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PREFACE 

On May 27-31, 1985, a series of symposia was held at The University 
of Western Ontario, London, Canada, to celebrate the 70th birthday of Pro­
fessor V. M. Joshi. These symposia were chosen to reflect Professor Joshi's 
research interests as well as areas of expertise in statistical science among 
faculty in the Departments of Statistical and Actuarial Sciences, Economics, 
Epidemiology and Biostatistics, and Philosophy. 

From these symposia, the six volumes which comprise the "Joshi 
Festschrift" have arisen. The 117 articles in this work reflect the broad 
interests and high quality of research of those who attended our conference. 
We would like to thank all of the contributors for their superb cooperation 
in helping us to complete this project. 

Our deepest gratitude must go to the three people who have spent so 
much of their time in the past year typing these volumes: Jackie Bell, Lise 
Constant, and Sandy Tarnowski. This work has been printed from "carnera 
ready" copy produced by our Vax 785 computer and QMS Lasergraphix 
printers, using the text processing software TEX. At the initiation of this 
project, we were neophytes in the use of this system. Thank you, Jackie, Lise, 
and Sandy, for having the persistence and dedication needed to complete this 
undertaking. 

We would also like to thank Maria Hlawka-Lavdas, our systems analyst, 
for her aid in the layout design of the papers and for resolving the many 
difficult technical problems which were encountered. Nancy Nuzum and Elly 
Pakalnis have also provided much needed aid in the conference arrangements 
and in handling the correspondence for the Festschrift. 

Professor Robert Butts, the Managing Editor of The University of West­
ern Ontario Series in Philosophy of Science has provided us with his advice 
and encouragement. We are confident that the high calibre of the papers in 
these volumes justifies his faith in our project. 

In a Festschrift of this size, a large number of referees were needed. 
Rather than trying to list all of the individuals involved, we will simply say 
"thank you" to the many people who undertook this very necessary task for 
us. Your contributions are greatly appreciated. 

Financial support for the symposia and Festschrift was provided by The 
University of Western Ontario Foundation, Inc., The University of Western 
Ontario and its Faculties of Arts, Science, and Social Science, The UWO 
Statistical Laboratory, and a conference grant from the Natural Sciences 

xv 



XVl PREFACE 

and Engineering Research Council of Canada. Their support is gratefully 
acknowledged. 

Finally, we would like to thank Professor Joshi for allowing us to hold the 
conference and produce this Festschrift in his honor. Professor Joshi is a very 
modest man who has never sought the limelight. However, his substantial 
contributions to statistics merit notice (see Volume I for a bibliography of 
his papers and a very spiffy photo). We hope he will accept this as a tribute 
to a man of the highest integrity. 



INTRODUCTION TO VOLUME I 

The areas of applied probability, stochastic processes, sampling theory 
and the foundations of statistical inference are those to which Professor v. 
M. Joshi has directed most of his research effort. The twenty-two articles 
in this volume are devoted to the first three of these areas; another volume 
in this series is composed of articles on foundations. Articles on modelling 
of physical and biological systems appear in the first part of this volume, 
followed by those on more theoretical aspects of probability and stochastic 
models. The final set of papers is on sampling theory. 

Alan Cornish begins this first volume of the Festschrift with a most ap­
propriate paper, "v. M. Joshi and the Markov Oscillation Problem". Cor­
nish considers standard p-functions and reviews some of the contributions of 
Professor Joshi to this area. 

The next seven articles consider important applications of probability 
and stochastic processes, and give body and flavour to the extreme breadth 
of usefulness of the discipline. Anderson's paper considers the photographic 
process and discusses temporal and spatial problems of a probabilistic na­
ture. Aspects of photosynthesis are modelled by Matthews, Minder and 
McMillan who also fit their models to experimental data. Metal fatigue and 
the time to failure are the subjects of the paper by Desmond. Todorovic's 
paper is concerned with stochastic models of soil erosion. Brillinger considers 
models for sinusoidal data of unknown frequency and discusses a wide range 
of physical examples including ones from seismology, geophysics, nuclear 
magnetic resonance and oceanography. Ferland and Giroux also consider 
applications to physics, in particular to quantum mechanics. Gani continues 
his work in the development of epidemic behaviour. 

Some of the central issues of applied probability and stochastic pro­
cesses are considered in the next six papers. In particular, queueing theory 
has been an active and important area of applied probability. A recent de­
velopment in this area has been the study of networks of queues, which is 
the subject of the paper by Blais. Limit theorems play an important role 
in probability, and Kulperger obtains a limit theorem for point processes 
utilizing a more elementary result. Ramsay obtains limit theorems for sums 
of random variables defined on a finite Markov chain. 

Prakasa Rao describes the theory of estimation for nonlinear regres­
sion models in an extensive review paper. McLeish and Small consider the 
discrimination problem and develop asymptotic results for minimizing mis-

xvii 



xviii INTRODUCfION TO VOLUME I 

classification. Nguyen's paper considers the problem of determining bounds 
on the size of the class of bivariate distributions which contains two given 
marginal distributions. 

The remaining papers in this volume are concerned with finite sampling, 
and it is fitting that the paper by Ghosh is concerned with the concept of 
admissibility in survey sampling. Professor Joshi's first paper, a 1965 Annals 
paper written jointly with Godambe, generalized some earlier results on the 
admissibility of the Horvitz-Thompson estimator. Subsequently, Professor 
Joshi has published about twenty-five articles on the topic of admissibility 
and was invited to review that topic for the Encyclopedia of Statistical Sci­
ences. Ghosh's paper contains a comprehensive review of admissibility and 
uniform admissibility, much of which has emanated from Professor Joshi's 
pioneering work. In addition the paper contains a review of a recently devel­
oped "Step-wise Bayes" technique, due to Ghosh and Meeden, which can be 
used to generate new estimates of the finite population mean and variance. 

Another area of research that emerged in the sixties and seventies over 
the controversies surrounding foundational aspects of sampling was that of 
model-based inference for finite populations. The next two papers by Royall 
and Thompson address issues in this line of research. Throughout a series of 
previously published papers Royall has studied the consequences of model 
breakdown on inference in finite populations and has recommended proce­
dures to deal with the problem. In the current paper he examines the effect 
of correlation on model-based large sample confidence intervals for the finite 
population mean when the assumed working model is based on the assump­
tion of independent observations. With the growing use of models in survey 
research some survey statisticians are examining the parallels between re­
sults in sampling and experimental design. Here Thompson has shown how 
ideas in sampling based on random permutation models or exchangeable 
prior distributions on the observations may be applied to inference problems 
in the one-way layout in experimental design. 

The analysis of complex surveys is a rapidly developing field of research 
in survey sampling. Major developments to date have included the exami­
nation of the use of regression analysis and categorical data analysis when 
several stages of sampling and/or clustering is present in the survey design. 
Fuller, one of the leaders in this field of research, has presented some new 
research on the application of the factor model to complex surveys. The 
interest in the general topic of the analysis of complex surveys by large sta­
tistical agencies, such as Statistics Canada, is represented by the papers of 
Binder, Hidiroglou and their co-authors. Binder and his colleagues have 
reviewed the uses of regression methodology, categorical data analysis and 
percentile estimation in complex surveys. Hidiroglou and Paton have exam­
ined similar topics but from the point of view of computer methods necessary 
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to implement these analyses. 
Amode Sen, along with his co-author Pranab Sen, continues his long 

interest in sampling animal populations. Here the capture-recapture problem 
from the point of view of sa.mpling on two occasions is examined. Finally, 
Warner has presented a model to measure the ability of individuals to process 
information rationally as opposed to being influenced by sloganeering. 

The sampling papers taken together show the broad range of work being 
done in survey research. 



PROFESSOR V. M. JOSHI 



CURRENT BmLIOGRAPHY 
OF PROFESSOR V. M. JOSm 

The following bibliography gives the statistical papers of Professor Joshi 
up to August, 1986. We emphasize that this list is by no means 'Complete; 
Dr. Joshi is still very active in the Department of Statistical and Actuarial 
Sciences and will have a full teaching load this fall, at the age of 72. 

A biography of Professor Joshi was recently published in the Canadian 
Journal of Statistics (14,1-3). Although we do not wish to cover old ground, 
we might mention that when Professor Joshi's first paper was published, he 
was in his early 50's. Statistics has been a second career for him, after 
distinguished service in the civil service in India. The remarkable success he 
has had in this "second career" is apparent from a perusal of his writings. 

1965 

Admissibility and Bayes estimation in sampling finite populations. I. (Jointly 
with V. P. Godambe). Annals of Mathematical Statistics 36, 1707-1722. 

Admissibility and Bayes estimation in sampling finite populations. II. Annals 
of Mathematical Statistics 36, 1723-1729. 

Admissibility and Bayes estimation in sampling finite populations. III. An­
nals of Mathematical Statistics 36, 1730-1742. 

1966 

Admissibility of confidence intervals. Annals of Mathematical Statistics 37, 
629-638. 

Admissibility and Bayes estimation in sampling finite populations-IV. An­
nals of Mathematical Statistics 37, 1658-1670. 

1967 

Confidence intervals for the mean of a finite population. Annals of Mathe­
matical Statistics 38, 1180-1207. 

Inadmissibility of the usual confidence sets for the mean of a multivariate 
normal population. Annals of Mathematical Statistics 38, 1868-1875. 
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V. M. JOSHI AND THE 
MARKOV OSCILLATION PROBLEM 

ABSTRACT 

In 1968 Davidson posed the following tantilising problem. Suppose p(t) 
denotes for t 2: 0 a p-function or transition function for some state of a 
Markov chain (with p(O) = 1). For any given t > 0, put p(t) = M. How 
small is m = inf{p(s) : s ~ t}? In other words, what pairs (m,M) can 
occur? 

The problem remains unsolved but substantial contributions to the even­
tual solution have been made by V. M. Joshi. This paper reviews Joshi's 
work and outlines the current state of play. 

1. THE PROBLEM 

In this paper we sketch the fascinating story of the, as yet, unsolved 
Markov Oscillation Problem (Kendall and Harding, 1973, pp. 32-34). The 
substantial contributions made by V. M. Joshi are highlighted in Section 
5 and some promising new developments are discussed in Section 6 of this 
paper. 

This story begins with the Kingman inequalities for p-functions (King­
man, 1964). Any diagonal transition function p(t) in a Markov chain (with 
continuous time parameter and denumerable state space) satisfies, for any 
positive integer n and any 0 < tl < t2 < ... < tn, the inequalities 

F(tl, t2,' .. , tn ) 2: 0, 

G(tl' t2 , ••• , tn ) 2: 0, (1) 

1 Department of Mathematics and Statistics, Memorial University of Newfound­
land, St. John's, Newfoundland Ale 5S7 

I. B. MacNeill and G. J. Umphrey (eds.), 
Applied Probability, Stochastic Processes, and Sampling Theory, 1-7. 
© 1987 by D. Reidel Publishing Company. 
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where 
n 

G(tllt2, ... ,tn ) == 1- LF(t1,t2, ... ,tr ) 
r=1 

and 

n-1 r 

F(t1,t2, ... ,tn ) == L(-lr II P(t;Hl - t;.). 

Thus, for instance, the inequalities of orders 1, 2,3 are: 

F(t1) = P(t1)' G(td = 1 - p(t1)' 
F(tll t2) = P(t2) - P(t1)P(t2 - td, 
G(t1, t2) = 1 - p(t1) - P(t2) + P(t1)P(t2 - td, 

F(t1, t2, ts) = p(ts) - P(t1)p(ts - t1) - P(t2)P(ts - t2) 
+ P(t1)P(t2 - t1)P(ts - t2)' 

G(t1,t2,tS) = 1- p(t1) - p(t2) - p(ts) + p(t1)p(tll - td 
+ p(t1)p(ts - t1) + P(t2)P(ts - t2) - P(t1)P(t2 - t1)p(tS - t2)' 

Any function satisfying (1) is called a po/unction. We denote by P the class 
of all 8tandard p-functions with p(t) -+ 1 as t ! o. A considerable amount 
is known about the analytical properties of P (Kingman, 1972). However, 
it is likely that the solution of our problem will hinge upon a thorough 
scrutiny of (1) in conjunction with the following four simple truths for any 
standard function p (P(t) -+ 1 as t ! 0) that satisfies the first and second­
order inequalities: 

p(t) > 0, for all t > 0, 

p is continuous on [0, 00), 

q = lim!(I- p(t)) exists in [0,001, 
t10 t 

m = inf {p(8) : 0 ~ 8 ~ t} > 0 for any t > O. 

The Markov Oscillation Problem (Davidson, 1968; Blackwell and Freedman, 
1968) can be stated as follows. Given any pEP and any t > 0, put 
p(t) = M. Put inf {p(8) : 0 ~ 8 ~ t} = m. What pairs of values (m, M) can 
be assumed? Obviously, (m, M) must lie in the triangle 0 < m ~ M ~ 1. 
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2. THE FIRST MOVES 

Rollo Davidson's 1968 paper contained two important initial observa­
tions. First, Davidson was able to demonstrate that a part of the triangle 
o < m ~ M ~ 1 is inaccessible to sta.nda.rd p-functions by considering, for 
any 0 < s < t, the second-order inequalities 

o ~ 1- p(s) - p(t) + p(s)p(t - s), 

o ~ 1 - p(t - s) - p(t) + p(t - s)p(s). 

Taking the positive combination p(t - s)(2) + [1 - p(t - s)I(3) yields 

p(t) ~ 1- p(s) + p2(s), 

(2) 

(3) 

whence a simple application of the continuity and standardness of p gives 
the bounds 

M< ! - 4 

(4) 

On the other hand, Davidson used a family of so-called 'jump' p-functions 
to exhibit a region 

M ~ em-I, 0 < m ~ 1 

of the (M, m) diagram which is accessible to standard p-functions. His initial 
(M, m) diagram is shown in Figure 1. 

Davidson's final contribution (see Kingman, 1964, pp. 71-72) before his 
death in 1970 was to use a remarkable inequality (Bloomfield, 1971), ob­
tained by measure-theoretic arguments, to augment the inaccessible region. 
He showed that 

M ~ 1+mlogm, O<m~1. 

His final (M, m) diagram is shown in Figure 2. 

3. THE USE OF INEQUALITIES OF ORDER n 

After Davidson's initial substantial success at providing a lower bound to 
the inaccessible region of the (M, m) diagram using a pair of second-order 
Kingman inequalities, it is not surprising that further progress (Cornish, 
1973) was made using n nth order inequalities and letting n ---+ 00. The 
resulting bound 

M ~ 1+mlogm 

1 
M< 1--

- e 

'f 1 1 1 ~ m ~ -, 
e 

'f 1 1 0 < m ~ -, 
e 
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is composed of the Bloomfield-Davidson bound for m ~ lie and a tangent 
to that curve for 0 < m :s 1/ e. The resulting (M, m) situation is shown in 
Figure 3. 

4. A THIRD-ORDER RESULT 

Figure 4 shows the last substantial change to the (M, m) diagram (Cor­
nish, 1972), achieved essentially by eliminating variables between six third­
order inequalities. The somewhat ugly result is a three-segment curve: 

M :s 1 - 2-/3/9"", 0.615 if 0 < m :s l, 
if .! < m < .! (3 - '5) 3 - - 2 VO) (5) 

The result has interesting applications to the special case when consideration 
is restricted to those p-functions (with q < +00) that decay exponentially 
to their minimum value m. The solution of the problem in the 'exponential­
start' case (Griffeath, 1976) is obtained by generalising the third-order result 
to the nth order case in a natural way and letting n -+ 00. It is shown that 
Davidson's curve 

M .... -1 =e , (6) 

does indeed separate the accessible and inaccessible regions for exponentially 
starting standard p-functions. 

5. FOUR PAPERS OF V. M. JOSHI 

The use of nth order inequalities to shed light upon the (M, m) diagram 
was taken up by V. M. Joshi in his first two papers on the problem (Joshi, 
1975, 1977a). In the earlier paper Joshi applied an intricate argument to keep 
a tighter reign on the inequalities than did Cornish (1973), and obtained a 
bound 

M :s (1 - K)2 "'" 0.590 if 0 < m :s K, 

if m ~ K, 

where ek - 1 = 2K. The 1977 paper is essentially a refinement of the 1974 
argument, producing an improved lower bound to the inaccessible region 
which intersects the M-axis at 0.560. In almost a decade, Joshi's result has 
not been improved upon. 
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Attacking the Markov Oscillation Problem on a different front, V. M. 
Joshi extended the class of p-functions for which the problem is solved in two 
papers (Joshi, 1977b, 1981). In the first of these papers the subclass of P 
for which (4) is the solution is extended to those p-functions (with q < +00) 
which decay exponentially on a closed interval before reaching the value m. 
The 1981 paper extended the subclass further to include those p-functions 
(with q < +00) with one mass point in (0, to), where p(to) = m, but with 
arbitrary distribution in [to, 00). The Davidson 'jump' p-functions have a 
single mass point. 

6. TWO WAYS AHEAD? 

A great deal of evidence has now accumulated to suggest that Davidson's 
curve (6) separates the accessible and inaccessible regions of the (M, m) 
diagram for standard p-functions. The question arises as to whether the 
technique used to give the third-order bound (5) can be generalised to the nth 
order case, in much the same way as in the exponential-start case (Griffeath, 
1976) but with, presumably, a very considerable increase in the complexity 
of the computation. Studies currently in progress indicate that a new fourth­
order generalisation will be obtained, and this might provide the key to the 
nth order situation. 

On the other hand Griffeath (1973) conjectured that the Markov Os­
cillation Problem can be solved using only third-order inequalities. IT this 
conjecture is correct then, in view of Joshi's results, the bound (5) cannot be 
the best possible using third-order inequalities. For p-functions that decay 
exponentially to m this is indeed the case, as can be seen by considering 
the following simple example. Suppose p is exponential on [0, t3], where 
p(t3) = m. For t > t3 put pet) = M. Write t3 = 3tl, t2 = 2tl' Then the 
combination 

(m1/3 + m2/3 )G(tt, t - tl, t) + mG(t - t3, t - tl, t) 

+ (1- ml/3 - m2/3 - m) G(tllt - t2,t) 

+ (1- m2/3) (1- ml/3 - 2m2/3 - m) F(tllt - t2) 

reduces to 
1 - ml/3 + m4/3 - M. 

Provided that 1 - ml/3 - 2m2/3 - m ~ 0, i.e. m ~ .1009, all terms in the 
above combination are non-negative. Thus 

M ~ 1 - ml/3 + m4/3 . 
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A simple argument then gives 

M ~ .5814 if m ~ .1009. 

It would be of interest to find a sharp bound for standard functions satisfying 
inequalities of the first three orders. We note (Griffeath, 1974) that David­
son's bound (4) is sharp for functions satisfying the first and second-order 
inequalities. 
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PROBABILISTIC MODELS OF 
THE PHOTOGRAPmC PROCESS 

ABSTRACT 

The photographic process, still not completely understood, is a rich 
source of temporal and spatial probabilistic processes, to date largely un­
tapped by probabilists. This paper reviews applications of probability to 
such problems as reciprocity failure, granularity, and adjacency effects in 
photographic materials, concentrating on developments since 1971. 

1. INTRODUCTION AND DESCRIPTION OF THE 
PHOTOGRAPHIC PROCESS 

The photographic process is an interesting source of problems for applied 
probabilists and, as we shall see, provides realistic applications for a number 
of well-studied areas of applied probability, such as multidimensional point 
processes, renewal theory, Gibbsian random fields, and queuing theory. And 
while the physical and chemical mechanism of the photographic process is 
relatively well understood, there are a number of fundamental points over 
which photographic scientists differ; these issues can sometimes be resolved 
by the study of a well-formulated model of the process. 

This article is intended as a review of probability modelling in pho­
tographic science, although in order to organize the material, it has been 
necessary to generalize some of the contributions. We proceed only from 
1972, the publication date of a previous review article by Hamilton, Law­
ton, and Trabka. Among other things, that article contains an interesting 
account of very early mathematical modelling in photographic science. 

We can roughly divide probabilistic applications to photographic science 
into 'macroscopic' and 'microscopic' applications. The former treat the emul-

1 Department of Mathematics and Statistics, McGill University, Montreal, Que­
bec H3A 2K6 
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sion as a whole, and the basic probability tools are multidimensional marked 
point processes and random fields. The microscopic applications treat in­
dividual grains in the emulsion, the basic tool being a variant of queuing 
theory. We examine the microscopic applications, which generally deal with 
reciprocity failure, in Section 2, and the macroscopic applications, generally 
subsumed under the title 'random dot model' in Section 3. There are also 
a very few articles which attempt to combine both aspects, or fall outside 
this classification; for reasons of length, we only mention these articles or 
leave them to the bibliography. The bibliography contains a comprehensive 
listing of pertinent articles since 1972. 

What follows now is a description of the photographic process. A read­
able, more comprehensive account is given by James and Higgins (1968), 
and the classic reference work in the field is that of James (1977). 

All modern photographic materials consist of a photographic emulsion 
thinly coated on some support medium, such as paper or plastic sheets, or 
glass plates. The emulsion itself consists of tiny (typically 10-6 m. in di­
ameter, generally hexagonally shaped and flat) light sensitive silver halide 
crystals called grains, suspended in a gelatin support medium. Photog­
raphy would not be possible, but for the fact that these grains contain de­
fects, which may be either dislocations in the crystal structure, or impurities 
caused by doping with sulphides, or a combination of both. In the unexposed 
grain, some of these defects have a net positive charge, and are called traps. 
Deep traps have a larger charge than shallow traps. Grains also contain in­
terstitial silver ions, which are positive silver ions liberated from the crystal 
structure and free to roam throughout the grain. With this background, we 
now have the Gurney-Mott Hypothesis. 

(H1) When light strikes a silver halide grain, electron-hole pairs are cre­
ated which are free to independently drift throughout the grain. Such 
electrons are called photoelectrons. 

(H2) A photoelectron may become caught in one of the traps, more likely 
a deep trap where it is held more tightly. If so, a potential field is 
set up around the deep trap which repels other photoelectrons, but 
attracts interstitial silver ions. An ion in the vicinity of the trap 
will be attracted to the trap, resulting in a silver atom at the trap. 
The time interval between the trapping of the photoelectron and the 
arrival of the interstitial silver ion is called the dead time Td. 

(H3) This silver atom is unstable and decays after a time interval oflength 
To, called the decay time, into a silver ion and an electro"n. But if 
before this silver atom can decay, it is joined by another silver atom 
formed in the same way at the trap, a more stable two-atom silver 
speck results. 

(H4) Successful repetition of the steps in H2 and H3 above leads eventually 
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to the formation of a stable silver speck (the minimum number of 
silver atoms required for stability is a controversial point among 
photographic scientists, but there is some consensus that a four­

atom speck suffices). The aggregate of all the silver specks in all the 
grains forms the latent image. Only those grains which contain a 
stable silver speck can be reduced to pure silver during subsequent 
chemical development. 

We remark that there seems to be a general consensus over the Gurney­
Mott hypothesis, although there are minority divergent opinions over the 
exact sequence of events. 

It is clear that the longer the exposure duration, the more stable silver 
specks will result. Mter chemical development, in which grains containing 
stable silver specks are reduced to pure silver, and clearing, in which un­
used silver halide is disposed of, the photographic image consists of black 
particles of pure silver still retaining much of the shape and position of the 
original grains, randomly distributed throughout the gelatin. Photography 
is a two-dimensional medium, and what we 'see' are the projections of these 
developed grains . .AJJ such, the 'centres' of the grains form a two-dimensional 
point process which, for a uniformly exposed and developed emulsion, and 
in the absence of crowding, has usually in the literature been assumed to be 
Poisson. The opacity of these grains as opposed to the background, together 
with their random distribution in space, result in granularity, manifested as 
irregularities in the intensity of the transmitted or reflected light by which 
the image is viewed. 

Two basic observable variables involved in the process are the exposure E 
(= inten8ity I of light, times duration t of the exposure) which the emulsion 
receives, and the resulting mass density M (per unit area) of developed 
silver. However, very early on, photographic scientists observed empirically 
that M is proportional to the optical density D A, defined by 

(1.1) 

where the transmittance T A = Iii It is the ratio of incident to transmitted 
intensity of light shone in the region A of the exposed and developed emul­
sion. TA is measured with a densitometer (or microdensitometer, if A is 
small) and A is circular, reflecting the circular aperture of the densitometer. 
The densitometer actually measures TA, but has a built-in analog device to 
convert TA to DA via (1.1). 

We expect the optical (or mass) density of developed silver to depend 
on the intensity I and duration t of the exposure E = It that the emul­
sion receives. What was observed very early in the history of photography, 
and what every photographer knows, is that density depends on (moderate) 
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values of I and t only through their product E. This is called the Law of 
Reciprocity, and for a given type of emulsion, the relationship between D A 

and E (when I and t are moderate) is graphically portrayed in the charac­
teristic (or D-Iog E) curve of the emulsion, an example of which is shown 
in Figure 1. The location of the characteristic curve along the loglO E axis 
relates to the 'speed' or 'sensitivity' of the emulsion, while the slope of the 
middle 'straight line' portion of the curve relates to the 'contrast' of the 
emulsion. 

Figure 1. Characteristic curve of emulsion. 

However, at extreme values of I or t, the law of reciprocity breaks down, 
and D A depends on I and t individually. In this case, the graphical tool 
is the reciprocity failure diagram, consisting of a family of sections of aDA 
versus loglO E and loglO I surface, each section taken for a fixed value of 
D A. The individual sections are called isodense curves. An example of a 
reciprocity failure diagram is shown in Figure 2. Reciprocity failure depends 
very much on what goes on inside a grain, and therefore on the Gurney­
Mott hypothesis. Models which attempt to explain reciprocity failure are 
discussed in Section 2. 

Variations in D A as a micro densitometer is scanned across a uniformly 
exposed and developed emulsion are indicative of the granularity of the emul­
sion, and the Selwyn granularity 

(1.2) 

is the standard measure of granularity. Granularity and the proportionality 
of optical and mass density, concerning the emulsion as a whole, are the 
preoccupation of the random dot models of Section 3. 
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2. RECIPROCITY FAILURE IN THE PHOTOGRAPHIC GRAIN 

13 

It has been remarked that the response of the photographic emulsion, 
as measured by the optical density D A, depends in general on the intensity 
I (assumed constant over the duration of the exposure) and the duration 
t of the light to which the emulsion has been exposed; and that this de­
pendence, for a certain emulsion, is recorded in a family of isodense curves 
such as the examples in Figure 2. Each isodense curve, such as the one in 
Figure 2 for density D', records the exposure E required to achieve density 
D' when the intensity is I. At moderate values of I, the isodense curve is 
Bat, indicating that in this region density depends on I and t only through 
their product E = It. This is the region in which the law of reciprocity 
holds. But at very low or very high values of I, the law breaks down and the 
isodense curves bend upwards, indicating that the photographic process is 
less efficient at these extreme values of I. There are experimental difficulties 
involved in determining the exact behaviour of isodense curves at very high 
or low intensities, with the result that different modes of behaviour have 
been observed in each of these regions. Typically, at high intensities either 
asymptotic slopes of + 1 have been observed, or else some increase in the iso­
dense curve and then an asymptotic slope of zero (called 'bendover'). Both 
of these situations are portrayed in Figure 2. At low intensities, asymptotic 
slopes between 0 and -1 are observed (James, 1977). However (Hamilton, 
1985), recent data at very extreme intensities indicates that ultimate ben-
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dover is characteristic at high intensities, and asymptotic slopes of -1 at low 
intensities. 

There are four mechanisms which are thought to be responsible for high­
intensity reciprocity failure (Hamilton, 1966). These are (i) the ionic lim­
itation, (ii) competitive nucleation, (iii) topographic effects, and (iv) re­
combination effects. The term 'ionic limitation' refers to step (H2) of the 
Gurney-Mott hypothesis, in which photoelectrons prevented from entering a 
trap during a dead time may recombine with holes and thus become lost to 
the photographic process. The general model of reciprocity failure in Sec­
tion 2.1 is based on the specific sequence of events in (H1) - (H4), and ionic 
limitation will be seen to be the only actual source of high intensity fail­
ure. Competitive nucleation (competition between traps for photoelectrons) 
and recombination effects appear only as factors affecting the extent of high 
intensity failure, and cannot be causes. Topographic effects (effects due to 
spatial and strength distribution of traps) are not included in the models 
below. Similarily, the only actual cause of low-intensity failure considered 
below is the thermal decay of silver atoms in step (H3), in which the arrival 
rate of photoelectrons is so low that it is unlikely a second silver atom can 
be formed at the trap before the first one decays. 

2.1 General Model for Reciprocity Failure 

We consider a single grain with N similar deep traps, 'similar' meaning 
that each deep trap unoccupied by an electron exerts the same attractive 
force towards photoelectrons. At the beginning of the exposure interval (i.e., 
at time t = 0), all traps are empty. Light incident on the grain creates pho­
toelectrons in the grain which arrive at the trap complex according to a 
renewal counting process with intensity>. a correlate of the light intensity [. 
We view the N deep traps as servers and arriving photoelectrons as arriving 
customers in an N-server queueing system. Let Tl , T2 , • •• be a sequence of 
i.i.d. random variables, each with distribution function F(t) and mean>. -1, 

representing the interarrival times of these photoelectrons (customers) at the 
trap (server) complex. When a photoelectron arrives at an unoccupied deep 
trap, it is immediately absorbed into the trap, and the dead time rd until an 
interstitial silver ion arrives to join this photoelectron is assumed to be a ran­
dom variable with distribution function P(t) and mean {3-1. Let rJ, rJ, ... 
be a sequence of independent copies of rd, representing the dead times (ser­
vice times) of successive photoelectrons to enter deep traps. Photoelectrons 
which arrive to find all N deep traps occupied accumulate in temporary 
shallow traps throughout the grain, forming an electron pool (waiting line) 
available to the deep traps. The size of this pool fluctuates during, and 
after, the exposure interval, increasing with the addition of arriving photo­
electrons, decreasing when an electron in a shallow trap recombines with a 
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hole (and is therefore lost to the photographic process), or at the end of a 

de~d time when ~ tempomrily tr~pped electron ImterB Q deep tmp Qt which 
a silver atom has just been formed. 

So far, we basically have a GI/GI/N queueing system with defections 
(recombination) allowed from the waiting line. Now let 1'!, 1';, ... be a se­
quence of i.i.d. random variables, generically represented by 1'0, and repre­
senting the decay times of successive silver atoms formed in the deep traps. 
We assume that interarrival times, dead times, and decay times are always 
independent of one another, as well as among themselves. In addition, we 
will assume (for tractability) that a two-atom silver speck at a deep trap is 
stable, and that the formation of at least one stable silver speck among the 
N deep traps makes the grain developable. We let T denote the minimum 
exposure duration required to render the grain developable, and D(t) (or 
D(t, >'), when dependence on >. is to be accentuated) denote the distribution 
function of T. We interpret D(t, >.) as the normalized photographic density 
resulting from an exposure E of duration t and intensity>.. 

This general model, involving as it does the transient behaviour of an 
N -server queueing system, has so far proved intractable. Below we consider 
two special cases. 

2.2 Multitrap Model for High Intensity Reciprocity Failure 

Typical values for the dead time and decay time would appear to be of 
the order of 10-4 seconds and 1 second, respectively (Hamilton and Urbach, 
1966). It would therefore seem reasonable (especially in view of some of 
the results with the model of Section 2.3) to decouple the effects of the 
dead time and decay time. Hence in the general model described above, 
we assume, following Anderson (1984), that 1'0 = +00 a.e., and in addition, 
for mathematical tractability, that photoelectrons which arrive to find all 
N traps occupied are lost to the photographic process, so that no pool can 
form. We therefore have a GI/GI/N loss system in which T is the first time 
that a server accepts its second customer. 

Let X,. denote the number of occupied traps at (i.e., just before) the 
arrival of the nth photoelectron, Y,. denote the number of traps which have 
not been occupied before that arrival, and let Z,. = (X,., Y,.). Then {Z,., n ~ 
1} is easily seen to be a Markov chain with state space S = {(i,j) I i,j ~ 
0, i + j :5 N} U A, where A is the absorbing state which is entered by the 
chain at the first moment that a trap receives its second photoelectron. T 
is then the time until absorption in A. If we define the Laplace transforms 

f(i,;)(s) = E (e-eT I Zl = (i,j)) , 
P(i,;),(k,t)(S) = E (e-eT2 I{z2=(k,t)} I Zl = (i,j»), 
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then 

ifO::;i::; N-1 
(2.1) 

ifi= N 

and 

H1 N .. 
~ -I - J -aT 

f(i,;)(S) = L...J P(i,;),(k,;-1) (S)f(k,;-1)(S) + N _ i E(e 1), 
k=O 

j? 1. 

(2.2) 
'+1 In (2.2), the sum E~=o P(i,;),(k,;-1) (S)f(k,;-1) (s) covers the case where the 

first photoelectron goes into a previously unoccupied trap at time T1• But it 
is then as if we are back at time 0 with new initial conditions (k,j - 1) and 
require T' more time units until absorption in A, where T' is independent of 
T and has the same distribution as T. The term N N~i E( e-eT1 ) arises from 
the remaining case where the first electron goes into a previously occupied 
trap, so that T = T1• Note that NN~i; is the probability that an electron 
which enters an unoccupied trap in fact enters one which has previously been 
occupied. For the case i = N in (2.1), all but the Nth (last) term in the 
sum are cases in which the first electron arrives to find all traps occupied, so 
is lost. The time used so far, is T1 • Just before the second electron arrives, 
there are i < N occupied traps, and since all the traps have been previously 
occupied, this second electron, taking a further T2 time units, creates a stable 
silver speck. 

Let D*(s) denote the Laplace-Stieltjes transform E(e-eT I Z1 = (0, N)) 
of D(t). Then D*(s) = f(O,N) (s). Equation (2.2) can be iterated downwards 
from j = N to obtain 

N-1 
D*(s) =f(N,O)(S) II P(i,N-i),(H1,N-i-1)(S) 

1 k2 +1 kN-l+1N-1 
+E(e-aT1 ) L L ". L II P(kj,N-i),(ki+l,N-i-1) (s) (2.3) 

where ko = O. f(N,O)(S) is easily obtainable by solving (2.1). Here, 

P(i,;),(k,t)(S) 

= 1000 1000 e-atl P[Z2 = (k,t) I T1 = u,T2 = V,Z1 = (i,j)]dF(v)dF(u) 
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where, for instance, 

P[Z2 = (k,O) I Tl = u,T2 = 11,Zl = (N,O)I 

= (~)(P(l1,U))k(l- p(l1,U))N-k 

with p(l1, u) = P(Td > u + 11 I Td > u), U, 11 ~ O. 
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Some simplification is possible by making the not unreasonable assump­
tion that interarrival times and dead times are exponential, i.e., 

P(t) = 1 - e-Pt , t ~ o. (2.4) 

Then D(t) is easily obtained from D*(s) in (2.3) as a sum of convolutions 
of exponentials. Furthermore, the function p(E) = D(E/>..,>..) can be seen 
to depend on >.. and p only through r = >../p. For fixed N, a plot of p(E) 
against loglo E gives the characteristic curve for a grain with N deep traps, 
and examples of characteristic curves computed in this way from (2.3) are 
shown in Figure 3 for r = 10 and N = 1,2,3. In addition, the expected 
value E = >"E(T) and variance Var(E) = >..2Var(T) can be computed from 
(2.3) as functions of r and N. E can be viewed as a measure of the speed 
of the emulsion (the smaller E is, the higher the speed), and (Var(E))-l/2 
as a measure of the contrast. The results, reprinted from Anderson (1984), 
are shown in Figure 4. It can be seen that for each r, there is a value of N 
for which speed is a maximum (this is straightforward to prove), and there 
would appear to be an optimal value of N which maximizes the contrast. 

1.00 

'6' 0.75 

~ 
E 
o 0.50 .s. 
>-:t: 

~ 0.25 
Q) 

Cl 

O.O-+----.--....,..:::;...--.~-""T"'--r__-...., 

-1.00 -0.50 0.0 0.50 1.00 1.50 2.00 

Log Exposure 

Figure 3. Normalized characteristic curves for cases N = 1,2 and 3 and 
r = 10. 
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Figure 4. Dependence 0/ speed and contrast on number 0/ traps N. 

We now turn to the question of reciprocity failure for this model. Given 
a number p with 0 < P < 1, the relation 

p = D(E/>.,>.), (2.5) 

defines implicitly a function E = E,(>.) of >.. Plotting 10glO E,(>.) against 
10glO>' then gives the isodense curve corresponding to density p. For the 
model of this section, the isodense curve for p = 0.5 is plotted in Figure 5 
for the values 1,2 and 3 of N. Again it appears that for each value of r there 
is a value of N which minimizes the exposure required to achieve density 0.5. 
Furthermore, the high intensity asymptote of the isodense curve has slope 
+1. 

Further investigation of asymptotic slopes of isodense curves is based on 
the following lemma, which is applicable as well to the model of Section 2.3. 

Lemma. Let L denote either 0 or +00, and let a and p be numbers with 
O<p<1. 
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Figure 5. Exact (solid line) and approximate (dotted line) isodense curves 
lor p = 0.5 and N = 1,2 and 3. 

1. The existence of a positive limit 

(2.6) 

is equivalent to the existence of the asymptote 4J( -X) = a 10glO -X + 10glO x 
(as -X -+ L) to the isodense curve for density p on the log-log plot. 

2. Suppose 
lim D(t/>.l- .. ,>.) = Z(t), t > 0 

>'-+L 

or equivalently 

lim D*(S>.l-.. ,>.)=Z*(s), s>o 
>'-+L 

where Z{t) is continuous, strictly increasing, and such that Z(O+) < 
P < Z(+oo) (and Z*(s) denotes the Laplace-Stieltjes transform of Z(t)). 
Then the limit x in (2.6) exists and Z(x) = p. 

A proof of this lemma, which requires only that D(t) be increasing in t, is 
given by Anderson (1984). Returning to the model of this section, again with 
the exponential assumptions of (2.4), we find via (2.3) that lim>.-+oo D(t, -X) = 
1 - e-{3Nt, so that by the lemma (with a = 1), all isodense curves have 
asymptotic slope + 1 as -X -+ 00, and the equation of the asymptote is 

1 1 
4J(-X) = 10glO -X + 10glO N{3log. --. 

I-p 
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2.3 Single nap Pool Model for Both Low and High Intensity Failure 

There is another direction one can take in the general model to achieve 
tractability. Following Anderson and Mathai (1986), we assume N = 1 
and examine a model which includes both low and high intensity reciprocity 
failure. While we lose competitive nucleation (N) as a factor, we can examine 
the effects of recombination of pool electrons, and obtain a model valid at 
intermediate intensities. 

We shall assume the incoming stream of photoelectrons to be Poisson 
with intensity>.. Let Wt (u) be the pool size (not including the electron in the 
deep trap) at time U ~ 0 resulting from an exposure during the interval [0, t]. 
We assume that in the time interval between two successive admissions of 
photoelectrons to the deep trap, (Wt(u), U ~ 0) is a birth and death process 
with birth coefficients 

n ~ 0, U ~ 0 

and death coefficients }In, n ~ 1. The process (Wt(u), t ~ 0) can be assumed 
to have left continuous paths, and the initial pool size Wt(O) will be denoted 
byW. ' 

In this model, T has a fuzzier meaning since the second silver atom can 
be formed by an electron from the pool, long after time T Let us write 

X = {Tl ifW = 0 
o ifW>O 

and define 

D;(t) =P(T ::; t I W = j, no silver atom in the trap at 

beginning of exposure) 

so that D(t) = Do(t), and 

M;(t) =P(T ::; t I W = j, one silver atom Oust formed) in trap at 

beginning of exposure) 

for j ~ O. Using a renewal argument, it can be shown that 

and 

(2.6) 

(2.7) 



where 

and 
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H1(t) = p(X $. t,X +rl $. t/I I W =j) 

+ P (X $. t < X + rJ, X + rJ > t/I, 
Wt (X + rl + ... + r;t) ~ 1 I W = j) , 

K1k = P ( t/I < X + rl $. t, W x+"l (X + rl) = k I W = j) , 

M = min (n > 11 rn+1 < rn). - d - 0 
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The term HJ(t) in (2.6) covers the case in which the first silver atom is 
formed (at time X + rl) after the end of the exposure interval, so that the 
second electron in the stable silver speck must come from the pool, and there 
must be enough (M) electrons in the pool to complete the formation of the 
two-atom speck from a silver atom. The kth term in the sum in (2.6) arises 
from the case where the first silver atom is formed at time u $. t, and the 
pool size at time u is k. But then there are t - u time units of exposure 
remaining to ensure the formation of a stable speck, but with the new initial 
conditions embodied in Mk(t - u). The derivation of (2.7) is similar. 

Equations (2.6) and (2.7) are amenable to easy 'solution' using Laplace­
Stieltjes transforms (denoted by *). Writing 

the matrix I - K"· (s) can be shown to be invertible and we have 

Some computational results for evaluating D(s) are given by Anderson and 
Mathai (1986), but even in the simplest cases (e.g., small finite pool ca­
pacity), inversion of (2.8) is a formidable task. Nevertheless, some very 
interesting results concerning asymptotic slopes of the isodense curves are 
obtainable from (2.8) and the lemma of Section 2.2. 

High Intensity Asymptotes. 
It can be shown that if P(rd = 0) = 0, then 

lim D(t/)..,)..) 
.\-+00 



22 

and 

w. J. ANDERSON 

lim D(t,,x) 
A-+OO 

= Z2(t)~r1 - P(rJ > t, Wo(rJ + ... + rr - t) = 0 I W = C), 

(2.10) 

where Wo(u), u ~ 0 is a pure death process with death parameters J.'n, n ~ 1 
and unit deletions at times rJ, rl, ... , r;t; and C, which may be +00, is the 
maximum capacity of the pool. Let 

Po = P (Wo (rJ + ... + rr) ~ 1 I W = C) . (2.11) 

The interpretation of (2.10) and (2.11) when C = +00 is made precise by 
Anderson and Mathai (1986). But note that if the death parameters are 
large enough (i.e., L:::'=1J.';;1 < +00) there is, for any u > 0, a non-zero 
probability that Wo(tI) will experience infinitely many jumps in the interval 
[0, u]. In fact, if C = +00, then Po < 1 if and only if L:::'=1 1';;1 < +00. 

IT P(rtl :$ To) > 0, the functions Z1(t) and Z2(t) satisfy 

Z1(0~ = 0, lim Z1(t) = Po 
t-+oo 

Z2(O) = Po, lim Z2(t) = 1, 
t-+oo 

and the other conditions of the lemma of the last section, and we conclude 
that Po is a threshold density in the sense that the isodense curve with index 
P (i) exhibits bendover if 0 < P < Po, or (ii) has asymptotic slope +1 if 
Po < P < 1. 

The following examples, in which we assume ro = +00 a.e. and pet) = 
1- e-~t, t ~ 0 (i.e., no low intensity failure and exponential dead times) are 
taken from Anderson (1980). 

Example 1. IT pool capacity is C = +00 and death parameters are J.'n = 
n(n + 1)1' (proportional to the number of electrons in the pool and the 
number of holes extant), it can be shown that 

1 1f(fJ/l') 
Po = - cosh (jJ4(fJ/l') -1)" 

Po is an increasing function of fJ / I' and Po is already .943 when fJ III is 4.0. 
Thus, while there appears to be no mention of a threshold effect in the 
literature, it may be because real values of fJ I I' are so high that Po is very 
close to 1 and so far has been beyond experimental detection. 
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Example 2. If pool capacity is C = 1 we find (with 1-'1 = 1-') 

if),#f3 

if),=f3 

and Po = f3/(f3+ J.'). A family ofisodense curves, with J.' = f3 = (2/3) X 106, 

is shown in Figure 6. 
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Figure 6. Family of isodense curves resulting from the model of Example £, 
with J.' = f3 = (2/3) X 106 and maximum pool size N = 1. The curves exhibit 
bendover when the index P is less than the threshold density Po = 0.5, and 
high-intensity asymptotes of + 1 when p is greater than Po. 

Low Intensity Asymptotes 

Returning to the combined reciprocity failure model of this section, the 
following results concerning low intensity failure may be obtained from (2.8). 
Assume there is r > 0 such that E[exp(rTd)] < +00. 

(a) If E(To) < +00, then lim).-+o D(t/),2,),) = l-e-(~+"c)t, t ~ 0, where 

c = P(Td ~ To), 
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and 

(b) If P(To > u) "" uG as u -+ +00 where -I < a < 0, then 
lim.\ ..... o D(t/A1- G , A) = l_e-tr(l+G), t ~ 0, where r(·) is the gamma 
function. 

The lemma of Section 2.2 implies that in case (a), we obtain low-intensity 
asymptotes of slope -I, while in (b) we obtain low intensity asymptotes of 
'fractional' slope a. 

The special case of the combined model of this section, in which pool 
capacity is zero, was studied by Anderson (1978). If dead times and decay 
times are exponential, D(t) is easily determined and isodense curves can 
readily be plotted, as in Figure 7. 
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Figure 7. Family of isodense curves resulting from model when the dead 
time and decay time are chosen to have exponential distributions with means 
1.5 X 10-6 seconds and 8 seconds, respectively. 
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2.4 Additional Results on Reciprocity Failure 

Feedback 
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It is not clear from the Gurney-Mott hypothesis what happens to the 
electron produced when a silver atom decays in the trap. Presumably, the 
electron can be considered a new member of the electron pool, and such 'feed­
back' of electrons results in increased efficiency, with the resulting isodense 
curves lying below the corresponding curves of the model of the last section. 
As high intensity failure is independent of thermal decay, no change in the 
high intensity asymptotic behaviour is to be expected. But can feedback of 
decayed photoelectrons change low intensity behaviour, perhaps producing 
bendover or fractional asymptotic slopes? The answer is no, for the following 
reason: take Td == 0 in the model ofthe last section, so no pool need form and 
C = O. Let f be the probability that an electron from a decayed silver atom 
in the trap feeds (immediately) back to the trap. Then the effective decay 
time for the first silver atom formed in the trap is T~ = T;+ 1:;=1 T:+l, where 
J (geometric) is the number of times the electron feeds back. If 0 < f < 1 
and E(To) < +00, then E(T~) = E(To)jl - f < +00, and the last results of 
Section 2.3 imply that the low intensity asymptotes have slope -1. Since the 
isodense curves for this special case lie below the corresponding ones for the 
feedback version of the model of Section 2.3, the same conclusion must hold 
for the latter. 

The n-Atom Stable Speck 

Up to now, we have assumed that a two-atom silver speck is stable and 
developable, an assumption made for mathematical tractability. The case 
in which a silver speck requires n (~ 2) atoms for stability is studied by 
Anderson (1987). If one assumes that To == +00, and therefore examines 
the high intensity component only of the model of Section 2.3, one obtains 
results similar to those of Section 2.3, in that there is a threshold density 
separating high intensity bendover from high intensity asymptotic slopes of 
+1. On the other hand, at low intensities, with Td and therefore C assumed 
zero, one finds, if E(To) < +00, that the low intensity asymptotes have slope 
-(n - 1). 

3. RANDOM DOT MODELS OF THE PHOTOGRAPHIC EMULSION 

The so-called random dot models of the photographic emulsion date from 
about 1913, and a history of their development is given by Hamilton et al., 
(1972). Rather than review the contributions since 1971 separately, we follow 
Kemperman (see Hamilton et al., 1972) in setting up a general framework 
for the random dot model, from which most of these contributions follow 
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easily as special cases. 

3.1 General Framework for the Random Dot Model 
We take the developed emulsion to consist of grains distributed randomly 

in R2, in a manner to be made precise below. Each grain in the emulsion is 
characterized by a reference point xp (which we shall refer to as the 'centre' 
of the grain, even though grain shapes might be quite irregular) and an 
absorptance function a(s), in the sense that the grain with centre xp and 
absorptance function a(s) is located at xp E R2 and absorbs at the point 
x E R2 a fraction a(x - xp) of the incident light. The reference points xp 
are members of a point process in R2. 

More precisely, let N = {NA' A E 8(R2)} (8(R2) = the Borel u-field of 
subsets of R2) be a two-dimensional point process defined on a probability 
space (0 1,11, P1). We will identify each W1 E 0 1 with a realization of 
this point process; namely, W1 is a countable collection of points in R2, 
enumerated so that the pth point of W1 is denoted by xp = xp(wt}. 

Let Q be the family of all measurable functions a(s) : R2 -+ [0,1] which 
vanish on the complement of a bounded set. The members of Q are the 
absorptance functions mentioned above. Let {Xn' n ~ 1} be a sequence 
of independent and identically distributed random variables defined on a 
second probability space (02,12, P2), with values in Q. 

Finally, let (0,1, P) be the product probability space (01 X O2 , 11 X 

12, P1 X P2). If w = (Wt,W2) E 0, then there are grains located at each 
point xp of W1, and at each such point xp, the absorptance function Xp(W2) 
is associated. The grain at xp absorbs at the point x E R2 the fraction 
Xp (W2)(X-Xp) of the incident light. The total effect ofall the grains is that at 
a point x E R2, the fraction t(x) = t(x,w) = tdl:Z:pEw1 (1-Xp(W2)(X-Xp)) of 
the incident light is transmitted. Here, tb is a constant in [0,1], representing 
the transmittance of the film base. t(x) is called the point transmittance at 
x. 

Let G(4)) = E(expJlog4>(S)dN(s)) be the probability generating func­
tional of the point process N, defined for measurable 4> : R2 -+ [0, 1] such that 
4>(s) = 1 outside a bounded set (see Cox and Isham (1980), Fisher (1972), 
or Westcott (1972) for background on point processes). Let Y1, Y2, .. . , Yn 
be points in R2 and define dXp,W2) = n?=l(1- Xp(W2)(Yi - Xp))U, , where 
Ui ~ ° for all i = 1, ... , n. Then 

E (IT t(Yi)U,) = tF~=l u'jj II ~(xp, w2)dP2dP1 
i=l 0 1 o~ :Z:pEW1 

= tF~=l u'j II E2(~(Xp,W2))dP1 (by independence) 
0 1 :Z:pEW1 
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While (3.1) in theory allows us to determine the joint density of t(yt} , ... , 
t(Yn), in practice we will only be interested in second order properties of the 
random field (t(x) , x E R2). Thus 

E(t(x)) = 1/1(1,0), Cov(t(x), t(y)) = 1/1(1,1) -1/1(1,0)1/1(0,1), 

where 

and 
e(S,W2) = (1 - X(W2)(X - S))Ul (1 - X(W2)(Y - S))U2, 

with X identically distributed as Xl, X 2 , etc. 
Unfortunately, the point transmittances t(x), x E R2 are not observ­

able. What is observable, with a microdensitometer, is the average area (or 
aperture) transmittance 

TA = I! I L t(x)dx, (3.3) 

where I . I denotes Lebesgue measure (area), of a bounded region A (E 
B(R2)) of the emulsion. Note that we have 

(3.4) 

Var(T A) = 1 ~ 12 L L Cov(t(x) , t(y))dxdy. 

Proposition. 

1. H the point process N is stationary, then so is the random field 
(t(x), x E R2). 

2. H N is stationary and rotation invariant, and if Q is rotation invari­
ant (i.e., a(s) E Q depends only on I s I), then (t(x), x E R2) is 
stationary and rotation invariant. 

3. H N is stationary and mixing (Westcott, 1972), then Var(TA) - 0 
and so TA - I't = E(tz) in L2 as I A I- +00. 
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Proof. 

1. Let 4>(z) = E2{TI7=1 (1 - X(Yi - Z))Ui}. Since N is stationary, then 
G(~(s - h)) = G(4)(s)). ,.Hence E(t(Yl + h)Ul .. . t(Yn + h)u,,) = 
tFi=l Ui G(4)(S - h)) = tFi=l UiG(4)(s)) = E(t(Yl)Ul .. . t(Yn)u,,), 

2. Let T be a linear isometry of R2. Then G(4)(Ts)) = G(4)(s)) since 
N is rotation invariant, and X(w2)(Ts) = X(W2)(S) since Q is in­
variant. It follows that E(t(0)Ult(Th)U2) = E(t(0)Ult(h)U2), so by 
1., E(t(x)U1t(x + h)U2) depends only on 1 h I. 

3. From part 1., we have Cov(t(x), t(y)) = E(t(O)t(y - x)) - E(t(O)) 
E(t (y - x)) = G(E2((1- X( -s)) (1- X(y - x - s)))) - (G(E2(1-
X(-s))))2. But N mixing is equivalent to G(4)(u)1fJ(u + u)) -t 
G(4)(u))G(1fJ(u)) as 1 u l-t +00. Hence Cov(t(x),t(y)) -t 0 as 
1 Y - x l-t +00. Now we show Var(TA) -t 0 as 1 A l-t +00. For 
x E R2, define Br(x) = {y : 1 Y - x 1 ~ r}. Given e > 0, choose r 
so large that 1 Cov(t(x), t(y)) 1 ~ e/2 for 1 Y - xl> r, and let A 
be such that 2u2/ 1 A 1 ~ e/2.Then from (3.4), Var(TA) ~ W 
fA{fAnBr(z) 1 Cov(t(x),t(y)) 1 dy + fAnB:(z) 1 Cov(t(x),t(y)) I 

dy}dx ~ W fA {fAnBr(z) 2dy + fAnB:(Z)(e/2)dy}dx ~ (27rr2/ 
1 A I) + (e/2) ~ e. 

In the computational examples 1-5 of Section 3.2, the point process N 
is infinitely divisible. In this case, the probability generating functional G 
of the process has the canonical form 

G(4)) = exp ! (exp(! log 4>(s)dN(s)) - l)d1>t, 

where j\ is the KLM (Kerstan-Lee-Mathes) measure of the point process, 
and from (3.1) and (3.2) we have 

log E(t(x)) = ! (exp(! log E2(1 - X(x - s))dN(s)) - l)d1>t. 

The left hand side is the optical density, and as will be seen in the example of 
Section 3.2, the right hand side is proportional to mass density. The propor­
tionality of optical and mass density has been consistently experimentally 
observed, and is a fundamental principle among photographic scientists. 

Before turning to the examples of Section 3.2, we will narrow down 
the field of candidates for the underlying point process N, the family Q of 
absorptance functions, and the shape of the densitometer aperture A. We 
assume: 
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(Al) N is stationary and rotation invariant. For a uniformly exposed and 
developed emulsion, this is reasonable. 

(A2) Q is rotation invariant. This is unrealistic, since grains do not have 
circular shapes, but essential for computational purposes. 

(A3) The aperture A is circular. 

As a result of (Al) and (A2), the random field (t(z), z E R2) is isotropic, 
E(T A) = J.'t does not depend on A, and (3.4) becomes 

(3.5) 

where C(r) = Cov(t(O), t((r, 0))), r ~ 0 is the autocovariance function of 
(t(z), z E R2) and k(z) = 1 A n (A - z) 1 is the area of the intersection of A 
with itself shifted by the amount -z. For a circular aperture of radius R, 

where 

k(z) = 1 A 11 C2~) , 

{ 
(2/7r)(COS-1 r - r~), 1 r 1 ~ 1 

1(r) = 
0, otherwise. 

(3.6) 

(3.7) 

Area intersection functions such as k(z) arise frequently in computations, 
sometimes involving three or more regions. IT ApI and Ap2 are circular 
regions with radii PI ~ P2, 

1 Ap2 1 if 0 ~ 1 z 1 ~ PI - P2 

l (I ApI 11 (;:) + 1 Ap2 17 (~)) 
if PI - P2 ~ 1 z 1 ~ PI + P2 

(3.8) 

o if 1 z 1 > PI + P2, 

where 
1 Z 12 + (p~ - pI) 

u= 21 z I 
Although T A is the fundamental observable, the meaningful quantity 

to photographic scientists is optical density, defined as D A = -IOgIO T A 

(in fact, densitometers have a built in analog device which converts direct 
readings of T A to D A . The traditional measure of granularity, the Selwyn 
granularity S = 21 A 1 Var(DA), uses Var{DA) rather than Var{TA)' The 
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problem here is that the moments of D A cannot be simply expressed in terms 
of those of TA . If I A I is large, however, the approximations 

E(DA) ~ -loglOE(TA) = -loglOltt, 

Y (D ) 0< (loglO e)2Yar(TA) 
ar A - 2 , 

Itt 
(3.9) 

which result from retaining only the first term in the Taylor series expansion 
of log x are valid, and in fact will be used in this paper (as by Hamilton et 
al., 1972; Trabka and Doerner, 1976) as definitions of E(D A) and Yar(D A)' 
The Selwyn granularity becomes, via (3.5)-(3.7) and (3.9), 

(3.10) 

3.2 Computational Examples 

The computational examples to follow below are special cases obtained 
by specification of (a) the underlying point process N, and (b) the grain 
absorptance function X(p), p ~ O. We adopt the following notation: 

r = grain radius (in general a random variable), 

a = expected grain area = E(n2), 

n = expected number of grain reference points per unit area, and 
Bp = circular disc with radius p, centered at 0 E R2. 

Example 1. (Hamilton et al., 1972; Trabka and Doerner, 1976). 

Assumptions: 

(a) N is stationary Poisson with rate n > 0, i.e., G(</J) = exp[nf(</J(s) - 1) 
dsJ. 

(b) X(p) = gIBr(P) where 9 (grain absorptance) E [0, 1J is a constant. 

This is the basic random dot model. We have from (3.2) 

Itt = E(t(O)) = tb exp[-n J E2X(ls I}dsJ = tb exp( -nga) (3.11) 

and 

C(I z I} = t~en f E2«1-X(lsil)(1-X(lz-sl)))-lds - It: 

= It: (enE2 f X(lsilX(lz-silds - 1) 
= It: (eng2E2(IBrn(Br+IZill_1) 

= It: (eng2 E2(lrr2'l(lzl/(2r)) - 1) . (3.12) 
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ploUed from 19.191""'-.. 

Siedentopf square root 
(j) of density law 
o 

Figure 8. Noise to signal plots. 

From (3.9) and (3.11), we have Nutting's formula 

illustrating the principle of equivalence of optical density E( D A) and mass 
density nga. From (3.10) and (3.12) we have 

8 2 = 4k21r 1000 h (exp(ng2 E(u2/(h/2r))) - 1) /(h/2R)dh (3.13) 

for Selwyn's granularity. If in (3.13), we use the fact that e'" - 1 ~ x, for 
x ~ 0, we find 

8 2 ~ 4k21r 1000 ng2 E{1rr2/{h/2r)h{h/2R)hdh 

= k'{E{DA ) - Db) 

(where k' = a- 14k1rg fooo E(1rr2/(h/2r)h(h/2R)hdh is independent of n) 
with approximate equality for small n. Thus the model is consistent with 
Siedentopf's formula, an empirically determined principle which states that 
for small values of density, Selwyn granularity is proportional to the square 
root of density. 

Of great interest to photographic scientists is the noise-to-signal plot of 
log S versus log E( D A), shown in Figure 8. The dotted curve is typical of 
a real emulsion, while the top solid curve results from equation (3.13). The 
middle solid line of slope 1/2 results from Siedentopf's formula. 
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Trabka and Doerner (1976), using carefully prepared single grain-size 
emulsions and a special densitometer for which (3.9) is exact, found that 
(3.13) gave a good fit at low and medium densities to the noise to signal 
plot of these emulsions, while the Siedentopf formula was only valid at low 
densities. 

Example 2. (Benton, 1977) 

Assumptions: 
(a) N is stationary Poisson with rate n > O. 

(b) X(p) = g(1- (p/r)2)b IB.(p) where b ~ 0 is a constant. 

Benton remarks that assumption (b) describes grains with centre opacity 9 
and variable edge sharpness moderated by b. As in example 1, it is easily 
seen that 

(3.14) 

where 

Benton evaluates J numerically and examines the noise to signal plot result­
ing from (3.14). He claims that 'excess granularity' (the difference between 
the upper solid curve in Figure 8 and the dotted curve for a real emulsion) 
is reduced in this model, especially with increasing b, but in fact any such 
reduction is only apparent and results by rescaling the parameters. 

Example 3. (Benton, 1977) 
In the same paper, Benton uses the same model as in Example 2, but 

replaces assumption (b) with (b/) X(p) = ge-(p/r)2. Easy computations give 

Again, any claimed reduction in excess granularity is due only to scale 
changes. 

Example 4. (Dainty and Shaw, 1982) 
Dainty and Shaw attempt to incorporate grain 'clustering' into the ran­

dom dot model by assuming: 

(a) N is a doubly stochastic Poisson point process with probability gener­
ating functional given by 

G(cj» = EI'[exp ! (cj>(s) - 1)d~(s)1, 
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where 1'(.) is a random measure on 8(R2) and E,. denotes expectation 
with respect to 1'. 

(b) X(p) = gIB.(p) with r a constant. 

From the outset, the authors assume 1'(-) is stationary, so that in effect 
G(4)) = E,.[exp(I'I(4>(s) -l)ds)], where I' is a random variable, and we re­
turn to Example 1 with n replaced by 1'. I' is then assumed to be ga.mma. 
distributed with mean n and variance n2/m, where m is an integer. Expres­
sions for I't and C(h) are easily derived. The authors claim that clustering 
of grains increases as m increases, but on the one hand it is hard to see how 
clustering can arise from a doubly stochastic model, and on the other hand 
it is not clear what relevance, if any, m has for the photographic emulsion. 

Example 5. (Tanaka and Uchida, 1983) 
Tanaka and Uchida observe that "it is known that there are grain ag­

gregations in several types of photographic images. Such grain aggregations 
are often called mottle." The authors propose to incorporate this clustering 
into the random dot model by assuming: 

(a) N is a cluster point process with probability generating functional 

G(4)) = exp{w f {[exp f (4)(s) - l)-\(ls - x)l)ds]- l}dx} 

consisting of 

(i) a stationary Poisson base process of 'mottle centres', of intensity 
w > O. The mottle centres are not considered points of N. 

(ii) Poisson cluster member processes which are rotation invariant and 
generated by translation. If x is a mottle centre, the intensity at a 
point s of the cluster member process initiated from x is -\ (I s - x I). 
The points of the cluster member processes are the locations of grain 
centres. In their calculations, the authors take -\(p) = qIBm(P), 
where m is called the mottle radius. 

(b) X(p) = gIB.(p), where r is constant with r « m. 

Using the approximations 

{o iflxl>m I Br n (Bm + x) I ~ a 'f I I 1 X :5 m, 

IBn (B + s) n (B + x) I~ {O if I x I ?' m or Is - x I > m 
r r m a'Y(ls I /2r) otherwise 

and equation (3.2), we find after a fair amount of computation that 

I't ~ tbexp(-w1l"m2(1- e(-gqa))), C(h) = t:ewJ(h) -1';, 
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J(h) :::: 1I'm!l(-)'(h/Zm) (exp(g2qa'j'(h/2r) - 2gqa)) - 1) 
+ 2(1 -j(h/2m)(exp( -gqa) - 1)). 

Examples 2 to 5 hope to reduce excess granularity on the noise-to-signal 
plot and improve fit with experimental results by introducing extra parame­
ters into the random dot model, while keeping the underlying point process 
basically Poisson. While fit may be improved, it is clear that the drop in the 
noise to signal plot at high densities for real emulsions is caused by grain 
overcrowding, and cannot be modeled with a process N of grain centres 
which is infinitely divisible. What is needed is to view the emulsion as a fi­
nite number of two-dimensional layers, in each of which the underlying point 
process of grain centres is such that grains cannot overlap. The problem, at 
present, is intractable in two dimensions. 

Example 6. (Castro et al., 1972) 
To study how crowding of grains affects the noise-to-signal plot, Cas­

tro et al. (1972) model a one-dimensional version of a monolayer emulsion 
with a point process of grain centres which prohibits grain overlap. To con­
struct this point process, they use an alternating renewal process (Karlin and 
Taylor (1975) call this a renewal process involving two components to each 
interval). Specifically, let Xl, X 2 , • .. and Yl, Y2,' •. be sequences of positive 
identically distributed random variables with distribution functions Fx(x) 
and Fy(y) respectively, means mx and my respectively, and variances u5c 
and u} respectively. In addition, the random vectors (Xl, Yt), (X2' Y2), . .. 
are assumed to be i.i.d. We think of the Yo's as grains and the Xi's as gap­
lengths between grains, as in Figure 9, starting with a gap (Xd from some 
arbitrary initial point y = O. The mid-points of the Y intervals are the grain 
reference points and make up the underlying point process N. Rather than 
work through (3.1) and (3.2) it is easier to proceed directly using renewal 
theory. 

~y 

Figure 9. Alternating renewal process model lor one-dimensional monolayer 
emulsion. 
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Given y > 0, define 

I = {1 if y is covered by a Y-interval (i.e., a grain) 
II 0 otherwise. 

and let p(y) = P(III = 1). Then the point transmittance function for this 
emulsion is t(y) = tb(l- g)lv (where 00 = 1). It is a simple matter to check 
that E(t(y)) = tb(l-gp(y)) and Cov(t(y), t(y+h)) = g2t~(P(I1I = 1, III+h = 
1) - p(y)p(y + h)). We will want to simulate a stationary emulsion, and so 
we will determine 

I-'t = lim E(t(y)) = tb(l- 9 lim p(y)) 
11-+00 11-+00 

and 

C(h) = lim Cov(t(y), t(y + h)) = g2tHU(h) - ( lim p(y))2), (3.15) 
11-+00 11-+00 

where 
U(h) = lim P (III = 1, 111+", = 1) . 

11-+00 

An application of the renewal argument gives 

p*(s) = Fx(s) (1- Fy(s) + p*(s)Fy(s)) , (3.16) 

where * denotes the Laplace-Stieltjes transform. An application of the key 
renewal theorem shows (as expected) that 

lim p(y) = my . 
11-+00 mx +my 

(3.17) 

Arguing for large y, we have 

U(h) = lim P (III+h = 11 III = 1) lim p(y) 
11-+00 11-+00 

= my lim (P(y + h) in same Y-interval as y I III = 1) 
mx+ my 11-+00 

+ P(y + h in different Y-intervall III = 1)) 

= my (1 _ K(h) + r p(h - Y)dK(Y)) , (3.18) 
mx+my 10 

where K(y) = (lImy) g 1-Fy( u)du is the limiting residual life distribution 
function of a Y-interval. From (3.16) and (3.17), we obtain 

U*(s) = my (1- _1_ ((1- Fx (S})(l-* FHs)))) . (3.19) 
mx + my mys 1- Fx(s)Fy(s) 
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In one dimension, an aperture is an interval A of length I A I, and (3.5) 
becomes 

1 1+00 
( h ) Var(TA) = jAi -00 C(hh .jAi dh, 

where 
,(h) = {1- I h I if I h I ~ 1 

o otherwlse. 

Let C(6) = Iooo e-·hO(h)dh denote the ordinary Laplace tra.nBforrn of G(h). 
as calculated from (3.15), (3.17), and (3.19). Then for a large aperture A, 
we have 

I A I Var(TA) ~ i: C(h)dh 

= lim 2C(s) 
.-+0 

2 2 mXmy (Ix (ly 2 2 (( ) 2 ( ) 2) =g tb - + - . 
(mx+my)3 mXmy 

Then from (1.2) and (3.9), we have for the Selwyn granularity, 

82 ~ k2g:t: m~m} (( (lX)2 + (~)2) . (3.20) 
I-'t (mx + my)3 mx my 

For a computational example, the authors take 9 = tb = 1, and assume X is 
exponential and Y is lognormal with coefficient of variation 11. Using (3.9), 
(3.20) becomes 

8 2 ~ k2(1 + 11)(1- I-'t) = k2(1 + 11) (1 - e-E(DA)/k) • (3.21) 

For small E(D A)' this is 8 2 ~ k(1 + 1I)E(D A)' namely Siedentopf's formula, 
while for all density values, we have 8 2 ~ k(1 + 1I)E(DA) so that the noise 
to signal plot for (3.21) will lie below the Siedentopf formula line. 

Example 7. (Lawton et al., 1972) 
For a better approximation to reality, Lawton et al. consider a one­

dimensional emulsion made up of m laminated independent layers of the 
monolayer emulsion considered in Example 6. Then t(x) = n::1 ti(X), where 
t. (x) is the point transmittance at x of the ith monolayer. By independence, 
we have from (3.15) and (3.17)' 

I-'t(m) = E(t(x)) = tb (1- 9 my )m = tb (1- ~)m, 
mx+my . m 
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where d = gm my /( mx + my) is mass density. Note that NuttIng's formula 
E( D A) = Db + kd, where Db = log10 tb (equivalence of optical and mass 
density), is obtained as m -t 00. Again by independence, the autocovariance 
function for the m-Iayer emulsion is Cov(t(x), t(x + h)) = (C(h) + I-'nm -

I-'Hm), where C(h) and I-'t are the monolayer autocovariance function and 
mean respectively determined in Example 6. The authors go on to study 
the effect of m on the granularity. 

3.3 Additional Models of the Emulsion 
Colour photographic emulsions are composed of three layers, sensitive to 

blue, green, and red light respectively. Each of these layers is an emulsion of 
silver halide grains in gelatin, together with a dye which is activated when a 
neighbouring grain is developed. Using methods similar to those of Sections 
3.1 and 3.2, Trabka (1977) considers overlapping spheres, representing dye 
clouds in a layer, whose centres are distributed as a Poisson point process 
in RS . The region between two parallel planes represents the heterogeneous 
distribution of dye in the emulsion. 

Most studies of multilayer (or 'thick') emulsions are made under the 
assumption that the statistics of photons incident on a typical grain are the 
same as for an area the size of a grain on the top surface of an emulsion. 
Trabka and Kemperman (1978) examine the consequences of grain-exposure 
fluctuations due to geometrical shielding by partially absorbing grains. The 
resulting variability in grain exposure spreads the characteristic curve of the 
emulsion, resulting in greater 'latitude'. 

None of the models discussed in this survey have incorporated grain in­
teraction effects due to development. For example, in a weak developer, the 
development of a given grain may be suppressed because of developer deple­
tion by neighbouring grains, a common method of enhancing definition at 
the boundaries between light and dark areas of the image. Conversely, in a 
strong developer, physical proximity of grains can result in infectious devel­
opment of grains. These 'adjacency' effects are modeled (Anderson, 1977) 
by viewing the emulsion as a two-dimensional Gibbs random field. Each 
point of a finite two-dimensional lattice is occupied by a grain which can be 
in either of two states-developed or not developed. The probability that a 
grain is in one of these two states depends on the states of the four neigh­
bouring grains, the exposure which the emulsion received, and the developer 
strength. The model is used to examine the effect of such interaction on 
edge sharpness and shape of the characteristic curve. 
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A STOCHASTIC MODEL FOR THE EFFECT OF INCIDENT 
LIGHT INTENSITY ON CO2 UPTAKE IN LEAVES 

ABSTRACT 

A continuous-time Markov model is developed to describe the absorp­
tion of energy from incident light and the fixation of CO2 molecules in a 
single photosynthetic unit (PSU). Equilibrium probabilities and mean so­
journ times derived from this Markov process are then used to model the 
CO2 uptake in an aggregate of PSU's, for example a leaf, as the superposi­
tion of modified renewal processes. From this aggregate process we derive 
a shifted rectangular hyperbola for expected CO2 uptake, as a function of 
the incident light intensity A , over a fixed observation period of length T. 
Non-linear regression methods are used to fit this function to experimental 
data collected in a study of CO2 uptake in the leaves of various vines. The 
excellent fit obtained provides empirical support for the proposed stochastic 
model. 

1. INTRODUCTION 

In a descriptive article summarizing recent findings in photosynthesis 
research, Campbell (1984) described photosynthesis as "a classic example 
of a 'scientific black box' ". Though we know the inputs-carbon dioxide 
gas and water vapour-and the outputs-glucose sugar and oxygen gas-a 
complete knowledge of the sequence of events that occurs still eludes plant 
photochemists and other researchers. 
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The techniques of mathematical modelling readily lend themselves to 
"black box" problems. Indeed, two of the more important functions of such 
models are prediction and explanation. Although these activities are not nec­
essarily mutually exclusive, prediction models are often empirical in nature 
with no clear mechanistic relation to the data under study. Nevertheless, 
the utility or such models is orten impressive. For example, the hyperbolic 
pattern of response of leaf photosynthesis, F, to changing incident light flux 
density, I, can be expressed as 

F = o:IF*/(o:I + F*) - R, 

where 0: represents leaf photochemical efficiency, F* is the light-saturated 
photosynthetic rate and R specifies the rate of dark respiration. From this 
description of the photosynthetic behaviour of a single leaf, models have 
been derived for canopy net photosynthesis that agree quite well with ex­
perimental data (see, for example, Charles-Edwards, 1982). 

In contrast to their prediction counterparts, mechanistic or process­
oriented models are usually the result of mathematical descriptions of bio­
chemical processes. These models are generally deterministic, and frequently 
employ differential equations to describe changes in the essential components 
of a biological system. The model which is developed here departs from the 
usual mechanistic approach to photosynthesis by incorporating stochastic 
elements in its description of a process which is still only partly understood. 

2. A STOCHASTIC MODEL OF A PHOTOSYNTHETIC UNIT 

To avoid undue complexity and yet incorporate necessary features in our 
stochastic description of the photosynthetic process, the model which we 
develop is based on a description of activity at the level of a photosynthetic 
unit (PSU). A detailed account of the known events which occur in a PSU 
was given by Nobel (1974). Incident light, in the form of photons, strikes 
the PSU and quanta of energy are captured. Although the biochemistry of 
photosynthesis is not completely understood, it is generally believed that at 
least eight quanta of light energy are required to trigger the chemical reaction 
which converts carbon dioxide and water into oxygen and glucose sugar. 
The fundamental aspects of this process appear to be quantum capture and 
the resulting chemical reaction. The following two subsections outline the 
assumptions, and the consequences, of a stochastic model for a single PSU. 

2.1 Quantum Capture 

We shall assume that all PSU's have the same area, and that quantum 
flux is uniform. Although the description of reality which these assumptions 
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imply is not strictly correct, neither assumption is critical to the model which 
we develop. The essential features which characterize the process of photon 
strike and capture within a single PSU are: 

(i) The point process of photon strikes in a particular PSU can be repre­
sented by a Poisson process of intensity A > 0; 

(ii) Given that a photon strike has occurred, effective quantum capture fol­
lows with probability p, 0 < P < 1; 

(iii) Distinct quantum captures by the same PSU are independent and iden-
tically distributed events. 

By effective quantum capture we refer to the transfer of excitation from the 
periphery of a PSU to the reaction centre. This transfer can depend on 
many different circumstances; however, the net effect is summarized by (ii) 
above. 

It is well-known (see, for example, Takacs, 1960, §2.5) that these three 
assumptions result in a model for the point process of effective quantum 
capture in a single PSU which is Poisson with intensity Q = Ap. 

2.2 CO2 Uptake and O2 Generation 

In providing energy to drive the photochemical reaction, the PSU acts 
like a photovoltaic battery; as soon as a specified energy threshold has been 
achieved, the reaction is triggered. Clearly, if we know the energy level of a 
PSU, we can determine whether or not the reaction has begun. Let {Et }, 

t ~ 0 be the energy level of a particular PSU at time t, and let N be the 
threshold level, in quanta, which stimulates the photochemical reaction. The 
Poisson process of effective quantum capture succinctly describes successive 
increases in the value of Et from 0 to N. When the reaction which converts 
water and carbon dioxide to oxygen and glucose sugar has run its course, 
the energy level of the PSU is once more 0 and the PSU must begin again 
the process of accumulating quanta. Therefore, if we could characterize the 
change of state of Et from 0 to N, we would have a stochastic model of the 
photovoltaic activity of a PSU. 

One quite general model of this change of state might be to assume that 
the length of time involved in CO2 uptake and O2 generation has an unspec­
ified distribution with mean 1/ (:J, and that these durations are independent 
of other events. This assumption leads quite naturally to a semi-Markov 
model for {Et } (see Pyke, 1961a,b), provided we also assume that during 
CO2 uptake and O2 generation, additional effective quantum capture does 
not occur. According to Nobel (1974, p. 240) this latter assumption is quite 
realistic since "the rate-limiting step for photosynthesis is not light absorp­
tion, excitation transfer or photochemistry (electron donation by trap chI"), 
but the subsequent steps leading to O2 evolution and CO2 fixation". 
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AB an alternative to this semi-Markov model for {Et }, we could specify 
that the length of time involved has an exponential distribution with the 
same mean, i.e., 1/ fi. Then {Et } will be a Markov process (see Feller, 
1968, §17.6). The correctness of this latter assumption is not crucial to 
the aggregate model which we develop in §3 , and it simplifies, slightly, the 
intermediate results. Therefore, we have chosen to model the activity of 
a PSU as a time-homogeneous Markov process, {Et }, with instantaneous 
transition matrix Q = (qi;), where 

{ 

a ~:~+.: i=O, ... ,N-l 
-a J - I, I - 0, ... , N - 1 

qi; = fi i = N, j = 0 
-fi i = j = N 
o otherwise. 

Let 'Ir;, j = 0, ... , N, be the equilibrium probabilities limt ..... oo Pr( Et I 
Eo). These probabilities can be determined by solving the system of equa­
tions 1I:Q = 0, where 11: = (11"0, 'lrt, ••• , 'lrN), subject to the usual normalizing 
condition 1:11"; = 1. The values of 'lr0, •.• , 'Ir N determined by the above Q are 

'Ir;=fi/(Nfi+a), j=O, ... ,N-l and 'lrN=a/(Nfi+a). (2.1) 

Each value corresponds to the stabilized proportion of PSU's in an ensemble 
which would be observed to occupy state j, j = 0, ... , N, (see Feller, 1968, 
§15.7). 

A second consequence of the Markov model for {Et } concerns the mean 
sojourn times in each of the states. These values are 1/ a for the states 
0,1, ... , N - 1 and 1/ fi for state N (the reaction state). Thus, the total 
average time that a single PSU at energy level j requires to capture (N - j) 
quanta and complete the photochemical reaction is 

1-'; = {(N - j)fi + a}/(afi) , j = 0, ... , N. (2.2) 

3. AN AGGREGATE MODEL FOR CO2 UPTAKE IN A LEAF 

The data which prompted the development of the stochastic model de­
scribed in this paper specify CO2 uptake over an observation period of fixed 
length, say (0, T). These data were derived from a single leaf, which is an 
aggregate of PSU's. To extend the single PSU model which we developed in 
§2 to the level of a leaf we require two additional assumptions: 

(i) A leaf consists of K PSU's which are identical and which act indepen­
dently; 
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(ii) The aBBreBate of PSU's in a leaf has achieved statistical e'luilibrium 
when the observation period begins. 

Clearly, neither of these assumptions is likely to be strictly correct. How­
ever, in the aggregate, our description may be adequate as a model for the 
combined photosynthetic activity of the constituent PSU's in a single leaf. 

Define U(T) to be the expected CO2 uptake of a single leaf during the 
observation period. Clearly, the aggregate process of CO2 uptake in K 
PSU's is the superposition of K independent, renewal processes (see Cox, 
1970). However, these processes are not identical. At the beginning of the 
observation period not all K PSU's will occupy state 0 and move in lock­
step with each other. Rather, a fraction 'If; will be in state j, j = 0, ... , N, 
and the expected time which elapses until the initial photochemical reaction 
is completed will be 1-'; = {(N - j)(3 + a}/(a(3). Since {Et } is a Markov 
process, this is the only adjustment which we must make to account for 
initial conditions in the observation period. All subsequent intervals during 
which a single PSU captures N quanta and completes the photochemical 
reaction are independent and identically distributed with mean value 1-'0 = 
(N (3 + a)/(a(3)j we call these intervals complete PSU cycles. Let U;(T) be 
the expected CO2 uptake in (0, T) which is due to a PSU having initial state 
j. The function U;(T) is well-known as a modified renewal function (see 
Cox, 1970)j its asymptotic form can be shown to equal 

U;(T) ~ T /1-'0 + {~(0'2 + I-'~)/I-'~ - I-';/I-'o}, j = 0,,,., N, 

where 0'2 = (N(32 + 02)/(02(32) is the theoretical variance of the intervals 
known as complete PSU cycles. 

Since the aggregate of PSU's in a leaf is assumed to be in statistical 
equilibrium when the observation period begins, there will be K 'If; PSU's, 
on average, in state j, j = 0, ... , N. At the conclusion of the observation 
period, the expected CO2 uptake for each PSU initially occupying state j is 
U;(T)j therefore 

A final algebraic expression for U(T) in terms ofthe parameters ofthe model 
is quite complicated. However, using formulae (2.1) and (2.2) the form of 
the asymptotic expression can readily be shown to be 

U(T) ~ Ka(3T /(N(3 + a) + C 
= >./(A + B>.) + C, 

where A = N/(pKT), B = l/(K(3T) and C are constants which depend 
on the parameters of the model. Thus, the equation which summarizes 
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our aggregate model corresponds to a shifted rectangular hyperbola for the 
expected CO2 uptake, expressed as a function of the incident light intensity 
A over an observation period of fixed length T. 

4. SOME EXPERIMENTAL RESULTS 

The data recorded in Table 1 pertain to the uptake of CO2 in photo­
synthesis and consist of six sets of measurements obtained from the leaves 
of various vines, including Vitis vinifera, Vitis labrusca and several hybrid 
vines. Each data set contains 14 observation pairs, (Ai, Yi), of light intensi­
ties, Ai, and CO2 uptake, Yi, during an observation period of fixed length. 

Table 1. The observed amounts of CO2 uptake (y) by single leaves of six 
different varieties of vine. The measurements were recorded during an ob-
servation period of constant length at 14 different levels of incident light 
intensity (A). 

Variety 

Intensity Seibel Gamay Seibel Marechal De Seibel 
(A) 1000 9110 Foch Chaunac 10878 

40 0.40 0.34 0.28 0.33 0.28 0.42 
200 0.74 0.68 0.60 0.67 0.60 0.81 
300 0.86 0.79 0.75 0.73 0.72 0.90 
400 1.02 0.93 0.86 0.93 0.85 0.98 
600 1.20 1.12 1.03 1.13 1.10 1.13 
800 1.31 1.29 1.19 1.39 1.23 1.31 

1200 1.53 1.49 1.33 1.65 1.44 1.51 
1600 1.67 1.65 1.47 1.79 1.61 1.72 
2000 1.81 1.80 1.61 1.90 1.76 1.93 
2500 1.90 1.94 1.79 2.00 1.92 2.11 
3000 2.01 2.04 1.87 2.05 2.01 2.24 
3500 2.06 2.11 1.92 2.08 2.14 2.34 
4000 2.11 2.16 1.99 2.12 2.19 2.40 
5000 2.13 2.20 2.04 2.14 2.25 2.46 
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In terms of observation pairs, ('>'i, Yi), for a given data set, the result 
developed in §3 relating expected CO2 uptake to incident light intensity 
may be written as 

U = E(Y) = .>.j(A+B.>.) +C, ( 4.1) 

i.e., the regression of CO2 uptake on incident light intensity is given by a 
shifted rectangular hyperbola where A, Band C are parameters determined 
by various aspects of the leaf and the experiment. 

Non-linear regression techniques of a standard type were used to fit the 
model (4.1) to the six different data sets. Figure 1 contains a plot of the 
Seibel 1000 observations and the fitted regression model, while Figure 2 
shows the corresponding residual plot. Figure 2 provides no apparent ev­
idence of lack of fit, and is characteristic of the residual plots which were 
obtained in the other five data sets. The estimated parameter values for the 
six data sets are presented in Table 2. In every case, the regression model 
accounted for at least 99.4% of the observed variation in CO2 uptake. 

Charles-Edwards (1981) has observed that mechanistic models of leaf 
photosynthesis are frequently criticized because they assume the homogene­
ity of various properties of individual chloroplasts of the leaf. However, he 
also notes that even if the details of a particular process are obscure, a 
mathematical model can be expected to exhibit the right sort of qualitative 
behaviour if the model correctly formalizes the essential features of the pro­
cess. In fact, the model could also provide a good quantitative description 
of experimental data, although estimates of the model parameters might not 
enable researchers to unequivocally resolve the fine detail of the biochemical 
and physical processes. Models with these characteristics perform the useful 
service of identifying which are the important aspects of the process under 
study. In addition, they can sometimes bring order to a welter of other­
wise disordered experimental information. In our view, the satisfactory fit 
of these data sets to the model which we have developed provides empiri­
cal support for the adequacy of a stochastic model as a description, in the 
aggregate, for the effect of incident light intensity on CO2 uptake in leaves. 
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Figure 1. A scatterplot of the observed CO2 uptake (y) versus incident 
light intensity (>.) for the Seibel 1000 leafj observed values are indicated by 
the symbolO. The solid line, represents the fitted regression curve. 
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Figure 2. A scatterplot of the Seibel 1000 residuals Yi - Yi, versus the values 
Yi = C + >./(A + .8>.) predicted by the fitted regression model at 14 levels of 
incident light intensity (>.). 
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Table 2. Estimated parameter values and corresponding asymptotic 95% 
confidence intervals1 for the siz data sets (see Table 1) fitted by the non­
linear regression model U = E(Y) = C + A/(A+ BA). 

Parameter 

Variety A B C 

Seibel 1000 429.3 0.463 0.335 
(375.1,483.4) (0.450,0.476) (0.279,0.391 ) 

Gamay 467.2 0.421 0.285 
(414.5,519.8) (0.410,0.433) (0.233,0.336) 

Seibel 9110 517.8 0.456 0.255 
(415.0,620.7) (0.434,0.478) (0.172,0.338) 

Marechal Foch 334.8 0.424 0.170 
(255.6,414.0) (0.402,0.445) (0.050,0.291) 

De Chaunac 498.3 0.393 0.233 
(433.2,563.5) (0.380,0.407) (0.172,0.294) 

Seibel 10878 632.5 0.357 0.443 
(497.0,768.0) (0.330,0.384) (0.346,0.540) 

1 The asymptotic confidence intervals were obtained via the method 
described by Ralston and Jennrick (1978). 
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AN APPLICATION OF SOME CURVE-CROSSING RESULTS 
FOR STATIONARY STOCHASTIC PROCESSES TO 
STOCHASTIC MODELLING OF METAL FATIGUE 

ABSTRACT 

The stress history experienced by a metal component or system is mod­
elled as a stationary Gaussian process. Under the influence of repeated 
stressing, the strength of the component decreases. The time to fatigue fail­
ure is modelled as the first crossing time of the stress history to a decreasing 
curve representing residual strength. Some typical residual strength func­
tions are reviewed. Bounds and approximations to the reliability function 
are obtained based on curve crossing results for stationary processes. 

1. SOME BACKGROUND 

A variety of approaches to mathematical modelling of metal fatigue are 
available in the engineering literature. For a survey of these approaches, 
see Desmond (1983). Among these, the theory of fracture mechanics (see, 
for example, Barnby, 1972, Chapter 3) is a relatively recent approach to 
modelling the fatigue process. According to this theory, fatigue failure is 
due to the initiation and steady propagation of a dominant crack. Thus the 
failure time in fatigue consists of two parts: 
(i) the formation of a noticeable dominant crack 

(ii) the propagation of the dominant crack until a critical size is reached, at 
which point catastrophic failure ensues. 
Crack growth laws obtained via the fracture mechanics approach take 

the form 
da = KSb b/2 
dn a, (1) 

1 Department of Mathematics and Statistics, University of Guelph, Guelph, 
Ontario NIG 2Wl 

51 

I. B. MacNeill and G. J. Umphrey (eds.), 
Applied Probability, Stochastic Processes, and Sampling Theory, 51--(j3. 
© 1987 by D. Reidel Publishing Company. 



52 A. F. DESMOND 

where K and b are constants, a = a( n) is the crack size after n cycles and 
S is the applied stress in a constant amplitude loading. For random loading 
S· is replaced by its mean value (Paris, 1964). 

Equation (1) is usually treated as a deterministic equation in the engi­
neering literature. Treated deterministically, (1) can be integrated from an 
initial crack size ao to the crack size aCt) at time t to yield 

For aluminum, b = 4 (Yang and Trapp, 1974) so that 

(2) 

In general, however, crack length a(t) at time t is best regarded as a stochas­
tic process. An increase in crack length is associated with a corresponding 
decrease in the strength of the specimen. From fracture mechanics, the re­
lationship between the residual strength R of a structure containing a crack 
of size a is given by the Griffith-Irwin equation 

(3) 

where Kc, referred to as the critical stress intensity factor, is a material 
constant. Relation (3) may be combined with (2) to give residual strength 
as a function of time. However, (3) only applies to certain structures referred 
to as non-redundant, which restricts its applicability somewhat. 

In this paper the model we suggest for fatigue failure will employ the 
residual strength function R(t) rather than the crack length aCt) as the 
description of progressive deterioration under random loading. 

In Section 2 we describe some previous studies of residual strength of 
metals under loading. Section 3 formulates the problem mathematically as a 
first crossing time for a monotonically decreasing curve representing residual 
strength. This type of problem represents a very difficult area of stochastic 
process theory and explicit solutions are not, in general, available. Rather 
than obtaining an exact solution, we note that the moments of the number 
of crossings and, in particular, the mean number of crossings may be used to 
provide bounds on the distribution of fatigue life. Also an approximation to 
the distribution function of fatigue life is obtained based on an assumption 
of non-homogeneous Poisson upcrossings. 

To summarize, in this paper we shall be concerned with fatigue failure 
due to a stochastically varying load which promotes the fatigue process of 
initiation and growth of a dominant crack and consequently a steady de­
cay in strength. The mathematical model we use embodies a description 
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of the time-varying load and the !strength decay. AB far as is known, the 
curve-crossing theory used in the model has not previously been employed 
in fatigue studies. 

2. PREVIOUS STUDIES ON RESIDUAL STRENGTH 

Yang and Trapp (1974) described a reliability analysis of aircraft struc­
tures under random loading and periodic inspection. They used fracture me­
chanics theory to estimate crack propagation under random loading. They 
distinguished two cases depending on whether the structure is redundant or 
non-redundant. In the non-redundant case the Griffith-Irwin equation (3) 
may be employed to give residual strength R as a function of crack length a. 
The relationship (3) holds up to the point where R is equal to the ultimate 
strength Ro. As a result there is a critical crack size ac beyond which R 
starts to decrease following (3). Then integrating (1) with b = 4 from ac to 
a(t) and using (3) the residual strength function R(t) = Ro[I- acKS4tJ1/2 

is obtained. 
In order to prevent the crack from propagating to a catastrophic size, it 

has been a design practice to provide crack stoppers in·the structure which 
will arrest the crack. This practice is called "fail-safe design". If a. denotes 
the distance between adjacent fail-safe stoppers, then it is the maximum 
crack size allowable in the structure, and the minimum residual strength at 
this crack size can be obtained from (3). 

For highly redundant structures, (3) no longer applies to give residual 
strength as a function of crack length. In this case the residual strength 
function must be obtained by a combination of analysis and testing. How­
ever, in general the residual strength is taken to be monotonically decreasing 
function of time t or crack size a. 

Let Roo be the residual strength at the fail-safe crack size a. which is 
determined from analysis and testing. Then a possible form for the residual 
strength function R(t) at time t after crack initiation is (Yang and Trapp, 
1974) 

where a(t), the crack size at time t, is computed from (2). 
Eggwertz (1972) employed a residual strength function which decreased 

linearly with time in an investigation of the fatigue life of wing-panels. No 
stochastic variation of the residual strength function was taken into account 
in this investigation. 

Hooke (1979) also considered the residual strength function. He pointed 
out that for some materials strength falls linearly with crack length but that 
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for a material whose behaviour follows the laws of linear elastic fracture 
mechanics up to a general yield, there is no decay of strength until a partic­
ular crack length and thereafter it decays as the inverse square root of crack 
length. He used a residual strength decay function of the form 

where kl' k2 are constants and H is a random variable assumed normal with 
known mean and variance. 

Saunders (1976) pointed out that although the residual strength as a 
function of crack length a is always taken as a known decreasing function of 
a, the concept of strength degradation will certainly depend on the method of 
construction and the type of material, as well as the loading spectrum and 
the environment. He also pointed out that the residual strength function 
must be obtained from engineering tests of the material and a knowledge 
of the fracture mechanics particular to the geometry of the component. In 
general, the residual strength of any component is a concave decreasing 
function of crack length. However, when composed with crack growth as a 
function of time, which is convex increasing, the residual strength function 
can be smoothed out into a variety of shapes. 

Whittaker and Saunders (1973), in an investigation of cumulative fatigue 
damage in an aluminum alloy, had employed a residual strength function (as 
a function of crack length) of the form 

(4) 

In (4),5 (referred to as a design limit load) and u, a fail-safe crack length, 
are determined by ratios Vl , V2 dictated by design criteria as follows: 

These are respectively the ratios of ultimate strength R(O) and fail-safe 
strength R(u) with the limit load. AB in the analysis of Yang and Trapp, 
fracture mechanics could have been applied at this point to obtain crack 
size a(t) and hence residual strength R(t) as a function of time t. Instead, 
Saunders (1976) modelled crack growth a(t) as a stochastic process with 
piecewise linear sample functions, the slopes of the line segments and the 
times between changes of slope being regarded as random variables. 

This brief survey of recent literature indicates that a wide variety of 
possibilities are available for the residual strength function. In the next 
section, rather than assume any particular form for R(t) we consider a rather 
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general model which uses the results of Leadbetter (1966) on crossings of 
curves by continuous time stochastic processes. 

3.1 A Model Based on Curve-Crossings 

We assume that the load-process may be modelled as a stationary Gaus­
sian stochastic process e(t). The residual strength function R(t) is assumed 
to be a non-increasing function with initial value R(O) = Re, the initial 
ultimate static strength of the specimen. It is usual to assume that the 
material strength remains constant during the crack initiation stage and de­
creases progressively during the crack propagation stage. A generic form 
(see Saunders, 1976) of the residual strength function is shown in Figure 1 
in which Ti represents time to crack initiation (Ti is in general a random 
variable). 

Stress 
history 
W) 

/Residual strength 
R(t) 

1-=r~~=======tZ=.=r.:=:3;;C::±t.~- time t Tf 
= fatigue failure time 

Figure 1. Generic behaviour of residual strength as a function of time. 

The material strength function R(t) is best regarded as a stochastic 
process depending on the load history and the material. As such it might be 
more appropriate to write R as R(tj e(s) : 0 :5 s :5 t) to indicate dependence 
of R on the load history e(t). However, since our main purpose in this 
paper is to illustrate the potential applicability of a hitherto unapplied curve­
crossing result we shall for simplicity assume that R(t) = Reh(t - Ti ), where 
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h(t) is a known function obtained from engineering testing and fracture 
mechanics principles. This does not exclude the possibility that R(t) be 
allowed to depend on various parameters ofthe loading process, as occurs, for 
example, in the investigation of Yang and Trapp. This treatment of R(t) as 
deterministic, while essentially in accord with the approaches adopted in the 
engineering literature (Section 2), can, however, only be regarded as a first 
approximation. In the final section we shall discuss one possible stochastic 
model for R(tj e(s),s ~ t), but the mathematical difficulties involved seem 
formidable. 

We also assume h( r) is continuously differentiable and monotone with 
h(O) = 1. In addition, we suppose that Ro is a random variable with p.d.f. 
fRo (ro). The time Ti to crack initiation is a random variable about which 
little is known. We ignore this phase of the fatigue process and consider only 
the propagation phase when the residual strength decreases progressively. 

The specimen will survive as long as the material strength exceeds the 
random stress placed on it, i.e., until the condition e(t) ~ R(t) is met for 
the first time. Thus we essentially have a first passage time problem and 
the probability of survival for service time T (subsequent to crack initiation) 
is given by the probability of no crossing above the decreasing threshold 
R(t) = Roh(t - Ti) in the interval (0, T). 

Thus Tf, the time to fatigue failure (strictly speaking the time spent in 
the propagation phase), is a random variable with 

Tf = min{r ~ 0: e(Ti + r) > Roh(r}}. (5) 

The problem of finding the probability of first excursion above a fixed 
threshold by a stationary Gaussian process has been examined by many au­
thors in the context of random vibrations. It is found that the problem 
cannot in general be solved without making simplifying assumptions about 
the nature of the excursions. Based on various assumptions, a variety of ap­
proximations to the first passage probability for a fixed threshold have been 
proposed and compared with numerical results for a single-degree of freedom 
system excited by white noise (see Yang, 1975). Some of these approxima­
tions, particularly those based on an assumption of Poisson upcrossings, have 
been found useful in the fixed threshold case, which suggests the possibility of 
applying a non-homogeneous Poisson approximation in the case of a time­
dependent threshold. Before applying such an approximation we demon­
strate how a useful lower bound for the reliability function may be obtained. 
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3.2 A Lower Bound for the Reliability Function 

The reliability function F(t) is the probability of survival or non-failure 
due to fatigue in (0, t), i.e., the probability that the fatigue life Tf exceeds 
t. Thus from (5) 

F(t) = P(Tf > t) 
= P{C(r) ~ Roh(r), 0 ~ r $ t}, 

where e * (r) = e(r + Ti). Thus F(t) equals the probability that the non­
stationary process C(t) - Roh(t) remains negative during the interval (0, t). 
Since we are assuming Ro to be a random variable we may use the law of 
total probability to write 

where 

F(t) = [ F(t I Ro = ro)fRo(rO)dro, 
iRo 

F(t I Ro = ro) = P{ max {C(r) - roh(r)} ~ o}. 
0~r9 

(6) 

Hence the problem may be regarded either as a zero-crossing problem for 
the non-stationary process C(t) - roh(t) or as a curve-crossing problem for 
the stationary process C(t). (Assume for simplicity that Ti is independent 
of the e process, so that C(t) is stationary). 

Denote by Uh.(O,t) the number of up crossings ofroh(r) by eO(r) in the 
interval (0, t). In terms of the corresponding non-stationary point process 
we may write the reliability function as 

F(t I Ro = ro) = P{no upcrossing of roh(r) by e(r) in (O,t)} 
= P{Uh.(O, t) = O} 

00 

= 1- LP(Uh.(O,t) = i), 
;=1 

assuming an upcrossing occurs eventually with probability one. 

(7) 

In general, the probability distribution of U 11.(0, t) is very difficult to ob­
tain, but an expression for the mean is more readily derived. Moreover, 
bounds or estimates of F(t) can be obtained in terms of the factorial mo­
ments of Uh.(O, t). While we are unaware of any work on higher order factorial 
moments in the curve-crossing case, Leadbetter (1966) has obtained an ex­
pression for the mean number of curve-crossings by a stationary Gaussian 
process. 
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Denote by Mt(ro, h) the mean number of upcrossings m (0, t) l.e. 
Mt(ro, h) = EUh.(O, t). Then from (7), 

00 

F(t I Ro = ro) ~ 1 - LjP(Uh.(O, t) = j), 
;=1 

while from (6), 

(8) 

In order to make use of this lower bound for design purposes one needs to 
estimate from data both the density function fRo (ro) of the initial strength 
and the form of the function h( t). A comprehensive discussion of the form of 
fRo (ro) (Freudenthal et al., 1966) has been carried out while various possibil­
ities for h(t) have been described in the previous section. It remains to obtain 
an expression for Mt(ro, h), and this we consider in the next section. Before 
we consider this, however, some remarks on the usefulness of the above lower 
bound are in order. First, it seems that a considerable amount of data is nec­
essary to estimate the quantities involved. Thus we need extensive data on 
crack propagation laws and the loading process. S'uch data are available in 
the engineering literature for various materials and load processes. Secondly, 
the question arises as to the sharpness, or otherwise, of the lower bound. Ob­
viously if ERoMt(Ro, h) > 1 where ERoMt(Ro, h) = IRo Mt(ro, h) fRo (ro)dro 
then the bound is trivial and of no use whatever. However, in reliability sit­
uations one usually designs for a large value of F(t) (i.e., close to 1) or 
equivalently one hopes for a small value of ERoMt(Ro, h). Consequently, in 
the situations of greatest interest in reliability problems, the case of small 
ERoMt(Ro, h) will be of interest and in such a situation, the lower bound 
may prove useful. 

On the other hand, if one assumes Poisson upcrossings of the residual 
strength function by e(t) one can obtain an expression for the reliability 
function as 

F(t) = P{Uh.(O,t) = O} 
= exp[-ERoMt(Ro, h)]. 

In this case A(t) = ERoMt(Ro, h) is the integrated hazard function while the 
hazard function itself is given as 

As to the usefulness of the Poisson approximation, Cramer and Lead­
better (1967) and Berman (1970) have given conditions on the covariance 



CROSSING THEORY AND MODELS OF FATIGUE 59 

function of e(t) which ensure a Poisson limit theorem for high-level cross­
ings of a fixed level. While we are una.ware of any theoretical work extending 
these results to the curve-crossing case, a. non-homogeneous Poisson limit is 
intuitively plausible under sufficient smoothness properties of the curve, in 
view of the fixed level results. A rigorous extension, of the Poisson limit 
theory to curve-crossings seems worthy of investigation in its own right. 

3.3 Evaluation of Mt(ro, h) 
For crossings of curves by stationary processes one loses the interpreta­

tion in terms of stationary streams of events. Also we note that a curve­
crossing problem for a stationary process may be regarded as a zero-crossing 
problem for a non-stationary process. For example, if e(t) is a zero-mean 
stationary process then crossings of the curve r(t) = roh(t) by C(t) are the 
same as zero-crossings for the non-stationary process C*(t) = C(t) - r(t). 
Leadbetter (1966) considered such curve-crossing problems. His argument 
was essentially an adaptation of Bulinskaya's (1961) argument for the fixed 
level case. 

Leadbetter's results in the Gaussian case is that if C * (t) is a non­
stationary normal process then the mean number of upcrossings of the zero­
level in ° ~ t ~ 1 is given by 

E{Uo(O, I)} = r ,u-1(1- Jl2)4>(m)[4>('1) + '1~('1)ldt 10 u 
(9) 

in which (if C* (t) has mean m = m(t) and covariance function r(t, s)) 

2_ ( ) 2_ o2r(t,s)1 _or(t,s)1 u - r t,t, , - , Jl- --- /Clu) atas e=t as e=t 

and 

'1 = (dd7 - ,:m)/b(l- Jl2)1/2}, 

it being assumed that dd7 and a~~~e) are continuous functions and that 
u > 0, IJlI < 1 for each t. Here 4>, ~ are the standard normal p.d.f. and c.d.f. 
respectively. 

In our case, the non-stationary process is of the form C*(t) = C(t) -
roh(t) where C(t) is stationary. In this case, it is easy to see that ,2 = A2, 
Jl(t) = 0, and '1(t) = -roh'(t)/A~/2. Hence it follows from (9) (writing 
),2 = u~ = Var e'(t» that 

EUh(O, 1) = M1(ro, h) 

= u-1 (l 4>(Oh(t»)[U24>(oh'(t» _ roh'(t)~(-roh'(t)ldt. 
h u ~ ~ 

(10) 
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Moreover, Mt(ro, h) = EUh(O, t) is obtained from (10) by simply altering 
the upper limit of integration in the above to t. Note that in the above it 
suffices to assume A2 < 00 where A2 is the second spectra moment of the 
process. This ensures sample function continuity of e(t) with probability one 
and the existence of e'(t) in quadratic mean (see Cramer and Leadbetter, 
1967). 

If one adopts the Poisson upcrossing assumption, the above implies a 
hazard function of the form 

This hazard function bears no resemblance to those of the distributions 
commonly employed for analysis of time to failure data. However, in the 
case where h'(t) = 0, corresponding to constant residual strength or no aging 
with time, one obtains the familiar exponential distribution with parameter 

which is the formula of Rice (1945) for the mean upcrossing rate of the level 
ro by e(t). 

In the foregoing, we have conditioned on the value of roo The next 
step would be to assume some parametric form for IRo(ro) and to take 
expectations as in Subsection 3.2. 

Application of (10) and (8) to the specific forms for h(t) discussed in 
Section 2 will generally involve numerical integration. For example, in the 
case considered by Eggwertz (1972) a linear reduction of residual strength 
with time is assumed. This corresponds to letting h{t) = 1 + kt with k < ° 
whence the following expression for A{t) ensues: 
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4. A STOCHASTIC REPRESENTATION OF THE 
RESIDUAL STRENGTH FUNCTION 

61 

The formulation of R(t) adopted in the previous section was essentially 
deterministic, although Ti = time to crack initiation and Ro = R(O), the ini­
tial static strength, were assumed to be random variables. Thus, conditional 
on Ti, R(t) was a random variable for every t with the same distribution as 
Ro, up to the scaling function h(t). A more accurate model would allow 
R(t) to be a stochastic process, depending in some way on the stress history 
{e(s) : 0 ~ s ~ t}. Thus we would write R(t) = R(tj e(s),O ~ 8 ~ t) to 
indicate this dependence. A limited dependence of R(t) on the load his­
tory, via mean values of peak stress amplitudes is allowed in the model of 
Section 3. For example, the residual strength function of Yang and Trapp 
incorporates load history information via the mean value of the bth power 
of the peak amplitude distribution. However, this approach does not allow 
for stochastic variation of this quantity about its mean value. To obtain a 
stochastic representation for R(t) suppose without loss of generality b = 2 
in (1) as do Yang and Heer (1971). Then integrating (1) successively with 
respect to each cycle and summing yields 

n 

lna(n) -lna(O) = K LS}, (11) 
;=1 

where Sj is the amplitude of the jth stress peak. The stochastic analogue 
of (11) is 

M(t) 

Ina(t) -In a(O) = K L [e(tj)]b, (12) 
;=1 

where M(t) is the number of stress peaks in (0, t) and t; is the time of 
occurrence of the jth stress peak in (0, t). Using equation (3), we may 
rewrite (12) as 

K M(t) 

R(t) = Roexp(-"2 L [e(t;)lt 
;=1 

(13) 

where (13) is conditional on the event {R(t;-tl > e(t;),j = 1, ... , M(t)}, 
since otherwise fatigue failure would have occurred before t. The stochastic 
representation (13) is represented schematically in Figure 2. R(t) is a jump 
process decreasing by a factor exp(-lfe(t;)b) at the jth stress peak. More 
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explicitly, (13) can be written 

Ra, 
Ro exp( - fe(t1)b), 

R{t) = Ro exp( - ~(~(tl)b + ~(t2)6), 

0< t < tl 
h < t < t2 
h < t < ts (14) 

The fatigue failure time Tf = min{t : R(t) ~ e(t)} is the first crossing time 
of the two stochastic processes R(tj e(s), 0 ~ 8 ~ t), given by (14), and e(t). 
The residual strength representation (14) incorporates the effect of the load 
history via e(t;), j = 1,2 ... , and M(t). 

Residual Ro 
strength J..--"'-';;;""---, RO exp (- !5.2 Ut 1A 
process 

Stress history F-4-+-++--'-++-L......,.;tr--/-J'-\-+-­
W) 

Figure 2. Stochastic representation of residual strength. 

REFERENCES 

Barnby, J. T. (1972), liBtigue. London: Mills and Boon. 
Berman, S. M. (1971), "Asymptotic independence of the numbers of high and 

low level crossings of stationary Gaussian processes." Annals of Mathematical 
Statistics 42, 927-945. 

Bulinskaya, E. V. (1961), "On the mean number of crossings of a level by a sta­
tionary Gaussian process." Thoriya Veroyatnostei iee primeneniya 6, 474-477. 

Cramer, H., and M. R. Leadbetter (1967), Stationary and Related Stochastic Pro­
cesses. New York: Wiley and Sons. 



CROSSING THEORY AND MODELS OF FATIGUE 63 

Desmond, A. F. (1983), "Local maxima of stationary stochastic processes and sto­
chastic modelling of fatigue." Ph.D. thesis, University of Waterloo. 

Eggwertz, S. (1972), "Investigation of fatigue life and residual strength of wing 
panel for reliability purposes." In Probabilistic Aspects of Fatigue ASTM STP 
511, ed. R. A. Heller, pp. 75-105. 

Freudentha.l, A. M., J. M. Ga.rrelta, a.nd M. Shinozuk~ (1966), "The ~naly5i5 of 
structural safety." Structural Division Journal, Proceedings of the American 
Society of Civil Engineers 92, 267-325. 

Hooke, F. H. (1979), "A new look at structural reliability and risk theory." Amer­
ican Institute of Aeronautics and Astronautics Journal 17,980-987. 

Leadbetter, M. R. (1966), "On crossings of levels and curves by a wide class of 
stochastic processes." Annals of Mathematical Statistics 37, 260-267. 

Paris, P. C. (1964), "The fracture mechanics approach to fatigue". In Fatigue - an 
Interdisciplinary Approach, Proceedings of the 10th Sagamore Army Materials 
Research Conference. Syracuse, NY: Syracuse University Press. 

Rice, S. O. (1976), "Mathematical analysis of random noise." Bell System Tech­
nical Journal 24, 46-156. 

Saunders, S. C. (1976), "The reliability of structures subject to fatigue under 
inspection and repair." In Applications of Statistics, ed. P. R. Krishnaiah, pp. 
481-496. 

Whittaker, 1. C., and S. C. Saunders (1973), "Exploratory development on ap­
plication of reliability analysis to aircraft structures considering interaction of 
cumulative fatigue damage and ultimate strength." Air Force Materials Labo­
ratory Technical Report AFML-TR-72-283. 

Yang, J.-N. (1975), "Approximation to first passage probability." Journal of the 
Engineering Mechanics Division 10. Proceedings of the American Society of 
Civil Engineers 101, 361-372. 

Yang, J.-N., and E. Heer (1971), "Reliability of randomly excited structures." 
American Institute of Aeronautics and Astronautics Journal 9, 1262-1268. 

Yang, J.-N., and W. J. Trapp (1974), "Reliability analysis of aircraft structures 
under random loading and periodic inspection." American Institute of Aero­
nautics and Astronautics Journal 12, 1623-1630. 



P. Todorovic 1 

LIMIT THEOREMS ARISING 
IN SOIL EROSION MODELLING 

ABSTRACT 

It was shown in a recent paper that the effect of soil erosion on 
crop production can be described by a stochastic process {Xn}i, where 
Xn == Yn . Ln. Here {Yn}i is an independent and identically distributed 
sequence of non-negative random variables and {Ln}i is a Markov chain, 
with stationary transition probabilities, independent of {Yn}i. In this pa­
per we are concerned with the limiting distributions of the maximum term 
Xn = sUPl9:50nX/; and of the sum Sn = Xl + ... + X n • 

1. INTRODUCTION 

This paper is concerned with some limit theorems arising in the devel­
opment of a mathematical model to assess the effect of surface soil erosion 
on crop production. The erosion process is a result of perpetual activities 
of various geophysical forces acting upon the surface of earth. The ensuing 
degradation of farm lands may have a profound impact on the global scale 
on future food supply. For this reason the Soil and Water Conservation Act 
requires the United States Department of Agriculture to prepare a report 
for the U.S. Congress that establishes the current status of soil and water 
resources in the U.S.A. The impact of surface soil erosion on long-term soil 
productivity is of particular interest. As was shown in a recent paper (Todor­
ovic and Gani, 1985), under certain conditions this impact can be described 
by a stochastic process {Xn}i. Asymptotic behavior of certain functionals 
of this process is the subject of our investigation. 
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2. FORMULATION OF THE PROBLEM 

The stochastic process {Xn}f is a sequence of non-negative random 
variables (r.v.'s) defined as follows: for every n = 1,2, ... 

(2.1) 

where 
n 

Ln = II Zi. (2.2) 

Here we assume that the r.v.'s involved satisfy the following conditions: 
(i) {Yn}f is an i.i.d. sequence of non-negative r.v.'s with common dis­

tribution function (d.f.) and probability density (p.d.) 

respectively, with 

Q(y) = P{Y :::; y}, ( ) _ d Q(y) 
q y ----;Jy' 

J.l = E{Y} < 00. 

(2.3) 

(2.4) 

(ii) {Zi}f is also an i.i.d. sequence ofr.v.'s, independent of {Yn}f, such 
that 

o :::; Z :::; 1 and 0 < a = E{Z} < 1. (2.5) 

Note that the r.v.'s {Xn}f are neither independent nor identically dis­
tributed. However, the sequence possesses a monotonicity property (Van 
Doorn, 1980). In other words, for every x ~ 0 

n = 1,2, ... , 

where Fn(x) = P{Xn :::; x}. 
Denote 

n 1,2, ... (2.6) 

This paper is concerned with distributional convergence of the sequence of 
partial sums {Sn}f and of the extreme terms {Xn}f. Before we embark 
on the problem of determining the limiting distributions of Sn and Xn one 
should note the following: from (i) and (ii) we have that 
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On the other hand, since 

00 

L E{Xn } = OJl(1- 0)-1, 
k=1 

the monotone convergence theorem implies that 

Sn i S almost everywhere (a.e.) as n --t 00, 

where S is an (a.e.) finite-valued r.v. such that 

3. LIMITING DISTRIBUTION OF {XnHo. 

Many attempts have been made in recent years to extend asymptotic 
results of classical extreme value theory to include first, discrete parame­
ter and then continuous parameter strictly stationary stochastic processes 
(Watson, 1954; Berman, 1964; Loynes, 1965; Leadbetter, 1974). A compre­
hensive account of the existing classical as well as "post classical" results of 
the theory is given in a recent monograph by Leadbetter et al. (1983). 

In this section we shall derive the dJ. of Xn. In addition, we shall 
specify its limiting form as n --t 00, under the condition that {ZiHO is an 
i.i.d. sequence of r.v.'s with common uniform distribution on [0,1]. To this 
end denote 

(3.1) 

It is clear that Xn i X (a.e.), where X is an (a.e.) finite-valued r.v. Hence, 

lim Mn(x) = M(x), 
n--+oo 

(3.2) 

where M(x) = P{X :5 x}. As we will show, this convergence is uniform. 
We shall first prove the following result. 

Proposition 3.1. Let {ZnHO by an i.i.d. sequence of r.v.'s with common 
uniform distribution on [0,1]' then for all n = 1,2, ... and x 2: 0, 

1 11 {11 1 }n Mn(x) = , -Q(x/s)ds dt. 
n. 0 t s 

(3.3) 
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Proof. From a relation (Todorovic and Gani, 1985, p. 6), it follows at once 
that 

Mn(z) ~ E {~Q (zL;') } 

= ! . . . ! tPl, ... ,m(t1 , .•. , t n ) IT Q(x/t.)dt" 
O~tn~ ... ~h9 1 

where tPl, ... ,m(t1 , .•. , t n ) is the joint probability density of (L 1, ... , Ln). 
Since Z has uniform distribution in [0,1] we have that 

n-l 
tPl, ... ,m(tl> ... , tn) = II l/t •. (3.4) 

Thus, 

Mn(x) = ... II ~Q(x, t.)dt. Q(x/tn)dtn l1ltl ltn-l {n-l 1 } 

o 0 0 1 t. 

1 {I {11 1 }n-l 
= (n - 1)! 10 t ;Q(x/s)ds Q(x/t)dt 

(see Fichtengoltz, 1959, p. 682). On the other hand, 

{I {11 1 }n-l 1 {I {11 1 }n 10 t ;Q(x/s)ds Q(x/t)dt = ~ 10 t d t ;Q(x/s)dx 

1 {I {11 1 }n = ~ 10 t ;Q(x/s)ds dt, (3.5) 

which proves the proposition. 

To find the limiting value of (3.3) when n -+ 00 we need the following. 

Proposition 3.2. The dJ. Mn(x) satisfies the following difference-dif­
ferential equation: 

M~(x) = ~ {Mn(x) - Q(X)Mn-l(X)}. 
x 

(3.6) 

Proof. Differentiating both sides of equation (3.3) with respect to x we 
obtain 

1 {I {1 1 1 }n-l (1 1 1 ) M~(x) = (n -1)! 10 t ;Q(x/s)ds t s2q(x/s)ds dt. 
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By means of the substitution 11 = z/ s, after a simple transformation, the 
last equation can be written as 

1 11 { r 1 }n-l 1 ( r* ) M~(z) = (n _ I)! 0 it -;Q(z/s)ds ; ilJ: q(lI)dll dt 

-1 11 {ill }n-l = (z )1 -Q(z/s)ds [Q(z/t) - Q(z)] dt. 
n-l· o t S 

From this and (3.5), after some straightforward calculations, the assertion 
follows. 

The limiting d.f. M(z) is now easy to obtain. 

Proposition 3.3. For every z ~ 0, 

M(z) = exp {- loo ~[1- Q(u)JdU}. (3.7) 

Proof. First of all, note that {Mn(z)}1 is a sequence of monotonic functions 
whose limit M(z) exists and represents a d.f. Now, write equation (3.6) as 
follows: l IJ: 1 

Mn(z) = - {Mn(z) - Q(z)Mn- 1(z)} dz. 
oz· 

From this and the Beppo-Levi theorem we have: 

l IJ: 1 
M(z) = - [1 - Q(z)] M(z)dz. 

o z 

Hence, 
1 

M'(z) = -[1 - Q(z)]M(z). 
z 

(3.8) 

The general solution of this equation is 

M(z) = M(a)exp {11J: ;[1- Q(U)]dU}. (3.9) 

Now, since M(z) is a proper d.f. (of the finite valued r.v. X) M(z) -+ 1 
as z -+ 00. From this and (3.9) it follows that 

M(a) = exp {-1°O ;[1- Q(u)JdU}. 

This completes the proof of the proposition. 
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4. SOME AUXILIARY RESULTS 

Denote by 

G(x) = P{S ::; x}, (4.1) 

the dJ. of Sn and S respectively. Before embarking on the problem of 
determining the limiting dJ. G(x) some auxiliary results are needed. 

Write 
L~(O) = E {e- 9Sn } . (4.2) 

The next lemma gives L~ in terms of ili. 

Lemma 4.1. Suppose that conditions (i) and (ii) hold, then for every 
n = 1,2, ... 

L~(O) = E {~ili (OL.) } . (4.3) 

Proof. From (4.2) it follows that 

L~(O) = / E {e- 9Sn I L1' ... ' Ln} dP 

= / . . . f <P1 •...• n(t b ••• , tn) IT ili(Ot.)dt., 
O:9n~ ... ~t,9 1 

where as before <P1 •...• n(.' ... , .) stands for the probability density of (L 1 , ••• , 

Ln). This proves (4.3). 

Lemma 4.2. Suppose now that (3.4) holds, then under the same conditions 
as in the previous lemma we have 

1 { 1 }n L~(O) = ~ ( 1 !ili(OS)ds dt. 
n.lo t s 

(4.4) 

Proof. From (4.3) and the conditions of the lemma it follows at once that 

L~(O) = f ... f {~~W(Ot.)dt.} W(Otn)dtn 
O~tn~ ···9,9 

1 11 {11 1 }n-1 = ()' -W(9s)ds W(9t)dt. 
n-l· o t S 

(4.5) 
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Now, since 

{11 1 }n-l t d {11 1 }n 
t ~W(Os)ds W(Ot) = -~ dt t ~w(s)ds , 

integration by parts of (4.5) proves the assertion. 

5. EVALUATION OF G(x). 

We are now in a position to determine the limiting d.f. G(x). To this 
end note that integral (4.4) is essentially equivalent to that of (3.3). To 
obtain the limiting value of (4.4) we should apply the same procedure that 
has been used to prove Proposition 3.1. We obtain 

lim L~(O) = exp {- f8 .!.[1- W(U)]dU}' 
n-+oo 10 U 

(5.1) 

Note that this convergence is uniform. 
The right hand side of (5.1) is the Laplace transform of G'(x) = g(x). 

To obtain g(x), which is our ultimate goal in this section, we must invert the 
right hand side of (5.1). The standard procedure leads to some cumbersome 
calculations. To avoid this we shall adopt a different approach. The following 
proposition is the main result of this section. 

Proposition 5.1. The probability density g(x) is a solution of the following 
non-linear Volterra integro-differential equation: 

X g'(x) + fa'" q(x - s)g(s)ds = O. (5.2) 

Proof. Differentiating the left and right hand side of equation (4.4), we 
obtain, after some straightforward calculations, the difference-differential 
equation 

fJL~ (fJ) + L~(fJ) = w(fJ)L~_l(fJ). (5.3) 

From the fact that the family of d.f.'s {G n (x)} r' is sequentially compact and 
from the Helly-Bray theorem, it follows that the limits 

L*(O) = lim L~(fJ) and LO
' (fJ) = lim L~ (fJ) (5.4) 

n-+oo n-+oo 

exist. Hence, letting n -+ 00 in (5.3) we obtain 

no' (0) + LO(O) = w(fJ)LO(O), (5.5) 
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which can be written as follows: 

LO' (9) + ~LO(9) = ~W(9)LO(9). 

Taking the inverse of the Laplace transform of both sides of the last equation 
we obtain 

-xg(x) + G(x) = iO: q(t) * g(t)dt, 

where * stands for convolution. Finally, differentiating the left and right 
hand sides of this equation we obtain (5.2). 

Remark 5.1. It is clear from equation (5.2) that the limiting dJ. G(x) 
depends on Q(x). In addition it follows from the same equation that the 
p.d. g(x) must be a decreasing function on [0,00). 
Example 5.1. IT q(x) = >.e->'o: it follows immediately from equation (5.2) 
that 

g(x) = >.e->'o:. 

Example 5.2. Let q(x) = ).2x e->'O:j to obtain the limiting dJ. G(x) in this 
case we will use the Laplace transform 

LO(9) = exp {- 1000 ~[l-W(U)]dU} (5.6) 

rather than the equation (5.2). First of all note that (see equation (4.2)) 

Hence, 
('I >. 

10 -;;[1 -w(u)]du = In(9 + >.) - 9 + >. -In). + 1. 

From this we have: 

Therefore, 
00 (>. )n g(x) = e-(1+>'o:) " _x_ 
~ (n!)2 
n=O 

= -(1+>'0:) ~ (2(>.x)1/2)2n _I_ 
e ~ 2 (n!)2 

n=O 
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or 
g(x) = e-(1+).") 10 (2(AX)1/2) , 

where 10(u) is the modified Bessel's function ofthe first kind and order zero. 
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David R. Brillinger 1 

FITTING COSINES: SOME PROCEDURES AND 
SOME PHYSICAL EXAMPLES 

ABSTRACT 

The paper is concerned with a variety of time series models that in 
some sense lead to the fitting of a cosine function of unknown frequency. 
Both linear and nonlinear models are considered, including both decaying 
cosines and sustained ones. The discussion is illustrated with examples from 
seismology (free oscillations of the Earth), geophysics (the Chandler wobble), 
nuclear magnetic resonance, laser Doppler velocimetry and oceanography 
(dispersion). The paper ends by surveying a variety ofresults developed for 
specific models by various authors. A variety of open problems are indicated. 

"The aim of science is to seek the simplest explanation of complex 
facts ... seek simplicity and distrust it." 

A. N. Whitehead 

1. INTRODUCTION 

There are a broad variety of natural phenomena that are periodic 
and that have been studied since early times. Some of these, and their 
researchers, are: the planets (Kepler), pendulums (Galileo), the violin 
string (Mersenne), light (Huyghens), sound (Newton) and crystals (Kepler, 
Huyghens). Cosines were fit numerically to orbital data as early as 1754 (see 
Clairaut, 1754; Heideman et al., 1984). Several arguments may be set down 
for the genesis of cosines. Linear combinations of cosines provide the gen­
eral solution of differential equations with constant coefficients-and such 
equations provide effective descriptions of many phenomena. Cosines and 
more general periodic functions result from the repeated application of var­
ious operators. The input to a system may be periodic, and in consequence 
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the output is as well. Finally, the experimental setup may be such that 
periodically va.rying data is collected. 

A key property of cosines is that they persist under linear time invariant 
operations. This is formalized in Lemma 2.7.1 of Brillinger (1975), but may 
be illustrated quickly as follows. Suppose 

00 

Y(t) = L a(u)X(t - u). (1) 
u=-oo 

The operation carrying X(.) into y(.) is linear and time invariant. If X(t) = 
exp{iAt}, then Y(t) = A(A) exp{iAt}, with 

A(A) = L a(u) exp{ -iAU}. (2) 
u 

Here, following de Moivre's formula, exp{iAt} = cos At+i sin At and because 
of the linearity of the operation (1), the effect of the operation on the cosine 
function cos At may be seen. In the case that A is real-valued it is referred 
to as the frequency (in radians per unit time). Because many naturally 
occurring operations are, to a good approximation, linear and time invariant, 
the nonentanglement of cosine waves of different frequencies can allow one 
to look back to the generation process of a phenomenon of interest. 

Fourier transforms play essential roles in the study of periodic phenom­
ena and of linear time invariant systems. Definition (2) shows the transfer 
function, A(·), to be the Fourier transform of the impulse response, a(·). For 
the model 

Y(t) = p cos(-yt + 8) + e(t), (3) 

t = 0, ±1, ±2, ... with e(·) a noise process, the least squares estimate of 
p exp{i8} is approximately 

T-l 

~ L Y(t) exp{ -i-yt} 
t=o 

(4) 

when '1 is known and the data Y(t), t = O, ... ,T - 1 are available. The 
values 

T-l 

L Y(t) exp{ -i21rst/T}, (5) 
t=o 

s = 0, ... , T -1, are referred to as the discrete Fourier transform of the data 
stretch Y(t), t = 0, ... , T - 1. In a variety of circumstances these values 
may be computed exceedingly rapidly via a fast Fourier transform (FFT) 
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algorithm (Heideman et al., 1984). Astonishingly, such an algorithm was 
known to Gauss in 1805, ibid. 

This paper is a mixture of review of existing results, physical exam­
ples, models and methods relating to the fitting of cosines to both linear 
and nonlinear phenomena. The main sections are: Decaying Cosines, Noise 
Sustained Oscillations, Dispersion and Modes, a Review of Some Particular 
Results and Some Open Problems. 

2. DECAYING COSINES 

2.1 Some Conceptualization 

Vibratory motion pervades and unifies the physical sciences. A mathe­
matical conceptualization that is consistent with this observation is that a 
great variety of natural systems may be described by systems of equations 
of the form 

dY(t) = AY(t) + X(t) 
dt 

(6) 

with X(·) vector-valued input and with y(.) vector-valued output or perhaps 
a state vector. In the case that the input is b8(t), 8(·) the Dirac delta, and 
initial conditions are Y(O-) = 0, then the general solution of (6) may be 
written 

Y(t) = exp{At}b t> 0 

= LO!iexP{J.lit}Ui, 
i 

(7) 

where J.li, ui are the (assumed distinct) latents of the matrix A. Focussing 
on anyone of the coordinates of y(.) then, its motion has the form 

K 

2: Pk exp{ -Ukt } cos (Ikt + 810) (8) 
10=1 

for t > 0, with -Uk and 110 the real and imaginary parts of one of the J.li' 
This has the empirical implication that one is sometimes led to model time 
series data as the sum of the term (8) and a noise process. 

2.2 Free Oscillations of the Earth 

Mter a great earthquake, the whole Earth may oscillate for many days; 
see, for example, Bolt (1982, Chapter 6). From these oscillations, or free 
vibrations, the seismologist infers much about the structure of the Earth. 
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The equations of motion may be written in the form of (6) for the many 
particles making up the Earth. A great earthquake may be viewed as pro­
viding a delta function type input. In consequence a corresponding seismic 
record may be viewed as having the form 

K 

Y(t) = L Pk exp{ -Ukt} cos (-rkt + Ok) + e(t), (9) 
k=l 

e(·) being a noise process. (It is worth noting that K may be greater than 
1500 for some events.) The seismologist is particularly interested in esti­
mating the "1k and Uk for he is then able to compare these observed values 
with corresponding values for an Earth model that he has constructed. A 
traditional procedure for estimating the "1k in a model such as (9) is to look 
for the locations of peaks in the periodogram. Specifically, let 

T-l 

d~(A) = LY(t)exp{-i>.t} (10) 
t=o 

denote the Fourier transform of a stretch of data, then the periodogram is 
defined as 

(11) 

It may be expected to show peaks in the neighborhood of the "1k of (9) with 
their respective heights depending on the values of the other parameters 
appearing. 

Figure 1 is a record of the Great Chilean earthquake of 22 May 1960 as 
recorded at Trieste. The tides have been removed from the original displace­
ments measured. Many oscillations are present and it is apparent that these 
decay. Figure 2 is a graph of the log periodogram, (11), for one frequency 
interval. It was based on 2548 points with a sampling interval of 2 minutes 
(hence a longer time period than that shown in Figure 1). Many peaks are 
apparent. To gain some idea of the reality of these peaks, it may be noted 
that in the case of stationary noise the distribution of the periodogram is 
approximately exponential with mean the power spectrum. Using this ap­
proximation, one computes that the width of a 95% confidence interval, for 
the values of Figure 2, is 4.98. The level of fluctuations in Figure 2 is gen­
erally greater than this. 

2.3 Complex Demodulation 
One particularly effective method for assessing the validity of the model 

(9) and for obtaining initial estimates of the parameters appearing is complex 
demodulation; see, for example, Brillinger (1975, Section 2.7). The basic 
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ideas are: frequency isolation by narrow band filtering to focus on a single 
term in (9), followed by frequency translation to slow the oscillations down. 
The steps are: (i) Y(t) --+ Y(t) exp{iAt}, (modulation), then (ii) smooth 
Y(t) exp{iAt} to obtain Y(t, A), the complex demodulate at frequency A. In 
the case that Y(t) = p exp{ -ut} cos(-yt + 5) one has 

=0, otherwise. (12) 

Hence log I Y(t, A) I = log f - ut and arg {Y(t, A)} = 5 + (A - ,)t. Plots 
of these quantities versus t provide checks on model adequacy and yield 
estimates of the parameters appearing. In the case that A is near , the 
phase plot will be approximately horizontal. Figures 3 and 4 provide plots 
at the frequency .0945 cycles/min. (corresponding to one of the peaks in 
Figure 2). The results are consistent with an exponentially decaying cosine 
component. Various other plots for this data set are presented by Bolt and 
Brillinger (1979). 

2.4 Estimation Via Nonlinear Regression 

Estimates of parameters are insufficient without accompanying estimates 
of uncertainty. Fourier inference may be employed to address this problem. 
Suppose one has a model 

Y(t) = S(tj 9) + e(t) (13) 

with S(·j 9) known up to the finite dimensional parameter 9 and with e(·) a 
stationary noise series. Let 

T-l 

Y; = LY(t) exp{ -i21fjt/T} (14) 
t=o 

with similar definitions for S;(9) and e;. These are various central limit the­
orems, (see, for example, Brillinger, 1983), suggesting that the distribution 
of e; may be approximated by a complex normal with mean 0 and variance 
21fT f .. (21fj/T) and that e;, e;" j i= jf are approximately independent. 
Here f .. (A) is the power spectrum at frequency A of the stationary series 
e(·), 

00 

f .. (A)=(21f)-1 L cov{e(t+u),e(t)}exp{-iAU}. (15) 
"=-00 
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Supposing Ju(>") not to vary too much for A in a neighborhood I, fJ may be 
estimated by setting down a Gaussian likelihood and maximizing it. This 
comes down to minimizina 

(16) 

where the summation is over frequencies 21rj/T in I. For the case of 
S(tj fJ) = pexp{ -O't} cosbH8), fJ = (p, 0', ,)" 8) one finds for example that the 
asymptotic variance of the estimate of')' is proportional to T-3 p- 241r Jub). 
Bolt and Brillinger (1979) and Hasan (1982) give details. For example, for 
the Chilean data and the frequency of Figures 3 and 4 one finds, converting 
frequency to period, an estimated period of 10.5681 min. with an estimated 
standard error of .0014 min. Again, Bolt and Brillinger (1979) give details. 
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Figure 3. Log Amplitude at .09-15 cycles/min. 

2.5 Estimation of Bifrequency 

70 80 

Suppose that the system of equations (6) is perturbed by replacing the 
matrix A by A +e(B, Y(t)), with e small and (B, Y) representing a matrix 
of the same dimensions as A, linear in Y. The solution of the perturbed, now 
nonlinear, system contains terms in exp{lIit} as at (7), but it also contains 
interation terms exp {(1I1e + IIt)t}. A simple form of solution suggested is 

3 

Y(t) = L Pm COsbmt + 8m ) + e(t), (17) 
m=l 
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where the "1m. are related by "II + "12 + "Is = O. A triple of frequencies 
bl, "12, "Is) summing to 0 is referred to as a bi/requencyj see Brillinger (1980). 
The biperiodogram is a statistic of use in detecting the presence of bifrequen­
cies. It is a direct extension of the (second-order) periodogram (11) and is 
given by 

Its modulus may be expected to be large when the frequencies AI, A2, Al +A2 
are simultaneously present in the series Y (.). 

Zadro and Caputo (1968) develop differential equations for the motion 
of the Earth in a great earthquake when nonlinearities are present. This 
work suggests that bifrequencies will be present in that case. Zadro and 
Caputo (1968) present the results of bispectral computations for the case of 
the great Alaskan earthquake of 1964. Various suggestive peaks are present 
in the biperiodogram. 

Figure 5 is a contour plot of the modulus of the quantity (18) for the 
Chilean data and the frequency interval (.08, .12) cycles/min. Peaks are seen 
to occur both on and off the diagonal Al = A2' The largest peak occurs at 
(.09714, .10459) cycles/min. If one scans Table 1 of Bolt and Currie (1975) 
one sees that one may have evidence for the interaction of the torsional vi­
bration modes OTIO, OTll and oT25 • The results of Brillinger (1980) and 
further computations may be employed to assess the uncertainties of these 
values. 



FITTING COSINES 83 

N 

rl ~~-----------------------------------------, o I- -

~~ ~ o o 

0 

rl 
rl -
0 

'~Q oib ~. ~o ~ 
0 Q 0 

o~ 
0 

0 0 0 0 <S> 
rl r-
0 i) 0* ~o f) ~ ~~ 0 -
'" ~Q f) OQ 0 

~ 
c--,,(!:::' 

0 1-0 0 0 
0 

~o . <9 <a> ~ . 

0 <:> .., 0 """ 
<0 ~~ ~ o~ 0 ~~. I ' o@:::> '0 ~c 
0 " I I 
0 
0 . 08 0 . 09 0 . 10 0 . 11 0 . 12 

frequency (cycles/min.) 

Figure 5. Modulus Biperiodogram 

3. NOISE SUSTAINED OSCILLATIONS 

3.1 Conceptual Background 
Consider the case of incoherent light. A model for this situation is the 

following: electrons of pertinent atoms jump levels. Light of frequency "f = 
E/h is released where E is the change in energy and h is Planck's constant. 
The time course of the light signal is a(t) = H(t)e-Irt cos "ft, where H(t) = 0 
for t < 0 and H(t) = 1 for t > O. When many atoms are involved the light 
wave has the form E; a( t - T;), the T; being the points of a Poisson process. 
One is led to consider a process that is a random sum of decaying cosine 
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waves, all waves having the same frequency 'Y. The power spectrum of this 
process has poles at >. = ±'Y ± i(1. It will show peaks for>. near 'Y. 

An analagous result obtains for the system (6) when the input process 
X(·) is white noise. Suppose X(.) is white noise with covariance matrix ~. 
Then the spectral density matrix of the process Y(·) is given by 

(19) 

Poles occur for>. = ±iJ.Li, the J.Li being the latent values of A. The solution 
of (6) may be written 

Y(t) = loo exp{Au}X(t - u)du 

= Lvi 100 
exp{J.LiU }X(t - u)du Ui 

i 0 

(20) 

(where ui, vi are the left and right latent vectors of A) and one sees that 
the process Y(o) is a random sum of decaying cosine wave frequencies corre­
sponding to the imaginary parts of the latent values of A. Our concern now 
turns to the estimation of those frequencies. We will proceed via a particular 
example. 

3.2 Tbe Cbandler Wobble 

The point of intersection of the Earth's axis of rotation with the north 
polar cap does not remain fixed, rather it wanders about and the Earth is 
said to "wobble". Figures 6 and 7 give the two coordinates (X(t), Y(t)) of 
the pole for the period 1900--1975. It is convenient to set Z(t) = X(t)+iY(t); 
then the equations of motion (see Munk and MacDonald, 1960) are 

clZ(t) = aZ(t) + d~(t) 
dt dt 

(21) 

with ~(t) corresponding to the excitation process. Supposing the process 
~(-) to have stationary increments, the power spectrum of the process Z(o) 
is given by 

(22) 

writing a = i'"'( - (1. The periodogram of the data of Figures 6, 7 is given in 
Figure 8. It shows peaks near frequencies 0, .071 and .083 cycles/year. The 
first corresponds to trend; see Figure 7. The third corresponds to an annual 
component present in the excitation process. The second corresponds to the 
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Chandler wobble, that is , of (22). It is of interest to estimate the Chandler 
period precisely and to provide a measure of uncertainty. 

A corresponding finite parameter model is developed by Brillinger 
(1973). Specifically for seasonally adjusted first differences and measure­
ment error assumed present, the parametric spectrum derived is 

q2 1 - e- 2c7 1 1/12 11 - e-i >. 12 
271" 2q -1---2-ex-p-=-{ --q-=}-C-OS""7(A----,:-) +--ex-p-=-{ --2-q-=-} + 271" (23) 

This is then fit (to the data for 1902-1969) by the method of Gaussian 
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estimation, that is by maximizing the "Gaussian" likelihood 

n ;,. exp { - IJ / f,. } , , (24) 

where IT denotes the periodogram at frequency 2,.. j /T and f,. = f (~j (J ) 

denotes the theoretical power spectrum as a function of the unknown param­
eters. This method also leads to estimated standard errors. In particular 
the value '1' = .0706 with an estimated standard error of .0026 was found. 

Further examination of the periodogram of Figure 8 shows some power 
near the frequency .15. It was examined further with a suspicion that it 
might be due to some nonlinearity. Figures 9, 10 provide the results of 
complex demodulating the series at a frequency of .153 cycles/year. It was 
found that the power was predominantly present only for the early part of 
the series. We have no explanation to present beyond remarking that the 
individuals responsible for estimating the polar motion changed every so 
often. The biperiodogram is presented by Brillinger (1973), but it is not 
strongly suggestive of a nonlinearity. 
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3.3.1 The Bloch Equations. Nuclear magnetic resonance relies on the in­
teraction between magnetically sensitive nuclei which are exposed to both 
a strong magnetic field and a radio frequency signal. The nuclei "flip" at 
characteristic (or resonant) frequencies. The procedures yields information 
related to molecular structure, interactions and dynamics. 

The phenomenon has been described by the Bloch equations. These take 
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the form 

~?) = a + A Y(t) + B Y(t)X(t) (25) 

with X(t) scalar input, with Y(t) vector output, with a a vector and with 
A, B matrices. See, for example, Knight and Kaiser (1982). 

Various inputs have been employed to identify molecular systems by 
nuclear magnetic resonance. These include pulses, cosinusoids and noise. 
The impulse response has been written 

L Pk exp{ -Ukt } COS,kt 
k 

(26) 

with the Ik the characteristic frequencies of the substance of concern. One 
common procedure is to apply a pulse and to look for peaks in the abso­
lute value (periodogram) of the Fourier transform of the output. Peaks are 
assigned to particular atoms in the molecules present. 

3.3.2 Stochastic Nuclear Magnetic Resonance. In stochastic NMR the input, 
X(·), is taken to be random noise and the particular realization is made use 
of in the analysis. Blumich (1985) provides a review. In the case that the 
input is Gaussian white noise, cov{Y(t + u), X(t)} is found to be given by 

LPkexp{ -uku}exp{hku} 
k 

(27) 

for u > 0 with the hk - Uk the latent values of A + B2/2. The Fourier 
transform of (27) is 

1 
LPk Uk - i(>. - Ik)' 

k 

(28) 

The amplitude of this quantity peaks at >. near Ik, and sample-based quan­
tities may be used to derive estimates. Examples are given by Ernst (1970). 

In many important cases second-order spectra are not sufficient to de­
scribe structure unequivocally; higher-order spectra are needed. Because of 
symmetries present, third-order spectra vanish identically. The fourth-order 
spectrum, which is the Fourier transform of 

has peaks when the frequencies I;, Ik, It, and ,;+,k+,t are simultaneously 
present. Examples of sections of such empirical spectra are given by Blumich 
and Ziessow (1983). The use of such spectra is found to lead to nearly 
complete assignment of protons to molecules in many substances of concern. 
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3.4 Particle Processes 

Consider a circumstance in which at time t there are N(t) particles 
situated in space at the locations r j (t), j = 1, ... , N (t). If r denotes position 
in space, then this particle process may be represented by 

N(t) 

L 8(r - rj(t)). (29) 
j=1 

The motion of the jth particle may be described via r j( t). For example if the 
particle is moving with a constant (directed) velocity then rj(t) -rj(O) = vt. 
If the particles motion is Brownian, then rj(t) is a spatial Brownian motion 
with independent Gaussian increments. 

With the advent of lasers, the motion of collections of particles may be 
studied by analysing light scattered when the particles are illuminated by a 
laser. Briefly through the Doppler effect the frequency of the incident light 
is shifted slightly by a particle's motion and a study of the frequency distri­
bution of the scattered light gives information on the velocity distribution 
of the particles. 

3.4.1 Laser Doppler Velocimetry. The characteristic property of monochro­
matic laser light is that it fluctuates very nearly as a cosine wave. Suppose 
that the incident light comes from a direction kI and has a frequency w. 
Then the input to the particle system may be represented as 

X(t) = exp{i(krr+wt)}. (30) 

Further the (far-field) scattered output in a direction ks may be represented 
as Y(t) = Sk(t)X(t) where K = ks - kI' and SK(t), the complex scattering 
amplitude, is given by 

SK(t) = L aj(t) exp{ -iK . rj(t)}. 
j 

(31) 

Here X(t), Y (t) represent the incident and scattered optical fields and aj(t) is 
referred to as the form factor. Supposing that the particles are independent 
and identical and that the aj(') are independent of the rj(')' one sees that 
the autocovariance function of the process y(.) is given by 

myy(u) = E{SK(t + U)SK(t)} 
== E {exp{ -iK . (r(t + u) - r(t))}}. (32) 

This is essentially the characteristic function of the increments of the mo­
tion of the particle process. Supposing one has constant (laminar) flow, 
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then myy(u) == exp{ -iK . vu}. Supposing Brownian motion, myy(u) == 
exp{ -DK 2u} with D the diffusion constant and K = 1 K I. Other mod­
els for the motion of the particles, e.g. mixtures of particles with different 
velocities or different diffusion constants, lead to other functional forms for 
myy(·). The problem now is to estimate myy(u) in practice. 

The nature of the situation is that the electric field, Y (.), cannot be 
observed directly. What can be observed are Poisson processes with rate the 
modulus-squared of an electric field. In one experimental setup a Poisson 
process with rate I(t) = 1 Y(t) 12 = 1 SK(t) 12 is observed. The number 
of particles, N, is assumed large so that SK(t) of (31) is approximately 
Gaussian. From Isserlis's formula then 

mII(u) = 1 myy(O) 12 + 1 myy(u) 12 (33) 

and from an estimate of mII(u), an estimate of 1 myy(u) 12 may be con­
structed. This procedure may be employed successfully for particles moving 
with Brownian motion (see, for example, Nishio et al. J 1983); however, in 
the case of laminar flow myy (u) == exp{ -iK . vu}, whose modulus contains 
no information on K. The experimental setup has to be altered. 

In Doppler-difference velocimetry, the frequency w of the input beam is 
shifted slightly to w + 0 giving a second input X'(t) coming from a different 
direction and the far-field intensity is then 

I(t) = ISK(t)X(t) + SK'(t)X'(t) 12 . (34) 

Expanding this shows 

I(t) '" exp {i(K - K') . vt} exp{ -ot} + ... (35) 

in the case of laminar flow and the problem has again become one of esti­
mating the frequency of a cosine. This procedure is used by Pfister et al. 
(1983) and Sato et al. (1978), for example. An important advantage of this 
experimental technique is that rapidly varying velocities may be tracked and 
even subjected to Fourier analyses themselves (see Pfister et al., 1983). 

Cummins (1977) and Shulz-DuBois (1983) are general references to the 
technique and uses of laser velocimetry. 

3.4.2 Discussion. It is worth remarking that the interference procedure used 
is intimately connected to the technique of complex demodulation described 
earlier in the paper. By superposing the X'(t) signal one is essentially bring­
ing about multiplication by exp{i(w+S)t} allowing, as in the case of complex 
demodulation, attention to be focused on components of frequency near w. 

In the case that the intensity I(t) is low, one will need to take account 
of sampling fluctuations. 
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3.4.3 Bispectral Analysis. In an interesting piece of work Sato et al. (1978) 
combine laser Doppler velocimetry with bispectral analysis to obtain infor­
mation concerning particles in suspension. Their approach has the advantage 
of "eliminating" Gaussian noise. 

The experimental set-up involved vibrating particles (in one case cigar 
smoke, in another water) by a known sound wave 

(36) 

and then measuring the particle motion by a laser Doppler velocimeter. The 
measured signal takes the form 

with the Clt: functions of AI, A2, particle diameter, relative density of particle 
material, viscosity of the medium and other things. The series e(.) represents 
nOIse. 

The power spectrum ofY(·) is given by 

..!.. (a~c5(,x - wo) + a~c5(,x - 2wo)) + /",,(,x) 
4", 

(38) 

and it should be noted that the noise spectrum appears. Supposing the noise 
to be Gaussian, in contrast the amplitude of the bispectrum is 

(39) 

and the noise component is absent. The value a~ I a2 I may be estimated 
from the bispectral estimate and used in turn to estimate particle param­
eters. Sato et aI. (1978) present experimental results demonstrating that 
this bispectrum based estimate can be much more sensitive than a power 
spectrum based one. 

4. DISPERSION AND MODES 

Consider the linear-temporal process 

Y(z, t) = pcos(az + 1t + 15). (40) 

It satisfies the wave equation 

(41) 
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with c = "1/ a, the phase velocity. In the case that there are side conditions, 
following Sturm-Liouville theory, discreteness occurs. Given frequency "1 
only a certain number of wave numbers a = anb), n = 0, 1, ... are possible. 
An implication of this is that for a composite wave different frequency com­
ponents will travel at different speeds, or disperse. Such a relation between 
frequency and wavenumber is referred to as a dispersion relation. 

From a statistical viewpoint the following problem arises. Given data 
on Y(x, t) and imagining it to be a superposition of terms of the form (40) 
satisfying a dispersion relation, how is that relation to be estimated? It is 
instructive to consider the (two-dimensional) Fourier transform. 

One has 

! ! exp {i (ab)x + "1t)} exp {-i(kx + '\t)} dx dt 

= 8('\ - "1)8(k - ab)). (42) 

Mass is seen to occur on the curve k = a(,\). In the case of a composite 
process, mass may be expected to occur on a family of curves k = a n ('\). 

4.2 Examples 
The fields of oceanography, seismology and helioseismology provide em­

pirical examples of the use of Fourier transforms to discern dispersion re­
lations. Gilbert and Dziewonski (1975) provide analyses for the free os­
cillations of the earth based on seismograms from two deep earthquakes. 
Munk and MacDonald (1964) analysed sea level fluctuations as measured by 
a linear array of gauges off the coast of southern California. Estimating a 
wavenumber-frequency power spectrum, they found most of the energy to be 
trapped in a few narrow bands in (k,'\) space, corresponding to edge waves. 
(These are water waves moving sideways to the shore, rather than rolling on 
to it.) 

The most dramatic developments have however been taking place in the 
field of helioseismology, that is the branch of solar physics concerned with the 
study of resonant oscillations of the Sun. The motion of the visible portion 
of the Sun's surface is measured via spectrographs attached to conventional 
solar telescopes. Velocity of movement is determined through the Doppler 
effect. The wavenumber-frequency power spectrum is then estimated from 
the data. The cover of the 6 September 1985 issue of Science provides 
a striking example of such an estimate. References to this work include 
Deubner and Gough (1984) and Christensen-Dalsgaard et al. (1985). 

4.3 Discussion 
Given a model (e.g., velocity as a function of depth) for the medium of in­

terest, implied dispersion curves may be computed (see, for example, Section 
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7.2.2 of Aki and Richards, 1980). The empirically determined wavenumber­
frequency power spectrum may then be employed to assess the degree of fit 
of the postulated model. Further one may set up an inverse problem and 
proceed to improve the model. 

The excitement with which researchers view helioseismology is well 
illustrated by the following remarks of Deubner et al. (1975): " 
the basic mechanism responsible for the solar 5-minute oscillation is now 
understood, ... " and « ••• the solutions in Ulrich agree with the observed 
ridges in all detail to an embarassing extent." 

5. A REVIEW OF SOME PARTICULAR RESULTS 

In this section the crude details of a variety of results, concerning the 
fitting of cosine type signals superposed on stationary mixing noise, are 
presented. 

5.1 Whittle (1952) 

The model considered is 

Y(t) = a cos(-yt + S) + e(t), (43) 

t = 0, ... , T - 1. The difficult parameter to estimate is 'Y. It may be 
estimated either by ordinary least squares or more commonly by maximizing 
the periodogram 

T-l 
I E Y(t)e- i .xtI2. (44) 

t=O 

The estimate '1 is found to be asymptotically normal with mean 'Y and vari-
ance 

(45) 

That the variance falls off as T- 3 was initially surprising. Hannan (1971, 
1973) and Walker (1971, 1973) are related papers. 

5.2 Bolt and Brillinger (1979) 

This work was referred to earlier in the paper. The model considered is 

Y(t) = ae-+t / T cos(-yt + S) + e(t), (46) 

t = 0, ... , T - 1. The parameters are estimated from the (Gaussian) likeli­
hood of the Fourier transform values in the neighborhood of 'Y. The estimates 
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i and ~/T are found to be asymptotically normal with variance 

The parametrization of the decay rate in the form ~/T is in order to insure 
that the signal does not drop out asymptotically. It seems a plausible manner 
in which to develop asymptotic results. 

5.3 Hinich and Shaman (1972) 

The work of these researchers is concerned with an areal-temporal pro­
cess. The model is 

Y(x, 1/, t) = pcos(o:x + /31/ + "It + 0) + e(x, 1/, t) (48) 

for x, 1/, t taking on values in a latice. Ordinary least squares, maximum 
likelihood and periodogram maximizing estimates are considered. 

5.4 Vere-Jones (1982) 

He was concerned with fitting a cyclic model to point process data. A 
point process {T;} is assumed to be Poisson with rate A exp{ 0: cosbt + o)}. 
The asymptotic distributions of the maximum likelihood estimate and a pe­
riodogram maximizing estimate are developed. The asymptotic distribution 
of i is found to be normal with mean "I and variance 12/ [T3 A 0:11 (0:)] . 
Here 11(0:) is a modified Bessel function. 

5.5 Isokawa (1983) 

This author is concerned with sampled time series data, Y(T;), where the 
T; are the points of a realization of a stationary point process independent 
of the series Y (t) given by (43). The asymptotic distribution of the estimate 
of >. maximizing the periodogram 

I ~Y(T;) exp{ -i>'T;} 12 
3 

(49) 

is determined. 
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5.6 Hannan (1974) 

In this paper Hannan presents results for the model 

Y(t) = L ak cos(klt + 6k) + e(t), 
k 

95 

(50) 

t = 0, ... , T - 1. The import of this model is that the expected value has 
period 211"/1. The asymptotic distribution of the >. maximizing 

L Id;(k>.)12 /Icc(k>') (51) 
k 

is derived. It is found to be normal with mean and variance 

(52) 

In practice an estimate of Icc(') would be inserted in (51). 

5.7 Brillinger (1980) 

This work was referred to earlier. The model is 

3 

Y(t) = L ak cosbkt + 6k) + e(t) (53) 
k=1 

with 13 = "11 + "12 or "13 = 271" - "11 - "12, 0 < "11c < 71". This is the model 
of bifrequencies. The asymptotic distributions of both the ordinary least 
squares estimate and the estimate (>'1,>'2) maximizing the biperiodogram 

(54) 

are determined. Both these asymptotic distributions are found to be normal, 
but generally different. 

5.8 Subba. Ra.o and Yar (1982) 

These researchers are concerned with the model offrequency modulation, 

Y(t) = a cos bt + 6 + ~ sin(t/lt + II)) + e{t). (55) 

Estimates of 1, t/I are determined by maximizing 

L Id~b + kt/l)1 2 / Iccb + kt/l). (56) 
k 
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5.9 Brillinger (1985) 

This work considers the areal-temporal process (48), but now the sensors 
are irregularly distributed at locations (x;, y;), j = 1, ... , J. The time period 
T is thought of as large, and so "1 may be treated as known. Let 

1 T-l { .21rkt} 
Y k = T 2: [Y(x;, y;, t)] exp -IT ' 

t=o 
(57) 

M= 2:YkY~' (58) 

where the summation is over Fourier frequencies 21rkjT near "1, and 

S =M- YkIY~' (59) 

with 21r k' jT = "1. (This last is an estimate of the spectral density matrix of 
the J noise process e(x;, y;, t).) Finally define the (steering) vector 

B = [exp{i(ox; + .By;)}]. (60) 

(In (57) and (60) the [.] notation denotes a J column vector.) The estimate 
studied is the (o,.B) maximizing the "likelihood ratio detection" statistic 

(61) 

The asymptotic distribution of the estimate is indicated. 

5.10 Brillinger (1986) 

The previous situation may be viewed as corresponding to a small array 
of sensors. The work in this reference concerns a large array case, with 
the measurements irregularly placed with respect to all coordinates. It is 
convenient to alter the notation somewhat. Suppose 

Y(t) = a cos(w, t) + b sin(w, t) + e(t) (62) 

for w, tin RP and (w, t) = wltl + ... + wptp. Suppose the data available are 
the values {T;, Y(T;)} for T; in a region T. The parameter w is estimated by 
maximizing, for>. in RP, 

I ~ exp{ -i(>., T;)}Y(T;) 12 , (63) 
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and given w, (a, b) estimated by ordinary least squares. Asymptotic distri­
butions are obtained assuming {Tj} is a realization of a stationary mixing 
point process in RP with rate CN and spectrum INN()..). In particular the 
estimates are found to be asymptotically normal with covariance matrix 

CN22 (211' )P Ivv()")lJ:r\ (64) 

where Ivv()..) = cN2 lu()..) + I INN().. - o:)/u(o:)do: and 

(65) 

The integrals appearing are over the region T. The asymptotics are as 
IT 1-00. 

6. SOME OPEN PROBLEMS 

We end by indicating in cursory form a number of research problems 
related to the topic of the paper. 
1. Diagnostics, influence, robust/resistant procedures. 
2. Missing values, quantization, jitter. 
3. Estimation of dimension, e.g., by Ale. 
4. Inverse problem formulations, ridge regression. 
5. Local asymptotic normality, contiguity. 
6. Adaptive procedures. 
7. The absorbtion model. 
8. Signal dependent noise. 
9. Law of the iterated logarithm, large deviations, rates of convergence for 

the estimates. 
10. Random effects models. 
11. Vector-valued cases. 
12. Partially parametric formulations, e.g., the periodic case. 
13. Models for the point process and telegraph signal cases. 
14. Expansions for distributions. 
15. Distributions of test statistics, e.g., of 

(66) 

or of 
(67) 
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16. Properties of the estimates when the model is untrue. 
17. The broadband signal case. 
18. Parametric analysis of the frequency case. 

19. Distribution in the null case of sup over (0,,8) of (61). 

20. Sampling properties of the NMR estimates. 
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THE CONVERGENCE OF THE SOLUTION 
OF A BOLTZMANN TYPE EQUATION 

RELATED TO QUANTUM MECHANICS 

ABSTRACT 

McKean (1966), Tanaka (1978), and Sznitman (1984) have obtained ex­
istence, uniqueness and asymptotic results for the solution of a Boltzmann 
type equation, for the cases of Kac's caricature, Maxwell's gas and Boltz­
mann's gas, respectively. Their methods use Wild's sums. Here we adapt 
Tanaka's method for his asymptotic result to show, with the help of Wild's 
sums, the convergence toward the geometric equilibrium of the solution of 
a Boltzmann type equation related to the Bose-Einstein statistic (r = 1) of 
quantum mechanics. 

1. INTRODUCTION 

Wild (1951) gave the form of the solution of a Boltzmann type equa­
tion when the kernel of the intensity of the collisions belongs to the class of 
Maxwell gases with cut-off. McKean (1966), Tanaka (1973, 1978)' and Sznit­
man (1984) used this result as a basis for obtaining theorems of existence, 
uniqueness and convergence in the cases of Kac's caricature, of Maxwell's 
gas (without cut-off) and of Boltzmann's gas, respectively. 

Futcher et al. (1980) gave analogous models for closed oscillator systems 
of quantum mechanics. Mter having described and situated these models 
among the numerous models satisfying an equation of Boltzmann type, they 
obtained another form of the solution by Hilbert space techniques. Their 
method is thus less general than that of Wild. 

The present work shows how Tanaka's method allows one to obtain the 
convergence of the solution for one of these models. 

1 Departement de mathematiques et d'informatique, Universite de Sherbrooke, 
Sherbrooke, Quebec J1K 2R1 (both authors) 
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2. WILD'S FORM OF THE SOLUTION 

We refer to Futcher et al. (1980) for the justification of the model which 
follows. The simplicity of the model comes from the fact that the underlying 
process takes its values in the natural numbers J./. We do not give the 
explicit description of this process, whose existence and uniqueness have 
been established by Sznitman (1984). What we want to describe here is the 
form of the law JLt, of Xt , in order to show that it converges to a geometric 
law. The law JLt satisfies the following Boltzmann equation: 

If, for two probability measures JL and 11 on J./, we put 

(JL 0 lI)(k) = L . ~ JL(i)II(j) , 
i+i~k I + J + 1 

we can, like Sznitman (1984), write the Wild's form of the solution as 

where 

JLt = L e-t (1 - e-t),,-l JL(n) , 
n~l 

1 n 

JL(l) = JL and JL(n+l) = ~ L (JL(k) 0 JL(n-Hl)) . 

k=l 

(2) 

(3) 

Let us point out that 1J(i + j + 1) is one of the Bose-Einstein statistics; 
the interested reader may consult Feller (1965). 

3. EQUILIBRIUM MEASURE AND CONSERVATION OF MOMENTS 

We denote by .M the set of probability measures on J./ and by Pk the 
subset of those>. E .M whose kth moment mk(>') is finite. Moreover, we 
denote by gP the geometric law with parameter p E (0,1): 

gP(i) = (1 - plop, i E )/. 

The geometric laws are the equilibrium measures of our system. In fact, 
they satisfy the following stronger statement. 

Lemma 3.1. If JL E .M then JL 0 JL = JL if and only if JL is geometric. 
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Proof. (Necessity) Note that the composition operation introduced in (2) 
can be written in terms of convolution: 

with 
i 

(I-' * lI)(i) = L l-'(k)lI(i - k). 
k=O 

The equation I-' ° I-' = I-' means that 

JL(i) = L k: 1 (I-' * I-')(k) 
k2:i 

= (JL t: ~ (i) + (JL ° JL)( i + 1) 

= (JL.* JL~(i) + JL(i + 1). 
1+ 

This recurrence relation implies that I-' is geometric. 

(Sufficiency) IT gP E oM, then 

and 

= (1- p)ip 

= gP(i). 

Proposition 3.2. IT in (1) JLo = gP then JLt = gP for all t. 

Proof. With the aid of the lemma it is easy to show by induction that 
JL(n) = gP for every n ~ 1 and the result follows from (3). 

Lemma 3.3. 

(i) IT JL, 11 E Pl then JL ° 11 E Pl and 

1 
ml(1-' ° 11) = 2[ml(JL)+ ml(II)]. 

(ii) If JL, 11 E P2 then I-' ° 11 E P2 and 
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1 
m2(J.' 0 11) = i[m2(J.') + m2(1I)] 

1 + S[4ml(J.')ml(lI) + ml(J.') + ml(II)]. 

Proof. 

(i) 

(ii) 

ml(J.'oll)=LiLk 11(J.'*II)(k) 
i~O A:~i + 

= ~ Li(J.' * lI)(i) 
i~O 

1 
= "2 [ml(J.') + ml(II)]. 

The following proposition gives information on the time evolution of the 
moments of J.'t. 

Proposition 3.4.. For the solution of equation (1): 

(i) if J.'o E PI, then J.'t E PI and ml(J.'t) = ml(J.'o)j 
(ii) if J.'o E P2 , then J.'t E P2 and m2(J.'t) ~ mz(J.'o) + ml(J.'o)(1 + 

2ml(J.'0))' 

Proof. 

(i) By induction, using Lemma 3.3 (i), one finds ml(J.'(n») = ml(lLo) for 
every n ~ 1 and therefore 

ml(J.'t) = L e-t(1 - e-tt-lml(J.'(n») = ml(J.'o). 
n~l 
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(ii) Using Lemma 3.3 (ii) one can show by induction that 

m2(I-'(n») ~ m2(I-'O) + m1(l-'o)(1 + 2m1(JLO)) 

for every n 2: 1. The inequality is obvious for n = 1 and by induction 

Thus, 

4. A METRIC ON PI 

Definition 4.1. Let 1-', v E Pl. A coupling C of I-' and v is a probability 
measure on )./2 such that 

(i) 

(ii) 

L C(i,j) = I-'(i); 'Vi E )./, 
j~O 

LC(i,j) = v(j); "<Ij E)./. 

For 1-', v E PI we put "Y(C) = E,>o Ej~o Ii - j I C(i,j) and p(JL, v) = 
infh(C) ICE C(I-', v)}, where C(I-', V) denotes the family of couplings of JL 
and v. 
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Proofs of the following results (as well as complimentary information) 
are given by Dobrushin (1970), Dudley (1976), and Rachev (1984). 

Result 1. IT 1-',11 E Pl then there exists C in C (1-',11) such that ,(C) = 
p(l-',lI). Such a coupling is called optimal. 

Result 2. (PbP) is a metric space. 

Result 3. P(l-'n,I-') -t 0 is equivalent to I-'n =} I-' and ml(l-'n) -t ml(l-') 
(where I-'n =} I-' denotes weak convergence). 

Tanaka (1978) contains a general result, of which the following is a special 
case: 

Result 4. Let (0, P(O), >.) be a discrete probability space. Suppose 
{I-'''' , w EO} and {11"', W EO} are two subfamilies of Pl such that 

",eo ",eo 

are also in Pl. Then one has 

p(l-',lI) ~ L >'(w)p(I-'''',lI'''). 
",eo 

For the next lemma Uk denotes the uniform law on 0,1, ... , k. 

Proof. We may assume 0 < kl < k2 • It follows from the complimentary 
slackness theorem (see, for example, Zoutendijk, 1976) that every coupling 
C for which C(i,j) = 0 for i > j is optimal. Using the coupling 

we obtain 

1 
k2 +l' o ~ i ~ kl , 

[

C(i,i) 

C(~'~) = 

C(S,3) = 0, elsewhere, 

1 [(kl + l)(kl + 2) 
p(Ukll Uk2 ) = (k2 + l)(kl + 1) 2 

+ ... + (kl + l)(kl ; 2)(k2 - kd] 

_ (k2 - kd 
- 2 
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5. MONO TONICITY OF THE DISTANCE 
BETWEEN SOLUTIONS 
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We will obtain the monotonicity as a consequence of a more precise 
result. First we will establish three lemmas. The first one is a crucial convex 
inequality. 

Proof. Let C1 and C2 be optimal couplings for P(P1' P2) and p(p2,1I2) 
respectively and denote by >. the product measure of C1 and C2 on 
()./", P()./4)). For each (i,j, k,l) E )./4 put 

H(·,;,k,t) - U,. 
r - .+k, 
lI(i,;,k,t) = U;+!. 

One easily sees that 

and that 

L >'(i, j, k, l)p(·,;,k,t) = PI 0 P2 

(',;,k,L)eN· 

L >.(i,j, k, l)lI(i,;,k,t) = III 0112' 
(i,j,k,L)eN· 

Applying successively Result 4, Lemma 4.2 and the triangle inequality, one 
then has 

(',;,k,t)eN· 

< " >.( .. k l) I j + l- i - k I 
L...J I,)" 2 

(',;,k,t)eN· 

:5 L C1(i,j)li;il+ L C2(k,l)ll~kl 
(',;)eN2 (k,t)eN2 

1 1 
:5 '2 P(Pb Ill) + '2 P(P2' 112). 
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Lemma 5.2. For each Il, II E PI, 

Proof. Assuming the inequality for n ~ m, we have by Result 4 and Lemma 
5.1: 

Lemma 5.3. IT 1-', II E PI then p(l-'t, lit) is continuous. 

Proof. First note that for each i E J/ 

li(s) = I: e-·(l- e-·t-ll-'(n) (i) 
n~l 

is continuous in s. Now the continuity of Ii and 

give, recalling Result 3 and Proposition 3.4 (i), the continuity of P(llt, lit}. 

Remark. 

Lemmas 5.2 and 5.3 show that 

is continuous and therefore so is 
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Theorem 5.4. IT JL, II E Pl then p(JLt, lit) ~ p(JL, II); in fact, 

Proof. Since the solution of (1) is unique, one has 

JLH8 = L e-8(1 - e-8t-1 J'~n); t, 8 ~ O. 
n~1 

Applying Result 4 and Lemma 5.2 we obtain 

( ) < '" -8(1 -8)n-1 ((n) (n») P JLH8,lIt+8 _ L...." e - e P JLt , lit 
n~l 

~ L e-8(1 - e-8 )n-l p(JLt, lit) 
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(4) 

(4.1) 

t ---+ p(JLt, lit) is therefore a decreasing function and as such has a derivative 
p'(t) almost everywhere which satisfies 

From (4.1), 

P(JLt+8' "H8) ~ e-8p(JLt, lit) + e-·(l- e-8)p(JL!2), 1I~2») 

+ L e-8 (l- e-8t-1p(JLt, lit) 

:::; e-8 P(JLh lit) + e-8(1 - e-8)p(JLt 0 JLt, lit 0 lit) 

+ p(JLt, IIt)(l - 2e-8 + e-28 ). 

Therefore, 

hence 
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This latter inequality means that p'(S) is dominated by -P(J.LB' VB)' which 
gives (4). 

6. CONVERGENCE TO EQUILIBRIUM 

Theorem 6.1. If J.L E PI and g is the geometric law with mean ml(J.L) then 
p(J.Lt, g) decreases to zero. In particular J.Lt => g. 

The proof is based on the following lemma. 

Lemma 6.2. If J.L E PI is such that ml(J.L) = ml(g) and J.L"# g then 

Proof. By Lemma 3.1 and Lemma 5.1 one has 

(5) 

Therefore, it is sufficient to show that the equality in (5) implies J.L = g. But 
there is equality in (5) only if 

2: C(i,j)C(k,l)ll-k+j-il 
(i,;,k,t)eJl4. 

= L C(i,j)lj-il+ L C(k,l)ll-kl, 
(i,;)eJl2 (k,t)eJl2 

where C is an optimal coupling of J.L and g. This last equality in turn implies, 
by a simple calculation on the first summation, that 

LL C(i,j)C(k,l) min {I i - j I, Il- k I} 

+ LLC(i,j)C(k,l)min{1 i - j I, Il- k I} = o. 
i~; k>t 

Hence, C(i,j)C(k,l) = 0 for i > j. Finally, equality of the means then 
implies that C(i,j) = 0 for i "# j, therefore J.L = g. 

Proof (of the theorem). By Proposition 3.2, p(J.Lt, g) = p(J.Lt, gt) and there­
fore p(J.Lt,g) is decreasing. To show that it is decreasing to 0 we proceed in 
two steps. 
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Step 1. Suppose m2(~) < 00, then by Proposition 3.4, m2(~t) is bounded 
in t, say by M. Denoting by Pe the family of probability measures A E Pl 

such that 
ml(A) = ml(g),m2(A) ~ M and p(A,g) ~ f, 

we have that Pe is compact for p. Indeed, let {An; n E N} be a sequence in 
Pe, since {>.n(i); n E N} is included in [0,1] for each i E N there exists a 
subsequence {Ank ; kEN} and A : N ---t [0,1] such that 

for all i EN. But ml (~) = ml (g) for all k implies A E .M. On the other hand 
m2(Ank ) ~ M for all k, therefore Ank ~ A and by Result 3 P(Ank' A) ---t O. 
Pe being closed, A E Pe and this shows that Pe is p-compact. 

Now notice that, since 

I ii(~,g) - ii(v,g) I ~ 2p(~,v) 

ii(', g) is p-continuous on Pe• Hence, there exists ~. E Pe such that 

(6) 

Finally, if we suppose p(~t, g) ~ f > 0 for all t, then by Theorem 5.1 and 
(6) we have 

p(~t, g) ~ p(~, g) - fat p(~., g)ds 

~ p(~,g) - ct 
and this leads to a contradiction for t sufficiently large. 

Step 2. In the general case we can choose for each f > 0 a probability 
measure ~e such that 

Therefore, Result 4 and Lemma 5.3 imply p(~t, ~t) < f, hence 

p(~t,g) ~ p(~t,~D + p(~:,g) 
~ f+p(~t,g). 

In this way limt-+oop(~t,g) ~ f and the theorem is proved. 
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J. Gani 1 

SOME RECENT WORK IN EPIDEMIC MODELS 

1. INTRODUCTION 

The modern theory of epidemics could be said to have started with 
Hamer (1906), who noted that new infectives at the discrete time t + 1 
depended on 

t = 0,1,2, ... , 

where Xt is the number of susceptibles, and 1/t the number of infectives at 
time t, with p the infection parameter. Kermack and McKendrick (1927) 
later considered the deterministic model of a measles epidemic in a popula­
tion of size N, governed by the differential equations 

dx 
dt = -PX1/, 

d1/ 
dt = PX1/ - "(1/, 

dz 
dt = "(1/, (1.1) 

where x(t), 1/(t), z(t) are susceptibles, infectives and immunes at time t ~ 0, 
with x(t)+y(t)+z(t) = N, and p, "( are the infection and removal parameters 
respectively. 

Writing p = "(IP, they showed from (1.1) that 

Xo = x(O) < N, 

and denoting u = x + 1/ = N - z, obtained from the third equation in (1.1) 
that 

~~ = -"( (u - xoe-(N-U)/P) , (U ___ d.,....l1 --=-:"..-;- = -"(t. 
1 N 11 - xoe( v-N)/ P 

(1.2) 

We see that as t -+ 00, U -+ U oo , which is the solution of 11 = xoe(v-N)/ P, and 
U oo = Xoo represents the number of survivors of the epidemic (1/00 = 0); see 

1 Statistics Program, Department of Mathematics, University of California, 
Santa Barbara, California 93106, U.S.A. 
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w w = v 
N~-------------r 

XO~----~r---------~ 
w = xoe(v-N)/p 

o~~--~--------~---- v 
o U oo Xo N 

Figure 1. Survivors U oo at the intersection of w = v, w = xoe(tJ-N)1 p. 

Figure 1. These results led to the Kermack-McKendrick Threshold Theorem 
for the deterministic gener~ epidemic. 

The Kermack-McKendrick Threshold Theorem: 
(a) An epidemic occurs only if 

~~It=o > 0 or Xo > Pi 

(b) The survivors uoo , where U oo is the solution of v = xoe(tJ-N)lp, lie in the 
range zoe-Nip < U oo < zo. 

This deterministic model has a stochastic analogue, which was first con­
sidered by Bartlett (1949). He studied the bivariate Markov chain {X(t), 
Y(t)i t ? O} in continuous time, where X(t), Y(t) are the susceptibles and 
infectives respectively in a population of size N. The infinitesimal transition 
probabilities of the chain are now 

and 

P{X(t + 8t) = z - 1, Y(t + 8t) = y + 1 1 X(t) = x, Y(t) = y} 
= (3xy8t + o(8t) (1.3) 

P{X(t + 8t) = x, Y(t + 8t) = y - 11 X(t) = x, Y(t) = y} 
= ,,(yet + o(et), 

with {3, "( the infection and removal parameters as before. A realization 
of the process is illustrated in Figure 2. Note that a downward step in 
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Xo = N - a ....... ---, 
• X(t) 

~ l ]f(t) 
Yo = a 1-------1 -U1L.. ___ ----It 

O-t-----------------t o 
Figure 2. Realization of {X(t), Y(t)j t ~ a}. 

X(t) corresponds to an upward step in Y(t)j Z(t) is given from the relation 
X(t) + Y(t) + Z(t) = N. 

The forward Kolmogorov equations for {X(t), Y(t)j t ~ o} with the 
infinitesimal transition probabilities (1.3) are of the form 

d 
dl"'l1 = P(x + I)(Y- I)P",+l,lI-l - y(px + '1)P"'1I + '1(y + l)p"',IIH, 

o ~ x ~ N - a, 0 ~ y ~ N, 0 ~ x + y ~ N, (1.4) 

where P"',II(t) = P{X(t) = x, Y(t) = 11 I X(O) = N - a = n, Y(O) = a}. 
Making the time transformation t' = pt and writing p = '1/ P as before, we 
obtain that the probability generating function (p.g.f.) 

R R+"-'" 
~(z, w, t') = L L Z"'Wllp"'lI(t'), 

",=0 11=0 

subject to the initial condition ~(z, w, 0) = ZR W", satisfies the partial differ­
ential equation 

a~ a2~ a~ 
at' = w(w - z) azaw + p(l- w) aw I z I, I w I ~ 1. (1.5) 

This equation can be derived only because of the forms pxyot, '1yot, of the 
infinitesimal transition probabilities (1.3). 

Formal solutions to (1.4) and (1.5) were found by Siskind (1965), Gani 
(1965) and Sakino (1968), but none was easy to use in practice. Perhaps the 
simplest was that outlined by Gani (1967). 
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2. MORE GENERAL INFECTION MECHANISMS 

Saunders (1980) studied the spread of myxomatosis among rabbits and 
found that his data for infectives were better fitted when the infection mech­
anism was of the form 

Q = 1/2, (2.1) 

rather than pxy. It is not difficult to provide a rationalization of this mecha­
nism, which we may refer to as "bunching". We note that Q = 0 corresponds 
to the classical "general epidemic", and the values of Q which are relevant 
lieinO:5Q:51. 

Kermack and McKendrick (1,927) obtained the threshold results for Q = 
0; let us summarize those for 0 < Q < 1 and Q = 1. 

We are now considering the differential equations 

dx -pxy 
-= , 
dt (x+ y)a 

dy pxy 
dt = (x+y)a -'YY, 

When Q = 1, writing y = x + y as before we find 
, 

( U) l/p 
x= xo N ' 

Thus, for an epidemic to occur 

dz 
- ='Yy. 
dt 

dy I = pyo (xO - p) > 0 or xo > pN. 
dt t=o N 

We can see directly that 

see Figure 3. 

(
XP)I/(P-l) 

u - ....Q 
00- N 

=0 

for p > 1, 

for p :5 1; 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Finally, for the case 0 < Q < 1, with b = 1 - Q > 0, we find that an 
epidemic occurs only if 

dyl (xo) a -d = PYo ( )a - P or xo > pN . 
t t=O Xo + Yo 

(2.6) 
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w W=v 

N~----------------~ 

w = XO(V/N)l/p 

Xor---------~--~~----~~ 

o~~~--~------------~---v 

o N 

Figure 3. Sur1li"ors U oo lor ex = 1. 

Also 

r d" = -,to 
IN ,,- xoexp {:b ("b - Nb)} 

(2.7) 

Thus the number of survivors U oo will be the solution of 

(2.8) 

see Figure 4. 
We note that the methods used to analyze the deterministic epidemic 

with the more general infection mechanism remain similar to those of Ker­
mack and McKendrick. This proves to be no longer true for the stochastic 
epidemic {X(t), Y(t); t ~ a}, where a solution cannot be obtained using 
p.g-f. methods. 
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w 

W:=V 

N~------------~ 

Xo I-___ ~-__ -.,......W := XOe 

O~~------------~N~---V 
o U oo 

(vb_Nb)/pb 

Figure 4. Survivors U co lor 0 < a < 1. 

3. MATRIX GEOMETRIC METHODS FOR THE GENERAL 
STOCHASTIC EPIDEMIC 

Suppose that in order to simplify our formulae, we write, after the usual 
time transformation (t' = fit), 

Ity 
I~II = (It + y)OI' PY = PII' (3.1) 

The forward Kolmogorov equations now become 

o ~ It ~ n, 0 ~ Y ~ n + a, 0 ~ It +!1 ~ n + a, 

and it is clear that it is no longer possible to use p.g.f. methods in this case. 
Peter Purdue pointed out that the form of the equations lent itself to the use 
of matrix-geometric methods and our recent joint paper (Gani and Purdue, 
1984) has given details of the procedure. 

Briefly, let 

[
pno 1 [ Pn-l,O 1 

Pn(t) = : , Pn-1(t) = : , ... , 
(o+1)xl (oH)Xl 

Pno Pn-l,o+l 



PI 
(n+a)XI 

EPIDEMIC MODELS 

[ 
PlO 1 : , Po 

. (n+a+l)xI 
PI,n+a-1 

[ 
Poo 1 

po,~+a 
be the vectors of probabilities of {X(t), Y(t); t ~ O}. Then 

where 
Bn = diag(O, Inl"'" In,a-l, Ina), 

(a+1)x(a+l) 

An = diag(O, PI,· .. , Pa-l, Pa), 
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(3.3) 

and ~n is a matrix with ones on the first upper diagonal and zeros elsewhere. 
Similarly 

P~ = {- (Bz + Az) + ~zAz}Pz + B:+1P~+1' 
x = 0,1, ... , n - 1, (3.4) 

where 
Bz = diag(O, Izb' .. , Iz,n+a-z-l, Iz,n+a-z), 

(n+,,-s+I)( 
(n+ .. - s+l) 

Az = diag(O, PI,' .. , Pn+a-z-t Pn+a-z), 

~z is a matrix with ones on the first upper diagonal and zeros elsewhere, and 
B:+1' P~+1 are augmented matrices so that they will have the appropriate 
number of rows and columns: 

Using Laplace transform methods, it is possible to obtain the transforms 

in a recursive form, when we write Py = PY, as 

, a 

Pny(S) = pa-y a; II (s + Inr + rp)-l , 
Y'r=y 

Y = O, ... ,a, 

n+a-z-l ()' I. ( ) 
• () _ " r + 1 . r+l-y z+l,rPz+I,r S 
Pzy S - L ,P r+l , 

r=y-l y. Ot=y (8 + Izt + lp) 
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z= 1, ... ,n-1j y = 1, ... , n + a - z. (3.5) 

or particular interest are the probabilities of the numbers of survivors 
as t -t 00, namely 

:11"",0 = lim p",o(t) 
t-+oo 

= lim 817"'0(8) 
.-+0 

n+o-",-1 A ( ) 

_ '" (+ 1)' r+l 1",+I.rP",+I.r 0 
- L.J r .p r+1 ' 

r=1 TIt=1 (j",t + lp) 
(3.6) 

which can also be obtained by recursive methods from the 17"'11 (8). 
It is perhaps worthwhile pointing out that for the general infection mech­

anism 1",", one can obtain a stochastic threshold theorem by applying Whit­
tle's (1955) method. The value of the matrix-geometric approach is illus­
trated again in the problem of the epidemic with carriers. 

4. EPIDEMICS WITH CARRIERS 

This model, in which the carriers Y(t) follow a pure death process, and 
drive the epidemic, has been studied by Weiss (i965), Dietz (1966), and 
Downton (1967) when !",,J= zy. We can once again generalize the infection 
mechanism to 

with PII = py. 

zy 
!"'" = (z+ y)a 

In this case, given X(O) = n, Y(O) = b, we have 

P~II = !"'H.,IP"'H.II - (/"''1 + py) P"," + p(y + 1)p",.1I+1, 

(4.1) 

o :5 z :5 n, 0:5 y :5 b. (4.2) 

Writing 

P ",(t) = [P"'~(t) 1 ' 
(6+1)xl p",~(t) 

we find that (4.2) can be written as 

P~ = {-Bn - A+~A}Pn' (4.3) 

where 
Bn = diag(/no, Inl, . .. , Inb), 

(6+1) X (6+1) 

A = diag(O,p, .. . ,pb), 
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and A is a matrix with ones on the first upper diagonal and zeros elsewhere. 
More generally 

P~ = {-Bz - A - AA}Pz + Bz+1Pz+1, x = 0, .. . ,n -1, (4.4) 

where 
Bz = diag(fzo, Izll' .. , Izb). 

(b+1)x(b+1) 

Once again, using Laplace transforms, we derive: 

A () b! b-i rrb ( , k )-1 
Pni 8 = it P 8 t J nk t p , 

k=1 
i = O,l, ... ,nj 

b., ; 
Pzi(S) = L ~p;-i II (s + Izk + kp)-1 Iz+1,;Pz+1,;(S), 

;=1 .. k=1 
x = 0,1, ... , n - 1. (4.5) 

Limiting probabilities can be obtained from these. In the particular case 
where IZI/ = xy, Booth et al. (1986) have shown that the earlier results of 
Weiss, Dietz and Downton can be derived as a special case of the general 
infection mechanism. 

Many problems remain in the area of epidemic modeling, among them 
the spread of epidemics in groups subdivided by age or genetic constitution. 
These have yet to be investigated. 
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Michel Blais 1 

TRANSIENCE IN A QUEUEING SYSTEM WITH A FINITE 
NUMBER OF LOCALLY INTERACTING SERVERS 

ABSTRACT 

This paper discusses the transience and ergodicity of a queueing system 
with local interaction. It completes the paper of Malyshev and Tsaregrad­
skii (1982) using the method developed by Malyshev and Menshikov (1981). 
Then the properties of transience and/or ergodicity can be concluded imme­
diately for other queueing systems. 

1. INTRODUCTION 

Malyshev and Tsaregradskii (1982) made use of a criterion developed by 
Malyshev and Menshikov (1981) to determine the ergodicity of their model. 
This model is one of the simplest possible queueing systems involving a 
locally interacting finite number of birth-and-death chains with countable 
states. The difficult but challenging subject of Markov processes with local 
interaction has been studied mainly for the case where the state space at 
each point is finite. This simplification of more difficult models in statistical 
physics has been used in many different areas. See, for instance, Dobrushin 
et al. (1978). Here we only suppose that the state space at each point is 
countable. This adds new difficulties, but presumably the model is a little 
more realistic and seems to cover a larger domain of potential applications. 
Let us first give a description of this model. 

Let n servers stand in a line. At each server in each unit time a new call 
arrives with probability p. Each server in the system services at most one 
call in its queue in unit time; the service probability equals a if neighbouring 
servers are occupied and equals 0 ' if at least one neighbouring server is 
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free. Suppose furthermore that calls arrive at each server independently and 
servers serve independently. 

This model is a homogeneous Markov chain on Z+ with discrete time. 
The chain is transient if a < p and is ergodic (positive recurrent) if p < 
min {a, a'}. Thus it remains to investigate the non-obvious case a' :::; p :::; a; 
in this case we observe that the chain is irreducible and aperiodic for 0 < 
p < 1. 

Malyshev and Tsaregradskii (1982) proved that the chain is ergodic if 
a' > ap/(a+p). They proved transience in particular cases (a = 1 or n = 3) 
if a' < ap/(a + p). 

The goal of this work is to prove transience in the case 

a' < ap / (a + p) < P < a 

and n is odd. The question is to find a suitable function and use it in 
the method of Malyshev and Menshikov (1981) to show that the chain is 
transient. Let us first briefly examine this technique. 

2. THE METHOD 

Let L be a homogeneous irreducible and aperiodic Markov chain on 
Z+ with (P(x, y))( )EZ" z .. as its transition matrix. Let E(x) = "',II + x + 
(E1(x), .. . , En(x)) be the vector of the mean jump in one step from the 
point x E Z+. 

Let A = (i1 , •• • , i/c) denote an ordered set of natural numbers such that 
1:::; k :::; n and 1:::; i1 < i2 < ... < i/c :::; n. For such A and c, t E R+, let 

Condition 1. (Spatial Homogeneity): there exists c ~ 0 such that for all 
A, 

all a = (a1,' .. , an) E Z+ with a, = 0 if i ¢ A, 
all x E B:'c n Z+ and all y E Z+ we have P(x, y) = P(x + a, y + a). 

Condition 2. (Boundedness of Jumps): For all x E Z+ there is a finite 
number of y E Z+ such that P(x, y) i= O. 

Assuming the first condition, the second is equivalent to: there exists 
d> 0 such that P(x, y) = 0 if II x - 11 II > d. (11·11 is any norm in Rn) . 
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The method of Malyshev and Menshikov consists of establishing a gen­
eralized Foster's criterion (see Foster, 1953) by considering particular homo-

geneous Markov chains LA and vectors tJA. 
For A:f:. (1, ... , n) we choose an arbitrary point 

and define a set 

cA = {x E Z+ : Xi = ai, i E A} . 

Definition 1.1. LA is the Markov chain on CA with transition matrix 

A P(x, y) = L: P(x, y'), x,y E CA, 

II' 

where summation is performed for all y' E Z+. such that y~ = Yi for i ¢ A. 
It follows from condition 1 that LA does not depend on the choice of a E 

Be,o nz+.. 

Condition 3. For any A:f:. (1, ... , n) the chain LA is irreducible and aperi­
odic. 

Definition 1.2. The vector vA on BA is defined as follows: 

(i) if A = (1, ... , n) then tJA = E[X] where x E Bt,e n Z+.; 
(ii) if A:f:. (1, .. . ,n) and LA is ergodic with (",A(z)) (z E CAl its stationary 

probabilities, then 

(iii) if A :f:. (1, ... , n) and LA is nonergodic the vectors vA are not defined. 

From Conditions 1 and 2 it follows that 

max II tJA II < 00. 
A 
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Theorem 1.1. Under Conditions 1, 2, and 3, L is transient if for some 8, 
b, t, c > ° there exists a nonempty set T c R+ and an unbounded function 
! : R+ - R+ such that: 
1° I !(x) - !(y) I ~ b II x - y II, for all x, y E R+j 

2° !(x) ~ t 
!(x) < t 

for all x E T, 
for all x (j. Tj 

3° for all A such that LA is ergodic, for A = (1, ... , n) and for all x E 
B~onT, !(x+vA)-!(x)~8. 

3. SOLUTION OF THE PROBLEM 

Malyshev and Tsaregradskii (1982) showed that the component vt de­
pended only on the number of consecutive servers not in A on each side of 
the ith server, and calculated these components. Denote the component vt 
by rkt if i E A and there are k consecutive servers not in A to the left of the 
ith server and l consecutive servers not in A to the right. Then for k, l ~ 1 
they obtain: 

roo = p - a, 

rOk = rkO = 7r~k)(p - a') + (1 - 7r~k)) (p - a), 

rkt = rtk = [1 - (1 - 7r~k)) (1 - 7r~t))] (p - a') 

+ (1 - 7r~k)) (1 - 7r&) (p - a), 

where 7r~k) is the stationary probability of the zero state of the first coor­
dinate of the chain L on Zi (by symmetry it could be the last coordinate 
too, see Malyshev and Tsaregradskii (1982, p. 622). Since the stationary 
probability is known for k = 1 we have 

rOl = a'(p - a)la, 
rll = (a - p) lap - a'(a - p)] la2• 

Finally we define a function! which verifies the conditions of Theorem 1.1. 
Let! = max {g,O}, where 

g(Xl, ... ,Xn )= ,min {x.}-2,max {x.}. 
, even , odd 

1 ° I /(x) - /(y) I ~ 3 max I x. - y. I . 
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Actually it suffices to prove this for g, 

I g(x) - g(y) I = I .min {x,;} - 2 .max {xd - .min {Y'} + 2 .max {Y'} I 
, even , odd , even , odd 

~ I .min {x.} - .min {y.} I 
, even " even 

+ 21 .max {y.} - .max {x} I 
, odd , odd 

~ max I x. - Yo I + 2 max I x. - y. I 
, even , odd 

< 3 max I X· - y·l· - • , 'I , 

2° From the definition of f we see that f (Xl, . .. , xn ) = 0 if x. = 0 for an i 
even. So f may be non-null only on the BA with A containing at least 
all even coordinates. 

We set T = {x E Z+ : j(x) :2: 1} and then the vt may take only the 
following values when BA n T =f:. 4>: 

vt E {roo,r01,r11} 

vt E {O, roo} 

for i even, 

for i odd. 

3° There are the following possibilities for f (x + vA) - f(x) when x E 

BA n T and n is odd. Set y = max, odd {x,} for simplicity. 
(a) If min. even {x, + vt} = x'o + r11, then mint even {x,} = X'o since 

r11 > 0 :2: r01 > roo in our case; and if A contains at least one odd 
coordinate; then 

f (x + vA) - f(x) = X'o + r11 - 2y - 2roo 

and 
-x'o + 2y = r11 - 2roo. 

(b) If as in (a) but A does not contain any odd coordinate, then 

(c) If min. even {x, + vt} = x'o + r01, then min. even {x.} = x' l ~ x'o 
and A contains at least one odd coordinate, and 

f (x + vA) - f(x) = x'o + r01 - 2y - 2roo 

and 
-X'l + 2y :2: r01 - 2roo· 
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(d) If mini even {Xi + vt} = Xio + rOO, then mini even {Xi} = Xil :::; X'o' 
A contains at lQast two odd eoordinAtes, and. 

/ (x + vA) - /(X) = Xio + roo - 2y - 2roo - Xi l , +2y ~ -roo. 

Thus with S = rll we have / (x + vA) - /(x) ~ S > O. 

We conclude the chain is transient if n ~ 3, n odd, and 

0:::; 0.' < o.pI(o. + p) < P < 0. :::; 1. 

If n is even we know nothing except of course for n = 2 where the chain is 
ergodic if 0 < 0.' < o.pI(o. + pl. 

In order to continue these studies with the method of Malyshev and 
Menshikov we have to know more about the stationary probability. 

4. SERVERS STAND IN A CIRCLE 

We suppose now that servers stand in a circle, so that there are two 
neighbouring servers for each server. This chain is similar to the former one; 
it is transient if p > 0. and ergodic if p < min {o., o.'}. Chains LA are of the 
previous type since CA represent sets of servers in a line. For the vA there 
is an alteration if n ~ 3 and A = (i), 1 :::; i :::; n. In that case LA is a chain 
on Z+.-l (servers in a line) with the first and last servers neighbour of the 
server (i) in A. There is not necessarily independence between first and last 
servers. We have then: 

A _ n-l _ ( _ ) [1 _ 2n(n-l) + n(n-l)] vi - r - p 0. 0 00 

+ (p - 0.') (2n~n-l) _ n~~-I)) 

= (p - 0.) + (0. - 0.') (2n~n-l) - n~~-l)) , 

where n~~-l) is the stationary probability of the zero state of the last and 
first coordinates of the chain Lon Z+.-l (with servers in a line). 

We see, since n~k) :::; 1- plo. for k ~ 1 (see Malyshev and Tsaregradskii, 
1982), that: 

r n - 1 < (p - 0.) + (0. - 0.') [2(1- plo.) - 0] :::; 0, 

if 0.' ~ lo.. Then Lemma 3 and Theorem 2 of Malyshev and Tsaregradskii 
(1982) imply that this chain is ergodic if lo. :::; 0.' :::; p < 0.. 
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From the solution of the previous section with exactly the same function 
we can say that this chain is transient if 01.' < Otp / ( 01. + p) < P < 01. and n ~ 4 
even (rather than n odd). 
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R. J. Kulperger 1 

CENTRAL LIMIT THEOREMS FOR 
CLUSTER POINT PROCESSES 

1. INTRODUCTION 

An interesting class of stationary point processes on R d is the class of 
Poisson cluster processes. Consider a parent process N and a countable 
sequence of independent and identically distributed (i.i.d.) point processes 
Yi on Rd. Each point mass x in N is replaced by an independent copy of 
Y centered at x. If N is a Poisson process, the resulting point process X is 
said to be a Poisson cluster point process (Poisson C.P.P.). 

Let A be a convex set, centered at 0, and T A = {Tx : x E A}, that 
is T A is the set A scaled up, or expanded, in every direction by a factor 
T > O. X is observed on the set T A. Since T A i Rd as T ~ 00, for a fixed 
A, the asymptotics or limit theorems on X are obtained as T ~ 00, that is 
when X is observed on increasingly large sets T A. Central limit theorems 
(CLT's) have been obtained for X(T A) in the Poisson C.P.P. by Westcott 
(1972), when d = 1 and Y has 2 moments, and by Ivanoff (1980,1982) when 
d ~ 1 and Y has 3 or 4 moments. Ivanoff (1982) also obtained a functional 
CLT for X(TtA), t E [O,l]d. Burton and Waymire (1984) also discussed the 
d ~ 1 case and obtained a functional CLT with only a condition of summable 
covariances by using a notion of positive association. The main tool they 
used is the probability generating functional (P.G.F .). Ivanoff (1982) also 
considered other methods on more general point processes. The P. G.F. is 
not such a useful tool in studying second order statistics of Poisson C.P.P.'s. 

Suppose most of the mass of the clusters are contained in a compact 
set C. When T A is large, X observed on T A is nearly a random sum of 
i.i.d. clusters with different centres, ignoring edge effects on T A. CLT's for 
X(T A) are then, roughly, consequences of random norming CLT's of the 
type given by Billingsley (1968, Theorem 17.1). 
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In this paper, this notion ilol made more precise. It is not assumed that 
N is a Poisson process, but that it satisfies some conditions. The various 
assumptions are given in Section 2. In Section 3, a CLT and a functional 
CLT are obtained under a few moment conditions on the clusters Y. In terms 
of moment conditions on Y, these conditions are weaker than Ivanoff's for 
the CLT, but are stronger for the version of the functional CLT obtained 
here. Kulperger (1979) required an infinite number of moments for a similar 
CLT. 

The methods used here should be more useful in the study of higher 
order intensity estimates for Poisson C.P.P.'s. 

2. DEFINITIONS AND ASSUMPTIONS 

N is a simple stationary point process, and Yo, i ~ 1, is an i.i.d. sequence 
of simple point processes independent ofN (for definitions, see Moyal, 1962). 

Definition. X defined by 

X(A) = L Y",(A - x) 
",eN 

is said to be a (simple) C.P.P. 
Since N is a simple point process, all of its point masses are isolated, 

so the definition is sensible. The notation is X(A) = number of points of 
the X process in A and a similar definition for Y"" the cluster replacing the 
N-point mass at x. As will be seen later, under some moment conditions on 
Y, for compact A, X(A) is almost surely finite. The point processes Yare 
called the cluster mechanisms or simply the clusters. 

Some assumptions on Nand Yare now given. If N is a Poisson process, 
it satisfies all the assumptions made here. If N is a strong mixing process or 
a Poisson C.P.P., with appropriate moment assumptions it will also satisfy 
the assumptions made here (Ivanoff, 1982). 

Some notation used is the following: 
(i) PN, PN(X), PN(Xl, X2), PN(Xt, X2, X3), CN(X) are the first order through 

fourth order intensities and covariance density, respectively, of N, 
(ii) py(x), py(x, y), ... , are the first and second order intensity (and so on), 

functions of the cluster mechanism, and 
(iii) I-'y = JRd py(x)dx = E(Y(Rd» = expected cluster size. Notice PN(X) 

is a function of only one variable since N is stationary. 

For 8 > 0, let A6 = {x : d(x, A) ~ 8} and A6 = {x : d(x, AC) > 8}, 
where d is Euclidean distance. A \ B means the set difference A minus B. 
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The following assumptions will be made in various parts of the next 
section. 

A.I Y{Rd) has two finite moments, E{Y{Rd)2) < 00, and N has two 
locally finite moments and f I CN{U) I du < 00. 

A.2 Let h : Rd - R with f I h{y) I dy < 00, and for 0 ::; t ::; 1, 

UT{t) = T- dj2 {I ( h{y - x)dy{N{dx) - PNdX)} 
(TtA)S\(TtA)s lTtA 

Then 
sup lUT{t) I ~O T - 00. 

099 

A.3 Suppose N satisfies a functional CLT: for A convex and compact, 
for 0 ::; t ::; 1, 

where Bl is a standard Brownian motion and u~ = PN + f CN{ u )du. 
A.4 The cluster size Y (Rd ) has four finite moments, and N has four 

factorial moment intensities which are integrable in the same sense 
that 

and III PN(Xl! X2, XS}dXl dX2 dxs < 00. 

A.S There exists a Co > 0 such that for all c ~ Co, 

T-d/4 sup N{(sA)6 \ (SA)6) ~ 0 as T - 00. 
O~.~T 

See Leadbetter et &1. (1983) for various types of mixing conditions 
for which A.5 could hold. 

The following formula will be useful in the next section, and can be 
obtained in a straightforward way. 

Lemma 2.1. For a C.P.P. X, the first moment and covariance function are 
given as follows: 

(i) E(X(A)) = PNI'Y I A I . 
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(ii) 
Cov(X(A) , X(B)) 

= PNI-'Y I An B I +PN { ! ( PY(Yl - X, Y2 - x)cN(x)dY2dy1dx. lR<I. AlB 

If N has independent increments, that is, it is a Poisson process, then 
CN(U) = 0 for U =f. o. 

3. THE CENTRAL LIMIT THEOREMS 

Let C ~ R d be a compact rectangle centred at o. For a cluster Y", 
centered at x, write Y", = Y",o +Y",R, where Y",o and YzR are the parts on C+x 
and the remainder. In obvious notation, one can decompose X = XO + X R. 

The process XO is a C.P.P. in which the cluster mechanism has compact 
support. Let 8 = diameter (C). If XO has a point mass in A, then its 
N-parent must lie in A6. CLT's for the simpler process XO and then it is 
shown that the remainder process X R is not too large. 

Let A be a convex set in R d with 0 in the interior of A. Let 0 ~ t ~ 1. 
Observe X on T A. T A i Rd as T ---+ 00. For each T and A, {TtA: 0 ~ 
t ~ I} is a nested family of sets indexed by [0,1]' and for s ~ t, sA ~ tAo 
For each T and A, X(TtA) is a stochastic process indexed by [0,1]' and for 
o ~ s ~ t ~ 1, X(TsA) ~ X(TtA). 

X(TtA) - PNJ.ty I TtA I = J: Y.,(TtA - x)N(dx) - PNJ.ty I TtA I 

= J: YzO(TtA - x)N(dx) - PNI-'~ 1 TtA 1 (3.1) 

+ f: YzR(TtA - x)N(dx) - PNI-': I TtA I, 

where I-'Y = IoPy(y)dy + Iocpy(y)dy ~f I-'~ + 1-':. The CLT for X is 
obtained from the case t = 1. 

Lemma 3.1. Suppose A.l holds. Let f > 0, I > o. Take C so large that 

Then 
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for T sufficiently large. 

Proof. Apply Lemma 2.1 to the C.P.P. X R to calculate T-dYar(XR(TA)). 
Also noting, for example, 

and a similar bound for the last term from Lemma 2.1, this lemma follows 
from Chebyshev's inequality. 

Consider the first term on the right hand side (RHS) of (3.1). 

( Y:z:C(TtA - x)N(dx) - PNI'~ITtAI JR 4 

= ( X~(TtA - x)N(dx) 
J (TtA)6\(TtA)6 

- E [( Y:z:C(TtA - X)N(dX)] 
J(TtA)6\(TtA)6 

+ ( Y:z:C(Rd)N(dx) - E [( y:z:C(Rd)N(dX)] , (3.2) 
J(TtA)6 J(TtA)6 

since if x E Bo then Y:z:C(B) = Y:z:C(Rd). A central limit theorem is now 
obtained for X(T A). 

Theorem 3.2 Suppose A.l holds. Then 

T- d/2(X(TA) - PNI'Y I TA I) ::} N(O,Uk I A I), 

where uk = PN Yar(Y(Rd)) + I'~u~. 

Proof. Consider (3.1) and (3.2) at t = 1, and multiply by T-d/ 2 • In Lemma 
3.1 take f = "f and G so large that the remainder term from (3.1) is at most 
f with probability ~ 1 - f for T sufficiently large. By direct calculation 
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Therefore T-d/2 (first term on RHS of (3.2)) ~ 0. A law oflarge numbers 

argument gives T-ti N((TAh) .!!. PN I A I > o. Therefore by a minor 
variation of the simple random norming CLT (Billingsley, 1968, Theorem 
17.1), 

T-d { ( Y",C(Rd)N(dx) - E [( y",C(Rd)N(dX)]} => N(O, V(C)) , 
J(TA)6 J(TA)6 

where the limiting variance V(C) t uk 1 A 1 as C t Rd. Since € > ° is 
arbitrary, the theorem will follow. 

Next a functional CLT is obtained. Let 

WT(t) = T-d/2 (X(TtA) - PN/Ly 1 TtA I), ° ~ t ~ 1. (3.3) 

Another interesting version is to replace the index set [0,1] by [0, l]d, as has 
been done by Ivanoff (1982). Here the index set [0,1] is used so that the 
truncation method is not obscured. Basically the same methods can be used 
in the [0, l]d index case. 

Lemma 3.3. Suppose AA holds and let ° ~ tl < t < t2 ~ 1. Then for some 
constant K depending on N, but not t1, t, t2 or the cluster mechanism, 

E{[WT(t2) - WT(t)]2[WT(t) - WT(tt)]2} 

~ K E[Y(Rd)4] 1 A 12 (t~ - tt)2. 

Proof. By first conditioning on N, this is a straightforward but tedious 
computation, similar to that in Lemma 3.1. 

Corollary 3.4. Suppose AA holds. For any € > 0, 'Y > 0, there exists C 
sufficiently large so that for all T sufficiently large, 

Proof. A proof of this can follow the details of the proof given by Billingsley 
(1968, Theorem 15.6, pp. 128-30), yielding in place of (15.30), upon using 
Lemma 3.3, 
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where K 1 is some constant and w" is the modulus of continuity on p. 118 
of Billingsley. Combining this with Lemma 3.1 yields the corollary. 

A functional CLT for the family of random variables X(TtA) , 0 ~ t ~ 1, 
is now obtained. Recall {TtA: 0 ~ t ~ I} is a nested family of subsets of 
TA. 

Theorem 3.5. Under assumptions A.2 - A.S, 

WT(t) :::} 1 A 11/2 uxB(t), 0 ~ t ~ 1, 

where B is standard Brownian motion and Ux is given in Theorem 3.2, and 
WT is given by (3.3). 

Proof. Let f > O. In Corollary 3.4, take 'Y = f and C sufficiently large. 
Following (3.1), write WT(t) = UT(t) + T-d/2(XR (TtA) - PNJ.'~ 1 TtA I), 
where UT(t) = T-d/2(XC(TtA) - PNJ.'~ 1 TtA I). By Corollary 3.4, 

where 

sup 1 WT(t) - UT(t) 1 ~ 0 as T - 00, 
O:9~1 

UT(t) = T- d/2 ! (Y.,C(Rd) - J.'~)N(dx) 
(TtA), 

+ J.'~T-d/2(N((TtAh) - PN I (TtA)6 I) 

(3.4) 

+T-d/2 { J [Y.,C(TtA-x)- J P~(Y-X)dY1N(dX)}. 
(TtA)'\(TtA), (TtA) 

+ T-d/2 { J [! p~(y - x)dy)N(dx) 
(TtA)'\(TtA), TtA 

-PNJ.'~(I TtA 1 - 1 (TtA)6 I] } 

Each term on the RHS has mean O. By A.2, SUPt 1 last term 1 ~ O. For 
the third term proceed as follows: conditional on N, Y.,(TtA - x) ~ y.,(Rd), 
an i.i.d. sequence with finite fourth moments. Then 

N(T A)-l/. sup Y.,(TtA - x) _ 0, 
"ETA 
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since T- d N(T A) -. PN I A I > O. Then using A.5, 

T-d/ 2 ( Y:I:(TtA - x)N(dx) 
i(Tta)6\(TtA)& 

= Op (N(T A)-1/4 s~p Y(TtA - x)) 
. T- d/ 4 sup(N(TtA)8 \ (TtA)6)) ~ O. 

t 

The other part of the third term is handled similarly. By a minor variation 
on the simple random norming CLT (Billingsley, 1968, Theorem 17.1) and 
A.3 we then obtain 

UT(t) * (IAlpN~~Var(yC(Rd)))tBl(t) + (IAI~~u:v)tB2(t) 
g IAliu*B(t), (3.5) 

since Bl and B2 are independent Brownian motions, and ui is given by Ux 
with XC replacing X. Also u* -. Ux as C i Rd. Since £ > 0 is arbitrary, 
the theorem now follows from (304) and (3.5). 

4. REMARKS 

In Theorems 3.2 and 3.5, the constant uk appears. However, uk = 
(21r)d/x (0), where Ix is the spectral density of X. Under Ao4, X has four 
moments. It can then be shown that a consistent estimate of Ix (0) can be 
constructed by a weighted sum of periodograms (see Brillinger (1978) for 
relevant details, or Kulperger (1982) for a similar time series example). In 
this way Theorem 3.5 or its analogues can be used to construct a graphical 
test of constancy of the first order intensity of a C.P.P. 

The methods used here may be used to obtain results on higher order 
intensity estimates of Poisson C.P.P.'s, under mild moment conditions. By 
conditioning on N, the C.P.P. observed on a large set is then viewed as a 
superposition of randomly centred i.i.d. point processes, except for some 
edge effects. These types of statistics are currently under investigation. 

In the case of the CLT (Theorem 3.2) with compact clusters and N being 
Poisson, a direct proof could also be obtained by using Lindeberg-Feller type 
conditions and a method similar to that used to prove a CLT for sums of 
an M-dependent process (see, for example, Rao (1984) for the M-dependent 
CLT). 



CLUSTER POINT PROCESSES 139 

ACKNOWLEDGMENT 

This work has been supported under NSERC grant number A5724. 

REFERENCES 

Billingsley, P. (1968), Convergence of Probability Measures. New York: Wiley and 
Sons. 

Brillinger, D. R. (1978), "Comparative aspects of the study of ordinary time series 
and point processes." Developments in Statistics 1, 33-133. 

Burton, R. M., and E. Waymire (1984), "Scaling limits for point random fields." 
Journal of Multivariate Analysis is, 231-2~1. 

Ivanoff, B. G. (1980), "The branching random field." Advances in Applied Prob­
ability 12, 825-847. 

Ivanoff, B. G. (1982), "Central limit theorems for point processes." Stochastic 
Processes and Their Applications 12, 171-186. 

Kulperger, R. J. (1979), "Parametric estimation for a simple branching diffusion 
process." Journal of Multivariate Analysis 9, 101-115. 

Kulperger, R. J. (1982), "Testing for non-linear shifts in stationary <p-mixing pro­
cesses." In Time Series Methods in Hydrosciences, ed. A. EI-Sharaawi and 
S.R. Esterby, pp. 37-44. Amsterdam: Elsevier. 

Leadbetter, M. R., G. Lindgren, and H. Rootzen (1983), Extremes and Related 
Properties of Random Sequences and Processes. New York: Springer-Verlag. 

Moyal, J. E. (1962), "The general theory of stochastic population processes." Acta 
Mathematica 108, 1-31. 

Rao, M. M. (1984), Probability Theory with Applications. New York: Academic 
Press. 

Westcott, M. (1972), "The probability generating functional." Journal of the Aus­
tralian Mathematical Society 14., 448-466. 



B. L. S. Prakasa Roo 1 

ASYMPTOTIC THEORY OF ESTIMATION 
IN NONLINEAR REGRESSION 

1. INTRODUCTION 

Nonlinear regression models occur frequently in the modeling of stochas­
tic phenomena. Several examples of such modeling are given by Bard (1974). 
The study of asymptotic properties of the least squares estimator (LSE) for 
parameters occurring in nonlinear regression has been the subject of inves­
tigation by several authors in view of the fact that it is, in general, difficult 
to obtain the exact distribution of the LSE for any fixed sample. Malin­
vaud (1970), Jennrich (1969), Bunke and Schmidt (1980) and Wu (1981) 
are a few authors among the many who have investigated the asymptotic 
properties of the LSE in nonlinear regression. Schmidt (1982) has given a 
survey of testing of hypotheses in nonlinear regression. All the earlier work 
cited above on asymptotic distribution theory for least squares estimators 
in nonlinear regression models assume regularity conditions which include, 
in particular, the condition on the twice differentiability of the rec;!'ession 
function with respect to the parameter in a neighbourhood of the true value 
in addition to other conditions. Schmidt (1982, p. 18) says that "up to my 
knowledge, there is no idea how to prove the asymptotic normality of the 
LSE when g(x, 9) is not differentiable with respect to 9 since all the proofs 
use the normal equations". Recently we have given an alternate approach 
for the study of asymptotic distribution theory. The least squares is consid­
ered as a stochastic p!'ocess in the parameter and the limiting distribution, 
if any, is obtained via the study of weak convergence of the least squares 
process. A similar approach was used for the first time in obtaining the 
asymptotic distribution of the maximum likelihood estimator for the esti­
mation of the location of the cusp of a continuous density by Prakasa Roo 
(1968). We present a brief survey of some recent results in the asymptotic 
theory of least squares estimators. These include the rates of convergence, 
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among others. 
It has been noticed that, even in linear models, the least modulus esti­

mator (LME) is better in performance than the least squares estimator when 
errors have a heavy tailed distribution. Even though analytically the LME 
is not tractable and it is difficult to get a closed form expression for the LME 
in general, computationally it is no longer a problem to obtain the LME. 
For instance, in linear models it can be reduced to a linear programming 
problem which can be solved using standard techniques. An excellent dis­
cussion of the LME and its properties in linear models are given by Basser 
and Koenker (1978) and Taylor (1974). We discuss some recent work of 
Ivanov (1984b) on the rate of consistency and asymptotic normality of the 
least modulus estimator for nonlinear regression models. For applications of 
the least modulus estimators, see Bloomfield and Steiger (1983). 

2. PRELIMINARIES 

Consider a nonlinear regression model 

X; = g; (0) + E;, j ~ 1, (2.1) 

where Ej, j ~ 1 are random variables with E(ej) = 0, j ~ 1 and () E e c 
Rk. Let 

n n 

Qn(O) = L [X; - g;(0)]2 , Rn(O) = L I X; - g;(O) I (2.2) 

and Bk denote the Borel u-algebra of subsets of Rk. A Bn-measurable 
mapping On : Rn -+ e for which 

(2.3) 

is called a lea8t 8quare8 estimator (LSE) for the parameter 0 based on the 
observations Xl!' .. , X n • Here e denotes the closure of the set 9. A Bn_ 
measurable mapping O~ : Rn -+ e for which 

Rn (O~) = inf Rn(O) 
BEe 

(2.4) 

is called a least modulus e8timator (LME) for the parameter 0 based on the 
observations Xl,.' ., X n . 
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Lemma 2.1. Suppose u(x,O) is continuous in 0 E e c Ric and measurable 
in x for any fixed 0 E e. Suppose further that e is compact. Then there 
exists a measurable function O(x) such that 

u(x,O(x)) = inf u(x, 0). 
8ee 

(2.5) 

For a proof of this lemma, see Schmetterer (1974, p. 307). As a conse­
quence of this lemma, it follows that a sufficient condition for the existence of 
either a LSE or a LME is that the sequence offunctions 9;(0) are continuous 
in 0 for j ~ 1 and e is compact in Ric. 

In the following discussion, we assume that there exists a measurable 
LSE On or LME O~. 

The notion of a minimum contrast estimator (MCE) has been introduced 
by Pfanzagl (1968). This generalizes the concept of a maximum likelihood 
estimator (MLE) for independent and identically distributed (i.i.d.) ob­
servations. He obtained the Berry-Esseen type bound for the distribution 
function of a MCE (Pfanzagl, 1971). The concept of a contrast function has 
been generalized by Prakasa Rao (1975) to a sequence of families of con­
trast functions and a Berry-Esseen type bound for the distribution function 
of a MCE is obtained by Prakasa Rao (1975) for the case of independent 
but not necessarily identically distributed (i.n.i.d.) observations. It can be 
shown that the least squares estimator (LSE) and the least modulus estima­
tor (LME) are special cases of the minimum contrast estimators, discussed 
by Prakasa Rao (1975), for suitable choices of contrast functions. These 
results pertain to the case when 0 is a scalar. Pfanzagl (1973) extended his 
results to a vector parameter case. However, the extension of his results 
in the vector parameter case for i.n.i.d. random vectors has not been done 
as far as this author is aware of, even though it should be possible to do 
the same in principle. In view of the fact that the concept of MCE is more 
general than a LSE or a LME, the regularity conditions imposed to obtain 
the rates of convergence and the Berry-Esseen type bound for the MCE are 
much stronger than are needed to obtain the same for the LSE or the LME 
directly. In the following discussion, we will not pursue this approach. For 
a discussion of the results via this approach, see Prakasa Rao (1985) and 
Ivanov and Kozlov (1981). 

3. CONSISTENCY AND RATE OF CONVERGENCE FOR LSE 

3.1 Scalar Parameter Case 
Consider a nonlinear regression model 

x. = 9'(0) + E., i ~ 1, (3.1) 
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where 0 E e c R and {E.,i ~ I} is a sequence of random variables with 
E (E.) = 0, i ~ 1. 

Theorem 3.1. (Ivanov, 1976). Suppose that E., i ~ 1 are i.i.d. random 
variables with E 1 E1 I· < 00 for some integer 8 ~ 2. Further suppose that 
there exists 0 < K 1 ~ K 2 < 00 such that 

n 

nK1 (01 - O2)2 ~ L [U; (01) - U; (02)]2 ~ n K2 (01 - O2)2 (3.2) 
;=1 

for all 011 O2 in e. Then there exists a constant c > 0 independent of nand 
p such that 

(3.3) 

for every p > O. 
Let 00 denote the true parameter. Note that 

n n 

Qn (00) = LE~ = L [X. - U. (00)]2 
i=l .=1 

.=1 
n 

= L>~ + n Wn (8n , 80) - 2n Un(8n}Wn(8n, 80}, (3.4) 
.=1 

where 

and 
n 

nWn (01, O2) = L [U. (01) - U. (02 )]2 • (3.6) 
.=1 

Relation (3.4) implies that, for any E > 0, 

P'o (I in - 00 1 > E) ~ P'o { sup 1 Un(O) 1 ~ !} . 
1'-'01>. 2 

In particular, for any p > 0, 

p'o{ntlin-Ool>p}~P'o{ sup IUn(O}I;:::~} 
1'-'01>, 

+P,o { sup 1 Un(O) I;:::~}' 
,n-t<I'-'ol~' 
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It can be checked that there exists C1 > 0 and C2 > 0 such that 

and 

Peo { sup 1 Un (9) 1 ~ ~} ~ C2P-e 
pn-! <Ie-eol~p 

(for details, see Ivanov, 1976, or Prakasa Roo, 1984a). The last inequality 
follows from studying the oscillations of the stochastic processes 

n ~ 1, 

where 
1 n 

Vn (9) = l L e; {g;(9) - g; (90)}, 

n ;=1 

me = 90 + pn-t + mp [nt r1 
. 

This result has been generalized by Prakasa Roo (1984a) to the case 
when {e., i ~ I} form a dependent sequence not necessarily identically dis­
tributed. 

Theorem 3.2. (Prakasa Roo, 1984a). Let {e;,j ~ I} be a I/>-mixing process 
satisfying the following conditions: 
(i) 

(ii) 

i ~ 1 and 

00 

supE 1 e. I' < 00, • 

L:)i + 1) {tj>(i)}! < 00, 

.=1 
(3.7) 

where tj> (-) is the mixing coefficient. Further suppose that the condition 
(3.2) holds. Then there exists a constant c > 0 independent of n and p > 0 
such that, for every p > 0, 

(3.8) 

Remark 3.1. This result continues to hold if {e.} is a strong-mixing process 
provided there exists 6 > 0 such that 
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E(E,) = 0, i ~ 1 and sup E I E, IH26 < 00, , 

00 

2)i + 1) {a(i)}6/(H6) < 00, 

,=1 
(3.7)' 

where a(.) is the strong mixing coefficient (see Prakasa Rao, 1984a). One 
can prove an analogous result under some conditions for an absolutely regu­
lar sequence {E" i ~ 1} by using some inequalities due to Yoshihara (1978). 
Note that the condition of absolute regularity is weaker than <J>-mixing or 
strong mixing. For results on the strong consistency of least squares esti­
mator in nonlinear regression model, see Ivanov and Kozlov (1981) or Wu 
(1981) when the errors are i.i.d. and Nelson (1980) when the errors form a 
martingale difference sequence. Observe that, as a consequence of (3.8), it 
follows that eventually 

n! 10,. - 80 I :5 n'J a.s. [Pool (3.9) 

whenever 1/4 < '1 < 1/2 by the Borel-Cantelli lemma. In particular, it 
follows that 

6,. - 80 a.s. [Pool as n - 00. (3.10) 

Theorem 3.2 stated above can also be generalized to the case of a weighted 
least squares estimator provided the sequence of weights is bounded (see 
Prakasa Rao, 1984a). The rate obtained in Theorem 3.1 or Theorem 3.2 can 
be improved when the errors {E,} form an LLd. Gaussian sequence. 

Theorem 3.3. (Prakasa Rao, 1984b). Let {Ej, j ~ 1} be i.i.d. Gaussian 
random variables with mean 0 and known variance q2. Further suppose that 
the condition (3.2) holds. Then there exists constants B > 0 and b > 0 such 
that 

(3.11) 

for every p > 0 and n ~ 1. 
The bounds obtained in the inequalities (3.3), (3.8) and (3.11) can be 

shown to be uniform on compact sets K ca. 
The proof of the last theorem can be given by considering 

Z,.(</» = exp {~(Q,.(8) - Q,.(8 + </>n-!)) } 
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as a stochastic process with tP as the index for any fixed fJ E a and studying 
the oscillation of the process. Note that for any p > 0, 

For details, see Prakasa Rao (1984b). 

3.2 Vector Parameter Case 

Let us now consider the nonlinear regression model 

Xi = gi(fJ) + Ei, i ~ 1, (3.12) 

where fJ E a c Ric and {Ei} is a sequence of random variables with E (Ei) = 0 
for all i ~ 1. 

The following result gives the rate of convergence of the LSE in this case. 

Theorem 3.4. (Prakasa Rao, 1984c). Suppose {Ei} is a sequence of inde­
pendent random variables such that 

E(Ei) = 0, i ~ 1, sup E I Ei I'" < 00 for some m > k and m ~ 4. (3.13) 
i 

Let K c a be compact. Assume that there exists positive constants 0 < 
Kl ~ K2 < 00 such that 

(3.14) 

where 
" 

W" (fJ1, fJ2) = n-1 L [gl (fJ1) - gi (fJ2)]2 • 
i=1 

Then there exists a constant C K > 0 depending only on the compact set K 
and m such that 

(3.15) 

for every p > 0 and n ~ 1. 

Remark 3.2. The proof of this result is based on the technique of fluctua­
tion inequalities as in the scalar parameter case. It was assumed that m > k 
and m ~ 4 where k is the dimension of the parameter. This condition is too 
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strong for theoretical purposes and it ie connected with the method of Pl'Ot'lf. 
We conjecture that the result holds for m ~ 4. The condition that m > k 
is analogous to the condition (3.4), p. 185 of Ibragimov and Hasminskii 
(1981) in their study of the properties of the maximum likelihood estimator 
in the vector parameter case via the weak convergence of the normalized 
log-likelihood ratio process. 

The following result is due to Ivanov (1984a) when the errors {ell are 
LLd. random variables with E(ei) = 0, i ~ 1. 

Let dn = dn(O), 0 E e be a diagonal matrix of order k x k with diagonal 
elements din, 1 ~ i·~ k. Suppose that, for any compact K c e, 

1 ~ i ~ k. 

Define 
n 

n'in (01 , O2) = L [9; (0 1) - 9; (02)J 2 , 01 , O2 E e 
;=1 

and 
4>n(U1' U2) = n'in(O + n l d~lU1' 0 + n l d~lU2) 

for all Ul, U2 E Un(O) where' 

U,.(8) = {8* : 8 + ni d;-10* E e}. 

(3.16) 

For any T > 0, let B(T) = {u ERic: II U II ~ T}. Let K c e be compact. 
Suppose the following regularity conditions hold: 

For any e > 0 and P > 0, there exists S > 0 such that for n > no 
(depending on K), 

For some Po> 0 and for any 0 < , ~ Po, there exists ~ > 0 and p > 0 such 
that, for n > no, 
(i) 

(ii) 

(3.18) 
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{ei,i ~ I} are i.i.d. random variables with E(el) = 0, 

0'2 = E {eD and E I el Ie < 00 for some integer 8 ~ 3. (3.19) 

Theorem 3.5. (Ivanov, 1984a). Under the conditions (3.17) to (3.19), for 
any p > 0, 

Remark 3.3. Ivanov (1984a) has also obtained a moderate deviation result 
for the vector parameter case. Under some additional conditions, he has 
shown that if E leI 18 < 00 for some 8 such that 82 > 8+k, then there exists 
c > ° such that 

sup Ps {II dn(O)(On - 0) II ~ c(logn)i} = o(n-(e-2)/2). (3.21) 
'EK 

We will not discuss the details here. 
Unaware of the results ofPrakasa Rae (1975), Ivanov and Kozlov (1981) 

extended the concept of minimum contrast estimators to i.n.i.d. observations 
and obtained the following results on the na-strong consistency of the least 
squares and least modulus estimators. Their definition of a sequence of 
contrast functions differs from that given by Prakasa Rae (1975). 

Definition 3.1. A sequence of estimators 00 is said to be na-strongly con­
sistent for 00 if 

na liOn - 00 II- ° a.s. IPso] as n - 00. 

Theorem 3.6. (Ivanov and Kozlov, 1981). Assume that {ei} are LLd. 
random variables with E (el) = 0, var{el) < 00. Further suppose that the 
following conditions hold. Let K be compact contained in O. For every 
00 E e, there exists Q > ° such that for every e > ° 

lim ( inf wn (0, (0)) > 0, 
n=+oo 'EK\v(So,cn- a ) 

(3.22) 

where 1) (00 , en-a) = {O : 110 - 00 II :::; en-a}, and 

lim ( sup {Wn(01,02)-W(01,02n) :::;0, (3.23) 
n-+oo Sl,'2EK 
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where Ill' (0 1 , ( 2) is uniformly continuous on the diagonal [0 1 = O2], in the 
sense that for every E > 0 there is a 6 > 0 such that Ill' (01, (2) < E whenever 
II 01 - O2 II < 6. Then the LSE 9n defined by 

Qn(9n) = inf Qn(O) 
9EK 

is ncr-strongly consistent. 

Remark 3.4. The condition (3.23) is not necessary for strong consistency. 
For example, consider the nonlinear regression model 

xi=cosiO+Ei, i ~ 1, (3.24) 

where 0 E 8 = (0,11") and {Ei,i ~.1} are Li.d. random variables with E(ei) = 
O. If K = [,8,')'],0 < ,8 < ')' < 11", then 9n is n-strongly consistent but the 
condition (3.23) fails. 

4. CONSISTENCY AND RATE OF CONVERGENCE FOR LME 

Let" (Xi, 0) = I Xi - 9i(8) I, i ~ 1. Suppose that sequence {Ii} satisfies 
the following conditions: ' 
(i) 

(ii) 

E90 li (Xi, 8) < 00 for i ~ 1, 80,8 E 9, and 

for every 00 E 8, there is an a ~ 0 such that for every e > 0 

lim inf {n-1tE9o" (Xi, 0) 
n~oo 9EK\v(90 .cn-a ) i=l 

-n -1 ~ E9o" (Xi, (0) } > 0, 

where K is a compact set contained in 8. Let O~ be defined by 

Rn (8~) = inf Rn(O). 
9EK 

(4.1) 

(4.2) 

Theorem 4.1 (Ivanov and Kozlov, 1981). Suppose that ei, i ~ 1 are i.i.d. 
symmetric random variables with E(ED < 00 for every 0 E K. Further 
suppose that 

lim sup (n- 1 t I 9i (0 1 ) - 9i (0 2) l-rJ (01,02») :5 0, (4.3) 
n~oo 91 .92 EK i=l 
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where '1 (fit, O2) is uniformly continuous on the diagonal 01 = O2 , and 

lim 'lin (0,00) < 00 for any 0,00 E K, 
n-+oo 

(4.4) 

nO! /I O~ - 00 /1-+ ° a.s. [P'ol as n-+ 00. (4.5) 

Under some conditions similar to those given in (3.17) to (3.19), Ivanov 
(1984b) stated an analogue of Theorem 3.5. We now discuss this result. 

Let dn = dn(O),O E e be a diagonal matrix of order k x k with din, 1 ~ 
i ~ k as the diagonal elements satisfying (3.16). Define 

n 

Wpn (U1' U2) = L I f (j, U1) - f (j, U2) IP, p ~ 1. 
;=1 

Fix 0 E e. Let 

and 
B(T) = {u E R" : /I U /I ~ T} 

as defined earlier. Let K c e be compact. Suppose the following conditions 
hold. 
For any E > ° and p > 0, there exists 6> ° such that, for n > no (depending 
on K), 

sup sup n-1W1n (U1, U2) ~ E. 
'EK ul.u~eB(,)nu .. (.) 

(4.6) 

Il u l-u2l1S6 

For any p > ° and for n > no, 

sup sup m~x I j(j,U1) - f(j,O) I ~ Xl(p), if 8 = 1 
'EK uEu .. (,)nB(p) l~,~n 

and 
sup sup n-1w.n(u,0) ~ X.(p), if 8 ~ 2. (4.7) 
'EK uEu .. (B)nB(p) 

For any r > 0, there exists ~(r) > 0 such that, for n > no, 
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given that there exists Ra > 0 such that !:l. (Ra) = POiJ.1 +!:l.o where Po > 0 
a.nd 60 "> 0 are some numbers and P.1 !: E 1 E1 I. Here 

n 

R,.(8) = L I X; - 9;(8) I . (4.8) 
;=1 

{Eo} are i.i.d. random variables with E(E1) = 0 and 

E I E1 Ie = iJ.e < 00 for some s ~ 1. (4.9) 

Theorem 4.2. (Ivanov, 1984b). Under the conditions (4.6) to (4.9), there 
exists a constant c> 0 not depending on P and n such that, for any P > 0, 

where qn(s) = n-(e-1) for s ~ 2 and qn(l) -+ 0 as n -+ 00. 

A proof of this proposition is not given by Ivanov (1984b) and the reader 
is referred to Ivanov and Kozlov (1981). 

5. ASYMPTOTIC DISTRIBUTION OF LSE 

We will now study the asymptotic distribution of LSE via the weak 
convergence of the least squares process in the scalar parameter case and the 
least squares random field in the vector parameter case. For an alternative 
classical approach via normal equations, see Wu (1981). 

5.1 Scalar Parameter Case 

Consider the nonlinear regression model 

i ~ 1, (5.1) 

where Eo, i ~ 1 are i.i.d. random variables with mean 0 and finite positive 
variance 0- 2 and 8 E e c R. Without loss of generality, assume that 0- 2 = 1. 
Let On be a LSE as defined in section 3. Define 

Suppose that the following regularity conditions hold. 
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There exists 0 < kl < k2 < 00 such that 

(5.2) 

for all n ~ 1 and 01>02 in O. 
9,(0) is differentiable with respect to 0 for every i ~ 1 and for any 00 E e, 

there exists a neighbourhood VSo of 00 in a such that, for all i ~ 1, 
(i) 

19,(0) - 9, (00 ) - (0 - 00 ) 9~1) (00 ) 1 ~ d, (00 ) 1 0 - 00 12 

for all 0 E VSo where 9Jl)(00) denotes the derivative of 9,(0) at 00 and 
(ii) 

(iii) 

-1L:" 2 lim - d, (00 ) < 00. 
"-+oon ,=1 

1 " 2 
0< K = lim - "" [911) (00)] < 00. 

"-+00 n L...J ,=1 

(5.3) 

(5.4) 

Note that i" minimizes Q,,(O) - Q" (00) over 0 E a for any fixed 00 E a. 
Let 

J,,(4J) = Q,,(Oo + n-! 4J) - Q" (00) 

for all 4J such that 00 + n -l 4J E VSo' 

(5.5) 

Theorem 5.1. (Prakasa Rao, 1984d). Suppose the conditions (5.2) to (5.4) 
hold. Then, for any T > 0, the sequence of processes {J,,(4J) , -T ~ 4J ~ T} 
converge in distribution on C[-T,T] to the process {J(4J),-T~4J~T}, 
where 

(5.6) 

Here K is as given by (5.4) and e is N(O, 1). 
In view of Theorems 3.1 and 5.1, applying the results and methods in the 

theory of weak convergence of probability measures on complete separable 
metric spaces (see, for example, Prakasa Rao, 1968), it follows that 

where ~ is defined by the relation 

J(~) = minJ(4J) 
~ 

(5.7) 

(5.8) 
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and J(ifo) is as defined by (5.6). Note that 

(5.9) 

and hence 

Theorem 5.2. (Ivanov, 1976; Prakasa Rao, 1984d). Under the conditions 
(5.2) to (5.4), 

(5.10) 

and 
1. • L 1 

n 2 (On - (0 ) --+ N(O, K- ) as --+ 00, (5.11) 

where 0 < K = limn .... co ~ t [g~l)(OO)J2 < 00 as given in (5.4). 
,=1 

Remark 5.1. For variations of the above result and an application to the 
study of asymptotic properties of the LSE in the nonlinear regression model 

x, = I a, - 0 I + eo, i ~ 1, (5.12) 

where e, are LLd. random variables with mean 0 and finite positive variance 
and {a,} is a real sequence satisfying some conditions; see Prakasa Rao 
(1984d). Note that this model is not amenable to study via the classical 
methods since g,(O) = I a, - 0 I is not differentiable with respect to 0 at 
0= a,. 

5.2 Vector Parameter Case 

Consider the nonlinear regression model 

i ~ 1, (5.13) 

where {g,(O), 1 ~ I} is a sequence offunctions possibly nonlinear in 0 E e c 
Rk and eo, i ~ 1 are independent random variables with mean 0 and finite 
variances. Let ul = E (en and On be a LSE as defined in Section 3. Define 

n 

\lin (01) (2 ) = n-1 L [go (0 1) - g, (02 )1 2 • (5.14) 
,=1 

Suppose the following regularity conditions hold. There exists 0 < k1 < 
k2 < 00 such that 
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for all n ~ 1 and 81,82 in 9. 
9.(8) has partial derivatives with respect to the components of 8 and, for 

any 80 E 9, there exists a neighbourhood Veo of 80 in 9 such that, for all 
i ~ 1, 

for all 8 E Veo ' where "V9. (80) is (*, ... , *) evaluated at 80 . Further, 

-ll:n 
2 lim- d. (80 ) < 00. 

n n .=1 
(5.16) 

{EI} are independent random variables with E (e.) = 0, E(en = 0'; and 

sup E I e. 1m < 00 for some m > k and m ~ 4 and 
i 

i~f E(en ~ 0'2 > O. 
• 

The matrices 
(i) 

and 
(ii) 

exist and are positive definite. 
Fix 80 E 9. Define 

for all 4> such that 80 + n -! 4> E Veo ' 

(5.17) 

(5.18) 

(5.19) 

Theorem 5.3. (Prakasa Rao, 1984e). Under the conditions (5.15) to (5.17), 
the sequence of random fields {Jn(4)),II4> II ~ T} converge in distribution to 
the random field {J (4)), II 4> II ~ T} on the space C of continuous functions 
on {4>: 114> II ~ T} for any fixed T > 0, where 

J(4)) = 4>' K*4> + 24>'e (5.20) 
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and e is k-variate normal with mean vector zero and covariance matrix K. 
Here K and K* are as defined by (5.18). 

In view of Theorem 3.4 and Theorem 5.3, and applying again the theory 
of weak convergence, it follows that 

(5.21) 

where 4> is defined through the relation 

J(4)) = inf J(~) 
~ER." 

(5.22) 

and J(cfo) is as defined by (5.20). Observe that 

(5.23) 

Hence 
n!(On-60) ~ NIe(O,K*-lKK*-l) asn-+oo, (5.24) 

where Nle (O,~) denotes the k-variate normal distribution with mean vector 
o and covariance matrix ~. 

Theorem 5.4. (Prakasa Rao 1984c, 1984e). Suppose the conditions (5.15) 
to (5.18) hold. Then, for any p > 0, 

(5.25) 

and 
n!(On - (0 ) ~ NIe(O, K*-l KK*-l) as n -+ 00. (5.26) 

Since m ~ 4, it follows that 

(5.27) 

from (5.25) by the Borel-Cantelli lemma. For an example of an application 
of Theorem 5.4, see Prakasa Rao (1984e). 

Remarks 5.2. The condition (5.17) that sup,E 1 €, 1"'< 00 for some m > k 
and m ~ 4 is purely a technical condition. It is imposed due to the method 
used in the proof based on fluctuation inequalities for random fields. We 
conjecture that the result continues to hold if for some S > 0, 

E (E,) = 0, sup E 1 E, 12+6 < 00, i~f E 1 E, 12 ~ 0'2 > O. (5.17)' , . 
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We further remark that it should be possible to relax the condition (5.17) 
to (5.17)', at least in case g,(.) are sufficiently differentiable as in Deshayes 
and Picard (1984). &ymptotic theory of LSE, under the weaker condition 
(5.17)' but stronger additional conditions, has been discussed by Prakasa 
Rao (1986). Methods used there are similar to those of Inagaki and Ogata 
(1975), Prakasa Rao (1972) and Huber (1967). 

We now discuss briefly the results of Prakasa Rao (1986). 
Suppose the following regularity conditions hold in addition to (5.16) 

and (5.17)'. 
00 

L [g, (8t)- g, (82)1 2 > 0 if 81 oft O2 in a. (5.28) 
,=1 

Observe that 

1 " 2VQ,,(0) = L [X, - g,(O)1 Vg,(O) 
,=1 
" = Lf], (Yo, 0) (say) . (5.29) 

,=1 

Suppose that ErU (Y" 0) = A,(O) exists where E denotes the expectation 
under the true model. Suppose there exists 80 E a such that A, (80) = 0, i ~ 
1. 

There exists a neighbourhood Usa of 00 such that the following conditions 
hold: 
(i) 

1 " 
X,,(O) = - L A,(O) - A(O) 

n ,=1 
as n - 00, 

where 
A( 0) oft A (00 ) if 0 oft 00 , 

(ii) A,(O) are continuously differentiable for i ~ 1 such that 

1 " 
A,,(8) = - LA,(8) - A(O) 

n ,=1 

uniformly for 0 E U'o, where A,(O) = aA;~S). 
Let 

(5.30) 

u,(y,O,d)= sup Iru(y,r)-f],(y,d)l. (5.31) 
IIr-SIl~d 
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Suppose that for every compact K c e, there exists do > 0, H1 > 0 and 
H2 > 0 such that 

sup E(u. (X., 9, d)) < H1d, i ~ 1, 
8EK 

and 
sup E(u~ (X., 9, d)) < H2d, i ~ 1. 
8EK 

For any fixed 4>1 and 4>2, 
(i) 

n 

L ulfg.(90) - g.(90 + 4>1 n-!)j[g.(90) - g.(90 + 4>2 n-!)] 
.=1 

= 4>~K(90)4>2 + 0(1), (5.32) 

(ii) 
n 

L[g.(90) - g.(Oo + 4>ln-!)]2 = 4>~KO(90)4>1 + 0(1), (5.33) 
.=1 

where K(90) and KO(9o) are positive definite matrices. 

for some M < 00, uniformly in 4> and n. 
Let 

(5.35) 

Suppose there exists '1 > 0 such that 

lim lim P [ inf Jn (4)) ~ '1] = 1. 
M-+oo n-+oo II?II~M 

Under the regularity conditions (5.16), (5.17)' and (5.28) to (5.35), it can be 
shown that 

For details, see Prakasa Rao (1986). 
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5.3 Nonregular Case 

The cases considered for the study of the asymptotic distribution of 
the least squares estimator discussed above may be termed smooth cases 
or regular cases. We have earlier indicated a regression model where the 
standard classical approach via normal equations is not applicable. We now 
present another example where the classical approach is not applicable. The 
result here is due to Prakasa Rao (1984f). 

Consider the nonlinear regression model 

x- -I a· - 01.\ + ~. ,-, """ i? 1, (5.36) 

where 0 < A < ~, A known, {ei} are i.i.d. random variables with mean zero 
and variance 1. Suppose that {ai, i ? I} is a real sequence with the property 

n 

L {I ai - 01.\ - I ai - Oo l.\} 2 = 2nC(A) 10 - 00 12.\+1 (1 + 0(1»), (5.37) 
i=l 

where C(A) =f. 0 and there exists 0 < kl < k2 < 00 such that 

n 

nk1 101- 0212'\+1~ L {I ai - 01 1.\ -I ai -02IA}2 ~ nk2101- 02 12.\+1 
i=l 

(5.38) 
for all 01 and O2 in a, a compact contained in R. 

Theorem 5.5. (Prakasa Rao, 1984f). Suppose the conditions (5.37) and 
(5.38) hold. Let On be a LSE of 0 based on Xl, . .. , X n. Then there exists 
c> 0 such that, for any T > 0 and for any n ? 1, 

POo (nP I On - (Jo I > T) ~ CT-(2.\+1) (5.39) 

and 
• L • 

nP((Jn - 00) -+ 4> as n -+ 00, (5.40) 

where p = (2A + 1)-1 and ~ is the location of the minimum of the non­
stationary Gaussian process {R(4)), -00 < 4> < oo} with 
(i) 

E[R(4))] = 2C(A) 14> 12.\+1, 

(ii) 

Cov [R(4)tl,R(4>2)] 
= 4C(A) [J 4>1 12.\+1 + 14>2 12,\+1 -14>1 - 4>2 12,\+1] . (5.41) 
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Remark 5.3. Note that p > ! if 0 < A < ! and the asymptotic variance of 
the LSE is 0 (n- 2p ) which is small as compared to that in the smooth case 
when it is 0 (n- 1). 

As was mentioned in the introduction, one can obtain the Berry-Esseen 
bound for the distribution of the least squares estimator a,s a Bpecial case 
of the results of Prakasa Rao (1975). Ivanov (1976a) obtained the Berry­
Esseen bound for the distribution of the least squares estimator by methods 
analogous to those in Pfanzagl (1971). He has also obtained an asymptotic 
expansion for the same (Ivanov, 1976b), again by methods similar to those 
of Pfanzagl (1973). In all these papers, the case of the scalar parameter is 
treated. Recently Ivanov and Zwanzig (1983) obtained Berry-Esseen bounds 
and asymptotic expansions for the distribution of the least squares estimator 
in the vector parameter case under some strong assumptions on the char­
acteristic functions of Ei. Second order asymptotics in nonlinear regression 
were discussed by Schmidt and Zwanzig (1983), extending the work of Pfan­
zagl (1973) for MCE in the i.i.d. case. 

6. ASYMPTOTIC DISTRIBUTION OF LME 

Consider the nonlinear regression model 

Xi = 9i(0) + Ei, i '? 1, (6.1) 

where 9 c Rk and 9i(0), i '? 1 is a sequence of continuous functions, possibly 
nonlinear in ° E 9, and Ei, i '? 1 is a sequence of independent and identically 
distributed random variables. Let K be compact contained in 9. 

Suppose 9;(0) is differentiable with respect to ° and let 

where 
8 

9i;(0) = 80/;(9), 1 ~ i ~ k. 

Denote 
1 ~ i ~ k. 

In addition to the conditions (4.8) and (4.9), suppose the following reg­
ularity conditions hold. 
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e is convex. The functions g;(O},j ~ 1 eife coniinu6U! 6!i 8 and tlontinu­
ously differentiable on e. Further, for any R> 0, there exists no depending 
on the compact K such that for n > no, 

sup { sup nt d~1(0) (m~x 1 It;(u) I)} ~ X,(R), 1 ~ i ~ k. 
9EK uEBO(R)nUn (9) 1~3~n 

(6.2) 
Suppose g,;(O), 1 ~ i ~ k,j ~ 1 are differentiable with respect to O. Let 

and 

ag;(O) 
g,t;(O) = aO,aOt' 

n 

w~~ (U1' U2) = 2: (It; (U1) - It; (U2))2 . 
;=1 

8 is convex. The functions g,;(O), 1 ~ i ~ k,j ~ 1 are continuous on 
9 and continuously differentiable in O. In addition, for every R > 0 and 
n> no, 

~ Xit(R), 1 ~ i,l ~ k. 

Let 

and Amin (In(O)) be the smallest eigenvalue of the matrix In(O). 

lim inf Amin (In(O)) > O. 
n 9EK 

(6.3) 

(6.4) 

The random variable E1 possesses bounded density ¢(x) = F(1)(x) such that 

1 ¢(x) - ¢(O) 1 ~ H 1 x I, xER (6.5) 

fOf some H > O. 
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Theorem 6.1. (Ivanov, 1984b). Under the conditions (4.8), (4.9) and (6.2) 
to (6.5), 

sup sup 1 P9 {24>(O)Ij(0)dn(O)(On - 0) E C} - 4>Ik (C) l-t 0 
9EKCECk 

as n -t 00, where Ck denotes the class of Borel convex subsets of Rk and 
4> A denotes the k-variate normal distribution with mean 0 and covariance 
matrix A. 

7. OPEN PROBLEMS 

(i) Find the rates of convergence when the errors {ei} form an absolutely 
regular sequence (Yoshihara, 1978), which is weaker than either the c/>­
mixing or the strong mixing property. 

(ii) Extend the results on the rate of consistency in the multiparameter case 
as well as the scalar case to a general growth rate condition on Wn (0 1 , O2 ) 

as defined in (3.14) or (3.6). 

(iii) Extend the approach to the study of asymptotic theory of LSE, via the 
least squares process or the least squares random field to the case when 
{ei} is a stochastic process which satisfies some type of mixing condition, 
or is absolutely regular. 

(iv) The coItditions of Ivanov (1984b) for deriving asymptotic normality of 
LME are not satisfactory. Is it possible to derive a Berry-Esseen type 
bound for the distribution of LME under the conditions stated by Ivanov 
(1984b)? 

(v) Extend the stochastic process approach as discussed in Section 5 of this 
paper to a weighted least squares estimator, where the weights may be 
random or the weight corresponding to the ith observation Xi depends 
on the earlier observations X;, 1 ~ j :5 i, for instance. 

(vi) Study asymptotic theory for least squares estimators in the presence of 
nuisance parameters. 

( vii) Consider the nonlinear regression model 

Suppose 0 E e and A is a prior density on e. Let 

n 

Qn(O) = L (Xi - Ui(O))2 . 
i=l 
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Since there is a prior information about 0, it might be useful to minimize 
>'(O)Qn(O) instead of Qn(O) and obtain a Bayesian type LSE. If the prior 
is uniform and e is compact, then it reduces to the ordinary LSE. It 
would be interesting to study the asymptotic properties of this BaY~Bia.n 
type LSE by the methods described in Sections 3 and 5. See Prakasa 
Rao (1987). 

(viii) Consider the nonlinear regression model 

i ~ 1. 

Suppose the process {Xi, i ~ I} is such that there is a change in the 
value of 0, say from 01 to O2 , at some instant T and the problem is the 
estimation of 01 , O2 and T. It is likely that this problem can be tackled 
by the methods discussed in Section 4 by studying the weak convergence 
of the process 

tnt] 

Q~)(O) = L (Xi - 9i(0))2 , 
;=1 

for 0 ~ t ~ 1 and applying methods similar to those of Deshayes and 
Picard (1984). 
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D. L. McLeish and Christopher G. Small 1 

LIKELIHOOD ASYMPTOTICS FOR THE 
DISCRIMINATION PROBLEM 

ABSTRACT 

Suppose X" i = 1,2, ... , n are independent random vectors such that k 
are drawn from a known density g(x) and n - k from a known density !(x). 
We consider the discrimination problem of allocating observations to their 
parent densities in such a way as to minimize a linear combination of the 
expected number of the two types of misclassification. The rule minimizing 
this risk function is written as a function of k. 

1. INTRODUCTION 

Suppose X 1,X2, ..• ,Xn are n independent p-dimensional random col­
umn vectors, each of which has one of two known distributions F(x) or G(x) 
with densities !(x), g(x) respectively. We assume that !(x) and g(x) are 
distinct but have common support. Let (db d2, ••• , dn) be a vector of binary 
values (d, = 0,1) such that X, has density (1- d,)!(x) +d,g(x). The vector 
(d1, ... ,dn ) E {O,I}n is presumed to be unknown. Let X = (Xl,,,,,Xn)' 
For convenience of terminology, we label those observations with d, = 1 
"contaminants" . 

One of the tasks of discriminant analysis is to construct a vector cS(X) = 
(b'b ... , b'n) of binary values (b', = 0, 1) so as to minimize a risk function. 
See, for example, Anderson (1958, p. 197). 

Suppose the costs of the two types of classification errors are in some 

1 Department of Statistics and Actuarial Science, University of Waterloo, Wa­
terloo, Ontario N2L 3Gl (both authors) 
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ratio a : 1. In particular, suppose the risk function is defined by 

EIL(d, 6)1 = E [t, {(6; - <1;)+ h(d; - 6;)+} 1 

= E {a I: di + I: (1- dill , 
{i,6;=O} {i,6;=l}, 

where :z;+ = 1 if :z; > 0, 0 if :z; ~ O. The task is usually solved by the 
construction of a real-valued discriminant function D(x) together with a 
real constant CD so that S is defined by 

O' - {O D(Xi) ~ CD 
• - 1 D(Xi) < CD. 

(1) 

Rules of this form are discussed, for example, by Kendall et al. (1966, pp. 
370-380). H there is no constraint on the function D, e.g., that it be linear, 
then the Neyman-Pearson lemma can be used to find an optimal choice of 
D. We set 

D(x) = /(x)/g(x). (2) 

This is optimal in the Neyman-Pearson sense, namely that for all discrimi­
nant functions with fixed misclassification error PF[D(x) < CD], the choice 
D = f /g minimizes the error PG[D(x) ~ CD]' 

H (2) is used, then 

E[L(d,6)] = (n - ko)PF[/(x)/g(x) < c] + akoPG[/(x)/g(x) ~ c], (3) 

where ko = E~=l di . So the choice of C minimizing the expected number of 
misallocations is C = ako/(n - ko). 

It should be noted that allocating by (2) is only optimal when Oi is 
restricted to be a function of Xi alone. For example, ko must be known for 
the best choice of c to be obtained. Paradoxically, it will be shown in Section 
2 that if ko is known, there exists a discrimination rule superior to rules of 
the form (1). 

2. PERMUTATION EQUIVARIANT ALLOCATION 
RULES: ko-KNOWN 

Consider the class of allocation rules 6 which are equivariant under per­
mutations of the vectors Xl, ... ,Xn • More specifically, let r be any (n x n)­
dimensional permutation matrix. We restrict attention to rules S(X), such 
that 

[S(X)]r = S(Xr). (4) 
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Note that this restriction still includes rules of the form (1) as a special case. 
The requirement (.() tlilt 6 b@ p@.mutlltion Iquivuiant can be jU6tifieQ by 
the natural requirement that the allocation of observations Xi should not 
depend upon their labels i = 1,2, ... , n. 

We shall now generalize the concept of order statistics to p dimensions. 
Let A be a subset of the space Mpxn of all (p x n) matrices such that X 
lies in A with probability one. Let u : X -+ Ux be a function from A into 
the class of (n x n) permutation matrices. We require that 

(2.A) for each (n X n) permutation matrix 1/, All = {X : u X = I/} is 
measurable in Mp x n i 

(2.B) for each (nxn) permutation T, and for every X E A, Xux = XTUXr' 

Under these conditions, we shall call u a canonical ordering operator. 
Let Y = (Y1, ... ,Yn ) = Xux. We call Y 1"",Yn the corresponding 
generalized order statisticsofX. For convenience we can arbitrarily set Y 1 = 
Y 2 = ... = Y n = 0 on the null set X ¢ A. The matrix Y can be recognized 
as an almost sure maximal invariant under the column permutation group. 
The joint density of Y 1, ... , Y n is given by 

Ln(ko) = Ln(koiYl,Y2," .,Yn) 

= { r :~~ f[Y'I,)J , •• fI"+1 ,[Y,I,)J, 

The summation above is understood to be over all permutations T of the 
integers i = 1, ... , n. Expression (5) also defines a marginal likelihood Ln(k) 
over k = 0,1,2, ... , n, for the case where ko is unknown. We shall consider 
its properties in the next section. 

For ko known, we construct the optimal equivariant S by formally iden­
tifying the minimum risk equivariant estimator (using risk function given 
in (3)) with the Bayes estimator to the same decision problem assuming 
the prior on the parameter space {( d1, ... , dn ) : E?=1 di = ko} induced 
by the right invariant Haar measure on the group of column permutations. 
See, for example, Hora and Buehler (1966). As the permutation group is 
finite, the left and right Haar measures are identical and induce the uniform 
distribution on the parameter space {(db' .. , dn ) : E?=1 di = ko}. 

For equivariant S, 

E[L(d,S) I Yj = EB[L(d,S) I Xl, (6) 

where EB [. I Xl is the Bayes posterior expectation with respect to the uni-
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form prior, given X. Now, 

So setting EB [di I X] = Wi (ko), we see that 

E[L(d,6} I Y] = L aWi(ko} + L [1- Wi(ko}]. (8) 
{i:6.=O} {i:S.=l} 

The conditional expectation on the left-hand side of (8) is minimized by 

6. _ {O Wi(ko} < l~O: 
• - 1 Wi(ko} ~ l~O:. 

(9) 

It is interesting to compare the optimal allocation given in (9) with the 
rule based upon (I), (2) with c = ako/(n-ko}. If the conditional expectation 
EB[di I X] in (9) is replaced by EB[di I Xi], the resulting rule is precisely 
the optimal allocation based upon marginal distributions given by (I), (2). 
The reason for the suboptimality is then in evidence: EB [di I Xi] is based 
upon partial information from the complete data set. 

The relationship between these rules is further clarified by the following 
representation of W,(ko). Some algebra will provide from (5) the represen­
tation for each 1 :5 i :5 n, 

Ln(kojYl, Y2,· .. , Yn) 

= kog(Yi)Ln-l(ko -ljYl>Y2,.· ·,Yi-l>Yi+l>·· .,Yn) 

+ (n - ko)f(Yi)Ln-l(koj Yl> ... , Yi-l, Yi+l>· .. , Yn) (10) 

and from (10), if X,. corresponds to the ith order statistic Yi, 

W,.(ko) = kog(Yi}Ln-l(ko -ljYl,·. ·,Yi-bYiH,·· .,Yn}. (11) 
Ln(kojYl> ... ' Yn) 

In view of (11), the criterion W,.(ko) > l~O: becomes 

f(Yi) < ako Ln-l(ko -ljYl,·. ·,Yi-bYi+b·· .,Yn) (12) 
g(Yi} n - ko Ln-l(kojYl> .. ·,Yi-bYi+b·· ·,Yn) , 

and this can be compared with the optimal Neyman-Pearson rule based on 
the marginal distribution of X,., 

f(X,.) ako --<-­g(X,.) - n - ko· 
(13) 
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In fact (12) is also a Neyman-Pearson rule but based on the joint distri­
bution of the order statistics Y. It clearly adjusts the right-hand side of 
(13) to account for the relative likelihood that there are either ko or ko - 1 
contaminants in the data set with tI. removed. To show the effects of this 
adjustment, we compare the risk for rules (12) and (13) in the univariate 
case n = 8, ko = 1, Q = 1 and /(x), g(x) are normal (0,1) normal (1-',1) 
respectively, in Table 1. 

Table 1 

Risk: Q = 1, n = 8, ko = 1, known 

Rule I-' = .5 I-' = 1.0 I-' = 2.0 J.L = 2.5 

(12) 1.00 .96 .57 .32 

(13) 1.00 .98 .67 .50 

3. THE EFFECT OF UNKNOWN ko 

In general, of course, we do not know the value of ko, and cannot put 
(12) into practice directly. Under these circumstances, it seems a reasonable 
modification of (12) to replace ko by an estimator obtained from the data. 

In this section, we examine properties of the maximum (marginal) like­
lihood estimator of the parameter ko and note that the essential difference 
between rules of the form (12) and (13) disappears. Since one might expect 
the difference to depend on the efficiency of our estimator k maximizing 
L"(k), we first investigate the asymptotic properties of this estimator. 

An alternative to maximum likelihood estimation of ko is an empirical 
Bayes approach to the problem. Suppose we assume ko is an observation 
from a binomial (n, 11') distribution. The unknown parameter 11' appearing in 
the prior distribution for ko is replaced by a maximum likelihood estimator 
n obtained from the data X and the posterior probabilities that d. = 1 given 
X are now computed assuming this value n for the parameter. It is not hard 
to show, in this case, that these probabilities are given by w.(n), where w.(p) 
is the function on 0 ~ p ~ 1 

w.(p) = pg(X.)/[(1 - p)/(X.) + pg(X.)], i= 1,2, ... ,n. (14) 
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~he rule Wi(*) ~ l~Oc therefore reduces to a rule with form similar to (13), 
vlzi 

(15) 

This analysis leads to the same rule as a "mixture model" likelihood based 
rule where we assume the observations Xi are independent, each with mix­
ture probability density function of the form ,,"g(x) + (1 - ,,")/(x) and the 
parameter "" is estimated by maximum likelihood from the observed order 
statistics Y. The following properties of the mixture likelihood are well­
known: 

(a) The mixture marginal likelihood function of Y is 

An (,,") = {n! IN(I- ,,")/(Yi ) + ,,"g(Yi )] if Y = Xux (16) 
o otherwise. 

(b) Provided !(Xi) # g(Xi) for some i = 1,2, ... , n, there is a unique 
value * maximizing An (,,") and satisfying the likelihood equation 

Jln(*) = n*, (17) 

where 
n 

Jln(,,") = L Wi(,,"). (18) 
i=1 

(c) If the mixture model holds with 71'0 the true value of the parameter, 
y'n(* - ,,"0) is asymptotically normal (0, J-1(,,"0)) where 

J(7I'0) = EG[w(,,"o)]- ""0 
,,"0(1- 71'0)2 

and EGw(,,"o) denotes the expected value of a weight Wi(,,"O) of an 
observation Xi drawn from density g(.). 

We begin by comparing the estimator defined by (17) with the estimator 
k maximizing Ln(k) for data obtained from a contamination model. The 
main result is the following: 

Theorem. Let n -t 00 and ko, the number of contaminants, be the integer 
part of npo for some 0 < Po < 1. Then: 

(a) I n;r - k I < 1. 

(b) n!(*-po) and n-!(k-ko) are asymptotically N(O, [-I(PO)) where 
[-I(P) = J-l(p) - p(l- pl. 
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(c) Provided k - ko = o(v'nlogn), 

" y'ni(l- i) {-(k -ni)2 [ 1 I]} "A 
L (k) '" 0'" (i) exp 2 O'~(i) - ni(1 - i) ,\ (,..) 

(19) 

almost surely, where 

" o'!(P) = L w,(P)[I- w,(P)]. 
,=1 

Before proving this theorem, we comment on some of the results. (a) 
indicates that, whatever the origin of the data, the estimators Fe and ni 
(motivated by completely different models) of the number of contaminants 
in the sample are essentially equivalent when large. (b) is a standard result, 
required if we wish to test hypotheses or construct a confidence interval for 
the number of contaminants actually appearing in a sample, rather than 
some parameter (e.g.,,,, in the mixture model) which generates this number. 
I(P), although it takes the place usually occupied by the Fisher information 
in comparable results, is not strictly speaking the Fisher information. In­
deed, since the parameter in a contamination model ko is necessarily discrete, 
there is no obvious analogue of Fisher information. Since I(1r) > J(1r), there 
is generally more "information" in a sample on the number of contaminants 
than there is on the parameter 1r describing, in the mixture model, the prob­
ability a given observation will be a contaminant. (c) is a result comparable 
to that of Heyde and Johnstone (1979) describing the asymptotic form of 
the likelihood function. It indicates that the likelihood takes the form of a 
normal likelihood asymptotically, and is useful in the construction of fiducial 
or Bayes intervals for ko• 

Proof. We begin by proving (1). Conditionally on Y choose ZI, Z2,"" Z" 
to be independent binary variates such that P( Z, = 1 I Y) = w, (p) = 
1 - P(Z, = 0 I Y). Then the (marginal) likelihood of k, L"(k), can be 
written as 

[ " I ] P EZ,=kY 
L"(k) = ,=1 ,\"(P) 

Bin(kj n,p) 
(20) 

for arbitrary 0 < P < 1, where 
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In equation (20), PIE:=1 Zi = k I Y] is calculated conditionally on the order 
statistics and, hence, conditionally on Wl(P), ... , wn(P). We can interpret 
(20) as a mixture likelihood >.n(p) in P that has been corrected by the ratio 
of two probabilities. Note that P appears superficially only on the right-hand 
side of (20), where it cancels out and does not affect Ln(k). Note also that 
the distribution of the order statistics is dependent on k only through the 
ratio PIE:=1 Zi = k I YI/ Bin(kj n, pl. As 0 < p < 1 is arbitrary in equation 
(20), we set p = i. We begin by showing that Ln(k) decreases for k ;::: ni. 
For arbitrary k ;::: ni, let 

{
I ifs=k+l Bin(Ic+1;n,t) 

h(s) = -1 'f k Bin(lc;n,t) 1 S = 
o otherwise. 

(21) 

Then Ln(k + 1) - Ln(k) = >.(i)E{hIE::l Zi]} where ZI,"" Zn are binary 
variates with PIZi = 1 I Y] = wi(i) = Wi. By Corollary 2.1 of Hoeffding 
(1956), the maximum value ofE{hIE~=1 Zi]} over all WI, W2, ... , Wn subject 
to the constraint E~=1 Wi = ni occurs when WI, .. . , Wn take on at most 
three distinct values, at most one of which lies strictly between 0 and 1. 
Suppose the maximizing Wi are such that no values are 0, nl are 1 and n2 
values are (n;r - nl)/n2 where n2 = n - no - nl. Then it is easy to see that 
in this case Ln(k + 1) - Ln(k) $ 0 if and only if 

Bin (k+ 1- nljn2'~) 
Bin (k - n . n nt-n, ) 1, 2, n2 

or equivalent, if 

< Bin(k + Ij n, i) 
- Bin(kj n, i) 

n - no - k n;r - nl n - k ;r 
---"-----,-~----"- < ----
n - no - ni k + 1 - nl - 1 - i k + 1 . 

(22) 

Since k ;::: ni, this occurs for any no, nl ;::: 0 with equality if and only if no = 
nl = O. Thus, we have shown that the maximized value of Ln(k+ 1) - Ln(k) 
is less than or equal to zero for all k;::: ni. Similarly, Ln(k) is nondecreasing 
for k $ ni. Hence, Ln(k) is unimodal and maximized by an integer k such 
that I k - ni I < 1. 

We now prove (b). In view of (a) it is sufficient to prove that n! (i - Po) 
is asymptotically N(O, r-l(po)). Define 
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It is easy to see that U(Xi;p) is a non-increasing function of p for each Xi 
and 8u/8p = -u2 • Provided f(Xi):j:. g(Xi) for some i, the m.l.e. n- will be 
the unique solution to 

n 

L u(x,; *) = o. (24) 
i=l 

Since F and G are distinct, the probability that f(Xi) = g(Xi) for all 
i = 1,2, ... , is zero. We suppose the data Xl, X 2, ••• , Xn obtain from a con­
tamination model with ko equal to the integer part of npo. Let qn = ko/n. 
Then for any f > 0, 

n 

n- ~ qn + f iff 0 ~ L U(Xi; qn + f). (25) 
i=l 

Now qn --t Po and for n sufficiently large, 

where 8 does not depend on n. Here and in the remainder of the proof, 
EGU(Xi; p) denotes the expectation of U(Xi; p) for any Xi drawn from the 
distribution G. So applying the strong law of large numbers to the two 
components of the sample in (25) and using (26) we see that the probability 
is zero that (25) holds infinitely often as n --t 00. We treat the case n- ~ qn-f 
similarly. Thus, n- --t Po almost surely. 

Similarly, for c > 0, 

p [~ > P + :n] = P [0 < ~ u(Xi;po + cn-t)] 

"" P [0 < ~ {u(Xi;po) - cn-!u2(Xi;PO)}] 

"" P [CE(U2) < n- t ~(Xi;PO)]' (27) 

Now it is easy to see that E(u2 ) = EG(u)/(l- Po). It can also be shown that 
n-t 2:~=1 u(Xi;po) is asymptotically normal with mean zero and variance 

EG [u(x;po)] {1- E [ (. )]} 
1 Po G U x,Po . 

- Po 
(28) 

Substituting this in (27), we obtain that y'n(n--po) is asymptotically normal 
with mean zero and variance 

{I - PoEG [u(x;po)]} (1 - Po) 
EG[u(x;po)] 

(29) 
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Substituting the form u(XjPo) -- [W(XiPO) - Pol/Wo(1 - po)] the variance 
(29) takes the form [-l(pO)' 

To prove (c), we verify the conditions of the local central limit theorem 
(see Petrov, 1975, p. 195, Theorem 4) to approximate P[E?=l Z. = k I Y] 
using p = n- in (20). First observe that as a consequence of (a) above, 
O'~(i),.., O'~(po) a.s. as n -+ 00. We begin by showing 

Ik -l'n(i)1 . ~ 
Un (i) = o(ylogn) a.s. (30) 

Note that since O'~(i) ,.., O'~(Po) ,.., n E{w(Xipo)[1 - w(XjPo)]}, we only 
need to show 

I k - I'n(i)" I = o( v'n logn) a.s. (31) 

Now the left side of (31) is less than or equal to 

I k - ko I + I ko -I'n(ko/n) I + Il'n(ko/n) - I'n(i) I 

= o( v'n logn) + D( v'n log log n) + (ko : ni) D(O'!(po)) a.s. 

The order of the middle term follows from the law of the iterated logarithm 
applied to the two components of the sample. The order in the last term fol­
lows from the fact that Ol'n(P)/op = O'~(P)/[P(l- p)]. The entire expression 
is o(y'nlogn). 

Having established (30), we now apply the local central limit theorem to 
obtain 

P [~Z' = k I y 1 ,.., N [kj I'n(i), O'~(i)] 
= N[kj ni,O'!(i)] a.s., (32) 

where N(Zjl',0'2) = (V27fO')-lexp[-(z -1')2/(20'2)]. Similarly in the de­
nominator of (20) 

Bin(kjn,i),.., N[kjni,ni(l- i)]. (33) 

The expression (19) now follows from (32), (33). 
We are now in a position to compare the discrimination rules for un­

known number of contaminants. The rule (15) is obtained from the mixture 
model in the empirical Bayes analysis, and this is to be compared with a rule 
of the form (9) or (12) with ko replaced by its maximum likelihood estimator 
k. We have seen that ak/(n- k) and ai/(l-i) are nearly identicalforlarge 
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k not too close to n since I k - ni I < 1. Furthermore, the second term on 
the right-hand side of (12), while providing a correction when ko is unknown, 
is almost exactly equal to 1 when ko is replaced by k, since this is the ratio 
of the likelihood function L",-1 at its maximum and a value adjacent to its 
maximum. This observation can be verified asymptotically fairly easily us­
ing the expression (c) of the Theorem; we can show that for each i, the two 
weights are asymptotically equivalent in the sense that Wi(k)/Wi(i) -+ 1 
almost surely. 

We verify this result for small samples with a simulation in the case 
discussed earlier: n = 8, ko = 1, 01 = 1. The results, tabulated in Table 2, 
can now be compared with those of Table 1 and we see that a large penalty 
is paid for lack of knowledge of the value of ko. This table was generated 
from 4,000 simulations of each case. 

Table 2 

Risk: n = 8,01 = l,ko = 1 unknown 

Rule ~= .5 ~ = 1.0 ~=2.0 ~=2.5 

A 1 
Wi(k) > 1+0 2.77 1.81 .92 .62 

(15) 2.77 1.80 .92 .62 
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True T. Nguyen 1 

ON FRECHET BOUNDS OF BIVARIATE DISTRmUTIONS 

ABSTRACT 

The Frechet bounds of a set of bivariate distributions with fixed 
marginals are characterized by the monotonicity of their supports. Also 
they are characterized by their totally positive dependence of order 2 (TP2) 
and reverse regular of order 2 (RR2) properties. A corollary of these re­
sults is the existence of a measurable transformation which transforms two 
different random variables of a location-scale parameter family defined by 
a symmetric probability density function into the same continuous random 
variable. 

1. INTRODUCTION 

Let X and Y be jointly distributed random variables with the joint 
cumulative distribution function (c.d.f.) H(x, y} and with fixed marginals 
c.d.f.'s F(x) and G(y). The convex set of all such bivariate c.d.f.'s is denoted 
by 1 (F, G). The characterizations of extreme distributions of this set are 
given in a number of papers, under different forms and cases. Douglas (1964) 
and Lindenstrauss (1965) considered the case of continuous F and G. Letac 
(1966), Denny (1980) and Nguyen and Sampson (1982) give characterizations 
in the discrete case. In this note, we study two special extreme distributions 
of 1(F,G), namely, the upper Frechet bound and the lower Frechet bound 
of the set 1(F,G). In Section 2, the Frechet bounds are characterized by 
the mono tonicity of their supports. A corollary of this result in the case of 
continuous F and G is a result of Kimeldorfand Sampson (1978), a monotone 
dependence characterization of the Frechet bounds. The transformations 
between two continuous random variables are also studied in this section. 
In Section 3, inside the set of extreme distributions of 1(F, G), the Frechet 
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bounds will be characterized by their TP2 and RR2 properties. In Section 
4, using the transformations defined by the Frechet bounds, we construct 
transformations which map two different random variables of a location­
scale parameter family into the same random variable of the family. 

2. FRECHET BOUNDS AND FRECHET 
BOUND TRANSFORMATIONS 

The following theorem defines the greatest lower bound and the least 
upper bound of the set 1 (F, G). 

Theorem 2.1. (Hoeffding, 1940; Frechet, 1951) 

Let H-(x,!I) = max(O, F(x) + G(!I) - 1) and H+(x, !I) = min(F(x), G 
(!I)). Then for any c.d.f. H of 1(F, G) and for all (x,!I) E R2, 

Note that H- and H+ both are c.d.f.'s in 1(F,G). H- and H+ are 
called the lower Frechet bound and the upper Frechet bound of 1(F, G), 
respectively. They both are extreme c.d.f.'s in 1 (F, G). 

In this section, the Frechet bounds are characterized by the monotonicity 
of their supports. 

Definition 2.1. A set C of R2 is said to be a monotone non-decreasing 
(non-increasing) curve if't/ (Xl, !ld, (X2' !l2) of C, Xl < X2, implies !l1 :5 
!l2 (!l1 ;? !l2). 

Between the set of probability measures I-' in R2 (R1) and the set of 
bivariate c.d.f.'s (univariate c.d.f.'s) H(F), there exists a one to one corre­
spondence determined by 

where 11 = (Xl, X2], 12 = (!l1, !l2] are two arbitrary intervals of Rl such 
that I-'(Id = F(X2) - F(X1)' The support of a c.d.f. is the support of the 
corresponding probability measure. The support of a c.d.f. H is denoted by 
Supp(H). 

Theorem 2.2. Let X and Y be r.v.'s with respective c.d.f.'s F and G. A 
necessary and sufficient condition that their joint c.d.f. is H+, the upper 
Frechet bound (H-, the lower Frechet bound) of 1(F, G) is that the support 
of their joint c.d.f. is a non-decreasing (non-increasing) curve. 
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Proof. Necessity. Suppose that the joint c.dJ. of X and Y is H+ and 
(Xl,Yl), (X2,Y2) are two arbitrary points of Supp(H+) with Xl < X2. It 
must be shown that Yl ~ Y2. The proof follows by contradiction. Suppose 
that Yl > Y2' Let 0 < 6 < rnin((x2 - xl)/2, (Yl - Y2)/2). Then Xl + 6 < X2 
and Y2 + 6 < Yl. Since (Xl> Yl) and (X2, Y2) are points of Supp(H+) and 
both do not belong to (-00, Xl + 6] X (-00, Y2 + 6], the following inequalities 
hold: 

and 

These two inequalities imply that H+(XI + 6, Y2 + 6) < min(F(xl + 6), 
G(Y2 + 6)) and this is a contradiction with H+. 

Sufficiency. Suppose that the joint c.dJ. of X and Y is H with Supp(H) 
being a non-decreasing curve. Let (xo, YO) be an arbitrary point of R2. It 
must be shown that H(xo, Yo) = rnin(F(xo), G(yo)). The proof also follows 
by contradiction. Suppose that H(xo, YO) < min(F(xo), G(yo)). Hence, each 
ofthe sets Supp(H) n (xo, 00) X (-00, yo], and Supp(H) n (-00, xo] X (Yo, 00) 
are not empty. Suppose (Xl, yt) and (X2, Y2) are points in these two sets, 
respectively. Then Xl > Xo ~ X2, Yl ~ Yo < Y2' This implies that Supp(H) 
is not a non-decreasing curve, a contradiction. 

The proof of the lower Frechet bound is similar. 

In the case where X and Yare both continuous r.v.'s, that is F and G 
are absolutely continuous c.dJ.'s, the Frechet bounds are characterized by 
their monotone dependency. 

Corollary 2.1. (Kimeldorf and Sampson, 1978) Let X and Y be continuous 
random variables with respective c.dJ.'s F and G. A necessary and sufficient 
condition that X and Y have their joint c.dJ. as their upper (lower) Frechet 
bound of l(F, G) is that there exists a monotone increasing (decreasing) 
function g+ (g-) for which P(Y = g+(X)) = 1 (P(Y = g-(X)) = 1), i.e., 
Y and g+(X) (Y and g-(X)) are almost surely identical. 

The function g+ (g-) is called by us the upper (lower) Frechet bound 
transformation of X into Y. The functions g+ and g- are defined by Theo­
rem 2.1 by the following implicit forms: 

F(x) = G(g+(x)) 
and 
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F(x) + G(g-(x)) = 1, 

for every x E Range (X). Without loss of generality, suppose that both 
Range (X) and Range (Y) are open. The domain of g+ and g- is Range 
(X) and their range is Range (Y). g+ and g- are both differentiable (and 
hence continuous and measurable) on Range (X). For given F and G, g+ 
and g- are uniquely defined (up to a set of measure 0, with respect to the 
Lebesgue measure on Range (X)). 

Definition 2.2. (Barlow and Proschan, 1975) Let X and Y have joint 
density (or in the discrete case, joint probability mass function) f(x, y). 
Then f(x, y) is totally positive 9f order 2, TP2 (reverse regular of order 2, 
RR2j see Karlin, 1968) if 

for all Xl < X2, Yl < Y2 in the ranges of X and Y, respectively. 
This definition has been extended to handle the case when p.d.f.'s do 

not exist. For disjoint intervals I and J in Rl, with end points a, b, and c, 
d, respectively, we say I < J if b < c. 

Definition 2.3. (Block et al., 1982) Let I' be a probability measure on R2. 
The measure I' is TP2 (RR2) if 

where It < I{, J1 < J{ are disjoint intervals of Rl. 
For the case where (X, Y) has a p.d.f. or a p.m.f., it is easily shown that 

Definitions 2.2 and 2.3 are equivalent. 
The c.d.f. H is said to be TP2 (RR2) if its corresponding probability 

measure I' is TP2 (RR2). 
Suppose 1'+ and 1'- are the measures corresponding to H+ and H-, 

respectively. We show in Lemma 2.1 that the upper Frechet bound is TP2 
and the lower Frechet bound is RR2. 

Lemma 2.1. 1'+ is TP2 and 1'- is RR2. 

Proof. Suppose It = (Xl,X2], I{ = (xLx~], J1 = (Yl,Y2], J{ = (y~,y~], 
where It < I{, J1 < J{. Without loss of generality, we can suppose that 
F(Xl) ~ G(Yd. The proof then follows by Definition 2.3 and by considering 
the two cases separately, namely F(X2) ~ G(Y2) and F(X2) > G(Y2). 
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The marginal c.d.f.'s of 1( F, G) can be written under the following forms: 

F = a1Fd + a2F" + (1- a1 - a2)Fllc , 0::; a1, a2 ::; 1, a1 + a2 ::; 1, 

G = b1Gd + b2G" + (1- b1 - b2)Gllc , 0::; b1, b2 ::; 1, b1 + b2 ::; 1, 

where Fd, Gd are discrete parts, Fllc , GIlC are absolutely continuous parts and 
F", G" are singular parts of F and G, respectively. In this note, we suppose 
that both F and G do not have singular parts (that is, they are non-singular 
c.d.f.'s). Then F = a1Fd + (1- adFllc, G = b1Gd + (1- b1)Gllc ' 

Theorem 3.1. Let X and Y be random variables with respective c.d.f.'s F 
and G (both without singular parts). A necessary and sufficient condition 
for the joint c.d.f. of X and Y to be the upper (lower) Frechet bound of 
1(F,G) is that H is an extreme c.d.f. of 1(F,G) and H is TP2 (RR2). 

Proof. The necessity follows immediately from Lemma 2.1. To show suffi­
ciency, we need to show that Supp(H) is a non-decreasing curve in the case 
of upper Frechet bound and is a non-increasing curve in the case of lower 
Frcchet bound. The prooffollows by Theorem 2.2. 

To prove sufficiency, we need the following results, proofs of which are 
omitted. 

Lemma 3.1. Let H be a c.d.f. If H is TP2 (RR2) and if (Xl> Yl), (X2, Y2) 
are two points of Supp(H) with Xl < X2, Y1 > Y2 (Yl < Y2), then (Xl> Y2) 
and (X2, Yd are also points of Supp( H). 

Theorem 3.2. (Nguyen and Sampson, 1982) Let X and Y be discrete r.v.'s 
with respective c.d.f.'s F and G. Their joint c.d.£. H is an extreme point 
of 1(F, G) if and only if for every finite rectangle 8[ X 8J in Supp(F) x 
Supp(G), there exists a row or a column containing at most one point of 
Supp(H). 

Theorem 3.3. (Lindenstraus, 1965) Let X and Y be continuous r.v.'s with 
respective c.d.f.'s F and G. Suppose their joint c.d.f. H is an extreme 
element of 1(F,G). Then the corresponding probability measure p. of His 
singular with respect to Lebesgue measure on R2. 

Let H be a c.d.f. of 1(F,G), where F and G are two non-singular 
part univariate c.d.f.'s. In general H can be written under the form H = 
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aHd + bH, + (1 - a - b)Hac, where Hd, H, and Hac are discrete, singular 
and absolutely continuous parts of H, respectively, 0 ~ a, b ~ 1, a + b ~ 1. 
If H has a singular part, i.e., b ::f. 0, H, itself can be decomposed into 
two parts, one with continuous marginals, denoted by H,c, the other is 
denoted by Hsd. Set Csc = {(x,y) : (x,y) E Supp (H,), x E Supp (Fe) 
and Y E Supp (Ge)}, Csd = {(x, y)j (x, y) E SUpp (H,), x E SUpp (Fd) or 
y E Supp (G d )}. 

Let Ilsc and Il.d be two measures on R2, defined by Ilsc = 0 if Ils(Csc ) = 
0, Ilsd = 0 if Ils(Csd) = 0 and ll,c(E) = 1l,(EnCsc)/lls(Csc ) if Ils(Csc)::f. 0, 
Ilsd(E) = lla(E n Cad )/ 1l,(C,d) if 1l,(Csd) ::f. 0, where E is a measurable 
subset of R2 and Ils is the probability measure corresponding to Ha. In 
the case Ilac ::f. 0 and Ilad ::f. 0, H.c and H,d are the c.d.f.'s corresponding 
to Ilac and Ilad, respectively. In the general case, H, can be written as 
H, = cHac + (1 - C)Had' 0 ~ C ~ 1. Note that c = 0 if lla(Cac ) = 0 
and c = 1 if Il. (C .d) = O. This decomposition of H a is unique by the 
uniqueness of Cac and C,d' Substituting this form of H, in H, one obtains 
H = aHd + b1Hsc + b2Hsd + (1 - a - b1 - b2)Hac , 0 ~ a, b1, b2 ~ 1, 
a + b1 + b2 ~ 1. 

If F and G are both discrete, then a = 1, and H = Hd. If F and G both 
are absolutely continuous, then a = b2 = 0, and H = b1Hac + (1 - b1)Hac ' 

By Theorem 3.3, if H is an extreme c.d.f. of 1(F,G) then l-a-b1-b2 = 
0, and H = aHd + b1H.c + (1 - a - b1)H.d. Thus, Hd, Hac and Had are 
extreme c.d.f.'s of 1(Hd), 1(Hac), and 1(Had), respectively, where 1(Hd), 
1(Hac), and 1(Hsd) are the sets of c.d.f.'s with fixed marginals defined by 
Hd, Hac, and Had, respectively. 

Proof of the Sufficiency Part of Theorem 3.1. 

Let H be a TP2 extreme c.d.f. of 1(F, G). To show that H is the 
upper Frechet bound of 1(F,G), we are going to show that Supp(H) is a 
non-decreasing curve, then the proof follows by Theorem 2.2. 

Let (Xl, Y1) and (X2' Y2) be two arbitrary points of Supp(H) with Xl < 
X2. We need to show that Y1 ~ Y2. The proof follows by contradiction. 

Suppose Y1 > Y2. By Lemma 3.1 (Xl, Y2) and (X2' Y1) are also points of 
Supp(H). Now, there are different cases to be considered. 

(a) F and G both are discrete c.d.£. 'so The contradiction follows by 
considering the rectangle {Xt,X2} X {Y1,Y2}, and from Theorem 3.2. 

(b) F and G are both absolutely continuous c.d.£. 'so It is known that 
if F is an absolutely continuous c.d.f., F(X) is a r.v. with uniform 
distribution on (0,1). For every measurable set E of R1, let IlF(E) = 
m(F(E)), where m is the Lebesgue measure on R1. Then, VO < 8 < 
min((x2 - x1)/2, (Y1 - Y2)/2), it follows that IlH((X1 - 8, Xl + 8) x 
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(Yl - 0, Yl + 8)} > 0, and JlH((X2 - 8, X2 + 8) X (Y2 - 8, Y2 + 8)} > O. 
Set Cl = {x : (x, y) E (X2 - 8, X2 +8) X (Y2 - 8, Y2 + 8) n Supp (H)}, 
C2 = {y : (x, y) E (Xl - 8, Xl + 8) X (Yl - 8, Yl + 8) n Supp (H)}. 
Then JlF(Cd > 0 and Jla(C2) > O. F and G are both absolutely 
continuous, hence m(Cl ) > 0 and m(C2 ) > O. By Lemma 3.1, 
Cl x C2 is a subset of Supp(H) , JlH(C l X C2) > 0, and m x m(Cl x 
C2 ) = m(Cd x m(C2) > O. The contradiction then follows by 
Theorem 3.3. 

(c) F a.nd G are two c.d.£. 's with no singula.r parts. The proof follows 
upon considering the following different subcases. 

(Xl, Yl) and (X2' Y2) are: 

(1) both in Supp (Hd) or both in Supp (Hac), 
(2) one in Supp (Hsd) and one in Supp (Hsc), 
(3) both in Supp (Had), 
(4) one in Supp (Hd) and one in Supp (Had), and 

(5) one is in Supp (Hd) and one in Supp (Hac). 
The prooffor the lower Frechet bound and RR2 is similar. 

Corollary 3.1. Let H be a TP2 (RR2) c.dJ. in l(F,G). If H is not the 
upper (lower) Frechet bound of l(F, G), then H is not an extreme c.dJ. of 
l(F,G). 

Frechet (1958) investigated the case of two parameter c.dJ.'s with fixed 
marginals under the form 

aH+ + bH- + (1 - a - b)Hr : 0:5 a, b:5 1, a + b :5 1, where Hr = FG. 

Konijn (1959) used mixtures of Hr, H+, and H- to investigate the 
power of certain tests of independence. Ahmed et al. (1979) used the set 
{ aH r + (1 - a) H + : 0 :5 a :5 1} as a model for a test of independence versus 
strictly positive quadrant dependence. We now study these sets with respect 
to TP2 and RR2. 

Corollary 3.2. Let Hr and H+ (H-) be the independent c.dJ. and the 
upper (lower) Frechet bound of l(F, G) where F and G are two absolutely 
continuous c.dJ.'s. Then H = aHr + (1 - a)H+ (aHr + (1 - a)H-) is not 
TP2 (RR2) for every 0 < a < 1. 

Corollary 3.3. Let Hr , H+ and H- be the independent c.dJ., the upper 
Frechet bound and the lower Frechet bound of l(F, G), respectively, where 
F and G are two absolutely continuous c.dJ.'s. Then H = aH+ + bH- + 
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(1- a - b)H/, 0 S a, b S 1, a + b S 1, is neither TP2 nor RR2 if 0 < a < 1 
or 0 < b < 1. 

4. A PROBLEM RELATED TO FRECHET 
BOUND TRANSFORMATIONS 

Let Xo be a continuous random variable with range Rl, with c.d.f. F, 
and symmetric p.d.f. f . The location-scale parameter family of distributions 
defined by Xo is denoted by 

h,s = {Fa,b : Fa,b{X) = F{{x - a)/b), -00 < a < +00, b > O}. 

Lemma 4.1. Let Xl, X 2 and Xs be r.v.'s with respective c.d.f.'s Fl = 
Fa1.bt, F2 = Fa2 ,b2 and Fs = Fas,bs ' where Fl , F2 and Fs are in l L ,s and at 
least al i= a2 or bl i= b2. Then there does not exist any linear transformation 
which transforms both of Xl and X 2 into Xs. 

Proof. The proof follows by contradiction. Suppose there exists a linear 
transformation T(x) = ax+b which transforms both of Xl and X 2 into Xs. If 
a > 0, then T is increasing by Corollary 2.1 and by the upper Frechet bound 
transformation from Xl into Xs and from X 2 into Xs. The transformation 
T is then defined by Fl{X) = F{(x - ad/bl) = Fs(T) = F((T - as)/bs), 
such that T(x) = (bs/bl)x + as - (bs/bl)al' or F2(x) = F((x - a2)/b2) = 
Fs(T) = F{(T - as)/bs), such that T(x) = {bs/b2)x + as - (bs/bda2. If 
a < 0, then T is decreasing by Corollary 2.1. and by the lower Frechet bound 
transformation from Xl into Xs and from X 2 into Xs. The transformation T 
is then defined by Fs{T) = 1-Fl{X) = 1-F((x-al)/bl) = F(-(X-al)/bl), 
then T(x) = -(bs/bl)x+as + (bs/bl)al, or Fs(T) = 1- F2(X) = 1- F((x­
a2)/bs) = F( -(x - a2)/b2), then T(x) = -(bs/b2)x + as + (bs/b2)a2. 

In both cases, it implies that al = a2 and bl = b2 and the contradiction 
follows. 

Theorem 4.1. If Xl andX2 aretwor.v.'swithrespectivec.d.f.'sFl = Fa1,1 
and F2 = Fa2 ,1, with al i= a2 then there exists a nonlinear (measurable) 
transformation T which transforms both Xl and X 2 into Xo. 

Proof. Let t(x) = (x - (al + a2)/2)2. Then W = t(XI) = t(X2) (i.e., t{Xl ) 
and t(X2 ) are identiCally distributed). 
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P(t(Xt} ~ w) = P(t(X2) ~ w) = 0 if w ~ O. 

F{t(Xt) = (Xl - ('h t "2)/,)2 ~ ,} 
= P{ -(w)~) ~ Xl - (a1 + a2)/2 ~ (w)~} 

= P{ -(w)~ + (a1 + a2)/2) ~ Xl ~ (w)~ + (a1 + a2)/2} 

= P{ -(W)t + (a1 + a2)/2 - a1 ~ Xl - a1 ~ (W)t + (al + a2)/2 - all 

= P{ -(w)t + (a2 - al)/2 ~ Xo ~ (w)t + (a2 - ad/2} 

= P{ -(w)~ - (a2 - ad/2 ~ Xo ~ (w)t - (a2 - ad/2} 
(by symmetry of the distribution of Xo) 

= P{ -(w)t - (a2 - al)/2 + a2 ~ Xo + a2 ~ (w)t - (a2 - ad/2 + a2} 

= P{ -(w)! + (al + a2)/2 ~ X2 ~ (w)t + (al + a2)/2} 

= P{ -(w)t ~ X2 - (al + a2)/2 ~ (w)t} 

= P(t(X2) = (X2 - (al + a2)/2)2 ~ w) V w > O. 

W = t(Xd = t(X2) is a continuous random variable with range(O, +00). 
Let gw+ x and g; x be the upper and lower Frechet bound transforma-

I 0 I 0 

tions from W into Xo, respectively. Then TI = (gt x lot and T2 = (g; X lot 
I 0 J 0 

are, by Lemma 4.1, two nonlinear (measurable) transformations which trans-
form Xl and X2 into Xo. 

When Xo '" N(O, 1), the result of Theorem 4.1 is an answer to a question 
of D. Basu given by Kagan et al. (1973): Does there exist a nonlinear 
(measurable) transformation T : Rl -+ Rl which transforms two normal 
distributions with different means into the same normal distribution? For a 
complete solution of this problem, see Nguyen (1985). 
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STRONG LIMIT THEOREMS 
FOR SUMS OF RANDOM VARIABLES 

DEFINED ON A FINITE MARKOV CHAIN 

ABSTRACT 

Let {Xk' Jk} be a bivariate sequence of random variables, where Jk is 
a finite ergodic Markov chain. Assume the random variables Xk are con­
ditionally independent given {Jk }. By decomposing Sn = L:~=1 X k into 
the sum of i.i.d. random variables plus two 'remainder' terms, it is proved 
that Sn satisfies both the Strong Law of Large Numbers and the Law of the 
Iterated Logarithm under the conditions of finite first and second moments, 
respectively, of [Xk I Jk- b Jk]. 

1. INTRODUCTION 

Let {X,., J,.} be a bivariate Markov process such that {J,.} is an er­
godic finite Markov chain with state space n = {I, 2, ... , N}. A real-valued 
random sequence {Xk} is defined on the Markov chain {Jk} if it satisfies: 

X o = 0 and I Xn I < 00 a.s., 

Pr[Xk ~ x, Jk = j I X o, Jo, Xl, J1,· .. , Xn - 1 , I n - 1 = i] 
= Pr[X,. ~ x, Jk = j I J,.-l = i] 
= piiFii(x) for i,j E nand - 00 < x < 00. 

(1.1) 

The matrix P = (Pii), called the transition matrix for the Markov chain 
{In }, is ergodic with stationary distribution,," = (11"1,11"2,' •• , 1I"N) satisfying 

,,"P=,,". (1.2) 

1 Actuarial Science, 310 Burnett Hall, University of Nebraska, Lincoln, Nebraska 
68588-0307 
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Miller, (1961, 1962a,b) investigated the random walk Sn, where X k is 
given in (1.1) and 

n 

(1.3) 

from the point of view of first passage probabilities. Miller used Wiener­
Hopf factorization techniques to analyse these probabilities. This so-called 
Wiener-Hopf factorization is a technique that employs Fourier transforma­
tions in the complex plane. This has been the most popular method used for 
studying the behaviour of Xn; see, for example, Keilson and Wishart (1964, 
1965, 1967), Presman (1969), Mogul'skii (1976), Takacs (1978), Borovkov 
(1980) or Arndt (1980). 

The literature on the limits of functions of the random sequence Sn is not 
very extensive. Keilson and Wishart (1964) established the Central Limit 
Theorem for Sn. Wolfson (1977) proved that under certain conditions on the 
sequence of constants {an,bn}, that (Sn/bn - an) converges in distribution 
to a stable law F(x). Fabens and Neuts (1970), and Resnick and Neuts 
(1970) investigated the distribution of the maximum term of the sequence 
{Xn} and proved that its distribution, if non-trivial, is of the extreme value 
form. Resnick (1971) investigated the asymptotic location and recurrence 
properties of this maximum. Arndt (1980) developed expressions for the 
asymptotic distribution of max{So, S1, ... , Sn}. Strong limit theorems for 
Sn were developed by Janssen and by O'Brien. Janssen (1969) established 
the Strong Law of Large Numbers (SLLN) for Sn using complicated renewal 
theory methods, while O'Brien (1974) used the theory of stationary processes 
to prove that the chain dependent process Sn obeys both the SLLN and the 
Law of the Iterated Logarithm (1IL). 

In the sequel the SLLN and the LIL for Sn, defined in (1.3), are estab­
lished using methods simpler than those used by either Janssen or O'Brien. 
The method used is to decompose Sn into sums of independent and identi­
cally distributed (i.i.d.) random variables plus two random remainder terms. 
By using certain theorems due to Richter (1965) and Chow et al. (1981), 
these limit laws are proved. The LIL is established under more general 
conditions than those used by O'Brien. 

2. MAIN RESULTS 

For the Markov chain J, let {T~jl} be the sequence of random times of 
successive entries into state j E n, k = 1,2, .... Assume, for convenience, 
that TJjl = 0 for all j E n and that Jo = i. The length of time between 

. .. . (. TUl T(jl k - 1 2 ) .. d . h successive entrIes mto state J I.e., k+l - k' -" . .. are 1.1. . Wlt 
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all moments finite, since {J d is a finite ergodic Markov chain. Sn can be 
decomposed, after at least one transition into state j (i.e., after sufficiently 
large n), as follows: 

where 

and 

N(n,;) 

Sn = Wi; + L Z~') + R~), 
m=1 

N(n,j) =sup, {k : T!;) ::; n} , 
k~1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

. h R(;) 0 'f T(;) I' I h Z(;) 1 2 .. d ~ WIt n = 1 N(n,;) = n. t IS C ear t at m, m = , , ... , are 1.1. • Lor 

each j E n. Wi; and R!!) are the random remainder terms, while N(n,j) is 
the number of entries into state j after n transitions. 

Clearly for any real-valued positive sequence of constants bn with bn i 00, 

1. Wi; 
1m -b- = 0 a.s. 

n~oo n 
for all i,j En. 

Can a similar result be established for R~')? Note that 

n 
T(i) 

N(n.i}+l 

(2.6) 

IXkl::; L IXkl=y~;),say,jEn. 
k -T(i) +1 

- N(n.i) 
k -T(i) +1 

- N(n.i) 

Th Y U) y:(;) y:U)· f' . d e sequence 1 , 2 , •.. , n , •.. IS a sequence 0 1.1. • almostly surely 
finite non-negative random variables. 

Now, 
y:U) RU) 

lim _n_ = 0 a.s. :::} _n_ = 0 a.s. 
n-+oo bn bn 

Of interest are bn = nand bn = (2nO'2 log log n)I/2, where 0'2 is a positive 
constant. It is easily seen from Laha and Rohatgi (1979, Proposition 2.2.1, 
Corollary 2, page 73) that, for all j En, 
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(i) limn-+oo yJil In == 0 a.s. if E[yJj)] < 00, 

and (2.7) 
(ii) limn-+oo y~i)/(nloglogn)1/2 = 0 a.s. if E[(yJi»)2] < 00. 

Under the conditions of Theorem 1 below, E[yJj)] < 00. Under the assump­
tion (2.11) below, E[(yJi»)2] < 00. 

The main results, as expressed in Theorems 1 and 2, can now be estab­
lished. 

Theorem 1. (Strong Law of Large Numbers) If Xn and Sn are defined in 
(1.1) and (1.2) respectively, with i: I x I dFii(x) < 00 for all i,j E fl, 

then 

where Jl. is a constant. 

1. Sn 
1m - ==Jl. a.s., 

n-+oo n 
(2.8) 

Proof. From the ergodic theorem for Markov chains (see, for example, Cox 
and Miller, 1965, Section 3.4), it follows that limn-+oo N(n,j)/n = 'lrj. Also 
Theorem 1 of Richter (1965) gives 

N(n.i) 

lim 1 "Z(j) == E[Z(f)] a.s., 
n-+oo N(n,j) ~ r r 

r=l 

where {Z;il} is the sequence of i.i.d. random variables with finite mean 
defined in (2.3) and the random increasing sequence N(n,j) ---+ 00 a.s. as 
n ---+ 00. Therefore, 

~ 1 N~~. . 
lim - = lim - {Wi' + " Z;3) + R~)} n-+oo n n-+oo n 3 ~ 

r=l 

1 N(n.i) . 

= lim - { L Z;3)} a.s. 
n~oo n 

r=l 

N( .) { N(n. j )} = lim { n,;} 1. L zjj) 
n-+oo n N(n,;) 

r==l 

= 'lrjf3(f) a.s. for j E fl, (2.9) 
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where f3(;) = E[Z~i)l and 1r i is given by (1.2). Since Snln converges to the 
same limit regardless of j, then 1r if3(;) = P (independent of j EO). 

A corollary of Theorem 1 is that E!Zt(i)j = p/1rj, where p is a constant 

independent of j E O. The case where Xn ~ 0 a.s. is called a Markov 
renewal process. Pyke and Schaufele (1964, Lemma 4.1), using Markov 
renewal theory, proved for 

T(;) 
k+l 

Zki)U) = L f(Xn) 
n=T~;)+1 

with f : R -t R being a Lebesgue measurable function satisfying 

that 

(2.10) 

where Af is a constant independent of j E o. The result (2.10), without the 
restriction that Xn ~ 0 a.s., is a corollary of Theorem 1 obtained simply by 
replacing Xn by f(Xn). 

Next consider the LIL. Assume that for each i,j E fl, 

and (2.11 ) 

For some positive constant 0- 2 , define bn as 

(2.12) 

This leads from (2.6) and (2.7) to 

W D(i) 
lim ~ = lim -~""- = 0 

n-+oo bn n-+oo bn 
a.s. 

Since for any positive constant a 

lim log(a + log n) = 1, 
n-+oo log log n 
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then 

. [2 N(n,j)o} log log N(n,J')] 1/2 ( 2)1/2 
lIm = 11' '0'. 

n-+oo 2n log log n J J 
a.s. (2.13) 

for a positive constant O'j. Choose O'j so that 

(2.14) 

In order to establish the LIL for Sn one has to establish for the sequences 
{Z~j)Ho=l given in (2.3). Since the z~j),s are i.i.d., it is necessary to assume 

the following hold for Z!j): 

in order for the LIL to be applicable, that is, for 

",n ZU) 
lim ( ~"-1" )1/2 = 1. 

n-+oo 2 nO' j log log n 

From the assumptions in (2.11), it is clear that both (i) and (ii) hold. 
Since limn--+oo N(n,j)/kn = 1 a.s., where kn = n1rj, then from Chow et 

al. (1981, Corollary 1.1), 

_._ EN~n.j) ZU) 
hm k-1 k = 1 

n-+oo (2N(n,j)O'j log log N(n,j)f/ 2 
a.s. (2.15) 

Thus using bn given by (2.12), the result in (2.15), and a method similar to 
(2.9), leads to 

( 2) 1/2 -. -Sn 1I'jO'j 
hm -b = -2- a.s. 

n-+oo n q 
(2.16) 

for j EO. Since Sn/bn converges to the same limit, independently of j E 0, 
then 1I'jO'j is independent of j. Therefore the positive constant 0'2 in (2.12) 
can be taken as 0'2 = 11' jO'j, independent of j E O. The following theorem is 
now clear. 

Theorem 2. (Law of the Iterated Logarithm) If {X,., J,.}, as defined in 
(1.1), satisfies 

i,jE 0, 
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and I: xdFii(X) = 0 i,jE 0., 

and u2 = ,.. iUJ, then 

lim Sn 
n_oo (2nu2 log log n)1/2 = 1 a.s. 

3. CONCLUSIONS 

Equation (2.1) says that, in essence, Sn behaves as a random sum of 
independent random variables. This observation is basic to the proofs of the 
theorems in Section 2. This can be used to prove that S = sUPn>l Sn is 
finite almost surely if and only iflimn_ oo E[XnJ < OJ see Arndt (1980). 

It is hoped that this method of decomposing Sn, as in (2.1) can be used 
to demonstrate other limit theorems for Sn. 
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Malay Ghosh 1 

ON ADMISSmILITY AND UNIFORM ADMISSIBILITY 
IN FINITE POPULATION SAMPLING 

ABSTRACT 

The paper surveys admissibility and uniform admissibility results in fi­
nite population sampling starting with the pioneering work of Professor 
Joshi, Professor Godambe and others. The recently introduced "stepwise 
Bayes" technique of Meeden and Ghosh has been explored in the proof of 
admissibility of well-known estimators as well as in the construction of new 
admissible estimators of the finite population mean and the finite population 
varIance. 

1. INTRODUCTION 

It is a great honor to speak on the occasion of the seventieth birthday 
of Professor V. M. Joshi. The topic of admissibility and uniform admissibil­
ity in finite population sampling owes much to Professor Joshi's pioneering 
research, and I can say with great enthusiasm that this area of research 
remains as fertile as it was nearly twenty years ago. 

The current paper is largely a review article with no attempt of being 
complete. The selection of topics reflects my personal bias, and the exclusion 
of an article within the domain of my selection is more a reflection on my 
unawareness than on the relevance of the paper. 

The outline of my paper is as follows. In Section 2, I will review the 
admissibility results of Professor Joshi, Professor Godambe and others who 
have followed their line of approach. In Section 3, I will present the recently 
introduced "stepwise Bayes" technique of Meeden and myself in proving 
admissibility in finite population sampling. Several new estimators of the 
population mean and variance will be generated by suitable use of this tech-
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nique. In Section 4, I will introduce the notion of "uniform admissibility" 
and review the research in this area starting with the pioneering papers of 
Professor Joshi (1966) and Professor Godambe (1969). 

2. ADMISSIBILITY IN FINITE POPULATION SAMPLING 

Consider a finite population U with units labelled 1, ... , N. Let Yi denote 
the value of a sinsle characteristic attached to the unit i. The vector y = 
(Yl,' .. , YN) is the unknown state of nature, and is assumed to belong to e. 
A subset s of {I, ... , N} is called a sample. Let n(s) denote the number of 
elements belonging to s. The set of all possible samples is denoted by S. A 
design is a function p defined on S such that p(s) E [0,1] for all s E Sand 
ESESP(s) = 1. Given Y E e and s = {i l , .. . ,in(s)} with 1 :::; i l < ... < 
in(s) :::; N, let y( s) = {yip . .. , Yin ( • ) }. The problem is to estimate different 
parameters ,(y) of interest based on s, y(s). An estimator e(s, y) of ,(y) is 
a function on S X e which depends on y only through y(s)j e(s, y) is said to 
be linear if 

e(s, y) = L.8(s, tt)y(s), (2.1) 
UEB 

where.8 is a function on S X U such that .8(s, ttl = 0 if tt tt 8j e(s, y) is said 
to be a p-unbiased estimator of ,(y) if 

L e(s, y)p(s) = ,(y), (2.2) 
sES 

for all y E e. Also, if L(a, ,(y)) denotes the loss in estimating ,(y) by a, 
then e is said to be a p-admissible estimator of ,(y) if there does not exist 
any estimator e'(s, y), of ,(y) such that 

L L(e'(s, y), ,(y))p(s) :::; L L(e(s, y), ,(y))p(s), (2.3) 
sES 

for all y E e with strict inequality for some y E e. 
First consider the situation ,(y) = E~l Yi, the population total, and 

e = RN. The classic result of Godambe (1955) is the non-existence of a 
uniformly minimum variance unbiased (UMVU) estimator in the class of all 
linear unbiased estimators of ,(y). 

One time-honored estimator of ,(y) is the celebrated Horvitz-Thompson 
(HT) estimator. In order to describe this estimator, let IIi = ES3iP(s) 
denote the inclusion probability of the ith unit in the sample, when the 
sampling design is p. We assume that IIi > 0 for all i = 1, ... , Nand 



ADMISSIBILITY IN FINITE POPULATION SAMPLING 199 

L:~ III = n. Then, the HT estimator of ')'(y) is eHT(s, y) = L:iee Yi/ili. It 
is easy to check that eHT is a p-unbiased estimator of ,),(y). It is proved by 
Godambe (1960) and Roy and Chakravarti (1960) that under squared error 
loss (i.e. ,L (a,')'(y)) = (a - ,),(y))2) the HT estimator is admissible within 
the class of linear unbiased estimators irrespective of the sampling design. 
It was proved by Godambe and Joshi (1965) that the linearity restriction 
could be removed and the HT estimator was admissible within the class of 
all unbiased estimators under squared error loss. Joshi (1965b) has shown 
that for fixed sample size designs (i.e., n(s) '# n => p(s) = 0 for some positive 
integer n), the HT estimator was admissible within the class of all estimators 
of ,),(y). However, if the fixed sample size design restriction was removed, 
then it was shown by an example of Godambe and Joshi (1965) that the HT 
estimator could be inadmissible. 

The special case when IIi = n/N (i = 1, .. . ,N) leads to the classical 
estimator eo(s,y) = (N/n)L:iesYi of')'(y). In this case, it was shown by 
Joshi (1965a) that the estimator eo was always an admissible estimator of 
')'(y) . 

The above results were all established under squared error loss. Joshi 
(1968,1969) used a more general bowl-shaped loss of the form L(a, ')'(y)) = 
W (I ')'(y) - a I), where W(u) / in u, W(O) = 0, and for every k > 0, 
It W(u) exp (-ku 2 /2) du < 00. Under this loss, eo was shown to be an 
admissible estimator of ')'(y) in the class of all estimators. 

Suppose now for every unit i in the population, information is available 
on an auxiliary characteristic Xi (> O)(i = 1, ... , N). The classical estimator 
of the population total in the presence of auxiliary information is given by 
the ratio estimator 

(2.5) 

The admissibility of eR under squared error loss was proved by Joshi (1966), 
while its admissibility under the more general loss W as given in (2.4) was 
proved by Joshi (1968, 1969). 

Most of Joshi's admissibility proofs are done in two stages. For proving 
the admissibility of an estimator e(s, y) of ')'(y), he first shows that e is a 
"weakly admissible" estimator of ')'. 

Definition 1. An estimator e(s, y) is said to be weakly admissible for es­
timating ')'(y) if there does not exist any estimator e'(s, y) such that the 
inequality (2.3) holds for almost all (Lebesgue) y E RN with strict inequal­
ity holding for a subset of RN with positive measure. The second (and 
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usually the more difficult) step is to show that weak admissibility implies 
admissibility. 

Recenty, Tsui (1983) has extended Joshi's ideas to obtain a general class 
of p-admissible estimators for estimating '")'(y). He considers the class of 
estimators of the form 

ew(s,y) = ~Yi + (~WiYi/~WiXi) ~Xi' (2.6) 
'E' ,E' 'E' ,!j!8 

where Wi'S (> 0) are known constants. Putting Wi = W (a constant) for 
all i = 1, ... , N leads to the classical ratio estimator, while putting Wi = 
II;l -1 where IIi (> 0) is the inclusion probability of the ith unit leads to an 
estimator proposed by Brewer (1979). Further, putting Wi = x;l, one gets 
an estimator proposed by Basu (1971), while Wi = XiU;2(i = 1, ... , N) leads 
to an estimator proposed by Royall (1970). Many of these estimators can also 
be motivated from a model-based approach as follows. Suppose we consider 
the model Y' = f3xi + fi (i = 1, ... , N), where the fis are independently 
distributed with E(fi) = 0 and V(fi) = u; == U;(Xi). Under the assumed 
model, the BLUE of f3 is ~ = EiE' YiX.u;2 rEiE' X;U;2. Now, based on 
the prediction theory approach, the estimator of '")'(y) is E iE, Yi + ~ E'~8 Xi 
which is precisely (2.6) with Wi = XiUi-2. Putting u; = x;, one gets the 
estimator considered by Basu. 

Other extensions of these ideas involve estimation of parameters of in­
terest other than the population mean. Liu and Thompson (1983) have con­
sidered estimation of parameters of the form 9l(Y) = E~l E:=1 CijYiYj, 

92(Y) = E~l E:=l bij(Yi - Yj)2 and 9s(Y) = E~l E:=l bij (x. - Xj) 
(Y' - Yj), where the c./s and bi/s are known constants. An important spe­
cial case is when b'j = N-1(N - 1)-1, i.e., when 92 and 9s are respectively 
the population variance and the population covariance. 

One well-known estimator of the variance of the HT estimator is due to 
Sen (1953) and Yates and Grundy (1952). This estimator is given by 

( ) ( )
2 

IIiIIj Y' Yj 
ey(s,y) = LL - .. -1 -:- ----: 

.. II'3 II. II3 tEe 3E. 
(2.7) 

In the above, II'j = E'3(o,j)P(s) is assumed to be> 0 for all 1 ~ i,j ~ N. 
Joshi (1970) showed that if the sampling design was of fixed sample size 2, 
then, under squared error loss, ey is an admissible estimator of 

N N ()2 Y' Yj V(eHT) = LL (IIoIIj - IIij) II. - If 
j=1j=1 '3 
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within the class of all unbiased estimators. Biyani (1982) provided examples 
to show that for sample sizes ~ 3, ey is an inadmissible estimator of eHT in 
the narrower class of nonne9ative unbiased quadratic estimators, while for 

n = 2, ey is inadmissible in the class of nonnegative quadratic estimators 
(not necessarily unbiased). 

The admissibility results proved by Joshi are typically independent of 
the choice of designs. Indeed, if an estimator is p-admissible, then it is also 
po-admissible for every Po «p (i.e., p(s) = 0 => po(s) = 0 for every s E S). 
This important result is due to Scott (1975). 

3. STEPWISE BAYES TECHNIQUE 

We examine in this section how stepwise Bayes techniques could be useful 
in deriving admissible estimators of the population mean or other parameters 
of interest. First we recall the following from Meeden and Ghosh (1981). 

With e = {Oll"" Ok}, let {h, 0 E e} be a family of possible probability 
functions for X taking on values in some finite sample space X. Assume 
that for each x EX, hi (x) > 0 for at least one 0, E e. Consider estimation 
of ')'(0), some real valued function of 0, with squared error loss. Let>. = 
(>'1," ., >'10) denote a prior distribution on e. The marginal probability 

function of X under>' is g(x; >.) = E~=l fdx)>.,. Let 0(>') = {O, : >., > O}. 
Two prior distributions>' and >" are said to be "mutually singular" if 0(>') n 
0(>") = 0. Theorem 1 below characterizes the class of admissible estimators 
for this problem. This theorem is a slight variation of Theorem 1 by Meeden 
and Ghosh (1981). 

Theorem 1. If 8 is admissible, then there exists a nonempty finite set of mu­
tually singular prior distributions >.1 = (>'L ... ,>.l) , ... ,>.n = (>'~""'>'k) 
such that 
(i) if 

and for i = 2, ... , n, 

A'= {x:g(X;>") >Oandxfj. '0 Ai} , 
3=1 

then each A' is nonempty and Uf=l A' = X ; 
(ii) if8:(x) denotes the Bayes estimate of')'(O) against >.i, then, for x E Ai, 

8(x) = 8:(x) for all x E Ai, i = 1, ... , n. 



202 MALAY GHOSH 

Oonversely, if there exists a set of mutually singular prior distributions 
,Xl, ... , >.n which satisfies (i), then 8 given in (ii) is admissible. This 8 
defined as in (ii) is called a stepwise Bayes estimate with respect to the 
sequence of priors >.1, ... , >. n. 

Theorem 1 shows how admissible estimators can be constructed in finite 
problems. First a prior distribution, say >.1, is specified. For all x E AI, 
the Bayes estimate is computed; if Al = X, we are done. Otherwise, a 
second prior distribution, say >.2 , singular to >.1, is chosen and then the 
Bayes estimate against>. 2 is computed for those x E A 2 • If A 1 U A 2 = X, we 
are done. If not, choose another prior, say>. S singular to both >.1 and>' 2 , 

and continue until we have an estimator defined at all points of the sample 
space. 

In finite population sampling, the above technique is useful for prov­
ing admissibility when the parameter space contains a finite number of el­
ements, the so-called scale-load situation (see Hartley and Rao, 1968, or 
Royall, 1968). More important, this technique is useful for proving "finite 
admissibility" of an estimator. 

Definition 2. An estimator e(s, y) is said to be finitely p-admissible for 
estimating /(y) if for every yO E e, there exists a subset e (yO) of e con­
taining a finite number of points including yO such that if y E e (yO), then 
e is p-admissible. 

Theorem 2. Every finitely p-admissible estimator e is p-admissible. 

Proof. Suppose not. Then there exists an estimator e' such that R" (e', y) ~ 
R,,(e,y) for all y E e with strict inequality for at least one point, say yO. 
Then e' dominates e when y is restricted to e (yO) containing a finite number 
of points including yO, a contradiction to the finite admissibility of e. 

As an illustration of this technique, we prove admissibility of Basu's 
estimator for estimating the population total. Recall from Section 2 that 
this estimator is given by 

(3.1) 

Consider first the situation when the parameter space is Y:t; (01, ... , Or) = 
{y: y,/X, = 0; for some j = 1, ... , r and for all i = 1, ... , N}. Also, let 

Y:t;(Ol, ... ,Or) = {y:y,/x,=o; for some i = 1, ... ,r and.for all 
i = .!., ... , N and each 0; appears for at least one i, j = 1, ... , r}. If 

y E Y:t;(01, ... ,Or), we say that y is of order r for 0b ... ,Or. Similarly, 
if y(s) is a sample point with r ~ n(s), we say that y(s) is of order r 
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for al,"" ar if each Yi/ Xi equals one of the i values al, ... , ar , and if 
for each value ai' there exists at least one it such that YiL/Xit = ai' If 

Y E Y2: (al,"" ar ), let W~U) be the number of (Yi/Xi) 's which are equal 
to ai' Note that for each j, Wi(j) ~ 1 and Ei=l W~(j) = N. If y(s) is a 
sample point of order r for 01, . •• , Or, let W~(jj 8) be the number of observed 

(Yo/Xi) 's (i E 8) which are equal to ai' 
We now exhibit a family of mutually orthogonal prior distributions on 

Y 2: (01, ... , or) against which Basu's estimator is the unique stepwise Bayes 
estimator for any design p. 

The first prior Al puts mass r- 1 on the r points Y = (xlai"'" XNai) 
for j = 1, .. . r. For such a prior all the observed ratios Yi/Xi in a sample s 
are the same and the Bayes estimator is just Basu's estimator in this case. 

The second prior A2 is defined over the set U{i<il}Y2:(ai,a/). The set 
contains all parameter vectors of order two for some ai and ai'. If Y is of 
order two for ai and ai' with i < i', then 

For a sample y( s) of order 2 for ai and Oi', the marginal probability of y( s) 
is given by A2(y(s)) ex: r(W~(i; s)) r(W~(i'; s)) / r(n(s)). The sample 
points having positive marginal probability under A 2 , but not under A 1 are 
just those of order two for some ai and ai' with i < i'. Let y(s) be such a 
point, and suppose i* ¢ s. Then 

For such a sample s, the Bayes estimator of the population total for A 2 at 
y(s) is 

ai L Xi + ai' L Xi + {[aiW~(i; s) + aiIW~(i'; s)] /n(s)} LXi", 
iE-(i) iE_ti') i"li!_ 

where s(i) = {k E s : Yk/Xk = ail. This agrees again with Basu's estimator. 

The third prior is defined over U{i<il<i"}Y2: (ai,ail,ai"), and is given 
by 

The sample points which have positive marginal probability under A 3 but 
not under Al and A 2 are those which are of order 3 for some ai, ai' and ai", 
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Again for such points, the Bayes estimator against ),3 can be shown to be 
equal to Basu's estimator. Continuins in this way, it follows from Theorem 1 
that eB is admissible when the parameter space is Y 3l (a1,' .. , ar) for every 
choice of{a!, ... , ar), r = 1,2, ... , N. This proves the finite admissibility of 
eB. Hence, by Theorem 2, eB is an admissible estimator of .>.(y) = L~ Yi 
when the parameter space is RN as well. 

The special case when Xi = 1 for all i = 1, ... , N leads to the classical 
estimator ec(s, y{s)) = LiEe Yi + [(N - n(s))/n(s)] LiEs Yi = (N/n(s)) 
LiEs Yi of the population total. Thus, this estimator is also a stepwise Bayes 
estimator against the same sequence of priors ),1, ), 2 defined over the param­
eter space Y{a1, ... ,ar ) = {y: Yi = aj for some j = 1, .. . ,r and for all 
i = 1, ... , N}. Suppose now for each unit i in the population k characteris-

• (1) (2) (10) ( (1) (10») . tICS Yi , Yi , ... , Yi are measured. Let Y i = Yi , ... , Yi , S = 1, ... , N. 
Consider now the parameter space r(a1, ... ,ar) = {y = (Y1,' .. ,YN):Yi = 
aj for some j = 1, ... ,r, and for all i = 1, ... ,N}. Writing Wj(Y(s)) 
as the number of Yi'S (i E s) equal to aj, and using the same se­
quence of priors ),1, ), 2, ),3 , .•• as above defined on r (aI, ... , a r), it follows 

that ((N/n) LiEs y11), ... , (N/n) LiEs y1 1o») is an admissible estimator of 
""N {""N (1) ""N (10») • L..ti=l Yi = L..ti=l Yi , ... , L..ti=l Yi the vector of populatIOn totals under 
squared error loss when the parameter space is r (aI, ... , a r) and eventually 
when the parameter space is RNIo for any arbitrary k. This shows the lack of 
Stein effect in finite popUlation sampling. This particular approach is taken 
by Meeden el at. (1985). This was demonstrated earlier by Joshi (1977) 
using a different line of approach. 

Meeden et at. (1985) have established a duality between admissibility 
in nonparametric problems and admissibility in finite population sampling 
problems. For example, if we can construct an admissible estimator of a cer­
tain functional of interest in the nonparametric set up, it is possible to obtain 
an admissible estimator of the corresponding parameter in finite population 
sampling. Examples include estimation of the distribution function, say 
F{t), and also functionals of the form J ... J ¢ (t1," ., tm ) F (dt1) ... F (dtm ) 

which include as special cases the population mean (m = 1, ¢(td = t1) and 
the population variance (m = 2, ¢(h, t2) = Ht1 - t2)2) under squared error 
loss. Estimation of the distribution function is also considered by Cohen and 
Kuo (1985). 

Although the estimator eB (given in (3.1)), and in particular ec does 
not have a Bayesian derivation, such an estimator can be given a Bayes-like 
interpretation. If one acts as if "a posteriori" any unobserved ratio ri = Yi/ x. 
has the empirical distribution of the ri for i E s, then Basu's estimator 

can be written as E(E~ Yi Is,y(s)) = EiEeYi + Ei!leE(Yi I s,y(s)). 
This is when the prior information is essentially nil. On the other hand, 
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suppose a pseudo-Bayesian statistician has slightly more prior feeling about 
r = (rl, .. . ,rN). In particular, suppose he has a guess for ~ = N-l E~l ri, 
say ~. in mind. One possibility open to such a person is, of course, to adopt 
a prior according to which ri's are independent with a common marginal 
mean ~.. One then obtains the estimator 

eG(s,y) = LYi +~. LXi (3.2) 
iEe i~e 

of the population total. Among others, Godambe (1969) has studied prop­
erties of such estimators. 

An examination of (3.1) and (3.2) suggests yet another possibility to the 
pseudo-Bayesian, i.e., some average of f(s) = n-l(s) EiEe ri and ~. might 
be appropriate for an unobserved r i. A convenient representation of the 
resulting estimator will be 

eM(S,Y) = LYi + (MM ~. + Mn f(S)) LXi. (3.3) . +n +n ." lEe I",a 

The choice of M reflects the degree of prior belief about u* as compared to 
the sample evidence. With this notation eB and eG are easily identified as eo 
and eoo respectively. This estimator is suggested by Vardeman and Meeden 
(1983a). It can be derived using a two stage normal prior as by Ericson 
(1969). The estimator can also be arrived at using Dirichlet process priors 
as by Binder (1982). Binder considered the special case when Xi = 1 for all 
i = 1, ... , N, but his arguments can be generalized. 

A useful way to think about the estimators eo, eM and eoo is that prior 
belief is not symmetric in Yl, ... , YN, but it is symmetric in rl, ... , r N. This 
line of thinking suggests yet more possibilities. For example, one might be 
willing to say that though the prior belief is not symmetric in the ratios 
Yi/Xi it is symmetric in the differences di = Yi - Xi (i = 1, ... , N). This 
leads to the difference estimators 

(3.4) 

e~(s,y) = LYi + LXi + (N - n) (MM ~. + Mn d(S)), (3.5) 
iEe i~e + n + n 

e~(s, y) = LYi + L Xi + (N - n)~., (3.6) 
iEa i~e 
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Again there could be situations in which before declaring prior beliefs 
to be symmetric, the pseudo-Bayesian might rescale the differences between 
the Yi and Xi according to some (known) constants Cl, ... , C N. Then one 
can assume the exchangability of %i = (Yi - Xi) ICi (i = 1, ... , N) leading to 
estimators of the form 

e::O(s, y) = LYi + LXi + p.. L Ci· (3.9) 
iEe iEe iEe 

Of course one does not have to motivate estimators arising necessarily 
out of exchangability of the ratios (Yilxi), the differences (Yi-Xi), or the (Yi­
Xi) I ci's. For example, instead of assuming that the posterior distribution 
of any unobserved r; is the empirical distribution of the observed r/s, it is 
possible to assume that a posteriori any unobserved r; assumes the value 
ri (i E s) with probability proportional to Xi (i E s). This leads to the 
pseudo-Bayes estimator 

which is the classical ratio estimator. The HT estimator can be generated 
as 

" {" Yi 1- IIi }" eHT(s,y) = ~Yi + ~ IIi L: (1- IIi) ~IIi' 
lEe lEe iEe IE .. 

(3.10) 

This is shown by Meeden and Ghosh (1984). In deriving (3.10) we have used 
the restriction L:~1 IIi = n so that 

N 

L(I- IIi) = n - LIIi = LIIi - LIIi = LIIi. 
iEe i=1 
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Other applications exist of the stepwise Bayes technique. Vardeman and 
Meeden (1983b) have shown that the trimmed and the Winsorized means 
given respectively by 

n-q 

eT(s, y) = (n - p - q)-l L Y(i) , 

i=p+1 

(3.11) 

where Y(l) ~ ••• ~ Yen) denote the ordered y/s (i E s) for fixed sample 
designs with size n, and 

(3.12) 

are stepwise Bayes (and hence admissible) estimators ofthe finite population 
total employing a suitable sequence of priors. Again Vardeman and Meeden 
(1984) have applied the stepwise Bayes technique in estimating the finite 
population total under various forms of stratification including the usual 
stratified sampling (where attached to every unit i is a stratum membership 
ji and j = (jt, ... , j N) is completely known) and poststratification where the 
ji are known only for those units sampled. 

So far, the discussion has been confined to the estimation of the pop­
ulation total. We may as well be interested in estimating the population 
variance. The population variance is defined by 

N 

q2(y) = (N - 1)-1 L (Yi - y)2 (N ~ 2). (3.13) 
i=l 

The usual estimator of q2(y) is given by 

T = T(s,y) = (n(s) -lf1 L(Yi - y(s»2, 
iE. 

which is unbiased under simple random sampling. However, it is shown by 
Ghosh and Meeden (1983) that T is in general an inadmissible estimator of 
q2(y). Specifically, the following theorem is proved. 

Theorem 3. Let n ~ 2 be a fixed positive integer, and let p be a design such 
that p(s) > O:::} n(s) = n. If either N ~ max(4, n+2), or N = n+ 1 (~ 3) is 
odd, then T is an inadmissible estimator of q2. Moreover, in the special case 
n = 2, N = 3, any estimator of the form cT with c =12/3 is inadmissible. 
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The sequence of priors >.1, >. 2, >. s, . .. used in proving that (N / n( s)) 
EiE_ Yi is an inadmissible estimator of the population total E~ Yi can also 
be used in generating a stepwise Bayes (and hence admissible) estimator of 
(12. The estimator generated this way is given by (see Ghosh and Meeden, 
1983) 

, (n(s) - 1)(N + 1) 
T = (n(s) + 1)(N _ 1) T. (3.14) 

This result was generalized by Mazlom (1984) to estimation of functionals 
of the form I··· I ~ (Xl' ... ' Xm) F (dX1) .. . F (dxm) and such estimators 
turned out to be the corresponding U-statistics multiplied by some appro­
priate shrinking factors. 

A very general class of stepwise Bayes estimators of the population vari­
ance is proposed by Vardeman and Meeden (1983a). This was motivated 
from the use of Dirichlet process priors. This estimator is given by 

Vi = n(s}(N + M}(N M + Nn(s) + n(s}) T 
M N2(M + n(s)) (M + n(s) + 1) 

(N - n(s})M(NM + Nn(s) - M) 2 + (1 
N2(M + n(s}) (M + n(s) + 1) • 
(N - n(s})n(s)M(N + M) _ 2 

+ N2(M + n(s}) (M + n(s) + 1) (y(s) - jl.), (3.15) 

where jl. (real) or (1~ (> O) are the mean and the variance of the Dirichlet 
process prior. With this notation Vo == T'. Also, 

_ n(s} n(s}(N - n(s}) (_{)_ )2 (N - n(s})(N - 1) 2 ( ) 
Voo - N T+ N2 Y s jl. + N2 (1 •• 3.16 

The estimator V 00 arises when the yi's are assumed to be independent with 
common mean jl. and cOIIlII}on variance (1~. This estimator was proposed 
by Liu (1974), Chaudhuri (lg78) and Zacks and Solomon (1981). Vardeman 
and Meeden (1983a) employed a sequence of priors generating VM, Vo or Voo 
as stepwise Bayes estimators. 
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4. UNIFORM ADMISSIBILITY 

In this section, we introduce the notion of "uniform admissibility" which 
is stronger than the notion of p-admissibility as given in (2.3). The question 
is that for a given strategy (p, e), (where p denotes the design and e the 
estimator) can there be another strategy (p', e') which is uniformly better 
than (p, e)? More precisely, we have the following definition. 

Definition 3. A strategy (p, e) belonging to some class e is said to be 
uniformly admissible if there does not exist any strategy (p', e'l E e such 
that 

L L [e'(s, y), 7(Y)]P'(s) :::; L L [e(s, y), 7(Y)]P(s), (4.1) 

for all Y E 6 with strict inequality for some Y E 6. 
The name "uniform admissibility" comes from Joshi (1966). (Godambe 

(1966) calls it global admissibility). Joshi (1966) showed that in the class of 
all designs with fixed sample size, the sample mean was a uniformly admis­
sible estimator of the population mean under squared error loss. The results 
of Joshi were extended by Sekkappan and Thompson (1975). They consid­
ered the class of all designs C~ with average sample size (i.e., E eEe n(s)p(s)) 
equal to n and inclusion probability of the ith unit (i.e.,Ee3.p(s)) equal 
to II •. Also, let Cn be a subclass of C~ consisting of fixed size designs of 
size n and inclusion probabilities II •. Consider an estimator e(s, y) of the 
population total such that 

e(s, y) = L b.y. 
'Ee 

where the coefficients b. satisfy 

b.>1(i=1, ... ,N) and 

(4.2) 

N 

Lb;-l =n. (4.3) 
.=1 

The following theorem is then proved by Sekkappan and Thompson (1975). 

Theorem 4. The pair (e,p) where p E Cn is uniformly admissible among 
pairs (e',p') when p' E C~. 

Putting b. = II;-l, it follows as a corollary to this theorem that the 
strategy (p, eHT) with p E Cn is a uniformly admissible estimator of the 
population total in the class of all pairs (e', p') with p' E C~. Ramakrishnan 
(1975) proved the result where p could be in C~ rather than Cn, but at­
tention was restricted only to design unbiased estimators. A generalization 
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of Ramakrishnan's result is given by Cassel et al. (1977) where the class of 
strategies (p, eGD) is the generalized difference strategy p E C~ and eGD is 
of the form 

N 

eGD(s, y) = L (Yi - Xi) /ei + LXi. 
i=l 

(4.4) 

In another direction, Godambe (1969) proved uniform admissibility of the 
strategies (p, eBJ where p E Cn and eB), (8, y) = EiE.!li + Ei~6 A. for some 
specified A1, ... , AN within the class of all strategies (p', e/) with p' E C~. 
We have noted earlier that eB), is a Bayes estimator of the population total 
under squared error loss. Later, Ericson (1970) proved uniform admissibility 
of strategies (P, eB.) with eB. (s,'y) = On EiE.!li + f3n, where On E (1, N/n) 
and f3n is arbitrary within the class of strategies ( p', e/) with p' E C~. 
It was shown by Scott (1975) that if ( p, e) was uniformly admissible with 
respect to en (e~), then ( Po, e) was uniformly admissible with respect to 
Cn (e~) if Po « /p (i.e., pes) = 0 =? po(s) = 0). 

For estimating the variance of a finite population, Chaudhuri (1978) 
proved uniform admissibility of strategies of the form (p, V 00) within the class 
of all strategies of the form (pI, el) where p' E e~. More recently Mazlom 
and Meeden (1986) have used the stepwise Bayes technique to prove uniform 
admissibility of strategies of the form (p, eB), where eB is defined in (3.1) 
within the class of all strategies of the form (p', e') with p' E Cn. Certain 
other results are given by Vardeman and Meeden (1983a). 
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Richard M. Royall 1 

OVERLOOKED CORRELATION IN FINITE 
POPULATION INFERENCE 

ABSTRACT 

In the prediction approach to finite population inference, probability 
models play a central role. Here we consider linear regression models and 
study how errors in specifying a model's covariance structure affect variance 
estimators and the corresponding large sample confidence intervals for the 
population mean or total. We focus on local correlation in the form of either 
serial correlation or clustering. We find that overlooked serial correlation 
introduces little bias in variance estimators which consist of linear combi­
nations of squared residuals when (i) the sampling fraction is small and (ii) 
the sample units are well dispersed in the population. Samples that are not 
well dispersed can produce badly biased variance estimators and misleading 
confidence intervals. When the sampling fraction is not negligible it is in 
general impossible to state verifiable sample conditions ensuring that serial 
correlation effects are unimportant. Clustering which is overlooked in the 
model can introduce severe biases in variance estimators when more than 
one unit is selected from each sample cluster, even when the sample is large 
and the sampling fraction small. 

1. INTRODUCTION 

In this paper the prediction approach to finite population inference is 
used to study some effects of overlooked correlation on linear estimators 
of finite population totals (or means) and on the corresponding variance 
estimators. This approach treats the population values Yld/2,' .. , YN as re­
alizations of random variables Y1 , Y2 , ••• , Y N. Thus after a sample 8 has 
been chosen and the sample y-values, {Yi; i E 8}, have been observed, esti-
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mating the population total, T = E~ Yi = Ea Yi + Er Yi, is equivalent to 
predicting the value Er Yi of the unobserved random variable Er Yi, where 
r is the set of all non-sample units in the population. 

The joint probability model for Y1, Y2, ... , Y N is the essential link be­
tween the sample and the non-sample units. The model provides the formal 
basis for predicting the non-sample values. It is with respect to this model 
that basic statistical properties such bias, i.e. E(1' - T), and variance, 
var(1' - T), are defined for an estimator 1'. See Royall and Cumberland 
(1981) and the discussion following that paper for some general arguments 
and empirical evidence supporting the prediction approach. 

When the values of auxiliary variables Xl! X2, . .. , XN associated with the 
population units are known, predictive inference about T might be based on 
a regression model expressing E(Yi) as a function of Xi. For example, if Xi 
is a measure of the size of unit i and if Yi is roughly proportional to the 
size Xi, then a model stating that E(Yi) = f3xi might be entertained. If the 
variability of the Y's also increases with increasing size then the model might 
be elaborated as 

Model M: Y1 ••• , YN are independent with 

E(Yi) = f3xi and var(Yi) = q2Xi. 

Under model M, for a given sample 8 of n units, the best linear unbiased 
(BLU) estimator of T is the ratio estimator, t = (Ya/xa) E~ Xi, and the 
error variance of l' is var(1' - T) = (N/I)(1 - I) (xxr /x,,)q2, where f is 
the sampling fraction niNo An unbiased estimator VL of the error-variance 
is obtained when cP = E" [Yo - (y,,/Xa)Xi]2 /(n - l)xi is substituted for q2. 
If both population and sample grow (subject to some mild constraints) then 
the standardized error (1' -T)/vl/2 converges in law to the standard normal 
distribution, and this fact validates approximate confidence intervals of the 

A 1/2 usual form: T ± zVL (Royall and Cumberland, 1978). 
In a potential application to a real population, model M cannot be 

known, and should not be assumed, to be correct. Such a model is prop­
erly thought of as a working model, an a.pproxima.tion to guide in planning 
and inference. Thus robustness, or insensitivity to changes in the model, 
is a key practical concern. Previous work has studied what happens when 
the regression and variance functions depart from the forms specified by 
the working model (E(Y) = f3x and var(Y) = q2X, in the case of model 
M). Alternatives to the estimator VL and conditions on the sample 8 have 
been identified which preserve the validity of the large-sample CI (confidence 
interval) under much more general models. 

This paper follows Holt and Scott (1981) and Scott and Holt (1982) in 
addressing the effects of non-zero covariances on statistical properties derived 
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under a working model which specifies, incorrectly, that those covariances 
are zero. For a given T and variance estimator v, (for which T ± zv 1/ 2 is an 
asymptotically valid CI under a specified working model) we examine key 
properties under alternative models which allow more general correlation 
structure. We seek to learn about the effects of departure from the working 
model and about how we might protect against harmful effects through our 
choice of the sample and the estimators. 

If the data show clearly the flaws in the working model and point to 
an alternative model, then we might simply adopt the alternative as a new 
working model. However, we are concerned here with situations which are 
not so clear-cut, where the working model and various alternatives are all 
more or less consistent with the available evidence. Such cases are important, 
not only at the design stage, but also in analysis, because errors which are 
not sufficiently extreme to show up clearly in typical samples can, under 
unfavorable circumstances, generate badly misleading inferences. 

2. THE SIMPLE Ll.D. WORKING MODEL 

The simplest case is adequate for illustrating some basic relations and 
effects. Consider the working model which states that Y1 , Y2 , ••• , YN are 
independently and identically distributed (i.i.d.) as Y where E(Y) = 0 
and var(Y) = q2. Consider first the problem of using a sample mean Y 8 

to estimate, not the finite population average, Y, but the mean 0 of the 
underlying probability law. Under the working model, Ya is unbiased, the 
statistic 0- 2 In = L.{Yo - Ya)2 I{n{n - 1)) is an unbiased and consistent 
estimator of var{Ya), and Ya ± ZO-In1/ 2 is an asymptotically valid CI for () 
(assuming, as we will throughout, the existence of the necessary moments). 
But if the Y's are actually correlated, the variance estimator can be biased 
and the large-sample CI invalidated. 

2.1 Global Correlation 

IT the i.i.d. working model fails, and the Y's are, in fact, exchangeable, 
with cov(Y.,Y;) = pq2 for all it- j, then var(Ya) = q2{(I- p)ln + p}, 
while E(0-2 In) = q2(1 - p)ln, so that the coverage probability of the CI 
Ya ± ZO-I n 1/2 approaches zero as n grows. Thus this type of "global" cor­
relation, corresponding to a common variance component shared by all the 
observations, can be disastrous to the CI for O. 

IT the target of estimation is the finite population mean Y, global cor­
relation is less troublesome. Under the i.i.d. working model, the sample 
mean is unbiased with error variance var(Ya - Y) = (1 - J)q2 In. The 
variance estimator v = (1 - J)0-2 In is unbiased and consistent, providing 
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an asymptotically valid CI for Y, namely Y II ± zv 1/ 2 • What if the working 
model fails and global correlation is present? The effect on the CI for Y is 
entirely different from the effect on the CI for 9. This is because the vari­
ance estimated, var(YII,Yr ), is determined not simply by var(Y II) but also 
by var(Y r) and cov(Y II, Y r). All three of these quantities are influenced by 
the correlation, and they fit together so that the variance estimate remains 
unbiased and the CI asymptotically valid; under the global correlation model 
E(v) = (1- /)00 2(1- p)ln = var(Y II - Y). 

2.2 Local Correlation 
For many applications our concern with potential model failure is more 

realistically directed to local correlation alternatives, which express the pos­
sibility that a unit's Y -value might be correlated with those of nearby units, 
and the remainder of this paper is devoted to models of this type. We 
will consider two varieties of local correlation, namely serial correlation and 
clustering. 

2.2.1 Serial correlation. As a simple starting point we suppose the units are 
arranged and labelled so that 

E(Y,) = 9 and cov(Y" Yj) = {;;2 ~: ~ ± 1 
o elsewhere. 

(1) 

Here only the Y -values of adjacent units are correlated, and it is easy to 
show that if (1) is to apply for general N then the possible values of pare 
-~~p<~. 

Again we start with the problem of estimating 9 rather than Y. If in 
fact model (1) applies then the actual variance will not be simply 00 2 In, as 
the i.i.d. working model implies, but will depend on the pattern of units 
in the sample. The key feature of this pattern is the number 9 of groups 
of (one or more) adjacent units in the sample. Thus 9 = 1 indicates that 
the sample consists of one continuous segment of adjacent units such as j, 
j + 1, ... ,j + n - 1. At the other extreme, 9 = n indicates that there are no 
pairs of adjacent units in the sample, as in the case of the systematic sample 
j, j + r,j + 2r, ... ,j + (n - l)r obtained by choosing unit j and every rth 
one thereafter (r > 1) until n are selected. 

Of course if model (1) applies, Y II is still unbiased and consistent. But 
the correlation which the i.i.d. working model overlooks does affect the 
variance and the variance estimator. The actual variance is now 

var(Y II) = (oo 2 /n){1 + 2p(l- gin)}, 

while the expected value of the estimator is 

E (0- 2 In) = (oo 2/n) {I + 2p(l- gln)/(n - I)}. 

(2) 

(3) 
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The variance estimator pays too little attention to the correlation - the 

co@fficifmt of pin (3) equals the coefficient in (Z) dividrd by n -1. The relative 
bias, {[(3) - (2}1/(2)}, is approximately -2p(l- gln}/{1 + 2p(l- gin}}, so 
that the large sample CI for 0, Y. ± IT I n 1/2, is invalidated unless gin -t 1. 
The problem can obviously be avoided by choosing a sample whose units are 
dispersed so that g = n. 

For estimating the finite population mean Y, Y. remains unbiased under 
(1) and its arror varianca is 

var(Y. - Y} = (0'2 In) {(1- f) + 2p [(1 - f - gin) + b - f)IN]}, (4) 

where,,( = 2,1, or 0 depending on whether both, one or neither of the extreme 
units (units 1 and N) is in 8. This expression (4) must be compared with 
the expected value of the variance estimator v = (1- f)IT2 In under the same 
model, (I): 

E(v) = (0'2 In) {(I - f) - 2p(1- gln)(l- f)l(n - I)}. (5) 

From (4) and (5) we see that as nand N grow, 

var(Y. - Y) = (0'2 In) {I - f + 2p(l- f - gin) + O(IIN)} 

while 
E(v} = (0'2 In) {I - f + O(l/n}}. 

Thus for n large, the correlation again has a negligible effect on the expec­
tation of the variance estimator, so that the bias in v is determined solely 
by the effect of p on the variance itself. The relative bias is approximately 

E(v) - var...!... -2p(I-I- gin) 
var I -I + 2p(1 -1- gin)' 

(6) 

When the sample units are dispersed so that g = n, (6) equals 2pI 1{1-/(1 + 
2p)}.In such samples the variance estimator has Ii bias, but this bias is small 
whenever the sampling fraction I is small. At the other extreme, in compact 
samples (small g), the situation is much worse. When the sample consists 
of a single strip of adjacent units (g = 1) the relative bias is approximately 
-2pI(1 + 2p)j the sign is opposite that of p and the magnitude is unbounded 
on -~ < p < ~. 

The approximate relative bias (6) vanishes when gin = I - I, that 
is, when gin is close to its expected value under simple random sampling 
without replacement (SRS), I -I + liN. In fact, under SRS the expected 
bias is precisely zero: ESRS[(5) - (4)J = O. If nand N grow so that l-t 10 
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for some 0 ~ 10 < 1, then the relative bias under SRS is Op (1/nl/2), 
where this last expression denotes a generic term which, when multiplied 
by n1/ 2 , is bounded in probability. This shows that the problem created 
by this type of loca.l correla.tion will rarely be serious in large randomly­
selected samples. Of course for the purpose of making inferences based on a 
specific observed sample, it is the actual value of gin in that sample which is 
important, not the value which was expected before the sample was chosen. 
If misfortune strikes and gin is not close to 1 - I then a substantial bias is 
present unless p is small. This bias is not diminished by the fact that such a 
sample was improbable. Even if the sample is chosen at random, inferences 
should be properly conditioned on the characteristics of that sample, and 
not be distracted by considerations of "what might have been". A simple 
precaution is to restrict the random sampling plan so that only samples 
where gin == 1 - 1 can be selected. 

2.2.2 Clustering. As another alternative to the i.i.d. working model, we 
consider a model stating that the units are in fact grouped in indepen­
dent clusters within which the Y's are exchangeable. Thus E(Y,;) = () and 
var(Y,;) = 0'2 for all i, but all units belonging to the same cluster have a 
common covariance, p0'2. We denote the number of units in cluster k by 
Mk, and let mk be the number (possibly zero) of these units in the sample, 
so that E Mk = Nand E mk = n. Now the true error variance is 

while 

E(v) = (0'2In) (1-f) [1-{pl(n-1n{(I:mVn) -1}]. (8) 

We will consider only the case of constant Mk = M. The results easily 
generalize to models where the Mk show modest variability. If the non-zero 
mk are all equal (= m), as in two-stage sampling with equal workloads, the 
two expressions (7) and (8) simplify: 

var(Y 8 - Y) = (0'2 In) (1- f) + (pO' 2 In) {m(1- 11) - (1- In, (9) 

where 11 is the fraction of clusters selected in the first stage of sampling, 
and 

E(v) = (0'2 In) (1 - f) {1- p(m - 1)/(n - I)}. (10) 

If m = 1 the coefficient of p in E ( v) vanishes j as in the case of serial correla­
tion, a dispersed sample prevents the correlation from affecting the variance 
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estimator. More generally, whenever nlm, the number of clusters repre­
sented in the sample, is large, the coefficient of p is small. In this case the 
relative bias is approximately 

E(tJ)-var. -p{m(l-ft}-(l-f)} 
var 1 - 1+ p{m(l- It} - (1- In' 

When the first-stage sampling fraction It is small as well (which implies that 
the overall sampling fraction I = ItmlM is also small) the relative bias is 
approximately -p(m - 1)/{1 + p(m - 1n, which vanishes when m = 1 but 
can be substantial otherwise. Within cluster correlation cannot be safely 
ignored when estimates are based on a cluster sample with more than one 
sample unit per cluster (m > 1), even when the sample is large and both 
sampling fractions, It and mlM, are small. 

If SRS, not cluster sampling, is used, then there is reason for optimism 
that the relative bias will be small. Again this is because the SRS expectation 
of E(tI) equals that of var(T - T), i.e., the expected (SRS) bias in tI equals 
zero. But again the key question for inference is whether the expressions 
(7) and (8) are approximately equal for the sample at hand, not whether 
equality was expected. 

3. SERIAL CORRELATION AND LINEAR REGRESSION MODELS 

The general consequences of serial correlation in the simple i.i.d. case 
carryover to working models having a less simple mean and variance struc­
ture, but still specifying zero covariances. For linear statistics, such as ra­
tio, regression, and mean-of-ratios estimators of Y or the population total, 
T = NY, and variance estimators which are linear combinations of squared 
residuals, we find that when n is large: 
(i) expected values of the variance estimators are relatively insensitive to 

serial correlation, 
(ii) the error variances themselves (var(T - T)) can be strongly affected by 

serial correlation when gin is small, 
(iii) if both I and 1 - gin are small, the relative bias introduced in variance 

estimators by serial correlation is small. 

3.1 Working Model M 

We will sketch these results for the case of the ratio estimator and the 
working model M. Analogous results for other linear estimators are easily 
obtained. 



222 RICHARD M. ROYALL 

The first result, (i), is simple. If the residual r. ;;;;; Yi - Y. has expected 
value zero, then its square has expected value 

E(rn = var(Yo) - 2 cov(Yo, Yo) + var(Yo). 

The effect of serial correlation appears only in the two final terms, which 
are both 0(1/n). Specifically, in the case of the ratio estimator, the working 
model M states that the Y's are uncorrelated and that both the mean and 
the variance of Yo are proportional to Xi. Under M, ri = Yo - ryB/XS ) Xi, 
and EM(rl) = u2Xi(1 - Xi/nxB) = varM(Yo)(1 + 0(1/n)). Now under the 
more general model 

{ 
u2Xi 
Ci Model M1: E(Yi) = (3xi' COV(Yi' Yi) = 
Ci-l 

o 
we find that for every i in s 

'=3 
j=i+1 
j=i-1 
elsewhere, 

EMl(rn = U2Xi - 2Xi {U2Xi + Ci-18i-l(S) + Ci8i+l(S)} /(nx.) 

+ (Xi/X.)2 {u2x. + "'.} In, 

where 8i (s) is a zero-one indicator of whether 3 IS In sand "'B = 
2 E. C,A+l(s)/n. Since EM1(r!) = u 2 x;{1 + 0(1/n)}, it follows that se­
rial correlation has little effect on the expectation of a variance estimator of 
the form E. £.rl (such as tiL). If bias is introduced, it is via the correlation's 
effect on the target of estimation, var(T - T), rather than on the estimator 
itself. 

The estimator tiL, for example, has 

EMl( tiL) = {N(1 - f)/ I} (XXr/X.) u2 {1 - ",./(xB(n - 1))} 
= EM(tlL) {1 + 0(1/n)}. 

The effect of non-zero c's on the expectation of tiL is asymptotically negligi­
ble, provided only that the sequences {Xi} and {Ci} are reasonably stable. 

Since the variance estimator from conventional sampling theory (not 
based on prediction models), tic = {N(1- f)/I} E.rU(n - 1), and the 
bias-robust estimator, tiD = {N(1- f)/ I} (xrx/x!) E. rl /n(1- xi/(nxB)) , 
are also linear functions of the squared residuals, the same general result 
applies: EMl(tI) = EM(tI){1+0(1/n)}. 

On the other hand, the actual error-variance under M1 is 

varMl(T - T) = {N(1- f)2 /!} (xr/x.)2 (x.u2 + "'B) 
- N(1- f) {(xr/x.) if> - xru2 - "'r}, (11) 
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where 

r 

and 
N 

4> = 2 L C.{Si(S} - S'+l(S)}2 In. 
1 

Since the sum in 4> has only 2g - I non-zero terms, the second term in 
(11) is O(N} as N --+ 00 and f --+ 0, while the first term is O(N / f). This 
observation, together with the fact that when all the Ci vanish model Ml 
becomes model M, implies that 

varMl (1' - T) = varM(1' - T} {I + (tPa/(XsC12)) + O(f)} . 

Thus when Ml applies and both nand N / n are large, the variance is al­
tered by the factor 1 + tPs/(XsC12)). This results in a relative bias in the 
variance estimator tI, RBMl (tI) = {EMl (tI) - varMl (1' - T)} IvarMl (1' - T), 
of approximately 

RBMl(tI} == {RMM(tI} - tPs/(xsC1 2)}/(1 + tPs/(XsC1 2)). (12) 

For estimators like tiL and tiD which are unbiased under model M, 
RBMl(tI} == -tP/(XC12 + tP}. For tic the relative bias under M is approx­
imately (xa/x}2 - 1 (Royall and Eberhardt, 1975), so that under Ml it 
becomes 

RBMl(tlC} == {(Xa/X}2 - 1- tPs/(XsC12)} 1(1 + tPs/(XsC1 2)). 

The contribution of the covariance terms to the relative bias (12) is 
represented by tPa, which is an average of n terms, 9 of which equal zero. 
Its effect vanishes when the sample units are dispersed so that 9 / n --+ 1. 
In such samples, the presence of serial correlation (as expressed in model 
Ml) introduces essentially no bias in tiL and tiD and adds none to the bias 
in tic which was already present under the working model, M. Since vc 

is inappropriate even under M unless the sample is well-balanced, Xs == x, 
and since this estimator appears to have no redeeming advantages under the 
local correlation alternative, we will consider it no further. 

Expression (12) shows that samples made up of only a few large groups 
of units (small g) can produce in tiL and tiD a substantial negative bias when 
the Ci are positive, and a positive bias when they are negative. 

When the sampling fraction f is not small, the possibilities are more 
varied, with both terms in the variance (11) contributing to the large sample 
bias in tiD and tiL: 

EMl(tI} - varMl(1' - T} = -N(I- f){(xr/xa}2tPs(l- f)1 f 
- (Xr/Xa)4> + tPr + O(I/n)}. (13) 
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In this case the coefficients of tP., tPr, and 4> all have the same order of 
magnitude, so that choosing a dispersed sample (g = n) to eliminate tP. no 
longer ensures that the relative bias is small. 

If the relative bias is to become negligible when I converges to a non-zero 
limit as N grows, then the term within the braces in (13) must approach 
zero. This occurs in probability under SRS because, with respect to the 
SRS probability distribution, the four ratios xr/x., tP./ Ie, tPr/(1- /)e, and 
4>/2(1 - /)e, where e = L:~ Ci/ N, all converge to unity. In fact, all have 
the representation 1 + Op(n-1/ 2 ). On the other hand, for inference from 
a given sample we want to know whether the four ratios are in fact all 
approximately unity in that sample. Although the first one, xr/x., can be 
examined directly, the other three cannot. However an indirect check can be 
made by noting whether 9 / n is approximately 1 - I j if not, then the actual 
numbers of non-vanishing terms in tP., tPn and 4> (n - g, N - n - 9 - 1 + ,,(, 
and 2g - "( respectively) are not close to their SRS-expected values (( n - 1) I, 
etc.), suggesting that the desired conditions (tP. == Ie, etc.) are not satisfied 
by this sample. 

3.2 Serial Correlation Effects in a More General Context 

Robustness of variance estimators to departure of the variance function 
from the form specified in model M, var(y) = u2x, has been studied (Royall 
and Cumberland, 1978) by considering the alternative 

Model G: Y1 , ... , Y N are independent with 

E(Yi) = (3xi and var(Yi)) = tli, 

where the tli are subject only to some mild constraints such as that v = 
L:~ tli/N converge to a finite limite as N grows. It has been shown that if 
I --t 0 then tiD is robust in the sense of consistency under G, tlD/varg(T -
T) --t 1 in probability, and that tiL is not robust. 

We can study the effects of serial correlation in this more general frame­
work by considering the alternative 

Model G1: { 
tli 
c· E(Yi) = (3x, COV(Yi' Yi ) = • 
Ci-l 

o 

i=j 
j=i+1 
j=i-1 
elsewhere. 

The results are just as before. There is little effect on the variance 
estimator, but a potentially large effect on the variance itself: 
(i) EG1(tI) = EG(tI){1 + O(1/n)} 

(ii) varGl(T - T) = varG(T - T){1 + tP./v• + OU)}. 
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This means that the expression (12) for the relative bias generalizes: 
when n is large and I is small 

Since 1/1" is a sum of n - g non-zero covariances divided by n, this last result 
implies that 

(iii) if both I and 1-gin are small then the relative bias in v is little affected 
by serial correlation. 
Finally, expression (13) for the bias in a variance estimator generalizes 

to show that the contribution of serial correlation is just as before: 

EGl(V) - varGl(T - T) 

= EG(v) - varG(T - T) 

- N(l- f) {(xrlxB)21/1B(1- f)11 - (Xr IxB) 4> + 1/Ir + O(lln)}. 

Thus the estimator VD, which remained consistent when model M was re­
placed by G (so long as 1-+ 0), retains its consistency in the face of serial 
correlation (G replaced by G1) so long as the sequence of samples is one in 
which gin -+ 1. 

4. FURTHER WORK AND EXTENSIONS 

Generalizations of the serial correlation results in two directions are 
straightforward. Most of the results for the ratio estimator under model 
M carryover to other linear estimators and zero-correlation working mod­
els. The presence of serial correlation causes no bias in the estimator T 
and has little effect on the expectation of any variance estimator which is 
a linear function of square residuals. But the target of variance estimation, 
var(T - T), can be sharply altered by serial correlation. Protection is ensured 
when I is small if the sample units are dispersed (gin == 1). These results 
also extend to m-dependent serial correlations models, in which units i and 
j are correlated if and only if I i - j I < m, where m is a fixed integer which is 
small relative to n. Protection from the correlation effects is obtained, when 
n is large and I is small, if the sample units are well-dispersed - separated 
by at least m units. 

The clustering phenomenon is harder to model in the general regression 
context. One immediate difficulty is that when the working model specifies 
unequal variances, as M does, the most natural ways to model clustering 
effects not only introduce correlations but also alter the variance structure as 
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well. Thus it becomes harder to examine correlation per se without simulta­
neously keeping track of effects of departure from the working model's vari­
ance structure. Some preliminary calculations, as well as the results of Scott 
and Holt (1982) for the related problem of estimating regression coefficients 
(with a constant variance working model), suggest that the present conclu­
sion applies quite generally-working models which overlook within cluster 
correlation can lead to serious problems when the correlation is present and 
the sample contains more than one unit from each cluster sampled. 
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M. E. Thompson 1 

IDEAS FROM THE FOUNDATIONS OF SAMPLING 
APPLIED TO THE ONE-WAY LAYOUT 

ABSTRACT 

This paper is an attempt to apply ideas from the foundations of sampling 
theory to a situation in the design of experiments, namely the one-way layout 
with two treatments and no technical error. Basic considerations concerning 
the role and choice of randomization are shown to correspond. There is 
no obvious value in the design context for analogues of 1I'ps sampling. An 
optimality result for estimation of the difference in treatment effect is given. 

1. INTRODUCTION 

In the light of the recent reemergence of interest in the analogues between 
sampling and experimental design, the present paper applies the elements of 
foundations of sampling, as found, for example, in the paper of Godambe and 
Joshi (1965), to a simple situation in the design of experiments, namely the 
one-way layout with two treatments and negligible technical or measurement 
error. 

Applying the principles of sampling to the design of experiments may 
have a precedent in the work of Neyman, whose pioneering paper on sampling 
(Neyman, 1934) appeared the year before the paper on design (Neyman, 
1935) which set off his controversy with Fisher. His 1935 approach to the 
comparison of treatment effects can be described as follows. 

Let Yij(k) denote the "true yield" for block i, plot j and treatment k. 
This would be the mean yield if the experiment were repeated indefinitely 
under no change of vegetative conditions. Let rlij(k) be the actual yield on 
a particular occasion. Then Eij(k) = rlij(k) - Yij(k) is "technical error" , 
analogous to response error in sampling. 

1 Department of Statistics and Actuarial Science, University of Waterloo, Wa­
terloo, Ontario N2L 3G 1 
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Let y( k) denote the mean of the true yields over all plots for treatment k. 
As Neyman expressed the purpose of the experiment, it was to compare the 
means y(k), or more specifically to estimate the differences ~ = ~(k, k') = 
y(k) - Y(k'). Thus, the problem was reduced to the comparison of means 
for the finite population of experimental units. 

In the analysis of a randomized block design, Bi(k) and the "soil error" 
zij(k) were defined by the following relations: 

Yij(k) = y(k) + Bi(k) + zij(k), 

L Bi(k) = 0, L zij(k) = O. 
i j 

Similarly, for the Latin square design, the decomposition 

Yij(k) = y(k) + Ro(k) + Cj(k) + Zij(k) , 

LRo(k) = 0, 
i 

LCj(k) = 0 
j 

was defined. 
Assuming n plots with each treatment, the estimate proposed for 

~(k, k') was 

where 

d = 'r7(k) - 'r7(k') = ~ {~Oij(k)T/ij(k) - ~ Oi;(k')'1i j(k')} , 
I" '" 

Oij (k) = 1 if treatment k is applied to i, j, 
= 0 otherwise . 

On assuming that the Eij(k) are all independent N(O,u:), then 

Er(d) = il + ~ {~Oij(k)Zij(k) - ~ Oij(k')Zij(k')} , 
',' '" 

where Er denotes the corresponding expectation operator. 
If further E denotes expectation with respect to the randomization of 

the design (randomized block or Latin square) then 
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Neyman (1935) computed a "variance" E[er(d - to)2] for each scheme and 
showed that there are configurations of the zij(k) which can make the Latin 
square less efficient than the randomized block design. The non-superiority 
of the Latin square could occur because the zij(k) were allowed to depend 
on k. Neyman (1935) also developed confidence intervals for to, based on 
the randomization in case 0': = O. Note that if 0': = 0, so that there is 
no technical error, this variance reduces to E[(d - to)2], the randomization 
variance. 

Fisher's approach, as described by Joan Fisher Box (1978), was appar­
ently to consider that (for the randomized block design) 

where Ele a(k) = 0, Ei Ei = 0, and the Zij have mean 0 in some sense. He 
considered the purpose of the experiment to be to test the null hypothesis 
that the treatments had no relative effect, which in the above context would 
mean 

Ho : a(k) = 0 for all k. 

The z-tests he derived were justifiable in terms of the randomization distribu­
tion, as in Neyman's approach, assuming the constraint Eij Zij = O. Fisher, 
in fact, expressed this kind of justification explicitly elsewhere (Fisher, 1936). 

An alternative "modern" randomized block analysis sets 

where Ei f3i(k) = 0 and the eij(k) are independent N(0,0'2). The term 
eij(k) includes both soil and technical error. The purpose of the experiment 
is to compare the means J.t(k), which are analogous to super-population 
means in sampling theory. Fisher's Z tests can be justified in terms of this 
model. In most texts the randomization plays no role in such a justification. 
However, as should become clear in the simpler situation discussed in suc­
ceeding sections, the interplay of model and randomization scheme which 
can exist in sampling (Thompson, 1980, 1984) can equally well exist in the 
design of experiments. 

2. THE ONE-WAY LAYOUT 

Consider the use of n experimental units, and two treatments A and E. 
In the absence of technical error the response is 

Yi(k) = Ole + "ti, i = 1, ... , m; k = A or E, 
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where (as assumed by Fisher) the Ii are noise values (Neyman's "soil error") 
which are independent of the treatment applied. The object is to flnd a set 
of designs (i.e., treatment assignments) 

D1, ... ,Ds, 

and associated probabilities 

Ps = P(Ds), 8 = 1, ... , S 

which would make possible a powerful test of the hypothesis 

This is, of course, closely related to the problem of finding an efficient strat­
egy (randomization scheme and estimator) for estimating (JA - (JB. 

In the following sections, a pure randomization approach is described 
in the same generality as is commonly used in sampling theory. It is then 
argued that the choice of randomization and estimators or test statistics 
to be used should involve a stochastic model for the responses. In fact, the 
author believes that tests and estimates for which the justification is based on 
the randomization distribution alone have useful interpretations but should 
not be regarded as inference; the randomization is relevant for inference only 
when it gives results consistent with those based on an appropriate model 
(see Thompson, 1980). 

Although the role of randomization may be similar in both sampling 
and design contexts, the criteria for choosing randomization strategies may 
be analogous, some of sampling theory appears to have no counterpart in 
the design of experiments: Section 5 suggests that there is little reason 
for analogues of 7rpS sampling to be introduced. Finally, Section 6 gives 
conditions under which optimal unbiased estimators exist. 

3. PURE RANDOMIZATION APPROACH 

If we were interested only .in the long run frequency properties of the 
strategies and tests used, it might be quite reasonable to evaluate them first 
in terms of the distribution induced by the randomization scheme, without 
introducing any other stochastic element. This would be analogous to the 
approach to sampling estimation found in the textbooks of Cochran (1977), 
Murthy (1967), Sukhatme and Sukhatme (1970), etc., and dominating foun­
dational discussions before the 1970's. 
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Consider a general scheme 

DI, ... ,Ds 

PI,·· ·,Ps 

231 

and suppose without loss of generality that E:;"I 'Yi = O. A general homo­
geneous linear estimator of () A - () B could be written 

e = L Si.(k)ai.(k)Yi(k), 
i,k 

where D. is the design selected, and 

Si.(k) = 1 if k is assigned to i under D., 
= 0 otherwise . 

The randomization expectation of e is 

ER(e) = LP(8) LSi.(k)ai.(k)Yi(k). 
• i,k 

If we impose the condition that e should be an unbiased estimator of () A - () B 

then for every () A, ()B and 'Y = bl,' .. , 'Ym) we would have 

Equivalently, if 

B 

and 

• 
the conditions for unbiased estimation of ()A - ()B are that 

Lei = 1, L'" = -1, 
i i 

and 
L 'Yi(ei + '11) = 0 

i 

for all 'Y such that Ei 'Yi = O. The latter condition implies that ei + 1/i = 
a constant e, and the former two that e = O. Thus, the two conditions which 
will guarantee unbiasedness are 

(Ul) ei = -"Ii 
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(average coefficient for each unit response is 0) and 

(U2) Lei = 1. 
i 

The randomization variance would be 

Since (JA - (JB = Yi(A) - Yi(B) = * Ei(Yi(A) - Yi(B)), VarR(e) may be ex­
pressed as a quadratic function of co-ordinates of the vectors z = (Zl' ... , zm) 
and z' = (zL ... , Z!,.), where Zi = Yi(A) and z~ = Yi(B). Let a general 
quadratic function of z, z' be denoted by 

Q(z,z') = L L (Qj:4-zizi, + QjP ZiZ;' + Qfl,Az;Zi' + Qfl,B z;z;,) , 
i~i' i' 

and let 

"'ii'AA = Ep(S)Oi.(A)Oi,.(A), "'ii'BA = Ep(S)Oi.(B)Oi,.(A), 
• • 

"'ii'AB = Ep(S)Oi.(A)Oi,.(B), "'ii'BB = Ep(S)Oi.(B)Oi,.(B)i 
• • 

thus "'ii'rr,is the probability that i receives treatment rand i' receives treat­
ment r', where r, r' take values in the set {A, B}. A randomization-unbiased 
estimator of Q(z, z') when D; is selected is 

provided that , 
"'ii'rr' = 0 => Qi[. = o. 

(Note "'ii'AB = "'ii'BA = 0 if i = i'.) Thus, VarR(e) possesses a randomiza­
tion unbiased estimate if 

(i) "'ii'rr' > 0 when i t= i', or i = i' and r = r' 
and 

(ii) VarR(e) can be written in the form ofQ(z,z') with QjB = O,Q~A = O. 
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A sufficient condition for (ii) to be satisfied is that VarR(e) can be 
written as a function of z only, which will be true if for each 8 

Clearly, the analogous condition 

would also suffice to ensure "estimability" of VarR(e). 
Let v(e) be an estimator of VarR(e) such that 

ER[v(e)] = VarR(e). 

Under favourable conditions, it may be possible to assume that 

e-(OA-OB) 

y'v(e) 

(3.1) 

(3.2) 

has a standard normal or even a t-distribution. This may be expected to 
happen if the "distribution" of the ,i, i = 1, ... , m is not very skew and m 
is large and S, the number of design choices, is also large. It follows that, 
subject to such conditions, the problem of estimating OA -OB and testing Ho 
(not necessarily efficiently) can be solved under a wide variety of strategies. 

For example, if the scheme is complete randomization, m/2 units being 
selected at random for A, the most intuitively appealing estimator for 0 A - 0 B 

IS 

Clearly, 
ER(e) = OA - OB, 

and (3.1) and (3.2) are both satisfied. Thus, VarR(e) is estimable, and in 
fact 

where 

2 
v{e) = -(VA + VB), 

n 

VA = (T ~ 1) ~8i.{A) (Yi(A) -y.A,;f, 

VB = (T ~ 1) ~8iB(B) (Yi(B) -YBB,;f· (3.3) 
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The t-statistic 

(3.4) 

is not only approximately N(O, 1) for large m but also is approximately 
t(m.-2) for moderately large m and a large set of possible 1. Thus, a test of 
Ho can be constructed having well-defined frequency properties in the sense 
of the randomization being repeated again and again with the same units 
b fixed), cf. the logic of Fisher's permutation test (Fisher, 1936). However, 
there is no guarantee that the test will be powerful in the same sense. 

Roughly, powerful tests will be associated with efficient estimators e, 
but in analogy with sampling theory (e.g., Godambe, 1955), it can be seen 
that it is impossible to choose a strategy to minimize VarR(e) for all 1 in 
Rm., and that almost any strategy works well for some 1. Thus, in order to 
select a strategy one needs to make some assumption about the vector 1, 
and perhaps postulate a stochastic model for its generation. Such a model 
may be sufficiently general, and encompass sufficiently many distributions, 
that the strategy chosen may represent the best compromise. 

4. GENERALIZED EXCHANGEABILITY 

One simple stochastic model for 1 is that the 'Yi are i.i.d. with some 
distribution. If this is so 'Y1, •.. , 'Ym. are symmetrically, or exchange ably, 
distributed, since the distribution of 'Y1, ••. ,1m. jointly is invariant under 
permutations of the experimental units. Alternatively, the units might be 
separated into strata, within each of which the 'Yi are i.i.d., or more generally, 
exchangeably distributed. 

In general, if 11"0 is a subgroup of the group of permutations of the ex­
perimental units, a stochastic model e for 1 is ,,"o-exchangeable if the joint 
distribution of 'Y1, ••. , 1m. is invariant under every permutation in 11"0. Let 
€€ denote expectation with respect to e. It is possible to show that if e is 
chosen among estimators such that 

then the estimator minimizing 

if it exists, will be a function of the "1I"o-order statistic" , suitably defined. 
See Section 6. 
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For example, if 11"0 is the full permutation group, the order statistic would 
consist of the set of !Ii values observed with the labels i removed, but the 
treatment used (A or B) retained. The optimal linear estimator would be 

e = Y.(A) - Y.(B) 

and for this choice of e, 

is independent of the design obtained. Therefore 

is independent of the randomization scheme R used to assign, say, m/2 units 
to each treatment. 

In this case, it can probably also be shown that (3.3) is in some sense a 
best estimator of 

and that its optimality also is independent of the randomization scheme used. 
If under e the t-statistic (3.4) has an approximately t or N(O, 1) distribution, 
then e-valid tests of Ho can be based upon it, and these are independent of 
the randomization scheme. 

However, if complete randomization is used, then Y.(A) - Y.(B) is in 
fact unbiased for (J A - (J B in the sense that 

ER (Y.(A) - y.(B)) = (JA - (JB, 

and moreover, the test of Ho based on (3.4) has an interpretation in terms 
of R, as described above. Thus, if the model e were questionable, the tests 
based upon it would still have validity in terms of hypothetical repeated im­
plementation of R. Thus, complete randomization, which mirrors exchange­
ability since it is generated from a single design by applying a randomly 
chosen permutation of the units, reinforces in a somewhat mysterious way 
the inference based on e. See Thompson (1980, 1984). 

Now the test based on the t-statistic (3.4) may also be reinforced at least 
approximately under a restricted randomization scheme. However, schemes 
for which the joint allocation probabilities 1I"ii' ,rr' differ from those for com­
plete randomization will be "invalid" , since under such schemes the t-statistic 
(3.4) will not have the proper distribution. 

To take I1-nother example, suppose we have a stratification of the set 
of experimental units into strata 81,82 , If the Ii are thought of as being 
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exchangeable within strata, but not across strata, there are two interesting 
situations (SIT1, SIT2). 

In SIT1, the distribution of the "Ii is thought to be independent and 
different in 81 and 8 2 , In particular, it might be thought that the means 

(~ ) L "Ii and 
m 1 iESl 

(4.1) 

are different, even on the average over many sets of m experimental units 
obtained in a similar way. In this situation, the model e is invariant under 
the group ""0 of permutations which leave 8 1 and 82 fixed. This group is not 
transitive. 

If Ye1(A) is the mean of Yi(A) over units in 81 receiving treatment A, 
and the other means below are similarly defined, we may conjecture that 
best estimators will be expressible in terms of the order statistics for these 
sets. If 

Wi = m(8i )/m, 

the best estimator for 8 A - 8 B will be 

A scheme R which amounts to complete randomization within strata is suit­
able, and "valid" in the sense that the t-statistic 

where 

v(e) = wi (VlA + V1B) + W; (V2A + V2B), 
mlA mlB m2A m2B 

Vir = (m .1_ 1) L Oie(r) (Yi(r) - Yej(r)) 2 , 

3 r iESi 

mjr = L Oi.(r), j = 1,2, j r = A, B, 
iESi 

has approximately the same distribution under R as under e. The strata 
81 and 82 are really treated as blocks, and a degree of freedom is "lost" 
thereby, though the greater efficiency of e may offset this. (In sampling, we 
are told to stratify as much as possible. The loss of degrees of freedom does 
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not worry us as much when the emphasis is on efficient point estimation 
rather than stable interval estimation.) 

In SIT2, the two strata 81 and 82 are of the same size, and their "I, 
configurations are thought to be interchangeable in some sense, so that the 
model is invariant not only under the previous 71'0, but also under the larger 
group 71'0 of permutations which preserve but possibly interchange strata. 
For the given set of experimental units, the means (4.1) may again be thought 
to be different, but over many sets of m experimental units they would be 
expected to have the same average value. The group 71'0 is transitive. Since 
Wi = W2 = ~, the estimator e of (4.2) reduces to 

(4.3) 

If mlA = m2A and mlB = m2B, this is the same as 

(4.4) 

but not otherwise. 
A randomization scheme obviously corresponding to 71'0 is to set up a 

design allocating roughly equal numbers of units to A and to B in each 
stratum, and then permute the units by a permutation randomly chosen 
from 71'0' 

5. SOME THOUGHTS ON UNEQUAL 
PROBABILITY RANDOMIZATION 

In sampling theory there are two common justifications for the widely 
used practice of unequal probability randomization: 

(i) it can be used to increase the chance of obtaining a preferred sample, 
while making sure that each unit has positive probability of selection; 
and 

(ii) it can make a preferred estimator or estimators randomization unbiased. 

The second justification must always be present, it seems to this author, for 
the practice to make sense. In Basu's (1971) example, the circus statistician 
comes to grief by choosing an exactly unbiased (and in a sense optimal) 
estimator for a sampling design satisfying only the criterion (i) above. 

In Cox's (1956) example, the analogue of (ii) is brought in to jus­
tify weighting (experimental) designs with probability proportional to 
L:u L:,(x, - xu)2, where x is a concomitant variate and Xu is its uth treat­
ment mean. As he says, to derive the randomization properties of regression 
estimators of response treatment means, no relationship between x and the 
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response Y need be assumed. However, for these estimators to be preferred 
one would presumably need to have an idea that Y and x were approximately 
linearly related for each treatment with constant residual variance. 

He also remarks that this weighted randomization gives more weight to 
designs where treatments are balanced with respect to the mean value of 
Xj and if Zi = Yi(A) and Xi are linearly related, these designs would seem 
to be robustly efficient and hence to be preferred-see justification (i). For 
discussion in a similar vein, see Bellhouse (1986). 

However, the same considerations (and their analogues for regression 
estimators in sampling) suggest that we can do nearly as well with an equal 
probability scheme, namely by stratifying with respect to x. Effectively, this 
reduces the "short list" of designs to one which consists of designs which are 
nearly balanced with respect to x. It will reduce the randomization bias of 
the estimators from what it would have been under complete randomization, 
and bring the e-based and R-based distributions of the estimators into closer 
agreement. Thus, practically speaking, a weighted randomization scheme is 
not necessary in this context. 

In sampling theory, there are other situations where weighted randomiza­
tion seems more important. Suppose E;:l "1i = 0 and we want to estimate 
o A from observing 

OA + "1i = Yi 

for i in a sample 8 of n < m units. Suppose also that it is assumed that Yi/ Xi 

are i.i.d., where x = (Xl,"" X".) is a known vector of positive components. 
That is, under e, 

is a weighted sum of realizations of i.i.d. variates. Then a natural estimator 
of OA is 

and e can be proved to be optimal under some criteria. We can show that 
if the probability that i E 8 is proportional to Xi under a randomization 
scheme R, the R-based and e-based distributions of e can be made to be 
approximately the same, and furthermore, ER(e) = OA exactly even if the 
assumption of e is in doubt (cf. justification (ii)). If e is inaccurate and a 
randomization scheme with different inclusion probabilities is used, ER(e) 
may be quite different from OAi moments of this e are more sensitive to 
changes in scheme than moments of ratio or regression estimators. 

Perhaps in experimental design problems analogous situations would be 
less likely to arise. Those which come to mind immediately seem artificial. 
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For example, one might have 

Yi(A) = (}AXi + 1'i = Zi, 

Yi(B) = (}BX~ + 1': = Z~, 

h / .. d '/' .. d were Zi Xi are 1.1. ., Zi Xi are 1.1. ., 

Xi + X~ = const., 2: Xi = 2: X~, 

and 

are known vectors of positive components. 
Then 

2 (~ yo ~ yo) e = - L.,.0i.(A)-.!. - L.,.0i.(B)-.!. 
m i Xi i Xi 
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would be a good estimator, which would be R-unbiased if the probability 
""iA that i received treatment A were equal to Xi/(Xi+xD, and to accomplish 
this exactly might require weighted randomization. 

6. AN OPTIMALITY THEOREM 

The result given here is patterned on part of Theorem 5.1 of Thompson 
(1984), and is closely related to results of Wu (1981). 

A random permutation model for l' is definable in terms of a subgroup 
ITo of the group of permutations or one-to-one mappings of {I, ... , m} onto 
itself. Each,," E ITo induces a mapping g" on the space r of arrays 1', given 
by 

g,,(1) = b"(I),' .. , 1',,(m») j 

and for each array 1'0 we may define an orbit relative to ITo: 

orb(1'o) = h : g,,(1o) = l' for some,," E ITo}. 

If r is closed under each g", "" E ITo, then a random permutation model is 
a distribution on r under which each member of orb('Yo) for some fixed 'Yo 
is given equal probability. 

A ITo-exchangeable model on r is a class of distributions e which are 
invariant under,," E ITo. Under each such 'Y the conditional distribution of 
'Y, given 'Y E orb(1o), may be taken to be the random permutation model 
associated with orb(1o). 
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The subgroup ITo is also associated with a class of invariant randomiza­
tions. Each design Do has an orbit: 

orb(Do) = {D : D(1r(i)) = Do(i), i = 1, ... , m for some 1r E ITo}, 

where D(i) is the treatment assigned to i under design D. Then a random­
ization R is invariant if for each Do it assigns the same probability p to every 
design D in orb(Do). The invariant randomization RDo generated by Do 
and ITo is the randomization which gives equal probability to all members 
of orb (Do) and zero probability to all other designs. 

Let us call the outcome of an experiment with design D 

XD = ((i, Yi) : i E SAD; (i, Yi) : i E SBD) , 

where SAD is the set of units receiving A under D, SBD is defined similarly, 
and Yi are the response values. 

Formally, we may define the ITo-order statistic r(XD) as a partition of 
the space of all possible values of XD as "I varies in rand (}A, (}B vary in R, 
where R is the set of real numbers. That is, we shall say that 

r((i,Yi) :iESAD;(i,Yi) :iESBD) 
= T (( i' , y!, )': i' E SAD' j (i', y!,) : i' E S B D' ) 

if and only if there is some 1r E ITo such that SAD' = {1r (i) : i E SAD} and 
such that for every i,i' = 1r(i) '* Y!, = Y".(i)' 

Now suppose that the model for "I is a class {e} of ITo-exchangeable 
distributions e. Let 

S = {(e,R)} 

be a class of possible strategies (strategy = estimator and randomization) 
for estimating () A - () B. We may seek a strategy in S to minimize 

E~ER(e - (}A + (}B)2 

for all e E {e}. Clearly this can be done if we can find a strategy (e, R) to 
minimize 

(6.1) 

for every Do and "10 E r where E orb{-ro) denotes expectation with respect 
to the random permutation distribution on orb "10 and ERIDo denotes the 
randomization expectation with respect to R restricted to orb(Do). 

Theorem. For each Do with positive probability under R for some (e, R) 
suppose that for every (e, R) E Sand "10 E r 
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(i) ERIDo(e - OA + OB) = 0 for all OA, OB E Ro, and 

(ii) there exists Ro such that (eo,Ro) E S, where eo = eoo(e I r(XD)) and 
eoo denotes expectation with respect to Ro and the random permutation 
on orb(1o) combined. 

Then (6.1) is minimized by (e*, R*) in S only if e* is a function of XD only 
through r(XD). 

The proof is analogous to the proof of the corresponding statement of 
Theorem 5.1, Thompson (1984). 

If e* is unique in that (e*, R*) E S and e* is a function of r(XD ), then 
(e*, R*) is optimal. (Note R* need not be unique.) Typically e* will be 
unique if r is sufficiently large that the order statistic r(XD) is complete. 
(See Liu, 1983.) 
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ANALYTIC USES OF SURVEY DATA: A REVIEW 

ABSTRACT 

A brief history of the use of survey data in data analysis is given. Issues 
arising from the complexities of the survey design are highlighted, both from 
the point of view of estimation as well as for performing hypothesis tests and 
developing confidence intervals. Many problems such as analysis of linear 
models and log-linear models have been studied recently. We cite the main 
results. Estimation of population percentiles is also discussed. 

1. INTRODUCTION 

The use of survey data using scientific sampling methods can be traced 
back to the late 19th century. However, until the 1960's the major emphasis 
of sample surveys was directed toward estimation of means, totals, propor­
tions and ratios. With the advent of high speed computers, the number of 
surveys increased substantially and users became more sophisticated in their 
requirements. Over the last 25 years there has been a flurry of activity in 
the use of surveys for analytic purposes rather than purely as a descriptive 
device. Age-old questions such as use of sampling weights and making in­
ferences for finite populations resurfaced in this new context. Many of these 
questions have now been partly resolved, at least for the case of large scale 
surveys where asymptotic results can be applied. In this paper we review 
these developments. 

In Section 2 we briefly summarize the developments of survey sampling 
up to 1970. In Section 3 we discuss the problems introduced by using surveys 
for analytic rather than descriptive studies. In Section 4 we discuss problems 
which are more particular to analysis of categorical data. Section 5 gives a 
brief description of problems associated with percentile estimation. 

1 Statistics Canada, Ottawa, Ontario K1A OT6 (all authors) 
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2. EARLY DEVELOPMENTS 

The concept of generalizing from a part of the population to the whole 
was not considered on a scientific basis until the latter half of the 19th 
century. In this respect there are two main issues: 2 

1. How to select the part from the whole. 
2. How to generalize from the selected part of the entire population. 

Whereas the focus of this paper is on the second issue, it should, however, 
be borne in mind that the two issues cannot be completely separated. 

The first statistician who can be credited with giving sampling a more 
scientific basis was A. N. Kiaer, who was the Director of the Norwegian 
Bureau of Statistics during the last quarter of the 19th century. It is not 
known whether surveys taken before that time can be called sample surveys 
because statisticians never gave an account of how they took their samples 
and what controls they used. Kiaer was the first to consider it fundamental 
that the accuracy of a survey depends not so much on the number of observa­
tions made, but also on the method of obtaining correct representativeness. 
His was the concept of the "representative method of investigations" , about 
which he wrote several papers during the last ten years of the 19th century. 
It was, however, not until 1903 that his ideas were tentatively accepted by 
the International Institute of Statistics. Kiaer also applied the principle of 
stratification, which he called the "method of controls". (It should be noted 
that during the same period in the United States, C. D. Wright, who had 
a position in Massachusetts similar to Kiaer's, also applied the concept of 
representativeness which he independently developed, although on an even 
more intuitive basis than Kiaer did.) Kiaer's ideas triggered the develop­
ment of a more theoretical basis for survey sampling. L. von Bortkiewitz 
was the first to express the idea of testing sample results for representative­
ness, although he was not the first to employ statistical tests in connection 
with sampling. (The first known application of a statistical test had already 
taken place about two centuries earlier by John Arbuthnot, Queen Anne's 
physician.) A. L. Bowley proposed to use the theory of probability in con­
nection with survey sampling and, building on the work of K. Pearson and 
F. Y. Edgeworth, developed the statistical theory of sampling. S 

A major milestone in the development of sampling was Neyman's (1934) 
paper, where he placed the methods of stratified and group sampling on a 

2 Actually there is a third issue "How to properly use the generalizations for 
practical purposes once they have been obtained". With a few notable exceptions 
this issue is ignored in many statistical textbooks. 

S A bibliography of these older works is given by You Poh Seng (1951). 
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sound theoretical basis and criticized the method of purposive selection as 
described by Bowley and tested by Gini and Galvani. 

Until Neyman's paper, the theory of estimation was mainly that of point 
estimation based on Bayes "Theorem of Inverse Probability" which requires 
the knowledge of the prior probabilities associated with different admissible 
hypotheses. Neyman described and refined the theory of "interval estima­
tion" as suggested by R. A. Fisher with parameter estimates based on the 
Gauss-Markov Theorem. This method of estimation became the recognized 
theory of estimation. In the meanwhile, Fisher had also developed the analy­
sis of variance, which is a technique to separate total variance into its various 
components. The validity of the error estimates is based on the principle of 
randomization. It was due to the work of A.R. Clapham that the analysis 
of variance also proved useful for sample surveys. 

After Neyman's paper, considerable developments have taken place in 
sampling theory, especially with respect to sample selection and estimation. 
This led to modern sampling techniques, such as cluster sampling, systematic 
sampling, two-stage and multi-stage sampling, etc. All the developments in 
this respect are covered in the five "standards" which appeared in the late 
forties and early fifties within five years: the books by Cochran (1953), 
Deming (1950), Hansen et al. (1953), Sukhatme (1954), and Yates (1949). 

An important development at this stage, which had a high impact on 
the analytic use of surveys in later years, is the use of supplementary in­
formation. Cochran studied this in connection with estimation leading to 
utilization of this information in the form of ratio or regression estimators. 
The supplementary information is comparable to the use of one or more co­
variates in experimental design. Before, the development was geared towards 
sampling variance models as introduced by Neyman (based on the Gauss­
Markov theorem). Ratio and regression estimators were aimed at increasing 
the precision of the estimates. With the same objective in mind, Hansen 
and Hurwitz suggested the use of additional information at the sampling 
state leading to designs in which elements are selected with probabilities 
proportional to some suitable measure of size. 

The earlier statistical methods were based on the assumption of simple 
random sampling and were developed from the concept of the hypothetical 
population model. The principle of randomization, as developed by Fisher 
for experimental design, was later adapted for the purpose of survey sam­
pling in which it implies the use of some artificial mechanism such as a 
rand.om number table. This in turn implies that the elements in the target 
population carry some form of label, which is the case with most populations 
of interest in survey sampling. The statistical methods used were still based 
on the original assumptions of simple random samples, although in many 
cases they were modified to allow for sampling without replacement from a 
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finite population. Estimates for regression coefficients and procedures such 
as testing for independence in a two-way table were relatively straightfor­
ward, especially when the sampling fractions were small, since the classical 
procedure for analysis seemed to apply to these situations without modifi­
cation. 

However, in the early 1950's because of operational and efficiency con­
cerns, more consideration was being given to stratified sampling designs and 
to designs with unequal inclusion probabilities; see, for example, Horvitz and 
Thompson (1952). In the developments following, the sampling variance and 
its estimation still played a dominant role. The quantity of interest for this 
purpose, which was later called the design effect (deff) by Kish and Frankel 
(1974), is the ratio of the variance associated with a given survey design to 
that of simple random sampling. 

The introduction and expansion of the use of electronic computers has 
contributed considerably to the 'development of methods of analysis of com­
plex designs, whether survey designs, experimental designs or others, which 
were at one time considered to be too expensive computationally. An area 
of major development as a result of this introduction was regression and 
correlation analysis or more generally least-squares analysis. Although the 
method of least-squares was already proposed in the beginning of the pre­
vious century, development of this method of analysis was slow, mainly due 
to the lack of means to cmy out the substantial amount of computation 
involved, even with a moderate number of variables. It had already been 
recognized that difficulties may be encountered when using regression analy­
sis for survey data. For instance the relationship between household savings 
and household income using survey data was studied by Klein and Mor­
gan (1951) who summarized the difficulties associated with: (1) weighting 
of observations, (2) heteroscedasticity, (3) nonlinearity, (4) the choice of al­
ternative economic concepts and (5) errors of observation; of which (1), (2) 
and (5) could be associated with the use of complex surveys. Konijn (1962) 
discussed two models which can be used for both point and variance esti­
mation in regression relationships, where the data have been obtained using 
more complex survey techniques than simple random sampling, specifically 
stratified and cluster sampling. 

For estimating the variances of non-linear statistics such as ratios, cor­
relations and regression coefficients, three methods are still commonly used: 
the delta-method or Taylor linearization (see Tepping, 1968), balanced re­
peated replication and jackknifing (see Section 3.3 for more details). 

For analysis and summaries of categorical data, all the concepts intro­
duced above could be equally applied to this special case. From the point 
of view of survey samplers little distinction was made between quantita­
tive and qualitative data since the probability mechanism was applied to the 
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population labels, not the population values. Ratio estimation of population 
proportions was a common way to incorporate auxiliary data beyond the de­
sign variables. Tests for proportions and for differences of two proportions 
were relatively straight forward using Taylor linearization, balanced repeated 
replication or jackknifing methods. It was not until the early 1970's that de­
tailed consideration was given to tests of independence, goodness-of-fit tests 
and other x2-type tests (see Section 4). Of course, for simple random sam­
ples, the usual X2 statistics were valid up to the finite population correction 
factor. 

A major development in the analysis of categorical data from complex 
designs appeared in Grizzle et al.'s (1969) paper. They generalized tests of 
linear and log-linear hypotheses on the estimated proportions for categor­
ical data, based on the Wald statistic using Taylor linearization. Many of 
the later developments in categorical data analysis were extensions of this 
fundamental contribution. 

3. REGRESSION AND RELATED ANALYSIS 

3.1 Descriptive vs Analytic Use of Survey Data 

Because of the recent concern for tests of more complicated hypotheses, 
such as those described by Grizzle et al. (1969), a distinction between "de­
scriptive" and "analytic" use of survey data was made. According to Kalton 
(1983), analytic uses refer to estimation of parameters of a causal system, 
ideally one of universal application. Unfortunately, in many disciplines (e.g. 
behavioural sciences) causal models are still in their infancy. Therefore, 
good predictive models, which are descriptive in nature, are Bought instead. 
As Imrey et al. (1980) point out, statistical inference based on variational 
or structural modeling are often undertaken in several disciplines, naively 
assuming probability distributions based upon simple random sampling. An 
example of using survey data explicitly for prediction purposes is given by 
Cassel et al. (1979). They use the design information in their estimation, 
the underlying assumption being that any missing variables in a true causal 
model would behave similarly at a future time point. 

The controversy that has arisen among survey data analysts, as it relates 
to regression and other linear models, extends to other analytic uses of survey 
data as well. The remainder of this section will concentrate on the regression 
framework. 

3.2 Use of Sampling Design Information 

For designs which are not self-weighting, the first question that faces 
the analyst who wishes to estimate certain model parameters is whether or 
not to use the sampling weights. Survey samplers are quite accustomed to 



248 BINDER, KOVAR, KUMAR, PATON AND VAN BAAREN 

using survey weights to estimate means, totals, ratios, proportions, etc. For 
example, 

and 

are commonly used estimators of means and ratios. More complex estimators 
of these quantities, which are model-based but design-dependent, are given 
in quite general terms by Sarndal (1982). 

However, for more complex parameters such as regression coefficients, 
the considerations on whether to use the sampling weights are more subtle. 
The answer seems to depend on the following points: 

(a) What model is being fitted? 
(b) What are the parameters of interest? 
(c) How much faith can be placed on the universal application of the model? 
(d) How large is the sample size? 

Even for the common case of fitting regression coefficients, a number of 
models have been proposed in the literature. DuMouchel and Duncan (1983) 
studied four models for stratified random sampling. These are: 

I. Y = Xf3+f 

where the conditional distribution of the f'S (conditional on the stratum 
identification) is such that the f'S are uncorrelated, homoscedastic random 
variables with zero mean. Note that f3 is constant over all strata. 

II. Y = Xf3i + f 

for stratum j, where the f'S have the same properties as in I. 

III. 

where U is not, in general, observable, but has been transformed so as to be 
orthogonal to Xj i.e. E(X'U) = O. Again the f'S behave as in I. 

IV. Y = Xf3* + f* 

where it is simply assumed that the f'S and theX-matrix are uncorrelated 
and the f'S have mean zero. 

Often, Models I, II and III are called superpopulation models. Holt et 
al. (1980) said in a more general context, that although Model I may be 
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true before sample selection, if after sample selection E( f I X) :j= 0 then the 
sample design is informative. 

Porter (1973), Pfefferman and Nathan (1977) and others proposed a 

random coemdent regression model 

where a certain structure on the rNs is imposed. 
Many authors emphasize that any models implied by the analysis must 

be consistent with the data; see, for example, Brewer and Mellor (1973), 
Nathan (1981), DuMouchel and Duncan (1983) and Kalton (1983). 

Under Model I, we define B as 

B = [E(X'X)t 1 E(X'Y) 
= (3 + Op(N- 1/ 2), 

where the expectation operator here refers to the finite population value. 
Therefore, for large finite populations, the distinction between (3 and Bean 
be virtually ignored. Binder (1983) extended this analogy to parameters of 
Generalized Linear Models and other forms of implicitly defined parameter. 
For Model II, DuMouchel and Duncan (1983) considered the parameter of 
interest to be EWi(3i where the W's are proportional to the stratum sizes 
and E Wi = 1. This could be extended to general W's as by Pfefferman 
and Nathan (1981). In Model III the parameter of interest is (3. Holt et a1. 
(1980) consider a model analogous to Model III, where the U's are observable 
(see Section 3.4). There, the parameter of interest is VXIlVx-;l where V refers 
to the superpopulation covariance matrix. In Model IV, the parameter of 
interest is B given by (2.6). 

We see that if the classical model (I) holds universally, then the best 
linear unbiased estimator for (3 is the usual ordinary least squares estimator, 
ignoring the sample design information and the sample weights. Nathan 
(1981) raised questions as to the relevance of B when the model does not 
hold. A partial answer to this quandry is given by studying Model III. First, 
one should ensure that the model is approximately true. This may include 
adding design variables to the model to reduce the correlation of the resid­
uals. Secondly, the model may still be useful for predictive purposes, if the 
missing variables behave similarly at the prediction point. In this way, the 
analyst can view the regression coefficients as being descriptive population 
parameters. For example, Freeman et a1. (1983) used the regression formu­
lation to make an age-sex-race adjustment to their dependent variable, in 
order to facilitate comparisons at two different time points. 

IT Model I is inappropriate, but a formulation similar to Model III is 
appropriate, then the weighted regression coefficient estimator (using the 
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sampling weights) will usually provide a consistent estimator of B. Even if 
Model I is true, the use of the sampling weights will lead to unbiased but 
inefficient estimates of p. This may not be serious to the practitioner if the 
sample size is large. Nathan (1981), DuMouchel and Duncan (1983), and 
Fuller (1984) have suggested fitting models which allow for testing whether 
the weighted and unweighted estimates of the regression coefficients have the 
same expected value. Unfortunately, unless the weights are very different, 
this test will not be very powerful because the assumed models tend to have 
a high degree of multicollinearity among the independent variables. 

All of the above discussions have assumed large populations with large 
samples. If the sample size is small, the inefficiency resulting from using the 
weighted estimates may be more serious when the model is in fact true. Also, 
if the model is only approximately true, the variance reduction resulting from 
using the unweighted estimates may more than compensate for the increase 
in bias, thus making the unweighted estimates the preferred choice. In this 
case, the search for all the relevant variables of the model becomes even more 
important. 

3.3 Making Inferences 

The use of the sample design information when developing confidence 
intervals or performing tests of hypotheses can be crucial. If the analyst 
has complete faith in a model such as Model I, clearly it is appropriate to 
apply the classical methods available for such mod~ls (including appropriate 
robust methods available for such models for long-tailed error distributions). 
However, the danger of applying such methods when the model is not strictly 
true has been demonstrated by Scott and Holt (1982), where a block diago­
nal correlated error structure can introduce serious biases into the variance 
estimates, even for self-weighting designs. 

Also, the distinction between a superpopulation parameter, such as p, 
and its finite population analogue, B, is important if the sampling fractions 
are large. For example, in a one-way analysis of variance setup with two 
categories, it may be more appropriate to test the hypothesis: 

where Yi is the mean of domain or category i, rather than 

see Nathan (1981). 
Variance estimation for parameters in a design-based setting is usually 

performed by balanced repeated replication, jackknifing or Taylor lineariza­
tion. 
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Taylor linearization for explicitly defined parameters was given by Tep­
ping (1968). Woodruff (1971) showed a simpler method for computing 
the variances by taking total differentials of the functions to be estimated. 
Woodruff and Causey (1976) described a computer program for calculating 
these variances, where the derivatives are numerically computed. 

For the case of estimating regression coefficients, Fuller (1975) gave a 
simpler computational formula than that given by Tepping (1968). Binder 
(1983) extended this to more complex situations of implicitly defined pa­
rameters; for example, parameters of Generalized Linear Models and M­
estimators. Shah et aI. (1977), and Lemeshow and Stoddard (1984) provided 
simulations demonstrating that the nominal significance levels for regression 
coefficients using Taylor linearization perform quite well even when the num­
ber of strata and the number of observations per stratum are small. 

Another method used for variance estimation is the Quenouille-Tukey 
jackknife (Quenouille, 1956; Tukey, 1958), which was introduced in the late 
fifties and discussed and developed in the context of simple random sampling 
or sampling from infinite populations by Brillinger (1964), Miller (1964, 1968, 
1974a,b) and Gray and Schucany (1972), among others. The bootstrap 
method, on the other hand, was introduced relatively recently by Efron 
(1979) and compared to the jackknife and other resampling plans by Efron 
(1982) for the same class of problems. 

In the context of finite sampling, balanced repeated replication was dis­
cussed by Kish and Frankel (1970). In addition, McCarthy (1969), Folsom 
et aI. (1971), Frankel (1971), Jones (1974) and Sharot (1976) were among 
the first to attempt to reuse the sample by jackknifing. Their studies were 
empirical in nature, considered for the most part, stratified (without replace­
ment) designs. The results supported earlier observations of the usefulness of 
the jackknife and balanced repeated replication for the purpose of variance 
estimation and bias reduction. The parameters of concern are functions 
of stratum means, ratios and correlation coefficients being the most com­
mon, although weighted estimates of regression coefficients would equally 
apply. Further empirical extensions are given by Brillinger (1966), Kish and 
Frankel (1974), Bean (1975) and Lemeshow and Epp (1977), Wolter (1979) 
has provided a useful summary and overview. 

By contrast, while the use of the bootstrap technique in the context of 
finite sampling is not uncommon (although infinite populations are gener­
ally assumed), the study of its properties is surprisingly rare. McCarthy 
and Snowden (1983) provided one of the few empirical investigations of the 
method as it applies to finite populations. They considered two approaches. 
The first, suggested by Bickel and Freedman (1984), consists of creating a 
superpopulation from the sample, by replicating each of its units a number 
of times equal to its weight. The superpopulation is then sampled with-
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out replacement. McCarthy and Snowden, on the other hand, res ample the 
sample with r4!plac4!ment, choosing the bootstrap sample size such that the 
variance of the bootstrap estimator of the mean is correct. Subsequent stud­
ies suggested, however, that, in contrast to Bickel and Freedman's method, 
the latter method fails to capture moments of higher order and can thus be 
misleading if applied to highly skewed populations. 

Theoretical evaluation of sample reuse methods in the context of finite 
sampling has become of interest only recently and is almost exclusively con­
fined to the study of asymptotic behaviour. Krewski (1978b) provided some 
insight as to the stability and efficiency of the balanced repeated replication 
variance estimator, as a function of the number of subsamples selected, for 
the case of two or more units per stratum; Royal and Cumberland (1978) 
justified asymptotically the jackknife variance estimator of the population 
total, demonstrating favourable results as compared to the best linear un­
biased estimator under a linear regression model. The key results however, 
were put forth by Krewski (1978a), where he proved asymptotic normality 
and the consistency of the jackknife variance estimator for functions of u­
statistics in the case of simple random sampling with replacement. Krewski's 
results were extended by Majumdar and Sen (1978) who proved the strong 
laws for the jackknife variance estimator of U-statistics. Krewski and Rao 
(1981) later provided some first order asymptotics in the case of stratified 
(with replacement) designs for both the balanced repeated replication and 
the jackknife variance estimators for functions of stratum means. They con­
sidered the case where the number of strata tends to infinity rather than 
the simpler case of large stratum sizes. Rao and Wu (1983b) provided the 
second order properties for this problem. A good overview of the jackknife 
and balanced repeated replication asymptotics is given by Rust (1984). 

The asymptotic theory for the bootstrap for finite samples is scarce. 
Babu and Singh (1983) proved some asymptotic properties of the bootstrap 
variance estimator by letting the stratum sample size go to infinity. Bickel 
and Freedman (1984) generalized these results by considering stratified sam­
ples selected with or without replacement and by letting the total sample 
size tend to infinity (that is, either the number of strata, or the stratum 
sample sizes or both tend to infinity). They showed that the bootstrap 
(in their superpopulation context) and the jackknife variance estimators are 
asymptotically normal and consistent for the case of estimating linear com­
binations of stratum means. Rao and Wu (1983a) extended these first order 
asymptotic results for the bootstrap variance estimator to various other de­
signs including unequal probability designs. Their method of bootstrapping, 
however, involves the use of adjusted values, somewhat analogous to Tukey's 
pseudo-values, for the jackknife. 

All of the above procedures rely on asymptotics for their theoreticaljusti-
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fication. Fuller (1984) gave the following rules of thumb for the applicability 
of large sample theory: 

1. The mean of the Taylor deviates must be approximately normal (i.e. no 
influential outliers). 

2. There must be sufficient effective degrees of freedom to estimate the 
variances well. 

3. The curvature of the non-linear function of sample means or the standard 
error of the means must be small. 

3.4 An Alternative Approach to Regression 

In Section 3.2 we discussed four regression models, specific to stratified 
sampling designs. Here, another model, proposed by Holt et al. (1980) is 
discussed. The model, with its corresponding strategy is fundamentally dif­
ferent in that it is a maximum likelihood technique (using a superpopulation 
model) that also purports to account for the sample design. It does this, 
without using the sampling weights, by incorporating "design variables" in 
a linear superpopulation model. 

The finite population is viewed as a random sample of size N from a 
superpopulation. The vector of variables, X, can be partitioned into 

Xl: the dependent variables 
X 2: the independent, carrier or explanatory variables 
Xg: the design variables. 

The variables are assumed to have a multivariate normal distribution in 
the superpopulation (this assumption can be relaxed to a set of second order 
conditions, as by Nathan and Holt, 1980). We let I-'i be E(Xi) and Vij be 
E((Xi - l-'i)(Xj - I-'j )'). The value of the design variable vector Xg , is known 
for all N units in the finite population, but Xl and X 2 are only known for 
the n units in the sample. 

The parameter of interest {f) is the best linear predictor of Xl as a 
function of X 2, given by V12V22 . 

If Xl and X 2 were known for all the units in the population we could 
estimate V12 and V22 1 in the usual way to give us ~1 = V12 (V22)-l. If 
Xg was only known for the sampled units then the maximum likelihood 
estimate of f3 would be the usual ordinary least squares (OLS) estimator 
~2 = 8 12 (822)-1, where 8ij is the sample covariance matrix, based on the 
n sampled observations. 

However the data set consists of n complete sampled observations, and 
N - n incomplete observations consisting of those units for which only the 
design information is known. The maximum likelihood estimator for this 
problem has been discovered by a number of authors (for instance, DeMets 
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and Halperin, 1977): 

where V33 is the covariance matrix for X3 based on the N population values. 
The OLS estimate (~2) will be the same as ~ when 832 = 0 or V33 = 833 , 

If 832 is zero, then there is no observed correlation between X3 and X 2 ; that 
is, we observed no linear relationship between the design variables and the 
explanatory variables. When the survey is a simple random sample or at 
least approximately self-weighting, V33 and 833 will usually be approximately 
equal. However, if there are wide variations in the probabilities of selection 
and joint inclusion probabilities, 833 can be expected to be quite different 
from V33 . Hence, while the weights are not used in the estimation of~, they 
will to a large extent determine whether this estimate is different from the 
OLS estimate ~2' Pfefferman and Holmes (1985) demonstrated the possible 
biases of the procedure under certain types of model failure. 

Yet another alternative would be to use the estimator for ~ in (3.1) 
based on Si,., the weighted sample covariance matrix. This would provide 
design-consistent estimates of V12 V22 1 • 

4. CATEGORICAL DATA ANALYSIS 

In this section we review survey data analysis, particularly as it relates 
to analyzing categorical data. This is an important area of application since, 
for many surveys, responses in categories are easier to obtain than quantita­
tive variables. Techniques for fitting various log-linear and logistic regression 
models and undertaking the related analyses are described in Bishop et a1. 
(1975), and also have been the subject of excellent review articles by Imrey 
et al. (1981, 1982). The treatment of Bishop et al. (1975) is restricted to the 
case of cell totals following a Poisson, multinomial or product multinomial 
sampling distribution. Grizzle et al. (1969) proposed a general approach 
for analyzing multivariate categorical data by using linear models. Their 
methodology, based theoretically on the work of Wald (1943), specified pro­
cedures for fitting linear models to functions of the unknown true cell prob­
abilities. Subsequent work by Koch et al. (1975) and Shuster and Downing 
(1976), based on methods similar to those of Grizzle et al. (1969) is intended 
for data obtained from complex sampling designs. We give a brief summary 
of their methods. 

Let i = 1,2, ... ,8 index the set of distinct sub-populations from which 
samples are drawn and j = 1,2,···, r index the set of response profiles. 
Denoting the true proportion of the ith sub-population and the jth response 
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category by frii' we define 

with 1:; 1ft; = 1 for each i. Suppose that a sample from each sub-population 
is drawn according to a specified survey design and 

is a design-based estimate of r'. We are interested in functions Ft(r) , (i = 
1, ... , u) of r. These functions define the relations of interest between the 
response categories and sub-populations. Let 

We assume that Ft(r)'s are functionally independent so that the covariance 
matrix of the estimate of F(r) is non-singular. The variation among the tL 

elements of F(r) may be investigated by fitting the model 

M: F(r) = X{J, 

where X is a design matrix of rank 1J :5 u and {J is a 1J X 1 matrix of unknown 
parameters. For some problems, (e.g. homogeneity of margins) the model 
of interest may be F(r) = O. 

One of several methods of estimation, such as maximum likelihood, ordi­
nary least squares, weighted least squares (WLS), and minimum chi-square 
may be used for estimating {J. The choice of method may depend on the 
statistical properties of the estimates and the computational efficiency of 
the associated algorithms. Koch and his co-workers advocate the use of 
Weighted Least Squares (WLS) methods. In that case 

b = (X'Vi l X)-l X'Vi l F, 

where VF is a design-based consistent estimate of the covariance matrix of 
F = F(p). Note that the construction of the Wald statistic and the WLS 
estimate of b depend on the ability to get the estimate VF . Goodness of fit 
tests are possible by defining the saturated model as F(1f) = X1{JI + X2{J2 
and testing for {J2 = O. In general, when the model has been found consistent 
with the data, statistical tests concerning linear hypothesis involving {J may 
also be carried out. For testing H : C{J = 0 where C is a known (d xu) 
matrix, we use the test statistic 
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where Vb is a consistent estimate of the covariance matrix of b. The statis­
tic Qc has an asymptotic X2 distribution with d dJ. under the hypothesis 
H. These results are easily extended to other estimates besides the WLS 
estimate; see Binder (1983) for the appropriate variance estimates. His gen­
eral method includes estimating Generalized Linear Model parameters as 
described by NeIder and Wedderburn (1972). 

The weighted least squares methodology, developed by Koch et al. 
(1975), has provided a useful and unified approach to the problem of analyz­
ing and testing for {32 = O. However, its use is limited in some applications 
by the necessity to produce an estimate of the covariance matrix of F. Dif­
ficulties could arise from the required inversion of VF when the number of 
cells is large or if the number of observations in some cells is small. Detailed 
discussion on the limitations of WLS methodology is given by Fay (1984, 
1985). 

Nathan (1969, 1975) has also developed asymptotic methods for testing 
independence in contingency tables from stratified samples. His method, 
based on maximum likelihood estimates, also requires estimation of the co­
variance matrix of the cell estimates. 

For data collected by simple random samples, methods for testing the 
goodness-of-fit of the model, using the Pearson's chi-squared (X2) and like­
lihood ratio (G 2 ) statistics are well known. Their use has been considerably 
enhanced by availability of standard computer packages. However, in the 
context of the complex survey design, these statistics have a serious defi­
ciency. Unlike the Wald Statistic, X 2 (or G 2 ) does not usually have an 
asymptotic X2 distribution under the model of interest when clustering and 
stratification have been used in designing the survey. Consequently the con­
clusions based on these statistics may not be valid. Fellegi (1980), Rao 
and Scott (1981) and others have shown that clustering and stratification 
can have a considerable effect on the distribution of X 2 and hence its use 
(without any adjustment) can give misleading results in practice. 

Recent work has been directed at investigating the asymptotic distribu­
tion of X 2 and G2 under cluster sampling and other multi-stage sampling 
designs and adjustments to X 2 have been proposed. Cohen (1976), Altham 
(1976), Choi (1981) and Brier (1980) have investigated the distribution by 
modeling probabilities for cluster sampling. They have shown that, under 
several hypotheses, X 2 divided by a suitable constant has an asymptotic chi­
square distribution. However, their methods impose a constraint of equal 
design effects of the estimates. This constraint is rarely satisfied in practice. 
Fellegi (1980) proposed the use of X 2 jd. (as having a chi-square distribu­
tion) as a test statistic, where d. is the average of the design effects of the 
cell estimates. The computation of d. requires less information about the 
covariance structure of sample estimates than that required by the Wald 
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statistic. 
The asymptotic distribution of X 2 , based on data from a complex survey 

design, has been investigated by Rao and Scott (1981, 1984) and Roberts 
(1985). It is shown that, for a wide class of models, the appropriate chi-

squared (X2) test statistic is asymptotically distributed as L::- l 5iZi, the 
weighted sum of independent chi-square variables. Each Z. is a chi-square 
variable with 1 degree of freedom and k depends on the hypothesis. The 
weights {5.} are the eigenvalues of the matrix A01Al where Al is the design 
based covariance matrix of a statistic used in defining X 2 and Ao is the 
corresponding matrix under multinomial sampling. The quantities 5. are 
called the generalized design effects and are consistently estimated by the 
eigenvalues of AoA11, where Ao and Al are consistent estimates of Ao and 
A l , respectively. We denote the estimate of 5. by 8 •. 

Due to the non-standard nature of the distribution of X2 , it is convenient 
to approximate it by some standard function. A first order approximation 
to the distribution of X 2 can be obtained by treating X 2 = k8.x~ where 

A k" ,.. 
5. = L:.=15./k and k is the number of positive 50's. Hence we may use 
the adjusted test statistic Xb = x2/8. and regard it as having a chi-square 
distribution. The adjusted test statistic xb (or Gb) provides a satisfactory 
correction except for the case where {Oi} has a large coefficient of variation. 
This adjustment, like the one proposed by Fellegi (1980), requires less than 
full knowledge about the covariance structure of the estimates. 

A better adjustment, based on Satterthwaite's approximation, treats 
X~ = X&!(1 + a2) as having a X2 distribution with v degrees of freedom 
where 

v = (k - 1)/(1 + a2 ) 

and 
2 "" '2 '2 a = L)5. - 5.) /[(k - 1)5.] . 

• 
Note that a2 is the square of the coefficient of variation of the 80's. This 
approximation is useful when a2 is significantly different than zero. How­
ever, this approximation generally requires full knowledge of the covariance 
matrix. These methods have been used extensively by Hidiroglou and Rao 
(1983) for analysis of Canada Health Survey data. Comparative results on 
the significance level due to the use of X2, X 2 / d., Xb and X~ are also 
provided. 

The analysis of survey data using logit and other transformation models 
has been investigated by Roberts (1985). The methodology proposed is 
similar to that of Rao and Scott (1984) and has been used by Kumar and 
Rao (1984, 1985) for analyzing data from the Canadian Labour Force Survey. 
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Kuma.r and Rao (1984) have also developed diagnostic procedures, under a 
logit model based on survey data, for detecting outliers and influential points. 

Fay (1985) has proposed another kind of adjustment to the standard 
Pearson and likelihood ratio chi-squared statistics. His approach is based 
on jackknifing these statistics. He proposes a new test (based on replica­
tion) called the "jackknife chi-square test" and is used for fitting a log-linear 
model for survey data. The original cross-classified data is split into a series 
of replicates. A good discussion on the choice of replication strategies is 
given by Fay (1983). For each replicate, X 2 (or G2) is estimated through 
the solution of maximum likelihood equations appropriate to simple random 
sampling. The jackknife chi-squared statistics, based on these estimates, is 
computed. A computer program, called CPLX, for implementing jackknifed 
chi-square tests has also been developed by Fay (1983). The program per­
mits three types of replication methods: the simple jackknife, the stratified 
jackknife and half sample methods. The choice of the replicate methods is 
left to the users. This method has been applied to a number of analyses done 
at the U.S. Bureau of Census. No comparison of the jackknife chi-squared 
test and those proposed by Rao and Scott has yet been conducted. 

5. PERCENTILE ESTIMATION 

Even for the 'standard' case of infinite population sampling, estimation 
of the median and other percentiles, along with associated standard errors 
and confidence intervals, is not an easy problem. Various alternatives include 
the sample median, weighted linear functions of the order statistics (Harrell 
and Davis, 1982), estimates based on kernel density estimates (Sheather and 
Maritz, 1983), and others. Standard errors of the sample median using boot­
strapping (Efron, 1979, 1982; Ghosh et a)., 1984) or using other "smoothed" 
estimates (Sheather and Maritz, 1983) are available. 

For survey data collected from finite populations, Woodruff (1952) de­
scribed a technique for obtaining confidence intervals under a general sam­
pling plan, by projecting the confidence interval for the binomial proportion 
onto the estimated distribution function. Exact intervals under simple ran­
dom sampling are given by Wilks (1962) and Konijn (1973). McCarthy 
(1965) looked at some exact intervals under stratified sampling with pro­
portional allocation. Sedransk and Meyer (1978) obtained exact intervals 
under stratified sampling in general. Gross (1980) proposed a bootstrap 
variance estimate for stratified samples. Bayesian methods are given by Hill 
(1968) and Binder (1982). The latter author obtained intervals that were 
asymptotically equivalent to Woodruff's (1952) intervals. 

This issue is clearly one that requires much more theoretical and empir­
ical research. 



ANALYTIC USES OF SURVEY DATA 259 

6. SUMMARY 

We have concentrated here on the importance of the sample design when 
analyzing survey data. Although it is possible to perform quite sophisticated 
data analyses with the wide availability of commercially available software, 
these approaches are often inapplicable to data collected under complex sur­
vey designs. We have touched on a wide variety of problems, such as model 
parameter estimation and tests of significance. However, there are still many 
unresolved problems with respect to incorporating the design considerations 
when analyzing multivariate data from complex designs. Examples include 
cluster analysis, factor analysis, time series methods, multi-dimensional scal­
ing and so on. As the users of survey data become more sophisticated and 
there is more awareness in the statistical community of the inherent prob­
lems, research into these areas will flourish. 
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Wayne A. Fuller 1 

ESTIMATORS OF THE FACTOR MODEL 
FOR SURVEY DATA 

ABSTRACT 

Limiting properties of estimators of the parameters of the factor model 
computed from an estimated covariance matrix are presented. Construction 
of the estimators and of the estimated covariance matrix of the estimators 
is computationally feasible for data collected in surveys of complex design. 

1. INTRODUCTION 

We assume that the p-dimensional row vector Zt is observed for a sample 
of n observations selected from a finite population. We assume that there 
is a sequence of samples and designs such that estimators of the population 
covariances, normalized by n 1/2, converge in distribution to a normal random 
vector. 

We shall say that the factor model holds if the population matrix of 
second moments satisfies 

(1) 

where lJ."" is a k X k nonsingular covariance matrix, A = (fl,1)" fl is a k x r 
matrix, p = k + r, and lJ .. is a diagonal covariance matrix. The unknown 
parameters of the model are fl, lJ tt , and lJ",,,,. We let 

denote the vector of parameters, where vec fl is the (k x r) -column obtained 
by listing the columns of fl one beneath another and vech lJ",,,, is the ~k(k+ 
1 )-column vector composed of the elements on and below the diagonal of 
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~l'I!l'I!' We ma.y write ~zz(1) to denote the fact that the covariance matrix 
of Zt is a function of the q-dimensional vector,. Let 

ub) = vech ~zzb) 

be the ~p(p + 1) vector of unique elements of ~zz(') obtained by listing 
the elements on and below the diagonal of ~zzb) in a column. 

There are at least two approaches to the problem of estimating the pa­
rameters from a sample covariance matrix constructed from data collected 
in a sample survey of complex design. In the first, the sample moment ma­
trix and the estimated covariance matrix of the sample moment matrix are 
used to construct generalized least squares estimators of the parameters. 
We call these estimators the generalized least squares estimators. Note that 
the least squares procedure is applied to the elements of the sample mo­
ment matrix, not to the original sample elements. The least squares method 
has been . discussed by Joreskog and Goldberger (1972), Anderson (1973), 
Browne (1974, 1984), and Dahm and Fuller (1985). The covariance matrix 
of these estimators is given by the generalized least squares formulas. In the 
second approach, 'the estimators are those values that maximize the Wishart 
likelihood function. While the conditions required for the proper application 
of the likelihood procedure are not met, we call the estimators constructed 
in this way the likelihood estimators. The covariance matrix of the likeli­
hood estimators will be estimated using the sample covariance matrix of the 
sample moment matrix. 

The generalized least squares procedure will be shown to have a limit­
ing distribution with smaller covariance matrix than that of the likelihood 
method. However, the calculations associated with the generalized least 
squares method increase rapidly as the dimension p of Zt increases. There­
fore, one may well choose the likelihood estimators for moment matrices of 
medium size (p > 8). For large problems (p > 25) the calculation of the 
covariance matrix for the likelihood estimators also becomes very expensive. 

This is generally true in the construction of nonlinear estimates for sur­
vey data. The estimators that are asymptotically efficient require additional 
computation. Also a minimum number of primary sampling units is re­
quired for the computation of a nonsingular estimated covariance matrix 
for the basic statistics. Generally speaking, the number of primary sam­
pling units must considerably exceed the minimum number before one feels 
comfortable with the generalized least squares estimated variances of the 
generalized least squares estimators. 
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2. ESTIMATION 

The least squares and likelihood procedures can be applied to any esti­
mated covariance matrix of Z. We denote the estimator of Ezz by mzz. 
We assume that 

n1/ 2 (vech mzz - vech E zz ) (2) 

converges in distribution to a normal random vector with mean zero and 
covariance matrix D z z. One choice for mz z in the survey sampling context 
is the normal model estimator discussed by Anderson (1957), Holt et al. 
(1980), and Skinner (1983). The variance of the estimator can be estimated 
by likelihood methods or by regression methods described by Fuller (1982). 

A second choice for mzz is the design consistent estimator 

n 

mzz = L w.(Z. - Z)'(Z. - Z), (3) 
.=1 

where the sum is over all elements in the sample, the w. are proportional to 
the inverse of the sampling rates, E~=l w. = 1, and 

n 

Z = Lw.Z •. 
.=1 

The estimator can also be written as 
n 

mzz = L w.Z~Z. - Z'Z. 
.=1 

(4) 

(5) 

We are using a single subscript for Z., but multistage and stratified samples 
are in our domain of discussion. From expression (5), we see that 

E{mzz} = Ezz - V{Z}. (6) 

Under mild assumptions for a sequence of designs and populations, the vari­
ance of the limiting distribution of 

n1/ 2 (vech mzz - vech Ezz) 

IS 

Dzz = V{n1/ 2vech mzz} 
n 

= nV{vech [L W.Z~Zi - p'Z - Z'p]} 
.=1 (7) 

n 

= nV{vech [2: w.(Z. - Pz)'(Z. - pz)]}· 
i=1 
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Given a consistent estimator of Dzz, one can estimate the parameters of 
the model by applying the generalized least squares method to vech mzz. 
Thus the generalized least squares estimator of'Y is the 'Y that minimizes 

[vech mzz - 0'("1)]'D:z1[vech mzz - 0'("1)] 

where D zz is a consistent estimator of D zz. In Theorem 1 we state con­
ditions under which the least squares estimator; has a normal distribution 
in the limit. 

Theorem 1. Let mzz be an estimator of the positive definite covariance 
matrix lJ z z such that 

n1/ 2vech(mzz -lJzz) ~ N(O,Dzz ) 

as n -+ 00, where ~ denotes convergence in distribution. Let 0'("1) be a 
continuous function of'Y with continuous first and second derivatives. Let; 
be the generalized least squares estimator. Then 

where F z is the matrix of partial derivatives of 0'("1) with respect to 'Y 
evaluated at the true 'Y. 

The least squares estimator has considerable theoretical appeal in the 
sampling situation where it is difficult to specify the distributional structure 
for Zt. However, the computation of the estimator can be burdensome for 
problems of large dimension. The fp(p + 1) matrix Dzz must be inverted 
and a nonlinear algorithm for the q-dimensional vector 'Y must be developed. 
In many nonlinear algorithms a q-dimensional inverse will be required at 
every step of the iteration. Therefore, alternative estimators requiring less 
computation deserve discussion. We consider the estimator of'Y constructed 
as if the sample were a sample of normal independent vectors. 

Fuller et al. (1985) have derived the limiting distribution of the likelihood 
estimators of the factor model under general conditions. We state a theorem 
that follows from their results. 

Theorem 2. Let mzz be an estimator of the positive definite covariance 
matrix lJ zz with the property 

n1/ 2vech(mzz -lJzz ) ~ N(O,Dzz) (8) 
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as n -+ 00. Let :E zz = :Ezz(1) be a continuous function of the q­
dimensional vector 1 with continuous first and second derivatives. Let 1 
be identified and let '1 be the estimator of 7 obtained by minimi?iing 

log I :Ezz (1) 1+ tr{mzz :E z1(1)}· (9) 

Then 

where 

F z is the matrix of partial derivatives of vech :Ezz(1) with respect to 1 
evaluated at the true 1, 

Ozz = V{vech a'a} = 2t/1(:Ezz ® :Ezz)t/I', 
0z1 = ~'(:Ez1 ® :Ez1)~/2, 

a is a vector distributed as N(O, :Ezz ), 

and ~ is the matrix such that 

vec :Ezz = ~ vech :Ezz . 

Fuller and Pantula (1982) give explicit expressions for F z and 

(11) 

It is sometimes computationally convenient to transform expression (10) 
from an expression in the moments of Z to an expression in the moments of 
the vector 

(12) 

where 
Vt = Yt - Po - XtPl' (13) 

With no loss of generality let Po = 0, so that we can write 

(14) 

where 
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vech mu = tP(H' ® H') vech mzz 
= tP(H' ® H') ~ vech mz z 
=L vechmzz 

(15) 

and the variance expression in (10) becomes 

where 

G = (F~0~6F6)-1F~0~6D660ilF6(F~OilF6)-1, (16) 

L = tP(H' ® H') ~, 

F~ = FiL, 
Ou = L'Ozz L. 

Assume that mzz is given by (3) and that, is the '1 that minimizes (9). A 
consistent estimator of D u can be constructed using 

it = (l1u,l1t2," .,11tp,Xu - X2,···,Xtk - X k), (17) 

where 

i = 1,2, .. . ,r, 
- "n X; = L..tt=l Wt X t ;, i = 1,2, .. . ,k, 

i = 1,2, . .. ,r, 
and P;. are the appropriate elements of,. The covariance matrix D66 is 
estimated by employing the ordinary sampling formulas to estimate the co­
variance matrix of the vector vech :aDu, where 

For example, if the sample is a simple random sample of n observations, the 
first entry in :066 is 

n 

1 '" A2 2 n- (n - 1) ~(c5t1 - mUll) , (18) 
t=1 

where 

n 

mUll = (n _1)-1 L till' 
t=l 
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Let i' denote the q-dimensional vector of likelihood estimators. Then the 
variance of the limiting distribution of n l / 2 (i'-'1) is estimated by 

where 

Fs = L'Fz , 
Oss = 2 t/J(mss ® mss)t/J', 
L is defined by (14) and (15), 

Dss is a consistent estimator ofD ss (such as that defined in (18)), 

Fz is the ip(p+ 1) by q matrix of partial derivatives of vech:Ezz (1) 
with respect to '1, 
(n - I)-lOSS is the ip(p + 1) by ip(p + 1) covariance matrix of vech 
mss for a sample of n observations that are NI(O, E ss ), 

and the hat F) is used throughout to denote a consistent estimator. In 
practice F s is computed directly using the expressions of Fuller and Pantula 
(1982). 

It is often of interest to test the hypothesis that the number of factors is 
k against the alternative of the unrestricted model. If the generalized least 
squares method is used to construct the estimator, the generalized residual 
sum of squares is approximately distributed as a chi-square random variable. 
In the usual normal likelihood theory, the likelihood ratio statistic 

2log R = -log I Ezi(i') mzz 1+ tr mzz Ezi(i') - P (20) 

is used for this test. 
If one has a sample in which the usual likelihood theory does not hold 

for the moment matrix mzz, several approaches to the testing problem 
are possible. We first consider a least squares approach using the sample 
moment matrix of the estimated residuals 

(21) 

Under the model 

and 

Let 
m"" = C' mzz C, 

,.. '" I ,.. 
m",,=C mzz C. 
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From the model definition 

and 

lDZZ =m ... +m,n+mu+mEE 

= (fJ, I)'m:z::z:(fJ, I) + (fJ, I)'m:Z:E + mE:z:(fJ, I) + mu 

C' mzz C = (fJ' - p')m:z::z:(fJ - P) + (fJ' - p')m:z:E(I, -p')' 
+ C'mE:z:(fJ - P) + C'muC 

= C' mEEC + Op(n-1) 

= C'EuC + C'(mu - Eu)C + Op(n-l), (22) 

where we have used 

If we write 

C -,C = Op(n- l ), 

m:Z:E = Op(n- l ). 

Sv = vech rovv = L "IE + a 

= L "IE + t/J(C' ® C)vech(mu - Eu) + Op(n-l), (23) 

where "IE = (U.dl,U •• 22,···,U •• pp )', then 

1E = [L'y-l{sv}LrlL'[y-l{sv}]sv 

= "IE + L'[y-l{sv}][t/J(C' ® C)vec(mu - Eu)] + Op(n-1) 

= "IE + L'[V-1{sv}][vech(C mu C' - C EEE C /)] + Op(n-1). (24) 

It then follows, by the application of generalized least squares theory, that 
the generalized residual sum of squares 

(sv - Bv)'[y-l{sv}](sv - Bv) ~ X!r(r+lJ-p' (25) 

as n -+ 00, where 

The computation of this test statistic requires the inverse of the matrix 
y {sv} which is of dimension lr(r+ 1). The computation of the test statistic 
is a considerable task if r is large. Therefore, one may prefer to use the 
approximate distribution of the likelihood ratio statistic. This statistic is 

2log R = -log mzz Ez1(1) + tr{mzz E z1ey)} - p 

= -log rovv E;;-v1(1) + tr{rovv E;;-v1(1)} - p, 
(26) 
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where m"" is the sample moment matrix ofVt and I:",,(i) is the likelihood 
estimator of I:"". The limiting distribution of 2 log R is the same as that of 

( ")'0" -1 ( ") BZ - BZ ZZ BZ - BZ (27) 

where 8Z = vech I:zz(i). Therefore we consider the limiting distribution of 
(27) which is the same as the limiting distribution of 

By our earlier results 

where 

Au = D zz - Fz(F~Oz~Fz)-IF~Oz~Dzz 
- D zzOz~F z(F~Oz~F z)-IF~ 
+ F (F' 0-1 0-1 F)-IF' 0-1 z z zz zz z z zz 
X DzzOz1Fz(F~Oz1Fz)-IF~. 

(28) 

(29) 

(30) 

It follows that the mean of the limiting distribution of the statistic (28) is 

tr{A .. Oz~} 

= tr[DzzO:z1- (F~Oz1Fz)-IF~Oz~DzzOz~Fzl (31) 

and the variance of the limiting distribution is 

(32) 

The mean and variance of the limiting distribution can be estimated by re­
placing the matrices with consistent estimators. The computations require 
only matrix multiplications because the component matrices can be con­
structed directly. The limiting distribution is that of a linear combination 
of chi-square random variables. 

3. ILLUSTRATION 

To illustrate the application of the theory we use a created data set. 
The data set is composed of 200 observations on a vector of five variables 
arranged in forty clusters of size five. The data vectors 
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were generated by the model 

where 

Zii = xii(P,I) + fii, 

fii = ai + dii , 

Xii = (Xlii' X2ii) = (gi + hii), 

P = (! !1 ~), 
~ "" NI[O, diag(0.5, 1.0)J, 

hii "" NI [(~), (!i~~ ~~o~O)], 
a~ "" NI[O, diag(0.49, 0.49, 0.25, 0.49, 0.49)J, 

d~i "" NI[O, diag(1.00, 1.96, 1.00, 1.00, 2.89)J, 

i = 21,22, ... ,40, 

d~i "" NI[O,diag(4.00, 7.84,4.00, 11.56)J, 

i= 1,2', ... ,20. 

Thus the marginal covariance matrix of Zii satisfies the factor structure. 
Cluster effects enter the data generation in two ways. First, the x-variables 
and the error vector satisfy the usual "components of variance" additive 
model and, second, the within cluster variances are not constant over clus­
ters. It is the second source of variation that contributes the largest portion 
of the cluster component in the variance of the estimated moment matrices. 
See Skinner (1982). 

The likelihood estimators are given in Table 1. The standard errors of the 
estimators computed by equation (19) are given in the third column of the 
table. The standard errors computed under the assumption of the classical 
normal (independently identically distributed) model are given in column 
four of the table. On the average, the standard errors computed recognizing 
the cluster structure of the data are about 20% larger than those computed 
under the assumption of independent identically distributed observations. 
The ratios range from 1.56 to 0.91. It is interesting that both the largest 
and smallest ratios are associated with estimators of the error variances 
0' uii . It should be remembered that the estimators of the standard errors 
are themselves subject to considerable sampling variance. The estimated 
variances of the elements of m66 are given in Table 2. The cluster variances 
were estimated as the variance of the sample mean of the variables 
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Table 1. Parameter8 and E8timate8/or a Sample 0/ 
£00 Ob8ertJation8 

Sample Normal Ratio 
Population Sample Standard Standard of 

Parameter Value Estimate Error Error s.e. 

(311 1.00 0.893 0.173 0.168 1.03 
(321 1.00 0.928 0.272 0.206 1.32 
(312 1.00 1.184 0.235 0.196 1.20 
(322 -1.00 -0.977 0.245 0.211 1.16 
(313 1.00 1.145 0.134 0.131 1.02 
(323 0.00 0.004 0.133 0.109 1.22 
U:u , 11 4.75 3.373 0.750 0.648 1.16 
U:u ,12 -1.00 -0.225 0.649 0.576 1.13 
U:.::.:22 5.00 4.243 1.572 1.202 1.31 
Uull 2.99 3.258 1.144 0.984 1.16 
Uu 22 5.39 5.980 1.277 1.312 0.97 
Uu 33 2.75 2.856 0.448 0.490 0.91 
Uu 44 2.99 3.118 0.681 0.436 1.56 
U .. 55 7.72 7.424 1.608 1.088 1.48 

using the cluster sample option of SUPER CARP. The variances in the 
column headed "variance normal" were computed as 

With one exception (UXXll) the variances estimated by the cluster sample 
formulas are considerably larger than the variances estimated under the 
assumption that the sample is composed of normal independent vectors. 
For the method used to generate the example, the variance of the cluster 
sample estimator of UXXll is 0.723. For a sample of normal independent 
vectors the variance of the estimator of UXXll is 0.602. The average of the 
ratios of the standard errors is 1.38. Thus the estimated average effect of 
clustering is larger for the elements of the sample moment matrix than for 
the parameters of the factor model. 
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Table 2. Estimated Variances of Elements of Sample 
Covariance Matrix 

Sample Variance Variance Ratio of 
Element Estimate Normal Cluster s.e. 

CT""l1 12.15 1.50 4.12 1.66 
CT",,12 -3.44 1.14 2.09 1.35 
CT",,18 3.22 0.48 1.07 1.49 
CT"Xll -2.79 0.44 0.65 1.22 
CT"X12 -6.89 0.96 1.78 1.36 
CT"v22 17.44 3.09 5.31 1.31 
CT",,28 4.20 0.70 1.34 1.35 
CT"X21 -3.69 0.64 0.77 1.10 
CT"X22 7.26 1.30 2.26 1.32 
CT",,88 6.95 0.49 1.22 1.58 
CT"X81 -3.57 0.29 0.47 1.27 
CT"X82 -0.03 0.41 0.47 1.07 
CTXXll 6.49 0.43 0.39 0.95 
CTXX12 -0.22 0.38 0.44 1.08 
CTXX22 11.67 1.38 2.32 1.30 

4. LANGUAGE EXAMPLE 

In November 1983 the Intensive English and Orientation Program of the 
Department of English at Iowa State University conducted a study in which 
members of the general university faculty were asked to evaluate two essays. 
The essays were presented to the faculty as essays prepared as part of a 
placement examination by two foreign graduate students that were nonnative 
speakers of English. Three pairs of essays were used in the study: a pair 
containing errors in the use of articles, a pair containing errors in spelling 
and a pair containing errors in verb tense. The faculty members were asked 
to read the essays and to score them using a five point scale for eleven items. 
The study is described by Vann and Lorenz (1985). 

We analyze the responses for six items. The six items are divided into 
two groups: three items pertaining to the essay and three items pertaining 
to the language used. The low and high points of the scale for the six items 
are described as follows: 
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A. The essay is 
Z1: poorly developed - well developed 
Z2: difficult to understand - easy to understand 

Z!: illogical-logical 
B. The writer uses language which is 

Zs: inappropriate - appropriate 
Z 5: unacceptable - acceptable 
Z6: irritating - not irritating 
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For our purposes the sample can be considered to be a self weighting 
stratified sample, where the strata were the following subdivisions of the 
faculty. 

1. Humanities and Social Science Men 
2. Humanities and Social Science Women 
3. Physical Sciences, Mathematics and Engineering 
4. Biological and Agricultural Sciences 

Table 3 contains a summary of the data for 219 respondents. The obser­
vation for each item is the sum of the scores on that item for the two essays 
scored by the faculty member. Thus the possible values for a response are 
the integers from two to ten. The moment matrix was computed as 

R 

mzz = (n - 1)-1 :E{Zt - i)'{Zt - i), 
t=l 

where Zt is a vector of dimension six. 
The normal standard errors for the elements of mzz are computed as 

square roots of the diagonal elements of 

For the covariance matrix of (i, [vech mxxl'), the simple random sampling 
estimator is computed as 

where 
b t = {Zt, [vech{Zt - i)'{Zt - i)I'}. 
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Table 3. Statistics for 1119 Respondents to Language Evaluation 

Standard error multo by 10 Ratio of 
Variances 

Statistic Estimate Normal SRS Stratified SRS/Normal 

Zl 6.42 1.16 1.16 1.16 1.00 
Z2 7.27 1.14 1.14 1.14 1.00 
Zs 6.80 1.25 1.25 1.24 1.00 

Z" 6.78 1.27 1.27 1.25 1.00 
Zs 7.00 1.08 1.08 1.08 1.00 
Z6 7.60 1.17 1.17 1.15 1.00 
mZZll 2.95 2.83 2.58 2.58 0.83 
mZZ21 1.85 2.32 2.25 2.26 0.93 
mZZSl 1.61 2.42 2.56 2.57 1.12 
mZZ41 1.52 2.42 2.48 2.49 1.05 
mZZ61 2.08 2.33 2.18 2.18 0.88 
mZZ61 1.44 '2.23 2.26 2.26 1.03 
mZZ22 2.83 2.71 2.38 2.39 0.77 
mZZS2 1.72 2.41 2.24 2.25 0.86 
mZZ42 1.66 2.42 2.40 2.41 0.98 
mZZ52 1.90 2.23 2.05 2.06 0.85 
mZZ62 1.50 2.21 2.15 2.17 0.95 
mZZSS 3.43 3.29 3.08 3.08 0.88 
mZZ4S 2.63 2.96 3.06 3.05 1.07 
mZZ5S 1.55 2.26 2.23 2.24 0.98 
mZZ6S 2.09 2.59 2.91 2.92 1.27 
mZZ44 3.54 3.39 3.28 3.29 0.93 
mZZ54 1.43 2.25 2.35 2.35 1.09 
mZZ64 2.14 2.63 3.03 3.04 1.33 
mZZ55 2.54 2.43 2.09 2.09 0.74 
mZZ65 1.40 2.09 2.03 2.03 0.95 
mZZ66 2.98 2.83 3.09 3.10 1.17 

The estimated covariance matrix for stratified sampling was computed in 
the analogous way by applying the stratified formulas to the vector b t . 

The estimates are given in the first column of Table 3, the standard 
errors computed under the three assumptions are given in the next three 
columns and the ratio of the variance computed by the moment method for 
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simple random sampling to the variance computed under normality is given 
in the last column. In this example stratification had almost no effect, giving 
essentially the same standard errors as simple random sampling. 
Under normality the variance of the ratio 

n 

(2miz .. )-1(n - It1 L[(Zt. - Z.)2 - mzz .. ]2 
t=l 

is about 6(n - 1)-1. Thus, if the sample is a random sample from a normal 
distribution, about 95% of such ratios should fall in the interval (0.67, 1.33). 
None of the six ratios of this type in Table 3 fall outside the interval. The 
average of the six ratios is 0.89, suggesting that the variance of the squares 
is less than that for normal variables. This is reasonable because the vari­
ables are restricted to the interval (2,10). The average of the ratios for the 
variances of 15 covariances is 1.02. On the basis of this table, one might 
well conclude that use of normal formulas would be reasonable and, in fact, 
might overestimate the true variance. 

We assume the data satisfy the factor model in two factors and let 

where Y tl = developed, Y t2 = understand, Y t3 = appropriate, Y t4 

acceptable, Xtl = logical and X t2 = irritating. The model can be written 
in the form 

Zt = (Po, 0) + Xt(P, I) + ft, 

X t = (Xtl,Xt2) + (Utl,Ut2), 

where Zt is the observed vector, (Xtl, Xt2) are the true values of the factor 
vector ft is the 6-dimensional vector of errors and (lOtS, ft6) = (Utl, Ut2). 
Then the population covariance matrix of Zt can be written as 

where ~ .. is a diagonal covariance matrix. 
The first column of Table 4 contains the maximum likelihood estimates 

of the parameters of the factor model constructed under the assumption 
of random sampling from a normal distribution. The ratio of estimated 
variances of the estimated parameters in the last column is much different 
from the corresponding column of Table 3. The estimated P's fall into two 
groups. In the group for Y 1 and Y 2, the ratio of the moment estimator of 
variance to the estimator of variance based on normality is about 1.5. In the 
group for Y 3 and Y 4, the ratio is about 2.5. Although the variances of the 
original moments looked similar to the variances for a normal distribution, 
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Table 4. Factor Model Estimates 

Standard errors multo by 10 Ratio of 
Normal Variances 

Parameter Estimate Normal SRS Stratified SRS/Normal 

/301 -0.648 4.82 4.64 4.64 0.93 
/302 0.130 5.01 4.74 4.74 0.90 
/303 -2.274 7.59 8.43 8.45 1.24 
/304 -2.383 8.28 9.21 9.18 1.25 
J-Lx1 7.005 1.08 1.08 1.08 1.00 
J-Lx2 7.598 1.17 1.17 1.15 1.00 
/311 0.869 1.23 1.44 1.44 1.37 
/321 0.130 1.16 1.35 1.35 1.35 
/312 0.651 1.07 1.33 1.33 1.54 
/322 0.340 1.10 1.41 1.40 1.67 
/313 -0.146 1.40 2.21 2.22 2.52 
/323 1.330 1.62 2.52 2.53 2.44 
/314 -0.295 1.58 2.53 2.54 2.57 
/324 1.477 1.85 2.95 2.96 2.56 
O'u11 0.956 1.38 1.51 1.51 1.20 
O'u22 1.086 1.24 1.33 1.33 1.15 
O'u33 0.875 1.54 1.68 1.68 1.19 
O'u44 0.805 1.80 2.19 2.19 1.50 
O'u55 0.350 1.36 1.51 1.51 1.24 
O'u66 1.248 1.42 2.01 2.01 2.03 
0' xx 11 2.186 2.75 2.60 2.60 0.90 
0' xx12 1.402 2.08 2.03 2.02 0.95 
0' xx22 2.727 2.71 3.18 3.18 1.39 

the variances for the functions of the moments giving the factor estimates 
are much different from those based on normality. 

The reason for the difference between the moment estimator and the 
normal estimator is illustrated in Figure 1. In this figure 

Vt4 = Yt4 - P04 - P14X tl - P24 X t2 

is plotted against 

A (' A A A) A -1 A ) 

Xtl = Xtl - Vtl,Vt2,Vt3,Vt4 Iltltl Iltll.l1 , 
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Figure 1. Plot of tit. against Xtl. 
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where tlti is analogous to a regression residual, Xti is the estimated true value 
of Xti, t"" is the estimated covariance matrix of the four dimensional factor 
tit, t"ul is the estimated covariance between tit and Utl, and 

i = 1,2. 

Under normality 

and tltj are independent. The estimators display a similar property in that 
the maximum likelihood estimators satisfy 

n 

LXtitltj = 0 
t=l 

for i = 1, 2, and j = 1, 2, 3, 4. The Xti and tltj in the figure have been 
standardized by dividing by the appropriate standard errors. The departure 
of tit. from normality is apparent in the figure. The probability is about 0.02 
that three or more observations in a sample of 219 from a normal distribution 
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Table 5. Properties 0/ Empirical Distribution 0/ Ratio 
0/ Two Estimated Variances (SRS/Normal) 

Standard Percentiles of Empirical Dist. 
Parameter Error of 

Ratio 0.05 0.95 

(301 0.14 0.81 1.24 
(302 0.13 0.76 1.24 
(303 0.13 0.80 1.23 
(304 0.15 0.80 1.27 
jl,.,l 0.00 1.00 1.00 
jl,.,2 0.00 1.00 1.00 
(311 0.11 0.77 1.20 
(321 0.13 0.76 1.21 
(312 0.15 0.82 1.28 
(322 0.13 0.84 1.24 
(313 0.14 0.77 1.26 
(323 0.15 0.81 1.33 
(314 0.14 0.80 1.21 
(324 0.14 0.77 1.23 
Uu11 0.15 0.75 1.31 
Uu 22 0.16 0.79 1.32 
Uu 33 0.16 0.75 1.34 
Uu 44 0.14 0.83 1.33 
Uu 55 0.14 0.79 1.23 
Uu 66 0.21 0.73 1.33 
U,.,,.,11 0.14 0.78 1.22 
U,.,,.,12 0.14 0.79 1.22 
U,.,,.,22 0.16 0.76 1.28 

will differ from the mean by more than 2.5u. Six of the observed standardized 
Vt4 exceed 2.517,,4 in absolute value. 

One step of a Gauss-Newton procedure was used to approximate the 
nonlinear generalized least squares estimates of the parameters. All differ­
ences between the likelihood estimates and the one step generalized least 
squares estimates were less than one standard error. In fact, all differences 
were less than 75% of the normal likelihood standard errors. 

The generalized least squares residual sum of squares defined in (25) is 
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3.92. If the model holds, the sum of squares is approximately distributed as 
a chi-square random variable with four degrees of freedom. Therefore, the 
model is easily accepted. In this example, the usual likelihood ratio statistic 
yields a similar value of 4.12. 

To obtain an idea of how the ratios of the two types of estimated vari­
ances vary due to sampling, 100 samples of size 219 were generated from a 
6-dimensional multivariate normal distribution. The mean of the population 
was equal to the sample mean and the covariance matrix was equal to 'EZZI 

where IJzz is the factor covariance matrix of the form (1) constructed with 
the estimates of Table 4. 

Properties of the sample of ratios of estimated variances are given in 
Table 5. The variance of the ratio 

n 

8-·(n - 1)-1 L (e: - 82)2 

t=1 

is 6(n - 1)-1, where 

n 

82 = (n - 1) L (et - e)2 and et"'" NI(0,q2). 
t=1 

The standard errors of the ratios in Table 5, for statistics that are functions of 
second moments, are generally slightly less than [6(n-1)-lj!. There is little 
doubt that estimated variances based on normality seriously underestimate 
the true variances of the factor estimators for the language data. 
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SOME EXPERIENCES IN COMPUTING ESTIMATES 
AND THEIR VARIANCES USING 

DATA FROM COMPLEX SURVEY DESIGNS 

ABSTRACT 

Many large scale surveys have designs that are complex, incorporating 
stratification and perhaps more than one stage of selection. Data from these 
surveys are used for a considerable amount of analysis, involving the compu­
tation of statistics ranging from simple totals and means, to those required 
for the comparison of domains, linear and logistic regression analysis and 
contingency table analysis. These analyses are usually done using computer 
software which does not take the design into account. This paper focuses on 
the development and use of computer programs which take the design into 
account for such analyses. 

1. INTRODUCTION 

Many large scale sample surveys have designs that are complex, incor­
porating stratification and perhaps more than one stage of selection. These 
designs are favoured by survey taking organizations because they offer cost 
and operational advantages in their design and implementation. However, 
the analysis of data and particularly the calculation of variances from such 
surveys is considerably more difficult than from simple random samples. 
The major statistical computing packages such as SAS, BMDP and SPSS do 
not as yet include procedures that calculate variances from complex survey 
data, so the analyst is forced to use more specialized packages or to write 
specialized programs for the analysis of complex survey data. 

The Canada Health Survey, conducted in 1978 and 1979, and the Labour 
Force Survey, an ongoing monthly survey, have similar complex designs, with 
stratification and several stages of selection. The data from these surveys 
have been used for a considerable amount of analysis, involving the compu­
tation of statistics ranging from simple totals and means to those required 
for the comparison of domains, linear and logistic regression analysis and 

1 Statistics Canada, Ottawa, Ontario KIA OT6 (both authors) 
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contingency table analysis. These analyses have involved the calculation of 
variances that account for the survey design using the methods developed 
by Kish and Frankel (1974), Fuller (1975), Binder (1983) and Rao and Scott 
(1984). Some of these analyses have been discussed by Binder et al. (1983) 
and Hidiroglou and Rao (1985); these papers highlight the effect of the sur­
vey design on the analysis. 

Several methods for estimating sampling variances of statistics calcu­
lated from complex survey data have been developed. The four most gener­
ally accepted and frequently used techniques are independent replications, 
"Balanced Repeated Replication" (BRR), "jackknife" and Taylor series lin­
earization. Our experience has been with the Taylor series method, using 
SUPER CARP (a specialized survey analysis package) and custom programs 
written in SAS which take advantage of its capabilities as a statistical pro­
gramming language. In this paper we will discuss our approach and experi­
ences in using these programs for post-stratification, ratio estimation, linear 
and logistic regression and contingency table analysis, and will include a 
general discussion of computational considerations and desirable features of 
a variance estimation program and statistical programming language. 

2. VARIANCE COMPUTATION FOR COMPLEX SURVEY DESIGNS 

A typical complex survey design involves stratification and several stages 
of selection, the selection at each stage usually being without replacement. 
The information collected from each responding unit will most likely be 
multivariate in nature. The simplest estimators derived from such a data 
set are totals and means. The resulting analysis can be complicated because 
statistical methods beyond the estimation of these simple descriptive param­
eters may be applied to the data set. These will include domain estimation 
and comparison, linear regression, logistic regression and contingency table 
analysis. 

Notwithstanding the complexity of the analysis, an important aspect for 
inference is that an estimator of variance be associated with each estimator. 
The total is a simple linear function of the observations and it is possible to 
derive explicit algebraic expressions for estimating variances of such linear 
functions. It must be noted that for the type of complex design mentioned 
above, an estimator of variance for the total must take into account all 
stages of selection, requiring as well the computation of joint probabilities 
of selection for all sampled units throughout the stages. The general theory 
for the computation of these variances, taking into account each stage, has 
been provided by Des Raj (1966) and Rao (1975). A computer program 
specified by Bellhouse (1980) has been produced experimentally in order to 
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implement the rules given by Rao (1975). In large scale surveys, it is often 
assumed that the first sta~e clusters have been selected with replacement 
even though the actual selection scheme may have been without replacement. 
This assumption enables one to compute only the first stage variance (Des 
Raj, 1968, p. 210). This assumption will be the one that will be used 
throughout this paper. 

For nonlinear functions of the vector of observations, the previously men­
tioned variance approximation methods are available. A brief description of 
these methods is provided next. The method of independent replication re­
quires the drawing of several independent samples from the same population 
in order to obtain independent estimates of the same statistic 8, for example 
81,82 , ... ,8M' 

The mean estimate is 0 = E:!1 8i /M and an estimate of its variance is 

M 

Vr(O) = ~)8i - 0)2 /[M(M - 1)1. 
i=1 

In practice 0 =P 8 and it is necessary to assume that vR(8) = VR(O). This 
technique places several restrictions on the sample design, since each in­
dependent sample is much smaller than the "total sample" feasible. The 
number of replications will be small (2-8) and hence the estimate of vari­
ance will have few degrees of freedom and tend to be unstable. 

The balanced half-sample replication method suggested by McCarthy 
(1966) is designed for surveys with exactly 2 primary sampling units per 
stratum in the sample. For a design with L strata, an orthogonal subset 
of half-samples amongst the possible 2L half-samples is chosen, with each 
half of the sample selected bl choosing randomly a primary sampling unit in 
each stratum. An estimate Oi is formed from each member of the orthogonal 

"" S A A 

subset and the variance is computed as VB(O) = Ei =1 (Oi - 0)2/8, where 
L + 1 :5 8 :5 L + 4. This method places restrictions on the sample design as 
well. 

The jackknife approach originally suggested by Quenouille (1956) and so 
named by Tukey (1958) is another sample reuse method applicable to with 
replacement sampling. It is computed as follows in the stratified context. 
Let 0 be a non-linear parameter of interest and 8 be its estimator from the 
full sample. Let O(ll.i) be the estimator of 0 after omitting the ith unit within 

the hth stratum. Let 0(11.) = E?!18(h.i)/nh. (where nil. is the number of 
sampled primary sample units within the hth stratum). Then the jackknife 

A A L InA A 

variance estimator of 0 is v;(O) = Eh.=1 n~: Ei!1 (O(h.i) - 0)2. 
The linearization (Taylor) method expresses the statistic 0 as a function 

g(y) of y = (Ylo "" Yp) where Y; is the total of a given variable in the 
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population. A consistent estimator of g(y) is g(y) where y = (1\, ... , 'Vp ) is 
the design estimator ofy. Now assuming that 'Vj = 2:~=12:~~1 WhiYhij, we 
have that 

V",[g(y)[ = V [t, (Y; -Y;) g(;l(y) 1 
= V [t,y;gUl(y)] 

= t.v [~w .. z .. l' 
where Zhi = 2:~=1 Yhijg(j)(y) and g(;)(y) = a:¥.) I 'Vj = Yj . , 

A consistent estimator ofV[g(y)] is 2:~=1 tI(Zh) where Zh = 2:~~1 WhiZhi 
and Zhi = 2:~=1 Yhii9(;) (y). This formulation of the Taylorized variance was 
given by Woodruff (1971). Computationally more efficient methods have 
been given by Fuller (1975) in the case of regression in finite sampling by 
appealing to the Central Limit Theorem and Binder (1983) for general func­
tions of totals using implicit differentiation. The advantages of Taylorized 
deviations over the other methods is that it places no restrictions on the sam­
ple design, it is computationally not difficult, and it can be used for variance 
components. It requires the existence of the first (2 + 8) moments in order 
to apply the general central limit theorem. Computationally, only the linear 
combination given by Zhi need be calculated, and the usual variances for the 
algorithms of totals can then be applied for designs with several stages of 
selection. 

Since all the methods involve approximations in the case of non-linear 
statistics, the biases as well as the precisions of the variances should be 
examined when comparing these methods in terms of their potential for es­
timating well the variances of interest. Their small sample properties have 
been investigated through empirical studies: see Frankel (1971), Hidiroglou 
(1974), Kish and Frankel (1974), Woodruff and Causey (1976), Bean (1975), 
and Mellor (1973). The findings of these studies indicated that all the meth­
ods yield good estimators of variance for several statistics: ratio and post­
stratified means, regression coefficients, simple and partial correlation co­
efficients. Large sample properties given by Krewski and Rao (1981) yield 
similar conclusions. It also appears from these studies that the methods 
give reasonable results, with none being markedly superior to the others. 
The choice of method is dependent on flexibility of sample design, com­
puting economy and availability of programs. The program developed by 
Woodruff and Causey (1976), which allows automatic computation of the 
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partial derivatives for the Taylor method, has encouraged the use of this 
method. 

For the types of statistics that will be discussed here (ratio estimation, 
post-stratification, regression, logistic regression and contingency table anal­
ysis), SUPER CARP (1980) or extensions have been used to obtain variance 
estimates for all the aforementioned statistics except logistic regression. SAS 
programs have been developed by Paton to estimate variances for all pre­
viously mentioned statistics for stratified sample designs assuming that the 
primary sampling units had been selected with replacement. The SUPER 
CARP and SAS programs share the property that Taylor methods were used 
to compute the variances. 

If we take the case of the ratio estimate given by 

its Taylorized variance estimator is given by 

~ nh ~ 2 tI(r) = ~ nL _ 1 ~ (Zhi - Zh) , 
h T. i 

where Zhi = Whi(Yhi - rXhi) and Zh = Ei Zhi/nh for a stratified survey 
design with the primary sampling units selected with replacement. For this 
design, the number of required computations to estimate the variance of 
r is given in Table 1. From this table, for 2 p.s.u.'s per stratum, it can 
be observed that the replication methods require the fewest computations 
and the jackknife requires the most computations. The Taylor linearization 
method is intermediate in terms of number of computations. Comparisons 
of computer times, for variance estimation of domain totals, were carried out 
by Maurer et al. (1978). Their study, for this particular type of estimation, 
showed that either the B.R.R. or Taylorized variance estimation procedures 
could win in terms of computer time, the critical factor being the number 
of cells contained in each published table. With a higher number of cells 
within a table, the B.R.R. became more time efficient. 

Large surveys such as the Labour Force or the Canada Health Survey 
are post-stratified to known population totals (aN) according to age and sex 
(a = 1, ... , A). This adjustment will greatly improve the efficiency of the 
estimates if the published variables of interest are highly correlated with age 
and sex. The variances of such adjusted estimates must properly take into 
account the post-stratification in order to reflect properly the estimation 
procedure. The Taylorized method is easy to compute and can be derived 
as a straight forward extension of the variance given for the ratio estimator. 
For example, the estimator of variance for the ratio of two post-stratified 
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estimators in the context of a stratified design (with the strata indexed by 
h = 1,2, ... , L, with the p.s.u.'s i = 1, ... , nil. in stratum h assumed to have 
been selected with replacement) can be obtained, using double application 
of the Taylor linearization method. Denoting the basic sampling weight as 

Wh.ik(a = 1, ... , Aj h = 1, ... , Lj i = 1, ... , nh.j k = 1, ... , mh.i), 

aYh.ile = Yh.ile a1h.ik, aZh.ile = Zh.ile a1h.ile, where a1h.ile is an indicator variable 
equal to one if the hikth sampled unit belongs to the ath post-stratum and 
zero otherwise, the estimator for the population ratio is 

where YPOST = Ea[( aN/aN) aY], aY = Eh.EiElewh.ile aYh.ile, aN = 
Ell. Ei Ele Wlt.ile a1lt.ile, with aN being known counts for the ath post­
stratum. The estimator of variance for rpOST is 

where 

and 
Zit. = L Zlt.i/nlt.. 

i 

(2.1) 

The effect of using a post-stratified ratio estimator on the variance es­
timation has been a double application of the Taylorized method: the first 
application reflecting the ratio estimation and second application reflecting 
the post-stratification. Formula (2.1) is one which can be adapted for several 
types of estimation (linear regression, logistic regression, and log-linear mod­
els) by suitably modifying the "Zh.l' term. This term, as it will be seen in the 
following section, can be made to reflect the type of estimation procedure as 
well as any post-stratification by using the Taylorized method. 

3. GENERALIZED LINEAR MODELS 

NeIder and Wedderburn (1972) described a class of models which they 
named the generalized linear models and showed that maximum likelihood 
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estimates for models in this class can be calculated using a general algorithm 
related to linear least squares regression. The class includes many of the most 
commonly used statistical models; linear regression, logistic regression, and 
log-linear models for categorical data are all examples of generalized linear 
models. 

While these are superpopulation models and hence unacceptable to some 
survey analysts, we can view the maximum likelihood estimate that would 
be obtained if a census were taken to be a finite population parameter and 
concern ourselves with the estimation and sampling variability of this de­
scriptive parameter. This strategy has been suggested by a number of au­
thors, for instance Fuller (1975) and Binder (1983). Thus from the usual 
superpopulation model for linear regression: 

y. = x'.fJ + e., e. are i.i.d. N(O, q2) 

with 
XN = (Xl,X2, ... ,XN)' 

Y N = (Yll Y2, ... , YN )' 

(the x and Y values for the population of size N) 

we have b = (X~XN )-IX~YN as the census based m.l.e. of fJ and now 
consider b as a finite population parameter. 

Binder (1983) described a method of estimating variances for a class 
of finite population parameters that includes those that correspond to the 
generalized linear models. This method is based on Taylor linearization and 
has been used in the SAS programs we have developed for estimation and 
variance calculation for linear regression, logistic regression, and log-linear 
models. 

Details of the theoretical background to the design based variance es­
timate have been given by Binder (1983), and more detail on generalized 
linear models has been given by NeIder and Wedderburn (1972). 

Briefly, generalized linear models have density functions of the form: 

p(y; 0, 4» = exp[o(4)){YO - g(O) + h(y)} + '''1(4), y)], 

where 0(4)) > o. Note that E(Y) = g'(O) = JL(O), and V(Y) = JL'(O)jo(4» 
and 0 = I (x'fJ), where 1(-) is a known differentiable function and fJ is 
unknown. 

Then, based on observations {(y.,xD, i = 1,2, ... ,N} the m.l.e. for fJ 
is the solution to the equation 

N 

L [Yk - JL (f (x~fJ))] I' (x~fJ) Xk = o. 
10=1 
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For linear regression, logistic regression and log-linear models, f(x'fJ) is x'fJ 
with p. defined as follows: 

linear regression­
logistic regression­
log-linear model-

p.(x~fJ) = x~fJ; 
p.(x~fJ) = exp(x~fJ)/[l + exp(x~fJ)l; 
p.(x~fJ) = exp(x~fJ)· 

The finite population parameter of interest is thus the vector b that 
satisfies: 

N 

R(b) = Lrk = 0, (3.1) 
k=l 

where rk = (Yk - P. (f (x~b))) f' (x~b) Xk· 
We estimate b by h, the solution to the equation 

n 

R(h) = L Wkrk = 0, 
k=l 

where the sum is over the n individuals in the sample and Wk is the sampling 
weight for individual k. 

The estimate h can be obtained by the Newton-Raphson method in a 
manner differing from that described by NeIder and Wedderburn (1972) only 
in the inclusion of the sampling weights. Hence each iteration in the solu­
tion can be viewed as a weighted least squares estimation, with dependent 
variable 

* + [y - p.(f(y*))] 
y ~I ' 

dt t=lI* 

where y' = x'b' (b' is the current estimate of b), and weight 

[~I ]2 
dt t=lI* _ .( 'b') 

W d,..(t) - W x , 
dt It=f(II*) 

where W is the sampling weight. 
The variance of h is estimated by 

where 
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and D = diag(w*(xib), w*(x~b), ... ,w*(x~b)). E(b) is a consistent esti­
mator of the covariance matrix of R(b) (see equation (3.1)). 

A program for estimation and variance calculation can thus be con­
structed in three parts, the first of which estimates b, J (b) and creates the 
rk (or Wkrk) vectors and the third combines j and t to give V(b). The 
second and third parts are the same for all generalized models so that, once 
a modular program has been written, only the first module needs to be 
changed to adapt to another model. 

The linear regression model is the simplest of the generalized linear mod­
els and presents few problems when programming it in SAS. PROC REG 
can be used to perform a weighted regression and to output datasets contain­
ing the residuals, the parameter estimates and the sum of squares and cross 
products matrix. Three DATA steps are used in our program to extract these 
from the datasets output by PROC REG and to calculate (y - x'b)x'w for 
each observation. This is the most convenient place to apply the sampling 
weight w.) 

The second part of the program consists of a module that estimates the 
variance-covariance matrix for a vector of totals. Since R(b) is a vector of 
totals we obtain u(b) by applying this module to the (y - x'b )x'w vectors. 

For the stratified, multistage surveys we have worked with, the formula 
for the variance of the estimated total for the vector of variables z is: 

(3.2) 

where Zhi = Ek Wh,kZh,k and Zh = ;" E, Zh'· 

This formula is easily translated into a series of SAS procedures (PROC 
MEANS followed by PROC CORR followed by PROC MATRIX; details are 
presented in Appendix 1). It should perhaps be emphasized here that it is in 
this part of the program that the survey design must be taken into account. 
A different design, or a post-stratification adjustment to the weights would 
necessitate the use of a different variance formula (see, for example, equation 
2.1) and hence a different series of SAS procedures. Since the estimation of 
a vector of totals is a common task during the tabulatioR and analysis of 
survey data this module is useful in other contexts. 

The third part consists of a PROC MATRIX step which combines the 
results of the first two parts to yield the variance estimate of the parameter 
and to perform the hypothesis tests. 

Programming these procedures in SAS is quite simple, highlighting the 
power of this package as a statistical programming language. We make use 
of the SAS macro language to simplify using the resulting program with 
new sets of variables or subsets of the data. ARRAY statements make it 



COMPUTING FOR COMPLEX SURVEY DESIGNS 295 

easy to treat groups of variables as vectors in DATA steps. SAS has a few 
idiosyncrasies, the most striking one that affects this program being that the 
sum of squares and cross products matrix produced by PROC REG is not 
symmetric. This problem can be easily solved by rearranging the columns 
to make the matrix symmetric. 

The program for logistic regression proved to be more difficult. We 
initially programmed the estimation phase in PROC MATRIX, but dis­
covered that for the data sets and models we were using (10,000-20,000 
observations and up to 25-30 variables), the estimation consumed large 
amounts of CPU time. By programming the estimation in PL/1, we re­
duced the amount of CPU time required at the cost of making the program 
more cumbersome to use. The PL/1 step passes the parameter estimates 
and the j (b) matrix to the SAS step, which then calculates the vectors 
{Yk - exp(x~b)/[l + exp(x~b)]}X~Wk' The remainder part of the program 
is the same as that for the linear regression case. 

4. LOG-LINEAR ANALYSIS OF CATEGORICAL DATA 

Log-linear models are generalized linear models, but they are conceptu­
ally quite different from the linear and logistic models as the data consist of 
category counts of proportions (the categories often correspond to cells in a 
contingency table) rather than individual values for each respondent. The 
carrier or independent variables are a set of design variables that characterize 
the categories. 

The method of computing the Wald statistic described by Binder (1983) 
and Rao and Scott (1984) presents a few problems but can be relatively 
easily implemented in SAS. Two key quantities are iJ.' = (1£1, 1£2, . .. , 1£q) and 
V(iJ.), the vector of estimated category totals its variance-covariance matrix 
(q is the number of categories). These can be calculated using the same 
group of SAS procedures that was used in the second part of the linear and 
logistic regression programs to estimate the covariance matrix of a vector of 
totals. The appropriate vector at the respondent level is d' = (d1, .. . , dq ), 

with do = 1 if the respondent is in category "i" and do = 0 otherwise. It 
has proved useful to save iJ. and V(iJ.) in a permanent dataset rather than 
to recompute them for each new model. 

The estimation step and the matrix manipulations to calculate the es­
timated variances of the parameters are easily programmed in PROC MA­
TRIX, but the real difficulty is in creating the design matrix and in labelling 
its columns in a meaningful way. 

The solution we used was to generate the design matrix for the satu­
rated model and then to delete the columns that do not correspond to the 
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null hypothesis. In this solution it is essential that the vector representa­
tion of the table be in the correct order. We represent the three-way table 
(ni;k): i = 1,2, ... ,Alj j = 1,2, ... ,Azj k = 1,2, ... ,As as the vector 
(nUl, nuz,·· ., nUAa , nUl,···, nA1A2Aa)' 

In the general case of a m-way table with dimensions A l , Az, ... , An" 
if ni1i2 ... i ... is in category i; of dimension j, j = 1,2, ... , m, then ni1 i2 ... i", 
= ni, where n* is the vector representation of the table n* = (ni, n;, ... , 
nA1 A2 ... AM) and i = Ei=~l(i; - 1) {n:'=Hl Ak} +im • 

For the three-way table a saturated model design X matrix for represen­
tation can be easily constructed in PROe MATRIX of SAS as the Kronecker 
product: 

where 

Bi = [~A~-~ -~A;-~ _] , 
1 -IA,_l 

IA,-l = vector of ones of length (Ai - 1), 

and 
lA,-l = identity matrix of size (A., - 1) by (A., - 1). 

A useful labelling of the columns of X can also be generated using the 
Kronecker product: 

with 
Ci = (1\ Pi .ID, Pl = 2, Ps = 3, Ps = 5. 

Then each element of C is of the form 2d385', with d, e, and f being 0 
or 1. The intercept column corresponds to d = e = f = OJ the main 
effect columns for the second dimension correspond to d = f = 0, e = 
Ij the two way interactions between the first and third dimension effects 
correspond to columns where d = e = 1, and f = 0, etc. With the columns 
labelled in this way, it becomes relatively easy to select the groups of columns 
that correspond to the hypothesis of interest. This algorithm can easily be 
extended to higher dimension tables. 

This approach tests hypotheses using Wald statistics, but we have used 
SAS to implement the statistics suggested by Rao and Scott (1981, 1984). 
The ease of writing the programs to perform this analysis were a striking 
demonstration of the power and convenience of the matrix manipulations 
available within PROe MATRIX. Marginal totals can be easily extracted 
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from the vector representation of the table using manipulation by matrices 
of the form (for the 3-way case): 

These marginals and their covariance matrix form the basis for calculat­
ing 8. used as one of the corrections to the X2 statistic suggested by Rao 
and Scott (1981, 1984). The eigenvalues needed to make the Satterthwaite 
adjustment are easily calculated from the design based covariance matrix 
and the multinomial based one using the HALF, INV and EVAL functions. 
Complex matrix operations can generally be translated quickly and directly 
from the notation in a theoretical paper into a working algorithm in PROC 
MATRIX. 

5. COMPUTATIONAL CONSIDERATIONS 

Means, sums, variances and covariances are the basic ingredients that 
become parts of the required computations for the statistics described in 
Section 2. Notwithstanding the particular variance estimation procedure 
chosen to associate a measure of uncertainty with these statistics, the choice 
of algorithms for computing these statistics should take into account preci­
sion, speed and storage requirements. Beaton et al. (1976) have noted that 
a "concern about highly accurate computational methods must be tempered 
with a concern for whether the data are accurate enough to make the results 
meaningful". Although this concern is well taken, there is no reason not 
to use good computational techniques in any event. For the computations 
of sums of corrected cross-products (variances or covariances), one-pass or 
two-pass algorithms may be used. A one-pass algorithm updates the sum of 
corrected cross-products by using a recursive relationship between the cur­
rent and previous sum. A two-pass algorithm requires the computations of 
means appearing in the cross-products in a separate pass. The one-pass al­
gorithm is computationally more efficient in terms of time than the two-pass 
algorithm. The question between the choice of the algorithms is in terms of 
precision. Ling (1974) studied different variations of one-pass and two-pass 
algorithms. Ling's conclusion was that there was no universally best algo­
rithm. The best algorithm for a given data set depends on the particular 
number composition of that data set. One of his recommendations was to 
use double precision arithmetic. For SUPER CARP, one-pass recursive al­
gorithms programmed in double precision have been chosen to compute the 
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mea.ns and the sums of corrected cross-products. 
Matrix inversion is required for regression and contingency table anal­

ysis. The choice for inversion algorithms is quite important in packages. 
Longley (1967) examined the accuracy of some inversion algorithms and 
found serious computational inaccuracies. He reported that the most ac­
curate results were obtained by using the orthonormalization procedure. 
Kopitze et al. (1975) have recommended the use of the Cholesky decompo­
sition as an inverting algorithm. They pointed out that as compared to the 
Gaussian elimination schemes, it does not require pivoting to stabilize sym­
metric positive definite matrices. This means less time for inverting. The 
Cholesky decomposition does not need much core storage and is easier to 
program than the Gaussian elimination scheme. One of its other advantages, 
as Wilkinson's (1975) analysis shows, is that it is quite accurate. Another 
of its advantages is that it can be readily put to use to find eigenvalues 
for systems of equations of the form Ax = Bx, where A is a positive ma­
trix and B is a positive semi-definite matrix. Computations of eigenvalues 
are required to establish the stability of the inversion process. A condition 
number defined as the ratio of the maximum eigenvalue of a matrix to its 
minimum eigenvalue, will be the indicator of matrix inversion stability. In 
the case of the Wald statistic, which requires an inversion of the covariance 
matrix of the observed cross-classification cells, this condition number will 
be very high when there is a large number of cells. The condition number 
is therefore a good diagnostic to have at hand in order to indicate if the 
estimated regression parameters or Wald test are usable. 

Data are either read from cards, tapes or input directly into the computer 
via terminals. These data are then stored on a disk drive awaiting further 
instructions. IT the dataset is large, the number of different passes required 
to produce different statistics can become a critical factor in terms of time 
efficiency. The number of rewinds over the dataset must therefore be kept 
to a minimum by writing programs that can perform operations in as few 
passes as possible. For example, in the contingency table context, an r x 8 

table defines r8 different domains. IT domain totals and their associated 
variances are required for such a table, r8 passes over the data set is the 
extreme. IT the program has been efficiently written, with the ability to 
handle multidimensional contingency tables, one pass over the data set would 
be sufficient to produce the required cross-tabular statistics. In the case of 
regression one pass would be sufficient to produce the largest required matrix 
and vector to compute the regression coefficients. IT the best fit were to be 
found, backward elimination procedures could then operate on subsets of the 
computed matrix and vector, in order to obtain the regression coefficients 
for the reduced model. Iterative procedures for computing the associated 
variances for the regression coefficients would then have to be applied. In 
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the context of contingency table analysis, all the required marginal and cell 
probabilities as well as the associated design effects could be computed in 
one pass in order to allow the user to fit the best log-linear model. Users 
interested in linear contrasts of statistics must have the variances of these 
statistics as well as their covariances computed, in order to conduct valid 
tests of hypotheses. IT such contrasts are not required, the computation 
of covariances will add significantly to computer time: for a p-dimensional 
vector, p(p - 1)/2 covariances have to be computed. 

6. EXAMPLES 

In order to illustrate the analytical methods previously mentioned, three 
examples from the Canada Health Survey (1978-79) are presented. 

Example 1: Regression 

In Table 2 we present the results of three linear regressions using Canada 
Health Survey data. The dependent variable is a derived health status index 
(HEALTHRD) which takes on values between zero and one. The first of 
the regressions is an unweighted OLSj the second and third both use the 
sampling weights and so share the same estimates, but they differ in that 
the third uses the design in the estimation of variances. 

While the estimates change from the unweighted to the weighted case, 
the most striking differences between the three regressions are found in the 
t statistics, with all nine variables deemed significant by the OLS analysis, 
only seven by the simple weighted analysis and only five by the design based 
analysis. 

In general, the design based variances lead to a smaller t statistics, but 
this is not consistent, reflecting the variable-to-variable differences in design 
effects. It is clear, however, that inference based on the analysis which 
ignored the design would differ significantly from the design based inference. 

Example 2: Logistic Regression 

Similar results for logistic regression can be seen in Table 3. These are 
the results of a regression investigating the relationship between physician 
use in terms of income and age groupings. It is apparent that design based 
inference would be somewhat different from that which might be made if the 
design were ignored. 

Example 3: Contingency Table Analysis 

In Table 4, we give a 3 x 5 table from the Canada Health Survey, which 
cross-classifies smoking habits (Current, Past, Never) and diastolic blood 
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Table 2. Estimates and t Statistics for Three Linear Regression 
Techniques Applied to the Same Data 

Unweighted OLS Weighted Least Squares 
Estimate "t" Estimate Weighted Design 

OLS "t" Based "t" 
INTERCEPT .822 16.69 .883 17.50 14.34 
REGION 5 .082 3.19 .114 4.27 3.59 
RETIRED .100 1.99 .138 2.20 3.96 
LANGFR -.041 2.30 -.030 1.73 1.36 
WHTGH .047 2.29 .041 1.96 1.41 
LIFEEVNT .040 2.51 .028 1.71 1.50 
SMKLOT .072 2.49 .094 3.13 2.86 
NEGABS -.030 7.77 -.037 9.31 7.86 
MHEART .041 2.24 .044 2.27 1.77 

Dependent Variable: HEALTHRD (derived from activity limitation, 
chronic health problem, and health opinion 
variables) . 

Sample Size: 

Carrier Variables: 

REGION 5 

RETIRED 

LANGFR 

WTHGH 

LIFEEVNT 

SMKLOT 

NEGABS 

MHEART 

1186 

= 1 if respondent lives in B.C. 
= 0 otherwise 

= 1 if major activity is retired 
= 0 otherwise 

= 1 if language normally spoken is French 
= 0 otherwise 

= 1 if more than 30% overweight 
= 0 otherwise 

= 1 if a major life event in the past year 
= 0 otherwise 

= 1 if smokes more than 20 cigarettes per day 
= 0 otherwise 

= 1 negative affect balance score 

= 1 if mother had a heart related problem 
= 0 otherwise 

Degrees offreedom for design based variance calculation: 22. 
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Table 3. Unweighted and Design Based 
Logistic Regressions Compared 
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Unweighted OLS Weighted Design 
Based Variances 

Estimate t Estimate 
INTERCEPT .662 12.87 .712 
QUINT 1 .031 .57 .155 
QUINT 2 -.184 3.49 -.104 
QUINT 3 -.102 1.94 -.052 
QUINT 4 -.072 1.39 .026 
QUINTUNK -.406 5.59 -.426 
AGE 2 .619 9.98 .613 
AGE 3 .622 13.17 .517 
AGE 4 .640 12.79 .570 
AGE 5 1.082 16.02 1.040 

Dependent Variable: PHYSUSE = 1 if visited a physician in 
the past 12 months 

Sample Size: 20748 

Carrier Variables: 
QUINT 1 

t 

12.35 
2.10 
1.94 
.76 
.40 

3.34 
5.80 

10.97 
8.80 

10.55 

to 
QUINT 4 

0-1 variables indicating family income quintile 

QUINTUNK 

AGE 2 

AGE 3 

AGE 4 

AGE 5 

= 1 if family income unknown 
= 0 otherwise 

= 1 if 20 ::; age ::; 24 
= 0 otherwise 

= 1 if 25 ::; age ::; 44 
= 0 otherwise 

= 1 if 45 ~ age ::; 64 
= 0 otherwise 

= 1 if age ~ 65 
= 0 otherwise 

Degrees of freedom for design based variance calculation: 45. 
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Table 4. Diastolic Blood Pressure by Type of Cigarette Smoker 
(in thousands); Counts Adjusted by Age-Sex Distribution 

Type of Smoker 
Blood Current Past Never 

Pressure Cells 1-5 Cells 6-10 Cells 11-15 
55-64 82" (9.6% )0 38 (10.0% ) 47 (13.6% ) 
65-74 187 (5.5% ) 107 (10.8% ) 142 (6.6% ) 
75-84 208 (5.4% ) 157 (11.6% ) 182 (7.2% ) 
85-94 94 (9.0% ) 83 (9.8% ) 88 (6.4% ) 

95-104 36 (19.5% ) 25 (17.7% ) 29 (16.1% ) 

a - Counts, b - Coefficients of Variation %. 

pressure (55-64,65-74,75-84,85-94,95-104). The sample size is n = 4007. 
The statistics provided in Table 4 have been adjusted by known Age­

Sex counts at the provincial level. This post-stratification adjustment has 
reduced the estimated coefficients of variation considerably. For example, 
for the current smokers group with diastolic pressure in the 55-64 range, 
the estimated coefficient of variation with no post-stratification adjustment 
is 13.6% as opposed to 9.6% with the post-stratification adjustment. Next, 
adjusted (for post-stratification) and unadjusted design effects are provided 
in the lexicographical order given in Table 4. 

Adjusted design effects (Unadjusted) 

2.19 (5.30) 1.12 (2.85) 2.41 (5.06) 
1.92 (6.03) 3.99 (9.07) 1.78 (5.59) 
2.03 (2.97) 5.53 (13.92) 2.36 (8.28) 
2.38 (5.09) 1.98 (3.92) 1.11 (2.29) 
3.72 (8.12) 2.07 (5.50) 2.10 (4.74) 

As evidenced from the above design effects, post-stratification has also re­
duced the effect of the stratification and clustering inherent to the Canada 
Health Survey. The null hypothesis of interest is whether type of smoking 
is independent of diastolic blood pressure. The unadjusted for design chi­
square test based on the usual Pearson statistic yields a value of 31 while for 
the corresponding Wald statistic, which takes the survey design and post­
stratification into account, the value is 36. The Wald value is larger than 
the upper 5% point of x~ (X~;O.05 = 15.5) so that the null hypothesis is 
not tenable. The modifications to the Pearson statistic suggested by Fellegi 
(1980) which deflates it by the average of the design effects (2.45) yields a 
value of 12.65: this modification's estimated significance level is conservative 
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(0.02 for a nominal level of 0.05). The modification based on the mean of the 

eigenva.lues (L~i) as suggested by ftao and ~cott (1984) between the cova.ri­
ance matrix under the complex design and assuming multinominalsampling 
brings the Pearson value down to 19.2. The Satterthwaite approximation 
based on the eigenvalues as suggested by Rao and Scott (1984) brings the 
Pearson value down to 15.3 which is not significant at the 5% level. It 
must be noted that either the Wald or the Pearson would reject the null 
hypothesis. Standardized residuals (taking the design into account) provide 
an effective tool for isolating cells which depart from the null hypothesis of 
interest (in our case, independence). AJJ can be noted from the residual plot 
given in Figure 1, there are relatively more current smokers with a dias­
tolic blood pressure 55-64 and fewer current smokers with a diastolic blood 
pressure 85-94. Individuals who used to smoke (past) and who have never 
smoked (never) have diastolic blood pressure distributions which are quite 
similar. 

STD residuals 
4 

3 r-.----------------------------
2 

-1 

-2 

-3 r-------.----------------------

1 2 3 4 5 6 7 8 9 101112 13 14 15 

Cell number 

Figure 1. Standardized residuals. 
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7. CONCLUSION 

The analysis of data collected via complex surveys is not a straightfor­
ward matter of using existing software packages such as SAS. There currently 
exists some software for this specialized analysis, including CPLX and SU­
PER CARP to name only two. These are basically stand-alone programs 
that perform their assigned tasks of estimation and variance computation, 
but lack the data management facilities of the comprehensive packages such 
as SAS or SPSS. 

Ideally, an integrated software package for survey data analysis would 
contain the following features. It would be "user-friendly" in the sense that 
the control statements would allow English-like procedures and commands. 
It would contain powerful data management options such as data trans­
formation, separation, combination, deletion and sorting. It should have 
the flexibility of creating data files containing the results of analyses, and 
allow the use of these for further analysis. A wide spectrum of survey de­
signs should be acceptable (it should be able to handle more than one-stage 
stratified designs with sampling proportional to size). Its analytical and 
explanatory usefulness would be enhanced by plotting facilities. 

Its procedural statements, statements linked to the particular type of 
analysis being performed, should be connectable to every part of the sys­
tem. Additions to procedural statements should be easy for the specialists 
responsible for the development of the integrated software. The algorithms 
for computing the required statistics called by the procedural statements 
should be interconnectable, valid in terms of precision and efficiency. The 
resulting output should summarize key features of the survey design such 
as the number of observations, primary sampling units, stages and strata. 
The impact of survey design on the various resulting statistics could be mea­
sured in terms of design effect factors based on the design and the particular 
estimators. 
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APPENDIX 1 

We translated equation (3.2) into SAS in the following way, assuming 
that the weights have already been applied to the data. 

% LET NSTRATA = 44; 
% LET NVAR =10; 

PROC MEANS SUM NOPRINT 

DATA = 
BY STRATUM CLUSTER; 

VAR Xl - X&NVAR; 

OUTPUT OUT = TBYCLUST 

SUM = Xl - X&NVAR; 

PROC CORR COY NOCORR NO PRINT 

DATA = TBYCLUST 

OUT = STRATCOV (TYPE = COY); 

BY STRATUM; 

VAR Xl - X&NVAR; 

PROC MATRIX; 

POPCOV = J (&NVAR, &NVAR, 0); 

NPLUS3 = &NVAR + 3; 

DO I = 1 TO &NSTRATAj 

FETCH SCOV NPLUS3 DATA = STRATCOV; 

NCLUST = SCOV (NPLUS3, 2)j 

POPCOV = POPCOV + SCOV (1: &NVAR,2: &NVAR + 1) 

# NCLUSTj 

END; 

PROC MEANS calculates X hi = Ek WhikXhik 

PROC COY calculates Vh = ;" Ei (X/li - Xh) (Xhi - Xh)' 

PROC MATRIX calculates Eh nh V h 
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APPENDIX 2: 
DESCRIPTION OF THE CANADA HEALTH SURVEY 

The Canada Health Survey, 1978-79 was a national household survey, 
conducted jointly by Statistics Canada and Health and Welfare Canada to 
provide information on the health status of Canadians. The Canada Health 
Survey may be described as a multi-stage stratified cluster sample design. 
For the purpose of variance estimation, it was assumed that the primary 
sampling units within strata were selected with replacement. There are a 
total of 44 strata and 100 primary sampling units. Each stratum contained 
2, 3 or 4 primary sampling units. 

The information collected was made up of two main components. The 
first, known as the Interview Component, used two types of questionnaires. 
The first questionnaire covered items which in general required probing by 
an interviewer and could be obtained for the entire household from a suit­
able member, such as questions relating to accidents or injuries, chronic 
conditions, hearing and disability days. The second questionnaire (the self 
administered questionnaire) was restricted to the population of persons 15 
years of age or older. This questionnaire included queries on tobacco use, 
alcohol use and health related activities. The second component, known as 
the Physical Measures Component was also divided into two parts. The first 
part included physical masurements of blood pressure, cardiorespiratory fit­
ness, height, weight, and skinfolds on persons aged two years and over. The 
second part involved taking of blood samples from persons three years and 
over in order to determine immune status as well as biochemical and trace 
metal levels. 
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ESTIMATION OF THE CHARACTERISTICS OF RARE 
ANIMALS BASED ON INVERSE SAMPLING AT THE 

SECOND OCCASION 

ABSTRACT 

Theory has been developed to provide current estimates of the mean 
measurement (along with their sampling errors) on a characteristic of a rare 
animal in successive sampling using the (without replacement) inverse sam­
pling method (at the second occasion) in the usual capture-mark-recapture 
situation. Relative efficiency results (with respect to other modes of sam­
pling) are also studied in detail. 

1. INTRODUCTION 

In sampling on repeated occasions (with replacement of parts of the 
sample on each occasion), we consider a population of N units over a period 
of time, where N is large relative to the sizes of the samples to be drawn. 
A simple random sample (SRS) of size nl is selected and measured (e.g., 
weighed) on the first occasion. On the second occasion, m (m for matchecl) 
of the units in the first occasion are retained and measured on the second oc­
casion; also a new selection of u (= n - m, u for unmatched) units is made on 
the second occasion. Assume a positive correlation between measurements 
on the two occasions. 

However, in sampling for moving populations which are rare, inverse 
sampling using capture-mark-recapture (CMR) is employed in which a sam­
ple (of size nIl is selected on the first occasion; these are marked, measured 
and released. The members in the sample are then allowed to mix and on the 
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next occasion, the second sample (of size n) is continued without replacement 
(WOR) till a prescribed number of marked animals (m < nd have been re­
covered; we assume that the population is closed. In this setup, generally, m 
is fixed and n (~ m) is a positive integer valued random variable (r.v.). This 
method provides an unbiased estimator of N with an exact expression of its 
sampling variance and a coefficient of variation (CV) which is almost inde­
pendent of N. Hence, instead of taking a given number of marked animals 
in the sample, an alternative scheme is to continue the second sample until 
N is estimated with a given CV. Amongst humans, considerations of cost 
and of patients' welfare may dictate the use of such a sampling procedure. 
At the second stage, measurements are made on the m marked animals as 
well as on the u (= n - m) extra (unmarked) animals selected to provide 
the m marked ones. It is shown that the information contained in the mea­
surements on both the occasions for the marked units when incorporated 
in the estimation scheme leads to a better estimator (than based on the n 
observations alone at the second stage). 

To avoid assumption of constant probability of capture, which may not 
generally hold in practice, a less common situation has been considered in 
which members of the second sample are caught one at a time, marked, 
measured and returned immediately to the population, and sampling is con­
tinued until a prescribed number of previously marked units appear. Theory 
has also been developed for this inverse sampling scheme in which the sec­
ond sample is selected with replacement (WR). The efficiency of this CMR 
method is compared with (i) SRS, with and without replacement, ignoring 
selection by CMR, and (ii) using CMR without replacement of the second 
sample units. 

It is shown that inverse sampling with replacement is more efficient than 
sampling with replacement ignoring CMR, but its efficiency with respect to 
sampling without replacement (SRS) would depend on the relative sizes of 
the first and second samples and on the correlation in the measurements on 
the occasions. Also, inverse sampling with CMR in which the second sample 
is SRS is more efficient than inverse sampling in which the second sample is 
selected with replacement. The results have been illustrated with numerical 
examples in different situations. 

2. THE PROPOSED ESTIMATORS: THEORY 

Let N be the size of the unknown population (assumed to be the same on 
both the occasions), and let Y1(;), •.. , yiP be the population values at the 
jth occasion, for j = 1,2. For the first sample of size nl, let Yu, ... , YInl be 
the realizations (recorded); these units are all marked and released. Finally, 
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let n be the second sample size (SRS) containing exactly m marked units, 
where m is a non-random positive integer. 

In this setup? n is a random variable and its probabilitr law is iiven br 

the negative hypergeometric distribution: 

for n = m, m + 1, ... , N - n1 + m. (1) 

For the m matched units in the second sample, we denote the sample val­
ues on the first occasion by yP), ... yi!) and on the second occasion by 

(2) (2) • . ((1) (2) Y1 , ... , Ym , respectively, so that we have actually m pairs Y. , Y. ), 
i = 1, ... , m, of observations for these matched units. In the second sample, 
for the unmatched u (= n - m) units, the sample observations are denoted 

by Y~~l' . .. , y~2). Though not all are observed on the second occasion, for 
the first sample n1 units, we denote the pair of values on the two occasions 
by (Yll, Y21) , ... , (Y1nl , Y2nl). Then let 

m 

-y. = m-1 '\"' Y~;) 
3m L...J • , 

.=1 
nl 

-, -I,\", 
Yjnl = n1 L...J Yj' 

.=1 
and 

N 

Y(;) = N-1 LY}'")' j= 1,2 . (2) 
• =1 

For the N - n1 units in the population not drawn in the first sample, we 
denote the mean value of the characteristic (at the second occasion) by Y~nl ' 

so that Y~nl = (Ny{2) - n1Y~nl) / (N - n1); note that Y~nl' Y~nl and Y~nl 
are all random variables. Also, let 

m 
(m) _ -I'\"' (;) (i') - -

Sjj' - m L...J Y. Y. - YjmYj'm, j,j' = 1,2; b (m)/ (m) () m=S12 Sll' 3 
.=1 

j,j' = 1,2; 
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N 

8;;1 = N-1 'L,yy)yy') - y(;)y(;I), j,i' = 1,2; B" = 812 /8u , (5) 
,=1 

and 

8;2 = (N - nd-1 'L, (Y2' - Y~nJ2 , 

-Y - u-1 2u -

,>nl 

(2) Y, , for u ~ 1. 

(6) 

(7) 

Consider then the two estimators of y(2) (derived from the matched and 
unmatched parts of the second sample, respectively): 

(8) 

z _ {O" if n = m, 
2 - Y2u, if n = m + u, \l> 1. 

(9) 

Now, disregarding CMR, one may estimate y(2) by y~2) = n- 1 E7=1 y;2) 

(where we need to keep in mind that in this inverse sampling scheme n 
is random and the measurements on the Yli and yl1) are not taken into 
account). Our primary goal is to consider an improved estimator which 
incorporates this additional information. Toward this, we denote E and 
V and (and ~), the mean, variance (and covariance), conditional on the 
Yu, ... , Y1nl (in the first sample). Also, we may rewrite (8) as 

and note that, as m increases, 

and 

Consequently, the last term on the right hand side of (10) is Op(m-1). 

Hence, 
E(Z1) = Y~nl - 0 + Op(m-1) = ~nl + Op(m-1) (12) 

V(Z1) = {8~~d - (8~~1l) 2} {(n1 - m)/m(nl - 1)} + Op(m- 2 ), (13) 
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and, similarly, 

E(Z2) = E [E(Z21 n)] 
= O· PN,nl (m 1 m) + LY~nlPN,nl (m + u I m) 

= Y~nl {1 - PN,nl (m I m)} 

=Yznl {1- (:)/(~)}, (14) 

V(Z2) = E [V(Z21 n)] + E [E(Z21 n) - E(Z2)f 

= 8;2 L [(N - nl - u) /u (N - nl - 1)] PN,nl (m + u I m) 

Co;(Zl' Z2) = E[Co;(Zl' Z2 In)] 
+ E{[E(Zl I n) - E(Zl)][E(Z2) In) - E(Z2)} 

= 0 + Op (m-1PN,nl (m I m)) . (16) 

At this stage, we let 

nl = o.N, m = fJnl = o.fJN where 0 < 0. < 1 and 0 < fJ < 1. (17) 

Then, by using the Stirling approximation for factorials, we have 

PN,nl (m I m) = {(1- o.fJ)/(l- fJ)}1/2 

. [o.a,8(l- o.fJ)l-a,8 /(1- fJ)a(l-,8)]N {1 +O(N- 3 )} 

which converges to zero at an exponential rate as N increases. Hence, we 
may set 

From the above formulae, we obtain that 

E(Zl) = E[E(Zd] = y(2) + O(N-2), 

E(Z2) = E[E(Z2)] = y(2) + O(N-2), 

(18) 

(19) 
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and 

V(Z1) = E[V(Z1)] + E[E(Z1) - E(Z1)]2 

= {(n1 - m)/[m(n1 - I)]} E {8~~d _ (8~~d) 2 / 8~~d } 
+ E (Y~nl _ y(2») 2 + O(N-2) 

= S22 {(1- p2)(n1 - m)/[m(n1 - I)] + (N - n1)/[n1(N - I)]} 
+ O(N-2), (20) 

where p2 = Sl2/(SUS22)i we use the results on functions of U-statistics in 
finite population sampling (Nandi and Sen, 1963) after noting that the 8~id 
are all U -statistics and the first sample is drawn in a SRS scheme. In a 
similar manner, we obtain that 

V(Z2) = E[V(Z2)] + E[E(Z2) - E(Z2)]2 

= S22{ L {(N - n1 -1)/[u(N - n1 - I)]}PN,nl (m + u I m) 
u~1 

+ {n1/[(N - n1)(N - I)]} } + O(N-2), (21) 

COV(Z1,Z2) = E [~(Z1.Z2)] + E ([E(Z1) - E(Z1)] [E(Z2) - E(Z2)]} 

=E{(~nl _y(2») (Y~n2 _y(2»)}+O(N-2 ) 

= -n1(N - nd-1 E (Y~nl _ y(2») 2 + O(N-2 ) 

= -(N - 1)-1S22 + O(N-2). (22) 

Thus, for large N and given Oi, P, we have 

and 

N E [ (Z1 - y(2), Z2Y (2») I (Z1 _ y(2), Z2 _ y(22») ] 

--t AS22 i A = ((at;)), (24) 
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where 

au = (1- ,8)(1- p2)/[a,8] + (1- 0)/0, au = a21 = -1, 

a22 = 0/(1- a) + (1 - ,8)/[,8(1 - a)] = 1/[,8(1 - 0)]- 1. (25) 

Note that ,8, m and n1 are given, but a and N are unknown quantities. 
However, in this context, the CMR technique (in an inverse sampling setup) 
provides an estimator of N (Chapman, 1952): 

N = {n(n1 + 1)/m} - 1, (26) 

so that an estimator of a is given by & = n1/ N. Let then A = ((aij )) be 
defined by 

au = (1-,8) (1 - p~) /[&,8] + &-1 - 1 
au = a21 = -1, 

a22 = {,8(1 - a)} -1 - 1, (27) 

where 
.2 _ ( (m»)2/( (m) (m») Pm - 8 12 8 U 8 22 . (28) 

Now, using a variant form of the weighted lea8t squares method, wherein 
we employ the estimated covariance matrix instead of the actual one (Rao, 

1966), we may propose the following (combined) estimator of y(2): 

_ Zt![,8(1 - &)] + [(1 - ,8)(1 - p!.) + ,8]Z2/[&,8] 
- 1/[,8(1 - &)] + [(1 - ,8)(1 - p~) + ,81/[&,8] 

&Z1 +(1 - &) [(1 - ,8)(1 - p!.) + ,8] Z2 
- & + (1 - &) [(1 - ,8)(1 - p~) + ,8] 

Z1& + (1 - &) {I - p!. (1 - ,8)} Z2 
- 1 - (1 - &)(1 - ,8)p~ 

(29) 

An alternative estimator of y(2) ignoring CMR (but adapted to the 
inverse sampling scheme) is given by 

.=..(2) -1 ~ (2) 
Y =n LYi (where n is itself a r.v.). (30) 

i=1 
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Whereas in (29), the repeated measurements on the matched part of the 
second sample provides additional information, in (30), this being ignored, 
we expect (at least intuitively) some loss of efficiency, and we shall study 
this in the next section. 

3. SAMPLING VARIANCES AND RELATIVE EFFICIENCY RESULTS 

We intend to study the large sample expressions for the sampling vari­
ance of the proposed estimators in (29) and (30). Towards this, we write 

U; = N 1/2(Z; - y(2», i = 1,2, where the Z; are defined by (8) and (9). 
Then, we have 

(31) 

Side by side, we let 

so that 

(33) 

Since (U1 , U2 ) has a non-degenerate distribution (as N increases), while 
& - a and Pm - p, in probability, as m increases, we may appeal to the 
Slutzky Theorem (Cramer, 1946, p. 254), and conclude that the large sample 

~(2) -(2) :><:{2) u(2) 
distributions of N 1/2(y - Y ) and N 1/2(y - Y ) are the same. On 
the other hand, for the right hand side of (33), we may use (20), (21) and 
(22), and conclude that 

V(N1/2(lr(2) _ y(2») 

{au(a22 - au)2 + a22(au - au)2 + 2a12(aU - a12)(a22 - au)} 
=822 2 

(all + au - 2a12) 
= 822 {(allan - a~2) / (au + an - 2a12)} 
= 822.8-1 (1-.8) [1- p2 (1- .8(1- a»] / [1- (1- a)(l- .8)p2] . (34) 

~(2) -(2) 
Hence, the asymptotic variance of N1/2(y - Y ) may be taken as 
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For the computation of the asymptotic variance of the estimator in (30), in 
view of the fact that n is itself a random variable, additional considerations 
are necessary. In this context, we note that 

E(n) "" N [.8(1- a) + a.8] = N.8 = n· (say), (36) 

and the probability law in (1) may be used to verify easily that 

nln· -. 1, in probability, as m increases. (37) 

-=-(2) -(2) 
Given (37), the large sample distribution of N1/2(y -Y ) may be ap-
proximated by that of a similar statistic computed for the sample size n· 
(which is non-stochastic), provided the classical Anscombe (1952) condi­
tion of uniform continuity in probability is verified. Verification of this 
Anscombe condition for finite population sampling can easily be made by 
an appeal to Theorem 3.3.3 of Sen (1981), so that the asymptotic variance 

-=-(2) -(2) 
of N1/2(y - Y ) is given by 

822 {(N - n·)N/[n·(N - I)]} "" 822.8-1(1- .8). (38) 

Comparing (35) and (38), we conclude that the asymptotic relative efficiency 
~(2) -=-(2) 

(ARE) of the proposed estimator Y with respect to Y is given by 

{I - p2(1 - a - .8 + a.8)} I {I - p2(1 - .8 + a.8)} 
= {I - p2(1-.8 + a.8) + ap2} I {I - p2(1-.8 + a.8)} 
= 1 + ap2 I {I - p2 (1 - .8 + a.8) } 

~ 1, for all a > 0, .8 > 0 and p2 ~ 0, (39) 

and the strict equality sign holds when p = OJ note that a and .8 are both 
positive. It may be noted that for small .8 (close to 0), the penultimate 
expression in (39) reduces to 

(40) 

and this is also an upper bound (over.8 > 0). There is considerable gain in 
effiCIency with increasing a and p2, though the gain is negligible for small 
values of a or p2. For given a and p2, the gain in efficiency is a decreasing 
function of.8 (0 < .8 < 1). For some numerical values, we may refer to Table 
1. Consider next the inverse sampling scheme in which (at the second oc­
casion) sampling (with replacement) is continued until a prescribed number 
(m) of marked animals have been captured (marked and released). Using 
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the same notation as for the negative hypergeometric model, the probability 
llw fQ~ n (the second sample size) is 6iven by the negative binomial law: 

p~,nl (n I m) = (~~~) (nl/N)m(l- nl/N)n-m, 

n=m,m+1, ... (41) 

Parallel to (35), for this negative binomial model, the asymptotic variance 
...!!...(2) -(2) ...!!...(2) 

of Nl/2(y * - Y ) (where Y * is analogous to (29) but for the with 
replacement model) is 

P-l(l - P) [(1 + P) - p2(1 + ap)] 
8 22 (1- P2) _ p2(1- a - p + ap) . (42) 

...!!...(2) ...!!...(2) 
Comparing (35) and (42), the ARE of Y with respect to Y * is obtained 
as 

{ (1 + P) - p2(1 + ap) } { 1- p2(1- a)(l - P) } 
(1- P2) - p2(1- a)(l- P) 1- p2(1- P + ap) 

{ 1- p2(1- a -,8 + ap) } {(1 + P) - p2(1 + ap)} 
= (1-P2)-p2(1-a-p+ap) 1- p2(1-p+ap)' (43) 

Since p E (0,1), the first factor on the right hand side of (43) is greater than 
1 for every p > O. Also, note that (1+P)-p2(1+ap)-1+p2(1+ap-p) = 
,8(1 - p2) ~ 0, so that the second factor is also greater than 1, and it is 
equal to one only in the degenerate case where p = 0 or p2 = 1. This gain 
in efficiency is small for small values of,8 irrespective of the values of a and 
p (see Table 2). An estimator parallel to that in (30) [ignoring CMR and 

..:...(2) 
using sampling with replacement] is denoted by Y * . Verification of (36) 
and (37) can be made on using (41) and some routine steps, and parallel to 

(38), the asymptotic variance of Nl/2Cy~2) - y(2» is given by 

p-1822 • (44) 

..:...(2) ...!!...(2) 
Hence, the ARE of Y * with respect to Y * is given by 

H1 + P) - p2(1_ a)} / H1 + P) - p2(1 + ap)} > 1, (45) 

as [(1 + P) - p2(1- a)]- [(1 + P) - p2(1 + ap)] = ap2(1 + P) > 0, for every 
a > 0, p2 > 0 and p ~ O. 
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~(2) ~(2) 
Finally, the ARE of Y. with respect to Y is obtained as 

{(I - (3) [(1 + (3) - p2(1 - a)}] / {(I + (3) - p2(1 + a(3)} 

= 1 + {p2(a + (3) - f3(1 + (3)} / {(I + (3) - p2(1 + a(3)} (46) 

and this is greater than one when p2 > f3(I+f3)!(a+(3)i this is generally 
realized when f3 is small a.nd a is large (see Table 3). 

4. ESTIMATION OF TOTAL 

(2) -(2) ~(2). 
An estimate of the total Y (= NY ) based on Y and N (in (26)) 

IS 
• (2) • ~(2) 
Y =NY . (47) 

Note that by simple steps, 

E[y(2) - y(2)]2 = N 2 E(V2) _ y(2»)2 + (y(2»)2 E(N _ N)2 

+ E[(y(2) _ y(2»)2(1V _ N)2], (48) 

where E(N -N)2 may be taken as {(n1-m+1)(N +1)(N -n1)}j[m(n1 +2)], 
~2) -(2) 

(see Chapman, 1952) and for N E(Y - Y )2, (35) may be used. Further, 
using the arguments in (35) through (38) and proceeding on parallel lines, it 
can be shown that the last term on the right hand side of (48), for large m, 

~(2) -(2) • 
can be expressed as the product of N E(Y - Y )2 and N E(N jN - 1)2; 
other terms are of lower order magnitudes. Since under (17), (n1 - m + 
I)(N + I)(N - n1)j[m(n1 + 1)] R$ N(m)-1, we may provide the following 
asymptotic expression for N- 1 E[y(2) - y(2)]2: 

(49) 

where (26) refers to the expression in (26). Similar asymptotic expressions 
can be obtained for the sampling variance of the estimators of y(2) based 

on other estimators of y(2) and Iv. Note that if N were known, in (47), we 
would have used N instead of N, and this would lead to (26) instead of (49). 

Thus, (af3)-1{(y(2»)2 + (26)) relates to the increase in the variability due 
to the unknown N (and its estimate due to the CMR technique). Generally, 
(af3)-1 is large, and this explains why the estimation of the total (with 
unknown N) we have generally a much higher asymptotic variance. Similar 
results hold for small sample sizes as well. 
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5. SUMMARY 

The theory developed here pertains particularly to the situation where 
the population size N is unknown and inverse sampling with CMR is pre­
scribed for the simultaneous estimation of N, and the average characteristic 
value (at the second stage) can be much more efficient than simple random 
sampling based on the second sample only. The relative efficiency picture 
depends on the first and second sample sizes as well as on the correlation of 
the measurements on successive occasions. The above sampling scheme is 
more efficient than inverse sampling in which the second sample is selected 
with replacement, Le., when members of the second sample are caught one 
at a time, measured and returned immediately after measurement, sampling 
being continued until a prescribed number of marked animals have been 
caught. This plan is also realized when the proportion (nIN) is small. The 
plan avoids the assumption of constant catchability which is inherent in the 
former scheme though the situation in which it is applicable is less common. 

It is shown that the gain in efficiency using inverse sampling without 
replacement over one with replacement in the second sample is small (Table 
2) if the proportion of marked animals in the second sample (,8) is small, 
irrespective of a and p. The relative efficiency of inverse sampling with 
replacement with respect to simple random sampling units from the second 
sample only increases with the increase in a and p2 and it decreases with 
the increase in,8. Finally, one has to pay a generally high price (in terms 
of the asymptotic variance) for estimating the total y(2) when N is not 
precisely known. This case may typically arise with mobile populations of 
rare animals, and hence, needs more detailed examinations. We intend to 
pursue this line of research in a subsequent study. 
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Stanley L. Warner 1 

IDENTIFYING RATIONAL OPINION-FORMATION WITH 
THE OVERLAPPING INFORMATION MODEL 

1. INTRODUCTION 

The overlapping information model introduced by Warner (1984) pro­
vides an estimating scheme for concepts of interest when a summary of infor­
mation is presented to a number of persons. Required for the estimates are 
measurements of each person's before-summary and after-summary beliefs 
that some proposition is true, with the measurements expressed as personal 
probabilities. For possible applications in monitoring summaries upon which 
policy decisions might be based, the model is interpreted as if the person 
preparing the summary tries to present impartially both points of view and 
the persons receiving the information act as a test population for the purpose 
of analyzing the summary. In particular, the members of the test population 
try to process rationally the information presented. 

The introductory paper and some previously presented extensions set 
out the basic model. In general, the analogy of ordinary Bayesian pro­
cessing of statistical information, implying the coherent adjusting of prior 
beliefs to posterior beliefs on the basis of sample information, is used to 
suggest measurements for concepts such as the balance and completeness of 
a summary. 

This paper considers the possible use of the model to measure the rela­
tive ability of different persons to process summary information rationally. 
Since the method for measuring summary information is based on the be­
fore and after opinions of a group assumed to be reasonably rational in 
their processing of information, it is of interest to consider estimating which 
persons in the test population appear to be the relatively more rational in 
the sense that they are more able to avoid being additionally influenced by 
information which has already influenced them before. Persons influenced 
by the simple repetition of slogans, for example, are illogically processing 

1 Administra.tive Studies, York University, Downsview, Onta.rio M3J 2R6 
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information when measured against the Bayesian standard where beliefs are 
modified only by new information. An approach to identifying irrational­
ity associated with over-influence of the order of argument is discussed by 
Warner (1975, 1981). 

The next section summarizes the basic model and considers its possible 
use for estimating which of those in the test-population appear to be rela­
tively better at discounting information which overlaps with that which they 
have seen before. A final section illustrates the concepts and the operation 
of the model through a simple simulation related to the standard problem of 
modifying probabilistic belief in which of two normal distributions generated 
a given set of data. 

2. THE MODEL 

In analogy with finite sampling procedures the collection of relevant facts 
and arguments to be summarized is considered as if it were a hypothetical 
population of data, with each piece of data influencing positively or nega­
tively the probability that the hypothesis is thought to be true by a person 
who sees that piece of data. Since the information summarizer is assumed 
to select a subset from the population of data in as representative and im­
partial a fashion as possible, and since randomized selection represents a 
widely accepted standard for judging impartiality in selection, the model 
considers implications suggested by randomized selection of summary data 
from the hypothetical population of data. In an application the summary is 
necessarily purposefully chosen but is intended to satisfy criteria for balance 
suggested by randomized selection. 

To represent the procedure the ith person's opinion prior to receiving 
the summary is expressed by Pi, and after receiving the summary by Q., i = 
1,2, ... , n. The net influence of the summary on the ith person is measured 
by 

(1) 

All relevant facts and arguments are viewed as if conceptually combined into 
a population of N pieces of data, each of the N pieces being so constituted as 
to be a relatively independent piece of influence regarding the proposition. 
The influence of data in information terms is thus additive so that, regarding Y,,. as the information seen by the ith person in the jth piece of data, the 
prior In odds of person i is represented as 

z, = In(p,/(I- Pi)) = I: Y,,., 
,. in A( i) 

(2) 
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where "j in A(i)" refers to the k. pieces of data that have been seen by 
person i before the summary. 

Similarly, with S. representing the sum of the Y.; over the m units 
presented in the summary, and V. representing the sum of the Y.; over the x. overlapping units that are both in the summary and in the set seen before 
by person i, the basic identity for the model is given by 

(3) 

with D. ~ -1. Defining Z. = Z./k., V. = V./x., r. = x./k., and U. = 
k.(Z. - V.), expression (3) can also be written as 

(4) 

where U. is interpreted as a measurement error relating the unobservable 
ktV. to the observable Z •. 

The introductory development of Warner (1984) considered inferences 
from the simple regression model implied by assuming all D. = -1, noting 
randomized selection implies all E(r.) = m/ N, and ignoring differences in Yo; 
for different i as well as all bias due to complications such as measurement 
errors. This provides the most transparent form for interpretation of the 
model. In particular, the values S. would be the same for each i and would 
be an approximation to mY, under the random sampling analogy, where Y 
is the average of the Y; over the N pieces in the data population. Similarly, 
under random sampling, the coefficient of Z. could be interpreted to have 
an expected value of -(miN), thus suggesting a first-approximation least 
squares estimating equation of 

I. = mY - (m/N)Z. + e •. (5) 

In this form the implied estimate of the vertical intercept, mY, is evi­
dently interpretable as the estimated effect the summary would have on a 
person with no previous relevant knowledge and thus whose initial value of 
Z. was zero. The estimate of the horizontal intercept, an approximation of 
(N / m)( mY) = Y, is similarly interpretable as an estimate of the ultimate 
effect of the entire population of data if it were seen, and the estimate of 
the slope coefficient, (m/N), is a measure of the completeness of the sum­
mary with values between zero and 1. Finally, some evidence of the balance 
of the information could be provided by seeing if the coefficients of the Z., 
reflecting the sampling proportion, tended to be estimated the same in sep­
arate regressions using first observations with small values of Z. and then 
observations with large values of Z •. 
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While the assumptions leading to the simple interpretation for (5) are 
useful to illustrate the approach, they are likely to be too restrictive for 
most purposes. Less stringent assumptions that still allow useful inferences 
are given by allowing the Y.; to differ for different i, Z. to be positively 
correlated with U., S. to be positively correlated with Z. but not correlated 
with U. or D.r., and considering D.r. independent of Z. and U. with D. 
independent of r •. In particular, defining 

LSB = Cov(I, Z)/Var(Z) - E(D)E(r), 

and 
o. = S. - D.r.U. - (LSB)Z., 

the random coefficients model 

(6) 

(7) 

(8) 

(9) 

is shown by Warner (1985) to be consistently estimated by conventional 
methods such as that of Hildreth and Houck (1968). 

While the direct interpretation of estimated coefficients implied by (4) 
are obviously no longer possible, since among other complications estimates 
of the expected values of o. and (3. do not equal E(S.) and E(D.)E(r.), it 
can be shown the assumptions still allow bounds to be estimated for some 
of the concepts of interest. In particular, the assumptions provide that the 
parameter E(D.)E(r.) is bounded from below by -1, and in large samples 
can be estimated to be bounded above by the estimate of the expected value 
of the (3., because under the assumptions LSB tends to be positive. Esti­
mates of parameters such as E(r.) = (miN), the measure of completeness, 
are no longer directly estimable without additional assumptions, but, as for 
the example of E(r.) , at least the relative values of some parameters for dif­
ferent summaries may be estimated through presenting different summaries 
to random samples from the same test population. 

The problem of estimating which of those in the test population appear 
to discount more rationally overlapping information is the problem of esti­
mating which members of the test population have values of D. that are 
relatively closer to -1. Under the assumptions, the D. are independent of 
the r., and since the (3. are defined by (7), an estimated ordering of the D i is 
possible through estimating the ordering of the (3.. In this paper the simple 
procedure of Griffiths (1972) is used to estimate the P., and the ordering of 
the (3. is estimated to be the ordering of the D •. 

While identification of those with relatively lower D. is necessarily im­
precise for any given person in any given application, information can accrue 
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if the same person participates as a member of other test populations for 
other summaries. For the somewhat easier problem of simply identifying a 
relatively preferred group in the test population, the estimated ordering from 
a single application may be helpful in itself. This suggests the possibility of 
improving estimates of some parameters through re-estimates based on that 
part of the original test population estimated to process information more 
rationally. 

3. ILLUSTRATION WITH SIMULATED DATA 

The familiar problem of using independent sample observations to mod­
ify prior beliefs regarding which of two normal distributions is appropri­
ate provides the basis for a simple illustration. In particular, a sample of 
N = 100 observations was drawn from a distribution approximately normal 
with expected value 1 and standard deviation 3, and the choice considered 
was whether the observations came from this distribution or from a distri­
bution approximately normal with expected value a and standard deviation 
3. 

The data representing the population of N pieces of information were 
thus alike for all i, and were constituted by the 100 values formed by record­
ing the logarithms of the relative densities evaluated for each of the 100 
drawn observations. The density of the generating distribution was the den­
sity in the numerator, and the sum of the 100 pieces of information resulted 
in a total which converted to a probability of .954 for the distribution with 
mean 1, assuming zero initial knowledge and thus .5 as a prior probability. 

The number n in the test population was set equal to 200, with each 
member provided an initial endowment of some of the information in the 
population. While these pieces are not required to be random by the model, 
they were randomly selected for convenience. For each of the 200 members, 
each of the 100 pieces was independently drawn with probability .1, so that 
each person had somewhat more or less than 10 pieces before the summary. 

The summarizer is presumed to collect and present information impar­
tially, and for the model discussed, the notion of impartiality is that implied 
by random sampling. Unlike an actual application, in this simulation the 
influence of the summary actually was established by drawing each of the 
possible 100 pieces with probability .5, thus determining E(r.) = 5, and the 
resulting pieces were then presented as the summary to each member in the 
test population. 

For the discounting parameters D" each was determined by drawing 
from a uniform distribution defined between -1 and 0, so that E(D,) = -.5. 
For each member of the test population, the prior probability was computed 
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according to the data seen before the summary. Then the information for the 
posterior probability was calculated by adding the information in the sum­
mary to the initial information and subtracting the effect of the overlapping 
information according to Di. 

The least squares and generalized least squares estimates of E(Di)Eh) 
were respectively -.20 and -.19, with estimated standard errors of approx­
imately .02 in each case. Since the true value of the estimated quantity is 
( - .5)( .5) = - .25, this illustrates the effect of the positive bias of LSB. The 
estimate of the intercept, made easy by the uniformity of the information 
values for each i and an average value for Zi near 0, provided an estimated 
posterior probability of .78, virtually the exact true value for a person with 
zero initial information who might be exposed to the summary. 

The estimated (3i were significantly but only weakly correlated with the 
true Di with r = +.25. There is thus little information regarding the relative 
performance of any particular test population member even in this example 
where conditions are both known and favorable. On the other hand, for the 
group predicted to have Di below the mean, 66% were below, while for the 
group predicted to have Di above the mean, only 40% were below. This 
illustrates the better possibility of ordering the rationality of groups rather 
than that of individuals. 

It should be emphasized that the results of the simulation are only illus­
trative and imply little for the abstract applications for which the model is 
intended. Until many actual experiments are accomplished it is by no means 
clear that even the key slope parameter represented by E(Di)E(ri) will be 
estimated to be negative often enough to make estimates of much interest. 
At least for the first actual experiment, however, reported in more detail by 
Warner (1985) the results are encouraging. This experiment, accomplished 
through a February 1985 telephone survey in which 400 students were pro­
vided a summary of a debate regarding an elected Senate, resulted in an 
estimate of -.25 for the key slope parameter and .03 for its standard error. 
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