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The discovery of interleukin-8 close to 20 years ago initiated a new field of research
touching on many aspects of immunology and inflammation. Interleukin-8 is just
one member of a large class of structurally-related chemoattractant proteins, known
as chemokines. Chemokines are involved in the traffic control of leukocytes, which
bear the corresponding chemokine receptors on their surfaces. They are the largest
family of cytokines in the human genome. The discovery of chemokines and
chemokine receptors has been largely fueled by the human genome sequencing
efforts. To date, there are more then 45 known chemokines and approximately 17
receptors.

Chemokine research over the last two decades has focused on their role in leuko-
cyte migration. It is now clear that chemokines affect all aspects of immunology and
contribute to the pathology of a large number of inflammatory and immune-medi-
ated diseases, such as rheumatoid arthritis, pulmonary inflammatory diseases and
multiple sclerosis. Their fundamental contributions to chronic inflammatory dis-
eases make them a principal target for the development of novel, anti-inflammato-
ry therapeutics. More recently, it has become apparent that chemokines have an
essential role in diverse processes distinct from their function in immunity, includ-
ing tumor cell growth and metastasis, atherosclerosis and angiogenesis. This book
gives a state-of-the-art account of recent developments in this field in the form of
summaries written by highly regarded experts. 

Volume I is focused on basic principles and progress in chemokine biology. The
emphasis is on the role of chemokines in leukocytes function and on their role in
dendritic cell biology. In addition, chemokine receptor signaling and natural antag-
onism of the receptors is covered. Finally aspects of chemokine biology, as pertains
to endothelial cells and angiogenesis, are discussed. 

Volume II deals with issues related to the pathophysiology of chemokines,
chemokine-related drug development and potential therapeutic applications. It is
also published in the book series Progress in Inflammation Research and is entitled
Chemokine Biology – Basic Research and Clinical Application. Volume II: Patho-
physiology of Chemokines (2006, Birkhäuser, ISBN 3-7643-7195-1). These books
provide both introductory and novel information for a broad readership, including
clinicians and biomedical scientists.

September 2005 Bernhard Moser
Gordon L. Letts
Kuldeep Neote
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Introduction



The beginning

In the first week of December 1987, two papers (one from the old, the other from
the new world) presented the partial sequence of a novel protein, which was isolat-
ed from the culture supernatants of stimulated human monocytes and acted on neu-
trophil leukocytes. It was originally called NAF (neutrophil activating factor) [1], or
MDNCF (monocyte-derived neutrophil chemotactic factor) [2]. At about the same
time, two other laboratories reported the isolation of what turned out to be the
same protein [3, 4]. The name was changed to NAP-1 (neutrophil-activating peptide
number one) in the wise expectation to find analogues, but the new chemo-attrac-
tant became widely known by the fashionable and rather inappropriate name of
interleukin-8 (IL-8).

After establishing the sequence, we rushed to a full analysis of the biological
properties of IL-8 and found that its pattern of activity was qualitatively identical
to that of known chemo-attractants for leukocytes, like the complement fragment
C5a and N-formylmethionyl peptides [5]. The only difference was that IL-8 was
selective for neutrophils, whereas the other attractants were non-specific. The effects
of IL-8 were prevented by pretreatment of the cells with Bordetella pertussis toxin,
a clear indication that they were mediated by a G-protein coupled receptor [5]. The
initial observations, which were summarised in a JCI “Perspective” [6], attracted
much interest. We needed large quantities of pure IL-8, which was produced bio-
logically [7] and by chemical synthesis [8], and we concentrated on the study of IL-
8 structure–activity relationships and, together with many others laboratories, on
the search for IL-8-related chemokines. 

In a decade of mining, human chemokines surfaced as a mega-family of 50 or so
ligands and 20 receptors, all involved in leukocyte traffic [9]. The chemokines rapid-
ly became a hot issue in immunology, pathology and medicine. Their biological rel-
evance is perhaps best emphasised by the multiple interactions of viruses with the
chemokine system, which evolved the expression of chemokines, receptors, antago-

3

Introduction

Marco Baggiolini

Università della Svizzera Italiana, Via Lambertenghi 10A, 6904 Lugano, Switzerland

Chemokine Biology – Basic Research and Clinical Application, Volume I
edited by Bernhard Moser, Gordon L. Letts and Kuldeep Neote
© 2006 Birkhäuser Verlag Basel/Switzerland



nists and even chemokine-binding proteins to gain control of leukocyte traffic.
Viruses also learned to use chemokine receptors to infect cells [10].

The field moved in unexpected directions eventually showing that chemokines
are involved in lymphocyte homing and in the house-keeping traffic that maintains
the immune system effective. Roles for chemokines have also been suggested in
haematopoiesis, morphogenesis, metastasis formation and angiogenesis. It has been
shown that chemokine antagonists have anti-inflammatory and HIV-suppressing
activity, and the development of low molecular weight antagonists has given rise to
a major industrial effort toward therapy. The issue of targeting chemokines for ther-
apeutic purposes is amply treated in Volume II of the present work.

Chemokine basics

Chemokines consist of approximately 70–130 amino acids including four conserved
cysteines [11, 12]. As secretory proteins, they are synthesised with a leader sequence
of 20–25 amino acids, which is cleaved off before release. Two main subfamilies,
CXC and CC chemokines, are distinguished according to the position of the first
two cysteines, which are separated by one amino acid (CXC) or adjacent (CC)
(Fig. 1) [11, 12]. Two disulphide bonds, linking Cys1 to Cys3 and Cys2 to Cys4,
confer to the chemokines their characteristic three-dimensional structure with a
rigid core. The amino-terminal domain is short (3–10 amino acids) and structural-
ly disordered, while the carboxyl-terminal helix consists of 20–60 amino acids. All
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Figure 1 
Chemokine subfamilies. The boxes represent the amino acid sequences, C indicates the posi-
tion of cysteines that form intra-molecular disulphide bonds, and X stands for other amino
acids. For each subfamily one representative example is named. 



chemokines are folded in this manner (Fig. 2) [13]. Few variants of the chemokine
structure paradigm have been described. Lymphotactin has two, instead of four,
conserved cysteines [14, 15], while fractalkine and CXCL16 are membrane-bound
and have three and two amino acids, respectively, between the first two cysteines
[14, 16–18]. The biological significance of these variants is largely unknown, but the
adhesive properties of membrane-anchored chemokines may be relevant for leuko-
cyte extravasation [19, 20].

Two chemokine nomenclature systems are used: the traditional abbreviations,
such as IL-8 and MCP-1, which date back to the time of chemokine discovery, and
a systematic nomenclature based on the structural motifs CXC, CC, XC, CX3C or
CX2C, followed by ‘L’ (for ligand) and the number of the respective gene, e.g.,
CXCL8 for IL-8, CCL2 for MCP-1. The most common original names, together
with the systematic designations, are presented in Table 1, and a complete listing
with the most recent updates can be found at http://cytokine.medic.kumamoto-
u.ac.jp. Chemokine receptors are designated according to the type of chemokine(s)
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Figure 2 
Three-dimensional structure of IL-8. In solution, all chemokines fold in this manner. The fol-
lowing, functionally relevant domains are visible: The receptor recognition (docking) region
located within the exposed loop after the second cysteine, the receptor triggering region cor-
responding to the short amino-terminal sequence (NH2), the prominent core consisting of
three anti-parallel β-strands connected by loops, and a carboxyl-terminal α-helix (COOH).
The characteristic disulphide bonds keep chemokines in their biologically active conformation.
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they bind (CXC, CC, XC, CX3C), followed by ‘R’ (for receptor) and a number
reflecting the order of discovery.

Chemokines act via seven-trans-membrane domain receptors coupled to GTP-
binding proteins. Most receptors recognise more than one chemokine and several
chemokines bind to more than one receptor [21]. Structure–activity relationship
studies have shown that CXC and CC chemokines have two sites of interaction with
their receptors, one in the amino-terminal domain and the other within the exposed
loop following the second cysteine. Both sites are kept in close proximity by the
disulphide bonds. The loop region, which is conformationally rigid, appears to
interact first and to function as a receptor-docking domain. This interaction restricts
the mobility of the chemokine and presumably facilitates the binding of the amino-
terminal domain that triggers a response (Fig. 3). All chemokines signal via recep-
tors that are coupled to GTP-binding proteins of the Gi type and are sensitive to B.
pertussis toxin. The signalling cascade induced by chemokines is typical for this
class of seven-trans-membrane domain receptors [22].

Within the tissues, chemokines bind to glycosaminoglycans on the surface of
cells and in the extracellular matrix by ionic interaction with basic residues in the
core region and/or the carboxyl-terminal helix (Fig. 3) [23, 24]. Bound chemokines
retain their full chemotactic activity and remain confined to the site where they are
produced and released [25, 26]. This property explains the long-lasting, locally
focused response to chemokines.

Receptor expression and chemokine driven leukocyte traffic regulation 

In terms of function it is useful to differentiate between inflammatory and homeo-
static chemokines. Inflammatory chemokines assure the recruitment of defence cells
to sites of infection, tissue injury, inflammation and other disturbances of home-
ostasis. They are produced by a wide variety of tissue cells and by immigrating
leukocytes at sites of pathological changes, act on receptors with broad selectivity,
such as CXCR1, CXCR2, CXCR3, CCR1, CCR2, CCR3 and CCR5, and attract
granulocytes, monocytes and lymphocytes. Homeostatic chemokines control the
traffic of lymphocytes and their precursors during haematopoiesis in the bone mar-
row, the lymphoid and certain non-lymphoid tissues. They are expressed constitu-
tively at homing sites within healthy tissues and act on receptors of high selectivity,
which recognise a single, or at the most two, chemokines.

Initially chemokines were perceived as mediators of effector cell responses and
the study of receptor expression was largely confined to phagocytes. Blood phago-
cytes express different sets of chemokine receptors. CXCR1 and CXCR2, the recep-
tors or CXCL8/IL-8, are characteristic for neutrophils. Monocytes express CCR1,
CCR2 and CCR5, eosinophils CCR1 and CCR3, while basophils express CCR1,
CCR2 and CCR3. These patterns of receptors are characteristic for the different
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types of phagocytes and are sufficiently different to explain the selective recruitment
of a single type of phagocyte, for instance, eosinophils in allergic inflammation or
monocytes in chronic infectious lesions [27].

The results of studies on the responses of blood lymphocytes to chemokines were
highly controversial until it was realised, that in these cells the expression of
chemokine receptors changes considerably in dependence of differentiation and
functional specialisation. It was first observed that culturing blood T cells in the
presence of IL-2 progressively increases the expression of several receptors for
inflammatory chemokines, such as CCR1, CCR2, CCR5 and CXCR3, and the
chemotactic response to the respective ligands, e.g., CCL2/MCP-1, CCL3/MIP-1α,
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Figure 3 
Interaction of chemokines with seven-trans-membrane domain receptors. The scheme shows
the chemokine interacting with the receptor through its amino-terminal region and with
extracellular glycosaminoglycans through heparin-binding regions, which are mostly local-
ized in the carboxyl-terminal region (COOH). The chemokine-triggered receptor initiates the
signaling cascade by activating a G-protein.



CCL5/RANTES and CXCL10/IP10 [28]. The effect of IL-2 is reversible: Receptor
numbers and responsiveness rapidly decline when the cytokine is withdrawn and are
fully restored when it is supplied again. These observations indicated that
chemokine receptor expression could be used to define different stages of T cell dif-
ferentiation and the acquisition of particular functional properties. 

Following up on these ideas, it was subsequently shown that Th1 and Th2 cells,
as obtained by culturing in the presence of IL-2 and interferon-γ or IL-2 and IL-4,
respectively, have different patterns of chemokine receptors: CCR5 and CXCR3
being characteristic for Th1 and CCR3 and CCR4 for Th2 cells [29, 30]. It was then
shown that chemokine receptor detection by immunochemistry may be used for the
identification of subtypes of T cells in tissues. Biopsies of rheumatoid synovium,
which is rich in Th1 lymphocytes, stain strongly for CCR5, while a marked stain-
ing for CCR3 is detected at sites of allergic inflammation, where Th2 lymphocytes
are recruited together with eosinophils [31].

CCR1, CCR2, CCR5 and CXCR3, the receptors that are up-regulated in T cells
after treatment with IL-2, respond to inflammatory chemokines, which are induced
at sites of infection and inflammation to recruit defence cells. When the T cells are
stimulated with antibodies against CD3 and CD28, mimicking activation via the T
cell receptor, they down-regulate the first set of receptors and up-regulate CCR7. A
similar mechanism guides the traffic of dendritic cells. Inflammatory chemokines
attract immature dendritic cells, expressing CCR1, CCR2 and CCR5, into inflamed
tissues. The cells then mature, acquiring the capacity to capture and process anti-
gens, and to present antigenic epitopes, and are thus ready to move on. CCR1,
CCR2 and CCR5 are down-regulated and replaced by CCR7 and the mature den-
dritic cells migrate into the draining lymph nodes in response to CCL19/ELC and
CCL21/SLC via CCR7 [32].

Effector and central memory T cells (TEM and TCM, respectively) can be dis-
tinguished according to their chemokine receptor outfit, which reflects their differ-
ent role in a secondary immune response [33]. TEM cells have effector function.
They produce IL-4 and interferon-γ, and may store perforin, and, owing to the
absence of CCR7, can be recruited rapidly into inflamed tissues for immediate
defence in response to inflammatory chemokines. By contrast, the CCR7-positive
central memory T cells (TCM) have no immediate effector function. They represent
a clonally expanded memory cell pool, are attracted to lymph nodes after a sec-
ondary antigen challenge, and can stimulate dendritic cells to produce IL-12, pro-
vide help to antigen-specific B cells, and generate a new wave of effector T cells [33].

Control of lymphocyte traffic in disease-unrelated processes

Homeostatic chemokines control the relocation and recirculation of lymphocytes in
the context of maturation, differentiation and activation, and ensure their correct
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positioning within discrete areas of primary and secondary lymphoid organs [34,
35].

The recognition that chemokines direct the homeostatic traffic of lymphocytes
goes back to the work by Lipp and colleagues [36] who found that the deletion of
the gene of the putative chemokine receptor BLR1 (which was renamed CXCR5
after identification of its ligand chemokine, CXCL13/BCA-1 [37, 38]) impaired the
formation of Peyer’s patches and inguinal lymph modes because of the inability of
CXCR5-deleted B cells to home into follicular areas. Subsequent work elucidated
the role of another receptor for homeostatic chemokines, CCR7, which binds
CCL19/ELC and CCL21/SLC [39]. Follicle formation in lymphoid tissues depends
on immigration and settling of B and T cells. Both types of lymphocytes bear CCR7,
they are recruited in response to CCL21/SLC expressed in high-endothelial venules
and migrate to the parafollicular area in response to CCL19/ELC and CCL21/SLC.
The B cells, which also bear CXCR5, are attracted into the follicles, where
CXCL13/BCA-1 is expressed. 

It was subsequently found that T cells acquire CXCR5 on activation, in partic-
ular on contact with antigen-presenting dendritic cells. Such cells can thus enter the
follicles in response to CXCL13/BCA-1 and fulfil a helper function to B cells by
enhancing antibody production. Some re-enter circulation as a small pool of mem-
ory cells [40, 41]. CXCR5-bearing T cells represent a novel type of effectors. They
differ from Th1 and Th2 cells as they markedly enhance antibody production when
co-cultured with B cells and do not express cytokines that are characteristic of Th1
or Th2 cells [42]. Owing to their follicular homing properties and function, these
cells are called follicular B helper T cells (TFH). The possible involvement of TFH
cells in immune pathology, including autoimmune diseases with B cell involvement
is presently under study.

Peripheral immune surveillance T cells

The skin, the gut and the lung are the main sites of pathogen entry into the body
owing to their huge contact area to the outside. Immune defence in these tissues is
assured by dedicated lymphoid structures (like the mucosa-associated lymphoid tis-
sue of the lung and the gastrointestinal tract) and by a large population of resident
T cells, which are distributed throughout the tissue. The mechanism of the tissue-
specific entry of immune surveillance T cells is studied by searching for chemokines
that are constitutively expressed by the endothelia of blood micro-vessels, the main
site of leukocyte extravasation, and by determining the pattern of chemokine recep-
tor expression of the resident T cells. In the skin, most T cells cluster around post-
capillary venules of the superficial dermal plexus. In situ studies have shown that
these cells express CCR8, and that CCL1/I-309, its only ligand, is produced consti-
tutively in blood micro-vessels (as well as in Langerhans cells and melanocytes of
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healthy epidermis) but not in keratinocytes or fibroblasts [43]. No other chemokine
and receptor combination appears to satisfy the requirements for constitutive
expression, local distribution and selectivity. It is thus assumed that the homeostat-
ic traffic of skin-homing T cells is based, at least in part, on the recruitment of cir-
culating CCR8 expressing T cells in response to cutaneous CCL1/I-309 [44]. One
would expect that similar mechanisms regulate the selective homing of T cells into
the gut and the lung. It has been shown that effector T cells home into the small
intestine in response to CCL25/TECK acting via its receptor, CCR9 [45, 46], but the
role of CCR9 and its ligand chemokine in the homeostatic traffic of gut-selective T
cells is still a matter of debate. The studies of the skin indicate that peripheral
immune surveillance T cells (TPS), in contrast to TCM and TEM cells, fulfil a “first
line of defence” function, like other sentinel cells, and it is thus reasonable to assume
that TPS cells are present in other frontier tissues [44].

Volume I focuses on the functions of chemokines in immunobiology, as the title
indicates, with particular attention to the control of T cell traffic in inflammation
and homeostasis. In view of major recent progress, the properties of newly-defined
T cell subsets with bona fide effector and/or memory functions, namely TCM, TEM
and TPS cells will be discussed in relation to Th1 and Th2 cells. A special chapter is
dedicated to NK cells and γδ T cells, which share certain features with effector T
cells. Adaptive immunity, including immune homeostasis and antimicrobial defence,
fully depends on antigen-presentation and co-stimulation by dendritic cells and,
therefore, an update on the control of dendritic cell traffic by chemokines is pre-
sented. Chemokine-induced cellular responses are mediated by selective receptors.
The complex molecular networks involving soluble and membrane-bound media-
tors that are activated on chemokine receptor triggering are considered in a separate
chapter. Since considerable progress has been made recently in the study of the
homeostatic functions of chemokines, the local, constitutive production of
chemokines in the tissues, in particular by the endothelial cells of micro-vessels, and
its role in leukocyte transendothelial migration has been given special consideration.
A chapter considers the modification of chemokines and chemokine activities by
proteases, as well as the phenomenon of inhibition or potentiation of chemokine-
induced responses by other chemokines or chemokine derivatives. These interac-
tions will eventually deepen our understanding of leukocyte recruiting in inflamma-
tion, when several chemokines are produced concomitantly. The last part of the vol-
ume is dedicated to chemokine-mediated responses that involve tissue cells and
microbes. New insides are presented on the cross-talk between G-protein-coupled
receptors on neurons and leukocytes, the influence of virus-encoded chemokines on
the immune system of the host, the function of chemokine receptors in tissue cells,
and the involvement of chemokines and related peptides in antimicrobial defence.
The state-of-the-art view on chemokine immunobiology should provide the context
for discussing pathology and therapy-related aspects of chemokine research, which
are the main focus of Volume II. 
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Introduction

A large number of chemokines are involved in the control of T cell migration, which
may reflect the multitude of distinct T cell subsets participating in immune process-
es at various locations throughout the body. In our discussion it may be helpful to
divide the chemokines into two functional subfamilies, termed homeostatic and
inflammatory chemokines [1, 2]. Homeostatic chemokines navigate leukocytes dur-
ing haematopoiesis in the bone marrow and thymus, during initiation of adaptive
immune responses in the spleen and lymph nodes (LNs), and during immune sur-
veillance of healthy peripheral tissues. Inflammatory chemokines, by contrast, con-
trol the recruitment of effector leukocytes in infection, inflammation, tissue injury
and tumours. This classification is not strict since “dual-function” chemokines may
also exist [1]. 

Chemokines present on vascular endothelia control leukocyte extravasation, as
discussed in detail in Chapter 6, Vol. I; whereas chemokines produced by tissue cells
control the homing of responding leukocytes to distinct tissue locations. We wish to
emphasise that the migration properties and function represent two sides of the
same coin. Therefore, detailed examination of the type and regulation of chemokine
receptors present on a particular subset of T cells provides invaluable information
about their physiological role. Table 1 represents a list in progress of T cell subsets
defined by their migratory potential. This view extends the classical approach in
immunological research dealing with “endpoint” analyses, i.e., analyses of in vitro
cultured T cells or of T cells recovered from laboratory animals after in vivo manip-
ulations. The following discussion summarises our current knowledge about
chemokines involved in traffic control related to the initiation of αβ T cell respons-
es and effector/memory functions. Those chemokines acting on γδ T cells and T cell
precursors are reviewed in great detail in the chapter by Jin and Morita. 
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Initiation of adaptive immune responses

As part of their normal route of recirculation, naïve T cells regularly leave the blood
and enter LNs by passing through high endothelial venules (HEVs) [3, 4] (Fig. 1).
Passage of T cells through the HEV barrier underlies the same paradigm that applies
to any other blood endothelia: leukocyte rolling, chemokine-mediated activation
and subsequent firm adhesion, followed by leukocyte transendothelial migration [4,
5]. Chemokines play a decisive role in controlling the type of cells allowed to enter
this site. Here, the two homeostatic chemokines, CCL19 and CCL21, have been
shown to be essential in the transmigration of HEVs. The shared receptor for these
two chemokines, CCR7, is uniformly expressed by all naïve T cells, as well as a sub-
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Table 1 - T cell subsets defined by migration properties

T cell subset ChemRsa Residenceb Phenotypec

Naïve T CCR7 Blood CD45RA+ (CD45RO–),
(CXCR4) LNs, PPs, Spleen non-differentiated, resting

TFH (follicular CXCR5 LNs, PPs, Spleen CD45RO+ CD4+, non-differentiated
B helper) (CXCR4, CCR7) (Blood) (but ICOS+ and IL-10 secretion), 

activated, transient
Effector T Inflammatory Inflammationd CD45RO+, differentiated, (cytokine

ChemRs secretion, target cell lysis), activated, 
short-lived

TCM (central CCR7 Blood CD45RO+, non/partial-
memory) (CXCR4) LNs, PPs, Spleen differentiated, resting, long-lived
TEM (effector Inflammatory Blood CD45RO+, differentiated, (cytokine
memory) ChemRs Inflammation secretion, target cell lysis), resting, 

long-lived
TPS (peripheral Homeostatic Healthy CD45RO+ (partial CD45RA+),
immune ChemRs peripheral differentiated, partial-activated, 
surveillance) tissues long-lived

aChemRs, chemokine receptors; chemokine receptors in brackets are of secondary impor-
tance.
bResidence refers to the primary location within the body of the respective T cell subset.
cPhenotype refers to memory status, longevity, and cellular responses defined by cell surface
markers and TCR-triggered effector functions.
dInflammation stands for all sites where inflammatory chemokines are being produced,
including acute and chronic infections, autoimmune diseases and tumours.
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Figure 1 
Chemokines in the control of primary T cell responses
The expression of CCR7 by naïve T cells and TCM allows entry into the LNs via HEVs, and
subsequent co-localisation with CCR7-expressing DCs in the T zone. T cell priming is medi-
ated by antigen-loaded DCs and results in the generation of effector T cells and CXCR5-
expressing TFH cells. Expression of CXCR5 by TFH cells makes them responsive to the
chemokine CXCL13 produced by cells within B cell follicles, resulting in re-localisation of
TFH cells to the B cell compartment. Subsequent interactions between B cells and TFH cells,
possibly involving the interaction of ICOS on TFH cells with the ICOS-ligand on B cells,
induce T cell differentiation (including increased expression of CD70 and OX40 and
enhanced IL-10 secretion). In return, TFH cells provide help to B cells for plasma cell differ-
entiation and antibody production. T Effector, effector T cell; TFH, follicular B helper T cell;
HEV, high endothelial venule; DC, dendritic cell.



set of resting memory T cells known as central memory T (TCM) cells (Tab. 1) [6].
Both chemokines are displayed within the lumen of HEVs; CCL21 is constitutively
expressed by HEVs [7, 8], while CCL19 is produced by other cells within the LN
but becomes displayed on the HEV lumen following transcytosis across the endothe-
lial barrier [9]. The importance of CCR7 and its ligands in T cell entrance to LNs
has been clearly demonstrated in studies of mice genetically deficient in CCR7 or
mice harbouring a spontaneous mutation (plt) that results in defective production
of CCL19 and CCL21 [10]. These mutant mouse strains show greatly reduced num-
bers of naïve T cells in LNs, which is due to their inability to firmly adhere to, and
transmigrate across, HEVs. CCL19 also orchestrates the co-localisation of freshly
recruited T cells with dendritic cells (DCs) in the T zone, and this process is of fun-
damental importance for antigen-presentation to T cells and induction of primary
immune responses (Fig. 1) [11, 12].

Circulating naïve T cells express, in addition to CCR7, only few other
chemokine receptors, which explains their broad exclusion from healthy peripher-
al tissues and acute inflammatory diseases [1]. All naïve T cells uniformly express
CXCR4 whereas only minor fractions are positive for CCR8 and CCR9. Recent
findings support a role for CCR8 and its single ligand CCL1 in the control of
peripheral immune surveillance T (TPS) cells within normal human skin (Tab. 1)
[13]. These cutaneous CCR8+ TPS cells are antigen-experienced, partially activated
Th1/Tc1 cells that may contribute to the local inflammatory cascade at the site of
pathogen entry (see below). A second memory T cell subset includes the very few
CCR8+ T cells present in peripheral blood, which may be related to regulatory T
cells generated during thymocyte development [13, 14]. Also, thymocytes fre-
quently express this chemokine receptor. As for CCR8, a role for CCR9 in the entry
of T cells into LNs has not been demonstrated. The single ligand CCL25 for CCR9
is selectively expressed in small intestine, raising the possibility that this chemokine
is involved in the traffic of naïve CCR9+ T cells to small intestinal lymphoid struc-
tures [15]. However, it is also possible that expression of CCR9 by naïve T cells is
simply a remnant of their development in the thymus, as CCR9 is broadly
expressed by thymocytes and the CCR9+ subset of naïve T cells declines with age
or surgical thymectomy [15, 16]. By contrast, CXCR4 does appear to contribute to
T cell entry into LNs. Although greatly reduced in number, some T cells still enter
the LNs in CCL19/CCL21-deficient (plt) mice, and this residual migration is com-
pletely ablated when CXCR4-deficient T cells were adoptively transferred [17].
Furthermore, CXCL12 (the ligand for CXCR4) has been shown to promote
transendothelial migration of T cells across the HEVs [18]. Hence, CCR7 and
CXCR4 may co-operate in the task of naïve T cell recruitment into LNs. Collec-
tively, naïve T cells are not only “naïve” in terms of antigen experience but also in
terms of migration behaviour, which controls their continuous recirculation
between blood and secondary lymphoid tissues. This is in clear contrast to effec-
tor/memory T cells characterised by a multiple receptors for inflammatory
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chemokines, by single or repeated exposure to antigen and by TCR-triggered effec-
tor functions (see below).

Effector T cell generation is a highly sophisticated process that depends on mul-
tiple and partially overlapping steps, including T cell priming, proliferation and
development of effector functions [19]. Of particular importance to the present dis-
cussion, priming of CD4+ T cells results in the novel expression of CXCR5 [20, 21],
a chemokine receptor otherwise broadly expressed on resting B cells [22, 23]
(Fig. 1). CXCL13, the ligand for CXCR5, is markedly produced within the B cell-
rich follicular compartment of secondary lymphoid tissues, but is absent from the
adjacent T zone [23, 24]. LN and Peyer’s patches (PP) neogenesis largely depend on
this chemokine system [25], and the architecture of the follicular compartments
within spleen and LNs are greatly disturbed in CXCR5-deficient mice [26], sup-
porting the notion that CXCL13 and its receptor are essential contributors to fol-
licular activities.

In clear contrast to the T zone chemokines CCL19 and CL21, the single CXCR5
ligand CXCL13 is selectively produced within the B cell compartment, suggesting
that the acquisition of CXCR5 by recently primed CD4+ T cells would drive their
relocation to the B cell follicles (Fig. 1). Indeed, several studies have documented a
temporary relocation of T cells to the outer edge of the follicles in response to immu-
nisation [27, 28]. In mice, follicular migration of primed T cells occurs rapidly after
immune response initiation, well before the generation of effector T cells [21, 28],
and this observation fully agrees with the kinetics of CXCR5 expression on human
T cells. Peak levels of CXCR5 are acquired within the first 2–3 days of in vitro stim-
ulation of naïve human T cells, well before induction of T cell polarisation, as
assessed by the absence of effector functions (target cell lysis, cytokine production)
[20, 24, 29, 30]. CXCR5 is rapidly lost, however, during in vitro T cell prolifera-
tion. Also, it is not possible to generate T cell lines stably expressing CXCR5, sug-
gesting that maintenance of this chemokine receptor relies on a particular microen-
vironment (see below).

CXCR5+ T cells can provide potent help for antibody production during co-cul-
ture with B cells, and this characteristic together with the follicular homing behav-
iour prompted their designation as follicular B helper T (TFH) cells [24, 29]. Of
interest, the majority of CD4+ T cells appear to rapidly express CXCR5 upon stim-
ulation, whereas CXCR5 is very infrequent on CD8+ T cells [24], supporting the
notion that TFH cells contribute to B cell responses (Fig. 1). The mechanism by
which TFH cells provide help to B cells is a subject of current investigations. Except
for IL-2, TFH cells from tonsils are poor cytokine producers [24, 29], suggesting that
newly generated TFH cells require further differentiation in order to become effec-
tive helpers for plasma cell differentiation and antibody production. 

The ability to provide effective B cell help is one important aspect of TFH cell dif-
ferentiation that may be controlled by B cells (Fig. 1). This concept is consistent with
in vivo studies suggesting that B cells ‘solicit their own help’ from the T cell com-
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partment. Moreover, recent studies in our laboratory directly demonstrate that B
cells can indeed influence the phenotype in TFH cells during co-culture [31]. Of inter-
est, tonsillar as well as in vitro generated TFH cells strongly express ICOS, a recent-
ly identified co-stimulatory molecule with critical functions in T helper and B cell
responses [31, 32]. Newly generated TFH cells express a phenotype consistent with
induction of B cell proliferation. However, during co-culture with B cells these cells
assume a B helper phenotype characterised by loss of CD154, induction of CD70
and an increase in IL-10 production. Also, B cells help to preserve a LN migration
phenotype in proliferating TFH cells, thus, directly preventing their premature exit
out of LNs. It will be interesting to see if follicular TFH cells shuttle back and forth
between follicular compartment and T zone and if this steady relocation contributes
to T helper cell differentiation.

Effector versus memory T cell traffic

Immunological memory resides within the subset of previously activated T cells.
These T cells for the most part express the exon A-deficient (RO) isoform of CD45,
as well as various other markers. One important distinction between naïve T cells
and the various subsets of previously activated T cells is the expression of homing
molecules such as selectins, integrins and chemokine receptors.

Th1 and Th2 T cells

Naïve T cells differentiate to effector cells in lymphoid organs, such as spleen, LNs
and Peyer’s patches (PPs). However, the principal sites where T helper (Th) cells and
cytotoxic T cells exert their function are peripheral tissues, where pathogens are fre-
quently encountered. Thus, effector cells up-regulate receptors for inflammation-
induced endothelial adhesion molecules and inflammatory chemokines [33, 34].
Different pathogens require different effector responses, produced upon antigen-
recognition by distinct T cell subsets. For instance, the T helper subsets Th1 and
Th2 cells secrete non-overlapping sets of cytokines (INF-γ versus IL-4, IL-5 and IL-
13), neutralise distinct types of pathogens (intracellular versus extracellular),
express characteristic chemoattractant receptors and obey different traffic signals
[35, 36]. Distinctive chemokine receptors on Th1 cells include CCR5 and CXCR3
[37, 38], which bind inflammatory chemokines. In rheumatoid arthritis (RA) and
multiple sclerosis (MS), both often thought of as Th1-related, virtually all infiltrat-
ing T cells express CCR5 and CXCR3 [39, 40]. People with a homozygous muta-
tion that disrupts the CCR5 gene may also be less susceptible to some inflammato-
ry disorders, including RA [41, 42]. Adhesion molecules also play a role; Th1 cells
express abundant selectin ligands. P- and E-selectin, which are up-regulated on
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inflamed endothelium, and their ligand, P-selectin glycoprotein ligand 1 (PSGL-1),
are critical for Th1 cell migration to inflamed skin [43, 44] and peritoneum [45].
Expression of fucosyltransferase-VII is necessary for cells to synthesise selectin lig-
ands [46]. This enzyme is induced by IL-12, which drives Th1 differentiation,
whereas T cell exposure to the Th2 cytokine IL-4 down-modulates selectin ligand
expression [47, 48].

Th2 cells also express distinctive chemoattractant receptors, including CRTh2
and CCR3 [49–51]. Eotaxin, a ligand of CCR3, has been implicated in eosinophil
recruitment into hyper-reactive airways and is prominent in mucosal tissues under-
going allergic and anti-parasitic responses [52]. Eotaxin production is stimulated by
Th2 cytokines, such as IL-4 or IL-13, and is absent from Th1-mediated lesions [53].
CCR3 is also expressed on basophils and mast cells, which presumably allows these
allergy-related leukocytes to co-localise with Th2 cells and support local allergic
inflammation. Other chemoattractant receptors that were originally identified as
Th2-associated included CCR4, CCR8 and CXCR4; however, some of these associ-
ations are not holding up, or do not appear to be relevant in vivo. For instance,
CCR8-deficient mice were originally shown to have defective Th2-type responses
[54], but subsequent reports have failed to support these findings [55, 56]. The true
physiological function of CCR8 is more likely related to skin-homing [13], since the
majority of human T cells in healthy (non-inflamed) skin express CCR8, and inter-
estingly these T cells display a Th1 rather than a Th2 cytokine profile [13]. CCL1,
the only ligand of human CCR8, is constitutively expressed in skin, notably in der-
mal microvessels and epidermal antigen presenting cells (APCs) [13]; hence, this
chemokine system may function in homeostatic T cell traffic through normal skin.
Similarly, CCL17, a ligand of CCR4, is expressed in non-inflamed dermal microves-
sels, and may also direct homeostatic T cell traffic through skin [57]. CCR4 has
been identified as a skin-homing receptor for memory T cells [57a], and Th2 mem-
ory cells derived from skin lesions of atopic dermatitis patients selectively migrated
to human skin grafts transplanted onto severe combined immune deficiency (SCID)
mice in response to ligands for CCR4 but not to ligands for CCR3, CCR8 or
CXCR3 [58]. Future studies will tell if these chemokine systems fulfil a major role
in maintaining local memory T cell traffic under homeostatic (non-inflamed) condi-
tions or whether they recruit effector/memory T cells as a consequence of local
inflammation.

TCM cells versus TEM cells

The most obvious and abundant cell surface marker for circulating memory T cells
is CD45RO, which is rapidly induced upon T cell receptor triggering in naïve
CD45RA+ (but CD45RO–) T cells and which is maintained throughout the lifespan
of antigen-experienced T cells. Consequently, “memory” T cells are highly hetero-
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geneous in their expression of homing related molecules, such as adhesion molecules
and receptors for inflammatory or homeostatic chemokines [1, 2]. In a highly cited
study, Sallusto and Lanzavecchia [6] identified two major subsets of memory cells
in human peripheral blood based on the expression of CCR7. This chemokine
receptor divides memory T cells into CCR7+ central memory (TCM) cells and CCR7–
effector memory (TEM) cells. Most blood TCM cells also express L-selectin, which,
together with CCR7, defines a LN-homing phenotype. Conversely, TEM cells express
homing receptors for peripheral tissues and display characteristic features of effec-
tor T cells upon TCR activation. TCM cells do not exert immediate effector function
when stimulated with antigen, i.e., are not thought to become engaged in antimi-
crobial responses within infected tissues, but instead may participate in recall (or
memory) responses that are initiated in secondary lymphoid tissues. It is likely that
immunological memory is contained in both of these subsets; however the relative
importance of each subset is not yet known. Consequently, the prevailing view is
that TCM cells and TEM cells differ in the location where recall antigens are encoun-
tered, which in broad terms include spleen, LNs and PPs for TCM cells and periph-
eral organs, in particular the skin and mucosal tissues of the airways and digestive
tract, for TEM cells. We have performed Affymetrix Genechip analyses on TCM cells
and TEM cells isolated from human peripheral blood, and found surprisingly few
genes that were differentially expressed between the two memory subsets, other
than CCR7 and L-selectin, the markers used to sort these subsets (Chtanova and
Mackay, unpublished). 

Regulatory T cells

Regulatory T (Treg) cells are now widely accepted as an effector T cell type that serves
to subdue immune responses, thereby providing a level of tolerance in peripheral
immunity. Treg cells express CD4, CD25 and Foxp3, and through expression of fac-
tors such as IL-10 and/or TGF-β exert a negative influence on T cell activation [59].
The actual sites where Treg cells fulfil their inhibitory function, and the diversity in
Treg cells with regard to site of generation and traffic pattern, are interesting topics
of current investigations. For instance, a pulmonary Treg subset has been described
that may function specifically in the mucosal tissue of the airways [60]. Moreover,
heterogeneous expression of various homing molecules on Treg cells is consistent with
their ability to suppress immune responses at various locations. In mice, L-selectin
and CCR7 are expressed on a subset of LN-homing Treg cells that inhibit diabetes
induced by islet-infiltrating T cells [60a]. Migration to secondary lymphoid organs
may be necessary for the antigen-induced proliferation of Treg cells that precedes
their involvement in immune suppression within peripheral tissues [61]. The presence
of CXCR5+ Treg cells capable of suppressing germinal centre T helper cell-driven
antibody responses suggests that the diverse subsets of effector T cells with pro-
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inflammatory function may also have subsets of Treg cells with matching migration
preferences [62]. Other populations of Treg cells include those infiltrating the synovial
tissue in RA or the airways in allergic responses [63]. The integrin αEβ7 discrimi-
nates between LN- and inflamed tissue-homing Treg cells, and the latter subset was
found to contain the most potent suppressors of inflammatory processes in disease
models, such as antigen-induced arthritis [64]. Early studies showed that circulating
and thymic human Treg cells expressed CCR4 and/or CCR8 [65, 66] but, clearly,
chemokine receptors do not discriminate between Treg cells and pro-inflammatory T
cells. The definitions of the migration patterns associated with distinct Treg cells will
largely depend on the discovery of reliable markers for these cells.

Migration properties in effector and memory T cells

The exact nature of immunological memory is still poorly understood. Nevertheless,
cell surface markers (particularly homing-related molecules) have been extremely
useful to mark and study different populations of T cells, in particular subsets relat-
ing to effector and memory T cells. It is our view that naïve T cells are a homoge-
neous population of T cells, that express CCR7 and L-selectin, recirculate random-
ly through secondary lymphoid tissues, and do not subdivide further into distinct
migratory or functional subsets [1, 3]. However, antigen stimulation, proliferation
(clonal expansion) and subsequent differentiation into effector or memory cells
leads to subset-restricted expression of chemoattractant receptors or adhesion mol-
ecules. The cellular address code, composed of a combination of migration and
adhesion molecules, fully mirrors the potential involvement of effector/memory T
cells in distinct immune processes, including diverse antimicrobial responses and
immune surveillance. In terms of functional criteria, the order in relatedness of the
main subsets would be naïve T cells, TCM cells, TEM cells and effector T cells,
although alternative models in the sequence of T cell differentiation have also been
proposed. Still, naïve T cells share many functional and homing features with TCM
cells whereas effector T cells share many characteristics with TEM cells.

Tissue-selectivity of memory T cells

Tissue-specific migration by T cells was first observed in the 1970s in sheep and then
in mice. A hallmark finding was the discovery that antigen-experienced (memory) T
cells but not naïve T cells displayed homing preferences for distinct peripheral tis-
sues [67]. The rationale is that T cells recognising cutaneous-associated pathogens
should migrate preferentially to the skin where they are likely to re-encounter their
antigen, whereas T cells with selectivity for gastrointestinal pathogens would con-
tribute to mucosal rather than cutaneous defence. The best understood examples of
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tissue-selective homing are related to T cell traffic in the skin and gut, but migration
selectivity for other organs, such as the lung or joints, may also exist.

As discussed above, the adhesion molecules or chemokine receptors responsible
for tissue migration are either absent from naïve T cells or are expressed at low lev-
els. Moreover, distinct subsets of memory T cells are definable by adhesion mole-
cules or chemokine receptors. For instance, newly generated skin-homing T cells
express cutaneous lymphocyte-associated antigen (CLA) in combination with CCR4
and/or CCR10. By contrast, gut-homing memory T cells express high levels of the
integrin α4β7 in combination with CCR9 but not CCR4 and CCR10. The imprint-
ing of gut-homing or skin-homing programs on T cells is mediated by DCs in gut-
associated or skin-associated LNs, such that activation by intestinal DCs induces a
“gut-tropism” [68], whereas DCs from peripheral LNs induce homing receptors in
CD8 T cells that are characteristic for a “skin-tropism” [69]. Memory T cells
remain responsive to alternative tissue imprinting signals, thus allowing skin- or gut-
homing T cells to change their migration preferences when stimulated by DCs from
alternative tissues [69]. The molecular mechanisms underlying the instalment of
mutually exclusive migration profiles are not yet fully understood, although retinoic
acid appears to be involved in the imprinting of gut-tropism.

Conclusions

A feature of adaptive immune responses in species such as man and mouse is the
extraordinary level of sophistication, with respect to numbers of T cell subsets,
their diverse functions, and their migration pathways. This is possibly why there
are so many chemokines and chemokine receptors, which serve to provide the fine
specificity of T cell placement in the body. A number of interesting questions have
emerged. Does the migration profile of a distinct T cell indeed predetermine its
function in immune processes? Is this address code, composed of a set of
chemokine receptors and adhesion molecules, the basis for or the consequence of
T cell differentiation? Does the remarkable combinatorial diversity in chemokine
receptors reflect functional specialisation in T cells? If this is true, then the actual
number of distinct T cell subsets is much larger than currently appreciated. An
obvious question that follows relates to novel or less well understood grounds of T
cell subset specialisation. For instance, chemokines may directly contribute to effec-
tor-to-memory T cell transition by removal of effector T cells from the site of effec-
tor T cell apoptosis. Alternatively, chemokines could effect the formation of central
and peripheral tolerance by controlling localisation of T cells within distinct nich-
es in the thymus or LNs that support Treg cell differentiation. The field of T cell
relocation and positioning still has numerous controversies, and many of these
relate to conflicting data obtained in sheep, mice and man. Progress in this area will
largely depend on the identification of orthologous cell surface markers, including
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receptors for chemokines. Finally, given the importance of chemokines and adhe-
sion molecules in the control of inflammatory processes, one may propose that the
next generation of anti-inflammatory drugs will target effector T cell migration.
Here, it will be important to take into account species-specific differences in the
immune system that prevent unfiltered extrapolation of in vivo findings obtained
in mice to man.
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Introduction

Epithelial tissues represent the interface between the environment and the host.
They are subject to continuous insults that include mechanical injury, ultraviolet
(UV) irradiation, chemicals and microbes. The integrity of the host critically
depends on the adequate protection against these hazardous events. During evolu-
tion epithelial tissues developed specialised immunological structures such as
mucosa-associated lymphoid tissues (MALT) or skin-associated lymphoid tissues
(SALT) which together with patrolling leukocyte subsets work as sentinels at the
inner and outer surface of the human body. Among patrolling leukocytes, effector
memory T cells take a centre stage and show tissue-specific migration patterns. To
date, at least two distinct populations of effector memory T cells have been identi-
fied. Memory T cells expressing α4β7 integrins preferentially migrate into the gut
while the cutaneous lymphocyte associated antigen (CLA) identifies a subset of skin-
homing memory T cells. Here, we provide an overview of current concepts how
chemokines regulate lymphocyte trafficking into distinct epithelial tissues.

The role of chemokines in lymphocyte localisation to the gut mucosa

The intestinal surface is comprised of a single layered epithelium that separates the
contents of the lumen from the intestinal lamina propria (LP) (Fig. 1). The induc-
tive sites of the small intestine are Peyers Patches (PP) or isolated lymphoid follicles
(ILF) which lie directly underneath this epithelium, and mesenteric lymph nodes
(MLN) whose afferent lymphatics drain the intestinal LP (Fig. 1). Antigen enters PP
via specialised microfold (M) cells within the Follicular Associated Epithelium
(FAE) where it is taken up and processed by dendritic cells in the sub-epithelial
dome (SED) for presentation to T cells. In contrast, luminal antigen accessing the
intestinal LP is transported to MLN via draining lymphatics either directly or with-
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in mobilised DCs. Presentation of luminal antigen in the context of co-stimulation,
to naïve T cells within PP or MLN, induces their activation and proliferation and
a proportion of these cells re-enter the circulation via the thoracic duct and localise
to the two effector sites of the intestinal mucosa, the intestinal epithelium (as
intraepithelial lymphocytes, IEL) and lamina propria (as lamina propria lympho-
cytes, LPL). In the mouse, T lymphocyte entry to the intestinal mucosa is largely
dependent on the integrin α4β7 through its interactions with MadCAM-1 on
intestinal microvascular endothelial cells [1–3]. Furthermore, activated/memory
α4β7

+ T cells in human peripheral blood preferentially contain memory for intesti-
nal antigens [4].

The intestinal epithelium and lamina propria contains a large number of previ-
ously activated/memory T cells under steady state conditions, presumably as a result
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Figure 1 
Schematic overview of the inductive and effector sites within the intestinal mucosa
DC, dendritic cell; FAE, follicle associated epithelium; IEL, FOLL, Follicle; intraepithelial lym-
phocyte; LPL, lamina propria lymphocyte; PP, peyers patch; MLN, mesenteric lymph node;
SED, subepithelial dome. Arrows indicate the circulation route of GALT primed T cells.



of the high antigenic load within the intestinal lumen. LPL consist mainly of CD4+

T cells and IgA secreting plasma cells that are thought to enter the intestinal mucosa
following their activation in gut associated lymphoid tissue (GALT). IEL are pri-
marily CD8+ T cells and include both conventional major histocompatibility com-
plex (MHC) class I restricted CD8αβ+ TCRαβ+ cells at least some of which enter
this site following priming in GALT and unconventional CD8αα+ TCRαβ+ and
CD8αα+ TCRγδ+ IEL that are unique to the intestine [5, 6]. These latter populations
appear to recognise non-classical MHC class Ib molecules and their ontogeny and
state of differentiation at time of entry into the epithelium remains a subject of
debate.

Chemokine receptor expression on T cells resident in intestinal effector
sites

Human small intestinal LP T cells and IEL express a restricted array of chemokine
receptors including CXCR3, CXCR4, CCR5, and CCR9 but not CXCR1, CXCR2,
CCR1, CCR3, 4, 7, 8 and 10 [7–12]. CCR6 is expressed on a subset of murine and
human small intestinal LPL ([13]; Stenstad et al., manuscript in preparation) but on
few if any IEL [13, 14]. CXCR6 is expressed by a large proportion of murine IEL,
although its expression on LPL and human intestinal lymphocytes has yet to be
determined [15, 16]. In addition a variable number of CD4+LPL express the
chemokine receptor CCR2 [7, 17]. Human colonic lymphocytes express CXCR3
and CCR5 but not CCR4, and a small proportion express CCR2 [17, 18]. Remark-
ably CCR9 is largely absent from colonic T cells and T cells isolated from other
peripheral tissues, including the skin [19–21]. Combined, these studies suggest that
chemokine receptors may contribute to intestinal T cell localisation and/or function
within distinct segments of the intestine (CCR9 for the small intestine), within the
LP versus the epithelium (CCR2 and CCR6), or have more global functions within
intestinal effector sites (CXCR3 and CCR5).

CCR9/CCL25 mediates T cell recruitment to the small intestine

The selective expression of CCR9 on previously activated/memory α4β7
+ ‘gut hom-

ing’ T cells in peripheral blood and on small intestinal lymphocytes [19–21], and the
constitutive and selective expression of its ligand, CCL25, by small intestinal epithe-
lial cells [19, 22] lead to the suggestion that this chemokine receptor/chemokine pair
plays a unique role in small intestinal immune responses. Consistent with this sug-
gestion, CCR9–/– mice have reduced numbers of small intestinal IEL, primarily
among the CD8αα+TCRγδ+ IEL subset [23, 24], although the total number of
CD8αβ+ TCRαβ+ IEL and CD4+ LPL appears normal [23–25]. Studies of young
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mice treated with neutralising anti-CCL25 antibody [26], or CCL25 intrakine mice,
whose T cells fail to express CCR9 [27], have demonstrated an important role for
CCL25/CCR9 in the generation of both the CD8αα+TCRαβ+ and CD8αα+TCRγδ+

IEL compartment although how CCR9 regulates the generation of this compart-
ment remains to be determined.

CCR9/CCL25 is also important for the initial recruitment of conventional effec-
tor CD8αβ+ T cells to the small intestinal epithelium following their priming in
GALT. Thus anti-CCL25 antibody reduced effector CD8αβ+ T cell localisation to
the intestinal epithelium and in a competitive TCR transgenic adoptive transfer
model CCR9–/– effector CD8αβ+ T cells were selectively disadvantaged in their abil-
ity to localise to this site [21, 28]. While CCL25 mRNA is expressed primarily by
small intestinal epithelial cells, CCL25 protein has been detected on small intestinal
microvascular endothelium by immunohistochemistry [20, 29], indicating that
CCL25 may function in part by mediating CCR9+ T cell arrest on lamina propria
vessels [30]. Additionally CCR9 appears to regulate the expression and function of
the mucosal integrin αEβ7 on small intestinal IEL [14].

Importantly, no equivalent system has been described to mediate effector T cell
recruitment to the colon, and the role of chemokines in effector T lymphocyte local-
isation to this site remains unclear.

Role of additional chemokine receptors in homeostatic intestinal T cell
localisation and function

CXCR3 and CCR5 ligands in general appear to be expressed at low levels in healthy
small intestine and colon (although expression of some ligands such as CXCL11
have yet to be examined) [31–35]. Thus it seems unlikely that CCR5 and CXCR3
contribute in a major way to intestinal lymphocyte localisation/function under
steady state conditions. Indeed since these receptors are expressed by lymphocytes
in many non-lymphoid tissue [18] their expression on intestinal lymphocytes may
simply reflect the activation status of these cells.

The CCR6 ligand, CCL20, is constitutively expressed by intestinal epithelial
cells, particularly by the FAE [36], and CCR6–/– mice display increased numbers of
LPL, IEL, particularly of the CD8αα+TCRαβ+ subset, and reduced PP size [37, 38].
Thus CCR6/CCL20 plays a critical role in maintaining intestinal T cell homeosta-
sis. Since mature IEL fail to express CCR6 [13, 14], CCR6 is unlikely to regulate
mature IEL localisation and function. However CCR6 was recently implicated in
regulating the generation of non-conventional IEL within intestinal cryptopatches
[13], putative sites of extrathymic T cell development, although how CCR6 func-
tions in this process remains unclear. Since, CCL20 is also expressed by DCs, DC
derived CCL20 may regulate CCR6+ CD4+ T cell interactions with antigen present-
ing cells in the LP. Finally since epithelial derived CCL20 has also been proposed to
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regulate dendritic cell (DC) influx into the intestinal epithelium [37], although its
involvement in regulating DC migration into the FAE has recently been questioned
[39], CCR6/CCL20 may act indirectly via DCs in the control of intestinal T cell
numbers.

The CCR2 ligands CCL2, CCL7 and CCL8 are expressed in the healthy human
intestine, however results regarding their levels of expression and cellular source
vary between studies [34, 35, 40–43]. It seems likely that CCR2 ligands influence
the localisation and function of the few CCR2+ CD4+ T cells in the lamina propria.
The numbers and populations of IEL and LPL in CCR2–/– mice have not been
reported; however, CCR2 and its ligand CCL2 have been implicated in high dose
oral tolerance although they appear, in this case, to be functioning at the level of
antigen presentation in gut inductive sites [44].

The CXCR4 ligand, CXCL12, is constitutively expressed by intestinal epithelial
cells, intestinal microvascular endothelial vessels, and pericytes surrounding these
vessels [9, 45] and can induce α4β7 integrin mediated T cell adhesion to MadCAM-
1 and Fibronectin [46]. Together these reports suggest a potential role for
CXCR4/CXCL12 in mediating T cell recruitment to the intestinal mucosa. Since
CXCR4 is expressed on a wide variety of T cells it is unlikely to contribute to the
selective recruitment of effector T cell subsets to the intestine, however such selec-
tivity could be provided by the integrin α4β7.

Recruitment of IgA immunoblasts to intestinal effector sites

IgA secreting plasma cells in the LP derive from circulating IgA immunoblasts that
have been generated in intestinal inductive sites. Two chemokine receptors, CCR9
and CCR10, have been implicated in the recruitment of IgA immunoblasts to the
intestinal mucosa. CCR9 is expressed on a subset of human circulating IgA
immunoblasts and IgA plasma cells in the small intestine [10]. In the mouse, IgA
immunoblasts from the spleen and MLN as well as B220intIgA+ cells in the small
intestinal LP, respond to CCL25 while terminally differentiated B220–IgA+ small
intestinal plasmablasts failed to migrate to this chemokine [47]. Importantly, IgA+

plasma cells are reduced in the small intestine but not colon of CCR9–/– mice [25]
and anti-CCL25 antibody significantly inhibited CT specific IgA immunoblast local-
isation to the small intestine but not the colon [29]. Thus CCR9 appears to play a
role in the selective localisation of IgA+ immunoblasts to the small intestinal mucosa. 

CCR10 is expressed on human circulating IgA immunoblasts and virtually all IgA
plasma cells in the small and large intestine, appendix, tonsil and salivary gland [10]
while its ligand CCL28, is constitutively expressed by epithelial cells at these sites
[48, 49]. Furthermore anti-CCL28 antibody inhibited the localisation of IgA plas-
mablasts to the murine small intestine and colon [29]. Thus CCR10/CCL28 appears
to play a more global role in recruiting IgA immunoblasts to mucosal surfaces.
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Lymphocyte recruitment to the inflamed intestinal mucosa 

Intestinal T cell numbers increase dramatically in the setting of intestinal inflamma-
tion such as inflammatory bowel disease (IBD, Crohn’s disease and ulcerative coli-
tis) and enteropathies associated with food hypersensitivity such as Coeliac’s dis-
ease, and are thought to contribute in a primary way to disease pathogenesis. While
ulcerative colitis is restricted to the colon, Crohn’s disease can develop throughout
the intestine, primarily in the distal ileum and ascending colon. A similar and wide
range of chemokines are induced in ulcerative colitis and Crohn’s disease [40]
including the T cell chemoattractants CCL2 [34, 35, 40, 42, 43], CCL3 [33, 40],
CCL4 [33, 40], CCL5 [33, 35, 50], CCL7 [34, 40, 41], CCL8 [40], CCL20 [51, 52],
CXCL9 [32] and CXCL10 [32–34]. A notable exception is CCL25 that is expressed
in small bowel Crohn’s but not colonic Crohn’s disease or Ulcerative Colitis [53].
The proportion of LP and MLN T cells that express CCR9 is significantly reduced
in small bowel Crohn’s compared to healthy intestine [53]. While this reduction may
result from increased activation induced cell death of CCR9+ T cells as originally
proposed [53], an equally plausible explanation is that alternative chemokine recep-
tors play a more dominant role in recruiting effector T cells to the inflamed small
intestine. Studies from knockout mice or antibody neutralisation experiments have
implicated a role for several chemokine receptors in regulating disease severity in
animal models of IBD, including CCR2, CCR5, CCR6, and CXCR3 [54–58]. How-
ever whether these receptors regulate T cell localisation to and function within the
inflamed intestine remains unclear. Because of the wide range of chemokines
induced in the intestine during inflammation, it seems likely that there is some
redundancy in chemokine receptors usage regarding T cell localisation and function
within the inflamed intestine and that the importance of a given receptor will vary
depending on the local inflammatory conditions. In this regard, CCR5 and its lig-
ands CCL3 and CCL4, have been implicated in the recruitment of Toxoplasma
gondii primed CD8αβ+ T cells to the inflamed small intestinal epithelium [59], how-
ever in a dextran sulfate sodium (DSS) induced colitis model CD4+ T cell numbers
actually increase in the intestinal mucosa of CCR5–/– compared to WT mice [58].
Finally, while relatively few studies have directly compared chemokine receptor
expression on T cells isolated from healthy and inflamed intestine, CCR2+CD4+ LP
T cells were recently shown to increase in number in ileal but not colonic Crohn’s
disease or Ulcerative Colitis [17], implicating a selective role for CCR2 in the
recruitment and/or function of CD4+ cells during small bowel Crohn’s.

The role of chemokines in lymphocyte localisation to the skin

The skin can be divided into an avascular epidermis and a collagen-rich, vessel-con-
taining dermal compartment (Fig. 2). Effector memory T cells traffic between sec-
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ondary lymphoid organs and the skin. Within dermal microvessels, they interact
with endothelial cells, perform transendothelial migration and enter perivascular
pockets. From perivascular spaces, sustained matrix-bound gradients of chemoat-
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Figure 2 
Schematic overview of skin
The skin can be divided into an epidermal and dermal compartment. Keratinocytes within the
epidermis divide within the stratum basale and differentiate through the stratum spinosum
and granulosum to finally form an acellular, keratin-rich stratum corneum. The dermis is
divided in a vessel-rich stratum papillare and a matrix/collagen-rich stratum reticulare. Under
homeostatic conditions Langerhans cells (LC) and few T lymphocytes (TC) are found within
the epidermis. Within the dermal compartment interstitial dendritic cells (iDC) and
macrophages (MØ) reside together with mast cells (MC) and patrolling T lymphocytes (TC).
During inflammation the composition of leukocytes within the skin changes in quantity and
quality. Elevated numbers of LC and TC are found within the epidermis and the frequency of
iDC, MØ, MC, plasmacytoid dendritic cells and eosinophils may increase within the dermis. 



tractive proteins direct lymphocytes into subepidermal or intraepidermal locations.
In humans, the cutaneous lymphocyte associated antigen (CLA) characterises a sub-
set of skin-homing memory T cells. 80–90% of memory T cells in inflammatory
skin lesions express CLA. In contrast, only 10–15% of the pool of circulating T cells
are CLA positive. CLA+ T lymphocytes never exceed 5% of lymphocytes within
noncutaneous inflamed sites [60–62]. These observations suggest that an active and
specific recruiting process focused on CLA+ memory T cells is present in inflamma-
tory skin lesions. Furthermore, Santamaria and co-workers showed that specific
responses to common skin-associated allergens, including nickel and house dust
mite, are restricted to CLA+ T cells [63]. CLA interacts with E-selectin and mediates
the rolling of distinct leukocyte subsets along the vascular endothelium. E-selectin is
not skin-specific but is expressed on inflamed endothelium of various tissues. Hence,
other skin-specific factors must regulate the tissue-specific homing capacity of CLA+

memory T cells.

Chemokine receptor expression on circulating CLA+ skin-homing
memory T cells

Skin-homing memory T cells are equipped with a large panel of chemokine recep-
tors including CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR10, CXCR3, and
CXCR4 [11, 18, 64–68]. In particular, CCR4 and CCR10 show preferential expres-
sion on the surface of circulating CLA+ skin-homing T cells [18, 64, 67]. While the
majority of circulating CD4+CLA+ memory T cells express CCR4, only a subset
(30–40%) of CLAhigh memory T cells are CCR10+ [64, 67]. These CLAhighCCR10+

T cells of healthy individuals can act as both “central” and “effector” memory T
cells, have access to both secondary lymphoid organs and the skin compartment and
secrete TNF-α and IFN-γ upon in vitro stimulation [67]. 

Lymphocyte recruitment during skin homeostasis

A variety of chemokines including CCL1, CCL20, CCL27, CXCL12, and CXCL14
show homeostatic expression in healthy human skin [11, 64, 69, 70]. With regard
to the recruitment of lymphocytes two chemokine/chemokine receptor pairs,
CCL27/CCR10 and CCL1/CCR8 are of particular interest.

Recent studies have identified the novel skin-specific CC chemokine CCL27,
which is exclusively produced by epidermal keratinocytes [64, 70]. Under homeo-
static conditions, basal keratinocytes abundantly express CCL27 protein which is
subsequently secreted into dermal compartments [64]. CCL27 binds the formerly
orphan G-protein coupled receptor GPR-2 which has been renamed CCR10 [71]. In
vitro, CCL27 preferentially attracts CD4+CLA+ memory T cells [70]. CCL27 shows
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a high binding affinity to extracellular matrix proteins and is displayed on cuta-
neous vascular endothelium, a phenomenon which is explained by the observation
that chemokines are transported across endothelium to participate in leukocyte
arrest [64, 72, 73]. Moreover, chemokines presented by endothelial cell-associated
proteoglycans mediate firm adhesion as well as transendothelial migration. Previous
observations suggest that binding to extracellular matrix prolongs the half-live of
chemokines and increases their biological activity. Recent observations indicate that
CCL27 immobilises on extracellular matrix and the surface of dermal endothelial
cells and mediates the adhesion of lymphocytes [64]. Hence, endothelial cell-bound
CCL27 may mediate firm adhesion and initiate transendothelial migration, while
CCL27 on dermal extracellular matrix and fibroblasts may sustain a chemokine
gradient directing skin-infiltrating lymphocytes from perivascular pockets to subepi-
dermal and intraepidermal locations.

Recently, Schaerli et al. showed that the majority of human T cells in healthy
skin express the chemokine receptor CCR8 and respond to its specific ligand CCL1
[11]. Normal human skin-derived CD4+ and CD8+ T cell subsets expressed CCR8
but CD8+ lymphocytes displayed higher CCR8 surface expression and increased
chemotactic responsiveness towards CCL1 gradients [11]. The majority of skin-
derived CCR8+ T cells expressed CLA but lacked expression of CCR4 and CCR7.
These CCR8+ T cells were absent in small intestine and colon tissues and represent-
ed only a very small population (<2%) in the peripheral blood. Cutaneous CCR8+

T cells co-expressed CD45RO and CD45RA, displayed a pre-activated phenotype
(CD69) and secreted cytokines such as TNF-α and IFN-γ but lacked markers of
cytolytic T cells. Secretion of IL-4, IL-10 and TGF-β was low to undetectable, argu-
ing against a strict association of CCR8 with either Th2 or regulatory T cell subsets.
Importantly, the specific ligand for CCR8, CCL1, is constitutively expressed at
strategic cutaneous locations, including dermal microvessels and epidermal antigen
presenting cells. In summary, the interaction of CCL1 and CCR8 may contribute to
the immune surveillance of the skin in multiple ways [11]. Endothelial cell-derived
CCL1 may support the steady-state extravasation of circulating CCR8+ precursors.
Subsequently, Langerhans cell-derived CCL1 may direct CCR8+ T cells from
perivascular spaces into the epidermis, ensuring the encounter of immune surveil-
lance T cells with epidermal antigen presenting cells.

Hence, CCL27/CCR10 and CCL1/CCR8 may represent complementary systems
that support the recruitment of CD4+ or CD8+ memory T lymphocytes to cutaneous
sites under homeostatic conditions.

Lymphocyte recruitment to inflamed skin

Accumulating evidence indicates that skin-infiltrating T cells play a pivotal role dur-
ing the initiation and maintenance of inflammatory and autoimmune skin diseases,
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such as psoriasis or atopic dermatitis [74–77]. Hence, the understanding of mecha-
nisms mediating memory T cell recruitment to the skin may identify promising tar-
gets for the development of novel therapeutics.

Atopic dermatitis

Atopic dermatitis is a chronic or chronically relapsing inflammatory skin disease
with eczematous lesions demonstrating typical morphology and distribution, severe
pruritus, elevated serum IgE, the presence of allergen-specific IgE, and peripheral
blood eosinophilia [74]. The prevalence of atopic dermatitis rapidly increased dur-
ing the past decades and is currently ranging between 10–20% in children and
1–3% in adults. Histopathologically, the lesional skin of atopic dermatitis patients
shows a dermal infiltrate consisting of mainly activated CLA+ memory T cells (CD4
> CD8) and antigen-presenting cells (APC) [74]. Among the APC population, lesion-
al skin shows increased numbers of Langerhans cells (LC), inflammatory dendritic
epidermal cells (IDEC), as well as dermal DCs which show markedly up-regulated
expression of Fc receptors for IgE on their cell surface [74]. Moreover, dermal sites
of atopic skin show extensive deposition of eosinophil-derived proteins or more
rarely intact eosinophils [74]. Exposure to allergens, e.g., house dust mite antigens,
or microbial products plays an important role in the initiation and maintenance of
atopic skin inflammation. In early phases of the disease, memory T cells with a Th2
phenotype infiltrate the atopic skin, however, chronic lichenified atopic dermatitis
lesions are characterised by the dominance of skin-infiltrating Th1 cells [74, 78].

In the past decade, numerous studies identified chemokines associated with
atopic dermatitis (Tab. 1). These chemokines include CCL2, CCL3, CCL4, CCL5,
CCL11, CCL13, CCL17, CCL18, CCL20, CCL22, CCL26, CCL27 and CX3CL1.
Notably, serum levels of CCL11, CCL17, CCL18, CCL22, CCL26, CCL27 and
CX3CL1 directly correlated with disease severity suggesting an important role in the
immunopathogenesis of atopic dermatitis. Among these chemokines, CCL17,
CCL18, CCL22 and CCL27 are likely candidates to critically regulate the recruit-
ment of memory T cells to sites of atopic skin inflammation (Tab. 1). Patients suf-
fering from atopic dermatitis show increased CCL27 protein production within the
epidermis and the vast majority of skin-infiltrating lymphocytes (>90%) express
CCR10 [64]. In vivo, intracutaneous injection of CCL27 induced the accumulation
of CD3+ T cells [64]. Conversely, neutralisation of CCL27-CCR10 interactions
impaired memory T cell recruitment to the skin and suppressed allergen-specific
skin inflammation in mouse models mimicking allergic contact dermatitis and
atopic dermatitis [64].

Th2 cell lines and clones isolated from lesional skin of atopic dermatitis patients
abundantly express CCR4 and show little or no CCR3, CCR8, and CXCR3 on their
cell surface [79–81]. To date, there are two known ligands for CCR4, CCL17 and
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CCL22 [82]. CCL17 and CCL22 are produced by different cell types. In humans,
the major source of CCL17 in the skin are dermal endothelial cells and ker-
atinocytes [83–85], whereas CCL22 is secreted by macrophages, interstitial den-
dritic cells, and epidermal Langerhans cells [86, 87]. Hence, CCL17 expressed by
the dermal endothelial cells and infiltrating dermal cells of atopic lesional skin may
act in the first steps of T cell recruitment by inducing integrin-dependent adhesion
and transendothelial migration of T cells while CCL22 supports the formation of T
cell-dendritic cell clusters at sites of atopic skin inflammation. 

A recent study in mice by Reiss et al. suggests that ligands of CCR4 and CCR10
cooperate in the recruitment of memory T cells to sites of skin inflammation [88].
According to this model, CCL17 displayed by cutaneous venules, in combination
with other CCR4 ligands, trigger the integrin-dependent arrest and extravasation of
lymphocytes rolling on cutaneous venules. Subsequently, CCL27, highly and selec-
tively expressed by keratinocytes, may support diapedesis and epidermotropism of
skin homing T cells [88, 89].

A systematical analysis of the expression of all known chemokines in chronic
inflammatory skin diseases identified CCL18/DC-CK1/PARC to be specifically
associated with an atopic dermatitis phenotype but absent in other chronic inflam-
matory or autoimmune skin diseases such as psoriasis or cutaneous lupus erythe-
matosus [90]. Among all known chemokines, CCL18 represented the most highly
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Table 1 - Chemokines associated with lymphocyte recruitment to healthy and inflamed skin

Chemokine Origin References

Healthy skin
CCL1 I-309 Dendritic cells, endothelial cells [11]
CCL27 CCL27 Keratinocytes [64, 70, 71]
Atopic dermatitis
CCL17 TARC Endothelial cells [83, 85]
CCL18 PARC Dendritic cells, keratinocytes [90, 92]
CCL22 MDC Macrophages, dendritic cells [107]
CCL27 CTACK Keratinocytes [64, 108]
Psoriasis
CCL17 TARC Skin, endothelial cells [80, 96]
CCL20 MIP-3α Keratinocytes, fibroblasts, endothelial [66]

cells, dendritic cells
CCL27 CTACK Keratinocytes [64, 108]
CXCL9 Mig Skin, keratinocytes [96, 109]
CXCL10 IP-10 Keratinocytes, endothelial cells [96, 109]



expressed ligand in atopic dermatitis and the absolute amount of CCL18 mRNA in
lesional atopic skin was more than 100-fold higher than those seen for CCL17 [90].
In good accordance with this finding, a DNA microarray screen also identified
CCL18 as one of the genes showing the strongest association with atopic dermati-
tis compared to psoriatic or normal skin specimen [91]. Interestingly, trigger factors
of atopic skin inflammation, such as allergen exposure and staphylococcal super-
antigens markedly induced this chemokine in vitro and in vivo suggesting important
CCL18-driven processes during the initiation and amplification of atopic skin
inflammation [90]. Although its receptor is yet unidentified, CCL18 binds to CLA+

skin-homing memory T cells and induces the migration of memory T cells into the
human skin, in vivo [92]. CCL18 is produced by dermal dendritic cells in close
proximity to infiltrating T cells implicating a role in the formation of T cell-den-
dritic cell contacts within atopic skin [90]. 

Psoriasis vulgaris

Psoriasis vulgaris represents a common chronically relapsing inflammatory skin dis-
ease affecting approximately 1–2% of the general population [93, 94]. Psoriatic
patients suffer from erythemato-squamous plaques predominantly manifesting at
the extensor parts of joints, above the Os sacrum and the capillitium [93, 94]. In
severe cases, skin lesions can involve the entire integument and be accompanied by
a destructive psoriatic arthritis. Histopathologically, psoriasis is characterised by a
marked inflammatory infiltrate, hyperproliferation of keratinocytes, elongation of
rete ridges and hyperconvuluted vascular corpores in the papillary dermis [93, 94].
The infiltrate is composed of skin-infiltrating CLA+ memory T cells predominantly
showing a Th1 phenotype, neutrophils, lining macrophages and increased numbers
of dendritic cells. There is evidence that T cells play a crucial role in the immuno-
pathogenesis of this disease [1, 75, 77]. An early cellular event in the development
of psoriatic lesions is the infiltration of target sites by activated T cells, which in turn
produce inflammatory mediators, such as IFN-γ, induce epidermal hyperplasia and
may act with keratinocytes and dermal macrophages to sustain a cycle of inflam-
mation which finally leads to the psoriatic phenotype [95].

To date, there are no studies showing the efficacy of therapeutic targeting of
chemokine ligand-receptor interactions in mouse models for psoriasis. However,
there is increasing knowledge of chemokines and chemokine receptors associated
with a psoriasis phenotype (Tab. 1).

One such example represents CXCL8/IL-8. CXCL8 was initially identified in
and extracted from psoriatic scales and probably represents one of the most inten-
sively characterised chemokines known so far. Although CXCL8 was already iden-
tified 17 years ago, the investigation of its functional role in vivo had been limited
since there exists no orthologue in the mouse.
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Recently, Rottman et al. suggested a potential role for CXCR3 and CCR4 ligands
in the pathogenesis of psoriasis [96]. CXCR3 and CCR4 were expressed on CD3+ der-
mal lymphocytes and chemokine receptor expression was accompanied by the up-reg-
ulation of their respective ligands, CXCL9 and CXCL10 as well as CCL17 and
CCL22 in lesional psoriatic skin. Furthermore, TNF-α and IFN-γ were identified to
regulate those psoriasis-associated genes in keratinocytes and dermal endothelial cells.
In contrast to skin-infiltrating dermal lymhocytes, epidermal lymphocyte subsets were
characterised by the co-expression of CLA, αEβ7 and CXCR3 while CCR4 was
absent. The authors suggest a model with CCR4 and CXCR3 ligands mediating teth-
ering and transendothelial migration of CLA+ T cells and subsequent involvement of
CXCR3 ligands in directing lymophocytes into the epidermis. During this migration
process the adhesion molecule αEβ7 may be up-regulated through dermal fibroblast-
derived TGF-β stimulation and support the anchoring of epidermis infiltrating lym-
phocytes by its heterotypic interaction with E-cadherin on keratinocytes [96]. 

Although the significance of inflammatory chemokines to lymphocyte recruit-
ment in vivo remains unclear, another inflammatory chemokine, CCL20, shows an
interesting association with a psoriatic phenotype [66]. CCL20 is known to attract
both T and dendritic cells [66, 97, 98]. Among dendritic cells, CCL20 is a highly
potent chemokine for the chemoattraction of epithelial Langerhans-type dendritic
cells [97, 99]. Furthermore, CCL20 has been shown to preferentially attract the
memory subset of T cells [98]. This CC chemokine and its receptor CCR6 are sig-
nificantly up-regulated in psoriatic skin [66]. Within psoriatic lesions, CCL20-
expressing keratinocytes co-localise with skin-infiltrating T lymphocytes. Further-
more, CCR6 is expressed at high levels on the skin-homing CLA+ subset of memo-
ry T cells [66]. Psoriatic skin-homing CLA+ T cells show increased chemotactic
responses towards CCL20 gradients when compared to those of normal donors
[66]. TNF-α and IL-1, both pro-inflammatory cytokines known to be up-regulated
in psoriasis, as well as CD40L are potent inducers of bioactive CCL20 protein in
keratinocytes, dermal microvascular endothelial cells, dermal fibroblast and den-
dritic cells in vitro [66]. Furthermore, T helper cell-derived mediators (e.g., IFN-γ,
IL-17, CD40L) regulate CCL20 production in cellular constituents of the skin. IL-
17 is known to be up-regulated in lesional psoriatic skin, suggesting that it may play
a role in the amplification and/or development of cutaneous inflammation [66].
Along with its expression in intestinal epithelial cells, cutaneous CCL20 expression
supports the hypothesis that this inflammatory chemokine plays an important role
in the interface between the host and the environment.

Generation of intestinal and skin tropic effector T cell subsets

Recent studies in mice, examining cell adhesion molecule and chemokine receptor
expression on adoptively transferred TCR transgenic T cells, have demonstrated a
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critical role for the local draining lymph nodes in the generation of ‘tissue tropic’
effector T cell subsets. Thus, T cells activated in MLN were induced to express the
‘gut tropic’ markers α4β7 and CCR9, while T cells activated in skin draining LN
were induced to express E-selectin ligands [21, 100]. DCs isolated from the MLN
and PP were necessary and sufficient for the induction of α4β7 and CCR9 on
responding T cells in vitro, and both CD8+ and CD8– MLN DC, and CD8+ deplet-
ed PP DCs could generate gut tropic effector T cells [28, 101]. In contrast priming
with Langerhan cells from the skin lead to a dramatic induction of CCR4 and E-
selectin ligands on responding cells (Fig. 3, [28, 101–103]). Together these results
demonstrate a critical role for environmentally imprinted DCs, in the generation of
tissue tropic effector T cell subsets. Whether DCs in skin draining LN induce other
chemokine receptors associated with skin tropic T cells such as CCR8 and CCR10
has yet to be determined. Reactivation of tissue tropic memory T cell subsets can
modify their tissue tropism according to the origin of the last activating DC. In this
way gut tropic memory T cells can be reprogrammed to express markers of skin tro-
pism and vice versa [104]. The underlying mechanism by which environmentally
imprinted DCs generate tissue tropic effector T cell subsets is poorly understood.
Recently however, the vitamin A metabolite, retinoic acid was found to induce α4β7
and CCR9 on in vitro activated T cells and to suppress expression of skin homing
markers [105]. Importantly, MLN and PP DCs, but not spleen DCs, could produce
retinoic acid, and their ability to generate gut tropic T cells was reduced with an
inhibitor to enzymes involved in retinoic acid synthesis as well as an antagonist to
retinoic acid receptors [105].

Conclusions

Peripheral epithelial tissues are a rich source of chemokines under both homeostat-
ic and inflammatory conditions. Tissue tropism (e.g., skin versus gut as discussed
here) on effector T cell subsets is imprinted by environmentally modulated DCs
within local LNs and involves the selective induction of specific chemokine recep-
tors. These tissue-selective chemokine systems, together with appropriate adhesion
molecules, are essential regulators of effector lymphocyte trafficking to peripheral
sites. Dysregulated lymphocyte accumulation and activation appears to be an
important driving factor for chronic inflammation at these sites; therefore, targeting
the chemokine pathway(s) to block lymphocyte infiltration may provide a means for
alleviating disease symptoms. Nevertheless, many questions must be answered
before chemokine/chemokine receptors can be chosen as novel targets for the treat-
ment of intestinal and skin inflammation. A clearer picture of the role of individual
chemokines in animal models of inflammation will be a critical step before singling
out certain chemokines or their chemokine receptors as novel drug targets. Such
studies should help to determine whether neutralisation of a single chemokine sys-
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tem is sufficient to treat inflammatory skin/gut diseases or whether it will be neces-
sary to target multiple chemokine receptors in combination. Also, we need to learn
more about the kinetics of disease progression and the time point for optimal inter-
ference. For example, it is important to know if a given chemokine system is pri-
marily involved in the acute phase of disease as opposed to the chronic stage of dis-
ease or disease recurrence. Finally, identifying the factors within peripheral tissues
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Figure 3 
Dendritic cells play a critical role in the generation of tissue tropic effector T cell subsets
(A) MLN or PP dendritic cells (DC) generate CCR9+α4β7

+ gut homing effector T cells [28,
101]. This ability appears, at least in part, to be due to their ability to generate retinoic acid
[105]. (B) T cells activated by skin dendritic cells (Langerhans cells) are induced to express
E-selectin ligand and CCR4 [106], molecules implicated in T cell homing to the inflamed
skin.



and draining LNs that determine tissue tropism on newly generated effector T cells
are likely to provide novel strategies for interference with lymphocyte trafficking to
peripheral epithelial tissues.
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Introduction

Natural killer (NK) cells and γδ T cells are populations of lymphocytes that medi-
ate immunity against pathogens and malignant tumors. Both generally exhibit sig-
nificant cytotoxicity, produce high levels of inflammatory cytokines and
chemokines, and share the expression of cellular receptors (generally designated NK
receptors) for the detection of MHC class I and class Ib proteins and other cell sur-
face proteins.

NK cells are large granular lymphocytes that play important roles in host defense
against viral, bacterial, and parasitic infections as well as in the surveillance for malig-
nant cells. In addition to their cytotoxic capabilities, NK cells serve as regulators of
immune responses through the release of a variety of cytokines and chemokines. NK
cells are bone marrow-derived lymphocytes that were originally characterized by their
ability to spontaneously mediate lysis of certain tumor cell lines, their large granular
morphology, and their lack of a T cell receptor and CD3 complex. NK cells do not
use the specialized gene rearrangement machinery that assembles T and B cell antigen
receptors. Instead, NK cells express both inhibitory and activating cell surface recep-
tors. Inhibitory receptors include C-type lectin family receptors, such as Ly49 and
CD94/NKG2, or Ig superfamily receptors such as killer immunoglobulin-like recep-
tors (KIR). These receptors generally recognize MHC class I (class Ia) and class Ib
(HLA-E in human and Qa-1 in mice) proteins. A number of activating receptors on
NK cells have been described that are alternative forms of Ly49, KIR family (termed
KAR), and CD94/NKG2 receptors and that have similar specificities as their inhibito-
ry forms. In addition, unique activating receptors are also expressed such as the
NKG2D receptor that recognizes MICA/B, Rae1, and H60, CD16 that binds to IgG,
NKp44/NKp46 that recognize viral hemagglutinins, and NKp30 whose ligands are
not well characterized. The primary peripheral NK cells present in humans and mice
are mature cells with decreasing frequencies in blood, spleen, and bone marrow,
respectively. Human NK cells comprise 15% of all circulating lymphocytes and can
be divided into two subsets, CD56bright and CD56dim, each subset having unique func-
tional attributes and distinct roles in the human immune response [1].
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γδ T cells function as a bridge between the innate and adaptive immune systems
by killing infected and malignant cells and by functioning as a source of cytokines
and chemokines involved in activation of immune cells and in maintaining tissue
integrity [2]. Although γδ T cells express a rearranged γδ T cell receptor and exhib-
it memory responses to nonpeptide antigens [3], they also share properties with
NK cells including the expression of inhibitory and activating NK receptors and
other NK markers. These unique T cells constitute a small proportion (5%) of T
cells in the peripheral blood and lymphoid organs of human and rodents whereas
they are the major population of T cells in ruminants and chickens [3]. γδ T cells
are enriched in epithelial tissue such as the skin (in mice and other species but not
humans), the intestine (in most species), and the reproductive tract.

Unlike αβ T cells, γδ T cells, at certain anatomical sites, display a highly
restricted usage of Vγ and Vδ genes. For example, in mice, epithelial γδ T cells that
constitute the vast majority of skin T cells all express a single invariant T cell anti-
gen receptor [4]. In humans, γδ T cells generally use one of three major Vδ gene
segments, Vδ1, Vδ2, or Vδ3, and the majority of adult human peripheral γδ T cells
express Vγ2 paired with Vδ2 [3]. Human Vγ2Vδ2 T cells mediate both immediate
effector functions and memory responses by using their T cell antigen receptor
(TCR) to recognize nonpeptide phosphorylated intermediates found in isoprenoid
and other metabolic pathways of microbes and humans [3]. Human Vδ1-bearing
γδ T cells recognize lipids presented by CD1 [5] and the MHC class I chain-relat-
ed genes MICA and MICB (major histocompatibility complex class I chain-relat-
ed antigen A and B) [6]. Antigens for murine γδ T cells include a stress-induced
compound produced by keratinocytes [7] and the TL MHC class Ib molecule [8].
In addition to stimulation through the γδ T cell antigen receptor, γδ T cells can
also be activated or inhibited by the NK receptors that they commonly express
[9–11].

Unlike NK cells, γδ T cells have the ability to mount memory responses and to
differentiate into T cells that retain memory. Thus, in mice, many γδ T cells acquire
a memory phenotype and behave similarly to memory αβ T cells [12]. Similarly,
many human γδ T cells have memory T cell phenotypes [13–15] that can be
acquired even before birth (our unpublished observations). Studies on BCG infec-
tion in monkeys [16], and BCG vaccination in humans [17], provide evidence for
memory responses by Vγ2Vδ2 T cells. 

NK cells

Chemokines produced by NK cells

NK cells serve as effectors and regulators of immune responses through direct cyto-
toxicity and through the release of a variety of cytokines and chemokines including
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IFN-γ, TNF-α, GM-CSF, IL-5, CXCL8, CCL3, CCL4, and CCL5 [18, 19]. NK cells
can produce a number of these chemokines without specific activation. Unstimulat-
ed human peripheral blood NK cells can produce CCL3, CCL5, and CCL22 in vitro
[20]. Isolated human NK cells also express mRNA for XCL1 (lymphotactin) [21].
CD56brightCD16– NK cells isolated from human early pregnancy deciduas express
CXCL8 mRNA and secrete large amounts of CXCL8 [22]. Moreover, purified
peripheral blood NK cells, derived from elderly healthy subjects older than 90, pro-
duced CXCL8, CCL3, and CCL5 [23].

Chemokine production by NK cells can be induced or further increased when
NK cells are activated in vitro by soluble factors or in vivo by infection. NK cells
can be activated by IL-2 or IL-12 resulting in the increased synthesis of CXCL8,
CCL3, and CCL5 [23]. NK cells also produce CCL22 upon stimulation [24].
Immunohistochemical analysis of IL-2-activated murine NK cells and Northern
analysis of human NK clones revealed that these cells also produce XCL1, a
chemokine that attracts both NK and T cells in vivo [25]. Large amounts of CXCL8
were produced when purified NK cells were stimulated with IL-18 (IFN-γ-inducing
factor) [26]. Ligation of β1 integrins on human NK cells also results in the produc-
tion of CXCL8, through the activation of the Rac1/p38 mitogen-activated protein
kinase (MAPK) signaling pathway [27]. Treatment of human and mouse NK cells
with ULBP (human cytomegalovirus glycoprotein UL16 binding protein) ligands for
the activating receptor, NKG2D/DAP10, led to increased production of IFN-γ, TNF-
α, and CCL4 [28]. Soluble ULBP1, -2, and -3 fusion proteins stimulated production
of GM-CSF, TNF-β, and CCL1. Combining IL-12 and soluble ULBP2 had a strong
synergistic effect on CCL1 production [29]. Thus, activated NK cells can produce
CXCL8, XCL1, CCL1, CCL3, CCL4, CCL5, and CCL22.

The production of chemokines by NK cells plays an important role in their func-
tion. CCL3 along with IFN-γ are required for protective NK cell responses in vivo
to murine cytomegalovirus (MCMV) infection [30]. CCL3–/– mice have decreased
resistance to MCMV due, at least in part, to dramatically reduced NK cell accumu-
lations as well as decreased IFN-γ production in their livers [30, 31]. These data sug-
gest that NK cell production of IFN-γ and chemokines may be coordinated to con-
trol MCMV and that NK cells may be triggered through different mechanisms dur-
ing their response to infections.

NK cell activation through the NK receptor, Ly49H, or through cytokines such
as IL-2, IL-12, IL-15, IL-18, and type I IFN can stimulate NK cells to produce IFN-
γ, XCL1, CCL3, CCL4, and CCL5. Both mechanisms contribute to the in vivo
response of NK cells [32, 33]. During infection with Listeria, IFN-γ, XCL1, CCL3,
CCL4, and CCL5 are coexpressed at the single-cell level in activated NK cells, CD8+

T cells, and CD4+ Th1 cells [34, 35]. In MCMV infection, murine NK cells produce
these five mediators either after triggering of Ly49H or after exposure to innate
cytokines. Cross-linking the activating Ly49D mouse NK receptor in vitro also
induces high levels of IFN-γ, XCL1, CCL3, and CCL4 [36]. The local release of the
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five cytokines/chemokines by Ly49H+ NK cells probably attracts and activates
neighboring target cells, such as macrophages and dendritic cells, as well as other
NK cells. In HIV-infected patients, NK cells were also shown to produce high levels
of the CC-chemokines, CCL3, CCL4, and CCL5, which suppress HIV-1 entry and
replication in vitro [20, 37, 38]. These findings suggest that NK cells play essential
roles in recruiting inflammatory effector cells during infection and have the capaci-
ty to organize and shape adaptive immune responses.

Expression of chemokine receptors on NK cells

Different chemokine receptors are expressed on the two major human NK cell sub-
sets that are identified by expression of CD56 and CD16 (CD56dimCD16+ and
CD56brightCD16–) [39, 40]. Resting CD56dimCD16+ NK cells uniformly express
CXCR1, CXCR4, and CX3CR1 at high levels. CXCR2 and CXCR3 were present
at lower levels. There was no detectable surface expression of CC chemokine recep-
tors (CCR1–7, 9) or CXCR5 or CXCR6 (Bonzo) using available antibodies [1]. As
expected, resting CD56dimCD16+ NK cells migrated vigorously to CXCL12 and
CX3CL1. The expression of CXCR1, CXCR2, and CX3CR1 on NK cells was also
confirmed by other groups [41, 42]. However, Inngjerdingen et al. found that puri-
fied, resting human NK cells expressed CXCR4 but not CXCR1, CXCR2, CXCR3,
or CX3CR1 [21]. One possible explanation for this discrepancy is that some
chemokine receptors may be downregulated during the purification of NK cells
[21].

In contrast to CD56dimCD16+ cells, resting CD56brightCD16– NK cells express
little CXCR1 or CX3CR1 but high levels of CCR5, CCR7, CXCR3, and CXCR4
[1]. CD56brightCD16– NK cells exhibited chemotaxis to CCL5 [1], CCL19 [43],
CCL21 [43], CXCL10 [1], CXCL11 [1], CCL22 [44], and CXCL12 [43]. 

Expression of CC chemokine receptors on activated NK cells has also been
reported and is similar to CD56brightCD16– NK cells. Whereas resting
CD56dimCD16+ NK cells do not express CC chemokine receptors, activated human
NK cells express CCR2, CCR4, CCR5, and CCR8 [45, 46]. Murine NK cells have
been shown to express CCR2 and exhibit in vitro chemotaxis to the CCR2 ligand,
CCL2 [45]. Studies using antibody neutralization and CCR2 gene knockout
(CCR2–/–) mice demonstrated that early recruitment of NK cells to the lungs is crit-
ically dependent on CCL2 and that disruption of this early recruitment results in
increased severity of infection [47]. As determined by flow cytometric, immunoblot,
and RNase protection assays, Inngjerdingen et al. showed that IL-2-activated
human NK cells express CCR4 and CCR8 and respond to CCL17, CCL22, and
CCL1 [46]. Cytolytic activity of NK cells is also augmented by CCL2, CCL3, CCL4,
and CCL5 [48]. Moreover, proliferation of CD56dimCD16+ NK cells is costimulat-
ed by CCL19 and CCL 21 [21].
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Expression of CCR7 on a subset of human NK cells was reported by several
groups. CCR7 is an important determinant for T cell homing to secondary lym-
phoid organs through high endothelial venules. Earlier work showed that mRNA
for CCR7 was not detected in resting peripheral blood NK cells. Consistent with
this fact, CCL19 and CCL21 did not induce chemotaxis of resting NK cells. How-
ever, adult and cord blood NK cell population isolated by positive selection using
CD56 beads showed strong chemotactic activity for NK cells to CCL19 and CCL21
[43]. Campbell et al. showed that CD16– NK cells express CCR7 and respond to the
CCR7 ligands, CCL19 and CCL21 [1]. Consistent with this result, CD56brightCD16–

NK cells have been found in peripheral lymph nodes [49, 50]. Besides CCR7,
CXCR3 may also mediate NK localization to lymph nodes. CXCR3, rather than
CCR7, mediates recruitment of murine NK cells to lymph nodes that are undergo-
ing an immune response [51]. Importantly, NK cells at stimulated lymph nodes pro-
vide an initial source of IFN-γ that is necessary for TH1 polarization [51]. Expres-
sion of CCR7, therefore, differs between different NK subsets and CCR7 may be
downregulated in resting NK cells.

γδ T cells

γδ T cells produce a number of different chemokines

γδ T cells not only express a range of chemokine receptors, but also produce
chemokines. Therefore, γδ T cells can mediate their effector functions directly
through cell killing or indirectly by cytokine production or by recruiting or regulat-
ing other cells. Human γδ T cells are commonly polarized to a Th1 phenotype and
produce large amount of proinflammatory chemokines, such as CCL3, CCL4,
CCL5, and XCL1, but not CCL2 or the Th2 chemoattractants, CCL1 and CCL17
[52–54]. Some Th2-polarized γδ T cells exist and have been found to secrete
CXCL8, CCL1, and CCL17 [52]. Cipriani et al. showed that activation of human
peripheral blood Vδ2+ cells with the nonpeptide antigen, isopentenyl pyrophosphate
(IPP), rapidly stimulates the production of the C-C chemokines, CCL3 and CCL4,
and XCL1 but not CCL2. IPP stimulation of Vγ2Vδ2 production of CCL3 and
CCL4 was not affected by IL-4, IL-10, TGF-β, or IFN-γ. However, IL-12 signifi-
cantly enhanced IPP-induced expression and release of CCL3. CCL3 release was
downregulated by TGF-β whereas the induction of CCL4 by IPP and IL-12 was
refractory to inhibition by TGF-β [53]. Upon IPP stimulation, peripheral blood γδ
T cells also increase the production of CXCL8. Amplification of CXCL8 expression
may be increased by the interaction between the activation marker CD30 on γδ T
cells, and its ligand CD30L constitutively expressed by neutrophils [55].

In murine models of bacterial infection, γδ T cells have been reported to partici-
pate in host defense against extracellular bacteria such as E. coli and intracellular
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bacteria such as Listeria monocytogenes [56–58]. Tagawa et al. found that the num-
ber of murine γδ T cells bearing invariant Vγ6Vδ1 significantly increased in the peri-
toneal cavity during a peritoneal infection with E. coli [59]. To elucidate potential
roles of invariant Vδ1-bearing γδ T cells in protection against E. coli infection,
Tagawa et al. examined bacterial growth and cellular responses in the peritoneal
cavities of mice deficient in Vδ1 (Vδ1–/–) following peritoneal infection with E. coli.
Vδ1–/– mice showed severely impaired accumulation of peritoneal macrophages
after E. coli infection. The peritoneal γδ T cells of infected wild-type mice produced
large amounts of chemokines such as CCL3 and CCL5 in response to γδ TCR trig-
gering in vitro, whereas there was no production of those cytokines by peritoneal γδ
T cells of Vδ1–/– mice. Thus, Vδ1+ γδ T cells may help to augment innate immunity
by secreting chemokines that attract macrophages [59].

Chemokine secretion is likely to contribute to the effector functions of γδ T cells.
Human Vγ2Vδ2 T cells have been shown to suppress HIV-1 replication in vitro via
the production of CCL3, CCL4, and CCL5 chemokines that bind the HIV-1 co-
receptor, CCR5, preventing HIV entry [60]. In the SIV macaque model, immuniza-
tion with SIVgp120 and p27 protected the animals from subsequent challenge with
live SIV by the rectal mucosal route. In the protected macaques, γδ T cells in the rec-
tal mucosa were increased and found to produce the CCR5 ligands, CCL3, CCL4,
and CCL5 [61]. The production of the same chemokines by γδ T cells might wors-
en autoimmune diseases such as multiple sclerosis or its animal model, experimen-
tal allergic encephalomyelitis (EAE) [62–64].

Intraepithelial γδ T cells are not only attracted to epithelial surfaces by
chemokines but also produce chemokines that recruit other cells. Boismenu et al.
showed that murine Vγ3Vδ1 (also termed Vγ5Vδ1) dendritic epidermal T cells
(DETC) can produce CCL3, CCL4, CCL5, and XCL1 but not CCL2 [65]. XCL1
mRNA was also detected in stimulated γδ intraepithelial lymphocytes (IEL) isolated
from the small intestine of these mice [65]. Expression of XCL1, CCL3, CCL4, and
CCL5 mRNA was specifically detected in intestinal γδ IEL on gene microarray
analysis whereas these chemokines were absent (CCL3 and CCL4) or much less
abundant (CCL5 and XCL1) in αβ IEL [66]. Consistent with these findings, murine
γδ T cells were required for production of the CXCL1, XCL1, CCL3, and CCL4
chemokines in response to thermal injury in the gut but not in the lung [67]. Fresh-
ly isolated and activated human intestinal intraepithelial γδ T cells also expressed
high levels of CXCL8 mRNA [68]. 

CCR9/CCL25 and CCR10/CCL27direct γδ T cells to the small intestine and
the skin

Chemokines and chemokine receptors have been shown to play key roles in deter-
mining tissue-specific homing of hematopoietic cells [69, 70]. The unique expression
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pattern of CCR9 and the distribution of its ligand, CCL25, suggest that CCR9 and
CCL25 play important roles in thymocyte development and lymphocyte migration
to the gut. CCR9 is an excellent example of an organ-specific chemokine receptor,
because its ligand, CCL25, is selectively expressed in the small intestine and thymus
[71]. CCR9 has been demonstrated to be the chemokine receptor that regulates lym-
phocyte trafficking during T cell development and in the gut [72]. The thymus has
been shown to express various chemokines, including XCL1, CCL3, CCL4, CCL17,
CCL19, CCL21, CCL25, and CXCL12 [73]. This profile of chemokine expression
in thymus appears to suggest that chemokines may play an important role in thy-
mopoiesis. Expression of CCL25 was detected in medullary dendritic cells, thymic
epithelial cells, and small intestine epithelial cells. CCL25 may be important for the
development, homeostasis, and/or function of mucosal αβ and γδ T cells. CCR9 is
expressed on the majority of immature CD4+CD8+ (double positive, DP) thymo-
cytes, and is downregulated during their maturation into the CD4+ or CD8+ stage.
These findings suggest that CCR9 may be involved in regulating T cell migration
within the thymus. Half of murine γδ thymocytes and peripheral γδ T cells express
CCR9 [74], suggesting CCR9 and its chemokine, CCL25, may function in the devel-
opment and trafficking of γδ T cells. In bone marrow transplantation experiments,
CCR9–/– bone marrow cells showed a reduced capacity to repopulate the thymus
compared with bone marrow cells from CCR9+/+ mice [74, 75]. Studies with
CCR9–/– mice also showed that CCR9 expression is required for the migration of γδ
T cells to the small intestine. CCR9–/– mice had increased number of peripheral γδ
T cells but reduced number of γδ intraepithelial lymphocytes (IEL) in the small intes-
tine suggesting that without CCR9, γδ T cells do not migrate to the gut. Thus,
CCR9/CCL25 plays an important role in regulating the development and migration
of γδ T cells [71]. 

Similar to the gut, γδ T cells also constitute the primary T cell population in
murine skin. Skin γδ T cells have a dendritic appearance that maximizes their con-
tact with keratinocytes and are termed dendritic epidermal T cells (DETC). CCR10
is expressed by a subset of skin-homing-memory T cells including DETC and αβ T
cells [76, 77]. Some tissue cells also express CCR10 mRNA but the function of
CCR10 in these cells is not known. Two CCR10 ligands, CCL27 and CCL28, have
been identified [78]. CCL27 is selectively and constitutively produced by ker-
atinocytes. CCL27 can mediate the preferential migration of skin-homing, CCR10+,
CLA-bearing memory T cells in vitro. In mice, expression of the CCR10 chemokine
receptor by Vγ3Vδ1 DETC was dramatically upregulated in the CD122+ (IL-2Rβ+)
population from both wild-type (Vγ3+) and Vγ2+ transgenic mice [79]. Using in vitro
chemotaxis assays, Xiong et al. showed that Vγ3+ CD122+ cells preferentially
migrated towards CCL27, demonstrating that CCR10 on γδ T cells is functional.
Stimulation of γδ T cells though their T-cell receptors (TCRs) significantly upregu-
lated CCR10 expression by Vδ4 and Vδ5 CD122– T cells. Although CCR10 expres-
sion on skin γδ T cells has not been directly tested in humans (where γδ T cells rep-
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resent 1–4% of skin T cells), most CD3+ T cells in affected skin from patients with
atopic dermatitis or psoriasis expressed CCR10 [80, 81]. Thus, engagement of
TCRs on murine γδ T cells may induce upregulation of the CCR10 chemokine
receptor allowing their homing to the epidermis. Selective expression of CCR10 on
activated fetal thymic γδ T cells may direct their preferential migration to adult and
fetal skin in response to CCL27.

Distinct chemokine receptor profile on human γδ T cell subsets

Glatzel et al. [82] and our laboratory in collaboration with B. Moser (unpublished
data [83, 84]) showed that human γδ T cells express a variety of chemokine recep-
tors, including CXC and CC receptors. We found significant differences between γδ
and αβ T cells in the expression of all chemokine receptors analyzed except CCR3,
CCR4, and CCR6. Strikingly, a significant proportion of γδ T cells expressed the
innate or acute phase chemokine receptors, CXCR1 and CXCR2, which are promi-
nently expressed on neutrophils. These chemokine receptors are typically expressed
by innate immune cells such as neutrophils, monocytes, and NK cells and in
inflammed tissue, but not by conventional αβ T cells [85]. Moreover, unlike most αβ
T cells, some γδ T cells also express CCR1 and CCR2. In addition to the expression
of CXCR1, CXCR2, and CCR1, a higher proportion of γδ T cells expressed
chemokine receptors responding to inducible chemokines that are characteristic of
Th1/Tc1αβ T cells including CXCR3, CXCR6, and CCR5. Glatzel et al. also found
that a high proportion of γδ T cells express CCR5 and CXCR3 chemokine receptors,
whereas a lower proportion of αβ T cells express CCR5 and CXCR3. Only a small
proportion of γδ T cells expressed CCR4 and the other two Th2-associated
chemokine receptors, CCR3 and CCR8, were not detected on γδ T cells. This expres-
sion pattern of chemokine receptors is consistent with the cytokine profile of γδ T
cells since they produce large amount of IFN-γ and TNF-α after stimulated with non-
peptide antigens. Almost no γδ T cells express the CXCL13/BCA-1 receptor CXCR5
that defines a subset of CD4+ αβ T cells that home to B cell follicles. Also, only a
fraction of γδ T cells express the lymph node homing receptor CCR7 compared with
a high proportion of CD4 or CD8 αβ T cells. These results clearly demonstrate that
γδ T cells express a distinct array of chemokine receptors when compared with αβ T
cells, favoring innate (CXCR1 and CXCR2) and Th1/Tc1 (CXCR3, CXCR6, and
CCR5) but not lymphoid tissue-homing receptors (CXCR5 and CCR7).

Chemokine receptor expression by neonatal γδ T cells was also studied in our
laboratory. Unlike neonatal αβ T cells, some neonatal γδ T cells express CXCR5,
CXCR6, CCR6, and CCR9 although like αβ T cells they also expressed CXCR3,
CXCR4, and CCR7. As noted, a higher proportion of adult γδ T cells expressed
CXCR1, CXCR2, CXCR3, CXCR6, CCR1, CCR2, and CCR5 compared with αβ
T cells and neonatal γδ T cells. 
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Chemokine receptors on human Vδ1 and Vδ2 T cells

γδ T cells expressing Vδ1 and Vδ2 TCR comprise the majority of peripheral blood
γδ T cells. Vδ2+ T cells predominate in most adults due to an environmentally
dependent expansion of γδ T cells in infancy [86]. Vδ2 T cells are the dominant γδ
T cells in circulating blood, whereas Vδ1 T cells are preferentially found in such tis-
sues as gut epithelium and skin. When the two major V gene subsets of human γδ T
cells were examined, Vδ1 and Vδ2 T cells were found to have different surface
markers and recognize different classes of antigens [13]. We compared the
chemokine receptor expression by the two subsets of γδ T cells. Although there were
no differences in CXCR1 and CXCR2 expression between Vδ1 and Vδ2 T cells, few
Vδ1 T cells expressed inflammatory CXCR6, CCR1, CCR2, CCR5, and CCR6 that
are expressed by Vγ2Vδ2 T cells (unpublished observations). Although the propor-
tion of cells was lower, similar differences were also noted in neonates (unpublished
observations). These findings are consistent with Vδ1 T cells being primarily late or
effector memory cells that express CD45RA and lack CD62L [13].

Memory subsets of human Vγ2Vδ2 T cells express different arrays 
of chemokine receptors

Human Vγ2Vδ2 T cells can be divided into distinct subsets according to different
surface markers, proliferative ability, and effector functions [87–89]. Expression of
CD27, CD28, and CD45RO [90] or CCR7 [91] have been used to distinguish the
different memory subsets of T cells. Dieli et al. [15] and our laboratory have exam-
ined chemokine receptor expression by different memory Vγ2Vδ2 T cell subsets
(Tab. 1). Strikingly, we find that a high proportion of intermediate (CD27+CD28–

CD45RA/RO+) and late (CD27–CD28–CD45RA+) memory Vγ2Vδ2 T cells
expressed CXCR1 and CXCR2 chemokine receptors and CD56 and did not express
CCR6 or CCR7. In contrast, most early (CD27+/–CD28+CD45RO+) memory
Vγ2Vδ2 T cells selectively expressed CXCR6, CCR1, and CCR2 while only a minor
fraction expressed CCR6 and CCR7. A high proportion of both subsets expressed
CXCR3, and CCR5 chemokine receptors characteristic of Th1/Tc1 cells [83, 92,
93] and CXCR4 [83]. A higher proportion of early memory γδ T cells than early
memory CD8 αβ T cells expressed CXCR3, CXCR6, CCR1, CCR2, and CCR5.
Also, there was no difference in the expression of other chemokine receptors when
CCR7+ and CCR7– early memory Vγ2Vδ2 T cells were compared (unpublished
observations).

To determine if CXCR1 receptors expressed by intermediate and late memory γδ
T cells were functional, we measured chemotaxis of purified blood γδ, NK, and αβ
T cells to CXCL8 (a ligand for CXCR1) and CXCL12 (a ligand for CXCR4). Con-
sistent with the observed expression profiles, γδ T and NK cells specifically migrat-
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ed to CXCL8 whereas αβ T cells did not. All three populations migrated to
CXCL12. γδ T cells expressing CXCR1 also fluxed calcium and had increased actin
polymerization with exposure to CXCL8. γδ T cells were also able to migrate to the
CXCR3 ligand, CXCL10, and the CCR1/3/5 ligand, CCL5. Consistent with their
proposed effector function, CXCR1+ intermediate and late memory Vγ2Vδ2 T cells
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Table 1 - Expression of chemokine receptors by subsets of human NK cells and Vγ2Vδ2 T
cellsa

Chemokine
receptor NK cellsb Vγ2Vδ2 T cellsc

CD56brightCD16– CD56dimCD16+ TEarly
d TEarly 27– TInt TLate RA

CX3CR1 –e ++f –/+g –/+ ++ ++
CXCR1 – ++ –/+ –/+ ++ ++
CXCR2 – ++ –/+ –/+ ++ ++
CXCR3 +h –/+ ++ ++ ++ +
CXCR4 + + + + + +
CXCR5 – – – – – –
CXCR6 – – ++ ++ –/+ –/+
CCR1 – – ++ ++ + +
CCR2 – – ++ ++ –/+ –/+
CCR3 – – – – – –
CCR4 – –/+ –/+ –/+ –/+ –/+
CCR5 + – ++ ++ ++ ++
CCR6 – – + –/+ – –/+
CCR7 + – + –/+ – –/+
CCR8 NDi ND – – – –
CCR9 – – – – – –
CCR10 ND ND ND ND ND ND
XCR1 ND ND ND ND ND ND

aData are based on surface molecule expression detected by FACS
bReferences [1, 21]
cReferences (Our unpublished data and [15, 82, 83, 84])
dTEarly, CD28+CD27+; TEarly 27– , CD28+CD27–; TInt, CD28–CD27+; TLate RA, CD27–CD28–

CD45RA+

eNot expressed
fHigh-density expression by the majority of cells
gLow-density and variable expression by the minority of cells
hExpression by about half of the cells
iNo data available 



also expressed more perforin than early memory Vγ2Vδ2 T cells. In contrast, early
memory and intermediate memory cells showed stronger proliferation to nonpep-
tide antigens than CD45RA+ late memory Vγ2Vδ2 T cells.

