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Preface

This book originated from a series of discussions among the editors when we were
all at the University of Rochester, NY, before 2015. At that time, we had a research
discussion group under the leadership of Professor Xin M. Tu that met biweekly
to discuss the methodological development on statistical causal inferences and their
applications to public health data. In this group, we got a closer overview of the
principles and methods behind the statistical causal inferences which are needed to
be disseminated to aid the further development in the area of public health research.
We were convinced that this can be accomplished better through the compilation of
a book in this area.

This book compiles and presents new developments in statistical causal infer-
ence. Data and computer programs will be publicly available in order for readers
to replicate model development and data analysis presented in each chapter so that
these new methods can be readily applied by interested readers in their research.

The book strives to bring together experts engaged in causal inference research
to present and discuss recent issues in causal inference methodological development
as well as applications. The book is timely and has high potential to impact model
development and data analyses of causal inference across a wide spectrum of
analysts, as well as fostering more research in this direction.

The book consists of four parts which are presented in 15 chapters. Part I includes
Chap. 1 with an overview on statistical causal inferences. This chapter introduces
the concept of potential outcomes and its application to causal inference as well as
the basic concepts, models, and assumptions in causal inference.

Part II discusses propensity score method for causal inference which includes
six chapters from Chaps. 2 to 7. Chapter 2 gives an overview of propensity score
methods with underlying assumptions for using propensity score, and Chap. 3
addresses causal inference within Dawid’s decision-theoretic framework, where
studies of “sufficient covariates” and their properties are essential. In addition, this
chapter investigates the augmented inverse probability weighted (AIPW) estimator,
which is a combination of a response model and a propensity model. It is found that,
in the linear regression with homoscedasticity, propensity variable analysis provides
exactly the same estimated causal effect as that from multivariate linear regression,
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for both population and sample. The AIPW estimator has the property of “double
robustness,” and it is possible to improve the precision given that the propensity
model is correctly specified.

As a critical component of propensity score analysis to reduce selection bias,
propensity score estimation can only account for observed covariates, and this
estimation to unobserved covariates has not been fully understood. Chapter 4 is then
designed to introduce a new technique to assess the robustness of propensity score
estimation methods to unobserved covariates. A real dataset on substance abuse
prevention for high-risk youth is used to illustrate this technique.

Chapter 5 discusses the missing confounder data in propensity score methods
for causal inference. It is well known that the propensity score methods, including
weighting, matching, or stratification, have been used to control potential con-
founding effects in observational studies and non-randomized trials to obtain causal
effects of treatment or intervention. However, there are few studies to investigate the
missing confounder data problem in propensity score estimation which is unique
and different from most missing covariate data problem where the goal is parameter
estimation. This chapter is then to review and compare existing methods to deal
with missing confounder data in propensity score methods and suggest diagnostic
checking tools to select a suitable method in practice. In Chap. 6, the focus is turned
to the models of propensity scores for different kinds of treatment variables. This
chapter gives a thorough discussion of all methods with a comparison between
parametric and nonparametric approaches illustrated by a public health dataset.
Chapter 7 is to discuss the computational barrier in propensity score in the era of big
data with example in optimal pair matching and consequently offer a novel solution
by constructing a stratification tree based on exact matching and propensity scores.

Part III is designed for causal inference in randomized clinical studies which
includes five chapters from Chaps. 8 to 12. Chapter 8 reviews important aspects
of semiparametric theory and empirical processes that arise in causal inference
problems with discussions on empirical process theory, which provides powerful
tools for understanding the asymptotic behavior of semiparametric estimators that
depend on flexible nonparametric estimators of nuisance functions. This chapter
concludes by examining related extensions and future directions for work in
semiparametric causal inference.

Chapter 9 discusses the structural nested models for cluster-randomized trials
for clinical trials and epidemiologic studies. It is known that in clinical trials
and epidemiologic studies, adherence to the assigned components is not always
perfect. In this chapter, the estimation of causal effect of cluster-level adherence
on an individual-level outcome is provided with two different methodologies based
on ordinary and weighted structural nested models (SNMs) which are validated
by simulation studies. The methods are then applied to a school-based water,
sanitation, and hygiene study to estimate the causal effect of increased adherence
to intervention components on student absenteeism. In Chap. 10, the causal models
for randomized trials with two active treatments and continuous compliance are
addressed by first proposing a structural model for the principal effects and
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then specifying compliance models within each arm of the study. The proposed
methodology is illustrated with an analysis of data from a smoking cessation trial.

In Chap. 11, the causal ensembles for evaluating the effect of delayed switch
to second-line antiretroviral regimens are proposed to deal with the challenge in
randomized clinical trials of delayed switch. The method is applied for cohort
studies where decisions to switch to subsequent antiretroviral regimens were left
to study participants and their providers as seen from ACTG 5095. Chapter 12
is to introduce a new class of structural functional response models (SFRMs)
in causal inference, especially focusing on estimating causal treatment effect in
complex intervention design. SFRM is an extended version of existing structural
mean models (SMMs) that is widely used in the area of randomized controlled
trials to provide optimal solution in estimation of exposure-effect relationship when
treatment exposure is imperfect and inconsistent to every individual subject. With
a flexible model structure, SFRM is ready to address the limitations of existing
approaches in causal inference when the study design contains multiple intervention
layers or dynamic intervention layers and capable to offer robust inference with a
simple and straightforward algorithm.

Part IV is devoted to the structural equation modeling for mediation analysis
which includes three chapters from Chaps. 13 to 15. In Chap. 13, the identification
of causal mediation models with an unobserved pretreatment confounder is explored
on identifiability of mediation, direct, and indirect effects of treatment on outcome.
The mediation effects are represented by a causal mediation model which includes
an unobserved confounder, and the direct and indirect effects are represented
by the mediation effects. Simulation studies demonstrate satisfactory estimation
performance compared to the standard mediation approach. In Chap. 14, the causal
mediation analysis with multilevel data and interference is studied since this type
of data is a challenge for causal inference using the potential outcomes framework
because the number of potential outcomes becomes unmanageable. Then the goal
of this chapter is to extend recent developments in causal inference research with
multilevel data and violations of the interference assumption to the context of
mediation. This book concludes with Chap. 15 to compressively examine the causal
mediation analysis using structure equation modeling by taking advantage of its
flexibility as a powerful technique for causal mediation analysis.

As a general note, the references for each chapter are at the end of the chapter so
that the readers can readily refer to the chapter under discussion. Thus each chapter
is self-contained.

We would like to express our gratitude to many individuals. First, thanks go
to Professors Xin M. Tu and Wan Tang for leading and organizing the research
discussion which led the production of this book. Thanks go to Hannah Bracken,
the associate editor in statistics from Springer; to Jeffrey Taub, project coordinator
from Springer (http://link.springer.com); and to Professor Jiahua Chen, the coeditor
of Springer/ICSA Book Series in Statistics (http://www.springer.com/series/13402),
for their professional support of the book. Special thanks are due to the authors of
the chapters.
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We welcome any comments and suggestions on typos, errors, and future
improvements about this book. Please contact Professor Hua He (hhe2@tulane.
edu), Pan Wu (PWu@ChristianaCare.org), or Ding-Geng (Din) Chen (DrDG.
Chen @ gmail.com or dinchen@email.unc.edu).
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Part 1
Overview



Chapter 1
Causal Inference: A Statistical Paradigm
for Inferring Causality

Pan Wu, Wan Tang, Tian Chen, Hua He, Douglas Gunzler, and Xin M. Tu

Abstract Inferring causation is one important aim of many research studies across
a wide range of disciplines. In this chapter, we will introduce the concept of potential
outcomes for its application to causal inference as well as the basic concepts,
models, and assumptions in causal inference. An overview of statistical methods
for causal inference will be discussed.

1 Introduction

Assessing causal effect is one important aim of many research studies across a
wide range of disciplines. Although many statistical models, including the popular
regression, strive to provide causal relationships among variables of interest, few
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can really offer estimates with a causal connotation. A primary reason for such
difficulties is confounding, observed or otherwise. Unless such factors, which
constitute the source of bias, are all identified and/or controlled for, the observed
association cannot be attributed to causation.

For example, if patients in one treatment have a higher rate of recovery from a
disease of interest than those in another treatment, we cannot generally conclude
that the first treatment is more effective, since the difference could simply be due to
different makeups of the groups such as differential disease severity and comorbid
conditions. Alternatively, if those in the first treatment group are in better health-
care facilities and/or have easier access to some efficacious adjunctive therapy, we
could also see a difference in recovery between the two groups.

An approach widely used to address such bias in epidemiology and clinical
trials research is to control for covariates in the analysis. Ideally, if one can find
all confounders for the relationship of interest, differences found between treatment
and control groups by correctly adjusting for such covariates do represent causal
effects. However, as variables collected and our understanding of covariates for
relationships of interest in most studies are generally limited, it is inevitable that
some residual bias remains due to exclusions of some important confounding
variables in the analysis. Without being able to assess the effect of such hidden
bias, it would still be difficult to interpret findings from such conventional methods.
A well-defined concept of causation is needed to assess hidden bias.

Although observational studies are most prone to bias, or selection bias as in
statistical lingo, randomized controlled trials (RCTs) are not completely immune
to confounders. The primary sources of confounders for RCTs are treatment
noncompliance and missing follow-ups. Although modern longitudinal models can
effectively address the latter issue, the traditional intention-to-treat (ITT) approach
based on the treatment assigned rather than eventually received generally fails to
deal with the former problem, especially when treatment compliance occurs in
multilayered intervention studies, an emerging paradigm for designing research
studies that integrate multi-level social support to increase and sustain treatment
effects [34].

Another problem of great interest in both experimental and observational studies
is the causal mechanism of treatment effect. The ITT and other methods only
provide a wholesome view of treatment effect, since they fail to tell us how and
why such effects occur. One mechanism of particular interest is mediation, a process
that describes the pathway from the intervention to the outcome of interest. Causal
mediation analysis allows one to ascertain causation for changes of implicated
outcomes along such a pathway. Mediation analysis is not only of significant
theoretical interest to further our understanding of causal interplays among various
outcomes of interest, but also of great practical utility to help develop alternative
and potentially more efficient and cost-effective treatment modalities.

In this chapter, we give an overview of the concept of potential outcome and
popular methods developed under this paradigm.
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2 The Counterfactual Outcome Based Causal Paradigm

Although conceptually straightforward, a formal statistical definition of causation
is actually not. This is because one often relies on randomization for the notion of
causation. How would one define causation in the absence of randomization? Since
randomization is only the means by which to control for confounding, we cannot
use it to define causal effect. Rather, we need a more fundamental concept to help
explain why randomization can address confounding to achieve causation. This is
the role of potential outcome.

2.1 Potential Outcomes

The concept of potential outcome, the underpinnings of modern causal inference
paradigm, addresses the fundamental question of causal treatment effect [27]. Under
this framework, associated with every patient is an outcome for each treatment
condition received, and the treatment effect is the difference between the outcomes
in response to the respective treatments from the same subject. Thus, treatment
effect is defined for each subject based on a subject’s differential responses
to different treatments, thereby free of any confounding effect and providing a
conceptual basis for causal effect without relying on the notion of randomization.

Under this paradigm, causal effect is defined for each subject by the differences
between the potential outcomes. With the concept of potential outcome, we can
define causal effect without invoking the notion of randomization. For example,
consider a study with two treatment conditions, say intervention and control, and let
vit (vio) denote the outcome of interest from a subject in response to the intervention
and control. Then the difference between the two, A; = y;; — yio, is the causal
treatment effect for the subject, since this difference is calculated from the same
subject and thus is free of any confounding effect. The potential outcomes are
counterfactual, since each subject is assigned only one treatment and thus only the
one associated with the assigned treatment is observed. The statistical framework
of causal effects via the potential outcome is often termed the Rubin’s causal model
(RCM) [9].

The concept of potential outcome allows us to see why treatment differences
observed in randomized control trials (RCT) represent causal effect. Consider again
a study with two treatments. Let z; denote a random binary indicator for treatment
assignment and y;; (y;) denote the potential outcome corresponding to z; = 1 (0).
The causal effect for each subject is A; = y;; — yio, which, unfortunately, is
not observable, since only the potential outcome corresponding to the treatment
actually received is observed. Thus, the causal treatment, or population-level, effect,
A = E(4,), cannot be estimated by simply averaging the A;’s. For an RCT,
however, we can estimate A by using the usual difference in the sample means
between the two treatment conditions.
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Let n; (np) denote the number of subjects assigned to the intervention (control)
group and let n = ngy + n;. If y; denotes the potential outcome of the ith subject for
the kth treatment for the n subjects, we observe yj if the subject is assigned to the
kth treatment condition (k = 0, 1). If y; (y_,-oo) represents the observed outcome for
the i;th (joth) subject in the n; (np) subjects in the intervention (control) group, we
can express the observed potential outcomes for the n subjects as: y;; = y;;; with
i=ijforl <i; <n (o =yj00Withi=j0—|—n1 for 1 < jo < nyp).

The sample means for the two groups and the difference between the sample
means are given by

A=3,-5o Fu=— Yirr k=01 (1.1)

For an RCT, treatment assignment is independent of potential outcome, i.e.,
vik L z;, where L denotes stochastic independence. By applying the law of iterated
conditional expectation (Kowalski and Tu 2007), it follows from the independent
assignment that

E(yik) :E(yik |Zi:k) :E(yik,k)v k:()v] (12)

It then follows from (1.1) and (1.2) that

PO 1«
E(A) = EZE(y”I)_n_OZE(yj”O)

=1 jo=1

=E (vi,1) — E (yj0)
=EQinlz=1—EQolz=0)

= E(yi1) — E (o)

= A. (1.3)

Thus, the difference between the sample means does estimate the causal treatment
effect in the RCT.

The above shows that standard statistical approaches such as the two sample
t-test and regression models can be applied to RCTs to infer causal treatment
effects. Randomization is key to the transition from the incomputable individual
level difference, y;; — yio, to the computable sample means in (1.1) in estimating the
average treatment effect. For non-randomized trials such as most epidemiological
studies, exposure to treatments or agents may depend on the values of the outcome
variable, in which case the difference between the sample means in (1.1) generally
does not estimate the average causal effect A = E (y;; — yi0). Thus, associations
found in observational studies generally do not imply causation.
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2.2 Selection Bias in Observational Studies

Selection bias is one of the most important confounders in observational studies.
Since it is often caused by imbalance in baseline covariates before treatment
assignment, it is also called pre-treatment confounders. The potential-outcome-
based paradigm provides a framework for explicating the effect of selection bias.
Consider an observational study with two treatment conditions and let z; continue
to denote the indicator of treatment assignment. Note that in observational studies,
treatment conditions are often called exposure to agents, or exposure conditions. For
convenience, we continue to use treatment conditions in the discussion below unless
stated otherwise. If treatment assignment is not random, z; may not be independent
of the potential outcome. Thus the condition yy L z; may not hold true and the
identity E (Z) = A in (1.3) may fail, in which case A no longer estimates the
causal treatment effect A. By considering treatment difference from the perspective
of potential outcome, not only can we develop models to address selection bias, but
also methods to provide degree of confidence for the causal relationship ascertained.
Note that an approach widely used to address selection bias in epidemiologic
research is to include covariates as additional explanatory variables in regression
analysis. However, as in the case of explaining causation using randomization, such
an approach does not have a theoretical justification, since without the potential-
outcome-based framework it is not possible to analytically define selection bias.
Another undesirable aspect of the approach is its model dependence, i.e., relying on
specific regression models to control for the effect of confounding. For example, a
covariate responsible for selection bias may turn out to be statistically insignificant
simply because of the use of a wrong statistical model or poor model fit. Most
important, despite such adjustments, some residual bias may remain due to our
limited understanding of covariates for the relationship of interest and/or the limited
covariates collected in most studies. Without being able to assess the effect of such
hidden bias, it is difficult to interpret findings from such an ad-hoc approach.

2.3 Post-treatment Confounders in Randomized
Controlled Studies

In RCTs assignment of treatment is independent of potential outcomes, so standard
statistical models such as regression can be applied to provide causal inference.
However, this does not mean that such studies are immune to selection bias.
In addition to pre-treatment selection bias discussed above, selection bias of another
kind, treatment noncompliance and/or informative dropout post randomization, is
also quite common in RCTs. For example, if the intervention in an RCT has so
many side effects that a large proportion of patients cannot tolerate it long enough
to receive the benefit, the ITT analysis is likely to show no treatment effect, even
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though those who continue with the intervention do benefit. Thus, we must address
such downward bias in ITT estimates, if we want to estimate treatment effects for
those who are either not affected by or able to tolerate the side effects.

2.4 Mediation for Treatment Effect

In many studies, especially those focusing on treatment research, we are also
interested in how an intervention achieves its effect upon establishing the efficacy of
the intervention. Mediation analysis helps answer such mechanistic questions. For
example, a tobacco prevention program may teach participants how to stop taking
smoking breaks at work, thereby changing the social norms for tobacco use. The
change in social norms in turn reduces cigarette smoking. This mediational process
is depicted in Fig. 1.1, where z; is the indicator of treatment assignment, m; is the
mediator representing social norms, and y; is the outcome representing tobacco use.
By investigating such a mediational process through which the treatment affects
study outcomes, not only can we further our understanding of the pathology of the
disease and treatment, but we may also develop alternative and better intervention
strategies for the disease.

Structural equation models (SEM) are generally used to model mediation effects
[2, 3, 15, 17]. The mediation model in Fig. 1.1 illustrates how the treatment achieves
its effect on the outcome y; by first changing the value of the mediator m;. For a
continuous m; and y;, the mediation effect is modeled by the following SEM:

m; = Po + Panzi + €mis (1.4)
yi= B+ IBZyZi + ,Bmymi + €y €mi 1 €yi.

Under the SEM framework, the parameter f,, is interpreted as the direct effect of
treatment on the outcome y;, while 3, 8., is interpreted as the indirect, or mediated,
effect of the treatment z; on the outcome y; through m;. Thus, the total effect of
treatment is viewed as the combination of the direct and indirect effects, S, +

,Bzm,Bmy-
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The SEM overcomes the limitations of standard regression models to accom-
modate variables that serve both as a dependent and independent variable such
as the mediator m; [6, 16]. However, since it is still premised upon the classic
modeling paradigm, it falls short of fulfilling the goal of providing causal effects.
Causal inference for mediation analysis can also be performed under the paradigm
of potential outcomes (see Sect. 3.3.1). Note that the error terms €,,; and €,; in (1.4)
are assumed independent. This condition, known as pseudo-isolation in the SEM
literature and sequential ignorability in the causal inference literature, is critical not
only for ensuring causal interpretation, but also for identifying the SEM in (1.4)
as well.

3 Statistical Models for Causal Inference

Selection bias is the most important issue for observational studies. In the presence
of such bias, not only models for cross-sectional data such as linear regression,
but even models for longitudinal data such as mixed-effects models and structural
equation models are wrongly suited for causal inference. Over the last 30 years,
many methods have been proposed and a large body of literature has been
accumulated to address selection bias in both observational and RCT studies. The
prevailing approach is to view unobserved components of potential outcomes as
missing data and employ missing data methodology to address associated technical
problems within the context of causal inference. Thus, in principle, the goal of
causal inference is to model or impute the missing values, or the unobserved
potential outcomes, to estimate the average causal effect A = E (y;; — y;0), which is
not directly estimable using standard statistical methods such as the sample mean,
due to the counterfactual nature of the potential outcomes (y;1, i)-

In practice, these issues are further compounded by missing data, especially
those that show consistent patterns such as monotone patterns resulting from study
dropouts in longitudinal studies [31]. Various approaches have been developed to
address the two types of confounders. These models are largely classified into
one of the two broad categories: (1) parametric models and (2) semi-parametric
(distribution-free) models. Since the unobserved potential outcome can be treated
as missing data, the parametric and non-parametric frameworks both seek to extend
standard statistical models for causal inference by treating the latent potential
outcome as a missing data problem and applying missing data methods.

If treatment assignment is not random, it may depend on the observed, or missing
potential outcome, or both. If the assignment mechanism is completely determined
by a set of covariates such as demographic information, medical and mental health
history, and indicators of behavioral problems, denoted collectively by a vector of
covariates, X;, then the unobserved potential outcome is independent of treatment
assignment once conditioned upon x;. This assumption, also known as the missing
at random (MAR) mechanism in the lingo of missing data analysis [28], allows
one to estimate the average causal effect A = E (y;; — yio). Thus, by identifying
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the unobserved potential outcome as a missing data problem, methods for missing
data can be applied to develop inference procedures within the current context. For
notational brevity and without the loss of generality, we continue to assume the
relatively simple setting of two treatment conditions in what follows unless stated
otherwise.

3.1 Causal Treatment Effects for Observational Studies
3.1.1 Case-Control Designs

Case—control studies are widely used to ascertain causal relationships in non-
randomized studies. In a case—control study on the relationship between some
exposure variable of interest such as smoking and disease of interest such as cancer,
we first select a sample from a population of diseased subjects, or cases. Such a
population is usually retrospectively identified by chart-reviews of patients’ medical
histories. We then select a sample of disease-free individuals, or controls, from a
non-diseased population, with the same or similar socio-demographic and clinical
variables, which are believed to predispose subjects to the disease of interest.
Since the cases and controls are closely matched to each other in all predisposed
conditions for the disease except for the exposure status, differences between the
case and control groups should be attributable to the effect of exposure, or treatment.
We can justify this approach from the perspective of potential outcome. For
example, if y; | represents the outcomes from the case group, then the idea of case—
control design is to find a control for each case so that the control’s response y;jyo
would represent the case’s unobserved potential outcome y;,o. Thus, we may use the
difference y;;1 — yj0 as an estimate of the individual-level causal effect, i.e.,

Yir1 = Yjo0 = Yij1 — Yij0-

Thus the computable sample average, Ao = nll Zl =1 Yi1— /0—1 Yjo1, becomes

a good approximation of the non-computable average A = o 2?11:1 Vi1 — Yij0)s
which is an estimate of the average causal effect A.

3.1.2 Matching and Propensity Score Matching

The case—control design reduces selection bias in observational studies by matching
subjects in the case and control group based on pre-disposed disease conditions.
For the case—control design to work well, we must be able to find good controls
for the cases. If x; denotes the set of covariates for matching cases and controls, we
must pair each case and control with identical or similar covariates. For example,
if x; consists of age, gender, and patterns of smoking (e.g., frequency and years of
smoking), we may try to pair each lung cancer patient with a healthy control, having
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same gender, same (or similar) age, and smoking patterns. As the dimension of x;
increases, however, matching subjects with respect to a large number of covariates
can be quite difficult.

A popular approach for matching subjects is the Propensity Score matching (PS).
This approach is premised upon the fact that treatment assignment dictated by x;
is characterized by the probability of receiving treatment given the covariates x;
[24, 25], i.e.,

7 =n(x) =Pr(z; =1]x;). (1.5)
If x; is a vector of covariates such that (y;1, yio) L z; | X;, then we can show that [25]:
PI'(X,‘ | Zi = 1,7'[,') = Pr(xi | 3= 0,7'[,‘).

The above shows that conditional on 7;, X; has the same distribution between the
treated (z; = 1) and control (z; = 0) groups. Thus, we can use the one-dimensional
Propensity Score in (1.5), rather than the multi-dimensional and multi-type x;, to
match subjects.

For example, we may model 7; using logistic regression. With an estimated 7;,
we can partition the sample by grouping together subjects with similar estimated
propensity scores to create strata and compare group differences within each stratum
using standard methods. We may derive causal effects for the entire sample by
weighting and averaging such differences over all strata.

Although convenient to use and applicable to both parametric and semi-
parametric models (e.g., the generalized estimating equations), the PS generally
lacks desirable properties of formal statistical models such as estimates consistency
and asymptotic normality. Another major problem is that in most studies x; is
only approximately balanced between the treatment groups, after matching or
subclassification using the estimated propensity score, especially when the observed
covariates X; are not homogeneous in the treatment and control groups and/or one
or more components of X; are continuous. Thus, this approach does not completely
remove selection bias [10], although Rosenbaum and Rubin [26] showed through
simulations that creating five propensity score subclasses removes at least 90% of
the bias in the estimated treatment effect. In addition, since the choice of cutpoint
for creating strata using the propensity score is subjective in subclassification
methods, different people may partition the sample differently, such as 5-10 for
moderate and 10-20 for large sample size, yielding different estimates and even
different conclusions, especially when the treatment difference straddles borderline
significance. An alternative is to simply use the estimated propensity score as a
covariate in standard regression analysis. This implementation is also popular,
since it reduces the number of covariates to a single variable, which is especially
desirable in studies with relatively small sample sizes. The approach is again ad-hoc
and, like the parametric approach discussed above, its validity depends on assumed
parametric forms of the covariate effects (typically linear).
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3.1.3 Marginal Structural Models

A popular alternative to PS is the marginal structural model (MSM; [8, 21]). Like
PS, MSM uses the probability of treatment assignment for addressing selection bias.
But, unlike PS, it uses the propensity score as a weight, rather than a stratification
variable, akin to weighting selected households sampled from a targeted region of
interest in survey research [10]. By doing so, not only does the MSM completely
remove selection bias, but also yields estimates with nice asymptotic properties.
Another nice feature about the MSM is its readiness to address missing data, a
common issue in longitudinal study data [8].
Under MSM, we model the potential outcome as

EQi) =px=Po+pPik, 1<i<n, k=01 (1.6)

Since only one of the potential outcomes (y;1, vio) is observed, the above model
cannot be fit directly using standard statistical methods. If treatment assignment is
random, i.e., yi L z;, then E (yy) = E (y;x) and thus

EQiuw) =Po+Pik, 1<ixr<m, k=01, (L.7)

Thus for the RCT we can estimate the parameters 8 = (B, 8 ])T, including the
average causal effect A = f;, for the model for the potential outcome in (1.6)
by substituting the observed outcomes from the two treatment groups in (1.7). The
above is the same argument as in Sect. 2.1, but from the perspective of a regression
model.

For observational studies, z; is generally not independent of yj. If x; is a vector
of covariates such that (y;1, yi0) L z; | X;, then we can still estimate 8 by modeling
the observed outcomes y;,x as in (1.7), although we cannot use standard methods to
estimate 8 and must construct new estimates. To this end, consider the following
weighted estimating equations:

. (v — ()
E T =0, 1.8
( l:f,’;. (vio — Mo)) (18

i=1 \'1

where ; is defined in Sect. 3.1.2. Although the above involves potential outcomes,
the set of equations is well defined. If the ith subject is assigned to the first (second)
treatment condition, then i = i; (i =jo+m) and yn = yi1 (yio = yjp0) for
1<i;<m (1 <Jjo =< I’l()). It follows that

) ﬂli(ynl—m) ifz; =1
( (yi — ) )_ 0

= =
0
ifZl' = 0
<ﬁ (Vigo — Ho)

l_ffl. (vio — Ho)
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Thus the estimating equations in (1.8) are readily computed based on the observed
data. Also, the set of estimating equations is unbiased, since

Z [ [z
E (_lyik) =E|E (_lyik | Xz)i|
T L T
- 5
=E|—E (_lyik | Xi)i|
L7Ti TT;

=E lE (zi | X)) E (yir | Xi)}
TT;

= E[E (i | xi)]
= Mk-

Thus, by the theory of estimating equations (Kowalski and Tu 2007), estimates of 8
obtained by solving the estimating equations in (1.8) are consistent.

3.2 Post-treatment Confounders in Randomized
Controlled Trials

The intention-to-treat (ITT) analysis compares the outcomes of subjects by random-
ized groups, ignoring treatment compliance and other deviations of study protocols.
As aresult, the ITT yields the effect of treatment confounded by all such violations.
Despite being protected from pre-treatment selection bias through randomization,
ITT estimates of treatment effect are typically downwardly biased, because of
the “diluted” effect by post-treatment bias due to treatment noncompliance and/or
missing data.

3.2.1 Instrumental Variable Estimate

One way to address treatment noncompliance is to partition study subjects into dif-
ferent types based on their impacts on causal treatment effects and then characterize
the causal effect for each of the types of treatment noncompliance [1, 13]. One
approach that has been extensively discussed in the literature is a partition of the
study sample into four types in terms of their compliance behavior:

1. Complier (CP): subjects compliant with assigned treatment (control or interven-
tion);

2. Never-taker (NT): subjects who would take the control treatment regardless of
what they are assigned;

3. Always-taker (AT): subjects who would take the intervention regardless of what
they are assigned;

4. Defiers (DF): subjects who would take the opposite treatment to their assignment.
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In practice, the DF generally represents a small proportion of the noncompliant
group.

For the AT and NT group, A; = y;; — yio = 0. Neither group contributes to
causal effect. For DF, A; is in the opposite direction of causal effect. Thus, only
the CP subsample provides information for causal effect. Let C; = 1 (0) if the ith
subject is in the CP (otherwise). The causal effect for the CP group is

Acp = E (i —yo | Ci=1). (1.9)

The above is called the Complier Average Causal Effect (CACE). In contrast, the
ITT effect is given by: Arrr = E (yi1 — Yio)-
If C; is observed for each subject, then we have

AC=E(yi1|Ci=l,Zi=1)_E(yi0|Ci=1aZi=0) (110)
=EQin|Ci=1)—EQi|Ci, =1),

where C; denotes the complier’s status for the i;th subject in the kth treatment
group (k = 0, 1). We can then estimate E (y;x | C;, = 1) based on the Complier’s
subsample within the kth treatment condition using standard methods such as the
sample mean.

In practice, we can only observe compliance status D;, for the assigned treatment
condition. Although similar, D, is generally different from C;. For example,
D;, = 1 includes both the CP and AT subsamples within the treated, while D;, = 1
includes the CP + NT subsample within the control condition. By conditioning on
D;,, we can estimate

Ap :E(yill |Di1 = 1)_E(yi(]0|Di0 =1).

However, as noted earlier, Ac # Ap unless there are no AT nor NT subsample in
the study population.

Letp; = E(D;, = 1) and py = E (D;, = 0). Then p; represents the proportion
of CP+AT in the intervention, while py represents the proportion of AT+DF in the
control condition. If we assume no DF, then py becomes the proportion of AT and
p1 — po represents the proportion of the CP group. Thus, we can express (1.9) as

_EGu—yo) _ Ant

Acp .
P1—Po P1—Po

(1.11)

In other words, we can estimate the CACE by modifying the ITT estimate:

At _ 5.7 RS

-~ ITT 1. .

Acp = 7 = 12, pkz—ZDik, k=0,1.
P1—Po P1—Po n

k=1
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The identity in (1.11) depends critically on the assumption of randomization.
This is because to ensure that p; has the aforementioned interpretation, we must
have

pr=E(dy) =Pr(dyp =1,z = k),

which is only guaranteed under random treatment assignment. Because of the
critical role played by z; in identifying the CP in the presence of confounding by
the AT and NT subsamples, z; is called an instrumental variable (IV) and Acp is
known as the IV estimate of CACE [1].

