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Preface

Survival or time-to-event data arise in various research areas such as medicine,
epidemiology, genetics, engineering, econometrics, and sociology. Survival data
have unique features including incomplete observation such as censoring and/or
truncation. Use of semi-parametric models and potential correlation among
time-to-events from the same cluster can make the statistical inference further
complicated.

Broad classes of multivariate models using random effects have been developed.
For inferences about unobserved random variables, the hierarchical (or h-)like-
lihood has been proposed by Lee and Nelder (1996). This book presents recent
works on h-likelihood for the analysis of survival data. The h-likelihood method has
been used to make inferences on the random effects models, especially for the
frailty model for time-to-event data, where the frailties are treated as unobserved yet
realized in the data. The h-likelihood allows an extension to the frailty models under
competing risks as well as to the models for joint outcomes, e.g., longitudinal and
event time outcomes. The h-likelihood method estimates the population parameters
and the random effects simultaneously, with the random effects being updated from
the observed data. This book covers the state-of-the-art h-likelihood methods,
which include interval estimation of the individual frailty and variable selection
of the covariates in the general class for the frailty models with or without com-
peting risks. A beauty of the h-likelihood is that once the statistical model is
specified parametrically or nonparametrically, the required inference procedures can
be made.

A systematic presentation of the h-likelihood procedures and identification of
future directions in survival analysis would be meaningful contributions to the field.
Although most of the examples in this book came from biomedical sciences, the
methodology is also applicable to engineering, econometrics, and other fields,
whenever event times are collected and used for statistical inference.

The targeted audience includes researchers in medicine, graduate students, and
Ph.D. (bio)statisticians, interested in working with clustered survival data with or
without competing risks. Knowledge of survival analysis at an introductory graduate
level is the minimum prerequisite to read this book. To be reader-friendly, the
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technical details including derivations and proofs are given in the Appendix of each
chapter. Real data examples are furnished with R codes to provide readers with useful
hands-on tools such asfrailtyHL in Comprehensive RArchive Network (CRAN).
The majority of data sets used in the book are available at URL http://cran.r-
project.org/package=failtyHL for the R package frailtyHL (Ha et al.
2018).

We are grateful to an anonymous reviewer, Prof. Richard Sylvester, Prof. Gilbert
MacKenzie, Dr. Maengseok Noh, Mr. Hyunseong Park, Ms. Eunyoung Park, and
Mr. Ji Hoon Kwon for their numerous useful comments and suggestions.

Busan, Korea Il Do Ha
Pittsburgh, USA Jong-Hyeon Jeong
Seoul, Korea Youngjo Lee
November 2017
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Chapter 1
Introduction

1.1 Goals

The likelihood, introduced by Fisher (1922), plays an important role in statistical
inference about fixed unknowns, namely parameters. The beauty of the likelihood
is that once the statistical model is specified parametrically or nonparametrically,
the associated inference procedures for the parameters of interest are straightfor-
ward. Statistical models have been enriched and actively extended in the literature
by allowing random unknowns such as frailties in addition to fixed unknowns. We
review recent work on extension of the hierarchical likelihood (h-likelihood) of Lee
and Nelder (1996) to time-to-event (survival) data. The h-likelihood overcomes var-
ious challenges due to incomplete observations caused by censoring, truncation, and
competing events, and presents further extension of existing work, such as compli-
cated structured frailty and joint models.

Survival (time-to-event) data arise in various areas such as medicine, epidemi-
ology, genetics, engineering, econometrics, and sociology, among others. The Cox
(1972) proportional hazards (PH) model and the accelerated failure time (AFT)
model have been popular for the analysis of survival data and they have been recently
extended tomultivariatemodels by incorporating random effects (frailties) to explain
dependency and/or heterogeneity among correlated (or multivariate) survival out-
comes in the population.

This book presents the h-likelihood approach to statistical inference on corre-
lated survival data. This approach avoids computational difficulties due to intractable
integrations that are needed to calculate the marginal likelihood. Moreover, the h-
likelihood inference allows for subject-specific inferences on random effects. To be
reader-friendly, the technical details including derivations and proofs are given in
Appendix of each chapter. Real data examples are furnished with software programs
in R to provide readers with useful hands-on tools such as frailtyHL in CRAN.

A systematic review of the h-likelihood methods is important for an identification
of future direction of the field. This book will also present state-of-the-art statistical
methods that were recently developed in likelihood theory and application. Interval
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estimation of the individual frailty and variable selection of covariates in the general
class models with frailties have been of special interest. The interval estimation of
frailty could be useful for investigating heterogeneity in treatment effects across
centers from multicenter clinical trials and variable selection is useful for models
with large number of covariates.

This book is organized as follows. In this chapter, we present several motivating
examples of correlated survival data which will be used to fit survival models with
random effects such as frailty models, competing-risks frailty models, and mixed-
effect models in the later chapters. In Chap.2, we review the basic methodologies in
survival analysis for modeling and analyzing univariate survival data, which include
Kaplan–Meier estimator of the survival function, Nelson–Aalen estimator of the
cumulative hazard function, the Cox’s PH model, and the AFT model. In Chap. 3,
we outline the h-likelihood methods for random-effect models in general. Extended
likelihood inferences on statistical models with random effects are reviewed from the
perspectives of frequentist and Bayesian approaches. In Chap.4, we present infer-
ences on simple frailty models with one frailty term, together with illustration of
frailtyHLR-package.We discuss the h-likelihood procedures under right censor-
ing and left truncation. In Chap. 5, we present extensions to multicomponent frailty
models, allowing correlation among frailties. We show that h-likelihood methods
developed for the single frailty model can be straightforwardly extended to mul-
ticomponent models. In Chap.6, we present inferences on competing-risks frailty
models via both cause-specific hazards and subdistribution hazards. In Chap. 7, we
present the variable selection procedures using the penalized h-likelihood under
the frailty models with and without competing risks. In Chap.8, we present AFT
models with random effects for correlated survival data with real applications. In
Chap.9, we present joint models for time-to-event and repeated measures data. In
the last chapter, we present miscellaneous topics, including competing-risks mod-
els for multistate data including missing causes of failure, and further extensions.
Finally in Appendix A, we summarize specific matrix and vector components in the
fundamental formulas of the estimating equations for fixed and random effects used
in previous chapters.

1.2 Motivating Examples

Univariate and multivariate survival data usually consist of a single event time and
a series of multiple (or recurrent) event times from each individual, respectively.
Figure1.1 displays specific examples of a single event and recurrent events. That
is, a single event is a transition from one state (alive) to another state (dead) for a
subject, whereas recurrent events are transitions from baseline state (disease-free) to
the first state (first recurrence) and the second state (second recurrence) for a subject.
Thus, single event times are independent because each (presumably independent)
individual experiences only one event, while recurrent event times from the same
individual may be correlated. Other types of events include clustered events from

http://dx.doi.org/10.1007/978-981-10-6557-6_2
http://dx.doi.org/10.1007/978-981-10-6557-6_3
http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_5
http://dx.doi.org/10.1007/978-981-10-6557-6_6
http://dx.doi.org/10.1007/978-981-10-6557-6_7
http://dx.doi.org/10.1007/978-981-10-6557-6_8
http://dx.doi.org/10.1007/978-981-10-6557-6_9


1.2 Motivating Examples 3

Fig. 1.1 Single event and
recurrent events

multicenter clinical trials and competing-risks events as we shall investigate later.
Below, we illustrate some practical examples of multivariate (or correlated) survival
data which will be used throughout this book.

1.2.1 Kidney Infection Data

The data set consists of times to the first and second recurrences of kidney infection
in 38 patients using a portable dialysis machine (McGilchrist and Aisbett 1991).
Infections can occur at the location of insertion of the catheter. The catheter is later
removed if infection occurs and can be removed for other reasons, which is treated
as censoring; about 23.7% of the data were censored. Here, each event time is time to
infection since insertion of the catheter. The covariates of interest are Age, Sex (1=
female, 0 = male), and three indicator variables for glumerulonephritis (GN), acute
tubular nephropathy (AN) and polycystic kidney disease (PKD) which are different
types of kidney disease. The infection times from the same patient, as shown in the
case of recurrent events in Fig. 1.1, are likely to be related due to the shared patient
effect.

1.2.2 Litter-Matched Rat Data

The data set presented by Mantel et al. (1977) is from a tumorigenesis study of
50 litters of female rats. For each litter, one rat was selected to receive the study
drug and the other two rats were treated with placebo. Here, each litter is treated as a
cluster. Event time is time to development of tumor, measured inweeks. Death before
occurrence of tumor was, for simplicity, treated as a right-censored observation, even
if it is clearly a competing event; forty rats developed a tumor, leading to about 73%
censoring. Event times for rats within a litter may be correlated due to the shared
genetic or environmental effects.
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1.2.3 Chronic Granulomatous Disease (CGD) Nested
Recurrent Data

The CGD data set (Fleming and Harrington 1991) is from a placebo-controlled
randomized trial of gamma interferon in chronic granulomatous disease. The trial
aimed to investigate the effectiveness of gamma interferon (γ-IFN) in reducing the
rate of serious infections in CGD patients. In total, 128 patients from 13 hospitals
were followed for about 1 year. The number of patients accrued per hospital ranged
from 4 to 26. Among 63 patients in the treatment group, 14 patients experienced at
least one infection and a total of 20 infections were recorded. In the placebo group,
30 out of 65 patients experienced at least one infection, with a total of 56 infections
being recorded.

Time to event in this example is the gap time (inter-arrival time) between recurrent
infection times. Censoring occurred at the last follow-up for all patients, except one,
who experienced a serious infection on the date he left the study. In this study, roughly
63% of the individuals were censored. In Chap.5, we model the gap times, with
the fixed covariates xi jk = (xi jk1, . . . , xi jk10)T , where xi jk1 is a treatment indicator
(0 = placebo, 1 = γ-IFN), xi jk2 pattern of inheritance (0 = autosomal recessive,
1=X-linked), xi jk3 age (in years), xi jk4 height (in cm), xi jk5 weight (in kg), xi jk6 use
of corticosteroids at time of study entry (0 = no, 1 = yes), xi jk7 use of prophylactic
antibiotics at time of study entry (0= no, 1= yes), xi jk8 sex (0=male, 1= female),
xi jk9 hospital region (0 = U.S., 1 = Europe), and xi jk10 a longitudinal variable,
representing the accumulated time from the first infection (in years). The rationale for
creating such a time-dependent covariate is to investigate how the risk of subsequent
infection depends on time from the first infection. A positive coefficient would imply
an increasing risk of subsequent infection with elapsed time.

1.2.4 Bladder Cancer Multicenter Data

This data set came from 410 patients with stages Ta and T1 bladder cancer from
21 centers that participated in the EORTC trial 30791 (Sylvester et al. 2006). Time
to event is the duration of the disease-free interval (DFI), which is defined as time
from randomization to the date of the first recurrence. Patientswho did not experience
recurrence at the end of the follow-up periodwere censored at their last date of follow-
up; 204 patients (49.8%) were censored. Two covariates of interest are: CHEMO
(0 = No, 1 = Yes) and TUSTAT (0 = Primary, 1 = Recurrent), where CHEMO
is the treatment indicator representing chemotherapy and TUSTAT is an indicator
representing prior recurrent rate. Patients with missing values for TUSTAT were
excluded. The numbers of patients enrolled per center varied from 3 to 78, with the
mean of 19.5 and the median of 15. Event times (DFI) are expected to be correlated
among patients from the same center.

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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1.2.5 Lung Cancer Multicenter Data

We will also examine the data from the EST 1582 multicenter lung cancer trial
(Ettinger et al. 1990). This trial enrolled 579 patients from 31 distinct institutions
(centers). The number of patients enrolled per institution ranged from 1 to 56, with
the mean of 18.7 and the median of 17. The subjects were randomized to one of
two treatment arms, standard chemotherapy (CAV) or an alternating regimen (CAV-
HEM). The primary endpoint was the time (in years) from randomization to death.
The study had a high mortality rate with the censoring rate of only 1.7%. The median
survival time and maximum follow-up were 0.86 years and 8.45 years, respectively.
Five dichotomous covariates considered are treatment (xi j1 = 0 for CAV and 1 for
CAV-HEM), presence or absence of bone metastases (xi j2), presence or absence of
liver metastases (xi j3), whether the subject was ambulatory or confined to bed or
chair (xi j4), and whether there was a weight loss prior to entry (xi j5).

1.2.6 Breast Cancer Competing-Risks Data

We examine a breast cancer dataset from a multicenter clinical trial conducted by the
National Surgical Adjuvant Breast and Bowel Project (NSABP; Fisher et al. 1989,
1996), which was one of the National Cancer Institute (NCI) cooperative groups.
Total 2,817 eligible patients from 167 distinct centers were followed up for about 20
years since randomization. The number of patients per center varied from 1 to 241,
with themeanof 16.9 and themedian of 8. Thepatientswere randomized to one of two
treatment arms, tamoxifen (1413 patients) or placebo (1404 patients). The average
age of patients was 55 and the average tumor size was about 2 centimeters. The aim
of the analysis was to investigate the effect of a hormonal treatment (tamoxifen)
on local or regional recurrence. Two event types were considered; the first type
was local or regional recurrence (Type 1) and the second type was a new primary
cancer, distance recurrence or death (Type 2). Only the event that occurs first was
of interest in this analysis, so that the repeated event times were not considered.
There were 314 Type 1 events (11.15%), 1303 Type 2 events (46.25%), and 1200
patients (42.60%) were censored at the last follow-up. Here, covariates of interest
are treatment (tamoxifen = 1, placebo = 0), age, and tumor size.



Chapter 2
Classical Survival Analysis

Let T be time-to-event (failure time), which is a nonnegative random variable. In
medicine, a typical example is time from the onset of a condition or an initiation of
treatment to death. In studies of reliability of products (or components), time to failure
of light bulbs, for example, is often of interest. Rather than using such specific terms,
economists refer to durations between events (e.g., duration of unemployment). The
distribution of failure time is usually non-normal and skewed.

Survival data are typically incomplete because they are subject to censoring and/or
truncation, either from left or right. Survival data can be either univariate or multi-
variate as shown in Chap.1. Below, we further elaborate on the features of survival
data.

(1) Censoring

A true event time is said to be right censored if the event did not occur at the time
when the analysis is performed, so it is only known that the true event time is larger
than the end of the observation period. Similarly, left censoring occurs when an
event is only known to have occurred before an observation begins. Right censoring
is commonly encountered in survival data, but left censoring is relatively rare. In
particular, right censoring that occurs when the observation period of a study ends is
often referred to as administrative censoring.

There exist three types of right censoring. Under Type I censoring, the duration
of censoring time is fixed as the same for all subjects. Under Type II censoring, a
study continues until the prespecified number of failures (e.g., testing of equipment
life) is reached, implying that the censoring times are random. Random censoring
usually occurs due to staggered entry of patients into the study in clinical trials,
where survival time of each patient is measured from study entry time (Cox and
Oakes 1984). Figure2.1 illustrates rearrangement of survival times from calendar
time to entry time under random censoring due to staggered entry and loss to follow
up or the end of study.
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Fig. 2.1 Example of random censoring in six patients; •, death; ◦, censoring

Additionally, interval censoring occurs when the event time is known to have
occurred only within an interval, and doubly censoring refers to the case where both
left censoring and right censoring occur.

(2) Truncation

Truncation often induces an exclusion of certain subjects from analysis, which might
introduce sampling bias into statistical inference.

Left truncation occurs when subjects enter a study at a particular age (not neces-
sarily the origin for the event of interest) and are followed from this delayed entry
time until the event occurs or until the subject is censored. Therefore, under left trun-
cation, units that have already experienced the event of interest (e.g., death) before
a study begins are excluded (Keiding 1992). This phenomenon is also called “stock
sampling with follow up” in econometrics since only those in the “alive state” at a
given time are sampled (Lancaster 1990).

Right truncation occurs when only individuals who have experienced the event of
interest are included in the study (Klein and Moeschberger 2003). Right truncation
can occur in retrospective studies, for example, when studying the incubation period
for AIDS in patients who have already developed the disease. In this book, we will
mainly focus on random right censoring including left truncated and right censored
(LTRC). Here, LTRC data occur when individuals enter a study at a particular time
point with constraints and are followed from this entry time until the individual is
censored or experiences an event.
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2.1 Hazard and Survival Function

We first present the basic definitions of survival and hazard function and their rela-
tionships, which are the fundamental quantities for parametric and nonparametric
inference on survival data.

Assume that failure time T is a nonnegative continuous random variable with a
density function f (t) and a corresponding distribution function F(t) = P(T ≤ t).
The survival function of T , the probability of an individual surviving beyond time t
or not experiencing a failure up to time t , is defined by

S(t) = P(T > t) =
∫ ∞

t
f (x)dx .

For a distribution of lifetimes of an industrial item, S(t) is referred to as the reliability
function of T (Crowder et al. 1991). From the definition of F(t), we have that

S(t) = 1 − P(an individual fails before or at t) = 1 − F(t).

Notice that S(t) is a monotonically decreasing continuous function with

S(0) = 1 and S(∞) = limt→∞S(t) = 0.

The hazard function is defined by

λ(t) = lim�t→0
P(t ≤ T < t + �t |T ≥ t)

�t

= lim�t→0
P(t ≤ T < t + �t)/�t

P(T ≥ t)

= f (t)

S(t)

which is the instantaneous failure rate at time t , given the individual surviving just
prior to t . In particular, λ(t)�t is the approximate probability of dying in [t, t + �t),
given survival just prior to time t . The hazard function is also referred as the hazard
rate, failure rate, the force of mortality, and intensity function. The corresponding
cumulative (or integrated) hazard function is defined as

�(t) =
∫ t

0
λ(x)dx .

From the definition λ(t) = f (t)/S(t), we have the following relationships:

λ(t) = − d

dt
log S(t)
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since f (t) = −dS(t)/dt , and

S(t) = exp{−�(t)}

since

�(t) =
∫ t

0
λ(x)dx =

∫ t

0
{ f (x)/S(x)}dx = − log S(t).

Note that �(∞) = limt→∞�(t) = ∞ and

f (t) = λ(t)S(t) = λ(t) exp{−�(t)}.

Thus, the hazard function characterizes the probability density function of survival
time.

2.1.1 Parametric Distributions for Survival Times

The distribution of survival time is often positively skewed. The exponential and
Weibull distributions are popular choices for modeling survival data.

Exponential distribution: The exponential distribution is featured with a constant
hazard over time:

λ(t) = λ t ≥ 0,

where λ > 0, implying that

�(t) = λt and S(t) = exp{−�(t)} = exp(−λt).

Thus, the density is given by

f (t) = λ(t) exp{−�(t)} = λ exp(−λt) t ≥ 0.

Weibull distribution: The Weibull distribution enjoys various hazard shapes char-
acterized by a parameter φ:

λ(t) = λφtφ−1 t ≥ 0,

where λ > 0 is a scale parameter and φ > 0 is a shape parameter. The Weibull
distribution is fairly flexible because its hazard function λ(t) is monotone increasing
ifφ > 1,monotone decreasing ifφ < 1, and constant ifφ = 1, giving the exponential
distribution as a special case. Since

�(t) = λtφ and S(t) = exp(−λtφ),
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Table 2.1 Useful parametric distributions for survival analysis

Distribution Hazard rate λ(t) Survival function
S(t)

Density function f (t)

Exponential (λ > 0) λ exp(−λt) λ exp(−λt)

Weibull (λ,φ > 0) λφtφ−1 exp(−λtφ) λφtφ−1 exp(−λtφ)

Log-normal
(σ > 0,μ ∈ R)

f (t)/S(t) 1 − �{(lnt − μ)/σ} ϕ{(lnt − μ)/σ}(σt)−1

Log-logistic
(λ > 0,φ > 0)

(λφtφ−1)/(1 + λtφ) 1/(1 + λtφ) (λφtφ−1)/(1 + λtφ)2

Gamma (λ,φ > 0) f (t)/S(t) 1 − I (λt,φ) {λφ/�(φ)}tφ−1 exp(−λt)

Gompertz
(λ,φ > 0)

λeφt exp{ λ
φ (1 − eφt )} λeφt exp{ λ

φ (1 − eφt )}

�(·) [ϕ(·)], c.d.f [p.d.f.] of N(0,1); I (x,φ) = 1
�(φ)

∫ x
0 uφ−1e−udu, incomplete gamma function

we have
f (t) = λφtφ−1 exp(−λtφ) t ≥ 0.

Note that
log{− log S(t)} = logλ + φ log t,

which is used for checking the Weibull model.
Table2.1 summarizes useful parametric distributions including exponential,

Weibull, log-normal, log-logistic, gamma, and Gompertz. These parametric distribu-
tions have been implemented in the survreg() function in the R package survival
as we see in Sect. 2.4.

Percentile of Distribution

Inmany applications, the percentile of a failure time distribution is of interest, e.g., the
median survival time. The 100pth percentile (or the pth quantile) of the distribution
of T is the value tp satisfying

P(T ≤ tp) = p ∈ (0, 1),

which is equivalent to S(tp) = 1 − p. That is, tp = F−1(p) indicates the time point
to which the 100p% of population will fail; in particular, the median survival time
t0.5 is the median of distribution of T . For example, tp = − log(1 − p)/λ for an
exponential distribution and tp = {− log(1 − p)/λ}1/φ for a Weibull distribution.

2.1.2 Nonparametric Estimation of Basic Quantities

In survival analysis, parametricmethods based on distributions in Table2.1 have been
well developed and would provide efficient results when the parametric assumptions
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are satisfied in the data. In practice, however, when the underlying distributional
assumption is not testable as in the designing stage of a study or the parametric
assumptions are not satisfied in the observed data, nonparametric methods are prefer-
able.

Let Ti (i = 1, . . . , n) be the potential failure time and Ci be the corresponding
potential censoring time for the i th individual. Then, the observable randomvariables
are

Yi = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ),

where I (·) is the indicator function. The following are the two usual assumptions
under noninformative censoring:

Assumption 1: Ti ’s and Ci ’s are independent, and pairs (Ti ,Ci )’s are also inde-
pendent (i = 1, . . . , n).

Assumption 2: Ci ’s are noninformative of Ti ’s.

Here, the noninformativeness implies that the censoring distribution does not
depend on the parameters of interest from the failure time distribution (Klein and
Moeschberger 2003). Under the noninformative censoring, we have the two well-
known nonparametric estimators in survival analysis; Kaplan and Meier (1958) esti-
mator for the survival function and Nelson (1969, 1972)–Aalen (1978) estimator for
the cumulative hazard function. Note that independence is a probabilistic property,
while noninformativeness depends on the relationship between parameters in the
model.

Let yi be the observed value of Yi . Suppose that there are D (D ≤ n) distinct
observed event times y(1) < y(2) < · · · < y(D) among yi ’s. Let d(k) be the number of
events at y(k) (k = 1, . . . , D). Let n(k) be the number of individuals who are at risk
at y(k), that is, the number of individuals who are alive and uncensored just prior to
y(k). The Kaplan–Meier (K–M) estimator of S(t), is defined by

ŜK−M(t) =
∏

k:y(k)≤t

{
1 − d(k)

n(k)

}
,

which is also called the product-limit estimator. The K–M estimator is a step function
with jumps at the observed event times and reduces to the empirical survival function
estimator under no censoring. The variance of theK–Mestimator is usually estimated
using Greenwood’s formula:

v̂ar(ŜK−M(t)) = Ŝ2K-M(t)
∑

k:y(k)≤t

d(k)

n(k){n(k) − d(k)} .

Using the estimated survival function such as ŜK−M(t), tp is estimated by the
smallest observed survival time such that S(ti ) ≤ 1 − p. That is,
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t̂ p = min{ti |Ŝ(ti ) ≤ 1 − p}.

The estimation procedure of tp is implemented in the quantile() function in
survival R package. In addition, the mean survival time μ = E(T ) can be easily
estimated by using ŜK−M(t):

μ̂ =
∫ ∞

0
ŜK−M(u)du,

which is equal to the area under the estimated survival function.
These nonparametric estimators are illustrated in detail with four examples below.

Example 2.1 Gehan (1965) presented data from a clinical trial comparing drug 6-
mercaptopurine (6-MP group) versus placebo (control group) in 42 acute leukemia
patients and the treatment allocation for the two groups was randomized by a match-
ing pair. Here, the survival outcome is time to remission (in weeks) as summarized
below (“+” denotes censoring by the end of study):

6-MP group: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+,13, 16, 17+, 19+, 20+,22, 23, 25+,
32+, 32+, 34+, 35+

Placebo group: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

For simplicity, we consider only 6-MP group. The detailed steps to calculate the
K–M estimates and its variances are presented in Table2.2. From the bottom part of
Table2.2, we can see the K–M estimator is a step function.

The R codes and output for the K–M and quantile estimates using the 6-MP group
are as follows.

> library(survival)

> data(gehan, package="MASS")

> head(gehan)

pair time cens treat

1 1 1 1 control

2 1 10 1 6-MP

3 2 22 1 control

4 2 7 1 6-MP

5 3 3 1 control

6 3 32 0 6-MP

> attach(gehan)

> Six_MP<-subset(gehan,treat=="6-MP") #6-MP group only

> fit1<-survfit(Surv(time,cens)˜1,data=Six_MP)

> summary(fit1)

Call: survfit(formula = Surv(time, cens) ˜ 1,data = Six_MP)
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Table 2.2 Construction of the K–M and its SE for the 6-MP group

y(k) n(k) d(k) Ŝ(y(k)) Var

6 21 3 1 − (3/21) = 0.857 0.0058

7 17 1 0.857{1 − (1/17)} = 0.807 0.0076

10 15 1 0.807{1 − (1/15)} = 0.753 0.0093

13 12 1 0.753{1 − (1/12)} = 0.690 0.0114

16 11 1 0.690{1 − (1/11)} = 0.627 0.0130

22 7 1 0.627{1 − (1/7)} = 0.538 0.0164

23 6 1 0.538{1 − (1/6)} = 0.448 0.0181

Time of study (t) Ŝ(t) SE

0 ≤ t < 6 1.000 0.000

6 ≤ t < 7 0.857 0.076

7 ≤ t < 10 0.807 0.087

10 ≤ t < 13 0.753 0.096

13 ≤ t < 16 0.690 0.107

16 ≤ t < 22 0.628 0.114

22 ≤ t < 23 0.538 0.128

23 ≤ t < 35 0.448 0.135

time n.risk n.event survival std.err lower CI upper CI

6 21 3 0.857 0.0764 0.720 1.000

7 17 1 0.807 0.0869 0.653 0.996

10 15 1 0.753 0.0963 0.586 0.968

13 12 1 0.690 0.1068 0.510 0.935

16 11 1 0.627 0.1141 0.439 0.896

22 7 1 0.538 0.1282 0.337 0.858

23 6 1 0.448 0.1346 0.249 0.807

> plot(fit1, xlab="time", ylab="Survival function")

> quantile(fit1) # quantile including median

> print(fit1, print.rmean=T) # mean including median

Call: survfit(formula = Surv(time, cens) ˜ 1, data = Six_MP)

n events *rmean *se(rmean) median 0.95LCL 0.95UCL

21.00 9.00 23.29 2.83 23.00 16.00 NA

* restricted mean with upper limit = 35

Figure2.2 shows the K–M estimates for the 6-MP group, with their 95% confi-
dence intervals, which visualizes the K–M estimator as a step function with jumps
at the observed events (deaths).

On the other hand, the Nelson–Aalen (N–A) estimator of the cumulative hazard
function �(t) is defined by
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Fig. 2.2 K–M survival
function estimates and their
95% confidence intervals for
6-MP group only in Gehan
data

Table 2.3 Calculation of the N–A and its SE for 6-MP group

Time t �̂(t) SE

0 ≤ t < 6 0 0

6 ≤ t < 7 3/21 = 0.143 0.083

7 ≤ t < 10 0.143 + (1/17) = 0.202 0.102

10 ≤ t < 13 0.202 + (1/15) = 0.269 0.121

13 ≤ t < 16 0.269 + (1/12) = 0.352 0.147

16 ≤ t < 22 0.352 + (1/11) = 0.443 0.173

22 ≤ t < 23 0.443 + (1/7) = 0.586 0.224

23 ≤ t < 35 0.586 + (1/6) = 0.753 0.280

�̂N-A(t) =
∑

k:y(k)≤t

d(k)

n(k)
, (2.1)

which is identical to the Breslow (1972) estimator of the baseline cumulative haz-
ard function from Cox’s (1972) proportional hazards model (see Sect. 2.3 for more
details) without covariates. The corresponding variance estimator (Aalen 1978) is
given by

v̂ar(�̂N-A(t)) =
∑

k:y(k)≤t

d(k)

n2(k)
.

The detailed steps to calculate the N–A estimator and its variance are presented in
Table2.3.
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Fig. 2.3 Comparison of
K–M and N–A estimates of
the survival function for
6-MP group

From �(t) = − log S(t), the K–M estimator of S(t) can also be used to estimate
�(t):

�̂K−M(t) = − log ŜK−M(t)

= −
∑

k:y(k)≤t

log

{
1 − d(k)

n(k)

}

	 �̂N-A(t).

Since − log(1 − x) ≈ x for small x by Taylor expansion, the two estimators,
�̂K−M(t) and �̂N-A(t), converge to the true cumulative hazard function when the
increments d(k)/n(k) are small, that is, when there are many individuals still at risk.
Note here that �̂K−M(t) ≥ �̂N-A(t) in the finite samples since− log(1 − x) ≥ x . In
fact, the two estimators are asymptotically equivalent because the individual incre-
ments get arbitrarily smaller as n → ∞ (Breslow and Crowley 1974). Similarly, we
have that

ŜN-A(t) =
∏

k:y(k)≤t

{
exp

(
− d(k)

n(k)

)}
	 ŜK−M(t).

since exp(−x) ≈ 1 − x for small x . Note that ŜN-A(t) ≥ ŜK−M(t). Figure2.3 shows
a comparison of theK–MandN–A estimates of the survival function for 6-MP group,
indicating their asymptotic equivalence even in the small sample.

The K–M and N–A estimators possess desirable large sample properties (consis-
tency and asymptotic normality) underAssumptions 1 and 2 (Fleming andHarrington
1991; Andersen et al. 1993). Both estimators are also used as a graphic tool for a
model checking. For example, a plot of �̂K−M(t) = − log ŜK−M(t) versus t will be
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approximately linear if the exponential distribution with a constant hazard rate, i.e.,
− log S(t) = λt , fits the data well.

Example 2.2 We show how to compute the N–A estimator for 6-MP group from the
Gehan data presented in Example 2.1. The R codes and outputs are as follows:

> fit2<-survfit(coxph(Surv(time,cens)˜1, ties="breslow",data=Six_MP))
> summary(fit2)
Call: survfit(formula = coxph(Surv(time, cens) ˜ 1, ties ="breslow",

data = Six_MP))

time n.risk n.event survival std.err lower 95% CI upper 95% CI
6 21 3 0.867 0.0715 0.737 1.000
7 17 1 0.817 0.0828 0.670 0.997

10 15 1 0.765 0.0927 0.603 0.970
13 12 1 0.704 0.1035 0.527 0.939
16 11 1 0.642 0.1111 0.458 0.902
22 7 1 0.557 0.1249 0.359 0.864
23 6 1 0.471 0.1317 0.273 0.815

> plot(fit2) # survival plot using the N--A method
>
> ### Comparison of KM and NA estimators for survival function ###
> fit1_KM <-survfit(Surv(time,cens)˜1,conf.type="none",data=Six_MP)
> fit2_NA <-survfit(coxph(Surv(time, cens)˜1, ties="breslow",
+ data=Six_MP),conf.type="none")
> plot(fit1_KM,xlab="time", ylab="Survival function", lty=1)
> lines(fit2_NA, lty=2)
> legend(locator(1),c("KM","NA"),lty=1:2)
>
> ### N-A cumulative-hazard estimator ###
> Z.NA= -log(fit2$surv)
> Z.NA
[1] 0.1428571 0.2016807 0.2016807 0.2683473 0.2683473 0.3516807
[7] 0.4425898 0.4425898 0.4425898 0.4425898 0.5854469 0.7521136
[13] 0.7521136 0.7521136 0.7521136 0.7521136

Example 2.3 (Proportional case) We illustrate existing procedures to test equality
of failure time distributions, together with a graphical comparison by the K–M esti-
mates. For a k-sample test of equality of survival functions, we can use the log-rank
test (Mantel–Haenszel test), Gehan test (generalizedWilcoxon test), or Tarone–Ware
test (weighted log-rank test). The log-rank test is popular, and optimal when the haz-
ard functions are proportional between comparison groups, or the hazard ratio is
constant (proportional hazards (PH) assumption). Gehan test or Tarone–Ware test
could be more efficient for the non-PH data.

Figure2.4 presents the K–M estimates for 6-MP and control groups, respectively,
in Gehan data. This plot suggests the 6-MP patients have overall higher survival
probabilities than ones in control group. It is thus clear that the 6-MP group tends to
have longer remission times. The corresponding p-values from the log-rank, Gehan
and Tarone–Ware tests are all close to zero.
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Fig. 2.4 K–M survival
function estimates for two
groups (6-MP vs. control) in
Gehan data

Below is the R codes for the K–M plots and the above-mentioned three tests for
equality of the two failure distributions (k = 2). The survdiff() function imple-
ments the Harrington and Fleming family (1982), with the weights Ŝ(t)ρ, where Ŝ(t)
is the K–M estimate of the pooled survival from both groups. This gives the log-rank
test if ρ = 0, Gehan test if ρ = 1 and Tarone–Ware test if ρ = 0.5.

> fit3<-survfit(Surv(time,cens)˜treat,data=gehan)
> summary(fit3)
> plot(fit3, lty=1:2, xlab="time", ylab="Survival function")
> legend(locator(1),c("6-MP","control"),lty=1:2)
> survdiff(formula=Surv(time,cens)˜treat,data=gehan) #log-rank test
> survdiff(formula=Surv(time,cens)˜treat,data=gehan,rho=1) #Gehan test
> survdiff(formula=Surv(time,cens)˜treat,data=gehan,rho=0.5)#Tarone-Ware test

Example 2.4 (Crossing case) In this example, we compare the three tests again
when the two estimated survival curves cross over, indicating a non-proportionality.
Consider a data set (in days) from the Gastrointestinal Tumor Study Group (1982),
which compared a chemotherapy alone with a combined chemo- and radiation ther-
apy, to treat locally unresectable gastric cancer (Stablein and Koutrouvelis 1985).
Each treatment arm had 45 patients, with two patients from the chemotherapy group
and six from the combination group censored.

The K–M plot in Fig. 2.5 shows that the two K–M estimates cross over around
2.7years. The p-values from the log-rank, Gehan and Tarone–Ware tests are 0.635,
0.0465, and 0.168, respectively.We thus see that the Gehan test detects the difference
between the two groups most efficiently under this particular circumstances. The
following is the R codes for testing the equality of the two survival distributions.
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Fig. 2.5 K–M survival
function estimates (group0:
chemotherapy, group1:
combined) in the gastric data

> library(YPmodel)

> data(gastric)

> head(gastric)

V1 V2 V3

1 0.002739726 1 0

2 0.046575342 1 1

3 0.115068493 1 1

4 0.120547945 1 1

5 0.131506849 1 1

6 0.164383562 1 1

> time=gastric$V1 # survival time (unit: year)

> cens=gastric$V2 # censoring indicator

> group=gastric$V3 # group("0",chemotherapy;"1", combined)

>

> fit4<-survfit(Surv(time,cens)˜group,data=gastric)

> plot(fit4, lty=1:2, xlab="time", ylab="Survival function")

> legend(locator(1),c("group0","group1"),lty=1:2)

> formula=Surv(time,cens)˜group

> survdiff(formula,data=gastric) # log-rank test

> survdiff(formula,data=gastric,rho=1) # Gehan test

> survdiff(formula,data=gastric,rho=0.5)# Tarone-Ware test

For the detecting crossing hazards, one could look for a test of interaction between
group membership and time (i.e., time-by-covariate interaction) or an alternative
modeling approach (Collett, Sect. 4.4, 2015; Burke and MacKenzie 2017).
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2.2 Basic Likelihood Inference

In this section, we show a likelihood construction under random right censoring.
Let fθ(·), Sθ(·), λθ(·), and �θ(·) be density, survival, hazard, and cumulative hazard
functions of failure time T with an unknown parameter θ ∈ �, respectively. Here, �
is the parameter space. The observable random variables from n individuals consist
of the pairs (Yi , δi ) (i = 1, · · · , n), where

Yi = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ).

Let Pθ(yi , δi ) be the probability distribution of the pair (yi , δi ) of the i th observa-
tion. Under the Assumptions in Sect. 2.1.2, the likelihood, denoted by Li (θ; yi , δi ),
for θ based on the i th observation is given as

Li (θ; yi , δi ) ≡ Pθ(yi , δi ) ∝ fθ(yi )
δi Sθ(yi )

1−δi . (2.2)

The derivation of (2.2) is as follows. Let g(·) and G(·) be the density function and
cumulative distribution function of the censoring time, respectively. From Assump-
tion 1, we have

Li (θ; yi , δi = 1) = Pθ(Yi = yi , δi = 1) = Pθ(Ti = yi , Ti ≤ Ci ) = fθ(yi )[1 − G(yi )]

and

Li (θ; yi , δi = 0) = Pθ(Yi = yi , δi = 0) = Pθ(Ci = yi , Ti > Ci ) = Sθ(yi )g(yi ).

Because g(·) and G(·) do not involve any information about the failure time dis-
tribution (and therefore θ), by Assumption 2, we have Li (θ; yi , δi = 1) ∝ fθ(yi )
and Li (θ; yi , δi = 0) ∝ Sθ(yi ). Thus, the likelihood function Li (θ; yi ) for a sub-
ject i would include fθ(yi ) contributed by the observed event time, i.e., δi = 1, or
Sθ(yi ) = Pθ(Ti > yi ) contributed by the observed censoring time, i.e., δi = 0.

Therefore, the total likelihood function for n independent observations is given
by

L(θ) =
∏
i

Li (θ; yi , δi ) =
∏
i

[
λθ(yi )

δi exp {−�θ(yi )}
]
,

with the log-likelihood of

�(θ) = log L(θ) =
∑
i

{δi logλθ(yi ) − �θ(yi )}. (2.3)

Themaximum likelihood estimator (MLE) θ̂ of θ is definedby the value θmaximizing
the log-likelihood (2.3), i.e.,
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θ̂ = argmax
θ∈�

�(θ),

where argmax denotes the argument of the maximum, or equivalently

�(θ̂) ≥ �(θ) for all θ ∈ �.

In practice, however, it is usually not possible to obtain an explicit form solution for
the MLE, especially when the model involves many parameters and its density or
estimating equation (i.e., ∂�(θ)/∂θ = 0) is highly nonlinear. In such situations, the
MLE can be numerically obtained by using nonlinear optimization algorithms such
as Newton–Raphson method or the optim() R function.

Under some regular conditions (Cox and Hinkley, Sect. 9.1, 1974), the MLE θ̂
has the following useful properties:

(1) Consistency: θ̂ is consistent to θ, i.e., for small ε > 0,

P(|θ̂ − θ| ≥ ε) → 0 as n → ∞.

(2) Invariance: If g(θ) be a function of θ, not necessary one-to-one or differen-
tial, then g(θ̂) is the MLE of g(θ).

(3) Asymptotic normality: θ̂ is asymptotically normally distributed with mean
θ and variance i−1(θ), i.e.,

θ̂ ≈ N (θ, i−1(θ)) as n → ∞,

where i(θ) = E(−∂2�(θ)/∂θ2) is an expected (Fisher) information and its
inverse provides an asymptotic variance of θ̂. However, the observed information
I (θ) = −∂2�(θ)/∂θ2 is usually used in survival analysis because the computa-
tion of expectation in i(θ) is difficult under random censoring and i(θ) ≈ I (θ)
asymptotically.

Note that the three properties above are still applied even if θ is a vector of
parameters.

Example 2.5 Let us consider an exponential distribution with a constant haz-
ard; λ(t) = λ, t ≥ 0. The log-likelihood based on the observed data (yi , δi ) (i =
1, . . . , n) is given by

�(λ) =
∑
i

{δi logλ − λyi } = r logλ − λ
∑
i

yi ,

where r = ∑
i δi is the observed number of events. From ∂�(λ)/∂λ = 0, the MLE

of λ is given by λ̂ = r/
∑

i yi . The observed information is
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I (λ) ≡ −∂2�(λ)/∂λ2 = r/λ2.

By the asymptotic normality of the MLE, we have that λ̂ ∼ N (λ,λ2/r) asymptoti-
cally. �

Likelihoods under various types of censoring and truncation schemes are sum-
marized in Appendix 2.6.1.

2.3 Cox’s Proportional Hazards Models

Nonparametric tests such as the log-rank test can be used to test the equality of
failure time distributions among different groups, but they do not typically adjust for
confounding factors, which can be included as covariates in a regression setting.

Cox (1972) introduced a regressionmodel for the hazard function, which specifies
the relationship between the hazard rate and fixed or time-varying covariates. Let
x = (x1, . . . , xp)T be a vector of covariates for an individual and λ(t; x) be the
hazard function at time t for an individual with covariates x . Under the Cox model,
the hazard function for an individual is of the form

λ(t; x) = λ0(t) exp(x
Tβ), (2.4)

where λ0(t) is an unspecified baseline hazard function at time t under x = 0 and
β = (β1, . . . ,βp)

T is a vector of regression parameters corresponding to covariates
x which can be time-independent or time-dependent.Note here that the exponentiated
covariate terms act multiplicatively on individual’s hazard rate. For the purpose of
identifiability, the term xTβ does not include the intercept term. The model in (2.4) is
called semiparametric because the form of the baseline hazard part is nonparametric,
while that of the covariate part is parametric. This is also called a PH model because
the ratio (i.e., hazard ratio (HR) or relative risk) of hazard rates for any two individuals
with different covariate vectors, x1 and x2, is constant over time t . That is, the hazard
ratio is given by

HR(t; x1, x2) = λ(t; x1)
λ(t; x2) = exp{(x1 − x2)

Tβ}, (2.5)

which does not vary with t . Thus, the regression parameters β have an attractive
interpretation in terms of the log hazard ratio.

In particular, the interpretation of HR is useful in two sample case with one binary
covariate x . Denote x1 = 1 for the new drug and x2 = 0 for the placebo. Then, from
(2.5), the HR of a patient in new drug group against one in placebo group is given by

HR(t; x1, x2) = λ(t; x1 = 1)

λ(t; x2 = 0)
= exp(β1).
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Thus, the new drug would be associated with lower (higher) hazard rate relative to
the placebo if β1 < 0 (β1 > 0).

Cox’s Partial Likelihood

The Cox model can be directly fitted using the likelihood (2.3) if a parametric form
(e.g., Weibull) of λ0(t) is specified. However, when the functional form of λ0(t)
in (2.4) is completely unknown, the classical likelihood approach is not directly
applicable. Under Assumptions 1 and 2 and no ties, Cox (1972, 1975) introduced
the partial (log-)likelihood for estimating β in the absence of information of λ0(t),
defined by

�C(β) =
∑
k

[
xT(k)β − log

{ ∑
i∈R(k)

exp(xTi β)

}]
, (2.6)

where xi = (xi1, . . . , xip)T is a p × 1 vector of covariates for the i th individual,
y(k) is the kth (k = 1, . . . , D) smallest distinct event time among the yi ’s, x(k) is the
covariate vector corresponding to y(k) and

R(k) = R(y(k)) = {i : yi ≥ y(k)}

is the risk set at time y(k), i.e., the set of all individuals who are alive and uncensored
just prior to y(k). The partial likelihood (2.6) depends only on the order in which
events occur, not on the exact times of occurrence. It can be viewed as a profile
likelihood as shown in Appendix 2.6.2.

Cox (1972) showed that the kth term in the partial likelihood is the conditional
probability that an individual fails at time y(k) with covariates x(k), given one of the
individuals in R(k) fails at this time. That is, it is expressed as

P(individual fails at y(k) |one failure at y(k))

= P(individual fails at y(k)|survival to y(k))

P(one failure at y(k)|survival to y(k))

= λ(t; x(k))∑
i∈R(k)

λ(t; xi )

= exp(xT(k)β)∑
i∈R(k)

exp(xTi β)
.

Notice here that λ0(t) cancels out and that the partial likelihood is a function only
of β.

The partial log-likelihood �C(β) is then obtained by taking logarithm of the prod-
uct of all these conditional probabilities over the D failures. The regression parame-
ters β in the Cox model can be estimated by maximizing the partial log-likelihood.
The partial maximum likelihood estimators (PMLEs) β̂ of β that maximize �C(β)
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are obtained by solving the score equations

∂�C(β)

∂β
= 0, (2.7)

and their variance estimators are obtained from the inverse of observed information
matrix, −∂2�C/∂β2. The PMLEs are often called nonparametric MLEs (NPMLEs).
The score equations in (2.7) can be usually solvedusing theNewton–Raphsonmethod
with initial values β̂(0) = 0. Note that the resulting PMLEs β̂ are consistent and
asymptotically normally distributed (Andersen and Gill 1982; Andersen et al. 1993).

Breslow’s Likelihood

Several forms of partial likelihoods have been suggested when there are ties among
failure times; see, for example, Breslow (1972, 1974), Peto and Peto (1972), and
Efron (1977). In particular, from a joint likelihood of β and λ0, Breslow proposed
the following partial likelihood with ties:

�B(β) =
∑
k

[
sT(k)β − d(k) log

{ ∑
i∈R(k)

exp(xTi β)

}]
, (2.8)

where sT(k) = ∑
i∈D(k)

xTi is the sum of the vectors xTi over D(k) = {i : δi = 1, yi =
y(k)} which is the set of individuals who fail at y(k), and d(k) = ∑n

i=1 I (yi = y(k)) is
the number of events at y(k). He also proposed an estimator �̂0B(t) of the baseline
cumulative hazard function �0(t) = ∫ t

0 λ0(u)du, given by

�̂0B(t) =
∑

k:y(k)≤t

{
d(k)∑

i∈R(k)
exp(xTi β̂)

}
, (2.9)

where β̂ is a vector of the estimates that maximize �B(β). The derivations of (2.8)
and (2.9) are given in Appendix 2.6.2.

When there are no ties (i.e., all d(k) = 1), Breslow’s likelihood �B(β) reduces to
Cox’s partial likelihood �C(β). Suppose that there are no covariates, exp(xTi β) = 1.
Breslow’s estimator �̂0B(t) reduces to the N–A estimator �̂N-A(t) in (2.1) because
n(k) = ∑

i I (i ∈ R(k)).
To illustrate notations in Breslow’s likelihood (2.8) and Breslow estimator (2.9),

we consider a small data set, with five individuals. Suppose that from the i th
individual (i = 1, . . . , 5), survival data (yi , δi ) are observed with two covariates
xTi = (xi1, xi2). Table2.4 shows the data set and the steps to calculate the basic
quantities, such as y(k), R(k), n(k), D(k), d(k), and s(k).

For example, at the first distinct event time y(1) = 2, the remaining quantities are
calculated as follows:
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Table 2.4 A small data set and calculation of quantities at y(k)
Individual i yi δi xi1 xi2

1 3 0 x11 x12
2 5 1 x21 x22
3 5 1 x31 x32
4 2 1 x41 x42
5 6 1 x51 x52
k y(k) R(k) n(k) D(k) d(k) sT(k)
1 2 {1, 2, 3, 4, 5} 5 {4} 1 (x41, x42)

2 5 {2, 3, 5} 3 {2, 3} 2 (x21 + x31, x22 + x32)

3 6 {5} 1 {5} 1 (x51, x52)

Note: Since y(k) is the kth smallest distinct event time among yi ’s, a censoring time y1 = 3 cannot
be an event time y(k)

R(1) = R(y(1)) = {i : yi ≥ y(1)} = {i : yi ≥ 2} = {1, 2, 3, 4, 5}
n(1) = 5 since n(1) is the number of elements in R(1)

D(1) = {i : δi = 1, yi = y(1)} = {4}
d(1) = 1 since d(1) is the number of elements in D(1)

sT(1) =
∑
i∈D(1)

xTi = xT4 = (x41, x42).

Fitting Procedures

Under the Cox PH model (2.4), the log-likelihood (2.3) becomes

�(β,λ0) =
∑
i

δi {logλ0(yi ) + ηi } −
∑
i

{�0(yi ) exp(ηi )},

where ηi = xTi β. Appendix 2.6.2 shows that the profile likelihood �∗(β) becomes
�B(β) in (2.8) since

�∗(β) = �(β,λ0)|�0=�̂0B (β)

=
∑
i

δiηi −
∑
k

d(k) log{
∑
i∈R(k)

exp(ηi )}

with the constant term being deleted. Note that
∑

i δiηi = ∑
k s

T
(k)β in (2.8). Below,

we present two methods on how to solve ∂�∗/∂β = 0, which provide the same
estimator for β.
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• Newton–Raphson method
The usual Newton–Raphson method requires the following two partial derivatives:

S∗(βr ) = ∂�∗

∂βr
=

∑
i

δi xir −
∑
k

d(k)

{∑
i∈R(k)

xir exp(ηi )∑
i∈R(k)

exp(ηi )

}
, (r = 1, . . . , p)

H∗(βrs) = − ∂2�∗

∂βrβs
=

∑
k

d(k)

[∑
i∈R(k)

xir xis exp(ηi )∑
i∈R(k)

exp(ηi )

− {∑ i∈R(k)
xir exp(ηi )}{∑ i∈R(k)

xis exp(ηi )}
{∑ i∈R(k)

exp(ηi )}2
]
,

(r, s = 1, . . . , p),

and β̂r are obtained by solving iteratively

β̂r
(k+1) = β̂r

(k) + [{H∗(βrs)}−1S∗(βr )]|βr=β̂(k)
r

.

This Newton–Raphson method can be represented by the iterative weighted least
squares (IWLS) equation (Appendix 2.6.3), given by

(XTW ∗X)β̂ = XTW ∗w,

where X is a n × pmodel matrix for β whose i th row vector is xTi ,W
∗ = W ∗(β,λ0)

is a symmetric matrix in (2.19) in Appendix 2.6, and

w = η + W ∗−1
(δ − μ)

is an adjusted dependent variable with η = Xβ. The IWLS equation is popular in
the generalized linear models (GLMs; McCullagh and Nelder 1989). However, the
matrix W ∗ in the above IWLS equation is no longer diagonal, so that W ∗−1 is often
difficult to be computed (Ha and Lee 2003). Thus, the IWLS equation of the GLMs
cannot be directly used for the Cox model, so that it is desirable to develop an
alternative iterative procedure without calculating the inverse of W ∗.

• A new iterative least squares (ILS) method
The Newton–Raphson procedure can be implemented via the ILS method below,
without involving W ∗−1, by introducing a new adjusted dependent variable

w∗ = W ∗η + (δ − μ) (= W ∗w),

where μ = exp(log�0(y) + η).



2.3 Cox’s Proportional Hazards Models 27

Theorem 2.1 The new ILS equation for β in the Cox PH model is given by

(XTW ∗X)β̂ = XTw∗, (2.10)

where w∗ = W ∗η + (δ − μ).

The proof is given in Appendix 2.6.3, including the form of W ∗. Note that the terms
λ0k in bothW ∗ andw∗ are replaced by their estimates λ̂0k in (2.18). The ILS equation
(2.10) is extended to the general frailty models beginning from Chap. 4.

The variance of β̂ can be estimated by (XTW ∗X)−1. It can be shown that the
inverse of the second derivative (i.e., H∗(β) = XTW ∗X ) of the profile log-likelihood
�∗(β) gives the same variance estimate of β̂ as the relevant submatrix of the inverse
of the full information matrix derived from the full log-likelihood �(β,λ0).

• Fitting algorithm:

– Step 1: Take all zeros as initial values β̂(0) of β.
– Step 2: Given β(0), the new estimates β̂ are obtained by solving the score equa-
tions ∂�∗/∂β = 0; that is, they are solved using the ILS method with (2.10).

– Step 3: Repeat Step 2 until the maximum absolute difference between the pre-
vious and current estimates for β is less than 10−6.

Example 2.6 Results from application of the two methods to Gehan’s data are as
follows. The Newton–Raphson method is implemented in coxph() function in
survival R package (Therneau 2010) and the ILS method is in frailtyHL()
function in frailtyHL R package (Ha et al. 2018) described in Chap.4.

> ############## Method 1: Fitting Cox model via coxph() ##############
> library(survival)
> gehan$treat=relevel(gehan$treat,ref="control")
> Method1<-coxph(Surv(time, cens)˜factor(treat),ties="breslow",data=gehan)
> summary(Method1)
Call:
coxph(formula = Surv(time, cens) ˜ factor(treat), data = gehan,

ties ="breslow")
n= 42, number of events= 30

coef exp(coef) se(coef) z Pr(>|z|)
factor(treat)6-MP -1.5092 0.2211 0.4096 -3.685 0.000229 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

exp(coef) exp(-coef) lower .95 upper .95
factor(treat)6-MP 0.2211 4.523 0.09907 0.4934

Concordance= 0.69 (se = 0.053 )
Rsquare= 0.304 (max possible= 0.989 )
Likelihood ratio test= 15.21 on 1 df, p=9.615e-05
Wald test = 13.58 on 1 df, p=0.0002288

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Score (logrank) test = 15.93 on 1 df, p=6.571e-05
>
> ############ Method 2: Fitting Cox model via frailtyHL() ############
> library(frailtyHL)
> Method2<-frailtyHL(Surv(time, cens)˜treat+(1|pair),
+ varfixed=TRUE,varinit=0,data=gehan)
iteration :

4
convergence :

2.731994e-08
[1]"converged"
[1]"Results from the Cox model"
[1]"Number of data : "
[1] 42
[1]"Number of event : "
[1] 30
[1]"Model for conditional hazard : "
Surv(time, cens) ˜ treat + (1 | pair)
[1]"Method : HL(0,1)"
[1]"Estimates from the mean model"

Estimate Std. Error t-value p-value
treat6-MP -1.509 0.4096 -3.685 0.0002288

Interpretation: The two methods provide identical results using Breslow’s method
for ties. The output indicates that the estimated 6-MP drug effect is −1.509 with
p-value = 0.00023. The estimated hazard ratio for 6-MP group relative to placebo
group is exp(−1.509) = 0.221, with a corresponding 95% confidence interval of
exp(−1.509 ± 1.96 × 0.4096) = (0.099, 0.493). Thus, we see that the 6-MP group
has significantly lower hazard rate as compared to the placebo group. �

Remark 2.1
(i) A method for fitting the Cox PH model using Poisson GLM:

Since the maximum likelihood score equations for β become

∂�∗

∂β
= ∂�

∂β
|�0=�̂0

,

the MLEs are obtained by solving

∂�

∂βr
|�0=�̂0

=
∑
i

(δi − μi )xir |�0=�̂0
= 0 (r = 1, . . . , p),

where μi = �0(yi ) exp(xTi β) (Appendix 2.6.3). These are also the estimating equa-
tions for a Poisson GLM, with the response δi and the offset log �̂0(yi ). Fitting
the PH model with parametric baseline hazard �0(·) via standard Poisson GLM is
straightforward (Aitkin and Clayton 1980). Furthermore, the Poisson GLM fitting
of the Cox PH model with nonparametric baseline hazard can be done by using a
pseudo-Poisson response variable yi,k having 0 or 1 in (2.20) (Whitehead 1980): for
more detailed description, see Appendix 2.6.4.
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(ii) PH assumption:

The log-rank statistic can be derived as the score test under the Cox PH model
comparing two groups with a single binary covariate. It is asymptotically equivalent
to the likelihood ratio andWald test statistics from the PHmodel. However, the PH is
a strong assumption that clearly needs to be checked in applications because the ratio
of the hazard functions between two individuals in different groups can vary over time
as in Fig. 2.5. For this case, a time-dependent covariate term x(t) or a time-dependent
coefficient term β(t) can be introduced into the model to test the PH assumption;
cox.zph() in survival R package and PROC PHREG in SAS are available. If the
PH assumption is violated for a discrete covariate, it may be reasonable to stratify
on this covariate (i.e., each stratum of this covariate has a different baseline hazard)
and employ the PH model with the other covariates within each stratum. �

2.4 Accelerated Failure Time Models

A linear model can be considered for survival data as an alternative to the Cox PH
model (2.4) by modelling a direct relationship between the logarithm of failure time
and covariates as follows:

log T = xTβ + ε, (2.11)

where the term xTβ includes an intercept term and ε is a random error. Note that the
logarithmic transformation is often used because T is positive but other transforma-
tions can be also used. The model (2.11) can be written as

T = exp(xTβ)T0,

where T0 = exp(ε), indicating that the role of x is to accelerate (or decelerate) time
to failure, T . Thus, this model is referred to as the accelerated failure time (AFT)
model. Time-dependent covariates can be also introduced in the AFT model as in
the Cox model (Orbe et al. 2002).

Let S0(t) denote the survival function of T0 = exp(ε). Since T = exp(xTβ + ε),
we have that

S(t) = P(T > t) = P{T0 > t exp(−xTβ)} = S0{t exp(−xTβ)}.

Because λ(t) = −d log S(t)/dt , the hazard function of T under the AFT model can
be expressed as

λ(t; x) = − S′(t; x)
S(t; x)

= f0{t exp(−xTβ)} exp(−xTβ)

S0{t exp(−xTβ)}
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= λ0{t exp(−xTβ)} exp(−xTβ), (2.12)

whereλ0(·) = f0(·)/S0(·) is the hazard function of T0 with the density function f0(·),
and is also a function of t , x and β. It is well known that the model (2.12) gives a
non-PH model except when λ0(·) follows a Weibull distribution.

Note that the Weibull is the only family of distributions closed under both PH and
AFT models. Specifically, if ε in the AFT model (2.11) follows an extreme value
distribution with scale parameter σ having the density

f (e) = σ−1 exp{(e/σ) − exp(e/σ)},

for−∞ < e < ∞, then T has theWeibull distributionwith shape parameterφ = 1/σ
and scale parameter exp{−(xTβ)φ}, leading to a PH model

λ(t; x) = φtφ−1 exp(xTβ∗), (2.13)

where β∗ = −φβ; this is also easily derived from (2.12) with λ0(s) = φsφ−1.

Example 2.7 Parametric regression models for survival data are usually facilitated
by location-scale family distributions with an arbitrary transformation of the time
variable; the log transformation leads to the AFT models. The survreg() in sur-
vival package fits the parametric AFT models using “exponential”, “weibull”, “log-
normal”, “log-logistic”, etc. For the SAS, PROC LIFEREG is available. Below is
an example of fitting the Weibull AFT regression model to the Gehan data set.

> AFT_Wei=survreg(Surv(time,cens) ˜ factor(treat),dist=’weibull’,
+ data=gehan)
> summary(AFT_Wei)

Call:
survreg(formula = Surv(time, cens) ˜ factor(treat), data = gehan,

dist ="weibull")
Value Std. Error z p

(Intercept) 2.248 0.166 13.55 8.30e-42
factor(treat)6-MP 1.267 0.311 4.08 4.51e-05
Log(scale) -0.312 0.147 -2.12 3.43e-02

Scale= 0.732

Weibull distribution
Loglik(model)= -106.6 Loglik(intercept only)= -116.4

Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
Number of Newton--Raphson Iterations: 5
n= 42

Interpretation: In the AFT model (2.11) with a binary covariate (i.e., Ttreat), the
linear predictor η can be expressed as
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η = xTβ = β0 + β1 I (Treat = 6 − MP).

Thus, survival time (i.e., remission time) in the treatment group (Treat = 6-MP)
is increased by a factor of exp(1.267) = 3.55, as compared to the placebo group
(Treat = control). Let β be the fixed effects in AFT model (2.11) and β∗ be those
in Weibull PH model (2.13). Since β∗ = −φβ, the 6-MP effect β∗

1 is estimated by
β̂∗
1 = −(1/σ̂)β̂1 = −(1/0.732)(1.267) = −1.731; this is similar to the estimated

6-MP effect (i.e., −1.509) from the Cox PH model in Example 2.6. �

Remark 2.2 The class of semiparametric linear transformation models (Kalbfleisch
and Prentice 2002) for T takes the form

g(T ) = xTβ + ε, (2.14)

where ε is a random error with a distribution function F and g(·) is an increasing
function. In case of a known g but an unknown F , the model (2.14) reduces to the
semiparametric AFT model (Buckley and James 1979), usually with g(T ) = log T .
With an unknown g but a known F , it further specifies two classes of models (Cheng
et al. 1995); if F is the standard extreme value distribution with

F(x) = 1 − exp(−ex ), − ∞ < x < ∞,

the model (2.14) becomes the PH model, and if F is the standard logistic function
with

F(x) = ex/(1 + ex ), − ∞ < x < ∞,

it becomes the proportional odds model (Bennett 1983), under which the hazard ratio
converges to unity with time.

Cox pointed out “AFT models are in many ways more appealing” than the PH
models “because of their quite direct physical interpretation” (Reid 1994). �

2.5 Discussion

Under some regularity conditions, the K–M and N–A estimators are nonparametric
MLEs with consistency and asymptotic normality (Johansen 1983; Fleming and
Harrington 1991; Andersen et al. 1993). In particular, the N–A estimator of the
cumulative hazard function can be easily extended to various regression models
such as Cox’s PH models and frailty models.

The PH and AFT models are two important classes of regression models for
survival data. The Cox PH model is often used in practice because inference on the
parameters of interest is possible without assuming any form of the baseline hazard
function. However, this model is based on the PH assumption which does not always
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hold in the observed survival data. If the PH assumption is violated, the inference
procedure could provide inefficient results.

The AFT model has several advantages over the PH model as follows:

(i) The AFT model does not need a PH assumption as in the Cox model;
(ii) Itmodels directly the covariate effects on the survival times, so the interpretation

is clearer and easier than in the Cox model;
(iii) The estimated regression parameters in the AFT model are relatively robust

against mis-specification of themodel assumption, while ones in the Coxmodel
can be biased; for more details, see Orbe et al. (2002), Hutton and Monaghan
(2002), and Patel et al. (2006).

Inference on the AFT model is typically based on a parametric setting (Hougaard
1999). However, asymptotically efficient methods using rank-based or least squares
approaches for the semiparametric AFTmodels are available in the literature, though
likely not widely used (Zeng and Lin 2007; Chiou et al. 2014; Jin 2016).

Furthermore, as an alternative to the Cox PH model, the additive hazards model,
where the hazard differences instead of the hazard ratios are constant over time, has
been proposed (Aalen 1980; Cox and Oakes 1984; Huffer and McKeague 1991; Lin
and Ying 1994). Further, regression models for time-to-event data such as cure-rate
models (Farewell 1982; Kuk and Chen 1992), residual life regression models (Oakes
and Dasu 1990; Jeong 2014), and non-PH models with generalized time-dependent
logistic function (MacKenzie 1996, 1997; Ha and MacKenzie 2010) have been also
developed.

Formodel checking, various residuals have been developed in the literature: gener-
alized residual (Cox and Snell 1968), martingale residual (Barlow and Prentice 1988;
Therneau et al. 1990), deviance residual (McCullagh andNelder 1989; Therneau et al.
1990), and partial residual (Schoenfeld 1982; Grambsch and Therneau 1994).

2.6 Appendix

2.6.1 Construction of Likelihoods of Various Types

The likelihoods under various types of censoring schemes can be expressed by incor-
porating the following components (Klein and Moeschberger 2003):

(i) Exact survival time t : fθ(t)
(ii) Right-censored observations Cr : Sθ(Cr )

(iii) Left-censored observations Cl : 1 − Sθ(Cl)

(iv) Left-truncated observations bL : fθ(t)/Sθ(bL)
(v) Right-truncated observations bR : fθ(t)/{1 − Sθ(bR)}
(vi) Interval-censored observations (L , R): fθ(t)/{Sθ(L) − Sθ(R)}.

For example, the likelihood for (i), (ii), (iii), and (vi) based on the n observed data
can be constructed by putting together the components
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L(θ) =
∏
i∈D

fθ(ti )
∏
i∈R

Sθ(Cri )
∏
i∈L

(1 − Sθ(Cli ))
∏
i∈I

(Sθ(Li ) − Sθ(Ri )),

where D is the set of death times, R is the set of right-censored observations, L is the
set of left-censored observations, and I is the set of interval-censored observations,
respectively. For example, for left-truncated data f (ti ) is replaced by f (ti )/S(bLi )
and S(Cri ) is by S(Cri )/S(bLi ) in equation above. For the LTRC data, we observe the
data (ti , δi , bLi ) having ti ≥ bLi and censoring indicator δi . Then, the corresponding
likelihood Li for the i th observation is given by

Li (θ) = [ fθ(ti )/Sθ(bLi )]δi · [Sθ(ti )/Sθ(bLi )]1−δi

= [ fθ(ti )δSθ(ti )
1−δi ]/Sθ(bLi ),

where fθ(ti )δi Sθ(ti )1−δi is the likelihood under right censoring. �

2.6.2 Derivations of Breslow’s Likelihood and Cumulative
Hazard Estimator

Following a profile likelihood argument by Johansen (1983), we derive the Breslow
likelihood (hence, the Cox partial likelihood) (2.8) and the Breslow estimator (2.9).

The functional form of λ0(t) in (2.4) is unknown. Following Breslow (1972), we
consider the baseline cumulative hazard function �0(t) to be a step function with
jumps λ0k at the observed event times y(k),

�0(t) =
∑

k:y(k)≤t

λ0k, (2.15)

where λ0k = λ0(y(k)). The ordinary log-likelihood (2.3) for censored data corre-
sponding to the i th individual under the Cox model (2.4) is given by

�i = �i (β,λ0; yi , δi , xi ) = δi logλ(yi ; xi ) − �(yi ; xi ), (2.16)

where�(yi ) = �0(yi ) exp(ηi )with ηi = xTi β is the cumulative hazard function cor-
responding to the hazard λ(yi ) = λ0(yi ) exp(ηi ). From (2.15) and (2.16), the contri-
butions from all individuals are given by

�(β,λ0) ≡
∑
i

�i

=
∑
i

δi {logλ0(yi ) + ηi } −
∑
i

{�0(yi ) exp(ηi )}

=
∑
k

d(k) logλ0k +
∑
i

δiηi −
∑
k

λ0k

{ ∑
i∈R(k)

exp(ηi )

}
, (2.17)
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where λ0 = (λ01, . . . ,λ0D)T and R(k) = R(y(k)) = {i : yi ≥ y(k)}. Here, note that
∑
i

{�0(yi ) exp(ηi )} =
∑
k

λ0k{
∑
i∈R(k)

exp(ηi )},

since, from (2.15), �0(yi ) can be expressed as

�0(yi ) =
∑

k:y(k)≤yi

λ0k =
∑
k

λ0k I (y(k) ≤ yi ) =
∑
k

λ0k I (i ∈ R(k)).

Following the argument of Johansen (1983), we have that, given β, the score
equations

∂�/∂λ0k = (d(k)/λ0k) −
∑
i∈R(k)

exp(ηi ) = 0 (k = 1, . . . , D),

which leads to the NPMLE of �0(t) (i.e., Breslow estimator in (2.9)):

�̂0B(t) =
∑

k:y(k)≤t

λ̂0k, (2.18)

with

λ̂0k = λ̂0k(β) = d(k)∑
i∈R(k)

exp(ηi )
.

Substituting λ̂0 = (̂λ01, . . . , λ̂0D)T into �(β,λ0) of (2.17) yields the profile likeli-
hood, �∗(β), only depending on β:

�∗(β) = �(β,λ0)|λ0=λ̂0(β)

=
∑
i

δiηi −
∑
k

d(k) log{
∑
i∈R(k)

exp(ηi )},

deleting the constant term of
∑

k{d(k) log(d(k)) − d(k)}. Note that∑i δiηi = ∑
k s

T
(k)β

in (2.8). The log-likelihood �∗(β) is the kernel of the Breslow likelihood �B(β) in
(2.8) and also that of the Cox partial likelihood �c(β) in (2.6) without ties (i.e.,
d(k) = 1 all k). �

2.6.3 Proof of Theorem 2.1

Let λ̂0(β) be a solution of score equation

∂�

∂λ0
= 0.
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From the profile likelihood

�∗ = �(β,λ0)|λ0=λ̂0(β),

after λ0 being eliminated, following Ha and Lee (2003), we can derive simple matrix
forms of the first and second partial derivatives, given by

(i) S∗(β) = ∂�∗/∂β = [∂�/∂β + (∂�/∂λ0)(∂λ0/∂β)]|λ0=λ̂0(β)

= ∂�/∂β|λ0=λ̂0(β) = XT (δ − μ)|λ0=λ̂0(β),

(ii) H∗(β) = −∂2�∗/∂β2 = [H1 − H2]|λ0=λ̂0(β)

= [XTW ∗X ]|λ0=λ̂0(β),

where μ = exp(log�0(y) + η) with η = Xβ, H1 = − ∂2�/∂β2 = XTW1X with

W1 = diag(μi ) = W3B,

W3 = diag{exp(xTi β)} and B = diag(�0(yi )), and

H2 = (− ∂2�/∂β∂λ0)(− ∂2�/∂λ2
0)

−1(− ∂2�/∂λ0∂β)

= (XTW3M)C−1(MTW3X) = XTW2X.

Here, M is a n × D indicator matrix with the (i, k)th element I (yi ≥ y(k)), and

W2 = (W3M)C−1(W3M),

with C = diag{d(k)/λ2
0k}. Here, C−1 is immediately computed because C is a diag-

onal matrix. Then, we have

W ∗ = W1 − W2. (2.19)

Consider one-step Newton–Raphson formula with

β̂ = β + H∗(β)
−1S∗(β) = β + [(XTW ∗X)−1XT (δ − μ)]|λ0=λ̂0(β).