We also found that a high proportion of human γδ T cells expressed the β7 inter-
grin chain that directs T cells to epithelial surfaces or to Peyer’s patches when paired
with αE or α4, respectively. Also some γδ T cells expressed the cutaneous lympho-
cyte antigen (CLA) that is required for skin homing. β7 and CLA expression did not
affect chemokine receptor expression since γδ T cells that expressed or did not
express these molecules had identical proportions of cells expressing the different
chemokine receptors. Given the high proportion of resting γδ T cells expressing CLA
and β7 receptors as well as E- and P-selectin ligands [94], a high proportion of rest-
ing human γδ T cells are able to migrate to epithelial and other peripheral tissues for
antigen recognition and effector functions but not to lymph nodes.

A role for γδ T cells in humoral immunity

As detailed above, human peripheral blood γδ T cells mainly express receptors for
Th1/Tc1 inflammatory chemokines but not lymph node chemokines. Brandes et al.
found that freshly isolated Vγ2Vδ2 T cells expressed CXCR3 and CCR5, as expect-
ed, but almost no CCR7 [83]. Accordingly, these cells migrated and fluxed calcium
when exposed to CXCL11 and CCL5, but not CCL21 [83]. Stimulation with the
nonpeptide antigen, IPP, fundamentally changed the migration properties of
Vγ2Vδ2 T cells by rapidly inducing CCR7, and to a lesser extent CCR4, and dra-
matically down-modulating CCR5 and to a lesser extent CCR2 [83]. Maximal
expression of CCR7 was reached early (12–36 h) after Vγ2Vδ2 T cell activation and
declined to baseline after 2 weeks, indicating that CCR7 was primarily expressed
early after activation. Similar upregulation of CCR7 has been reported for memory
αβ T cells in vitro [95]. This inverse relationship in the regulation of inflammatory
versus lymph node homing chemokine receptors (e.g., CCR5 versus CCR7) after γδ
T cell stimulation paralleled changes in the migratory responses to the correspond-
ing chemokines, CCL5 and CCL21. 

Thus far, CCR7 has been linked with the relocation of lymphocytes to secondary
lymphoid tissues, including lymph nodes and Peyer’s patches. In agreement, γδ T
cells have been detected within lymph nodes. Immunohistochemical analysis direct-
ly showed that γδ T cells clustered within the follicular dendritic cell network of ger-
minal centers in lymph nodes [83]. The localization in germinal centers implies a
role for γδ T cells in humoral immune responses. In support of such a role and con-
sistent with earlier studies [96–99], co-culture of B cells with γδ T cells results in the
production of substantial levels of IgM, IgG, and IgA [83]. These findings suggest
the involvement of activated γδ T cells in humoral immunity during antimicrobial
responses.
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Conclusions

NK and γδ T cells have both similarity and difference in chemokine production
and chemokine receptor expression. Both cell types produce CCL3, CCL4, CCL5,
and CXCL8, and express the innate chemokine receptors, CX3CR1, CXCR1, and
CXCR2, unlike most αβ T cells. However, like Th1/Tc1 αβ T cells, γδ T cells
express Th1/Tc1 chemokine receptors such as CXCR3, CXCR6, CCR2, and
CCR5, whereas NK cells do not express CXCR6, CCR1, and CCR2. Subsets of
NK cells and memory subsets of γδ T cells exhibit distinct migratory potentials by
expressing different chemokine receptors. CD56dimCD16+ NK cells and interme-
diate and late memory Vγ2Vδ2 T cells express high level of CX3CR1, CXCR1,
and CXCR2, whereas CD56brightCD16– NK cells and early memory Vγ2Vδ2 T
cells generally do not express these chemokine receptors (Tab. 1). The role of
chemokines and chemokine receptors expressed by NK cells and γδ T cells in both
immunopathogenesis and immune functions are not well understood. While
chemokines produced by NK and γδ T cells suppress HIV-1 entry and replication
in vitro, these same chemokines are also involved in the pathogenesis of multiple
sclerosis. Furthermore, high level expression of the major HIV coreceptor CCR5,
rendered γδ T cells more vulnerable to HIV infection in vitro. Further studies are
needed to clarify the roles of chemokines and chemokine receptors in NK and γδ
T cell functions. Such knowledge will pave the way for the development of new
therapies based on blocking or stimulating interactions between chemokines and
their receptors.
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Introduction

Dendritic cells (DCs) are widely accepted as the most potent and versatile antigen-
presenting cells. They have an extraordinary capacity to acquire and process anti-
gens for presentation to T cells and to express high levels of major histocompatibil-
ity complex (MHC) molecules and co-stimulatory molecules that drive naïve T cell
activation. In addition DCs produce cytokines, primarily IL-12, which contribute to
shape the quality of the T cell response generated. The capacity to migrate to sites
of inflammation and from there to the T cell areas of secondary lymphoid organs is
a fundamental aspect of DC biology. It has become apparent that the large families
of chemokines and chemokine receptors provide a flexible code for regulating DC
traffic and positioning in both homeostatic and inflammatory conditions.

Dissemination of DC precursors and immature DCs under steady state
and inflammatory conditions

Under steady state conditions immature DCs seed into all bodily tissues where they
reside as “sentinels” ready to react to incoming pathogens, a state that is defined as
immature [1]. Langerhans cells (LCs) are a subset of immature DCs resident in
epithelia and characterised by a relatively slow turnover [2]. LCs contain character-
istic endosomal structures, called Birbeck granules, organised by a LC-specific lectin
(Langerin) and are anchored to epithelial cells through E-cadherin. LCs express
CCR6, the receptor for CCL20, a chemokine which is produced constitutively by
keratinocytes [3]. Human monocytes cultured in the presence of TGF-β acquire
some of the cardinal features of LCs, such as expression of Langerin [4], raising the
possibility that LCs differentiate from peripheral monocytes under the aegis of local
cytokines.
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Immature DCs are also present in the dermis and in all parenchyma. These cells
have a turnover of approximately 2–4 days and need to be continuously replen-
ished by precursors derived from the blood [2, 5]. The precursors of tissue DCs
have not been fully characterised. They may be circulating immature DCs [6],
which are present in low numbers in peripheral blood, or monocytes. The latter
represent an abundant source of DC precursors that can be recruited at sites of
inflammation or infection where they rapidly differentiate to DCs [7, 8]. Mono-
cytes express CCR2 that promotes extravasation into inflamed tissues and migra-
tion towards a gradient of inflammatory chemokines. Mice deficient in CCR2 or in
its ligand MCP-1 have impaired immune responses that appear to be due to defec-
tive monocyte migration both in the afferent and efferent phase of the immune
response [9, 10]. Monocytes also express CCR5, a receptor for inflammatory
chemokines and a co-receptor for HIV, and CXCR4, the receptor for CXCL12. It
is possible that CXCR4 may be involved in the constitutive traffic of monocytes
and DCs into certain tissues including tumours where hypoxia induces high levels
of CXCL12 production.

In mice peripheral blood monocytes are a heterogeneous population comprising
at least two functional subsets: a short-lived CX3CR1lo CCR2+ Gr1+ subset that is
actively recruited to inflamed tissues and a CX3CR1hi CCR2– Gr1- subset charac-
terised by CX3CR1-dependent recruitment to non-inflamed tissues [11]. Both sub-
sets have the potential to differentiate into DCs in vivo. The level of CX3CR1
expression also defines two major human monocyte subsets, the CD14+ CD16– and
CD14lo CD16+ monocytes, which share phenotype and homing potential with the
mouse subsets [12]. Recently a subset of circulating monocytes, identified as Gr1int,
has been identified that selectively expresses CCR7 and CCR8 [13]. These mono-
cytes may be disposed to become lymphatic-migrating DCs. When these monocyte-
derived DCs exit skin to emigrate to lymph nodes, they may use not only CCR7, as
it will be described below, but also CCR8.

A distinct subset of DCs, called plasmacytoid DCs (pDCs) or interferon-produc-
ing cells (IPCs) has been described in humans [14–16] and, more recently, in mouse
[17]. Although IPCs are capable of presenting endogenous antigen to CD8+ T lym-
phocytes [18], their hallmark function is the production of high amounts of type I
IFN following viral infection. Immature IPC precursors circulating in peripheral
blood express CXCR3 and CXCR4 as well as L-selectin and E/P-selectin ligands
(PSGL-1 and CLA). This pattern of expression would be consistent with the capac-
ity of these cells to migrate both to inflamed lymph nodes and peripheral tissues
where CXCR3 and CXCR4 ligands are displayed on endothelial cells. Indeed, IPCs
are typically localised around high endothelial venules (HEV) in inflamed lymph
nodes and in some inflamed tissues [19–21]. Migration of IPCs require the coordi-
nate action of CXCR3 and CXCR4, possibly through a mechanism that entails fea-
tures of haptotaxis, i.e., dependency on chemokine immobilisation, and chemore-
pulsion, i.e., movement away from highest chemokine concentration [21, 22].
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DC maturation: effects on chemokine receptor expression and 
chemokine production

The DC maturation process can be induced by a variety of stimuli. The most effec-
tive are microbial products that trigger specific Toll-like receptors (TLRs) on DCs.
Interestingly human myeloids DCs (mDCs) and IPCs express complementary sets of
TLRs and consequently respond to different agonists [23, 24]. In particular, mDCs
express TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, and TLR8 whereas IPCs express
TLR7 and TLR9. Thus, while risiquimod (a synthetic compound that triggers in
humans TLR7 and TLR8) triggers both DC types, LPS (a TLR4 agonist) selectively
triggers mDCs and CpG (a TLR9 agonist) selectively triggers IPCs. In addition, DC
maturation can be induced by inflammatory cytokines, such as IL-1 and TNF, as well
as by endogenous “danger signals” released by necrotic cells, such as heat shock pro-
teins and urate crystals [25]. CD40L is also a potent DC maturation stimulus but
since it is delivered by activated T cells it acts primarily as a secondary stimulus that
enhances cytokine production initially elicited by microbial stimulation [26, 27]. 

Using a global gene expression approach it has been recently shown that the mat-
uration program induced by TLR triggering involves the coordinate regulation of
approximately 8,000 genes that control several DC functions ranging from antigen
capture and presentation to co-stimulation, cytokine production and chemokine
expression and responsiveness [28]. While most of the genes appear to be triggered
by almost all stimuli a few genes have a high activation threshold. Indeed genes
involved in the differentiation of Th1 and inflammatory T cells, such as IL-12, IL-
23 and Delta-4, have been found to be elicited only in response to combinations of
selected TLR ligands which act in synergy [28].

In response to microbial products DCs produce high amounts of inflammatory
chemokines, up to the extraordinary amount of 2 pg/cell of CCL4 [29]. These
chemokines, which include CCL2, CCL4 and CCL5, are produced very rapidly but
only for a limited period of time and may play two distinct functions: first they
attract DC precursors at sites of antigen exposure; second, by inducing a rapid and
complete internalisation of the cognate receptors on maturing DCs allow these cells
to exit the tissue. Indeed, CCR1 and CCR5 disappear within 1 h from the surface
of maturing DCs while they remain detectable intracellularly for several days [29].
Eventually, however, these receptors are downregulated at the mRNA level. At later
time points following induction of maturation DCs express CCL17 and CCL19 that
attract CCR4 and CCR7 positive cells, respectively, and may thus favour interaction
with naïve and activated T cells [30].

A common feature of maturing DCs and IPCs is the upregulation of CCR7, the
receptor for CCL19 and CCL21. CCL21 is constitutively expressed in lymphatic
endothelial cells and high endothelial venules and is involved in the recruitment of
maturing DCs and other CCR7+ cells at these sites [31]. CCL21 is expressed togeth-
er with CCL19 by stromal cells in the T cell areas in a lymphotoxin β-dependent
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fashion. CCL19 is also produced by maturing DCs at late time points after stimu-
lation and is therefore expected to be released primarily in the lymph node. CCR7
expression and responsiveness gradually increased in maturing DCs. This receptor
also shows a striking resistance to ligand-induced downregulation, indicating that
DCs can sustain the response to CCL19 and CCL21 throughout the maturation
process. The transcriptional regulation of the CCR7 gene has not been charac-
terised. In general CCR7 expression is induced by stimuli that induce upregulation
of MHC and co-stimulatory molecules. However, there are examples of maturation
stimuli that do not induce CCR7 expression and stimuli that induce CCR7 expres-
sion independently of maturation. An example of the latter is the uptake of apop-
totic cells by human monocyte-derived DCs that induces CCR7 expression and DC
chemotaxis in response to CCL21, but results in downregulation of HLA-DR and
CD86 [32].

DC traffic from sites of antigen capture to sites of antigen presentation

Priming of naïve T cells requires the encounter with antigen-presenting DCs in the
specialised T cell areas of secondary lymphoid organs (Fig. 1). In certain experi-
mental conditions it has been shown that intact antigen present in peripheral tissues
can be transported to lymph nodes through the lymph. There it can be captured and
presented by lymph node resident DCs that, under steady state condition, represent
an extensive network of poorly stimulatory cells still endowed with antigen captur-
ing capacity [33, 34]. The major route of antigen delivery to the lymph node is rep-
resented by peripheral tissue-resident DCs that migrate to the draining lymph nodes.
For instance, maturing DCs that have taken up antigen in the skin and have been
stimulated by microbial products migrate into lymphatic vessels and localise to the
T cell areas of the draining lymph node. Similarly, splenic immature DCs which are
present in the marginal zone and are exposed to blood-borne antigens rapidly
mature and migrate to the T cell area following intravenous injection of microbial
products. Both these processes are dependent from CCR7 upregulation in mature
DCs.

CCR7-deficient mice have a major defect in DC migration from tissue to lymph
nodes and from the marginal zone to the T cell zone of spleen [35]. Adoptive trans-
fer experiments formally demonstrated that CCR7-deficient DCs do not migrate
when injected to normal CCR7-expressing hosts [36]. Two recent lines of evidence
suggest that the CCR7-dependent pathway of migration can be boosted by inflam-
matory mediators. First, the lipid mediators cysteinyl leukotrienes and
prostaglandin E2 enhance the sensitivity of CCR7 [37, 38]. Second, inflammatory
cytokines such as TNF and IL-1 increase expression of CCL21 on lymphatic
endothelial cells [36]. Both mechanisms enhance the entry of maturing DCs into
lymphatic vessels and the migration to lymph nodes.
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Besides its role in driving the migration of antigen-carrying mature DCs in the
course of an immune response, CCR7 appears to control the migration of DCs to
lymph node in the steady state, a phenomenon that is much less understood. Mice
lacking the adaptor molecule DAP12 present a homeostatic accumulation of DCs in
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Figure 1 
Immature “sentinel” DCs triggered by microbial products and inflammatory cytokines in
peripheral tissues release inflammatory chemokines thus attracting DC precursors (mono-
cytes) from the blood, and migrate in a CCR7-dependent fashion into lymphatic endothelial
vessels. Maturing DCs upregulate MHC and co-stimulatory molecules and produce cytokines
and chemokines, thus acquiring T cell priming and polarising capacity. Mature DCs localise
in the T cell area where they present antigen to naïve T cells that home to the T cell area
through a CCR7-dependent mechanism and induce their proliferation and differentiation to
effector cells. Additional molecules, such as selectins and integrins, participate in these
processes which are not depicted in the scheme.



peripheral sites, raising the possibility that a DAP12 linked receptor such as TREM-
2 may play a role in controlling DC migration in homeostasis [39, 40]. 

Recent in vivo analysis using green fluorescent protein (GFP)-tagged cells
revealed relevant differences between LCs and dermal DCs. After skin immunisation
both LCs and dermal DCs migrate to the lymph node but the latter appear to
migrate more rapidly, to colonise different areas, to express higher levels of co-stim-
ulatory molecules and to be more capable of eliciting T cell responses [41]. Indeed,
deletion of LCs did not impair the triggering of hapten-specific T cells.

DCs play an important role in the gut where they scan an enormous and con-
tinuously exposed surface. Mucosal DCs present in the lamina propria express
CX3CR1 which is required to form transepithelial dendrites, which enable DCs to
directly sample luminal antigens, and commensal and pathogenic bacteria [42, 43].
These cells conditioned by local cytokines (for instance TGF-β) or T cells may reg-
ulate gut homeostasis, immunological tolerance and inflammation in the gut. 

Impact of DC maturation and migration on T cell priming in physiological
and vaccination settings

There is now abundant evidence that maturation state of antigen presenting DCs
dictates the outcome of the T cell response. The most striking example is provided
by the findings that in mice targeting of soluble antigens to lymph node resident
immature DCs leads to an abortive T cell proliferation and establishment of toler-
ance whereas in the presence of a DC maturation stimulus, in the form of CD40
antibodies, the same antigen leads to effective T cell priming and generation of effec-
tor and memory cells [44].

In addition to the maturation state, the absolute number of antigen presenting
DCs that migrate to the draining lymph node has a profound impact on the mag-
nitude of the T cell response. This is particularly relevant in immunisation proto-
cols in which antigen-loaded DCs are injected subcutaneously as cancer vaccines.
In these protocols, human immature DCs are generated in vitro from haematopoi-
etic progenitors or monocytes, pulsed with antigen in the forms of protein, peptide
or mRNA, and induced to mature by stimulation with microbial products or
inflammatory cytokines before injection [45]. In preclinical mouse systems subcu-
taneously injected mature DCs migrate to the lymph node in a CCR7-dependent
fashion where they elicit T cell responses. In this setting the magnitude and quali-
ty of CD4+ T cell response was proportional to the number of antigen-carrying DCs
that reached the lymph node and could be boosted up to 40-fold by pre-injection
of TNF that conditioned the tissue for increased DC migration by increasing the
expression of the CCR7 ligand CCL21 in lymphatic endothelial cells [36]. Thus,
lymphatic drainage of mature DCs can be manipulated to increase DC vaccine effi-
cacy.
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In mice mature DCs migrating to the draining lymph nodes rapidly recruit in a
CCR7-independent, CXCR3-dependent manner natural killer (NK) cells, which are
normally excluded from lymph nodes [46]. NK cell depletion and reconstitution
experiments show that NK cells provide an early source of IFN-γ that is necessary
for optimal Th1 polarisation. These results show that DCs can influence Th1 dif-
ferentiation not only by elaborating Th1 promoting factors, such as IL-12, but also
by recruiting to lymph node, through a yet undefined mechanism, NK cells that in
some systems represent an essential source of IFN-γ for T cell polarisation.

Another factor that may influence T cell fate is the kinetics of DC activation.
Recently migrated DCs actively produce Th1 polarising cytokines and effectively
prime Th1 responses [47]. In contrast at late time points the same cells exhaust the
IL-12 producing capacity and although still retaining T cell stimulatory capacity
promote T cell proliferation without differentiation. Thus while “active” DCs
induce differentiation of effector T cells, exhausted DCs may induce the develop-
ment of memory T cells [48].

Conclusions

Gaining a better understanding of the migratory pathways of DCs in physiological
settings will be essential for future advances in using DCs as a means to fine-tune
immune responses in clinical settings such as in cancer, autoimmunity and trans-
plantation. In the case of induction of anti-tumour response, strategies are being
evaluated aiming at increasing the delivery of antigen-carrying mature DCs to
lymph node to enhance the efficacy of the vaccine [49]. In other cases, such as in
autoimmune disorders and transplantation, it may be beneficial to deliver to the
lymph node immature tolerogenic DCs to dampen the immune response and induce
and/or maintain peripheral tolerance. Interfering with the migration of DCs in the
context of transplantation, i.e., blocking the reverse transmigration of donor DCs
from the transplanted organ to the blood [50], is presently more difficult because
the molecular mechanisms controlling this event are still poorly defined. Nonethe-
less also this approach holds promises as a yet another way to modulate the immune
response by targeting DC migration. 
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Introduction

Correct cell movement and positioning are central elements in development, and
influence both normal physiology and disease states. Cell movement has probably
been studied most extensively in the immune system, where many aspects of the
immune response are closely related to coordination of leukocyte trafficking [1–3].

The family of low molecular weight proinflammatory cytokines, termed
chemokines, has been implicated directly in governing cell movement. The impor-
tance of chemokines in the patterning and plasticity of the immune and nervous sys-
tems and in various inflammatory processes has been shown by detection of
chemokine/chemokine receptor mRNAs and proteins, use of antagonist molecules,
interference RNA or studies of the phenotype of knockout and transgenic animals
[4–6].

The chemokines are classified in two main groups. In simplified terms, the
inflammatory chemokines recruit cells during inflammatory processes, whereas
homeostatic chemokines control haematopoiesis and immune processes in health. In
addition to these functional differences, the inflammatory chemokines are inducible
and show receptor promiscuity; the homeostatic chemokines are constitutively
expressed, with narrow receptor specificity. Examples of the role of chemokines and
their receptors in homeostatic processes include regulation of B and T cell homing
(CXCR5, CCR7) [7, 8], B cell traffic to mucosa (CCR6) [9] and bone marrow
(CXCR4) [10], development of Th1 (CCR5 and CXCR4) and Th2 (CCR3) respons-
es [11], resistance to apoptosis (CXCR5, CCR9) [12], antigen-presenting cell (APC)
development (CCR2, CCR8) [13], and dendritic cell (DC) development (CCR6,
CCR7, CXCR3) [14].

Since their first description [15], the chemokines have been the subject of great
interest due to their potential as targets for drug development in inflammatory dis-
eases. Although recruitment of cell populations and expression of specific
chemokines can be correlated in several inflammatory diseases, including asthma
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[16], bowel disease [17, 18] atherosclerosis [19] or rheumatoid arthritis [20], the
redundancy and promiscuity of the chemokine system nonetheless makes it diffi-
cult to define the chemokines that are essential in the course of a pathological
process.

Classical view of chemokine receptor signalling

Chemokines exert their effects through interactions with seven-transmembrane, G
protein-coupled receptors (GPCR) in the target cell membrane [21]. Although sim-
ilar to many other seven-transmembrane receptors, the chemokine receptors have
some unique structural features [22]. Initial studies of chemokine signalling were
based in part on information available for other GPCR. Several factors nonetheless
slowed chemokine signalling research, including a lack of reliable chemokine-spe-
cific reagents and cell-dependent variability in receptor expression. Most studies
centred on description of new receptors, assigning ligands to orphan receptors,
chemokine-based drug discovery or characterising the chemokine receptors in HIV-
1 infection, with limited interest in underlying mechanisms.

The classical view of chemoattractant receptor signalling requires activation of
the G protein pathway after chemokine binding [23, 24]. The majority of the
responses can be inhibited by pertussis toxin (PTx) treatment, indicating that mem-
bers of the Gi protein family are the primary transduction partners of these recep-
tors [23, 24]. Gαi associates to the chemokine receptors in response to ligand stim-
ulation; this, and the potent agonist-dependent inhibition of adenylyl cyclase are
consistent with receptor coupling to Gαi, and mobilisation of intracellular calcium
[25, 26]. Gαi is not the only G protein that couples to chemokine receptors; Gq,
G16 and G11 also participate in chemokine signalling [27, 28]. Following activa-
tion, heterotrimeric G protein dissociates into the βγ subunit complex and the
guanosine triphosphate (GTP)-bound α subunit, each of which is necessary for ini-
tiating intracellular signalling responses.

G protein-mediated signalling includes activation of phospholipase C (PLC),
resulting in formation of inositol triphosphate [Ins(1,4,5)P3] and diacylglycerol
(DAG), responsible for calcium mobilisation and protein kinase C (PKC) activation,
respectively [29]. Chemokines also induce activation of phospholipase A2 (PLA2)
and release of arachidonic acid, which are involved in the chemotactic response, and
in triggering of phospholipase D (PLD), which has been implicated in vesicular traf-
ficking and cell transformation in response to chemokines [30, 31].

Through the G protein complex, the chemokine receptor interacts with several
signalling pathways. This is the case for the coupling of GPCR kinases (GRK), for
which βγ association with activated GPCR allows formation of a ternary complex
with GRK, required for Ser/Thr phosphorylation [26, 32]. The phosphorylated
receptor has increased affinity for arrestin-type proteins, whose binding impedes
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further coupling between the receptor and G proteins, and targets GPCR for inter-
nalisation [26, 32].

G protein activity is regulated by altering the transition between GTP- and
guanosine diphosphate (GDP)-bound forms, which correspond to active and inac-
tive G protein, respectively. This transition is controlled by regulators of G protein
signalling (RGS) proteins that, by acting as GTPase- activating proteins, promote α
subunit reassociation with the βγ complex and prevents its interaction with effectors
[33, 34]. Several RGS family members are expressed in lymphocytes, including
RGS1, RGS2, RGS10, RGS13, RGS14, RGS16, and RGS19; RGS protein regulates
chemotaxis through CXCR2, CXCR4, CXCR5 or CCR3 [35–37].

Chemotaxis requires highly complex motile responses involving changes in cell
shape, actin polymerisation/depolymerisation, and cell adhesion [38, 39]. These
processes are modulated by guanine nucleotides, and involve regulation by low mol-
ecular weight GTP-binding proteins, including Rho, Rac and Cdc42, which modu-
late actin filament assembly. Chemokine stimulation results in activation of Rho,
Rac and Cdc42, which are involved in regulation of focal adhesion, lamellipodia
and philopodia, respectively [40–43]. Despite extensive work, the link between
these proteins and the chemokine receptors remains unclear.

Phosphatidylinositol-3-kinase (PI3K) activity is rapidly stimulated by chemoat-
tractants. Its role in chemotaxis varies greatly depending on cell type, which may
explain the disparity of results reported in the literature [43, 44]. PI3K is activated
by GPCR stimulation; this generates 3-phosphorylated lipids that act as second mes-
sengers for the downstream effectors PKB, PKC or AKT, as well as for Ras path-
ways [45–47]. Chemokine-activated PI3K also has a central role in integrin adhe-
siveness, cell migration and polarisation [43, 44]. Recent data nonetheless implicate
DOCK2, a member of the CDM (Caenorhabditis elegans CED-5, mammalian
Dock180, Mb) regulators of cytoskeleton dynamics protein family, in T and B cell
migration [45]. By modulating chemokine-mediated Rac activation, DOCK2 con-
trols T and B cell polarisation and migration in a largely PI3K-independent process;
the data thus point to divergent, cell type-dependent functions for DOCK2 and
PI3K during chemokine-induced signalling [45]. Chemokines also activate the
MAPK (mitogen-activating protein kinase) cascade, which regulates gene expression
and modulates cytoskeletal changes necessary for cell migration through pathways
involving PLA2 [48].

Chemokines also activate other tyrosine kinases. Through a molecular complex
formed by the focal adhesion kinase (FAK) protein p125FAK and the T cell tyrosine
kinase zeta-associated protein (ZAP)-70, CCL5 induces the generation of T cell
focal adhesions and subsequent cell activation [49]. Via its SH2 domains, ZAP-70
binds to the phosphotyrosine in the immunoreceptor tyrosine-based activation
motif (ITAM) domains of the T cell receptor (TCR) in a process catalysed by p56lck

or p59fyn [50]. The link between chemokine signalling with cytoskeletal proteins
responsible for migratory and adhesive functions also involves the phosphorylation
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and activation of Pyk2 and subsequent regulation of the JNK/SAPK system [51, 52].
The classical view of the events that follow chemokine/chemokine receptor interac-
tion is summarised in Figure 1.

A realistic view of chemokine signalling must consider the many factors that can
modulate chemokine/chemokine receptor expression and function; these include
cytokines, co-stimulation, effectors, stress, transformation, pathogens, and mitogens
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Figure 1 
Classical view of chemokine signalling
Following ligand binding, a G protein associates to the receptor; dissociation of its subunits
enables activation of several signalling cascades. Abbreviations: PTX, pertussis toxin; RGS,
regulator of G-protein signalling; PLC, phospholipase C; IP3, Inositol tri-phosphate; MAPK,
mitogen-activated protein kinase; DAG, diacylglycerol; PI3K, phosphatidylinositol 3 kinase;
PKC, protein kinase C; PIP3, phosphatidylinositol-3,4,5-triphosphate; GEF, guanine nucleo-
tide exchange factor; GAP, guanine activation protein; FAK, focal adhesion kinase; GRK, G-
protein-coupled receptor kinase.



[53]. Furthermore, although chemokines and their receptors were initially thought
to act on specific cell types, we now know that a cell can express varying levels of a
number of distinct chemokine receptors, depending on cell cycle status and envi-
ronmental stimuli. The response of a given cell to a chemokine thus cannot be
explained by simple one-receptor/one-chemokine interaction models.

Regulation of chemokine receptor expression and clustering

Events at the cell surface that affect chemokine responses include receptor up- or
downregulation, oligomerisation, and their localisation in specialised membrane
regions. Receptor regulation is cell-specific; for example, TNF-α/IFN-γ-induced
CXCR4 downregulation is reported for neutrophils, but not for monocytes or lym-
phocytes [54], and H2O2 specifically upregulates CCR5 in human monocytes [55].
Another factor is cell status, as is the case of cell cycle-dependent CXCR3 expres-
sion [56]. Membrane receptor expression varies greatly in primary cells from one
individual to another. This modulation of receptor expression is crucial for a coor-
dinated response to chemokines; some of the many factors that affect it may not
always be considered, which explains in part the diversity in results among different
laboratories.

The response to a given chemokine depends both on the presence of the appro-
priate receptor on the target cell, as well as on other mediators that up- or down-
regulate its expression or the expression of alternative chemokine receptors.
Cross-desensitisation has been described, not only for chemokine receptors but
also for other GPCR, as is the case of opioid receptors [57]. Chemokine receptors
such as CXCR2 can also regulate the functional properties of glutamate receptors
[58].

The specialised membrane lipid domains termed rafts also affect individual
responses to a given chemokine, as shown by experiments that deplete membrane
cholesterol while maintaining other cell functions. Membrane cholesterol is neces-
sary for CXCR4 function, as its depletion inhibits CXCL12 binding and CXCL12-
induced Ca2+ mobilisation, chemotaxis and cell polarisation [59]. This was also
reported for CCR5, whose ligands and even an anti-CCR5 mAb are unable to
recognise CCR5 on cholesterol-depleted membranes [60]. Other chemokine func-
tions such as integrin activation also require membrane cholesterol, as shown by the
absence of PI3K redistribution in cholesterol-depleted membranes [61].

It has long been known that GPCR can function as oligomers [62]. The current
view of GPCR function, which should be also applied to chemokine receptors, is
that this family of receptors is found in multiple conformations on the cell surface.
Homodimerisation has been demonstrated for CCR2, CCR5 and CXCR4 using co-
immunoprecipitation, energy transfer, tagged receptors, and functional assays.
Although initially a matter of debate, an increasing number of reports now indicate
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the relevance of oligomerisation for chemokine function. Interaction between dif-
ferent chemokine receptors has also been reported, as has interaction between
chemokine receptors and other GPCR, such as opioid receptors. A summary of
chemokine receptors known to dimerise, as well as the functional consequences, is
shown in Table 1.

As it becomes clearer that multiple chemokine receptor conformations are found
on the cell membrane, controversy has moved to the definition of ligand function in
promoting or altering these oligomers, also with regard to functional consequences.
Change in the equilibrium between monomers and oligomers is assumed to be part
of the activation process for many receptors. Three situations emerge from studies
carried out to date: (1) dimers are detected and are not affected by ligand stimula-
tion, (2) dimers are detected and ligand stimulation modulates their presence, or (3)
dimers are not detected in the absence of ligand. Although further experiments are
required to address these issues properly, initial data indicate that chemokines sta-
bilise a preformed receptor conformation to initiate the signalling cascade [62, 82,
83].

These findings not only confirm chemokine receptor homo- and heterodimeri-
sation, but also suggest that GPCR oligomer assemblies have a number of func-
tional consequences. In analogy, γ-aminobutyric acid (GABA) or vasopressin recep-
tor dimerisation favours receptor entry in the export system, thus influencing
receptor trafficking; this is consistent with GPCR dimerisation in the endoplasmic
reticulum (ER) [84]. The lack of cell surface CCR5 expression in CCR5∆32 het-
erozygous individuals is suggested to be due to ER retention of CCR5-CCR5∆32
heterodimers [71]. The role of ligand in promoting or inhibiting receptor
oligomerisation is a central question, and a consensus has not been reached. Sever-
al studies suggest that ligand stabilises or promotes receptor dimers, whereas oth-
ers indicate the pre-existence of oligomer; these differences may reflect difficulties
in interpreting results derived from distinct analytical techniques (see Tab. 1). For
example, Western blot analyses indicate ligand-induced CCR2 dimerisation, where-
as data from energy transfer techniques limit the role of ligand to stabilisation of
pre-existing homo- and heterodimers [63, 72].

Oligomerisation would also explain some of the pharmacological properties of
GPCR, as well as some reported differences in signal transduction and receptor
internalisation [74, 75, 85]. As there are still relatively few studies of chemokine
receptor dimerisation, it is nonetheless difficult to form a clear view of the func-
tional consequences. Different laboratories describe changes in G protein coupling,
synergistic effects, or negative cooperation between chemokine receptors, as well as
between chemokine and opioid receptors; it is nonetheless clear that at least some
chemokine receptors form homo- and heterodimers, and that functional read-out
varies as a consequence of activating distinct receptor conformations [62]. Blocking
dimerisation has been shown to impede receptor function both in vivo and in vitro
[72].
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Chemokine receptor interactions affect chemokine-mediated signal 
transduction

Signalling through chemokine receptors has been assumed to be almost exclusively
G-protein mediated, although chemokines also promote an increase in tyrosine
kinase (TK) activity [86]. CXC chemokine activation of the src-related lyn TK was
reported in human neutrophils, and CXCL1, CXCL7 or CXCL8 binding in human
neutrophils triggers a rapid, time-dependent increase in the tyrosine autophospho-
rylating activity of the lyn kinase [87]. As discussed above, various kinases partici-
pate in late chemokine signalling events. Hints of a role for TK pathways in early
signalling were provided by a report on PTx-independent tyrosine phosphorylation
of CCR2 [86, 88]; this early phosphorylation is induced by Janus (JAK) kinases,
whose activation is nearly simultaneous with their association to the chemokine
receptor. Similar results were later reported for CCR5, CCR7 and CXCR4 receptors
[67, 69, 89]. Although JAK involvement in chemokine signalling was unexpected,
chemokine receptors are not the only GPCR known to activate JAK, as exemplified
by the angiotensin type 1 and thyroid hormone receptors [90, 91]. In contrast to
their binding to cytokine receptors, JAK are not constitutively associated to GPCR;
this can be explained by the lack of JAK-binding consensus sequences in GPCR [91].
In addition, JAK association and activation seem quite variable in GPCR, and there
are as yet no common rules for predicting the nature of this interaction [90, 91].