3.2.2 Principal Stratification

The IV method is limited to binary compliance variables. A notable limitation
of the IV is that its estimated treatment effect only pertains to a subgroup of
compliers in the study population. In most real studies, compliance varies over a
range of patterns. One popular approach for allowing for graded levels of treatment
compliance is the Principal Stratification (PST). The PST creates Principal Strata
based on similar treatment compliance patterns and estimates causal effects within
each Principal Stratum [4]. In the special case of IV classification of noncompliance,
PST provides estimates of treatment effect for each of the four groups, albeit only
CP is of primary interest. By creating graded treatment compliance categories, PST
provides a more granular relationship between exposure and treatment effects.

Let s; denote a categorical outcome that indicates levels of treatment compliance
for the kth treatment condition and s; = (s, s,-o)T. The basic principal stratification
Py is the set of distinct s;, i.e., Pg = {p;; 1 <[ < L}, where L is the total number
of principal strata and p; is a collection of s; such that s; = s; for s;,s; € p;, but
s; # s; fors; € p;, s; € p, (I # m). A principal stratification P is a collection of sets
that are unions of sets in the basic principal stratification Py. Thus, P is a coarser
grouping of the distinct s;.

Consider, for example,

0 = 1 if compliant
* 71 0 if noncompliant

For each subject, the potential outcome of noncompliance status s; = (s, s,-o)T has
four patterns, which constitutes the basic principal stratification:

PO = {(171)9 (07 1)9 (170)1 (090)}

The four distinct patterns represent the CP (1, 1), the DF (0, 0), the AT (1, 0), and
NT (0, 1) subsamples under the IV classification of treatment noncompliance. By
combining some of the patterns in the basic principal stratification Py, we can
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create principal stratification P to represent noncompliance patterns of interest.
For example, the principal stratification P = {{(1,1) or (1,0)}, (0,1),(0,0)} no
longer distinguishes between the CP and AT.

Once we establish an appropriate choice of principal stratification P, we can
compare the potential outcome y;; and y;o within each P to define the causal effect
of interest:

Ar=EQi—yols), 1 <I=<L.

The goal is to estimate A; for each I/th stratum. We may also create weighted
averages to obtain overall treatment effects of interest. Inference about
0 = {A;;1 <[ < L}canbe based on maximum likelihood or Bayesian methods [4].

In the special case of IV categorization, the PST provides more information
about the relationship between noncompliance and treatment effects than the IV.
In addition to the CP, PST also provides treatment effects for the AT, NT, or even
the DF group.

3.2.3 Structural Mean Models

In most studies, there exists a large amount of variability in treatment noncompli-
ance. For example, in a medication vs. placebo study, if the medication is prescribed
daily for 2 weeks, exposure to medication can range from O to 14 days. We may
group medication dosage using a graded categorical variable and apply the PST to
characterize a dose—response relationship in this case. However, since this or any
other grouping of the dosage variable is subjective, we may want to use the original
number of days of medication use directly to more objectively characterize the dose—
response relationship. Unfortunately, this will immediately increase the number of
principal strata and may not provide reliable inference or the PST may simply stop
working, if there is not a sufficient number of subjects within every stratum. A more
sensible approach is to treat such a continuous-like treatment compliance measure
as a continuous variable to study treatment effect.

In many treatment research studies, active treatments are only available to
study participants. In this case, active treatment is not available to the DF and
AT subsample in the control condition, in which case causal treatment effect is
determined by the AT+CP subsample in the treatment group. This allows us to
model treatment effect as a function of continuous dose variables.

Let s; denote a continuous compliance variable for the ith subject in the
kth treatment with k = 1 (0) for the active treatment (control) condition. For
convenience and without the loss of generality, assume that s > 0 with O
representing zero dose. Since the active treatment is not available to subjects in
the control condition, s;y = 0 and thus s; provides no information about causal
treatment effect. Thus we may model the causal effect as a function of s;; only:

E (i —vio | sin) =g (s, B). (1.12)
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where g (s;1, B) is some continuous function of s;; and B. Since (y;1, yio) L z; for
randomized studies, it follows that

Ai(si) = E (i | sn) —E o | si1)
=E@a |si,zi=1)—E©io | si,z=0)
=E@in | siq1) —E Qi | si,zi =0), (1.13)
where #; again indexes the subjects assigned to the treatment group and y;,; is the
observed outcome of the subject in the treatment group. The model in (1.12) is the
Structural Mean Model (SMM) [20].

To estimate A; (s;;), we must evaluate E (yj | si1,2; = 0) so that it can be
estimated with observed data. If s;; is independent of y;y, then we have

E (o | si1,2i =0) = E(yio | z: = 0)
= E (yip0) = Bo. (1.14)

This compliance non-selective assumption is reasonable, if, for example, s;; does
not correlate with disease severity. In this case, (1.13) reduces to

A (si1) = E (i —yio | si1) = E (i1 | sii1) — E (vio)
ZE(yill |Si]1)—,3(). (115)

It then follows from (1.12)—(1.14) that

E(yioo):ﬁ07 E(Yi.l |Si|1):g(sillvﬂ)+/30’ (116)
1<ig<m, k=0,1, n = ng + n,.
Given a specific form of g (s;1, 8), the SMM in (1.16) allows one to model and

estimate treatment effects for continuous dose variables.
For example, if g (si1, 8) = si181, the SMM has the form:

E (yip0) = Bo. E i;1 | si;1) = Bo + sij1 B,

I <i<m, k=01,
or equivalently,

E (yix | siy) = Bo + iy zi, Bu,

Zp =k 1 <ix<m, k=0,1.

Note that although s;, is missing for the control group, the above is still well defined,
since s;,z;, = O forall 1 < iy < ny.
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In many studies, we may collect sufficient information, say x;, to explain the
compliance behavior s;;. In this case, we have

E i | si1,Xi,2 = 0) = E (yio | Xi, 2 = 0) = E (¥ipo | X4, 2ip = 0) . (1.17)

Under this compliance explainable condition [5, 32, 34], the SMM can be
expressed as

E Wit | si1.Xi,2 = 1) = g (i1, Xy, B) + E (igo | Xig»2ip = 0),

zip =k 1 <ix <m, k=0,1

In medication vs. placebo studies, if treatment compliance is also tracked for the
placebo group, then it is reasonable to assume that the variable of placebo use,
dj,, explains treatment compliance, if the subject is assigned to the medication
group. This is because under randomization subjects cannot distinguish between
medication and placebo. Thus, if we let x;, = d;,, then it follows that

E(yi[)o | Xig» Zip = 0) =E (yi()() | di()vzio = 0) .

We can readily model the right-side of the above.
For example, if we model both E (y;,0 | d;y, z;, = 0) and g (s,1,d;,, B) as a linear
function, we have

E (igo | diy» zip = 0) = Bo + diy 1,

EQit | syrsdi,ziy = 1) =sinfa, 1 <ix <mg, mi+no=n.
We may also express the above in a compact form as

E(}’ikl | Sillv-xikvzik = 1) = ,30 +di0/31 +Ziksillﬁ2v

I <iy <m, ny +np=n.

As before, the above is still well defined, even if s;, is missing for the control group.

In psychosocial intervention studies, the control condition offers either nothing
or sessions that provide information unrelated to the intervention, such as attention
or information control. In the latter case, compliance (with respect to the attention
or information control) may also be tracked. However, such a dose variable, d,,,
generally does not explain treatment compliance, if the subject is assigned to the
intervention group, since the information disseminated through the control condition
may have nothing to do with the information provided by the intervention condition.
For example, in a HIV prevention intervention study for teenage girls at high risk
for HIV infection, the intervention condition contains information on HIV infection,
condom use and safe sex, while the control condition contains nutritional and
dietary information. Thus, subjects with high compliance in the intervention may
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be quite different from their counterparts in the control group. This may happen if a
majority of girls with high attendance in the intervention group are sexually active,
while those with high attendance in the control group are more interested in the
information on weight loss and healthy diets. Thus x; in this study should contain
variables that help explain behaviors of compliance for the intervention such as risks
for unsafe sex, alcohol and drug use, and HIV knowledge.

3.3 Mechanisms of Treatment Effects

Understanding the causal pathways of treatment effect is critically important, since
identification of causal mechanism not only furthers our understanding of behavioral
and health issues of interest, but also allows one to develop alternative and
potentially more effective and efficient intervention/prevention strategies. A popular
approach for causal mechanism is mediation analysis.

3.3.1 Causal Mediation

In recent years, there has been heightened activities to develop models for causal
mediation effect under the counterfactual outcome framework (e.g., [11, 12, 19, 22,
23, 33]). We give a brief review of relevant methods, focusing on the identifiability
assumptions and definitions of indirect, or mediated, effect.

Let m; denote the potential outcome of a mediator, m;, for the ith subject
corresponding to the kth treatment. The potential outcome of the primary variable
of interest is more complex to allow one to tease out the direct and mediation
causal effects of the intervention or exposure on this variable (see the definition
of direct and mediation causal effect below). Let y; (k, my) denote the potential
outcome of the variable of interest y; corresponding to the kth treatment condition
and mediator my (k,k’ = 0, 1). Note that in practice we can only observe m;
and y; (k, my) (my and y; (K', my)), if the ith subject is assigned to the kth (k'th)
treatment (k, k¥’ = 0, 1). But, in order to tease out the direct and mediation effects,
we must consider y; (k, my), which is not observed if k # k [7, 19].

The direct effect of treatment is the effect of treatment, i.e.,

Sitk) = yi (1,my) — y; (0,my), for k=0,1.

This quantity ;(k) is also called the natural direct effect (e.g., [19]) or the pure
(total) direct effect (e.g., [22]) corresponding to k = 0 (1). In addition, there is
also the so-called controlled direct effect, y;(1, m) — y;(0, m), which may be viewed
as the treatment effect that would have been realized, had the mediator m;; been
controlled at level m uniformly in the population [19, 22, 23]. Note that ¢;(1) is
generally not the same as {;(0) and the difference represents interaction between
treatment assignment and the mediator.
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The causal mediation, or indirect effect, or natural indirect effect, is the differ-
ence between the two potential outcomes, y;(k, m;1) and y;(k, my), of the variable
of interest resulting from the two potential outcomes of the mediator, m;; and m;,
corresponding to the two treatment conditions k = 1 and k = 0, i.e.,

Sl(k) = )’i(k7 mil) _)’i(k, mio)v for k = O’ L. (118)

If the treatment has no effect on the mediator, that is m;; — m;o = 0, then the causal
mediation effect is zero. The quantity §;(0) (5;(1)) is also referred to as the pure
indirect effect (total indirect effect) [22]. As in the case of direct effect, §;(1) is
generally different from 6;(0).

The fotal effect of treatment is the sum of the direct and mediation effect:

7 = yi(1,mj) — ;i (0,mp) = & (1) + £; (0)
1
=3 [6;(1) + &:(1) + 8:(0) + Z:(0)].

If we assume no interaction between treatment assignment and the mediator, then
8;(1) = 6;(0) = §; and £;(1) = ¢;(0) = ¢;. The total effect of treatment in this case
is simply the sum of mediation and direct effect, i.e., t; = §; + {;.

In mediation analysis, we are interested in the Average Causal Mediation
Effect (ACME), E (8;(k)), the average direct effect, E ({;(k)), and the average total
effect, E(t;) = % > k=01 LE (i(k)) + E (¢;(k))]. Under no mediator by treatment
assignment interaction, the average total effect reduces to E (t;) = E (§;) + E ({)).

3.3.2 Sequential Ignorability and Model Identification

As noted in Sect. 2.4, the independence between the error terms in the SEM (1.4)
plays a critical role in the causal interpretation of the mediation model. This pseudo-
isolation condition plays a critical for the identifiability of the parameters of the
SEM in (1.4). The issue of identifiability has also been discussed under the potential-
outcome based inference paradigm [11, 22]. For example, Imai et al. [11] has shown
that if x; is a vector of pre-treatment covariates for the ith subject, then

zi L {y,'(k/,m),m,-k} |x;, =x, &k, K =0,1, (1.19)
vilk',m) Lmy |zi=k x;=x, kk =0,1.

The above is called sequential ignorability (SI) because the first condition indicates
that z; is ignorable given the pre-treatment covariates X;, while the second states that
the mediator m;, is ignorable given Xx; and the observed treatment assignment z;.
Although the first is satisfied by all randomized trials, the second is not. In fact, the
second condition of the SI cannot be directly tested from observed data [18]. Thus,
sensitivity analysis is usually carried out to examine the robustness of findings under
violations of the second ignorability assumption [11].
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Other assumptions have also been proposed. For example, Robins [22] proposed
the following condition for the identification of controlled direct effect:
Zi 1 {yi(k/5m)5 mik} | X; = X, (120)
y,'(k, I’l’l) 1L My | Zi = k, X, =X, W =W,
where w; is another set of observed post-treatment variables that confound the
relationship between the mediator and the outcome. Under the more stringent

assumptions, the following assumption is a necessary condition for identifying the
ACME [22]:

yi(l’m) _yi(07 m) = Bi»

where B, is a random variable independent of m. This is the so-called non-interaction
assumption, which states that the controlled direct effect of treatment does not
depend on the value of the mediator.

3.3.3 Models for Causal Mediation Effect

Under the SI in (1.19), it can be shown that the ACME can be nonparametrically
identified for k = 0,1 [11]. Since the conditions in the ST imply y;(k’,m) L z |
my. = m',X; = X, it follows that for any k and k'

E(y; (k,myp) | x;) = /E()’i | zi = k,m, X;)dF ;.= x; (M), (1.21)

where Fr(-) (FT|W(-)) denotes the (conditional) cumulative distribution function
(CDF) of a random variable T (T given W). We may further integrate out x; to
obtain the unconditional mean:

Ely; (k,my)] = /E(Yi (k, myr) | x;) dFy,(x).

By using (1.21), we can derive direct, indirect, and total effects for the Linear
SEM (LSEM) in (1.4) as well as the Generalized Linear Structural Equation Models
(GLSEM), where m; or y; or both may be non-continuous variables. For example,
by expressing the LSEM in (1.4) using the potential outcomes, we have

mi(z)) = a1 + Bizi + €1 (z), (1.22)
Vi (i, m; (7)) = oz + Bami(zi) + vz + €n(zi, mi(zi)),

Note that to indicate the dependence of the potential outcome of the mediator m;
as a function of treatment assignment, we use m;(z;), rather than my, in the LSEM
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in (1.22). The first condition in (1.19) implies
Elen (@) |z = k] = Elen (z)] = 0,
while the second indicates that
Elen (ziomi (z) | mi = m,z; = k] = E [en (k,m)] = 0.
It then follows that

Ely; (k,my)] = Epici=v [Ew()’i | m; =m,z; = k)]
= Enja=w [0z + Bomi + yE(zi = b))
=ar + BE (o1 + P1zi) | zi = K] + yE(z = k).

The ACME for the LSEM in (1.22) is

E(S (k) = E[y; (k, mi(1)] — E [y; (k, m(0))]
=[ar+ Ba(n + BLE(zi | zi = 1)) + yE(z; = k)]
— oz + Ba(eg + BIE (zi | 2 = 0)) + yE(z; = k)]
= Bap1.

Thus, under no mediator by treatment assignment interaction, the mediated effect is
E (6;(1)) = E (6; (0)) = B281, which is identical to the indirect effect derived from
the classic LSEM in (1.4) [2].

We can also obtain the different causal effect if there is no mediator by treatment
assignment interaction. For example, if we assume an interaction of the form,
Zim;, 1.e.,

mi(z;) = o1 + P1zi + €1(zi), (1.23)
Vi (i, m; () = aa + Bom; + yzi + nzimy; + €z, mi(z;)),

then by using arguments similar to the non-interaction case above, we obtain

E(§i(k) =y + nlaq + Bik), (1.24)
E (8;(k)) = B1(B2 + kn),
E(t) = Bafi +y + 0l + B1), kK =01,

for the indirect (mediation), direct and total causal effect. These effects are again
consistent with those derived from the classic LSEM approach [15].
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The identification of ACME can be extended to the GLSEM. For example, if
the mediator m; is binary, but the outcome y; is continuous, and m; is modeled
as: E (m; (z;)) = logit™"(a; + B1z;), where logit™! denotes the inverse of the logit
link function, then under no mediator by treatment assignment interaction it follows
from (1.21) that the ACME can be expressed as

E (8i(k)) = E[y; (k,mj1) — y; (k, mjo)]
= B, [logit™" (a1 + B1) — logit™" (1] .

Note that others have considered mediation analyses without using the SEM
paradigm. For example, Rubin [29, 30] and Jo et al. [14] considered methods to
estimate the causal effect of treatment in the face of an intermediate confounding
variable (mediator) based on the framework of Principal Stratification. These
methods are limited in their ability to accommodate continuous mediating and
outcome variables and are less popular than their SEM-based counterparts.

4 Discussion

Causal inference is widely used in biomedical, psychosocial, and related services
research to investigate the causal mechanism of exposures and interventions. Not
only does research on this important topic have a long history, but the body of
literature in this field is quite extensive as well, containing both methodological
development and applications over a wide range of disciplines. The potential
outcome based causal paradigm is by far the most popular, playing a dominating
role in the development of modern causal inference models and methods. For
example, all popular methods, such as the propensity score, principal stratification,
marginal structural and structural mean models, are developed based on this
framework. Under the potential outcome based causal paradigm, these methods can
be generalized for causal inferences in various different situations, as illustrated by
the chapters in this book.
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Chapter 2
Overview of Propensity Score Methods

Hua He, Jun Hu, and Jiang He

Abstract The propensity score methods are widely used to adjust confounding
effects in observational studies when comparing treatment effects. The propensity
score is defined as the probability of treatment assignment conditioning on some
observed baseline characteristics and it provides a balanced score for the treatment
conditions as conditioning on the propensity score, the treatment groups are
comparable in terms of the baseline covariates. In this chapter, we will first
provide an overview of the propensity score and the underlying assumptions for
using propensity score, we will then discuss four methods based on propensity
score: matching on the propensity score, stratification on the propensity score,
inverse probability of treatment weighting using the propensity score, and covariate
adjustment using the propensity score, as well as the differences among the four
methods.

1 Introduction

Since treatment selection is often influenced by subject characteristics, selection
bias is one of the major issues when we assess the treatment effect. This is especially
the case for observational studies. Most cutting-edge topics in statistical research in
causal inferences attempt to address this key issue of selection bias. Variables that
cause selection bias are called confounding variables, confounders, or covariates,
etc. When there are confounders, treatment effects cannot be simply assessed
as the observed group differences. The issue can be better illustrated under the
counterfactual outcome framework for causal inference.
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Suppose we are interested in the effect of a new treatment on an outcome, say
blood pressure, measured in a continuous scale. Suppose there are two groups of
patients, one receives the new treatment, and the other receives control such as
treatment as usual (TAU) or placebo. We are interested in assessing the treatment
effects. When there are no selection bias, i.e., if the two groups are similar before
the treatment, we can simply compare the observed outcomes, the blood pressures,
between the two groups of patients taking the two treatments. However, bias
inference may be resulted if there are selection bias, i.e., if the two groups receiving
the two treatments are very different.

Under the counterfactual outcome framework, we assume that for each subject,
there are two potential outcomes, one for each treatment, had the subject taken
the treatment. The treatment effect is defined for each subject based on his/her
differential responses to different treatments. This definition of treatment effect is
free of any confounder, because all the characteristics of the same patient are the
same for the two potential outcomes. However, since each subject can only take one
of the two treatments, only one of them is observed and the other is missing.

More precisely, let y;; denote the potential outcome for the ith subject under
the jth treatment, j = 1 for new treatment and j = 2 for control. We can observe
only one of the two outcomes, y; or y;», depending on the treatment received by
the patient. The difference between y;; and y;» can be attributed to the differential
effect of the treatment, since there is absolutely no other confounder in this case.
However, as one of y;; and y;, is always unobserved, standard statistical methods
cannot be applied, but methods for missing data can be used to facilitate inference.

Under this paradigm of counterfactual outcomes, the mean response
E (yi1 —yi2), albeit unobserved, represents the effect of treatment for the
population. Let z; be an indicator for the first treatment, then y; ; (y;2) is observable
only if z; = 1(2). Under simple randomization, the assignment of treatment is
random and free of any selection bias, that is

E(yj)=E@ijlz=Jj, 1<i<n 2.1)

This shows that missing values in the counterfactual outcomes y;; are missing
completely at random (MCAR) and can thus be completely ignored. It follows
that £ (y,- J) can be estimated based on the observed component of each subject’s
counterfactual outcomes corresponding to the assigned treatment. It is for this
reason that simple randomized controlled trials (RCTs) are generally considered as
the gold standard approach in making causal conclusions on the treatment effects.

However, simple randomization may not always be feasible. In clinical trials, it
may be preferable to adopt other randomization procedures because of cost, ethnic,
and scientific reasons. For example, in some studies we often need to oversample
underrepresented subjects to achieve required accuracy of estimations. In such
cases, it is important to deal with the treatment selection bias and the propensity
score is a very powerful tool for this task.
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2 Definition of Propensity Score

To address the selection bias raised in the above more complex randomization
schemes or non-randomized observational studies, assume that the treatment assign-
ments are based on X;, a vector of covariates, which is always observed. In such
cases, the missing mechanism for the unobserved outcome no longer follows
MCAR, but rather follows missing at random (MAR) as defined by

irsvyi2) Lz | i (2.2)

Although unconditionally non-randomized , the assignment is randomized given the
covariates X;, thus

EQii|x)—EQi2 |x)=EQi1|lz=1x)—EQi2|z=2,%).

So, within each pattern of the covariate x;, the treatment effect can be estimates
simply by those subjects receiving the two treatments.

Within the context of causal inference, the MAR condition in (2.2) is known
as the strongly ignorable treatment assignment assumption [38]. Although the
treatment assignments for the whole study do not follow simple randomization,
the ones within each of the strata defined by the distinct values of x; do. Thus,
if there is a sufficient number of subjects within each of the strata defined by
the unique values of x;, then E (y;; | X;) and E (y;» | X;) can be estimated by the
corresponding sample means within each strata. The overall treatment effect can
then be estimated by a weighted average of these means, the weights are assigned
based on the distribution of x;. The approach may not result in reliable estimates or
simply may not work if some groups have a small or even 0 number of subjects for
one or both treatment conditions. This can occur if the overall sample size is relative
small, and/or the number of distinct values of x; is large such as when x; contains
continuous components and/or x; has a high dimension. However, the propensity
score can help facilitate the dimension reduction.

The propensity score (PS) is defined as

e(x;)) =Pr(z; = 1| x;), (2.3)

the probability of treatment assignment conditioning on the observed covariate X;
[38]. For simple randomized clinical trials, this will be a constant (and usually
0.5 if subjects are equally allotted to the two groups). However, for observational
studies, subjects often make their decisions based on their own perspective of their
conditions (characteristics).

Conditioning on any given propensity score, the counterfactual outcomes are
independent of the treatment assignment, i.e., for any e € (0, 1),

E(yixlzi=1l,e,=e) =E(ix|ei=¢e), k=12. (2.4)
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This follows directly from (2.2), using the iterated conditional expectation argument
(see [37-39]).

From (2.4), the treatment effect for subjects with a given propensity score can
be estimated by the subjects actually receiving the two treatments. Thus, using the
propensity score we can reduce the dimension of the covariates from dim(x;) to 1.
However, if there are continuous covariates, and hence e is also continuous, (2.4)
is still not directly applicable. Methods of propensity score matching, stratification,
weighting, and covariate adjustment have been developed to facilitate the causal
inference using propensity scores [15, 38, 39, 43].

3 Causal Inference Based on Propensity Scores

The equation in (2.4) is fundamental to the application of propensity scores. It
implies that for a given propensity score, the two treatments are directly comparable.
A straightforward application would be comparing the two treatment for each given
propensity score and then combining the treatment effect across all the propensity
scores. First, the comparison can be performed by matching subjects in the two
treatment groups by the propensity scores. This is the propensity score matching
method. Instead of individual level matching, we can divide the data into subgroups
according to the propensity scores, with subjects in the same subgroup having
similar propensity scores, thus according to (2.4) the treatment effect for each
subgroup can be estimated. This is the idea of propensity score stratification [39].
Since the propensity score is the probability of being selected for the treatment,
another approach is using the inverse probability weighting method. Finally, we can
treat propensity score as a covariate in regression models to control for the selection
bias.

In the following we will discuss these four approaches in details, based on the
assumption that the propensity score is available either by design as in some clinical
trials or estimated based on some models. When the propensity scores need to be
estimated, logistic regression models can be applied to model the binary treatment
assignment z;. Probit and Complementary log-log models can also be applied. The
independent variables in the logistic regression models should include variables that
are associated with the treatment assignment and the outcome.

3.1 Propensity Score Matching

In observational studies, it is not uncommon that there are only a limited number
of subjects in the treatment group, but a much larger number of subjects in the
control group. An example is that physicians have data available from hospital
records for patients treated for a disease, but there is no data for subjects who don’t
have the disease (control). In such cases, they often seek large survey data to find
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controls. For example, in the study of metabolic syndrome among patients receiving
clozapine by Lamberti et al. [25], they treated 93 outpatients with schizophrenia and
schizoaffective disorder with clozapine. For treatment comparison purpose, they
obtained a control group with more than 2700 subjects by matching the subjects
in the treatment group from the National Health and Nutrition Examination Survey.

When there is a very large pool of control subjects to match, we can match
each subject in the treatment group with all the key covariates. However, if the
pool of control subjects is not so large and/or there are many control covariates,
then the propensity score matching approach will be a useful tool because of the
reduced dimensionality. The matching can be performed with 1:1 matching or more
generally 1:n matching.

Different matching methods have been proposed. First, we can simply match the
subjects based on the (estimated) propensity scores. When there are continuous or
high dimensional covariates, we may not always be able to find subjects with the
exact same propensity score to match. In this case, we can match the subject with
the closest propensity score. It is recommended to select the subjects based on the
logit scale (logit of the propensity score), rather than the propensity score itself. This
approach is simple and easy to implement, however, it may be important to control
(match) some key covariates as well. A Mahalanobis metric matching is to select
the control subject with the minimum distance based on the Mahalanobis metric of
some key covariates and the logit of propensity scores. For subjects with u for the
key covariates and v for the logit of the propensity score, the Mahalanobis distance
is defined as

dij = (u— v) ' C N u—v),

where C is the sample covariance matrix of these variables for the full set of control
subjects.

To give the propensity score a higher priority, one may combine the two matching
methods. We can first select a subgroup of the control subjects based on the logit of
propensity scores (caliper), and then select the control subjects from this subgroup
based on the Mahalanobis metric. This approach is in general preferred over the
above two methods [5, 11, 38, 40, 41].

Based on the selection criteria, the propensity score matching approach can be
processed as follows. For the first subject in the treatment group, select the control
subject(s). Remove them to a new data set, and repeat the process for the second
subject, etc., until all the subjects in the treatment group are removed to the new
data set. Ultimately, we have a new data set with matched subjects with treatment
and control conditions. In these procedures, once a control is selected, it cannot
be selected again to match another treated subject. This is called greedy algorithm.
If the pool of control subjects is not big, one can consider reusing the matched
control subjects, i.e., by putting the matched subjects back for matching again.

We may check that covariates are balanced across treatment and control groups,
and then analysis can be performed based on new sample [2]. Note that the sample
does not satisfy the common i.i.d assumption anymore because of the matching,
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hence common methods for cross-sectional data do not apply. Paired 7-test may be
applied for simple group comparison if the matching is 1 to 1. As for 1 to n matching,
methods for dependent outcomes such as generalized estimating equations can
be applied to assess the treatment effects, which has already been adjusted for
covariates.

The propensity score matching approach is not only very popular in practice, but
also an active methodological research topic. Applications of the propensity score
matching for different scenarios, variations of the matching procedures, and new
methods of inferences have been proposed, see, for example, [1-3, 5, 6, 9, 10, 12,
21, 27-29, 33, 48].

One disadvantage of the propensity matching approach is that subjects may not
be able to find a matched subject in the control group. For example, if the treatment
and control groups have comparable sample size, it will be very likely that there
will be more subjects with high propensity scores in the treatment group than in
the control group. Similarly, there will be more subjects with low propensity scores
in the control group than in the treatment group. This will result in more difficulty
in matching, i.e., more subjects without matched subjects. This not only suffers
information loss, but also raises the question of what the matched sample represents,
and hence may introduce another source of selection bias. Thus, the propensity score
matching method is preferred when the control group is large so that there is no
problem for every subject in the treatment group to find a matching subject.

3.2 Propensity Score Stratification

When the control group is much larger than the treatment group, the propensity
score matching approach usually only selects a small portion of subjects in the
control group, although there may be more subjects with good matching in the
propensity score and key covariates available. In this case, the propensity score
matching approach suffers low power. To make use of all the subjects in the control
group, another common approach called stratification or subclassification can be
applied. Instead of matching each individual, the propensity score stratification
approach divides subjects into subgroups according to the propensity scores. More
precisely, let 0 = ¢y < ¢ < ¢ < ... < ¢, = 1, then we can separate the sample
into m groups, where the kth group consists of subjects with propensity scores
falling within I; = (cx—1, ¢x]. Under the regularity assumption that the treatments
effect is a continuous function of the propensity scores, i.e., E (yi1 —yi2 | & = €)
is continuous in e, which means that subjects with comparable propensity scores
should show similar treatments effect, i.e.,

E(yiJ|eiEIk) %E(yiJ|zi=j,ei€Ik),fork= 1,2,...,m,j= 1,2
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Hence, within each subgroup, we can estimate the treatment effects for each
treatment condition by the observed outcomes for that subgroup, i.e.,

E . Vil E . Yi2
irej€ly,zi=1 = iiej€ly,zi=2""
———————  EQi2 | € ff) = ——————,
Nkl 17%)

/E\(Yi,l |eie ) =

where ny; and ny, are the number of subjects in the kth subgroup for the treatment
and control group, respectively. So the treatment effect for the kth subgroup can be
estimated by

EGiilei€el)—E®yia|ec€h).

Based on the estimated treatment effect for each subgroup, we can estimate the
treatment effects for the whole sample. Note that the overall treatment effects for
the whole sample can be expressed as

/ [E(vi1 | ei=e)—E(yi2 | e; = e)]f(e)de, (2.5)

where f(e) is the density function of the propensity score e. If E (y;1 | e; = e) is
approximately a constant over (cx—1, ¢x], then

/ k E(yij | e: =€) f(e)de = [E (yij | ei € Ik)]/ k f(e)de

k—1

= [E (yiJ | e € Ik)] Pr(e,- € [k)-

Thus, approximately, the overall treatment effect is

Z [E (y“ | e; € Ik) — EO’:’,Z | e; € Ik)] Pr(e,- € Ik),

k=1

which is a weighted average of the treatment effects across the subgroups. Pr(e € I;)
can be estimated by the sample proportion

Pr(e e 1) = ML T M2
n

where n is the total sample size.

This approach can be viewed as a numeric estimate of the overall treatment
effect (2.5). Since the over treatment effect is an integral over the propensity score e;,
which is a scalar-valued function of x; regardless of the dimensionality and density
of the range of x;, we can estimate the integral (2.5) as a Riemann sum.

Under the propensity score stratification approach, we need to decide the cut
points for the classification. In general, we can divide the subjects into comparable
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subgroups, i.e., based on the quantiles of the estimated propensity scores for the
combined groups. In general, 5-10 groups is sufficient, and simulation studies show
that such a partition seems to be sufficient to remove 90 % of the bias [39]. In the
case where the treatment group is small, such a division may result in subgroups
with few subject to the treatment and hence produce instable inference. In such
cases, one may also choose the cut points based on the quantiles of the estimated
propensity scores based on the treatments group only in order to obtain subgroups
with comparable number of the subjects receiving the treatment [42, 44].

3.3 Propensity Score Weighting

Instead of comparing the treatment and control groups at each propensity score
or a small interval of propensity scores, we can also correct the selection bias
by the propensity score weighting approach. Note that the propensity score is
the probability of a subject being assigned to a treatment group, thus, a subject
in a treatment group with propensity score ¢ = 0.1 would be thought of as a
representative of a total é = 10 subjects with similar characteristics, hence in the
analysis we would assign a weight of % = 10 to that subject when estimate the
treatment effect. Similarly, since a subject in control group with propensity score
e = 0.1 has a probability of 1 — e = 0.9 being assigned to the control group, it also
would be thought of as a representative of a total IL_e = 1.1 subjects in the control
group with similar characteristic, hence in the analysis we would assign a weight
of ﬁ = 1.1 to the subject in estimating the treatment effect. This is the inverse
probability weighting (IPW) approach, which has a long history in the analysis of
sample survey data [22].
The mathematical justification of the propensity score weighting is the fact that

; 1—z
E (gy,-,l) = E(y;2) and E(l Z‘yi.Z) =E@i1). (2.6)

This weighting approach can also be applied to regression analysis. For example,
suppose that there is no interaction between the treatment and the covariates, so we
can assume that

Yij = az; =+ IBX,’, J =1,2. 2.7)

The two regression models for the potential outcomes y;; (2.7) can be expressed in
one model of the observed outcome y;,

yi = az + Bx;, (2.8)
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with Welght for z; = 1 and {— for z; = 0. To justify this, one can easily check
that the followmg estimating equatlon (EE):

% > ;Var()’i | xi) i — (@zi + Bx))] = 0 29)
i=1""

is unbiased. To account for the variation associated with estimating the propensity
score, we can combine this EE in (2.9) with estimating equations for the propensity
score. Note that even when e; is known, the estimated propensity score is often
preferred over the true e; because it may fit the observed data better [20].

For the propensity score weighting approach, to provide valid inference, we need
0 < ¢ < 1, so that each subject has a positive probability to be assigned to
both treatment and control groups. In other words, the subgroups must have their
representatives observed in both groups. For subjects in the treatment group with
extremely small e;s, the inverses of such e; can become quite large, yielding very
highly volatiled estimates. Similarly, subjects in the control group with extremely
large e;s (close to 1), the weights can also become quite large and cause the estimates
to be highly volatile. So, to ensure good behaviors of estimates, we need to assume

€i>C>0, ifZl'Zl and €i<1—6, ifZiZO,

where ¢ is some positive constant. This assumption is similar to the bounded away
from O assumption for regular inverse probability weight approaches for missing
values.

To reduce bias and improve the stability of the propensity score weighting
approach, some modified propensity score methods including the double robust
estimator have been developed and discussed, see [7, 13, 16, 17, 24, 26, 27, 30,
38, 45, 47].

3.4 Propensity Score Covariate Adjustment

Propensity scores can also be used as a covariate in regression models to adjust
the selection bias [11, 38, 43]. Based on (2.4), treatment effect is a function of
the propensity score. Thus, without any further assumption, we can apply the non-
parametric regression model

E(yj|e) =EQ; |z =j.e) =fie), (2.10)

to assess the causal effect. Without any further assumption, we can apply nonpara-
metric curve regression methods such as local polynomial regressions to the two
groups separately to estimate the two curves [8, 14]. Treatment effect may then be
assessed by comparing these two estimated curves.
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If we assume that the treatment effect is homogeneous across all the propensity
scores, then fi(e) — f>(e) is a constant, and o = fi(e) — f>(e) is the treatment effect.
Then (2.10) can be written compactly as

E(y; | e) = azi + f(e), (2.11)
where « is the treatment effect. If the function f(e) is further linear in e, then
E(yj | e) = az; + Be. (2.12)

Conditioning on the propensity score, since the mean of the potential outcome
equals to the mean of the observed outcome, the two regression equations in (2.12)
for the two groups can be written in a regular regression model

E(y) = az; + Be, (2.13)

and again the parameter « carries the information for treatment effect.

In the arguments above, the assumption of homogeneous treatment effects (2.11)
is important to provide valid inference. It has been proved that under the homoge-
neous treatment effect, the regression model (2.13) will provide robust inference
about the treatment effect, even when the parametric assumption, i.e., the function
form for f(e) in (2.11) is not correctly specified [11, 36]. One may check the
homogeneity assumption (2.11) by testing if the interaction between the treatment
and propensity score is significant. Using the propensity score stratification, we can
also compare the estimated treatment effect across the groups, and test if they are
the same.

Note that this propensity score covariate regression adjustment is similar to the
regular covariate adjustment in regression analysis. In fact, Rosenbaum and Rubin
showed the point estimate of the treatment effect is the same if the same x; is used
in the estimation of the propensity score and the treatment effect and the propensity
score is a linear function of x; (this can only be approximately true since logistic
functions are not linear). The two-step procedure of propensity score covariate
adjustment has the advantage that one can apply a very complicated propensity score
model without worrying about the problem of over-parameterizing the model [11].

The covariate adjustment is commonly used in practice, and the methods are
generalized for different scenarios [23, 46]. However, the covariance adjustment
should be performed with caution [11, 19]. Standard linear regression models are
based on the homoscedasticity, so it may be a problem if the variance in the
treatment and control groups is very different. The above arguments are based
on linear model for continuous outcomes, their application to nonlinear cases
is questionable. For example, for nonlinear regression models such as logistic
regression models, Austin et al. found there are considerable bias associated with
treatment effect estimate if the propensity score is used as a covariate for the
adjustment [4]. Even for linear models, Hade and Lu also investigated the size of
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the bias and recommended adjusting for the propensity score through stratification
or matching followed by regression or using splines [19].

4 Example: The Genetic Epidemiology Network of Salt
Sensitivity (GenSalt) Study

We use the baseline information of the Genetic Epidemiology Network of Salt
Sensitivity (GenSalt) Study as an example to illustrate the methods. The objective
of the GenSalt Study is to localize and identify genes related to blood pressure
responses to dietary sodium and potassium intervention [18]. For each of the
3,153 participants recruited for GenSalt Study a standardized questionnaire was
administered by trained staff at the baseline examination to obtain information about
demographic characteristics such as age, gender, marital status, education level,
employment status and baseline BMI, personal and family medical history such
as history of hypertension, and lifestyle risk factors (including cigarette smoking,
alcohol consumption, and physical activity level). More detailed information can be
found in [18, 35]. In the example, we are interested in the effect of sport activity on
blood pressure outcome at baseline.

Outcomes The primary outcome is the blood pressure (BP). In the study, there are
three measures about the blood pressure, systolic BP (SBP), diastolic BP (DBP), and
the mean arterial pressure (MAP) which is defined as a summation of one third of
SBP and two thirds of DBP (1/3*SBP+2/3*DBP). We use MAP in this example as it
involves both SBP and DBP. The baseline BP was measured every morning during
the 3-day baseline observation period by trained and certified individuals using a
random-zeroi sphygmomanometer according to a standard protocol adapted from
procedures recommended by the American Heart Association [34]. When BP was
measured, participants were in the sitting position after they had rested for 5 min.
Participants were advised to avoid consumption of alcohol, coffee, or tea, cigarette
smoking, and exercise for at least 30 min before their BP measurements.

Treatment Conditions The Paffenbarger Physical Activity Questionnaire was
adapted for the measurement of physical activity level [31]. Data was collected
on the number of hours spent in vigorous and moderate activity on a usual
day during the previous 12 months for weekdays and weekends separately to
account for anticipated daily variability in energy expenditure. Examples provided
for vigorous activity included shoveling, digging, heavy farming, jogging, brisk
walking, heavy carpentry, and bicycling on hills, and examples of moderate activity
included housework, regular walking, yard work, light carpentry, and bicycling
on level ground. The physical activity score was dichotomized into more activity
and less activity using a cut point of 51.1 based on the 50 % sample quantile.
Participants with at least 51.1 in their physical activity score were considered as
receiving physical activity treatment and thus consist of the treatment group while
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the participants with physical activity score less than 51.1 were considered as
control. We expect that participants in the treatment group would have a lower blood
pressure than participants in the control group.

Covariates In addition to the demographic information such as age, gender, marital
status, education level, employment status, baseline BMI, smoking and drinking
status, we also considered personal medical history such as stroke, hypertension,
and high cholesterol and blood chemistry results such as glucose, creatinine, total
cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. All the covariates
were compared between the treatment and control groups by chi-square tests
for categorical variables and Wilcoxon Rank-sum tests for continuous variables.
Most of the variables are significantly different between the two groups. We also
compared the BP difference between the two groups, the sample difference is
4.16 mm Hg in MAP with the control group having higher MAP.

Next, we will apply propensity score methods to examine the effects of physical
activity on BP.

4.1 Estimating the Propensity Score

All covariates above that were identified as potential confounder were included in
the selection model to estimate the propensity scores. A forward model selection
was applied to select potential interactions. The selected final model for estimating
the propensity score is summarized in Table 2.1.

The Hosmer and Lemeshow goodness-of-fit test was performed to check if the
model fits the data well. The p-value for the Hosmer and Lemeshow test is 0.4632,
indicating that the model to estimate the propensity scores fits the data pretty well.

4.2 Propensity Score Matching

Based on the estimated propensity scores, we can match the subjects in the treatment
group with subjects in the control group. In this example, we match subjects with
more activity with subjects with less activity. We use the SAS macro function
provided in [32] to obtain 818 pairs of matched subjects. We checked the balance
of the matched groups in terms of covariates, and the propensity score matching
succeeded in reducing the selection bias between the two groups. Summarized in
Table 2.2 are the p-values of comparisons of covariates between the two groups
mentioned above, before and after the matching.

While most of variables showed significant difference before the propensity score
matching, there was no significant difference at all in the matched sample.

Paired r-test was then applied to assess the physical activity on the blood pressure
based on the matched sample. After adjusting for the confounders, the treatment
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Table 2.1 Parameter estimations of the propensity score model

Parameter DF |Estimate | Standard error | Wald y?> | Pr>y?

Intercept 1 —2.0373 | 1.6769 1.4761 | 0.2244
Age 1 0.0477 0.0174 7.5367 | 0.0060
BMI 1 —0.0684 |0.0310 4.8653 | 0.0274
Gender 1 1 —0.5493 | 0.2421 5.1474 | 0.0233
High education 0 1 —1.9179 |0.2766 48.0890 | <.0001
Field center 1 1 —0.3707 | 0.4453 0.6929 | 0.4052
Field center 2 1 —0.6963 | 0.3666 3.6073 | 0.0575
Marital 0 1 29975 | 0.6468 21.4801 | <.0001
Employment 1 1 1.0841 |1.0879 0.9931 | 0.3190
Employment 2 1 —1.7077 | 2.1545 0.6283 | 0.4280
Drinking 0 1 0.9670 | 0.3802 6.4677 | 0.0110
High cholesterol 0 1 —0.4714 |0.1629 8.3748 | 0.0038
Stroke 0 1 —0.9449 | 0.2406 15.4205 | <.0001
Creatinine 1 0.0231 | 0.00641 13.0451 0.0003
GFR 1 0.0138 | 0.00483 8.1560 | 0.0043
HDL cholesterol 1 —0.0240 | 0.00465 26.5825 | <.0001
LDL cholesterol 1 0.00677 | 0.00184 13.5709 | 0.0002
Age*gender 1 1 0.00772 | 0.00292 6.9849 | 0.0082
Age*high education 0 1 0.0289 | 0.00392 54.1961 | <.0001
BMI*drinking 0 1 —0.0366 |0.0158 5.3762 | 0.0204
Drinking*gender 0 |1 |1 —0.1678 | 0.0851 3.8930 | 0.0485
High cholesterol*gender |0 |1 |1 —0.3899 |0.1613 5.8402 | 0.0157
Creatinine*field center 1 1 —0.00654 | 0.00406 2.5877 | 0.1077
Creatinine*field center 2 1 0.0112 | 0.00356 9.9319 | 0.0016
GFR*High Education 0 1 0.00471 | 0.00196 5.7722 | 0.0163
Age*marital 0 1 —0.0160 | 0.00469 11.7031 | 0.0006
BMI*marital 0 1 —0.0840 | 0.0290 8.3982 | 0.0038
Field center*marital 1 |0 |1 —0.2416 | 0.1438 2.8224 | 0.0930
Field center*marital 2 10 |1 0.3918 |0.1259 9.6792 | 0.0019
Age*employment 1 1 —0.0324 |0.0172 3.5625 | 0.0591
Age*employment 2 1 0.0437 1 0.0338 1.6680 | 0.1965
Field center*employment |1 |1 |1 —0.1481 | 0.2314 0.4098 | 0.5221
Field center*employment |1 |2 |1 —0.2715 ]0.4233 0.4114 | 0.5213
Field center*employment |2 |1 |1 0.5910 | 0.1862 10.0806 | 0.0015
Field center*employment |2 |2 |1 0.0311 | 0.3466 0.0081 0.9285

group that has more physical activity has 1.6598 mm Hg lower in MAP than the
control group with less activity. The standard error is 0.5994, and the corresponding
p-value for the treatment effect is 0.0058. The adjusted effect is smaller than the
unadjusted effect 4.16 mm Hg.
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Table 2('2 Group Variable Before PS matching | After PS matching

comparisons pre and post

propensity score matching Age <0001 0.4485
BMI 0.3598 0.9901
Gender <.0001 0.9605
High education | <.0001 0.6923
Field center <.0001 0.4893
Marital <.0001 0.4355
Employment <.0001 0.3460
Drinking <.0001 0.9096
High cholesterol | <.0001 1.0000
Hypertension <.0001 1.0000
Stroke <.0001 0.7622
Creatinine 0.3870 0.9054
GFR <.0001 0.7215
HDL cholesterol | 0.0016 0.6370
LDL cholesterol | <.0001 0.3858

Table 2.3 Estimates of treatment effect for each subgroup

Less activity More activity Mean
Sample Sample

Group | size Mean SD size Mean SD Difference

1 106 88.0712788 | 11.2485418 | 503 88.857227 9.8108938 | —0.7859482

185 91.555956 | 11.7847044 | 424 88.0452481 | 10.8572098 | 3.5107079
255 89.8928105 | 11.9811255 | 354 90.0043942 | 11.9086026 | —0.1115837
403 91.8189505 | 14.1950911 | 206 88.9489392 | 13.4397874 | 2.8700113
547 96.8985036 | 14.8599617 | 62 89.9868578 | 12.0791987 | 6.9116458

DB W N

4.3 Propensity Score Stratification

In the above propensity score matching approach, only a little bit more than half
of the subjects were matched. Unmatched subjects were used in the estimation of
the propensity score, but their information were otherwise ignored in assessing the
treatment effect. To utilize all the information, we then use the propensity score
stratification approach to estimate the treatment effect. We divide the whole sample
into 5 subgroups according to the propensity scores. The propensity scores range
from 0.0260582 to 0.2436369, 0.2437835 to 0.3666789, 0.3668133 to 0.5341626,
0.5342977 to 0.7668451 and 0.7670692 to 0.9999613 for the five subgroups,
respectively. Summarized in Table 2.3 are the sample size for each subgroup for
the two treatment groups, their mean/sd in blood pressures, as well as the mean
difference between the two groups.

Included in the last column are the difference in the means of the blood pressure.
These were the estimates of the treatment effects for the subgroups. It is clear that the
treatment effects are not homogeneous across the different propensity score levels.
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In groups 2, 4, and especially 5, there were benefits of physical activity, but no
benefits for the physical activity were shown in groups 1 and 3.

The overall treatment effect estimated by the weighted average of the subgroup
difference was 2.48. The higher activity group had 2.48 mm Hg lower than the less
activity group in MAP. The p-value for testing the null hypothesis of no difference
was 0.0001, indicating the difference was significant.

4.4 Propensity Score Weighting

We can also use the propensity score weighting approach to correct the selection
bias. Using the blood pressure measures as the response and the treatment as the
only predictor and weighting each subject by their inverse of the propensity scores
of being assigned to the treatment group, the estimated treatment effect was —2.38
with standard error 0.45185. The more activity group had 2.38 mm Hg lower than
the less activity group in MAP. The p-value was less than .0001, which indicated that
the more activity group had a significant lower MAP than the less activity group.
Note that there are subjects with propensity scores as small as 0.0260582 and as big
as 0.9999613, so we need to be cautious about subjects with potential high influence.
In fact, there are S subjects with weight larger than 20, with the highest weight being
47.0519.

If the subject with the highest weight is removed from the data, the estimated
treatment effect would be —2.4238. In fact, this observation is not the only one with
the highest impact on the estimate of treatment effect. Thus, in such situations where
we have subjects with large weights, we should use the propensity score weighting
approach with caution.

In the above analysis using propensity score weighting approach, the estimated
propensity scores were used. For rigorous statistical inference, we should take
into account the variation associated with the estimation of the propensity score.
Unfortunately many inverse weighting procedures treat the weights as fixed, and
do not have the capability of taking into account such variation. However, in our
example, this may not be a concern since the p-value is very small.

4.5 Propensity Score Covariate Adjustment

Based on the analysis using the propensity score stratification approach, the
treatment effects across the propensity scores did not seem to be homogeneous
in this example. We can formally test this by testing the interaction between the
treatment and the propensity score. The p-value for testing the interaction was
<.0001, which indicated that there was significant interaction between treatment
and the propensity score. We can also compare the 5 subgroups to test the null
hypothesis of no treatment effect differences among the 5 subgroups. The p value
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for the test was 0.0005. This further confirmed that the treatment effects were
significantly different across the propensity score levels.

The significant interaction between the treatment and the propensity score
implies that a simple covariate adjustment is not appropriate in this case. However,
for illustrative purpose, we still applied the propensity score covariate adjustment
approach. We applied a linear regression model with the blood pressure measures
as the response and the treatment and the propensity score as the predictor and
covariate to assess the treatment effect. The estimated treatment effect was —1.86
with an SE of 0.53354, and a p-value of 0.0005. Instead of using the exact propensity
score, we also used the stratified ranks as covariate. The estimated treatment effect
was —2.05 with a SE of 0.5290, and a p-value of 0.0001.

So far, we have illustrated all the propensity score approaches using the Gensalt
study as an example. Based on results obtained from different approaches of
adjustment based on the propensity scores, the estimated treatment effects range
from 1.86 to 2.37, which are smaller than the unadjusted difference of 4.16 mm Hg
in MAP. All the results shows that more activity is beneficial to the blood pressure
outcome.

5 Discussion

Selection bias may produce biased estimates in observational and non-randomized
studies if it is not appropriately addressed. Propensity score is a powerful tool
in adjusting such selection bias. In this book chapter, we discussed several com-
mon approaches based on propensity scores to correct selection bias. All these
approaches depend on the validity of the propensity score model, i.e., a model
for the treatment assignment to estimate the probability of treatment assignment.
Among the approaches, the propensity score weighting and covariate adjustment
approaches directly use the propensity scores in the analysis while propensity score
matching and stratification methods do not explicitly rely on the propensity scores
in subsequent analysis. They only use the propensity score to find matched subjects
either at an individual or group level. Thus the propensity score matching and
stratification approaches may be less sensitive to misspecification of the propensity
score model.

It is important to note that all the approaches based on propensity scores can
only address observed selection bias. All the arguments are based on the assumption
that the propensity score, as the probabilities of being assigned to the treatment is
correctly modeled and estimated. The propensity score approaches do not have any
capability to account for unobserved factors.

We have discussed the use of propensity scores in the context of assessment of
treatment effect. Since the methods essentially deal with the missing values in the
potential outcomes, the methods can be naturally adapted to handle missing values.
For example, we have successfully applied the stratification of propensity scores to
verification bias problems in statistical analysis of diagnostic studies [20].
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Appendix: SAS Program Codes

All the analysis for the examples in Sect.4 were performed using SAS. The SAS
program codes are included here for readers who are interested in applying the
methods for their data analyses.

* Logistic regression model for estimation of the propensity scores.
» The fitted values are saved in variable prob in data set preds.

proc logistic data=path.comb;

class High Cholesterol Stroke Drinking Gender High Education
Field Center Marital Employment;

model act_b50=Age BMI Gender High Education Field Center
Marital Employment

Drinking High Cholesterol Stroke Creatinine GFR

HDL_Cholesterol LDL_ Cholesterol AgexGender AgexHigh Education
BMI*Drinking Drinking+Gender High CholesterolxGender Creatinine
*Field Center CreatininexField Center

GFR+*High Education AgexMarital BMIxMarital Field CenterxMarital
Field CenterxMarital AgexEmployment AgexEmployment Field Center
*Employment

Field CenterxEmployment Field CenterxEmployment Field Center
*Employment/lackfit;

output out=preds pred=prob;

run;

Macro %OneToManyMTCH was used for the propensity score matching. The
macro can be copied from [32]

$OneToManyMTCH (work, preds,act b50,hid,pid,Matches, 1) ;
* Paired #-test for matched subjects

x» first generate paired variables
proc sort data=Matches;

by match 1 act b50;

run;

data paired;

set Matches;

control=B MAP;

treated=1lag (B_MAP) ;

if mod( n ,2)=0 then output;
run;

* paired t-test

proc t-test data=dd ;

paired treatedx control;
run;
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* Propensity score stratification

proc rank data=preds groups=5 out=r;
ranks rnk;

var prob;

run;

* Propensity score weighting

data preds;set preds;
w=1/prob* (1-act_b50)+act b50%1/ (1-prob) ;
run;

proc reg data=preds;

weight w;
model B _MAP=act Db50 ;
run;

* Propensity score covariate adjustment

proc reg data=preds;
model B _MAP=act b50 prob;
run;
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Chapter 3
Sufficient Covariate, Propensity Variable
and Doubly Robust Estimation

Hui Guo, Philip Dawid, and Giovanni Berzuini

Abstract Statistical causal inference from observational studies often requires
adjustment for a possibly multi-dimensional variable, where dimension reduction is
crucial. The propensity score, first introduced by Rosenbaum and Rubin, is a popular
approach to such reduction. We address causal inference within Dawid’s decision-
theoretic framework, where it is essential to pay attention to sufficient covariates
and their properties. We examine the role of a propensity variable in a normal linear
model. We investigate both population-based and sample-based linear regressions,
with adjustments for a multivariate covariate and for a propensity variable. In
addition, we study the augmented inverse probability weighted estimator, involving
a combination of a response model and a propensity model. In a linear regression
with homoscedasticity, a propensity variable is proved to provide the same estimated
causal effect as multivariate adjustment. An estimated propensity variable may, but
need not, yield better precision than the true propensity variable. The augmented
inverse probability weighted estimator is doubly robust and can improve precision
if the propensity model is correctly specified.

1 Introduction

Causal effects can be identified from well-designed experiments, such as ran-
domised controlled trials (RCT), because treatment assignment is entirely unrelated
to subjects’ characteristics, both observed and unobserved. Suppose there are two
treatment arms in an RCT: treatment group and control group. Then the average
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causal effect (ACE) can simply be estimated as the outcome difference of the
two groups from the observed data. However, randomised experiments, although
ideal and to be conducted whenever possible, are not always feasible. For instance,
to investigate whether smoking causes lung cancer, we cannot randomly force
a group of subjects to take cigarettes. Moreover, it may take years or longer
for development of this disease. Instead, a retrospective case—control study may
have to be considered. The task of drawing causal conclusion, however, becomes
problematic since similarity of subjects from the two groups will rarely hold, e.g.,
lifestyles of smokers might be different from those of non-smokers. Thus, we
are unable to ‘compare like with like’ — the classic problem of confounding in
observational studies, which may require adjusting for a suitable set of variables
(such as age, sex, health status, diet). Otherwise, the relationship between treatment
and response will be distorted, and lead to biased inferences. In general, linear
regressions, matching or subclassification are used for adjustment purpose. If there
are multiple confounders, especially for matching and subclassification, identifying
two individuals with very similar values of all confounders simultaneously would be
cumbersome or impossible. Thus, it would be sensible to replace all the confounders
by a scalar variable. The propensity score [19] is a popular dimension reduction
approach in a variety of research fields.

2 Framework

The aim of statistical causal inference is to understand and estimate a ‘causal effect’,
and to identify scientific and in principle testable conditions under which the causal
effect can be identified from observational studies. The philosophical nature of
‘causality’ is reflected in the diversity of its statistical formalisations, as exemplified
by three frameworks:

1. Rubin’s potential response framework [21-23] (also known as Rubin’s causal
model) based on counterfactual theory;

2. Pearl’s causal framework [16, 17] richly developed from graphical models;

3. Dawid’s decision-theoretic framework [6, 7] based on decision theory and
probabilistic conditional independence.

In Dawid’s framework, causal relations are modelled entirely by conditional
probability distributions. We adopt it throughout this chapter to address causal
inference; the assumptions required are, at least in principle, testable.

Let X, T and Y denote, respectively, a (typically multivariate) confounder,
treatment, and response (or outcome). For simplicity, ¥ is a scalar and X a
multi-dimensional variable. We assume that 7" is binary: 1 (treatment arm) and
0 (control arm). Within Dawid’s framework, a non-stochastic regime indicator
variable Fr, taking values @, 0 and 1, is introduced to denote the treatment
assignment mechanism operating. This divides the world into three distinct regimes,
as follows:

1. Fr = 0@: the observational (idle) regime. In this regime, the value of the treatment
is passively observed and treatment assignment is determined by Nature.
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2. Fr = 1: the interventional treatment regime, i.e., treatment 7 is set to 1 by
manipulation.

3. Fr = 0: the interventional control regime, i.e., treatment 7 is set to 0 by
manipulation.

For example, in an observational study of custodial sanctions, our interest is in the
effect of custodial sanction, as compared to probation (noncustodial sanction), on
the probability of re-offence. Then F; = @ denotes the actual observational regime
under which data were collected; Fr = 1 is the (hypothetical) interventional regime
that always imposes imprisonment; and F7 = 0 is the (hypothetical) interventional
regime that always imposes probation. Throughout, we assume full compliance
and no dropouts, i.e., each individual actually takes whichever treatment they are
assigned to. Then we have a joint distribution Py of all relevant variables in each
regime Fr =f (f = 0,1,0).

In the decision-theoretic framework, causal assumptions are constructed as
assertions that certain marginal or conditional distributions are common to all
regimes. Such assumptions can be formally expressed as properties of conditional
independence, where this is extended to allow non-stochastic variables such as Fr
[4, 5, 7]. For example, the ‘ignorable treatment assignment’ assumption in Rubin’s
causal model (RCM) [19] can be expressed as

YLF7|T, 3.1)

read as ‘Y is independent of Fr given T°. However, this condition will be most likely
inappropriate in observational studies where randomisation is absent.

Causal effect is defined as the response difference by manipulating treatment,
which purely involves interventional regimes. In particular, the population-based
average causal effect (ACE) of the treatment is defined as

ACE := E(Y|Fr = 1) —E(Y|Fr = 0), (3.2)
or alternatively,
ACE := E(Y) —Eo(Y).! (3.3)

Without further assumptions, by its definition ACE is not identifiable from the
observational regime.

"For convenience, the values of the regime indicator Fr are presented as subscripts.
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3 Identification of ACE

Suppose the joint distribution of (Fy, T, Y ) is known and satisfies (3.1). Is
ACE identifiable from data collected in the observational regime? Note that (3.1)
demonstrates that the distribution of Y given T = t is the same, whether ¢ is observed
in the observational regime Fr = @, or in the interventional regime Fr = t. As
discussed, this assumption would not be satisfied in observational studies, and thus,
direct comparison of response from the two treatment groups cannot be interpreted
as the causal effect from observational data.

Definition 1. The ‘face-value average causal effect’ (FACE) is defined as

FACE := Ey(Y|T = 1) — Eg(Y|T = 0). (3.4)

It would be hardly true that FACE = ACE, as we would not expect the conditional
distribution of Y given T = t is the same in any regime. In fact, identification of
ACE from observational studies requires, on one hand, adjusting for confounders,
on the other hand, interplay of distributional information between different regimes.
One can make no further progress unless some properties are satisfied.

3.1 Strongly Sufficient Covariate

Rigorous conditions must be investigated so as to identify ACE.
Definition 2. X is a covariate if:

Property 1.
X1 Fr.

That is, the distribution of X is the same in any regime, be it observational or
interventional. In most cases, X are attributes determined prior to the treatment, for
example, blood types and genes.

Definition 3. X is a sufficient covariate for the effect of treatment 7 on response Y
if, in addition to Property 1, we have

Property 2.
YUFr|(X,T).
Property 2 requires that the distribution of Y, given X and 7, is the same in all

regimes. It can also be described as ‘strongly ignorable treatment assignment, given
X’ [19]. We assume that readers are familiar with the concept and properties of
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Fig. 3.1 Sufficient covariate

directed acyclic graphs (DAGs). Then Properties 1 and 2 can be represented by
means of a DAG as shown in Fig.3.1. The dashed arrow from X to 7 indicates
that 7 is partially dependent on X, i.e., the distribution of 7" depends on X in the
observational regime, but not in the interventional regime where Fr = t.

Definition 4. X is a strongly sufficient covariate if, in addition to Properties 1 and 2,
we have

Property 3. Pg(T =t | X) > 0 with probability 1, for ¢t = 0, 1.

Property 3 requires that, for any X = x, both treatment and control groups are
observed in the observational regime.

Lemma 1. Suppose X is a strongly sufficient covariate. Then, considered as a joint
distributions for (Y, X, T), P; is absolutely continuous with respect to Py (denoted
by P, < Pg), fort = 0andt = 1. That is, for every event A determined by (X, T,Y),

Py(A) =0 = P,(A)=0. (3.5)

Equivalently, if an event A occurs with probability I under the measure Pg, then it
occurs with probability 1 under the measure P, (t = 0, 1).

Proof. Property 2, expressed equivalently as (Y, X, T) LLFr|(X, T), asserts that there
exists a function w(X, T) such that

P(A|X,T)=wlX,T)
almost surely (a.s.) in each regime f = 0, 1, 8. Let Pg(A) = 0. Then a.s. [Py],
0=Py(A|X) =wX,DPg(T =1]|X) + w(X,0)Pg(T =0 | X).
By Property 3, fort =0, 1,
w(X,1) =0 (3.6)

a.s. [Pg]. As w(X,r) is a function of X, it follows that (3.6) holds a.s. [P,] by
Property 1. Consequently,

w(X,T) =0 as. [P], (3.7)
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since a.s. [P], T = t and w(X,T) = w(X, ) for any bounded function w. Then
by (3.7),

P,(A) = E{P,(A | X.T)} = E{w(X.T)} = 0.

Lemma 2. For any integrable Z <* (Y, X, T), and any versions of the conditional
expectations,

E(Z|X)=E(Z|X.T) as.[P]. (3.8)

Proof. Let j(X,T) be an arbitrary but fixed version of E,(Z | X, T). Then j(X,T) =
j(X, 1) as. [P;], and j(X, ) serves as a version of E,(Z | X, T) under [P;]. So

E(Z|X) =E{X.T) | X} =E{X.0) | X} =j(X,0) as. [P].

Thus j(X, f) is a version of E,(Z | X) under [P,] and (3.8) follows.

Since E;(Z | X) is a function of X, then by Property 1, j(X,?) is a version
of E,(Z | X) in any regime. Let g(X,T) be some arbitrary but fixed version of
Eg(Z | X, T).

Theorem 1. Suppose that X is a strongly sufficient covariate. Then for any
integrable Z < (Y, X, T), and with notation as above,

JX. 1) = gX, 10 (3.9)

almost surely in any regime.
Proof. By Property 2, there exists a function 2(X, T) which is a common version
of E/(Z | X,T) under [P;] for f = 0,1,0. Then h(X,T) serves as a version of
Eg(Z | X, T) under [Pyg], and a version of E,(Z | X, T) under [P,]. As j(X,T) is a
version of E,(Z | X, T),

JX,T) =h(X,T) as. [P,
and consequently

JjX, 1) = h(X,t) as. [P].
Since j(X, f) and h(X, t) are functions of X, by Property 1

JX.0) = h(X.1) as. [Pf] (3.10)

2The < symbol is interpreted as ‘a function of”.



3 Sufficient Covariate, Propensity Variable and Doubly Robust Estimation 55

for f = 0, 1, @. We also have that g(X,T) = h(X, T) a.s. [Pyg], and so, by Lemma 1,
a.s. [P;]. Then g(X, ) = h(X, 1) a.s. [P,], where g(X, t) and h(X, ) are both functions
of X. By Property 1,

gX.n) =h(X,1) as. [Pf] 3.11)

for f = 0, 1, 0. Thus (3.9) holds by (3.10) and (3.11).

3.2 Specific Causal Effect

Let X be a covariate.

Definition 5. The specific causal effect of T on Y, relative to X, is

SCE := E|(Y | X) — Eo(Y | X).

We annotate SCEy to express SCE as a function of X and write SCE(x) to indicate
that X takes specific value x. Because it is defined in the interventional regimes,
SCE has a direct causal interpretation, i.e., SCE(x) is the average causal effect in
the subpopulation with X = x.

Although we do not assume the existence of potential responses, when this
assumption is made we might proceed as follows. Take X to be the pair Y =
(Y(1), Y(0)) of potential responses—which is assumed to satisfy Property 1. Then
E,(Y | X) = Y(¢), and consequently

SCEy = Y(1) — Y(0),

which is the definition of ‘individual causal effect’, ICE, in Rubin’s causal model.
Thus, although the formalisations of causality are different, SCE in Dawid’s
decision-theoretic framework can be regarded as a generalisation of ICE in Rubin’s
causal model.

We can easily prove that, for any covariate X, ACE = E(SCEy), where the
expectation may be taken in any regime. Since by Property 1,

Eﬂ{Ez(Y | X)} = Et{Et(Y | X)} = Et(Y),

for t = 0, 1. Thus by subtraction, ACE = E;(SCEy) for any regime f = 0,1,0
and therefore the subscript f can be dropped. Hence, ACE is identifiable from
observational data so long as SCEy is identifiable from observational data. If X
is a strongly sufficient covariate, by Theorem 1, E,(Y | X) is identifiable from
the observational regime. It follows that SCE can be estimated from data purely
collected in the observational regime. Then ACE expressed as
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ACE = E4(SCEy) (3.12)

is identifiable, from the observational joint distribution of (X, T, Y). Formula (3.12)
is Pearl’s ‘back-door formula’ [17] because by the property of modularity, P(X) is
the same with or without intervention on 7" and thus can be taken as the distribution
of X in the observational regime.

3.3 Dimension Reduction of Strongly Sufficient Covariate

Suppose X is a multi-dimensional strongly sufficient covariate. The adjustment
process might be simplified if we could replace X by some reduced variable V < X,
with fewer dimensions—so long as V is itself a strongly sufficient covariate. Now
since V is a function of X, Properties 1 and 3 will automatically hold for V. We thus
only need to ensure that V satisfies Property 2: that is,

YALF|(V, T). (3.13)

Since two arrows initiate from X in Fig.3.1, possible reductions may be
naturally considered, on the pathways from X to 7, and from X to Y. Indeed, the
following theorem gives two alternative sufficient conditions for (3.13) to hold.
However, (3.13) can still hold without these conditions.

Theorem 2. Suppose X is a strongly sufficient covariate and V <X X. Then V is a
strongly sufficient covariate if either of the following conditions is satisfied:

(a) Response-sufficient reduction:
YUX|(V,Fr =1), (3.14)
or
YUX|(V,T,Fr = 9), (3.15)

fort = 0,1. It is indicated in (3.14) that, in each interventional regime, X
contributes nothing towards predicting Y once we know V. In other words,
as long as V is observed, X need not be observed to make inference on Y.
While (3.15) implies that in the observational regime, knowing X is of no value
of predicting Y if V and T are known.

(b) Treatment-sufficient reduction:

TALX|(V, Fr = ). (3.16)

That is, in the observational regime, treatment does not depend on X condition-
ing on the information of V.



3 Sufficient Covariate, Propensity Variable and Doubly Robust Estimation 57

Fig. 3.2 Treatment sufficient
reduction

y
| Fr } U‘T‘ Y
Fig. 3.3 Response sufficient
reduction
Fr @ Y

Both of the two reductions in Theorem 2 were proved in [9]. An alternative proof
of (b) can be implemented graphically [9], which results in a DAG as Fig.3.2* off
which (3.16) and (3.13) can be directly read.

A graphical approach to (a) does not work since Property 3 is required. However,
while not serving as a proof, Fig.3.3 conveniently embodies the conditional
independencies Properties 1, 2 and the trivial property VILT|(X, Fr), as well
as (3.13).

4 Propensity Analysis

Here we further discuss the treatment-sufficient reduction, which does not involve
the response. This brings in the concept of propensity variable: a minimal treatment-
sufficient covariate, for which we investigate the unbiasedness and precision of
the estimator of ACE. Also the asymptotic precision of the estimated ACE, as
well as the variation of the estimate from the actual data, will be analysed. In a
simple normal linear model that applied for covariate adjustment, two cases are
considered: homoscedasticity and heteroscedasticity. A non-parametric approach—
subclassification will also be conducted, for different covariance matrices of X of
the two treatment arms. The estimated ACE obtained by adjusting for multivariate X
and by adjusting for a scalar propensity variable will then be compared theoretically
and through simulations [9].

3The hollow arrow head, pointing from X to V, is used to emphasise that V is a function of X.
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4.1 Propensity Score and Propensity Variable

The propensity score (PS), first introduced by Rosenbaum and Rubin, is a balancing
score [19]. Regarded as a useful tool to reduce bias and increase precision, it is a
very popular approach to causal effect estimation. PS matching (or subclassification)
method, widely used in various research fields, exploits the property of conditional
(within-stratum) exchangeability, whereby individuals with the same value of PS
(or belonging to a group with similar values of PS) are taken as comparable or
exchangeable. We will, however, mainly focus on the application of PS within a
linear regression. The definitions of the balancing score and PS given below are
borrowed from [19].

Definition 6. A balancing score b(X) is a function of X such that, in the obser-
vational regime,* the conditional distribution of X given b(X) is the same for both
treatment groups. That is,

XALT|(b(X), Fr = 9).

It has been shown that adjusting for a balancing score rather than X results in
unbiased estimate of ACE, with the assumption of strongly ignorable treatment
assignment [19]. One can trivially choose b(X) = X, but it is more constructive
to find a balancing score to be a many to one function.

Definition 7. The propensity score, denoted by I1, is the probability of being
assigned to the treatment group given X in the observational regime:

T :=Py(T =1|X).

We shall use the symbol 7 to denote a particular realisation of I71. By (3.16)
and Definitions 6 and 7, we assert that PS is the coarsest balancing score. For a
subject i, PS is assumed to be positive, i.e., 0 < m; < 1. Those with the same
value of PS are equally likely to be allocated to the treatment group (or equivalently,
to the control group), which provides observational studies with the randomised-
experiment-like property based on measured X. This is because the characteristics
of the two groups with the same or similar PS are ‘balanced’. Therefore, the scalar
PS serves as a proxy of multi-dimensional variable X, and thus, it is sufficient to
adjust for the former instead of the latter. In observational studies, PS is generally
unknown because we do not know exactly which components of X have impact on
T and how the treatment is associated with them. However, we can estimate PS from
the observational data.

“Rosenbaum and Rubin do not define the balancing score and the PS explicitly for observational
studies, although they do aim to apply the PS approach in such studies.
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PS analysis for causal inference is based on a sequence of two stages:

Stage 1: PS Estimation. It is estimated by the observed T and X, and normally
by a logistic regression of T on X for binary treatment. Note that the response Y
is irrelevant at this stage. Because we can estimate PS without observing Y, there
is no harm in finding an ‘optimal’ regression model of T on X by repeated trials.
Stage 2: Adjusting for PS. Various adjustment approaches have been developed,
e.g., linear regression. If we are unclear about the conditional distribution of Y
given T and PS, non-parametric adjustment such as matching or subclassification
could be applied instead.

Although two alternatives for dimension reductions have been provided, in
practice, this type of reduction may be more convenient in many cases. For example,
certain values of the response may occur rarely and only after long observation
periods after treatment. In addition, it may sometimes be tricky to determine a
‘correct’ form for a regression model of Y on X, T and Fr. Swapping the positions
of X and T, Eq. (3.16) can be re-expressed as

XALT|(V, Fr = 0), (3.17)

which states that the observational distribution of X given V is the same for both
treatment arms. That is to say, V is a balancing score for X.

The treatment-sufficient condition (b) can be equivalently interpreted as follows.
Consider the family 2 = {Qy, Q;} consisting of observational distributions of X
for the two groups 7 = 0 and T = 1. Then Eq. (3.16), re-expressed as (3.17),
says that V is a sufficient statistic (in the usual Fisherian sense [8]) for this family.
In particular, a minimal treatment-sufficient reduction is obtained as a minimal
sufficient statistic for 2: i.e., any variable almost surely equal to a one-one function
of the likelihood ratio statistic A := ¢q1(X)/qo(X), where ¢;(-) is a version of the
density of Q;.

Definition 8. A propensity variable is a minimal treatment-sufficient covariate, or
a one—one function of the likelihood ratio statistic A.

The concept of a propensity variable is derived from PS which is related to A in
the following way:

OI=Py(T=1|X)=60A/(1-06+0A), (3.18)

where 0 < 6 := Pyg(T = 1) < 1 by Property 3.
It is entirely possible, from the above discussion, that a different propensity
variable will be obtained if we start from a different strongly sufficient covariate.
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4.2 Normal Linear Model (Homoscedasticity)

The above theory will be illustrated by a simple example under linear-normal
homoscedastic parametric assumptions.

4.2.1 Model Construction

Suppose we have a scalar response variable Y, and a (p x 1) strongly sufficient
covariate X that satisfies Properties 1-3. Let the conditional distribution of Y given
(X, T, Fr) be specified as

Y| (X.T.Fr) ~ A (d+ 8T + V'X. ), (3.19)

where the symbol ~ stands for ‘is distributed as’ and the symbol .#" stands for
normal distribution, with parameters d and § (scalar), b (p x 1) and ¢ (scalar). Note
that here and in the following models, we assume no interactions between variables
in X although interactions can be formally dealt with via dummy variables. Suppose
X is a strongly sufficient covariate, then the coefficient § of T in (3.19) is the average
causal effect ACE, which can be easily proved as follows:

ACE = E(SCEy) = E{E\ (Y | X)} — E{Eo(¥ | X)}
=E(d+6§+bX)—E(d+bX)=§ by (3.19).

It is readily seen that the specific causal effect SCEy is a constant and equals §.
From (3.19), the linear predictor LP := b'X satisfies the conditional indepen-
dence properties in Condition (a) of Theorem 2. Thus, LP is a response-sufficient
reduction of X, and E(Y | LP,T) = d 4 6T + LP, with coefficient § of T that does
not depend on the regime by virtue of the sufficiency condition.
Now assume that our model for the observational distribution of (7, X) is as
follows:

Pg(T=1) =10 (3.20)

X|(T.Fr =9) ~ AN (ur. X) (3.21)

with parameters 6 € (0, 1), uo(p x 1), i1 (p x 1), and covariance matrix X (p X p,
positive definite, identical in the two treatment groups). The corresponding marginal
distribution of X is a multivariate normal mixture

X|Fr=0~0=0)4 (o, X))+ 0N (1, %), (3.22)

in the observational regime, and because we have assumed Property 1 to hold, also
in the interventional regime. The observational distribution of 7T given X is given
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by (3.18), with

log A = log{Py(X | T = 1)} — log{Py(X | T = 0)}

= —%(MEE"M — uoX ™" o) + LD, (3.23)
where
LD := y'X, (3.24)
with
y =27 (1 — o) (3.25)

LD is Fisher’s linear discriminant [15], best separating the pair of multivariate
normal observational distributions for X |7 =0and X | T = 1.

Suppose V is a linear sufficient covariate—a linear function of X that is itself
a sufficient covariate. We have proved that the coefficient of T in the observational
linear regression of Y on T and V is § [9]. From (3.23) we see that LD is a propensity
variable which is a linear strongly sufficient covariate. We deduce that under the
given distributions, the coefficient of T in the observational regression of ¥ on T
and LD is 6.

Theorem 3. The coefficient of T in the linear regression of Y on (T, LD) is the same
as that in the linear regression of Y on (T, X).

Theorem 3 states that it is algebraically true that X and Fisher’s linear discriminant
LD generate identical coefficient of T in linear regressions, which does not have a
direct link to the regimes and causality whatsoever. In our linear normal model, § is
interpreted as ACE and can be identified from the observational data simply because
we have assumed that X is a strongly sufficient covariate. Applying Theorem 3 to the
empirical distribution of (¥, T, X) from a sample, we deduce Corollary 1 as follows.

Corollary 1. Suppose we have data on (Y, T, X) for a sample of individuals. Let
LD* be the sample linear discriminant for T based on X. Then the coefficient of T
in the sample linear regression of Y on T and LD* is the same as that in the sample
linear regression of Y on T and X.

Rosenbaum and Rubin [19, Sect. 3.4] also give this result with a brief non-causal
argument: whenever the sample dispersion matrix is used in both the form of LD
and regression adjustment, the estimated coefficient of 7' must be the same.

As discussed [9], here is a paradox: we regard adjustment for the propensity
variable as an adjustment for the treatment assignment process, by regressing Y on T
and the estimated propensity variable LD*. However, from the result of Corollary 1,
it appears that what we actually adjust for is the full set of covariates X, which makes
the treatment assignment process completely irrelevant.
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4.2.2 Precision in Propensity Analysis

One might intuitively think that the precision of the estimated ACE would be
improved if we were to adjust for a scalar variable—the sample-based propensity
variable LD*, rather than p-dimensional variable X. However, Corollary 1 tells us
that adjusting for LD* does not increase the precision of our estimator. In fact,
whether one adjusts for LD* and for all the p predictors makes absolutely no
difference to our estimate, and thus, to its precision. Similar conclusions have been
drawn in [10, 28, 30]. Our intuition is that the increased precision obtained by
regressing on V is offset by the overfitting error involved in selecting V.

Previous evidence [11, 18, 25] supports the claim that the estimated propensity
variable outperforms the true propensity variable. That is, adjusting for the former
yields higher precision of the estimated ACE than the latter. These two types of
adjustment correspond to regressing Y on (7', LD) and on (7, LD*) in our model and
both provide an unbiased estimator of ACE. The claim obviously cannot be always
valid by simply considering a special case: LD = LP, because by Corollary 1,
regressing on LD* is the same as adjusting for LP*, which by the Gauss—Markov
theorem will be less precise than regressing on the true linear predictor LP (or
equivalently LD). Nevertheless, the claim is likely to hold when LD is not highly
correlated with LP because LD is a less precise response predictor.

4.2.3 Asymptotic Variance Analysis

To gain a closer insight into the variance of the estimated ACE, by adjusting for
the true propensity variable PV (if known) and the estimated propensity variable
EPV, we consider a toy example in which the parameters in (3.19)—(3.21) are set as
follows:

p=2 PyT=1)=0€(01), b=(bb),
the covariance matrix X' is diagonal with identical entries t, and
EX,|T=1)=EX; | T=0) =E(X) (3.20)
By the setting of X', we see that
X UX, |T. (3.27)
It is also clear that the true PV is just X;, by minimal treatment-sufficient
reduction and related Egs. (3.23)—(3.25). The conditions according to our model
setting are expressed by a DAG as shown in Fig. 3.4.

In practice, all the parameters are unknown, and consequently the exact form
of PV is not known. What one would normally do is adjust for the whole set
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Fig. 3.4 Propensity variable @ @
X, and response predictor
X = (X1.X)

N
Fr @ Y

of the observed X, which is equivalent to adjusting for LD* (or EPV) in the
linear regression approach by Corollary 1. In particular, two linear regressions are
considered as follows:

My: Y on (T, X),
M;: Y on (T, Xy).

Then the design matrix is (1, T, X;, X»)’ for My and (1, T,X,)" for M;. Let ,EA;O
and By, , respectively, be the least square estimators of the parameters in M, and
M. The asymptotic variance of By, for sample size n is then given as

—  A'var(Y | T.X) A7l¢
Var.a.vy(/SMg) = » = n

where

1 6  EX) EX)
0 6  E(TX)) E(TX»)
E(X,) E(TX,) E(X,*) E(Xi1X2)
E(X,) E(TX>) E(X1X2) E(X2?)

By solving A™! and extract the (2, 2)th element which is variance multiplier of

the coefficient of T, we have that

(WX1X1 WX2X2 — WX1X22)¢

Var s, (81,) =
P 001 = 0) (Vi Vioxs — Vi)

3

where

Wxx, = E(X1X2) — E(X1)E(Xz) = Cov(X, X>),

Viix, = E(X1X2) —0EX, | T=DEXz | T=1)
—(1-0)EX; |T=0EMX, | T =0),

Wxx, = E(X1%) = [B(X)] = Var(X,),

Wi,x, = E(X2%) = [B(X2)] = Var(Xy),
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and
Viixi = B(X0%) —0[EX | T = D — (1 = O)[E(X, | T = 0),
Viox, = B(X2?) = 0[E(X> | T = DI — (1 = O)[E(X> | T = 0)]*.
By (3.26),
Viox, = Var(Xa) = Wyyx,
and

VX[XZ = COV(X15X2) = WX]Xzs
where, by (3.27),

COV(X],XZ) = E{COV(X] | T, X2 | T)} + COV{E(X] | T),E(Xz | T)} =0.

Hence,
Var a5y (831,) = B = Q[E(Xl¢|V;r(=Xll))gz[n_9((ll__9(9))][E(X1 o O
For My, by (3.27),
w%aﬂhzam¥%harwmqnx>
= n@(lvixﬁ {¢ + b*Var(Xy | T, X))}
(6 + by20)Var(X,)/[n(1 — 0)] 529

T E(X ) —O0EX, [T =DP—(1-0)EX |T=0p

Comparing (3.28) and (3.29), we have that Var_asy(gﬂ;o) < Var.wy(S/A;1 ) unless X,
is random noise rather than the linear predictor, i.e., b = 0 which equalises the two
asymptotic variances.

Lemma 3. Under the given distributional assumptions (3.19)—(3.21), suppose the
propensity variable LD is not the same as the linear predictor LP, and LD is
independent of variables that are merely response predictors. Then the asymptotic
variance of the estimated ACE from the linear regression by adjusting for the
estimated propensity variable LD* is more precise than that by adjusting for the
population propensity variable LD.
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4.2.4 Simulations

Simulations are carried out for numerical illustration. Suppose we have the follow-
ing true values for the parameters in (3.19)-(3.21): p = 2,d = 0,6 = 0.5,b =
0,1),¢ =1,06 =0.5, u; = (1,0), uo = (0,0), ¥ = b.

Then the population linear predictor is LP = X,, with

1
Y | (X’ Ts FT) ~ '/V(ET +XZs 1)7

while the population linear discriminant LD = X; which is not predictive to Y.
Since for any regime f = 0, 1, @,

1
E/(Y | X1.T) =BAE,(Y | X, T) [ X,, T} = ET
and
Varg(Y | X1, T) = Eg{Vary(Y | X, T) | X;, T} + Var{E,(Y | X, T) | X;, T} = 2.

The conditional distribution of Y given (Xi, T), for any regime, is then given by
1
Y| (X, T,Fr) ~ ,/V(ET, 2).

To investigate the performance of the population-based as well as sample-based
LP and PV, we now consider four linear regression models:

My: YonT and X (X = (X1, X3)),
Mi:YonT and X;,
M,:YonT and X,

M3: Y on T and LD*,

where M is the full model with all parameters unknown. In M, by setting b, = 0,
the true linear discriminant LD = X is fitted. While fitting the true linear predictor
LP = X,, equivalent to setting b; = 0, we get M,. Note that all these models are
‘true’. For M the true value of b, is 0, and the true residual variance is 2, as against
1 for My and M,. Finally, for any dataset with no information of parameters, we
construct the estimated propensity variable LD*, and then fit the model M3.

In each model My, for k = 0, 1, 2, 3, the least-squares estimator S,\( is unbiased
for § = 0.5. By the Gauss—Markov theorem and Corollary 1,

Var(§y) = Var(8;) = Var(5,).
Asymptotically, we have that Var.asy(&) = Var.asy((g) = 5/n, Var.asy((g) =

4/n, and Var.asy(g; ) = 10/n. It is indeed asymptotically less precise to adjust for
PV than for its estimate in our model, which is in accordance with Lemma 3.
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Linear regression (homoscedasticity) [200 datasets]

MO: Y on (T, X=(X1, X2))) M1: Y on (T, LD=X1)
809 mean= 05006 80 7 mean= 05454
sd= 0.582 sd = 0.8006
60 mse = 0.3387 60 mse = 0.643
40 40
20 20
0 0
T T T T 1 T T T T 1
-2 -1 0 1 2 -2 -1 0 1 2
M3: Y on (T, LD¥) M2: Y on (T, LP=X2)
809 mean= 05006 80 9 mean = 04743
sd= 0.582 sd= 0.501
60 mse = 0.3387 60 mse = 0.2517
40 40
20 20
0 0
T T T T 1 T T T T 1
-2 -1 0 1 2 -2 -1 0 1 2

Fig. 3.5 Estimates of ACE by regression on (clockwise): / X; and X,. 2 Population linear
discriminant (propensity variable) X;. 3 Population linear predictor X,. 4 Estimated linear
discriminant (propensity variable) LD*

For the sample analysis, 200 simulated datasets are generated, each of size
n = 20. Shown in Fig. 3.5 are the empirical distributions of 3;: for all four models.
Unsurprisingly, in terms of precision (from high to low), first comes the LP; next
is the estimated propensity variable LD* (or the estimated linear predictor LP*), or
equivalently, X (= (X1, X»)); and last comes the true propensity variable LD = Xj.

4.3 Normal Linear Model (Heteroscedasticity)

Investigation in the homoscedasticity case is simple because PV is equivalent to
LD, where linearity makes analysis straightforward. If covariance matrices of the
conditional distribution of X for the two treatment groups are not identical, it turns
out that adjusting for PV is not appropriate.

Suppose now that, keeping all other distributional assumptions of Sect.4.2
unchanged, (3.21) is re-specified as

X | (T,Fr = @) ~ A (ur, Zr)

with different covariance matrices Xy and X' for T = 0 and T = 1. The distribution
of X in all regimes then becomes

X | Fr~ (1 =0) A (o, o) + 0 A (1, 2).
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Accordingly,
logA =c+ QD

where
c= —% {log(det X1) — log(det Zo) + ) puy — g Zg " o}
and
QD = (71 — %5 o) X — %X/ =z -z x (3.30)

QD is the quadratic discriminant including a linear term and a quadratic term of
X, distinguishing the observational distributions of X given 7' = 0, 1. We see that
QD is a minimal treatment-sufficient covariate, and thus a PV but no longer a linear
function of X.

Because of the balancing property of PS (or PV), it now follows that ACE =
E(SCEQD), with

SCEqp = Ei(Y | QD) — Eo(Y | QD).

Since QD is quadratic in X, Y is no longer linear in QD, the coefficient of 7 by
adjusting for PV (= QD) in the linear regression does not provide exact ACE.
However, as computation of the expectations in the above formula is non-trivial,
one might wish to replace Eg(Y | T, QD) by the linear regression of Y on (7, QD),
and approximate the estimated ACE. Alternatively, one can take non-parametric
approaches such as matching or subclassification on QD [20]. A number of papers
on various matching approaches for causal effects have been collected in [24]. More
recently, statistical software becomes available for multivariate and PS matching in
R [27].

Now we discuss subclassifications and linear regressions based on QD, compared
to linear regressions based on LP and LD. The linear discriminant is again in the
form

LD = (1 — o) 27'X,

but with ¥ = (1 — 0)X, + 0%, the sum of the weighted dispersion matrices of
the two treatment groups. From the formulae of QD and LD, we conclude that it
is LD that comprises all variables with expectations depending on 7. In a DAG
representation of this scenario, each of such variables must have an arrow pointing
to 7. However, the genuine PV (= QD) may depend on all the components of
X, according to its quadratic term in (3.30). Only with homoscedasticity, PV is
equivalent to LD and includes all variables associated with 7.
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Although LD is not a sufficient covariate here, Theorem 3 still applies. It enables
us to identify ACE from the linear regression of Y on (7', LD), which is equivalent
to the linear regression of Y on (7, X). However, other authors claim that only if
LD is highly correlated with PS, adjustment for LD works well in regressions [19].
This may attribute to different scenarios considered, i.e., in our model Y is linearly
related to X while non-linear in X in theirs.

4.3.1 Simulations

Simulated data is based on the above model, with the parameters: p = 20, d = 0,
§=050=05b=(0,1,...,0), o= (0,...,0) and u; = (0.5,0,0,...,0).
Also, X is set, diagonally, to 0.8 for the first ten entries and to 1.3 for the remaining
entries, and X'; the identity matrix.

We then have, for the population, that

5
LD = >X,,
9
1 110 320
PV=QD=-X,+-% xX2— =3 x2,
Q 2]+8;l 262'

j=11

and LP = X,. By estimating o and |, Xy and ¥ from observed data, we can
compute sample-based LD* and QD™.

The results from 200 simulated datasets, each of size 500, are given in Fig. 3.6.
The first three plots (clockwise) are from the linear regressions of Y on, respectively
(T.X5), (T,LD), and (T, QD). The last plot is the result of subclassification on PV
(= QD). That is, 500 observations are divided into 5 subclasses with equal number
of observations in each, based on the values of QD. Within each subclass, units from
the two treatment groups are roughly comparable such that the average difference
of the response may be interpreted as the estimated SCE. Then ACE is estimated by
summing over SCEs, each weighted by 1/5. Note that the sample size has increased,
since we must have at least one observation for each treatment in each subclass.

Since LD and QD are practically unknown, they need be estimated from the
observed data. Also, we do not know exactly the response predictors or the
confounders, full set of the observed X may have to be used for analysis.

Figure 3.7 gives the results from the same 200 datasets as above. Again, the first
three plots are the results of linear regressions of Y, but on, respectively, (7, X),
(T,LD*), and (T, QD*), where LD* and QD™ are the sample linear and quadratic
discriminants. Shown in the last plot is the result of subclassification on EPV
( = QD™). Unsurprisingly, by comparing the mean, standard deviation and mean
squared error of the estimated ACE, regression of Y on (T, LP = X5) comes the best
among all eight approaches in Figs. 3.6 and 3.7. Regressing on (7, X) is no better
than regressing on (7, X;,) because all variables except X, in X are not predictors
but noise of Y. In confirmation of the theory in Sect.4.2.1, regressing on LD*,
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Linear regression and subclassification (heteroscedasticity) [200 datasets]
Regression on LP=X2 Regression on LD=5/9X1

80 mean = 0.4937 80 mean = 0.5001
sd = 0.0938 sd= 0.1374
mse = 0.0088

se = 0.0189

60

40 4

20

F

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Subclassification on QD Regression on QD
80 7 mean= 04951 80 7 mean= 04963
sd = 0.1498 sd= 0.1483
60 mse = 0.0225 60 mse = 0.022
40
20
o

00 02 04 06 08 10 00 02 04 06 08 10
Fig. 3.6 Estimates of ACE by four different methods (clockwise): / Regression on population

linear predictor LP = X,. 2 Regression on population linear discriminant LD = gX 1. 3 Regression
on population quadratic discriminant (propensity variable) QD. 4 Subclassification on QD

Linear regression and subclassification (heteroscedasticity, sample) [200 datasets]

Regression on X Regression on LD*
80 mean = 0.4945 80 mean = 0.4945
sd = 0.0998 sd = 0.0998
60 mse = 0.01 60 mse = 0.01
40 40
20 20
0 0
T T T T T 1 T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Subclassification on QD* Regression on QD*
80 mean = 0.4885 80 mean = 0.4992
sd= 0.1959 sd = 0.1336
60 mse = 0.0385 60 mse = 0.0178
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20 20

:
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.7 Estimates of ACE by four different methods (clockwise): / Regression on sufficient
covariate X. 2 Regression on sample linear discriminant LD*. 3 Regression on sample quadratic
discriminant (propensity variable) QD™*. 4 Subclassification on QD™
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rather than on X, has absolutely no effect on the estimated ACE. LD* outperforms
LD because the latter does not contain the response predictor. Regressions on LD,
QD, and on QD* are roughly equal, because apart from X;, the distributions of the
remaining 19 variables are identical, with rather small multipliers. Thus, the two
quadratic terms in QD are roughly the same, and QD = %X 1 works approximately
as a function of a single variable X;. Last comes subclassification on the quadratic
PV, particularly when it is estimated.

4.4 Propensity Analysis in Logistic Regression

As already investigated, propensity analysis in linear regression is fairly straightfor-
ward. In many cases, however, response Y is not linear in X. We know that despite
its name, generalised linear model (GLM) is not a linear model, because it is a
non-linear function of the response that is linearly related to its predictors. Logistic
regression is widely applied as a type of GLM if the response is binary. For example,
doctors often record the outcome of a surgery on a patient as either ‘cured’ or ‘not
cured’. Next, a logistic model is used in our illustrative study.

4.4.1 Model Construction

For simplicity, suppose that ¥, T(1 x 1) and X(p x 1) are all binary and components
of X are mutually independent, The joint distribution of (Fr, X, T, Y) is constructed
as follows:

X | Fr ~ Ber(w) (3.31)
logit{Py(T | X)} = c + d'X (3.32)
logit{P;(Y | T.X)} = d + 6T + b'X, (3.33)

forf = 0,1,0; and 7 is (p x 1). Property 3 and P;(Y = 1 | T,X) € (0,1) are
required such that (3.32) and (3.33) are well defined.
It is immediately seen that X is a strongly sufficient covariate and

ACE = Ep{E|(Y | X)} — Eg{Eo(Y | X)}

=Ep{Pg(Y | T = 1,X)} —Ep{Py(Y | T = 0.X)}

1 1
711 F e @Ht0X) T |y @+ (-

If the parameters are set as follows:

p=3, m=(m.mm), a=(a1.a2,0), b=(0,byb3), (3.34)
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model

Fig. 3.8 DAG for the logistic @ , @

G ]

then the response predictor is b,X, + b3X3 and PV = a1X; + axX,. Figure 3.8
depicts the relationships of the variables in our model. Then we have that

IOglt{P(Y | T,Xz,X3)} = lOglt{P(Y | T,X)} =d+ 6T + bX, + b3 X3,
and

PY=1|T.X.X) =P(Y =1|T.X,)

1
- E{ 1 + e_(d+8T+h2X2+b3X3) | T7 X2}

_ T3 1-— 3
- 14+ e—(d+8T+b2X>+b3) + 14+ e—(d+8T+brX7)

which does not depend on X;. And we have that

1 1
ACE = mms { 1+ e @tothatts) 1+ e—(d+b2+b3)}

1 1
+ (1 — mp) 73 { |+ e @tothy) 1+ e—(d+h3)§

1 1
+ m(l —m) { | + e—@+othy 1 + e—(d+h2)§

1 1
+(1_”2)(1_”3)%1+e—<d+8>_1+e—d}’ (3.35)

which is determined by d, 8, b, b3, 7, and 7r3. This extremely simple example, with
only three components of X that are all binary, already results in a complicated form
for ACE, which would be even worse for high dimensional X and various types of
variables. Next, instead of simulation, we conduct propensity analysis on real data.

4.4.2 Propensity Analysis of Custodial Sanctions Study

We illustrate the method with the aid of a study involving 511 subjects sentenced
to prison in 1980 by the California Superior Court, and 511 offenders sentenced
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to probation following conviction for certain felonies [2]. These probationers were
matched to the prisoners on county of conviction, condition offence type and risk
of imprisonment quantitative index, so as to bring into the final sample the most
serious offenders on probation and the least serious offenders sentenced to prison.
The structure of this study corresponds to the (partially matched) case—control
design. In fact, this is analogous to the regression discontinuity designs where only
observations near the cut-off of the risk score are included for causal effect analysis
[13]. We were to compare the average causal effect of judicial sanction (probation
or prison) on the probability of re-offence. We specify variables as follows.

e Treatment 7" taking values O (probation) and 1 (prison);

* Response Y: occurrence of recidivism (re-offence);

* Pre-treatment variable X: including 17 carefully selected non-collinear variables
that we can reasonably assume to make X a strongly sufficient covariate.

Simple random multiple imputation by bootstrapping (R package: mi) was
applied to deal with missing data. We then considered two logistic regressions for
the imputed data:

1. Y on (T, X), where X includes all the 17 variables.
2. Y on (T, EPS), where EPS is the propensity score estimated from the logistic
regression of T on all the 17 variables. In selecting these variables, we took

Prison
0
1

Density

Estimated propensity score

Fig. 3.9 Distribution density comparison of the estimated propensity score: prison vs. probation
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Table 3.1 Coefficients of judicial sanction (‘prison’ with
respect to ‘probation’) from logistic regressions: 1. Y on
(T,X);2.Y on (T, EPS)

Regression Coefficient | Standard error | p-value
Y on (T, X) —0.1631 0.1579 0.3014
Y on (T, EPS) |—0.1713 0.1503 0.2545

advantage of the possibility of trying various sets of covariates in the model,
without inflating the type I error since these regressions do not involve the
response information. The distribution densities of the two treatment groups are
shown in Fig. 3.9, where we see a large overlapping area.

Shown in Table 3.1 are the results. In this case, regression on the full set of
X and on the estimated PS makes little difference, since the summary statistics
from the two approaches are quite similar. Although the negative values of both the
coefficients imply reduced re-offence for the imprisonment, they are not statistically
significant.

5 Double Robustness

Since the underlying response regression model (RRM): Y | (X,T,Fr = @) and
the propensity model (PM): T | (X, Fr = @) are most likely unknown, one may
specify parametric models based on previous experience. Moreover, as discussed
in Sect.3.3, a strongly sufficient covariate can be reduced by two alternative
approaches from specified models, which enables estimating ACE by either method
as follows:

1. Adjustment for response predictors from correctly specified RRM;

2. Adjustment for a PV (or PS) from correctly specified PM, either in response
regression (if RRM is correctly specified), or otherwise, by non-parametric
approaches, e.g., matching.

Due to lack of knowledge, it may well be that at least one model is misspecified.
Little could be done if both models are wrong. Thus, our interest is to find a single
estimator that produces a good estimate, given that at least one model is correct.

ACE is normally estimated from the observed data. Suppose there are n
individuals in an observational study. Observations (x;,#;,y;), where i = 1,..,n,
are generated from the joint distribution of (X;, T}, Y;) that are independent and
identically distributed. The estimation of the ACE requires estimates of the expected
response for both treatment groups assigned by intervention. We have already
demonstrated that, within the decision-theoretic framework, ACE is identifiable
from pure observational data if X is a strongly sufficient covariate. Here, X is again
assumed to be strongly sufficient and thus satisfies Properties 1-3.
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5.1 Augmented Inverse Probability Weighted Estimator

To construct the augmented inverse probability weighted (AIPW) estimator, we
discuss two scenarios:

¢ Correct RRM: Suppose that we know the RRM. For convenience, we write
E:(Y) as u;, so

we = Eg[Eg(Y | X, T = 1)] (3.36)

since X is strongly sufficient. Hence, in observational studies, Eg(Y | X, T = 1)
is an unbiased estimator of w,, for t = 0, 1. Consequently, Eg(Y | X, T = 1) —
Eg(Y | X, T = 0) is an unbiased estimator of ACE.

* Correct PM: Consider that the PM is correct, i.e., m(X) = Pg(T =1 | X).

Lemma 4. Suppose that the propensity model is correct and that X is a strongly
sufficient covariate. Then

ACE = Eg ) - —E -7, 3.37
‘”{ (X)§ ”{1_—7@} 43D

where Eg {%Y} = w1 and Eg {#(TX)Y} = Wo.
Proof.

Eo {n(z;oy} {E”( o )}ZE‘”{ (1X>E”(TY'X)%

ZEQ){—E@(Y|X T=1)Py(T=1 |X)}

(X)
=Eg{Eg(Y | X. T = 1)} = i by (3.36).
It automatically follows that Eg {1 1H(TX) Y} = o. By Lemma 4, we see that, under
the observational regime, — Y and = Y are unbiased estimators of p; and po,
respectively.

One may have noticed that the two terms for ACE in (3.37) are similar with
the Horvitz—Thompson (HT) estimator for sample surveys [12]. They are, however,
different in various aspects. The aim of HT estimator is to estimate the mean of a
finite population Y1, ..., Yy, denoted by 1 = N~! vaz 1 Y, from a stratified sample
of size n drawn without replacement. Fori = 1,..., N, let A, be the binary sampling
indicator (A; = 1: unit 7 is in sample; O: unit i is not in sample), and 7; be the
probability that unit i being drawn in the sample. Then HT estimator is given by

N A,
far=N"') —V. (3.38)

i=1
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where m; is pre-specified, and thus known in a sample survey design. But the
propensity model 7(X) in (3.37) is normally unknown. Moreover, HT estimator
is applied to estimate the mean of a finite population, while ACE is used to
estimate the mean of a superpopulation.’ HT estimator depends on pre-specified
sampling scheme, but observations involved in ACE are generated from, and thus
are dependent on, the joint distribution of (X, 7, Y) in the observational regime.
Nevertheless, both HT estimator and ACE are formed by means of the inverse
probability weights 1/7; or 1/7(X). In fact, HT estimator is also termed the inverse
probability weighted (IPW) estimator.

Sample surveys are closely related to missing data because the information is
missing for those not sampled. So IPW estimator is frequently used in missing data
models in the presence of partially observed response [1, 3, 14]. As counterfactuals
are also regarded as missing data, IPW estimator can be used in the potential
response framework with half observed information, to make causal inference of
treatment effect under the assumptions of ‘strongly ignorable treatment assign-
ment’: (Y(0), Y(1))1LT | X and ‘no unobserved confounders’ [1, 29].

5.1.1 Augmented Inverse Probability Weighted Estimator

From above discussion, there exists an unbiased estimator of ACE if either RRM
or PM is correct. However, unknown RRM and PM makes it impossible to decide
whether they are correct. Nevertheless, the augmented inverse probability weighted
(AIPW) estimator can be constructed by combining the two models in the following
alternative forms:

Ay arpw = m(X) + L(Y— m(X))

w(X)
_ T Y 1 T X 3.39
s L L o
and similarly,
. 1-T
foarrw = m(X) + 1——n(X)(Y_ m(X))
N Sk S PO et S P 3.40

where m(-) and 7 (-) are arbitrary functions of X. As also indicated in its name,
[ arpw 18 the sum of the IPW estimator and an augmented term.

SIn causal system, finite number of individuals in a study is called ‘population’, which can be
regard as a sample from a larger ‘superpopulation’ of interest.
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Lemma 5. Suppose that X is a strongly sufficient covariate. The estimator [i; aipw
has the property of double robustness. That is, {1, aipw is an unbiased estimator of
the population mean given T = t by intervention, if either m(X) = pg(T = 1| X)
orm(X) =Eg(Y | X,T =1).

Proof. By similarity, we only give proof of [i; aipw. Consider the following two
scenarios:

Scenario 1: 7(X) = pg(T = 1 | X) and m(X) is an arbitrary function of X.

It is easily seen that [i; apw is unbiased, from the proof of Lemma 4. Since
conditional on X, the last term in (3.39) vanishes when we take expectation of
[L1.a1pw in the observational regime.

Scenario 2: m(X) = Eg(Y | X,T = 1) and 7 (X) is an arbitrary function of X.
By (3.39), we have that

B apw) = E [m(X) + %(Y _ m(X))}

—B(E0) | X+ E{E| - mox) | x|

w(X)
— E[m(0)] + E { E(TY | X) ;g(()X)E(T | X)}
= E[m(X)] = 11, by (3.36).

Indeed, if either 7(X) = pg(T = 1 | X) or m(X) = Eg(Y | X,T = 1), not
necessarily both, [i; arpw is unbiased. Consequently,

ACEapw = fL1,arpw — [Lo,APW-
Theorem 4. Suppose that X is a strongly sufficient covariate. Then the AIPW
estimator ACEapw is doubly robust.

To prove Theorem 4, we simply apply the fact that both (i1 apw and fig apw are
doubly robust, so is their difference.

5.2 Parametric Models

Suppose that we specify two parametric working models: the propensity working
model 7(X;«) and the response regression working model m(7T,X; ). Then
by (3.39) and (3.40), we have, for the estimated E; (Y) and Ey(Y), that

n

. _ T; T; A
fiapw =n""! {Z bs Xi§&)Yi * |:1 - JT(XiZOAl)i|m(LXi;'B)

i=1

(3.41)
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and
“ 1-T; 1-T; A
[ =n! — Y - — 0,X;; 342
Ho.arpw = 1 {; = 2(X:4) + |: =X 8) m( B (342
respectively. Therefore, by (3.41) and (3.42), we have that
A/C\EAIPW = L1.aPW — flo.APW
“ T; 1-T; .
-1 i i
= — Y, — T;, X;; (343

which is doubly robust, i.e., @Alpw is a consistent and asymptotically normal
estimator of ACE if either of the working models is correctly specified.

5.2.1 Discussion

Kang and Schafer [14] state that there are various ways to construct an estimator
which is doubly robust. In our view, they are essentially the same, i.e., it must
be in the same (or similar) form of AIPW estimator which is constructed by
combining RRM and PM. Other constructions proposed in [14] are just variations
of AIPW estimator. For example, in (3.38), instead of using N as denominator
for each unit, they use normalised weights Zf’zl % Such normalised weights are
especially useful for precision improvement in the case that subjects with very small
probabilities of being sampled are actually drawn from the population. Because if
N is used as the weight, these subjects will influence the estimated average response
enormously, and consequently, result in poor precision.

Kang and Schafer [14] have also investigated the precision performance of an
doubly robust estimator when both 7(X) and m(X) are moderately misspecified.
They state that ‘in at least some settings, two wrong models are not better than one’.
This seems obvious because the performance of this estimator will depend on the
degree of misspecification of both models. This can be easily analysed in theory but
far more complicated in practice, as one cannot have a good control of specifying
models 77(X) and m(X) based on limited observed data and previous experience (if
any). Therefore, it would be difficult to measure to what extent the specified models
are different from the true ones.

5.3 Precision of A/C\EAIPW
5.3.1 Known Propensity Score Model

We already see that A/CﬁEAlpw is an unbiased and doubly robust estimator of ACE.
Then how can we choose an arbitrary function m(X;) to minimise the variance of
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A/C\EAIPW given correct PM? Suppose that in an experiment, we know 7 (X;) =
P(T; = 1| X;). Then in terms of the variance, we have that

VaI(A/C\EAlpw)
_ ERS . 1-T -
= Var{n |:i:] (n(xi) T— 7T(Xi)) (Y; m(X,)):|
— 2 Var|: ¢ ( I, 1-T, )Y]
“\nX) 1-nx)) "
\Y (T 1-T X
| 4 (n(Xi) B 1—n(x,~>)’"( )

- T; 1-T; - T; 1-T;
e [ : (w05~ =we) * X (506~ 7w ’"(X")}

i=1

n

e m*(X;)
S o mA&)
Var(ACEyr) + E |:l=Z1 7(X)(1 — ﬂ(Xi))]

- m(Xi) i m(X;) (i — (i)
2E |:; X0 —-7X))  (1—n(X))? :|

= n_2

=2
- 7 (X)(1 — 7(X))

Var(A/'C\EHT) +E |:Z m2(Xi)

i=1

; Ll Mii — i
_2; { 7(X)(1 — 7(X;)) - (1- 7T(X,-))2} m(X,):|} )

where p1; = Eg(Y; | Xi, T; = 1) and u; = Ey(Y; | X;).
By minimising the quadratic function of m(X;) in the expectation, it follows that

m(X;) = [1 — 7 (X)]p1i + 7 (X;) poi
= [l —na(X)]Eg(Y; | X;, T; = 1) + n(X;))Ep(Y; | X;, T; = 0), (3.44)

which minimises the variance of A/C\EAIpw among all functions of X;. In fact, if
either 7 (X;) = pg(T; = 1 | X;) or (3.44) holds, A/aEAIpw is unbiased, and thus is
doubly robust.

Let m;(X;) and mo(X;) denote the regressions of Y on X; for the two treatment
groups in the observational regime. It is unnecessary to require that m;(X;) =
Eg(Y; | X;,T; = 1) and that my(X;) = Eg(Y; | X;,T; = 0). As long as m(X;) is
specified as the sum of the weighted expectations as in the form of (3.44), m(X;)
minimises the variance of the estimated ACE.
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Same result is obtained in [26] as (3.44), by minimising a weighted mean squared
error of m(X;). We now discuss an alternative approach provided in [26]. Let Y;
denote a weighted response in a form as follows:

~ 1 1
Y"ZH@“”*%”?“‘T”}Y'" G4

Then by (3.44), it follows that

n) = S B X1 = DR =11
; 1’_7(—%15@(& | Xi,T; = O)P(T = 0 | X)
BN, %) + Bl = T, X)
BN A
-l
= Eg(Y; | X)),

where m(X;) is obtained by simply regressing Y; on X;, rather than regressing Y;
on both X; and 7;. However, an obvious disadvantage of this approach is its low
precision. When individuals with the PS close to O are actually in the treatment
group and/or those with the PS close to 1 are actually assigned to the control group,
the weights 1/ (X;) or 1/(1 — n(X;)) of these units will be very large, which leads
to corresponding responses being highly influential, which is dangerous. In fact, it
may be even worse than the HT estimator as we will see next.

To show the difference of these approaches, we have implemented Monte Carlo
computations for four estimators of A/C\EAIPW:

1. by 3.44) withEg(Y; | X;, T; = 1) and Eg(Y; | X;, T; = 0) estimated by regressing
Yl' on (Xi, Tl)
2. by (3.44) withEg(Y; | X;, T; = 1) and Eg(Y; | X;, T; = 0) estimated by regressing
Y; on X; for the treatment group and control group separately.
. by Horvitz—Thompson approach, i.e. without covariate adjustment.
4. by regression of Y; on X;.

W

The results of simulated 100 datasets are shown in Fig.3.10. The first two
approaches give similar results. That is, we can estimate Eg(Y; | X;,7; = 1) and
Eg(Y; | X;,T; = 0) either simultaneously from the response regression on the
treatment and X, or separately from the response regression only on X for each of
the two groups. As expected, the last approach generates several extreme estimates
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Fig. 3.10 Precision of the Estimated ACE (100 datasets)
estimated ACE based on: (/)
specified model for

Ey(Y; | X;, T;); (2) specified 2~
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estimator; (4) regression of Y;
on X;

estimated ACE
-10 -5 0
1 1 1
\
2
S
3
3
3
b:
—

sep: mean=0.5176, sd=0.3632, mse= 0.1322

-15

y.tilde: mean=0.3096 , sd=3.2874, mse= 10.8436
ht: mean=0.5549 , sd=0.5506, mse= 0.3062
T T T T T T
0 20 40 60 80 100

relative to others, which makes its variance even much larger than that of the HT
estimator.
5.3.2 Known Response Regression Model

Suppose that Eg(Y; | X;, T; = 1) and Eg(Y; | X;, T; = 0) are both known but not the
PM. Then the AIPW estimator can be constructed as:

’

_ ! T; 1-T;
ACEppw = n" [ — — ’ ] (Y; — m(X;))
A { ; gX)  1—g(X))

where
mX;) =1 -gX)EW; | X, Ti = 1) + ¢XHEY: | Xi, T; = 0),

and g(X;) is an arbitrary function of X;.
So ACEapw is unbiased and its variance is computed as follows.

Var(ACEarpw)
N |:§ gX)  1—g(X) (Yi — m(X7))
o (ggf) 1 1—;&)) (¥ = [(1 = gX)pri + 8 X o)

i=1
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T;
—— Y — ) —

n _ Tl
2 (i = o) + s [—g(x)

i=1

Z(Hli — Moi)

i=1

= n"*Var

(Y - ,U«Oi)}

= n~Var

n : 1 — i
Var |:Z g(TTi)(Yi — M) — T&[)(Yi — [oi) | Xii|

i=1

> (i — o)

i=1

+n_2E

> n~*Var = Var(@RRM).

Hence, we conclude that, for each individual, if the conditional expectations of the
response given X; for both groups are known or correctly specified, then ACEpw
will be less precise than the estimated ACE from the response regressions.

5.3.3 Discussion

If the PM is known, then the variance of A/CﬁEAIPW is minimised when m(X;) is
specified as in (3.44)—where separate specification of m;(X;) and my(X;) is not
necessary. Rubin and van de Laan [26] have introduced a weighted response serving
as an alternative, but we have shown, by simulations, that it could result in large
variance of the estimated ACE and possibly larger than the HT estimator. In the
case that the RRM is correctly specified, i.e., m;(X;) = Eg(¥; | X;,T; = 1) and
mo(X;) = Eg(Y; | X;, T; = 0), then these two models rather than the AIPW estimator
should be used to estimate ACE for higher precision of the estimator.

6 Summary

In this chapter, we have addressed statistical causal inference using Dawid’s
decision-theoretic framework within which assumptions are, in principle, testable.
Throughout, the concept of sufficient covariate plays a crucial role. We have
investigated propensity analysis in a simple normal linear model, as well as in
logistic model, theoretically and by simulation. Adding weight to previous evidence
[10, 11, 18,28, 30], our results show that propensity analysis does little in improving
estimation of the treatment causal effect, either unbiasedness or precision. However,
as part of the augmented inverse probability weighted estimator that is doubly
robust, correct propensity score model helps provide unbiased average causal effect.
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Appendix: R Code of Simulations and Data Analysis

HEFHHHHHH
Figure 5: Linear regression (homoscedasticity)

1. Y on X;

2. Y on population linear discriminant / propensity variable LD;
3. Y on sample linear discriminant / propensity variable LD=;

4. Y on population linear predictor LP.

R R R R R R R
## set parameters

p <-2
delta <- 0.5
phi <- 1

n <- 20

alpha <- matrix(c(1,0), nrow=1)
sigma <- diag(l, nrow=p)
b <- matrix(c(0,1), nrow=p)

## create a function to compute ACE from four linear regressions
ps <- function(r) ({
# data for T, X and Y from the specified linear normal model

set.seed (r)
.Random. seed
t <- rbinom(n, 1, 0.5)

require (MASS)

m <- rep(0, p)

ex <- mvrnorm(n, mu=m, Sigma=sigma)
X <- t%x%alpha + ex

ey <- rnorm(n, mean=0, sd=sqgrt (phi)
y <- txdelta + x%*%b + ey

# calculate the true and sample linear discriminants

ld.true <- x%x%solve(sigma)%$*%t (alpha)
pred <- x%*%b

dl <- data.frame(x, t)
¢ <- coef(lda(t~.,d1l)
1d <- x%*%cC

# extract estimated average causal effect (ACE)
# from the four linear regressions

dhat.pred <- coef (summary (lm(y~l+t+pred))) [2]
dhat.x <- coef (summary (lm(y~t+x))) [2]

dhat.1ld <- coef (summary (1lm(y~t+1d))) [2]
dhat.ld.true <- coef (summary (1lm(y~t+ld.true))) [2]
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return (c (dhat.x, dhat.1ld, dhat.ld.true, dhat.pred))

## estimate ACE from 200 simulated datasets
## compute mean, standard deviation and mean square error of ACE

g <- rep(0, 4)
for (r in 31:230) {

g <- rbind(g, ps(r))
}

g <- gl-1,]

d.mean <- 0
d.sd <- 0
mse <- 0

for (i in 1:4) {
d.mean[i] <- round(mean(gl[,i]),4)
d.sd[i] <- round(sd(gl,il),4)
mse[i] <- round((d.sd[i])”2+(d.mean[i] -delta) "2, 4)

}

## generate Figure 5

par (mfcol=c(2,2), oma=c(1.5,0,1.5,0), las=1)

main=c("MO: Y on (T, X=(X1, X2)’)", "M3: Y on (T, LDx)",

"M1: Y on (T, LD=X1)", "M2: Y on (T, LP=X2)")

for (i in 1:4){
hist(gl,i], br=seg(-2.5, 2.5, 0.5), xlim=c(-2.5, 2.5), ylim=c(0,80),

main=main[i], col.lab="blue", xlab="", ylab="",col="magenta")
legend(-2.5,85, c(paste("mean = ",d.mean([i]), paste("sd = ",d.sd[i]),
paste("mse = ",mse[i])), cex=0.85, bty="n")

mtext (side=3, cex=1.2, line=-1.1, outer=T, col="blue",
text="Linear regression (homoscedasticity) [200 datasets]")

dev.copy (postscript, "lrpvpdecmbook.ps", horiz=TRUE, paper="a4")
dev.off ()

HH##H R
Linear regression and subclassification (heteroscedasticity)

Figure 6:
1. Regression on population linear predictor LP;

2. Regression on population linear discriminant LD;

3. Regression on population quadratic discriminant / propensity variable QD;
4. Subclassification on QD.

Figure 7:

1. Regression on sample linear predictor LPx;

2. Regression on sample linear discriminant LD=*;

3. Regression on sample gquadratic discriminant / propensity variable QDx;
4. Subclassification on QD=.

HEFH R R R
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## set parameters

p <- 20

d <- 0
delta <- 0.5
phi <- 1

n <- 500

a <- matrix(rep(0,p), nrow=1)

alpha <- matrix(c(0.5,rep(0,p-1)), nrow=1l)

sigmal <- diag(l, nrow=p)

sigma0 <- diag(c(rep(0.8, 10), rep(1.3, 10)), nrow=p)
b <- matrix(c(0, 1, rep(0,p-2)), nrow=p)

## create a function to compute ACE from eight approaches
ps <- function(r) ({
# data for T, X and Y from the specified linear normal model

set.seed (r)
.Random. seed

pi <- 0.5
t <- rbinom(n, 1, pi)
no <- 0

for (i in 1:n) {
if (t[i]==0)
no0 <- no0+1

t <- sort(t, decreasing=FALSE)
mul <- a+alpha
mul <- a

require (MASS)

m <- rep(0, p)

ex0 <- mvrnorm(n0, mu=m, Sigma=sigmal)

exl <- mvrnorm((n-n0), mu=m, Sigma=sigmal)

a <- matrix(rep(a, n), nrow=n, byrow=TRUE)

x0 <- a[(1:n0),] + t[1l:n0]%+x%alpha + ex0

x1 <- al[(n0+1):n,] + t[(n0+1) :n]%$*%alpha + exl
X <- rbind(x0, x1)

ey <- rnorm(n, mean=0, sd=sqgrt (phi)
d <- rep(d, n)
vy <- d + txdelta + x%+x%b + ey

H. Guo et al.

# calculate linear discrimant, quadratic discrimant, for population

# and for sample, extract estimated ACE from linear regressions

1d <- x%x%solve(pixsigmal+pi+sigma0) $*%t (alpha)
dl <- data.frame(x, t)

c <- coef(lda(t~.,d1l)

1ld.s <- x%x%C
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zl <- x%x%(solve(sigmal)$+%t (mul) - solve(sigma0)$*%t (mu0)
z2 <- 0
for (j in 1:n){
z2[j] <- - 1/2«matrix(x[j,], nrow=1l)%*%(solve(sigmal)
- solve(sigma0))%$*%t (matrix(x[j,], nrow=1)
}

gd <- zl+z2

dhat.x2 <- coef (summary (lm(y~1+t+x[,2]))) [2]
dhat.1ld <- coef (summary (1lm(y~1+t+1d))) [2]
dhat.qd <- coef (summary (lm(y~1+t+gd))) [2]

mn <- aggregate(dl, list(t=t), FUN=mean)
m0 <- as.matrix(mn([l, 2:(p+1)])
ml <- as.matrix(mn[2, 2:(p+1)])
v0 <- var (x0)
vl <- var(xl)

cl <- solve(vl)%*%t (ml)-solve (v0) %$x%t (m0)
zl.s <- x%*%cl

c2 <- solve(vl)-solve(v0)

z2.8 <- 0

for (i in 1:n){

z2.s[i] <- -1/2xmatrix(x[i,], nrow=1l)%+*%c2%+%t (matrix(x[i,], nrow=1)
}
gd.s <- zl.s+z2.s
dhat.x <- coef (summary (lm(y~1+t+x))) [2]
dhat.ld.s <- coef (summary (lm(y~1+t+1d.s))) [2]
dhat.qgd.s <- coef (summary (lm(y~l+t+gd.s))) [2]

# extract estimated ACE from subclassification
d2 <- data.frame(cbind(qgd, gd.s, y, t))

tml <- vector("list", 2)

tm0 <- vector("list", 2)

te.gd <- 0

for (k in 1:2) {
d3 <- d2[, c(k,3,4)]

d3 <- split(d3[order(d3[,1]), ], rep(l:5, each=100)
tm <- vector("list", 5)
for (j in 1:5) {
tm([[§]] <- aggregate (d3[[j]], list(Stratum=d3([[j]]$t), FUN=mean)

tml[[k]][3] <- tm[[31][2,3]
tmo [ [k]] [§] <- tm[[3]1]I[1,3]

}

te.qd[k] <- sum(tml[[k]] - tmO[[k]])/5

# return estimated ACE from the eight approaches

return (c (dhat.x2, te.gd[1], dhat.1ld, dhat.qd,
dhat.x, te.gd[2], dhat.ld.s, dhat.qgd.s)
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## estimate ACE from 200 simulated datasets
## compute mean, standard deviation and mean square error of ACE

g <- rep(0, 8)
for (r in 31:230) {
g <- rbind(g, ps(r))

g <- gl-1,]

d.mean <- 0
d.sd <- 0
d.mse <- 0

for (i in 1:8) {
d.mean[i] <- round(mean(gl,i]),4)
d.sd[i] <- round(sd(gl,il),4)
d.mse[i] <- round((d.sd[i]) "2+ (d.mean[i] -delta) 2, 4)

## generate Figure 6

par (mfcol=c(2,2), oma=c(1.5,0,1.5,0), las=1)
main=c ("Regression on LP=X2", "Subclassification on QD",
"Regression on LD=5/9X1","Regression on QD")
for (i in 1:4)({
hist(g[,1i], br=seqg(-0.1, 1.1, 0.1), xlim=c(-0.1, 1.1), ylim=c(0,80)
"

main=main[i], col.lab="blue", xlab="", , ylab="", col="magenta")
legend(-0.2,85, c(paste("mean = ",d.mean[i1]), paste("sd = ",d.sd[i]),
paste("mse = ",d.mse[i])), cex=0.85, bty="n")

mtext (side=3, cex=1.2, line=-1.1, outer=T, col="blue",
text="Linear regression and subclassification
(heteroscedasticity) [200 datasets]l")

dev.copy (postscript, "pslrsubtruebook.ps", horiz=TRUE, paper="a4")
dev.off ()

## generate Figure 7
main=c ("Regression on X", "Subclassification on QDx",
"Regression on LDx", "Regression on QDx"
for (i in 1:4){
hist(g[,i+4], br=seqg(-0.1, 1.1, 0.1), xlim=c(-0.1,1.1), ylim=c(0,80)

main=main[i], col.lab="blue", xlab="", ylab="", col="magenta")
legend(-0.2,85, c(paste("mean = ",d.mean[i+4]), paste("sd = ",d.sd[i+4]),
paste("mse = ",d.mse[i+4])), cex=0.85, bty="n")

}

mtext (side=3, cex=1.2, line=-1.1, outer=T, col="blue",
text="Linear regression and subclassification
(heteroscedasticity, sample) [200 datasets]")

dev.copy (postscript, "pslrsubbook.ps", horiz=TRUE, paper="a4")
dev.off ()
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HH##H R R R R R
Figure 9 and Table 1: Propensity analysis of custodial sanctions study
1. Y on all 17 variables X;

2. Y on estimated propensity score EPS.

HEF

## read data, imputation by bootstrapping for missing data
dAll = read.csv(file="pre_ impute_data.csv", as.is=T, sep=',’, header=T

set.seed (100)

.Random. seed

library (mi)

data.imp <- random.imp (dAll)

## estimate propensity score by logistic regression

glm.ps<-glm(Sentenced to_prison~
Age_at_1st yuvenile incarceration y +
N _prior adult_ convictions +
Type_of_defense_counsel +
Guilty plea_with negotiated_disposition +
N_jail_ sentences_gr_ 90days +
N_juvenile incarcerations +
Monthly income_level +
Total_counts_convicted for current_sentence +
Conviction offense_type +
Recent release from incarceration m +
N prior adult StateFederal prison terms +
Offender_race +
Offender_ released_during proceed +
Separated or divorced at time of sentence +
Living situation_at_time of offence +
Status_at_time_of offense +
Any_victims_female,
data = data.imp, family=binomial)

summary (glm.ps)
eps <- predict(glm.ps, data = data.imp[, -1], type='response’)
d.eps <- data.frame(data.imp, Est.ps = eps)

)
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## Figure 9: densities of estimated propensity score (prison vs. probation)

library (ggplot2)

d.plot <- data.frame(Prison = as.factor (data.imp$Sentenced to_ prison),
Est.ps = eps)

pdf ("ps.dens.book.pdf"

ggplot (d.plot, aes(x=Est.ps, fill=Prison)) + geom density(alpha=0.25)
scale_x_continuous (name="Estimated propensity score") +
scale_y_continuous (name="Density")

dev.off ()

+
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## logistic regression of the outcome on all 17 variables

glm.y.allx<-glm(Recidivism~
Sentenced _to prison +
Age_at_1lst_yuvenile incarceration y +
N_prior_adult_convictions +
Type_of_ defense_counsel +
Guilty plea with negotiated disposition +
N_jail sentences_gr 90days +
N_juvenile_incarcerations +
Monthly income_level +
Total counts_convicted for current sentence +
Conviction offense type +
Recent_release_from incarceration m +
N_prior_ adult_StateFederal prison terms +
Offender_race +
Offender released _during proceed +
Separated or divorced_at_time of_ sentence +
Living situation_at_time_of_ offence +
Status_at_time_of offense +
Any victims_ female,
data = d.eps, family=binomial)

summary (glm.y.allx)

## logistic regression of the outcome on the estimated propensity score

glm.y.eps<-glm(Recidivism ~ Sentenced to_prison + Est.ps,
data = d.eps, family=binomial)
summary (glm.y.eps)
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Chapter 4
A Robustness Index of Propensity Score
Estimation to Uncontrolled Confounders

Wei Pan and Haiyan Bai

Abstract As a crucial component of propensity score methods for reducing
selection bias, propensity score estimation can only account for observed covariates.
The behaviors of sensitivity and robustness of propensity score estimation to the
impact of unobserved covariates or uncontrolled confounders have not been fully
understood. This chapter introduces a new technique to assess the sensitivity and
robustness of propensity score estimation to the impact of uncontrolled confounders.
The sensitivity is defined as a change from a propensity score that is estimated
from a propensity score model including all observed covariates to a potential
propensity score that would be estimated from the propensity score model adding
an unobserved covariate. The robustness is subsequently defined as the probability
of the sensitivity would cross a pre-specified threshold. To assess the robustness,
a reference distribution of the sensitivity is derived by borrowing information
from observed covariates and further approximated to one of Pearson distributions.
This procedure of assessment is illustrated with empirical data on substance abuse
prevention for high-risk youth.

1 Introduction

Researchers often use non-randomized controlled trials (non-RCTs) or observa-
tional data to estimate treatment effects because RCTs are not always feasible
[5, 35]. The use of non-RCTs or observational data poses a threat to the validity
of causal inference due to selection bias in the treatment assignment. To tackle
this problem, Rosenbaum and Rubin [30] theorized propensity score methods to
mimic characteristics of RCTs by balancing the distributions of observed covariates
between the treatment and comparison groups and, therefore, reduce selection bias.
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Over the past three decades, propensity score analysis has become increasingly
popular in social, behavioral, and health research for making causal inferences based
on non-RCTs or observational studies [2, 22].

Propensity score methods start with estimating propensity scores. Denote z as a
treatment condition. Suppose one has N units (e.g., subjects). For each uniti (i =1,
..., N), z; =1 indicates that the unit i is in the treatment group and z; = 0 indicates
that the unit i is in the comparison group. Suppose each unit i also has a covariate
value vector X; = (X;i, ..., Xix)’, where K is the number of covariates. Rosenbaum
and Rubin [30] defined a propensity score for unit i as the probability of the unit
being assigned to the treatment group, conditional on the covariate vector X;, that is,

e(X;) =Pr (Zi = 1‘X,-) . They also recommended using the logit of the propensity

e(X;)
1—e(X;)

score, In ( ) , to achieve normality.

2  Uncontrolled Confounders in Propensity Score Estimation

As a crucial component of propensity score methods for reducing selection bias,
propensity score estimation can, however, only account for observed covariates
in propensity score models. This is a major limitation of propensity score meth-
ods. Several techniques have been developed to address the potential impact of
unobserved covariates or uncontrolled confounders on the estimation of propensity
scores. For example, sensitivity analysis [6, 7, 31] has been adopted as the main
technique for this purpose. Sensitivity analysis quantifies the impact of unobserved
covariates under certain assumptions about unobserved covariates made by the
researcher. This technique has been increasingly utilized [1, 9-11, 17, 28, 29, 33].
There are several variants of sensitivity analysis using specific techniques such
as marginal structural models that examine the impact of residual confounding
using the mean difference between treatment groups within each covariate stratum
[3, 4, 14, 27]; linear programming that derives the upper and lower bounds for the
causal effect on a binary outcome [15, 19]; Bayesian sensitivity analysis that corrects
bias due to confounding, missing data, and classification error by including a bias
model with relevant bias parameters [8, 20, 21]; external adjustment that simulates
varying strengths of hypothetical associations between an unobserved covariate and
observed covariates as well as between such a confounder and outcome [13]; and
propensity score-based approach that uses inverse probability weighting [16, 36].
There are still a few other related strategies to directly or indirectly control for
unobserved covariates. For example, propensity score calibration controls for one or
more unobserved covariates in propensity score models by obtaining information on
the unobserved covariates that were unobserved in the full data set but observed in a
subset of the study population [12, 18, 37, 38]. High-dimensional propensity score
adjustment, through including a substantial number (e.g., >20) of observed covari-
ates in the propensity score model, indirectly controls for part of the confounding
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by unobserved covariates that are not included in the propensity score model and
leaves little room for confounding by unobserved covariates that are correlated to
the observed covariates [34, 39].

All the aforementioned approaches to sensitivity analysis of uncontrolled con-
founders, however, fell short of assessing the robustness of propensity score
estimation to the impact of uncontrolled confounders. Robustness is about how
sensitive is too sensitive. In other words, if adding an unobserved covariate in the
propensity score model changes the propensity score estimates significantly, the
propensity score model is too sensitive or not robust to the impact of the additional
unobserved covariate. Following Pan and Frank [24] approach to assess robustness
of confounders in linear models, the present study presents a new technique to
assess not only sensitivity but also robustness of propensity score estimation to
uncontrolled confounders by borrowing information from observed covariates.

3 Sensitivity and Robustness of Propensity Score Estimation

Denote U= (u;, ..., uy)' as an unobserved covariate, X; = (X;1, ..., Xix)" as the
K observed covariates, and X§+”) =X, U) = X,....Xi,u;)), i=1,...,N.
The sensitivity of propensity score estimation to the unobserved covariate is defined
as a change from a propensity score e(X;) that is estimated from a propensity
score model including all the K observed covariates to a potential propensity score

e (XE—W)) that would be estimated from the propensity score model adding the

unobserved covariate. That is, the theoretical definition of the sensitivity can be
expressed as follows:

A=e (Xf*”) —e(X)). 4.1)

Here the problem is that the sensitivity index A; can never be computed
because U is unobserved and, thus, e(Xl(Jr")) is not calculable. By following

McCandless et al. [21] and Pan and Frank [24] approaches, one could obtain the
sensitivity index A; by borrowing information from observed covariates, assuming
the unobserved covariate has the same impact as that of the observed covariates
on the propensity score estimation. In other words, the observed covariates are
regarded as being representative of the “population” of all possible significant
confounders or covariates, both observable and unobservable. Then, the sensitivity
can be operationally estimated by treating each observed covariate as an unobserved
covariate as follows:

Aj=eX)—e (Xg‘f')) , 4.2)

where X,H) = (Xl'],...,Xi(/‘_l),X[(]’+1),...,Xj]()/,i =1,...,N, for each covariate j
G=1, ..., K).
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For each uniti (i=1, ..., N), the estimated sensitivity indices Zij, j=1, ...,
K, constitute a sampling distribution or reference distribution of the sensitivity A;.
Then, the robustness of propensity score estimation to the unobserved covariate
can be defined as the likelihood or probability that a sensitivity index A’ to a new

unobserved covariate is not beyond the range of the estimated sensitivity indices A s

j=1, ..., K. That is, the theoretical definition of the robustness can be expressed
as follows:
R; =Pr ( min E,-j < A! < max Z,-j) ) (4.3)
1<j<K I<j<k
For each uniti (i=1, ..., N), if the robustness index R; is larger than .95, which

is analogous to a significance level of .05, one could claim that the propensity
score estimation is robust to the impact of uncontrolled confounders for that unit.
Then, for all the N units, if a majority of the R;’s (e.g., more than 80 %) are
larger than .95, one could claim that the propensity score estimation is robust to
uncontrolled confounders for the entire sample. If 50-80 % of the R;’s are larger
than .95, one could caution that the propensity score estimation may be sensitive
to uncontrolled confounders for the entire sample. If less than 50 % of the R;’s are
larger than .95, one could conclude that the propensity score estimation is not robust
to uncontrolled confounders for the entire sample. It is worth noting that the cut-
off percentages (i.e., 50 % and 80 %) are arbitrary, and researchers can adopt more
appreciate cut-off percentages for their own specific research areas.

Now the problem is that how to obtain the robustness index R; without knowing
the behavior of the sampling distribution or reference distribution of the sensitivity
indices 3,-]-. By following Pan and Frank [24, 25] approach, one could first
approximate the shape of the distribution of the sensitivity indices E,vj to one of
Pearson distributions [26] based on the first four moments of E,-j. Once the following
first four moments are calculated:

K K

—~ R 1 —~ _o\™
un:Ej:ZlAy and uim=zj=Zl(Aij—uél) m=2.3.4  (44)

plug them into the Pearson distribution approximation to obtain an approximated
distribution of E,vj, denoted as f; (&j) Then, the robustness index can be opera-
tionally estimated as follows:

S [m
R; = / == fiar. 4.5)
min Ay
1<j=<K
The integration in Eq. 4.5 can be numerically evaluated using a SAS macro compiled
by Pan and Boling [23].
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4 An Empirical Example

The data for this empirical example were selected from a national database of
10,500 at-risk youth in a national evaluation of the High-Risk Youth Demonstration
Grant Programs sponsored by the Substance Abuse and Mental Health Services
Administration [32] focusing on prevention of substance use. The evaluation
compared participants and non-participants of funded prevention programs over
18 months with respect to socio-demographic risk and protective factors. For
demonstration purposes only, we sampled 547 youth who initiated substance use
prior to entry to the national evaluation. Among the 547 youth in the sample,
nt =213 were in the prevention (or treatment) group, and nc =334 were in the
comparison group.

The outcome measure was a composite score of 30-Day substance use, including
tobacco, alcohol, marijuana, and illicit drugs. There were 22 covariates in the
study, including age, gender, race/ethnicity, family composition, family supervision,
school prevention, community protection, neighborhood risk, family bonding,
school bonding, self-efficacy, belief in self, self-control, social confidence, parental
use attitudes, peer use attitudes, and peer use. Due to the focus on the method-
ological nature of this chapter, we would reference the detailed information about
covariate selection to other resources such as SAMHSA [32].

To obtain the sensitivity indices A;, each one of the 22 covariates was in
turn treated as an unobserved covariate in a propensity score model (e.g., logistic

regression model) to calculate e(X;) and e (Xf_j)>, i=1,2,...,547;j=1,2, ...,

22. Figure 4.1 shows the empirical distribution of the sensitivity indices 3311031. j
for Subject 311031, j=1, ..., 22. Then, the smallest and largest sensitivity indices
were identified for each unit. For instance, those two specific sensitivity indices for

SubJect311031 were min A311031j = —.58 and max Z311031j = .30.
1<j<22 1<j<22

The next step was to calculate the first four moments using Eq. 4.4 and,
for example, the four moments for Subject 311031 are ﬁg”%].] = —0.017,
3110312 = 0.046, 13110313 = —0.010, and [i3;,3, 4 = 3.003, respectively. Then,
for each subject i (i=1, ..., N), using Pan and Boling [23] SAS macro, the
reference distribution of the sensitivity indices was approximated to one of Pearson
distributions using the first four moments. For Subject 311031, the reference
distribution f311031(f) was approximated as a Type IV Pearson distribution (see
Fig. 4.2). And, the same SAS macro also simultaneously computed the probability

value for the robustness index ﬁi (Eq. 4.5). For Subject 311031, the robustness index
30

ﬁm 1031 = Sa11031(1)dt = .952, suggesting that the propensity score estimation

—.58

is robust to uncontrolled confounders for Subject 311031.

__ Figure 4.3 displays the empirical distribution of all the 547 robustness indices
R’s,i=1,2, ..., 547. Among all the 547 robustness indices, 75 % of them are
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Fig. 4.1 The empirical distribution of the sensitivity indices ’&311031, ;j for Subject 311031, j=1,
., 22
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Fig. 4.2 The approximated Type IV Pearson distribution of the sensitivity for Subject 311031



4 A Robustness Index of Propensity Score Estimation to Uncontrolled Confounders 97

2004
Mean = .96
Std. Dev. =.028
M =547
150
>
Q
=
@
=
o 100
@
1™
L
50
0 g T T
70 75 80 85 .80 95 1.00

Fig. 4.3 The empirical distribution of robustness for the entire sample

larger than .95, indicating that the propensity score estimation may be sensitive to
uncontrolled confounders for the entire sample. It suggests that more covariates
should have been observed and controlled in the propensity score model.

5 Conclusion

The sensitivity and robustness of propensity score estimation to the impact of
uncontrolled confounders are essential and a long-lasting issue in propensity score
methods for making valid causal inference using non-RCTs or observational data.
This chapter contributes to the literature on this topic through introducing a new
technique to assess both the sensitivity and robustness by borrowing information
from observed covariates, as did McCandless et al. [21] and Pan and Frank [24].
The following lists the steps for performing the assessment:

1. Run a logistic regression of the treatment condition z; on all the K covariates X;
to obtain propensity score e(X;), then run K logistic regressions of the treatment

condition z;, each on all but jth covariate, Xg_j), to obtain propensity scores
e(Xﬁ_”),j=1, L Ki=1, N
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2. Calculate the sensitivity index Z,} for each subject i (i=1, ..., N) to each
observed covariate j (j =1, ..., K) which is treated as an unobserved covariate,
using Eq. 4.2.

3. Calculate the first four moments of ZU using Eq. 4.4,i=1, ...,N;j=1, ..., K.

4. Find the smallest and largest sensitivity indices for each unit i, min E,-j and
1<j<K

max A; (i=1, ..., N).
1<j<K

5. Plug the first four moments, minimum, and maximum into Pan and Boling [23]
SAS macro to obtain the reference distribution of the sensitivity indices as one of
Pearson distributions and to obtain the robustness index ﬁ,- for each uniti (i =1,
..., N).

6. Calculate the proportion of the robustness indices R’ that are larger than .95 for
all the N units.

7. Use the following suggested guideline to interpret the robustness of propensity
score estimation to the impact of uncontrolled confounders:

a. If more than 80 % of the robustness indices R;’s are larger than .95, one
could claim that the propensity score estimation is robust to the impact of
uncontrolled confounders for the entire sample.

b. If 50-80 % of the robustness indices R;’s are larger than .95, one could
caution that the propensity score estimation may be sensitive to the impact
of uncontrolled confounders for the entire sample.

c. If less than 50 % of the robustness indices R;’s are larger than .95, one could
conclude that the propensity score estimation is not robust to the impact of
uncontrolled confounders for the entire sample.

As mentioned earlier, the cut-off percentages (i.e., 50 % and 80 %) are arbitrary
and researchers can adopt more appreciate cut-off percentages for their specific
areas of research.

Some researchers may be uncomfortable with the use of observed covariates
to generate a sampling distribution or reference distribution of sensitivity for
uncontrolled confounders. We acknowledge that the reference distribution is only
as valid as is the set of observed covariates representative of the “population” of
all possible confounders or covariates, both observable and unobservable, which is,
however, no different from any other statistical inference from a sample that must
be representative of the population. In this light, the observed covariates represent
important information by which the sensitivity and robustness are assessed. This
strategy has been implemented in the literature (e.g., [21, 24]).

The number of observed covariates is another caveat to address. Of course, the
more observed covariates, the more valid sensitivity and robustness indices we could
obtain. In the situation where one can make a high-dimensional propensity score
adjustment, one can also obtain good sensitivity and robustness indices. Neverthe-
less, how the observed covariates are representative of all possible covariates matters
more than the number of the observed covariates.
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Chapter 5
Missing Confounder Data in Propensity Score
Methods for Causal Inference

Bo Fu and Li Su

Abstract Propensity score methods, including weighting, matching, or
stratification, have been increasingly used to control potential confounding in
observational studies and non-randomized trials to obtain causal effects of treatment
or intervention. However, there are few studies to address the missing confounder
data problem in propensity score estimation which is unique and different from most
missing covariate data problems where the goal is parameter estimation. We will
review existing methods for addressing missing confounder data in propensity score
methods for causal inference and discuss the gap between current methodology
developments in this area and the challenges in analyzing real observational data.

1 Introduction

In public health research, randomized clinical trials are often infeasible because of
their size, time, budget, and ethical constraints and observational studies play an
important role to evaluate treatment effects on long-term outcomes [9]. Because of
the absence of randomization and the time-varying nature of medication initiation in
such observational cohorts, it is crucial to adequately control potential confounding
from various factors (both time-invariant and time-varying) in order to obtain causal
effects of treatments and interventions. Overall, the ultimate goal in the design and
analysis of observational studies is to mimic those of a randomized controlled trial.
There has been rich literature on how to control potential confounding from baseline
characteristics between treated and untreated patients, for example, using propensity
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score methods [25, 26], as well as on how to control time-varying confounders
(possibly affected by prior treatment) using approaches such as marginal structural
models [23].

Nevertheless, there are various important methodological issues that have not
been adequately addressed by existing literature.

1. Since in practice a large number of measured confounders are commonly
included in a propensity score model to minimize all possible confounding,
missing data are almost unavoidable. These missing confounder data will create
problems in propensity score estimation if the level of missingness is high [22].

2. Missing data also exist in important time-varying confounders, for example,
due to selective measuring using invasive procedures. There is lack of work
in the literature on how to apply the marginal structural model approach with
such missing time-varying confounder data. Further uncertainties introduced by
the missing data will also worsen the instability problem of estimating inverse
probability of treatment weights (IPTW), which has led to criticisms of applying
the marginal structural models in practice [14]. Estimation in marginal structural
models can be unstable in certain situations, for example, when patients with
unusual confounding histories go from being off treatment to on treatment and
are assigned (unrealistically) with large IPTW. The problem is notable in event
history data analysis, especially if the weights are assumed constant for the
remaining event history [14].

3. Although propensity score methods are guaranteed to produce unbiased esti-
mates on average across studies under correctly specified modeling assumptions,
the bias in a particular study will depend on the balance achieved in that study
[17] and different propensity score methods of balancing covariates may lead to
very different treatment effect estimate [5]. In reports on studies using propensity
score methods, there is lack of attention to assess the balance on measured
confounders between treatment groups [34]. There is no consensus in statistical
or medical literatures regarding choice of an appropriate balance measure, even
in the absence of missing confounder data.

4. Most propensity score analyses assume that there is no unmeasured confounding.
Sensitivity analysis of this untestable assumption is vital to assess uncertainty of
observed findings due to unmeasured confounders. Similarly, sensitivity analysis
is required when non-ignorable missing confounder data can possibly create
imbalance between treated and untreated patients. Existing methods in this area
are restricted to simple or very particular settings [32]. In particular, sensitivity
analysis methods for unmeasured confounding are less developed for event
history data.

In this chapter, we will first introduce two motivating examples from medical
applications, and then review the current methodology developments for addressing
the above methodological issues due to missing data and complex confounding
when obtaining causal inference using observational data. The aim of this chapter
is to discuss the existing gap between current methodological developments in this
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area and the challenges in analyzing real observational data, and to provide useful
information and references for medical researchers and suggest important topics of
future methodological research. We mainly focus on propensity score approaches as
they are the commonly used causal inference method in the medical literature and
are experiencing a tremendous increase of interest in medical research and many
scientific areas (e.g., [1, 30, 34]).

2 Examples

2.1 Example 1: Long-Term Safety of Biologics Treatment
in Rheumatoid Arthritis Patients

The introduction of biologics therapy in 2001 was a revolutionary step forward
in the management of rheumatoid arthritis, offering patients a new and effective
alternative to traditional drugs. However, randomized clinical trials were unable
to address its long-term safety due to their relatively short follow-up and were
under powered to detect differences in event rates of rarer outcomes. British Society
for Rheumatology Biologics Register, the world’s largest observational cohort of
rheumatoid arthritis patients receiving biologics therapy, was thus established in
2001 to evaluate long-term adverse outcomes such as serious infection, malignancy,
or death and was designed to follow up 12,000 rheumatoid arthritis patients treated
with biologics and 4,000 rheumatoid arthritis patients with non-biologics [12, 13].
Many baseline covariates such as age, gender, disease duration, smoking status,
comorbidities, disease activity score, health assessment questionnaire score have
potential for confounding because of their significant differences between exposed
and unexposed groups and their correlation with adverse event outcomes [12, 13].
However, there are substantially number of patients with missing values, e.g, 24 %
of the unexposed patients did not have records for their smoking status.

Different propensity score methods (matching, weighting, stratification) were
compared to control confounding and it was seen that they produced different
estimates of relative risks [19]. This highlights the importance of developing
confounder-balancing metrics to guide selection of the most appropriate propensity
score method. In the presence of noticeable missing data in confounders, it would
also be necessary and interesting to evaluate how different combinations of missing
confounder data methods and propensity score methods affect estimation of causal
effects of biologics on adverse outcomes.

Furthermore, most well-developed propensity score methods are based on
assumptions of no unmeasured confounders and ‘missing at random’ in Rubin’s
taxonomy, which are often impractical in real situations. We need novel sensitivity
analysis methods to check these assumptions and their inferential consequences in
the context of missing confounder data in causal inference.
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In addition, about 1/3 patients starting a biologics drug will stop it at a later
observed time because of mild side effects, comorbidities, or inefficiency [13].
After changing from ‘on exposure’ to ‘off exposure’, the disease activity is less
controlled and quite a number of patients will re-start the biologics treatment again
in a future observed time or switch to a second-line biologics drug to control
the disease progression. It is not clear how to handle this complex time-varying
treatment process to adequately control for time-varying confounders (e.g., disease
activity affected by prior exposure) in order to obtain causal effects of biologics on
observational outcomes.

2.2 Example 2: Long-Term Survival After Pulmonary
Endarterectomy (PEA) Surgery

Chronic thromboembolic pulmonary hypertension (CTEPH) is a life threatening
condition that historically has a poor outcome with supportive medical treatment.
Pulmonary endarterectomy (PEA) is the treatment of choice and offers the only
chance of cure. Since there are limited data on the long-term survival after PEA, the
UK national PEA cohort at Papworth Hospital provides a valuable opportunity to
evaluate the causal effects of post-surgery drugs on the long-term survival after PEA.
There were 880 CTEPH patients who had PEA at Papworth Hospital between 1997
and 2012. Following PEA, 45 patients remained on drug treatment, and 142 patients
started post-surgery drugs between Month 1 and Month 126 after PEA. Preliminary
analyses revealed that the initiation of post-surgery drugs was associated with
previous right heart catheter measurements of pressures and hemodynamics in
heart and lungs, which are key variables for monitoring CTEPH progression that
are associated with patient survival. However, these right heart catheter variables
are also affected by prior treatment. Thus a Cox regression by directly adjusting
for confounding from the time-varying right heart catheter variables will reduce
the causal effects of post-surgery drugs on long-term survival after PEA. Further,
because right heart catheter is an invasive procedure, after the initial assessment
after PEA and hospital discharge, patients were only going to have their right heart
catheter measured if their mean pulmonary artery pressures were equal or greater
than 30 mm/Hg in their immediate previous assessments, which led to missing data
in the time-varying right heart catheter variables. This creates problems in dealing
with time-varying confounding from these variables when estimating the probability
of being treated over time in a weighted time-dependent Cox regression within the
marginal structural model framework. There is very limited literature on missing
confounder data in marginal structural models [21] and it remains unclear about
the consequence of using complete records in marginal structural models under
different missing data mechanisms.
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3 Propensity Score Methods

Propensity score methods have become the standard techniques for the estimation
of causal treatment effects from observational data. The propensity score is defined
as the probability of receiving treatment conditional on measured confounders.
Conditional on propensity score, treated and untreated patients have a similar
distribution of measured confounders. Thus within similar levels of propensity
score, a “virtual randomization” can be achieved to compare patients between
treatment groups. Different methods of using estimated propensity score have been
described in the literature, including stratification [26], matching [26], covariate
adjustment [26], and weighting [25], and their performance has been compared by
simulation studies in estimating odds ratio [7], risk difference [3], and hazard ratio
for time-to-event outcomes [4], and by an empirical study in balancing confounders
by checking residual confounding [19]. Marginal structural models have also been
developed as an extension of the propensity score weighting method to tackle the
time-varying confounding problem [23].

4 Missing Confounder Data in Propensity Score Estimation

Since a large number of measured confounders are commonly included in a
propensity score model in practice, missing confounder data are almost unavoidable.
Existing approaches to dealing with missing confounder data in propensity score
estimation include:

1. Using complete records only. This common approach obviously will reduce
the estimation efficiency when the missingness level is high as records with
missing data in any single confounder are dropped. The generalizability of the
estimated causal effects is also questionable [10].

2. Pattern mixture models [10, 28]. Observed data are split into groups defined
by missing data patterns and propensity score estimation could be then done
within patterns. This method ensures that the treated and untreated patients
are balanced on the observed values of confounders and missing confounder
patterns; but with many missing confounder patterns this approach may not be
practical because the sample sizes within patterns can be very small. To alleviate
this problem, ad-hoc algorithms to reduce the number of missing confounder
patterns have been proposed [22].

3. Use of missing value indicators [10, 11, 29]. Missing indicators for partially
observed confounders are created and the missing values are filled in by
a chosen value [10] and [29]. Then both missing indicators and “filled-in”
confounders are included in a propensity score model. If missing values are
not filled in by a fixed value, then some restrictions are imposed in the
propensity score model in order to obtain unique maximum likelihood estimates
by Expectation Conditional Maximization algorithm [11]. This approach is
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problematic in a general missing covariate data problem [15], but it might be
reasonable in the propensity score estimation context, if it balances the observed
values of confounders and missing confounder patterns.

4. Multiple imputation. Under various assumptions about the missing data
mechanisms, multiple imputation methods have been applied to deal with
missing confounder data in propensity score estimation. Essentially, the missing
values are “filled in” several times before the actual propensity score estimation
[20, 22]. Then the propensity score is estimated for each imputed dataset, and
different propensity score methods can be used to obtain the final causal effects
of treatments. It is not clear how the multiple imputation under the propensity
score estimation scenario should differ from those developed for dealing with
regular missing covariate data in the literature. For example, an unanswered
interesting question concerns what should be combined across imputations—
estimated treatment effects or estimated propensity score [20]. Nevertheless,
any multiple imputation method will involve making unverifiable assumptions
on the missing data mechanisms.

5. Inverse probability weighting. Inverse probability weighting (IPW) methods
have also been proposed for tackling the missing confounder data problem
in both the original propensity score estimation setting [35] and the marginal
structural model setting [17], where the partially observed data are up-weighted
to represent the full complete data. In particular, an improved IPW method
through doubly robust estimation has been proposed [36]. These methods are
currently restricted to the scenario of one single confounder with missing data.
Again, the IPW approach relies on unverifiable assumptions on the missing data
mechanism.

It is important to note that the missing confounder data problem in propensity
score estimation is a unique missing data problem. D’Agostino and Rubin [11]
emphasized: “It is important to note that our problem is different from most missing-
data problems in which the goal is parameter estimation. We are not interested
in obtaining one set of estimated parameters for a logistic regression. ... Rather,
parameters particular to each pattern of missing data serve only in intermediate
calculations to obtain estimated propensity scores for each subject. Moreover,
the propensity scores themselves serve only as devices to balance the observed
distribution of covariates and patterns of missing covariates across the treated and
control groups. Consequently, the success of the propensity score estimation is
assessed by this resultant balance rather than by the fit of the models used to
create the estimated propensity scores.” Furthermore, in practice we are not able
to assess the unverifiable assumption on the missing confounder data but we can
assess the balance of observed values of confounders and missing confounder
patterns between treated and untreated patients, after applying different missing data
methods in propensity score estimation. In this sense, more sophisticated methods
such as multiple imputation and IPW might not necessarily be superior to simple
methods such as missing indicator methods in practice, as long as the same level of
balance has been achieved. We aim to investigate the relative performance of these
missing data methods as a topic of our future research.
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Another interesting research problem is about the choice of propensity score
methods with missing confounder data. In the absence of missing confounder data,
it has been shown that both propensity score matching and IPTW using propensity
score induce better balance on baseline confounders than stratification by propensity
score and covariate adjustment using propensity score [5]. However, IPTW directly
uses the estimated propensity score and thus is particularly sensitive to mis-
specification of the propensity score model or instability in the estimated propensity
score [6]. This sensitivity is very likely when unverifiable assumptions are imposed
on the missing confounder data, e.g., when applying multiple imputation and IPW
methods. On the other hand, for propensity score matching methods the propensity
score is not directly involved in estimating the treatment effects. As long as balance
between treated and untreated patients is achieved in terms of observed values of
confounders and missing confounder patterns, the unverifiable assumptions on the
missing confounder data should have smaller impact on estimated treatment effects
obtained through propensity score matching than through IPTW. Hence the question
is “Is propensity score matching more robust in this context than other propensity
score methods such as IPTW using propensity score?”.

The critical assumption in propensity score analyses is that of no unmeasured
confounding. Specifically, in the missing confounder data scenario, we assume that
no other variables influencing treatment assignment given the observed values of
confounders and missing confounder patterns [11]. In other words, we allow the
missingness itself to be predictive about which treatment is received; but given
the missing confounder patterns, the actual missing values of the confounders
do not impact the treatment assignment. This, of course, is an assumption we
cannot verify using the observed data. Therefore, analyses are required to check
the sensitivity of the observed findings to the missing values of the confounders.
These sensitivity analyses for missing confounder data essentially should be similar
to those sensitivity analyses developed to examine an unmeasured confounder,
therefore similar strategies can be applied. However, since we ensure that the
observed values of confounders and missing confounder patterns are balanced
between treated and untreated patients, in order to alter inferences about the
treatment effects, the hidden bias due to actual missing values of the confounders
will probably need to be larger in magnitude than the hidden bias due to unmeasured
confounders for which we have absolutely no control [24].

5 Assessing Balance for Confounders with Missing Data

There is no consensus in the statistical or medical literatures regarding choice of an
appropriate balance measure for propensity score methods and a variety of balance
measures are available including mean differences, Kolmogorov-Smirnov distance
[8], Levy distance [8], overlapping coefficient [8], Mahalanobis distance [16],
C-statistics [5, 30], L1 metric [18]. Particularly in the presence of missing con-
founder data, assessing balance will not be straightforward [29], either in terms
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of requiring a measure balancing both observed distribution and missing data
pattern for each confounder or in how to summarize across confounders. Thus
methodological development in this area is needed.

6 Sensitivity Analysis for Unmeasured Confounders
and Missing Confounder Data

To address unmeasured confounding, propensity score calibration can be carried
out using external validation data if available [31] or one may use instrumental
variable analysis [2]. The latter has limited feasibility if it is not possible to identify
instruments. An alternative approach is to formulate a specific model for the bias
and consider the sensitivity analysis of estimated treatment effects to plausible
assumptions about unknown bias parameters [27]. Existing sensitivity analysis
techniques are restricted to simple or very particular settings [32]. There are limited
sensitivity analysis methods devoted to event history data as well [33]. Recently, a
general framework for sensitivity analysis that is applicable to event history data was
developed but requires specification of a large number of bias parameters [32, 33].
Methodological developments in sensitivity analysis for unmeasured confounders
would be also useful for the case of missing confounder data, which also requires
sensitivity analysis on unverifiable assumptions.
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Chapter 6
Propensity Score Modeling and Evaluation

Yeying Zhu and Lin (Laura) Lin

Abstract In causal inference for binary treatments, the propensity score is defined
as the probability of receiving the treatment given covariates. Under the ignorability
assumption, causal treatment effects can be estimated by conditioning on/adjusting
for the propensity scores. However, in observational studies, propensity scores are
unknown and need to be estimated from the observed data. Estimation of propensity
scores is essential in making reliable causal inference. In this chapter, we first
briefly discuss the modeling of propensity scores for a binary treatment; then we
will focus on the estimation of the generalized propensity scores for categorical
treatment variables with more than two levels and continuous treatment variables.
We will review both parametric and nonparametric approaches for estimating
the generalized propensity scores. In the end, we discuss how to evaluate the
performance of different propensity score models and how to choose an optimal
one among several candidate models.

1 Propensity Score Modeling for a Binary Treatment

The potential outcomes framework [23] has been a popular framework for estimat-
ing causal treatment effects. An important quantity to facilitate causal inference has
been the propensity score [22], defined as the probability of receiving the treatment
given a set of measured covariates. In observational studies, propensity scores are
unknown and need to be estimated from the observed data. Consistent estimation of
propensity scores is essential in making reliable causal inference. In this section, we
briefly review the modeling of propensity scores for a binary treatment variable.
We first define some notations. Let Y denote the response of interest, 7 be the
treatment variable, and X be a p-dimensional vector of baseline covariates. The data
can be represented as (¥;, 7, X;), i = 1,...,n, arandom sample from (¥, 7, X). In
addition to the observed quantities, we further define Y;(¢) as the potential outcome
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if subject i were assigned to treatment level #. Here, T is a random variable and 7 is a
specific level of T. In the case of a binary treatment, let 7 = 1 if treated and 7 = 0
if untreated. The propensity score is then defined as r(X) = P(T = 1|X). The
quantities we are interested in estimating are usually the average treatment effect
(ATE):

ATE = E[Y(1) — Y(0)],
and the average treatment effect among the treated (ATT):

ATT = E[Y(1) — Y(0)|T = 1].

1.1 Parametric Approaches

In the causal inference literature, propensity score for a binary treatment variable
is usually estimated by logistic regression. Using logistic regression to estimate
propensity scores can be easily implemented in R. However, logistic regression is
not without drawbacks. First of all, a parametric form of r(X) needs to be specified.
Consistent estimation of ATE and ATT relies on the correct logistic regression
model. In most cases, only including main effects into the model is not adequate, but
it is also hard to determine which interaction terms should be included, especially
when the vector of covariates is high-dimensional. In addition, logistic regression is
not resistant to outliers [11, 18]. In particular, Kang and Schafer [11] show when the
logistic regression model is mildly misspecified, propensity score-based approaches
lead to large bias and variance of the estimated treatment effects.

Other parametric approaches for estimating propensity scores include Probit
regression modeling and linear discriminant analysis, both of which assume normal-
ity. However, through a simulation study, Zhu et al. [31] found that these parametric
models give very similar treatment effect estimates.

1.2 Machine Learning Techniques

Due to the above-mentioned drawbacks of parametric approaches for modeling
propensity scores, more recent literature advocates using machine learning algo-
rithms to model propensity scores [13, 24]. Since in causal inference, propensity
scores are auxiliary in the sense that one usually is not interested in interpreting
or making inference for the propensity score model, the nonparametric black-box
algorithms can be directly used to estimate the propensity scores. Examples are
classification and regression trees (CART, [2]) and its various extensions, such
as pruned CART, bagged CART, random forests (RF [1]), and boosting [16].
Other classification methods that can indirectly yield class probability estimates
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include support vector machines (SVM) and K-nearest neighbors (KNN), etc. R
packages are readily available, such as rpart for CART; randomForest for RF,
twang or gbm package for boosting models, and e/071 for SVM. A detailed review
of each approach for estimating propensity scores can be found in [31]. In a
simulation study, Zhu et al. found there is a trade-off between bias and variance
among parametric and nonparametric approaches. More specifically, parametric
methods tend to yield lower bias but higher variance than nonparametric methods
for estimating ATE and ATT.

1.3 Propensity Score Modeling via Balancing Covariates

Recently, a new propensity score modeling approach termed covariate balance
propensity scores is proposed by Imai and Ratkovic [8], which also assumes a
logistic regression model, i.e.,

1
X)=rs(X) = ————. 6.1
r(X) = rp(X) s (6.1)
Then, S is solved by satisfying the following condition:
X (1-7X
— =0, (6.2)
rp(X) 1 —rp(X)
where X is a function of X specified by the researcher. If setting X = W , one

d

solves the maximum likelihood estimator (MLE) of 8 because Eq. (6.2) is tge score
function for MLE. However, if setting X=X , one aims to achieve optimal balance
in the first order of the covariates, because this balancing condition implies the
weighted mean value of each covariate is the same between the treatment and the
control group. If letting X = drs;x) and X = X at the same time, there will be more
equations than unknown parameters to solve and a generalized method of moments
[5] is employed for estimation. The above balancing condition is for the estimation

of ATE. For estimating ATT, the balancing condition becomes

plrx- POU=DX[_ (6.3)
1 —rp(X)

The advantage of this approach is that, by achieving better balance in the covariates,

it is less susceptible to model misspecification of the propensity scores, compared

to logistic regression.

A related issue is whether we should achieve balance in all the measured
covariates in a study or a subset of the available covariates. This is a variable
selection issue. Zhu et al. [32] have shown through a simulation study that one
should aim to achieve balance in the real confounders, i.e. covariates related to both
the treatment variable and the outcome variable, as well as the covariates related
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only to the outcome variable. Adding additional balancing condition on covariates
that are only related to the treatment variable may increase the bias and variance of
the estimated treatment effects.

2 Propensity Score Modeling for a Multi-level Treatment

In most of the causal inference literature based on potential outcomes frame-
work, researchers have focused on binary treatments. Imbens [10] extended this
framework to more general case by defining the generalized propensity score,
which is the conditional probability of being assigned to a particular treatment
group given the observed covariates. In the past decade, a few studies (e.g.,
[9, 12, 28]) have extended the propensity score-based approaches to multi-level
treatments. Compared with binary treatments, there are two important issues specific
to the causal inference with multi-level treatments. The first issue is to define the
parameters of interest and to determine whether the parameters are identifiable. As
discussed by Imbens [10] and Tchernis et al. [28], for a multi-level treatment, the
following parameters may be of interest: (1) the average causal effect of treatment ¢
relative to k, i.e., E[Y (f) — Y (k)]; (2) the average causal effect of treatment ¢ relative
to k among those who receive treatment ¢, i.e., E[Y(t) — Y(k)|T = f] or (3) the
average causal effect of treatment ¢ relative to all other treatments among those who
receive treatment ¢, i.e., E[Y () — Y(#)|T = t], where 7 refers to other treatment
groups except group t. In any of the three definitions, the multi-level treatment
variable is dichotomized; in this sense, causal inference with multiple treatments
is essentially an extension of the binary case. Therefore, matching, stratification,
or inverse probability weighting methods can be employed to estimate the targeted
causal effects in a similar way as in binary treatments. The second issue is that in
many studies, the treatments are correlated: the odds ratio of receiving one treatment
against the other is affected by whether a third treatment is taken into consideration
or not. Tchernis et al. [28] pointed out in a simulation study that if the treatments
are correlated, ignoring correlations while estimating propensity scores will lead
to biased estimation of the causal effect. The commonly used multinomial logistic
regression model does not account for correlation. Therefore, the nested logit model
or multinomial probit model has been suggested for modeling propensity scores to
allow specification of a correlation matrix among treatments. Due to developments
in machine learning methods, nonparametric algorithms such as random forests or
boosting algorithms can be easily implemented to estimate propensity scores for
multiple treatments.

We define some additional notations here. Let 7; be the treatment status for the

ith subject, so T; = t if subject i was observed under treatment r € {1,..., M},
where there are M total treatment groups. We further define an indicator variable,
indicating membership of a particular treatment group ¢, as A;(t) = I(T; = 1),

t € {l,...,M}. According to Imai and Van Dyk [9], the generalized propensity
score is defined as r(¢|X) = Pr(T = t|X),fort =1,..., M.
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2.1 Parametric Approaches

In this section, we describe multinomial logistic regression (MLR), which is an
extension of logistic regression to cases where the treatment variable has more
than two levels. We now assume an underlying multinomial distribution with a
probability of inclusion into each treatment group and use maximum likelihood to
find the estimates of the regression parameters. The exact steps are as follows:

1. We assume the following model for the generalized propensity scores:

r(tX)mr = W for t=1
and
oAl
r(t|X)mr = W for t=2,....M

2. We maximize the multinomial likelihood function with respect to all the 8’s:

n M
L) = [T e

i=11r=1

where r;(¢|X) follows the model as defined in Step 1. Equivalently, we maximize
the log likelihood function:

n M
IB) =)D A1) log(ri(t|X)).

i=1 t=1

3. The solution ,és for s = 2,...,M is substituted into the model to obtain the
estimates for the generalized propensity score.

While MLR is a seemingly simple way to estimate the generalized propensity
score, there is the question of variable selection and which interactions to be
included. In addition, Tchernis et al. [28] pointed out that MLR does not take into
account the correlation among treatments in the sense that for two treatment levels
t # s, we have

rtlXvir _ p-pox
r(s|X)MLR '

which does not depend on the information of other treatment levels. This assumption
could be violated in real applications, which makes an MLR model not suitable for
estimating the generalized propensity scores.

In R, to fit an MLR model, we can use the package nnet [29].
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2.2 Machine Learning Techniques

In this section, we are going to introduce two machine learning approaches for the
modeling of generalized propensity scores: generalized boosted model (GBM) and
random forests (RF).

GBM uses an iterative procedure that adds together many simple regression trees
to approximate the propensity score function. A regression tree algorithm divides
the dataset into two non-overlapping regions based on one of the covariates. Then,
it recursively divides each of those regions into two smaller regions, where each split
is based on one of the covariates [2]. Note that the splits may occur on a different
covariate or the same covariate each time. The splits are chosen so that the prediction
error is minimized. After the allowed number of splits have occurred, for each region
of the dataset, the estimated response value equals the average response values of
the data points within the region.

Now we describe the GBM method for binary treatments, then we extend the
procedure to multi-level treatments. McCaffrey et al. [16] provides a detailed algo-
rithm for estimating propensity scores using GBM. In the binary case, let g(X) =
log[r(X)/(1 — r(X))] and the maximum likelihood function can be rewritten as

I(g) =Y Tig(X;) —log{l + exp[g(X:)]}. (6.4)

i=1

To maximize I(g) in (6.4), g(X) is updated at each iteration with g(X) + A(X)
where h(X) is the fitted value from a regression tree which models y; =
T; — 1/{1 + exp[—g(X))]}, the largest increase in (6.4). To avoid overfitting, a
shrinkage parameter « is introduced so the update is g(X) + ah(X), where « is
usually a small value, such as 0.0001. This iterative estimation procedure can
be tuned to yield propensity scores that achieve optimal balance in covariate
distribution between the treatment and control groups. The key is to stop the
algorithm at the optimal number of trees when a certain balance statistic (e.g.,
average standardized absolute mean difference in the covariates) is minimized.
Interactions are automatically included when multi-level splits are allowed in
regression trees and since splits are automatically determined by the algorithm
based on a criterion, variable selection is automatically done [16].

McCaffrey et al. [17] extended this algorithm to the multi-level treatment case.
We first note that while estimating the generalized propensity score for a particular
treatment level ¢, we are interested in the probability that each subject is assigned
to a particular treatment ¢ as opposed to any other treatment. So essentially we
have two groups: those assigned to treatment ¢ (equivalent to the treatment group
in the binary case), and those that were not assigned to treatment ¢ (equivalent to the
control group in the binary case). Then we can fit a GBM that balances the covariates
between the treatment ¢ group and the entire sample [17]. We do this for each of the
M treatments to obtain the generalized propensity scores 7(¢|X). The estimation of
the generalized propensity scores for multi-level treatment can be realized in the R
package rwang [19].
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The downside to this method is that by fitting separate GBMs for all M treatment
groups, it is not guaranteed that the generalized propensity scores for each treatment
group will add up to 1. McCaffrey et al. [17] justified that estimating the ATE only
requires the propensity scores for the particular treatment groups involved, so as
long as the estimated generalized propensity scores are not biased, they do not need
to add up to 1.

Next, we are going to introduce RF model for estimating the generalized propen-
sity scores. An RF model [1] is built on a collection of classification trees, fitted
on bootstrap samples of the original dataset. Classification trees are different from
regression trees in that classification trees predict the class label for each input vector
of covariates and use nonparametric information criteria, such as Entropy, misclas-
sification rate, or Gini Index, for splitting at each node. The random forest classifica-
tion tree finds the best split from only a random subsample of the covariates at each
node. Then the estimated generalized propensity score for treatment ¢ is the fraction
of votes for ¢ from the collection of the random forest classification trees. The
specific random forest algorithm for estimating the generalized propensity score is

1. Draw a random sample with replacement of size n (size of dataset), called a
bootstrap sample, from the dataset.

2. Fit a random forest classification tree to the bootstrap sample.

3. Repeat steps 1 and 2 a large number, B, times and obtain a collection of B
classification trees (usually, B = 500).

4. For a given vector of covariates X, predict the class label from each fitted tree.
The estimated generalized propensity score is then

number of trees that voted for class ¢
B

F(t|X)rr =

An issue with this method is that it is possible for none of the trees to vote for
a particular treatment, resulting with an estimated generalized propensity score of
0 for that treatment. Another possibility is that all the trees vote for one treatment,
resulting with an estimated generalized propensity score of 1 for that treatment.
In both cases, the positivity assumption, i.e., 0 < r(t|X) < 1 for all X and
t, is violated. In addition, since inverse probability weighting and double-robust
estimation involve the reciprocal of the estimated propensity score or one minus the
estimated propensity score, an estimated score close to 1 or 0 may result in extreme
weights. This issue has been frequently discussed in the literature (e.g., [11, 14, 31]).
One way to deal with this issue is to trim extreme weights to a percentile. For
example, the inverse probability weights higher than the 95th percentile are set to
the 95th percentile. Lee et al. [14] showed that trimming extreme weights gain little
benefit in terms of bias, standard error, and 95 % confidence interval coverage, and
trimming beyond the optimal level increases bias. Another way to deal with extreme
weights is to use a weighted average between a parametric model (such as an MLR
model) and RFs as the generalized propensity score estimator [31]. This so-called
data-adaptive matching score is

7(t|X)pams = A7(t|X)mer + (1 — A)7(t|X)rE (6.5)
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where

_ FXOMRM 1 = F(EX) L] A
FEAXOMR" O [T = FE XM =4O + FX RO [1 — P X)re]' A0

(6.6)

As explained by Zhu et al. [31], the intuition of this approach comes from the
fact there is a trade-off in bias and variance between parametric and nonparametric
approaches. By combining, both bias and variance of the estimated causal effects
will be reduced. The choice of A in (6.6) gives more weight to the estimate that is
closer to the observed value of A(7), so it trims extreme weights to more reasonable
values without ad hoc adjustment. In addition, it would not attain O or 1 as a possible
value due to the MLR component.

3 Propensity Score Estimation for a Continuous Treatment

Finally, we are going to focus on the case when the treatment variable is continuous.
In this case, we are interested in estimating the so-called dose-response function:
w(t) = E[Yi(t)]. We assume Y;(¢) is well defined for r € 7, where t = [to, t1].

To draw causal inference, we assume the ignorability assumption:

f@lY(@®,X) =f@#X), for rer,

where f(¢|-) refers to the conditional density. In other words, we assume the vector
of covariates X include all the real confounders that may jointly affect the treatment
and the potential outcomes.

In the continuous treatment case, the generalized propensity score is defined
as r(t|X) = fyx(¢|X), which is the conditional density of the treatment level ¢
conditioning on the covariates [10]. The ignorability assumption also implies

f@Y(@), r@X)) = f@#]r|X)), for ter.

That is, to adjust for confounding, it is sufficient to condition on the generalized
propensity scores instead of conditioning on the vector of covariates. In the
literature, Robins et al. [20, 21] propose inverse probability weighting based on
the marginal structural model to estimate the dose—response function. To obtain
consistent estimation, the inverse probability weight for subject i is

_ r(T;)
r(Ti|X;)

i=1,....n 6.7)

wi

However, the estimation of the conditional probability function (generalized
propensity score) in the denominator is a non-trivial problem because when X is
high-dimensional, the traditional nonparametric approach for estimating conditional
density (e.g., [4]) suffers from curse of dimensionality.
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3.1 Parametric Approaches

Robins et al. [21] proposed a two-step approach to estimate (7;|X;). The treatment
variable T is assumed to follow a parametric model:

T=XB+e, €~N(O,0c2). (6.8)

The generalized propensity score can be estimated by first regressing 7; on X;, i =
1,...,n, and get T; and &; Then, the residuals é; = T; — T;, i = 1,...,n, are
calculated and r(T;|X;) can be approximated by

. . 1 &’ .
r(T,~|X,~) Q:f(G,‘) ~ m@XP{-F} s 1= 1,...,n,. (69)

To be noticed, if T does not follow a normal distribution (which can be
checked based on data), we can always employ nonparametric density estimation
approaches, such as Kernel density estimation to estimate r(7;|X;) using residuals
€i,i: 1,...,I’l.

3.2 Machine Learning Techniques

In practice, to ensure there is no unmeasured confounders, researchers usually
collect a large number of covariates. In the case when X is high-dimensional, the
parametric model (6.8) may not be true. A more general approach is to assume

T=mX)+e¢e, €~N(O0 0. (6.10)

where m(X) = E(T|X) and we employ a nonparametric approach to estimate the
mean function.

In [30], we advocate a machine learning algorithm, boosting, to estimate m(X).
The boosting model for a continuous response variable can be represented as

M Ky

mX) =YY cul{X € Ry}, 6.11)

m=1 j=1

where M is the total number of trees, K, is the number of terminal nodes for the mth
tree, R,y is the indicator of rectangular region in the feature space spanned by X, and
Cnmj 18 the predicted constant in region R,,;. K,, and R,,; are determined by optimizing
some nonparametric information criterion, such as Entropy, misclassification rate,
or Gini Index. ¢, is simply the average value of 7; in the training data that falls in
the region R,,;. Details about how to construct a classification/regression tree can be
found in [2].
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In boosting, M is a tuning parameter. If M is too large, the model tends to
overfit and results in a large variance and if M is too small, bias will occur. In
[30], we propose an innovative criterion to determine the value of M. Notice in
the inverse probability weighting approach, if subject i receives a weight w; as
in (6.7), it means the subject will be replicated w; — 1 times in the weighted pseudo
sample. In the weighted sample, if the propensity scores are correctly estimated,
the treatment assignment and the covariates are supposed to be unconfounded
under the ignorability assumption [21]. Therefore, a reasonable criterion is to stop
the algorithm at the number of trees such that the treatment assignment and the
covariates are independent (unconfounded) in the weighted sample. Based on this
idea, we propose the following procedure to determine the optimal number of trees
in [30]:

1. Calculate 7(T;|X;) using boosting with M trees. Then, calculate

T
T OHTIX)

wi i=1,...,n.

where 7(T;) is estimated by normal density.

2. For the jth covariate, denoted as X/, calculate the weighted correlation coefficient
between T and X/ using weights w;,i = 1,...,n obtained in the first step and
denote it as c_ij;

3. Average the absolute value of c_ij over all the covariates and get the average
absolute correlation coefficient (AACC).

For each value of M = 1,2,...,20,000, calculate AACC and find the optimal
number of trees that lead to the smallest AACC value. In step 2, we employ a
bootstrapping approach to obtain the weighted correlation coefficient. Also, we
advocate distance correlation coefficient [26, 27] over other correlation metrics. The
reason is that the distance correlation takes values between zero and one and it
equals zero if and only if 7 and X’ are independent, regardless of the type of X/. The
R code for calculating AACC is displayed in the Appendix of [30]. After the value
of M is determined, the generalized propensity score is estimated by (6.11). More
details of this approach can be found in [30].

4 Propensity Score Evaluation

Given the buffet of methods available to researchers, it is important to select the
best one among all the candidate propensity score models. On the other hand, it is
commonly accepted that there is no uniformly best procedure for all the datasets.
In this section, we briefly talk about how to evaluate a propensity score model and
how to choose an optimal one among several candidate models. We are going to
focus on the binary treatment case. One way to evaluate the performance of different
propensity score models is to see how close the estimates are to the true propensity
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scores using simulations. However, Hirano et al. [7] and Lunceford and Davidian
[15] showed that conditioning on the estimated propensity score rather than the true
propensity score can yield smaller variance of the estimated causal effects. That is,
even when the propensity score is estimated more accurately, it does not necessarily
yield better causal inference estimates.

4.1 Evaluation by Checking Balance

One commonly accepted practice is to check balance after the propensity scores
are estimated. The underlying idea is that if the propensity score is correctly
estimated, the covariates should be distributed almost the same among different
treatment groups. There are many ways to evaluate balance in the covariates and it
also depends on the particular approach employed to estimate the causal treatment
effect. For example, in inverse probability weighting, we may look at the absolute
standardized mean difference (ASMD) in the covariates. For a single covariate X,
the standardized mean difference is defined as

d = thr'eated _ X::v('mtrol (6.12)

2 2 ’
\/(Slreated +5 control)/ 2

where Sieaeq 1S the standard deviation of X in the treatment group and Scongol 1S

the standard deviation of X in the control (untreated) group; Xj;.,..q is the weighted

average of X in the treatment group and X is the weighted average of X in the
control group. When estimating ATE,

v i XiTi/R
treated Z?:l Ti /;’z ’

where 7; = H(T;|X;),i = 1,...,nand

ov X (1=T)/(1—F)
control er}:] (1 _ TZ)/(I _ ;.l) .

When estimating ATT,

n
vw _ Zi:l XIT;

treated — n ’
2= T

and

o Yo Xi(1—=T)r/(1 =)
control Z?:l (l _ Ti)?i/(l _ ?I)
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In some literature, the denominator in (6.12) is replaced by Sycaea- We then look
at the mean/mediation/maximum value of the ASMD among the covariates and the
propensity score model that leads to the smallest value is usually claimed as the
best model.

Other criteria to evaluate the balance in the covariates include Kolmogorov—
Smirnov statistic [17], #-test statistic [6], and c statistic. Recently, an innovative
prognostic score-based balance measurement has been proposed by Stuart et al.
[25], which accounts for the information in the outcome variable while checking bal-
ance. The approach works as follows: first, a model of the outcome on the covariates
is fitted and the predicted outcome if untreated is calculated for each subject in the
study, which is termed the prognostic score. Then, the weighted ASMD in the prog-
nostic score is calculated as a measure of balance. The authors show in a compre-
hensive simulation study that this measurement outperforms the other balance mea-
surements, such as mean/median/maximum ASMD and KS statistic, in the sense
that it is highly correlated with the bias in the estimated causal treatment effect.

4.2 Evaluation Based on a Two-Stage Procedure

In the propensity score-based approaches, we may treat the estimation of propensity
scores as the first stage and the estimation of causal treatment effect using matching,
stratification or inverse probability weighting as the second stage. The estimated
propensity score can be treated as the input into the second stage. While evaluating
a propensity score model, we should focus on the quality of the estimates in the
second stage rather than the first stage. The two-stage causal inference procedure
also fits the model structure discussed by Brookhart and van der Laan [3]. We denote
the causal effect as 1, which is the parameter of interest, and the propensity score as
n, which is the nuisance parameter. Assuming we have K different candidate models
for estimating 7, we aim to choose the optimal one in terms of estimating . Denote
the resulting estimates of v from the K candidate models as /1 (X),. .., ¥k (X), and
assume there exists an approximately unbiased but highly variable estimate of y,
denoted as @0 (X). The model used to estimate 7 in 1/}0(X) is regarded as the refer-
ence model. To account for the fact that there is a trade-off between bias and variance
while estimating 1, the authors proposed a cross-validation criterion for selecting
the optimal estimator of the nuisance parameter among the K candidate models. Let
XY be the training sample and X/ be the testing sample in the vth iteration of the
Monte-Carlo cross-validation, the criterion function is defined as follows:

\%4
Col) = 3 YD — o))
v=1

The optimal model for estimating propensity scores is then chosen to be the one
which leads to the smallest C,, among the K models. Brookhart and van der Laan [3]
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proved that the optimal model selected by the Monte Carlo cross-validation criteria
leads to the smallest mean square error of the parameter of interest. This approach
has been adopted to compare different propensity score models in [33], in which an
over-fitted logistic regression model using all the available covariates is treated as
the reference propensity score model to obtain Iﬁo X).
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Chapter 7
Overcoming the Computing Barriers
in Statistical Causal Inference

Kai Zhang and Ding-Geng Chen

Abstract The massive development in statistical causal inference to the era of big
data commonly seen in public health applications can be always hindered due to the
computational barriers. In this chapter we discuss a practical concern on computing
barriers in statistical causal inference with example in optimal pair matching and
consequently offer a novel solution by constructing a stratification tree based on
exact matching and propensity scores. We demonstrate the implementation of this
novel method with a large observational study from Philadelphia obstetric unit
closure from 1995 to 2003 with 59 observed covariates in each of the 132,786 birth
deliveries and 5,998,111 potential controls. Algorithms and R program code are also
provided for interested readers.

1 Statistical Causal Inference and Optimal Pair Matching

In standard statistical modelling, such as the typical regression, estimation, and
hypothesis testing techniques, we estimate parameters of a statistical distribution
from samples drawn of that distribution. With the estimated parameters for this
distribution, we can then make statistical inferences for the associations among
variables as well as estimate the probabilities of past and future events with new
evidence or new measurements. The processes in statistical modelling can be
legitimized and substantiated at the same experimental conditions which are static
in the process of statistical design and data collection. This static experimental
condition is always a debating topic in the standard statistical modelling.
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Relaxing the static assumptions in statistical modeling, causal inference goes
one step further which can infer not only the probabilities under static conditions,
but also the dynamics under the changing conditions by treatments or external
interventions. This distinction implies that there is a fundamental difference between
causal and associational concepts. In standard statistical modelling, the estimated
distribution function cannot tell us how that distribution would differ if external
conditions were to change, such as from observational to experimental setup.
This information change must be provided by causal assumptions which identify
relationships that remain invariant when external conditions change.

The fundamental problem in causal inference is often defined by the counterfac-
tual. This counterfactual can be illustrated in a simple example: “T have diabetes”,
then “I take Metformin”, and “ My diabetes got cured”. The question now is
whether we can infer the cure of diabetes from taking metformin. Is it true that I
am cured because I took Metformin? It is impossible to know for sure. This could
be certain only if I could have also observed what happened to me if I had not taken
the Metformin. But this control condition is impossible to observe for one single
individual. This is the so-called counterfactual.

To reach causal statements in causal inference, the ideal situation is to have
identical twins randomly assigned to different treatments. The comparison of the
effects from the treatments in these cases establishes causal conclusions because all
covariates here, measured or unmeasured, are identical. However, in practice, such
situation is very rare, particularly in observational studies. Instead, in observational
studies the distributions of covariates in the treatment group are often quite different
from those in the control group, making it difficult to reach causal conclusions.

Pair matching is one of the most important methods in observational studies to
overcome the above difficulty. Intuitively, by finding one subject from the control
group for each individual in the treatment group based on similarity of covariates,
the pair matching approach is like creating “artificial twins” from the treatment
group and the control group. For an excellent reference on pair matching methods,
see [3]. Among the basic pair matching methods, the optimal pair matching method
(OPM) in [1] aims at minimizing the total rank-based Mahalanobis distance between
the treatment group and the control group. The optimal pair matching method has
many advantages. For example, compared to the propensity score matching, which
only balances the overall distribution of the covariates in two groups, the OPM also
balances the covariates within each matched pair. Therefore, the OPM often forms
closer pairs in terms of covariate balance and is a popular choice for matching. For
algorithms and examples of the usage of OPM, see Sect. 8.5 in [3].

The better balance obtained by the OPM comes, however, at a cost of high
computing expenses. For instance, the optimal pairs are formed based on a distance
matrix of rank-based Mahalanobis distances from every individual in the treatment
group to every individual in the control group. Calculating and storing these
distances can be time and space consuming, let alone the optimization algorithm in
creating the matched pairs. Although the computing expense in OPM is manageable
for small studies, in large observational studies, such expense can be prohibitive.
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As an example, in a large observational study, Zhang et al. [5] investigated
the effect of massive obstetric unit closures in Philadelphia to the health care
quality of the mothers and babies. In this study, the treatment group are the birth
delivery records in Philadelphia from 1995 to 2003, and the control group are
those in California, Missouri, and the rest of Pennsylvania. The data consist of 59
observed covariates in each of the 132,786 birth delivery records in Philadelphia and
5,998,111 potential control ones. For this massive dataset, if we use OPM directly,
we would have to create a 132,786 x 5,998, 111 distance matrix by calculating
8 x 10'! rank-based Mahalanobis distances [2] based on 59 covariates. The cost
from this direct calculation and the storage much exceeds the capacity of standard
software, such as the 2.10.0 version of R, which was used in this study in 2009.
The data size also exceeds the algorithm for optimal pair matching: The R package
optmatch stops to work if the size of the distance matrix exceeds about 9 x 10°
(the limit for more current R version 3.1.2 is about 107).

2 Constructing a Stratification Tree Based on Exact
Matching and Propensity Scores

One way to overcome the computing barrier for optimal matching problems is to
take advantage of the structure of the data. In particular, there are two general
observations:

1. Individuals with similar propensity scores are more likely to have close covari-
ates, and in general the individuals in the treatment group have higher propensity
scores than the ones in the control group.

2. Some covariates are of more importance than others for the field of research.

Guided by these considerations, one can stratify the data into small subclasses
with a tree structure and match within each subclass.

In what follows, we describe the construction of the stratification tree. In general,
decision on whether or not the stratification is needed at each node is based on
several scientific, statistical, and computational criteria, while the stratification
process can be done by estimated propensity scores and by exact matching of
important variables.

At the root of the stratification tree, the entire data is regarded as a stratum. The
algorithm then runs through the following steps.

1. Checking statistical criteria. We first check if the stratum makes statistical
sense. For example, we ask if there is any treated observation in the stratum.
If yes, we shall proceed with the stratification and matching steps. Otherwise, we
shall ignore the stratum.

2. Checking matching feasibility. In this step we check whether the stratum is
feasible for the OPM algorithm to get matched pairs. For example, we check
whether the size of the distance matrix is below a preset tolerance, for example
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9 x 10. If yes, then we can proceed matching within the stratum. Otherwise, we
shall further split the stratum. There are two methods of stratification: propensity
score stratification (PSS) and important variables stratification (IVS).

3. Propensity scores stratification (PSS). In this stratification process, we first
fit a logistic regression to get propensity scores for each individual. We then
rank the propensity scores from high to low and start stratification from the
top. A subclass keeps recruiting people until both (1) there are more con-
trol units than the treated ones and (2) the size of distance matrix reaches
the preset tolerance in Step 2. The key idea behind PSS is based on [4]
that stratification on estimated propensity scores can effectively reduce bias
and unbalance. If the logistic regression encounters difficulty for some rea-
son, such as when the stratum is too large for the logistic regression, the
stratum will be split by the important variable stratification (IVS) described
below.

4. Checking the number of strata after propensity. In [4], the authors recom-
mend five subclasses from PSS. Indeed, since individuals with similar propensity
scores may have very different covariates, and since a large number of strata
may lead to difficult interpretations, a discretion on the number of strata from
PSS is needed. In the algorithm, we check if the number of strata from PSS is
below a preset tolerance bound, which should be a compromise between exact
matching and propensity score matching and should be advised by field experts.
If the number of strata is small, we proceed with matching within each subclass.
Otherwise, we disregard the PSS and consider the following important variable
stratification (IVS).

5. Important Variables Stratification (IVS). To stratify the data by important
variables, we first set a list of priority and a set of ranges for interval splitting.
These order of importance and intervals should be advised by field experts before
the study. For example, in [5], the variable “Mom’s age” has three stratification
intervals (0, 18], (18, 34], and (34, co) based on medical considerations. Thus,
a stratum reaching the IVS step based on “Mom’s age” will be split into the
three intervals above so that treated and control units are exactly matched in
each of the three strata from IVS. The algorithm then repeats from Step 1 for
each of the three strata. The key idea behind this process is the exact matching
idea described in Chap.9 in [3]. If there is no more variables for IVS but
matching is not feasible in the current data, the algorithm stops and reports an
error.

When all strata are of a size that is feasible for matching, the stratification
process is complete, and matched pairs are formed within each subclass. The
aggregated pairs from all subclasses then form the matched pairs of treated and
control individuals for the entire study. The flowchart in Fig.7.1 describes the
complete algorithm.
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Important Variable

Sense? Stratification
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(End Stratification. Do Matching)

Fig. 7.1 Flowchart of the complete stratification process
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3 Example: Creating a “Control-Philadelphia”

We take the 1995 data in [5] for example in illustrating the algorithm. There are
14,768 treated units and 681, 743 control ones in this dataset, and the data size is
beyond the 2.10.0. version of software R in 2009 for logistic regression and OPM.
To apply the algorithm described in Sect. 2, we set the following argument as input:
The tolerance size of the distance matrix within each subclass is set to be 9 x 10°.
The tolerance number of the subclasses is set to be 5. The stratification variables
and stratification intervals suggested by the doctors, listed by the priority from high

to low, are
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. “Gestation Age” with intervals (0, 33], (33, 36], (36, 38], (38, 40], and (40, c0).
2. “Mom’s Age” with intervals (0, 18], (18, 34], and (34, c0).

3. “Mom’s Education” with categories “Less than High School”, “High School
Degree”, “College Degree”, and “More than College”.

We shall only explain Step 3 of PSS here since other steps are straightforward. For
this step, we use the delivery records with gestational ages more than 40 weeks as
an example. There are 1791 treated units and 137, 463 control ones. To subclassify
this stratum, we fit the logistic regression with all covariates but “Gestation Age”
to get estimated propensity scores for each individual. We then sort the estimated
propensity scores from high to low and present a few of them in Table 7.1. We
form the first subclass by searching in the treated group for the lowest estimated
propensity score p;, above which (1) the number of treated propensity scores is less
than the number of control propensity scores—so there are enough control units
to pair with treated ones, and (2) the product of the number of treated and control
units—which is going to be the size of the distance matrix in OPM—is less than a
threshold required by certain software. The observations with a estimated propensity
score higher than p; are collected to be the first subclass. The detailed R function of
this PSS step is provided in Appendix.

In this stratum, for the first 312 treated units there are not enough control units
above their propensity scores so pair matching cannot be done. From the 313-th
treated unit on the pool of control units is large enough to match for each treated
unit. However, from the 1045-th treated units on, the product of the sizes of treated
and control pools exceeds the 9 x 10° tolerance bound. Therefore, p; = 0.0388, and
the first subclass consists of 1044 treated units and 8614 control units.

In summary, by going through the process described in Sect. 2, the resulting tree
of strata for the 1995 data is shown in Fig. 7.2. At the beginning step, the stratum is
so large that even logistic regression cannot be fit. After the split based on “Gestation
Age”, four of the five strata can be divided into a few subclasses for which matching
is feasible. However, the (38, 40] stratum is still too large. Its PSS will result in
12 subclasses, which is above the limit of 5. Thus, this stratum is further split by
“Mom’s Age”. We further stratify the “Mom’s age” group of (18, 34] by “Mom’s
Education” since it is too large too. The resulting tree has 10 ending nodes of strata
with the numbers of subclasses 2,2,5,2,2,5,4,1,2,4.

After the stratification process is complete, OPM is performed within each of
the 29 subclasses. Table 7.2 from [5] shows that the covariate balance in terms
of standardized differences before and after matching. It can be seen that before
matching, the distributions of covariates are quite different between the Philadelphia
group and the control group. Many covariates have a standardized difference
greater than 0.2. For example, on average Philadelphia mothers were younger and
their prenatal care started later, Philadelphia babies were lighter in weight, and
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1995
T =14768
C=681743
fit logistic
regression
| (0,33] | | (33,36] | (36,38] | (38,40] | (40,00) |
Gestation Age T =708 T=1331 T =3339 T =7599 T=1791
C=19637 C = 49301 C= 147633 C=318319 C= 137463
2 subcl 2 subcl 5 subcl 12 subcl 4 subcl
[ 18 | [ (1834 | [ (34=) |
Mom’s Age T =991 T = 5830 T=778
C = 24889 C=253415 C=41549
2 subcl 9 subcl 2 subcl
( Less \ | High school | [ College | | More |
Mom’s T =368 T =3538 T=1661 T =263
Education C=31028 C=123453 C= 86354 C=17728
2 subcl 5 subcl 4 subcl 1 subclass

Fig. 7.2 The stratification tree from the algorithm. Each node represents a resulting stratum from
IVS. Within each node, we list the number of treated units, the number of control units, and the
number of subclasses from PSS if feasible

Table 7.2 Covariate balance before and after matching

5,998,111 132,786 132,786 Absolute
potential Philadelphia matched standardized
Sample size controls births controls difference
Covariate Covariate mean or proportion Before After
Mom’s neighborhood (Zip code)
Income (K$) 46 30 30 1.16 0.04
Income missing 0.00 0.00 0.00 0.06 0.00
Poverty (zip-fr) 0.15 0.25 0.23 0.91 0.13
Poverty missing 0.00 0.00 0.00 0.06 0.00
High school (zip-fr) 0.74 0.68 0.69 0.37 0.07
HS missing 0.00 0.00 0.00 0.06 0.00
College (zip-fr) 0.22 0.15 0.15 0.51 0.01
College missing 0.00 0.00 0.00 0.06 0.00
Mom
Mom’s age 28 26 26 0.21 0.01
Parity 2.10 2.20 2.20 0.07 0.03
Parity missing 0.00 0.01 0.01 0.09 0.04

(continued)
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Table 7.2 (continued)

Sample size
Covariate

Prenatal care (month started)

PC missing

Below 8th grade
Some high school
HS graduate
Some college
College graduate
More than college
Missing

White
Black
Asian
Other
Missing

Government
Other insurance
Uninsured
Missing

Birth weight (g)

Birth weight missing
Gestational age (weeks)
Gestational age missing
Small at gestational age

For Zip Code data, zip-fr means the fraction of the Zip Code with this attribute. An absolute
standardized difference in mean of 0.2 or greater is in bold

Philadelphia families had less income. Such discrepancy made causal conclusions
difficult from direct comparisons. However, after matching, the covariates were well
balanced: The standardized differences were all below 0.2, and the average of each

covariate was close.

5,998,111 132,786
potential Philadelphia
controls births

Covariate mean or proportion

2.40 2.70
0.02 0.11
Mom’s education
0.10 0.02
0.17 0.21
0.30 0.38
0.20 0.19
0.13 0.09
0.09 0.06
0.01 0.04
Mom’s race

0.71 0.31
0.07 0.42
0.07 0.03
0.12 0.06
0.02 0.17
Mom’s health insurance
0.40 0.40
0.57 0.58
0.03 0.01
0.00 0.01
Baby

3345 3179
0.00 0.00
39 38
0.05 0.01
0.09 0.14

132,786
matched
controls

2.60
0.08

0.02
0.20
0.40
0.19
0.10
0.06
0.04

0.32
0.46
0.03
0.05
0.14

0.39
0.60
0.01
0.00

3189
0.00
38
0.01
0.12

133

Absolute
standardized
difference
Before After
0.22 0.04
0.37 0.11
0.32 0.02
0.11 0.04
0.17 0.05
0.02 0.01
0.11 0.01
0.11 0.00
0.17 0.04
0.87 0.03
0.88 0.11
0.18 0.03
0.20 0.05
0.52 0.13
0.01 0.02
0.02 0.04
0.11 0.04
0.11 0.06
0.26 0.02
0.04 0.03
0.14 0.01
0.22 0.02
0.16 0.05
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4 Summary

As shown in this chapter, the optimal pair matching method can achieve good
balance among covariates for causal conclusions in large observational studies.
However, it has to be used with care to avoid the high computation cost it can incur.
In the era of Big Data, such large studies can be more and more often. Thus, it
is important to develop and consider efficient ways in OPM to facilitate statistical
analysis in observational studies.

In the Philadelphia obstetric unit closure study [5], a stratification tree method
was applied to split the data into small subclasses where matching is computa-
tionally feasible. The construction process of the tree structure was based on an
integration of propensity score stratification and important variable stratification.
The underlying ideas are that propensity scores [4] and exact matching [3] are
important ways to balance covariates. In the Philadelphia obstetric unit closure
study, the difference between covariates is substantially reduced after the matching
based on the stratification tree, which in turn facilitates the establishment of causal
statements.

In general, stratification provides efficient ways to perform OPM for large
datasets. Since the overall goal is to achieve the balance in covariates between
matched pairs for causal conclusion, the stratification process, especially important
quantities such as the points of split, should be carefully designed with the advice
from field experts. The resulting stratification strategy should be a good compromise
between covariate balance and computation costs.

The R code for the tree stratification algorithm described in this chapter is
available upon request for interested readers. An R package of this algorithm is
also under development.
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Appendix: R Code for Propensity Score Stratification

The following R function opt _pstrat implements the PSS algorithm in Step 3
described above and forms the subclasses. The function takes three arguments as
inputs:
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. indicator: This argument takes a binary vector which takes value 1 for treated
units and O for control ones.

. pscore: This argument takes a vector of propensity scores of each unit.

. sizemax: This argument takes a preset tolerance level on the size of the distance
matrix. The default value is 9,000,000.

The function opt _pstrat returns with the following values:

. £1lag: This output returns 1 for successful stratification and 2 otherwise.

. cutof fs: This output returns the cutoff points where the subclasses are split.

. t.pstrata: This output returns a vector listing the number of treated units in
each subclass formed.

. c.pstrata: This output returns a vector listing the number of control units in
each subclass formed.

. prodsize.pstrata: This output returns a vector listing the size of distance
matrix in each subclass formed.

opt_pstrat <— function (indicator ,pscore ,sizemax=9000000){

cutoffs <— max(pscore)

t.strata <— NULL

c.strata <— NULL

size.strata <— NULL

indicator_iter <— indicator

pscore_iter <— pscore

num_strata_formed <— 0

while (sum(indicator_iter)>0 & sum(l—indicator_iter)>0){
n <— length(indicator_iter)
t_ind <— which(indicator_iter==1)
n_treated <— sum(indicator_iter)
treated_pscore_iter <— pscore_iter[t_ind]

t_geq_t <— n_treated+l—rank(treated_pscore_iter ,
ties . method="min")

c_geq_t <— n+l—rank(pscore_iter ,ties .method="min"
)[t_ind]—t_geq_t

matchable <— c_geq_t >= t_geq_t

if (sum(matchable)>0){
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matchable_set <— t_ind[c_geq_t >= t_geq_t]
}telse{
print ("No way to stratify: c_geq_t < t_geq_t."
)i stop}
size.dist <— t_geq_txc_geq_t
if (min(size.dist[matchable])>sizemax){
print ("No way to stratify: min(size.dist)>sizemax.");

return (list (flag=2))
}

cutoff.size.ind <— which(size.dist==max(size.dist][
matchable ][ size . dist [ matchable]<sizemax]))[1]

cutoff <— pscore_iter[t_ind[cutoff.size.ind]]
cutoffs <— c(cutoffs ,cutoff)
t.strata <— c(t.strata ,sum(treated_pscore_iter >=cutoff))

c.strata <— c(c.strata ,sum(pscore_iter >=cutoff)—sum/(
treated_pscore_iter >= cutoff))

size.strata <— c(size.strata ,sum(treated_pscore_iter >=
cutoff)s(sum(pscore_iter >=cutoff)—sum/(
treated_pscore_iter >=cutoff)))

num_strata_formed <— num_strata_formed+1
print(num_strata_formed)

indicator_iter <— indicator_iter[pscore_iter <cutoff]

pscore_iter <— pscore_iter[pscore_iter <cutoff]

if (sum(indicator_iter)==0){

}

print (" Stratification Finished: Treated Units Used Up.")

return(list(flag=1,num_pstrata=num_strata_formed ,
cutoffs=rev(cutoffs),t.pstrata=rev(t.strata),c.pstrata=
rev(c.strata),prodsize. pstrata=rev(size.strata)))

if (sum(!indicator_iter)==0){

print (" Stratification Finished: Control Units Used Up.
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Cannot Form New Strata.")
return(list(flag=2,num_pstrata=num_strata_formed ,
cutoffs=rev(cutoffs),t.pstrata=rev(t.strata),c.pstrata=
rev(c.strata),prodsize. pstrata=rev(size.strata)))

As described in the main text, the function opt pstrat is applied when each
stratum goes through Step 3. The outputs of this function provide useful information
on whether to further split or match within the subclasses.
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Chapter 8
Semiparametric Theory and Empirical
Processes in Causal Inference

Edward H. Kennedy

Abstract In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a brief
introduction to the general problem of causal inference, and go on to discuss esti-
mation and inference for causal effects under semiparametric models, which allow
parts of the data-generating process to be unrestricted if they are not of particular
interest (i.e., nuisance functions). These models are very useful in causal problems
because the outcome process is often complex and difficult to model, and there may
only be information available about the treatment process (at best). Semiparametric
theory gives a framework for benchmarking efficiency and constructing estimators
in such settings. In the second part of the paper we discuss empirical process
theory, which provides powerful tools for understanding the asymptotic behavior
of semiparametric estimators that depend on flexible nonparametric estimators of
nuisance functions. These tools are crucial for incorporating machine learning and
other modern methods into causal inference analyses. We conclude by examining
related extensions and future directions for work in semiparametric causal inference.

1 Introduction

Causality and counterfactual questions lie at the heart of many if not most scientific
endeavors. Counterfactual questions are about what would have happened in
some system had it undergone a particular change. For example: How would the
distribution of patient outcomes differ had everyone versus no one received some
medical treatment? Which rule for treatment assignment would maximize outcomes
if it were implemented in the population?

In fact many scientific questions are causal even if they are not framed using
explicitly causal language and notation. For example, standard regression analyses
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are often explained in implicitly causal terms, e.g., when regression coefficients
are portrayed as representing the expected difference in outcome if all covariates
were held constant, except for one covariate whose value was increased by one.
In contrast, without causal assumptions, these coefficients can only represent the
expected difference in outcome for two units who happen to have the same covariate
values, except for one covariate whose values happen to differ by one; manipulation
of the covariate cannot be allowed without invoking causal assumptions.

In this chapter we give a review of semiparametric theory and empirical
processes as they arise in causal inference problems. These include very powerful
methodological tools that can be especially useful in causal settings.

In Sect. 2 we give an introduction to causal inference, following Robins [37, 41,
59], van der Laan [57, 59, 60], and others. In order to answer causal questions with
observed data, we need causal assumptions. Sometimes these causal assumptions
can hold by virtue of the study design (e.g., in randomized trials), while at other
times the assumptions we need are untestable and need to be justified based on
subject matter expertise (e.g., in standard observational studies). In either case, as we
discuss in detail in Sect. 2.1, it is important to have a clearly defined study question
(with a corresponding causal parameter of interest). It is similarly important to be
precise about the assumptions that are required to estimate the causal parameter of
interest with observed data. This is the enterprise of identification, which we discuss
briefly in Sect. 2.2.

After a causal parameter of interest has been precisely defined and identified
(i.e., expressed in terms of observed data), then estimation and inference for that
parameter is essentially a purely statistical problem. Classical maximum likelihood
approaches can in theory be used to estimate such identified causal parameters, but
typically require unrealistic parametric assumptions about the entire data-generating
process. In contrast, semiparametric methods allow parts of the data-generating
process to be completely unrestricted, e.g., if they are unknown or involve nui-
sance functions that are not of particular interest to the study question. Thus, if
investigators have a good understanding of the treatment assignment process, for
example, this information can be incorporated into a semiparametric analysis, and
no assumptions might be needed about the outcome process. This is particularly
useful in causal inference settings since the outcome process is often complex
and difficult to model, while investigators may have some information about the
treatment mechanism (e.g., by surveying doctors about how they prescribe some
treatment).

Alternatively, in many cases investigators may not have much information
available about any part of the data-generating process. Then it will often be most
reasonable to use a nonparametric model, which does not make any parametric
assumptions at all about the data-generating process. A nonparametric model can be
viewed as a special case of a semiparametric model, so the theory reviewed in this
chapter covers these settings as well as those where treatment is assigned according
to some known process.
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In Sect.3 we review semiparametric theory, following foundational work by
numerous authors, including Begun et al. [4], Bickel et al. [7], Pfanzagl [33], van
der Vaart [64, 65], Robins [37, 41, 59], van der Laan [57, 59, 60], and many others
[21, 53]. We start in Sect. 3.1 with a general introduction to semiparametric models,
and discuss influence functions as representations of estimators in such models
in Sect.3.2. Then in Sect.3.3 we introduce the notion of tangent spaces and a
related space where influence functions reside, give an example illustrating basic
semiparametric theory for estimation of the average treatment effect in Sect. 3.4,
and wrap up by discussing links to general missing data problems in Sect. 3.5.

Semiparametric theory gives us efficiency benchmarks in models where parts of
the data-generating process are unrestricted, and tells us how to construct potentially
efficient estimators. However, in order to understand the asymptotic behavior of
such semiparametric estimators, particularly when flexible nonparametric methods
are used to estimate nuisance functions, we need empirical process theory. This is
the topic of Sect.4. The field of empirical processes is vast, so we only discuss
parts that especially relate to estimation of nuisance functions. Our review follows
important work by Andrews [1, 2], Pollard [35, 36], van der Vaart [64, 65, 67],
Wellner [48, 67], and others [21, 60]. We start by giving the motivation for empirical
process theory in semiparametric problems in Sect. 4.1, discuss Donsker classes and
examples in Sects. 4.2 and 4.3, and illustrate with an analysis of the doubly robust
estimator of the average treatment effect in Sect. 4.4.

We close the chapter in Sect.5 by considering extensions and future directions
for work in semiparametric causal inference.

2 Setup

In this section we briefly introduce the basic setup of a typical causal inference
problem. We focus on two essential components of causal inference: first, for-
mulating a clearly defined parameter of interest, and second, exploring how and
whether this target parameter is identified with observed data. These issues are very
important and provide a crucial foundation for semiparametric causal inference;
however, we give only a brief treatment since the main goal of this chapter is to
discuss semiparametric theory and empirical processes. Much of the discussion here
is inspired by pioneering work by Robins [37, 41, 59], van der Laan [57, 59, 60],
and colleagues.

2.1 The Target Parameter

An important first step in any scientific pursuit is to have a clearly defined goal. In
a statistical analysis, this includes giving a precise expression for a parameter of
interest, which we will refer to as the target parameter.
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The target parameter is the main feature of interest in the analysis, and ideally is
decided upon based on collaborative discussion between scientific investigators and
the statistician or analyst. In practice, however, the target parameter is sometimes
defined only in vague terms, or is chosen based on convenience rather than scientific
interest. In causal inference problems, the target parameter is typically formulated
in terms of hypothetical interventions and corresponding counterfactual data, which
represent the data that would have been observed under some intervention. In this
chapter we mostly rely on the potential outcome framework, due to Neyman [28]
and Rubin [46, 47], but note that alternative frameworks based on structural equation
models and graphs [30, 31], or decision theory [10] can also be useful.

For example, in some population of units (e.g., patients), let Y € R denote a
random variable representing an outcome of interest (e.g., blood pressure, or an
indicator for whether a heart attack occurred), and let A € {0, 1} denote a binary
treatment (e.g., receipt of a statin), whose effect is in question. Then it may be of
interest to estimate the average causal effect, i.e., how the expected outcome would
have differed had everyone in the population taken treatment versus if no one in
the population had taken treatment. This quantity can be represented notationally as
follows. Let Y denote the potential outcome that would have been observed (for a
particular unit in the population) had that unit taken treatment level A = a. For a
binary treatment, for example, this notation gives rise to two potential outcomes, Y'
and Y°, which are the outcomes that would have been observed for a particular unit
under treatment (A = 1) and control (A = 0), respectively. Then the average causal
effect in the population can be defined as

v =Ex' —Y°. 8.1

Of course, different contrasts may instead be of interest under this hypothetical
intervention; for example, if the outcome is binary, then one may be more concerned
with the risk ratio E(Y')/E(Y?) = P(Y! = 1)/P(Y° = 1), or with the odds
ratio {P(Y! = 1)/P(Y' = 0)}/{P(Y° = 1)/P(Y° = 0)}. Alternatively, one may
care more about how the effect of treatment changes with some other variable.
Or some other entirely different intervention may be of interest; for example, one
may want to learn what the mean outcome would have been if treatment had been
assigned via some rule based on other variables [9, 24], or how outcomes would have
changed under treatment versus control if a mediating variable (a variable occurring
subsequent to treatment, but prior to outcome) was fixed at some value [51, 69].

We will consider a number of different types of causal parameters and hypothet-
ical interventions in subsequent sections, but a full taxonomy is beyond the scope
of this chapter. The main point is that it is necessary to have a clear definition of the
target parameter (i.e., the object one wants to learn about using data) when working
in the semiparametric framework. In fact, regardless of framework or philosophical
perspective, a clearly defined target parameter is necessary in order to meaningfully
address estimation bias or variance relative to any meaningful standard.
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2.2 Identification

Once a target parameter is clearly defined based on some hypothetical intervention,
the next step is to explore how and whether it can be identified (i.e., expressed
uniquely in terms of a distribution for observed data). This step translates the causal
question of interest into a statistical problem defined in terms of observed data.

For example, suppose that in a population of interest we actually get to observe
potential outcomes under the received treatment for each unit, i.e.,

A=a = Y =7Y" (C1)

Condition (C1) is called “consistency” [68] and holds if potential outcomes are
defined uniquely by a unit’s own treatment and not others’ (i.e., no interference),
and also not by the way treatment is administered (i.e., no different versions of
treatment). Also suppose that there exists some set of observed covariates L that
render treatment independent of potential outcomes when conditioned upon, i.e.,

ALY'|L, (C2)

where 1 denotes statistical independence. Condition (C2) is often called “no
unmeasured confounding,” “exchangeability,” or “ignorability,” and holds if treat-
ment is externally randomized, or if treatment decisions are made based only on
covariates L. Finally suppose that, regardless of covariate value, each unit has a

non-zero chance to receive treatment level A = a, i.e.,
pA=a|L=1) >35> 0wheneverp(L=1)>0, (C3)

where p(-) denotes densities with respect to an appropriate dominating measure.
Condition (C3) is called “positivity” and means treatment is not assigned determin-
istically [32]. Then, if Conditions (C1)—(C3) hold for treatment value a, it follows
that

pY*=y|L=0)=p¥ =y|L=1LA=a). (8.2)

Therefore we can express the conditional distribution of the potential outcome
Y“ given L in terms of observed data; thus, we can also identify the conditional
distribution given any subset of L, including the null set, by simply marginalizing.
In particular if Conditions (C1)—(C3) hold for a = 0, 1, then the average causal
effect ¢ from (8.1) can be written as

w:/ {]E(Y|L=I,A=1)—E(Y|L=l,A=0)}dP(L:l). (8.3)
<
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The above identification result is an example of the g-computation formula,
which was first proposed for general time-varying treatments by Robins [37, 43].
Numerous alternative identification schemes are also available, for example based
on instrumental variables [3, 16]. The literature on causal identification is extensive,
and includes graphical criteria [30, 31], bounds [23], and many other topics.

In this chapter we focus on settings where the target causal parameter (call it ) is
identified, and thus can be written in terms of the distribution P of the observed data.
In the next section we illustrate ideas with the average causal effect ¢ defined in
Eq. (8.1), and defined by Eq. (8.3) under Conditions (C1)—(C3); although we focus
on simple average effects, the general logic is similar for other parameters.

3 Semiparametric Theory

In this section we give a general review of semiparametric theory, using as a running
example the common problem of estimating an average causal effect. Our review
draws on foundational work in general semiparametric theory by Begun et al. [4],
Bickel et al. [7], Pfanzagl [33, 34], and van der Vaart [64, 65], among others [21, 26],
as well as further developments for missing data and causal inference problems by
Robins [37-39, 41, 59], van der Laan [57, 59, 60], and colleagues [15, 53].

3.1 Semiparametric Models

Standard semiparametric theory generally considers the following setting. We
observe an independent and identically distributed sample (Z, ..., Z,) distributed
according to some unknown probability distribution Py on the Borel o-field % for
some sample space 2. The general goal is estimation and inference for some target
parameter ¥y = ¥ (Py) € R?, where ¥ = 1 (P) can be viewed as a map from a
probability distribution to the parameter space (assumed to be Euclidean here). In
our running example where  is the average causal effect defined in (8.3) (after
imposing identifying assumptions), the observed data consist of an independent and
identically distributed sample of Z = (L, A, Y) where L denotes covariates, A is a
binary treatment, and Y is the outcome of interest. Here we suppose the distribution
Py has density given by

p(@) =p(y|Lapa|hp(l) (8.4)

with respect to some dominating measure. In general we write p(X = ¢) for the
density of X at ¢, but when there is no ambiguity we let p(x) = p(X = x).

A statistical model & is a set of possible probability distributions, which is
assumed to contain the observed data distribution Py. In a parametric model, &
is assumed to be indexed by a finite-dimensional real-valued parameter 6 € RY,
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e.g., we may have & = {Pg : 0 € RY} with ¢ C 6. For example, if Z
is a scalar random variable, one might assume it is normally distributed with
unknown mean and variance, Z ~ N(u,o?), in which case the model is indexed
by 0 = (u,0?%) € R x RT. Semiparametric models are simply sets of probability
distributions that cannot be indexed by only a Euclidean parameter, i.e., models that
are indexed by an infinite-dimensional parameter. Semiparametric models can vary
widely in the amount of structure they impose; for example, they can range from
nonparametric models for which & consists of all possible probability distributions,
to simple regression models that characterize the regression function parametrically
but leave the residual error distribution unspecified.

In semiparametric causal inference settings it is common to impose some
structure on the treatment mechanism (e.g., with a parametric model) leaving
the outcome mechanism unspecified. This is because the outcome mechanism is
often a complex natural process outside of human control, whereas the treatment
mechanism is known in randomized trials, and can be well understood in some
observational settings (for example, when a medical treatment is assigned in a
standardized way, which is communicated by physicians to researchers). In our
running example, one may wish to do inference for the average causal effect
under a parametric model for the treatment mechanism, leaving everything else
unspecified, so that

pzn,a) =p(y | La;ny)pla | L;a)p(l;n), (8.5)

where o € R? but n = (n,, ;) represents an infinite-dimensional parameter that
does not restrict the distribution of the outcome given covariates and treatment p(y |
[, a) or the marginal covariate distribution p(/).

Of course it is not always the case that there is substantive information available
about the treatment mechanism; in many observational studies, neither the exposure
nor the outcome process is under human control, and both processes may be equally
complex (e.g., in studies where the treatment or exposure is itself a disease or other
medical condition). In such cases it is often more appropriate to consider inference
for ¥ under a nonparametric model that makes no parametric assumptions about the
distribution P. As we will see in Sect. 4.4, in order to obtain usual root-n rates of
convergence in nonparametric models, we will still require some conditions on how
well we can estimate the nuisance functions.

Another way semiparametric models arise in causal settings is through para-
metric assumptions about high-level treatment effects. For example, suppose we
were not interested in the average causal effect E(Y' — Y°) but in how this effect
varied with a subset of covariates V C L, i.e., the goal was to estimate y(v) =
E(Y'— Y% |V = v). Letting W = L\ V so that L = (V, W), it is straightforward
to show that this conditional effect is also identified under Conditions (C1)—(C3)
as in (8.3), except replacing dP(l) with dP(w | v). If V includes a continuous
variable or has many strata, it may be desirable to make parametric assumptions to
reduce the dimension of y(v) (or in rare cases, there may be substantive knowledge
about the parametric form of the effect modification), and thus one may want to
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assume y(v) = y(v;y¥) for ¥ € RP. Such assumptions are not always easily
encoded directly in the distribution p(z), but can still be employed in conjunction
with parametric assumptions about the treatment mechanism, for example, or in
otherwise nonparametric models. An alternative approach is to use nonparametric
working models [25], where instead of assuming y(v) = y(v;¥) we define our
target parameter as a projection of y(v) onto the model y (v; ¥) (using, for example,
a weighted least squares projection).

3.2 Influence Functions

In the previous subsection we discussed the concept of a semiparametric model
(in which part of the distribution P is allowed to have unrestricted or infinite-
dimensional components) and gave some examples. Now we begin to discuss
estimation and inference in such models. This requires the concept of the influence
function, which is a foundational object of statistical theory that allows us to
characterize a wide range of estimators and their efficiency.

Let P, = n=')", 87 denote the empirical distribution of the data, where §, is
the Dirac measure that simply indicates whether Z = z. This means, for example,
that empirical averages can be written as n=' Y . f(Z:) = [f(2)dP, = P.{f(2)}.
An estimator ