sign(Xi+h2

) . . . sign(Xi+hm
)

and
(
s(1,sign)
n,m

)2

=
n∑

i=1

(
sign(Xi+h1)sign(Xi+h2) . . . sign(Xi+hm)− V

(1,sign)
n,m

)2
/
(n−1).

Evidently, under the null hypothesis of independence, the sign versions√
n V

(1,sign)
n,m /s

(1,sign)
n,m of the statistics V (1)

n,m/s
(1)
n,m satisfy the same inequal-

ities as above.

Note that the conservative tests based on the above Studentized statistics√
nV

(1)
n,m/s

(1)
n,m and their sign versions

√
nV

(1,sign)
n,m /s

(1,sign)
n,m are equivalent

to the tests based on the self-normalized moving averages

W (1)
n =

n∑
i=1

Xi+h1
Xi+h2

. . . Xi+hm

/(
n∑

i=1

X2
i+h1

X2
i+h2

. . . X2
i+hm

)1/2

and their sign versions

W (1,sign)
n =

n∑
i=1

sign(Xi+h1
)sign(Xi+h2

) . . . sign(Xi+hm
)

/
(

n∑
i=1

(sign(Xi+h1
)sign(Xi+h2

) . . . sign(Xi+hm
))2

)1/2

.
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In the case of the r.v.’s X1, . . . , Xn+hm
such that P (Xk = 0) = 0, k =

1, . . . , n + hm, the sign versions of the tests are evidently equivalent to
those based on the statistics

n−1/2
n∑

i=1

sign(Xi+h1
)sign(Xi+h2

) . . . sign(Xi+hm
).

The statistics W
(1)
n and W

(1,sign)
n satisfy the inequalities in Proposi-

tion 6.3.2, which imply conservative critical regions for the statistics
analogous to those above for the Studentized statistics V (1)

n and V
(1,sign)
n .

One should note that, in the case m = 1, the tests based on the
Studentized sample auto-covariance

√
nV

(1)
n,1/s

(1)
n,1 and estimate (6.4.4) (i.e.,

the tests with the critical regions determined by (6.4.7)) are essentially
equivalent to the permutation tests against first-order auto-regression based
on the nonuniform estimates for the first-order auto-correlation coefficient
proposed by Dufour and Hallin [20]. One should also emphasize here that
applications of the inequalities of type (6.4.4) (e.g., the tests based on the
critical regions (6.4.7)) involve the problems of determining numerically
the minima of the functions in the definition of B(y, n) [20] that are usually
computationally intensive. On the other hand, the applications of the uni-
form bounds such as (6.4.2) and (6.4.3) are less computationally intensive
although they yield more conservative tests than those based on (6.4.4).

If in the model (6.4.1) the disturbances ut are dependent, one can use
conservative critical regions for the tests implied by Proposition 6.3.3 and
estimates (6.3.15)–(6.3.17) for statistics in dependent r.v.’s. In the latter
case the statistics

√
n V

(1)
n,m/s

(1)
n,m satisfy inequalities analogous to (6.5.1)–

(6.5.6).

The conservative tests based on the above statistics
√
n V

(1)
n,m/s

(1)
n,m and

their sign versions
√
nV

(1,sign)
n,m /s

(1,sign)
n,m can also be applied in the problems

of testing for joint independence in a sample of r.v’s X1, . . . , Xn.

6.5 APPLICATIONS IN TESTING PROCEDURES
FOR DEPENDENT R.V.’s

6.5.1 Conservative Critical Regions for Nonparametric t-Tests
Let Y1, . . . , Yn be r.v.’s with unspecified (possibly nonidentical) one-
dimensional distributions symmetric about a common median μ and
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consider the problem of testing H0: μ = μ0 against μ > μ0. The most
widely used test statistic for a problem of this type is the one-sample
t-statistic

Tn = n−1/2
n∑

i=1

(Yi − μ0)

/(
(n− 1)−1

n∑
i=1

(Yi − Ȳ )2

)1/2

,

where Ȳ = (1/n)
∑n

i=1 Yi. It is usually assumed that the r.v.’s Y1, . . . , Yn
are independent identically distributed normal r.v.’s, in which case Tn

follows a t-distribution with n− 1 degrees of freedom under the hypothesis
H0. However, the result can no longer be used if the distributions of the
Y ′
i s are unknown, nonidentical or if there is dependence among Y ′

i s. In this
context, bounds for tail probabilities of Tn that hold for all symmetric r.v.’s
Y1, . . . , Yn for different classes of dependent r.v.’s become important.

Using estimates (6.3.15)–(6.3.17) similar to [18, 24, 25] one can
easily derive estimates for P (Tn > x), x > 0, in the case of arbitrary
absolutely continuous or discrete symmetric r.v.’s Y1, . . . , Yn with the
dependence characteristics φ2

Y1,...,Yn
or δY1,...,Yn

. For example, since∑n
i=1

(∑n
j=1(Yj − μ0)

2
)−1/2

(Yi − μ0) = n1/2Tn/(n− 1 + T 2
n)

1/2, from
inequalities (6.3.15)–(6.3.17) and estimates (6.2.1) and (6.2.7) it follows
that the following bounds for the tail probabilities of the statistic Tn in r.v.’s
Y1, . . . , Yn hold:

P (Tn > x) ≤ exp(−nx2/[2(n− 1 + x2)])

+ φY1,...,Yn
exp(−nx2/[4(n− 1 + x2)]), (6.5.1)

P (Tn > x) ≤ (1 + φ2
Y1,...,Yn

)1/2 exp(−nx2/[4(n− 1 + x2)]), (6.5.2)

P (Tn > x) ≤ exp(−nx2/[2(n− 1 + x2)]) + δY1,...,Yn
, (6.5.3)

P (Tn > x) ≤ min{1/2, (n− 1 + x2)/(2nx2), B(n1/2x/(n− 1 + x2)1/2, n)}
+ φY1,...,Yn

min{1/
√
2, (n− 1 + x2)1/2/((2n)1/2x),

(B(n1/2x/(n− 1 + x2)1/2, n))1/2}, (6.5.4)

P (Tn > x) ≤ (1 + φ2
Y1,...,Yn

)1/2 min{1/
√
2, (n− 1 + x2)1/2/((2n)1/2x),

(B(n1/2x/(n− 1 + x2)1/2, n))1/2}, (6.5.5)

P (Tn > x) ≤ (e− 1)min{1/
√
2, (n− 1 + x2)1/2/((2n)1/2x),

(B(n1/2x/(n− 1 + x2)1/2, n))1/2}+ δY1,...,Yn
, (6.5.6)

x > 0. Let us note that the bounds of the type (6.5.1) and (6.5.4) become
exactly the estimates for P (Tn > x) implied by (6.2.1) and (6.2.5)–(6.2.7)
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in the independent case, that is, in the case φ2
Y1,...,Yn

= 0. In particular,
estimate (6.5.1) becomes exactly the bound for P (Tn > x) in the case of
independent r.v.’s Y1, . . . , Yn obtained by Edelman [24].

It is interesting to note that the bounds that can be derived using the above
approach can be improved in the case of identically distributed, but possibly
correlated, normal r.v.’s X1, . . . , Xn ∼ N(μ,Σ), diag(Σ) = (σ2, . . . , σ2),
such that the correlation matrix R corresponding to Σ has a maximum
eigenvalue less than 2. Namely, using the fact that in the above case,
φ2
X1,...,Xn

= |R(2In − R)|−1/2 − 1 and δX1,...,Xn
= −0.5 log(|Σ|/σ2n)

(see Section 6.1), where In is the n× n identity matrix, and the statistic Tn

follows t-distribution with n−1 degrees of freedom in the case of identically
distributed independent normal r.v.’s Xi, from (6.3.15)–(6.3.17) we get that,
for x > 0,

P (Tn > x) ≤ P (tn−1 > x) + (|R(2In −R)|−1/2− 1)1/2[P (tn−1 > x)]1/2,

P (Tn > x) ≤ |R(2In −R)|−1/4[P (tn−1 > x)]1/2,

P (Tn > x) ≤ (e− 1)P (tn−1 > x)− 0.5 log(|Σ|/σ2n),

where tn−1 is a t-distributed r.v. with n − 1 degrees of freedom. A
conservative critical region for the one-sided t-test with level α is given
by Tn > yα, where yα is such that

min{P (tn−1 > yα) + (|R(2In −R)|−1/2 − 1)1/2[P (tn−1 > yα)]
1/2,

|R(2In −R)|−1/4[P (tn−1 > yα)]
1/2,

(e− 1)P (tn−1 > yα)− 0.5 log(|Σ|/σ2n)} < α.