By some matrix manipulation, we have

(XTW ∗X)β̂|λ0=λ̂0(β) = [(XTW ∗X)β + XT (δ − μ)]|λ0=λ̂0(β)

= XT (W ∗Xβ + (δ − μ))|λ0=λ̂0(β),
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which leads to (2.10). Note that the terms λ0k in W ∗ are evaluated at their esti-
mates λ̂0k = λ̂0k(β) = d(k)/MT

k ψ, where Mk is a kth component vector of M =
(M1, . . . , MD) and ψ is a vector of exp(ηi )’s. This completes the proof. �

2.6.4 Fitting Cox PH Model via a Poisson GLM

We show the semiparametric Cox PH model can be fitted via a Poisson GLM. Let
yi,k be 1 if the i th subject fails at y(k) and 0 otherwise. Following Whitehead (1980),
let yi,k be an independent random variable that follows a Poisson (Po) distribution:

yi,k ∼ Po(μi,k), i ∈ R(k), (2.20)

where μi,k = exp(wk + xTi β) = exp(xTi,kγ) with wk = logλ0k . Here, xi,k =
(eTk , xTi )T , ek is a vector of 0’s and 1’s such that eTk w = wk , and γ = (wT ,βT )T .
Note that ek = (0, . . . , 1, . . . , 0)T and w = (w1, . . . , wk, . . . , wD)T . Let y denote a
vector of yi,k’s. Then, this auxiliary model provides the Poisson log-likelihood for
γ = (wT ,βT )T of the form

�Po(γ; y) =
∑
k

∑
i∈R(k)

{yi,k log(μi,k) − μi,k}.

Since μi,k = λ0k exp(ηi ) and

∑
k

∑
i∈R(k)

yi,k log(μi,k) =
∑
k

d(k) logλ0k +
∑
i

δiηi ,

�Po is equivalent to � in (2.17). In fact, the procedures based on � and �∗ (or �Po and
�∗
Po) are equivalent, but �

∗ would work better for a large sample because the number
of nuisance parameters λ0k’s increases with sample size. Here, �Po = �∗

Po(β) =
�Po(β, w)|w=ŵ(β), where ŵ(β) is the solution of ∂�Po/∂w = 0 for given β. �



Chapter 3
H-Likelihood Approach to Random-Effect
Models

In this chapter,we introduce an h-likelihood approach to the general class of statistical
models with random effects. Consider a linear mixedmodel (LMM), for i = 1, . . . , q
and j = 1, . . . , ni

yij = xTijβ + vi + eij, (3.1)

where yij is an observed random variable (response), xij = (xij1, . . . , xijp)T is a vector
of covariates, β is a vector of fixed effects, vi ∼ N(0,α) is an i.i.d. random variable
for the random effects, eij ∼ N(0,φ) is an i.i.d random error or measurement error,
and vi and eij are independent. Parameters φ and α are the variance components. In
this model, there are two types of unknowns; the fixed unknowns θ = (β,φ,α)T and
the random unknowns v = (v1, . . . , vq)

T .
The statistical model (3.1) consists of three types of objects, data y, parameters

(fixed unknowns) θ and unobservables (random unknowns) v. Then, the purpose
of statistical inference would be to draw informative scientific explanations about
both unknowns θ and v by using the statistical model, based on the observed data
y = (y11, . . . , yqnq)

T .

3.1 Three Paradigms of Statistical Inference

In this section, we review various approaches to statistical inferences using the like-
lihood or probability, which are two important but fundamentally different concepts.
We elaborate on how these concepts are used for statistical inference about the fixed
and random unknowns.

First let us consider statistical models and associated statistical inferences, based
on the two types of objects, the data (random but observed) y and the unobservables
(random but unobserved) v, and two related processes between them.

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6_3
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• Statistical model for data generation: (i) Generate a set of the random quantities
v from a probability density function f (v) and then with v fixed, (ii) generate a set
of data y from a probability function f (y|v). The hierarchical statistical model is
given by the product of the two probability functions

f (v)f (y|v).

This scenario shows how data y are generated.
• Statistical inference: Given data y, we can make inference about v by using a
conditional density (predictive probability),

f (v|y).

The connection between these two processes is given by

f (y)f (v|y) = f (v, y) = f (v)f (y|v).

On the left-hand side in the above equation, for statistical inference y is fixed while v

varies, whereas on the right-hand side both v and y vary. This inferential procedure
effectively shows how to update the distribution of v once data y are observed, so
that the information in data y can be utilized for the unknown (unobserved) random
variables.

Here the predictive probability f (v|y) is updated by applying the Bayes rule, i.e.,

f (v|y) = f (v, y)

f (y)
,

which could be used to infer the unobserved random variables v. This probability
function is proper in that ∫

f (v|y)dv = 1.

Even if updating the predictive probability for the unobserved random variable based
on the observed data through the Bayes rule is feasible, in many situations, the
unknowns of interest to be statistically inferred are fixed parameters, not unobserved
random variables.

3.1.1 Bayesian Approach

Suppose that a set of data y is generated from a distribution with the probability
density function of fθ(y)where θ is the fixed parameters. To use the above probability
update for statistical inferences about θ, the Bayesian approach uses
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π(θ)f (y|θ) = π(θ)fθ(y) = f (y)f (θ|y),

where π(θ) is the prior probability and f (θ|y) is the posterior probability. In this
book, we denote fθ(·) as the probability density function with fixed parameters θ; the
arguments within the parentheses can be either conditional or unconditional. Thus,
fθ(y|u) and fθ(u|y) would have different functional forms even though we use the
same fθ() to mean a probability density function with parameters θ.

A disagreement arises when a prior density function π(θ) is assumed for the fixed
unknowns θ being treated as random, as it should follow a degenerate distribution
assigning probability one to a given value and probability zero to all other values.
Another conceptual controversy is whether the prior π(θ) can be updated as f (θ|y)
based on the observed data y using the Bayes rule. Specifically, under the LMM
the probability density function of the random effects, f (v), allows for correlations
among observed data as will be clear in the later chapters, while in the Bayesian
model the prior π(θ) does not belong to the assumed statistical model f (y|θ) = fθ(y).
In the machine learning field, − logπ(θ) is the penalty in the penalized likelihood
approach and the mode of f (θ|y) is used to estimate θ, as the maximum a posteriori
(MAP) estimator. Thus, the main idea of the Bayesian and penalized likelihood
approach is to utilize the posterior probability f (θ|y) to infer θ even though θ is the
fixed unknown parameters. We shall discuss further about the penalized likelihood
approach for variable selection in Chap.7.

3.1.2 Fisher Likelihood Approach

A solution to inference on the fixed unknowns θ without assuming a prior probability
π(θ) was proposed by Fisher (1922). He developed theory based on the likelihood
function, the probability of observing the data at hand expressed as a function of
the parameters. Again consider a statistical model including data y and θ, fixed
unknowns, and two related processes between them:

• Statistical model for data generation: Generate a set of data y from a distribution
with a probability density function

fθ(y),

where θ is the fixed unknown parameters.
• Statistical inference: Given data y, make inference about θ in the above statistical
model by using the likelihood

L(θ; y).

The connection between these two processes in this case is:

L(θ; y) ≡ fθ(y),

http://dx.doi.org/10.1007/978-981-10-6557-6_7
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where L and f are algebraically identical, but on the left-hand side y is fixed while θ
varies and on the right-hand side θ is fixed while y varies. The likelihood L(θ; y) is
not the probability density function of θ since

∫
L(θ; y)dθ �= 1.

3.1.2.1 Exchange Paradox and Likelihood

Probability and likelihood are very different concepts, but the difference is not well
understood. Consider the exchange paradox and its likelihood solution (Pawitan and
Lee 2017; Lee et al. 2017b, Chap.4). Unknown fixed θ dollars are put in one envelop
and 2θ dollars in another. You are to pick one envelop at random, open it and decide
if you would exchange it with another envelop. So you pick one and see 100 dollars.
Then you reason that the amount in the other envelop is 50 or 200 with 50–50 chance.
If you exchange it, you would expect to get (50 + 200)/2 = 125, which is bigger
than your current amount of 100. Since the above reasoning holds for any value of
money you see in your envelop, you actually do not need to open the envelop in the
first place and you would still want to exchange.

This exchange paradox has been analyzed from the Bayesian perspective
(Christensen and Utts 1992; Blachman et al. 1996), suggesting that the above intu-
itive reasoning should be justified by using a uniform prior on log θ. This implies
that from the Bayesian perspective the subjective intuition of an equal probability
for the possible amount in either envelop is not an acceptable state of mind. What is
this 50–50 chance then if it is not a probability?

Let the unknown fixed amounts in two envelopes be θ and 2θ, and an amount
of Y = y (data) is observed, randomly chosen between those two. Noting that on
observing Y = y, θ can be either y or y/2, the likelihood of a fixed unknown θ is
then

L(θ = y; y) = P(Y = y|θ = y)

= P(Y = θ|θ = y) = 1/2,

L(θ = y/2; y) = P(Y = y|θ = y/2)

= P(Y = 2θ|θ = y/2) = 1/2.

This means that the observed data y cannot tell us any preference between the two
possible values. Since these are the likelihood values, not probabilities, one cannot
use them to take an expectation. In the paradox, the exchange should occur only
when the expected value from the exchange is greater than what is observed y. Since
the expected value cannot be taken by using the likelihood values, there is no rational
basis to exchange.Thus, the paradox is avoided. In contrast to theBayesian resolution,
the equal preference is an acceptable state of mind in this likelihood solution.
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3.1.2.2 Likelihood Principle and Likelihood Ratios

Suppose x is one-to-one transformation of the observed data y. If y is continuous,
the likelihood based on x is

L(θ; x) = L(θ; y)
∣∣∣∣∂y∂x

∣∣∣∣ .

Obviously, x and y should carry the same information about θ, so to compare θ1

and θ2 only the likelihood ratio is relevant since it is invariant with respect to the
transformation:

L(θ2; y)
L(θ1; y) = L(θ2; x)

L(θ1; x) .

The fact that the likelihood ratio should be the same under the transformation of the
data seems a reasonable requirement because the inference results should remain the
same with respect to the transformation.

Birnbaum (1962) proves the likelihood principle that the likelihood function con-
tains all the information about the value of thefixedparameter under the true statistical
model fθ(y). This means that to estimate the true value of the fixed parameter, we
only need the likelihood function. Fisher advocates the use of the MLEs to infer the
parameters. As described in Sect. 2.2, consistency of theMLE of θ and its asymptotic
optimality are well established. The likelihood principle implies that model checking
is always important, not just in the likelihood inference because using the likelihood
is beneficial only if the assumed model is correct.

One important property of theMLE is its invariancewith respect to transformation
of the original parameter. By using the likelihood function from the same statisti-
cal model, it would make sense to have the same inference results for the original
parameter as well as for the transformed one. A trivial example would be the MLE
of the variance and standard deviation of the Gaussian distribution. For example, it
should not make a difference whether we infer the dispersion parameter in terms of
variance σ2 or standard deviation σ because

L(σ2
2; y)

L(σ2
1; y)

= fσ2
2
(y)

fσ2
1
(y)

= L(σ2; y)
L(σ1; y) = fσ2(y)

fσ1(y)
.

However, this does not hold in the Bayesian framework:

f (σ2|y)
f (σ1|y) = π(σ2)fσ2(y)

π(σ1)fσ1(y)
= σ2π(σ2

2)fσ2
2
(y)

σ1π(σ2
1)fσ2

1
(y)

�= π(σ2
2)fσ2

2
(y)

π(σ2
1)fσ2

1
(y)

= f (σ2
2 |y)

f (σ2
1 |y)

,

because of the Jacobian terms in π(σ2) = 2π(σ2
2)σ2.

The likelihoodwould be a natural choice to infer thefixedunknowns. In computing
the likelihood of a transformed parameter, the Jacobian term does not appear. Hence,
fundamentally, the likelihood cannot be treated as a probability density function over

http://dx.doi.org/10.1007/978-981-10-6557-6_2
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the parameter space and it does not obey the probability laws, e.g., it does not have
to integrate to one.

Since the Bayesian framework gives

f (θ|y) ∝ π(θ)fθ(y) = π(θ)L(θ; y),

we may view the likelihood as a Bayesian posterior under a uniform prior π(θ) ≡ 1.
The likelihood approach allows statistical inference about θ without assuming a prior
π(θ).

3.1.3 Extended Likelihood Approach

Many statistical models involve both parameters and unobservables, and require
inferences on both types of unknowns. Consider the LMM presented in (3.1) where
the random components are assumed to follow zero-mean normal distributions: (i)
vi ∼ N(0,α), and (ii) eij ∼ N(0,φ). Classical analysis concentrates on estimation
of the parameters θ = (β,α,φ). It is straightforward to write down the likelihood
from the multivariate normal distributionMVN(Xβ,αZZT +φI) and to obtain their
MLEs. Here, X and Z are the model matrices of β and v, respectively. However, in
many recent applications the main interest is often in estimation of the conditional
(or subject specific) mean given the random effects vi

E(yij|vi) = xTijβ + zTijvi.

One might be interested in using the Fisher likelihood in making inference about
the fixed parameters without assuming the priors, whereas using the probability
updates for inference about the unobservables using the Bayes rule. Thus, it is desir-
able to develop an extended likelihood approach,which gives the likelihood inference
for the fixed parameters, while allowing the use of probability updates for inference
about the unobserved random variables.

An extended likelihood framework based on three aforementioned objects can be
presented as follows. Let θ be the fixed unknown parameters, v be the unobserved
random variables and y be the observed data.

• Statistical model for data generation: (i) Generate a set of the random quantities
v from a probability density function fθ(v) and then (ii) with v fixed, generate a
set of data y from a probability density function fθ(y|v). The combined statistical
model is given by the product of the two probability density functions

fθ(v)fθ(y|v). (3.2)

• Statistical inference: Given data y, we can (i) make inference about θ by using
the marginal (Fisher) likelihood
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L(θ; y) ≡ fθ(y),

and (ii) given θ, make inference about v by using a conditional probability (like-
lihood) of the form

L(θ, v; v|y) ≡ fθ(v|y).

The extended likelihood for the unknowns (v, θ) is given by

L(θ, v; v, y) = L(θ; y)fθ(v|y) ≡ fθ(y)fθ(v|y).

The connection between these two processes is given by

L(θ; y)fθ(v|y) ≡ L(θ, v; v, y) ≡ fθ(v, y) = fθ(v)fθ(y|v). (3.3)

On the left-hand side y is fixed whereas (v,θ) vary, while on the right-hand side θ
is fixed while (v, y) vary. In the extended likelihood framework the object v appear
in data generation as random sets, but in statistical inference as the unknowns.

3.1.3.1 Wallet Paradox and Extended Likelihood

Consider thewallet game appeared inGardner (1982) as follows: Twopeople, equally
rich or equally poor, meet to compare the contents of their wallets. Each is ignorant of
the contents of the two wallets. Here is the game: whoever has less money receives
the contents of the wallet of the other. One of them can reason: “I have a fixed
amount u1 in my wallet; either I lose that or win an amount u2 > u1 with 50–50
chance. Therefore the game is favorable to me.” The other person can reason in the
exactly same way. In fact, by symmetry, the game is fair. Where is the mistake in
this reasoning?

Thewallet gamemaybemodeled as follows:LetU1 andU2 be the randomamounts
of money in two wallets. Let us assume that they are independent and identically
distributed (iid) samples from a continuous positive-valued distribution with finite
E(U1) = E(U2). Now consider a specific realization of U1 = u1 and U2 = u2 yet
unobserved to both players. Now let V = I(U1 < U2), so V is a Bernoulli random
variable with P(V = 1) = 0.5. The specific realization of v = 0 or 1 is unobserved,
so we are in a state of uncertainty. However, this uncertainty cannot be a probability,
so it does not allow an expectation step that would lead to the paradox: the expected
gain-minus-loss is then P(v = 1)(u2 − u1) = (u2 − u1)/2 > 0. In fact, in this
problem it is given by the extended likelihood

L(v = 1) ≡ P(V = 1) = 1/2

and
L(v = 0) ≡ P(V = 0) = 1/2, (3.4)
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so the specific realizations v of V are equally likely. For laymen, such expressions as
“50–50 chance”, “equally probable” or “equally likely” have all similar meanings.
But technically, as in the exchange paradox, we cannot take expectation using the
likelihood values, so we have no rational basis to believe that game is favorable to us.
The wallet paradox highlights that once we are dealing with realized yet unobserved
values, then the step from the probability of a random event to the extended likelihood
of realized value becomes necessary.

For the unknowns (θ, v), where θ is fixed and v is an unobserved realization of a
random variable, the extended likelihood given data y is

L(θ, v; v, y) = fθ(y|v)fθ(v).

In the wallet game, there is neither data y nor unknown parameter θ, or equivalently
for y we can simply generate an independent toss of a fair coin so that fθ(y|v) is
constant with respect to u, while f (v) is given by (3.4).

Realized yet unobserved random effects are commonly assumed in major areas
of statistical applications using the random-effect models. In clinical trials, patient
and hospital frailties (unobserved random variables in the hazard or mean) are often
of interest where inferences require the extended likelihoods.

3.1.3.2 Extended Likelihood and the H-Likelihood

Bjørnstad (1996) introduced the extended likelihood principle in that all information
regarding fixed unknowns θ and random unknowns v in data y resides in the extended
likelihood, provided the assumed model is true. This means that for inference about
the true value of the fixed parameter and/or unobservable, we only need the extended
likelihood function.

In the absence of parameter θ, the extended likelihood (3.3) gives the probability
update of the unobservables v by using the Bayes theorem

f (v) ⇒ f (v|y),

and in the absence of the unobservables, it becomes the Fisher likelihood

fθ(y) ≡ L(θ; y).

This shows that statistical theories have been well developed for these two extreme
cases (in the absence of either object). Thus, the extended likelihoodprinciple justifies
not only the use of Fisher likelihood for θ but also the probability update for v by
using the Bayes theorem.

Recent interest has been in statistical inference on the statistical models such as
random-effect models. This book aims to establish the extended likelihood inference
about the models for survival data with all three objects, (y, θ, v) present. There have
beenmany attempts previously to use the extended likelihood for statistical inference
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for (θ, v), but have faced serious difficulties. To overcome these difficulties, the
h-likelihood has been introduced by Lee and Nelder (1996).

Example 3.1 Bayarri et al. (1988) showed difficulties in using the extended likeli-
hood. Suppose that there is a single fixed parameter θ, a single unobservable random
quantity u and a single observable quantity y. The unobservable random variable u
has an exponential probability density

fθ(u) = θ exp(−θu), for u > 0, θ > 0,

and given u, the observable outcome y also has an exponential density

fθ(y|u) = f (y|u) = u exp(−uy), y > 0, u > 0,

which is free of θ. Then we can derive the following four likelihoods.
(i) The marginal likelihood:

L(θ; y) = fθ(y) =
∫ ∞

0
f (y|u)fθ(u)du = θ/(θ + y)2,

which gives the MLE θ̂ = y, but this classical Fisher likelihood is uninformative
about the unknown value of u.
(ii) The conditional likelihood:

L(θ, u; y|u) = f (y|u) = u exp(−uy),

which is uninformative about θ and loses the relationship between u and θ reflected
in fθ(u). This likelihood carries information only about u in data y. This gives, if
maximized, û = 1/y.
(iii) The extended likelihood:

L(θ, u; y, u) = f (y|u)fθ(u) = uθ exp{−u(θ + y)},

which yields, if jointly maximized with respect to θ and u, the useless estimators
θ̂ = ∞ and û = 0.
(iv) Another conditional likelihood:

L(θ, u; u|y) = fθ(u|y) = {f (y|u)fθ(u)}/fθ(y) = u(θ + y)2 exp{−u(θ + y)},

carries the combined information concerning u from fθ(u) and f (y|u). If θ is known,
this could be useful for inference about u. However, if θ is unknown, joint maximiza-
tion yields again the useless estimators θ̂ = ∞ and û = 0.

This example shows difficulties in using the extended likelihood for statistical
inference. It also shows that various likelihoods can be formed from the extended
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likelihood and different likelihoods carry different information. Importantly, though,
it clearly demonstrates that a naive joint inference on (θ, u) from an extended
likelihood—potentially violating the classical likelihood principle—can be treach-
erous. In the next section, we outline how to overcome this difficulty by using the
h-likelihood, which gives sensible inferences for both θ and u.

3.2 H-Likelihood

The extended likelihood is not in general invariant with respect to the transformation
of the unobservables, because a change in this transformation involves a Jacobian
term. Thus, the maximum extended likelihood estimator for the unobservable is not
invariant with respect to transformation of the unobservables, which can lead to
useless estimators. To avoid this difficulty, Lee and Nelder (1996) have introduced
the hierarchical (h-)likelihood, an extended likelihood defined on a special scale of
v for inference on both fixed and random unknowns.

We first derive a condition that allows a joint inference about (θ, v) from the
extended likelihood L(θ, v; y, v). Let θ1 and θ2 be an arbitrary pair of values of the
fixed parameter θ. The evidence about these two parameter values is in the likelihood
ratio

L(θ2; y)
L(θ1; y) .

Suppose that there exists a scale v, such that the likelihood ratio is preserved as
follows:

L(θ2; y)
L(θ1; y) = L(θ2, v̂θ2; y, v)

L(θ1, v̂θ1; y, v)
,

where v̂θi is the MLE of v at θ = θi (i = 1, 2). Lee et al. (2017b) called this
extended likelihood L(θ, v; y, v) the h-likelihood if the scale v of the random effects
is canonical (i.e., a v-scale satisfying the equation of the likelihood ratio above). The
(log)-h-likelihood is defined by the logarithm of the joint density of y and v = v(u)
on a particular scale of v among the extended likelihoods (3.2),

h = �1(θ; y|v) + �2(θ; v), (3.5)

where �1(θ; y|v) = log fθ(y|v) and �2(θ; v) = log fθ(v).
Belowwe illustrate how the canonical scale in constructing the h-likelihood avoids

problems in the extended likelihood inference and then present the resulting useful
properties.

Example 3.2 Consider Example3.1 again. We showed that the extended likelihood,

L(θ, u; y, u) = f (y|u)fθ(u) = uθ exp{−u(θ + y)},
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provides useless estimators. Suppose that we take the scale v = log u to form the
h-likelihood. Then we have

fθ(v) = fθ(u)|du/dv| = exp(v)θ exp(−evθ)

and the extended likelihood is given by

L(θ, v; y, v) = f (y|u)fθ(v) = e2vθ exp{−ev(θ + y)},

or
logL(θ, v; y, v) = 2v + log θ − ev(θ + y),

to give
ûθ = exp(v̂θ) = Eθ(u|y) = 2/(θ + y),

where Eθ(u|y) = ∫
ufθ(u|y)du. Then, up to a constant term, the profile likelihood is

equal to the marginal log-likelihood, m = logL(θ; y):

logL(θ, v̂θ; y, v) = 2 log{2/(θ + y)} + log θ − 2 = logL(θ; y) + constant,

so v = log u is the canonical scale. Thus, this scale yields the (log-)h-likelihood,
defined by

h = h(θ, v) = logL(θ, v; y, v) = 2v + log θ − ev(θ + y).

This h-likelihood has many interesting properties as in an ordinary likelihood
(Lee et al. 2017b) as shown below.
(i) The joint maximization of h with respect to θ and u gives the MLE of θ. That is,
from the joint estimating equations

∂h/∂θ = 1/θ − u = 0 and ∂h/∂u = 2/u − (θ + y) = 0, (3.6)

we obtain θ̂ = y, exactly the MLE from L(θ; y).
(ii) From the h-likelihood we derive the observed information matrix

I(θ̂, û) = −∂2h/∂(θ, u)2|θ=θ̂,u=û =
(
I11 = 1/y2 I12 = 1
I21 = 1 I22 = (y + θ̂)2/2 = 2y2

)
.

Denote the inverse of I(θ̂, û) to be

I−1(θ̂, û) =
(
I11 I12

I21 I22

)
.

Then the variance estimator of θ̂ is obtained from I11, given by
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v̂ar(θ̂) = I11 = 2y2,

exactly the same as the one from the marginal likelihood:−(∂2m/∂θ2|θ=θ̂)
−1 = 2y2,

where m = logL(θ; y) is the marginal log-likelihood.
(iii) From the joint estimating equations∂h/∂(θ, u) = 0 in (3.6),wehave the random-
effect estimator

û = 2/(y + θ̂) = 1/y,

which also becomes Eθ(u|y)|θ=θ̂. Since I22 yields an estimator of var(û − u) (Lee
and Nelder 1996), we also have

v̂ar(û − u) = I22 = 1/y2,

which is larger than the plug-in estimator

v̂ar(u|y) = 2/(y + θ)2|θ=θ̂ = 1/(2y2) = 1/I22

obtained from the variance formula when θ is known. This increase reflects the extra
uncertainty caused by estimating θ. �

Example 3.3 Suppose that Y = (Yobs,Ycen) consists of n realizations from an expo-
nential distribution with mean θ, where Yobs consists of k observed values and Ycen
represents n− k censored observations (true failure times unobserved). Suppose that
the incomplete data are created by Type I censoring at some known censoring point
c (i.e., Ycen > c), so that only values less than or equal to c are recorded. Hence, let
ti = Yi − c > 0 for i > k, then

L(θ; y) =
∫

fθ(yobs,Ycen)dYcen

= �k
i=1θ

−1 exp{−yi/θ}�n
i=k+1

∫ ∞

c
θ−1 exp{−Yi/θ}dYi

= θ−k exp

{
−

k∑
i=1

yi/θ

}
exp{−{(n − k)c}/θ},

which is equal to the likelihood function of the exponential distribution in Exam-
ple2.5 under Type I censoring. This shows that Type I censoring does not need
Assumptions 1–2 in Sect. 2.1.2 to allow the marginal likelihood above. The resulting
MLE is

θ̂ = ȳ + {(n − k)c}/k,

where ȳ = ∑k
i=1 yi/k is the mean of observed data. Note that if we form the marginal

likelihood based on only observed data the MLE becomes θ̂ = ȳ, which will be
severely biased.

http://dx.doi.org/10.1007/978-981-10-6557-6_2
http://dx.doi.org/10.1007/978-981-10-6557-6_2
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Suppose that we use the extended likelihood on the vi = ti = Yi − c > 0 scale:

logL(θ, v; y, v) = −n log θ − kȳ/θ − (n − k)c/θ −
n∑

i=k+1

vi/θ,

which has the maximum at v̂i = 0 (giving Ŷi = c) for i > k, with a wrong MLE

θ̂ = {kȳ + (n − k)c}/n.

In this model, the scale vi = log ti is canonical to form the h-likelihood as follows,

h = −n log θ − kȳ/θ − (n − k)c/θ −
n∑

i=k+1

(evi/θ − vi).

For i = k + 1, . . . , n we have ∂h/∂vi = −evi/θ + 1 to give t̂i = ev̂i = θ > 0 (giving
Ŷi = θ + c) with a joint maximum

θ̂ = ȳ + {(n − k)c}/k

giving the correct MLE. Note that from the marginal likelihood, m = logL(θ; y),
the variance estimator for θ̂ is −(∂2m/∂θ2|θ=θ̂)

−1 = θ̂2/k.
From the h-likelihood, we have

I(θ̂, v̂) = −∂2h/∂(θ, v)2|θ=θ̂,v=v̂
=

(
I11 = n/θ̂2 I12 = −(1/θ̂)1Tn−k

I21 = −(1/θ̂)1n−k I22 = In−k

)
,

where 1n−k is a (n − k) × 1 vector of ones and In−k is a (n − k) × (n − k) identity
matrix. Thus, from the h-likelihood, the variance estimator for θ̂ is

v̂ar(θ̂) = I11 = (I11 − I12I
−1
22 I21)

−1 = θ̂2/k,

which is exactly the same as that from the marginal likelihood. �

Historically, there have been many attempts to establish an extended likelihood
inference in vain, because the jointmaximization of an extended likelihood in an arbi-
trary scale yields nonsensible estimators. These examples show that for an extended
likelihood inference, it is important to define the h-likelihood on a particular scale
v(u) of the random effects u. However, the canonical scale does not exist in gen-
eral. In the next section, we show how to make inference about θ and v using the
h-likelihood in general when there is no canonical scale.
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3.3 Hierarchical Generalized Linear Models

Lee and Nelder (1996) introduced the hierarchical GLMs (HGLMs), which are the
GLMs where the linear predictor contains both fixed and random effects as follows:
(i) Conditional on random effects u, the responses y follow a GLM family of distri-
butions, satisfying

E(y|u) = μ and var(y|u) = φV (μ),

with a linear predictor of the form

η = g(μ) = Xβ + Zv,

where g(·) is the GLM link function, X and Z are the model matrices for fixed effects
β and random effects v, and v = v(u) with some strictly monotonic function v(·).
Here, V (·) is the variance function.
(ii) The random effects u follow some distribution with a parameter α.
The distribution of u follows any conjugate distribution of the GLM family of dis-
tributions. Here, θ = (β,φ,α)T are the fixed unknown parameters with dispersion
parameters (φ,α).
Let us consider two simple examples of the HGLMs.

Example 3.4 (Normal-Normal HGLM) The normal LMM in (3.1) is an HGLM
because
(i) y|u follows a normal distribution with

V (μ) = 1 to give var(y|u) = φ,

and the identity link provides the linear predictor

η = μ = Xβ + Zv,

where v = u.
(ii) u ∼ N(0,α).
This normal LMM can be written

y = Xβ + Zv + e,

where e ∼ N(0,φI), which coversmodel (3.1).We call thismodel the normal-normal
HGLM, where the first adjective refers to the distribution of the y|u component and
the second to the u component. Besides this model, the error component e does not
appear in the model as below.

Example 3.5 (Poisson HGLM) Suppose that y|u follows a Poisson distribution with
mean

μ = E(y|u) = exp(Xβ)u.
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With the log link, we have the linear predictor

η = logμ = Xβ + v,

where v = log u. Here, V (μ) = μ and φ = 1. If the distribution of u is gamma,
v has a log-gamma distribution and we call the model the Poisson-gamma HGLM.
The generalized linear mixed model (GLMM) assumes a normal distribution for v

(the conjugate distribution of normal GLM family), so the distribution of u is log-
normal. The corresponding Poisson GLMM could be called the Poisson-log-normal
HGLMunder the v = log u transformation. Both Poisson-gammamodel and Poisson
GLMM belong to the class of HGLMs.

In the HGLMs, the random effects v are combined additively with the fixed effects
in the linear predictor η. Such a scale is called aweak canonical scale and it can always
be defined as long as we can define the linear predictor for the HGLMs (Lee et al.
2017b). From (3.5) the h-likelihood for the HGLMs with v = v(u) is of the form

h = �1(β,φ; y|v) + �2(α; v), (3.7)

where �1(β,φ; y|v) = log fβ,φ(y|v) and �2(α; v) = log fα(v). We now show how to
construct the h-likelihood for the two Poisson HGLMs (i.e., Poisson-log-normal
and Poisson-gamma models). Since, for those two models, the first term of the
h-likelihood (3.7) is identically given by

�1 = �1(β; y|v) = y logμ − μ − log�(y + 1)

with μ = exp(Xβ)u, we present only the second term �2 in the following examples.

Example 3.6 (Normal random effect) If vi ∼ N(0,α), its density function becomes
fα(vi) = (2πα)−1/2 exp{−v2

i /(2α)}. Thus, the log-likelihood for vi is given by

�2i = �2i(α; vi) = log fα(vi) = − log(2πα)/2 − v2
i /(2α).

Example 3.7 (Gamma random effect) If ui follows a gamma distribution with mean
1 and variance α, the density function of ui is given by

fα(ui) = {�(1/α)α1/α}−1u1/α−1
i exp(−ui/α).

Thus, the density of vi = log ui becomes f (vi) = f (ui)|dui/dvi|, where dui/dvi =
exp(vi). Accordingly, the log-likelihood for vi is given by

�2i = �2i(α; vi) = log fα(vi) = (vi − ui)α
−1 + c(α),

where c(α) = − log�(1/α) − α−1 logα.
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In the normal LMMs and Poisson-gamma model with single random effects, v

is canonical, so that the joint maximization of h provides the MLEs for β (Appen-
dix3.5.1). However, in general, v is weak canonical.

3.3.1 Inferences on the Fixed Unknowns

In the HGLMs, Lee et al. (2017b) proposed to use the modes of various likelihoods,
derived from the h-likelihood:
(i) for the random effects v, use the h-likelihood h
(ii) for the fixed effects β, use the marginal (Fisher) likelihood

L(θ; y) = fθ(y) =
∫

fθ(v)fθ(y|v)dv,

by integrating out the nuisance unobservables v.

(iii) for the variance components ψ = (α,φ), use the conditional likelihood

r = L(ψ; y|β̃) = fψ(y|β̃) = fθ(y)/fθ(β̃), (3.8)

where β̃ are the MLE of β and θ = (β,ψ). Because β̃ is asymptotically sufficient
for β (Cox and Reid 1987), we may use this conditional likelihood for estimation of
ψ.

The integration to obtain the Fisher likelihood is in general intractable. Thus, Lee
and Nelder (1996, 2001a) advocated to use the adjusted profile likelihood. Let � be
either the log-h-likelihood h or the log likelihood m = log L(θ; y), with nuisance
parameters ξ. Lee and Nelder (2001a) considered a function pξ(�), defined by

pξ(�) =
[
� − 1

2
log det{H(�; ξ)/(2π)}

]∣∣∣∣
ξ=̂ξ

, (3.9)

whereH(�; ξ) = −∂2�/∂ξ2 and ξ̂ solves ∂�/∂ξ = 0. The function pξ(·) produces an
adjusted profile likelihood, eliminating nuisance parameters ξ, which can be either
fixed effects β or random effects v = (v1, . . . , vq)

T or both. Note that pv(h) is the
first-order Laplace approximation to

m = log

{∫
exp(h)dv

}
,

i.e.,
m = pv(h) + O(N−1)
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as N = min1≤i≤q ni → ∞ (Lee and Nelder 2001a): see also Appendix3.5.1. In the
LMMs, pβ(m) = logL(ψ; y|β̃) ≡ log fψ(y|β̃) of Smyth (2002). In general, pβ(m)

is the Cox and Reid (1987) adjusted profile likelihood, approximating L(ψ; y|β̃). In
the LMMs

m ≡ pv(h) and r ≡ pβ(m) ≡ pβ,v(h), (3.10)

where r is the restricted likelihood of Patterson and Thompson (1971), which reduces
bias, especially in the finite samples (Harville 1977).

• Inferential procedure of the h-likelihood

In general, the marginal likelihood is hard to compute. Thus, for estimation of the
fixed parameters, Lee et al. (2017b) proposed to use the following likelihoods:

(i) for the random effects v, use the h-likelihood h
(ii) for the fixed effects β, use pv(h)
(iii) for the variance components ψ = (α,φ), use pβ,v(h).

In the binary HGLMs, the joint maximization of h over (v,β) gives non-ignorable
biases in estimating β, which is reduced most by using pv(h). Throughout this book,
the modes of pv(h) and pβ,v(h) are called the MLE and restricted MLE (REMLE),
respectively.

Example 3.8 Suppose that Y = (Yobs,Ycen) consists of n realizations from a regres-
sionwithmeanXβ and variance σ2, where Yobs consists of k observed values and Ycen
represents n− k censored values. The censored data are created by Type I censoring
at some known censoring point c (i.e., Ycen > c), so that only values less than or equal
to c are recorded. Then, similar to Example3.3 we have the marginal likelihood

L(θ; y) = �k
i=1(

√
2πσ)−1 exp{−(yi − xiβ)2/2σ2}�n

i=k+1P(xiβ + ei > c)

= �k
i=1(

√
2πσ)−1 exp{−(yi − xiβ)2/2σ2}�n

i=k+1�((xiβ − c)/σ).

However, there is no canonical scale here. Following Example3.3, we take the
log-h-likelihood on the vi = log(Yi − c) scale to have

h = log L(θ, v; y, v) = − (n/2) log(2πσ2) −
k∑

i=1

(yi − xiβ)2/(2σ2)

−
n∑

i=k+1

{(Yi − xiβ)2/(2σ2) − log(Yi − c)}.

For i = k + 1, . . . , n, ∂h/∂vi = 0 gives

Ỹi = {xiβ + c +
√

(xiβ − c)2 + 4σ2}/2 > c.

Because v is not a canonical scale, the joint maximization of h and the use of the
adjusted profile log-likelihood pv(h) lead to different estimators. Numerically the
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Fig. 3.1 Tobit regression.
Complete data (solid line);
incomplete data using simple
regression (dashed line),
using m (two-dashed line),
using h (dotted line), using
pv(h) (dot-dashed line)

former is easier to compute, but the latter gives a better approximation to the MLE.
To check performance of these joint estimators, we generate a data set from a Tobit
model; for i = 1, . . . , 100

Yi = β0 + β1xi + ei

where β0 = 1,β1 = 3, xi = −1 + 2i/100, ei ∼ N(0, 1) and c = 3.
Figure3.1 shows the result from a simulated data set. The use of pv(h) gives a

better approximation to the marginal log-likelihood. In Fig. 3.1 the solid line is the
simple regression fit using all the data (this is possible only in simulation not in
practice) and the dotted line is that using only the observed data. Figure3.1 shows
that ignoring the censoring mechanism can result in a bias. The marginal MLE,
accounting for the censoring mechanism, corrects such bias. The marginal MLEs
based upon Gauss–Hermite quadrature (GHQ) and the adjusted profile likelihood
pv(h) are almost identical. The numerical method such as Gauss–Hermite quadrature
cannot be used if the dimension of integration is large, but the Laplace approximation
has no such limitation. In this example, where a canonical scale does not exist, the
use of pv() gives an estimation for β, essentially without a bias. We see that the
joint maximization of the h-likelihood leads to a slightly biased estimation of β, but
practically a satisfactory estimation. �

Table3.1 shows historical evolvement of estimating criteria for theHGLMs. Here,
mord and dord are the orders of approximations to fit the mean parameters (mord
= 0 or 1) and the dispersion parameters (dord = 1 or 2), respectively. For the
dispersion parameters, we need a further elaboration to reduce biases. The first-order
approximation pβ,v(h) often gives very accurate approximation. However, it could
introduce a non-ignorable bias to the dispersion estimator in case of small cluster
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Table 3.1 Estimation criteria for the h-likelihood, HL(mord, dord)

Method Criterion for v Criterion for β Criterion for ψ Literature

HL(0,1) h h pβ,v(h) Lee and Nelder
(1996)

HL(0,2) h h sβ,v(h) Lee and Nelder
(2001a)

HL(1,1) h pv(h) pβ,v(h) Yun and Lee
(2004)

HL(1,2) h pv(h) sβ,v(h) Noh and Lee
(2007)

sizes under some models. To reduce the bias further in estimating the dispersion
parameters, the second-order approximation sβ,v(h) needs to be used as follows:

sβ,v(h) = pβ,v(h) − {F(h)/24}, (3.11)

where

F(h) = tr[−{3(∂4h/∂v4) + 5(∂3h/∂v3)H(h, v)−1(∂3h/∂v3)}H(h, v)−2]|v=v̂ .

The HL(0,1) for the normal random effects and HL(0,2) for the gamma random
effects often perform well when cluster sizes are not very small (e.g., ni ≥ 3).
As the orders in mord and dord increase, the bias of estimators is reduced, but
the calculation can be computationally intensive due to the extra terms, particularly
when the number of random components is greater.

• HL(0,1) method

We present how to implement parameters via the simple HL(0,1) method. Given
ψ = (φ,α)T , the estimates of τ = (βT , vT )T are obtained by solving

∂h/∂β = 0 and ∂h/∂v = 0,

which lead to the maximum h-likelihood (MHL) score equations for τ̂ = (β̂T , v̂T )T :

(
XTWX XTWZ
ZTWX ZTWZ + Q

) (
β̂
v̂

)
=

(
XTWw

ZTWw + R

)
, (3.12)

where W is the GLM weight matrix with a diagonal element

wij = [var(yij|vi){g′(μij)}2]−1

with var(yij|vi) = φV (μij) and g′(μij) = ∂g(μij)/∂μij, Q = diag(−∂2�2/∂v2
i ) is a

diagonal matrix, w = η + (y−μ)g′(μ) is the GLM adjusted dependent variable, and
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R = Qv + (∂�2/∂v); R = 0 if v ∼ N(0,α). Note that the asymptotic covariance
matrix (Lee and Nelder 1996) of τ̂ − τ is given by

var(τ̂ − τ ) = H−1,

whereH = H(h, τ ) = −∂2h/∂τ 2 is the squarematrix on the left-hand side of (3.12).
So, the upper left-hand corner of H−1 provides the covariance matrix of β̂, given by

var(β̂) = (XT�−1X)−1,

where � = W−1 + ZQ−1ZT . In the LMM (3.1), the MHL score Eq. (3.12) becomes
Henderson’s (1975) score equation

(
XTX XTZ
ZTX ZTZ + (φ/α)Iq

) (
β̂
v̂

)
=

(
XTy
ZTy

)
, (3.13)

leading to the MLE of β

(XT�−1X)β̂ = XT�−1y,

where � = var(y) = φIn + αZZT . Here, Iq denotes a q × q identity matrix.
Let

P =
(
X Z
0 Iq

)
and V =

(
W 0
0 Q

)
.

Then the joint Eq. (3.12) reduce to a simple matrix form

(PTVP)τ̂ = PTVy0, (3.14)

where y0 = (wT ,RTQ−1)T . Note here that H = PTVP. In fact, the estimating
Eq. (3.14) can be viewed as the IWLS equations from an augmented weighted linear
model (Lee and Nelder 2006, p. 154):

y0 = Pτ + ε∗,

where an error term ε∗ ∼ N(0,V−1).
For estimation of the dispersion parameters ψ = (φ,α)T , we use the adjusted

profile h-likelihood, pβ,v(h), of ψ after eliminating (β, v), defined by

pβ,v(h) =
[
h − 1

2
log det{H(h; τ )/(2π)}

]∣∣∣∣
(β,v)=(̂β ,̂v)

, (3.15)

where H(h; τ ) = −∂2h/∂τ 2 and τ̂ = τ̂ (ψ) = (β̂(ψ), v̂(ψ)). The REMLEs of ψ are
obtained by solving the estimating equations
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∂pβ,v(h)/∂ψ = 0. (3.16)

Note here that in implementing the above REML equation we allow the ∂v̂/∂ψ terms
(Lee and Nelder 2001a). Note also that the estimated standard errors (SEs) for β̂ and
ψ̂ are obtained from the inverses of corresponding Hessian matrices, H(h, τ ) =
−∂2h/∂τ 2 and −∂2pβ,v(h)/∂ψ2, respectively.

Particularly, in the normal LMMs (3.1) the estimating Eq. (3.16) provides simple
REML estimators for φ and α, given by

φ̂ =
∑

ij(yij − μ̂ij)
2

n − (p + q − γ0)
and α̂ =

∑
i v̂

2
i

q − γ1
, (3.17)

where μ̂ij = xTij β̂ + v̂i, γ0 = φtr{Ĥ0
−1

(∂Ĥ0/∂φ)}, γ1 = −αtr{Ĥ0
−1

(∂Ĥ0/∂α)}, and
Ĥ0 = H0(h, τ )|τ=τ̂ (ψ) with H0 = φH. Note that in the GLMM where vi ∼ N(0,α),
the REMLE of α has the same form as that of α in (3.17). For the general HGLMs,
see Lee and Kim (2016). �

3.3.2 Inferences on the Unobservables

Inference on the unobservables is not possible from the Fisher likelihood as they are
removed from the likelihood function by integration. In this section, we study how to
make inference about them using the h-likelihood. The Bayesian approach has been
successful in drawing inferences about the unobservables. As Efron (2013) pointed
out, however, the use of Bayes theorem in the absence of prior is an unresolved but
important problem. We believe that this can be accomplished via the h-likelihood
approach.

Suppose that our interest is only in the unobservables. When θ is known, since
fθ(y) is a known constant, all the information about v in the extended likelihood is in
fθ(v|y). Thus, when the true value of θ is known, inference about v can bemade using
fθ(v|y). However, since θ is unknown in practice, we may make inference about v

by using fθ̂(v|y) with θ̂ being the MLE. This is the so-called “estimative approach”
(EA) or empirical Bayesian (EB) approach. This approach gives an asymptotically
correct inference, but it often results in a poor inferential performance in the finite
samples because it cannot account for uncertainty, caused by estimating θ. Such an
uncertainty is in fθ(y), so that the drawback of the EB approach can be overcome by
using the whole h-likelihood.

3.3.2.1 Wald Interval

It is important to investigate the heterogeneity in the outcomes among clusters (e.g.,
centers) in order to understand and interpret the variability in the data. Such het-
erogeneity can be accounted for by the random cluster effects. In addition to the
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estimation of the random effects, a measure of uncertainty for these point estimates
is useful and necessary. We introduce the Wald interval for the individual random
effects. To investigate and explain the sources of suchheterogeneities, interval estima-
tion for individual cluster effects has been used (Carlin and Louis 2000). A standard
method is the EB confidence interval, which has been criticized for not maintaining
the nominal level and hence fully Bayesian methods have been developed.

Meng (2009, 2011) established Bartlett-like identities for the h-likelihood. That
is, the score for the unobservables has zero expectation and the variance of the score
is the expected negative Hessian under easily verifiable conditions. Paik et al. (2015)
studied the conditions that the asymptotic normality holds for v̂ − v, for example,
when v is the cluster effects. Lee and Nelder (2009), Lee and Ha (2010) and Paik
et al. (2015) proposed the Wald intervals for the random effects.

We first show how to construct the h-likelihood interval of the random effects
and show its relationship with EB and fully Bayesian credible intervals. Given θ, let
v̂(θ) be a maximum h-likelihood estimator (MHLE) for the random effects solving
∂h/∂v = 0, which gives the EB-mode estimator for v, without computing fθ(v|y).
In the HGLMs, (v,β) and dispersion parameters are asymptotically orthogonal (Lee
andNelder 1996); therefore, in estimating (v,β), we do not need to consider the infor-
mation loss caused by estimating the dispersion parameters. The negative Hessian
matrix of β and v based on h is given by

H(h;β, v) ≡
(

−∂2h/∂β∂βT − ∂2h/∂β∂vT

−∂2h/∂v∂βT − ∂2h/∂v∂vT

)
=

(
H11 H12

HT
12 H22

)
. (3.18)

For the LMMs, Henderson (1975) showed that the lower right-hand corner of
H(h;β, v)−1 gives an estimate of the unconditional mean squared error (UMSE):

UMSE ≡ Eθ[{v̂(θ̂) − v}{v̂(θ̂) − v}T ]
= Eθ[{v̂(θ) − v}{v̂(θ) − v}T ] + Eθ[{v̂(θ̂) − v̂(θ)}{v̂(θ̂) − v̂(θ)}T ], (3.19)

where v̂(θ̂) ≡ v̂(θ)|θ=θ̂ and θ̂ is either the MLE or REMLE of θ. Note that, generally,
as N = min1≤i≤q ni → ∞, we have (Lee and Nelder 1996; Booth and Hobert 1998)

E(v|y) = v̂{1 + O(N−1)} and var(v|y) = H−1
22 {1 + O(N−1)}.

The second term in (3.19) is the inflation caused in the UMSE because of the esti-
mation of θ by θ̂. Lee and Nelder (1996) and Lee et al. (2017b) showed that this
holds generally in the HGLMs. The above UMSE could be used to construct the
h-likelihood confidence intervals for v when the asymptotic normality holds. For
example, let A be the lower right-hand corner of H(h; β̂, v̂)−1 corresponding to v,
with the kth diagonal element akk . Then, A = {H22 − H12(H11)

−1H21}−1|β=β̂,v=v̂
,

which provides a generally good estimators for var(v̂−v). Thus, a (1−λ)h-likelihood
interval for vk is

v̂k ± zλ/2 · SE(v̂k − vk), (3.20)
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where zλ/2 is the standard normal quantile with a probability of λ/2 in the right
tail, and SE(v̂k − vk) is

√
akk . This confidence interval will work well if v̂ − v is

approximately normal.
Note that

var(v|y) = Eθ|y{var(v|y, θ)} + varθ|y{E(v|y, θ)}.

Carlin and Gelfand (1990) noted that the EB variance estimate only approximates
the first term in the above equation, and ignores the second. Kass and Steffey (1989)
used a Laplace approximation to show that under the uniform prior π(θ) = 1, the
estimator for var(v|y) can be obtained from H(h; θ, v)−1 = {−∂h2/∂(θ, v)2}−1.
Thus, the h-likelihood interval improves the EB interval and it can be interpreted
either as a Bayesian credible interval (under the uniform prior) or as a frequentist
confidence interval (Lee and Kim 2016).

3.3.2.2 Interval Based on the Predictive Distribution

TheWald interval works well when the distribution of v̂−v is approximately normal.
If the distribution of v̂ − v is skewed, however, it may not work well. In general,
the fully Bayesian credible interval is proposed based on the (Bayesian) predictive
distribution

π(v|y) =
∫

fθ(v|y)π(θ|y)dθ, (3.21)

where θ is integrated out. For the frequentist interval, Lee and Kim (2016) proposed
to use the (frequentist) predictive distribution

P(v|y) =
∫

fθ(v|y)c(θ|y)dθ, (3.22)

where c(θ|y) is the frequentist confidence density such as the bootstrap distribution
(Lee et al. 2017b, Chap.4). This leads to the bootstrap method to get an estimate of
the predictive distribution

PB(v|y) ≡ 1

B

B∑
j=1

fθ∗
j
(v|y),

where θ∗
1, . . . , θ

∗
B are the bootstrap replicates of θ̂. For interval estimation, they pro-

posed to use the percentiles. When the distribution of v|y is very skewed, we need
to use the bootstrap method.

In this book, we use the Wald interval in the previous section because, in many
applications, we found that its performance is satisfactory and it is computationally
easy because all necessary quantities are computed to obtain the MHLEs. Better
interval estimators can be made by using numerically intensive boostrap method. For
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the performances of the boostrap method for interval estimation of random effects
see Lee and Kim (2016) and of subject-specific function estimators see Cao et al.
(2017).

3.3.2.3 Example for the Predictive Distribution

Estimation of the predictive distribution is crucial for inference about the random
effects. Suppose that we have the number of epileptic seizures in an individual for
five weeks, y = (3, 2, 5, 0, 4). Suppose that these counts are iid from a Poisson
distribution with mean θ. Here, θ̂ = (3 + 2 + 5 + 0 + 4)/5 = 2.8 is the MLE of θ,
which maximizes the Fisher likelihood fθ(y). Inference about θ can be made by using
the likelihood. Now we want to find a good predictive distribution for the seizure
counts for the next week, v. Then, because fθ(v = i|y) = fθ(v = i), the plug-in
technique gives the predictive distribution of the seizure count v for the next week
as

PE(v|y) = fθ̂(v = i|y) = fθ̂(v = i) = exp(−2.8)2.8i/i!.

This gives an asymptotically correct inference because fθ̂(v = i|y) → fθ0(v = i|y)
where θ0 is the true value of θ. However, its finite sampling property is in doubt.
Pearson (1920) pointed out that the limitation of the Fisher likelihood using the plug-
in method is its inability to account for the uncertainty in estimating θ. This plug-in
technique is the so-called EB method.

He suggested using the fully Bayesian predictive distribution (3.21). To reduce
dependence on priors, noninformative priors such as Jeffreys’ prior can be considered
to form the predictive distribution (Lee and Kim 2016); Jeffreys’ prior under Poisson
with mean θ is π(θ) ∝

√
i(θ) = θ−1/2. The resulting predictive distribution gives a

predictive probability with higher probabilities for larger y. Pearson (1920) pointed
out that this Bayesian procedure handles the uncertainty caused by estimating θ.
However, this Bayesian procedure depends upon the choice of a prior and it would
be difficult to justify the specific choice of Jeffreys’ prior. Here, the h-likelihood is
proportional to

fθ(3, 2, 5, 0, 4, v) = exp(−6θ)θ3+2+5+0+4+v/(3!2!5!0!4!v!),

where θ̂(v) = (3 + 2 + 5 + 0 + 4 + v)/6. Then, the normalized profile likelihood
fθ̂(v)

(3, 2, 5, 0, 4, v) gives the predictive distribution of Mathiasen (1979), almost
identical to Pearson’s but without assuming a prior on θ (Fig. 3.2); for more discus-
sion, see Bjørnstad (1990). This example shows that the standard methods for the
likelihood inference can be used for the prediction problem by using the h-likelihood.
Lee and Kim (2016) studied various predictive distributions based on the frequentist
confidence densities. All of them account for the uncertainty caused by estimating
θ. They found that the use of the normalized likelihood as a confidence density in
(3.22) gives the best interval, maintaining the stated level.
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Fig. 3.2 Predictive density
of the number of seizure
counts: Plug-in method (�),
Bayesian method (◦), and
h-likelihood method (+)

3.4 A Practical Example: Epilepsy Seizure Count Data

We illustrate the h-likelihood approach using the epilepsy seizure count data from a
clinical trial carried out by Leppik et al. (1985) and previously analyzed by Thall and
Vail (1990). The data come froma randomized clinical trial conducted amongpatients
suffering from simple or complex partial seizures to receive either the antiepileptic
drug progabide or a placebo, as an adjuvant to the standard chemotherapy. Primary
outcome of interest (y) is the number of seizures occurring over the previous 2 weeks
measured at each of four successive postrandomization clinic visits. Thall and Vail
(1990) took a quasi-likelihood approach and focused on comparing various types
of overdispersion models. In this analysis, we assume the extra variation is due to
individual-specific seizure propensity and conduct a secondary analysis to quantify
the seizure propensity. We formally identify patients with high seizure propensity
using the inferential procedure described in Sect. 3.3. Specifically, we assume that the
inherent seizure propensity exists and is realized (subject was born with it) but cannot
be observed. We would like to draw inference about the realized seizure propensity
and apply the Wald interval described in the Eq. (3.20).

• Model considered: Poisson-gamma HGLM

The data consist of four repeated measures (ni = 4) for K = 59 epileptic patients,
with covariates Constant, Base (x1), Trt (x2; placebo = 0, progabide = 1), Base.Trt
(x3), Age (x4) and Visit (x5 = −0.3,−0.1, 0.1, 0.3 for each visit). We assume a
Poisson-gamma HGLM as follows:
(i) yij|ui (i = 1, . . . , 59; j = 1, 2, 3, 4) follows a Poisson distribution with mean
μij = exp(ηij), where

ηij = β0 + β1x1ij + β2x2ij + β3x3ij + β4x4ij + β5x5ij + vi

is the linear predictor with vi = log ui.
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Fig. 3.3 Estimated random effects of 59 patients in the epileptic data and their 95% confidence
intervals, under Poisson-gamma model; Expected and Observed mean confidence intervals based
on expected and observed information matrices

(ii) The random effect ui is assumed to arise from a gamma distribution having mean
1 and variance α.

• Estimation of parameters

The Poisson-gamma model was fitted using the HL(0,2) method. The estimates of
the fixed parameters and their standard errors (SEs) are β̂0 = −1.32 (SE = 1.25),
β̂1 = 0.88 (SE= 0.13), β̂2 = −0.90 (SE= 0.40), β̂3 = 0.35 (SE= 0.20), β̂4 = 0.50
(SE = 0.37), β̂5 = −0.29 (SE = 0.10), and α̂ = 0.28 (SE = 0.06), yielding a
significant difference between the two treatment groups.

• Inference on heterogeneity

Lee and Ha (2010) have found that in constructing the HL interval, using the u-scale
gives a better coverage probability than using the v -scale (i.e., v = v(u)) for the
HGLMs: see also Paik et al. (2015). Now,we focus on investigating the heterogeneity
among patients and construct 95% confidence intervals for the realized values of
patient effects ui(i = 1, . . . , 59) under the Poisson-gamma model:

{ûi − 1.96SE(ûi − ui), ûi + 1.96SE(ûi − ui)}.

Note here that ûi is a solution of ∂h/∂ui = 0 and that SE(ûi − ui) is obtained from
the inverse of the observed information H(h;β, ui) = −∂2h/∂(β, ui)2 in (3.18).

Figure3.3 gives 95% confidence intervals for the realized but unobserved individ-
ual seizure propensity (K = 59). The intervals are plotted against the increasing order
of estimated random effects. The confidence intervals obtained from both ‘observed’
and ‘expected’ versions (Paik et al. 2015) of the variance estimates of ûi − ui show
similar trends. Here, the expected version indicates the inverse of E{H(h;β, ui)}.
Figure3.3 demonstrates substantial variations in seizure propensity among patients.
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Especially, for four patients (patient id = 10, 25, 35, and 56), 95% confidence inter-
vals for ui do not contain 1, suggesting that the seizure propensity is significantly
different from the norm. Patient id 49’s interval excludes 1 using the variance esti-
mate via the expected information. These patients were identified as outliers via the
residual analyses by Thall and Vail (1990), Breslow and Clayton (1993) and by Ma
and Jørgensen (2007), but there were no formal inferential procedures. We also iden-
tify patients with low propensity significantly different from 1, which the previous
analyses could not. Lee and Ha (2010) plotted the h-likelihood surface of u, which is
reasonably symmetric, so that a similar conclusion was drawn based on the interval
from the predictive distribution. Thus, we recommend to check the symmetry of the
h-likelihood surface if the Wald interval is expected to work well.

3.5 Appendix

3.5.1 Proof of Approximation in Poisson-Gamma HGLM

Consider the Poisson-gammamodel. That is, assume that response variables yij given
the random effect ui of the ith individual are independent and that they have a Poisson
distribution with mean E(yij|ui) = μijui (i = 1, . . . , q; j = 1, . . . , ni):

yij|ui ∼ Poisson(μijui) with μij = exp(xTijβ),

where xij = (xij1, . . . , xijp)T is a p × 1 covariate vector for the jth observation of the
ith individual and β = (β1, . . . ,βp) is corresponding regression parameters. Here,
ui’s follow a gamma distribution with E(ui) = 1 and var(ui) = α.

The marginal likelihood, denoted by Li, of the ith individual is defined by

Li = Li(β,α) = fβ,α(yi1, . . . , yini) =
∫

exp(hi)dvi,

where fβ,α(·) is the joint density of yi1, . . . , yini , hi = ∑
j �1ij + �2i is the contribution

of the ith individual to the h-likelihood h in (3.7), and vi = log ui. Then, the marginal
likelihood for all individuals becomes L = ∏

i Li. From Example3.7 we have an
explicit marginal log-likelihood:

m = m(β,α) = logL =
∑
i

log

{∫
exp(hi)dvi

}

=
∑
ij

{yijxTijβ − log�(yij + 1)} +
∑
i

{−(α−1 + yi+) log(α−1 + μi+)

+ log�(α−1 + yi+) + c(α)}, (3.23)
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where yi+ = ∑
j yij, μi+ = ∑

j μij = ∑
j exp(x

T
ijβ) and c(α) = − log�(α−1) −

α−1 logα. Here, the h-likelihood is given by

h = h(β,α) =
∑
ij

{yijxTijβ − log�(yij + 1)}

+
∑
i

{(α−1 + yi+)vi − (α−1 + μi+)ui + c(α)}.

From
∂h/∂vi = (yi+ + α−1) − (μi+ + α−1)ui = 0,

we have

ûi = α−1 + yi+
α−1 + μi+

,

which also becomes E(ui|yi) since the conditional distribution of ui given the ith
observed data yi is gamma. Note here that the ith component of adjustment term for
pv(h),

H(h; vi)|ui=ûi = −∂2h/∂v2
i |ui=ûi = (α−1 + μi+)ûi = α−1 + yi+ ,

is free of β but depends upon α. Since H(h, v)|u=û = diag(α−1 + yi+) is a q × q
diagonal matrix, we have that

pv(h) =
[
h − 1

2
log det{H(h; v)/(2π)}

]
|u=̂u

=
∑
ij

{yijxTijβ − log�(yij + 1)} +
∑
i

{−(α−1 + yi+) log(α−1 + μi+)

+ (α−1 + yi+) log(α−1 + yi+) − (α−1 + yi+) − log(α−1 + yi+)/2

+ log(2π)/2 + c(α)},

which is equivalent to approximating m of (3.23) by the first-order Stirling approxi-
mation

log�(x)
.= (x − 1/2) log(x) + log(2π)/2 − x

for �(α−1 + yi+). Thus, the marginal ML estimator for β (maximizing pv(h)) can be
obtained by maximization of h. Note that given α, the MHL estimator for β is the
same as theMLestimator (Lee andNelder 1996). Furthermore, a good approximation
to the ML estimator for α can be obtained by using pv(h) if the first-order Stirling
approximation works well. It can be further shown that the second-order Laplace
approximation, sv(h) = pv(h) − {F(h)/24}, is equivalent to approximating m by the
second-order Stirling approximation
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log�(x)
.= (x − 1/2) log(x) + log(2π)/2 − x + 1/(12x).

Here, under the HGLM with one-random component v, the term, F(h), in (3.11) is
given by

F(h) =
q∑

i=1

{
−3

(
∂4h

∂v4
i

)
h2ii − 5

(
∂3h

∂v3
i

)2

h3ii

}∣∣∣∣
v=v̂

,

where hii is the ith diagonal element of H(h, v)−1, Under the Poisson-gamma model
it gives a simple form:

F(h) = −2
q∑

i=1

(α−1 + yi+)−1.

Note that in general, m = sv(h) + O(N−2) as N = min1≤i≤q ni → ∞ (Lee and
Nelder 2001a). For the REML estimator for α, we use pβ,v(h) or sβ,v(h).



Chapter 4
Simple Frailty Models

The concept of frailty was first introduced by Vaupel et al. (1979) to account for
the impact of individual heterogeneity in univariate (independent) survival data. In
this chapter, we introduce the frailty model, an extension of the Cox PH model, for
analyzing correlated survival data. The frailty is modeled by an unobserved random
effect acting multiplicatively on the individual hazard rate to describe the individual
heterogeneity and the correlation (dependency) among survival data from the same
subject or cluster (Clayton1978;Hougaard 2000;Duchateau and Janssen2008). Even
if heterogeneity and correlation are different concepts, they can both be modeled by
frailties.

Various inferential procedures for the frailty model have been proposed in the
literature. In this book, we focus on the likelihood-based approaches: We discuss
the h-likelihood, penalized partial likelihood, and marginal likelihood procedures
and compare them. All of these procedures can be derived from the h-likelihood.
Through real data analyses, we demonstrate the h-likelihood procedures, available
in the frailtyHL (Ha et al. 2018) R package. We also review recent developments in
the model-selection procedures and interval estimation of the individual frailties.

4.1 Features of Correlated Survival Data

Survival data, namely time-to-event data, are often collected as a single observed
event per individual. This simple form of data is called independent survival data and
has been often analyzed using the Cox PHmodel when there are confounding factors
that need to be adjusted for. However, in many biomedical studies, a correlation
among times-to-events can be induced by clustering as follows:

• Recurrent or multiple events: Each subject can potentially experience more than
one event; for example, a patient can have times to recurrent events of the same

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6_4
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Fig. 4.1 Estimated
log-frailty versus observed
event time for each patient in
kidney infection data; “Yes”,
infection and “None”,
censoring

type (e.g., recurrences of tumor or recurrent infections of disease) or multiple
events of different types (e.g., death after recurrences).

• Events by pair or family: Various clustered time-to-event studies from twin or
family study, matched pair study, and study of organ systems (e.g., left and right
eyes).

• Events from multicenter: In multicenter clinical trials, survival times of patients
from the same center may have common medical characteristics and practice pat-
terns.

These event times within a cluster can be correlated due to a common genetic or
environment effect on the same cluster. We call such data correlated (i.e., multivari-
ate or clustered) survival data. This correlation can be modeled by introducing a
frailty (an unobserved random effect) term into the PH model. The frailty model,
an extension of the Cox PH model allowing random effects, has been widely used
for modeling dependency within a cluster as well as heterogeneity between clusters.
Fitting the Cox PH model ignoring the correlation can lead to underestimation of
the fixed covariate effects as we will see later. The frailty model can also be used to
describe heterogeneity in the independent survival data. The idea is that individuals
who are more frail will die (or experience an event) earlier than ones who are less
frail. Or a family with a larger frailty value will experience their events at earlier
times than a family with a smaller frailty value. Figure4.1 displays the meaning
of frailty, using the log-normal frailty model in Example 4.1 with kidney infection
data. This indicates that the estimated frailties are overall larger (i.e., more frail) for
patients who had an event (infection) early than those who had an event later.
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4.2 The Model and H-Likelihood

In this section, we first define the univariate frailty model, which includes a frailty
term from a univariate distribution, and present the h-likelihood for the model. Then,
we present various existing likelihood-basedmethods, derived from the h-likelihood.
The results presented in this sectionwill be extended to themultivariate frailtymodels
in the later chapters, especially under competing risks.

4.2.1 Univariate Frailty Model

Suppose that data consists of observed times to an event subject to censoring, and
collected from q subjects (or clusters) with ni observations per cluster (i = 1, . . . , q;
j = 1, . . . , ni ). Let Ti j be the potential event time for the j th observation for the i th
subject and Ci j be the corresponding potential censoring time. Here, n = ∑

i ni is
the total sample size. In the multicenter clinical trials, ni would be the number of
patients in the i th center and n would be the total number of patients coming from
all q centers. In the independent and bivariate data, ni = 1 and ni = 2, respectively,
for all i . Denote by Ui the unobserved univariate frailty for the i th subject. The two
assumptions for the (Fisher) likelihood construction in Sect. 2.1.2 under the Cox PH
model are extended to the frailty model as follows.

Assumption 3:
Given Ui = ui , the pairs {(Ti j ,Ci j ), j = 1, . . . , ni } are conditionally
independent and both Ti j and Ci j are also conditionally independent for
j = 1, . . . , ni .

Assumption 4:
GivenUi = ui , {Ci j , j = 1, . . . , ni } are conditionally noninformative of Ti j .

• Univariate (or one-component) frailty model: Given an unobserved frailty for
the i th subjectUi = ui , suppose that the conditional hazard function of Ti j takes the
form of

λi j (t |ui ) = λ0(t) exp(x
T
i jβ)ui , (4.1)

where λ0(·) is an arbitrary baseline hazard function, xi j = (xi j1, . . . , xi jp)T is a
vector of fixed covariates and β = (β1, . . . ,βp)

T is a vector of the corresponding
regression parameters. For the purpose of identifiability, the term xTi jβ does not
include the intercept term as in the Cox PH model (2.4). The random variable Ui is
assumed to be independently and identically distributed (iid). Popular distributions
for Ui are gamma and log-normal.

http://dx.doi.org/10.1007/978-981-10-6557-6_2
http://dx.doi.org/10.1007/978-981-10-6557-6_2
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In the frailtymodel (4.1), E(Ui ) (or E(Vi )) is confoundedwith the baseline hazard
λ0(t) since, for example,

λ0(t)ui = (aλ0(t))(ui/a) for all a > 0.

Lee and Nelder (1996) proposed to impose constraints on the random effects such
that E(Ui ) = 1 or E(Vi ) = 0, rather than putting constraints on the fixed parameters,
which is convenient in the multiple random-effect models. Elbers and Ridder (1982)
showed that the frailty model (4.1) with a vector of covariates xi j is identifiable if
the frailty distribution has the finite mean (i.e., E(Ui ) < ∞). Thus, it is traditionally
assumed that E(Ui ) = 1 and var(Ui ) = α for the gamma frailty model and that
E(Vi ) = 0 and var(Vi ) = α for the log-normal frailty model, i.e., Vi = logUi ∼
N (0,α). Note that model (4.1) reduces to the Cox PH model when ui = 1 for all i
(i.e., α = var(Ui ) = 0).

For the gamma frailty model, the marginal likelihood is explicitly available after
integrating out the frailty term, but not for the log-normal frailty model. However, the
log-normal frailty model is useful, particularly to incorporate correlated frailties. It is
worthy to note that the h-likelihood can easily accommodate other frailty distributions
(Duchateau and Janssen 2008; Wienke 2011).

Under the model (4.1), the conditional survival function of Ti j givenUi = ui can
be expressed as

S(t |ui ) = P(Ti j > t |Ui = ui ) = B(t)ui ,

where B(t) = exp{−�0(t)e
xTi jβ} with baseline cumulative hazard function �0(t) =∫ t

0 λ0(k)dk. This means that the random variable Ui is a frailty which describes the
individual unobserved risk. Note that a larger value of ui implies a smaller survival
probability S(t |ui ), indicating a poor survival. In other words, individuals in a group
i with ui > 1 [ui < 1] are more frail or at higher risk [less frail or at lower risk],
respectively (Fig. 4.1).

Ti j and Tik , for j �= k, (i.e., survival times of individuals within cluster i) are
dependent unconditionally because of their shared frailty ui . The multivariate sur-
vival function of Ti1, · · · , Tini can be derived by integrating out the frailty from
the conditional survival function, S(t |ui ) = P(Ti j > t |ui ): From Assumption 3, we
have

S(t1, . . . , tni ) = P(Ti1 > t1, . . . , Tini > tni )

=
∫ {∏

j

S(t j |ui )
}

f (ui )dui ,

where f (ui ) is the density function of the frailty Ui .

Remark 4.1 In Appendix 4.7.1, we show that under the frailty model (4.1) the mar-
ginal hazard function with covariates x , denoted by λM(t; x), becomes
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λM(t; x) = λ0(t) exp(x
Tβ)E(U |T > t; x),

where the conditional expectation E(U |T > t; x) indicates the expected frailty
among the survivors at time t . Under the gamma frailty, we have

E(U |T > t; x) = {1 + α�0(t) exp(x
Tβ)}−1,

which decreases with time t (see Fig. 4.1). Here �0(t) = ∫ t
0 λ0(k)dk is the baseline

cumulative hazard function. This leads to the Burr model (Burr 1942), given by

λM(t; x) = λ0(t) exp(xTβ)

1 + α�0(t) exp(xTβ)
,

and the hazard ratio is not constant over time (non-proportional hazards). Further-
more, for any frailty distribution the hazard ratio with a single covariate x is given
by

λM(t; x = 1)

λM(t; x = 0)
= exp(β)

E(U |T > t; x = 1)

E(U |T > t; x = 0)
,

which will be time dependent except under specific circumstances. Thus, the frailty
models generally lead to non-PH models. �

4.2.2 H-Likelihood and Related Likelihoods

The observable random variables are

Yi j = min(Ti j ,Ci j ) and δi j = I (Ti j ≤ Ci j ).

Let yi j be an observed value of Yi j .

• Definition of the h-likelihood (Appendix 4.7.2): Under Assumptions 3 and 4, the
h-likelihood for the frailty model becomes

h = h(β, v,λ0,α) =
∑

i j

�1i j +
∑

i

�2i , (4.2)

where

�1i j = �1i j (β,λ0; yi j , δi j |ui ) = δi j {logλ0(yi j ) + ηi j } − {�0(yi j ) exp(ηi j )}

is the logarithm of the conditional density function for Yi j and δi j givenUi = ui , the
so-called ordinary log-likelihood for censored survival data given ui , �2i = �2i (α; vi )
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is the logarithm of the density function for Vi = log(Ui ),�0(t) is the baseline cumu-
lative hazard function, and

ηi j = xTi jβ + vi

is a linear predictor on the log-hazard with vi = log(ui ). As mentioned in Chap.3,
the h-likelihood can be interpreted as the Bayesian posterior under the uniform prior.

•Profile h-likelihood: Suppose that the functional form ofλ0(t) in (4.1) is unknown.
Let λ0k = λ0(y(k)) be the baseline hazard function at y(k), where y(k) is the kth
(k = 1, . . . , D) smallest distinct event time among yi j ’s. Following Breslow (1972),
we define the baseline cumulative hazard function �0(t) = ∫ t

0 λ0(u)du to be a step
function with jumps λ0k at observed event times y(k):

�0(t) =
∑

k:y(k)≤t

λ0k =
∑

k

λ0k I (y(k) ≤ t). (4.3)

Following Appendix 2.6.2, by substituting (4.3) into (4.2) the first term in (4.2)
becomes

∑

i j

�1i j =
∑

k

d(k) logλ0k +
∑

i j

δi jηi j −
∑

k

λ0k

{ ∑

(i, j)∈R(k)

exp(ηi j )

}

,

where d(k) is the number of deaths at y(k) and

R(k) = R(y(k)) = {(i, j) : yi j ≥ y(k)}

is the risk set at y(k). As the number of the terms λ0k’s in
∑

i j �1i j increases with the
number of events, the dimension of the function λ0(t) is potentially high (Zeng and
Lin 2007; Ha et al. 2010) when λ0(t) is unknown. In survival analysis, however, λ0k’s
are not often of interest. Thus, we may eliminate them using the profile h-likelihood

h∗ = h|λ0=λ̂0
,

leading to

h∗ = h∗(β, v,α) =
{∑

k

d(k) log λ̂0k +
∑

i j

δi jηi j −
∑

k

d(k)

}

+
∑

i

�2i (4.4)

where

λ̂0k(β, v) = d(k)
∑

(i, j)∈R(k)
exp(ηi j )

are the solutions of the estimating equations, ∂h/∂λ0k = 0, for k = 1, . . . , D. Note
that from (4.3) we have

http://dx.doi.org/10.1007/978-981-10-6557-6_3
http://dx.doi.org/10.1007/978-981-10-6557-6_2
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�̂0(t) =
∑

k:y(k)≤t

λ̂0k

is a nonparametric MHLE, which is an extension of Breslow’s (1974) estimator of
the baseline cumulative hazard function for the Cox model to the frailty model.

• Relation to the penalized partial likelihood (PPL): Therneau and Gramb-
sch (2000, p. 251) and Ripatti and Palmgren (2000) proposed to construct the h-
likelihood (4.2) using the partial log-likelihood (Cox 1972; Breslow 1974) for �1i j .
They call the resulting h-likelihood the penalized partial likelihood (PPL), defined
by

h p = h p(β, v,α) = �p +
∑

i

�2i , (4.5)

where

�p =
∑

i j

δi jηi j −
∑

k

d(k) log

{ ∑

(i, j)∈R(k)

exp(ηi j )

}

is Breslow’s likelihood given Ui = ui . In the penalized likelihood approach, the
likelihood for the model is �p and

∑
i �2i is associated with a penalty term. Thus, the

frailty parameter α is a tuning parameter (Therneau and Grambsch 2000, p. 233),
but not the model parameter. On the other hand, in the frailty model, α is the model
parameter to describe a correlation among event times from the same subject, so
that we need to extend the ML and REML estimators in the LMMs to the frailty
models. In the LMMs, the frailty parameter α is the variance component, which is an
important quantity for statistical inference. Thus, in this book, we call h p the partial
h-likelihood and we pay a proper attention to inference about the frailty parameter.

Note that the profile h-likelihood h∗ is proportional to the partial h-likelihood h p

because from (4.4) and (4.5) we have

h∗ = h p +
∑

k

d(k){log d(k) − 1}, (4.6)

where d(k){log d(k) − 1} is a constant depending upon only observed data, not depend-
ing upon unknown parameters. In this book, we call both h p and h∗ the partial
h-likelihood.

The PPL procedure estimates the frailty parameter by modifying the existing
variance-component estimation in the LMMs, which is in spirit similar to the penal-
ized quasi-likelihood (PQL) method of Breslow and Clayton (1993). However, the
PQL procedure is severely biased with binary data, while the h-likelihood approach
does not introduce such severe bias (Lee et al. 2017b, Sect. 6.4). Therneau et al.
(2003) improved the PQL procedure, but it is still not satisfactory because it omits
some necessary terms as we shall see later. In the h-likelihood approach, the frailty
parameters are estimated by using the likelihood method, while in the penalized like-
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lihood approach, they are tuning parameters, but not the model parameters. Ha et al.
(2010) discussed this difference between the PPL and h-likelihood procedures and
showed the superiority of the h-likelihood procedure over the PPL procedure. The
PPL differs from the h-likelihood in estimating the frailty parameters, which affects
estimation of both fixed and random effects.

• Relation to the marginal likelihood: Following Appendix 3.5.1, the marginal
likelihood of the i th individual is

Li = Li (β,λ0,α) = fβ,λ0,α(y∗
i1, . . . , y

∗
ini ) =

∫

exp(hi )dvi ,

where fβ,λ0,α(·) is the joint density of y∗
i1, . . . , y

∗
ini

with y∗
i j = (yi j , δi j ) for j =

1, . . . , ni , hi = ∑
j �1i j + �2i is a contribution from the i th individual in (4.2), and

vi = log ui . Thus, the marginal log-likelihood for all individuals, denoted by m, can
be obtained by integrating out the frailties from the h-likelihood:

m = m(β,λ0,α) =
∑

i

log Li (β,λ0,α) =
∑

i

log

{∫

exp(hi ) dvi

}

. (4.7)

This marginal likelihood (i.e., observed-data likelihood) has been often used for
inference (e.g., Klein 1992;Nielsen et al. 1992). In the semiparametric frailtymodels,
the number of nuisance parameters increases with sample size. With binary data, it
causes severe biases in theMLEs (Andersen 1970). In the finite sample, the resulting
MLEs from the frailty models could suffer from a substantial bias caused by the
presence of many nuisance parameters λ0, when cluster size ni or the censoring rate
is small (Ha et al. 2010). However, in the frailty models, when cluster size ni ≥ 2 for
all i and q → ∞, Parner (1998) and Gamst et al. (2009) have shown the consistency
and asymptotic normality of the (marginal) MLEs under the gamma and log-normal
frailty models, respectively.When cluster size ni = 1 for all i , Barker and Henderson
(2005) showed that the MLEs can be substantially biased in the finite sample. Thus,
it is of interest to find a modification of m for the frailty models to eliminate such
bias. Ha et al. (2010) proposed an adjusted profile marginal likelihood pw(m) with
w = logλ0,

pω(m) =
[

m − 1

2
log det{D(m;ω)/(2π)}

]∣
∣
∣
∣
ω=ω̃

,

where ω = (ω1, . . . ,ωD)T with ωk = logλ0k , D(m;ω) = −∂2m/∂ω2 is the adjust-
ment term for eliminatingλ0, and ω̃ solves∂m/∂ω = 0.They showed the relationship
between those two likelihoods under the univariate gamma frailty model is given by,
as N = min1≤i≤q ni → ∞,

mp ≈ pw(m),

http://dx.doi.org/10.1007/978-981-10-6557-6_3


4.2 The Model and H-Likelihood 75

where

mp = mp(β,α) = log

{∫

exp(h p) dv

}

(4.8)

is the partial marginal likelihood.
For parameter estimation in the frailty models, it is desirable to eliminate both

nuisance parameters λ0k (fixed) and frailties vi (random). In the partial marginal
likelihood mp, λ0k’s are first eliminated from the h-likelihood h by the profiling
method and then eliminate vi via integration

∫
exp(h p) dv. In the marginal likeli-

hood approach, the nuisance random frailties vi are first eliminated via integration∫
exp(h) dv. Then, the next step is to eliminate by profiling out nuisance parameters

λ0k fromm.When the number of fixed nuisance parameters increase with the sample
size, the simple profile likelihood m∗ = m|λ0=λ̂0

(i.e., using m for estimating fixed
parameters) may not work well. Here an adjusted profile likelihood such as pw(m)

comes to rescue (Ha et al. 2010).
The partial marginal likelihood mp does not involve nuisance parameters λ0k , so

that it might be intriguing to attempt to obtain the partial maximum marginal likeli-
hood estimators (PMMLEs). However,mp is not useful in practice due to intractable
integration, not allowing a closed form even under the univariate gamma frailty
model. Moreover, mp involves high-dimensional integration with the dimension
being the number of the frailties, so that numerical method such as Gauss–Hermit
cannot be used. Even in the gamma frailty models, the EM algorithm is difficult to
apply (Gu et al. 2004). Thus, in this book, we use the Laplace approximation pv(h p)

in (4.9) for mp: for the details of Laplace approximations see Sect. 3.3.1.

4.3 Inference Procedures Using R

In this section, we review various likelihood procedures for fitting a semiparametric
frailty model (4.1) with an arbitrary baseline hazard function. Then, we illustrate
the R package frailtyHL with two well-known data sets and compare with various
alternative likelihood procedures in R.

4.3.1 Review of Estimation Procedures

Table4.1 shows historical evolvement of the estimating criteria for the log-normal
and gamma frailty models.

• H-likelihood versus PPL procedures: From the definition of pξ(�) in (3.9), two
adjusted profile h-likelihoods pv(h p) and pβ,v(h p) are defined as follows:

http://dx.doi.org/10.1007/978-981-10-6557-6_3
http://dx.doi.org/10.1007/978-981-10-6557-6_3
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Table 4.1 Estimation criteria for the h-likelihood (HL(mord, dord)), PPL (coxph, coxme), and
marginal likelihood (ML; phmm) for log-normal (LN) and gamma frailty models (FMs)

Method Criterion Literature

β α

HL

HL(0,1) h p pβ,v(h p) Ha and Lee (2003)

HL(0,2) h p sβ,v(h p) Ha and Lee (2003)

HL(1,1) pv(h p) pβ,v(h p) Ha et al. (2012)

HL(1,2) pv(h p) sβ,v(h p) Ha et al. (2012)

PPL

coxph h p pβ,v(h p) Therneau (2010) for LN FM

coxph h p m Therneau (2010) for gamma FM

coxme h p pv(h p) Therneau (2011) for LN FM

ML

phmm m m Donohue and Xu (2012) for LN FM

pv(h p) =
[

h p − 1

2
log det{H(h p; v)/(2π)}

]∣
∣
∣
∣
v=v̂

, (4.9)

where H(h p; v) = −∂2h p/∂v2 and v̂ solves ∂h p/∂v = 0, which is the first-order
Laplace approximation of mp in (4.8), and

pβ,v(h p) =
[

h p − 1

2
log det{H(h p;β, v)/(2π)}

]∣
∣
∣
∣
β=β̂,v=v̂

, (4.10)

where H(h p;β, v) = −∂2h p/∂(β, v)2 and (β̂, v̂) solves ∂h p/∂(β, v) = 0. This
becomes Cox and Reid’s (1987) adjusted profile marginal likelihood eliminating
fixed effects β by conditioning their asymptotic sufficient statistics β̂, in addition to
eliminating randomeffects v by thefirst-order Laplace approximation. For estimation
of β, the h-likelihood methods allow for the Laplace approximation pv(h p) to mp,
but the PPL procedures always use h p. For estimation of α, the PPL methods use
adjusted profile h-likelihoods pv(h p) and pβ,v(h p) that give the partial maximum
likelihood estimators (PMLEs) and partial restricted maximum likelihood estima-
tors (PREMLEs), respectively. However, the PPL method does not compute all the
terms necessary to implement these adjusted profile likelihoods as we shall discuss.
In this chapter, the MLEs and REMLEs for the parametric baseline hazard models
are extended to the PMLEs and PREMLEs for the nonparametric baseline hazard
models, respectively.

Furthermore, the h-likelihoodmethod allows the partial restricted likelihoodbased
on the second-order Laplace approximation sβ,v(h p) for the PREMLEs. The corre-
sponding second-order approximation is
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sβ,v(h p) = pβ,v(h p) − {F(h p)/24}, (4.11)

where

F(h p) = tr[−{3(∂4h p/∂v4) + 5(∂3h p/∂v3)H(h p, v)−1(∂3h p/∂v3)}H(h p, v)−2]|v=v̂ .

To reduce the computational burden, we use F(h) instead of F(h p). It is recom-
mended to use the second-order approximation in the gamma frailty model (Ha et al.
2010).

For handling tied event times, the h-likelihood procedures use the Breslow’s
method, while the PPL procedures allow for the Efron’s method.

• Comparison of the h-likelihood procedures: The frailtyHL() function pro-
vides estimators based on various orders of Laplace approximations for the fixed
effects and dispersion parameters. As the orders in mord and dord increase, the
biases of the estimators decrease, but the procedures become computationally more
intensive due to calculation of the extra terms. Denote HL(a,b) for the h-likelihood
method using order "a" in mord and order "b" for dord. We recommend using
HL(1,1) with the log-normal frailty and HL(1,2) with the gamma frailty. How-
ever, for the log-normal frailty model, HL(0,1), and for the gamma frailty model,
HL(0,2) often perform well if α is not large. Note that the asymptotic variance matri-
ces of τ̂ = (β̂, v̂) and α̂ are directly obtained from the inverses of Hessian matrix
{−∂2h p/∂τ 2}−1 and {−∂2 pβ,v(h p)/∂α2}−1, respectively; the frailtyHL package
provides the standard errors (SEs) of α̂ as well as β̂.

• PPL and ML procedures: Based on the PPL methods, the coxph() and
coxme() functions, respectively, implement the PREMLE and PMLE of α for the
log-normal frailty model, and the coxph() function also implements the MLEs,
maximizing the marginal likelihood m, for α for the gamma frailty model. For com-
parison, we present the Breslow’s and Efron’s methods for handling ties in survival
times in the coxph() and coxme() functions in Example 4.1; Therneau (2010)
recommended the Efron’s method. For the log-normal frailty model, the MLE max-
imizing m is available via the phmm() function, but care must be taken to ensure
that the MCEM algorithm converges (Donohue and Xu 2012). However, the MLE
from phmm() can be biased in finite sample, particularly for smaller cluster sizes
(e.g., when cluster size ni is 1 or 2) (Ha et al. 2010).

Furthermore, with the log-normal frailty, the coxph() function uses the existing
codes in the LMMs so that it misses the term ∂v̂/∂α in (4.41) of Appendix 4.7 when
solving the score equation ∂ pβ,v(h p)/∂α = 0; the resulting PREMLE can lead to
an underestimation of the parameters, especially when the cluster size ni is small
or the censoring proportion is high (Ha et al. 2010; Lee et al. 2017b). To overcome
this problem, for the gamma frailty model, Therneau and Grambsch (2000) have
developed the codes for the MLE for α because the gamma frailty allows an explicit
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form of the marginal likelihood. For the frailty models, Ha et al. (2010) showed that
the h-likelihood method yields the least biased estimators.

Remark 4.2 In the gamma frailty model (4.1), given α the MHLE for β that max-
imizes h p is the same as the MLE, which is obtained by maximizing the marginal
likelihoodm (hence pv(h)). However, the twomethods are different in the estimation
of α. The proofs of these two statements are given in Appendix 4.7.3. Ha and Lee
(2003) and Ha et al. (2011) showed that inference on β is less sensitive against a
misspecification of the frailty distribution. �
• Numerical example: We investigate the utility of various likelihoods, using
independent survival data with ni = 1 for all i as an extreme case. For this pur-
pose, we considered a simulated data set from the gamma frailty model (4.1) with
(q, ni ) = (100, 1). That is, we generated data assuming an exponential baseline haz-
ard λ0(t) = 1, one covariate following the standard normal distribution with β = 1,
and the variance of the gamma frailty α = 1, ensuring existence of the frailty. The
corresponding censoring times were generated from an exponential distribution to
achieve about 5% censoring.

We fitted the gamma frailty model to the simulated data set. For implementation
of the likelihood methods, we used a simple grid search method; in the inner loop,
givenα, we maximize h p for (β, v), and in the outer loop, given (β, v), the following
eight likelihoods are maximized for α (Ha et al. 2010):

(i) MLEs: m, pv(h), sv(h), pw(m),
(ii) PMLEs: pv(h p), sv(h p),
(iii) PREMLEs: pβ,v(h p), sβ,v(h p).

The eight profile likelihoods are plotted against α in Fig. 4.2. Here we find, com-
pared to the true value α = 1, that three likelihoods (pw(m), sv(h p) and sβ,v(h p))
retrieve the true frailty, whereas the remaining likelihoods (m, pv(h), sv(h), pv(h p)

and pβ,v(h p)) do not. Thus, in the univariate gamma frailty model, further elaborate
approximations (sv(h p), sβ,v(h p) or a modification (pw(m)) provide more accurate
estimation results, together with retrieval of the frailty term. These results also con-
firm the simulation results from Barker and Henderson (2005), Ha (2007) and Ha
et al. (2010). With the bivariate survival data, we have found that all eight likelihoods
retrieve the true frailty well (not shown). Thus, care is necessary, particularly in the
independent data cases.

4.3.2 Fitting Algorithm and Inference

Given α, the joint maximization of h p for (β, v) (i.e., ∂h p/∂(β, v) = 0) leads to the
iterative least squares (ILS) score equations (Appendix 4.7.4):

(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

) (
β̂
v̂

)

=
(
XTw∗
ZTw∗ + R

)

, (4.12)
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Fig. 4.2 Profile likelihoods for frailty parameter α in a simulated data set; ML1, m; ML2, pv(h);
ML3, sv(h); ML4, pw(m) with w = logλ0; PML1, pv(h p); PML2, sv(h p); PREML1, pβ,v(h p);
PREML2, sβ,v(h p)

where X and Z are n × p and n × q model matrices for β and v whose i j th row
vectors are xTi j and zTi j , respectively, and zi j = (zi j1, . . . , zi jq)T is a q × 1 group
indicator vector whose r th element is ∂ηi j/∂vr ,W ∗ = −∂2h p/∂η2 is the symmetric
weight matrix given in (4.35) of Appendix 4.7.4, and

Q = diag(−∂2�2i/∂v2
i )

is a q × q diagonal matrix. Here

w∗ = W ∗η + (δ − μ)

with η = Xβ + Zv, μ = exp(log�0 + η) and

R = Qv + (∂�2/∂v).

Note here that R = 0 under the log-frailty, if v ∼ N (0,αIq). In particular, under the
Cox PH model without the frailty, the joint score Eq. (4.12) reduce to the ILS Eq.
(2.10), given by

http://dx.doi.org/10.1007/978-981-10-6557-6_2
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(XTW ∗X)β̂ = XTw∗.

Let

P =
(
X Z
0 Iq

)

and V =
(
W ∗ 0
0 Q

)

.

Then the ILS Eq. (4.12) can be written in a new simple matrix form as in (3.14):

(PTVP)τ̂ = PT y∗
0, (4.13)

where y∗
0 = (w∗T , RT )T . In particular, if v ∼ N (0,αIq), then R = 0 and y∗

0 =
(w∗T , 0T )T . Note that Hp = H(h p;β, v) = −∂2h p/∂(β, v)2 = PTVP.

In Appendix 4.7.5, we outline how to obtain the PREMLE for α, by solving

∂ pβ,v(h p)/∂α = 0. (4.14)

For the log-normal frailty model with vi ∼ N (0,α), the PREMLE is given by

α̂ = v̂T v̂

q − γ
, (4.15)

where γ = −αtr{Ĥ−1
p (∂ Ĥp/∂α)} and Ĥp is given in Appendix 4.7.5. This is an

extension of (3.17) for the REMLE from the h-likelihood h under HGLMs to that for
the PREMLE from the partial h-likelihood h p under semiparametric frailty models.

• Fitting algorithm:
Suppose that HL(0,1) is used. The fitting algorithm is as follows.

• Step 1: Take (0,0,0.1) as the initial guesses of components of (β, v,α).
• Step 2: Given α̂, the new estimates (β̂, v̂) are obtained by solving the ILS equations
(4.12), i.e., (4.13). Then, given (β̂, v̂), a new estimate α̂ is obtained by solving
∂ pβ,v(h p)/∂α = 0. In particular, for the log-normal frailty with vi ∼ N (0,α),
we have a simple PREMLE, given in (4.15).

• Step 3: Repeat Step 2 until the maximum absolute difference between the previous
and current estimates for (β, v) and α is less than 10−6.

After the convergence criterion has met, we compute the estimates of the SEs of
β̂, v̂ − v and α̂. Note that the estimates of var(τ̂ − τ ) and var(α̂) are obtained from
the inverses of Hp = −∂2h p/∂τ 2 = PTVP and −∂2 pτ (h p)/∂α2, respectively.

• Test for the frailty parameter:
Testing the absence of a frailty effect,

H0 : α = var(vi ) = 0,

is equivalent to test vi = 0 for all i . Care is necessary because such a null hypothesis
is on the boundary of the parameter space (α ≥ 0). Thus, the standard chi-square

http://dx.doi.org/10.1007/978-981-10-6557-6_3
http://dx.doi.org/10.1007/978-981-10-6557-6_3
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distribution cannot be applied. The null distribution for the likelihood ratio test (LRT)
statistic follows an asymptotic chi-square mixture distribution, i.e., a mixture of χ2

0
and χ2

1 with equal weights of 0.5. Here the χ2
0 distribution gives probability mass 1

to the value 0 (Self and Liang 1987; Stram and Lee 1994; Vu et al. 2001; Vu and
Knuiman 2002; Ha and Lee 2005a; Xu et al. 2009). For testing the need for a random
component (i.e., a frailty term), we use the LRT statistic, denoted by LR, based on
the partial restricted likelihood (Ha et al. 2011, 2016a); it is calculated as

LR = −2[pβ(h p) − pβ,v(h p)],

where pβ(h p) is the likelihood under H0 : α = 0. At a 5% significance level, the
critical value of χ2

1,0.10 = 2.71 under the chi-square mixture distribution should be
used.

Generally, we denote the mixture of two chi-square distributions with k1 and k2
degrees of freedom, with equal weights 0.5, by χ2

k1:k2 (Verbeke and Molenberghs
2009). Then, the p-value is calculated as

p = P(χ2
k1:k2 > LR)

= 1

2
P(χ2

k1 > LR) + 1

2
P(χ2

k2 > LR).

For example, the p-value for LRT with the χ2
0:1 distribution is given by

p = P(χ2
0:1 > LR)

= 1

2
P(χ2

0 > LR) + 1

2
P(χ2

1 > LR)

= 1

2
P(χ2

1 > LR)

since χ2
0 is the distribution defined by P(χ2

0 = 0) = 1.

4.3.3 Implementation Using R

In this section, we outline the frailtyHL package (Ha et al. 2018) to fit the semipara-
metric frailty model (4.1). The main function, frailtyHL(), fits the log-normal
frailty model as a default as follows:

> frailtyHL(Surv(time, status) ˜ x + (1|id),

+ RandDist = "Normal",

+ mord = 0, dord = 1,

+ Maxiter = 200, convergence = 10ˆ-6,

+ varfixed = FALSE, varinit= 0.1)
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Inclusion of the option RandDist="Gamma" allows to fit the gamma frailty
model. The first argument is a formula object, with the response on the left-hand
side of the ∼ operator, and the terms for the fixed and random effects on the right.
The response is a survival object as returned by the Surv function (Therneau 2010).
Here, time and status denote survival time and censoring indicator taking 1 (0)
for uncensored (censored) observation; x denotes a fixed covariate and id denotes
the subject identifier. The expression (1|id) specifies a random intercept model
((x|id) would specify a random slope model). The parameters mord and dord are
the orders of Laplace approximations to fit the mean parameters (mord=0 or 1) and
the dispersion parameters (dord= 1 or 2), respectively. The Maxiter parameter
specifies the maximum number of iterations and convergence specifies the toler-
ance of the convergence criterion. If varfixed is specified as TRUE (or FALSE),
the value of one or more of the variance terms for the frailties is fixed (or estimated)
with starting value (e.g., 0.1) given in the varinit.

Previously, the frailty models have been implemented in several R functions such
as thecoxph() function in the survivalpackage (Therneau2010) and thecoxme()
function in the coxme package (Therneau 2011), based on the PPL, the phmm()
function in the phmm package (Donohue and Xu 2012), based on a Monte Carlo
EM (MCEM) method, and the frailtyPenal() function in the frailtypack
package (Gonzalez et al. 2012), based on penalized marginal likelihood. The phmm
package fits one-component frailty models, although it does allow for multivariate
frailties. The coxme() function can also fit the multicomponent model as shown in
Chap.5. Results from the frailtyHL package are now compared with those from
survival, coxme, and phmm packages.

4.3.4 Illustration

Example 4.1 (Kidney infection data) To demonstrate the differences among various
estimation methods in small cluster size, we use the kidney data set in Sect. 1.2.1.
The data consist of times until the first and second recurrences (ni = 2) of kidney
infection in 38 (q = 38) patients using a portable dialysis machine. The recorded
information for the first three patients is as follows:

> library(frailtyHL)

> head(kidney)

id time status age sex disease frail

1 1 8 1 28 1 Other 2.3

2 1 16 1 28 1 Other 2.3

3 2 23 1 48 2 GN 1.9

4 2 13 0 48 2 GN 1.9

5 3 22 1 32 1 Other 1.2

6 3 28 1 32 1 Other 1.2

http://dx.doi.org/10.1007/978-981-10-6557-6_5
http://dx.doi.org/10.1007/978-981-10-6557-6_1
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Table 4.2 Comparison among different estimation methods for the kidney infection data

Method Sex Age Patient

β̂1 (SE) β̂2 (SE) α̂ (SE)

Cox’s model

−0.821
(0.299)

0.002
(0.009)

– ( – )
– ( – )

Log-normal model

HL(0,1) −1.380
(0.431)

0.005
(0.012)

0.535
(0.338)

HL(1,1) −1.414
(0.432)

0.005
(0.012)

0.545
(0.340)

coxph
(Breslow)

−1.388
(0.441)

0.005
(0.012)

0.551
( – )

coxph
(Efron)

−1.411
(0.445)

0.005
(0.013)

0.569
( – )

coxme
(Breslow)

−1.332
(0.414)

0.005
(0.012)

0.440
( – )

coxme
(Efron)

−1.355
(0.417)

0.004
(0.012)

0.456
( – )

phmm −1.329
(0.452)

0.004
(0.012)

0.378
( – )

Gamma model

HL(0,2) −1.691
(0.483)

0.007
(0.013)

0.561
(0.280)

HL(1,2) −1.730
(0.485)

0.007
(0.013)

0.570
(0.281)

coxph
(Breslow)

−1.557
(0.456)

0.005
(0.012)

0.398
( – )

coxph
(Efron)

−1.587
(0.461)

0.005
(0.012)

0.412
( – )

The variable time contains the time until infection since an insertion of the catheter,
and status is a censoring indicator (1 if infection has occurred and 0 otherwise).
The covariates are age, sex, and disease: age, patient’s age (in years); sex,
1 for male and 2 for female; disease, type of disease (GN, AN, PKD, or Other).
The frail is the frailty estimate using the log-normal frailty model.

We fit the frailty models with two covariates (sex and age) using the functions,
frailtyHL(), coxph(), coxme(), and phmm(). The results are summarized
inTable4.2. In thePPLprocedures (coxph() andcoxme()), theBreslow’smethod
provides slightly smaller estimates for α than the Efron’s method. With the log-
normal frailty, the PREML procedures (fraityHL() and coxph()) give larger
estimates for α than the ML (phmm()) and PML (coxme()) procedures. However,
bothMLE and PMLEs fromphmm() andcoxme() are somewhat different because
the cluster size is small as ni = 2 for all i . For the gamma frailty, coxph() uses
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the ML procedure, but it still gives smaller estimates for α than the PREML (h-
likelihood) procedures. Compared with the h-likelihood methods, the PPL methods
are computationally more efficient, but has larger biases (Ha et al. 2010). From
Table4.2, we see that the absolute magnitude and SEs of β̂1 and β̂2 in all frailty
models are larger than those from the Cox model.

Example 4.2 (Rat’s tumorigenesis data (litter-matched rat data)) The rat data set in
Sect. 1.2.2 is based on a tumorigenesis study of 50 (q = 50) litters of female rats,
with a litter size of ni = 3. Event time (time) is time to development of tumor,
measured in weeks.

We fit the frailty models with one covariate, rx (1 = drug; 0 = placebo), using
frailtyHL(). Below, we present the R codes and results for the log-normal frailty
model with HL(1,1). The resulting output shows that the effect of rx is significant
(t-value = 2.808 with p-value = 0.005), implying that the rx group
has a significantly higher risk than the control group. Here, the variance estimate of
the frailty is α̂ = 0.427 (with SE = 0.423). The difference in deviance (based on
the partial REML) −2pβ,v(h p) between the Cox model without frailty and the log-
normal frailty model is

364.15 − 362.56 = 1.59(< 2.71),

so that the corresponding p-value is 0.5P(χ2
1 > 1.59) = 0.104. This indicates that

the frailty effect is nonsignificant (i.e.,α = 0) at a 5% significance level. Thus,we can
expect that the analyses from the frailty model and the Cox model should be similar.
Note that the results from the Cox model without frailty are available by adding the
two arguments varfixed=TRUE and varinit=0 in the frailtyHL procedure
(see below).

################ Fitting Cox’s model ################

> library(frailtyHL)

> data(rats)

> Cox<-frailtyHL(Surv(time,status)˜rx+(1|litter),rats,

+ varfixed=TRUE, varinit=0)

[1] "Results from the Cox model"

[1] "Model for conditional hazard:"

Surv(time, status)˜rx + (1|litter)

[1]"Method : HL(0,1)"

[1]"Estimates from the mean model"

Estimate Std. Error t-value p-value

rx 0.8982 0.3174 2.83 0.004655

[1]"Estimates from the dispersion model"

Estimate Std. Error

litter "0" "NULL"

-2h0 -2*hp -2*p_b,v(hp)

http://dx.doi.org/10.1007/978-981-10-6557-6_1
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[1,] 363.69 363.69 364.15

cAIC pAIC rAIC

[1,] 365.69 365.69 364.15

############# Fitting log-normal frailty model #############

> LNFM<-frailtyHL(Surv(time,status)˜rx+(1|litter), rats,

+ RandDist="Normal", mord=1, dord=1)

[1]"Results from the log-normal frailty model"

[1]"Model for conditional hazard:"

Surv(time, status) ˜ rx + (1 |litter)

[1]"Method : HL(1,1)"

[1]"Estimates from the mean model"

Estimate Std. Error t-value p-value

[1] 0.9107 0.3226 2.823 0.004754

[1]"Estimates from the dispersion model"

Estimate Std. Error

litter 0.4272 0.4232

-2h0 -2*hp -2*p_v(hp) -2*p_b,v(hp)

[1,] 335.97 397.36 362.14 362.56

cAIC pAIC rAIC

[1,] 362.22 366.14 364.56

The R codes and results for the gamma frailty model with HL(1,2) are presented
below. The output shows that the results are similar to ones from the log-normal
frailty model, particularly in estimation of β. The deviance difference (based on
partial restricted likelihood) between the Cox model and gamma frailty model using
the second-order approximation −2sβ,v(h p) is 364.15 − 362.12 = 2.03(< 2.71),
again indicating absence of the frailty effect (i.e., α = 0) as shown in the log-normal
frailty analysis.

############# Fitting gamma frailty model #############

> GFM<-frailtyHL(Surv(time,status)˜rx+(1|litter), rats,

+ RandDist="Gamma", mord=1, dord=2)

[1]"Results from the gamma frailty model"

[1]"Model for conditional hazard:"

Surv(time, status) ˜ rx + (1|litter)

[1]"Method : HL(1,2)"

[1]"Estimates from the mean model"

Estimate Std. Error t-value p-value

rx 0.9126 0.3236 2.82 0.004806

[1]"Estimates from the dispersion model"

Estimate Std. Error

litter 0.5757 0.5977
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-2h0 -2*hp -2*p_v(hp) -2*s_v(hp)

[1,] 331.60 413.85 365.35 361.71

-2*p_b,v(hp) -2*s_b,v(hp)

365.77 362.12

cAIC pAIC rAIC

[1,] 365.30 365.71 364.12

Now we compare the results from frailtyHL and other packages. We consider
three functions (coxph, coxme, and phmm) for the log-normal frailty model and
the coxph function for the gamma frailty model. The codes of coxph, coxme,
and phmm for fitting the log-normal frailty model are as follows:

> coxph(Surv(time, status)˜rx+frailty(litter, dist="gauss"),
+ method = "breslow", rats)
> coxme(Surv(time, status)˜ rx + (1|litter),
+ ties="breslow", rats)
> phmm(Surv(time, status)˜ rx+(1|litter),rats,Gbs = 2000,Gbsvar = 3000,
+ VARSTART = 1, NINIT = 10, MAXSTEP = 200, CONVERG=90)

Table 4.3 Comparison among different estimation methods for the rat data

Method Rx Litter

β̂ (SE) α̂ (SE)

Cox’s model

0.898 (0.317) – ( – )

Log-normal model

HL(0,1) 0.906 (0.323) 0.427 (0.423)

HL(1,1) 0.911 (0.323) 0.427 (0.423)

coxph
(Breslow)

0.905 (0.322) 0.395 ( – )

coxph
(Efron)

0.913 (0.323) 0.412 ( – )

coxme
(Breslow)

0.905 (0.322) 0.406 ( – )

coxme
(Efron)

0.913 (0.323) 0.426 ( – )

phmm 0.920 (0.326) 0.449 ( – )

Gamma model

HL(0,2) 0.908 (0.324) 0.575 (0.598)

HL(1,2) 0.913 (0.324) 0.576 (0.598)

coxph
(Breslow)

0.906 (0.323) 0.474 ( – )

coxph
(Efron)

0.914 (0.323) 0.499 ( – )
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Table4.3 summarizes the results. Even though the cluster size ni = 3 is not large,
the results are similar because the frailty effects are not significant (α = 0). For
example, the PMLE andMLE forα from coxme and phmmwere somewhat different
in Table4.2, but they become similar in Table4.3.

Next, an example of using coxph to fit the gamma frailty model is given below:

> coxph(Surv(time, status)˜rx + frailty(litter,dist="gamma"),

+ method = "breslow", rats)

The results fromfrailtyHL (HL(0,2),HL(1,2)) andcoxphwith gamma frailty
are also presented in Table4.3. For estimation of β, both results from frailtyHL
and coxph are similar, but they are somewhat different forα. That is, our PREMLEs
from frailtyHL (α̂ = 0.575withHL(0,2) and α̂ = 0.576withHL(1,2)) are larger
than theMLEs from coxph (α̂ = 0.474 with Breslow’s method and α̂ = 0.499 with
Efron’s method).

4.4 Model Selection

In this section, we first review the basic concepts of the Akaike information. Then,
we present three forms of Akaike information criterion (AIC) based on the partial
h-likelihood for the frailty models (4.1).

4.4.1 Basic Concept of Akaike Information

Suppose that data y = (y1, . . . , yn)T are generated froma trueunderlyingdistribution
with density g, and that fθ = f (·|θ) is a family of approximatingmodels (or assumed
models) with unknown parameters θ ∈ �. Akaike (1973) considered the Kullback–
Leibler (1951) distance as a fundamental basis for model selection, defined by

I ( fθ, g) = Eg{log g(y) − log fθ(y)},

where Eg denotes the expectation with respect to the true density g. Smaller values
of I ( fθ, g) correspond to a better approximation of g by fθ, and the minimum is
obtained for some θ0 ∈ �. If the true distribution g belongs to the fitted class of
models F = { fθ, θ ∈ �}, then fθ0 = g and I ( fθ0 , g) = 0. In general, g may not be in
F , so I ( fθ, g) ≥ 0. In practice θ should be estimated from the data y, so that I ( fθ, g)

is approximated by I ( fθ̂, g), where θ̂ = θ̂(y) is usually the MLE. The quality of the
approximation of the true g by the class F is assessed, on average, by the quantity

Eg I ( fθ̂, g) = Eg(y∗) log g(y∗) − Eg(y)Eg(y∗) log f {y∗|θ̂(y)},
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where y∗ is another realization independent of y. When we are comparing different
classes of models, the constant Eg(y∗) log g(y∗) can be ignored, and the relative fit of
the competing models can be assessed using the Akaike information (AI), defined by

AI = −2Eg(y)Eg(y∗) log f {y∗|θ̂(y)}.

The AIC is an estimator of the AI, defined by

AIC = −2 log f {y|θ̂(y)} + 2K ,

where K is the number of free parameters in the model F . When θ̂(y) is the MLE
and the approximating class of models F includes g,

E(AIC) = AI + o(1)

as the sample size n → ∞; that is, the AIC is unbiased for the AI to a first order of
n (Akaike 1973; Burnham and Anderson 2002).

4.4.2 Three AICs for the Frailty Models

To extend the AIC to the frailty models, we need to consider the random effects and
nuisance parameters λ0. For the semiparametric frailty models, we form the AICs
using the partial h-likelihood h p, which eliminates λ0.

Throughout this book, for the frailty models we use three AICs (Ha et al. 2007a,
2012) based on h p as follows: The conditional AIC (cAIC), based on �p in h p (4.5),
is defined by

cAIC = −2�p + 2dfc, (4.16)

where

�p =
∑

i j

δi j (x
T
i j β̂ + v̂i ) −

∑

k

d(k) log

{ ∑

(i, j)∈R(k)

exp(xTi j β̂ + v̂i )

}

,

and
dfc = dfc(β, v,α) = trace(H−1

p H∗
p )

is an "effective degree of freedom adjustment" for estimating the fixed and ran-
dom effects, computed using the Hessian matrices Hp = −∂2h p/∂τ 2 and H∗

p =
−∂2�p/∂τ 2 with τ = (βT , vT )T . In the Cox PH model without frailty, a degree of
freedom dfc in (4.16) becomes the number of the fixed effects, p, i.e., the dimension
of β. In general, dfc involves the fixed effects β, the random effects v and the frailty
parameter α.
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It can be shown that the cAIC in (4.16) is an extension of the AICs, defined in
several existing models, to frailty models:
(i) For the Cox PH model without frailty it becomes the standard AIC (e.g., AIC in
SAS PROC PHREG) using the Cox’s partial likelihood.
(ii) For the LMMs with known variances, it yields the conditional AIC (Vaida and
Blanchard 2005). Consider the LMMs with responses y and random effects v. Let
y∗ be an independently replicated outcome from the same distribution as y given v.
Following Vaida and Blanchard (2005), the conditional Akaike information (cAI) is
defined as

cAI = −2Eg(y,v)Eg(y∗|v)�1(β̂; y∗|v = v̂),

where β̂ and v̂ are theMHLEs based on y. In the LMMs, Vaida and Blanchard (2005)
showed that under some regular conditions,

E(cAIC) = cAI + o(1)

for large q and ni ; that is, the cAIC is an asymptotically unbiased estimator of cAI.
Furthermore, Donohue et al. (2011) also showed that the asymptotic unbiasedness
still holds in extended random-effect models such as the GLMMs and frailty models.
In particular, under the frailty models, the corresponding cAI is defined by

cAI = −2Eg(y0,v)Eg(y∗
0 |v)�

∗
1(β̂; y∗

0 |v = v̂),

where y0 = (y, δ) are generated under the frailty models (3.1) and y∗
0 is another

outcome which is independent of y0.
Similarly, we define a partial marginal AIC (pAIC),

pAIC = −2mp + 2df p , (4.17)

where mp is the partial marginal likelihood in (4.8) and df p is the number of fixed
parameters (β,α). Since the computation of mp is generally difficult, we use its
Laplace approximation pv(h p) or sv(h p) (Ha et al. 2012). Xu et al. (2009) proposed
a marginal AIC (mAIC),

mAIC = −2m∗ + 2dfm, (4.18)

wherem∗ = m|λ0=λ̂0
is a profile marginal likelihood after eliminating nuisance para-

meters λ0. They used numerical approximations such as Laplace approximation
based on pv(h) when it is difficult to obtain m. In the LMMs without λ0, pAIC and
mAIC become identical.

Similarly, the restricted AIC (rAIC) based on the partial restricted likelihood
pβ,v(h p) in (4.10) is defined by

rAIC = −2pβ,v(h p) + 2dfr , (4.19)

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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where dfr is the number of dispersion parameters. It can be shown that in the
LMMs, rAIC yields the AIC in SAS PROC MIXED (Wolfinger 1993) based upon
the restricted likelihood for selecting a specific covariance structure, confirming that
the quantity rAIC is an extension of the AIC in SAS. In the LMMs with an explicit
form of the marginal likelihood, the mAIC is easily obtained by the standard statis-
tical software, such as R function lme or SAS PROC MIXED.

For the pAIC and rAIC for the gamma frailty model using HL(0,2) or HL(1,2), we
use the corresponding second-order approximations, definedbypAIC = −2sv(h p) +
2dfp and rAIC = −2sβ,v(h p) + 2dfr. The frailtyHL package provides three
AICs, (cAIC, rAIC, pAICs).The cAIC is for model selection involving
(v,β,α), the pAIC similarly involving (β,α) and rAIC involving α. Malfunction of
cAIC and pAIC occur when α̂ = 0 as will be seen.

In this book, we make model selection using the LRTs if models are nested. For
non-nested models, we use the above AICs to select the final model.

Remark 4.3 The relative merits and disadvantages of those three AIC criteria are as
follows:

• One can select a model that minimizes the AIC values. If the AIC difference is
larger than 1, then the choice can be made (Sakamoto et al. 1986). However, if the
difference is less than 1, a simpler model can be selected by a parsimony principal
(Donohue et al. 2011).

• In the LMMs, Vaida and Blanchard (2005) demonstrated that the mAIC and its
small sample correction are inappropriate when the interest is on clusters (Liang
et al. 2008). Furthermore, Greven and Kneib (2010) showed that the mAIC is
not an asymptotically unbiased estimator of the Akaike information due to the
boundary problems regarding the random-effect variances, and that favors simpler
models without random effects. Moreover, implementation of the mAIC is not
straightforward because themarginal likelihood is hard to compute without having
an explicit analytic form as in the GLMMs (Yu and Yau 2012). In this book, we
use the Laplace approximations to compute the mAIC. Care is needed if α̂ is near
0, because it prefers a simpler model.

• For the cAIC, several authors have argued that ignoring the uncertainty in esti-
mation of the random-effect covariance matrix can lead to a bias, so they have
proposed using of the corrected AICs (Liang et al. 2008; Greven and Kneib 2010;
Yu et al. 2013). However, Vaida and Blanchard (2005) and Donohue et al. (2011)
recommended the cAIC without correction because under some regular condi-
tions, the difference between cAIC and its corrected versions is asymptotically
negligible. Ha et al. (2007a) illustrated that the cAIC selects a more complicated
model when α̂ = 0: see also Yu et al. (2013).

• The rAIC cannot be used to compare models with different fixed and random
effects (β, v) and the mAIC cannot compare models with different random effects
v. �
Below we illustrate how to use the three AICs for model selection among various

models.
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Fig. 4.3 Estimated
log-frailty (vh-GA) in the
gamma frailty model against
estimated log-frailty (vh-LN)
in the log-normal frailty
model

Example 4.3 (Illustration with the rat data used in Example 4.2) For illustration of
model selection, we consider the outputs of the frailty models presented in Example
4.2. With this data set, the Cox model gave cAIC = 365.69, pAIC = 365.69, and
rAIC = 364.15, whereas the log-normal frailty model gave cAIC = 362.22, pAIC
= 366.14, and rAIC = 364.56; and the gamma frailty model had cAIC = 365.30,
pAIC = 365.71, and rAIC = 364.12. The LRT based on the partial restricted like-
lihood showed absence of the frailty effect (α = 0). Thus, we may choose the Cox
model as our final model parsimoniously. However, the cAIC selects the log-normal
frailty model, indicating that this model could give a better conditional prediction.
Thus, for subject-specific inference such as prediction of the frailties, we may prefer
to use the log-normal frailtymodels. FromFig. 4.3, we see that the frailty estimates of
v̂i from the log-normal and gamma frailtymodels are somewhat different, whichmay
explain the difference in cAICs between the two frailty models. In the log-normal
frailty models,

∑
i v̂i/q = 0, while in the gamma frailty model

∑
i ûi/q = 1, so in

Fig. 4.3 we recentered them by putting a constraint
∑

i v̂i/q = 0.

4.5 Interval Estimation of the Frailty

It would be informative to investigate the heterogeneity among clusters (or centers)
in order to understand and interpret the variability in event times. The semiparamet-
ric frailty models offer a flexible framework for modeling this heterogeneity. Such
heterogeneity can be accounted for by the random cluster effects. In addition to esti-
mation of the random effects, a measure of the uncertainty of these point estimates
is necessary.
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We now focus on interval estimation of the individual random effects. Inmulticen-
ter clinical trials with a standardized protocol or a meta analysis combining multiple
protocols, the treatment effect or the baseline risk may vary across the centers. To
investigate and explain the source of such heterogeneity, interval estimation of a set
of individual random effects for the centers has been studied using various methods
such as EB, Full Bayesian and h-likelihood (HL) approaches (Gray 1994; Vaida and
Xu 2000; Legrand et al. 2005; Ha et al. 2011, 2016b).

4.5.1 Confidence Interval for the Frailty

We now show how the Wald intervals for the random effects in Chap.3 can be
extended to the frailty models.

The individual (1 − λ)-level HL confidence intervals (CIs) for the unidimensional
components vk of v have the form of

v̂k ± zα/2 · SE(v̂k − vk), (4.20)

where v̂k maximizes h p in (4.5) and zα/2 is the standard normal quantile with a
probability of α/2 in the right tail. Here, SE(v̂k − vk) is

√
akk , where akk is the kth

diagonal element of an approximated variance of v̂ − v, computed from the lower
right-hand corner of the inverse of Hessian matrix Hp = H(h p;β, v) based on h p:

var(v̂ − v) ≈ {(ZTW ∗Z + Q) − (ZTW ∗X)(XTW ∗X)−1(XTW ∗Z)}−1|β=β̂,v=v̂
.

Derivation of (4.20) is given in Appendix 4.7.6.
The Wald interval in (4.20) has been used for various random-effect models: see

Paik et al. (2015). However, it gives null intervals when the variance-component
estimates are zero (Ha et al. 2016b). Thus, it can lead to liberal intervals when the
variance components or sample sizes are small. Following Ha et al. (2016b), we
introduce a modification in order to overcome this shortcoming. Specifically, the
partial restricted likelihood method based on pβ,v(h p) can give zero estimate for the
frailty parameterα. This leads to the null CI for v in (4.20). This issuewas recognized
by Morris (2006) in the context of the LMMs. To extend the Morris’ method (2006),
we use a modification of the adjusted likelihood padj, defined as

padj = pβ,v(h p) + logα. (4.21)

Note that the last term in (4.21) is asymptotically negligible (i.e., the asymptotic
property of the maximum padj estimator is asymptotically the same as that of the
maximum pβ,v(h p) estimator). Furthermore,

exp(padj) = exp{pβ,v(h p)}α ≥ 0,

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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and exp(padj) = 0 only if α = 0: see also Appendix of Li and Lahiri (2010). Thus,
by adding the last term, we can effectively avoid zero estimate in the dispersion
parameter. The adjusted likelihood padj is always defined, even when the original
restricted likelihood based upon the marginal likelihood is hardly available. Ha et al.
(2016b) showed via simulations that this correction generally works well.

Remark 4.4 Note that for the EB interval, SE(v̂k − vk) is simply
√
hkk (Vaida and

Xu 2000; Othus and Li 2009). Here, hkk is the kth diagonal element of the matrix
(−∂2h/∂v∂vT )−1|ψ=ψ̂,v=v̂

= (ZTW1Z + Q)−1|ψ=ψ̂,v=v̂
which ignores the uncer-

tainty caused by estimating ψ = (β,λ0) (Ha et al. 2011). Here, W1 is a diagonal
matrix defined in (4.35). Thus the EB method can underestimate the SE of v̂ − v,
leading to a lower coverage probability of the CI than the nominal level (Chap.3).

4.5.2 Illustration

Example 4.4 (Application to kidney infection data) We fit the univariate log-normal
frailtymodel (4.1) with a single covariate, Sex (1=male; 2= female), usingHL(0,1)
in the frailtyHL package. The results show that the effect of Sex (Estimate= −1.353
and SE = 0.421) is highly significant (p-value = 0.001). That is, the female group
has a significantly lower risk than the male group. Here, the variance estimate for the
frailty is σ̂2 = 0.478 (with SE= 0.313). Following the asymptotic chi-squaremixture
distribution, χ2

0:1, the difference of partial restricted likelihood based on −2pβ,v(h p)

between the Cox model without frailty and the log-normal frailty model is 369.96 −
364.68 = 5.28(> χ2

1,0.10 = 2.71), indicating that the frailty effect is significant (i.e.,
σ2 > 0) at the 5% level. Thus we see that the frailty term is necessary for modeling
the kidney data.

Below we present R codes for estimating the CIs and creating their plots for
individual frailties.

############# Confidence intervals for frailties #############
> res<- frailtyHL(Surv(time,status) ˜ sex+(1|id),data=kidney)
> p<- res$p; q<-res$q
> v_h<- res$v_h # estimates of log-frailties
> var<- diag(res$Hinv)[(p+1):(p+q)] # computation of var(v_h-v)
> SE<- sqrt(var) # SE(v_h-v)
> lb<- v_h -1.96*SE # lower bound
> ub<- v_h +1.96*SE # upper bound
> CI<- cbind(lb,ub) # computation of CI
> patient<- 1:q
> plot(v_h ˜ patient, ylim=c(min(lb)-0.5, max(ub)+0.5), ylab="Estimated
+ patient effects",xlab="Patient number",pch=20,type="o") # plot for CI
> abline(h=0)
> for (i in 1:q){
+ x1<- c(i,i)
+ y1<- c(lb[i],ub[i])
+ lines (y1˜x1)
+ }
> text(21.8, v_h[21],21, cex=.8)

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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(a)

(b)

Fig. 4.4 a Recurrence times for 38 patients in the kidney infection data; b 95% confidence intervals
of individual frailties of 38 patients, under the univariate log-normal frailty model

Figure4.4a displays the recurrent infection times for 38 patients. Figure4.4b
shows the estimated frailties of 38 patients and their 95%CIs, which indicates that the
patient’s realized frailty effects on the recurrent times are heterogenous; in particular,
the 21st patient has a very lower frailty (i.e., lower hazard) and the corresponding
CI does not include zero. This is also confirmed from the fact that the 21st patient
among all patients experienced the longest second infection time (i.e., 562days) as
shown in Fig. 4.4a. Thus we find that a graphical representation like Fig. 4.4b could
be useful to identify the heterogeneity of a particular patient.

Example 4.5 (Application to bladder cancer data) The multicenter bladder cancer
trial data in Chap. 1 are from 21 different centers in Europe (data set available in
the frailtyHL: ‘bladder0’). We are interested in investigating the heterogeneity of
baseline risks across the centers.We consider the log-normal univariate frailty model
in (4.1), λi j (t |v) = λ0(t) exp(ηi j ), allowing a linear predictor

ηi j = β1xi j1 + β2xi j2 + vi0,

with vi0 ∼ N (0,σ2
0). Here, xi j1 is CHEMO (0 = No, 1 = Yes) and xi j2 is TUSTAT

(0 = Primary, 1 = Recurrent). The fitted estimates using the HL(0,1) method are as
follows: β̂1 = −0.695 (SE = 0.175), β̂2 = 0.544 (SE = 0.149) and σ̂2

0 = 0.070 (SE
= 0.058). Here, both fixed effects (β j , j = 1, 2) are significant. In particular, the
use of chemotherapy (CHEMO = 1) significantly prolongs time to first recurrence

http://dx.doi.org/10.1007/978-981-10-6557-6_1
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Fig. 4.5 Random center effects (vi0) of 21 centers in the bladder cancer data and their 95% confi-
dence intervals, under the univariate log-normal frailty model. Centers are sorted by the increasing
order of number of patients

as compared to patients who do not receive chemotherapy (CHEMO = 0) (Legrand
et al. 2005; Ha et al. 2011).

The corresponding random center effects (i.e., random baseline risks) and 95%
CIs for the individual centers are plotted in Fig. 4.5. Here, the centers are sorted by
the number of patients. It shows that substantial variations in the baseline risks across
the centers. In particular, the centers (12,16) and 19 stand out as taking the highest
and lowest baseline risks, respectively. But the 19th center has a significantly smaller
baseline risk. Now we are also interested in testing the hypothesis H0 : σ2

0 = 0, i.e.,
no center effect, or no variation in random baseline risks. The difference in partial
restricted likelihood (−2pβ,v(h p)) between the Cox model and the univariate frailty
model is 3.2(>2.71), indicating that the center effect is significant, i.e., σ2

0 > 0, as
in Example 4.4.

4.6 Discussion

We have presented various likelihood-based methods for the semiparametric frailty
models. The correct model specification about the baseline hazard is crucial for
parametric inference. If specified incorrectly, the regression parameter estimates
suffer from potentially serious biases. Therefore, when the parametric frailty models
are considered, model checking for the baseline hazard would be an important step.
Thus, when the baseline hazard assumptions are uncertain, the semiparametric frailty
model is recommended. The choice of a frailty distribution seems to have minimal
effects on the regression parameter estimates unless the frailty variance is very large
(Pickles and Crouchley 1995; Ng and Cook 2000; Ha and Lee 2003, 2005a, b; Ha
et al. 2011).
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The penalizedmaximum likelihood approach (Rondeau et al. 2008), which penal-
izes the baseline hazard λ0(t) in the marginal likelihood, has been proposed for
inference on the parameters. However, it cannot be directly used for subject-specific
inference involving the frailties, because it eliminates them by integration as in the
standard marginal likelihood approach (Nielsen et al. 1992; Vaida and Xu 2000).
Bayesian approaches (Legrand et al. 2005; Komarek et al. 2007) have been also sug-
gested in the literature. Legrand et al. (2005) proposed a Bayesian approach using
the partial h-likelihood h p for the joint posterior density π(v,β,α|y, δ) under the
uniform priors and using a Laplace integration technique to approximate the mar-
ginal posterior density π(α|y, δ). It can be shown that, under the uniform priors for
(β,α) and the partial likelihood technique for λ0,

log{π(v,β,α|y, δ)} ∝ h p and log{π(α|y, δ)}  pβ,v(h p).

Thus, we see that the h-likelihood method based on the h p is equivalent to Legrand
et al.’s method under the uniform priors.

Copula models are also used to model dependence among multivariate survival
data using a copula function (Oakes 1989; Shih and Louis 1995; Duchateau and
Janssen 2008; Prenen et al. 2017). Following Sklar’s (1959) theorem, a copula func-
tion expresses the joint distribution of random variables as a function of marginal
distribution of each variable. However, frailtymodels and copulamodels are different
types of models (Duchateau and Janssen 2008; Prenen et al. 2017) that take the asso-
ciation into account because the frailty model is a conditional modeling approach,
whereas the copula model is a marginal modeling approach. Comparison of both
models for the same data would be interesting.

Frailty models can also be used to model an unexplained heterogeneity or to
introduce a non-PH in the independent survival data with cluster size ni = 1: see
Vaupel et al. (1979), Aalen (1988, 1992), Hougaard (1991), Henderson and Oman
(1999), Kosorok et al. (2004), Barker and Henderson (2005) and Ha et al. (2010).
In particular, Kosorok et al. (2004) studied robust inference under various frailty
distributions.

As mentioned in Chap.2, survival data can be left truncated when not all subjects
in the data are observed from the time origin of interest, yielding both Left Trunca-
tion and Right Censoring (LTRC). The current h-likelihood procedure can be easily
extended to the random-effect models with LTRC structure (Rondeau et al. 2003). In
particular, as in the Cox PH models, the semiparametric frailty models under LTRC
can be easily handled by replacing the risk set R(k) = {(i, j) : y(k) ≤ yi j } by

R(k) = {(i, j) : ai j ≤ y(k) ≤ yi j }

whereai j is the left truncation time,which is implemented as the frailtyHLRpackage
(Ha et al. 2018). This LTRC technique is directly applied to semi-competing risk
modeling in Chap.10. For simplicity, we have assumed time-independent covariates,
but the h-likelihood methods can be extended to the time-dependent covariates as in
the Cox PH models (Therneau et al. 2016).

http://dx.doi.org/10.1007/978-981-10-6557-6_2
http://dx.doi.org/10.1007/978-981-10-6557-6_10
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The semiparametric frailty models with nonparametric baseline hazards can be
fitted via a Poisson HGLM (Ma et al. 2003; Ha and Lee 2005b) as in the Cox PH
model in Remark 2.1. However, the number of nuisance parameters in the Poisson
HGLM increases with sample size n, leading to a high-dimensional computation;
for a practical use of this Poisson approach, development of an improved procedure
is necessary.

The h-likelihood approaches can be extended to a general class of frailty models
allowing various frailty structures such as nested or correlated frailties as will be
shown in Chap.5.

4.7 Appendix

4.7.1 Proof of Remark 4.1

The marginal survival function of T with covariates x , denoted by SM(t; x), is given
by

SM(t; x) = P(T > t; x) =
∫

S(t |u; x) f (u)du.

Since S(t |u; x) = exp{−�(t |u; x)} = exp(−�0(t)ex
T βu), we see that−dS(t |u; x)/

dt = λ0(t) exp(xTβ)uS(t |u; x). Thus we have

λM(t; x) = −dSM(t; x)/dt
SM(t; x)

= λ0(t) exp(x
Tβ)

∫
uS(t |u; x) f (u)du

SM(t; x)
= λ0(t) exp(x

Tβ)

∫

u f (u|T > t; x)du
= λ0(t) exp(x

Tβ)E(U |T > t; x).

Note here that by Bayes’ theorem,

f (u|T > t; x) = S(t |u; x) f (u)

SM(t; x) ,

which means the frailty density among the survivors at time t . This may be useful
for computing the predictive distribution given that a subject is still alive up to just
prior to time t (van Houwelingen and Putter 2012).

E(U |T > t; x) can also be calculated from the Laplace transform.Define Laplace
transform of the frailty U as L(z) = E{exp(−zU )}. Then under (4.1) SM(t; x) can
be expressed as

http://dx.doi.org/10.1007/978-981-10-6557-6_2
http://dx.doi.org/10.1007/978-981-10-6557-6_5
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SM(t; x) = L{�(t; x)}

where�(t; x) = �0(t) exp(xTβ) is the cumulative hazard function. Let L ′(z) be the
first derivative with respective to z. Then we obtain

− L ′{�(t; x)}
L{�(t; x)} =

∫
uS(t |u; x) f (u)du

SM(t; x)
= E(U |T > t; x).

For the gamma frailty U with mean 1 and variance α, the Laplace transform
has an explicit form, L(z) = (1 + αz)−1/α, so that the computation is analytic, i.e.,
E(U |T > t; x) = {1 + α�0(t) exp(xTβ)}−1. However, for the log-normal frailty, a
numerical integration is required because there is no explicit formof its Laplace trans-
form. The marginal model, λM(t; x), is generally non-PH unless U follows a posi-
tive stable distribution (Hougaard 2000; Hsu et al. 2007; Ha and MacKenzie 2010).
Exactly how the marginal model deviates from the proportionality is not known for
many frailty distributions, including the log-normal distribution (Hougaard 2000, p.
245). This implies, though, that the frailty model is a more flexible model than the
Cox PH model in that it can embrace various types of non-proportionalities. �

4.7.2 Derivation of the H-Likelihood for Frailty Model

We define the ni × 1 observed random vectors associated with the i th individual
as Yi = (Yi1, . . . ,Yini )

T and δi = (δi1, . . . , δini )
T . The contribution, hi , say, of the

i th individual to the h-likelihood is given by the logarithm of the joint density of
(Yi , δi , Vi ), where Vi = log(Ui ):

hi (β,λ0,α; yi , δi , vi ) = log{L1i (β,λ0; yi , δi |ui )L2i (α; vi )}, (4.22)

where L1i is the conditional density of (Yi , δi ) given Ui = ui and L2i is the density
of Vi . By the conditional independence of {(Ti j ,Ci j ), j = 1, . . . , ni } in Assumption
3, we have

L1i (β,λ0; yi , δi |ui ) =
∏

j

L1i j (β,λ0; yi j , δi j |ui ), (4.23)

where L1i j is the conditional density of (Yi j , δi j ) given Ui = ui . By the conditional
independence of both Ti j and Ci j in Assumption 3 and the noninformativeness in
Assumption 4, L1i j in Eq. (4.23) becomes the ordinary likelihood for censored sur-
vival data given Ui = ui :

L1i j = {λ(yi j |ui )}δi j exp{−�(yi j |ui )}, (4.24)
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where �(·|ui ) is the conditional cumulative hazard function of Ti j given Ui = ui .
Thus, from (4.1) and (4.22)–(4.24) we obtain

hi =
∑

j

�1i j + �2i ,

where �1i j = log(L1i j ) = δi j {logλ0(yi j ) + ηi j } − {�0(yi j ) exp(ηi j )} and �2i =
log(L2i ). Therefore, the contribution from all individuals is given by

h =
∑

i

hi . �

4.7.3 Equivalence of Both Estimators of β Under the
Gamma Frailty Model and the EM Estimating
Equation of the Frailty Parameter α

For the gamma frailty model with E(Ui ) = 1 and var(Ui ) = α, assume that the
frailty parameter α is known. From Eq. (4.2), the h-likelihood is given by

h =
∑

i j

[

δi j {logλ0(yi j ) + ηi j } − �0(yi j ) exp(ηi j )

]

+
∑

i

{α−1(vi − ui ) + c(α)},

where c(α) = − log�(α−1) − α−1 logα. Let λ̂0k(τ ) be the maximum hierarchical
likelihood (MHL) estimator of λ0k = λ0(y(k)) given τ = (βT , vT )T . Then we have

∂h(̂λ0k(τ ), τ )

∂τ
= ∂h(λ0k, τ )

∂τ

∣
∣
∣ λ0k=λ̂0k (τ ) + ∂h(λ0k, τ )

∂λ0k

∣
∣
∣ λ0k=λ̂0k (τ ) · ∂λ̂0k(τ )

∂τ

= ∂h(λ0k, τ )

∂τ

∣
∣
∣ λ0k=λ̂0k (τ ) , (4.25)

since the second term is equal to zero in the score equations of theMHL estimator for
λ0k . Recall that the partial h-likelihood h p is proportional to the profile h-likelihood
h∗. Thus, given α the MHL score Eq. (4.25) for τ lead to the equations

∂h p

∂τ
= ∂h∗

∂τ
= ∂h

∂τ

∣
∣
∣λ0=λ̂0

. (4.26)

By (4.26), the MHL equations for βr (r = 1, . . . , p) become

∂h

∂βr

∣
∣
∣λ0=λ̂0

=
∑

i j

{

δi j − �0(yi j ) exp(x
T
i jβ)ui

}

xi jr
∣
∣
∣λ0=λ̂0

= 0. (4.27)
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From
∂h

∂vi
=

∑

j

{

δi j − �0(yi j ) exp(x
T
i jβ)ui

}

+ α−1 − α−1ui = 0,

we have

ûi = α−1 + δi+
α−1 + μi+

, (4.28)

which also becomes E(Ui |yi , δi ) since the conditional distribution of Ui given the
i th observed data (yi , δi ) is from a gamma distribution. Here, δi+ = ∑

j δi j is the
total number of events in the i th individual, μi+ = μi+(β,λ0) = ∑

j μi j and μi j =
�0(yi j ) exp(xTi jβ) with �0(yi j ) = ∑

k λ0k I (y(k) ≤ yi j ).
On the other hand, from Eq. (4.7) the marginal likelihood m is given by

m =
∑

i j

δi j {logλ0(yi j ) + xTi jβ} −
∑

i

{(α−1 + δi+) log(α−1 + μi+) − f (α)}.

(4.29)

where f (α) = log�(α−1 + δi+) + c(α). The estimating equations for λ0k are given
by

∂m

∂λ0k
= d(k)

λ0k
−

∑

i j∈R(y(k))

exp(xTi jβ)̃ui = 0,

where ũi = (α−1 + δi+)/(α−1 + μi+); this leads to the nonparametric MLEs,

λ̃0k = d(k)
∑

i j∈R(y(k))
exp(xTi jβ)̃ui

. (4.30)

Thus, we have the ML equations for βr (r = 1, . . . , p)

∂m

∂βr

∣
∣
∣λ0=λ̃0

=
∑

i j

{

δi j − �0(yi j ) exp(x
T
i jβ)̃ui

}

xi jr
∣
∣
∣λ0=λ̃0

= 0, (4.31)

which are equivalent to the MHL Eq. (4.27) with (4.28), and also become the EM
equations for the ML estimator of β (Therneau and Grambsch 2000), i.e.,

E(∂h p/∂βr | yi , δi ) = E(∂h/∂βr | yi , δi , λ̂0) = 0.

Accordingly, the MHL estimator for β given α is the same as the ML estimator.
Similar to the Poisson-gamma HGLM in Appendix 3.5, the i th component of

adjustment term for pv(h) (4.9) is given by

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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H(h, vi )|ui=ûi = −∂2h/∂v2
i |ui=ûi = (α−1 + μi+)ûi = α−1 + δi+ ,

which is free of (β,λ0) but depends upon α. Since H(h, v)|u=û = diag(α−1 + δi+)

is a q × q diagonal matrix, we have that

pv(h) = [h − 1

2
log det{H(h, v)/(2π)}]|u=û

=
∑

i j

[δi j {xTi jβ + logλ0(yi j )}] +
∑

i

{−(α−1 + δi+) log(α−1 + μi+)

+ (α−1 + δi+) log(α−1 + δi+) − (α−1 + δi+) − log(α−1 + δi+)/2

+ log(2π)/2 + c(α)}.

Thus, maximizing pv(h) given α is also equivalent to the marginal likelihood m.
Furthermore, the ML estimating equation of α is given by

∂m

∂α
=

∑

i

{α−2 log(α−1 + μi+) + α−2ũi + f ′(α)} = 0, (4.32)

where f ′(α) = ∂ f (α)/∂α = −α−2{dg(α−1 + δi+) − dg(α−1) − logα + 1}; this
also becomes the EM equation for α, given by

E(∂h/∂α| yi , δi , λ̂0) = E(∂�2/∂α| yi , δi , λ̂0) = 0.

Following Andersen et al. (1997), the ML estimators for (β,α) can be easily solved
using the Newton–Raphson method, and the estimated SEs for β and α are also
obtained from the inverse of theobserved informationmatrix,−∂2m/∂(β,λ0,α)2. �

4.7.4 Proof of Joint Score Equations in (4.12)

From (4.26) we have that

∂h p/∂β = ∂h/∂β|λ0=λ̂0
= XT (δ − μ)|λ0=λ̂0

∂h p/∂v = ∂h/∂v|λ0=λ̂0
= ZT (δ − μ)|λ0=λ̂0

+ ∂�2/∂v.

The two equations above can be simply expressed as

∂h p/∂τ = {ET (δ − μ) + b}|λ0=λ̂0
(4.33)

since∂h/∂τ = (∂η/∂τ )(∂h/∂η)withη = Xβ + Zv = Eτ . Here, E = (X, Z),b =
(0T , (∂�2/∂v)T )T , and δ and μ are the n × 1 vectors of δi j ’s, and μi j ’s, respectively,
where μi j = �0(yi j ) exp(ηi j ) with �0(yi j ) = ∑

k λ0k I (y(k) ≤ yi j ).



102 4 Simple Frailty Models

Note that the vector μ can be written as a simple form by using a weighted
risk indicator matrix M which contains the risk set R(k). Let L be the n × 1 vector
of Li j ’s with Li j = �0(yi j ). Since �0(yi j ) = ∑

k λ0k I (y(k) ≤ yi j ), we have L =
MAJ , where M is the n × D risk indicator matrix whose (i j, k)th element is mi j,k

withmi j,k = I {yi j ≥ y(k)}, A = diag(λ0k) is the D × D diagonal matrix and J is the
D × 1 vector with one. This gives μ = W0(MAJ ) with W0 = diag{exp(ηi j )}.

Following Ha and Lee (2003), we have

−∂2h∗

∂τ 2
=

{(−∂2h

∂τ 2

)

−
( −∂2h

∂τ∂λ0

)(−∂2h

∂λ2
0

)−1( −∂2h

∂λ0∂τ

)}∣
∣
∣
∣
λ0=λ̂0(τ )

, (4.34)

leading to

Hp =
(−∂2h p/∂β2 −∂2h p/∂β∂v

−∂2h p/∂v∂β −∂2h p/∂v2

)

=
(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

)

, (4.35)

where Hp = H(h p;β, v) = −∂2h p/∂(β, v)2, W ∗ = W1 − W2, W1 = diag(μ),
W2 = (W0M)C−1(W0M)T andC = diag{d(k)/(λ0k)

2} is theD × D diagonalmatrix.
That is, the Eq. (4.35) can be rewritten as

−∂2h p/∂τ 2 = ETW ∗E + F, (4.36)

where F = BD(0, Q) is a block diagonal matrix. Following Ha and Lee (2003),
(4.33) and (4.36), we can show that given α, the MHL estimators of τ = (βT , vT )T

are obtained from the following score equations:

(ETW ∗E + F)τ̂ = ETw∗ + g, (4.37)

leading to (4.12), where g = Fτ + b = (0T , RT )T . Note here that the terms λ0k

in W ∗ and w∗ in (4.35)–(4.37) are evaluated at their estimates λ̂0k = d(k)/MT
k ψ,

where Mk is the kth component vector of M = (M1, . . . , MD) and ψ is a vector of
exp(ηi j )’s. This completes the proof. In addition, (4.37) can also be expressed as
(4.13) because (ETW ∗E + F) = PTVP and ETw∗ + g = PT y∗

0. �

4.7.5 Computation of PREML Equation for Frailty
Parameter α

The partial REML estimator for α is obtained by solving

∂ pτ (h p)

∂α
= 0. (4.38)
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Note here that

∂ pτ (h p)

∂α
= ∂ĥ p

∂α
− 1

2
tr

(

Ĥ−1
p

∂ Ĥp

∂α

)

, (4.39)

where ĥ p = h p|τ=τ̂ (α) = h p (̂τ (α),α) and Ĥp = H(h p; τ )|τ = τ̂ (α) = Hp (̂τ (α),α), i.e.,

Ĥp =
(
XT Ŵ ∗X XT Ŵ ∗Z
ZT Ŵ ∗X ZT Ŵ ∗Z + Q̂

)

,

where Ŵ ∗ = W ∗|τ=τ̂ (α) = W ∗(τ̂ (α),α) and and Q̂ = Q(v̂(α),α), and

∂ĥ p

∂α
=

{(
∂h p

∂α

)

+
(

∂h p

∂τ

)(
∂τ̂

∂α

)}∣
∣
∣
∣
τ=τ̂

= ∂h p

∂α

∣
∣
∣
∣
τ=τ̂

=
(∑

i

∂�2i

∂α

)∣
∣
∣
∣
v=v̂

, (4.40)

since (∂h p/∂τ )|τ=τ̂ = 0 and h p in (4.5) depends on �2i only with α. Following Lee
and Nelder (2001a) and Ha and Lee (2003), we allow ∂v̂/∂α in implementing (4.38),
but not ∂β̂/∂α (Lee et al. 2017b). Thus, the term ∂ Ĥp/∂α in (4.39) becomes

∂ Ĥp

∂α
=

(
XTW ′X XTW ′Z
ZTW ′X ZTW ′Z + Q′

)

,

where Q′ = ∂Q/∂α and

W ′ = ∂Ŵ ∗

∂α
=

{(
∂W ∗

∂α

)

+
(

∂W ∗

∂v

)(
∂v̂

∂α

)}∣
∣
∣
∣
v=v̂

.

Note here that the term ∂v̂/∂α can be expressed (Lee and Nelder 1996) as

∂v̂

∂α
= −

(

−∂2h p

∂v2

)−1(

− ∂2h p

∂v∂α

)∣
∣
∣
∣
v=v̂

. (4.41)

Accordingly, the Eq. (4.38) is solved by using the Newton–Raphson method with the
Hessian matrix, −∂2 pτ (h p)/∂α2 (Ha et al. 2011).

In particular, for the log-normal frailty with vi ∼ N (0,α), we have �2i = − log
(2πα)/2 − v2

i /(2α). From (4.38)–(4.40), we have a simple partial REML estimator
for α, given by

α̂ = v̂T v̂

q − γ
, (4.42)

where γ = −αtr{Ĥ−1
p (∂ Ĥp/∂α)}. �
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4.7.6 Construction of CI of the Frailty in (4.20)

Since (β,λ0, v) and α(= var(vi )) are asymptotically orthogonal as in the HGLMs,
we only need to consider the Hessianmatrix of v andψ = (βT ,λT

0 )T . The definitions
of the Hessian matrix of the fixed and random effects and the unconditional mean
squared error (UMSE) of random effects in theHGLMs (Lee andNelder 1996, 2009)
are, respectively, extended to

H(h; ψ, v) ≡ −∂2h/∂(ψ, v)∂(ψ, v)� and UMSE ≡ Eψ[{v̂(ψ̂) − v}{v̂(ψ̂) − v}T ]. (4.43)

Here, v̂(ψ̂) ≡ v̂(ψ)|ψ=ψ̂, where v̂(ψ) is the solution to ∂h/∂v = 0 for a given ψ. Let
y∗ be a vector of observed data points y∗

i j = (yi j , δi j ). Note that v̂(ψ) = Eψ(v|y∗)
asymptotically as N = min1≤i≤q ni → ∞. Following Lee and Nelder (1996) and
Lee and Ha (2010), it can be shown that H(h; ψ̂, v̂)−1 gives the first-order approxi-
mation to the UMSE in (4.43), leading to a standard error (SE) for v̂ − v and a Wald
confidence interval for v.

In the semiparametric frailty models (4.1), the number of terms λ0k in ψ increases
with sample size n. Thus, H(h; ψ̂, v̂)−1 requires an inversion of a high-dimensional
(p + q + D) matrix. Following Ha et al. (2001), we use the partial HL h∗ (i.e., h p)
that eliminates λ0. Thus the covariance estimates for v̂ − v are obtained from the
lower right-hand corner of the inverse of H(h p;β, v) in (4.35). That is,

var(v̂ − v) ≈ {(−∂2h∗

∂v2
) − (

−∂2h∗

∂v∂β
)(

−∂2h∗

∂β2
)−1(

−∂2h∗

∂β∂v
)}−1|τ=τ̂

= {(ZTW ∗Z + Q) − (ZTW ∗X)(XTW ∗X)−1(XTW ∗Z)}−1|τ=τ̂ ,

where τ = (βT , vT )T and τ̂ = (β̂T , v̂T )T . With h p, though, we need to invert the
(p + q) matrix H(h p;β, v), leading to an efficient computation of the confidence
interval for v given by (4.20). �



Chapter 5
Multicomponent Frailty Models

Time-to-event data (recurrent or multiple event times) are often observed on the same
subject (or cluster), and the frailty models are useful for analysis of such data. In
practice, the multicomponent frailty models are of interest with complicated frailty
structures, nested or crossed. For example, in multicenter clinical trials, we may
need the frailties for patients and hospitals (or centers), where patients are nested
within a hospital. If the number of recurrences is large for each patient, we might
need to accommodate autoregressive (AR) models for the frailties. In this Chapter,
we present the multicomponent semiparametric frailty models with various frailty
structures. The h-likelihood procedures in Chap.4 can be easily extended to the
multicomponent models with more than one random components.

5.1 Formulation of the Multicomponent Frailty Models

Consider a multicomponent frailty model, λ(t |v) = λ0(t) exp(η) with

η = Xβ + Z1v
(1) + Z2v

(2) + · · · + Zkv
(k). (5.1)

Here, X is an n × p model matrix, Zr (r = 1, 2, . . . , k) are n × qr model matrices
corresponding to the qr × 1 frailties v(r), and v(r) and v(l) are independent for all r �=
l. Let Z = (Z1, Z2, . . . , Zk), v = (v(1)T , v(2)T , . . . , v(k)T )T , α = (αT

1 , . . . ,αT
k )T ,

and q = ∑
r qr . Here α are the dispersion parameters (or frailty parameters) in the

frailty distribution. Suppose that

v(r) ∼ N (0, �r ) and v ∼ N (0, �), (5.2)

where �r = �r (αr ), and � = �(α) = BD(�1, · · · , �k) and BD denotes a block
diagonal matrix. For identifiability, following Lee and Nelder (1996) as mentioned
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in Chap.4, the frailties v(r) have constraints that E(v(r)) = 0 for all r . Note that
some component of α can be a vector, for example, α3 = (σ2, ρ) as in the AR(1)
frailty in (5.6). Then, clearly, the multicomponent model (5.1) can be written as
in one-component model (4.1) because (5.1) can be expressed as a one-component
model

η = Xβ + Zv,

where v ∼ N (0, �).Thus,wemay view amulticomponentmodelwith�r = �r (αr )

as one-component model with the covariance matrix �(α) for the frailty. Thus, if
we can allow a covariance structure for the frailties in one-component frailty model,
the extension from one-component model to the multicomponent model is straight-
forward (Appendix 5.6.1). In the h-likelihood approach, allowing the covariance for
the frailty is straightforward as we shall see in the next subsections.

5.1.1 Multilevel and Time-Dependent Frailties

The CGD data in Sect. 1.2.3 have a multilevel structure in which patients, nested
within hospitals, have recurrent infection times. Below are various frailty structures
which will be used for the data analysis later.

• Multilevel frailties
Let Ti jk be an infection time for the kth observation of the j th patient nested in the
i th hospital. Let vi be an unobserved log-frailty for the i th hospital and let vi j be
one for the j th patient in the i th hospital. For Ti jk , we consider a three-level frailty
model, in which observations, patients, and hospitals are defined as the units at levels
1, 2 and 3, respectively:

λi jk(t |vi , vi j ) = λ0(t) exp(ηi jk) (5.3)

with
ηi jk = xTi jkβ + vi + vi j ,

where xi jk = (xi jk1, . . . , xi jkp)T is a vector of covariates, β = (β1, . . . ,βp)
T is a

vector of the fixed effects, and vi ∼ N (0,α1) and vi j ∼ N (0,α2) are mutually inde-
pendent. The three-level model (5.3) can be also expressed as a multicomponent
model (5.1) with k = 2:

η = Xβ + Z1v
(1) + Z2v

(2), (5.4)

v(1): hospital-frailty vector based on vi ’s ∼ N (0, �1 ≡ α1 Iq1),
v(2): patient-frailty vector based on vi j ’s ∼ N (0, �2 ≡ α2 Iq2),

where Iqr (r = 1, 2) are the qr × qr identity matrices, and q1 and q2 are the number
of hospitals and patients, respectively.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_1
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• Time-dependent frailties
Since Ti jk are the gap times, they may be serially correlated, so that the frailty of
each patient in the same hospital may not be constant, but may vary stochastically
over the gap times. Let vi jk ∼ AR(1) be the unobserved AR(1) frailty on the kth gap
time of the j th patient in the i th hospital, satisfying

vi jk = ρvi jk−1 + ei jk,

where ei jk ∼ N (0,σ2) and |ρ| < 1. Thus we can consider the following time-
dependent AR(1) frailty model with

ηi jk = xTi jkβ + vi jk . (5.5)

• Multilevel frailties with time-dependent structures
We consider

ηi jk = xTi jkβ + vi + vi j + vi jk,

which can be written as the matrix form

η = Xβ + Z1v
(1) + Z2v

(2) + Z3v
(3), (5.6)

v(1): hospital frailty ∼ N (0, �1 ≡ α1 Iq1),
v(2): patient frailty ∼ N (0, �2 ≡ α2 Iq2),

v(3): AR(1)-frailty vector based on vi jk ∼ N (0, �3 ≡ σ2A),

where A = A(ρ) = (1 − ρ2)−1C(ρ) is an n × n symmetric matrix and C(ρ) is an
AR(1) correlationmatrixwhose (l,m)th element is given by corr(v(3)

l , v(3)
m ) = ρ|l−m|,

where ρ is also a frailty parameter, and |ρ| < 1. Here q3 = n is the total number of
observations.

5.1.2 Correlated Frailties

Correlated random effects are useful in investigating the heterogeneity of the random
baseline risk and/or treatment effects across centers in multicenter clinical studies.
Let Ti j be survival time for the j th observation in the i th cluster. Denote by vi =
(vi0, vi1, . . . , vi,m−1)

T am-dimensional vector of unobserved log-frailties associated
with the i th cluster. We allow for the correlation of random effects in one-random
component vi for the i th cluster. Given vi , the conditional hazard function of Ti j is
of the form

λi j (t |vi ) = λ0(t) exp(ηi j ), (5.7)
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where
ηi j = xTi jβ + zTi jvi

is a linear predictor for the hazards, and xi j = (xi j1, . . . , xi jp)T and zi j =
(zi j1, . . . , zi jm)T are p × 1 andm × 1 covariate vectors corresponding tofixed effects
β = (β1, . . . ,βp)

T and the log-frailties vi , respectively. Here zi j is often a subset of
xi j . Alternatively, it may be the constant (unity) representing a cluster effect on the
baseline hazard. We assume the multivariate normal distribution for vi :

vi ∼ Nm(0, �1),

where the covariance matrix �1 = �1(α1) depends on α1, a vector of the unknown
parameters.

• Multicenter clinical study
In multicenter randomized clinical trials, there may be two variations across centers;
variations in the baseline risk and the treatment effect. Thus, we could model these
variations using the correlated frailty models (5.7).
(i) Let vi0 be a random baseline intercept (i.e. a random center effect or a random
baseline risk) and let vi1 be a random slope (i.e. a random treatment effect or a random
treatment-by-center interaction). In model (5.7), if zi j = 1 and vi = vi0 for all i, j ,
it becomes a random intercept (or univariate) model in (4.1) with

ηi j = xTi jβ + vi0, (5.8)

where vi0 ∼ N (0,σ2
0) for all i .

(ii) Let β1 be the effect of the primary covariate xi j1 such as the main treatment effect
and let βl (l = 2, . . . , p) be the fixed effects corresponding to the covariates xi jl . We
can consider a bivariate frailty model,

ηi j = vi0 + (β1 + vi1)xi j1 +
p∑

l=2

βl xi jl , (5.9)

which can be written in the form (5.7) by taking zi j = (1, xi j1)T and vi = (vi0, vi1)
T .

Here, (
vi0
vi1

)

∼ N

{(
0
0

)

, �1(α1) ≡
(

α11 α12

α12 α22

)

≡
(

σ2
0 σ01

σ01 σ2
1

)}

,

and the correlation between the two frailties becomes ρ = σ01/(σ0σ1). By allowing
a correlation between two random effects (vi0 and vi1), the invariance of the model
to parametrization of the treatment effect can be maintained (Rondeau et al. 2008;
Lee et al. 2017b).

Remark 5.1 Below we present the interpretation of vi0 and vi1 in the multicenter
clinical study. Consider model (5.9) with a single binary-treatment indicator, xi j ,

http://dx.doi.org/10.1007/978-981-10-6557-6_4


5.1 Formulation of the Multicomponent Frailty Models 109

λi j (t |vi0, vi1; xi j ) = λ0(t) exp{vi0 + (β1 + vi1)xi j }.

Then, the relative risk for treatment becomes

ψi j (t |xi j = 1, xi j = 0) = λ0(t) exp{vi0 + (β1 + vi1) · 1}
λ0(t) exp{vi0 + (β1 + vi1) · 0} = exp(β1 + vi1),

which is free of time t and holds for all patients in center i . Here exp(β1) is the usual
expression for the relative risk in the standard PH model. Thus, ψi j (t |x = 1, x = 0),
represents a random multiplicative divergence from the standard relative risk under
the PH model, homogeneous with respect to centers. Note that

exp(β1 + vi1) = exp(β1)ui1,

where ui1 = exp(vi1) is often called the treatment hazard ratio in the i th center (Gray
1994; Yamaguchi and Ohashi 1999). We also have that

ui1 = exp(β1 + vi1)

exp(β1)
= exp(vi1).

Thus, vi1 means the random deviation of the i th center from the overall treatment
effect.

Similarly, in order to interpret vi0, we consider the model without the covariate
xi j (i.e. xi j = 0):

λi j (t |vi0) = λ0(t) exp(vi0).

Thus, the hazard ratio of vi0 against vi0 = 0 is given by

φi j (t) = λ0(t) exp(vi0)

λ0(t)
= exp(vi0),

which is free of time t and holds for all patients in center i , and vi0 represents the
random deviation of the i th center from the overall underlying baseline risk. �

5.2 H-Likelihood Procedures for the Multicomponent
Models

We show how the h-likelihood estimation procedures for one-component (univariate)
frailty models in Chap.4 are extended to the multicomponent models (5.1). The h-
likelihood for the multicomponent frailty models are of the form

h = h(β,λ0,α) = �1 + �2,

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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where�1 = ∑
i j �1i j (β,λ0; yi j , δi j |v) = ∑

i j log{ fβ,λ0(yi j , δi j |v)}, �2 = �2(α; v) =
log{ fα(v)}, and fβ,λ0(y, δ|v) and fα(v) denote the conditional density of (y, δ) given
v and the density of v, respectively. Here �2(α; v) becomes

∑
r �2r (αr ; v(r)). Since

we use v(r) ∼ N (0, �r ) with �r = �r (αr ), we have

�2r = �2r (αr ; vr ) = −1

2
[log det{2π�r }] − 1

2
v(r)T�−1

r v(r).

The nuisance parameters λ0 in �1 are eliminated by the profiling method, so that we
have

�∗
1 = �1|λ0=λ̂0

= �1p + constant,

which does not depend on λ0. The profile log-likelihood �∗
1 is again proportional

to the partial log-likelihood �1p. Thus, if the distributions of v(r) are specified, the
generalization of the h-likelihood procedure based on the partial h-likelihood

h p = �1p + �2

is straightforward, as given in Appendix5.6.1. The technical details of computation
of −∂2 pτ (h p)/∂α2 with τ = (β, v) are also given in Appendix5.6.2.

5.3 Examples

5.3.1 Mammary Tumor Data

Gail et al. (1980) presented data on multiple occurrences of mammary tumors for 48
female rats. The primary outcome of interest was time to development of a mammary
tumor for 23 female rats in the treatment group and 25 female rats in the control
group. Initially, 76 rats were injected with a carcinogen for mammary cancer at
day zero, and then all rats were given retinyl acetate to prevent cancer for 60days.
After 60 days, forty-eight rats which remained tumor-free were randomly assigned to
continue being treated with retinoid prophylaxis (treatment group) or to the control
group receiving no further retinoid prophylaxis. Rats were palpated for tumors twice
weekly and observation ended 182days after the initial carcinogen injection. The
main objective of the study was to evaluate treatment.

Our analysis is based on the original data set inTable5.1 fromGail et al. (1980).We
similarly define survival time as time to development of a mammary tumor from the
initial carcinogen injection. The time origin is the day of the initial carcinogen injec-
tion. The inter-arrival (gap) time between the tumor recurrences Ti j ( j = 1, . . . , ni )
is calculated as Ti j = Ti, j − Ti, j−1, where Ti, j is the j th tumor occurrence time of
the i th rat. Conventionally we set Ti,0 = 0. Here the cluster size ni ranges from 1 to
14. Some Ti, j and Ti, j−1 are equal, leading to the gap time Ti j = Ti, j − Ti, j−1 = 0.
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Table 5.1 Model selection: three AICs for the mammary tumor data

Model −2pβ,v(h p) d fr rAIC −2�p d fc cAIC −2pv(h p) d f p pAIC

M1 (Cox) 1946.8 0 7.0 1944.9 1 28.1 1944.9 1 6.1

M2 (R) 1939.0 1 1.2 1885.0 22.8 11.8 1937.8 2 1.0

M3 (S) 1946.8 1 9.0 1944.9 1.0 28.1 1944.9 2 8.1

M4
(AR(1))

1935.8 2 0 1820.4 49.2 0 1934.8 3 0

M5
(R+AR(1))

1935.8 3 2.0 1820.4 49.2 0.0 1934.8 4 2.0

R, rat frailty; AR(1), AR(1) frailty; S, saturated model with ρ = 0;
AIC, AIC differences where the smallest AIC is calibrated to be zero

For such cases, we added a small value (say 0.01) to all the observations (Fong
Daniel et al. 2001; Ha et al. 2007a). Censoring (approximately 17%) occurred when
no new tumor was found. Gap times on the same rat may be correlated due to the
shared genetic or environmental effects and this correlation can be modeled by a
shared (univariate) frailty. However, since Ti j are gap times of the same rat, they
could be serially correlated. Thus, the frailty of each rat may not be constant, but
can change stochastically over the gap times. Therefore, we consider several AR(1)
frailty models for such dependency. Here we model the gap times Ti j , with a single
fixed covariate xi j (=1 for treatment and =0 for control). Let vi be the unobserved
shared frailty on the i th rat and let vi j be the unobserved AR(1) frailty on the j th gap
time of the i th rat. We consider the following five models, λi j (t |v) = λ0(t) exp(ηi j ):

M1 (Cox): ηi j = xi jβ,
M2 (R): ηi j = xi jβ + vi with vi ∼ N (0,α1),
M3 (S): ηi j = xi jβ + vi j with vi j ∼ N (0,α2),
M4 (AR(1)): ηi j = xi jβ + vi j with vi j ∼ AR(1),
M5 (R+AR(1)): ηi j = xi jβ + vi + vi j with vi ∼ N (0,α1) and vi j ∼ AR(1).

Here vi j ∼ AR(1) means that vi j = ρvi j−1 + ei j , ei j ∼ N (0,α2) and |ρ| < 1. The
saturated model M3 can be AR(1) model with ρ = 0. Among these models, M5 is
the full model and the rest of them are submodels by assuming the null components,
i.e. M4 (vi = 0), M3 (vi = 0, ρ = 0), M2 (vi j = 0) and M1 (vi = 0, vi j = 0). “S”
stands for AR(1) model with ρ = 0, identical to the saturated frailty model.

If a model M1 is nested in M2, we denote it as “M1 ⊂ M2”. Here M5⊃M4⊃
M3⊃M1 andM5⊃M2⊃M1. Thus, for the nested frailty models, we use the rAIC for
model selection because they have a common linear predictor. However, {M4, M3}
and M2 are not nested, so we may use the AICs to select a model. Between M5 and
M4, the difference of the partial restricted likelihood is 0.0 (<2.71), so that the null
hypothesis of α1 = 0 cannot be rejected. Between M4 and M3, the difference of the
partial restricted likelihood is 11.0 (>3.84), so that we reject the null hypothesis of
ρ = 0. Between M2 and M1, the difference of the partial restricted likelihood is 7.8
(>2.71), so again we reject the null hypothesis of α1 = 0. Therefore, in the presence
of AR(1) frailty, the shared frailty vi is not necessary and the LRT selects M4 as the
final model.
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Now we investigate the AIC values. For the ease of comparison and ranking of
candidate models, we have set the smallest value of the AICs to be zero. In Table5.1
we report the AIC differences, not the AIC values themselves. The cAICs of M3
and M1 are almost identical because α̂2 ≈ 0. Similarly, those from M5 and M4 are
almost identical because α̂1 ≈ 0. In such cases, the cAIC prefers the complicated
model (Yu et al. 2013), while the mAIC (therefore pAIC) prefers the simple model
(Greven and Kneib 2010). The degree of freedom d fc for the cAIC does not reflect
model complexity properly when the variance estimate of the frailties is zero (Ha
et al. 2007a), so that between M4 and M5, we should choose M4 as the final model
using the rAIC. Care is necessary for the cAIC and pAIC (mAIC) when the frailty
variance estimate is near zero.

The final model M4 gives the parameter estimates: β̂ = −0.927(SE = 0.236),
ρ̂ = 0.811 and α̂ = 0.162. That is, we see that the treatment group significantly
reduces the tumor recurrences and that survival times have a large positive serial
correlation. The estimation results from the final model (M4) are also presented in
Sect. 5.4, together with R codes.

5.3.2 CGD Data

We consider the CGD data presented in Sect. 1.2.3. The gap time (inter-arrival time)
between recurrent infection times, Ti jk , are calculated as Ti jk = Ti j,k − Ti j,k−1, where
Ti j,k (Ti j,0 = 0) is the kth recurrent infection time of the j th patient nested in the i th
hospital. From the data structure, we see that the survival time for a given patient
would be correlated. However, since each patient belongs to one of the 13 hospitals,
the correlationmay also be due to a random hospital effect. Thuswemay consider the
multicomponent lognormal frailtymodels, inwhich infections, patients and hospitals
are defined as level 1, level 2 and level 3 units, respectively. Let vi be the frailty on
the i th hospital and vi j be that on the j th patient in the i th hospital. For Ti jk , we
consider the following models based on λi jk(t |v) = λ0(t) exp(ηi jk):

M1 (Cox): ηi jk = xTi jkβ,
M2 (H): ηi jk = xTi jkβ + vi , vi ∼ N (0,α1),
M3 (P): ηi jk = xTi jkβ + vi j , vi j ∼ N (0,α2),
M4 (H + P): ηi jk = xTi jkβ + vi + vi j , vi ∼ N (0,α1), vi j ∼ N (0,α2),

where xi jk = (xi jk1, . . . , xi jk10)T consist of 10 covariates as in Sect. 1.2.3. Here M4
is the full model and the other models are various submodels ofM4, i.e. M3 (vi = 0),
M2 (vi j = 0) and M1(vi = 0, vi j = 0). Here α̂1 ≈ 0, so that d fc may not reflect the
model complexity properly. From Table5.2, we see that between M1 and M2 (M3
and M4), the pAIC prefers the simpler model M1 (M3).

Since Ti jk’s are gap times, theymay be serially correlated, so that the frailty of each
patient in the same hospital may vary stochastically over them. Let vi jk ∼ AR(1)
be the unobserved AR(1) frailty on the kth gap time of the j th patient in the i th

http://dx.doi.org/10.1007/978-981-10-6557-6_1
http://dx.doi.org/10.1007/978-981-10-6557-6_1
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Table 5.2 Model selection: three AICs for the CGD data

Model −2pβ,v(h p) d fr rAIC −2�p d fc cAIC −2pv(h p) d f p pAIC

M1 (Cox) 694.7 0 2.2 671.9 10 18.1 671.9 10 0

M2 (H) 694.7 1 4.2 671.9 10.0 18.1 671.9 11 2.0

M3 (P) 690.5 1 0 608.8 37.3 9.6 671.1 11 1.2

M4 (H+P) 690.5 2 2.0 608.8 37.3 9.6 671.1 12 3.2

M5 (S) 692.8 1 2.3 595.4 44.6 10.8 671.9 11 2.0

M6 (AR(1)) 688.6 2 0.1 553.6 60.1 0 670.6 12 2.7

M7
(H+AR(1))

688.6 3 2.1 553.6 60.2 0.1 670.6 13 4.7

M8
(P+AR(1))

688.6 3 2.1 553.6 60.2 0.1 670.6 13 4.7

M9
(H+P+AR(1))

688.6 4 4.1 552.4 61.0 0.6 670.6 14 6.7

H, hospital frailty; P, patient frailty; S, saturate model with ρ = 0; AR(1), AR(1) frailty;
AIC, AIC differences where the smallest AIC is calibrated to be zero

hospital, satisfying vi jk = ρvi jk−1 + ei jk , ei jk ∼ N (0,α3) and |ρ| < 1. We consider
the following additional models:

M5 (S):ηi jk = xTi jkβ + vi jk with vi jk ∼ N (0,α3),
M6 (AR(1)): ηi jk = xTi jkβ + vi jk with vi jk ∼ AR(1),
M7 (H+AR(1)): ηi jk = xTi jkβ + vi + vi jk with vi ∼ N (0,α1) and vi jk ∼ AR(1),
M8 (P+AR(1)): ηi jk = xTi jkβ + vi j + vi jk with vi j ∼ N (0,α2) and

vi jk ∼ AR(1),
M9 (H+P+AR(1)): ηi jk = xTi jkβ + vi + vi j + vi jk with vi ∼ N (0,α1),

vi j ∼ N (0,α2) and vi jk ∼ AR(1).

Now, M9 is the full model which combines models M4 and M6 and the others
are its various submodels: M8 (vi = 0), M7 (vi j = 0), and M6 (vi = 0, vi j = 0).
First, consider the LRT for the nest models. From the partial restricted likelihoods
of {M9, M8, M6, M5}, the LRT selects M6 as the best model. Between M6 and
M5, the difference of the partial restricted likelihood is 4.2 (>3.84), so that the null
hypothesis of ρ = 0 is not rejected. Now that {M2, M3, M5} are not the submodels
of M6, the AICs may be used for model selection. We note that the rAIC selects
either M3 or M6 as an adequate model because their difference is too small as 0.1,
but the cAIC clearly selects M6. From the rAIC and cAIC, we select M6 as the final
model. However, the pAIC selects M1 as the final model because it tends to select
the simplest model (Greven and Kneib 2010). In this book, we select the final model
by using the LRT and we will use various AICs if the LRT is not available. Between
M1 and M6, the LRT based on the partial restricted likelihood selects M6, so that
we choose M6 as the final model.

Table5.3 shows the estimation results for the final model M6. Our main con-
clusions are as follows: (i) The Gamma-IFN is very significant, indicating that the
new drug significantly reduces the infection rate in CGD patients; (ii) The longitudi-
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Table 5.3 Parameter
estimates of the final model
(AR(1) frailty model) for the
CGD data

Variable Estimate SE

Gamma-IFN −1.239 0.364

Inheritance −0.771 0.408

Age −0.093 0.049

Height 0.100 0.015

Weight 0.009 0.021

Corticosteroids 2.201 0.956

Prophylactic −0.714 0.489

Sex −0.907 0.573

Hospital region −0.759 0.432

Longitudinal 1.379 0.597

α3 0.877 –

ρ 0.573 –

nal variable is positively significant, which implies an increasing risk of subsequent
infection with elapsed time; (iii) The estimated AR(1) correlation is ρ̂ = 0.573, indi-
cating that there is a serial correlation effect among recurrent infection times.

In addition, the estimation results of the univariate model (M3), the multilevel
model (M4) and the final model (M6) are presented in Sect. 5.4, together with R
codes.

5.3.3 Bladder Cancer Data

We again consider the bladder cancer data, analyzed in Example 4.5 Let vi0 and vi1
be the random baseline risk (i.e. random center effect) and random treatment effect
of the i th center, respectively. For the purpose of analysis, we consider the following
five models, λi j (t |v) = λ0(t) exp(ηi j ) with ηi j allowing several frailty structures
M2-M5, where (vi0, vi1) ∼ BN means that vi0 ∼ N (0,σ2

0), vi1 ∼ N (0,σ2
1) and ρ =

Corr(vi0, vi1), and (vi0, vi1) ∼ I N means BN with ρ = 0:
M1 (Cox): ηi j = β1xi j1 + β2xi j2,
M2 (B): ηi j = β1xi j1 + β2xi j2 + vi0, with vi0 ∼ N (0,σ2

0),
M3 (T): ηi j = β1xi j1 + β2xi j2 + vi1xi j1, with vi1 ∼ N (0,σ2

1),
M4 (Indep): ηi j = (β1 + vi1)xi j1 + β2xi j2 + vi0, with (vi0, vi1) ∼ I N ,
M5 (Corr): ηi j = (β1 + vi1)xi j1 + β2xi j2 + vi0, with (vi0, vi1) ∼ BN .

Here xi j1 and xi j2 are the binary covariates which are already described in Example
4.5, and B and T denote the random baseline risk and the random treatment effect,
respectively. Among M1-M5, M5 is the full model and the others are its various
submodels by assuming the null components, i.e. M1 (vi0 = 0, vi1 = 0), M2 (vi1 =
0), M3 (vi0 = 0) and M4 (ρ = 0). In Table5.4, we report the AIC differences, not
the AIC values themselves.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Table 5.4 Model selection: three AICs for the bladder cancer data

Model −2{pβ,v(h p)} d fr rAIC −2�p d fc cAIC −2pv(h p) d f p pAIC

M1 (Cox) 2196.2 0 1.2 2192.5 2 6.2 2192.5 2 1.2

M2 (B) 2193.0 1 0 2173.8 8.5 0.5 2189.3 3 0

M3 (T) 2194.2 1 1.2 2179.2 7.0 2.9 2190.6 3 1.3

M4 (Indep) 2193.0 2 2.0 2173.8 8.5 0.5 2189.3 4 2.0

M5 (Corr) 2192.7 3 3.7 2172.1 9.1 0 2189.3 5 4.0

B, random baseline risk (vi0); T, random treatment effect (vi1)

Here M5⊃M4⊃M3⊃M1 and M5⊃M4⊃M2⊃M1. Among the models {M1, M2,
M4, M5}, the LRT based on the partial restricted likelihood, −2{pβ,v(h p)}, selects
M2 as the final model. Now the final model should be decided between M2 and M3
which are non-nested. Both rAIC and pAIC selects M2 as the final model. The cAIC
selects the most complicated model M5 as the final model. We choose the model M2
as the final model, not M5, due to the LRT principle. The estimation results for the
final model M2 are given in Example 4.5.

5.4 Software and Examples Using R

5.4.1 Mammary Tumor Data: AR(1) Frailty Model

Below are the R codes and the results from fitting the AR(1) frailty model using the
HL(0,1) method for the mammary tumor data in Sect. 5.3.1. In the frailtyHL()
function in Sect. 4.3.3, the expression (1|center)+(1|id) specifies a multilevel
frailty model and the inclusion of the option RandDist="AR1" allows to fit the
AR(1) frailty model. The outputs are summarized in Table5.1.

######################## AR(1) frailty model ####################
> data(ren, package="frailtyHL")
> res1<-frailtyHL(Surv(time,del)˜gp+(1|rat),ren, RandDist="AR1",
+ Maxiter = 500)
########################### OUTPUT ###############################
iteration :

302
convergence :

9.749738e-07
[1] "converged"
[1] "Results from the lognormal frailty model with AR(1)"
[1] "Number of data :"
[1] 254
[1] "Number of event :"
[1] 212
[1] "Model for conditional hazard :"

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_5
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Surv(time, del) ˜ gp + (1 | rat)
[1] "Method : HL(0,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
gp -0.927 0.2357 -3.933 8.397e-05
[1] "Estimates from the dispersion model"

Estimate
rat 0.1623
[1] "Estimates for rho in the AR(1) model"

rho_h
[1,] 0.8114

-2h0 -2*hp -2*p_b,v(hp)
[1,] 1820.4 1925.2 1935.8

cAIC pAIC rAIC
[1,] 1918.8 1956.8 1939.8

5.4.2 CGD Data: Univariate, Multilevel and AR(1) Frailty
Models

Below are the R codes and the results from fitting the univariate, multilevel and
AR(1) frailty models using the HL(0,1) method for the CGD data. The outputs are
summarized in Tables5.2 and 5.3.

########################## Variable settings #####################
> data(cgd, package="frailtyHL")
> attach(cgd)
> cgd$inherit=relevel(cgd$inherit,ref="autosomal")
> hos=as.integer(hos.cat)
> hospi<-ifelse(hos>=3,1,0) ### 0=US, 1=Europe
> L=ifelse(enum==1,0,tstart+1)
> longi=L/365.25 ## longitudinal
######################## Univariate frailty model ####################
> cgd_P<-frailtyHL(Surv(tstop-tstart,status)˜
+ factor(treat)+ factor(inherit)+age+ height +weight
+ +factor(steroids)+factor(propylac)+factor(sex)+factor(hospi)+ longi
+ +(1|id),cgd,Maxiter = 500)
iteration :

101
convergence :

9.033824e-07
[1] "converged"
[1] "Results from the lognormal frailty model"
[1] "Number of data :"
[1] 203
[1] "Number of event :"
[1] 76
[1] "Model for conditional hazard :"
Surv(tstop - tstart, status) ˜ factor(treat) + factor(inherit) +

age + height + weight + factor(steroids) + factor(propylac) +
factor(sex) + factor(hospi) + longi + (1 | id)

[1] "Method : HL(0,1)"
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[1] "Estimates from the mean model"
Estimate Std. Error t-value p-value

factor(treat)rIFN-g -1.105033 0.33787 -3.2706 0.001073
factor(inherit)X-linked -0.658498 0.38189 -1.7243 0.084648
age -0.085951 0.04481 -1.9182 0.055091
height 0.008576 0.01377 0.6229 0.533318
weight 0.009931 0.02072 0.4793 0.631743
factor(steroids)1 1.991416 0.85668 2.3246 0.020094
factor(propylac)1 -0.690360 0.44859 -1.5390 0.123813
factor(sex)female -0.758045 0.52845 -1.4345 0.151438
factor(hospi)1 -0.697510 0.39655 -1.7589 0.078590
longi 0.794978 0.51075 1.5565 0.119591
[1] "Estimates from the dispersion model"

Estimate Std. Error
id 0.7033 0.4357

-2h0 -2*hp -2*p_b,v(hp)
[1,] 608.83 824.56 690.52

cAIC pAIC rAIC
[1,] 683.37 694.63 692.52
>

##################### Multilevel frailty model #######################
> cgd_multi<-frailtyHL(Surv(tstop-tstart,status)˜
+ factor(treat)+ factor(inherit)+age+ height +weight+ factor(steroids)
+ +factor(propylac)+factor(sex)+factor(hospi)+ longi
+ +(1|center)+(1|id),cgd,Maxiter = 500)
iteration :

109
convergence :

9.594358e-07
[1] "converged"
[1] "Results from the lognormal frailty model"
[1] "Number of data :"
[1] 203
[1] "Number of event :"
[1] 76
[1] "Model for conditional hazard :"
Surv(tstop - tstart, status) ˜ factor(treat) + factor(inherit) +

age + height + weight + factor(steroids) + factor(propylac) +
factor(sex) + factor(hospi) + longi + (1|center) + (1|id)

[1] "Method : HL(0,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
factor(treat)rIFN-g -1.105033 0.33787 -3.2706 0.001073
factor(inherit)X-linked -0.658498 0.38189 -1.7243 0.084648
age -0.085950 0.04481 -1.9182 0.055091
height 0.008576 0.01377 0.6229 0.533317
weight 0.009931 0.02072 0.4793 0.631744
factor(steroids)1 1.991417 0.85668 2.3246 0.020094
factor(propylac)1 -0.690360 0.44859 -1.5390 0.123814
factor(sex)female -0.758045 0.52845 -1.4345 0.151438
factor(hospi)1 -0.697509 0.39655 -1.7589 0.078591
longi 0.794977 0.51075 1.5565 0.119592
[1] "Estimates from the dispersion model"

Estimate Std. Error
center 0.0000 NaN
id 0.7033 0.4357
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-2h0 -2*hp -2*p_b,v(hp)
[1,] 608.83 824.56 690.52

cAIC pAIC rAIC
[1,] 683.37 696.63 694.52
>

######################## AR(1) frailty model ####################
> cgd_AR1<-frailtyHL(Surv(tstop-tstart,status)˜
+ factor(treat)+ factor(inherit)+age+ height +weight+ factor(steroids)
+ +factor(propylac)+factor(sex)+factor(hospi)+ longi
+ +(1|id),cgd,RandDist="AR1",Maxiter = 500)
iteration :

338
convergence :

9.844568e-07
[1] "converged"
[1] "Results from the lognormal frailty model with AR(1)"
[1] "Number of data :"
[1] 203
[1] "Number of event :"
[1] 76
[1] "Model for conditional hazard :"
Surv(tstop - tstart, status) ˜ factor(treat) + factor(inherit) +

age + height + weight + factor(steroids) + factor(propylac) +
factor(sex) + factor(hospi) + longi + (1 | id)

[1] "Method : HL(0,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
factor(treat)rIFN-g -1.238621 0.36373 -3.4053 0.0006608
factor(inherit)X-linked -0.770533 0.40839 -1.8868 0.0591907
age -0.093005 0.04946 -1.8804 0.0600534
height 0.009586 0.01479 0.6480 0.5169636
weight 0.009197 0.02251 0.4087 0.6827812
factor(steroids)1 2.200806 0.95591 2.3023 0.0213177
factor(propylac)1 -0.714297 0.48942 -1.4595 0.1444324
factor(sex)female -0.907046 0.57311 -1.5827 0.1134943
factor(hospi)1 -0.758608 0.43202 -1.7560 0.0790941
longi 1.378750 0.59720 2.3087 0.0209614
[1] "Estimates from the dispersion model"

Estimate
id 0.8768
[1] "Estimates for rho in the AR(1) model"

rho_h
[1,] 0.5732

-2h0 -2*hp -2*p_b,v(hp)
[1,] 553.55 999.79 688.59

cAIC pAIC rAIC
[1,] 673.69 730.35 692.59

5.5 Discussion

The h-likelihood methods can be straightforwardly extended to the multicomponent
semiparametric frailty models. Selecting a suitable model among a set of candidate
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models is very important in data analysis. The LRTs and AICs are useful in selecting
the final model.

We have used the three AICs, i.e. cAIC, pAIC and rAIC, based on the partial h-
likelihood h p. Here the cAIC, pAIC and rAIC aremodel selection criteria for v, β, α,

respectively. For example, the pAIC is useful for model selection for β given a frailty
model on α. Thus, it may not work properly under different frailty models. The rAIC
and cAIC are for selection of a frailty structure. By construction, the rAIC is more
focussed on the selection of the frailty; the restricted likelihood is not appropriate for
inference about an individual vi because it integrates them out. The cAIC concerns
a selection of the conditional model y|v and its prediction, so that it seems to prefer
a complicated random-effect model. For inference about the population, the rAIC
may be preferred, while the cAIC may be preferred for a subject-specific model.

Extensions of the currentmulticomponentmodeling approach to the frailtymodels
allowing for spatial frailty structures (Henderson et al. 2002) or missing covariates
(Herring et al. 2002) would be interested (Lee et al. 2017b). Furthermore, our h-
likelihood approach can be extended to cure-rate modeling via frailty structures
(Yau and Ng 2001; Xiang et al. 2011) or double HGLMs (Lee and Nelder 2006; Lee
et al. 2017b) including structured dispersion on hazard (Noh et al. 2006; Burke and
MacKenzie 2017).

5.6 Appendix

5.6.1 H-Likelihood Procedure in the Multicomponent Models

We show how the h-likelihood procedure of one-component models presented
in Chap.4 is extended to the multicomponent models (5.1). With the partial h-
likelihood h p, we estimate the fixed parameters (β,α) with α = (α1, . . . ,αk)

T and
the random effects v = (v(1)T , v(2)T , . . . , v(k)T )T as follows. Given α, estimation of
τ = (βT , vT )T is performed by solving

∂h p

∂τ
= ∂h

∂τ

∣
∣
∣
∣
λ0=λ̂0

= 0. (5.10)

Here, the first partial derivatives, ∂h/∂τ , are given by the simple forms:

∂h

∂β
= XT (δ − μ) and

∂h

∂v(r)
= ZT

r (δ − μ) − �−1
r v(r) (r = 1, . . . , k),

where μ = exp(log�0 + η) and �r = �r (αr , ρ). Note that the asymptotic covari-
ance of τ̂ − τ in one-componentmodel is obtained from the inverse of the information
matrix Hp = H(h p; τ )|τ=τ̂ (α) = −∂2h p/∂τ 2, given by

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Hp =
(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

)

. (5.11)

Let Z = (Z1, . . . , Zk) and Qr = −∂2�2/∂v(r)2 = �−1
r (r = 1, . . . , k), and let Q =

BD(Q1, . . . , Qk) = BD(�−1
1 , . . . , �−1

k ) be a q × q block diagonal matrix (q =∑
r qr ). Then the information matrix (5.1) can be expressed as that of the multi-

component models:

Hp =

⎛

⎜
⎜
⎜
⎝

XTW ∗X XTW ∗Z1 . . . XTW ∗Zk

ZT
1 W

∗X ZT
1 W

∗Z1 + Q1 . . . ZT
1 W

∗Zk
...

...
. . .

...

ZT
k W

∗X ZT
k W

∗Z1 . . . ZT
k W

∗Zk + Qk

⎞

⎟
⎟
⎟
⎠

.

We note that in the multicomponent models, the ILS equations of τ can be
expressed as the same forms as (4.12) and (4.13), with Z = (Z1, · · · , Zk), Q =
BD(Q1, . . . , Qk), V∗ = BD(In, Q), y∗ = (w∗T , 0T )T and Iq = BD(Iq1 , . . . , Iqk ).

Next, for estimation of the frailty parameters α = (α1, . . . ,αk)
T , we use the

adjusted partial h-likelihood (i.e. partial restricted likelihood) in (4.10), given by

pτ (h p) =
{

h p − 1

2
log det

(
Hp

2π

)}∣
∣
∣
∣
τ=τ̂

, (5.12)

where τ̂ = τ̂ (α) = (β̂T (α), v̂T (α))T . The partial REML estimator for αr (r =
1, . . . , k) are obtained by solving iteratively

∂ pτ (h p)

∂αr
= 0. (5.13)

Note here that

∂ pτ (h p)

∂αr
= −1

2
tr

(

�−1
r

∂�r

∂αr

)

− 1

2
v̂(r)T

(
∂�−1

r

∂αr

)

v̂(r) − 1

2
tr

(

Ĥ−1
p

∂ Ĥp

∂αr

)

,

where Ĥp = Ĥp(α) = H(h p; τ )|τ=τ̂ (α). Note also that in implementing (5.13), we
still allow the term ∂v̂/∂αr ; details on the computation of the term ∂ Ĥp/∂αr includ-
ing ∂v̂/∂αr are given in Appendix5.6.2. In particular, from (5.13) the partial REML
estimator for αr (r = 1, 2) in the multilevel model (5.4) has a simple form

α̂r = v̂(r)T v̂(r)

qr − γr
,

where γr = −αr tr{Ĥ−1
p (∂ Ĥp/∂αr )}. Similarly, the partial REML estimator for σ2

in the AR(1) model in (5.6) is given by

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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σ̂2 = v̂(3)T A−1v̂(3)

q3 − γ3
,

whereγ3 = −σ2tr{Ĥ−1
p (∂ Ĥp/∂σ2)}. Note that the estimator forρ in (5.5) and (5.6) is

also obtained from (5.13): see also Yau andMcGilchrist (1998). In fact, the estimator
for ρ can also be easily obtained bymaximizing pτ (h p) in (5.12) using the grid search
method.

In summary, the estimates of τ and α are obtained by alternating between the two
estimating Eqs. (5.10) and (5.13) until a convergence is achieved. Thus, the fitting
algorithm of the simple frailty model in Sect. 4.3.2 can be straightforwardly applied
to the multicomponent models.

5.6.2 Computation of −∂2Pτ (hp)/∂α2

The partial restricted likelihood in (5.12) can be expressed as

pτ (h p) = ĥ − 1

2
log det(Ĥp) + (p + q)

2
log(2π),

where τ = (βT , vT )T , ĥ p = h p|τ=τ̂ (α) = h p(τ̂ (α),α) and Ĥp = H(h p; τ )|τ=τ̂ (α) =
Hp(τ̂ (α),α).
Since

∂ pτ (h p)

∂αr
= ∂ĥ

∂αr
− 1

2
tr

(

Ĥ−1
p

∂ Ĥp

∂αr

)

, (5.14)

we have

− ∂2 pτ (h p)

∂αr∂αs
= − ∂2ĥ

∂αr∂αs
+ 1

2
tr

(

−Ĥ−1
p

∂ Ĥp

∂αr
Ĥ−1

p

∂ Ĥp

∂αs
+ Ĥ−1

p

∂2 Ĥp

∂αr∂αs

)

.

(5.15)
We now show how to compute the Eq. (5.14). Following Lee and Nelder (2001a)

and Ha and Lee (2003), we allow ∂v̂/∂αr in computing the two Eqs. (5.14) and
(5.15), but not ∂β̂/∂αr . Then we have

∂ĥ

∂αr
=

{(
∂h p

∂αr

)

+
(

∂h p

∂v

)(
∂v̂

∂αr

)}∣
∣
∣
∣
τ=τ̂

= ∂h p

∂αr

∣
∣
∣
∣
τ=τ̂

since (∂h p/∂v)|τ=τ̂ = 0. Along the lines of Appendix C of Lee and Nelder (1996),
we can show that

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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∂v̂

∂αr
= −

(

−∂2h p

∂v2

)−1(

− ∂2h p

∂v∂αr

)∣
∣
∣
∣
τ=τ̂

= −(ZT Ŵ ∗Z + Q)−1Q′
r v̂,

where Ŵ ∗ is given in (5.17), Q = �−1 and

Q′
r = ∂�−1/∂αr = −�−1 (∂�/∂αr )�

−1. (5.16)

From these results, the first term on the right-hand side (RHS) of (5.15) becomes

− ∂2ĥ

∂αr∂αs
=

{(

− ∂2h p

∂αr∂αs

)

−
(

∂2h p

∂αs∂v

)(
∂v̂

∂αr

)}∣
∣
∣
∣
τ=τ̂

= −1

2
tr

(

�−1 ∂�

∂αr
�−1 ∂�

∂αs
− �−1 ∂2�

∂αr∂αs

)

+1

2
v̂T Q′′

rs v̂

+v̂T Q′
s

(
∂v̂

∂αr

)

,

where

Q′′
rs = ∂2Q/∂αr∂αs = −Q′

s(∂�/∂αr )�
−1 − �−1(∂�/∂αr )Q

′
s

−�−1(∂2�/∂αr∂αs)�
−1.

From (4.39) and (5.11), we have

Ĥp =
(
XT Ŵ ∗X XT Ŵ ∗Z
ZT Ŵ ∗X ZT Ŵ ∗Z + Q̂

)

, (5.17)

where Ŵ ∗ = W ∗|τ=τ̂ (α) = W ∗(τ̂ (α),α), Q̂ = Q(v̂(α),α) and

W ∗ = W ∗(β, v) = W1 − W2, (5.18)

and the details are given in (4.35). Thus, the two derivatives in the second term on
the RHS of (5.15) are computed as follows:

∂ Ĥp

∂αr
=

(
XTW ′

r X XTW ′
r Z

ZTW ′
r X ZTW ′

r Z + Q′
r

)

and
∂2 Ĥp

∂αrαs
=

(
XTW ′′

rs X XTW ′′
rs Z

ZTW ′′
rs X ZTW ′′

rs Z + Q′′
rs

)

.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Here W ′
r = ∂Ŵ ∗/∂αr and W ′′

rs = ∂2Ŵ ∗/∂αr∂αs are calculated by the following
procedures:

∂Ŵ ∗

∂αr
=

{(
∂W ∗

∂αr

)

+
(

∂W ∗

∂v

)(
∂v̂

∂αr

)}∣
∣
∣
∣
τ=τ̂

=
{(

∂W ∗

∂v

)(
∂v̂

∂αr

)}∣
∣
∣
∣
τ=τ̂

since ∂W ∗/∂αr = 0, and

∂2Ŵ ∗

∂αr∂αs
=

{(
∂v̂

∂αr

)(

word
∂2W ∗

∂v2

)(
∂v̂

∂αs

)

+
(

∂W ∗

∂v

)(
∂2v̂

∂αr∂αs

)}∣
∣
∣
∣
τ=τ̂

,

where

∂2v̂

∂αr∂αs
= −(ZT Ŵ ∗Z + Q)−1

{

(ZTW ′
r Z + Q′

r )
∂v̂

∂αs
+ Q′

s

∂v̂

∂αr
+ Q′′

rs v̂

}

,

and ∂W ∗/∂v and ∂2W ∗/∂v2 can be calculated by repeatedly differentiating (5.17)
with respect to v.



Chapter 6
Competing Risks Frailty Models

Competing risks data arise when an occurrence of an event precludes other types
of events from being observed. In this chapter, we extend the h-likelihood inference
procedures for frailty models to competing risks models. We first review existing
methods for competing risk models without the frailty.

6.1 Classical Competing-Risk Models

Competing risks data are encountered in various research areas such as medicine,
engineering, econometrics, and sociology. In cancer studies, the primary outcome
is often time to event and patients might experience multiple events, where the
occurrence of one type of event hinders that of other types of events. For example,
in breast cancer studies investigators may want to evaluate the effect of a new drug
in terms of reducing the recurrence rate of the disease or mortality related to breast
cancer. However, other types of primary cancers (i.e., competing events) that would
shift the course of therapy to mask breast cancer recurrences or deaths due to other
disease often preclude breast cancer-related deaths frombeing observed. Examples in
other fields include failure of different components in a system in industrial reliability
testing or time to part- or full-time employment in econometrics.

When a specific type of event is of primary interest, two useful summarymeasures
could be considered. One is the cause-specific hazard, i.e., the conditional instanta-
neous event rate of a specific type given no prior event history and the other is the
cumulative incidence function (CIF; Kalbfleisch and Prentice 1980), i.e., the cumu-
lative probability of cause-specific events. For example, in a clinical cancer trial, the
main event (Type 1 or cause 1) is time to recurrence, which makes time to death a
competing event (Type 2 or cause 2). Then the event history can be diagrammatically
displayed as in Fig. 6.1.

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6_6
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Fig. 6.1 Schematic display
of competing risks model
with cause-specific hazards
λk(t), k = 1, 2

In this chapter, we are interested in clustered competing risks data where subjects
within a cluster may experience more than (e.g., two events in Fig. 6.1) one type of
event. Inmany applications involving competing risks data frommulticenter random-
ized clinical trials, individual events within a cluster (center) may be correlated due
to unobserved shared factors across individuals. Thus, we present the h-likelihood
inference for correlated time-to-event data under competing risks, where the under-
lying cause-specific frailties might be correlated. First, we review existing methods
for the independent survival data with competing risks.

6.1.1 Cause-Specific Hazard Function and Cumulative
Incidence Function

Traditionally, two important quantities in analyzing competing risks data have been
the cause-specific hazard function and the CIF. Suppose that the type of event is
denoted by k(k = 1, . . . , K ). Let T be time to the first event (i.e. the minimum
of all of the latent event times) which is denoted by T = min(T1, T2, . . . , TK ). Let
ε ∈ {1, 2, . . . , K } be the cause of event (or type of event). The cause-specific hazard
function is the conditional intensity that a subject experiences an event type ε = k at
a specific time point t , given that the individual has not experienced an event of any
type up to just prior to time t :

λk(t) = lim
�→0

Pr(t ≤ T < t + �, ε = k|T ≥ t)

�
. (6.1)

From the definition of the cause-specific hazard function above, we have

λk(t) = lim
�→0

Pr(t ≤ T < t + �, ε = k)

�Pr(T ≥ t)

= 1

Pr(T ≥ t)
lim
�→0

Pr(t ≤ T < t + �, ε = k)

�

= fk(t)

S(t−)
, (6.2)
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where S(t−) is the survival function just prior to t for events from all causes and
fk(t) is the subdistribution density function for Type k event. Thus, from (6.2) the
CIF of event type k is defined by

Fk(t) ≡ Pr(T ≤ t, ε = k) =
∫ t

0
fk(u)du =

∫ t

0
S(u−)d�k(u), (6.3)

where fk(t) = dFk(t)/dt and �k(u) is the cumulative hazard function of Type k
event such that d�k(t)/dt = λk(t). In other words, the CIF Fk(t) is the probability
that a Type k event occurs at or before time t . The quantity Fk(t) is also called as
the subdistribution function because it is the cumulative joint probability of a Type
k event, i.e., Fk(t) = Pr(T ≤ t, ε = k). It is an improper distribution as

lim
t→∞ Fk(t) = lim

t→∞ Pr(T ≤ t |ε = k)Pr(ε = k) = Pr(ε = k).

Nonparametrically, the cause-specific hazard function can be estimated by a
Nelson–Aalen type estimator λ̂k(t) = dik/Ri , after the competing events are cen-
sored at the time of their occurrences. Here dik is the number of Type k events at an
ordered Type k event times t(i), i = 1, . . . , Dk , and Ri is all subjects at risk at the
time t(i). Therefore the CIF in (6.3) can be estimated by

F̂k(t) =
∑
i :t(i)≤t

Ŝ(t(i)−)
dik
Ri

,

where Ŝ(t(i)−) is theKaplan–Meier (KM) estimator of the all-cause survival function
prior to t(i), i.e.,

Ŝ(t(i)−) =
i−1∏
j=1

{
1 − d jk + e jc

R j

}
,

where e jc is the number of competing events at time t( j). Without competing events
the complement of the Kaplan–Meier estimator (denoted by 1 − KM) is identical
to the CIF since the 1 − KM for Type k events can be written as (Pintilie 2006)

1 − KMk(t) =
∑
i :t(i)≤t

K Mk(t(i)−)
dik
Ri

,

where

KMk(t(i)−) =
i−1∏
j=1

{
1 − d jk

R j

}
.

Since Ŝ(t) ≤ KMk(t) for any t , from the above definitions of F̂k(t) and 1 − KMk(t),
we have
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F̂k(t) ≤ 1 − KMk(t).

Accordingly, we see that (1 − KM) overestimates the true cumulative probability
of the cause-specific event of interest, in the presence of competing risks. The CIF
provides the correct estimate for the cause-specific cumulative probability (Gooley
et al. 1999).

6.1.2 Subdistribution Hazard Function

Thehazard functionof a subdistribution (or subhazard function;Gray1988) is defined
by

λs
k(t) = lim

�→0

Pr{t ≤ T < t + �, ε = k|T ≥ t or (T < t ∩ ε 	= k)}
�

. (6.4)

This is the instantaneous event rate at time t from cause k, given that an individual
has not previously died from cause k. Since the risk set in this definition of the
hazard function always includes those who have died from other causes before time
t , the subhazard function is different from the cause-specific hazard in (6.1) in both
definition and interpretation. Note that λs

k(t) can be directly expressed using the CIF
Fk(t):

λs
k(t) = fk(t)

1 − Fk(t)

= −d log{1 − Fk(t)}
dt

. (6.5)

6.1.3 Relationship Between Two Hazard Functions

The relationship between the cause-specific hazard function and the subhazard func-
tion is

λk(t) =
{
1 − Fk(t)

S(t−)

}
λs
k(t)

since fk(t) = S(t−)λk(t) = λs
k(t){1 − Fk(t)} by (6.2) and (6.5). This implies that

when there are no competing events the two hazards become identical, but the cause-
specific hazard is always larger than the subhazard under competing risks because
S(t−) ≤ 1 − Fk(t) (Jeong 2014).
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6.1.4 Regression Models Based on Two Hazard Functions

Two broad classes of regression models for analyzing the competing risks data have
been developed based on the Cox PH model;

(a) Modeling the cause-specific hazard of each event type separately and
(b) Modeling the subhazard (i.e., the hazard function of a subdistribution) for a

particular event of interest.

The cause-specific hazard regression model associates the covariates (e.g., con-
founding factors) with the cause-specific hazard function, whereas the subhazard
regression model directly associates the covariates with the cumulative probability
of cause-specific events through the subdistribution hazard. In other words, to adjust
for the covariates x , we can use either (a) the cause-specific Cox PHmodel (Prentice
et al. 1978),

λ1(t; x) = λ01(t) exp(x
Tβ1),

... (6.6)

λK (t; x) = λ0K (t) exp(xTβK ),

where λ0k(·) is an arbitrary baseline hazard for cause k = 1, . . . , K , or (b) the sub-
hazard regression model (Fine and Gray 1999), for a specific k ∈ {1, . . . , K }

λs
k(t; x) = λs

0k(t) exp(x
Tβk), (6.7)

where λs
0k(·) is an arbitrary baseline subhazard for the cause k of interest.

The effect of a covariate on the cause-specific hazard function could be very
different from the effect of the covariate on the corresponding subhazard function.
Thus, the covariate effects βk for cause k in both models can be different although
we use the same notation. Since the subhazard model considers only one event type
of interest, the subscript k will be suppressed. Under the cause-specific Cox model,
the usual partial likelihood can be applied after the competing events are treated as
censored at the time of occurrence, while under the subdistribution hazard regression,
in principle, the competing events are replaced by the infinity (Gray 1988) but always
contributed to the risk set.

The cause-specific hazard regression model (6.6) can be directly fitted via the
R packages by treating competing events as censoring; the coxph() function in
survival package or the frailtyHL() function in frailtyHL package.
The subhazard regression model (6.7) can be fitted via the crr() function in
cmprsk package. The two models can also be fitted via the CSC() and FGR()
in riskRegression package, respectively.

Recently, these two modeling approaches have been extended for clustered com-
peting risks data by using the frailties. Below we present those two extended models,
i.e., cause-specific hazard frailty models and subhazard frailty models.
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6.2 Cause-Specific Hazard Frailty Models

Suppose that there are i = 1, . . . , q clusters where each cluster has j = 1, . . . , ni
observations, so that the total sample size is n = ∑q

i=1 ni . For a subject j in cluster
i , let Ti j be time to the first event and let εi j ∈ {1, 2, . . . , K } be the corresponding
cause of the event. Let Ci j denote independent censoring time. Denote by Ui the
frailty for cluster i . Assumptions 3 and 4 for the frailty models are extended to the
competing-risks frailty models.

Assumption 5:
Given Ui = ui , Ci j is conditionally independent of (Ti j , εi j ) for j = 1, . . . , ni .

Assumption 6:
Given Ui = ui , {Ci j , j = 1, . . . , ni } are conditionally noninformative of (Ti j ,
εi j ).

6.2.1 Models

In the competing risks frailty models, the event times within a cluster may be corre-
lated. Under the Assumptions 5 and 6, we show how the h-likelihood procedures for
the frailty models are extended to the competing-risks frailty models.

6.2.1.1 Univariate Frailty Models

The cause-specific hazard function conditional on the shared log-frailty vi for the
j th observation in the subject i who failed from cause k (k = 1, . . . , K ) is

λi jk(t |vi ) = λ0k(t) exp(x
T
i jβk + vi ), (6.8)

where vi is an unobserved random variable from a univariate distribution with para-
meter θ, λ0k(t) is the unspecified baseline hazard function for event type k and
βk = (βk1,βk2, . . . ,βkp)

T is a p × 1 vector of regression parameters for event type
k, and xi j = (xi j1, . . . , xi jp)T is a p × 1 vector of fixed covariates corresponding
to βk . Let β = (βT

1 ,βT
2 , . . . ,βT

K )T be a Kp × 1 vector of all the regression coef-
ficients for all event types. Similarly, let λ0 = (λ01(·),λ02(·), . . . ,λ0K (·))T denote
the collection of all baseline hazard functions. If there is only one event type K = 1,
then the cause-specific univariate frailty model (6.8) simply reduces to the standard
univariate frailty model in the previous chapters.
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6.2.1.2 Correlated (Multi-component or Multivariate) Frailty Models

The cause-specific univariate frailty model (6.8) has drawbacks. First, the model
assumes that the common frailty vi affects every event types within a cluster, even
though there could be instanceswhere, on average, subjectswho experience one event
type would be more frail than ones who experience another event type. Second, the
model only allows a positive association within a cluster. If the true value of the
log-frailty was greater than zero, then everyone in the cluster would experience an
event early regardless of its event type. In practice, however, there may be cases
where there is a negative association within a cluster, i.e., reducing the risk of dying
from cancer could increase the risk of dying from cardiac disease.

To overcome these limitations, we can consider multivariate frailties for the com-
peting risks events. Consider, the competing risks models with multivariate frailties
vi = (vi1, vi2, . . . , vi K )T ,

λi jk(t |vi ) = λ0k(t) exp(x
T
i jβk + vik), (6.9)

where vik (k = 1, . . . , K ) is the random effect for Type k event in cluster i . With
this model, each cluster will have K random effects, one for each event type. When
K = 2, the model (6.9) can account for a correlation between failure and informative
censoring, where failure is an event type of main interest (Type 1) and informative
censoring can be considered as the competing events (Type 2). Specifically, event
times from cause 1 would follow a cause-specific PH model

λi j1(t |vi1) = λ01(t) exp(x
T
i jβ1 + vi1),

and event times from cause 2 would follow similarly a model

λi j2(t |vi2) = λ02(t) exp(x
T
i jβ2 + vi2).

Here vi1 and vi2 might be positively or negatively correlated. In the traditional cause-
specific analysis, patients who failed from cause 2 are treated as censored for the
analysis of Type 1 events, which ignores a potential correlation between vi1 and vi2.

Remark 6.1 Suppose that there are two types of competing events, Type 1 and Type
2. It is well known that if only the first event (i.e., the event occurring first when
Type 1 and Type 2 are competing) is observed, the joint distribution of times to
those two types of events can be non-identifiable (Tsiatis 1975). In particular, for
any joint distribution with arbitrary dependence between the two event times, there
exists a different joint distribution with independent event times, which gives the
same cause-specific hazards, leading to the same likelihoods. Thus, in the competing
risks frailty models the joint distribution may not be identifiable if we observe only
the first event time. Thus, the unobserved latent event times could not be predicted
because it depends upon unidentifiable joint distribution.
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Abbring and van denBerg (2003) have shown that the cause-specific hazard frailty
models are identifiable under the following two assumptions about covariates and
frailties: (i) variation of the observed regressors: {exp(xTi jβk), k = 1, 2} contains a
nonempty open set in R2 and (ii) expectations of frailties: exp(vi1) and exp(vi2) are
all finite. Accordingly, with the above competing risks PH frailty models, the joint
distribution can be identifiable. �

For the cause-specific frailty models with bivariate frailties above, we may con-
sider a “shared bivariate” frailty model,

vi1 = vi and vi2 = γvi ,

whereγ is a real-valued association parameterwith a reference scale 0 that describes a
dependency between Types 1 and 2 events; in this model, var(vi2) = γ2var(vi1) and
corr(vi1, vi2) = ±1. If γ > 0 [γ < 0], both event rates are positively [negatively]
correlated; a cluster with higher frailty in Type 1 event will experience an earlier
[delayed] Type 2 event, respectively. When γ = 0, Type 2 event rate λi j2(t |vi ) does
not depend on vi and is noninformative for the Type 1 event rate λi j1(t |vi ), so that
the two rates are not associated (Liu et al. 2004; Rondeau et al. 2007).

The shared bivariate frailty model can be extended to the shared K -variate frailty
model with

vi1 = vi , vi2 = γ2vi , . . ., vi K = γK vi ,

which has K frailty parameters α = var(vi1), γ2, . . . γK .

A natural choice for the distribution of (vi1, vi2, . . . , vi K ) is the multivariate nor-
mal distribution with mean 0 and K × K variance-covariance matrix �, character-
ized by �. An advantage of using the multivariate normal distribution is that the
correlation is a natural measure of associations under normality. For �, we may
consider independent (�I ), shared (�S), exchangeable (�E ) and unstructured (�U ).
For example, when K = 3,

�I =
⎛
⎝σ2

1 0 0
0 σ2

2 0
0 0 σ2

3

⎞
⎠ ,

�S =
⎛
⎝ σ2 γ2σ

2 γ3σ
2

γ2σ
2 γ2

2σ
2 γ2γ3σ

2

γ3σ
2 γ2γ3σ

2 γ2
3σ

2

⎞
⎠ ,

�E =
⎛
⎝ σ2

1 ρσ1σ2 ρσ1σ3

ρσ1σ2 σ2
2 ρσ2σ3

ρσ1σ3 ρσ2σ3 σ2
3

⎞
⎠ ,
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and

�U =
⎛
⎝ σ2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

⎞
⎠ ,

respectively.
In�I ,�S ,�E and�U , we need K , K , K + 1, and K (K + 1)/2 frailty parameters,

respectively. Thus, the K -variate shared frailty model is as parsimonious as the K -
independent frailty model, while the number of the frailty parameters �U in the
unstructured frailty model increases rapidly with K . The exchangeable frailty model
�E is parsimonious, but it assumes the common correlation, while the shared frailty
model �S allows the correlation to change signs within a cluster.

Due to potential associations among the frailties, it is not recommended to model
each event type separately as is normally done in the cause-specific analysis. Instead,
the fixed and random effects for all event types need to be estimated jointly.

6.2.2 H-Likelihood Under the Cause-Specific Hazard Frailty
Model

In this section, we present the h-likelihood-based inference under the cause-specific
multivariate frailtymodel (6.9). For the j th observation in the i th cluster, let Ti jk, k =
1, . . . , K , denote time to Type k event. Define time to the first event Ti j as

Ti j = min(Ti j1, Ti j2, . . . , Ti jK ).

Then, the observed event time and the event indicator are, respectively, defined by

Yi j = min(Ti j ,Ci j ) and δi jk = I (Yi j = Ti jk),

where δi jk = 1 if Type k event occurs first (i.e., Yi j = Ti jk) and 0 otherwise. Note
that δi jk is often referred to as a cause-specific event indicator and that it can also be
expressed as

δi jk = I (Ti j ≤ Ci j )I (εi j = k).

Under Assumptions 5 and 6, the conditional likelihood for cluster i under cause-
specific frailty models (6.9) is defined by

Li (β,λ0|vik) =
K∏

k=1

ni∏
j=1

{
λ0k(yi j )e

xTi jβk+vik

}δi jk
exp

{
−�0k(yi j )e

xTi jβk+vik

}
.

To unify derivation of the h-likelihood procedures, we use vik = zTi jvk , giving the
linear predictor ηi j ,
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ηi j = xTi jβk + zTi jvk,

where zi j = (zi j1, zi j2, . . . , zi jq)T is a q × 1 cluster indicator vector such that zi jm =
1 if i = m and 0 otherwise, and vk = (v1k, v2k, . . . , vqk)

T is a q−dimensional vector
of the random effects from all clusters but only for event k.

We now show how to construct the h-likelihood function under a competing risks
setting where, for simplicity, two types of events (k = 1 or 2) exist. The results can be
easily generalized to K event types. From the h-likelihood construction of Appendix
4.7.1, the h-likelihood for cluster i under the cause-specific hazards frailty model
(6.9) is given by

hi = log {Li (βk , λ0k |vik)L2i (θ; vi )} = log

⎧⎨
⎩
∏
k

∏
j

L1i jk(βk , λ0k; yi j , δi jk |vik)L2i (θ; vi )

⎫⎬
⎭ ,

where L1i jk(βk,λ0k; yi j , δi jk |vik) is the conditional likelihood of (yi j , δi jk) given
Vik = vik with parameters (βk,λ0k) and L2i (θ; vi ) is the likelihoodof vi = (vi1, vi2)

T

with parameter θ. Here, L1i jk takes the form of

L1i jk(βk,λ0k; yi j , δi jk |vik) =
[
λ0k(yi j )e

xTi jβk+zTi jvk
]δi jk

exp
(
−�0k(yi j )e

xTi jβk+zTi jvk
)

.

Assuming that Vi = (Vi1, Vi2)
T follows a bivariate normal distribution with mean 0

and covariance matrix �, its joint probability density is given by

fi (vi ; θ) = |2π�|−1/2 exp

(
−1

2
vT
i �−1vi

)
.

Let v = (v11, v21, . . . , vq1, v12, v22, . . . , vq2)
T be a 2q-dimensional vector of all ran-

dom effects, for all clusters and event times. Notice that the random effects are
arranged by event type so that all of the random effects for the same event type are
adjacent. Event times within a cluster are conditionally independent given the frailty
Vi = vi and the frailties Vi are iid random variables. Thus, the h-likelihood for the
cause-specific hazard frailty models (6.9) becomes

h(β,λ0, v, θ) =
∑
i

hi =
∑
i jk

�1i jk(βk,λ0k; yi j , δi jk |vik) +
∑
i

�2i (θ; vi ) (6.10)

where �1i jk(·) = log L1i jk(·) and �2i (·) = log L2i (·), and

�1i jk(βk,λ0k; yi j , δi jk |vik) = δi jk
(
logλ0k(yi j ) + xTi jβk + zTi jvk

)
−�0k(yi j ) exp

(
xTi jβk + zTi jvk

)

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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and

�2i (θ; vi ) = −1

2
log |2π�| − 1

2
vT
i �−1vi .

6.2.3 Partial H-Likelihood via Profiling

To eliminate the high-dimensional baseline hazard function λ0k(yi j ) in (6.10), again
we apply the profiling method to the h-likelihood as in Chap. 4. First, define the
cumulative baseline hazard function for event type k as a step function with jumps
at observed event times

�0k(t) =
∑

r : y(kr)≤t

λ0kr ,

where y(k1) < y(k2) < · · · < y(kDk ) denote the Dk ordered unique event times of type
k and λ0kr = λ0k(y(kr)). Let d(kr) be the number of events of Type k that occur at
time y(kr),

D(kr) = {i j : δi jk = 1 and yi j = y(kr)}

be a set of all individuals who have a Type k event at time y(kr),

sTx(kr) =
∑

i j∈D(kr)

xTi j and sTz(kr) =
∑

i j∈D(kr)

zTi j

be the sums of the vectors xTi j and zTi j over D(kr), and

R(kr) = {i j : yi j ≥ y(kr)}

be the risk set at time y(kr). By using these notations, the h-likelihood (6.10) can be
written as

h =
2∑

k=1

⎡
⎣ Dk∑

r=1

d(kr) logλ0kr+sTx(kr)βk+sTz(kr)vk−λ0kr

∑
i j∈R(kr)

exp
(
xTi jβk + zTi jvk

)
⎤
⎦

+
q∑

i=1

�2i (θ; vi ), (6.11)

since λ0kr only depends on the subscript k and r when the likelihood function is
evaluated at the r th event time of type k. By replacing λ0kr in (6.11) with the non-
parametric MHLE, obtained from ∂h/∂λ0kr = 0,

λ̂0kr = d(kr)∑
i j∈R(kr)

exp(xTi jβk + zTi jvk)
,

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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the profile h-likelihood h∗ = h|λ0=λ̂0
is given as a function of β, v, and θ only:

h∗(β, v, θ) =
2∑

k=1

⎡
⎣ Dk∑
r=1

d(kr) log λ̂0kr+sTx(kr)βk+sTz(kr)vk − λ̂0kr

∑
i j∈R(kr)

exp
(
xTi jβk + zTi jvk

)⎤⎦

+
q∑

i=1

�2i (θ; vi ).

Then, h∗ in the cause-specific frailty model becomes again proportional to the partial
h-likelihood h p, given by

h p(β, v, θ) =
∑
i jk

δi jk
(
xTi jβk + zTi jvk

)−
∑
kr

d(kr) log

⎧⎨
⎩
∑

i j∈R(kr)

exp
(
xTi jβk + zTi jvk

)
⎫⎬
⎭

+
q∑

i=1

�2i (θ; vi ), (6.12)

since
h∗ = h p +

∑
kr

d(kr){log(d(kr)) − 1}

and the last term does not depend upon the unknowns (v,β, θ).

6.2.4 Fitting Procedure

Derivations of the gradient vector of τ = (β, v) given θ and the observed informa-
tion matrix from the partial h-likelihood h p, and those related to θ are provided in
Appendix 6.7. In particular, below we derive the ILS equations and useful matrix
forms for estimating (v,β, θ).

• Matrix forms for estimating βk (k = 1, 2) and v:

∂h p

∂βk
= XT (δk − μk),

∂h p

∂v
=
(
ZT (δ1 − μ1)

ZT (δ2 − μ2)

)
− (�−1 ⊗ Iq)v.

Here, Z is a n × q cluster indicator matrix whose i j th row is zTi j , δk is an n × 1 Type

k event indicator vector with i j th element δi jk , μk = �̂0k exp(ηk) and ⊗ denotes the
Kronecker product.



6.2 Cause-Specific Hazard Frailty Models 137

Let X =
(
X 0
0 X

)
, Z =

(
Z 0
0 Z

)
and W∗ =

(
W ∗

1 0
0 W ∗

2

)
.

Here W ∗
k = −∂2h p/∂ηk∂ηT

k with ηk = Xβk + Zvk . Then, the ILS equations for
(β, v) with β = (βT

1 ,βT
2 )T are the same forms as in (4.12) with R = 0 due to the

normality of the frailties, given by

(
XTW∗X XTW∗Z
ZTW∗X ZTW∗Z + Q

)(
β̂
v̂

)
=
(
XTw∗
ZTw∗

)
, (6.13)

where Q = −∂2�2/∂v2 = �−1 ⊗ Iq is a Kq × Kq matrix and w∗ = (w∗T
1 , w∗T

2 )T

with w∗
k = W ∗

k ηk + (δk − μk). The derivation of (6.13) is given in Appendix 6.7.1,
including a simple univariate frailty case.

Let

P =
(
X Z
0 Ik∗

)
and V =

(
W∗ 0
0 Q

)
,

where k∗ ≡ K × q = 2q. Then the ILS Eq. (6.13) reduce to a simple matrix form

(PTVP)τ̂ = PT y∗
0, (6.14)

where y∗
0 = (w∗T , 0T )T . �

• Matrix forms for estimating θ = (σ11,σ22,σ12)
T :

The next step is to find the partial REMLE of frailty parameters θ by maximizing
the partial restricted likelihood,

pβ,v(h p) =
[
h p − 1

2
log{det(Hp/2π)}

]∣∣∣∣
(β, v) = (β̂(θ), v̂(θ))

, (6.15)

where
Hp ≡ H(h p;β, v) = −∂2h p/∂(β, v)2 = PTVP

is a K (p + q) × K (p + q)observed informationmatrix from the partial h-likelihood
h p.

The partially restricted likelihood (6.15) can be rewritten as

pβ,v(h p) = ĥ p − 1

2
log{det(Ĥp)} + K (p + q)

2
log(2π),

where ĥ p = h p(β̂(θ), v̂(θ), θ) and Ĥp = Hp(β̂(θ), v̂(θ), θ) are the partial
h-likelihood and observed information matrix evaluated at the current estimates of
β and v, respectively. Derivations of the gradient vector of θ and the correspond-
ing observed information matrix are also provided in Appendix 6.7.2. In particular,

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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for the univariate cause-specific model (6.8) with the log-normal frailty, the partial
REMLE of σ2 = var(vi ) has the same form as the standard univariate lognormal
frailty model in (4.15).

6.3 Subdistribution Hazard Frailty Models

6.3.1 Models

In this section, we are interested in modeling the subhazard based on the CIF. Here,
the observable random variables are expressed as

Yi j = min(Ti j ,Ci j ) and ξi j = I (Ti j ≤ Ci j )εi j ,

where Ci j is an independent censoring and ξi j ∈ {0, 1, 2, . . . , K } because εi j ∈
{1, 2, . . . , K }. For simplicity, consider the two event types (k = 1, 2). Then, ξi j ∈
{0, 1, 2}, where 1 is for an event of interest, 2 for a competing event and 0 for
censoring.

The CIF for events from cause 1 (i.e., εi j = 1) is defined by

F1(t) = Pr(Ti j ≤ t, εi j = 1), (6.16)

which represents the probability that an individual will experience a Type 1 event by
time t . The corresponding hazard function of the subdistribution (subhazard function)
is defined by

λs
1(t) = −d log{1 − F1(t)}

dt
.

Fine andGray (1999) first introduced this model to directly associate the effects of
covariates with the CIF through the subhazard for a particular event type of interest
(e.g., Type 1). Katsahian et al. (2006) and Christian (2011) have extended the Fine-
Gray model to a subhazard frailty model with one random component to analyze
multi-center competing risks data. Ha et al. (2016a) made a further extension to
the general subhazard frailty model allowing the multicomponent random effects
and their correlation. For example, in multicenter clinical trials, we may have a
two-component model allowing random center and random treatment effects, where
the random treatment effect means a random treatment-by-center interaction. In
particular, a model allowing for the correlation between random center and random
treatment effects can properly account for the heterogeneities from the treatment
effects across centers as well as between-center variation.

Similar to Sect. 5.1.2, denote by vi = (vi0, vi1, . . . , vi,m−1)
T an m-dimensional

vector of the unobserved log-frailties associated with the i th (i = 1, . . . , q) center.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_5
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Suppose that Assumptions 5 and 6 hold and we are interested in assessing the effects
of covariates on the conditional CIF for cause 1 given the log-frailties vi , defined by

F1(t |vi ) = Pr(Ti j ≤ t, εi j = 1|vi ).

The conditional subhazard function for cause 1 given vi is modeled as

λs
i j1(t |vi ) = λs

01(t) exp(ηi j ), (6.17)

where λs
01(·) is an unknown baseline subhazard function,

ηi j = xTi jβ + zTi jvi

is a linear predictor for the log-hazard, and xi j = (xi j1, . . . , xi jp)T and
zi j = (zi j1, . . . , zi jm)T are p × 1 and m × 1 covariate vectors corresponding to the
fixed effects β = (β1, . . . ,βp)

T , and log-frailties vi , respectively. We assume that
the log-frailties vi are independent and follow a multivariate normal distribution,
i.e., vi ∼ Nm(0, �i (θ)), where the covariance matrix �i (θ) depends on a vector of
unknown parameters θ. Model (6.17) may include any frailty covariance structures
mentioned in Sect. 6.2.1.

6.3.2 H-Likelihood Under the Subhazard Frailty Model

In this section, we first show how to construct the h-likelihood for the semiparametric
subhazard frailty model (6.17).

6.3.2.1 Complete Data Case

For simplicity, we first outline the h-likelihood approach for competing risks data
without censoring, i.e., when ξi j = εi j ∈ {1, 2, . . . , K }. Without the loss of general-
ity, we assume K = 2. Let t(r) denotes the r th (r = 1, . . . , D) smallest distinct event
time of Type 1 among ti j ’s, where ti j is the observed value of Ti j and D is the total
number of distinct Type 1 events. Let R0(r) denote a risk set at t(r):

R0(r) = R(t(r)) = {(i, j) : ti j ≥ t(r) or (ti j ≤ t(r) and εi j 	= 1)}.

In contrast to the Cox PH model, the risk set R0(r) includes not only individuals
who have not failed by t(r) but also those who have previously failed from the com-
peting causes. Since the functional form of the baseline subhazard function λs

01(t)
is unknown, at each ti j , the baseline cumulative subhazard function �s

01(t) can be
written as



140 6 Competing Risks Frailty Models

�s
01(ti j ) =

∑
r

λs
01r I {(i, j) ∈ R0(r)},

where λs
01r = λs

01(t(r)) is the subhazard function for Type 1 events at t(r). Then,
under Assumptions 5 and 6, the h-likelihood for the subhazard frailty models (6.17)
is defined by

h = h(β, v,λs
01, θ) =

∑
i j

�1i j +
∑
i

�2i , (6.18)

where

∑
i j

�1i j =
∑
i j

I (εi j = 1){logλs
01(ti j ) + ηi j } −

∑
i j

{�s
01(ti j ) exp(ηi j )}

=
∑
r

d0(r) logλs
01r +

∑
i j

I (εi j = 1)ηi j

−
∑
i j

[∑
r

λs
01r I {(i, j) ∈ R0(r)} exp(ηi j )

]

is the sum of the logarithm of the conditional density function for Ti j and εi j given
vi , �1i j = �1i j (β,λs

01; ti j , εi j |vi ), and

�2i = �2i (θ; vi ) = −1

2
[log det{2π�i (θ)}] − 1

2
vT
i �i (θ)

−1vi

is the logarithm of the density function for vi with parameters θ = (σ2
0,σ

2
1,σ01)

T ,
i.e., the log-likelihood for vi . Here, v = (vT

1 , . . . , vT
q )T , vi being a bivariate random

vector because K = 2, λs
01 = (λs

011, . . . ,λ
s
01D)T , and d0(r) is the number of Type 1

events at t(r).

• Partial h-likelihood via profiling: To eliminate the high-dimensional nuisance
parameters λs

01, we use again the profile h-likelihood h∗, given by

h∗ = h|λs
01=λ̂s

01
=
∑
i j

�∗
1i j +

∑
i

�2i , (6.19)

where

λ̂s
01r (β, v) = d0(r)∑

(i, j)∈R0(r)
exp(ηi j )

are the solutions of the estimating equations, ∂h/∂λs
01r = 0, for r = 1, . . . , D. Since

∑
i j

�∗
1i j =

∑
i j

�1i j |λs
01=λ̂s

01
=
∑
r

d0(r) log λ̂s
01r +

∑
i j

I (εi j = 1)ηi j −
∑
r

d0(r),
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we see that the conditional profile likelihood
∑

i j �
∗
1i j is proportional to the condi-

tional partial likelihood �p:

∑
i j

�∗
1i j = �p +

∑
r

d0(r){log d0(r) − 1},

where

�p =
∑
i j

I (εi j = 1)ηi j −
∑
r

d0(r) log

{ ∑
(i, j)∈R0(r)

exp(ηi j )

}
,

which is the log conditional partial likelihood given vi for complete data. Thus, the
profile h-likelihood in (6.19) becomes again the partial h-likelihood

h p = �p +
∑
i

�2i ,

which is an extension of the Fine-Gray’s partial likelihood to the subhazard frailty
models without censoring.

6.3.2.2 Incomplete Data Case

Consider an incomplete data case with right censoring, where ξi j ∈ {0, 1, 2}. Let R(r)

be the risk set at y(r), which is the r th smallest distinct event time of Type 1 event
among the observed values yi j ’s, defined by

R(r) = R(y(r)) = {(i, j) : yi j ≥ y(r) or (yi j ≤ y(r) and ξi j > 1)}.

To define the h-likelihood for the incomplete data, we apply the inverse probability
of censoring weighting (IPCW; Fine and Gray 1999) to the h-likelihood (6.18). The
resulting weight is

wi j = wi j (y(r)) = Ĝ(y(r))

Ĝ(yi j ∧ y(r))

for a subject j in the cluster i at y(r), and Ĝ(·) is the Kaplan–Meier estimate of
the survival function for the censoring times. Here, wi j = 1 as long as individuals
have not failed by time y(r) (i.e., yi j ≥ y(r); the first condition of R(r)), whereas
wi j ≤ 1 and decreasing over time y(r) if they failed from Type 2 event before y(r)

(i.e., yi j ≤ y(r) and ξi j > 1; the second condition of R(r)) because the further the time
point (y(r)) moves away from Type 2 event (yi j ), the smaller the weight becomes
(Pintilie 2006). We first define the weighted h-likelihood hw based on the IPCW as

hw =
∑
i j

�w1i j +
∑
i

�2i , (6.20)
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where

∑
i j

�w1i j =
∑
r

d(r) logλs
01r +

∑
i j

δi jηi j

−
∑
i j

[∑
r

λs
01r I {(i, j) ∈ R0(r)}wi j exp(ηi j )

]
.

Here, δi j = I (ξi j = 1) is an event indicator representing whether subject j from
cluster i experiences a Type 1 event, and d(r) is the number of Type 1 events at y(r).

• Weighted partial h-likelihood via profiling: The weighted profile h-likelihood
h∗

w is defined by

h∗
w = hw|λs

01=λ̂w
01
, (6.21)

where

λ̂w
01r (β, v) = d(r)∑

(i, j)∈R(r)
wi j exp(ηi j )

are the solutions of the estimating equations, ∂hw/∂λs
01k = 0, for r = 1, . . . , D.

Similarly to the previous section, it can shown that h∗
w is proportional to the

weighted partial h-likelihood h pw, given by

h∗
w = h pw +

∑
r

d(r){log d(r) − 1}. (6.22)

Here
h pw = �pw +

∑
i

�2i ,

where �pw = ∑
i j δi jηi j −∑r d(r) log

{∑
(i, j)∈R(r)

wi j exp(ηi j )

}
is the conditional

partial likelihood.
In the absence of frailty, h pw becomes the weighted partial likelihood of Fine and

Gray (1999). Hereafter, we use the estimation procedure based on h pw for model
(6.17), which handles the general censoring case.

• Fitting procedure

The h-likelihood procedures for the correlated standard frailty model presented in
Sect. 5.1.2 can be straightforwardly extended to the subhazard model (6.17) by using
the weighted partial h-likelihood h pw. That is, given the frailty parameters θ, the
weighted MHLEs of τ = (βT , vT )T are obtained by solving the score equations,
∂h pw/∂τ = 0. It is shown that given θ, the score equations lead to the ILS equations
for τ (Appendix 6.7.3):

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

)(
β̂
v̂

)
=
(
XTw∗
ZTw∗

)
, (6.23)

where X and Z are n × p and n × q∗ (q∗ = Kq) model matrices for the fixed effects
β and the random effects v whose i j th row vectors are xTi j and zTi j , respectively, the
form of W ∗ with the IPCW weight wi j is the symmetric weight matrix given in
(4.35) of Appendix 4.7.4, and Q = −∂2�2/∂v2 = diag(�−1

1 , . . . , �−1
q ) is a q∗ × q∗

matrix. Here
w∗ = W ∗η + (δ − μ)

withη = Xβ + Zv andμ = exp(logw + log�s
01 + η)wherew is the IPCWweights.

In the absence of frailty, the ILS equations in (6.23) reduces to the Fine and Gray
(1999) estimating equation:

(XTW ∗X)β̂ = XTw∗.

Note that the ILS Eq. (6.23) further reduce to a simple form

(PTVP)τ̂ = PT y∗
0,

where

P =
(
X Z
0 Iq∗

)
, V =

(
W ∗ 0
0 Q

)
and y∗

0 = (w∗T , 0T )T .

For estimation of θ, we use the weighted partial restricted h-likelihood pτ (h pw),
given by

pτ (h pw) =
[
h pw − 1

2
log det

{
Hpw/(2π)

}]∣∣∣∣
τ=τ̂

, (6.24)

where τ̂ = τ̂ (θ) = (β̂T (θ), v̂T (θ))T and Hpw = H(h pw; τ ) = −∂2h pw/∂τ 2 is an
information matrix for τ . The weighted PREMLEs for θ are obtained by solving
iteratively

∂ pτ (h pw)

∂θ
= 0. (6.25)

Note here that

∂ pτ (h pw)

∂θ
= −1

2
tr

(
�−1 ∂�

∂θ

)
−1

2
v̂T

(
∂�−1

∂θ

)
v̂ − 1

2
tr

(
Ĥ−1

pw

∂ Ĥpw

∂θ

)
,

where � = BD(�1, . . . , �q) is a q∗ × q∗ block diagonal matrix and Ĥpw Ĥpw(θ) =
H(h pw; τ )|τ=τ̂ (θ).

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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• The estimated standard errors
In this book, the SE estimates for τ̂ − τ and θ̂ are, respectively, obtained from the
inverses of the corresponding Hessian matrices,

Hpw = −∂2h pw

∂τ 2
and − ∂2 pτ (h pw)

∂θ2
.

In particular, Fine and Gray (1999) proposed a robust/sandwich variance estimator
to estimate var(β̂) using empirical process theory because the martingale properties
break due to the use of IPCW and thus the standard asymptotic theories are no longer
valid. In the subhazard frailty model with one frailty term, Katsahian and Boudreau
(2011) presented a sandwich variance estimator of β̂ using Gray’s (1992) method,
estimated from

vars(τ̂ ) = H−1
pw H1H

−1
pw,

where τ = (βT , vT )T , H1 = H(�1pw; τ ) = −∂2�1pw/∂τ 2 and �pw is the first term
of h pw. Thus,

var(τ̂ ) = H−1
pw ≥ H−1

pw H1H
−1
pw, (6.26)

since Hpw ≥ H1. Ha et al. (2016a) showed via a simulation study that the SEs of β̂
from var(τ̂ ) = H−1

pw in (6.26) perform better than those from vars(τ̂ ) = H−1
pw H1H−1

pw
because the sandwich variance estimators often underestimate the true variances in
the finite samples: see also Therneau et al. (2003).

6.4 Examples

In this section, we illustrate the h-likelihood approach for the competing risks frailty
models with a breast cancer dataset, introduced in Sect. 1.2.6. First, we use the cause-
specific hazard frailty to estimate the effect of tamoxifen on different types of failures
when subjects can experience multiple events under competing risks. Second, the
effect of tamoxifen on local or regional recurrence will be assessed adjusting for the
possible center effects using the subhazard frailty model.

6.4.1 Cause-Specific Frailty Model for Breast Cancer Data

6.4.1.1 The Data

This analysis will use a high risk subset of patients from the B-14 study, with tumor
size greater than 2.5cm. In this subset, there were 731 women with follow-up (371

http://dx.doi.org/10.1007/978-981-10-6557-6_1
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Table 6.1 Event type by treatment group for all observations including multiple observations from
the same subject (n = 731 patients): breast cancer data

Types of Event Placebo Tamoxifen Total

Type 1: Local or regional recurrence 73 40 113
(13.45%)

Type 2: Second primary in contralateral breast 32 32 64
(7.62%)

Type 3: Distance recurrence, other second
primary or death

204 184 388
(46.19%)

No event (Censoring) 127 148 275
(32.74%)

placebo and 360 tamoxifen) who were eligible for the study. The median age for
women on either placebo or treatment was 55years. A series of multiple types of
treatment failure were possible; local, regional, or distant recurrence of original can-
cer as well as a new second primary cancer or death because patients were followed
as long as they did not withdraw their consents.

In this analysis, the types of failures will be divided into three event types:

Type 1: a local or regional recurrence,
Type 2: a new second primary cancer in the contralateral breast,
Type 3: a distant recurrence, other new second primary cancer or death.

We assume that these three types of events compete against each other because
once a recurrence or second primary occurs, non-protocol therapies are often admin-
istered after the event, which would prohibit an accurate assessment of the effect of
the treatment solely on that particular event type under consideration.

Table6.1 gives the number of events by treatment group for all observations,
including multiple observations from the same subject. The most common event
type was Type 3. Subjects receiving placebo had more events in all types, except
that both groups had exactly the same number of Type 2 events. The original B-14
manuscript reported that there was a significant reduction in new primary cancers
in the contralateral breast as the first events for women receiving tamoxifen in the
B-14 study. Based on the counts of Type 2 events in Table6.1, it is clear that this
analysis will not reach the same conclusion because it allows multiple events per
patient. This difference is also due to the fact that this analysis used only a subset
of the original data and would have much less power to detect a difference between
treatment groups. About 57% of the 95 subjects who hadmultiple events experienced
both Type 1 and Type 3 events and about 20% had Type 2 and Type 3 events.

6.4.1.2 Analyses from Cause-Specific Hazard Models

A cause-specific hazard frailty model with age and treatment as covariates was fitted
assuming both univariate and exchangeable correlation structures among the random
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effects affecting different types of events. Here, the treatment is coded as 1 for
tamoxifen and 0 for placebo. The regression coefficients and estimated variance of
the random effects assuming a univariate normal distribution with only one random
effect per subject are in the upper left-hand corner of Table6.2. Adjusted for age,
the relative risk of a Type 1 event for an individual on tamoxifen compared to the
same individual being on placebo is exp(−0.742) = 0.48 with a 95% confidence
interval of exp(−0.742 ± 1.96 × 0.226) = (0.31, 0.74). The estimated variance of
the random effects is 1.883, suggesting a fairly heterogeneous group of subjects.
Ignoring the correlation among event types, fitting the standard frailty model for
each event type by treating other events as independent censoring (Gorfine and Hsu
2011) results in smaller estimates of the treatment effect; fitting this naive model
is equivalent to fitting a cause-specific hazard frailty model with an independent
assumption among three random effects per subject (one random effect per event
type; the upper right-hand corner of Table6.2).

In Table6.2, Exchangeable ⊃ Indep, and Exchangeable ⊃ Shared ⊃ Univariate.
Between Exchangeable and Indep models, the difference of the partial restricted
likelihood based on −2pτ (h p) is 30.7 (> 3.84), so that the null hypothesis of ρ = 0
is rejected. Among three models of Univariate, Shared, and Exchangeable, the LRT
selects the univariate model as the final model. Here, the rAIC also confirms this
choice, even though the cAIC selects the shared model.

6.4.1.3 Predicted CIF and Frailty Effect

Figure6.2 shows the predicted CIF curves of Type 1 event for a 55year old (the
median age)woman in each treatment group from the cause-specific univariate frailty
model. To be brief, for a given set of the covariates x0 and a known frailty value v0,
the predicted CIF for Type k events can be predicted from

F̂k(t |x0, v0) =
∑
yi j≤t

Ŝ(yi j |x0, v0)λ̂k(yi j |x0, v0),

where Ŝ(yi j |x0, v0) = exp{−∑k �̂k(yi j |x0, v0)}, �̂k(yi j |x0, v0) = �̂0k(yi j ) exp
(xT0 β̂k + v0),

�̂0k(yi j ) =
∑

r :y(kr)≤yi j

δi jk∑
i j∈Rkr

exp(xTi j β̂k + v̂i )
,

and hence

λ̂k(yi j |x0, v0) = δi jk exp(xT0 β̂k + v0)∑
i j∈Rkr

exp(xTi j β̂k + v̂i )
.

The incidence of Type 1 events increases faster for the placebo group compared
to the tamoxifen group. Ten years after surgery, an average women on tamoxifen
has a 7% chance of experiencing a local or regional recurrence while a women on
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Fig. 6.2 Predicted
cumulative incidence of
Type 1 events, for an average
subject V = 0, high-risk
subject V = 0.82 (75th
percentile), and low-risk
subject V = −1.07 (25th
percentile)

Fig. 6.3 Estimated
cause-specific frailties versus
the first observed event time
for each subject; boxplot on
the right-hand side is the
distribution of the estimated
cause-specific random
effects

placebo has a 13% chance. This probability increases for women at higher risks (75th
percentile of the estimated frailty distribution).

The estimated 25th and 75th percentiles of the frailties are−1.07 and 0.82, respec-
tively. In Fig. 6.3, the estimated cause-specific frailties are larger in general for sub-
jects who had an event early and decrease for later event times. Thus, those subjects
who had an event early are more frail than those who survived longer, as expected.
The estimated cause-specific random effects (i.e., log-frailties) for all subjects who
did not have an event is less than 0 (similarly as in Fig. 4.1), which may be reasonable
since there is no evidence from the observed data that these subjects should be at
higher risk than an average person.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Additionally, the cause-specific hazard frailty model was fitted assuming a trivari-
ate normal distribution with one random effect per event type (three random effects
per subject) by using an exchangeable correlation structure. The estimated regression
coefficients along with their standard errors and confidence intervals as well as the
estimated variance components are given under the exchangeable case in Table6.2.
The estimated treatment effects for each event type are smaller than the corresponding
estimates for the univariate case in Table6.2, but the patterns were similar; patients
on tamoxifen had a significantly lower risk of a Type 1 event compared to patients
on placebo. Tamoxifen did not significantly lower the risk for other event types. The
estimated variance of the random effects for each event type are all similar ranging
from 0.706 to 0.789. There is also a strong positive correlation between the cause-
specific random effects, indicating that patients who experienced a local or regional
recurrence will also be at a greater risk for developing a second primary cancer in
the contralateral breast as well as any of Type 3 events. This is because patients who
have a larger frailty for Type 1 event would also tend to have a larger frailty for Type
2 and Type 3 events, and larger frailties would increase the risk of failure for an
individual or a cluster.

We also fitted the cause-specific “shared” frailty model with three types of events:

λi j1(t |vi ) = λ01(t) exp(x
T
i jβ1 + vi ),

λi j2(t |vi ) = λ02(t) exp(x
T
i jβ2 + γ2vi ),

λi j3(t |vi ) = λ03(t) exp(x
T
i jβ3 + γ3vi ),

where the shared log-frailties vi ∼ N (0,σ2) (i = 1, . . . , q). The fitted results of the
model above are also given in Table6.2, but they are similar to the results from the
cause-specific univariate frailty model with γ2 = γ3 = 1, since γ̂2 and γ̂3 are near 1.

In addition, we analyzed the data set after combining Types 2 and 3 events into
Type 2 event. Here, we considered four models with univariate, independent, shared
and BN frailties. The fitted results are all given in Table6.3, which shows similar
estimates of the regression parameters. In Table6.3, BN ⊃ Shared ⊃ Univariate, and

Table 6.3 Estimation results of cause-specific hazard frailty models: breast cancer data

Model Event Age(SE) Trt(SE) σ̂2
1 σ̂2

2 σ̂12 −2pτ (h p)

Univ Type 1 −0.016(0.010) −0.741(0.226) σ̂2

Type 2 0.014(0.007) −0.249(0.144) 1.87 – – 6954.7

Indep Type 1 −0.017(0.009) −0.633(0.199) 0.12 –

Type 2 0.014(0.005) −0.123(0.094) – 0.001 – 6992.4

Shared Type 1 −0.016(0.010) −0.738(0.223) σ̂2 γ̂2

Type 2 0.013(0.007) −0.259(0.149) 1.74 1.10 – 6952.9

BN Type 1 −0.016(0.010) −0.734(0.223)

Type 2 0.013(0.007) −0.246(0.143) 1.69 1.79 1.74 6883.1

Univ, Univariate frailty model
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Table 6.4 First observed event types by two treatment arms (n = 2817 patients)

Types of Event Placebo Tamoxifen Total

Type 1: Local or regional
recurrence

205 109 314
(11.15%)

Type 2: Distance recurrence,
second primary, or death

671 632 1303
(46.25%)

No event (Censoring) 537 663 1200
(42.60%)

BN⊃ Indep. Between the Indep and BNmodels, the LRT selects the BNmodel since
the difference is 69.8(> 3.84). Between the Shared and BN models, it also selects
the BN model. Thus, we chooses the BN model as the final model.

6.4.2 Subhazard Frailty Model for Breast Cancer Data

6.4.2.1 The Data

In the breast cancer data, a total of 2,817 eligible patients from 167 distinct centers
were followed up for about 20years since randomization. The number of patients
per center varied from 1 to 241, with the mean of 16.9 and the median of 8. The
patients were randomized to one of two treatment arms, tamoxifen (1413 patients)
or placebo (1404 patients). The average age was 55 and the average tumor size was
about 2cm.

The aim of this analysis is to investigate the effect of treatment on local or regional
recurrence. Here we consider two event types:

Type 1: local or regional recurrence,
Type 2: a new primary cancer, distant recurrence or death.

Only the event that occurs first is of interest in this analysis, so that the repeated
event times are not considered. Table6.4 shows the distribution of first observed event
types by two treatment arms; Type 1 is an event of interest (314 patients, 11.15%),
Type 2 is a competing event (1,303 patients, 46.25%), and the remaining patients are
censored at the last follow-up (1,200 patients, 42.60%).

Figure6.4 presents the estimated CIFs for the two treatment arms. The tamoxifen
group has lower CIFs compared to placebo group for both Type 1 and Type 2 events.
For Type 1 events, the difference in the CIFs between two arms seems to be more
noticeable than for Type 2 events. In particular, the estimated probability that a patient
in tamoxifen group would experience Type 1 event within 10 years after surgery is
5%, while for a patient in the placebo group it is 10%.
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Fig. 6.4 Estimated CIFs for
tamoxifen vs placebo for the
two types of events in the
breast cancer data

6.4.2.2 Analyses Using the Subhazard Models

As mentioned in Chap.5, in multicenter randomized clinical trials the treatment
effects or baseline risks may vary among centers. This situation can also be applied
to the current multicenter competing risks data. For data analysis, we consider three
covariates of interest: treatment (xi j1 = 1 for tamoxifen and 0 for placebo), age
(xi j2), and tumor size (xi j3) as continuous covariates. Let vi0 and vi1 be the random
center effects and the random treatment effects (i.e., random treatment-by-center
interaction), respectively. The event type of interest is Type 1, and three models
are considered, including the subhazards model without random effects and two
subhazard frailty models,

λs
1i j (t |v) = λs

01(t) exp(ηi j ),

where ηi j is the linear predictor:

M1 (F-G): ηi j = β1xi j1 + β2xi j2 + β3xi j3;
M2 (Center): ηi j = vi0 + β1xi j1 + β2xi j2 + β3xi j3, with vi0 ∼ N (0,σ2

0);
M3 (Corr): ηi j = vi0 + (β1 + vi1)xi j1 + β2xi j2 + β3xi j3, with (vi0, vi1) ∼ BN ,

where “F-G”, “Center”, and “Corr” indicate Fine-Gray model without frailties, the
subhazard frailty model with a random center effect vi0 and the subhazard cor-
related frailty model with vi0 ∼ N (0,σ2

0), vi1 ∼ N (0,σ2
1) and ρ = Corr(vi0, vi1),

respectively. Here M3 (σ2
0 ≥ 0,σ2

1 ≥ 0, ρ 	= 0) is our full model and the others are
its sub-models by assuming the null components, i.e., M1 (vi0 = 0, vi1 = 0;σ2

0 =
0,σ2

1 = 0) and M2 (vi1 = 0;σ2
0 ≥ 0,σ2

1 = 0). The estimation results are listed in
Table6.5.

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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Table 6.5 Results for fitting the three subhazard frailty models to Type 1 event of the breast cancer
data

Model β̂1(SE) β̂2(SE) β̂3(SE) σ̂2
0(SE) σ̂2

1(SE) σ̂01(SE)
[ρ̂]

−2pτ (h pw)

M1 −0.667 −0.026 0.082 – – – 4870.5

(F-G) (0.119) (0.005) (0.042)

M2 −0.672 −0.026 0.081 0.043 – – 4869.4

(Center) (0.119) (0.005) (0.042) (0.051)

M3 −0.658 −0.026 0.079 0.091 0.249 −0.108 4865.7

(Corr) (0.137) (0.005) (0.043) (0.026) (0.073) (0.037)
[−0.721]

β1, Treatment effect; β2, Age effect; β3, Tumor-size effect

Note that M3 ⊃ M2 ⊃ M1. First, the null hypothesis H0 : σ2
0 = 0 (i.e., no

center effect) lies on the boundary of the parameter space. From Table6.5, we
obtain the difference of 1.1 in −2pβ,v(h pw) between M1 and M2 (with p-value
= 0.5P(χ2

1 > 1.1) = 0.147) based on the asymptotic statistic of χ2
0:1, as shown in

Sect. 4.3.2, indicating that the random center effect is not significant. Furthermore,
the difference betweenM2 andM3 is 3.7 (with p-value= 0.106) based on the asymp-
totic statistic of χ2

1:2 (Verbeke and Molenberghs 2003), leading to acceptance of the
null hypothesis of σ2

1 = 0; the p-value (Sect. 4.3.2) of 0.106 is calculated as

p = P{χ2
1:2 > 3.7}

= 1

2
P(χ2

1 > 3.7) + 1

2
P(χ2

2 > 3.7)

= 0.10582.

Thus, the LRTs support the simplest model M1. Later, we show how to confirm the
heterogeneity (i.e., M1).

In all three subhazardmodels, only two fixed effects (β j , j = 1, 2) are significant,
except β3. In particular, tamoxifen significantly reduces the risk of local or regional
recurrence (Type 1 event) as compared to patients who receive placebo. We also
observe that overall there is no substantial change in the fixed-effects estimates,
although the effect of the main treatment (β1) slightly decreases due to the increased
standard error when both random components and their correlation are included. In
M2 and M3, the variance components (σ2

0 and σ2
1) indicate the amount of variation

between centers in the baseline risk (i.e., center effect) and in the treatment effect,
respectively. Here, the estimate of σ2

1 and its SE are relatively larger than those of σ2
0,

which is also confirmed in Fig. 6.5. Furthermore, the correlated model M3 explains
the degree of dependency between the two random components (i.e., the random
center effect v0 and the random treatment-by-center interaction v1). The estimate
of ρ gives a negative value (ρ̂ = −0.721), indicating that the two predicted random
components (v̂0 and v̂1) have a negative correlation. The negative correlation leads

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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(a)

(b)

Fig. 6.5 Random effects of 167 centers in the breast cancer data (event of interest is Type 1) and
their 95% confidence intervals, under subhazard correlated frailty model (M3); a random center
effects (vi0); b random treatment-by-center interaction (vi1); Centers are sorted in the increasing
order of number of patients

to a conclusion that treatment confers more benefit in centers with a higher baseline
risk. This is consistent with the findings by Rondeau et al. (2008) in the context of
meta-analysis and by Ha et al. (2011) in the context of of multicenter trials.

6.4.2.3 Investigating and Testing for Heterogeneity in Treatment Effects

We demonstrate how to investigate heterogeneity in treatment effects over centers
using the Wald confidence intervals presented in Chap.4 for the frailties of the indi-
vidual centers: for more discussions about heterogeneity in treatment effects, see
Lee (2002). Note that the standard intervals using pτ (h pw) in (6.24) can be null due
to zero estimation of the variance components, especially for small sample sizes or
small variance components. To avoid the null frailty variance estimator, we use an
adjusted likelihood (4.21), defined by

padj = pτ (h pw) + log det(�i ),

which leads to positive frailty variance estimators. The individual (1 − α)-level h-
likelihood confidence intervals for the uni-dimensional components vk of the random
effects v are of the form

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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v̂k ± zα/2 · SE(v̂k − vk),

where v̂ maximizes the weighted partial h-likelihood h pw, zα/2 is the normal quan-
tile with probability of α/2 in the right tail, and SE(v̂k − vk) are obtained from
H(h pw, β̂, v̂)−1. Figure6.5 shows the estimated random effects and their 95% con-
fidence intervals for the 167 centers using the subhazard correlated model M3. Here,
centers are ordered by the number of patients accrued. Figure6.5a, b give the confi-
dence intervals for the random center effect (vi0) and the random treatment-by-center
interaction (vi1), respectively.Overall, the lengths of the intervals are seen to decrease
as the number of patients per center increases.

Figure6.5a indicates overall homogeneity in the baseline risk across 167 centers
andFig. 6.5b shows that there is no substantial variation in the treatment effects across
centers although three centers (148, 164, and 165) among 167 centers noticeably
stand out. Note here that the centers (148, 165) and 164 provide the lowest and
the highest treatment-by-center interactions, respectively, but that the corresponding
three intervals include zero; this indicates that the homogeneity of treatment effects
also extends to these three centers. Thus, in this multicenter trial, there is little
variation in treatment effects across centers and the treatment is shown to be effective,
These results suggest that the treatment effect may be generalized to a broader patient
population.

6.5 Software and Examples Using R

6.5.1 A Simulated Data Set

For an illustration, we consider a simulated data set.

• Simulation scheme

A data set for the cause-specific hazard frailty model assuming a bivariate normal
distribution is generated using a technique similar to Beyersmann et al. (2009) and
Christian et al. (2016). Let there be two event types, Types 1 and 2, as well as
independent censoring.We considered a sample size, n = 100with (q, ni ) = (50, 3).
Data were generated with two covariates (xi j1, xi j2), where xi j1 follows a standard
normal distribution and xi j2 is a Bernoulli random variable with probability 0.5. The
random effects are from bivariate normal with

(
vi1
vi2

)
∼ N

((
0
0

)
,

(
σ2
1 σ12

σ21 σ2
2

))

where θ = (σ11,σ22,σ12) = (1, 1,−0.5). The conditional cause-specific hazard
rates for each event type are,
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λi j1(t |xi j , vi1) = 2 exp(0.6xi j1 − 0.4xi j2 + vi1),

λi j2(t |xi j , vi2) = 0.5 exp(−0.3xi j1 + 0.7xi j2 + vi2).

That is, β1 = (β11,β12) = (0.6,−0.4) and β2 = (β21,β22) = (−0.3, 0.7). Censor-
ing times are generated from a Uniform(0, 1.3) distribution. Under this scenario,
with 25.2% censoring, the proportions of Type 1 and Type 2 events are 53.2% and
21.6%, respectively.

• Comparison of cause-specific hazards and subhazard models

For the model fitting, we consider the following two types of competing-risks frailty
models:

(1) Cause-specific hazard frailty models:

λi j1(t |vi1) = λ01(t) exp(xi j1β11 + xi j2β12 + vi ),

λi j2(t |vi2) = λ02(t) exp(xi j1β21 + xi j2β22 + vi2),

For the random effects (vi1, vi2) we consider the three cases with univariate
(Univ), shared and bivariate normal (BN):

(i) Univ: vi1 = vi and vi2 = vi with vi ∼ N (0,σ2),
(ii) Shared: vi1 = vi and vi2 = γ2vi with vi ∼ N (0,σ2),
(iii) BN: (vi1, vi2)T ∼ BN (σ2

1,σ
2
2,σ12).

(2) Subhazard frailty models:
We consider the subhazard frailty model for Type 1 events,

λs
i j1(t |vi ) = λs

01(t) exp(xi j1β11 + xi j2β12 + vi ),

where vi ∼ N (0,σ2), and consider the separate model for Type 2 events,

λs
i j2(t |vi ) = λs

02(t) exp(xi j1β21 + xi j2β22 + vi ),

where vi ∼ N (0,σ2).

We note that for different types of events, the cause-specific frailty models are
jointly fitted via a common frailty or correlated frailties, whereas the subhazard frailty
models fit each event type separately.

Below are the R codes and outputs from fitting the two competing-risks frailty
models for a simulated dataset.

• R codes and outputs

> data(test, package="frailtyHL")
> head(test)

obs id time status x1 x2
1 1 1 0.17317534 1 -0.75313807 1
2 2 1 0.38924435 0 -0.10980574 1
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3 3 1 0.08503643 1 -0.01271682 1
4 4 1 0.15189636 1 -1.16308531 0
5 5 1 0.58214961 0 -0.26338994 1
6 6 2 0.02019265 2 1.58529452 1
############### 1) Cause-specific Cox PH models ################
> cs1<-frailtyHL(Surv(time,status==1)˜x1+x2+(1|id),varfixed=T,
+ varinit=0,data=test)
> cs2<-frailtyHL(Surv(time,status==2)˜x1+x2+(1|id),varfixed=T,
+ varinit=0,data=test)

#cs1<-coxph(Surv(time,status==1)˜x1+x2,ties="breslow", data=test)
#cs2<-coxph(Surv(time,status==2)˜x1+x2,ties="breslow", data=test)

########### 2) Cause-specific frailty models (Shared) ###########
> data_conti<-test
> data_surv<-data_conti
> jm1<-jointmodeling(Model="mean",RespDist="FM",Link="log",
+ LinPred=Surv(time,status==1)˜x1+x2+(1|id),RandDist="gaussian")
> jm2<-jointmodeling(Model="mean",RespDist="FM",Link="log",
+ LinPred=Surv(time,status==2)˜x1+x2+(1|id),RandDist="gaussian")
> res<-jmfit(jm1,jm2,data_conti,data_surv,Maxiter=200)
[1] "iterations : "
[1] 74

beta_h se_beh t_value p_value
0.5069570 0.1039914 4.874987 1.088155e-06 #Type1

-0.3800849 0.1976954 -1.922579 5.453299e-02 #Type1
-0.3003151 0.1788708 -1.678949 9.316193e-02 #Type2
1.3378959 0.3196841 4.185056 2.850961e-05 #Type2

alpha_h rho_h
[1,] 1.024705 -0.9487815

######## 3) Cause-specific frailty models (Univariate) ##########
> beta.init <-c(sapply(1:2, function(k) coxph(Surv(time,status==k)
+ ˜x1+x2,data=test)$coef))
> theta.init = 0.05
> q = length(unique(test$id))
> v.init=rep(0,q) #v.init = rnorm(q,0,1)
> CSFM <-hlike.frailty(formula=CmpRsk(time,status)˜x1+x2+cluster(id),
+ data=test,frailty.cov="none",inits=list(beta=beta.init,
+ theta=theta.init,v=v.init),order=1, MAX.ITER=500, TOL=1E-5)
> summary(CSFM)

Type Effect Estimate SE 2.5% 97.5%
1 1 x1 0.5228740 0.1056892 0.3157270 0.7300211
2 1 x2 -0.1456480 0.1925659 -0.5230703 0.2317742
3 2 x1 -0.1816378 0.1580546 -0.4914192 0.1281436
4 2 x2 0.8366907 0.3002129 0.2482843 1.4250972

Var.Comp Estimate
1 Sigma.11 0.3998222
Successfully Converged

########### 4) Cause-specific hazard frailty models (BN) ###########
> theta.init <-matrix(c(1,0.5,0.5,1),nrow=2)
> v.init<-matrix(0,q,2)
> CSFM_BN <-hlike.frailty(formula=CmpRsk(time,status)˜x1+x2+cluster(id),
+ data=test,frailty.cov="unstructured",inits=list(beta=beta.init,
+ theta=theta.init,v=v.init), order=1, MAX.ITER=500, TOL=1E-5)
> CSFM_BN
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Type Effect Estimate SE 2.5% 97.5%
1 1 x1 0.5292916 0.1064490 0.3206553 0.737927872
2 1 x2 -0.3889682 0.2013525 -0.7836118 0.005675494
3 2 x1 -0.3253187 0.1941188 -0.7057844 0.055147114
4 2 x2 1.4377490 0.3416088 0.7682080 2.107290009

Var.Comp Estimate
1 Sigma.11 1.0122354
2 Sigma.21 -0.5947998
3 Sigma.22 1.3884678
Successfully Converged

############ 5) Subhazard without frailty (Fine-Gray) #################
> library(cmprsk)
> attach(data_conti)
> da<-data_conti
> x=cbind(da$x1,da$x2)
> SH1=crr(time,status, x, failcode=1) #Type 1
> summary(SH1)
Competing Risks Regression
Call:
crr(ftime = time, fstatus = status, cov1 = x, failcode = 1)

coef exp(coef) se(coef) z p-value
x1 0.457 1.579 0.0953 4.79 1.7e-06
x2 -0.309 0.734 0.1726 -1.79 7.3e-02

exp(coef) exp(-coef) 2.5% 97.5%
x1 1.579 0.633 1.310 1.90
x2 0.734 1.363 0.523 1.03
Num. cases = 250
Pseudo Log-likelihood = -656
Pseudo likelihood ratio test = 26.1 on 2 df,
>
> SH2=crr(time,status, x, failcode=2) #Type 2
> summary(SH2)
Competing Risks Regression
Call:
crr(ftime = time, fstatus = status, cov1 = x, failcode = 2)

coef exp(coef) se(coef) z p-value
x1 -0.458 0.633 0.155 -2.96 0.003
x2 0.864 2.372 0.279 3.09 0.002

exp(coef) exp(-coef) 2.5% 97.5%
x1 0.633 1.581 0.467 0.856
x2 2.372 0.422 1.373 4.099
Num. cases = 250
Pseudo Log-likelihood = -275
Pseudo likelihood ratio test = 18.9 on 2 df,

############# 6) Subhazard frailty models ##################
> # Subhazard Frailty (Type 1)
> beta.init<-c(0,0); v.init=rep(0,q); theta.init = 0.05
> SHFM1<-hlike.frailty(CmpRsk(time,status)˜x1+x2+cluster(id),
+ data=data_conti,inits=list(beta=beta.init,theta=theta.init,
+ v=v.init),order=1,frailty.cov="none",subHazard=T,MAX.ITER=300)
> summary(SHFM1)

Type Effect Estimate SE 2.5% 97.5%
x1 1 x1 0.4974055 0.1048294 0.2919436 0.7028673
x2 1 x2 -0.6164925 0.1987410 -1.0060177 -0.2269673

Var.Comp Estimate
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1 Sigma.11 0.8836048
Successfully Converged

status_2<-ifelse(da$status==2,1,2*da$status) #Transformation of status
> SHFM2<-hlike.frailty(CmpRsk(time,status_2)˜x1+x2+cluster(id),
+ data=da,inits=list(beta=beta.init,theta=theta.init,v=v.init),
+ order=1,frailty.cov="none",subHazard=T,MAX.ITER=500,TOL=1E-6)
> summary(SHFM2)

Type Effect Estimate SE 2.5% 97.5%
x1 1 x1 -0.5658455 0.1899055 -0.9380534 -0.1936376
x2 1 x2 1.2966654 0.3294090 0.6510355 1.9422952

Var.Comp Estimate
1 Sigma.11 1.595583
Successfully Converged

The R outputs from the cause-specific hazard frailty model show that for example,
the effect of x1 is significant for Type 1 event (t-value = 4.875 with p-value
= 0.000), but it is not significant for Type 2 event (t-value = -1.679 with
p-value = 0.093). The estimated association parameter γ̂2 = −0.949 shows a neg-
ative association between the risks of these two events, which reflects a true nega-
tive correlation, −0.5, under the true BN model. The fitted results are summarized
in Table6.6. The resulting estimates from the shared and univariate cause-specific
frailtymodels are different because the estimated association parameter γ̂2 = −0.949
is not close to γ2 = 1. We also fitted the cause-specific model with bivariate normal
frailties, using frailty.cov="unstructured" in this package. The results
confirm the negative association from the shared model. This means that reducing
the risk of dying from Type 1 event increases the risk of dying from Type 2 event.
We observe the results from the subhazard model show similar trends to those from
the cause-specific models.

In Table6.6, we see that in the cause-specific models, BN ⊃ Shared ⊃ Univ ⊃
Cox. Between BN and Shared models, the difference in −2pτ (h p) is 4.6, so that the
true BN model is selected as the final model. We also observe that the two AICs
(rAIC and cAIC) select the BN model as the best model too.

Next, for the subhazard models, we should select a proper model in each type. For
Type 1, the difference in −2pτ (h pw) between Fine-Gray model without frailty and
the shared model is 1130.0 − 1122.3 = 9.7 (> 2.71), so that the null hypothesis of
σ2 = 0 is rejected. Thus, we select the shared model as the final model. Similarly, for
Type 2 we also select the shared model. This indicates there is a correlation among
survival times in each type.

There are R packages to fit the subhazard models without frailty terms, e.g., the
function crr() in the cmprsk package to fit the subhazard model (Fine and Gray
1999) with univariate competing risks data, and the function crrc() in the crrSC
package to fit a marginal subhazard model (Zhou et al. 2012; Zhou and Latouche
2015) for clustered competing risks data. The outlines of R codes used with the
simulated data are as follows.
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Table 6.6 Comparison of competing-risks frailty models with cause-specific hazard (CSH) and
subhazard (SH): a simulated data set

Model Event β̂1(SE) β̂2(SE) σ̂2 Association

CSH Type 1 0.462(0.098) −0.038(0.177) – –

(Cox) Type 2 −0.217(0.155) 0.843(0.291) – –

−2pτ (h p) 1765.3 (rAIC = 1765.3, cAIC = 1766.2)

CSH Type 1 0.523(0.106) −0.146(0.193) 0.400 –

(Univ) Type 2 −0.182(0.158) 0.837(0.300)

−2pτ (h p) 1749.9 (rAIC = 1751.9, cAIC = 1735.8)

CSH Type 1 0.507(0.104) −0.380(0.198) 1.025 γ̂2 = −0.949

(Shared) Type 2 −0.300(0.179) 1.338(0.320)

−2pτ (h p) 1717.2 (rAIC = 1721.2, cAIC = 1683.2)

CSH Type 1 0.529(0.106) −0.389(0.201) σ̂2
1 = 1.012 σ̂12 = −0.595

(BN) Type 2 −0.325(0.194) 1.438(0.342) σ̂2
2 = 1.388 –

−2pτ (h p) 1712.6 (rAIC = 1718.6, cAIC = 1677.2)

SH(F-G) Type 1 0.457(0.095) −0.309(0.173) – –

−2pτ (h pw) 1316.2 (rAIC = 1316.2, cAIC = 1315.7)

Type 2 −0.458(0.155) 0.864(0.279) – –

−2pτ (h pw) 551.6 (rAIC = 551.6, cAIC = 553.0)

SH(Shared) Type 1 0.497(0.105) −0.616(0.199) 0.884 –

−2pτ (h pw) 1284.3 (rAIC = 1286.3, cAIC = 1261.2)

Type 2 −0.566(0.190) 1.297(0.329) 1.596 –

−2pτ (h pw) 528.4 (rAIC = 530.4, cAIC = 517.1)

F-G, Fine-Gray subhazard model without frailty

##### Subhazard models without frailty term #####

> x=cbind(da$x1,da$x2)

> SH1<-crr(time, status, x, failcode=1)

> SH2<-crr(time, status, x, failcode=2)

> SHF1<-crrc(time, status, x, failcode=1,cluster=id)

> SHF2<-crrc(time, status, x, failcode=2,cluster=id)

6.5.2 Bladder Cancer Data

We consider an extension (data set available in the frailtyHL: ‘bladder’) of the
bladder cancer data introduced in Sect. 1.2.4. Here we consider 396 patients with
bladder cancer from 21 centers, focusing on two competing endpoints, i.e, time to
first bladder recurrence (an event of interest; Type 1 event) and time to death prior

http://dx.doi.org/10.1007/978-981-10-6557-6_1
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to recurrence (competing event; Type 2 event). Of 396 patients, 200 (50.51%) had
recurrence of bladder cancer and 81 (20.45%) died prior to recurrence. One hundred
and fifteen patients (29.04%) who were still alive without recurrence were censored
at the date of the last available follow-up. The numbers of patients per center varied
from 3 to 78, with the mean of 18.9 and the median of 14. Two covariates are
considered: Chemo (no, yes) and Age (≤65years, >65 years). The corresponding R
codes and outputs are provided below.

############ 1) Cause-specific frailty models (Shared) ##############
> data(bladder, package="frailtyHL")
> data_conti <- bladder
> data_surv<-data_conti
> jm1<-jointmodeling(Model="mean",RespDist="FM", Link="log",
+ LinPred=Surv(surtime,status==1)˜CHEMO+AGE+(1|center),
+ RandDist="gaussian")
> jm2<-jointmodeling(Model="mean",RespDist="FM",Link="log",
+ LinPred=Surv(surtime,status==2)˜CHEMO+AGE+(1|center),
+ RandDist="gaussian")
> res<-jmfit(jm1,jm2,data_conti,data_surv, Maxiter=200)
[1] "iterations : "
[1] 56

beta_h se_beh t_value p_value
CHEMO -0.6662422 0.1745319 -3.8173084 0.0001349155
AGE -0.1496644 0.1436548 -1.0418339 0.2974886732
CHEMO 0.1141791 0.3816191 0.2991965 0.7647901300
AGE 0.6889314 0.2656665 2.5932189 0.0095082234

alpha_h rho_h
[1,] 0.07255925 1.135538
> res$V.Est # log-frailty estimates
[1] 0.151408743 0.184588705 -0.002456431 -0.034954163 0.002932653
[6] -0.142895085 0.193996286 0.031210209 -0.052866610 0.094447854

[11] 0.047394088 0.108819042 -0.090623066 0.044104201 -0.278417345
[16] -0.360868161 0.107422797 0.090266872 0.229043252 -0.368074147
[21] 0.045520307
######### 2) Cause-specific frailty models (Univariate) ############
> q = length(unique(data_conti$center))
> beta.init <- c(sapply(1:2, function(k) coxph(Surv(surtime, status==k)
+ ˜CHEMO + AGE, data=data_conti)$coef))
> theta.init = 0.05
> v.init = rnorm(q,0,1) #v.init=rep(0,q)
> CSFM<-hlike.frailty(formula=CmpRsk(surtime,status)˜CHEMO+AGE
+ +cluster(center),data=data_conti,frailty.cov="none",inits=list(beta=
+ beta.init,theta=theta.init,v=v.init),order=1,MAX.ITER=200,TOL=1E-5)
> CSFM

Type Effect Estimate SE 2.5% 97.5%
1 1 CHEMO -0.6679760 0.1747679 -1.0105148 -0.3254372
2 1 AGE -0.1488389 0.1437895 -0.4306613 0.1329834
3 2 CHEMO 0.1194893 0.3809705 -0.6271992 0.8661778
4 2 AGE 0.6772935 0.2652078 0.1574957 1.1970913

Var.Comp Estimate
1 Sigma.11 0.07742706
Successfully Converged

> CSFM$iterations
[1] 72
> unique(CSFM$v) # log-frailty estimates
########## 3) Cause-specific frailty models (BN) ###########
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theta.init <-matrix(c(1,0.5,0.5,1),nrow=2)
v.init<-MASS::mvrnorm(q,mu=rep(0,2),Sigma=theta.init)#or v.init=matrix(0,q,2)
> CSFM_BN<-hlike.frailty(formula=CmpRsk(surtime,status)˜CHEMO+AGE
+ +cluster(center),data=data_conti,frailty.cov="unstructured",
+ inits=list(beta=beta.init, theta=theta.init, v=v.init),
+ order=1, MAX.ITER=500, TOL=1E-5)
> CSFM_BN

Type Effect Estimate SE 2.5% 97.5%
1 1 CHEMO -0.6674387 0.1747014 -1.0098471 -0.3250303
2 1 AGE -0.1484962 0.1437680 -0.4302763 0.1332840
3 2 CHEMO 0.1199023 0.3821346 -0.6290678 0.8688723
4 2 AGE 0.6865932 0.2660755 0.1650949 1.2080915

Var.Comp Estimate
1 Sigma.11 0.07356526
2 Sigma.21 0.07632592
3 Sigma.22 0.09516952
Successfully Converged

> CSFM$iteration
[1] 377
############ 4) Subhazard frailty models #############
> # Subhazard Frailty (Type 1)
> beta.init<-c(0,0); v.init=rep(0,q); theta.init = 0.05
> SHFM1<-hlike.frailty(CmpRsk(surtime,status)˜CHEMO+AGE+cluster(center),
+ data=data_conti,inits=list(beta=beta.init,theta=theta.init,v=v.init),
+ order=1,frailty.cov="none",subHazard=TRUE, MAX.ITER=300)
> SHFM1

Type Effect Estimate SE 2.5% 97.5%
CHEMO 1 CHEMO -0.7004651 0.1751228 -1.043699 -0.35723077
AGE 1 AGE -0.2154904 0.1443744 -0.498459 0.06747824

Var.Comp Estimate
1 Sigma.11 0.06347167
Successfully Converged

> unique(SHFM1$v) # log-frailty estimates
># Subhazard Frailty (Type 2)
> da<-data_conti
> status_2<-ifelse(da$status==2,1,2*da$status) #Transformation of status
> theta.init = 0.001
> SHFM2<-hlike.frailty(CmpRsk(surtime,status_2)˜CHEMO+AGE+cluster(center),
+ data=da, inits=list(beta=beta.init, theta=theta.init, v=v.init),
+ order=1, frailty.cov="none", subHazard=TRUE, MAX.ITER=300, TOL=1E-6)
> SHFM2

Type Effect Estimate SE 2.5% 97.5%
CHEMO 1 CHEMO 0.6375418 0.3732185 -0.09395313 1.369037
AGE 1 AGE 0.9289147 0.2581870 0.42287737 1.434952

Var.Comp Estimate
1 Sigma.11 0.0009959938
Successfully Converged

############ 5) Subhazard without frailty (Fine-Gray) #################
#library(cmprsk)
> attach(data_conti)
> x=cbind(CHEMO,AGE)
> SH1=crr(surtime,status, x, failcode=1) #Type 1
> summary(SH1)
Competing Risks Regression
Call:
crr(ftime = surtime, fstatus = status, cov1 = x, failcode = 1)

coef exp(coef) se(coef) z p-value
CHEMO -0.673 0.510 0.178 -3.77 0.00016
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AGE -0.228 0.796 0.143 -1.60 0.11000
exp(coef) exp(-coef) 2.5% 97.5%

CHEMO 0.510 1.96 0.360 0.724
AGE 0.796 1.26 0.602 1.053
Num. cases = 396
Pseudo Log-likelihood = -1099
Pseudo likelihood ratio test = 16.8 on 2 df,
> SH2=crr(surtime,status, x, failcode=2) #Type 2
> summary(SH2)
Competing Risks Regression
Call:
crr(ftime = surtime, fstatus = status, cov1 = x, failcode = 2)

coef exp(coef) se(coef) z p-value
CHEMO 0.637 1.89 0.344 1.85 0.06400
AGE 0.930 2.53 0.245 3.80 0.00015

exp(coef) exp(-coef) 2.5% 97.5%
CHEMO 1.89 0.529 0.963 3.71
AGE 2.53 0.395 1.568 4.09
Num. cases = 396
Pseudo Log-likelihood = -408

Table 6.7 Comparison of competing-risks frailty models with cause-specific hazard (CSH) and
subhazard (SH): bladder cancer data; Age = I(age at diagnosis > 65)

Model Event Chemo(SE) Age(SE) σ̂2 Association

CSH Type 1 −0.626(0.172) −0.164(0.142) – –

(Cox) Type 2 0.180(0.378) 0.556(0.264) – –

−2pτ (h p) 2819.6 (rAIC = 2819.6, cAIC = 2822.8)

CSH Type 1 −0.668(0.175) −0.149(0.144) 0.077 –

(Univ) Type 2 0.119(0.381) 0.677(0.265)

−2pτ (h p) 2812.5 (rAIC = 2814.5, cAIC = 2812.1)

CSH Type 1 −0.666(0.175) −0.150(0.144) 0.073 γ̂2 = 1.136

(Shared) Type 2 0.114(0.382) 0.689(0.266)

−2pτ (h p) 2812.5 (rAIC = 2816.5, cAIC = 2812.1)

CSH Type 1 −0.667(0.175) −0.148(0.144) σ̂2
1 = 0.074 σ̂12 = 0.076

(BN) Type 2 0.120(0.382) 0.687(0.266) σ̂2
2 = 0.095 –

−2pτ (h p) 2812.0 (rAIC = 2818.0, cAIC = 2812.1)

SH(F-G) Type 1 −0.673(0.178) −0.228(0.143) – –

−2pτ (h pw) 2201.6 (rAIC = 2201.6, cAIC = 2201.8)

Type 2 0.637(0.344) 0.930(0.245) – –

−2pτ (h pw) 816.7 (rAIC = 816.7, cAIC = 819.7)

SH(Shared) Type 1 −0.700(0.175) −0.215(0.144) 0.063 –

−2pτ (h pw) 2199.2 (rAIC = 2201.2, cAIC = 2197.4)

Type 2 0.637(0.373) 0.929(0.258) 0.000 –

−2pτ (h pw) 816.7 (rAIC = 818.7, cAIC = 819.7)

F-G, Fine-Gray subhazard model without frailty
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The fitted results are summarized in Table6.7. It may be an interesting compre-
hensive analysis to compare the cause-specific hazard and subhazard models. We
first observe that the trends under the two models are also similar.

For the cause-specific models in Table6.7, we have BN ⊃ Shared ⊃ Univ ⊃
Cox. The three models (BN, Shared and Univ models) have almost the same value
of −2pτ (h p). Between the Univ and Cox models, the likelihood difference is 7.1
(> 2.71), so that the null hypothesis of σ2 = 0 is rejected. Thus, the LRT selects the
univariate model as the final model. Note that the rAIC selects the univariate model
as the best model, but the cAIC does not because the frailty variances are near zero as
in Sect. 5.3. Next, for the subhazard models, we select a proper model in each event
type. For Type 1, the difference in−2pτ (h pw) between the Fine-Gray model and the
shared model is 2.4 (< 2.71), so that the null hypothesis of σ2 = 0 is not rejected.
For Type 2, the two models has practically the same value of −2pτ (h pw). Thus, we
see that in the subhazard models, the frailty term is necessary for neither event type.
In fact, Table6.7 presents that the two subhazard models give very similar estimates
for Type 1 and Type 2.

6.6 Discussion

The h-likelihood procedures are applied to fit the cause-specific frailty models as
well as the subhazard frailty models. The competing risks models with correlated
frailties provides systematically more informative results for the analysis of multi-
center competing risk data.We also demonstrate how to investigate the heterogeneity
in treatment effect over centers and how to test such heterogeneity.

The cause-specific frailty model can take into account the correlation among
events of interest and competing events via frailties, while the subhazard frailty
models can not, assuming that the frailty effects on both types of events are indepen-
dent. Therefore, the cause-specific frailty model would be more appropriate when
a dependency between different types of events or informative censoring is present.
The subhazard model is useful for direct statistical inference about the CIF of the
particular event type of interest. Developing an extended frailty modeling approach
under the subhazard frailtymodel to allow a correlation between different event types
would be an interesting topic for future work.

The present work only considered the lognormal frailty distribution. It may be
also interesting to consider other distributions when competing risks are present, in
particular the gamma frailty distribution.

Even if in this chapter the h-likelihood procedures have been presented for clus-
tered competing-risks data, they can be applied to univariate competing-risks data
without clustering. For example, with the h-likelihood the cause-specific PH model
(6.9) allowing for the BN frailties would be applied to dependent competing risks
or informative censoring problem under the univariate competing-risks structure
(Huang and Zhang 2008; Chen 2010).

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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We have analyzed the competing risks data where the observation time ends
upon occurrence of the first failure. However, a subject may experience a nonter-
minal event (e.g., disease recurrence) and/or a terminal event (e.g., death), where
the terminal event censors the nonterminal event but not vice versa. This is called
as semi-competing risks data (Fine et al. 2001), which is an extension of compet-
ing risks data. We will present the frailty models for semi-competing risks data in
Chap.10.

6.7 Appendix

6.7.1 Calculation of the Gradient Vector and Elements for
the Information Matrix from the Partial Likelihood

Let us define τ = (βT , vT )T . Since the partial h-likelihood involves the sample esti-
mate of the cause-specificbaseline (cumulative) hazard function, followingAppendix
2 of Ha et al. (2001), the MHL score equation for τ for fixed θ is given by

∂h p/∂τ = (∂h/∂τ )|�0k=�̂0k
,

where the h-likelihood h was defined in (6.18).
First, from (6.19) the elements of the gradient vector (∂h p/∂β, ∂h p/∂v)T are

calculated. The k th element of ∂h p/∂β = (∂h p/∂β1, ∂h p/∂β2)
T is the derivative

of h p with respect to the regression coefficients for event k,

∂h p

∂βk
=
∑
i j

xi jδi jk − xi j�̂0k(yi j ) exp
(
xTi jβk + zTi jvk

)
(6.27)

and ∂h p/∂v = (∂h p/∂v1, ∂h p/∂v2)
T is the derivative of h p with respect to the

random effects for each event Type k,

∂h p

∂vk
=
∑
i j

zi jδi jk − zi j�̂0k(yi j ) exp
(
xTi jβk + zTi jvk

)−
q∑

i=1

vi • (σkk,σ12)

(6.28)

where • denotes the inner product of two vectors, and σkk and σ12 are elements of
the precision matrix �−1.

The following matrices and notation are used for the remainder of this section.
Let Rk = (R1, R2, . . . , RDk ) be an n × Dk at risk indicator matrix where the i j th
element in column r is one if yi j ≥ y(kr) and zero otherwise. Define δk as an n × 1
vector of Type k event indicators with its i j th element being δi jk . Let μk be an n × n

http://dx.doi.org/10.1007/978-981-10-6557-6_10
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diagonal matrix with elements �̂0k(yi j ) exp(xTi jβk + zTi jvk), and let Nk be an n × n
diagonal matrix with elements exp(xTi jβk + zTi jvk). Finally, let Iq be a q × q identity
matrix and let ⊗ denote the Kronecker product. Recall that X is an n × p matrix of
p covariates and Z is an n × q matrix of cluster indicators.

Using this notation, Eq. (6.27) can be expressed as

∂h p

∂βk
= XT (δk − μk) (6.29)

and the derivative (6.28) of h p with respect to all random effects v is,

∂h p

∂v
=
(
ZT (δ1 − μ1)

ZT (δ2 − μ2)

)
− (�−1 ⊗ Iq)v. (6.30)

Next, the observed information matrix H of β and v from the profile h-likelihood
for fixed θ is calculated. Again because the partial h-likelihood includes the sample
estimate of the cause-specific baseline (cumulative) hazard function, Ha and Lee
(2003, Appendix B) showed that

∂2h p/∂τ 2 = (H1 − H2)|�0k=�̂0k
, (6.31)

where H1 = ∂2h/∂τ 2 and

H2 = (−∂2h/∂τ∂λ0)(−∂2h/∂λ2
0)

−1(−∂2h/∂λ0∂τ ).

Denoting Ck for a diagonal Dk × Dk matrix where the r th element is d(kr)/λ̂
2
0kr ,

let us define X, Z and W∗ as block diagonal matrices such that,

X =
(
X 0
0 X

)
, Z =

(
Z 0
0 Z

)
and W∗ =

(
W ∗

1 0
0 W ∗

2

)
(6.32)

where 0 is a conformable matrix of zeros and W ∗
k = W ∗

k (βk, vk) = μk − Nk RkC
−1
k

(RkNk)
T for k = 1, 2. Then the observed information matrix H is a K (p + q) ×

K (p + q) matrix,

Hp = Hp(β, v, θ) =
(
XTW∗X XTW∗Z
ZTW∗X ZTW∗Z + Q

)
. (6.33)

where Q is a Kq × Kq matrix that is the negative second derivative of the log of the
joint density function for all random effects with respect to the vector v,

Q(v, θ) = − ∂2

∂v2

q∑
i=1

�2i (θ; vi ) = �−1 ⊗ Iq . (6.34)
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In addition, consider the univariate frailty case with v ∼ N (0,σ2 Iq). Then, the
estimating equations ofβk are identical to (6.29),while those ofv are slightly different
from (6.30) because they are given by

∂h p

∂v
=
∑
k

ZT (δk − μk) − σ−2v.

This leads to the observed information for (βk, v) with k = 1, 2:

Hp = Hp(β, v,σ2) =
⎛
⎝ XTW ∗

1 X 0 XTW ∗
1 Z

0 XTW ∗
2 Z XTW ∗

2 Z
ZTW ∗

1 X ZTW ∗
2 X

∑
k Z

TW ∗
k Z + Q

⎞
⎠ ,

where Q = σ−2 Iq . �

6.7.2 Derivation of the Gradient Vector and Elements for the
Information Matrix from the Partial Restricted
Likelihood

Let θr and θs denote the r th and sth components of θ = (σ11,σ22,σ12) for r, s =
1, 2, 3. To evaluate the derivatives of the adjusted profile h-likelihood (5.12), the
following two identities from matrix calculus will be used here (Searle et al. 1992,
Appendix M): For a matrix A and a scalar x ,

∂

∂x
log(det(A)) = trace

(
A−1 ∂A

∂x

)

and
∂A−1

∂x
= −A−1 ∂A

∂x
A−1.

By using these results, the r th component of the gradient vector of the restricted
partial h-likelihood pτ (h p), i.e., ∂ pτ (h p)/∂θ where τ = (βT , vT )T , can be written
as

∂ pτ (h p)

∂θr
= ∂ĥ p

∂θr
− 1

2
trace

(
Ĥp

−1 ∂ Ĥp

∂θr

)
. (6.35)

Furthermore, the element in row r and column s of the 3 × 3 observed information
matrix ∂2 pτ (h p)/∂θ2 for the frailty parameter θ is given by

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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− ∂2 pτ (h p)

∂θr∂θs
= − ∂2ĥ p

∂θr∂θs
+ 1

2
tr

(
−Ĥp

−1 ∂ Ĥp

∂θr
Ĥp

−1 ∂ Ĥp

∂θs
+ Ĥp

−1 ∂2 Ĥp

∂θr∂θs

)

(6.36)

Since β̂(θ) and v̂(θ) are functions of θ, it is not appropriate to just use the partial
derivatives in (6.35) and (6.36). Instead the total derivative should be used. The total
derivative of pτ (h p) with respect to θr is,

∂ pτ (h p)

∂θr
= ∂ pτ (h p)

∂θr
+
(

∂ pτ (h p)

∂β

∣∣∣∣
β=β̂

)
∂β̂

∂θr
+
(

∂ pτ (h p)

∂v

∣∣∣∣
v=v̂

)
∂v̂

∂θr
.(6.37)

Note, in general, that when x = x(t) and y = y(t) are functions of t , the total deriv-
ative of f (t, x, y) with respect to t is defined as

d f

dt
= ∂ f

∂t
+ ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
.

The total derivative allows the other arguments of hA, β̂(θr ) and v̂(θr ) to depend
on θr , which should not be overlooked in our conditionally iterative optimization
procedure. Originally, however, Lee and Nelder (1996) and Ha et al. (2001) ignored
∂β̂/∂θr and ∂v̂/∂θr when differentiating ĥ p and Ĥ with respect to θ. Following
Ha and Lee (2003), in our derivation ∂β̂/∂θ is ignored because there is no direct
dependency between β̂ and θr whereas ∂v̂/∂θr is included because there exists a
direct dependency between v̂ and θr , which is clear from (6.29) and (6.30).

Now first, we calculate the derivatives in (6.35). Let τ̂ = τ̂ (θ) = (β̂(θ), v̂(θ)).
Since ∂h p/∂v|τ=τ̂ = 0, the total derivative of the first term ∂ĥ p/∂θr is

∂ĥ p

∂θr
= ∂h p

∂θr

∣∣∣∣
τ=τ̂

+
(

∂h p

∂v

∣∣∣∣
τ=τ̂

)(
∂v̂

∂θr

)

= ∂h p

∂θr

∣∣∣∣
τ=τ̂

=
q∑

i=1

∂�2i (θ; v̂i )

∂θr

=
q∑

i=1

−1

2
trace

(
�−1�′

r

)+ 1

2
v̂T
i

(
�−1�′

r�
−1
)
v̂i ,

where �′
r = ∂�/∂θr .

The derivative of the second term, ∂ Ĥp/∂θr , in (6.35) is given by the following
form:
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∂ Ĥpi

∂θr
= ∂Hpi

∂θr

∣∣∣∣
τ=τ̂

+
(

∂Hpi

∂v

∣∣∣∣
τ=τ̂

)(
∂v̂

∂θr

)
,

where Ĥpi and Hpi are the (i, i)th components of Ĥp = PT V̂P and Hp = PTVP,
respectively. Here V̂ = BD(Ŵ∗, Q): see also Appendix A.2. The term ∂v̂/∂θr is
calculated following Lee et al. (2017b). From h p, given θr , let v̂(θr ) be the solution
to g(θr ) = ∂h p/∂v|τ=τ̂ = 0. Then,

∂g(θr )

∂θr
= ∂2h p

∂v∂θr

∣∣∣∣
τ=τ̂

+
(

∂2h p

∂v2

∣∣∣∣
τ=τ̂

)(
∂v̂

∂θr

)
= 0.

Solving for ∂v̂/∂θr gives a 2q × 1 vector,

∂v̂

∂θr
=
(

−∂2h p

∂v2

∣∣∣∣
τ=τ̂

)−1 (
∂2h p

∂v∂θr

∣∣∣∣
τ=τ̂

)

=
(
ZT Ŵ∗Z + Q

)−1 ([(
�−1�′

r�
−1
)⊗ Iq

]
v̂
)
,

where Ŵ∗ is W∗ evaluated at (β̂, v̂, θ), that is, when W ∗
k = W ∗

k (β̂k, v̂k, θ) = Ŵ ∗
k .

Now, sinceX andZ are constantmatrices that donot dependon θ, followingAppendix
4.7.5, the total derivative of ∂ Ĥp/∂θr is given by

∂ Ĥp

∂θr
=
(
XT Ŵ′

rX XT Ŵ′
rZ

ZT Ŵ′
rX ZT Ŵ′

rZ + Q′
r

)
,

where Ŵ′
r = ∂Ŵ∗/∂θr and Q′

r = ∂Q/∂θr . Since Ŵ ∗
k does not depend on θ, the total

derivative of Ŵ ∗
k is

Ŵ ′
kr = ∂Ŵ ∗

k

∂θr
= ∂W ∗

k

∂θr

∣∣∣∣
τ=τ̂

+
(

∂W ∗
k

∂vk

∣∣∣∣
τ=τ̂

)(
∂v̂k

∂θr

)
=
(

∂W ∗
k

∂vk

∣∣∣∣
τ=τ̂

)(
∂v̂k

∂θr

)
.

Thederivative∂W ∗
k /∂vk is foundbydifferentiatingW ∗

k (βk, vk) = μk − Nk RkC
−1
k

(RkNk)
T with respect to vk . Given the structure of v defined earlier, ∂v̂1/∂θr is the

first q elements of the vector ∂v̂/∂θr and ∂v̂2/∂θr are the last q elements. Since Q
does not depend on v, the total derivative is not needed to find ∂Q/∂θr so,

Q′
r = ∂Q

∂θr
= (−�−1�′

r�
−1
)⊗ Iq . (6.38)

Using (6.38) there is a slightly simpler expression for ∂v̂/∂θr ,

∂v̂/∂θr = −
(
ZT Ŵ∗Z + Q

)−1
(Q′

r v̂).

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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The next step is to calculate the terms in the observed information (6.36). First,
we have

− ∂2ĥ p

∂θr∂θs
= − ∂2h p

∂θr∂θs

∣∣∣∣
τ=τ̂

−
(

∂2h p

∂v∂θr

∣∣∣∣
τ=τ̂

)(
∂v̂

∂θs

)

=
q∑

i=1

−∂2�2i (θ; v̂i )

∂θr∂θs
+ (Q′

r v̂
) ( ∂v̂

∂θs

)

=
q∑

i=1

{
−1

2
tr
(
�−1�′

s�
−1�′

r + �−1�′′
rs

)+ 1

2
v̂T
i Srs v̂i

}
+ Q′

r v̂

(
∂v̂

∂θs

)
,

where Srs = ∂(−�−1�′
r�

−1)/∂θs = (�−1�′
s�

−1�′
r�

−1) + (�−1�′
r�

−1�′
s�

−1) −
(�−1�′′

rs�
−1) and �′′

rs = ∂2�/∂θr∂θs . The last term needed to calculate (6.36) is

∂2 Ĥp

∂θr∂θs
=
(
XT Ŵ′′

rsX XT Ŵ′′
rsZ

ZT Ŵ′′
rsX ZT Ŵ′′

rsZ + Q′′
rs

)
,

where

Q′′
rs = ∂2Q

∂θr∂θs
= Srs ⊗ Iq

and Ŵ′′
rs = ∂Ŵ′

r/∂θs . Like earlier, Ŵ′′
rs can be found by evaluating ∂2Ŵ ∗

k /∂θr∂θs
for k = 1, 2,

Ŵ ′′
krs = ∂2Ŵ ∗

k

∂θr∂θs
=
[(

∂2W ∗
k

∂v2
k

∣∣∣∣
τ=τ̂

)
∂v̂k

∂θr

]
∂v̂k

∂θs
+
(

∂W ∗
k

∂vk

∣∣∣∣
τ=τ̂

)
∂2v̂k

∂θr∂θs
,

where

∂2v̂

∂θr∂θs
=
(
ZT Ŵ∗Z + Q

)−1 (
ZT Ŵ′

sZ + Q′
s

) (
ZT Ŵ∗Z + Q

)−1
Q′

r v̂

−
(
ZT Ŵ∗Z + Q

)−1
[
Q′′

rs v̂ + Q′
r

∂v̂

∂θs

]
(6.39)

= −
(
ZT Ŵ∗Z + Q

)−1
[(

ZT Ŵ′
sZ + Q′

s

) ∂v̂

∂θr
+ Q′′

rs v̂ + Q′
r

∂v̂

∂θs

]

is a 2q × 1 vector and ∂2v̂k/∂θr∂θs is the first q elements of (6.39) if k = 1 and the
second q elements if k = 2. The term ∂2W ∗

k /∂v2 is found by twice differentiating
W ∗

k (βk, vk) = μk − Nk RkCk(RkNk)
T with respect to vk . �
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6.7.3 Proof of Estimating Equations in (6.23)

Given the frailty parameters θ, theMHLEs of τ = (βT , vT )T are obtained by solving
the joint estimating equations, ∂h∗

w/∂τ = 0. Here, the calculations in Ha and Lee
(2003) and Ha et al. (2001) showed that

∂h pw/∂τ = ∂hw/∂τ |λs
01=λ̂w

01
= {ET (δ − μ) − Fτ }|λs

01=λ̂w
01

(6.40)

since ∂hw/∂τ = (∂η/∂τ )(∂hw/∂η) with η = Xβ + Zv = Eτ . Here E = (X, Z),
F = BD(0,U ) = BD(0, �−1

1 , . . . , �−1
q ), and δ and μ are the n × 1 vectors of δi j ’s,

and μi j ’s, respectively. Note that the vector μ can be written as a simple form by
using a weighted risk indicator matrix M which contains the weight wi j as well as
the risk set R(r). Let L be an n × 1 vector of Li j ’s with Li j = �s

01(yi j )wi j . Since
�s

01(yi j ) = ∑
r λs

01r I {(i, j) ∈ R(r)} and wi j = Ĝ(y(r))/Ĝ(yi j ∧ y(r)), we have L =
MAJ , where M is an n × D matrix of weighted-risk indicators whose (i j, k)th
element ismi j,r , A = diag(λs

01r ) is a D × D diagonal matrix and J is a D × 1 vector
with ones. This gives μ = W0(MAJ ), where W0 = diag{exp(ηi j )}. Note here that
mi j,r are constructed by combining R(r) and wi j as in Ruan and Gray (2008):

mi j,r = I {yi j ≥ y(r) or (yi j ≤ y(r) and ξi j > 1)}{Ĝ(y(r))/Ĝ(yi j ∧ y(r))}
= I {yi j ≥ y(r)} + I {yi j ≤ y(r) and ξi j > 1}{Ĝ(y(r))/Ĝ(yi j )}. (6.41)

This is also equivalent to the weights by Katsahian et al. (2006) and Katsahian and
Boudreau (2011) becausemi j,r are equal to one as long as individuals have not failed
by time y(r) (i.e., yi j ≥ y(r)), and below 1 and decreasing over time if they failed from
another type (Type 2) before y(r) (i.e., yi j ≤ y(r) and ξi j > 1), and zero otherwise
(e.g., they failed from Type 1 or have been right censored).

Furthermore, using the computation of Ha and Lee (2003), we have

− ∂2h pw/∂τ 2 = ETW ∗E + F, (6.42)

where W ∗ = W1 − W2, W1 = diag(μ), W2 = (W0M)C−1(W0M)T , C = diag
{d(r)/(λ

s
01r )

2} is a D × D diagonalmatrix, and F = BD(0,U ). FollowingHa andLee
(2003) and (6.42), we can show that given θ, the MHL estimators of τ = (βT , vT )T

are obtained from the following score equations:

(ETW ∗E + F)τ̂ = ETw∗,

leading to (6.23).Here,w∗ = W ∗η + (δ − μ).Note here that theλs
01r terms inW ∗ and

w∗ are evaluated at their estimates λ̂w
01r = d(r)/MT

r ψ, whereMr is the r th component
vector of M = (M1, . . . , MD) and ψ is a vector of exp(ηi j )’s. This completes the
proof. �



Chapter 7
Variable Selection for Frailty Models

7.1 Variable Selection

Including only the relevant variables in the model is crucial in statistical inference,
improving the quality of estimation, prediction, and interpretation. If there exist
many potential variables with equal status, i.e., no prior preference among them,
then having as few variables as possible in the model would often facilitate clearer
interpretation. When there are many potential variables, over-fitting can become a
serious problem. However, missing relevant variables would be also undesirable.

There are many classical techniques for variable selection such as forward selec-
tion, backward elimination, stepwise selection, and best-subset selection. The step-
wise selection is fast and convenient, but has inferior performance compared to the
best-subset method. The latter is preferable, but very quickly becomes impractical
because, with p variables, we need to compare 2p models. Furthermore, the sub-
set selection methods are often highly variable and they can not be used when the
number of variables p is greater than the sample size n.

Recently, variable-selection methods using a penalized likelihood with various
penalty functions have been widely studied in the linear models, GLMs and Cox’s
PH models. These methods select relevant variables and estimate the regression
coefficients, simultaneously, i.e., they delete insignificant variables by estimating
their coefficients as zero. However, in the semiparametric frailty models, variable-
selectionmethods have been relatively less studied because themarginal likelihood of
suchmodels often involves analytically intractable integrals to eliminate the frailties.
In this chapter, we investigate three variable-selection methods in survival analysis:

• least absolute shrinkage and selection operator (LASSO, Tibshirani 1996),
• smoothly clipped absolute deviation (SCAD, Fan and Li 2001),
• h-likelihood (HL) penalty (Lee and Oh 2014).

Specifically, we present the methods of variable selection of fixed effects in the
various frailty models for clustered survival data. First, we show how to apply the

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6_7
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variable-selectionmethods to survival data via the h-likelihood, and then illustrate the
h-likelihood variable-selection methods with practical examples. We also compare
three variable-selection procedures via the frailtyHL package.

7.2 Implied Penalty Functions from the Frailty Models

Following Lee and Oh (2014), we describe a random-effect model that generates
a family of penalties, including the normal-type (bell-shaped L2), LASSO-type
(cusped L1), and a new unbounded penalty at the origin to achieve selection consis-
tency as we illustrate. Suppose that we have a linear predictor

η = β0 + x1β1 + · · · + xp−1βp−1 + Zv,

where β j are the unknown fixed effects, but we expect that many of them are zeros.
Here Z is themodelmatrix of randomeffectsv. It iswell known that the random-effect
estimators are shrinkage estimators toward zero and the shrinkage is beneficial to
prediction. The ridge regression estimators shrink toward zero, but cannot be exactly
zero, while the LASSO does. We want to find a class of frailty distributions which
shrinks and allows the estimates of 0.

Suppose that conditional on a j , we have

β j |a j ∼ N (0, a jθ), (7.1)

where θ is a fixed dispersion parameter, and a j ’s are iid realizations from the gamma
distribution with a parameter w such that

fw(a j ) = (1/w)1/w
1

�(1/w)
a1/w−1
j e−a j /w,

having E(a j ) = 1 and Var(a j ) = w. In this random-effect model, sparseness or
selection can be achieved in a transparent way, since if a j = 0 then β j = 0.

Model (7.1) can be rewritten as β j = √
τ j e j , with e j ∼ N (0, 1) and

log τ j = log θ + b j ,

and b j ≡ log a j , which is a double HGLM (Lee et al. 2017b), having a random
effect in the dispersion parameter. In this chapter, we consider the penalized partial
h-likelihood for variable selection, defined by

hv = h p + h2, (7.2)
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where h p is the partial h-likelihood, and

h2 =
p∑

j=1

{log fθ(β j |a j ) + log fw(b j )},

with

log fθ(β j |a j ) = −1

2

{
log(2πθ) + log a j + β2

j /(θa j )
}
,

log fw(b j ) = − log(w)/w − log�(1/w) + b j/w − exp(b j )/w.

The outline of the estimation scheme using the ILS procedure is as follows:

• Given (β, w, θ), we estimate a j ’s by solving

∂hv/∂a = 0,

which gives the random-effect estimator

â j ≡ â j (β) = [{8wβ2
j /θ + (2 − w)2}1/2 + (2 − w)]/4. (7.3)

• Then, given â, we update β using the ILS procedure.

From model (7.1), it is clear that β̂ j = 0 when â j = 0, which is how we achieve
the sparseness. The estimator for β is obtained by maximizing the penalized partial
h-likelihood via profiling, i.e.,

h∗
v = (h p + h2)|a=â,

where â solves dhv/da = 0. Then, the implied penalty of the penalized partial
h-likelihood is

pγ,w(β) = −h2|a=â, (7.4)

where γ = 1/θ and â j is computed in the first step of the ILS above. Specifically,
for fixed w, taking only the terms that involve β j and â j , the j th term of the penalty
function is

pγ,w(β j ) = γβ2
j

2̂a j
+ (w − 2)

2w
log â j + â j

w
.

Thus, the frailty model (7.1) leads to a family of the penalty functions pγ,w(β) that
is indexed by w and γ = 1/θ. This penalty stems from a statistical model with extra
parameters γ and w, and includes the ridge and LASSO regressions as special cases:
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• w → 0: the ridge penalty
• w = 2: the LASSO penalty
• w > 2: the penalty with infinite value at 0.

This shows that ridge and LASSO estimators are viewed as ones from the normal
and double exponential distributions of the random effects, respectively. The ridge,
LASSO, and HL penalties all assume a proper density of the random effect with
respect to β, i.e.,

∫
fγ,w(β)dβ = 1. However, the SCAD estimator can be viewed

as the random-effect estimator from an improper distribution with respect to β, i.e.,∫
fγ,w(β)dβ = ∞.
The penalty functions pγ,w(·) at w = 0, 2 and 30 with γ = 1/θ = 1 are shown

in Fig. 7.1. As the convexity near the origin increases, the sparsity of the local solu-
tions increases, and as the slope becomes flat, the amount of shrinkage lessens. From
Fig. 7.1, we see that the HL controls the sparsity and shrinkage amount simultane-
ously. The form of the penalty changes from a quadratic shape (w = 0) for the ridge
regression, to a cusped form (w = 2) for the LASSO, and then to an unbounded form
(w > 2) at the origin. The quadratic penalties correspond to the ridge (shrinkage)
estimates, which often lead to better prediction, while cusped ones lead to simulta-
neous variable selection and estimation of the LASSO and SCAD (Fan 1997). Given
w > 2, the amount of shrinkage becomes larger as γ increases. In case of w > 2,
it allows an infinite gain at zero, and the resulting penalty has a significant merit in
variable selection as we shall discuss.

Fig. 7.1 HL penalties with w = 0, 2 and 30
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7.3 Variable Selection via the H-Likelihood

7.3.1 Penalty Function for Variable Selection

From (7.2) and (7.4), we consider variable selection of the fixed effects β in various
frailtymodels viamaximization of a penalized partial h-likelihood hv(β, v,α), given
by

hv(β, v,α) = h p − pγ,w(β).

To implement hv above, following Fan and Li (2001) and Ha et al. (2014b), we
consider a penalty function J (·) such that p(·) = nJ (·). In this book, we thus use
the following penalized partial h-likelihood,

hv(β, v,α) = h p − n
p∑

j=1

Jγ,w(|β j |), (7.5)

where nJγ,w(·) = pγ,w(·) is a penalty function that controls model complexity using
the tuning parameters γ and w such that no penalty at γ = 0.

Here the truemodel is h p with β fixed and from (7.4) exp{−nJγ,w(|β j |)} is viewed
as the frailty distribution of β j . The maximization of hv implies that the maximum
penalized partial h-likelihood estimators (MPPHLEs) for β are used. Thus, even
though β j ’s are the fixed unknowns, the use of the penalized partial h-likelihood hv

implies that the MPPHLEs for β lead to variable selection. The use of the random-
effect estimators for the fixed effects is beneficial not only to prediction but also to
variable selection.

Typically, setting γ = 0 results in the standard frailty model with the partial h-
likelihood h p, whereas the regression coefficient estimates β̂ tend to 0 as γ → ∞.
That is, a larger value of γ tends to choose a simple model, whereas a smaller value
of γ inclines to a complex model. As w increases, the sparsity increases.

In variable selection, the true model is h p with β fixed. Thus, the penalty term
exp{−nJγ,w(|β j |)} is not in the model, so that hv is called the penalized partial h-
likelihood and γ and w are the tuning parameters. In this chapter, we consider the
following three penalty functions, LASSO, SCAD, and HL with appropriate tuning
parameters.

• LASSO (Tibshirani 1996):

pγ(|β|) = nJγ(|β|) = γ|β|, (7.6)
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• SCAD (Fan and Li 2001):

p′
γ,w(|β|) = nJ ′

γ,w(|β|) = γ I (|β| ≤ γ) + (wγ − |β|)+
w − 1

I (|β| > γ), (7.7)

where x+ denotes the positive part of x ; i.e., x+ is x if x > 0, zero otherwise.
• HL (Lee and Oh 2014):

pγ,w(|β|) = nJγ,w(|β|) = γβ2

2a(|β|) + (w − 2) log a(|β|)
2w

+ a(|β|)
w

, (7.8)

where a(|β|) = [{8wγβ2 + (2 − w)2}1/2 + (2 − w)]/4.

The LASSO is the most common penalty as the L1 penalty and has been known to
give a good prediction.However, the LASSOhas been criticized on the grounds that it
typically ends up selecting amodelwith toomany variables to prevent over-shrinkage
of the regression coefficients (Radchenko and James 2008); otherwise, the regression
coefficients for selected variables are often overshrunk. To improve the LASSO, Fan
and Li (2001) proposed the SCAD, which also has two tuning parameters. For the
SCAD, they proposed using w = 3.7. Fan and Li (2001) showed that the SCAD
satisfies the oracle property that asymptotically selects the correct subset model and
estimates the true non-zero coefficients in the linear models, simultaneously. The
HL satisfies the oracle property and gives shrinkage estimators when w > 2 (Kwon
et al. 2016). Lee and Oh (2014) proposed using w = 30 and showed by extensive
simulation studies the results were not much sensitive to the choice of w. They also
showed that the HL outperforms the LASSO and SCAD. For a better performance,
in this book we choose both tuning parameters, (γ, w). For computational efficiency,
we consider only a few values of w, e.g., w = 2.1, 3, 10, 30, 50 representing small,
medium, and large values of w.

Recently, Ng et al. (2016) showed that in change point problems, the HL estimator
provides consistent estimation of the number of change points, their locations and
sizes of changes, while the LASSO and SCAD cannot. Ha et al. (2014b) have shown
via simulation studies that in the frailty models, the HL has higher probability of
choosing the true model than the LASSO and SCAD methods without losing the
prediction accuracy. Lee et al. (2017b) showed that the HL gives the transparent
estimation procedures when the regression coefficients have hierarchies with various
constraints; for example, we can select an interaction term only when corresponding
two main effects are present.
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7.3.2 Penalized Partial H-Likelihood Procedure

For simplicity, we consider a simple frailty model (4.1) with a frailty parameter
α. However, our results can be straightforwardly extended to general frailty mod-
els including multicomponents and competing-risks models. The variable-selection
procedure based on the penalized partial h-likelihood hv in (7.5) is as follows:

• Estimation of (β, v): Given the estimate ofα, theMPPHLEs of (β, v) are obtained
by solving the joint estimating equations of β and v, ∂hv/∂(β, v) = 0. In Appen-
dix 7.7.1, we show that the ILS equations for τ = (βT , vT )T can be explicitly
expressed as an extended form of (4.12):

(
XTW ∗X + n�γ,w XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

)(
β̂
v̂

)
=

(
XTw∗
ZTw∗ + R

)
, (7.9)

where w∗ = W ∗η + (δ − μ) with μ = exp(log�0 + η) and R = Qv + (∂�2/∂v)

(R = 0 if the log-frailty v ∼ N (0,αIq)), and �γ,w = diag{J ′
γ,w(|β j |)/|β j |}, i.e.

n�γ,w = diag{p′
γ,w(|β j |)/|β j |}. The equations above are also simply expressed

as an extended form of (4.13):

(PTVP + n�γ,w)τ̂ = PT y∗
0.

• For the Cox PH model without frailty, they reduce to

(XTW ∗X + n�γ,w)β̂ = XTw∗. (7.10)

For the Coxmodel, Tibshirani (1997) developed the LASSO procedure forw = 2.
We thus see that the ILS Eq. (7.9) extends the LASSO procedure under the Cox
model to the frailty models.

• Estimation of α: For estimation of the frailty parameter α, we use a penalized
partial restricted h-likelihood,

pτ (hv) =
[
hv − 1

2
log det

{
H(hv; τ )

2π

}]∣∣∣∣
τ=τ̂

, (7.11)

where τ̂ = τ̂ (α) = (β̂T (α), vT (α))T . The estimate of α is obtained by solving
the score equation ∂ pτ (hv)/∂α = 0.

• Standard Error Formula: An approximated standard error (SE) of β̂ is obtained
from a sandwich formula based on hv:

cov(β̂) = (Hββ + n�γ,w)−1Hββ(Hββ + n�γ,w)−1, (7.12)

where Hββ = {(XTW ∗X) − (XTW ∗Z)(ZTW ∗Z + Q)−1(ZTW ∗X)}|v=v̂ . The
derivation of (7.12) is given in Appendix 7.7.2.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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• Tuning Parameter Selection: For the choice of tuning parameters γ and w, Ha
et al. (2014b) used a BIC-type criterion based on the penalized partial h-likelihood,
defined by

BIC(γ, w) = −2pv(h p) + e(γ, w) log(n), (7.13)

where pv(h p) is the first-order Laplace approximation to the marginal partial
likelihood mp in (4.8) and e(γ, w) = tr[{Hββ + n�γ,w}−1Hββ] is the effective
number of parameters (Lee and Nelder 1996; Ha et al. 2007a).

In summary, the variable-selection procedure above is easily implemented for
survival data via a slight modification to the existing partial h-likelihood procedures
because the penalty can be viewed as another frailty distribution for β.

An outline of variable-selection algorithm can be described as follows.

1. In the inner loop, we maximize hv for τ = (βT , vT ) (i.e., we solve (7.9)) and
pτ (hv) in (7.11) for α, respectively.

2. In the outer loop, we find (γ, w) that minimizes BIC(γ, w) in (7.13).
3. At convergence, we compute the estimates of the standard errors for β̂ using

(7.12).

Remark 7.1 (i) To avoid a numerical difficulty when β̂ j = 0 in solving (7.9), we
employ �γ,w,ε = diag{J ′

γ,w(|β j |)/(|β j | + ε)} for a small positive value of ε, say,
ε = 10−8, instead of�γ,w. Then�γ,w,ε is always defined and with a small ε the diag-
onal elements of�γ,w,ε are very close to those of�γ,w. In fact, this algorithm extends
Hunter and Li (2005) algorithm for improvement of the local quadratic approxima-
tion (LQA, Fan and Li 2001) to survival data. Here, we report β̂ = 0 if all five printed
decimals are zero. We use a LASSO solution as the initial value for the SCAD and
HL penalties.
(ii) To choose tuning parameters (γ, w), the generalized cross validation (GCV) sta-
tistic has been extensively used (Tibshirani 1997;Fan andLi 2001, 2002;Androulakis
et al. 2012). However, Wang et al. (2007) showed that the GCV approach cannot
select the tuning parameters satisfactorily, with a nonignorable overfitting effect in
the resulting model (Fan and Lv 2010; Zhang 2010). In the spirit of Wang et al.
(2007) and Ha et al. (2014b), in this book we use the BIC-type criterion in (7.13).
(iii) In the variable-selection procedure, we use the log-normal frailty distribution
because it is useful for modelling correlated or multicomponent frailties in Chap. 5.
For the gamma frailty distribution, we use the second-order approximation sv(hv),
where the marginal likelihood is also available: see Appendix 7.7.3.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_5
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7.4 Examples

Example 7.1 (Kidney Infection Data: Univariate Frailty Models) We first consider
five covariates in the kidney infection data: Age, Sex (1=female, 0=male), and three
indicator variables forGN,AN, andPKDwhich are different types of kidneydiseases.
Here, only Age is standardized as other covariates are binary. We fitted the univariate
log-normal model (4.1) using the penalized partial h-likelihood procedures. The
variable-selection procedures (LASSO, SCAD, and HL) were developed by creating
a new R function, frailty.vs(), in the frailtyHL package. The R codes and
results are presented below.

########################## LASSO ################################
> data(kidney, package="frailtyHL")
> attach(kidney)
> kidney$age<-(age-mean(age))/sd(age)
> kidney$GN<-as.numeric(disease=="GN")
> kidney$AN<-as.numeric(disease=="AN")
> kidney$PKD<-as.numeric(disease=="PKD")
> detach(kidney)
>
> la_result<-frailty.vs(Surv(time,status)˜age+sex+GN+AN+PKD+(1|id),
+ model="lognorm", penalty="lasso",data=kidney,
+ B=c(0.074,-1.659, 0.173, 0.387, -1.161),tun1=seq(0,0.1,0.001))
[1] "Result of variable selection in frailty model"
[1]"Fitted model: log-normal"
[1]"penalty : lasso"
[1]"formula :"
Surv(time, status) ˜ age + sex + GN + AN + PKD + (1 | id)
[1] "converge"
[1]"Fixed coefficients"

Estimate Std. Error
age 0.00000 0.00000
sex -0.93163 0.28093
GN 0.00000 0.00000
AN 0.06912 0.06215
PKD -0.14137 0.08677
[1] "Dispersion parameter"
[1] 0.32288
[1] "Tuning parameter"
[1] 0.032

The LASSO procedure is implemented by specifying both initial values B and
tuning parameter tun1(= γ/n). Here the initial values are estimates from the log-
normal frailty model without penalty, which are directly obtained (not shown) by
specifying B=c(0,0,0,0,0) and tun1=0 in the codes for the LASSO above.

The SCAD and HL procedures are similarly implemented using the LASSO solu-
tions as initial values. In particular, the HL procedure requires specification of two
tuning parameters, tun1(= w) and tun2(= γ).

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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########################## SCAD ################################
> sc_result<-frailty.vs(Surv(time,status)˜age+sex+GN+AN+PKD+(1|id),
+ model="lognorm",penalty="scad",data=kidney,
+ B=c(0,-0.932,0,0.069,-0.141),tun1=seq(0,0.1,0.001))
[1] "Fixed coefficients"

Estimate Std. Error
age 0.00000 0.00000
sex -1.55713 0.40993
GN 0.00000 0.00000
AN 0.00000 0.00000
PKD -1.30923 0.64930
[1] "Dispersion parameter"
[1] 0.25669
[1] "Tuning parameter"
[1] 0.075

############################ HL ##################################
> hl_result<-frailty.vs(Surv(time,status)˜age+sex+GN+AN+PKD+(1|id),
+ model="lognorm",penalty="hl",data=kidney,
+ B=c(0,-0.932,0,0.069,-0.141),tun1=c(2.1,3,10,30,50),
+ tun2=seq(0.001,0.25, 0.001))
[1] "Fixed coefficients"

Estimate Std. Error
age 0.00000 0.00000
sex -1.00910 0.29822
GN 0.00000 0.00000
AN 0.00000 0.00000
PKD -0.29155 0.16719
[1] "Dispersion parameter"
[1] 0.31095
[1] "Tuning parameter"
[1] 2.100 0.224

The output shows that the selected values of the tuning parameters by the BIC
in (7.13) were γ = 0.032, γ = 0.078, and (γ, w) = (0.224, 2.1) for the LASSO,
SCAD, andHL, respectively. The estimates of the frailty parameter σ2

0 for no-penalty
(standard frailty model), LASSO, SCAD, and HL are 0.418, 0.323, 0.257, and 0.311,
respectively. The estimated regression coefficients and their standard errors are sum-
marizedunderCase 1 inTable7.1. It is known that theLASSOselectsmany covariates
with excessive shrinkage in nonzero regression coefficients. The covariate Sex is sig-
nificant in all of the four methods. The LASSO chooses three covariates (Sex, AN,
and PKD) out of the five covariates, whereas the SCAD and HL choose two covari-
ates (Sex and PKD). Note that the LASSO selects one more covariate, AN, which is
not significant under no-penalty. The LASSO shrinks most, while the SCAD shrinks
least. The nonzero estimates (β̂2, β̂5) by the SCAD are similar to the corresponding
estimates without penalty (γ = 0). Thus, the SCAD is the least shrinkage estimator,
while the HL gives the shrinkage (frailty) estimator, which is beneficial in prediction.
Through extensive simulation studies, it has been found that the HL gives consistent
variable selection without losing prediction accuracy in finite samples (Lee et al.
2017b).
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Table 7.1 Variable selection for kidney infection data: estimated coefficients (SEs) for the univari-
ate frailty model

Variable No-penalty LASSO SCAD HL

Case 1

Age 0.074 (0.211) 0 (0) 0 (0) 0 (0)

Sex −1.659 (0.447) −0.932 (0.281) −1.557 (0.410) −1.009 (0.298)

GN 0.173 (0.520) 0 (0) 0 (0) 0 (0)

AN 0.387 (0.521) 0.069 (0.062) 0 (0) 0 (0)

PKD −1.161 (0.793) −0.141 (0.087) −1.309 (0.649) −0.292 (0.167)

Case 2

Age 0.091 (0.209) 0.039 (0.111) 0 (0) 0 (0)

Sex −2.689 (0.694) −1.787 (0.360) −1.913 (0.384) −1.709 (0.345)

GN −0.396 (0.868) 0.001 (0.004) 0 (0) 0 (0)

AN −0.477 (0.948) 0.043 (0.086) 0 (0) 0 (0)

PKD −3.433 (1.136) −2.064 (0.570) −2.840 (0.867) −2.276 (0.641)

Sex*GN 0.675 (0.978) 0 (0) 0 (0) 0 (0)

Sex*AN 1.173 (1.000) 0.361 (0.288) 0 (0) 0 (0)

Sex*PKD 4.330 (1.361) 2.496 (0.774) 3.465 (1.110) 2.742 (0.863)

HL, h-likelihood penalty function

We also fitted the model with additional interaction terms between Sex and three
kidney disease types. The estimated results are shown under Case 2 in Table7.1. As
expected, the LASSO still selects more variables while the SCAD and HL choose
the three variables, Sex, PKD, and Sex*PKD. The HL shrinks more than the SCAD
does.

Example 7.2 (Bladder Cancer Data: Univariate Frailty Models) Consider the blad-
der cancer data again, described in Sect. 6.5.2. We consider following covariates:

• main treatment; CHEMO (0=“no”, 1=“yes”)
• Age (0=“≤65 years”, 1=“> 65 years”)
• Sex (0=“male”, 1=“female”)
• prior recurrent rate; PRIORREC (0=“primary”, 1=“≤ 1/yr”, 2=“> 1/yr”)
• number of tumors; NOTUM (0=“single”, 1=“2-7 tumors”, 2=“≥ 8 tumors”)
• tumor size; TUM3CM (0=“<3cm”, 1=“≥3cm”)
• T category; TLOCC (0=“Ta”, 1=“T1”)
• carcinoma in situ; CIS (0=“no”, 1=“yes”)
• G grade; GLOCAL (0=“G1”, 1=“G2”, 2=“G3”)

For covariates with three categories (PRIORREC, NOTUM, and GLOCAL), we
generated two indicator covariates. For example, with the variable PRIORREC, we

http://dx.doi.org/10.1007/978-981-10-6557-6_6
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Table 7.2 Variable selection for bladder cancer data: estimated coefficients (SEs) for the univariate
frailty model

Variable No-penalty LASSO SCAD HL

x1: CHEMO −0.879 (0.188) −0.598 (0.142) −0.875 (0.182) −0.731 (0.162)

x2: Age −0.264 (0.147) −0.128 (0.078) 0 (0) 0 (0)

x3: Sex 0.005 (0.210) 0 (0) 0 (0) 0 (0)

x4: PRIORREC1 0.311 (0.252) 0 (0) 0 (0) 0 (0)

x5: PRIORREC2 0.549 (0.201) 0.346 (0.120) 0.440 (0.179) 0.355 (0.134)

x6: NOTUM1 0.700 (0.168) 0.463 (0.118) 0.688 (0.164) 0.553 (0.137)

x7: NOTUM2 1.230 (0.285) 0.700 (0.172) 1.230 (0.272) 0.944 (0.222)

x8: TUM3CM 0.155 (0.176) 0.007 (0.007) 0 (0) 0 (0)

x9: TLOCC 0.198 (0.175) 0.143 (0.082) 0 (0) 0 (0)

x10: CIS 0.260 (0.280) 0 (0) 0 (0) 0 (0)

x11: GLOCAL1 0.532 (0.166) 0.280 (0.104) 0.549 (0.159) 0.391 (0.126)

x12: GLOCAL2 0.845 (0.275) 0.328 (0.122) 0.954 (0.251) 0.648 (0.196)

coded PRIORREC1 = I(PRIORREC=1) and PRIORREC2 = I(PRIORREC=2). Sim-
ilarly, with the variables NOTUMandGLOCAL, we have used the respective indica-
tors (NOTUM1, NOTUM2) and (GLOCAL1, GLOCAL2). Thus, total 12 covariates
were included in the model. Here, patients with missing covariates were excluded, so
that the remaining 396 patients from 21 centers were included; 196 patients (49.5%)
among 396 patients were censored since for simplicity, we considered Type 1 event
as the main event and Type 2 event as censoring.

We fitted the univariate log-normal model (4.1) as in Example 7.1. The estimates
of the frailty parameter σ2

0 for the no-penalty, LASSO, SCAD, and HL are 0.112,
0.070, 0.108, and 0.088, respectively. The estimated regression coefficients and their
standard errors (SEs) are shown in Table7.2. The main covariate, CHEMO ({x1})
is significant by all of the four methods. The LASSO chooses nine covariates {x1,
x2, x5, x6, x7, x8, x9, x11, x12} out of 12 covariates, whereas both the SCAD and
HL choose six covariates {x1, x5, x6, x7, x11, x12}. Between the SCAD and HL, the
SCAD shrinks less. Among nine LASSO covariates {x1, x2, x5, x6, x7, x8, x9, x11,
x12}, three of them {x2, x8 and x9}, not selected by the SCAD and HL methods, are
not significant under the standard frailty model (no-penalty).

Example 7.3 (The CGD Data: Multicomponent Frailty Models) In the CGD data,
survival times from a given patient or those from a given hospital is likely to be
correlated. Thus, we may use the multicomponent log-normal frailty models. For an
illustration, we model the recurrent infection times Ti jk , with the eight covariates
xi jk = (xi jk1, . . . , xi jk8)T , without hospital region xi jk9 and longitudinal covariate
xi jk10, because with those two covariates included, the hospital frailty variance esti-
mate becomes zero. Here, three covariates (age xi jk3, height xi jk4, and weight xi jk5)
are standardized as other covariates are binary.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Table 7.3 Variable selection: estimated coefficients (SEs) for multilevel frailty model with the
CGD data

Variable No-penalty LASSO SCAD HL

Gamma-IFN −1.093 (0.357) −0.760 (0.228) −1.074 (0.335) −0.898 (0.276)

Inheritance −0.576 (0.409) 0 (0) 0 (0) 0 (0)

Age −0.904 (0.446) −0.201 (0.115) 0 (0) 0 (0)

Height 0.200 (0.462) 0 (0) 0 (0) 0 (0)

Weight 0.336 (0.480) 0 (0) 0 (0) 0 (0)

Corticosteroids 1.756 (0.941) 0 (0) 0 (0) 0 (0)

Prophylactic −0.591 (0.480) 0 (0) 0 (0) 0 (0)

Sex −0.630 (0.566) 0 (0) 0 (0) 0 (0)

We have (σ̂2
h, σ̂

2
p) = (0.027, 1.028) under the multicomponent (multilevel) frailty

model (5.4) without a penalty. The two estimates (σ̂2
h, σ̂

2
p) under the LASSO, SCAD,

and HL are (0.000, 0.929), (0.026, 0.982), and (0.020, 0.964), respectively. Table7.3
shows that the LASSO chooses two covariates (Gamma-IFN, Age) out of eight
covariates, whereas the SCAD and HL choose only one covariate (Gamma-IFN).
Again the SCAD shrinks less than HL.

The R codes and outputs from the variable-selection procedures for the CGD data
via the multilevel model are presented below.

> data(cgd, package="frailtyHL")
> cgd$age<-(cgd$age-mean(cgd$age))/sd(cgd$age)
> cgd$height<-(cgd$height-mean(cgd$height))/sd(cgd$height)
> cgd$weight<-(cgd$weight-mean(cgd$weight))/sd(cgd$weight)
############################# No penalty ##########################
> no_penalty<-frailty.vs(Surv(tstop-tstart,status)˜treat+inherit+age
+ +height+weight+steroids+propylac+sex+(1|center)+(1|id), model=
+"lognorm",penalty="lasso",data=cgd,B=c(0,0,0,0,0,0,0,0),tun1=c(0))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : lasso"
[1]"formula :"
Surv(tstop - tstart, status) ˜ treat + inherit + age + height +

weight + steroids + propylac + sex + (1 | center) + (1 |
id)

[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treatrIFN-g -1.09271 0.35662
inheritautosomal 0.57630 0.40907
age -0.90405 0.44644
height 0.19966 0.46220
weight 0.33614 0.47960
steroids 1.75590 0.94130
propylac -0.59125 0.47954

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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sexfemale -0.63003 0.56606
[1]"==Dispersion parameter=="
[1] 0.02656 1.02808
[1]"==Tuning parameter=="
[1] 0
################################# LASSO ###########################
> la_result<-frailty.vs(Surv(tstop-tstart,status)˜treat+inherit+age
+ +height+weight+steroids+ propylac+sex +(1|center)+(1|id),model=
+"lognorm",penalty="lasso",data=cgd,B=c(-1.093,-0.576,-0.904,0.200,
+ 0.336,1.756,-0.591,-0.630), tun1=seq(0,0.02,0.001))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : lasso"
[1]"formula :"
Surv(tstop - tstart, status) ˜ treat + inherit + age + height
+ +weight + steroids + propylac + sex + (1 | center) + (1 |id)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treatrIFN-g -0.75964 0.22759
inheritautosomal 0.00000 0.00000
age -0.20053 0.11480
height 0.00000 0.00000
weight 0.00000 0.00000
steroids 0.00000 0.00000
propylac -0.00002 0.00001
sexfemale 0.00000 0.00000
[1]"==Dispersion parameter=="
[1] 0.00000 0.92942
[1]"==Tuning parameter=="
[1] 0.015

################################## SCAD ###########################
> sc_result<-frailty.vs(Surv(tstop-tstart,status)˜treat+inherit+age
+ +height+weight+ steroids+ propylac+ sex + (1|center)+(1|id),model=
+ "lognorm",penalty="scad",data=cgd,B=c(-0.760,0,-0.201,0,0,0,0,0),
+ tun1=seq(0,0.1,0.001))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : scad"
[1]"formula :"
Surv(tstop - tstart, status) ˜ treat + inherit + age + height
+ +weight + steroids + propylac + sex + (1 | center) + (1 |id)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treatrIFN-g -1.07394 0.33532
inheritautosomal 0.00000 0.00000
age 0.00000 0.00000
height 0.00000 0.00000
weight 0.00000 0.00000
steroids 0.00000 0.00000
propylac 0.00000 0.00000
sexfemale 0.00000 0.00000
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[1]"==Dispersion parameter=="
[1] 0.02620 0.98167
[1]"==Tuning parameter=="
[1] 0.066

################################ HL #############################
> hl_result<-frailty.vs(Surv(tstop-tstart,status)˜treat+inherit+age
+ +height+weight+steroids+ propylac+sex +(1|center)+(1|id),model=
+"lognorm",penalty="hl",data=cgd,B=c(-0.760,0,-0.201,0,0,0,0,0),
+ tun1=c(2.1,3,10,30,50), tun2=seq(0.001,0.06,0.01))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : hl"
[1]"formula :"
Surv(tstop - tstart, status) ˜ treat + inherit + age + height
+ +weight + steroids + propylac + sex + (1 | center) + (1 |id)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treatrIFN-g -0.89992 0.2765
inheritautosomal 0.00000 0.0000
age 0.00000 0.0000
height 0.00000 0.0000
weight 0.00000 0.0000
steroids 0.00000 0.0000
propylac 0.00000 0.0000
sexfemale 0.00000 0.0000
[1]"==Dispersion parameter=="
[1] 0.01953 0.96393
[1]"==Tuning parameter=="
[1] 50.000 0.051
[1]"==BIC=="
[1] 697.7575

Example 7.4 (Multicenter Lung Cancer Data: Correlated Frailty Models) Consider
the multicenter lung cancer data with the following five dichotomous covariates:
treatment (xi j1, Trt, is 0 for CAV and 1 for CAV-HEM), presence (1) or absence (0)
of bone metastases (xi j2, Bone), presence (1) or absence (0) of liver metastases (xi j3,
Liver), whether the subject was ambulatory (xi j4 = 1 if PS=1) or confined to bed or
chair (xi j4 = 0 if PS=0), and whether there was weight loss prior to entry (xi j5, WL).

Let vi1 and vi2 be random treatment and random bone metastases effects, respec-
tively. We consider the following correlated frailty model (5.7) with vi1 and vi2:

ηi j = (β1 + vi1)xi j1 + (β2 + vi2)xi j2 + β3xi j3 + β4xi j4 + β5xi j5,

where a correlation ρ is assumed between vi1 and vi2.

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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Table 7.4 Variable selection: estimated coefficients (SEs) for the correlated frailty model with lung
cancer data

Variable No-penalty LASSO SCAD HL

Case 1

Trt −0.233 (0.099) −0.103 (0.048) 0 (0) 0 (0)

Bone 0.261 (0.127) 0.064 (0.032) 0 (0) 0 (0)

Liver 0.391 (0.093) 0.315 (0.071) 0.446 (0.091) 0.349 (0.077)

PS −0.652 (0.108) −0.527 (0.088) −0.689 (0.108) −0.584 (0.096)

WL 0.210 (0.090) 0.138 (0.055) 0 (0) 0.130 (0.053)

Case 2

Trt −0.116 (0.263) 0 (0) 0 (0) 0 (0)

Bone 0.372 (0.158) 0.083 (0.038) 0 (0) 0 (0)

Liver 1.005 (0.273) 0.299 (0.069) 0.432 (0.091) 0.325 (0.073)

PS −0.100 (0.220) −0.417 (0.083) −0.552 (0.119) −0.458 (0.090)

WL 0.687 (0.236) 0.130 (0.052) 0 (0) 0.112 (0.046)

Trt*Bone −0.216 (0.196) 0 (0) 0 (0) 0 (0)

Trt*Liver 0.179 (0.187) 0 (0) 0 (0) 0 (0)

Trt*PS −0.208 (0.225) −0.231 (0.067) −0.304 (0.112) −0.216 (0.067)

Trt*WL −0.028 (0.181) 0 (0) 0 (0) 0 (0)

Liver*PS −0.595 (0.227) 0 (0) 0 (0) 0 (0)

Liver*WL −0.377 (0.190) 0 (0) 0 (0) 0 (0)

PS*WL −0.399 (0.237) 0 (0) 0 (0) 0 (0)

Trt, treatment; PS, ambulatory performance status; WL, weight loss

The frailty-parameter estimates (σ̂2
1, σ̂

2
2, ρ̂) for the LASSO, SCAD, and HL were

(0.066, 0.181, −0.217), (0.093, 0.206, −0.401), and (0.095, 0.212, −0.389), respec-
tively. The estimated coefficients and their SEs are reported for the main effects-only
model, i.e., Case 1 in Table7.4. The LASSO chooses all five covariates. Gray (1994)
and Vaida and Xu (2000) have shown that there are substantial variations in the treat-
ment (x1) effect over centers, implying that x1 may not be significant. The SCAD
selects two covariates without x1, while the HL selects three covariates without x1.

The random-effect estimates and their 95%Wald intervals for each institution are
plotted in Fig. 7.2 [(a) random treatment effects and (b) random bone effects] from
the HL variable- selection procedure under the correlated model above. Figure7.2b
shows substantial institutional variation in the bone effects among institutions and
the Wald intervals for the two institutions (22, 29) do not include zero.

Since the covariate of main interest in this study is Trt and the HL selects the
three variables (Liver, PS, and WL), we considered all two-way interaction terms
between these four caovariates and an additional interaction Trt∗Bone. The results
are presented under Case 2 in Table7.4. All three methods (LASSO, SCAD, and HL)
select a new interaction Trt∗PS. The LASSO still selects more variables, and the HL
selects an additional covariate WL compared with the SCAD. Here the interaction
term Trt∗PS is selected even though the main effect Trt is not selected. It is often
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(a)

(b)

Fig. 7.2 Random effects and their 95% confidence intervals under the HL variable selection in the
correlated frailty model allowing dependency between random treatment and random bone in the
lung cancer data; (a) random treatment effects (v1); (b) random bone effects (v2); 31 institutions
are sorted by the increasing order of number of patients

preferred to impose a strong hierarchy constraint that the presence of an interaction
term requires including both of the corresponding main effects in the model. The HL
can be easily modified to allow such a hierarchical constraint (Lee et al. 2017b).

Below are the R codes and outputs from the variable-selection procedure for the
lung cancer data via the correlated model.

> lung.formula<-Surv(y,del)˜treat + bone + liver + ps + wtlss
+ +(treat|center)+(bone|center)
################################# No-penalty ########################
> Nop_result<-frailty.vs(lung.formula,model="lognorm",penalty="lasso",
+ data=lung_d,B=c(-0.23,0.26,0.39,-0.65,0.21),alpha=c(0.03,0.03,0.01),
+ tun1=c(0))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : lasso"
[1]"formula :"
Surv(y, del) ˜ treat +bone +liver +ps +wtlss +(treat|center) +
+ (bone | center)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treat -0.23341 0.09937
bone 0.26074 0.12798
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liver 0.39061 0.09284
ps -0.65246 0.10755
wtlss 0.21044 0.08985
[1]"==Dispersion parameter=="

[,1]
[1,] 0.05280
[2,] 0.13452
[3,] 0.01574
[1]"==Tuning parameter=="
[1] 0
[1]"==BIC=="
[1] 6118.688
################################# LASSO ############################
> la_result<-frailty.vs(lung.formula,model="lognorm",penalty="lasso",
+data=lung_d,B=c(-0.23,0.26,0.39,-0.65,0.21),alpha=c(0.03,0.03,0.01),
+tun1=seq(0,0.03,0.001))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : lasso"
[1]"formula :"
Surv(y, del) ˜ treat + bone + liver + ps + wtlss + (treat | center) +

(bone | center)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treat -0.10286 0.04822
bone 0.06414 0.03237
liver 0.31511 0.07079
ps -0.52748 0.08799
wtlss 0.13847 0.05450
[1]"==Dispersion parameter=="

[,1]
[1,] 0.06595
[2,] 0.18154
[3,] -0.02379
[1]"==Tuning parameter=="
[1] 0.019
[1]"==BIC=="
[1] 6112.012
################################# SCAD #############################
> sc_result<-frailty.vs(lung.formula,model="lognorm",penalty="scad",
+data=lung_d,B=c(-0.103,0.064,0.315,-0.527,0.138),alpha=c(0.03,0.03,
+ 0.01), tun1=seq(0,0.06,0.001))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : scad"
[1]"formula :"
Surv(y, del) ˜ treat + bone + liver + ps + wtlss + (treat | center) +

(bone | center)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treat 0.00000 0.00000
bone 0.00000 0.00000
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liver 0.44648 0.09146
ps -0.68874 0.10788
wtlss 0.00000 0.00000
[1]"==Dispersion parameter=="

[,1]
[1,] 0.09258
[2,] 0.20591
[3,] -0.05539
[1]"==Tuning parameter=="
[1] 0.049
[1]"==BIC=="
[1] 6112.563
################################# HL #################################
> hl_result<-frailty.vs(lung.formula,model="lognorm",penalty="hl",
+ data=lung_d,B=c(-0.23,0.26,0.39,-0.65,0.21),alpha=c(0.03,0.03,0.01),
+ tun1=c(2.1,3,10,30,50),tun2=seq(0.001,0.06,0.01))
[1]"Result of variable selection in frailty model"
[1]"==Fitted model=="
[1]"model : lognorm"
[1]"penalty : hl"
[1]"formula :"
Surv(y, del) ˜ treat + bone + liver + ps + wtlss + (treat | center) +

(bone | center)
[1]"converge"
[1]"==Fixed coefficients=="

Estimate Std. Error
treat 0.00000 0.00000
bone 0.00000 0.00000
liver 0.34904 0.07730
ps -0.58383 0.09558
wtlss 0.13024 0.05328
[1]"==Dispersion parameter=="

[,1]
[1,] 0.09456
[2,] 0.21212
[3,] -0.05514
[1]"==Tuning parameter=="
[1] 5e+01 1e-03
[1]"==BIC=="
[1] 6111.287

7.5 Variable Selection for the Competing-Risks Frailty
Models

The variable-selection procedures for the fixed effects β can be extended to the
subhazard competing-risks frailty models using a penalized weighted partial h-
likelihood, defined by

hvw(β, v,α) = h pw − n
p∑

j=1

Jγ,w(|β j |),
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where h pw is the weighted partial h-likelihood in (6.22). Below we present how to
select relavent variables via hvw, using two real-data examples frommulticenter trials
where patients within a center may have correlated outcomes.

Example 7.5 (Bladder Cancer Data: Subhazard Univariate Frailty Models) Con-
sider the multicenter bladder cancer data with 396 patients again. In this section we
focus on the following two competing events:
(i) time to first bladder recurrence (an event of interest; Type 1 event),
(ii) time to death prior to recurrence (competing event; Type 2 event).
Of 396 patients, 200 (50.51%) had recurrence of bladder cancer and 81 (20.45%) died
prior to recurrence. 115 patients (29.04%) who were still alive without recurrence
were censored at the date of the last available follow-up. The numbers of patients
per center varied from 3 to 78, with the mean of 18.9 and the median of 14.

We fitted the subhazard univariate frailty models with 12 covariates (x1, x2, . . . ,
x12) in Example 7.2. The selected values of the tuning parameters γ by the BIC
were γ = 0.012, 0.084, and (γ, w) = (0.011, 50) for the LASSO, SCAD,
and HL, respectively. The estimates of the frailty parameter σ2

0 for no-penalty,
LASSO, SCAD, and HL are 0.106, 0.072, 0.107, and 0.088, respectively. The esti-
mated coefficients and their standard errors for bladder cancer recurrence (i.e.,
Type 1 event) are given in Table7.5. The main covariate, CHEMO ({x1}), is
very significant in all of the four methods. The LASSO chooses nine covariates
{x1, x2, x5, x6, x7, x8, x9, x11, x12} out of the twelve covariates, whereas the SCAD
and HL choose six {x1, x5, x6, x7, x11, x12} and seven {x1, x2, x5, x6, x7, x11, x12}
covariates, respectively.We prefer the HL because extensive simulation studies show

Table 7.5 Variable selection: estimated coefficients (SEs) from the subhazard univariate frailty
model for bladder cancer data

Variable No-penalty LASSO SCAD HL

x1: CHEMO −0.933 (0.187) −0.666 (0.166) −0.929 (0.182) −0.785 (0.174)

x2: Age −0.343 (0.147) −0.214 (0.120) 0 (0) −0.218 (0.119)

x3: Sex 0.058 (0.208) 0 (0) 0 (0) 0 (0)

x4: PRIORREC1 0.276 (0.249) 0 (0) 0 (0) 0 (0)

x5: PRIORREC2 0.514 (0.200) 0.327 (0.149) 0.395 (0.180) 0.294 (0.150)

x6: NOTUM1 0.713 (0.168) 0.494 (0.139) 0.688 (0.164) 0.593 (0.150)

x7: NOTUM2 1.307 (0.283) 0.816 (0.229) 1.293 (0.272) 1.051 (0.249)

x8: TUM3CM 0.213 (0.175) 0.060 (0.094) 0 (0) 0 (0)

x9: TLOCC 0.171 (0.173) 0.127 (0.115) 0 (0) 0 (0)

x10: CIS 0.266 (0.278) 0 (0) 0 (0) 0 (0)

x11: GLOCAL1 0.474 (0.165) 0.250 (0.126) 0.491 (0.159) 0.384 (0.137)

x12: GLOCAL2 0.808 (0.274) 0.347 (0.189) 0.910 (0.250) 0.610 (0.222)

http://dx.doi.org/10.1007/978-981-10-6557-6_6
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that it achieves selection consistency without losing prediction accuracy in the finite
samples.

Example 7.6 (Breast Cancer Data: Subhazard Correlated Frailty Models)We again
consider the multicenter breast cancer data, analyzed in Sect. 6.4.2. For simplicity,
we consider only the subset of older 1763 patients (i.e., age ≥ 50) from the original
data set. The number of patients per center varied from1 to 114, with themean of 11.8
and the median of 6. Type 1 is an event of interest (465 patients; 26.38%), Type 2 is a
competing event (469 patients; 26.60%), and patients without events were censored
at the last follow-up (1200 patients; 47.02%).We studied the following ten covariates
on time to local or regional recurrence (Type 1 event): treatment group (GROUP;
placebo, and tamoxifen), race (RACE; white, black, and other), menopausal status
(MENSE; premenopausal, perimenopausal, and postmenopausal), number of nodes
removed (RNOD), tumor size (TSIZE), estrogen receptor level (ER), progesterone
receptor level (PR), and surgery type (SURGTYPE; lumpectomy and mastectomy).
We created two indicator covariates for variables RACE and MENSE (Table7.6).
Four continuous covariates (RNOD, TSIZE, ER, and PR) are standardized while
other six covariates are binary, a total of 10 covariates being included in the model.

We fitted the subhazard correlated frailty model (6.17) where the random center
effect vi0 and random treatment effect vi1 are correlated. The fitted results are as
follows. The selected values of the tuning parameters are γ = 0.004, 0.026, and

Table 7.6 Variable selection: estimated coefficients (SEs) in the correlated subhazard frailty model
(Type 1 event) with breast cancer data

Variable No-penalty LASSO SCAD HL

x1: GROUP −0.617 (0.107) −0.528 (0.097) −0.610 (0.106) −0.521 (0.097)

x2: RACE1 −0.202 (0.267) 0 (0) 0 (0) 0 (0)

x3: RACE2 −0.165 (0.340) 0 (0) 0 (0) 0 (0)

x4: MENSE1 0.112 (0.222) 0 (0) 0 (0) 0 (0)

x5: MENSE2 −0.158 (0.265) 0 (0) 0 (0) 0 (0)

x6: RNOD −0.139 (0.051) −0.124 (0.046) −0.139 (0.050) −0.109 (0.044)

x7: TSIZE 0.272 (0.041) 0.254 (0.039) 0.266 (0.040) 0.253 (0.039)

x8: ER 0.077 (0.037) 0.069 (0.035) 0.022 (0.019) 0.068 (0.032)

x9: PR 0.058 (0.045) 0.052 (0.040) 0 (0) 0 (0)

x10: SURGTYPE −0.089 (0.101) 0 (0) 0 (0) 0 (0)

GROUP, treatment group; Group=I(tamoxifen);
RACE, race (white, black, other); RACE1=I(RACE=white), RACE2=I(RACE=black);
MENSE, menopausal status (premenopausal, perimenopausal, postmenopausal);
MENSE1=I(MENSE=premenopausal), MENSE2=I(MENSE=perimenopausal);
RNOD, number of nodes removed; TSIZE, tumor size (mm);
ER, estrogen receptor level; PR, progesterone receptor level;
SURGTYPE, surgery type; SURGTYPE=I(mastectomy)

http://dx.doi.org/10.1007/978-981-10-6557-6_6
http://dx.doi.org/10.1007/978-981-10-6557-6_6
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(γ, w) = (0.001, 50) for the LASSO, SCAD, and HL, respectively. The frailty-
parameter estimates (σ̂2

0, σ̂
2
1, and ρ̂) for the no-penalty, LASSO, SCAD, and HL

are (0.297, 0.116, and − 0.988), (0.290, 0.101, and − 0.996), (0.289, 0.115, and −
0.992), and (0.294, 0.101, and−0.996), respectively. The estimated coefficients and
their SEs for Type 1 events are reported in Table7.6. Ha et al. (2014b) and Christian
et al. (2016) have shown that the main treatment effect (GROUP; x1) is significant,
which is also confirmed by the three methods (LASSO, SCAD, and HL). Here the
LASSO chooses five covariates {x1, x6, x7, x8, x9}, but the SCAD and HL select four
covariates {x1, x6, x7, x8}. Again the HL shrinks more than the SCAD.

7.6 Discussion

Using the penalized partial h-likelihood, we have shown how to implement the
variable-selection procedures in the frailty models and the subhazard competing-
risks models. Ha et al. (2014a, b) have demonstrated via numerical studies and data
analyses that the HL method is preferable to the SCAD method because it identi-
fies zero and nonzero coefficients better without losing prediction accuracy. In the
h-likelihood approach, the variable selection is equivalent to assuming some frailty
distribution for the fixed effects, so that it can be straightforwardly extended to the
cause-specific frailtymodels and high dimensional cases (i.e. p > n). For advantages
of the HL penalty in structured variable selection and multivariate analysis, see Lee
et al. (2017b).

In this chapter, we have considered selecting individual variables only. In many
regression problems, the covariates often possess a natural group structure. For exam-
ple, categorical variables are often represented by a group of indicator variables. In
these situations, the problem of selecting relevant variables is that of selecting groups
rather than selecting individual variables (Yuan and Lin 2006; Huang et al. 2012).
Extension of the group penalization methods such as group LASSO (Yuan and Lin
2006) or group HL (Lee et al. 2015a, 2017b) to the general frailty models would be
an interesting future topic.

7.7 Appendix

7.7.1 Derivation of Score Equations (7.9) for Variable
Selection

Given the frailty parameter α, the MPPHLEs of (β, v) are obtained by solving the
estimating equations,
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∂hv

∂β j
= ∂h p

∂β j
− n

p∑

j=1

[Jγ,w(|β j |)]′ = 0 (7.14)

and
∂hv

∂v
= ∂h p

∂v
= 0. (7.15)

Here, (7.14) is an adjusted estimating equation induced by adding the penalty term,
whereas (7.15) is the same as the standard estimating equation without penalty.
However, with the three penalty functions considered in (7.6)–(7.8), Jγ,w() in (7.14)
becomes non-differentiable at the origin and it does not have continuous second-
order derivatives. These lead to a difficulty in solving (7.14). Thus, we use a LQA
to such penalty functions. That is, given an initial value β(0) that is close to the true
value of β, the penalty function Jγ,w() can be locally approximated by a quadratic
function as

[Jγ,w(|β j |)]′ = J ′
γ,w(|β j |)sgn(|β j |) ≈ {J ′

γ,w(|β(0)
j |)/|β(0)

j |}β j for β j ≈ β(0)
j .

Then, from (4.35), the negative Hessian matrix of β and v based on hv can be
explicitly written as a simple matrix form:

H(hv;β, v) = − ∂2hv

∂(β, v)2
=

(
XTW ∗X + n�γ,w XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

)
, (7.16)

Following (4.37) and (7.16), we can show that given α, the MPPHL equations of
(β, v) become (7.9). �

7.7.2 Derivation of the Standard Error Formula (7.12)

Now, we are interested in computing an approximated covariance estimate of β̂. For
this we consider a further penalized profile h-likelihood after eliminating v from hv

in (7.5), defined by

ĥv(β,α) ≡ hv|v=v̂ = ĥ∗ − n
p∑

j=1

Jγ,w(|β j |), (7.17)

where ĥ∗ = ĥ∗(β,α) = h p(β,α, v)|v=v̂ . In the frailty models, the regression para-
meters β and frailty parameter α are asymptotically orthogonal (Lee and Nelder
1996; Ha and Lee 2003; Ha et al. 2011). Therefore, to estimate the covariance matrix
of β̂ only, we do not have to consider the information loss caused by estimating α.
Thus, the SEs of β̂ are obtained from the following sandwich formula (Fan and Li
2002; Cai et al. 2005) based on ĥv in (7.17):

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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cov(β̂) = H(ĥv;β)−1cov(∂ĥv/∂β)H(ĥv;β)−1, (7.18)

where H(ĥv;β) ≡ −∂2ĥv/∂β2 = Hββ + n�γ,w. Here, Hββ ≡ H(ĥ;β) ≡
−∂2ĥ/∂β2 is explicitly computed as follows:

Hββ = {(−∂2h p/∂β2) − (−∂2h p/∂β∂v)(−∂2h p/∂v2)(−∂2h p/∂v∂β)}|v=v̂

= {(XTW ∗X) − (XTW ∗Z)(ZTW ∗Z + Q)−1(ZTW ∗X)}|v=v̂ ,

since ∂ĥ/∂β = {(∂h p/∂β) + (∂h p/∂v)(∂v̂/∂β)}|v=v̂ (Ha and Lee 2003; Ha et al.
2010). Here, we use Hββ to estimate cov(∂ĥv/∂β). �

7.7.3 Variable Selection via the Penalized Marginal
Likelihood

For the gamma frailty, the variable-selection procedure is straightforward as in
the log-normal frailty. To estimate the frailty parameter α, which is the variance
of the gamma frailty, Ha et al. (2014b) used the second-order approximation,
sv(hv) = pv(hv) − F(h), where F(h) = ∑q

i=1{−2(α−1 + ∑
j δi j )

−1}. The cor-
responding marginal likelihood procedure is also available because it has an explicit
form. Ha et al. (2014b) found out via simulations that in the gamma frailty model,
the h-likelihood and the marginal likelihood approaches based on the SCAD and HL
provide similar results and perform well.

Now, we outline a penalized marginal likelihood method. Consider maximizing
a penalized profile marginal likelihood mv (Fan and Li 2002), defined by

mv(β,α) = m̂(β,α) − n
p∑

j=1

Jγ,w(|β j |), (7.19)

where m̂(β,α) = m(β,λ0,α)|λ0=λ̂0
and λ̂0 solves ∂m/∂λ0 = 0 (Andersen et al.

1997; Ha et al. 2001). The likelihoodmv in (7.19) requiresm which often involves an
intractable integration, except for the gamma frailty model. Notice that in the gamma
frailty, the formula (3.10) of Fan andLi (2002) omitted an extra term log�(θ−1+ δi+)

in mv , which was also pointed out by Androulakis et al. (2012). The standard errors
of β̂ corresponding to (7.19) are obtained from a sandwich formula:

cov(β̂) = {Mββ + n�γ}−1cov(∂m̂/∂β){Mββ + n�γ}−1,

where Mββ = −∂2m̂/∂β2. We use Mββ to estimate cov(∂m̂/∂β). To compute Mββ

in gamma frailty model, we also use Hββ in (7.18) since, given α, Mββ is the same
as Hββ (Ha et al. 2001, 2010). To choose (γ, w), we use the BIC corresponding to
(7.13), defined by

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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BIC(γ, w) = −2m̂(β̂, α̂) + e∗(γ, w) log(n),

where e∗(γ, w) = tr{(Mββ +n�γ,w)−1Mββ}withMββ = −∂2m̂/∂β2 is the effective
number of parameters (Fan and Li 2002; Ha et al. 2007a). Note here that Fan and
Li (2002) and Androulakis et al. (2012) have used the GCV method for the optimal
choice of γ, which can not select the tuning parameters satisfactorily (Wang et al.
2007; Fan and Lv 2010; Zhang et al. 2010). �



Chapter 8
Mixed-Effects Survival Models

The frailty model accounts for dependence between survival times, by including a
random effect acting multiplicatively on the individual hazard rate. The linear mixed
model (LMM) has been introduced as an alternative in which the random effect acts
linearly on each individual survival time. Thus, the fixed effect describes the mean
survival time. The accelerated failure-time (AFT) random-effect model is the LMM
under the log-transformation of survival time, an extension of the AFT model in
Sect. 2.4. Various methods to obtain the MLE have been developed, but they tend to
be computationally intensive, e.g., the EM (Pettitt 1986), Monte Carlo EM (Hughes
1999) and Newton–Raphson method (Klein et al. 1999). In this chapter, we show
that the h-likelihood approach provides a conceptually simple, numerically efficient,
and reliable inferential procedure for the LMM. Here, we present the h-likelihood
methods for the LMM with censoring, mainly under the AFT models.

8.1 Linear Mixed Model with Censoring

Under Assumptions 3 and 4 given in Chap.4, consider the AFT models with random
effects: for i = 1, . . . , q and j = 1, . . . , ni ,

log Ti j = xTi jβ + Ui + εi j , (8.1)

where xi j = (xi j1, . . . , xi jp)T is a vector of the fixed covariates, β is a p × 1 vector
of the fixed effects, and Ui ∼ N (0,σ2

u) and εi j ∼ N (0,σ2
ε ) are independent. Here,

the dispersion or variance components σ2
u and σ2

ε stand for variability between and
within individuals, respectively. Note that E(log Ti j ) �= log E(Ti j ), so that care is
needed in transforming conclusions based on a log-scale E(log Ti j ) back onto the
original scale E(Ti j ).

© Springer Nature Singapore Pte Ltd. 2017
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8.1.1 Estimation Procedure

Inferential procedures arewell developed for theLMMas shown inChap.3.However,
those procedures cannot be directly applied to the AFT model because of censoring.
The observable random variables for the AFT model are

Yi j = min(log Ti j , logCi j ) and δi j = I (Ti j ≤ Ci j ).

• Pseudo-Response Variable

Because of censoring,
E(Yi j |Ui = ui ) �= μi j ,

where μi j = E(log Ti j |Ui = ui ) = xTi jβ + ui .
Buckley and James (1979) proposed using the pseudo-response variable Y ∗

i j for
the linear model under censoring. Here, we want to extend their method to the AFT
model. Define

Y ∗
i j = E(log Ti j |Yi j , δi j ,Ui = ui )

= Yi jδi j + E(log Ti j | log Ti j > Yi j ,Ui = ui )(1 − δi j ).

In Appendix 8.6.1, we show that

E(Y ∗
i j |Ui = ui ) = E(log Ti j |Ui = ui )

= μi j . (8.2)

Let yi j be the observed value for Yi j and let y∗
i j = Y ∗

i j |Yi j=yi j be the pseudo-response
variables, computed based upon the observed data Yi j = yi j . Explicit formulae can
be obtained under certain models. Suppose that

log Ti j |Ui = ui ∼ N (μi j ,σ
2
ε ).

Let V (·) = φ(·)/�̄(·) be the hazard function of N (0, 1), where φ(·) and �(·)(= 1−
�̄(·)) are the density and cumulative distribution functions of N (0, 1), respectively,
and

mi j = (yi j − μi j )

σε
.

Then,

E(log Ti j | log Ti j > yi j ,Ui = ui ) =
∫ ∞

yi j

{t f (t |Ui )}/S(yi j )dt

=
∫ ∞

mi j

{(μi j + σεz)φ(z)}/�̄(mi j )dz

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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= μi j + {σε/�̄(mi j )}
∫ ∞

mi j

zφ(z)dz

= μi j + σεV (mi j ),

where we use φ
′
(z) = −zφ(z) at the last step. Thus, we have the pseudo-responses

y∗
i j = yi jδi j + {μi j + σεV (mi j )}(1 − δi j ). (8.3)

• H-likelihood Procedure

Under Assumptions 3 and 4, the h-likelihood for the AFT model, denoted by h, is
defined by

h = h(β,σ2
ε ,σ

2
u) =

∑
i j

�1i j +
∑
i

�2i , (8.4)

where

�1i j = �1i j (β,σ2
ε ; yi j , δi j |ui ) = − δi j {log(2πσ2

ε )+(mi j )
2}/2+(1−δi j ) log{�̄(mi j )}

is the logarithm of the conditional density function for Yi j and δi j given Ui = ui ,
and �2i = �2i (σ

2
u; ui ) = − {log(2πσ2

u) + (u2i /σ
2
u)}/2 is the logarithm of the density

function for Ui . Then, the estimation procedures are as follows.

(1) Estimation of the fixed and random effects

Given the dispersion components θ = (σ2
ε ,σ

2
u), the MHLEs of τ = (βT , uT )T with

u = (u1, . . . , uq)T are obtained by solving

∂h

∂βk
= 1

σε

∑
i j

{
δi jmi j + (1 − δi j )V (mi j )

}
xi jk = 0 (k = 1, . . . , p) (8.5)

and

∂h

∂ui
= 1

σε

∑
j

{
δi jmi j + (1 − δi j )V (mi j )

}
− 1

σ2
u

ui = 0 (i = 1, . . . , q). (8.6)

In Appendix 8.6.2, we show that the h-likelihood yields the IWLS estimating
equations. Note here that in the AFTmodel, we can use the IWLS equations because
W ∗ is the non-singular diagonal matrix:

(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

) (
β̂
û

)
=

(
XTW ∗w∗
ZTW ∗w∗

)
, (8.7)

where W ∗ = W/σ2
ε , W = diag(wi j ) is the n × n diagonal matrix with the i j th

element
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wi j = δi j + (1 − δi j )ξ(mi j )

with ξ(mi j ) = V (mi j ){V (mi j ) − mi j }, Q = −∂2�2/∂u2 = Iq/σ2
u , and w∗ is the n

dimensional vector with

w∗
i j = μi j + w−1

i j (y∗
i j − μi j ).

Note that the asymptotic covariance matrix for τ̂ − τ is obtained from H−1, where

H = − ∂2h

∂(β, u)2
=

(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z + Q

)
. (8.8)

Thus, the upper left-hand corner of H−1 gives the variance matrix of β̂;

var(β̂) = σ2
ε (X

T�−1X)−1 , (8.9)

where � = W−1 + λ−1Z ZT with λ = σ2
ε /σ

2
u .

Let

P =
(
X Z
0 Iq

)
and V =

(
W ∗ 0
0 Q

)
.

Then, as in Chap.3, the IWLS Eq. (8.7) again reduce to a new simple matrix form

(PTVP)τ̂ = PTVy0, (8.10)

where y0 = (w∗T , 0T )T . In AFT models, the IWLS equations are numerically effi-
cient, so that the ILS equations are not necessary. Note here that H = PTVP. The
estimating Eq. (8.10) can be also viewed as the IWLS equations from an augmented
weighted linear model:

y0 = Pτ + ε∗,

where the error term ε∗ ∼ N (0,V−1).
Note that when there is no censoring (W = In), the IWLS Eq. (8.7) become the

usual Henderson’s (1975) LMM equations using data yi j , and that both y∗ and W in
(8.7) depend on the censoring patterns.

(2) Estimation of dispersion parameters

To estimate the dispersion parameters θ = (σ2
ε ,σ

2
u)

T , we use the restricted h-
likelihood pτ (h) with τ = (βT , uT )T from the Eq.3.9. The estimating equations
for θ,

∂ pτ (h)

∂θ
= 0,

yield the REMLEs for σ2
ε and σ2

u (Appendix 8.6.3), given by

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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σ̂2
ε =

∑
i j (y

∗
i j − μ̂i j )

2

n0 − (p + q − γ0)
and σ̂2

u =
∑

i û
2
i

q − γ1
, (8.11)

where μ̂i j = xTi j β̂ + ûi , and n0, γ0, and γ1 were defined in Appendix 8.6.3. Note
that when there is no censoring (W = In), the two REML estimators (8.11) become
those for the LMM in Chap.3.

(3) Fitting algorithm

Step 0: Obtain the initial estimates τ̂ and θ̂ of τ and θ by treating censored observa-
tions as uncensored, i.e., by taking y∗ = y.
Step 1: Given y∗ = ŷ∗ and θ = θ̂, new estimates τ̂ are obtained by (8.7), and then
given these ŷ∗ and τ̂ , new estimates θ̂ are obtained by (8.11).
Step 2: Repeat Steps 0 and 1 until the maximum absolute difference of the previous
and current estimates for τ and θ is less than 10−5. After convergence, we compute
the estimates of var(β̂) in (8.9).

Remark 8.1 (i) Since we cannot observe all the y∗
i j ’s, the unobserved y∗

i j ’s are
imputed; for example in (8.11), using the estimates of other quantities, we have

ŷ∗
i j = yi jδi j + {μ̂i j + σ̂ε V (m̂i j )}(1 − δi j ),

where μ̂i j = xTi j β̂ + ûi and m̂i j = (yi j − μ̂i j )/σ̂ε. Replacing y∗
i j by ŷ∗

i j increases

the variance of β̂. In our algorithm, this variance increase, caused by censoring, is
reflected in the REML estimation of θ via n0, γ0, and γ1, defined in Appendix 8.6.3,
so that our variance estimator, v̂ar(β̂) in (8.9), works reasonably well (Ha et al. 2002).

(ii) This algorithm is fast and almost always converges except for very few cases
with heavy censoring in a small sample (e.g., 80% censoring in q = 20 pairs). We
have also observed by simulation studies (Ha et al. 2002, 2007b) that our procedure
for the LMM is robust against violations of the normal assumption if the censoring
rate is not too high.

8.1.2 Comparison with Other Methods

From the expectation identity (8.2) for Y ∗
i j , we see that the h-likelihood method

implicitly implements the EM-type algorithm by imputing Y ∗
i j . Pettitt (1986) devel-

oped an EM algorithm using the pseudo-responses without conditioning Ui = ui ,
i.e.,

E(log Ti j |Yi j = yi j , δi j ) = yi jδi j + E(log Ti j | log Ti j > yi j )(1 − δi j ).

However, due to some difficulty in evaluating E(log Ti j | log Ti j > yi j ) with-
out conditioning on Ui = ui , the method was limited to handle the univariate

http://dx.doi.org/10.1007/978-981-10-6557-6_3
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random-effect model only. Hughes (1999) avoided the integration in evaluating
E(log Ti j | log Ti j > yi j ) by using theMonte Carlo method, which, however, requires
heavy computation and extensive derivations in the E-step.Moreover, these marginal
methods require a numerical integration which becomes intractable as the number
of random components increases. Thus, the advantage of using the conditional form,
derived from the h-likelihood, is immediate.

The random-effect model has been able to be fitted using the SAS procedure
PROC NLMIXED; for the model statement, it is only necessary to specify a general
likelihood function, the �1 term in the h-likelihood (8.4), with the response variable y.
However, this marginal likelihood method is based upon Gauss–Hermite quadrature
(GHQ), which may not handle nested or crossed random effects in general when a
high dimensional integration is necessary (Wolfinger 1999).

Lee and Nelder (2001a) showed that in the LMM, without censoring, the h-
likelihoodmethod provides theMLEs for the fixed effects (usingHenderson’s (1975)
equations) and the REMLEs for the dispersion parameters. Now we see that for the
LMM with censoring, it implicitly implements an EM-type algorithm by imput-
ing unobserved responses log Ti j with E(log Ti j |Yi j = yi j , δi j ,Ui = ui ) in the
estimating equations: see Eqs. (8.7) and (8.11). Thus, this h-likelihood method is
straightforwardly extended to the models with many random components. By using
the h-likelihood, the numerically challenging E-step or numerical integration can be
avoided by automatically imputing the censored responses to y∗

i j .

Example 8.1 (Skin grafts data) Batchelor and Hackett (1970) presented a small data
set of 16 severely burned patients treated with skin allografts. They received skin
allografts from one to four donors whomaymatch closely or poorly with the patient’s
human lymphocyte antigen (HLA) tissue type. The survival outcomewas time in days
to rejection of the allograft because of an immune response by the patient. Survival
times of some allografts were censored by the death of the patient. Survival times
from the same patient are correlated because they depend on the degree of HLA
matching between the patient and the donor and on the unobserved strength of the
patient’s immune response.

Now we analyze the closely and poorly matched skin graft data on 11 burned
patients, presented in Table8.1, by using the AFT model (i = 1, . . . , 11; j = 1, 2):

log Ti j = β0 + β1xi j +Ui + εi j ,

Table 8.1 Survival times (days) of closely and poorly matched skin grafts on the same patient,
adopted from Batchelor and Hackett (1970)

Case 4 5 7 8 9 10 11 12 13 15 16

Close 37 19 57a 93 16 22 20 18 63 29 60a

Poor 29 13 15 26 11 16.5 26 21 43 15 40
aRight censoring observation
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Table 8.2 Results from fitting the univariate random-effect LMM to the skin graft data

Method β̂0 SE β̂1 SE σ̂2
ε σ̂2

u

EM 3.305 0.150 0.253 0.082 0.148 0.167

GHQ 3.298 0.146 0.247 0.080 0.136 0.165

HL 3.298 0.154 0.247 0.085 0.153 0.182

EM, Pettitt (1986) results using the marginal EM method;
GHQ, SAS PROC NLMIXED using the marginal GHQ method;
HL, the h-likelihood method

where xi j is a fixed covariate indicating 1 for close match or −1 for poor match.
Table8.2 shows that the three methods (EM, GHQ, and HL) give virtually identical
fixed-effect estimates. Here, the results for β̂1 including the SE indicate that the close
match significantly prolongs the time to rejection than the poor match does. For the
dispersion estimation, the EM and GHQ methods give the marginal ML estimates,
while the HL method gives the REML estimates for σ2

u and σ2
ε . As expected, the

REMLEs in Table8.2 are slightly larger than the two MLEs, resulting in larger
standard error estimates for the fixed-effect estimators. However, for the estimated
correlation ρ̂ = σ̂2

u/(σ̂
2
u + σ̂2

ε ), the three methods give similar results; 0.53 for EM,
0.55 for GHQ, and 0.54 for HL. Thus, the h-likelihood approach is preferred because
it is efficient and can be easily extended to the multicomponent models. In addition,
the HL results are presented in Sect. 8.4, together with the R codes. �

8.2 Multicomponent Mixed Models with Censoring

8.2.1 Model and Estimation Procedure

• Model

For the purpose of illustration, we use the CGD data in Sect. 1.2.3. Let Ti jk be the
infection time for the kth observation from the j th patient in the i th hospital. Let
Ui be the unobservable random effect for the i th hospital and let Ui j be that for the
j th patient in the i th hospital. On a log-scale of the infection times, we consider a
two-component LMM

log Ti jk = xTi jkβ + Ui +Ui j + εi jk, (8.12)

where xi jk = (xi jk1, . . . , xi jkp)T are the covariates, β = (β1, . . . ,βp)
T are the

fixed effects, and Ui ∼ N (0, σ2
1), Ui j ∼ N (0, σ2

2), and εi jk ∼ N (0, σ2
ε ) are

mutually independent error components. This model allows an explicit expression
of correlations between recurrent infection times;

http://dx.doi.org/10.1007/978-981-10-6557-6_1
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cov(log Ti jk, log Ti ′ j ′k ′) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i �= i ′,
σ2
1 if i = i ′, j �= j ′,

σ2
1 + σ2

2 if i = i ′, j = j ′, k �= k ′,
σ2
1 + σ2

2 + σ2
ε if i = i ′, j = j ′, k = k ′.

Thus, the intra-hospital (ρ1) and intra-patient (ρ2) correlations are defined as

ρ1 = σ2
1/(σ

2
1 + σ2

2 + σ2
ε ) and ρ2 = (σ2

1 + σ2
2)/(σ

2
1 + σ2

2 + σ2
ε ). (8.13)

Here, the observed responses are

Yi jk = min(log Ti jk, logCi jk) and δi jk = I (Ti jk ≤ Ci jk).

Let i = 1, . . . , q1, j = 1, . . . , ri , and k = 1, . . . , ni j , where q1 is the number of
hospitals, ri is the number of patients in the i th hospital, and ni j is the number of
recurrent infection times for the j th patient in the i th hospital. Let q2 = ∑

i ri be the
number of patients, q = q1 + q2 be the total number of hospitals and patients, and
n = ∑

i j ni j be the total number of observations.

• Extension of the h-likelihood

Here, the h-likelihood is defined by

h = h(β,σ2
1,σ

2
2,σ

2
ε ) =

∑
i jk

�0i jk +
∑
i

�1i +
∑
i j

�2i j , (8.14)

where

�0i jk = �0i jk(β,σ2
ε ; yi jk, δi jk |ui , ui j ) = − δi jk{log(2πσ2

ε ) + (mi jk)
2}/2

+ (1 − δi jk) log{1 − �(mi jk)}

is the logarithm of the conditional density function for Yi jk and δi jk given Ui = ui
and Ui j = ui j ,

�1i = �1i (σ
2
1; ui ) = − {log(2πσ2

1) + (u2i /σ
2
1)}/2

is the logarithm of the density function for Ui and

�2i j = �2i j (σ
2
2; ui j ) = − {log(2πσ2

2) + (u2i j/σ
2
2)}/2

is that for Ui j . Here, mi jk = (yi jk − μi jk)/σε and

μi jk = E(log Ti jk |Ui = ui ,Ui j = ui j ) = xTi jkβ + ui + ui j .

Because
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E(Yi jk |Ui = ui ,Ui j = ui j ) �= μi jk,

the h-likelihood method implicitly uses the pseudo-responses given by

y∗
i jk = E(log Ti jk |Yi jk = yi jk, δi jk,Ui = ui ,Ui j = ui j )

= yi jkδi jk + Ai jk(1 − δi jk),

where

Ai jk = E(log Ti jk | log Ti jk > yi jk,Ui = ui ,Ui j = ui j ) = μi jk + σεV (mi jk).

Note that
E(y∗

i jk |Ui = ui ,Ui j = ui j ) = μi jk .

Thus, the h-likelihood procedure in Sect. 8.1 is straightforwardly extended to the
multicomponent LMM, as shown in Appendix 8.6.4.

8.2.2 Application to the CGD Data

In the CGD study, the recurrent infection times for a given patient are likely to
be correlated. However, since each patient belongs to one of the 13 hospitals, the
correlationmay also be due to a hospital effect. This data set was previously analyzed
inChap.5 using themulticomponent log-normal frailtymodelswith a single covariate
xi jk (= 0 for placebo and = 1 for gamma interferon).

We consider the following four models:

M1: (σ2
1 = 0,σ2

2 = 0), regression model without random effects,
M2: (σ2

2 = 0,σ2
1 > 0), one-component model without patient effects,

M3: (σ2
1 = 0,σ2

2 > 0), one-component model without hospital effects, and
M4: (σ2

1 > 0,σ2
2 > 0), two-component model requiring both patient and hospital

effects.
The results from these LMMs are given in Table8.3. Ignoring important random

components may render invalid many of the traditional statistical analysis techniques
(Goldstein 1995). For testing the need for a random component, we use the LRT
(difference in −2pτ (h) in Table8.3) based upon the restricted likelihood pτ (h).
Because such a hypothesis is on the boundary of the parameter space, as shown in
Sect. 4.3.2, the critical value is χ2

2α for a size α test.
Here, M4 ⊃ M3 ⊃ M1 and M4 ⊃ M2 ⊃ M1. The difference in the restricted

likelihoodbetweenM3andM4 is 0.45,which is not significant at a 5% level (χ2
1,0.10 =

2.71), indicating the absence of the random hospital effects, i.e., accepting the null
hypothesis of σ2

1 = 0. The difference betweenM1 andM3 is 8.92., indicating that the
random patient effects are indeed necessary (i.e., σ2

2 > 0). The difference between

http://dx.doi.org/10.1007/978-981-10-6557-6_5
http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Table 8.3 Analysis results from the multilevel LMM for the CGD data

Model β̂0
(SE)

β̂1
(SE)

σ̂2
1 σ̂2

2 σ̂2
ε −2pτ (h) rAIC

M1: LM
(σ2

1 = σ2
2 = 0)

5.428
(0.185)

1.494
(0.322)

— — 3.160 426.52 428.52

M2: One-component
(σ2

1 > 0,σ2
2 = 0)

5.594
(0.249)

1.470
(0.313)

0.294 — 2.872 422.00 426.00

M3: One-component
(σ2

1 = 0,σ2
2 > 0)

5.661
(0.202)

1.237
(0.331)

— 0.722 2.163 417.60 421.60

M4: Two-component
(σ2

1 > 0,σ2
2 > 0)

5.698
(0.220)

1.255
(0.334)

0.067 0.710 2.185 417.15 423.15

M2 and M4 is 4.85(> 2.71), also indicating σ2
2 > 0. The rAIC(= −2pτ (h) + 2d fr )

also chooses M3 as the final model. With the model M3, the estimated intra-patient
correlation in (8.13) is ρ̂2 = σ̂2

2/(σ̂
2
2 + σ̂2

ε ) = 0.250 and β̂1 = 1.237 (SE = 0.331),
implying that gamma interferon significantly prolongs the recurrent infection times.

8.3 The AFT Models with LTRC

In this section, we investigate a genetic LMM for twin data with LTRC (Left Trun-
cated Right Censored). Twin studies are the most widely used methods for quantify-
ing the contribution of genetic and environmental factors on traits such as behavior
or disease susceptibility. To do this, data on monozygotic (MZ) and dizygotic (DZ)
twins are required (Neale and Cardon 1992) and they are analyzed using the random-
effectsmodels that allow for separating the genetic effect from the environment effect.
Here, we are interested in the genetic analysis of age-at-onset traits using the LMM,
with a specific application to the analysis of life span using the correlated survival
data from twins.

The genetic LMM often encounters the LTRC problem, occurring during the data
collection for the twin studies. That is, some twins may only be observed at a certain
time (not the time origin of interest) and theymay be still alive at the end of follow-up.
We also show that the h-likelihood procedure results in a simple and fast computation
in the analysis of large survival data sets with LTRC, such as one from Swedish Twin
Register.

8.3.1 The Swedish Twin Survival Data with LTRC

The Swedish Twin Registry is the largest population-based twin registry in the world
and includes various information about life span and disease status, etc., for the twins
born in Sweden since 1886. Table8.4 briefly presents the structure of survival data
on life spans of a few twins in the Twin Registry. For the purpose of analysis, the
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Table 8.4 Survival data in the Swedish Twin Registry, born since 1886

Number Pairid Zygalg Birthday Dead Death.date Eff.date Sex

1 11 2 06JAN1900 1 03JAN1987 . 2

2 11 2 06JAN1900 1 15DEC1990 . 2

3 12 2 07JAN1900 1 23DEC1982 . 2

4 12 2 07JAN1900 1 20FEB1994 . 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

17 21 1 01JAN1926 0 . 30AUG1997 1

18 21 1 01JAN1926 0 . 30AUG1997 1

19 22 4 01JAN1926 0 . 21JUN2000 1

20 22 4 01JAN1926 1 15MAY1991 . 2

21 23 2 01JAN1926 0 . 03JAN2002 1

22 23 2 01JAN1926 1 13MAR1993 . 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

78205 244782 2 30DEC1958 0 . 13JUL2002 1

78206 244782 2 30DEC1958 0 . 02SEP1999 1

78207 244783 2 31DEC1958 0 . 06JUN2000 1

78208 244783 2 31DEC1958 0 . 02FEB2001 1

78209 244784 4 31DEC1958 0 . 21MAY1999 1

78210 244784 4 31DEC1958 0 . 30AUG1997 2

Number, number of twins; Pairid, ID of twin pairs
Zygalg, 1 = MZ and 2[4] = DZ same[opposite] sex
Dead, censoring indicator (1 = dead, 0 = alive)
Death.date, the date of death; Eff.date, the latest follow-up date
Sex (1 = male, 2 = female)

twins data are often divided into three different age cohorts: old, middle, and young
cohorts. To make use of sufficient number of endpoints, we consider the old cohort
only (Yashin et al. 1999). This cohort consists of all same-gender pairs born between
1886 and 1925, where both members of the pair were alive and living in Sweden in
1959. The survival outcome is defined as time to death from any cause (in years).
The data are left truncated because both members of a twin pair had to survive until
1959, the beginning of follow-up; the left truncation time is thus calculated as (Jan
01, 1959 – birthday)/365. If an individual is still alive at the end of follow-up, the
survival time is right censored; in this case, the date of death is replaced by the latest
follow-up date.

The data used in the analyses are summarized in Table8.5 and categorized accord-
ing to the censoring status. The subgroups have the censoring rates of about 20
to 30%. For example, the censoring rate in male MZ twins is 19%, calculated by
(313+ 2× 159)/(2× 1646). The table shows that there are more female than male
twins, which may be explained by the longer female life span. The ratio of MZ to
DZ twin pairs is about a half: MZ = 3653 versus DZ = 6796, as described in other
studies (Sham 1998, pp. 189).
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Table 8.5 Composition of the old cohort of the Swedish twin survival data by sex, zygosity, and
censoring status

Data One
censored

Both
censored

None
censored

Total
(pairs)

Males

MZ 313 159 1174 1646

DZ 620 258 2074 2952

Females

MZ 450 396 1161 2007

DZ 931 686 2227 3844

Total 2314 1499 6636 10449

8.3.2 The Model

Consider modeling a direct relationship between survival time and covariates includ-
ing observed or unobserved factors. Let Ti j be the survival time (e.g., age at death)
for the j th member of the i th twin pair, which is subject to only partial obser-
vation due to LTRC variables (Li j , Ri j ), assumed to be independent of Ti j ’s (Lai
and Ying 1994). Here, Li j and Ri j are left truncation and right censoring vari-
ables, respectively. Let Yi j = min(log Ti j , log Ri j ) be the observed survival time,
δi j = I (Ti j ≤ Ri j ) be the event indicator, and Bi j = log Li j be the truncation
time. For the LTRC data, one observes (Yi j , δi j , Bi j ) only when Yi j ≥ Bi j . Thus, the
corresponding observed data consist of n observations (yi j , δi j , bi j ) with yi j ≥ bi j
(i = 1, . . . , q, j = 1, 2, n = 2q).

Let gi j and ci j be the random genetic and shared environment effects for the j th
individual in the i th twin pair, respectively. Because Ti j ’s are positive-valued and
likely to be skewed, we use log Ti j as the response. Now, we consider the LMMwith
two random effects; for i = 1, 2, . . . , q and j = 1, 2,

log Ti j = xTi jβ + gi j + ci j + εi j , (8.15)

where gi j ∼ N (0,σ2
g), ci j ∼ N (0,σ2

c ), and εi j ∼ N (0,σ2
ε ) are mutually indepen-

dent error components. The last error component can be interpreted as an unshared
environmental component. Nowwe want that between-pair genetic and environment
effects are independent, but within-pair effects are not. If the i th twin pair is MZ
(denoted by MZi ), we may have (Sham 1998, p. 189)



8.3 The AFT Models with LTRC 211

corr(gi1, gi2) = 1 and corr(ci1, ci2) = 1,

and if it is DZ (denoted by DZi ), we have

corr(gi1, gi2) = 0.5 and corr(ci1, ci2) = 1.

It is this discrepancy in the genetic correlation betweenMZ and DZ twins that allows
us to separate the genetic factor from the common environmental factor. It is also
useful to reexpress the parameters accordingly; let vi j = gi j + ci0 for j = 1, 2,
where ci0(= ci1 = ci2) denotes the common environmental effect for the i th twin
pair. Then, we have

ρ ≡ corr(vi1, vi2) = σ12 + σ2
c

σ2
g + σ2

c

,

where σ12 = cov(gi1, gi2). Note that ρ = 1 for MZi and ρ = (0.5σ2
g +σ2

c )/(σ
2
g +σ2

c )

∈ [0.5, 1.0] for DZi .
For the sake of interpretation, it is convenient to define the quantity

h2g = σ2
g

σ2
g + σ2

c + σ2
ε

,

known as heritability, which measures the importance of genetics relative to other
factors in explaining the variability of a trait in a population (Sham 1998, p. 212).

As shown in Appendix 8.6.5, the two random component in the LMM (8.15) can
be reexpressed as follows:

log Ti j = xTi jβ + z∗T
i j ui + εi j , (8.16)

where z∗
i j is the j th component of Z∗

i (ρ) in (8.37), ui ∼ N (0,σ2
v Ik) with σ2

v =
σ2

g + σ2
c . Here, Ik is the k-dimensional identity matrix such that k = 1 for MZi and

k = 2 for DZi . Now, the model (8.16) can be used for inference on the parameters
in model (8.15) through the h-likelihood method described in Sect. 8.1.

8.3.3 Estimation Procedure Under LTRC

Here, the h-likelihood for model (8.16) under LTRC is defined by

h = h(β,σ2
v,σ

2
ε , ρ) =

∑
i j

�1i j +
∑
i

�2i ,

where
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�1i j = �1i j (β,σ2
ε , ρ; yi j , δi j , bi j |ui , yi j ≥ bi j )

= − δi j {log(2πσ2
ε ) + (mi j )

2}/2 + (1 − δi j ) log{1 − �(mi j )}
− log{1 − �(m∗

i j )}

is the log-conditional density of (Yi j , δi j , Bi j ) given ui and Yi j ≥ Bi j , and

�2i = �2i (σ
2
v; ui ) = − {log det(2πσ2

v Ik) + (uT
i ui/σ

2
v)}/2

is the log-density of ui . Here, mi j = (yi j − μi j )/σε, m∗
i j = (bi j − μi j )/σε, and

μi j = E(log Ti j |ui ,Yi j ≥ Bi j ) = xTi jβ + z∗T
i j ui .

Given the dispersion parameters θ = (σ2
ε ,σ

2
v) and ρ, the MHLEs of τ =

(βT , uT )T with u = (u1, . . . , uq)T are obtained by solving the score equations

∂h

∂β
= 1

σε

∑
i j

xi j

{
δi jmi j + (1 − δi j )V (mi j ) − V (m∗

i j )

}
= 0 (8.17)

and

∂h

∂ui
= 1

σε

∑
j

z∗
i j

{
δi jmi j +(1−δi j )V (mi j )−V (m∗

i j )

}
− 1

σ2
v

ui = 0 (i = 1, . . . , q).

(8.18)
The two MHL Eqs. (8.17) and (8.18) can be simply written as

1

σ2
ε

∑
i j

xi j

(
y∗
i j − μi j

)
= 0, (8.19)

and
1

σ2
ε

∑
j

z∗
i j

(
y∗
i j − μi j

)
− 1

σ2
v

ui = 0 (i = 1, . . . , q), (8.20)

by using

y∗
i j ≡ yi jδi j + {μi j + σεV (mi j )}(1 − δi j ) − σεV (m∗

i j ),

which is an extension of the pseudo-responses under right censoring in the previous
section to the LTRC case.

• A fast computational method for large data

The score Eqs. (8.19) and (8.20) have the same form as those for the LMM in (8.25)
and (8.26) in Appendix 8.6.1, which is for the right censoring. Therefore, with a
moderate sample size, it is straightforward to fit model (8.16) by using the standard
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h-likelihood methods described in the previous two sections. However, for large data
sets such as the Swedish twin data used in Sect. 8.3.1, the dimension of the model
matrix Z∗ of random effects u increases with q. In this case, it would be difficult to
apply the standard h-likelihood procedure directly.

A simple and fast computational method using a partition matrix approach has
been developed (Ha et al. 2007b). First, assume that ρ is known. Given θ = (σ2

ε ,σ
2
v)

T

and y∗
i = (y∗

i1, y
∗
i2)

T , the MHLEs of τ = (βT , uT )T are obtained by solving the
following two score equations iteratively:

(∑
i

XT
i Xi

)
β̂ =

∑
i

XT
i y

∗
i −

∑
i

XT
i Z

∗
i ûi , (8.21)

(Z∗T
i Z∗

i + λIk )̂ui = Z∗T
i y∗

i − Z∗T
i Xi β̂ (i = 1, . . . , q). (8.22)

The derivations of (8.21) and (8.22) are given inAppendix 8.6.6.A fast computational
procedure for the asymptotic variance of β̂ is also given in (8.43).

To estimate the dispersion parameters θ = (σ2
ε ,σ

2
v)

T , pτ (h) can be used.However,
the inverse of D(h, τ ) = − ∂2h/∂τ 2 could be computationally intensive for large
samples because the REMLEs from pτ (h) are asymptotically equivalent to theMLEs
from pu(h) (Noh andLee 2007). Furthermore, the inversion of D(h, u) = −∂2h/∂u2

in pu(h) is very simple because D(h, u) = H22/σ
2
ε , where H22 = Z∗TW Z∗ + � in

(8.42), is a diagonal matrix.
So, the resulting MLEs for σ2

ε and σ2
v by using pu(h) are given by

σ̂2
ε =

∑
i j (y

∗
i j − μ̂i j )

2

n0 − (q∗ − γ0)
and σ̂2

v =
∑

i û
T
i ûi

q∗ − γ1
, (8.23)

where

n0 =
∑
i j

[wi j − 2{(y∗
i j − μi j )/σε}V (m∗

i j )],

γ0 = σ2
ε trace{H22

−1(∂H22/∂σ2
ε )},

γ1 = −σ2
v trace{H22

−1(∂H22/∂σ2
v)}.

Appendix 8.6.3 gives the formulas for ∂H22/∂σ2
ε and ∂H22/∂σ2

v , and the trace terms
in γ0 and γ1 are easily calculated using the partition matrix. Note that since we
cannot observe all of the y∗

i j ’s due to the LTRC, we update them by using ŷ∗
i j , in each

iteration.
The fitting algorithm is summarized as follows:

(Step 1) Given ρ and hence Li (ρ), estimate τ and θ = (σ2
ε ,σ

2
v)

T using (8.21), (8.22),
and (8.23).
(Step 2) Given τ and θ, estimate ρ by maximizing pu(h).
(Step 3) Iterate (Step 1) and (Step 2) until convergence is achieved.
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After convergence, we compute the estimates of σ2
g and σ2

c from (8.38) and those

of var(β̂) from (8.43), respectively.

8.3.4 Application

In this section, we use the twin data presented in Sect. 8.3.1 as an example.

• Estimation of probability of left truncation

Table8.6 shows the extent of left truncation of the old cohort. First, the probability
p of left truncation is calculated as follows. When the i th (i = 1, . . . , 10449) twin
pair was born in year L (for L = 1886, . . . , 1925), we have that, for j = 1, 2,
p = P(Ti j ≤ Bi ), where Bi = 1959−Li . However, for the i th twin pair, the survival
times Ti1 and Ti2 may be correlated. To simplify the computation, we randomly select
one of the survival times Ti1 and Ti2, and obtain a sample of independent survival
times—say Ti—and calculate p = P(Ti ≤ Bi ).

Assuming log Ti = β0 + εi ∼ N (β0,σ
2
ε ), we can then obtain the estimated values

of p; for example, for males p̂ = 0.22603 at L = 1890, p̂ = 0.03604 at L = 1900,
and p̂ ≈ 0 at L = 1910 and at L = 1920. These values are close to zero except
at early birth years. Overall, the estimated ratios of population sizes are somewhat

Table 8.6 Extent of left truncation in the old cohort (M: Male, F: Female)

Data Birth range Birth year p̂ Sample size
(%)

Estimated pop
size (%)

M 1886–1895 1890 0.22603 407 (8.9) 526 (11.1)

1896–1905 1900 0.03604 901 (19.6) 935 (19.7)

1906–1915 1910 0.00118 1519 (33.0) 1521 (32.0)

1916–1925 1920 0.00000 1771 (38.5) 1771 (37.3)

Total 4598 4753

F 1886–1895 1890 0.12402 598 (10.2) 683 (11.5)

1896–1905 1900 0.01252 1210 (20.7) 1225 (20.6)

1906–1915 1910 0.00021 1863 (31.8) 1863 (31.3)

1916–1925 1920 0.00000 2180 (37.3) 2180 (36.6)

Total 5851 5951

M + F 1886–1895 1890 0.16920 1005 (9.6) 1210 (11.3)

1896–1905 1900 0.02293 2111 (20.2) 2161 (20.2)

1906–1915 1910 0.00062 3382 (32.4) 3384 (31.6)

1916–1925 1920 0.00000 3951 (37.8) 3951 (36.9)

Total 10449 10706

p̂, the estimated probability of left truncation
Estimated pop (population) size x is calculated using x = sample size/(1 − p̂)
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close to the ratios of sample sizes. Here, the sample size is obtained from the birth
range in the old cohort data of Table8.5, and the population size x is calculated using
x = sample size/(1 − p̂).

• Separate analysis

First, we analyze separately the MZ and DZ twins among males and females. Note,
however, that within each zygosity group, the shared environment effect ci j is not
distinguishable from the genetic effect gi j . Thus, in these analyses, from (8.15), we
consider the LMM with only one random component (i.e., one-way random-effect
model): for i = 1, 2, . . . , q and j = 1, 2,

log Ti j = β0 + ui + εi j ,

where β0 is the intercept, and ui ∼ N (0,σ2
b) and εi j ∼ N (0,σ2

ε ) are mutually
independent. Here, the random effect ui stands for the pair effect. In particular, this
model provides the within-pair or intraclass correlation of the log survival times,
given by κ = σ2

u/(σ
2
u + σ2

ε ). The results are given in Table8.7. As expected, in both
genders, the estimated correlation κ̂ is higher for theMZ twins than for the DZ twins.
The correlations are generally smaller than those (̂κ∗ in Table8.7) from Henderson’s
mixed model equation for the LMM without the LTRC information.

In both genders, the MZ twins have a larger estimated between-pair variance σ̂2
u

than the DZ twins do. To test the necessity of a random component (i.e., σ2
u = 0),

we use the LRT based upon the change in the adjusted profile likelihood pu(h), i.e.,
difference in −2pu(h) in Table8.7. We consider the two models,
(i) E: log T = β0 + ε with σ2

b = 0 and

Table 8.7 Separate analyses using the between-pair LMM for the old cohort

Data Model β̂0 (SE) σ̂2
b σ̂2

ε κ̂ (κ̂∗) −2pu(h)

Males

MZ E 4.349 (0.0028) – 0.0221 – −1618.9

BE 4.351 (0.0030) 0.0066 0.0150 0.31 (0.39) −1922.2

DZ E 4.339 (0.0021) – 0.0229 – −2748.3

BE 4.340 (0.0022) 0.0029 0.0199 0.13 (0.20) −2890.3

Females

MZ E 4.405 (0.0025) – 0.0207 – −1326.0

BE 4.405 (0.0027) 0.0052 0.0154 0.25 (0.34) −1505.2

DZ E 4.401 (0.0018) – 0.0214 – −2539.8

BE 4.401 (0.0019) 0.0024 0.0190 0.11 (0.21) −2651.5

β0, intercept; SE, the corresponding standard error
E, log T = β0 + ε with σ2

b = 0
BE, log T = β0 + b + ε with σ2

b > 0
κ = σ2

b/(σ
2
b + σ2

ε ), within-pair correlation
κ∗, correlation from Henderson’s mixed model equation for the LMM
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(ii) BE: log T = β0 + b + ε with σ2
b > 0.

We see that since the hypothesis H0: σ2
b = 0 is on the boundary of the parameter

space, the critical value is χ2
2α for a size α test. For example, for the male MZ twins,

the likelihood difference between the E and BE models (B for between) is 303.3,
indicating that the pair effects are highly significant, i.e., σ2

u > 0. In fact, the pair
effects are highly significant in each subgroup in Table8.7.

The fixed-effect estimates provide a useful information about life span. As
expected, for bothMZandDZ twins, from the value of β̂0 in theBEmodel,weobserve
that males tend to have shorter life span than females. For example, the estimated
median life span is exp(4.351) = 77.6 years for male MZ and exp(4.405) = 81.9
years for female MZ.

• Combined Analysis

Table8.8 shows the results from the model (8.15) when MZ and DZ twins are com-
bined within each gender group. We consider the four models,
E, LMM with σ2

g = σ2
c = 0,

CE, LMM with σ2
g = 0 and σ2

c > 0,
GE, LMM with σ2

g > 0 and σ2
c = 0,

GCE, LMM with σ2
g > 0 and σ2

c > 0.
To test the necessity of a random component (i.e., σ2

g = 0 or σ2
c = 0), we again use

the LRT based on −2pu(h) as in Table8.7. For males, the difference in −2pu(h)

between GE and GCE is 0.00, indicating no evidence of the shared environmental
effects (i.e., σ2

c = 0). The difference between CE andGCE is 96.2, indicating that the
genetic effects are highly significant, i.e., σ2

g > 0. In addition, the difference between
E and GE is 481.9, indicating that the genetic effects are indeed highly significant
with or without random environmental effects. The results for females are similar to
those for males.

For model selection among nested models, we use the testing procedure described
in the above. However, for model selection among non-nested models such as CE
and GE, the following mAIC can be considered:

mAIC = −2pu(h) + 2d fm, (8.24)

where d fm is the number of fixed and dispersion parameters, not the number of
random effects. From Table8.8, for males, the mAIC chooses GE as the best model,
with estimated heritability ĥ2g = 26%. For females, the GE model is again best, with

ĥ2g = 21%.
We then fitted model (8.15) with an additional fixed covariate xi j representing

zygosity (= 1 for MZi and = 0 for DZi ). The results are in the second block in
Table8.8; GEmodels are the best models according to the mAIC. From the estimates
of β1, we observe the following interesting findings:
(i) For both male and female MZ twins, the estimated life expectancy is longer than
that for respective DZ twins;
(ii) For male twins, the MZ tends to have significantly longer life span than for the
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ĥ
2 g

−2
p u

(h
)

m
A
IC

cA
IC

M
E

4.
34
2(
0.
00
17
)

–
–

–
0.
02
26

–
−4

35
7.
2

47
9.
9

45
49
.4

C
E

4.
34
4(
0.
00
18
)

–
–

0.
00
42

0.
01
82

–
−4

74
2.
9

96
.2

14
07
.4

G
E

4.
34
4(
0.
00
18
)

–
0.
00
58

–
0.
01
66

0.
26

−4
83
9.
1

0
0

G
C
E

4.
34
4(
0.
00
18
)

–
0.
00
58

0.
00
00

0.
01
66

0.
26

−4
83
9.
1

2.
0

0.
0

F
E

4.
40
2(
0.
00
15
)

–
–

–
0.
02
12

–
−3

87
2.
5

31
3.
4

44
12
.9

C
E

4.
40
2(
0.
00
16
)

–
–

0.
00
33

0.
01
78

–
−4

13
1.
6

56
.3

12
70
.8

G
E

4.
40
2(
0.
00
15
)

–
0.
00
44

–
0.
01
66

0.
21

−4
18
7.
9

0
0

G
C
E

4.
40
2(
0.
00
15
)

–
0.
00
44

0.
00
00

0.
01
66

0.
21

−4
18
7.
9

2.
0

0.
0

β̂
M
Z

1
(S
E
)

M
E

4.
33
9(
0.
00
21
)

0.
01
0(
0.
00
35
)

–
–

0.
02
26

–
−4

36
4.
9

48
5.
5

45
36
.1

C
E

4.
34
0(
0.
00
22
)

0.
01
1(
0.
00
37
)

–
0.
00
42

0.
01
82

–
−4

75
7.
1

95
.3

14
00
.2

G
E

4.
34
1(
0.
00
22
)

0.
01
1(
0.
00
37
)

0.
00
57

–
0.
01
66

0.
26

−4
85
2.
4

0
0

G
C
E

4.
34
1(
0.
00
22
)

0.
01
1(
0.
00
37
)

0.
00
57

0.
00
00

0.
01
66

0.
26

−4
85
2.
4

2.
0

0.
0

F
E

4.
40
1(
0.
00
18
)

0.
00
5(
0.
00
31
)

–
–

0.
02
11

–
−3

86
5.
1

32
2.
9

44
05
.0

C
E

4.
40
1(
0.
00
19
)

0.
00
5(
0.
00
33
)

–
0.
00
33

0.
01
78

–
−4

13
3.
9

56
.1

12
65
.1

G
E

4.
40
1(
0.
00
19
)

0.
00
5(
0.
00
33
)

0.
00
44

–
0.
01
66

0.
21

−4
19
0.
0

0
0

G
C
E

4.
40
1(
0.
00
19
)

0.
00
5(
0.
00
33
)

0.
00
44

0.
00
00

0.
01
66

0.
21

−4
19
0.
0

2.
0

0.
0

β̂
M
al
e

1
(S
E
)

M
+
F

E
4.
40
3(
0.
00
15
)

−0
.0
59
(0
.0
02
2)

–
–

0.
02
18

–
−8

22
9.
6

78
3.
5

89
92
.2

C
E

4.
40
3(
0.
00
16
)

−0
.0
60
(0
.0
02
4)

–
0.
00
37

0.
01
80

–
−8

86
7.
2

14
7.
9

26
82
.2

G
E

4.
40
3(
0.
00
16
)

−0
.0
60
(0
.0
02
4)

0.
00
50

–
0.
01
66

0.
23

−9
01
5.
1

0
0

G
C
E

4.
40
3(
0.
00
16
)

−0
.0
60
(0
.0
02
4)

0.
00
50

0.
00
00

0.
01
66

0.
23

−9
01
5.
1

2.
0

0.
0

E
,L

M
M

w
ith

σ
2 g

=
σ
2 c

=
0;

C
E
,L

M
M

w
ith

σ
2 g

=
0
an
d

σ
2 c

>
0

G
E
,L

M
M

w
ith

σ
2 g

>
0
an
d

σ
2 c

=
0;

G
C
E
,L

M
M

w
ith

σ
2 g

>
0
an
d

σ
2 c

>
0

h
2 g

=
σ
2 g
/
(σ

2 g
+

σ
2 c
+

σ
2 ε
)

A
IC

,A
IC

di
ff
er
en
ce
s
w
ith

th
e
m
in
im

um
se
tt
o
ze
ro



218 8 Mixed-Effects Survival Models

DZ (β̂1 = 0.011 with SE= 0.0037), but for female twins, the difference is no longer
significant (β̂1 = 0.005 with SE = 0.0033).

Finally, we combined male and female twins data to investigate the pattern of the
expected life span between both genders. For this, we also fitted model (8.15) allow-
ing a different intercept for males and females (i.e., allowing a fixed covariate xi j
representing gender, coded as 1 if the i th twin pair is male and as 0 if it is female), but
forcing common variance parameters. The results are given in Table8.8, where GE
model was again chosen as the best model. From the estimates of β1, we also found
thatmales tend to have significantly shorter life span than females (β̂1 = −0.060with
SE= 0.0024). The estimated variance and heritability parameters are in between the
corresponding values from the separate analyses.

In addition, we conducted model selection using the cAIC in Table8.8. We define
the cAIC corresponding to the mAIC in (8.24), given by

cAIC = −2�1 + 2d fc,

where d fc = p is the number of regression parameters. The cAIC selects either the
GE or GCE model as the best model for combined data cases in Table8.8. However,
care is still necessary for the cAIC because the estimate of random-effect variance
is near zero (σ̂2

c ≈ 0) as in Sect. 5.3.

8.4 Software and Examples Using R

8.4.1 Skin Grafts Data: LMM with Censoring

Below are the R codes and results from fitting the LMM with censoring using the
HL method with the skin grafts data in Table8.1. The R outputs are summarized in
Table8.2.

######################## LMM with censoring ####################
> case<-c(4,5,7,8,9,10,11,12,13,15,16,4,5,7,8,9,10,11,12,13,15,16)
> time<-c(37,19,57,93,16,22,20,18,63,29,60,29,13,15,26,11,16.5,26,
+ 21,43,15,40)
> status<-c(1,1,0,1,1,1,1,1,1,1,0, 1,1,1,1,1,1,1,1,1,1,1)
> group<-c(rep(1,11),rep(-1,11))
> data_surv<-data.frame(case,time,status,group)
> mlmc1<-jointmodeling(Model="mean",RespDist="AFT",Link="log",
+ LinPred=Surv(time,status)˜group+(1|case),RandDist="gaussian")
> ress<-mlmfit(mlmc1,data_surv,Maxiter=200)
######################### Output #################################
[1] "iterations :"
[1] 46
[1] "convergence :"
[1] 7.759592e-07

beta_h se_beh t_value p_value

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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3.2981484 0.15392021 21.427650 0.000000000
0.2472033 0.08463752 2.920729 0.003492136

alpha_h phi_h
[1,] 0.1818075 0.1531119
> ress$V.Est
[1] 0.1343752 -0.3824222 0.1283264 0.4202422 -0.5016637 -0.2469572
[7] -0.1204953 -0.2327105 0.4602254 -0.1832934 0.5243730

8.4.2 CGD Data: Multilevel LMM with Censoring

In this section, the R codes and results from fitting the multilevel LMM with the
CGD data are provided, specifically the results from the model “M4” in Table8.3.

############### Multilevel LMM with censoring ###########
> data(cgd, package="frailtyHL")
> data_surv <- cgd
> mlmc1<-jointmodeling(Model="mean",RespDist="AFT",Link="log",
+ LinPred=Surv(tstop-tstart,status)˜treat+(1|center)+(1|id),
+ RandDist="gaussian")
> res_cgd<-mlmfit(mlmc1,data_surv, Maxiter=300)
######################### OUTPUT #########################
[1]"iterations :"
[1]91
[1]"convergence :"
[1]9.516475e-07

beta_h se_beh t_value p_value
5.696051 0.2215316 25.712141 0.0000000000
1.271542 0.3372314 3.770533 0.0001628992

alpha1_h alpha2_h phi_h
[1,] 0.06614283 0.7146174 2.251489

8.5 Discussion

The LMM can be useful in analyzing survival data with random effects. Even for
the single random-effect LMM, the marginal likelihood method leads to a very com-
plicated Newton–Raphson procedure (Klein et al. 1999). The h-likelihood method
provides the marginal MLEs for the fixed effects and the REMLEs for the disper-
sion parameters, based upon an analytic Laplace approximation. Alternatively, the
marginal MLEs can be obtained via numerical methods such as GHQ, as used in the
NLMIXED procedure in SAS or in thegllamm function in Stata (Rabe-Hesketh et al.
2001, 2002). Recently, R packages such as nlme or lme4 also become available.
However, such numerical methods cannot be applied when the number of random
components, and hence the dimension of the integral, increases.

By using the h-likelihood, troublesome integration can be avoided, giving a com-
putationally fast and statistically efficient inferential procedure for the LMM with
any complex random-effect structure. This procedure can be easily extended to
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crossed structure by taking Ui j = Uj in (8.12). In the LMM without censoring, the
h-likelihood estimators for the fixed effects are the same as theMLEs, which are well
known to be asymptotically consistent under violation of the normality assumption
and misspecification of the covariance matrix; the REMLEs for dispersions, which
are derived under the normality assumption, are known to be consistent, even if the
normality assumption fails (Jiang 1997). The simulation studies by Ha et al. (2002,
2007b) show that the h-likelihood estimators under censoring are still robust against
various violations of the model assumptions: see also Butler and Louis (1992) and
Verbeke and Lesaffre (1997). The specification of other distributions for Ui and εi j
in the LMM (8.1) is also possible under the h-likelihood framework; for example, a
log-gamma distribution for Ui and an extreme value distribution for εi j .

In the CGD data, the multiple infections are recorded per patient from the same
hospital, so there may be temporal correlations rather than the compound symme-
try correlation within a patient, as in the frailty models used in Chap. 5. It would
be interesting to investigate whether an autoregressive structure is necessary. The
LMM approach for analysis of correlated survival data was also reviewed, with an
application to genetic analysis of life span using data from the Swedish Twin Reg-
ister. The results under LTRC in Table8.8 suggest that the h-likelihood method is
very useful in practice. Furthermore, the h-likelihood approach using y∗ can also be
easily extended to left censoring (Ha 2008).

Finally, the h-likelihood methods are somewhat robust but fully parametric. An
extension of the h-likelihood method to semiparametric models (e.g., Pan and Louis
2000) would merit future research. It would be also interesting to extend a robust
method (Lai and Ying 1994) for the linear models under LTRC to the LMMs via the
h-likelihood approach.

8.6 Appendix

8.6.1 Proof of the Expectation Identity in (8.2)

From the pseudo-response variable

Y ∗
i j = Yi jδi j + E(Ti j |Ti j > Yi j ,Ui = ui )(1 − δi j ),

we obtain the following equation:

E(Y ∗
i j |Ui = ui ) = E{Ti j I (Ti j ≤ Ci j )|Ui = ui }

+ E{E(Ti j |Ti j > Ci j ,Ui = ui ) I (Ti j > Ci j )|Ui = ui }.

Now by the conditional independence of Ti j and Ci j in Assumption 1, the first term
on the right-hand side (RHS) of the above equation is

http://dx.doi.org/10.1007/978-981-10-6557-6_5
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E[Ti j I (Ti j ≤ Ci j )|Ui = ui ] = E[E{Ti j I (Ti j ≤ Ci j )|Ti j ,Ui }|Ui = ui ]
= E(Ti j |Ui = ui ) −

∫ ∞

0
t Gi j (t |u) dFi j (t |u),

and the second term on the RHS is also given by

E{E(Ti j |Ti j > Ci j , ui ) I (Ti j > Ci j )|Ui = ui } =
∫ ∞

0
t Gi j (t |u) dFi j (t |u),

where Gi j (·|u) and Fi j (·|u) are arbitrary continuous conditional distribution func-
tions of Ci j |Ui = ui and Ti j |Ui = ui , respectively. Thus, by combining the two
equations, we obtain the expectation identity

E(Y ∗
i j |Ui = ui ) = E(Ti j |Ui = ui )

= μi j . �

8.6.2 Proofs of the IWLS Equations (8.7)

For this proof, we use matrix manipulations given in Appendix 4.7.4. First, substi-
tuting (8.3) into the two MHL Eqs. (8.5) and (8.6) reduces them, respectively, to

σ−2
ε

∑
i j

(
y∗
i j − μi j

)
xi jk = 0 (k = 1, . . . , p), (8.25)

and

σ−2
ε

∑
j

(
y∗
i j − μi j

)
− σ−2

u ui = 0 (i = 1, . . . , q). (8.26)

Let E = (X, Z) and let μ be an n × 1 vector with the i j th element μi j . Here, X
and Z are n × p and n × q model matrices for β and v whose i j th row vectors are
xTi j and zTi j , respectively. Then, μi j can be expressed as

μ = Xβ + Zu = Eτ .

The two score equations of (8.25) and (8.26) can also be expressed as

∂h

∂τ
= σ−2

ε ET (y∗ − μ) + b, (8.27)

where y∗ be an n × 1 vector with the i j th element y∗
i j and b = (0T ,−σ−2

u uT )T .

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Next, from (8.5) and (8.6), we have the negative second partial derivatives with
respect to βk and ui :

−∂h2

∂βk∂βl
= σ−2

ε �i j xi jkwi j xi jl ,

−∂h2

∂βk∂ur
= σ−2

ε �i j xi jkwi j zi jl,

−∂h2

∂uk∂ul
= σ−2

ε �i j zi jkwi j zi jl + σ−2
u I (k = l),

where wi j = δi j + (1 − δi j )ξ(mi j ) with ξ(x) = ∂V (x)/∂x = V (x){V (x) − x}.
Then, the three derivatives above are expressed as a simple matrix form, H , in (8.8)
and it can also be written as

H = ETW ∗E + F, (8.28)

where F = BD(0, Q) with Q = σ−2
u Iq .

From τ̂ = τ + H−1(∂h/∂τ ), (8.27), and (8.28), we obtain

(ETW ∗E + F )̂τ = (ETW ∗E + F)τ + σ−2
ε ET (y∗ − μ) + b

= (ETW ∗E)τ + σ−2
ε ET (y∗ − μ) + g

= ETW ∗w∗

since g = Fτ + b = 0 and w∗ = μ + W−1(y∗ − μ). This completes the proof of
(8.7). �

8.6.3 Proofs of the Two Dispersion Estimators in (8.11)

From (8.8), the Hessian matrix H can be written as

H = H(h; τ ) = −∂2h

∂τ 2
= H0

σ2
ε

with

H0 =
(
XTW X XTW Z
ZTW X ZTW Z + σ2

ε Q

)
,

where W = diag(wi j ). Thus, from (3.9) and (8.4), we have

http://dx.doi.org/10.1007/978-981-10-6557-6_3


8.6 Appendix 223

pτ (h) = ĥ − 1

2
log{det(Ĥ0)} + p + q

2
log(2πσ2

ε ), (8.29)

where ĥ = h|τ=τ̂ (θ) = h(τ̂ (θ), θ) and Ĥ0 = H0|τ=τ̂ (θ) = H0(τ̂ (θ), θ) with θ =
(σ2

ε ,σ
2
u)

T . Note that in solving ∂ pτ (h)/∂θk = 0 (k = 1, 2), we allow the term
∂û/∂θk , not ∂β̂/∂θk . From (8.29), we have

∂ pτ (h)

∂σ2
ε

= ∂�1

∂σ2
ε

|u=û + 1

2σ2
ε

{(p + q) − γ0}, (8.30)

where �1 = ∑
i j �1i j ,

∂�1/∂σ2
ε = [ − r +

∑
i j∈D0

(mi j )
2 +

∑
i j∈C0

{mi j V (mi j )} ]/(2σ2
ε ),

r = ∑
i j δi j , mi j = (yi j − μi j )/σε, D0 and C0 are the index sets for uncensored

and censored observations, respectively, and γ0 = σ2
ε trace{Ĥ−1

0 (∂ Ĥ0/∂σ2
ε )}. Now,

substituting Eq. (8.3) into ∂�1/∂σ2
ε in Eq. (8.30) gives

∂�1

∂σ2
ε

= − r

2σ2
ε

+ 1

2σ2
ε

∑
i j

(y∗
i j − μi j )

2

σ2
ε

− 1

2σ2
ε

∑
i j∈C0

ξ(mi j ).

Thus, Eq. (8.30) reduces to

∂ pτ (h)

∂σ2
ε

= − 1

2σ2
ε

{n0 − (p + q − γ0)} + 1

2σ2
ε

∑
i j

1

σ2
ε

(y∗
i j − μ̂i j )

2, (8.31)

where n0 = r + ∑
i j∈C ξ(m̂i j ) = ∑

i j wi j with wi j = δi j + (1 − δi j )ξ(m̂i j ). Here,
the term ∂H0/∂σ2

ε in γ0 is calculated as follows:

∂ Ĥ0

∂σ2
ε

=
(
XTW ′X XTW ′Z
ZTW ′X ZTW ′Z + σ−2

u Iq

)
,

where W ′ = diag(w′
i j ) is an n × n diagonal matrix with the i j th element

w′
i j = ∂wi j/∂σ2

ε = (1 − δi j )di j

and di j = ∂ξ(m̂i j )/∂σ2
ε = {mi j/2σ2

ε + σ−1
ε ∂(ûi/∂σ2

ε )}V (mi j ){3mi j V (mi j ) −
2V 2(mi j ) − m2

i j + 1}. Similarly, from (8.29)
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∂ pτ (h)

∂σ2
u

= − 1

2σ2
u

(q − γ1) + 1

2σ2
u

∑
i

û2i
σ2
u

, (8.32)

where γ1 = − σ2
u trace{Ĥ−1

0 (∂ Ĥ0/∂σ2
u)}.

Note that the computation of the terms ∂ Ĥ0/∂θk in γ0 and γ1 requires evaulating
∂û/∂θk . Nowwe show how to implement those terms. Let u = (u1, . . . , uq)T . Then,
we obtain

∂h

∂u
= σ−1

ε ZT a − D−1u,

where a is an n × 1 vector with the i j th element ai j = δi jmi j + (1 − δi j )V (mi j )

and D = diag(σ2
u Iq) is a q × q diagonal matrix. From the h-likelihood h, given

θ = (σ2
u,σ

2
ε )

T , let û be the solution of f (θ) = ∂h/∂u|τ=τ̂ = σ−1
ε ZT â − D−1û = 0.

First, from ∂ f (θ)/∂σ2
ε = − 1

2σ
−3
ε (ZT â+ZTWm̂)−σ2

ε (Z
TW Z+�)(∂û/∂σ2

ε ) = 0,
where m is an n× 1 vector with the i j th element mi j and m̂ = σ−1

ε (y− X β̂ − Zû),
and � = σ2

ε Q, we have

∂û

∂σ2
ε

= − 1

2
σ−1

ε (ZTW Z + �)−1{ZT (̂a + Wm̂)}.

Next, from ∂ f (θ)/∂σ2
u = −D′û − σ2

ε (Z
TW Z + �)(∂û/∂σ2

u) = 0, where D′ =
∂D−1/∂σ2

u , we have

∂û

∂σ2
u

= − σ2
ε (Z

TW Z + �)−1D′û.

These two results can also be obtained using (4.41). Accordingly, application of the
two Eqs. (8.31) and (8.32) to the estimating equations ∂ pτ (h)/∂θ = 0 completes
the proof of (8.11). �

8.6.4 H-Likelihood Procedure for Fitting the
Multicomponent LMM

We shall demonstrate that the h-likelihood procedure can be extended to arbitrarily
structured multicomponent (nested and/or crossed) models. Without loss of general-
ity, we consider model (8.12). Let μ be an n × 1 vector with the i jk th element μi jk ,
i.e.,

μ = Xβ + Zu,

where X is an n × p model matrix for the p × 1 fixed effects β, Z = (Z1, Z2)

is an n × q model matrix for the q × 1 random effects u = (u(1)T , u(2)T )T and
Zu = Z1u(1) + Z2u(2). Here, Zi (i = 1, 2) are an n × qi model matrix for an

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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qi × 1 random effects u(i), u(1) = (u1, . . . , uq1)
T and u(2) = (u(2)T

1 , . . . , u(2)T
q1 )T

with u(2)
i = (ui1, . . . , uiri )

T for i = 1, . . . , q1. Let y∗ be an n × 1 vector with the
i jkth element y∗

i jk .
Given the dispersion parameters θ = (σ2

1,σ
2
2,σ

2
ε )

T and y∗, the score equations
for theMHLEs of τ = (βT , uT )T are directly extended. That is, the IWLS equations
in (8.7) are straightforwardly extended to the multicomponent LMM with Z =
(Z1, Z2), Q = BD(Q1, Q2), and W = diag(wi jk), where wi jk = δi jk + (1 −
δi jk)ξ(mi jk).

The REML estimators for θ are also easily obtained using the corresponding
restricted h-likelihood pτ (h). That is, they are given by

σ̂2
ε = (y∗ − μ̂)T (y∗ − μ̂)

n0 − (p + q − γ0)
and σ̂2

i = û(i)T û(i)

qi − γi
(i = 1, 2), (8.33)

where μ̂ = X β̂ + Zû, n0 = ∑
i jk wi jk , γ0 = σ2

ε trace{H0
−1(∂H0/∂σ2

ε )} and
γi = −σ2

i trace{H0
−1(∂H0/∂σ2

i )}. Appendix 8.6.3 gives the formulae for the terms
∂H0/∂σ2

ε and ∂H0/∂σ2
i . Note that since we cannot observe all the y∗

i jk’s due to

censoring, we substitute their estimates, say ŷ∗
i jk , in each iteration. �

8.6.5 Derivation of Model (8.16)

From vi j = gi j + ci0 for j = 1, 2, the model (8.15) can be expressed as a simple
matrix form:

log Ti = Xiβ + Zivi + εi , (8.34)

where Ti = (Ti1, Ti2)T , Xi = (xi1, xi2)T is a 2 × p model matrix for β, Zi is a
model matrix for vi , εi = (εi1, εi2)

T ∼ N (0,σ2
ε I2), and I2 is a 2×2 identity matrix.

For MZi , Zi = (1, 1)T and vi (= vi1 = vi2) ∼ N (0,σ2
v), but for DZi , Zi = I2 and

vi = (vi1, vi2)
T ∼ N (0,σ2

v�i ) with a compound symmetric correlation structure

�i =
⎛
⎝ 1 ρ

ρ 1

⎞
⎠ .

Here,
σ2

v = σ2
g + σ2

c , (8.35)

and

ρ = corr(vi1, vi2) = 0.5σ2
g + σ2

c

σ2
g + σ2

c

, (8.36)
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where ρ ∈ [0.5, 1.0]. The use of ρ leads to some useful results. From (8.36), we see
that σ2

g is much larger than σ2
c (i.e., σ2

g  σ2
c ) if ρgoes to0.5, butσ2

g � σ2
c if ρ goes

to 1.0. In particular, the model (8.34) reduces to model (8.15) without the random
environmental effects ci j if ρ = 0.5 (i.e., σ2

c = 0), while it becomes model (8.15)
without the random genetic effects gi j if ρ = 1.0 (i.e., σ2

g = 0).
Following Lee and Nelder (2001b), the random effects vi for DZi are assumed

to have the form Li (ρ)ui , where ui ∼ N (0,σ2
v I2). For DZi , using the Cholesky

decomposition, we have a lower triangular matrix Li such that �i = Li LT
i . Here,

we choose

Li (ρ) =
(
1 0
ρ

√
1 − ρ2

)
,

and so the random effects vi = Liui ∼ N (0,σ2
vLi LT

i ).
Thus, model (8.34) can be written as

log Ti = Xiβ + Z∗
i ui + εi , (8.37)

where ui ∼ N (0,σ2
v Ik), and Z∗

i = (1, 1)T and Ik = 1 forMZi , and Z∗
i = Li (ρ)

and Ik = I2 for DZi . Note that from (8.35) and (8.36), we obtain σ2
g and σ2

c as
follows:

σ2
g = σ2

v − σ2
c and σ2

c = 2(ρ − 0.5)σ2
v . (8.38)

Then, the j th element of model (8.37) becomes the model (8.16). �

8.6.6 Derivations of the Score Equations in (8.21) and (8.22),
and Computation of Variance of ̂β

Let μ be an n × 1 vector with the i j th element μi j ,

μ = Xβ + Z∗u,

where X = (XT
1 , . . . , XT

q )T is an n × p model matrix for the p × 1 fixed effects β
and Z∗ = BD(Z∗

1 , . . . , Z
∗
q) is an n×q∗ block diagonal matrix for the q∗×1 random

effects u = (u1, . . . , uq)T . Here, q∗ = q1 + 2q2, q1 being the number of MZ twin
pairs and q2 that of DZ twin pairs. Note that q = q1 + q2. Let y∗ = (y∗T

1 . . . , y∗T
q )T

be an n × 1 vector with the i th vector y∗
i = (y∗

i1, y
∗
i2)

T . Assume that ρ is known.
Given θ = (σ2

ε ,σ
2
v)

T and y∗, from (8.19) and (8.20), the score equations for the
MHLEs of τ = (βT , uT )T become Henderson’s (1975) mixed model equations with
pseudo-response variables y∗:

(
XT X XT Z∗
Z∗T X Z∗T Z∗ + �

) (
β̂
û

)
=

(
XT y∗
Z∗T y∗

)
, (8.39)
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where � = λIq∗ , λ = σ2
ε /σ

2
v and Iq∗ is aq∗ × q∗ identity matrix. The Eq. (8.39) can

be expressed as the two equations:

(XT X)β̂ + (XT Z∗)̂u = XT y∗ , (8.40)

(Z∗T X)β̂ + (Z∗T Z∗ + λIq∗ )̂u = Z∗T y∗ . (8.41)

Substituting

X = (XT
1 , . . . , XT

q )T ,

Z∗ = BD(Z∗
1 , . . . , Z

∗
q) and

y∗ = (y∗T
1 , . . . , y∗T

q )T

into (8.40) and (8.41) reduces them to Eqs. (8.21) and (8.22).
The asymptotic covariance matrix for τ̂ − τ is given by H−1 with

H = − ∂2h

∂τ 2
= 1

σ2
ε

H0, (8.42)

where

H0 =
(

XTW X XTW Z∗
Z∗TW X Z∗TW Z∗ + �

)
.

Here, W = diag(wi j ) is an n × n diagonal matrix with the i j th element wi j =
δi j + (1− δi j )ξ(mi j ) − ξ(m∗

i j ) and ξ(x) = V (x){V (x) − x}. So, the upper left-hand
corner of H−1 in (8.42) gives the variance matrix of β̂, which is also easily computed
for large samples as follows. Let H 11

0 be the upper left-hand corner of H0
−1 in (8.42).

Then we have
var(β̂) = σ2

ε H
11
0 , (8.43)

where

H 11
0 = {(XTW X) − (XTW Z∗)(Z∗TW Z∗ + λIq∗)−1(Z∗TW X)}−1

= {
∑
i

XT
i Wi Xi −

∑
i

(XT
i Wi Z

∗
i )(Z

∗T
i Wi Z

∗
i + λIk)

−1(Z∗T
i Wi Xi )}−1 .

Here, Wi is the i th component matrix of W . �



Chapter 9
Joint Model for Repeated Measures
and Survival Data

In this chapter, through the h-likelihood approach we study the joint model, for
which the response variables of interest would involve repeated measurements over
time on the same subject as well as time to an event of interest with or without
competing risks. The analyses presented here will further extend the multivariate
analyses performed by Lee et al. (2017b) for the HGLM to a joint model where at
least one outcome is time-to-event.

9.1 Introduction

Consider a case where a subject has two outcomes, y1 and y2. Then, y1 and y2 may be
correlated due to a shared individual effect. Modeling jointly these outcomes would
be more informative because a separated analysis ignoring the association can result
in biases (Guo and Carlin 2004). For this joint modeling, an unobserved random
effect can be used to describe an association between the two outcomes.

Let v be a common random effect for the same subject and θ be an unknown
parameter. To analyze this type of data, we may use the marginal likelihood, defined
by

L(θ) = fθ(y1, y2) =
∫

fθ(y1, y2|v) fθ(v)dv, (9.1)

where fθ(y1, y2) is the joint density function of (y1, y2), and fθ(·|v) is the conditional
density of (y1, y2) given the random effect v, and fθ(v) is the density of v. Here, the
h-likelihood is defined by

h = log fθ(y1, y2|v) + log fθ(v). (9.2)

Up to now, we have considered a single response variable y. For an extension to
the multiple response variables y1, · · · , yK , fθ(y|v) is simply replaced by the joint
density function fθ(y1, · · · , yK |v) in the h-likelihood h.

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6_9
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230 9 Joint Model for Repeated Measures and Survival Data

9.2 Joint Model for Repeated Measures and a Single
Event-Time Data

• A motivating example: Consider an example of renal transplant data (Ha et al.
2003). Data were available from 87 male and 25 female renal transplanted patients
who survived more than 4 years after transplant. The aim of this study was to inves-
tigate the chronic renal allograft dysfunction in renal transplants. For each patient,
both repeated-measure outcomes (y1: serum creatinine levels) at several time points
and a terminating event time (y2: graft-loss time) were observed. Here, the renal
function was evaluated from the serum creatinine level. Since these two types of
observations (y1, y2) were collected from the same patient, they are correlated.

• A joint model with frailty model: It is of interest to investigate the covariate
effects on these two types of responses. For the analysis of renal transplant data,
we consider a joint model with the LMM for y (= y1) and the frailty model for
T (= y2). Let yi j be the j th repeated response of the i th patient at time point t
(i = 1, . . . , q; j = 1, . . . , ni ), and let Ti be a single event time of the i th patient and
let Ci be the corresponding censoring time. Denote by vi a shared random effect
of the i th patient. In this section, we assume both yi = (yi1, . . . yini )

T and Ti given
vi are conditionally independent, and that Ti and Ci given vi are also conditionally
independent. Then, conditional on vi , yi and Ti are assumed to have the following
joint model:

(i) yi j = xTi j1β1 + vi + εi j ,

where εi j ∼ N (0,φ), and

(ii) λi (t |vi ) = λ0(t) exp(x
T
i2β2 + γvi ),

where vi ∼ N (0,α) and λ0(·) is a completely unspecified baseline hazard function,
and vi and εi j are independent. Here, β1 and β2 are p1 × 1 and p2 × 1 regression
parameter vectors corresponding to the vectors of covariates xi j1 and xi2, respectively;
xi2 may be a subset of xi j1. This is a shared random-effect model. Note that γ is a
real-valued association parameter that allows the magnitude of the association to be
different between two outcomes, yi j and Ti ; if γ > 0 (γ < 0), then yi j and the hazard
rate tend to be positively (negatively) correlated, and if γ = 0 they are not associated.

• Construction of the h-likelihood:

All observable random variables are repeated-measure responses yi j and time-to-
event data with

t∗i = min(Ti ,Ci ) and δi = I (Ti ≤ Ci ).

Construction of the h-likelihood for the jointmodel above is immediate.We take y1 =
y and y2 = (t∗, δ) in (9.2). By the assumptions of conditional independence between
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yi = (yi1, . . . yini )
T and Ti and the noninformative censoring, the h-likelihood is

defined by

h =
∑
i j

�1i j +
∑
i

�2i +
∑
i

�3i , (9.3)

where

�1i j = �1i j (β1,φ; yi j |vi ) = log fβ1,φ(yi j |vi )
= − log(2πφ)/2 − (yi j − η1i j )

2/(2φ),

�2i = �2i (β2,λ0; t∗i , δi |vi ) = log fβ2,λ0(t
∗
i , δi |vi )

= δi (logλ0(t
∗
i ) + η2i ) − �0(t

∗
i ) exp(η2i ),

�3i = �3i (α; vi ) = log fα(vi ) = − log(2πα)/2 − v2
i /(2α).

where �1i j is the conditional log-likelihood for yi j given vi , �2i is that for (t∗i , δi )
given vi , and �3i is the log-likelihood for vi . Here, we have two linear predictors

η1i j = xTi j1β1 + vi

and

η2i = xTi2β2 + γvi .

9.2.1 Estimation Procedure

Because the functional form of λ0(·) from �2i in (9.3) is unknown, we again define
the baseline cumulative hazard function �0(t) = ∫ t

0 λ0(u)du to be a step function
with jumps λ0r at the observed event times t(r):

�0(t) =
∑

r :t(r)≤t

λ0r , (9.4)

where t(r) is the r th (r = 1, . . . , D) smallest distinct event time among the t∗i ’s
and λ0r = λ0(t(r)). By substituting (9.4) into (9.3), the second term

∑
i �2i in (9.3)

becomes

∑
i

�2i =
∑
r

d(r) logλ0r +
∑
i

δiη2i −
∑
r

λ0r

{ ∑
i∈R(r)

exp(η2i )

}
,

where d(r) is the number of events at t(r) and R(r) = {i : t∗i ≥ t(r)} is the risk set at t(r).
As the number of λ0r ’s in

∑
i �2i increases with the number of events, the function

λ0(t) is potentially of high dimension. Here, the profile h-likelihood is given by
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h∗ = h|λ0=λ̂0
=

∑
i j

�1i j +
∑
i

�∗
2i +

∑
i

�3i , (9.5)

where

∑
i

�∗
2i =

∑
i

�2i |λ0=λ̂0
=

∑
r

d(r) log λ̂0r +
∑
i

δiη2i −
∑
r

d(r).

Here,

λ̂0r = λ̂0r (β2, v) = d(r)∑
i∈R(r)

exp(η2i )

are the solutions of the estimating equations, ∂h/∂λ0r = 0, for r = 1, . . . , D. Thus,
h∗ does not depend on λ0r and it is proportional to the partial h-likelihood h p, given
by

h p =
∑
i j

�1i j +
∑
i

δiη2i −
∑
r

d(r) log

{ ∑
i∈R(r)

exp(η2i )

}
+

∑
i

�3i . (9.6)

Accordingly, the h-likelihood procedure can be derived via h p. Let X1, X2, and
Z be model matrices for vectors β1, β2 and v = (v1, . . . , vq)

T , respectively. The
score equations for fixed and random effects (β1,β2, v) given dispersion parameters
ψ = (φ,α, γ)T are

∂h p/∂β1 = XT
1 (y − μ1)/φ,

∂h p/∂β2 = XT
2 (δ − μ̂2),

∂h p/∂v = Z1
T (y − μ1)/φ + γZ2

T (δ − μ̂2) − v/α,

where μ1 = X1β1 + Z1v = η1, and μ̂2 = exp(log �̂0(t∗) + η2) with η2 = X2β2 +
γZ2v, and Z1 is ann × q group indicatormatrixwhose i jkth element zi jk is∂η1i j/∂vk

and Z2 = Iq . Here, �̂0(t) = ∑
r :t(r)≤t λ̂0r is the Breslow-type estimator of the cumu-

lative baseline hazard. Thus, the ILS equations (4.12) in Chap.4 are extended as

⎛
⎜⎝

X1
TW1X1 0 XT

1 W1Z1

0 XT
2 W

∗
2 X2 XT

2 (γW ∗
2 )Z2

ZT
1 W1X1 Z2

T (γW ∗
2 )X2 ZTWZ + Q

⎞
⎟⎠

⎛
⎜⎝

β̂1

β̂2

v̂

⎞
⎟⎠ =

⎛
⎜⎝

X1
TW1w1

X2
Tw∗

2

ZTw∗

⎞
⎟⎠ ,

where W1 = −∂2h p/∂η1∂ηT
1 = φ−1 Ip1 , and W ∗

2 = −∂2h p/∂η2∂ηT
2 ,

Q = −∂2�3/∂v∂vT = α−1 Iq , w1 = y, w∗
2 = W ∗

2 η2 + (δ − μ̂2), and

Z =
(

Z1

γZ2

)
, W =

(
W1 0
0 W ∗

2

)
and w∗ =

(
W1w1

w∗
2

)
.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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Note here that ZTWZ = ZT
1 W1Z1 + ZT

2 (γ2W ∗
2 )Z2 and that ZTw∗ = ZT

1 W1w1 +
γZ2

Tw∗
2 .

Again the ILS equations above for τ = (βT
1 ,βT

2 , vT )T lead to a simple matrix
form:

(PTVP)τ̂ = PT y∗
0, (9.7)

where

P =
(
X Z
0 Iq

)
, X =

(
X1 0
0 X2

)
, V =

(
W 0
0 Q

)
,

and y∗
0 = (w∗T

1 , w∗T
2 , 0T )T with w∗

1 = W1w1. Note that Hp = −∂2h p/∂τ∂τ T =
PTVP.

To estimate ψ = (φ,α, γ)T , we again use the partial restricted likelihood pτ (h p).
The PREMLEs of ψ are obtained by solving

∂ pτ (h p)/∂ψ = 0,

leading to the PREMLEs for φ and α

φ̂ = (y − μ̂1)
T (y − μ̂1)

n − κ0
and α̂ = v̂T v̂

q − κ1
,

where κ0 = −φtr{Ĥ−1
p (∂ Ĥp/∂φ)}, κ1 = −αtr{Ĥ−1

p (∂ Ĥp/∂α)},
Ĥp = PTVP|τ=τ̂ (ψ), and μ̂1 = X1β̂1 + Z1v̂. The estimator of γ is also easily imple-
mented via the Newton–Raphson method using the first and second derivatives,
∂ pτ (h p)/∂γ and ∂2 pτ (h p)/∂γ2. Thus, we see the h-likelihood procedure in Chap. 4
can be straightforwardly extended to the joint models.

9.2.2 Numerical Study

A simulation study, based on 500 replications, is presented to evaluate the perfor-
mance of the proposed joint modeling approach. For simplicity, we consider a joint
model for repeated measures and a single event time. The simulation scheme is as
follows. First, we generate the random effects vi ∼ N (0,α =0.5) for i = 1, . . . , 50.
Given vi , the repeated-measure responses yi j for j = 1, 2, 3, 4 are generated from
the LMM with two covariates (timei j ,Trti ):

yi j ∼ N (β10 + β11timei j + β12Trti + vi ,φ = 1),

where we set β10 = −0.5,β11 = 0.5,β12 = 1, timei j = 0, 2, 4, 8 (weeks), and Trti
are generated from Bernoulli distribution with the equal probability of 0.5. Here,
“Trt” denotes a treatment group with a new drug (coded as 1) or placebo (coded

http://dx.doi.org/10.1007/978-981-10-6557-6_4
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as 0), which are assigned to subjects by randomization without replacement. Then,
given vi , survival times Ti ’s, for i = 1, . . . , 50, are also generated from the frailty
model with one covariate (Trti ):

λi (t |vi ) = λ0(t) exp(β21Trti + γvi ),

where we set λ0(t) = 1, β21 = −1, and γ = −1 or 1. Finally, the corresponding
censoring times Ci ’s are generated from an exponential distribution to induce about
30% censoring rate. We set the maximum follow-up time to be 8. With 500 replica-
tions, we computed the mean, the standard deviation (SD), and the mean of the esti-
mated standard errors (SE) for β̂ = (β̂10, β̂11, β̂12, β̂21)

T and (φ̂, α̂, γ̂). In addition,
we calculated the empirical coverage probability (CP) for a nominal 95% confidence
interval for β based on the SE.

The simulation results are summarized in Table9.1. First, under γ = −1, we
find the following results. Overall, β̂ estimate the true values well. The standard-
error estimators of β̂ also work well as judged by the good agreement between
SE and SD. The CPs for β are also reasonable with a range of 94–96%. For the
dispersion parameters, (φ̂, α̂) perform well, but γ̂ seems to introduce a slight bias. A
reason of the bias may be the relative scarcity of the outcomes in the frailty model,
i.e., the repeated-measure data have four outcomes for each subject, whereas the
corresponding survival data have one single outcome for the same subject, leading
to a larger variation (i.e., SD) for γ̂ in the frailty model in Table9.1. Table9.1 shows
that the simulation results for γ = 1 are similar to those for γ = −1.

Table 9.1 Simulation results with 500 replications under the joint model

Parameter True Mean SD SE (CP) Mean SD SE (CP)

γ = −1 γ = 1

LMM for y

β10 −0.5 −0.501 0.195 0.195 (0.940) −0.496 0.191 0.193 (0.956)

β11 0.5 0.500 0.023 0.024 (0.954) 0.501 0.023 0.024 (0.946)

β12 1 0.993 0.251 0.249 (0.956) 0.998 0.245 0.246 (0.952)

φ 1 0.989 0.117 − 0.989 0.117 −
α 0.5 0.506 0.153 − 0.503 0.158 −
Frailty model for T

β21 −1 −1.051 0.461 0.450 (0.954) −1.050 0.457 0.451 (0.944)

γ ±1 −1.115 0.515 − 1.117 0.512 −
CP, empirical coverage probability of a nominal 95% confidence interval for β
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9.3 Joint Model for Repeated Measures
and Competing-Risks Data

In this section, we extend the h-likelihood approach in Sect. 9.2 to the joint models
for competing-risks data. Let Tik be event time from cause k for the i th subject (i =
1, . . . , q; k = 1, . . . , K ). For simplicity, we consider two types of events (k = 1, 2).
Suppose that the i th subject has the repeated-measure responses yi j ( j = 1, . . . , ni )
and also two types of event times, Ti1 and Ti2.

• A joint model with competing risks:

Consider a joint model conditional on vi ,

(i) yi j = xTi j1β1 + vi + εi j ,

(ii) λ1i (t |vi ) = λ01(t) exp(x
T
i2β2 + γ1vi ),

(iii) λ2i (t |vi ) = λ02(t) exp(x
T
i2β3 + γ2vi ),

where vi ∼ N (0,α) and εi j ∼ N (0,φ) are independent, and λ01(·) and λ02(·) are
the unknown baseline hazard functions for cause k = 1, 2, respectively. Here, β1,β2,
and β3 are p1 × 1, p2 × 1, and p2 × 1 vectors of regression parameters, respectively.
Note here thatγ1 andγ2 are the dispersion parameters to represent associations among
submodels via vi . That is, γ1 [γ2] represents an association between submodels (i)
and (ii) [(i) and (iii)], respectively.

The arguments from Remark 6.1 can be applied here to establish identifiability
of the model parameters in the above joint model with competing risks.

• H-likelihood construction:

LetCi denote independent censoring time. In addition, we assume that given vi ,Ci is
independent of (Tik, δik) for k = 1, 2. We observe the event time and event indicator,
which are, respectively, given by

t∗i = min(Ti1, Ti2,Ci ) and δik = I (t∗i = Tik).

Thus, all observable random variables are (yi j , t∗i , δik) (i = 1, . . . , q; j = 1, . . . , ni ;
k = 1, 2). Here, the h-likelihood is

h =
∑
i j

�1i j +
∑
ik

�2ik +
∑
i

�3i ,

where �1i j and �3i are given in (9.3), and for k = 1, 2

�2ik = �2ik(βk+1,λ0k; (t∗i , δik)|vi ) = δik{logλ0k(t
∗
i ) + η2ik} − �0k(t

∗
i ) exp(η2ik),

where η2ik = xTi2βk+1 + γkvi .

http://dx.doi.org/10.1007/978-981-10-6557-6_6
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For an unknown λ0k(t), we again use the profile h-likelihood h∗ with λ0k elimi-
nated, given by

h∗ = h|λ0k=λ̂0k
=

∑
i j

�1i j +
∑
ik

�∗
2ik +

∑
i

�3i ,

where

∑
ik

�∗
2ik =

∑
ik

�2ik |λ0k=λ̂0k
=

∑
kr

d(kr) log λ̂0kr +
∑
ik

δikη2ik −
∑
kr

d(kr),

where d(kr) is the number of events at time t(kr) and R(kr) = {i : t∗i ≥ t(kr)} is the risk
set at t(kr) which is the r th (r = 1, . . . , Dk) smallest distinct event time for Type k
event among t∗i ’s. Here,

λ̂0kr (βk+1, v) = d(kr)∑
i∈R(kr)

exp(η2ik)

are the solutions of the estimating equations, ∂h/∂λ0kr = 0, for r = 1, . . . , Dk . This
is again equivalent to using the partial h-likelihood

h p =
∑
i j

�1i j +
∑
ik

δikη2ik −
∑
kr

d(kr) log

{ ∑
i∈R(kr)

exp(η2ik)

}
+

∑
i

�3i . (9.8)

• Estimation procedure:

From (9.8), the score equations for the fixed and random effects (β1,βk+1, v) (k =
1, 2), given the dispersion parameters ψ = (φ,α, γk)

T , are

∂h p/∂β1 = XT
1 (y − μ1)/φ,

∂h p/∂βk+1 = XT
2 (δk − μ̂2k),

∂h p/∂v = Z1
T (y − μ1)/φ + γ1Z2

T (δ1 − μ̂21) + γ2Z2
T (δ2 − μ̂22) − v/α,

whereμ1 = X1β1 + Z1v = η1, and μ̂2k = exp(log �̂0k + η2k)with η2k = X2βk+1 +
γk Z2v, Z1 and Z2 are defined in the previous section, and δk is a vector of δik’s for
each k.Here, �̂0k(t) = ∑

r :t(kr)≤t λ̂0kr is theBreslow-type estimator for the cumulative
baseline hazard �0k for event type k as in Chap.6. The corresponding ILS equations
for τ = (βT

1 ,βT
2 ,βT

3 , vT )T are given by

⎛
⎜⎜⎜⎜⎝

X1
T W1X1 0 0 XT

1 W1Z1

0 XT
2 W

∗
2 X2 0 XT

2 (γ1W ∗
2 )Z2

0 0 XT
2 W

∗
3 X2 XT

2 (γ2W ∗
3 )Z2

ZT
1 W1X1 Z2

T (γ1W ∗
2 )X2 Z2

T (γ2W ∗
3 )X2 ZTWZ + Q

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

β̂1

β̂2

β̂3

v̂

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

X1
T W1w1

X2
Tw∗

2

X2
Tw∗

3

ZTw∗

⎞
⎟⎟⎟⎟⎠ ,
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where W1 = −∂2h p/∂η1∂ηT
1 = φ−1 Ip1 , W

∗
2 = −∂2h p/∂η21∂ηT

21,
W ∗

3 = −∂2h p/∂η22∂ηT
22, Q = −∂2�3/∂vvT = α−1 Iq , w1 = y, w∗

2 = W ∗
2 η21 +

(δ1 − μ̂21), w∗
3 = W ∗

3 η22 + (δ2 − μ̂22), and

Z =
⎛
⎝ Z1

γ1Z2

γ2Z2

⎞
⎠ , W =

⎛
⎝W1 0 0

0 W ∗
2 0

0 0 W ∗
3

⎞
⎠ , and w∗ =

⎛
⎝W1w1

w∗
2

w∗
3

⎞
⎠ .

Note here that ZTWZ = ZT
1 W1Z1 + ZT

2 (γ2
1W

∗
2 )Z2 + ZT

2 (γ2
2W

∗
3 )Z2 and that

ZTw∗ = ZT
1 W1w1 + γ1Z2

Tw∗
2 + γ2Z2

Tw∗
3 .

As before, the ILS equations above leads to a simple form

(PTVP)τ̂ = PT y∗
0, (9.9)

where

P =
(
X Z
0 Iq

)
and V =

(
W 0
0 Q

)
,

with

X =
⎛
⎝ X1 0 0

0 X2 0
0 0 X2

⎞
⎠ .

Here, y∗
0 = (w∗T

1 , w∗T
2 , w∗T

3 , 0T )T with w∗
1 = W1w1. Furthermore, to estimate ψ =

(φ,α, γ1, γ2)
T we still use the partial restricted likelihood pτ (h p).

9.4 Software and Examples Using R

For illustration, we present two practical examples. To fit the joint models, the
jmfit() function in frailtyHL package is used.

9.4.1 Joint Analysis for Repeated Measures and a Single
Event-Time Data: Renal Transplant Data

We consider the data from a clinical study to investigate the chronic renal allograft
dysfunction in renal transplants. Since the time interval between the consecutive
measurements differs from patient to patient, we focus on the mean creatinine levels
over 6 months. In addition, a single terminating survival time (time to graft loss) in
months is observed from each patient. During the study period, there were 13 graft
losses due to the kidney dysfunction. For the other remaining patients, we assumed
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Fig. 9.1 Plot of 1/sCr
against month; (———)
fitted line, 1/sCr=
0.6566 − 0.0012×month

that the censoring occurred at the last follow-up time. The censoring rate is about
88%.

We are interested in investigating the effects of covariates on these two types of
responses, i.e., serum creatinine (sCr) values and time to graft loss. Here, we consider
month, gender, and age as covariates for sCr, and gender and age for the loss time;
Gender is coded as 1 for male and as 0 for female. The reciprocal of sCr levels tends
to decrease linearly over time, having possibly constant variance (Fig. 9.1). Thus, for
the LMM, we use the values of 1/sCr as the response yi j .

In order to fit themodel of interest for the graft-loss time, Ha et al. (2003) assumed
the Weibull frailty model for the graft-loss time ti , which requires checking the
distributional assumption for the baseline hazard. Using the procedures presented in
this book, we can now fit a joint model allowing for an arbitrary baseline hazard.
That is, with the response values of 1/sCr, we consider a LMMwith three covariates,

yi j = β10 + β11Monthi j + β12Genderi + β13Agei j + vi + εi j , (9.10)

where vi ∼ N (0,α) and εi j ∼ N (0,φ) are independent, and with the response of
graft-loss time ti , we consider a semiparametric frailty model with two covariates
(Gender and Age).

λi (t |vi ) = λ0(t) exp(β21Genderi + β22Agei + γvi ), (9.11)

where λ0(·) is an unknown baseline hazard function. The results from fitting the
nonparametric joint model are summarized in the first portion of Table9.2. In JM1,
we allows for an arbitrary baseline hazard. Under JM1, the estimate γ̂ = −15.256
gives a negative sign with a reference scale of 0, showing a negative correlation
between 1/sCr and the hazard rate. That is, a patient with the larger 1/sCr would tend
to have a lower hazard rate.

Based on the t tests, all three covariates (Month, gender, and age) have statistically
significant effects on 1/sCr at a 5% significance level. In other words, the values of
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Table 9.2 Results from fitting joint models (JM) and separate models (SM) with renal transplant
data.

JM1 (Nonparametric) SM JM2 (Weibull)

Parameter Estimate SE Estimate SE Estimate SE

MM for 1/sCr

Intercept 0.517 0.070 0.517 0.070 0.518 0.068

Month −0.002 0.000 −0.002 0.000 −0.002 0.000

Gender
(male)

−0.101 0.038 −0.100 0.038 −0.101 0.037

Age 0.007 0.002 0.007 0.002 0.007 0.002

φ 0.013 – 0.013 – 0.013 –

α 0.027 – 0.026 – 0.025 –

Frailty model for graft-loss time

Intercept – – – – −11.756 2.788

Gender
(male)

1.509 0.949 −0.070 0.695 1.137 0.813

Age −0.132 0.049 −0.050 0.034 −0.102 0.042

γ −15.256 – v̂ar(vi ) = 0.676 – −11.704 –

(̂τ = 2.766 SE = 0.617)

JM2, joint model with Weibull baseline hazard (τ , shape parameter)

1/sCr decrease as time passes,males tend to have smaller values of 1/sCr than females
do, and older patients tend to have larger values of 1/sCr.

With the response of graft-loss time, males tend to have a higher hazard rate
than females, where the estimated relative risk is exp(1.509) = 4.52. However, the
Gender effect is not significant at a 5% significance level. On the other hand, Age
has a significantly negative effect on the hazard rate. It has been shown that the Age
effect of the donor was positive, while that of the recipient was negative (Sung et al.
1998; Ha et al. 2003). The result is consistent here in that the Age effect in Table9.2
is also negative.

We also separately fitted the LMM (9.10) for 1/sCr and the semiparametric frailty
model (9.11) for graft-loss time. The results are summarized in the second portion
of Table9.2 under the heading of SM (separate model). Note that both JM1 and SM
provide almost the same results for the LMM. However, both age and gender effects
are nonsignificant in the separate analysis of the graft-loss time data, while age effect
is significant in both joint analyses of JM1 and JM2. This means that information in
the repeated measures from the same patient can be exploited for the analysis of the
graft-loss time data.

For comparison, we included the results from the parametric joint model (Ha
et al. 2003) with the Weibull baseline hazard, λ0(t) = τ tτ−1 exp(β20), in the frailty
model (9.11). In order to fit the model of interest for the graft-loss time, Ha et al.
(2003) plotted log{− log Ŝ0(t)} versus log t,which showed a linear trend confirming
the Weibull assumption. The results are given in the third portion of Table9.2 under
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the heading of JM2. With the response of 1/sCr, the results from both JM1 and JM2
are very similar, although JM1 yields larger SEs. With the response of graft-loss
time, however, both results are somewhat different in that JM1 has larger absolute
estimates and SEs, caused by the nonparametric estimation of the baseline hazard; in
the Weibull frailty model, the results may be sensitive to different modelings of the
baseline hazard. Between JM1 and JM2, there is not much difference in the fixed-
effect estimates. In practice, however, JM1 might be preferred to JM2 because JM1
is robust against the baseline hazard assumption while JM2 is not.

• R codes and output:

Below are R codes and outputs from fitting the joint model (JM1) for the renal
transplant data.

> data(renal,package="frailtyHL")
> data_conti <- renal
> data_conti <- subset(data_conti, month<=sur_time)
> data_surv <- subset(data_conti,first==1)
########################## HL ########################################
> jm1 <- jointmodeling(Model="mean",RespDist="gaussian",Link="identity",
+ LinPred=icr˜month+sex+age+(1|id),RandDist="gaussian")
> jm2 <- jointmodeling(Model="mean",RespDist="FM",Link="log",
+ LinPred=Surv(sur_time,status)˜sex+age+(1|id),RandDist="gaussian")
> jm <- list(jm1,jm2)
> data <- list(data_conti, data_surv)
> res <- jmfit(jm, data, Maxiter=200)
########################## Output #####################################
[1] "iterations :"
[1] 97
[1] "convergence :"

[,1]
[1,] 9.923815e-05
[1] "Estimates for fixed effects"

Estimate Std. Error t_value p_value
(Intercept) 0.51745 0.07038 7.35240 0.00000
month -0.00170 0.00025 -6.76273 0.00000
sex -0.10088 0.03811 -2.64678 0.00813
age 0.00658 0.00174 3.77103 0.00016
sex 1.50883 0.94874 1.59035 0.11176
age -0.13221 0.04869 -2.71539 0.00662
[1] "Estimates for dispersion parameters"

phi_h alpha_h gamma_h
[1,] 0.01323 0.027 -15.25595

9.4.2 Joint Analysis of Repeated Measures
and Competing-Risks Data: PBC Data

Consider a data set from a clinical study on primary biliary cirrhosis (PBC) in the
liver conducted by Mayo Clinic between 1974 and 1984 (Therneau and Grambsch
2000). A total of 424 PBC patients, referred to Mayo Clinic during that 10-year
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Table 9.3 Results from fitting the joint competing-risks models (JM) and separate models (SM)
for the PBC data

JM SM

Parameter Estimate SE Estimate SE

LMM for the logarithm of serum bilirubin

Intercept 0.592 0.094 0.586 0.092

Year 0.099 0.004 0.095 0.004

Drug −0.125 0.128 −0.126 0.127

Gender 0.427 0.201 0.415 0.198

φ 0.241 − 0.242 −
α 1.219 − 1.181 −
Competing-risks frailty model for death

Drug −0.146 0.238 −0.017 0.175

Gender 0.794 0.338 0.671 0.229

γ1 1.288 − var(vi ) = 0.108 −
Competing-risks frailty model for transplantation

Drug −4.534 0.698 −0.386 0.384

Gender 0.116 0.593 0.146 0.623

γ2 1.200 − var(vi ) = 0.306 −

interval,met eligibility criteria for the randomized placebo-controlled trial of the drug
D-penicillamine. Here, we consider 312 patients who participated in the randomized
trial. We consider two event types:

Type 1 event is death (140 patients) and
Type 2 event is transplantation (29 patients).

The remaining 143 patients are censored at the last follow-up. The PBC data set is
also available in the R package JM (Rizopoulos 2012).

Let yi j be the logarithm of serum bilirubin (mg/dl) for the j th visit of the i th
patient and let Tik be the event time from cause k (k = 1, 2) of the i th patient. The
event time is coded as years with event status, status. Here, the status is
coded as “dead” for Type 1, “transplanted” for Type 2, and “alive” for censoring.
For the joint model, we consider the LMM with three covariates (visiting year; drug
(=1 for D-penicillamine,=0 for placebo); and gender (=1 for male,=0 for female))
and the frailty model (FM) with two covariates (gender and drug). Note here that
“visiting year” is coded as year.

This model can be fitted by using the jmfit() function in the frailtyHL
package; the R codes and outputs are provided below. The results are summarized
in Table9.3.

We first analyze the results from the joint models (JM) in Table9.3. The esti-
mates of the association parameters, γ̂1 = 1.288 and γ̂2 = 1.200, show all positive
associations between yi j and death and between yi j and transplantation, respectively.
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That is, γ̂1 = 1.288 means that a patient with a larger serum bilirubin (yi j ) shows
a tendency to have a higher death rate, and γ̂2 = 1.200 indicates that a patient with
a larger serum bilirubin (yi j ) tends to have a higher hazard rate of transplantation.
From Table9.3 and the R output, the estimated covariate effects are summarized as
follows:

(i) For the serum bilirubin, the visiting year effect on the serum bilirubin is sig-
nificantly positive (p value = 0.000). In other words, the value of serum bilirubin
significantly increases as time passes. The gender effect is also significantly positive
(p value = 0.033). That is, males have significantly larger serum bilirubin as com-
pared to females. However, the drug effect is negative but not significant (p value =
0.328).
(ii) For the death rate, the gender effect is positively significant (p value = 0.019),
implying that males have significantly higher death rate than females. The drug effect
is still not significant (p value = 0.541).
(iii) For the transplant hazard rate, the gender effect is not significant (p value =
0.845), but the drug effect (i.e., D-penicillamine effect) is significantly negative
(p value = 0.000), implying significant benefits for the PBC patients.

For a comparison, we fitted the three models separately (SM), i.e., LMM and two
competing-risks frailty models. In Table9.3, we observe that both LMM analyses
from the joint model and separate model give almost the same results, while two
competing-risks analyses are quite different as in Sect. 9.4.1. For example, the drug
effect is not significant in the separate analysis for both types of events, whereas it is
significant in joint analysis of time-to-transplant data. We again see that information
in the repeated measures from the same patient can also be exploited for the analysis
of competing-risks data.

• R codes and output:

Below are R codes and outputs for fitting the joint model for the PBC data.

# Joint model for repeated measures and competing-risks data
> data(pbc2,package="JM") # repeated-measures data
> data(pbc2.id,package="JM") # competing-risks data
> pbc2$sex<-ifelse(pbc2$sex=="male",1,0)
> pbc2.id$sex<-ifelse(pbc2.id$sex=="male",1,0)
> pbc2$drug<-ifelse(pbc2$drug=="D-penicil",1,0)
> pbc2.id$drug<-ifelse(pbc2.id$drug=="D-penicil",1,0)

> jm1<-jointmodeling(Model="mean",RespDist="gaussian",Link="identity",
+ LinPred=log(serBilir)˜year+drug+sex+(1|id),RandDist="gaussian")
> jm2<-jointmodeling(Model="mean",RespDist="FM",Link="log",
+ LinPred=Surv(years,status=="dead")˜drug+sex+(1|id),
+ RandDist="gaussian")
> jm3<-jointmodeling(Model="mean",RespDist="FM",Link="log",
+ LinPred=Surv(years,status=="transplanted")˜drug+sex+(1|id),
+ RandDist="gaussian")
> jm <- list(jm1,jm2,jm3)
> data_surv <- pbc2.id
> data <- list(pbc2, data_surv)

http://dx.doi.org/10.1007/978-981-10-6557-6_9
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> res <- jmfit(jm, data, Maxiter=200)
[1]"iterations :"
[1] 25
[1]"convergence :"

[,1]
[1,] 6.431976e-05

[1]"Estimates for fixed effects"
Estimate Std. Error t_value p_value

(Intercept) 0.59197 0.09363 6.32266 0.00000
year 0.09887 0.00431 22.95874 0.00000
drug -0.12546 0.12835 -0.97753 0.32830
sex 0.42694 0.20081 2.12612 0.03349
drug -0.14560 0.23816 -0.61136 0.54096
sex 0.79392 0.33794 2.34931 0.01881
drug -4.53389 0.69789 -6.49662 0.00000
sex 0.11622 0.59252 0.19614 0.84450
[1]"Estimates for dispersion parameters"

phi_h alpha_h gamma1_h gamma2_h
[1,] 0.24147 1.21878 1.28762 1.19992

9.5 Discussion

An advantage of the h-likelihood method is its easy extensibility to the joint models
withmulticomponent random effects, for which the integration to obtain themarginal
likelihood is often intractable. The separate modeling does not consider the depen-
dency between responses. Lee et al. (2017b) also provided multivariate analysis for
the multiple outcomes from the HGLM. Thus, the joint models can easily extended
to the multivariate analysis with more than two responses, including competing risks
(Ha et al. 2017). The joint modeling enables information from all the responses to
be exploited to improve inference on the regression parameter estimators, which is
impossible from the separate analyses. Information gain from the other responses
can be important in the analysis of scarce data.

The jointmodels considered in this chapter can befitted via themarginal likelihood
(ML)method,which is implemented asR packages using theGHQ (Rizopoulos 2012
and EM (Philipson et al. 2012).We have found (not shown here) that the h-likelihood
method gives similar results to the ML method.

We assumed a shared frailty vi in the joint models. Extension to correlated frailties
is useful; it is easily implemented to allow for a bivariate normal distribution with a
correlation between vi1 in the LMM and vi2 in the frailty model (Elashoff et al. 2008;
Ha et al. 2017). Furthermore, the development of an extended joint model allowing
for time-dependent covariates would also merit future research.



Chapter 10
Further Topics

We have previously presented the h-likelihood procedures for the analysis of survival
data under competing risks. There are still many unresolved problems in this area.
In this chapter, we present some further topics to highlight that the h-likelihood
approach can be extended to more complex multistate survival data. We deal with
competing-risks data with missing causes of failure and the semi-competing-risks
data.

10.1 Competing-Risks Frailty Models with Missing Causes
of Failure

In a clinical study, information on cause of death may not be observed for some sub-
jects due to loss to follow-up or difficulties in determining the cause of death. When
causes of failure are missing, the subjects with missing causes may be excluded
from the analysis and the standard competing-risks analysis may be applied. How-
ever, such approaches lose information and may lead to biased results. In multicenter
clinical trials, competing-risks problems with missing causes often occurs within a
center.

In this section, under the missing at random (MAR) assumption, we present the
h-likelihood approach to fitting the cause-specific competing-risks model with a
univariate log-normal frailty in the presence of missing causes of failure. Here, we
use the multiple imputation methods (Bakoyannis et al. 2010) to deal with missing
causes of failure. Following Bakoyannis et al. (2010), we impute the missing causes
of failure multiple times from the conditional distribution of failure type given the
observed data, and then fit the cause-specific log-normal frailty model using the
h-likelihood procedure presented in Chap. 6.

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6_10
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10.1.1 Example: Bladder Cancer Data with Missing Causes
of Failure

Consider the bladder cancer data again. For this analysis, we study the data set
consisting of 396 patients with bladder cancer treated in 21 centers from the EORTC
trial 30791, focusing on two competing endpoints, i.e., death frommalignant disease
(an event of interest) and death from other causes (competing events).

The descriptive statistics are given in Table10.1. Here, patients with missing
values of covariates of interest (age, gender, carcinoma in stiu (CIS) and grade) were
excluded. Among 396 patients, 50 patients died from malignant disease, 94 died
from other causes, and 211 patients were censored. The causes of death were not
observed for 41 patients. Thus, 22.16% of 185 patients who died had missing causes
of death. Recall that the numbers of patients per center varied from 3 to 78, with the
mean of 18.9 and the median of 14.

Table10.2 summarizes the results from the multiple imputation methods (MI)
with m = 10 imputation and complete case analysis (CC) obtained by excluding
patients with missing causes of death. In both MI and CC analyses, age at diagnosis,
CIS, and grade were significant predictors of death from malignant disease, while

Table 10.1 Descriptive
statistics for 396 patients in
the bladder cancer data

Characteristic Number of patients Percentage of
patients

Age at diagnosis

≤65 years 183 46.2

>65 years 213 53.8

Gender

Male 330 83.3

Female 66 16.7

Carcinoma in situ (CIS)

No 372 93.9

Yes 24 6.1

Grade

Grade1 191 48.2

Grade2 167 42.2

Grade3 38 9.6

Cause of death

Malignant disease 50 12.6

Other 94 23.7

Alive 211 53.3

Missing 41 10.4



10.1 Competing-Risks Frailty Models with Missing Causes of Failure 247

Ta
bl
e
10
.2

T
he

re
gr
es
si
on

pa
ra
m
et
er

es
tim

at
es

(s
ta
nd
ar
d
er
ro
rs
)
an
d
p-
va
lu
es

fo
r
de
at
h
fr
om

m
al
ig
na
nt

di
se
as
e
an
d
fr
om

ot
he
r
ca
us
es

in
th
e
ca
us
e-
sp
ec
ifi
c
PH

m
od

el
w
ith

a
un

iv
ar
ia
te
lo
g-
no

rm
al
fr
ai
lty

;M
I,
m
ul
tip

le
im

pu
ta
tio

n;
C
C
,c
om

pl
et
e
ca
se

22
.1
6%

m
is
si
ng

M
I

C
C

D
ea
th

fr
om

m
al
ig
na
nt

di
se
as
e

D
ea
th

fr
om

ot
he
r
ca
us
es

D
ea
th

fr
om

m
al
ig
na
nt

di
se
as
e

D
ea
th

fr
om

ot
he
r
ca
us
es

C
ov
ar
ia
te
s

β̂
1
(S
E
)

p-
va
lu
e

β̂
2
(S
E
)

p-
va
lu
e

β̂
1
(S
E
)

p-
va
lu
e

β̂
2
(S
E
)

p-
va
lu
e

A
ge

at
di
ag
no
si
s

≤6
5
ye
ar
s

0
(–
)

–
0
(–
)

–
0
(–
)

–
0
(–
)

–

>
65

ye
ar
s

0.
95
4
(0
.3
01
)

0.
00
2

1.
29
9
(0
.2
24
)

<
0.
00
1

0.
92
5
(0
.3
07
)

0.
00
3

1.
47
5
(0
.2
46
)

<
0.
00
1

G
en
de
r

M
al
e

0
(–
)

–
0
(–
)

–
0
(–
)

–
0
(–
)

–

Fe
m
al
e

−0
.6
72

(0
.4
31
)

0.
12
0

−0
.4
44

(0
.2
75
)

0.
10
7

−0
.9
40

(0
.4
77
)

0.
04
9

−0
.4
99

(0
.3
03
)

0.
10
0

C
IS N
o

0
(–
)

–
0
(–
)

–
0
(–
)

–
0
(–
)

–

Y
es

1.
04
4
(0
.4
00
)

0.
00
9

0.
23
9
(0
.4
10
)

0.
56
0

1.
21
4
(0
.4
00
)

0.
00
2

0.
05
7
(0
.4
67
)

0.
90
3

G
ra
de

G
ra
de
1

0
(–
)

–
0
(–
)

–
0
(–
)

–
0
(–
)

–

G
ra
de
2

0.
84
9
(0
.3
14
)

0.
00
7

0.
28
6
(0
.2
00
)

0.
15
2

0.
94
1
(0
.3
30
)

0.
00
4

0.
37
5
(0
.2
19
)

0.
08
6

G
ra
de
3

1.
31
8
(0
.4
09
)

0.
00
1

−0
.0
73

(0
.4
21
)

0.
86
3

1.
20
8
(0
.4
43
)

0.
00
6

−0
.0
57

(0
.4
42
)

0.
89
7

Fr
ai
lty

pa
ra
m
et
er

σ̂
2

=
0.
03
4

σ̂
2

=
0.
03
1



248 10 Further Topics

only age was a significant predictor of death from other causes. Note that gender was
not a significant predictor of death frommalignant disease in theMI method, while it
was significant in the CC analysis. This confirms the simulation results by Lee et al.
(2017a) that excluding patients with missing causes of death from the analyses might
lead to biased results. They also showed that the h-likelihood procedure performs
well, even if the imputation model is misspecified.

The variance estimate (σ̂2) of the random effect is 0.034 and 0.031 from the MI
method and CC analysis, respectively, showing that there is little difference between
the two analyses in the amount of variation in the baseline risk over centers.We tested
the null hypothesis H0 : σ2 = 0 (i.e., vi = 0 for all i with no center effect) using
pτ (h p). Since the null hypothesis H0 : σ2 = 0 is on the boundary of the parameter
space, the likelihood difference based on −2pτ (h p) between the cause-specific PH
model without frailty and with frailty from the MI methods is −2{−953.855 −
(−953.215)} = 1.28 (p-value=0.129). This indicates that the null hypothesis of no
variation in the baseline risk across centers is not rejected.

Missing data are unobserved random variables, so that they can be treated as
random effects. For application of the h-likelihood to missing data and imputation
in general, see Lee et al. (2017b).

10.2 Frailty Models for Semi-competing-Risks Data

In this section,we consider the semi-competing-risks situationwhere a terminal event
(e.g., death) censors a nonterminal event (e.g., disease recurrence), but not vice versa
(Fig. 10.1). Here, a subject may experience both events that might be correlated. We
show that the frailtymodels are useful formodelling such semi-competing-risks data.
For inference, we propose the h-likelihood procedure, which is compared with the
marginal likelihood approach.

We first review the classical semi-competing-risks model, which is also well
known as the illness-death model.

Fig. 10.1 A schematic
diagram of
semi-competing-risks data
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10.2.1 Classical Semi-competing-Risks Model

Suppose that a subject may experience a terminal event (e.g., death) and/or a nonter-
minal event (e.g., disease recurrence). Let Ti1 and Ti2 be the nonterminal and terminal
event times for the i th subject, respectively, and let Ci be the corresponding censor-
ing time (i = 1, . . . , n). If the subject fails before the nonterminal event occurs, we
conventionally define Ti1 = ∞. Then, we have the following observable data:

yi1 = Ti1 ∧ yi2, yi2 = Ti2 ∧ Ci , δi1 = I (Ti1 ≤ yi2) and δi2 = I (Ti2 ≤ Ci ).

Note that 0 ≤ yi1 ≤ yi2. In particular, subjects can die from related or unrelated
causes. Thus, there are four cases we can observe from each subject:

(i) if (δi1, δi2) = (0, 0) (i.e., a subject still alive without recurrence),
yi1 = yi2 = Ci ,

(ii) if (δi1, δi2) = (0, 1) (i.e., a subject dies without recurrence),
yi1 = yi2 = Ti2,

(iii) if (δi1, δi2) = (1, 0) (i.e., a subject still alive after recurrence),
yi1 = Ti1 and yi2 = Ci ,

(iv) if (δi1, δi2) = (1, 1) (i.e., a subject dies after recurrence),
yi1 = Ti1 and yi2 = Ti2.

Figure10.1 again shows a schematic diagram of semi-competing-risks data, with
three states (on study, recurrence, and death). The hazard functions in Fig. 10.1 are
defined as follows:

λ1(t1) = lim
�t→0

Pr{t1 ≤ T1 ≤ t1 + �t |T1 ≥ t1, T2 ≥ t1}/�t, t1 > 0,

λ2(t2) = lim
�t→0

Pr{t2 ≤ T2 ≤ t2 + �t |T1 ≥ t2, T2 ≥ t2}/�t, t2 > 0,

λ12(t2|t1) = lim
�t→0

Pr{t2 ≤ T2 ≤ t2 + �t |T1 = t1, T2 ≥ t2}/�t, 0 < t1 < t2.

For simplicity, for λ12(t2|t1) we assume a Markov process where the transition prob-
ability from state 1 to state 2 does not depend on the duration in state 1 (Aalen et al.
2008). That is, we assume

λ12(t2|t1) = λ12(t2), 0 < t1 < t2.

Note that for transition from state 1 to state 2, the left truncation time is t1, the time
at which the recurrence occurred. Let xi be a p -dimensional vector of covariates
for the i th subject. The semi-competing-risks regression model (Lawless 2003) is
described as follows:
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λ1i (t1; xi ) = λ01(t1) exp(x
T
i β1), t1 > 0, (10.1)

λ2i (t2; xi ) = λ02(t2) exp(x
T
i β2), t2 > 0, (10.2)

λ12i (t2; xi ) = λ03(t2) exp(x
T
i β3), 0 < t1 < t2, (10.3)

where λ01(·),λ02(·) and λ03(·) are the parametric or nonparametric baseline haz-
ard functions. Let �01(t) = ∫ t

0 λ01(s)ds and �02(t) = ∫ t
0 λ02(s)ds be the baseline

cumulative hazard functions corresponding to λ01(t) and λ02(t), respectively. Fol-
lowing Xu et al. (2010), the likelihood function based on the models (10.1)–(10.3)
given the observed data yoi = (yi1, δi1, yi2, δi2) (i = 1, . . . , n) is given by

L =
n∏

i=1

λ1i (yi1)
δi1λ2i (yi2)

δi2(1−δi1)λ12i (yi2)
δi1δi2

× exp

[

−
∫ yi1

0
{λ1i (t) + λ2i (t)} dt

]

× exp

{

−
∫ yi2

yi1

λ12i (t) dt

}

=
n∏

i=1

λ01(yi1)
δi1λ02(yi2)

δi2(1−δi1)λ03(yi2)
δi1δi2 (10.4)

× exp{xTi β1δi1 + xTi β2δi2(1 − δi1) + xTi β3δi1δi2}
× exp

{

−�01(yi1)e
xTi β1 − �02(yi1)e

xTi β2 − �03(yi1, yi2)e
xTi β3

}

,

where�03(s, t) = �03(t) − �03(s). If the forms ofλ01(·),λ02(·) andλ03(·) are para-
metric, then the MLEs for the parameters of interest (β1,β2,β3) are available by
directlymaximizing L in (10.4) via the numericalmethods such asNewton–Raphson.
If they are unspecified, the estimates can be obtained bymaximizing L using theBres-
low (1972) method for the baseline cumulative hazards (Andersen et al. 1997; Xu
et al. 2010).

10.2.2 Fitting the Semi-competing-Risks Frailty Model

10.2.2.1 The Model

The classical model (10.1)–(10.3) can be extended to the frailty model which
describes the dependency between nonterminal and terminal event times.

For simplicity,we consider the semi-competing-risks frailtymodelwith a common
frailty. Denote by ui a shared unobserved frailty (random effect) for the i th subject.
Following Xu et al. (2010), the semi-competing risk frailty model is described as
follows. The conditional hazards (10.1)–(10.3) given ui are expressed as
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λ1i (t1|ui ; xi ) = λ01(t1) exp(x
T
i β1)ui , t1 > 0, (10.5)

λ2i (t2|ui ; xi ) = λ02(t2) exp(x
T
i β2)ui , t2 > 0, (10.6)

λ12i (t2|ui ; xi ) = λ03(t2) exp(x
T
i β3)ui , 0 < t1 < t2, (10.7)

where λ01(·),λ02(·) and λ03(·) are the unspecified baseline hazard functions. Here,
the frailties ui are assumed to be unobserved realizations of an iid random variable
with a density function having a frailty parameter α. The popular gamma and log-
normal frailty models, respectively, assume gamma and log-normal distributions for
ui ; for the gamma, we assume E(ui ) = 1 and var(ui ) = α, and for the log-normal
vi = log ui ∼ N (0,α).

10.2.2.2 Estimation Procedure Based on the H-likelihood

We now show how to derive the h-likelihood estimation procedure to fit the frailty
model (10.5)–(10.7). The h-likelihood for the semi-competing-risks frailty model
(10.5)–(10.7) is defined by

h = h(β, v,λ0,α) =
∑

i

�1i +
∑

i

�2i , (10.8)

where �1i = �1i (β,λ0; yoi |ui ) is the logarithm of the conditional density function for
yoi = (yi1, yi2, δi1, δi2) given ui , i.e.,

�1i = δi1{logλ01(yi1) + ηi1} + δi2(1 − δi1){logλ02(yi2) + ηi2}
+ δi1δi2{logλ03(yi2) + ηi3}
−{�01(yi1) exp(ηi1) + �02(yi1) exp(ηi2) + �03(yi1, yi2) exp(ηi3)},

and �2i = �2i (α; vi ) is the logarithm of the density function of vi = log ui with
parameter α. Here, ηi1 = xTi β1 + vi , ηi2 = xTi β2 + vi and ηi3 = xTi β3 + vi , β =
(βT

1 ,βT
2 ,βT

3 )T with β j = (β j1, . . . ,β j p)
T , v = (v1, . . . , vn)

T , and �03(s, t) = �03

(t) − �03(s). For the gamma frailty, we have �2i = α−1(vi − ui ) − log�(α−1) −
α−1 logα, and for the log-normal frailty �2i = − log(2πα)/2 − v2

i /2α.
Note that the functional forms of λ0 j (·) ( j = 1, 2, 3) are unknown. Let λ0 jk j =

λ0 j (y j (k j )) > 0 be a jump size at the observed event time y j (k j ), where y j (k j ) is the k j th
(k j = 1, . . . , Dj ) smallest distinct event time for each j . Let y1(1), y1(2), . . . , y1(D1)

be ordered distinct recurrence times among data with δi1 = 1 (i.e., (δi1, δi2) =(1, 0)
or (1, 1)), and y2(1), y2(2), . . . , y2(D2) be ordered distinct death times without recur-
rence among data with (δi1, δi2) = (0, 1), and y3(1), y3(2), . . . , y3(D3) be ordered dis-
tinct death times following recurrence among data with (δi1, δi2) = (1, 1). Again,
we consider the baseline cumulative hazard function �0 j (t) ( j = 1, 2, 3) as a step
function with jumps at the observed event times
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�0 j (t) =
∑

k j :y j (k j )≤t

λ0 jk j , ( j = 1, 2, 3). (10.9)

Then
∑

i �1i in (10.8) can be rewritten as

∑

i

�1i =
∑

k1

d1(k1) logλ01k1 +
∑

i

δi1ηi1 −
∑

k1

λ01k1

{ ∑

i∈R(k1)

exp(ηi1)

}

+
∑

k2

d2(k2) logλ02k2 +
∑

i

δi2(1 − δi1)ηi2

−
∑

k2

λ02k2

{ ∑

i∈R(k2)

exp(ηi2)

}

+
∑

k3

d3(k3) logλ03k3

+
∑

i

δi1δi2ηi3 −
∑

k3

λ03k3

{ ∑

i∈R(k3)

exp(ηi3)

}

, (10.10)

where d j (k j ) ( j = 1, 2, 3) is the number of events at y j (k j ), and

R(k1) = R(y1(k1)) = {i : yi1 ≥ y1(k1)},
R(k2) = R(y2(k2)) = {i : yi1 ≥ y2(k2)},
R(k3) = R(y3(k3)) = {i : yi1 < y3(k3) ≤ yi2},

are the risk sets at y1(k1), y2(k2) and y3(k3), respectively. We let λ01 = (λ011, . . . ,

λ01D1)
T , λ02 = (λ021, . . . ,λ02D2)

T , and λ03 = (λ031, . . . ,λ03D3)
T . As the number of

nuisance parameters λ0 j ’s increases with the number of events, the function λ0 j (t)
is potentially of high dimension. Accordingly, for estimation of (β, v), the profiled
h-likelihood h∗ is used to eliminate λ0 j ( j = 1, 2, 3):

h∗ = h|λ0 j=λ̂0 j
=

∑

i

�∗
1i +

∑

i

�2i , (10.11)

where

λ̂0 jk j (β, v) = d j (k j )∑
i∈R(k j )

exp(ηi j )
, ( j = 1, 2, 3)

are the solutions of the estimating equations, ∂h/∂λ0 jk j = 0, for k j = 1, . . . , Dj .
Here, from (10.10) we have that
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∑

i

�∗
1i =

∑

i

�1i |λ0 j=λ̂0 j

=
∑

k1

d1(k1) log λ̂01k1 +
∑

i

δi1ηi1 −
∑

k1

d1(k1)

+
∑

k2

d2(k2) log λ̂02k2 +
∑

i

δi2(1 − δi1)ηi2 −
∑

k2

d2(k2)

+
∑

k3

d3(k3) log λ̂03k3 +
∑

i

δi1δi2ηi3 −
∑

k3

d3(k3),

which is proportional to the partial conditional likelihood �p, given by

�p =
∑

i

δi1ηi1 −
∑

k1

d1(k1) log

{ ∑

i∈R(k1)

exp(ηi1)

}

+
∑

i

δi2(1 − δi1)ηi2 −
∑

k2

d2(k2) log

{ ∑

i∈R(k2)

exp(ηi2)

}

+
∑

i

δi1δi2ηi3 −
∑

k3

d3(k3) log

{ ∑

i∈R(k3)

exp(ηi3)

}

with the constant terms eliminated. This leads to the partial h-likelihood

h p = �p +
∑

i

�2i .

Thus, once we have h p, the h-likelihood method presented in Chap. 4 can be directly
extended to the semi-competing frailty model.

Remark 10.1 (i) For the semi-competing-risks model (10.5)–(10.7) with gamma
frailty, in Appendix 10.4.1, we derive the marginal likelihood procedure which
is equivalent to that of Xu et al. (2010). In Appendix 10.4.2, we also show that
given α, the h-likelihood and marginal likelihood procedures give the same
estimators as in the standard gamma frailty model (Ha et al. 2001; Ha and Lee
2003).

(ii) For estimation of the dispersion parameter α in the gamma frailty model, we
practically use the second-order approximation sv(h p) = pv(h p) − F(h)/24,
which is also an approximation of plogλ0(m) in (4.8) (Ha et al. 2010) because
pv(h) and pβ,v(h) are asymptotically equivalent (Noh and Lee 2007; Ha et al.
2007b). However, we have found that sv(h p) sometimes gives a convergence
problem infitting the semi-competing-risks gamma frailtymodels. To overcome
this problem, we further consider a higher order approximation using the h-
likelihood, i.e., the fourth-order Laplace approximation in (10.23) (denoted by
mv(h p)): see Appendix 10.4.3.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4


254 10 Further Topics

(iii) Furthermore, for the semi-competing-risks model (10.5)–(10.7) with log-
normal frailty, the h-likelihood method can be easily implemented. However,
the corresponding marginal likelihood may require an intractable integration
over the frailty.

10.2.3 Example: Breast Cancer Data

For an illustration, we consider the breast cancer data (Sect. 1.2.6) including 2,572
eligible patients with follow-up and known pathological tumor size. The aim of this
analysis is to investigate the effect of treatment on cancer recurrence and/or death,
considering three event types: Type 1, cancer recurrence from study; Type 2, death
without recurrence; Type 3, death after recurrence.

Table10.3 gives the number of observed event types in this data set. Here 180
patients (7.00%) experienced Type 1, 535 patients (20.80%) did Type 2, 540 patients
(21.00%) did Type 3, and the remaining 1317 patients (51.21%) had no events.
Table10.3 also shows the number of observed event types by two treatment arms.

Here, we consider three covariates of interest: treatment (xi1 is 1 for tamoxifen
and 0 for placebo), tumor size (xi2) and age (xi3). For the analysis of data, we use
the Markov model (10.1)–(10.3) without frailty and the model (10.5)–(10.7) with
gamma frailty. For estimation of the gamma frailty model, we use the h-likelihood
method, which is compared with the marginal likelihood method.

The fitted results are listed in Table10.4. The results from the Markov and frailty
models are very similar because the frailty parameter estimate (α̂ = 0.090) is very
small. Moreover, to test the absence of the frailty effect H0 : α ≡ var(ui ) = 0,
the likelihood difference between the Markov model and the frailty model is
2{sv(h p) − �B} = 0.7 < 2.71, indicating that the frailty effect is not significant;
using the marginal likelihood m, we also have D = 2{m − �B} = 0.4. Here, �B is
the Breslow’s (partial) likelihood (ui = 1 for the gamma frailty model and vi = 0
for the log-normal frailty model for all i). That is, it is defined by

�B = lim
α→0

sv(h p),

Table 10.3 Observed event types by two treatment arms (n = 2, 572 patients)

Types of event Placebo Tamoxifen Total (%)

Type 1 (State 0 → State 1): Recurrence 108 72 180 (7.00)

Type 2 (State 0 → State 2): Death without recurrence 242 293 535 (20.80)

Type 3 (State 1 → State 2): Death after recurrence 331 209 540 (21.00)

No event (Censoring) 613 704 1,317 (51.21)

http://dx.doi.org/10.1007/978-981-10-6557-6_1
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Table 10.4 Fitted results from the two semi-competing-risks models with the breast cancer data

Model Time to recurrence Time to death without
recurrence

Time to death after
recurrence

Est. (SE) Est. (SE) Est. (SE)

Markov model

Treatment −0.543 (0.077) 0.058 (0.087) 0.329 (0.089)

Age −0.015 (0.004) 0.090 (0.006) 0.007 (0.004)

Tumor size (x3)
−2�pc = 23886.1

0.018 (0.002) 0.007 (0.003) 0.010 (0.003)

Frailty model (HL)

Treatment −0.552 (0.078) 0.046 (0.089) 0.332 (0.094)

Age −0.015 (0.004) 0.090 (0.006) 0.008 (0.004)

Tumor size 0.018 (0.003) 0.008 (0.004) 0.011 (0.003)

Frailty α
−2sv(h p) = 23885.4

0.090

Frailty model (ML)

Treatment −0.549 (0.077) 0.050 (0.088) 0.332 (0.093)

Age −0.015 (0.004) 0.090 (0.006) 0.007 (0.004)

Tumor size 0.018 (0.002) 0.008 (0.004) 0.011 (0.003)

Frailty α
−2m = 23885.7

0.059

Markov model, semi-competing-risks model without frailty
Frailty model, semi-competing-risks model with gamma frailty
HL, h-likelihood; ML, marginal likelihood
α, variance of the gamma frailty

which is the adjusted profile h-likelihood under the model (10.5)–(10.7) without the
term ui (Lee and Nelder 1996). In Table10.4, the treatment effect (x1) is significant
on time to recurrence and time to death after recurrence, but not time to death without
recurrence. For time to death without recurrence, the sign of treatment effect is pos-
itive; this coincides with the fact that more patients died without cancer recurrence
in the tamoxifen group (293/535) than in the placebo group (242/535) in Table10.3.
We also see that the use of tamoxifen (tamoxifen=1) significantly reduces cancer
recurrence (Type 1) but that it is not beneficial in terms of time to death after recur-
rence. In terms of other covariates, the age effect (x2) is significant only on time to
recurrence. The effect of tumor size (x3) is positively significant on all three event
types, implying that the event rate is significantly higher among patients whose tumor
sizes were larger at surgery.

Nowwe restrict the data set only to older patients (i.e., n = 1, 776 with age≥ 50).
The results are summarized in Table10.5. Here, we present the results for mv(h p)

because the sv(h p) method did not converge. We find that the frailty estimate is
relatively large (α̂ = 1.315). The LRT is 2{mv(h p) − �B} = 9.8 > 2.71, indicating
that the frailty effect is significantly large, i.e.,α > 0.We also have 2(m − �B) = 9.3,
selecting the frailtymodel. Treatment effects are overall similar to those inTable10.4,
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Table 10.5 Fitted results from the two semi-competing-risks models for old patients (age ≥50) in
the breast cancer data

Model Time to recurrence Time to death without
recurrence

Time to death after
recurrence

Est. (SE) Est. (SE) Est. (SE)

Markov model

Treatment −0.631 (0.097) 0.081 (0.092) 0.471 (0.112)

Tumor size
−2�B = 16417.1

0.023 (0.003) 0.005 (0.004) 0.006 (0.004)

Frailty model (HL)

Treatment −0.775 (0.116) −0.101 (0.119) 0.472 (0.150)

Tumor size
−2mv(h p) = 16407.3

0.032 (0.004) 0.016 (0.005) 0.015 (0.006)

α 1.315

Frailty model (ML)

Treatment −0.787 (0.120) −0.116 (0.126) 0.466 (0.160)

Tumor size 0.033 (0.005) 0.017 (0.006) 0.016 (0.006)

α
−2m = 16407.8

1.444

even though their signs in the frailty model have changed for time to death without
recurrence. However, for time to death without recurrence and time to death after
recurrence, the tumor size effect is not significant in the Markov model, whereas it
is significant in the frailty model.

10.3 Discussion

Recently, the frailty modelling approaches to semi-competing-risks data have been
widely studied (Xu et al. 2010; Zhang et al. 2013; Varadhan et al. 2014; Meira-
Machado and Faria 2014; Jiang and Haneuse 2015; Lee et al. 2015b, 2016). In
particular, Xu et al. (2010) proposed amarginal likelihood approach under the gamma
frailty model. Zhang et al. (2013) and Lee et al. (2015b, 2016) have studied Bayesian
approaches. However, the marginal likelihood and Bayesian approaches may involve
evaluation of the intractable integrals over the random-effect distributions, which can
be avoided by the h-likelihood approach.

To model semi-competing-risks data, we used only a univariate frailty based on
three transitions in Fig. 10.1. Extension to models with correlated frailties would be
an interesting future work. Furthermore, we have assumed aMarkov process for such
transition, but comparison with a semi-Markov assumption may also be interesting.
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10.4 Appendix

10.4.1 Marginal Likelihood Estimation Procedure

Themarginal likelihood, denoted bym, can be obtained by integrating out the frailties
from the h-likelihood:

m = m(β,λ0,α) =
∑

i

log

{∫
exp(hi ) dvi

}

, (10.12)

where hi = �1i + �2i is the contribution of the i th individual to h in (10.8). The
marginal likelihoodm often requires a numerical integration (e.g., for the log-normal
frailty model).

However, for the gamma frailty model with E(ui ) = 1 and var(ui ) = α, we have
an explicit marginal likelihood as follows. Since the second term of the h-likelihood
in (10.8) with gamma frailty is given by

�2i = �2i (α; vi ) = α−1(vi − ui ) + c(α),

with c(α) = − log�(α−1) − α−1 logα, from (10.8) and (10.12) we have

m =
∑

i

[δi1{logλ01(yi1) + xTi β1} + δi2(1 − δi1){logλ02(yi2) + xTi β2}

+ δi1δi2{logλ03(yi2) + xTi β3}]
−

∑

i

[(α−1 + δi+) log(1 + αμi+) − log{αδi+�(α−1 + δi+)/�(α−1)}]

=
∑

k1

d1(k1) logλ01k1 +
∑

i

δi1(x
T
i β1) +

∑

k2

d2(k2) logλ02k2

+
∑

i

δi2(1 − δi1)(x
T
i β2) +

∑

k3

d3(k3) logλ03k3 +
∑

i

δi1δi2(x
T
i β3)

−
∑

i

[(α−1 + δi+) log(1 + αμi+) − δi1δi2 log(1 + α)], (10.13)

where δi+ = δi1 + δi2 and μi+ = ∑3
j=1 μi j with

μi1 = �01(yi1) exp(x
T
i β1) =

∑

k1

λ01k1 I (y1(k1) ≤ yi1) exp(x
T
i β1),

μi2 = �02(yi2) exp(x
T
i β2) =

∑

k2

λ02k2 I (y2(k2) ≤ yi1) exp(x
T
i β2),

μi3 = �03(yi1, yi2) exp(x
T
i β3) =

∑

k3

λ03k3 I (yi1 < y3(k3) ≤ yi2) exp(x
T
i β3).
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In fact, the marginal likelihood (10.13) is the same as that of Xu et al. (2010).
With gamma frailty, the score equations for β are given by

∂m

∂β1
=

∑

i

{

δi1 −
(

α−1 + δi+
α−1 + μi+

)

μi1

}

xi , (10.14)

∂m

∂β2
=

∑

i

{

δi2(1 − δi1) −
(

α−1 + δi+
α−1 + μi+

)

μi2

}

xi , (10.15)

∂m

∂β3
=

∑

i

{

δi1δi2 −
(

α−1 + δi+
α−1 + μi+

)

μi3

}

xi . (10.16)

In particular, the solutions of ∂m/∂λ0 jk j = 0 ( j = 1, 2, 3) lead to the closed forms:

λ̃0 jk j (β,α) = d j (k j )∑
i∈R(k j )

exp(xTi β j )ũi
, (10.17)

where ũi = (α−1 + δi+)/(α−1 + μi+). We see that the equations for (β,λ0 j ) in
(10.14)–(10.16) and (10.17) are extensions of those from the univariate gamma frailty
models (Andersen et al. 1997). Finally, the score equation for the frailty parameter
α is given by

∂m

∂α
=

∑

i

{

δi1δi2(1 + α)−1 + α−2 log(1 + αμi+) − (α−1 + δi+)μi+(1 + αμi+)−1
}

.

Then the fixed parameters (β,α) can be estimated using the Newton–Raphson
method, with the second derivatives −∂2m/∂α2.

10.4.2 Comparison of H-Likelihood with Marginal
Likelihood

Weassume thatα is known.Recall that given (β, v), the score equations∂h/∂λ0 jk j =
0 ( j = 1, 2, 3) provide the nonparametric MHLEs, i.e.,

λ̂0 jk j (β, v) = d j (k j )∑
i∈R(k j )

exp(xTi β j )ui
.

From theMHLestimating equations ∂h p/β j = 0, the score equations forβ, under
gamma frailty, become
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∂h

∂β1

∣
∣
∣λ01=λ̂01

=
∑

i

{

δi1 − μi1ui

}

xi
∣
∣
∣λ01=λ̂01

, (10.18)

∂h

∂β2

∣
∣
∣λ02=λ̂02

=
∑

i

{

δi2(1 − δi1) − μi2ui

}

xi
∣
∣
∣λ02=λ̂02

, (10.19)

∂h

∂β3

∣
∣
∣λ03=λ̂03

=
∑

i

{

δi1δi2 − μi3ui

}

xi
∣
∣
∣λ03=λ̂03

. (10.20)

From
∂h

∂vi
= (δi+ − μi+ui ) + α−1 − α−1ui = 0,

we have

ûi = α−1 + δi+
α−1 + μi+

, (10.21)

which also becomes E(ui |yoi ) because the conditional distribution of ui given the
observed data yoi = (yi1, yi2, δi1, δi2) is again gamma. Here δi+ = δi1 + δi2 and
μi+ = μi1 + μi2 + μi3. It can be easily seen that the score Eqs. (10.18)–(10.20) with
(10.21) are equivalent to the Eqs. (10.14)–(10.16) with (10.17), which are given by

∂m

∂β1

∣
∣
∣λ01=λ̃01

=
∑

i

{

δi1 − μi1

(
α−1 + δi+
α−1 + μi+

)}

xi
∣
∣
∣λ01=λ̃01

,

∂m

∂β2

∣
∣
∣λ02=λ̃02

=
∑

i

{

δi2(1 − δi1) − μi2

(
α−1 + δi+
α−1 + μi+

)}

xi
∣
∣
∣λ02=λ̃02

,

∂m

∂β3

∣
∣
∣λ03=λ̃03

=
∑

i

{

δi1δi2 − μi3

(
α−1 + δi+
α−1 + μi+

)}

xi
∣
∣
∣λ03=λ̃03

.

Accordingly, given α the MHLEs for β are the same as the MLEs.

10.4.3 Fourth-order Laplace approximation

Following Tierney and Kadane (1986) and Lee et al. (2017b), we can show that with
the gamma frailty, the fourth-order Laplace approximation (denoted by mv(h)) to
the marginal likelihood m = ∫

exp(h)dv is given by

mv(h) = sv(h) − F∗(h), (10.22)

where sv(h) = pv(h) − F(h)/24 is the second-order Laplace approximation to m,
and F(h) = −2

∑
i (α

−1 + δi+)−1 and F∗(h) = (1/360)
∑

i (α
−1 + δi+)−3. Note

here that
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pv(h) =
[

h − 1

2
log det{H(h; v)/(2π)}

]∣
∣
∣
∣
v=v̂

,

where H(h; v) = −∂2h/∂v2 and v̂ solves ∂h/∂v = 0. Then it becomes

mv(h) = pv(h) + (1/12)
∑

i

(α−1 + δi+)−1 − (1/360)
∑

i

(α−1 + δi+)−3.

It can be seen that mv(h) in (10.22) is equivalent to approximating m by the fourth-
order Stirling approximation

log�(x)
.= (x − 1/2) log(x) + log(2π)/2 − x + 1/(12x) − 1/(360x3).

Accordingly, we suggest a modified h-likelihood based on h p, defined by

mv(h p) = sv(h p) − F∗(h), (10.23)

which becomes a higher order approximation to mp. Here sv(h p) = pv(h p) −
F(h)/24. Note that sv(h) and sv(h p) are the second-order Laplace approximations
tom in (4.7) and mp in (4.8), respectively and thatmv(h) and mv(h p) are the fourth-
order Laplace approximations to m and mp, respectively.

http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_4


Appendix
Formula for Fitting Fixed and Random
Effects

We outline a unified formula for estimating the fixed and random effects τ =
(βT , vT )T in the models used in each chapter. This consists of two procedures,
the IWLS and ILS equations, for the HGLMs and semiparametric frailty models,
respectively.

A.1 IWLS Procedures

(PTVP)τ̂ = PTVy0

(1) HGLM (Chap.3)

P =
(
X Z
0 Iq

)
, V =

(
W 0
0 Q

)
and y0 = (wT , RT Q−1)T

(Note) R = 0 under normal random effects.
(2) AFT model with normal random effects (Chap.8)

P =
(
X Z
0 Iq

)
, V =

(
W ∗ 0
0 Q

)
and y0 = (w∗T , 0T )T

A.2 ILS Procedures

(PTVP)τ̂ = PT y∗
0

© Springer Nature Singapore Pte Ltd. 2017
I.D. Ha et al., Statistical Modelling of Survival Data with Random Effects,
Statistics for Biology and Health, https://doi.org/10.1007/978-981-10-6557-6

261

http://dx.doi.org/10.1007/978-981-10-6557-6_3
http://dx.doi.org/10.1007/978-981-10-6557-6_8


262 Appendix: Formula for Fitting Fixed and Random Effects

(1) Cox-PH model (Chap. 2)

P = X, V = W ∗ and y∗
0 = w∗

(2) Simple frailty model (Chap.4)

P =
(
X Z
0 Iq

)
, V =

(
W ∗ 0
0 Q

)
and y∗

0 = (w∗T , RT Q−1)T .

(Note) R = 0 under normal random effects (or log-frailties).
(3) Multicomponent frailty model (Chap. 5)

P =
(
X Z
0 Iq

)
, V =

(
W ∗ 0
0 Q

)
and y∗

0 = (w∗T , 0T )T .

Here, Z = (Z1, · · · , Zk), Iq = BD(Iq1 , . . . , Iqk ), and Q = BD(Q1, . . . , Qk) with
Qr = −∂2�2/∂v(r)2 = �−1

r (r = 1, . . . , k).
(4) Competing-risks frailty model (Chap.6).
(4-1) Cause-specific hazards frailty model

P =
(
X Z
0 Ik∗

)
, V =

(
W∗ 0
0 Q

)
and y∗

0 = (w∗T , 0T )T .

Here, k∗ = K × q with the number of events K = 2, X = BD(X, X), Z =
BD(Z , Z), and W∗ = BD(W ∗

1 ,W ∗
2 ).

(4-2) Subhazards frailty model

P =
(
X Z
0 Iq∗

)
, V =

(
W ∗ 0
0 Q

)
and y∗

0 = (w∗T , 0T )T .

Here q∗ = q ×m with the number of frailty terms m, and W ∗ and w∗ depend on the
IPCW weights wi j .
(5) Joint survival model (Chap.9).
(5-1) Repeated measures and a univariate event time

P =
(
X Z
0 Iq

)
, V =

(
W 0
0 Q

)
and y∗

0 = (wT
1 , wT

2 , 0T )T .

Here, X = BD(X1, X2), Z = (ZT
1 , γZT

2 )T , and W = BD(W1,W2).
(5-2) Repeated measures and competing-risks event times

P =
(
X Z
0 Iq

)
, V =

(
W 0
0 Q

)
and y∗

0 = (wT
1 , wT

2 , wT
3 , 0T )T .

Here, X = BD(X1, X2, X2), Z = (ZT
1 , γ1ZT

2 , γ2ZT
2 )T and W = BD(W1,W2,W3).

http://dx.doi.org/10.1007/978-981-10-6557-6_2
http://dx.doi.org/10.1007/978-981-10-6557-6_4
http://dx.doi.org/10.1007/978-981-10-6557-6_5
http://dx.doi.org/10.1007/978-981-10-6557-6_6
http://dx.doi.org/10.1007/978-981-10-6557-6_9
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(6) Semi-competing-risks model (Chap. 10)

P =
(
X Z
0 Iq

)
, V =

(
W∗ 0
0 Q

)
and y∗

0 = (w∗T
1 , w∗T

2 , w∗T
3 , RT Q−1)T .

Here, X = BD(X, X, X), Z = (ZT , ZT , ZT )T and W∗ = BD(W ∗
1 ,W ∗

2 ,W ∗
3 ), and

w∗
j = W ∗

j η j + (δ j + μ j ) for j = 1, 2, 3.
(7) Variable selection in the frailty model with competing risks (Chap.7)

(PTVP + n�γ,w)τ̂ = PT y∗
0,

where �γ,w = diag{J ′
γ,w(|β j |)/|β j |}.

http://dx.doi.org/10.1007/978-981-10-6557-6_10
http://dx.doi.org/10.1007/978-981-10-6557-6_7
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