As for most new findings, chemokine-mediated JAK activation is debated.
CXCL12 induces neither migration nor calcium mobilisation in JAK-deficient cells,
or in the same cells reconstituted with a kinase-dead mutant of JAK, and no Gi asso-
ciation to the receptor was found in these cells [92]. These data are consistent with
the effect of JAK inhibitors on chemokine function and Gi coupling to CCR2 [67,
93]. The CXCR4 cytoplasmic domains involved in JAK2 and signal transducers and
transactivators of transcription (STAT)3 phosphorylation were recently described,
and involve residues in the third intracellular loop [94], although more detailed
analyses are needed to determine whether this is a conserved feature in all
chemokine receptors. JAK activation through chemokine receptors has also been
shown in vivo, as JAK blockade affects CCR7-mediated cell rolling [89].
Chemokine-mediated JAK activation is also fundamental for crosstalk with other
key mediators of leukocyte function, such as cytokines and growth factors, via
mechanisms that involve members of the suppressor of cytokine signalling (SOCS)
family [92, 93, 95]. SOCS proteins are upregulated through cytokine-induced,
JAK/STAT-mediated pathways and regulate cytokine signalling by binding to the
receptor or to JAK, blocking JAK activation [95]. SOCS are also induced by other
proteins that activate STAT, such as chemokines [92, 93]. Cytokine/growth factor-
or chemokine-upregulated SOCS are available to bind to both receptor types, allow-
ing intracellular communication between these receptor families [92, 93]. This novel
view of chemokine signalling is summarised in Figure 2.
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In this view, chemokine signalling would be initiated by ligand-mediated stabili-
sation of a multimeric receptor conformation, which would allow JAK association
and activation, followed by G protein coupling to the receptor. These three steps are
critical for chemokine function, and blockade of dimer formation, JAK activity or
G protein coupling severely impairs chemokine function. Many combinations of sig-
nalling pathways nonetheless remain to be explored.
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Figure 2 
Alternative view of chemokine signalling
Chemokines are present on the cell surface in multiple conformations, together with other
cell membrane proteins such as growth factor and cytokine receptors (A). Ligands stabilise
active chemokine receptor conformations that include the same (homodimers) or different
receptors (heterodimers), resulting in the differential activation of signalling pathways (B).
When cytokine/growth factor and chemokine receptors are activated through JAK/STAT
activation, members of the SOCS protein family are upregulated, resulting in a checkpoint
for cross-regulation of both families of cellular mediators. Abbreviations: JAK, Janus kinase;
STAT, signal transducer and activator of transcription; SOCS, suppressors of cytokine sig-
nalling; PTX, pertussis toxin; PI3K, phosphatidylinositol 3 kinase; LMWG, low molecular
weight GTP binding proteins.



Conclusions

Despite their newly-found importance in numerous pathophysiological situations,
the chemokines behave like many other well-known GPCR ligands. Concepts that
are still not settled in the chemokine field were resolved long ago for other GPCR.
The therapeutically promising vision of one-chemokine/one-receptor/one-cell type
has been replaced by a much more complex view that includes chemokine promis-
cuity with distinct receptors in various possible conformations. In addition, these
molecules are expressed in various cell types, depending on their differentiation or
activation status. The outcome is a vast array of possible cell responses as the result
of receptor routing into distinct signalling pathways.

Current methods for interference with chemokine function include modification
of receptor expression, chemokine sequestration or chemokine blockade. Modifica-
tion of chemokine-activated signalling pathways presents an attractive target for
therapeutic intervention, although a number of questions remain to be answered. If
a chemokine receptor can exist in several conformations, the contribution of each
conformation to receptor function must be evaluated, including that of monomers.
The number of receptors that must be engaged to trigger a given cell response must
be established, to determine how many are to be targeted for effective blockade of
chemokine function.

Specific TM1 and TM4 residues have recently been implicated in CCR5 recep-
tor dimerisation [72]. Studies are needed for each receptor to ascertain the specific
regions involved in oligomer stabilisation. Synthetic peptides that impede
chemokine function by blocking receptor dimerisation could be used to develop
molecules that interfere with receptor function. Another important issue is the iden-
tification of appropriate target receptors; since different receptor types can interact,
it must be assured that the desired signalling event is stimulated or repressed.
Oligomerisation has been reported for a representative, but still reduced number of
chemokine receptors (see Tab. 1). We await a full inventory of the receptors that
homodimerise and those that heterodimerise, as well as a list of all possible partners
in the latter case. Bispecific reagents that stabilise specific receptor conformations
may also represent a line of future research. Finally, therapeutic translation of these
concepts must also consider the relationships between chemokine receptors and
non-chemotactic GPCR, and with cytokine and growth factor receptors that share
common signalling pathways; these interactions, whether natural or provoked,
could lead to chemokine receptor non-responsiveness.

Reports describing these interactions are constantly increasing, and in the near
future we hope to have a clearer view of the functions of chemokine/receptor groups
in physiological and pathological processes.
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Introduction

The recruitment of leukocytes from the blood stream to the site of infection or
injury is of key importance in inflammation. The consequences of this recruitment
can be the elimination of the invading pathogen but can also lead to inappropriate
dysfunction. At inflammatory sites in the post-capillary venules of tissues, leukocyte
recruitment involves complex interactions between leukocytes and endothelial cells
characterized as firstly the tethering and rolling of leukocytes along the endotheli-
um followed by leukocyte activation and firm adhesion to the endothelium, and
then the migration of adherent leukocytes across the endothelium (diapedesis).
Finally the emigrated leukocytes leave the vicinity of the venule and migrate toward
the site of infection or injury guided by a gradient of one or more chemoattractants
emanating from the afflicted site (chemotaxis). According to the currently accepted
paradigm, the rolling is mediated by L-, P-, E-selectins and in some cases by α4 inte-
grins, the adhesion is mediated by the activated α4 and β2 integrins, and the trans-
migration and subsequent chemotaxis in the tissues involves sophisticated cellular
surface interactions and multiple signaling events among cell adhesion molecules,
chemotactic signals and intracellular signaling pathways. Research advances very
rapidly in this and related fields, and for more information on specific topics, read-
ers are referred to a number of comprehensive reviews on the adhesion molecules
on leukocytes and endothelial cells [1, 2], on the distribution of chemokines and
chemokine receptors and their role in leukocyte migration [3–5], and on the role of
cell adhesion molecules and cellular signaling mechanisms in leukocyte
transendothelial migration [6–9]. Figure 1 gives a schematic summary of leukocyte
transendothelial migration process in most tissues as exemplified by the inflamma-
tory response in mesentery and cremaster muscle. However, in some organs includ-
ing the lung, liver, and brain, the mechanisms can be distinct from this paradigm.
Some reviews have been published highlighting the organ-specific mechanisms of
leukocyte recruitment [6, 10, 11].
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Under physiologic conditions, L-selectin, P-selectin glycoprotein ligand-1 and
other molecules are constitutively expressed on the leukocyte surface. By contrast,
P- and E-selectins are generally expressed on the lumenal surface of endothelial
cells following appropriate activation. There may be some exception to this rule; P-
and even E-selectin are constitutively expressed in skin and perhaps a few other
organs. This allows leukocytes to roll on the activated endothelial cells. The inte-
grins found primarily on leukocytes are normally in a low adhesive state. When
activated, the low adhesive integrins can rapidly be induced into a high adhesive
state and mediate binding with molecules of the immunoglobulin superfamily adhe-
sion molecules (for example, intercellular adhesion molecule [ICAM]-1). This lat-
ter step results in the arrest of leukocytes on the lumenal surface of endothelium.
The activation signal is thought to emanate mainly from endothelial cell surface-
bound chemokines and sometimes from other chemoattractants, such as platelet-
activating factor (PAF) and leukotriene (LT) B4. Chemokines are also important for
leukocyte transmigration across the endothelium and subsequent chemotaxis in the
tissues [12, 13].
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Figure 1 
The scheme of leukocyte transendothelial migration process which occurs in most inflamed
tissues in the body.



Chemokines are a family of chemotactic cytokines that are secreted or mem-
brane-bound, structurally related proteins of 67-127 amino acid peptides. There are
about 50 chemokines in humans [3, 4, 14, 15], which fall in four subfamilies: CXC
(α), CC (β), C (γ), and CX3C (δ) according to the number and location of the cys-
teine residues in the amino terminal end. Chemokines transmit the signals to the
cells via binding to chemokine receptors which are all seven-transmembrane G-pro-
tein coupled receptors similar to cell surface receptors for other chemoattractants [3,
4, 14, 15]. Here we focus on the role for chemokines in leukocyte transendothelial
migration and the contributions of selectins and signaling mechanisms in this
process.

Chemokines trigger leukocyte adhesion to and transmigration across
endothelium

Numerous studies have confirmed the multi-step leukocyte recruitment paradigm
during inflammation. By using intravital microscopy, a powerful technique by which
the leukocyte recruitment in tissues can be directly visualized and quantified, it has
been established that this is a sequential process which occurs in the post-capillary
venules in most inflamed tissues. Leukocytes initially tether and roll along the
endothelium and then the rolling leukocytes adhere to the endothelial cells before
transendothelial migration can happen. The selectins or α4 integrins tether cells to
the endothelium. This localizes the cells to the endothelial surface, making it possi-
ble for leukocytes to sense chemokines presented by the inflamed microvasculature.
These chemokines are either produced locally or reach the luminal site of blood ves-
sels after transcytosis [16, 17]. Under flow conditions, chemokines have been shown
to initiate leukocyte adhesion when they are co-immobilized with a selectin ligand
and an integrin ligand or when the chemokines are immobilized on the surface of
endothelial cells [18, 19]. 

Current wisdom suggests that chemokines must be immobilized to trigger rolling
leukocytes to adhere. If chemokines remain soluble in the blood stream, they are
washed away by the flow. The importance of endothelial cell-bound chemokines in
bringing the rolling leukocytes to arrest was demonstrated by Weber et al. [20].
Their study showed that upon cytokine stimulation, endothelial cells produce
chemokines of both endothelial-bound Gro-α (CXCL1) and soluble MCP-1
(CCL2). Under flow, MCP-1 that enters the vessel lumen is washed away by the
fluid, but Gro-α remains on the endothelial cell surface. Therefore only Gro-α can
bind to its receptor CXCR2 on monocytes. This activates monocytes and mediates
the monocyte adhesion to endothelial cells. Although the soluble MCP-1 is unable
to mediate monocyte adhesion, it is released in a manner (presumably abluminally)
that allows the subsequent transendothelial migration [20, 21]. These studies con-
firmed that under physiologic flow condition, in order to trigger rolling leukocytes
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to effectively adhere to endothelium, chemokines produced in the inflamed tissues
must be immobilized on the surface of endothelial cells. Soluble chemokines are
unlikely to be able to trigger this adhesion but can form a gradient to induce
transendothelial migration.

Many chemokines produced and secreted in the inflammatory sites are immobi-
lized on the endothelial cell surface via binding to glycosaminoglycans (GAGs), in
particular heparan sulfate proteoglycans [17, 22]. Using electron microscopy, Mid-
dleton et al. [23] found that after chemokines interleukin (IL)-8 (CXCL8) and
RANTES (CCL5) were injected into the skin, these chemokines were first found
bound to GAGs at the abluminal surface of endothelium, then internalized into
endothelial plasmalemmal vesicles and transported transcellularly on to the lumenal
surface where the chemokines were presented to the rolling leukocytes. Recent stud-
ies found that a number of chemokines such as IL-8 (CXCL8), PF4 (CXCL4) and
SDF-1 (CXCL12) can bind GAGs via the chemokine’s C-terminal region [24–27].
For these chemokines, the GAG-binding domain was found to be spatially apart
from the residues for binding and interacting with the chemokine receptors on
leukocytes. This makes it possible that chemokines can activate the rolling leuko-
cytes to adhere while binding with the GAGs.
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Figure 2 
The summary of the signaling events that are related to leukocyte transendothelial migration
in the cascade of leukocyte rolling, activation, and adhesion to inflamed endothelium.



Many chemokines have been shown to be important in the activation of integrins
[28–30]. The integrins can rapidly undergo two different and dynamic ways of func-
tional activation and allow binding to integrin ligands. One way involves the
increase in integrin affinity by changing the three-dimensional conformation that
leads to high affinity binding to the luminal side of blood vessels. The alternative
way is the lateral mobility of integrins to a restricted area (also called clustering) to
increase the avidity for the surface ligands [28–30]. Chemokines have been shown
to be able to trigger both ways of integrin activation to support integrin-mediated
adhesion of leukocytes to the ligands. The importance of chemokine-induced acti-
vation of integrin-mediated leukocyte adhesion was modeled in in vitro flow cham-
ber systems which mimic the shear conditions seen under flow in vivo. In this sys-
tem, leukocytes were allowed to flow under physiological shear conditions over cul-
tured monolayers of endothelial cells which were activated by proinflammatory
cytokines that stimulate endogenous chemokine and adhesion ligand production.
Using this system, it was shown that many immobilized chemokines can trigger inte-
grin-mediated leukocyte adhesion to endothelial cells and induce transendothelial
migration [28–31]. Figure 2 summarizes the signaling events in both leukocytes and
endothelial cells that are related to leukocyte transendothelial migration in the cas-
cade of leukocyte rolling, activation, and adhesion to inflamed endothelial cells.

Chemokine-induced transendothelial migration requires engagement of
selectins

The first way by which selectins may contribute to chemokine-induced leukocyte
adhesion and subsequent emigration is to increase the length of time a cell interacts
with a particular area of endothelium. This, for instance, could be achieved by a
reduction in the rolling velocity. Interestingly, some inflammatory mediators (LTC4,
tumor necrosis factor (TNF)) but not all (histamine, H2O2) cause a down-modula-
tion of the rolling velocity without necessarily inducing firm adhesion. However,
this attenuated rolling behavior would then facilitate firm adhesion. There are a
number of mechanisms by which slow rolling may occur, including a simple increase
in the density of selectins and their ligands on leukocytes and endothelial cells.

The physiologic importance of slow rolling for chemokine function was demon-
strated by a number of groups. Kanwar and colleagues [32] demonstrated that nei-
ther LTC4 nor histamine induced adhesion but only LTC4 induced slow rolling.
Addition of low concentrations of proadhesive molecules (PAF, IL-8) induced adhe-
sion only in those cells that were exposed to LTC4. Only at much higher concentra-
tions of PAF was adhesion observed with histamine which is known to induce P-
selectin expression on the endothelial cells. Ley and colleagues [33] made similar
observations by inducing slow rolling with TNF and then demonstrating that the
slow rolling was dependent on E-selectin. When this molecule was inhibited, cells
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rolled faster and were less apt to respond to a local chemokine stimulus and less
likely to adhere. An alternative explanation could be that the slow rolling was a
result of the engagement of a significant number of selectin ligands (due to increased
selectin density) which would cause signaling and subsequent predisposition for
adhesion within rolling leukocytes. Also, low-level integrin activation has been
shown to induce slow rolling [34].

The concept of signaling through selectins has been studied. Although there is lit-
tle evidence of rapid physiologic changes following P-selectin cross-linking, there is
good evidence that E-selectin can transmit signals to prepare cells for adhesion and
transmigration. Using transfected L cells expressing human E-selectin and ICAM-1
in a parallel plate flow chamber assay, Simon and colleagues demonstrated that neu-
trophil tethering and rolling on E-selectin under flow conditions activate β2 inte-
grins LFA-1 and Mac-1 to bind to the ligand ICAM-1 and that this E-selectin-medi-
ated rolling transduces signals via mitogen-activated protein kinase (MAPK) to
induce neutrophil arrest on ICAM-1 [35]. This signaling event was further demon-
strated in neutrophil recruitment on endothelial cells and that the E-selectin engage-
ment stimulates both the clustering and high affinity of β2 integrins and mediates
the binding of neutrophils to β2 integrin ligands via p38 and p42/44 MAPK signal-
ing [36]. Although these data suggest that E-selectin and β2 integrins can function
independent of chemokines, the physiological role is likely to enhance chemokine-
induced integrin activation.

Chemokines do not seem to act alone but interact with other factors such as shear
in a coordinated fashion to induce efficient leukocyte transendothelial migration [28,
31]. L-selectin has long been known to mediate the initial leukocyte tethering and
rolling along the inflamed endothelium in peripheral tissues. Although L-selectin may
play some role in rolling in the periphery, there is a growing body of evidence to sug-
gest that this molecule can enhance chemokine function and have a large impact on
the subsequent leukocyte transmigration process. Earlier in vitro studies revealed
that cross-linking L-selectin upregulated the β2 integrin Mac-1 and increased the
binding to its ligand in the presence of chemokines [37]. Using a laminar flow cham-
ber assay, Simon at al. [38] showed that in the presence of lipopolysaccharide (LPS)-
induced endothelial chemokine production, stimulation of L-selectin via cross-link-
ing dramatically increased the capacity of neutrophils to firmly attach and spread on
endothelium, and migrate across the endothelial cell monolayer. Tsang and colleagues
[39] also demonstrated that cross-linking of L-selectin potentiated IL-8-stimulated
leukocyte shape change and synergistically enhanced β2 integrin-mediated neu-
trophil adhesion to and transmigration across cytokine-stimulated endothelial cells.

In vivo studies also suggest a role for L-selectin in enhancing chemokine func-
tions. Using L-selectin-deficient mice, Hickey et al. [40] examined the role of L-
selectin in chemokine-induced neutrophil transendothelial migration and chemo-
taxis in an acute inflammation model. In this model, an agarose gel containing
mouse CXC chemokine keratinocyte-derived chemokine (KC/CXCL1) was placed
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350 µm from a post-capillary venule in cremaster muscle to induce neutrophil trans-
migration and chemotaxis toward the slow-releasing chemokine KC. This study
found no inhibition of leukocyte rolling or adhesion in L-selectin-deficient mice.
However, there was a 60% reduction of neutrophil emigration and for the remain-
ing 40% of cells that did emigrate across the endothelium, the cells remained close-
ly associated with the venules rather than chemotaxing toward the KC-containing
gel. The importance of these results were further underscored by a report by Grew-
al et al. [41] in experimental autoimmune encephalomyelitis, an animal model of
multiple sclerosis. In this study, L-selectin was found to be essential for the mice to
develop antigen-induced experimental autoimmune encephalomyelitis and to medi-
ate myelin damage. Upon closer examination of the brains of these mice it became
evident that in the L-selectin-deficient mice, leukocytes crossed the blood brain bar-
rier but were unable to chemotax away from the vasculature [41]. 

Chemokine-induced transendothelial migration and p38 MAPK signaling

Chemokine-induced leukocyte transendothelial migration is dependent upon a num-
ber of signaling pathways within the leukocytes as well as the endothelium. There
has been ample evidence that engagement of L-selectin induces activation of sever-
al signal transduction pathways including activation of p38 MAPK. To explore the
role of p38 MAPK in leukocyte recruitment in vivo, Cara and colleagues used p38
inhibitors and examined chemokine KC-induced leukocyte recruitment in mice [42].
It was found that p38 MAPK inhibitors at concentrations previously demonstrated
to be anti-inflammatory had no effect in leukocyte rolling along the endothelial sur-
face, or adhesion to endothelium, but dramatically inhibited leukocyte
transendothelial migration. The leukocyte chemotaxis in the cremaster muscle tissue
was also inhibited by p38 MAPK inhibition. This study suggested that the p38
MAPK downstream of L-selectin may be important in chemokine KC-induced
leukocyte emigration and chemotaxis. Because it has been shown that in vitro a p38
MAPK inhibitor eliminated chemokine-induced murine neutrophil chemotaxis
toward CXC chemokines KC and MIP-2 [43], it is thus unclear whether the contri-
bution of p38 MAPK in neutrophil transmigration and chemotaxis in vivo is due to
the downstream effect of L-selectin or the downstream effect of chemokine recep-
tors. However, others have reported no effect of p38 MAPK inhibition on CXC
chemokine-induced chemotaxis raising the possibility that p38 MAPK inhibitors
could either be targeting the L-selectin-dependent aspect of the emigration process
or alternatively, since the whole mouse was being treated with p38 MAPK inhibitors
[42], even non-hematopoietic cells, such as endothelial cells, could have been affect-
ed (discussed in the next section).

Activation of endothelial p38 MAPK is necessary for leukocyte transmigration.
For example, the endothelial p38 MAPK signaling pathway is activated by the inter-
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actions between integrins and their ligands (e.g., ICAM-1 and VCAM-1) that medi-
ate leukocyte firm arrest on endothelium. Wang and Doerschuk demonstrated that
cross-linking ICAM-1 on endothelial cells which mimics leukocyte binding to
endothelium, induced phosphorylation of p38 MAPK and increased downstream
activity [44]. They showed that the activation of p38 MAPK was responsible for the
activation of one of the downstream effectors heat shock protein 27 which is
involved in F-actin polymerization in endothelial cells. Studies from that group
recently revealed that kinases up-stream of p38 MAPK such as MKK3 and MKK6
are also required for this response, and that inhibition of p38α (one of the isoforms
of p38 MAPK) attenuated ICAM-1-dependent endothelial cytoskeletal changes and
attenuated neutrophil migration to the endothelial cell borders [45]. 

VCAM-1, another member of immunoglobulin superfamily adhesion molecules
is the ligand for α4 integrins. Using antibody-mediated cross-linking, van Wetering
et al. found that engagement of VCAM-1 on interleukin-1-activated endothelial
cells induced endothelial cell actin stress fiber formation, contractility, activation of
p38 MAPK and formation of endothelial cellular gaps [46]. These researchers fur-
ther demonstrated that (1) inhibition of p38 MAPK largely prevented the effects of
VCAM-1 engagement on endothelial F-actin stress fiber induction and endothelial
cell-cell gap formation, (2) the phosphorylation of p38 MAPK by VCAM-1 engage-
ment was downstream of the signaling of Rac, a member of Rho small GTPase fam-
ily, and (3) inhibition of Rac function significantly attenuated leukocyte
transendothelial migration. These studies suggested that leukocyte adhesion to
endothelial cells can activate both p38 MAPK and the downstream cytoskeletal
changes that regulate the transendothelial migration of leukocytes.

Leukocyte-specific protein 1 (LSP1) has been shown to be one of the major sub-
strates of MAPK-activated protein kinase-2 which is directly downstream of p38
MAPK [47]. LSP1 is an intracellular F-actin-binding and Ca2+-binding protein and
was initially found to be expressed only in leukocytes [48–50]. Therefore, using
LSP1-deficient mice, it was not surprising that LSP1 was found to be involved in
chemokine-induced leukocyte emigration in vivo [51] and neutrophil chemotaxis in
vitro [52]. What was more unexpected was that LSP1 was also expressed in mouse
and human endothelial cells [53]. By using RT-PCR, western blotting and immuno-
fluorescent microscopy, it was demonstrated that both murine primary microvascu-
lar endothelial cells and human umbilical vein endothelial cells expressed LSP1.
Endothelial LSP1 regulated chemokine-induced leukocyte transendothelial migra-
tion by playing an important role in endothelial cells probably through the regula-
tion of cytoskeletal change-related endothelial cell retraction [53]. Therefore, LSP1
in endothelial cells is also likely an important player in chemokine-induced leuko-
cyte transendothelial migration.

After transendothelial migration, emigrated leukocytes must begin to orient
themselves according to the local chemokine gradient for directional movement to
infections or tissue injuries where the concentration of inflammatory chemokines is
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highest (for a comprehensive review, see reference [4]). Clearly these cells need to
ignore the endothelium-associated chemokines in order to be able to respond to the
inflammatory chemotactic gradients in the tissue. It was found in vitro that neu-
trophils will selectively migrate toward end-target chemoattractants (which are bac-
terial products or activated complement fragments produced exclusively at the site
of infection or tissue injury and chemotactic for leukocytes, such as fMLP or C5a)
and ignore or override the presence of chemokines such as IL-8 [54, 55]. Heit et al.
showed that fMLP or C5a activates leukocyte p38 MAPK signaling pathway and
provides an inhibitory signal for other signaling pathways (such as phosphoinositide
3-kinase and the downstream Akt/PKB activation) normally induced by chemokines
[55]. Thus neutrophils can differentiate signaling events and migrate preferentially
toward the end-target chemoattractants produced during infection or injury in the
tissue. Figure 3 shows a brief summary of current understanding of the signaling
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Figure 3 
The signaling pathways in leukocytes and endothelial cells during chemokine-induced
leukocyte transendothelial migration and subsequent chemotaxis toward end-target
chemoattractants in inflamed tissues. MK2, MAPK-activated protein kinase-2. HSP27, heat
shock protein 27. PI3K, phosphoinositide 3-kinase. PKB, protein kinase B, also known as Akt



pathways in both leukocytes and endothelial cells in chemokine-induced
transendothelial migration and subsequent leukocyte chemotaxis toward end-target
chemoattractants in inflamed tissues. 

Conclusions

Chemokines function at all stages of leukocyte transendothelial migration. Howev-
er, chemokines do not work alone. Selectins enhance chemokine-induced leukocyte
transendothelial migration. Activation of p38 MAPK plays an important role in
chemokine-induced transmigration. Unraveling the mechanisms of leukocyte
transendothelial migration and the signaling pathways involved is now a major area
of interest. Interactions between chemokines, adhesion molecules, the cytoskeleton,
signaling kinases and other signaling factors need further exploration to provide
new clues for novel therapies for the treatment of inflammatory diseases.
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Introduction

It is now generally accepted that leukocyte trafficking in homeostasis as well as in
pathology is largely determined by the more than 40 chemokines that are produced
constitutively or upon specific induction in virtually all tissues of the human body,
in combination with the expression of almost 20 target receptors on all leukocyte
subsets and on many tissue cells. Although much remains to be discovered, the
receptor specificities of most chemokines, expression patterns of chemokine recep-
tors, and the resulting immunologic activities are often known in intricate detail
from numerous in vitro and in vivo studies.

While we thus understand well the effects of chemokines one by one, much less
is known of the potential consequences of multiple and concomitant chemokine
expression on leukocyte migration and function, even though numerous in situ
experiments clearly document the simultaneous expression of several or many
chemokines at diverse target sites of leukocyte trafficking and homing. Evidence
from other and our own groups has recently revealed the existence of additional
modulatory mechanisms that apply under conditions of multiple and concomitant
chemokine expression. Here, we summarise our current knowledge of the negative
or positive influence that such a chemokine “milieu” can exert by natural
chemokine antagonism and synergism.

Natural chemokine antagonism

The term “natural antagonist” has become customary to designate endogenous,
full-length chemokines that feature inhibitory activities distinct of and in addition
to their agonistic properties. Strictly spoken, such natural antagonists also include
chemokines that have acquired their inhibitory properties by protease modification,
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as well as viral chemokine homologues with inhibitory potential. Viral chemokines
and chemokine receptors will be discussed elsewhere in this volume and are thus not
considered further. Here, we will focus on endogenous, human chemokines, and use
the terms “protease-modified” or “native” for further distinction.

Protease-modified chemokines

While chemokines are very resistant to proteolytic degradation and inactivation in
general, specific processing can occur in the N-terminal and C-terminal domains.
Various enzymes, namely dipeptidyl peptidase IV (DPP-IV/CD26) and matrix met-
alloproteinases (MMPs), can process chemokines, thus generating completely inac-
tive chemokines, chemokine antagonists, and chemokines with altered receptor
selectivity or increased activity [1].

The 11 chemokines that are known to be converted to inhibitory chemokines
by protease digestion are summarised in Table 1 [2–12], together with the con-
verting enzymes and the six target receptors (compare to Tab. 3 in [13]). The fact
that N-terminal protease digestion often produces inhibitory chemokines is com-
patible with the body of structural and structure-function studies (reviewed in [14,
15]), which collectively indicate the N-terminus of most chemokines as the recep-
tor-activating domain, while the random-coiled N-loop distal of the first two con-
served cysteines, together with residues situated in the third β-strand, form the
receptor binding domain. This spatial separation allows the easy removal or trun-
cation of the activation domain, resulting in a receptor-binding, “dominant nega-
tive” chemokine. 
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Table 1 - Summary of protease-modified chemokines with antagonistic activities

Chemokine Modifying enzyme Antagonist for

CCL2 MMP1/3 [10] CCR2/3
CCL5 CD26 [3], not specified [4] CCR1/3
CCL7 (MT1)-MMP, MMP-1/2/3/13[7, 10] CCR2/3
CCL8 MMP1/3 [10], not specified [2] CCR2/3
CCL11 CD26 [5] CCR3
CCL13 MMP1/3 [10] CCR2/3
CCL22 CD26 [6] CCR4
CXCL9 CD26 [9] CXCR3
CXCL10 CD26 [9] CXCR3
CXCL11 CD26 [8, 9] CXCR3
CXCL12 CD26 [11, 12] CXCR4



Native chemokines

The above two-site model of chemokine receptor binding and activation also
implies that a native chemokine featuring a matching binding domain and a “mis-
matched” activation domain might act as an antagonist for a particular receptor
just as well. In fact, a CCL11 hybrid with its N-terminus substituted by that of
CXCL11 acted as an antagonist for CCR3, supporting this concept [16]. Altogeth-
er, nine native chemokines are currently known to have inhibitory activities apart
from their previously known agonism. They are summarised in Table 2 [16–28],
listed by chemokines as well as target receptors. Most show narrow antagonist
specificity, inhibiting only one receptor. Notable exceptions are CXCL11 and
CCL26, which are specific agonists for CXCR3 and CCR3, respectively, but inhib-
it two (CCR3 and CCR5) and three (CCR1, CCR2, and CCR5) receptors, respec-
tively. 
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Table 2 - Summary of native chemokines with antagonistic activities, listed by chemokines
(top half) and target receptors (bottom half)

Chemokine Agonist for Antagonist for

CCL4 CCR5 CCR1 [21]
CCL7 CCR1, CCR2, CCR3 CCR5 [17]
CCL11 CCR3 CCR2 [19, 20, 27, 28]
CCL18 not known CCR3 [18, 22]
CCL24 CCR3 CCR2 [27]
CCL26 CCR3 CCR1 [26], CCR2 [24, 27, 28], 

CCR5 [26]
CXCL9 CXCR3 CCR3 [16]
CXCL10 CXCR3 CCR3 [16]
CXCL11 CXCR3 CCR3 [16, 22], CCR5 [25]

Receptor Agonists Antagonists

CCR1 CCL3/5/7/8/13/14/15/23 CCL4 [21], CCL26 [26]
CCR2 CCL2/7/8/13 CCL11 [19, 20, 27, 28], CCL24 [27],

CCL26 [24]
CCR3 CCL5/7/8/11/13/24/26 CCL18 [18, 22], CXCL9/10 [16],

CXCL11 [16, 22]
CCR5 CCL3/4/5/8 CCL7 [17], CCL26 [26], CXCL11 [25]



Mode of action

The current data suggest the notion that endogenous chemokines – be they in their
native or protease-modified form – inhibit their target receptor by competitive antag-
onism1, much as it is known for many other G protein coupled receptors. The action
of CCL11 on CCR2 seems to be more complex, though. Initially described as an
antagonist [19], which would make it a neutral (or possibly inverse) agonist in phar-
macological terms, it was later reported to be a partial agonist [20, 27]. Different cel-
lular backgrounds and differing receptor expression levels may account for these dif-
ferences, again in analogy to other G protein coupled receptors. Interestingly, an
unusual mechanism of active inhibition, involving receptor and mitogen-activated
protein kinase (MAPK) activation, contributes to the observed antagonism [28].

In vivo relevance

To achieve their inhibitory effects, many endogenous antagonists require concentra-
tions that far exceed those required for their agonistic actions in in vitro experi-
ments. This has raised doubts if endogenous antagonists are produced in sufficient
quantities to be of physiological relevance at all. However, N-terminally truncated,
synthetic [29, 30] as well as protease-modified [7] chemokine antagonists have pre-
viously demonstrated their antagonistic potential in vivo in several rodent models.
More recently, the native form of CXCL9, a somewhat modest CCR3 inhibitor in
vitro [16], was found to be an efficient in vivo antagonist as well [31]. Interesting-
ly, CXCL9 was unexpectedly identified together with other Th1-associated genes
during a screen for “signature genes” of allergic airway inflammation in mice.
CXCL9 inhibited IL-13- and chemokine-induced eosinophil migration to the lung
and blood, as well as their functional responses. Notably, the inhibitory effects of
CXCL9 were comparable to those seen in CCL11 or CCR3 gene-deleted mice, sug-
gesting that natural antagonists may indeed exert a profound influence on the mod-
ulation of certain immune responses. 

Natural chemokine synergism

An abundant number of publications describe various forms of synergism between
different proinflammatory substances, cytokines, chemoattractants and chemo-
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1 Here, we use the following definitions: a competitive antagonist progressively inhibits a response in
the presence of a fixed agonist concentration. At full receptor occupancy, a partial agonist elicits a
lower response than a full agonist, while neutral and inverse agonists do not induce any responses at
all. Additionally, an inverse agonist also inhibits the constitutive activity of a receptor.



kines, involving many growth hormones, cytokine, Toll-like and G protein coupled
receptors. Here, we will focus on synergistic combinations of chemokines and
chemoattractants, which all act via the latter receptor family. It seems likely that two
different mechanisms occur. On one hand, chemokine synergism may be due to
intracellular priming events that are (probably) akin to those seen with proinflam-
matory substances, cytokines, and chemoattractants. On the other hand,
chemokines seem to be capable of forming heteromeric complexes that are more
active than the single chemokines or their homomeric complexes themselves, as dis-
cussed below. 

Chemokine synergism by intracellular priming events

Regakine [32], a bovine chemokine with no known human orthologue to date, can
specifically increase the activity of certain chemokines and chemoattractants such as
CXCL6 [33], CXCL7 [34], CXCL8 [35], N-formylmethionylleucylphenylalanine
(fMLP) [33], and complement factor 5a (C5a) [34]. The authors described a similar
synergism for CXCL8 in the presence of CCL2, CCL7, CCL8, and CXCL12 [35].
Similar findings were obtained with haematopoietic stem/progenitor cells and com-
binations of C3a and CXCL12, where chemotaxis, metalloproteinase-9 secretion
and cellular adhesion were all enhanced [36]. Another, reciprocal synergism modu-
lates the responses of CXCR3 and CXCR4 to their agonists: CXCL12 primes the
responsiveness of CXCR3+, natural IFN-producing cells to CXCL9, CXCL10, and
CXCL11 [37], while the reactivity of CXCR4+ plasmacytoid dendritic cells to
CXCL12 is similarly increased in the presence of CXCL9, CXCL10, and CXCL11
[38]. For two reasons, the authors of these reports suggested receptor-dependent
priming as the most likely mechanism for the synergistic events: the expression of
both receptors specific for the synergising components was required, and the struc-
tural differences between the chemokines and chemoattractants used make direct
ligand interactions appear unlikely. The nature of the priming mechanism presum-
ably causing the synergistic events remains to be determined for all of these systems,
however. Interestingly, a recent report describes a novel kind of haptotactic
chemorepulsion for CXCR3+ plasmacytoid dendritic cells, which is cell-specific,
independent of CXCR4-induced synergism, and inhibited by soluble CXCR3 ago-
nists [39].

Chemokine synergism by heteromeric chemokine interactions

By nuclear magnetic resonance (NMR) and plasmon resonance-based Biacore
analysis, two recent reports clearly demonstrate that CXCL4 and CXCL8 form het-
erodimers that were more active in haematopoiesis and chemotaxis assays than the
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respective chemokines on their own [40, 41]. CXCL4 and CXCL8 interact via their
β-sheets, akin to how their homomeric complexes form [42]. Of note, these findings
may furnish an explanation for synergistic effects observed in proliferation assays
more than a decade earlier [43]. In another study, CXCL4 interacted with CCL5 in
a heteromeric and synergistic way, increasing monocyte adherence on activated
endothelial cells [44]. CCL5 mutated at position 26, a residue located in the first β-
strand, is more prone to homomeric tetramer formation than the native form but
was consequently refractory to synergism.

Synergism induced by heteromeric chemokine complexes may well be a wide-
spread but nevertheless specific phenomenon, as documented by the large number
(20 out of 25 tested) of chemokines that synergistically increased the action of
CCL19 and CCL21 on CCR7 [45]. Apart from chemotaxis of CCR7 transfected
cells, dendritic cells, and T and B cells, receptor internalisation and extracellular-reg-
ulated kinase (ERK) phosphorylation of transfectants were synergistically increased
as well. Western blot and binding experiments again suggested the formation of het-
eromeric complexes as the cause of the observed synergism. At equal concentra-
tions, a mixture of synergy-inducing chemokines was just as potent as any of the
used chemokines alone at evoking synergism, suggesting that the effects were not
just additive but truly synergistic. Similar synergy mechanisms enhance CCR4
responses towards CCL17 and CCL22 [46]. Interestingly, chimeric mutants between
two chemokines with (CCL7) and without (CCL4) synergistic activity [46] imply
that residues in the first β-strand mediate heteromeric association and synergism,
much in analogy to the interaction between CXCL4 and CCL5 [44].

Mode of action

Taken together, the above reports suggest that synergism by heteromeric chemokine
interactions may be a widespread phenomenon, positively regulating diverse
chemokine activities such as chemotaxis, cellular adherence, receptor internalisa-
tion, and protein kinase phosphorylation. Interestingly, the available structure and
structure-function data, albeit scarce to date, collectively implicate residues in the
first β-strand as mediators of heteromeric association and synergism. It is thus
tempting to speculate that heteromeric chemokine complexes may mimic those
homomeric dimers that form via association of their β-sheets, featuring an interface
composed of the first β-strands (see Fig. 1 and legend for further explanation).
However, the molecular reasons as to why a heteromeric complex should be more
active than a homomeric one remain at present completely obscure. Certainly, spec-
ulating that heteromeric chemokine association might promote receptor (hetero-)
dimerisation, which was reported to increase receptor activities [47], would consti-
tute an attractive hypothesis.
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Figure 1 
The homomeric dimer of CCL7 in a ribbon representation, using coordinates (1NCV) from
the Protein Data Base [48] and Swiss Pdb Viewer [49] for display
The extended β-sheet composed by six β-strands (three from each subunit) faces the view-
er. The two subunits are coloured light and medium grey, respectively. The first β-strands of
both subunits, which form the primary dimer interface, are indicated. Residue S27 of CCL7
is indicated and shown with its van der Waals spheres in both subunits to illustrate the
antiparallel orientation of the two first β-strands. S27 of CCL7 corresponds to E26 of CCL5,
which is required for synergism between CCL5 and CXCL4 [44]. Note its orientation towards
the opposite β-strand. In the subunit coloured dark grey, the first β-strand that mediates the
synergistic activity of CCL7 together with CCL22 for CCR4 [46] is coloured dark grey, includ-
ing residue S27. The CCL7 dimer was chosen for this representation for the reasons cited
above and because it is formed through association of both subunits’ β-sheets, similar to the
homomeric complexes of CXCL4 and CXCL8 [42], and possibly their heteromeric complex
[40, 41].



Conclusions

Based on the above, natural chemokine antagonism and synergism, as consequences
of multiple and concomitant chemokine expression, constitute yet another level of
regulation in leukocyte trafficking. By now, antagonism by protease-modified and
native chemokines is well established as numerous cases have been documented in
the last few years. A few recent reports have also illustrated its in vivo relevance,
even though more studies on natural chemokine antagonists such as the pioneering
work of Fulkerson et al. [31] would be desirable.

Overall, chemokine antagonism is clearly less frequent than chemokine agonism.
While protease modification of chemokines and the resulting changes in chemokine
activity have been investigated thoroughly, it remains for now unclear just how
many more native antagonists exist. In fact, there might not be that many: we have
screened roughly one third of more than 700 possible combinatorial chemokine-
receptor combinations using chemotaxis assays with receptor transfectants. In these
experiments, we identified only one additional partial agonist (CCL22 for CCR3)
and one antagonist (CCL23 for CCR5) in addition to those already published
(Petkovic V, Moghini C, and Gerber BO, unpublished observations). Hence, we
think it unlikely that many more natural antagonists will be found. Rather, we
would expect future breakthroughs in this area to stem from investigations into
their physiologic or therapeutic relevance.

Compared to chemokine antagonism, the field of chemokine synergism is still in
its infancy, even though the first report dates from more than a decade ago [43].
That chemokine and chemoattractant receptors can engage in cross talk with each
other – or with members of other receptor classes – may not be too surprising, con-
sidering that this phenomenon has previously been reported for other G protein cou-
pled receptors. It is likely that the recent reports mentioned above will trigger an
increased interest for this topic in the chemokine community.

The occurrence of “cross-talk” between the (chemokine) ligands themselves is,
in our opinion, the most exciting of all developments discussed here. What seems
clear so far is that chemokine heteromers can be more potent agonists than the
respective chemokines (or their homomers) alone, and that many but not all
chemokines can induce or are susceptible to synergism. Even though we are at an
early stage and have a limited understanding only of how these heteromers are
formed, three lines of future research are evident already. For one, the chemokine as
well as the receptor specificities of synergistic interactions will have to be assessed
systematically and comprehensively, which will require diligence more than any-
thing else. Second, the molecular and cellular reasons for the increased potency of
synergistic heterodimers must be elucidated. Collectively, current evidence (see
above and Fig. 1) implicates the first β-strand as an important mediator of syner-
gism, furnishing a promising starting point for structure–function studies into
chemokine synergism. Likewise, it will be important to determine if synergistic com-
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plexes induce receptor signalling or trafficking events that differ significantly from
those elicited by the known agonist chemokines alone, and could thereby cause their
increased activities. Last but not least, the in vivo relevance of chemokine synergism
will need to be determined. These may seem daunting tasks, considering the multi-
tude of chemokines, chemokine receptors, and target cells. Still, we trust that syn-
ergistic chemokines will continue to hold our attention and surprise us again in the
future.
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Effector cell traffic-unrelated functions



Introduction

Increasing evidence indicates that the immune and neural systems interact by a
wide variety of mechanisms [1]. The tight blood–brain barrier (BBB) restricts the
communication between central nervous system (CNS) and immune system, and
protects the brain from the damaging effects of inflammation. Nevertheless, multi-
ple interconnections exist between these two systems. (1) The autonomic nervous
system is embedded in many peripheral sites along with the immune system, such
as the liver, spleen, bone marrow, thymus, lymph nodes, skin, and gastrointestinal
tract. (2) Neurotransmitters produced by stimulation of the sympathetic and
parasympathetic system directly influence leukocyte function. For example, acetyl-
choline, norepinephrine, and Met-encephalin suppress cells engaged in both innate
and adaptive immunity [2–4]. In contrast, calcitonin gene-related peptide (CGRP)
and substance P released by pain fibers enhance inflammation [5, 6]. (3) The CNS
can also suppress immune response by activation of the hippocampal-pituitary-
adrenal (HPA) axis. In response to environmental stress, corticotropin-releasing
factor (CRF) secreted by the hippocampus activates the pituitary to produce
adrenocorticotropin hormones (ACTH) [7]. ACTH in turn activates the adrenals to
produce corticosterones; hormones with potent immune suppressive effects. (4)
There is also evidence for the existence of highly localized “windows” in the blood-
brain barrier, called circumventricular organs. These “windows” allow transmis-
sion of soluble mediators released by immune cells to enter the hypothalamus of
the brain [8]. 

We have studied the role of receptor cross-talk in the communication between
immune and neural systems. Receptors that are essential for immune system func-
tions have been detected on neuronal cells, and typically neuronal receptors are also
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expressed by peripheral leukocytes. Activation of one receptor often causes an alter-
nation in the function of nearby other receptors expressed on the same cells. For
example, opioid receptors, the key neuronal analgesic receptors, have also been
detected on leukocytes. Prolonged activation of opioid receptors on leukocytes
dampens chemokine receptor responses [4]. In contrast, chemokine receptors are
expressed on peripheral sensory neurons and in the CNS. As will be discussed,
chemokines are capable of reversing opioid receptor-mediated analgesic effects [9,
10]. The receptors for prostaglandins and bradykinins, two proinflammatory medi-
ators, are also expressed on sensory neurons. Activation of these receptors enhances
the perception of pain by increasing the sensitivity of the Vanilloid receptor 1
(TRPV1), a pain receptor, expressed on the same sensory neurons [11–13]. The
Vanilloid receptors in the oral cavity have the capacity to respond to capsaicin, spicy
components of peppers. In addition, proinflammatory chemokines are also capable
of sensitizing TRPV1 by phosphorylation of its Ser/Thr residues. Conversely, it is
clearly documented that secretion of CGRP and Substance P from Vanilloid recep-
tor-activated sensory neurons has proinflammatory effects [5, 6]. Further character-
ization is underway to map the expression of TRPV receptor family members on
immune cells and to determine if they have a role in regulating chemokine receptors.
In this chapter, we will focus on the bi-directional desensitization between
chemokine and opioid receptors that reduces the perception of pain, and sensitiza-
tion of Vanilloid receptor 1 (TRPV1) by chemokine receptors that promotes pain
signals.

Opiates suppress immune responses 

Opiates have long been used to suppress “pain” and enhance “pleasure” in human
history. However, abusive usage of opiates leads to a greater prevalence of viral
hepatitis, HIV infection, bacterial pneumonias, tuberculosis, CNS infection, and
endocarditis [14–16]. These pathological conditions can be explained by opioid-
induced suppression of a spectrum of immune host defenses. Chronic morphine
administration induces lymphoid organ atrophy, loss of natural killer (NK) cell
activity, and a diminished ratio of CD4+CD8+ cells in the thymus [17]. In rats, repet-
itive morphine treatment impairs the delayed hypersensitivity skin response to
tuberculin [18]. Morphine also inhibits transcription of interferon γ in activated T
cells, which may contribute to an increase in HIV infection among morphine users
[19]. Chemokine receptor-mediated migration of human leukocytes was also com-
promised by in vitro pre-incubation of cells with opioids [20, 21]. In addition to
these immunosuppressive effects, it has been reported that opioids also exhibit cer-
tain positive effects on immune responses, including enhanced synthesis of tumor
necrosis factor-α and interleukin-1β by activated macrophages, and direct induction
of leukocyte chemotaxis [4, 22]. 
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Opioids induce immunosuppressive effects by enhancing neurohormone
production

Prolonged activation of CNS by morphine leads to a 3- to 4-fold increases in the
level of circulating corticosterone, up to 400–450 ng/ml, resulting in splenic and
thymic atrophy, a decrease in lymphocyte proliferation, inhibition of IL-2 and IFN-
γ synthesis [23]. Conversely, disruption of µ-opioid receptors blocks morphine
induced increase in circulating corticosterone. The immunomodulatory effects of
chronic morphine treatment are significantly attenuated in mor–/– mice. Supplemen-
tal infusion of corticosterone partially reproduces the immunodeficiency [24]. Opi-
oids also activate the sympathetic nervous system, resulting in an increase in the
level of circulating epinephrine from the adrenal medulla and norepinephrine from
sympathetic nerve terminals [25]. Increased catecholamine levels have been linked
to suppression of NK cell and lymphocyte function [26]. 

Opioids downregulate chemokine receptors by heterologous desensitization

Receptor desensitization is a key mechanism for protecting cells from prolonged
responses to the agonists. The desensitization process of a GPCR can be initiated
with its own ligand, causing homologous desensitization, or by activation of other
“nearby” receptors, resulting in heterologous desensitization. Homologous desensi-
tization mainly involves the activation of the feedback inhibitors, GRK and arrestins
[27]. Heterologous desensitization is usually mediated by second messenger-activat-
ed kinases, such as PKA and PKC [28]. When the cytosolic tail of a GPCR is phos-
phorylated, the receptor loses its effective coupling to downstream G proteins, and
sometimes even undergoes internalization, resulting in the loss of receptor function. 

As discussed in previous chapters, chemokine receptors play a critical role in cell
trafficking, development, activation of inflammatory and immune cells, and HIV
infection. Upon injury, exogeneous microbial products, such as fMLP, and produc-
tion of endogenous chemokines create an in vivo concentration gradient.
Chemokine receptors on leukocytes sense the chemical gradient and direct the cells
towards the inflammatory site. Chemokine receptors are coupled to Gi/o proteins.
Consequently, PI3 kinases are recruited to the leading edge of a cell, which elicits a
chain of downstream signaling events, including activation of CDC42/Rac, recruit-
ment of Arp2/3 complex, and assembly of actin filaments. Formation of the actin
filaments in the front of a cell is believed to be the driving force of chemotaxis [29].
Chemokine receptors also mediate other signaling pathways, such as G-protein
dependent activation of phospholipase C and protein kinase C, and G-protein inde-
pendent recruitment of G protein coupled receptor kinases (GRK) and arrestins. All
three subtypes of opioid receptors, identical to their counterparts in the brain, are
co-expressed by leukocytes along with chemokine receptors [30]. Although opioids
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exhibit a moderate capacity to induce opioid receptor-dependent chemotaxis in
vitro, their principal effect is to suppress inflammation by inhibiting chemokine
receptor function [20–21]. Pretreatment with opioids selectively inhibits a number
of chemokine receptors, including CCR1, CCR2, CXCR1 and CXCR2 on myeloid
cells, such as human monocytes and neutrophils (Tab. 1). Additional studies reveal
similar opioid-induced heterologous desensitization of chemokine receptors on T-
lymphocytes.

Heterologous desensitization of chemokine receptors involves uncoupling
of Gi protein by calcium-independent PKC

Met-enkephalin stimulation of opioid receptors activates phospholipase Cβ, result-
ing in the accumulation of IP3 and diacylglycerol (DAG) from PIP2 (4,5) hydroly-
sis (Fig. 1) [31]. This opioid-induced production of IP3 is rather modest, as indicat-
ed by the lack of transient calcium influx. At the same time, the capacity of Met-
enkephalin to induce chemotaxis suggests that PI3 kinase γ is activated as well. Both
DAG and PI3 kinase γ activate Protein Kinase C, a family of Ser/Thr kinases. The
12 PKC isozymes can be divided into three subfamilies based on differences in acti-
vation: classical PKCs (cPKCs), such as α, βI, βII, and γ, require both Ca2+ and DAG
for activation; novel PKCs (nPKCs), such as δ, ε, θ, and η, are DAG-dependent but
Ca2+-independent; and atypical PKCs, such as ζ and λ, require neither Ca2+ nor
DAG [32]. Recent studies have suggested that atypical PKCs may be activated by
PI3 kinases [33]. Eight PKC isozymes, α, β1, β2, δ, ε, η, µ, and ζ, have been identi-
fied in human blood monocytes. Biochemical analysis of human monocytes and
HEK cells transfected to express µ-opioid receptors (MOR) and chemokine recep-
tors reveals that opioid induced heterologous desensitization involved calcium-inde-
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Table 1 - Crosstalk between chemokine, opioid, and vanilloid receptors

Effecter receptors Cell types Target receptors Effects
MOR, DOR Leukocytes Desensitize CCR1, Immuno-suppression

CCR2, CCR5, CXCR1/2 [4, 20–22, 30]
CCR1, CCR2, CCR7, Neurons and Desensitize MOR, DOR Hyperalgesia
CXCR4, CXCR1/2, CCR5 leukocytes [4, 9, 10]
CCR1, CCR2, CCR5, Neurons Sensitize TRPV1 Hyperalgesia
CXCR1/2

Abbreviations: MOR, µ-opioid receptors; DOR, δ-opioid receptors. TRPV1, Transient recep-
tor potential vanilloid 1, also called vanilloid receptor 



pendent PKC [21]. Activation of PKC is associated with the enhanced phosphory-
lation of chemokine receptors, resulting in a decrease in their affinity and in reduced
coupling to G-proteins. Consequently, chemokine receptor mediated chemotaxis,
calcium influx, and HIV infection are impaired. 

Opioid-induced heterologous desensitization exhibits selectivity

In human monocytes, only µ and δ opioid receptors were detected to inhibit
chemokine receptors [20]. Furthermore, opioid treatment inhibits the chemotactic
response of human monocytes and neutrophil to a limited selection of chemokines,
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Figure 1 
Molecular mechanism of bi-directional heterologous desensitization between chemokine
and opioid receptors. In leukocytes, opioids induce heterologous desensitization of
chemokine receptors through Gi proteins, phospholipase Cβ (PLCβ), and Ca2+-independent
protein kinase C (PKC), resulting in an immunosuppressive effect. In sensory neurons, treat-
ment with proinflammatory chemokines downregulates opioid receptor function through
both Ca2+-dependent and -independent protein kinase C, resulting in hyperalgesia. Phos-
phorylation of the cytoplasmic tail and intracellular loops of a seven-transmembrane recep-
tor by PKC decouples the receptor from downstream Gi-proteins, resulting in a decrease in
receptor function. (IP3, inositol 1, 4, 5-triphosphate; DAG, diacylglycerol)



including IL-8, MIP-1α, RANTES, and MCP-1, but not NAP-1, MIP-1β, SDF-1α,
or fMLP [4, 22]. The availability of chemokine receptors to be desensitized may be
based on their intrinsic properties: the accessibility of their C-terminal tails to phos-
phorylation, the impact of phosphorylation on their capacity to activate G-protein,
and/or the activation threshold of each chemokine receptor. Chemokine receptors
are arranged in a hierarchy in their capacity to induce heterologous desensitization
[28]. For example, certain receptors, such as the fMLP receptor, have a higher
capacity to desensitize other GPCRs than to be desensitized. Treatment with fMLP
causes a greater phosphorylation and internalization of C5a and IL8 receptors,
resulting in over 50% inhibition of their function. In contrast, IL8 has lower
inhibitory effects on fMLP receptors. The capacity of a receptor to cross-desensitize
GPCRs seems to correlate with its ability to induce greater phosphoinositide hydrol-
ysis and sustained calcium mobilization [21, 28]. Opioid induced heterologous
desensitization has only modest inhibitory effects on leukocyte chemotactic respons-
es. The lower inhibitory effects are probably due to a lower expression of opioid
receptors on leucocytes than on certain neuronal cells, resulting in a limited activa-
tion of downstream PKC [21]. 

Chemokines inhibit opioid receptors on leukocytes and sensory neurons

Pretreatment of monocytes with chemokines inhibits δ- and µ-opioid receptor medi-
ated chemotaxis [10]. The inhibitory effects are elicited by ligand activation of selec-
tive chemokine receptors, including CCR2, CCR5, CCR7, and CXCR4, but not by
CXCR1 or CXCR2. The heterologous desensitization of opioid receptors by
chemokine receptors is also mediated by Gi protein mediated protein kinase C acti-
vation. Prolonged treatment with chemokines induces the phosphorylation of
MOR, resulting in loss of surface MOR via receptor internalization and uncoupling
of MOR from downstream effector G proteins [9]. The pathophysiological rele-
vance of chemokine-induced desensitization of opioid receptors on leukocytes is
unclear. We therefore decided to consider whether chemokine receptors expressed
on neuronal cells desensitized nearby opioid receptors. 

Expression of chemokine receptors in the central and peripheral nervous
system

Many chemokine receptors, with the exception of CCR6 and 7, have been reported
to be normally expressed by cells of the CNS, including astrocytes, microglial cells,
oligodendrocytes, and neurons [34]. Chemokines and their receptors in the CNS
participate in pathological, inflammatory, and neurodegenerative conditions, such
as multiple sclerosis, experimental autoimmune encephalitis, Alzheimer’s disease,
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HIV infection, demential complex, brain injury, and tumors. Furthermore,
chemokines are also involved in brain development [35]. Knockout of the mouse
gene for CXCR4 or its ligand CXCL12 causes the disruption of the laminar archi-
tecture, probably due to a premature and disorganized inward migration of exter-
nal granular layer cells [36]. Chemokines also indirectly regulate neuronal signaling.
For example, high levels of KC, the murine homolog of CXCL1, cause a progressive
neurological dysfunction, characterized by ataxia, postural instability, and rigidity
[37]. Furthermore, CXCL8 and CXCL12 enhance synaptic activity by increasing
neurotransmitter release and suppressing the induction of long-term depression
[38]. On the other hand, soluble CX3CL1/fractalkine was able to reduce calcium
oscillations in synoptically coupled hippocampal neurons by decreasing glutamate
secretion and blocked gp120-induced apoptosis [39]. Thus, there is considerable
evidence for the expression of various functional chemokine receptors by neuronal
cells.

Molecular mechanism of opioid receptors-mediated analgesic effects

Opioid receptors consist of a family of seven-transmembrane receptors, with three
subtypes, µ, δ, and κ [31]. They exert analgesic effects by blocking either the sens-
ing or the propagation of pain signals. Endogenous peptides, such as endorphins
and Met-enkephalin, have been shown to bind to opioid receptors and to exert an
analgesic effect similar to that of morphine, heroin, and other plant extracts, indi-
cating that opioids and their receptors provide an intrinsic mechanism to enable a
host to perceive “pain” and “pleasure”. Binding of opioids induces a conforma-
tional change in the receptors and causes the dissociation of heterotrimeric Gi/o pro-
teins immediately downstream of the opioid receptors. Consequently, both Gα and
Gβγ orchestrate a spectrum of downstream responses, including activation of G-
protein coupled inward rectify potassium channel (GIRK), inhibition of adenylyl
cyclase and various calcium channels. Activation of GIRK hyperpolarizes neuronal
membranes, thereby preventing the excitation and transmission of pain signals.
Inhibition of calcium channels impairs the release of neurotransmitters, which is
also critical for the perception of pain. Furthermore, opioids also induce a transient
calcium influx in both primary neurons and opioid-receptor-transfected cell lines,
probably due to the activation of phospholipase C.

Pro-inflammatory chemokines suppress the function of opioid receptors

Chemokine receptors are detected on the same neuronal cells expressing opioid
receptors [9]. Immunohistochemical staining shows the co-expression of CCR1 and
MOR on sensory neurons in rat dorsal root ganglion. Several proinflammatory
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chemokines, such as CCL2, CCL3, CCL5 and CXCL8, are able to induce a tran-
sient but robust calcium influx in a subpopulation of sensory neurons, indicating
that these neuronal chemokine receptors are functional [40]. Pretreatment of senso-
ry neurons from rat dorsal root ganglion by these chemokines downregulates the
function of MOR. The molecular mechanism of chemokine-induced heterologous
desensitization of MOR was further investigated in a HEK293 cell line transfected
to stably express both MOR and CCR1. CCL3 treatment causes marked inhibitory
effects by phosphorylating the receptors, decoupling MOR from G protein, fol-
lowed by internalization of MOR. Thus, chemokine induced heterologous desensi-
tization of MOR on sensory neurons is also dependent on Gi-mediated activation of
PKC (Fig. 1). The in vitro observation on desensitization of MOR on primary sen-
sory neurons was confirmed by a cold-water tail flick assay [10]. Introduction of a
specific ligand for MOR, DAMGO, into the rat periaqueductal gray center (PAG)
significantly enhances the tail-flick latency, indicative of MOR-mediated analgesic
effects. Pre-administration of chemokines impaired the DAMGO-induced analgesic
effects, suggesting chemokine-induced heterologous desensitization of opioid recep-
tor restores the sensing of pain [9, 10]. 

Cross-talk between “pain” and chemokine receptors

Since the crosstalk between chemokine and opioid receptors resulted in increased
pain perception, we wondered whether there also would be any crosstalk between
chemokine and pro-pain receptors. Painful signals are detected by a group of spe-
cialized sensory neurons called nociceptors [41]. Recently, the first “pain” receptor,
TRPV1 (vanilloid receptor 1, VR1), was identified to be a ligand-gated six-trans-
membrane calcium channel, highly expressed in nociceptors [42]. Noxious stimuli,
such as capsaicin, heat, cold, pressure, acid, and inflammatory mediators, induce the
opening of this calcium channel. As a consequence, the membrane is depolarized
and the action potential is propagated to the CNS as a pain signal. It has been well
documented since ancient Greece that inflammation enhances pain and that pain
represents another host defense mechanism. A variety of cellular mediators, such as
bradykinin, nerve growth factor, and prostaglandins (PGE2), have been shown to
contribute to hyperalgesia by regulating the expression, sensitivity, and desensitiza-
tion of TRPV1 [41]. Bradykinin, a potent inflammatory mediator, does so by induc-
ing the production of endogenous “pain” ligand, 12-HPETE [43]. Inflammation
elicits the accumulation of nerve growth factor (NGF) and activation of p38 MAPK,
resulting in the enhancement of the translation of TRPV1 in primary neurons [44].
Nerve growth factor (NGF), a member of the interleukin 1 family, can also sensitize
TRPV1 by inducing hydrolysis of PtdIns(4,5)P2, an inhibitor of TRPV1 [45]. PGE2,
by coupling to Gs, induces the phosphorylation of TRPV1 by PKA, resulting in a
significant decrease in desensitization, i.e., TRPV1 maintains sensitivity despite
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repetitive stimulation [46]. Thus TRPV1 is an appropriate target for chemokine
receptor signals.

Chemokine receptors sensitize TRPV1 on sensory neurons

The expression pattern of CCR1 partially overlaps that of TRPV1 on the sensory
neurons of dorsal root ganglion and about 39±3% of DRG neurons express both
receptors. Chemokine receptors have been proposed to directly contribute to the
inflammation-induced hyperalgesia by inducing a transient calcium influx in neu-
ronal cells [40]. Such a chemokine-induced calcium influx is capable of eliciting an
action potential. However, we consider it unlikely that any neuronal calcium influx
will result in the perception of pain, since opioids which also induce neuronal calci-
um influx are far from painful [9]. Pretreatment with CCL3 enhanced the sensitivi-
ty of TRPV1 to capsaicin by three- to five-fold as measured by calcium flux respons-
es in vitro. The sensitization effects are likely due to the removal of PIP2, a TRPV1
endogenous inhibitor, and phosphorylation of the calcium channel by PKC (Fig. 2).
Intrathecal injection of CCL3 to the spinal cord enhanced the rate of mouse hind
paw withdrawal from the painful stimulation by heat, indicating the relevance of the
in vitro observation. The fact that a proinflammatory chemokine, by interacting
with its receptor on small diameter neurons, indirectly sensitizes TRPV1 suggests
that the process of receptor cross-sensitization may contribute to hyperalgesia dur-
ing inflammation.

Effects of activation of TRPV receptors on inflammatory responses

Opening of TRPV1 calcium channel induces the production and secretion of calci-
tonin gene-related peptide (CGRP) and Substance P, two potent neuropeptides reg-
ulating leukocyte function [5, 6]. CGRP in the airways causes vasodilatation, and in
a few instances, bronchoconstriction. It also induces eosinophil migration, stimu-
lates secretion of cytokines from antigen-specific T cells, and enhances of beta-inte-
grin-mediated T cell adhesion to fibronectin at the site of inflammation. On the
other hand, CGRP also impairs the capacity of macrophages to activate T-cells, a
potent anti-inflammatory effect. Substance P acts through NK1 receptor expressed
on T cells, macrophages, dendritic cells and probably other cell types, resulting in
an increase in IFN-γ production and amplification of the Th1 response. TRPV1 may
also directly modulate leukocyte function. Treatment of T cells with capsaicin
inhibits IkappaB kinase activation, resulting in impaired T cell activation [47].
Whether the cross-talk between chemokine and TRPV receptors on leukocytes is bi-
directional remains to be determined. Although painful stimuli may promote
inflammatory host defenses, the net effects of TRPV receptor on the immune system
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are still not clear. Further in vivo and in vitro investigations are needed to establish
the pathophysiological relevance of the cross-talk between TRPV and chemokine
receptors.

Conclusions

Cross-talk between chemokine and neuronal receptors provides a mechanism for
integrating neuronal and immune responses. Chemokine receptors play a pivotal
role during this communication. Pretreatment with opioids induces heterologous
desensitization of chemokine receptors on leukocytes by activating Gi proteins and
calcium-independent PKC. Conversely, chemokines also desensitize neuronal recep-
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Figure 2 
Molecular mechanism of chemokine-induced sensitization of Vanilloid receptor 1 (TRPV1).
Activation of CCR1 by CCL3/MIP-1a enhances the sensitivity of TRPV1, a “pain” receptor,
through a signal transduction cascade involving Gi protein, phospholipase Cβ (PLCβ), and
protein kinase C (PKC). PLCβ hydrolyzes phosphoinositol 4,5-biphosphate (PIP2), an
endogenous inhibitor of TRPV1, thereby sensitizing the TRPV1 pain receptor. Phosphoryla-
tion of TRPV1 by PKC enhances the sensitivity of TRPV1. CCL3/MIP-1α-induced sensitiza-
tion of TRPV1 can be blocked at various steps of the signaling cascade by pertussis toxin
(PTX), U73122, or staurosporine.



tors for opioids, which enhance pain perception. Furthermore, exposure to
chemokines sensitizes TRPV1 “pain” receptors which generate a “painful” signal
from sensory neurons to the host CNS. Both of the opioid and Vanilloid pathways
warn the host of the existence of a pathological condition. In the future, it will be
interesting to investigate the communication between chemokines and neuronal
responses in several disease settings. For example, herpes zoster and rheumatoid
arthritis are extremely painful inflammatory diseases. Blocking chemokine receptors
may significantly reduce the painful symptom. Furthermore, a decrease in nocicep-
tive neuron activity will in turn reduce the secretion of proinflammatory neuro-
transmitters, such as CGRP and Substance P. Therefore, blocking proinflammatory
chemokines may serve as an effective approach to block the positive feedback loops
between inflammation and hyperalgesia. 
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Introduction

Chemokines are now known to play pivotal roles in both innate and acquired immu-
nity primarily through their chemotactic activity for various leukocyte classes and
subsets [1]. The family of antimicrobial peptides, also called natural antibiotics, con-
stitutes the important immediate effector molecules against invading microorgan-
isms [2, 3]. Accumulating evidence has revealed that the families of chemokines and
antimicrobial peptides have substantially overlapping functions. While a number of
antimicrobial peptides are chemotactic for selected classes and subsets of leukocyte
[4], many chemokines have a substantial microbicidal activity against a broad spec-
trum of microorganisms [5–7]. Furthermore, CXCL16, a transmembrane-type
chemokine [8, 9], was originally identified as a scavenger receptor termed SR-PSOX
(scavenger receptor that binds phosphatidylserine and oxidized lipoprotein) [10].
Subsequently, a number of chemokines have been shown to display a similar bind-
ing activity for typical scavenger receptor ligands including oxidized lipoprotein and
bacteria [11]. Thus, the family of chemokines may have substantial functional over-
laps with the families of antimicrobial peptides and scavenger receptors. The over-
lapping functions of these distinct molecular families may have an evolutionary basis
stemming from an ancient mode of recognition of pathogens and may represent a
certain aspect of the pattern recognition of innate immunity.

The world of antimicrobial peptides

Antimicrobial peptides, now known by >700 in number, are the diverse family of
small, mostly cationic polypeptides that have a direct killing activity against bacte-
ria, fungi, parasite, and even some enveloped viruses [2, 3]. Peptides with similar
structures and functions are found in virtually all branches of multicellular organ-
isms. Their phylogenic relationships are, however, mostly unclear. This is mostly
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because there has been a strong evolutionary pressure for their gene multiplication
and amino acid sequence diversification in order to cope with a wide variety of
microorganisms [12–15]. The fundamental structural principal common to most
antimicrobial peptides is the topological (rather than linear) amphipathic design,
where clusters of hydrophobic and cationic amino acids are organized in discrete
surface areas (Fig. 1). It is considered that the amphipathic and highly cationic
nature of these peptides allows their selective binding and subsequent disruption of
bacterial plasma membrane, which is much more negatively charged than that of
host cells [2, 3]. Because of such an electrostatic and physicochemical mode of
action, most antimicrobial peptides are only effective at relatively high (micomolar)
concentrations and at low salt conditions [2, 3]. In mammals, therefore, the antimi-
crobial peptides are primarily involved in the barrier protection of various epithelial
surfaces that are covered with a low salt body fluid. Some peptides are also involved
in the non-oxidative bactericidal activity of leukocytes [2, 3].

For example, Paneth cells, which are present at the bottom of crypts in the small
intestine, contain numerous large secretory granules that are discharged into the
lumen upon various stimulations. Many components of these granules have potent
antimicrobial properties and are likely to protect small intestine from microbial
infection and colonization [16]. Paneth cells in humans express only two α-
defensins, while mouse Paneth cells express not only more than 20 different α-
defensins (also called as cryptdins) but also as many as 7 cryptdin-related sequence
(CRS) peptides [13, 17]. CRS peptides represent a family of covalently linked homo-
and hetero-dimeric antimicrobial molecules, a feature that may further contribute to
their diversity for efficient protection of the gastrointestinal mucosa against
enteropathogenic microorganisms [13]. Likewise, the non-oxidative mechanisms of
human neutrophils are mediated by antimicrobial peptides and proteins stored with-
in its various cytoplasmic granules [18, 19]. Cathepsin G, azurocidin (also called
CAP37), BPI (also called CAP57), and α-defensins are restricted to the primary
(asurophil) granules, which also contain myeloperoxidase, elastase, and proteinase
3 [18, 19]. Lactoferrin and hCAP-18 (the precursor of LL-37) are restricted to the
neutrophil’s secondary (specific) granules [18, 19]. Lysozyme, another antimicrobial
molecule, occurs in both primary and secondary granules [18, 19]. Whereas
azurophil granule contents are delivered preferentially to intracellular phagolyso-
somes, the specific granule contents are largely secreted extracellularly [18, 19].
Antimicrobial activity is also detected in natural killer cells and T cells, but the effec-
tor molecules that mediate the activity have not been systematically characterized.
However, one effector molecule is granulysin, which has been shown to kill Gram-
negative bacteria, Gram-positive bacteria, fungi and intracellular Mycobacterium
tuberculosis [20]. Human cathelicidin LL-37 and α-defensins HNP 1–3 can be addi-
tional effector molecules for microbicidal activity of lymphocytes [21].

There is now substantial evidence that supports the vital role of the antimicro-
bial peptides in the host defense against bacterial infection (Tab. 1). For example,
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the recurrent bacterial infection of lung in patients with cystic fibrosis could be in
part due to poor performance of peptide-dependent antibacterial activity in the
high-salt bronchotracheal fluid of these patients [22]. The abnormal expression of
α-defensins and LL-37 correlates with the occurrence of severe periodontal infec-
tious disease in patients with morbus Kostmann [23]. Mice deficient in the matallo-
protease matrilysin, which is necessary to cleave the proforms of epithelial α-
defensins in the small intestine, were shown to be more sensitive to orally adminis-
tered bacteria [24]. Mice with targeted disruption of the cathelicidin gene Cnlp
displayed a highly elevated susceptibility to Group A Streptococcus in a necrotizing
cutaneous infection model [25]. Conversely, cathelicidin-resistant mutants of Group
A Streptococcus demonstrated increased virulence in vivo, generating skin lesions of
larger size and longer duration in wild-type mice [25]. Importantly, leukocytes
derived from cathelicidin-deficient mice were functionally competent in chemotaxis
and oxidative burst activity [25]. Thus, the absence of the antimicrobial peptide in
the neutrophil granule and epidermal keratinocytes greatly compromises the host
innate immunity against Group A Streptococcus infection [25]. Collectively, there is
now little doubt about the vital role of antimicrobial peptides in innate immunity
against invading microorganisms.

Chemotactic activity of antimicrobial peptides

Mammalian defensins and cathelicidins have also been shown to have multiple
receptor-mediated effects on immune cells [4]. Most notably, many of them are
chemotactic for selective leukocytes and apparently interact with pertussis toxin-
sensitive Gαi-coupled seven-transmembrane receptors [4]. In this context, Yang et
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Figure 1 
Topological clustering of catinonic and hydrophobic amino acids in antimicrobial peptides.
Blue, basic (positively charged) amino acids; gray, hydrophobic amino acids. 



al. have demonstrated that human β-defensins are potent agonists for CCR6 [26],
the receptor for a chemokine CCL20/LARC, which is expressed by various epithe-
lial cells and attracts immature dendritic cells and effector lymphocytes [1, 27–30].
In fact, β-defensins appear to have a tertiary structure very similar to that of CCL20
and thus may act as “minichemokines” [31]. Furthermore, LL-37 has been shown
to attract neutrophils, monocytes, and mast cells via human formyl peptide recep-
tor-like 1 (FPRL1) [32]. Its angiogenic activity is also mediated by FPRL1 expressed
on endothelial cells [26]. While human β-defensins HBD1–3 and mouse β-defensins
mBD2 and 3 attract immature dendritic cells via CCR6, HBD3 may also use a
receptor other than CCR6 for attraction of monocytes because these cells do not
express CCR6 [4]. Human α-defensins HNP1–3 also use an unknown Gαi-protein-
coupled receptor(s) because their chemotactic activity can be blocked by pretreat-
ment of target cells with pertussis toxin [4]. Collectively, it is now clear that many
antimicrobial peptides can be regarded as endogenous ligands for some Gαi-protein-
coupled chemotactic receptors. Thus, besides direct killing of invading microorgan-
isms, antimicrobial peptides may also have an important role in the recruitment of
leukocytes in innate and acquired immunity.
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Table 1 - In vivo evidence for the vital role of antimicrobial peptides in host defense against
bacterial infection

Disease or genetic Manifestation Cause or mechanism Refs.
modification

cystic fibrosis recurrent bacterial infection high-salt inactivation of [22]
of the lung peptide-dependent 

antimicrobial activity
morbus Kostmann severe periodontitis lack of secretion of [23]

LL-37 in saliva
MMP-7 deficient elevated susceptibility to lack of processing of [24]
mice orally administered bacteria epithelial α-defensins
cathelicidin-deficient elevated susceptibility to lack of cathelicidin [25]
mice Group A Streptococcus expression in neutrophils 

skin infection and epithelial cells
β-defensin 1-deficient poor clearance of lack of α-defensin 1 [51, 52]
mice Haemophillus influenzae expression in epithelial 

in the lung cells
colonization by Staphylo-
coccus in the bladder

human α-defensin-5 resistance to oral challenge transgenic expression of [53]
transgenic mice with Salmonella syphimurium human α-defensin 5 in 

Paneth cells



Antimicrobial activity of chemokines

Chemokines play pivotal roles in both innate and acquired immunity primarily by
inducing directed migration of various leukocyte classes and subsets via interactions
with a group of Gαi-protein-coupled seven transmembrane receptors [1]. Further-
more, recent studies have revealed that many chemokines have a direct microbicidal
activity (Tab. 2). Krijgsveld et al. determined the amino acid sequences of the puri-
fied antibacterial molecules termed thrombocidins that were stored in the α-gran-
ules of human platelets [33]. The molecules turned out to be two related chemokine
variants processed from a common precursor platelet basic protein (PBP) and trun-
cated by two amino acids in the C terminus, namely, NAP-2/CXCL7(59–126) and
CTAP-III/CXCL7(44–126) [33]. The full-length NAP-2/CXCL7(59–128) and
CTAP-III/CXCL7(44–128) were not microbicidal in their hands [33]. Tang et al.
also characterized antimicrobial molecules released by human platelets upon throm-
bin stimulation [34]. They demonstrated that several platelet chemokines including
CXCL4/PF-4, CCL5/RANTES, the full-length CTAP-III/CXCL7(44–128) and the
CTAP-III precursor PBP/CXCL7(35–128) had potent antimicrobial activity against
Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, Cryptococ-
cus neoformans, and, with the exception of CTAP-III and PBP, Candida albicans
[34]. In their hands, thus, the full-length CTAP-III was also active. Furthermore,
Cole et al. examined a panel of 11 chemokines representing all four chemokine sub-
families for antimicrobial activity and demonstrated that the three IFN-inducible
non-ELR-motif CXC chemokines, MIG/CXCL9, IP-10/CXCL10, and I-
TAC/CXCL11, were microbicidal against Escherichia coli and Gram-positive Liste-
ria monocytogenes [5]. We also reported a broad-spectrum antimicrobial activity of
CCL28/MEC (see below) [6], a chemokine selectively expressed by various mucos-
al tissues [35, 36]. Yang et al., who have originally reported that human β-defensins
are functional ligands for CCR6 [26], also tested whether CCL20/LARC was in con-
verse microbicidal [7]. They found that, similar to β-defensins, CCL20 was micro-
bicidal against Escherichia coli, Pseudomonas aeruginosa, Moraxella catarrhalis,
Streptococcus pyogenes, Enterococcus faecium, Staphylococcus aureus, and Candi-
da albicans [7]. Furthermore, they demonstrated that many other chemokines also
displayed similar antimicrobial activities [7]. These included CXCL1/Gro-α,
CXCL2/Gro-β, CXCL3/Gro-γ, CXCL12/SDF-1, CXCL13/BLC, CXCL14/BRAK,
CCL1/I-309, CCL8//MCP-2, CCL11/Eotaxin, CCL13/MCP-4, CCL17/TARC,
CCL18/PARC, CCL19/ELC, CCL21/SLC, CCL22/MDC, CCL25/ TECK, and
XCL1/Lymphotactin [7]. Thus, about two-thirds of the chemokines that were inves-
tigated in their study showed the capacity to kill microorganisms in vitro. Most bac-
tericidal chemokines, in particular CXCL1, CXCL2, CXCL3, CXCL12, CXCL13,
CCL1, CCL13, CCL19, CCL20, and XCL1, were more potent against Gram-nega-
tive E. coli than against Gram-positive S. aureus. A striking difference was observed
between the antimicrobial activity of closely related CCL19 and CCL21 [1]. CCL19
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was active against E. coli with little detectable activity against S. aureus. On the
other hand, CCL21 demonstrated a potent activity against S. aureus, while being
less potent against E. coli than CCL19 [7]. Even though there are some discrepan-
cies concerning antimicrobial activity of some chemokines (Tab. 2), these studies
have clearly demonstrated that many chemokines have an intrinsic microbicidal
activity when tested in low salt assay conditions in vitro.

In particular, CCL28/MEC is expressed at high levels in the mucosal tissues such
as salivary glands, trachea, colon, and mammary glands [35, 36]. CCL28 is most
homologous with CCL27/CTACK, which is selectively expressed in the skin [37,
38]. These two chemokines commonly act on CCR10 [35, 36, 39, 40]. We observed
that CCL28 was not only strongly expressed in the salivary glands but also secret-
ed into the saliva and milk at relatively high concentrations [6]. Furthermore, we
noticed that the extended C-terminal regions of CCL28 is highly enriched with his-
tidine residues and shows a significant sequence similarity with histatin-5, a histi-
dine-rich candidacidal peptide secreted in human saliva [6, 41]. These observations
led us to examine potential microbicidal activity of CCL28 and its C-terminal pep-
tide. As summarized in Table 3, we found that CCL28 indeed exerts a potent antimi-
crobial activity against not only Candida albicans, but also against Gram-negative
bacteria and Gram-positive bacteria [6]. Like histatin-5, the synthetic peptide cor-
responding to the 28-amino acid C-terminal segment of CCL28 (CCL28-C) also
showed a selective antimicrobial activity against C. albicans [6]. On the other hand,
CCL27, which is most closely related to CCL28 [37, 38], hardly showed such
antimicrobial activity [6]. CCL28 rapidly generated pores in the membrane of tar-
get microbes [6]. Like many other antimicrobial chemokines and peptides, the
microbicidal activity of CCL28 is salt-sensitive [6]. In this context, it should be
noted that the mucosal fluids such as saliva, milk, and tracheal and colonic secre-
tions are commonly low in salt concentrations. Thus, CCL28, which is secreted into
low-salt body fluids at high concentrations, may have a potential as a direct micro-
bicidal factor. It is also noteworthy that the chemokines with potent antimicrobial
activities such as CXCL9, CXCL10, CXCL11, and CCL20 are all expressed and
secreted at relatively high concentrations by various epithelial cells [27–30, 42]. Col-
lectively, some chemokines may have a substantial role in host defense against
microorganisms as direct microbicidal agents.

Common structural features of chemokines with antimicrobial activity

Like many other antimicrobial peptides, the chemokines with antimicrobial activity
tend to have a higher pI than those without such activity, indicating that cationici-
ty is an important feature for antimicrobial chemokines [7]. However, cationicity
alone is not sufficient to distinguish chemokines with and without antimicrobial
activity. Furthermore, the potency of antimicrobial chemokines does not directly
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correlate with their cationicity. Therefore, in addition to cationicity, other structur-
al features are necessary for a given chemokine to have an antimicrobial activity [7].
As shown in Figure 2, comparison of the structures between chemokines with and
without antimicrobial activities suggests that the topological formation of a large,
positively charged electrostatic patch on the surface of the molecule is likely to be a
common feature of antimicrobial chemokines. The rest of the molecule is mostly
hydrophobic with spotted negative electrostatic charges.

Scavenger receptor activity of chemokines

Scavenger receptors are a highly heterogeneous group of cell surface molecules that
commonly bind and internalize oxidized low density lipoprotein (OxLDL) and
polyanionic molecules [43]. Scavenger receptors are expressed by myeloid cells
(macrophages and dendritic cells) and some endothelial cells, and play an important
role in uptake and clearance of modified host molecules, apoptotic cells, microor-
ganisms, and their products [44]. CXCL16, a transmembrane-type chemokine [8, 9],
was originally identified as a scavenger receptor for oxidized lipoprotein [10].
CXCL16 is expressed by cells such as macrophages and dendritic cells, and has been
shown to bind and internalize various scavenger receptor ligands such as oxidized
lipoprotein, bacteria, and sulfated polyanions [10, 45]. Shimaoka et al. have shown
that not only CXCL16, but also 12 out of 15 chemokines examined are capable of
binding typical scavenger receptor ligands such as OxLDL, Gram-positive bacteria,
and Gram-negative bacteria [11]. Furthermore, OxLDL effectively blocks the bind-
ing of such chemokines to their respective receptors, suggesting that the receptor
binding site of these chemokines mostly overlaps with their potential binding site for
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Table 3 - Summary of antimicrobial activity of CCL28

Microbe IC50 (µM)
CCL28 mCCL28 CCL27 CCL28-C Histatin-5

P. aeruginosa 0.4 ± 0.1 1.7 ± 0.1 >10 >10 >10
K. pneumoniae 0.3 ± 0.1 1.6 ± 0.1 >10 >10 3.0 ± 0.7
S. mutans 1.7 ± 0.4 1.5 ± 0.3 >10 >10 >10
S. pyogenes 3.0 ± 0.2 4.5 ± 0.4 >10 >10 >10
S. aureus 0.9 ± 0.1 0.9 ± 0.1 >10 7.0 ± 1.2 >10
C. albicans 0.7 ± 0.2 1.3 ± 1.0 5.0 ± 1.9 1.6 ± 0.4 3.5 ± 1.6

IC50, 50% inhibitory concentration; mCCL28, mouse CCL28; CCL28-C, the C-terminal 28
amino acid peptide of CCL28



OxLDL [11]. Indeed, both the chemotactic and scavenger receptor activities of
CXCL16 were similarly impaired by a series of mutations in the chemokine domain
[11]. As expected, the chemokines with antimicrobial activity consistently bound
more avidly with OxLDL and bacteria than those without antimicrobial activity
[11].

Concluding remarks

It is now apparent that many chemokines have a potential antimicrobial activity and
can also avidly bind OxLDL and other scavenger receptor ligands including bacte-
ria. Thus, chemokines, antimicrobial peptides, and scavenger receptors have some
molecular properties in common. The evolutionary origin of such shared properties
is not clear but could be related to an ancient pattern recognition of microbial
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Figure 2 
Topological distribution of charged amino acids in non-antimicrobial and antimicrobial
chemokines
The pI value of each chemokine is indicated on the right. Red, acidic (negatively charged);
blue, basic (positively charged); grey, hydrophobic/neutral.



pathogens by the host [46]. Alternatively, such properties might have been acquired
through evolutionary conversion. At any rate, there could have been a strong selec-
tive pressure toward retaining and/or acquiring some common molecular features.

The obvious common property of chemokines with antimicrobial peptides and
scavenger receptors is cationicity. This could be essential for the antimicrobial pep-
tides and scavenger receptors to recognize bacterial cells that have much higher neg-
ative charges than host cells [2, 3]. On the other hand, there may not be such intrin-
sic functional necessity for chemokine per se to be cationic. However, one important
reason for most chemokines to be cationic is that the N-terminal regions of the
chemokine receptors are highly rich in acidic residues and even sulfated at some
tyrosine residues [47, 48]. In fact, many chemoattractant receptors are commonly
negatively charged at their N-terminal extracellular domains [48]. Currently, most
chemokines are considered to interact with their receptors in a two-step process
[49]. The first high-affinity interaction mainly involves the N-terminal region of the
receptor and is mostly mediated by strong electrostatic force. The subsequent lower
affinity interaction involves other extracellular loops of receptors, while the N-ter-
minal region of chemokines plays a critical role in signaling. Chemokines also inter-
act with negatively charged glycosaminoglycans such as heparin and heparan sul-
fate, and this property is necessary for their in vivo activity [50]. These biological
requirements may in part explain the common cationic property of most
chemokines. Thus, their possession of antimicrobial and scavenger receptor-like
activities may be mostly fortuitous (a matter of in vitro assays) but may still have
some physiologic implications for some chemokines.

At present, the antimicrobial activity of chemokines has been shown only by in
vitro assays. Thus, studies using knockout mice or transgenic mice would be neces-
sary to prove any physiologic role of chemokines in direct microbial killing in vivo.
Given the micromolar concentrations required for effective microbicidal activity,
however, it is unlikely that direct killing of microorganisms is a major function of
any chemokines. However, still some chemokines may play a significant role in
direct killing of microorganisms through cooperation with other chemokines and
other antimicrobial peptides. In contrast, the chemotactic activity of antimicrobial
peptides are more physiologically attainable, requiring only nanomolar concentra-
tions [4]. Furthermore, there could still be a large number of new antimicrobial pep-
tides that remain to be characterized. For example, an improved genome-wide
search has recently identified a total of 28 new human and 43 new mouse β-defensin
genes that are clustered in five syntenic chromosomal regions [15]. Thus, it is quite
a challenge to characterize such new peptides for their antimicrobial spectrum and
chemotactic activity, and to identify their chemotactic receptors.
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Viruses are potent manipulators of chemokines

Viruses that successfully invade immunocompetent hosts do so by acquiring self-
protective strategies to evade or subvert the amalgamated forces of the innate and
acquired immune responses [1–3]. Studies of individual viral anti-immune mecha-
nisms tend to shed light on specific pathways that regulate the immune or inflam-
matory responses encountered by specific viruses within susceptible hosts. Viruses
as a whole can express effector molecules that target the entire gamut of immune
pathways of vertebrate hosts, but several pathways stand out as being particularly
targeted by viruses from many distinct families. For example, a survey of the host
antiviral response pathways already known to be targeted by viruses reveals a spec-
trum of key immune targets: targets such as antigen presentation, apoptosis, intra-
cellular signaling, toll-like receptors, cytokines chemokines, serine proteinases, cyto-
toxic killing mechanisms, antibody generation, and humoral regulators, etc. [4–9].
In fact, the ever-growing collection of viral strategies that modulate the immune sys-
tem can be considered as comprising the discipline of “anti-immunology” and is the
subject of a vast body of scientific literature [10–16]. In particular, the chemokine
circuitry has been frequently targeted by viruses for manipulation by three classes of
virus-encoded regulators: (1) chemokine mimics, (2) chemokine binding proteins
and (3) chemokine receptor homologs [17–20].

In many cases, viruses have evolved chemokine regulators that counteract the
inflammatory responses of the host, thus endowing these molecules with highly
specific anti-inflammatory properties [21–27]. Viruses do not generally express
immunomodulators that require high concentration in order to effectively perturb
their intended immune pathways. Rather, viruses have evolved to express host-
directed regulators that can be delivered transiently at exceeding low dosages (less
than nanomolar) within a selected microenvironment of the infected tissues. The
combination of high potency and highly specific targeting provides a powerful
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platform with which to develop next-generation drugs based on viral protein
immunomodulators to treat diseases associated with excessive inflammation [28].

In this chapter, we focus on virus-encoded chemokine modulators that are secret-
ed from infected cells and target chemokines as competing ligands or as binding pro-
teins (Fig. 1). In particular, we discuss in greater depth those virus-encoded
chemokine regulators that have been tested individually, in the absence of virus
infection, and examined as therapeutic reagents in models of diseases associated
with excessive inflammation or immune responses (Tabs 1 and 2).

Chemokines – their role in the inflammatory response

Chemokines are small 8–12 kDa proteins that provide a chemoattractant function
enticing circulating cells in the blood into sites of injury or infection [29–34]. The
chemokines have been classified by arrangement of the N-terminal cysteine residues
relative to one another, into C, CC, CXC and CX3C classes, X representing amino
acids inserted between the C amino acids [34]. The CC and CXC classes have been
the most extensively studied, with CC chemokines having a proclivity toward
attraction of monocytes and lymphocytes, but in reality the chemokines and their
receptors are both redundant and promiscuous often crossing class activities and
receptor affiliations [32–35]. The C-terminus of many chemokines recognize gly-
cosaminoglycans (GAGs) and is thought to provide an anchor for chemokines to
establish a solid phase gradient that can act to directionally attract cells into the tar-
get tissues [31, 36]. The N-terminus of chemokines recognize the appropriate seven
transmembrane G-protein-coupled chemokine receptors present on the surface of
the attracted leukocytes, thereby allowing the cells to become both adherent to the
chemokine and also aiding in their activation [31, 34, 36]. Chemokine receptors can
be classified in the same manner as chemokines (C, CC, CXC, CX3C) and are either
inducible (inflammatory) or constitutively expressed [29, 35]. After chemokine
binding, the subunits of the associated G protein dissociate from the chemokine
receptor. The G beta and gamma subunits activate an assortment of enzymes while
the G alpha subunit regulates production of cAMP or can couple chemokine recep-
tor activation to non-receptor protein-tyrosine-kinase-initiated pathways [31, 37,
38]. Both chemokines and chemokine receptors have been implicated in the initia-
tion and progression of many diseases, including: arthritis, infections such as AIDS,
glomerulonephritis, neurotrauma, inflammatory CNS disorders, atherosclerosis,
myocardial damage, lung diseases and transplant rejection, among many others
[29–35, 37–39]. Figure 2 illustrates some of the numerous chemokine and receptor
pathways associated with disease progression which have only been very briefly
touched on in this chapter. This figure also illustrates the potential levels of inhibi-
tion by viral modulators: specifically, the modulation of chemokine gradient forma-
tion (blue circle) and ligand-receptor recognition (aqua circle). Viral chemokine
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modulators that target or bind to chemokines and their receptors thus have the
potential to modify and even completely arrest chemokine mediated responses dur-
ing the inflammatory system response.

Secreted immunomodulatory viral proteins as anti-inflammatory reagents

Virus-encoded immunomodulatory proteins have been identified from many virus
families, with the majority being derived from DNA viruses that express multiple
genes in addition to those required just for virus replication and propagation in tis-
sue culture. Because of their large genomic sizes, members of the poxvirus and her-
pesvirus families have evolved to encode more such immunomodulators than other
viruses [1, 10–16, 40–42]. In some cases, the origins of these immunomodulatory
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Figure 1
Viral chemokine modulators. The proteins marked with an asterix are considered in greater
detail in this review.



viral genes are likely the consequence of theft of host immune genes, presumably by
recombination with reverse-transcribed host cDNA from ancestrally infected host
organisms. After a host-derived immunomodulator has been acquired by a given
virus, however, subsequent evolutionary pressures can result in alterations of bio-
logic functions of the captured modulator that are specifically advantageous to the
virus [43–45]. Virus-encoded chemokines and chemokine receptors would fall into
this category of pirated host immune regulators whose biologic functions have been
shaped by selection pressures within virus-infected hosts [17–20].

An alternative, and more enigmatic, class of viral immunomodulators exhibits
no obvious sequence relationship to any known host molecules. These orphan viral
regulators have usually been discovered empirically by the ability to bind and inhib-
it specific host ligands. For example, the five known structural classes of viral
chemokine binding proteins were all originally discovered by physical binding and
inhibition assays using host chemokines, rather than by any sequence relationship
with any known host chemokine or receptors [10, 15, 17–20]. For these viral regu-
lators, they may either represent examples of independent convergent evolution or,
alternately, their true relationship to host-derived genes may become revealed only
as more genomic information from other organisms becomes available. In fact,
some of these unique viral genes might have been originally derived from ancient
host species that are now extinct, and their progenitor host genes may never be
accurately documented. 

This review will focus on the secreted viral chemokine regulators that have been
independently expressed and utilized to treat disorders in animal models of inflam-
matory diseases. These secreted immunomodulators can be subdivided into
virokines (ligand-like) or viroceptors (receptor-like) but it should be noted that this
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Table 1 - Viral chemokine binding proteins tested in animal disease models

Viral protein Delivery mode Animal model Refs

(I) M-T7 (Myxoma) Protein (i.v.) Vascular hyperplasia (rat, rabbit) [75]
Protein (i.v.) Renal allograft (rat) [76]
Protein (i.v.) Transplant vasculopathy (rat) [77]

(II) 35K (VAC-L) Protein Fc-fusion (i.d.) Skin inflammation (guinea pig) [54]
vCCI(CPV) Protein Fc-fusion (i.n.) Airway inflammation (mouse) [78]
35K (VAC-L) Adenovirus vector (i.p.) Peritoneal inflammation (mouse) [79]
35K (VAC-L) Adenovirus vector (i.p.) Atherosclerosis (mouse) [80]
M-T1 (MYX) Protein (i.v.) Transplant vasculopathy (rat) [77]

(III) M3 (γ68HV) Transgene Pancreatic inflammation (mouse) [81]
Transgene Vasculopathy (mouse) [118]
Protein (i.v.) Transplant vasculopathy (rat) [77]



thematic distinction is rather arbitrary because many were identified operationally
as binding proteins or inhibitors, and operate by still-undefined mechanisms [40,
41, 46, 47]. In any event, only a small fraction of the currently known imm-
munoregulators from viruses have ever been tested as anti-inflammatory or anti-
immune reagents in animal models [28], and the chemokine-targeted members of
this group are considered in greater detail in the following sections.

Viral chemokine binding proteins

Virus-encoded chemokine inhibitors generally function as either cell surface recep-
tor mimics, ligand mimics or as secreted chemokine binding proteins that scavenge
chemokines away from host receptors at the surface of immune cells (Fig. 1). In the
case of viral chemokine binding proteins (CBPs), five unrelated protein classes of
such inhibitors (termed types I to V) have been reported to date, as defined by phys-
ical chemokine binding and inhibition assays [10, 15, 17–20]. Each of these five
classes of CBP represent a distinctly unique protein family and the crystal structures
of the two members so far reported (type II and III) reveal domain folds unrelated
to any known host immune regulator [48–50]. 

The type I CBP is exemplified by the M-T7 protein from myxoma virus. M-T7
is a poxvirus viroceptor originally identified as a secreted 37 kDa inhibitor specific
for rabbit interferon-gamma but was subsequently shown to bind with low affinity
to the glycosaminoglycan (GAG) binding domain (C-terminus) of a broad spectrum
of C/CC/CXC-chemokines and to inhibit leukocyte trafficking in virus-infected tis-
sues [51–53]. Type II CBPs, also denoted as vCCIs (viral CC-chemokine inhibitors),
have been isolated from a variety of poxviruses (e.g., myxoma, certain vaccinia
strains, rabbitpox, and cowpox) and shown to specifically bind with high affinity
and inhibit a broad spectrum of CC-chemokines [54–58]. Type III CPB is also rep-
resented by a single member, namely, the M3 protein of gamma-68 herpesvirus,
which binds and inhibits members of all four classes of chemokines and both
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Table 2 - Viral chemokine mimics tested in animal disease models

Viral protein Delivery mode Animal model Refs

(I) vMIP-II (HHV8) Protein (i.v.) Glomerulonephritis (rat) [111]
vMIP-II (HHV8) Plasmid (g.t.) Cardiac allograft (mouse) [102]
vMIP-II (HHV8) Protein (i.v.-op) Spin cord injury (rat) [110]
vMIP-II (HHV8) Protein (i.c.v.) Cerebral ischemia (mouse) [109, 108]
vMIP-II (HHV8) Protein (i.v.) CD8+ T-cell-dep. DTH (mouse) [112]

(II) MC148 (MCV) Plasmid (g.t.) Cardiac allograft (mouse) [102]



occludes chemokine interactions with host receptors and the GAG elements respon-
sible for chemokine gradients [49, 59–65]. The Type IV CBPs were recently report-
ed in several alpha-herpesviruses, in that certain isoforms of glycoprotein G were
shown to possess the ability to bind and inhibit a wide spectrum of C/CC/CXC-
chemokines [66]. A single type V CBP, pUL21.5 of human cytomegalovirus, exhibits
unusual specificity only for RANTES [67]. Overall, extensive work is currently
underway in the academic and pharmaceutical worlds in the development of novel
chemokine-modulatory drugs, and the known viral CBPs represent a potent reposi-
tory of reagents with which to manipulate chemokine functions and leukocyte traf-
ficking [68–74].

The three classes of viral CBPs that have been experimentally tested to date in
animal models (i.e., CBP I–III) have each demonstrated clearly the elegant sophisti-
cation that viruses have evolved to thwart the chemokine circuitry (Tab. 1). In vivo
studies with purified CBPs I–III have consistently demonstrated effective inhibition
of inflammatory disorders in a range of animal disease models. The Type I CBP, M-

170

Alexandra Lucas et al.

Figure 2
Chemokines, chemokine receptors and related diseases
Abbreviations: MS, multiple sclerosis; RA, rheumatoid arthritis; IBD, inflammatory bowel
disease. Adapted from: Proudfoot AEI (2002) Chemokine receptors: multifaceted therapeu-
tic targets. Nat Rev Immunol 2(2): 106–115



T7, was shown to block invasion of macrophages and T lymphocytes following vas-
cular injury in rat and rabbit models [75–77]. Vascular balloon angioplasty injury
and aortic allograft transplant models were both utilized to initiate a marked arter-
ial inflammatory response, which is particularly aggressive following aortic trans-
plantation. Also, with these models inflammation in the vascular wall is the thera-
peutic target. When the arterial wall is studied as a target for anti-inflammatory
chemokine response modifying agents, we are in fact studying the initial site of entry
for inflammatory cells heading to injured organs or tissues (i.e., the initiation point).
The inflammatory response in the arterial wall thus allows one to assess the effects
of viral anti-inflammatory proteins at a site where many innate immune system
responses originate. Infusion of purified M-T7 protein resulted in the inhibition of
early mononuclear cell invasion post-injury and was associated with long term
reductions in atherosclerotic plaque growth (vasculopathy) following either trans-
plant or balloon angioplasty injury or stent implant [75–77]. The lack of species
specificity of M-T7 in the various species of animal models tested suggests that the
inhibition of cell invasion and plaque growth was in fact the consequence of target-
ing the host chemokines rather than inteferon-γ, whose inhibition by M-T7 is
restricted to the rabbit species [75–77]. Furthermore, M-T7 protein suppressed the
vascular pathology associated with inflammatory disease models even when given
transiently at very low dosages (pg-ng/kg body weight). Bedard et al. similarly
demonstrated that intravenous treatment with M-T7 protein, given daily at doses
up to 80 ng/kg for only the first 10 days post transplant, markedly reduced vascu-
lopathy and organ scarring in rat renal transplants as long as five months after
surgery [76]. 

The viral CBP type II, M-T1 from myxoma virus, which shares close sequence
similarity to vCCI/35K from vaccinia, has also been tested in rat and mouse aortic
allograft models. Using the rat model, M-T1 protein, when (given intravenously as
a single protein bolus administered immediately following vascular transplant,
mediated blockade of early mononuclear cell invasion and also inhibited the devel-
opment of chronic transplant vasculopathy [77]. 

Using the related chemokine binding protein vCCI/35K, Dabbagh et al. demon-
strated that infusion of vCCI/35K as an Fc-fusion protein significantly reduced air-
way inflammation in a mouse model [78]. vCCI/35k also initiated eosinophil influx
associated with eotaxin-mediated inflammation in the guinea pigs skin model [54,
77]. When expressed from an adenovirus vector that was delivered by intra-peri-
toneal injection, vCCI/35K downregulated inflammatory cell recruitment induced
by biogel in peritoneal exudates in mice and also reduced plaque development in
ApoE-knockout mice [79, 80]. M3, a class III CBP also displayed potent therapeu-
tic activity, blocking aortic allograft vasculopathy [77] and pancreatic inflammation
[81]. Significantly, when M3 expression was conditionally upregulated in a mouse
model of femoral arterial injury, a significant reduction in intimal hyperplasia was
also detected in this model [118].
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Of interest, in the angioplasty injury models, the administration of a gly-
cosaminoglycan frequently utilized for clinical clotting disorders (heparan sulfate)
was capable of blocking some of the anti-inflammatory activity of M-T7, presum-
ably by interfering with M-T7 binding to the GAG binding domain of chemokines.
This further supports a chemokine based mechanism of inhibitory action for M-T7
[75]. In the aortic transplant model, the infusion of the CC chemokines MCP-1 or
MIP-1α selectively blocked M-T1 and M-T7 mediated inhibition of arterial mono-
cyte invasion, respectively, after transplant [77]. Combined treatment with M-T1
and M-T7 at higher doses did not result in greatly enhanced anti-inflammatory and
anti-atherogenic activity again indicating overlapping targets (specifically CC
chemokines) and activities [77].

The analysis of these three diverse classes of viral CBPs reaffirms the impor-
tance and impact of the chemokine system on both early inflammatory responses
to trauma and as well as long-term disease development. Whether administered as
purified proteins [54, 75–78], expressed through adenoviral vectors [79, 80], or
produced endogenously in transgenic mice [81, 118], CBPs could consistently
induce profound inhibition of inflammatory responses to a wide spectrum of
inducers. CBPs also provide powerful tools to deconstruct the critical roles that
chemokines play during inflammatory responses, but note that the actual mecha-
nisms through which these viral CBPs functionally block chemokine responses
when given in such relatively low doses for very restricted time frames still is not
fully understood. For example, the CBP type I, M-T7, inhibits inflammatory influx
effectively in vivo at very low protein dosages [75–77] whereas this protein binds
the GAG binding domain of chemokines with only low affinity in vitro [51]. In
contrast, M-T1, which binds the N-terminus, blocks leukocyte migration in Boy-
den chamber assays in response to soluble CC chemokine gradient stimulation,
while M-T7 is ineffective as an inhibitor in this model. M-T7, on the other hand,
is quite effective at blocking mononuclear cell invasion into mouse ascites in
response to intraperitoneal injection of the CC chemokine, MCP-1 (A. Lucas,
unpublished results), once again supporting an anti-inflammatory function for M-
T7 that is mediated through disruption of chemokine gradient formation. The low
affinity GAG-binding domains of many chemokines are critical for gradient stabi-
lization and ligand presentation to the invading leukocytes but it is nevertheless
quite surprising that this protein would be so effective at such low concentrations
in vivo. Instead, one conclusion would be that the GAG/chemokine interaction is
a tractable target for pharmacologic intervention [38, 82–84]. This opinion is, in
fact, rapidly being confirmed by studies with inhibitors that block chemokine
GAG binding actions [82].

Less work has been performed to date assessing the potential for use of viral
chemokine receptors that bind chemokines in modifying pathology [85]. Expression
of the HHV8 Kaposi’s sarcoma associated herpesvirus ORF74 in transgenic mice
did not reduce inflammatory disease, but in fact, resulted in angioproliferative
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lesions and enhanced tumorigenesis in multiple organs that in fact resembled
Kaposi’s sarcomas [86]. The cytomegalovirus (CMV) encoded G protein coupled
chemokine receptor, US28 induces smooth muscle cellular migration which has the
potential to accelerate atheroma development [87–89]. Thus, these viral chemokine
receptors do have the potential to exacerbate or initiate vascular disease states and
to date have not yet been shown to ameliorate inflammatory or immune responses
in animal models of disease.

Viral chemokine mimics

In the case of viral chemokine mimics, the two examples that have been tested to
date in animal models of inflammation are MC148 of Molluscum contagiosum
virus (MCV) and vMIP-II of human herpesvirus-8/Kaposi’s Sarcoma Herpes Virus
(HHV-8/KSHV) (Tab. 2). MC148 of MCV exhibits significant specificity for human
CCR8 and antagonizes the lone host chemokine ligand that signals via this receptor
(I-309), whereas vMIP-II is both an agonist for CCR3 and a promiscuous antago-
nist for at least ten human CC- and CXC-chemokine receptors [90–101]. Unlike
vMIP-II, MC148 does not bind any known murine chemokine receptors, and would
not be predicted to be anti-inflammatory in mouse models. Nevertheless, the avail-
able data indicates that both MC148 and vMIP–II can each prolong cardiac allo-
graft survival in mice [102]. vMIP-II also can block Th1-polarized T-lymphocytes
while stimulating Th2-responses, thereby downregulating cell-mediated immune
responses [100, 103]. At present, it has not been elucidated how MC148 inhibits
inflammation in the murine system but it is possible that it also targets inflamma-
tory pathways independent of the chemokine system. Alternatively, there could be
still-to-be identified chemokine receptors on primary cells that are in fact antognized
by MC148 [104]. The structure of MC148 protein has not yet been reported, but
vMIP-II is reported to be a monomeric protein with many chemokine-like canoni-
cal folds [105].

In the brain, chemokines are expressed at elevated concentrations after mechan-
ical trauma or chronic neuropathic disorders such as Alzheimer’s disease and multi-
ple sclerosis [106–108]. Takami et al. have shown that intracerebroventricular injec-
tions of purified vMIP-II protein, which can antagonize macrophage inflammatory
protein-1α (MIP-1α, or CCL3), reduced the size of the cerebral infarct at 48 h after
middle cerebral arterial occlusion whereas, injection of MIP-1α increased infarct
size in mice [109]. Ghirnikar et al. similarly found that infusion of vMIP-II protein
for 7 days via osmotic minipump brain infusion following spinal cord contusion in
rats resulted in a decrease in the number of infiltrating neutrophils (day 1 post
injury), macrophages (days 3–7 post injury), and microglia (days 3–7 post injury)
[110]. The reduction in inflammatory cell invasion was associated with lower levels
of neuronal loss and increased expression of Bcl-2, an endogenous apoptosis
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inhibitor [110]. In a rat model of glomerulonephritis, intravenous infusion of vMIP-
II protein downregulated CC and CX3C chemokine expression, reduced
macrophage and T lymphocyte invasion, and resulted in less crescentic glomeruli
and proteinuria (protein loss in the urine indicative of kidney damage) [111].
Inflammatory exudates, that are thought to generate some of the CD8+T cell medi-
ated immunopathology associated with lymphocytic choriomeningitis virus infec-
tions, were also reduced following vMIP-II treatment in mice [112]. In a mouse car-
diac allograft transplant model, gene transfer of vMIP-II or MC148 reduced cyto-
toxic T lymphocyte infiltrates and alloantibody production with associated
prolonged graft survival (survival for 21 days with vMIP-II versus 13 days for con-
trol) [102]. Injection of purified vIL-10 protein together with vMIP-II further
enhanced graft survival, suggesting these viral immunomodulating cytokines inhib-
ited inflammatory responses through synergistic pathways [102]. Recently, it has
been shown that vMIP-II possesses unique properties distinct from the cellular
CCR8 ligands (I-309 and TCA-3) in terms of mucosal Th2 responses, IL-10 regula-
tion and host co-stimulator expression [113].

Future prospects

As long-term inquisitors of the mammalian immune system, viruses have developed
an extraordinary range of virally mediated immunomodulatory agents. Through the
unraveling of viral anti-immune strategies targeted against the host chemokine net-
works, a new class of therapeutic agents has been revealed based upon virus-engi-
neered chemokine-modulatory proteins. Viruses were the first organisms for which
complete genome sequences were deduced, beginning a quarter of a century ago,
and the science of “virogenomics” has been expanding rapidly ever since [114–116].
The repertoire of novel viral gene products that are devoted to host modulation has
also been proliferating at an astounding rate, and there are reasons to suspect that
we have uncovered only the tip of the virus iceberg. For example, the discipline of
virology has largely focused on viruses that cause overt pathogenesis but the viral
ecosphere is populated largely by apathogenic members that still remain to be dis-
covered. Indeed, there are proposals to fully define the complete human “virome”,
or the summated sequences of all viruses that are present in the human population
[117], and such genomic mining will likely uncover an even greater armamentarium
of viral immuno-regulators. 

We project that immunomodulatory viral proteins targeted against chemokines
and their receptors will establish a new platform for treatment of inflammation
based disorders. As more is learned about how these virus-derived drug candidates
behave as pharmacological reagents, particularly in human clinical trials, we will be
in better position to evaluate which human diseases have the potential to be effec-
tively treated with this novel class of biopharmaceuticals.
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Introduction

Although chemokines have been initially discovered and universally known as
cytokines able to recruit leukocytes to inflamed tissues (chemotactic cytokines) and,
therefore, to play an important role in the context of the immune response, subse-
quent studies have clearly shown that they also act on several other cell types, thus
behaving as multifunctional mediators. The nature and classification of chemokines,
their receptors and signalling pathways, as well as their activity of recruitment on
the cells of the immune system have been discussed in other chapters of this book.
Here, therefore, we will concentrate on the production of chemokines by, and on
their functional activity on, tissue cells, and we will particularly focus on the essen-
tial role of chemokines on the induction and control of angiogenesis.

Chemokines in embryogenesis

Cell migration is an integral component of embryogenesis, particularly since cell
position is a primary determinant of cell fate. Not surprisingly, there are complex
arrays of regulators, which direct cell movement by modulating adhesion, attrac-
tion, and repulsion. Several chemokine receptors have been found to be expressed
in the mouse embryo, the message encoding CXCR4 being the predominant
chemokine receptor detected [1]. CXCR4- and CXCL12-deficient mice [2, 3]
showed defects in the development of neuronal, cardiac, vascular, haemopoietic and
craniofacial systems. Other chemokine receptor messages were also found, but all
of them concordant temporally and spatially with definitive (adult-like)
haematopoiesis. CX3CL1, CXCL10 and CXCL12 are certainly involved in the
development of human kidney, CX3CL1 being strongly expressed during glomeru-
logenesis, while CXCL10 and CXCL12 in developing kidneys were more limited to
focal expression [4]. More recently, CXCL12 has been found to play an essential
role in promoting primordial germ cell transmigration through epithelial-like struc-

183

Chemokine receptors in tissue cells and angiogenesis

Paola Romagnani, Laura Lasagni, and Sergio Romagnani

Center of Excellence for Research, Transfer and High Education DENOthe of the University
of Florence, Viale Morgagni 85, Firenze 50134, Italy

Chemokine Biology – Basic Research and Clinical Application, Volume I
edited by Bernhard Moser, Gordon L. Letts and Kuldeep Neote
© 2006 Birkhäuser Verlag Basel/Switzerland



tures, such as the hindgut epithelium in mouse and the endothelium in chick [5]. Of
note, a possible role of interactions between CCR1 and its ligands in the initiation
of trophoblastic invasion of maternal tissue has also been suggested [6]. The impor-
tant role of chemokines in embryogenesis control represented the first evidence that
chemokine receptors might also be expressed by resident cells in different tissues.
Indeed, a large converging evidence has recognised the pivotal role of chemokines
and their receptors in the biology of resident tissue cells largely beyond their chemo-
tactic properties.

Chemokine receptors in epithelial tissues

Although chemokines were originally defined as host defense proteins and their
main role is leukocyte recruitment, they and their receptors have other biological
actions. Furthermore, many environmental stimuli of host of pathogen origin may
lead to the induction of inflammatory chemokines expression and production in tis-
sue cell types.

The expression of multiple chemokines in inflamed tissues, such as in the syn-
ovial lining cells of rheumatoid joints [7], autoimmune lesions in multiple sclerosis
[8], ulcerative colitis and Crohn’s disease [9], lung inflammation [10], sarcoidosis
[11] and asthma [12], and the vascular inflammation that characterises arterioscle-
rosis [13], is well documented. Several receptors for inflammatory chemokines,
CCR1, CCR2, CCR5 and CXCR3 in particular, are regularly detected in such
lesions, while the expression of CCR3 tends to be restricted to allergic pathologies
and the IL-8 receptors, CXCR1 and CXCR2, are more frequent in acute inflamma-
tion.

However, a great number of in vivo and in vitro studies demonstrated also the
constitutive expression of chemokine receptors by resident epithelial cells of differ-
ent tissues. The pattern of chemokines and chemokine receptors expression in
epithelial tissues is summarised in Table 1.

Chemokines affecting vasculature-associated pericytes

Several studies have shown that the pericytes, smooth muscle-like mural cells that
coat the wall of microvessels and are responsible for tissue fibrosis, may both
express chemokines and be targets of the chemokine action [27–30]. In fact, peri-
cytes express chemokine receptors, which, upon activation, elicit biologic actions
that favour the processes of wound healing, including proliferation, migration, and
extracellular matrix synthesis [31–33]. 

Human vascular smooth muscle cells (SMCs) express CCR2 [34], which makes
these cells a likely target for CCL2. In fact, CCL2 can enhance the expression of
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integrins [35] as well as tissue factor [36] on SMCs. More recent findings [37] sug-
gest that CCL2 can also directly induce SMC proliferation by stimulating the bind-
ing activity of activator protein 1. Cultured human arterial SMCs possess CCR5 at
both mRNA and protein levels [33]. CCR5 on SMCs is functionally coupled,
responding to CCL4 with increases in intracellular calcium concentration and tissue
factor activity. CCR5 and CCL4 were also detected in SMCs of the atherosclerotic
arterial wall, where they may play a role in mediating the inflammatory and pro-
thrombotic responses associated with atherosclerosis. On the contrary, as deter-
mined by RT-PCR, human aortic SMCs do not express mRNA for other CCRs,
including CCR1 [38], CCR3 [39], CCR4 [40], and DARC [41]. CXCL10 has been
shown to act as a mitogen and chemoattractant for SMCs. Moreover, SMCs express
CXCL10 in response to IL-1β and TNF-α in conjunction with IFN-γ and also in
response to vascular injury, suggesting a role in pathogenesis of vascular diseases
and injury [28].

Hepatic stellate cells (HSCs) and glomerular mesangial cells (MCs) are tissue-
specific pericytes involved in tissue repair, a process that is regulated by chemokines.
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Table 1 - Expression and function of chemokine receptors in epithelial tissue cells

Type of tissue cells Chemokine receptors Function

Keratinocytes CCR3 [14] Inflammatory modulation
CXCR1/CXCR2 [15] Chemotaxis and proliferation
CXCR3 [16] Chemotaxis

Bronchial epithelial cells CCR2 [17] Proliferation and healing
CCR3 [18] Epithelial cell migration and 

proliferation
CXCR4 [19] Inflammatory modulation

Intestinal epithelium CCR5 [20] Cell migration
CCR6 [21] Cell migration, maintenance 

and renewal of the epithelium
CXCR4 [20] Hepatocytes

Ductular epithelial cell CXCR4 [22] Apoptosis
CX3CR1 [23] Wound healing response

Ectocervical epithelial cells CCR5 [24] Potential targets of HIV-1
infection

Podocyte CCR4, CCR8, CCR9, [25] Release of oxygen radicals
CCR10, CXCR1-CXCR5 [25] Release of oxygen radicals
CXCR3 [26] Induction of nephrin and

podocin



In MCs expression of CCL2, CCL5, CXCL8, and CXCL10 has been repeatedly
demonstrated [41–49]. CCL2 is rapidly upregulated in mouse, rat and human MCs
after their activation by a variety of stimuli [41–43]. CCL5 is expressed 2 h after
TNF-α stimulation by mouse MC [44] and it is also found to be expressed by pri-
mary human MCs [45]. CXCL8 is expressed by rat and human MCs [46, 47] and
the expression of CXCL10 mRNA has been described for both mouse and human
MCs [48, 49].

The expression of the chemokine receptor CXCR3 on human MCs was first
reported by Romagnani P. and colleagues [31]. High expression of this receptor by
MCs was seen by immunohistochemistry in kidney biopsies from patients with
glomerulonephritis, characterised by resident mesangial cell proliferation, such as
IgA nephropathy, membranoproliferative glomerulonephritis or rapidly progressive
glomerulonephritis (also defined as “proliferative glomerulonephrites”). Moreover,
CXCR3 was also found on the surface of cultured human MC (HMC), and
appeared to mediate both intracellular Ca2+ influx and cell proliferation [50]. Fur-
thermore, it was found that in both HMC and other types of vascular pericytes,
CXCL10 and CXCL9 also induce chemotaxis and CXCR3 triggering results in Src
activation, which in turn leads to the recruitment of Ras and activation of the ERK
cascade [50]. In parallel, activation of PI 3-K and Akt can also be observed [50].
Taken all together, these findings may account for at least some mechanisms
involved in the pathogenesis of proliferative GN.

Constitutive expression of the chemokine CCL21 on human podocytes and of its
corresponding receptor CCR7 on MCs was also shown by immunohistochemistry
of human kidney and these findings were confirmed in cultured cells and isolated
glomeruli [51]. CCL21 has a positive effect on the proliferation and migration of
MCs and leads to increased cell survival in Fas-induced apoptosis of human MC
[51]. Moreover, activation of CCR7 on MCs by CCL21 enhances the degree and
firmness of cell adhesion and increases cell spreading and the formation of cell–cell
contacts, including integrin-linked kinase activation and F-actin rearrangements
[52].

Inducible expression of the chemokine receptor CCR1 by human MCs after
stimulation with a combination of the proinflammatory cytokines TNF-α, IL-1β
and IFN-γ, has also been described [32]. In contrast to the effects observed with the
ligands for CCR7 and CXCR3, stimulation of MCs with the CCR1 ligand CCL5
had no effect on cell proliferation and apoptosis. In conclusion, local chemokine
generation and chemokine receptor expression on MCs may play an important role
in the maintenance of glomerular homeostasis and in local remodelling processes.

HSCs express and secrete several CC chemokines, including CCL2 and CCL3
[53, 54]. Several lines of evidence indicate that CCL2 plays a role in the recruitment
and maintenance of the inflammatory infiltrate during liver injury. CCL2 secretion
is upregulated during chronic hepatitis and correlates with the number of cells infil-
trating the portal tract [55]. In vitro and in vivo data indicate that HSCs may con-
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tribute to the expression of CCL2 within the liver during both chronic and acute
injury [53, 54, 56]. On cultured human HSCs, CCL2 stimulates migration in a dose-
dependent fashion and activates intracellular signalling, such as increase in cytoso-
lic calcium concentration, PI3-K activity, protein tyrosine phosphorylation [56].
Cultured HSCs express functional CCR7, the activation of which stimulates cell
migration and accelerates wound healing in an in vitro model. Exposure of HSCs to
CCL21 triggered several signalling pathways, including extracellular signal-regulat-
ed kinase, Akt, and nuclear factor κB, resulting in induction of proinflammatory
genes [57]. HSCs express CCR5, as shown by flow-cytometric analysis and RT-PCR
[57], and respond to CCL5 with an increase in both intracellular calcium concen-
tration and free radical formation. Furthermore, CCL5 induced ERK phosphoryla-
tion and HSC proliferation. Additionally, CCL5 induced focal adhesion kinase
phosphorylation and a substantial increase in HSC migration [58]. HSC expressed
functional CXCR3 receptors on the cells surface, and interaction with CXCR3 lig-
ands resulted in increased chemotaxis, but not proliferation, through the Ras/ERK
signalling cascade. Activation of CXCR3 stimulated Src phosphorylation and kinase
activity and increased the activity of PI3-K [50].

Chemokines control of angiogenesis and wound healing

Tissue repair

Models of skin wound healing mimic inflammatory reactions that might also be rel-
evant to infectious processes in general [59]. In this model, the interplay of CXC
chemokines with growth factors, cytokines and adhesion molecules not only influ-
ences the sequential participation of inflammatory cells but, more importantly, reg-
ulates the inflammatory reaction leading to angiogenesis, tissue repair and new tis-
sue generation [59, 60]. The repair process is initiated immediately after injury of
blood vessels through the release from degranulating platelets of various growth fac-
tors, such as vascular endothelial growth factor (VEGF)-A, platelet-derived growth
factor (PDGF), and several chemokines in large quantities. CXCL1, CXCL5 and
CXCL7 initiate the neutrophil recruitment [59, 61, 62], whereas high amounts of
CXCL4 contribute to the formation of blood clots [63]. This provides a barrier
against invading microorganisms and serves as a matrix for the attachment of
inflammatory cells that are recruited to wound tissue within a few hours of injury.
The initial vessel-associated expression of CXCL1 facilitates neutrophil diapedesis
[64]. Subsequently, the cooperative expression of CXCL1 and CXCL8 in the super-
ficial wound bed supports additional neutrophil migration to the wound surface
[65]. Neutrophils produce a wide variety of proteinases and reactive oxygen species
as a defense against contaminating microorganisms and they are involved in the
phagocytosis of cell debris. CXCR2 is also expressed on neovascularising ECs [65].
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The time course of CXCL8 expression correlates with massive angiogenesis between
days 1–4 [64], leading to the formation of new blood vessels. The newly formed
connective tissue is known as granulation tissue because of the granular appearance
of several capillaries. Accordingly, CXCR2-deficient mice exhibit a defective neu-
trophil recruitment, delayed monocyte recruitment and severe impairment of angio-
genesis at the site of wounding [66]. Neutrophil accumulation is followed by the
immigration of monocytes and macrophages, as a result of CCL2/CCR2 chemokine
system [64, 67]. Interestingly, from days 0–6 after wounding, CXCL12 production
by keratinocytes and fibroblasts is progressively downregulated, because of the
inhibitory effect exerted by IL-1 and TNF. Given the ubiquitous expression of
CXCR4 on both resident and inflammatory cell types, this probably represents a
counter regulatory mechanism to avoid chronic inflammation [68]. High numbers
of lymphocytes are also recruited during the whole period of healing and they rep-
resent the major leukocyte subpopulation on day 14. Between days 1–4, CXCL11,
which is constitutively produced on the surface of human microvascular endothelial
cells (HMVECs) [60] and is highly induced by epithelial monolayer disruption [64],
contributes to the pronounced lymphocyte accumulation. Subsequently, CXCL9
and CXCL10, which are both T cell attractants [69, 70], are highly expressed at
sites of lymphocyte accumulation [64]. Indeed, activated lymphocytes express high
levels of CXCR3 [71]. The fact that vascularity increases until day 4, but remains
constant afterwards, despite the presence of growth factors, such as bFGF and
PDGF, suggests that the angiostatic properties of CXCL9 and CXCL10 can prevent
unlimited vessel growth. In this context, the cell cycle dependence of CXCR3-B
expression by HMVECs is of crucial importance [71]. Indeed, only ‘angiogenic’ ECs
can respond to angiostatic stimuli, and therefore they arrest both migration and
growth through inhibition mediated by CXCL11 present on the surface of adjacent
ECs. This mechanism enables the generation of a finely regulated network of vessels
(see below) without altering the properties and functions of quiescent ECs, which
cannot respond to angiostatic chemokines. Finally, CXCL10, CXCL9 and CXCL11
mediate the migration of CXCR3-A-expressing pericytes and their proliferation
around nascent vessels. The opposite effects of CXCL9, CXCL10 and CXCL11 on
ECs and pericytes could be explained by distinct and sequential steps leading to
angiogenesis. Of note, recruitment of pericytes occurs after the progression phase of
angiogenesis that is determined by EC positioning and proliferation. The association
of pericytes to newly formed blood vessels has been suggested to regulate endothe-
lial cell proliferation, survival, migration, differentiation, and vascular branching.
Therefore, these chemokines could contribute to vessel stabilisation by inhibiting
cell cycle progression in ECs.

Migration and proliferation of keratinocytes at the wound edge are followed by
the recruitment and proliferation of dermal fibroblasts. These cells subsequently
acquire a contractile phenotype and transform into myofibroblasts, which have a
major role in wound contraction. CXCL8 might directly stimulate re-epithelialisa-
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tion, as a result of stimulating keratinocyte proliferation [72]. However, wound con-
traction is diminished by topical application of CXCL8, suggesting that elevated lev-
els of this chemokine might also contribute to retarded wound repair [73]. Finally,
a transition from granulation tissue to mature scar occurs, which is characterised by
continued collagen synthesis and catabolism. CXCL10 and CXCL11 also deliver
signals to the dermal compartment to synchronise the re-epithelialisation process.
Indeed, these chemokines limit EGF-induced fibroblast motility, but promote the
chemotaxis of undifferentiated keratinocytes [74]. A differentiated and strictly reg-
ulated CXCR3-A and CXCR3-B expression on keratinocytes and fibroblasts can be
reasonably hypothesised and contributes to this pathway, but still needs to be
proved. The possible roles of chemokines in the different steps of inflammatory
processes from the starting tissue injury until the healing phase are summarised in
Figure 1.

De novo blood vessel formation

Previous and more recent evidences indicate that ECs express specific receptors,
which can account for an important role of chemokines in angiogenesis (Fig. 2A).
Receptors for angiogenic chemokines expressed by ECs include CXCR1, CXCR2
and CXCR4 [75]. The first angiogenic chemokine receptor identified so far is
CXCR4. CXCR4/CXCL12-deficient mice die prenatally and exhibit defects in the
formation of gastrointestinal tract arteries, as well as defects in vessel development,
haematopoiesis and cardiogenesis [1, 2]. The existence of a regulatory loop between
VEGF-A and CXCL12/CXCR4 further supports the important role of this
chemokine system in the regulation of angiogenesis. Indeed, CXCL12 upregulates
VEGF-A production, and VEGF-A upregulates CXCR4 expression, thus generating
an amplification circuit, which is critically influenced by hypoxia [76, 77]. Subse-
quently, the observation of angiogenesis impairment in CXCR2-deficient mice has
allowed to demonstrate that this receptor mediates the angiogenic activity of
CXCL1, CXCL2, CXCL3, CXCL5, CXCL6 and CXCL7.

The understanding of mechanisms responsible for CXC chemokine-mediated
angiostatic effects (Fig. 2A) has been more difficult, mainly because CXCL4 and
CXCL10 inhibit angiogenesis through both receptor-independent (i.e., competing
with heparan sulfate proteoglycans on the cell surface or directly binding to these
growth factors) and receptor-dependent mechanisms [78–80]. Recently, however,
CXCR3 has been clearly detected in ECs, particularly at level of ECs from small ves-
sels [81]. More importantly, it was found that CXCR3 expression by primary
HMVECs was restricted to the S-phase of the cell cycle [81]. Our studies also led to
the demonstration that CXCL11, the third known CXCR3-binding chemokine, was
able to inhibit EC proliferation [81]. Furthermore, neutralising anti-CXCR3 anti-
bodies blocked the antiproliferative activity induced on ECs by all three known
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Figure 1 
Role of chemokines in the different phases of inflammatory processes
In different tissues, the wound healing response shares many similarities, involving the
recruitment of inflammatory cells and the deposition of extracellular matrix, to fill the gap
created by the dying cells. Indeed, after tissue damage, chemokines such as CXCL1, CXCL5,
CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL3, lead to the recruitment of mono-
cytes/macrophages, T cells and neutrophils. The concurrent presence of inflammation and
extracellular matrix deposition is a characteristic of chronic tissue injury, where the persis-
tence of a wound healing response may lead to permanent scarring and end-stage organ fail-
ure, such as in the case of glomerulosclerosis in the kidney, cirrhosis of the liver, atheroscle-
rosis, or pulmonary fibrosis. The pivotal role played by vascular pericytes of different tissues
in the process of wound healing has been clearly recognised in recent years. These cells
become activated in the presence of damage to the specific tissue, proliferate, migrate, and
acquire a myofibroblast-like phenotype, resulting in the production of extracellular matrix
as part of the healing process. Pericytes responsible for tissue fibrosis may express
chemokines such as CCL2, CCL4, CCL5, CXCL8, CXCL10, thus contributing to the patho-
genesis of the inflammatory reaction. Furthermore, pericytes can also be targets of the action
of chemokines, since they express chemokine receptors, such as CXCR3-A, CCR2, CCR5,
CCR7, which, upon activation, elicit biologic actions that favour the wound healing process,
including proliferation, migration, and extracellular matrix synthesis.



CXCR3 ligands, thus definitively proving that CXCR3 is the receptor involved in
CXC chemokine-mediated angiostatic activity [81]. The role of CXCR3 in mediat-
ing the angiostatic activity of CXCL10 has recently been confirmed in vivo by
blocking the angiostatic effects of CXCL10 in the rat cornea micropocket assay with
a neutralising anti-CXCR3 antibody [82].

Some questions, however, still needed to be solved. First, the receptor for
CXCL4, the most powerful angiostatic chemokine, remained unknown, despite the
fact that this chemokine shares many activities with CXCL10. On the other side,
CXCR3-binding chemokines also exhibit powerful chemotactic activity, whereas
the CXCL4-mediated chemotactic effect is modest or absent [83]. Finally, the oppo-
site effects exerted by CXCR3 ligands on HMVECs (inhibition of proliferation) and
on vascular pericytes (increase of proliferation) [31, 84–86] allow to hypothesise the
existence of cell-specific signal transduction pathways or even of distinct CXCR3
receptor variants.

Indeed, a distinct, previously unrecognised receptor, deriving from an alternative
splicing of the CXCR3 gene, was identified, which not only mediates the angiosta-
tic activity of the three already known CXCR3 ligands, but also acts as functional
receptor for CXCL4 [71]. By contrast, the known CXCR3, renamed CXCR3-A,
mediated the proliferation of vascular pericytes in response to CXCL9, CXCL10
and CXCL11, whereas it bound CXCL4 with very low affinity [71]. Finally, mon-
oclonal antibodies, that were selectively developed against CXCR3-B, reacted with
ECs of different human tumour tissues but poorly, or not, with those from their nor-
mal counterparts, consistently with the previously described selective effects of both
CXCL4 and CXCL10 on actively proliferating ECs [71]. Of note, another form of
CXCL4 (CXCL4L1) has recently been isolated from thrombin-stimulated human
platelets, which differed from CXCL4 in only three amino acids, and appeared to
be more potent in inhibiting chemotaxis of HMVECs toward CXCL8 or bFGF [87].
Notably, a third variant of human CXCR3 (CXCR3-alt) resulting from alternative
splicing via post-transcriptional exon skipping has also been identified [88]. How-
ever, the functional activity of this variant is not yet known. 

Tumour formation

The course in angiogenesis usually correlates with the degree of infiltration by
inflammatory leukocytes [59]. The coordination of angiogenesis and inflammation
is due to the ability shared by ECs and leukocytes to respond to chemokines [61]. 

In physiologic processes, such as wound healing, the interplay of CXC
chemokines with growth factors, cytokines and adhesion molecules regulates the
events leading to angiogenesis. The repair process is initiated immediately after
injury of blood vessels through the release of platelets-derived factors as described
above. CXCL8 expression by wounded epithelial cells induces massive angiogene-
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Figure 2 
Role of chemokines in physiologic and dysregulated angiogenesis
(A) On wounding or tissue assault, platelets are activated and form a haemostatic plug, in
which they release vasoactive mediators that regulate formation of the fibrin clot. CXCL1,
CXCL5, CXCL7, derived from activated platelets, initiate the recruitment of neutrophils.
Subsequently, CXCL8 expression by wounded epithelial cells induces massive angiogenesis,
leading to the formation of new blood vessels that exhibit high CXCR2 expression. Con-
versely, expression of the angiostatic chemokines CXCL9, CXCL10, and CXCL11 prevents
unlimited vessel growth, arresting migration and growth of proliferating endothelial cells,
which selectively express CXCR3-B.
(B) An altered balance of CXC chemokines might be crucial in contributing to cancer devel-
opment during chronic inflammatory processes through different mechanisms. Excessive pro-
duction of angiogenic chemokines, such as CXCL8, and their receptor CXCR2, can lead to a
level of inflammation that potentiates angiogenesis. Poor expression of angiostatic
chemokines and of their receptor, CXCR3-B, can lead to a level of inflammation that poten-
tiates angiogenesis or can directly alter the proliferative properties of resident epithelial cells.



sis, leading to the formation of new blood vessels expressing functional CXCR2 [64,
66]. Conversely, expression of the angiostatic chemokines CXCL9 and CXCL10
prevents unlimited vessel growth arresting migration and growth of proliferating
ECs expressing CXCR3-B. CXCL10, CXCL9 and CXCL11 also mediate the migra-
tion of CXCR3-A-expressing pericytes and their proliferation around nascent ves-
sels, thus determining their stabilisation. 

On the other hand, tumours are described as “wounds that never heal” and
appear to lack the appropriate balances between positive and negative control sig-
nals [89]. One of the main features of tumour blood vessels is their failure to become
quiescent, enabling the constant growth of new tumour blood vessels [89]. Conse-
quently, the tumour vasculature develops unique characteristics and becomes quite
distinct from existing capillaries. Furthermore, the inappropriate or decreased ves-
sel association with pericytes in tumours might account for both abnormal vessel
diameters and sensitivity to VEGF inhibition [89].

Overexpression of angiogenic CXC chemokines favours the “tumour angiogen-
esis switch” and ultimately leads to tumour progression [89]. Lung colonisation
and spontaneous metastasis in nude mice are inhibited by treatment with neutral-
ising antibody against IL-8 [90]. Furthermore, CXCL8 expression in astrocytoma
increases during tumour progression, due to reduced microenvironmental oxygen
pressure and promotes angiogenesis by binding to CXCR2 [91]. CXCL8 and
GRO-α are also induced by Kaposi Sarcoma Herpes Virus (KSHV) infection of
endothelial cells and are crucial to the angiogenic phenotype developed by KSHV-
infected ECs in cell culture and upon implantation into SCID mice [92]. A few data
are available on the role of CXCL12 in angiogenesis progression in tumours. How-
ever, CXCL12 can contribute to tumour neovascularisation through vasculogenesis-
mediated by EC precursors. Indeed, locally derived CXCL12 augments vasculogen-
esis and contributes to ischemic neovascularisation in vivo by augmenting the
recruitment and survival of EC precursors [93]. Conversely, angiostatic chemokines
play an important role in fighting tumour development and diffusion. Indeed, over-
expression of CXCL4 and CXCL10 blocks tumour progression and can also induce
regression of metastasis [94, 95]. The possibility that inadequate expression of
CXCR3-B by angiogenic ECs during a chronic inflammatory process might favour
the “tumour angiogenesis switch” might also be hypothesised. In 40 patients affect-
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Resident epithelial cells undergo neoplastic progression and then, following hypoxia, “turn
on” the expression of CXCR4. The production of CXCL12 in sites, such as lymph nodes, bone
marrow, liver, and lung, then facilitates their invasion and migration to secondary sites to
form a productive metastatic lesion and also potentiates angiogenesis, through its interac-
tion with CXCR4. On the other hand, impaired production of CXCL9, CXCL10 and CXCL11
and/or their receptor CXCR3-A can result in impaired recruitment and activation of inflam-
matory cells resulting in escape of the tumour from immune surveillance.



ed by non small cell lung cancer (NSCLC), we observed a significant inverse corre-
lation between CXCR3-B mRNA expression and both tumour stage and rate of
lymph node invasion (Lazzeri E et al. manuscript in preparation). An inverse corre-
lation between CXCR3-B expression and angiogenesis was only observed among
patients with localised tumours and without lymph node invasion, suggesting that
the loss of angiogenesis regulation by CXCR3-B might favour NSCLC diffusion.
Similar findings were found in patients with renal cell carcinoma (Lazzeri E et al.,
manuscript in preparation). Collectively, dysregulation of chemokine production
and/or interaction of chemokines with their receptor(s) appear to play an important
role in the growth of cancer and in the formation of metastases. Figure 2B shows
the possible role of different chemokines in the dysregulation of angiogenesis which
occurs in neoplastic processes.

Chemokines control of other tissue cells

Many cell types in the brain express chemokines and chemokine receptors even
under homeostatic conditions, arguing for a role of these molecules in normal brain
processes. It has indeed been shown that CXCL12 and CCR3-binding chemokines
reversibly inhibit neuronal progenitor cell (NPC) proliferation in isolated cells, neu-
rospheres, and in hippocampal slice cultures [96]. On the other hand, CX3CL1 has
been found to be able to promote survival of NPCs [96].

Cells of the central nervous system

There is also growing evidence for the role of chemokines in the regulation of cen-
tral nervous system (CNS) diseases. Elevated levels of chemokines have been indeed
observed in both experimental autoimmune encephalomyelitis (EAE) and multiple
sclerosis (MS), suggesting that these molecules act as regulators of brain inflamma-
tion [97, 98]. However, chemokines not only function as key mediators which pro-
mote leukocyte infiltration of demyelinating lesions in both EAE and MS, but they
also act on microglia and astrocytes by inducing their migration to sites of inflam-
mation, and their proliferation that could represent the basis of pathological condi-
tions such as gliosis. The major receptors on these cells appear to be CXCR1 and
CXCR3, but also CCR3 [99]. 

Osteoclasts

Although much has been learned of the mechanisms by which the migration and dif-
ferentiation of osteoclasts (OCs) are induced, only recently the essential role of
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chemokines in this process has been recognised. CXCL12 stimulates matrix metal-
loproteinase-9 activity on pre-OCs, thus favouring their recruitment to sites for OC
differentiation and bone readsorption [100]. On the other side, CXCL8 has been
shown to play a direct effect on OC differentiation and activity by interacting with
its specific receptor CXCR1, which appears to be expressed on the surface of these
cells [101]. CCL9 and its receptor CCR1 have also been found on OCs, suggesting
that this chemokine and its receptor may also play a role in the regulation of bone
readsorption [102]. Moreover, high levels of CCL3 have been found in bone mar-
row samples from patients with multiple myeloma, suggesting that it may be one of
the major factors responsible for the increased OC stimulatory activity in patients
with this disease [103]. However, a more recent study, based on the use of gene
array, showed that of all the mediators screened, CCL15 was the most strongly
upregulated in stimulated OC precursors [104]. More importantly, neutralisation of
CCL15 resulted in strongly reduced OC formation and reduced resorptive activity,
since CCL15 also promoted OC survival and prevented OC apoptosis. These results
suggest that OCs can protect themselves from apoptosis through production of
CCL15 as an autocrine survival factor [104].

Conclusions

Chemokines are secretory proteins produced by leukocytes and tissue cells either
constitutively or after induction, and exert their effects locally in paracrine or
autocrine fashion via their binding to heptahelical G-protein coupled receptors. The
increase in the secretion of chemokines during inflammation results in the selective
recruitment of leukocytes into inflamed tissues such as skin, brain, lung, kidneys and
gastrointestinal tract. In these organs many types of cells secrete chemokines, sug-
gesting that, if the appropriate stimulus is given, most cells can secrete chemokines.

Moreover, in organs such as kidney, lung and liver, chemokines may play an
important role in the maintenance of tissue homeostasis, in local remodelling
processes and may modulate the progression of fibrosis by acting on tissue specific
pericytes. Most importantly, chemokines have been found to have a main role in the
regulation of angiogenesis and tumour-related immunity, and in promoting organ-
specific metastases.

Our knowledge on the roles of chemokines in the pathophysiology of disease are
derived from studies utilising animal models of disease and mice with deleted
chemokine receptor genes. The main problems in studying the role of chemokines
in these models might be represented by the great redundancy shown by the
chemokine system (i.e., different chemokines can bind a single chemokine receptor
and a single chemokine can bind more than a receptor) and some differences
between species in the expression of chemokines and chemokine receptors and in
their binding properties. However, there is growing evidence that the neutralisation
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of chemokine activity may have a therapeutic value. Indeed, chemokine analogues
with antagonist or partial agonist activity proved effective in animal models as
inhibitors of inflammatory pathologies. In particular, given the role of chemokines
in excessive fibrosis, novel strategies aimed at preventing fibrotic disease will likely
need to address the early engagement of inflammatory cells by tissue epithelial and
interstitial cells, and possibly modulate the ability of resident tissue cells to generate
and/or recognise profibrotic signals supplied by chemokines. Finally, understanding
the biology of factors that contribute to cancer tumourigenicity, avoidance of host
immunity, metastases and angiogenesis may lead to novel strategies for therapeutic
intervention of this devastating disease.
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