6.5.2 Conservative Tests of Linear Hypotheses
An approach similar to that in Section 6.5.1 can be applied in other testing
procedures. Consider, for example, the linear regression model y = Xβ+u,
where X is an n × k full rank scalar matrix, y ∈ Rn×1;β ∈ Rk×1 is
the vector of unknown parameters, and the vector of random disturbances
u ∈ Rn×1 has an N(0,Σ) distribution, where, as before, diag(Σ) =
(σ2, . . . , σ2), such that the correlation matrix R corresponding to Σ has
a maximum eigenvalue less than 2. Suppose, further, we want to test
H0: c′β = a against HA: c′β > a for some known vector c ∈ Rk×1

on the basis of the t-statistic Tc = (c′β − a)/ŝdc′β̂ , where ŝdc′β̂ =

(σ̂2c′(X ′X)−1c)1/2, σ̂2 = (y − Xβ̂)′(y − Xβ̂)/(n − k). Using (6.3.15)–
(6.3.17) we have



Sharp Probability Inequalities 179

P (Tc > x) ≤ P (tn−k > x) + (|R(2In −R)|−1/2 − 1)1/2[P (tn−k > x)]1/2,

P (Tc > x) ≤ |R(2In −R)|−1/4[P (tn−k > x)]1/2,

P (Tc > x) ≤ (e− 1)P (tn−k > x)− 0.5 log(|Σ|/σ2n),

where tn−k denotes an r.v. with a t-distribution with n − k degrees of
freedom. A conservative critical region for the one-sided t-test with level
α is given by Tc > yα, where yα is such that

min{P (tn−k > yα) + (|R(2In −R)|−1/2 − 1)1/2[P (tn−k > yα)]
1/2,

|R(2In −R)|−1/4[P (tn−k > yα)]
1/2,

(e− 1)P (tn−k > yα)− 0.5 log(|Σ|/σ2n)} < α.

Using the asymptotic properties of the statistics Tn and Tc, we conclude
that the above critical regions can also be used in the case of non-Gaussian
identically distributed errors when the sample size n is sufficiently large.

6.6 PROOFS

The proofs of Propositions 6.3.1–6.3.8 are based on the following reduction
properties (Lemmas 6.6.2 and 6.6.3) for martingales and, more generally,
multiplicative systems of an arbitrary order proved in [12, 55].

Definition 6.6.1. R.v.’s X1, . . . , Xn form a multiplicative system of
order α ∈ N (shortly, MS(α)) if E|Xj |α < ∞, j = 1, . . . , n, and for
any αj ∈ {0, 1, . . . , α}, j = 1, . . . , n,

E

n∏
j=1

X
αj

j =

n∏
j=1

EX
αj

j .

The systems MS(1) and MS(2) under the names multiplicative
and strongly multiplicative systems, respectively, were introduced by
Alexits [2]. Multiplicative systems of an arbitrary order were considered, for
example, by Kwapien [44] and Sharakhmetov [54]. Examples of the multi-
plicative systems of order 1 MS(1) are given, besides independent r.v.’s, by
the lacunary trigonometric systems {cos 2πnkx, sin 2πnkx, k = 1, 2, . . .}
on the interval [0, 1] with the Lebesque measure for nk+1/nk ≥ 2 and
also by martingale-difference sequences. Examples of the systems MS(2)
are given by the lacunary trigonometric systems for nk+1/nk ≥ 3
and martingale-difference sequences X1, . . . , Xn with the nonrandom
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conditional variances E(X2
n|X1, . . . , Xn−1) = b2n ∈ R, n = 1, 2, . . ..

Examples of the systems MS(α) include, for instance, the lacunary
trigonometric systems with large lacunas, that is, with nk+1/nk ≥ α + 1
and also ε-independent and asymptotically independent r.v.’s introduced by
Zolotarev [60] (see the discussion in [12]).

Lemma 6.6.2. Let α ∈ N, and let Ai, i = 1, . . . , n, be sets of real
numbers such that card(Ai) ≤ α + 1, i = 1, . . . , n. R.v.’s X1, . . . , Xn

taking values in A1, . . . , An, respectively, form a multiplicative system of
order α if and only if they are jointly independent.

Lemma 6.6.2 implies the following reduction property for general
martingale-difference sequences.

Lemma 6.6.3. A sequence of r.v.’s {Xn} on a probability space
(Ω,�, P ) assuming two values is a martingale-difference with respect to
an increasing sequence of σ-algebras �0 = (Ω, ∅) ⊆ �1 ⊆ . . . ⊆ � if and
only if the r.v.’s {Xn} are jointly independent.

Since the r.v.’s ηi = εr1i1 . . . ε
ri−1,i

i−1 εi, i = 1, . . . , n, form a martingale-
difference sequence with respect to the σ-algebras σ(ε1, ε2, . . . , εi),
i = 1, . . . , n, we get the following corollary of Lemma 6.6.3 that describes
the reduction properties of the summands in the random polynomials Vn in
independent symmetric r.v.’s.

Lemma 6.6.4. The r.v.’s η1, . . . , ηn are jointly independent.

Remark 6.6.5. Let us note that Lemma 6.6.3 also implies Propo-
sitions 1 and 3 in [7]. Let w(z) = 1 for z ≥ 0, and w(z) = 0 for
z < 0, and let X0, . . . , Xn−1 and Y1, . . . , Yn be r.v.’s such that Yt is
independent of σ(X0, X1, . . . , Xt−1, Y1, . . . , Yt−1) for each t = 1, . . . , n,
and P (Yt > 0) = P (Yt < 0) = 1/2 for t = 1, . . . , n. Also, let gt =
gt(X0, X1, . . . , Xt, Y1, . . . , Yt), t = 0, . . . , n − 1, be a sequence of
measurable functions of X0, . . . , Xt such that P (gt = 0) = 0 for
t = 0, . . . , n−1. According to Propositions 1 and 3 in [7] , the statistic Sg =∑n

t=1w(Ytgt−1) has a binomial distribution Bi(n, 0.5) with parameters
n, 0.5, and, moreover, the r.v.’s w(Ytgt−1), t = 1, . . . , n, are jointly
independent if the r.v.’s Y1, . . . , Yn have continuous symmetric distributions.
To see that the latter results follow from Lemma 6.6.3, it suffices to observe
that the r.v.’s 2w(Ytgt−1) − 1 form a martingale-difference sequence
with respect to the σ-algebras σ(X0, X1, . . . , Xt, Y1, . . . , Yt) under the
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assumptions of the propositions. In a recent paper, So and Shin [56]
considered sign tests for random walks against stationary alternative
hypothesis in the model yt = h(xt), xt = ρ(xt−1, . . . , xt−k) + ut, t =
1, . . . , n, where {yt}, t = 0, . . . , n, is a set of observations, h(xt) is an
unknown monotone transformation of {xt}, ρ(xk, . . . , x1) is an unknown
regression function of interest, k is a positive integer, and {ut} is a sequence
of errors satisfying the conditions.

A1: {sign(ut)} is a martingale difference sequence with respect to an
increasing sequence of σ-fields {�t}, t = 1, . . . , n,.

A2: P (ut = 0|�t−1) = 0, where sign(ut) is the sign of ut defined by
sign(ut) = 1 if ut > 0, sign(0) = 0 and sign(ut) = −1 otherwise.
From the above, it follows that in fact the conditions A1 and
A2 are equivalent to joint independence of the signs sign(ut).
Moreover, using Lemma 6.6.3, one also immediately gets that the
r.v.’s sign(ut)sign(vt−1), t = 1, . . . , n, where vt, t = 1, . . . , n, is
a sequence of �t-measurable r.v.’s with no atom at zero, are jointly
independent. This implies results in [56] concerning distributional
properties of the test statistic based on the quantity Sn(ρ) =∑n

t=1 sign(ut(ρ))sign(vt−1), where ut(ρ) = xt − ρ(xt−1, . . . , xt−k).

Proof of Propositions 6.3.1–6.3.8. Let rki ∈ {0, 1}, k = 1, . . . , i − 1,
i = 1, . . . , n. Further, let ε be a symmetric Bernoulli r.v. According to [34],
Eg(Y ) ≤ Eg(ε) for all continuous convex functions g: [−1, 1] → R and
all r.v.’s Y such that EY = 0 and |Y | ≤ 1. The inequality implies that
Ef(cY +d) ≤ Ef(caε+d) for all continuous convex functions f : R → R,
constants a, c, d ∈ R, and all r.v.’s Y such that EY = 0 and |Y | ≤ 1.
Using this fact, conditioning arguments and Lemma 6.6.4, we get that if
ci ∈ R, rki ∈ {0, 1}, k = 1, . . . , i − 1, i = 1, . . . , n, and X1, . . . , Xn are
independent r.v.’s such that EXi = 0, |Xi| ≤ 1 (a.s.), i = 1, . . . , n, then

Ef

(
n∑

i=1

ciX
r1i
1 . . . X

ri−1,i

i−1 Xi

)
≤ Ef

(
n∑

i=1

ciε
r1i
1 . . . ε

ri−1,i

i−1 εi

)
= Ef

(
n∑

i=1

ciεi

)

(6.6.1)

for all continuous convex functions f : R → R. From Corollary 2.5 in [49]
and Theorem 1.1 in [28] it follows that

Ef

(
n∑

i=1

ciεi

)
≤ Ef

(
n∑

i=1

ciX
′
i

)
(6.6.2)
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for all twice differentiable even functions f : R → R such that f ′′ is convex
and all independent symmetric r.v.’s X ′

i such that EX ′2
i = 1, i = 1, . . . , n.

Inequalities (6.6.1) and (6.6.2) imply (6.3.27). Inequality (6.3.28) follows
letting the r.v.’s X̃i in (6.3.27) be the standard normal r.v.’s. Let us prove
inequalities (6.3.3)–(6.3.7). Let X1, . . . , Xn be independent r.v.’s such
EXi = 0, |Xi| ≤ di, i = 1, . . . , n, and let D2 =

∑n
i=1 c

2
i d

2r1i
1 . . . d

2ri−1,i

2 d2i .
By Chebyshev’s inequality we have

P (Vn > x) ≤ exp(−hx)E exp(hVn), (6.6.3)

x > 0, h > 0. Using the above Hunt’s inequality and Lemma 6.6.4, we get

E exp(hVn) ≤ E exp

(
h

n∑
i=1

cid
r1i
1 . . . d

ri−1,i

i−1 diεi

)
. (6.6.4)

According to [33],

E exp

(
h

n∑
i=1

Xi

)
≤ exp

(
1

2
h2

n∑
i=1

d2i

)
(6.6.5)

for all independent r.v.’s X1, . . . , Xn such that EXi = 0, |Xi| ≤ di ∈ R.
From (6.6.3) to (6.6.5) it follows that for x > 0

P (Vn > x) ≤ exp

(
1

2
h2D2 − hx

)
. (6.6.6)

The right-hand side of (6.6.6) has its minimum at h = x
D2 . Inserting this

value in (6.6.6) we obtain inequality (6.3.3). From Chebyshev’s inequality
it follows that

P (Vn > x) =
1

2
P (|Vn| > x) ≤ 1

2

Ef
(
1
D |Vn|

)
f
(
x
D

) (6.6.7)

for all f ∈ K (introduced in Section 6.1). By (6.3.28),

Ef

(
1

D
|Vn|

)
≤ Ef(|Z|), (6.6.8)

f ∈ K. Inequalities (6.6.7) and (6.6.8) imply (6.3.4). From the results
obtained by Pinelis [49] (see also Pinelis [50]) it follows that inequality
(6.6.8) implies that P (Vn > x) ≤ 2e3

9 (1 − Φ( x
D )), x > 0; P (Vn > x) ≤

e3

9

φ( x

D
)D

x , x >
√
2, that is, (6.3.5) and (6.3.6) hold (note that the latter

inequalities follow directly from Theorem 5.4 in [50] and the martingale
structure of Vn). From (6.6.1), the fact that the function f(x) = (|x| − u)3+
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belongs to K and the results obtained by Eaton [21, 22] (see also Dufour
and Hallin [20]), it follows that

E

[(
1

D
|Vn| − u

)
+

]3
≤ E

⎡⎣( 1

D

∣∣∣∣∣
n∑

i=1

cid
r1i
1 . . . d

ri−1,i

i−1 diεi

∣∣∣∣∣− u

)
+

⎤⎦3

≤ E

⎡⎣(∣∣∣∣∣ 1√
n

n∑
i=1

εi

∣∣∣∣∣− u

)
+

⎤⎦3

. (6.6.9)

Moreover,

E

(
1

D
Vn

)2

≤ 1

D2

n∑
i=1

c2i d
2r1i
1 . . . d

2ri−1,i

i−1 d2iEε2i = 1. (6.6.10)

Similarly to the proof of Proposition 1 in [20], relations (6.6.9) and (6.6.10)
and Chebyshev’s inequality give the first estimate in (6.3.7). The fact that

E

[(
1√
n
|
∑n

i=1 εi| − u
)
+

]3
≤ E[(|Z| − u)+]

3 by (6.2.9) and the first

estimate in (6.3.7) imply the second inequality in (6.3.7). Since, according
to [25],

inf
0<u<x/Dj

∫ ∞

u

(
(t− u)3

/(
x

Dj
− u

)3
)
φ(t)dt ≤ 1− Φ

(
x− 1.5

x

)
,

(6.6.11)
x > 0, we get the last estimate in (6.3.7).

Conditioning on |X1|, . . . , |Xn| and using estimates (6.3.4)–(6.3.7) we
obtain (similarly to [24, 25]) inequalities (6.3.8)–(6.3.12).

Let us prove Proposition 6.3.3. Using the relation

Wn =
√
n

V n/sn(
1− 1/n+ V

2
n/s

2
n

)1/2 ,
we obtain, similarly to [24, 25]

P
(√

n V n/sn > x
)
= P

(
Wn >

x

(1 + (x2 − 1)/n)1/2

)
.

This and Proposition 6.3.2 imply the inequalities in Proposition 6.3.3.
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The estimates in Propositions 6.3.4–6.3.6 follow from Proposi-
tions 6.3.1–6.3.3 and inequalities (6.3.15)–(6.3.17).

The expressions for the best constants in inequalities (6.3.29) follow
from Lemma 6.6.4 and the results obtained by Haagerup [30]. The
right-hand side inequality (6.3.29) and the estimate (

∑n
i=1 zi)

t/2 ≤∑n
i=1 n

t/2−1z
t/2
i for all z1, . . . , zn ≥ 0, t ≥ 2, imply that estimate (6.3.30)

holds with the constant C∗(t,m) defined in Proposition 6.3.8. Sharpness of
the constant C∗(t,m) follows from the choice ci = 1/

√
n, i = 1, . . . , n,

Xi = εi, i = 1, . . . , n+ hm, Lemma 6.6.4 and the central limit theorem.

Using conditioning arguments and the inequality Ef(caε + d) ≤
Ef(cX + d) for all twice differentiable even functions f : R → R such
that f ′′ is convex, constants a, c, d ∈ R, and all symmetric r.v.’s X such
that EX2 = a2 implied by Corollary 2.5 in [49] and Theorem 1.1 in [28],
by induction and Lemma 6.6.4 we get

E

∣∣∣∣∣
n∑

i=1

Xr1i
1 . . . X

ri−1,i

i−1 Xi

∣∣∣∣∣
t

≥ E

∣∣∣∣∣
n∑

i=1

εr1i1 . . . ε
ri−1,i

i−1 εi

∣∣∣∣∣
t

= E

∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣
t

(6.6.12)

for independent identically distributed symmetric r.v.’s X1, . . . , Xn+hm

with EX2
1 = 1, E|X1|t < ∞, t ≥ 3. Moreover, from estimate (3.28) in

[13] and Lemma 6.6.4 it follows that

E

∣∣∣∣∣
n∑

i=1

Xr1i
1 . . . X

ri−1,i

i−1 Xi

∣∣∣∣∣
t

≤ E

∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣
t

+O(n) (6.6.13)

for independent identically distributed symmetric r.v.’s X1, . . . , Xn+hm

with EX2
1 = 1, E|X1|t < ∞, 2 < t ≤ 4. Relations (6.6.12) and (6.6.13)

and the fact that, according to [47, 58], |E| 1√
n

∑n
i=1 εi|t − E|Z|t| =

O(n1−t/2), 3 ≤ t < 4, imply relation (6.3.31).
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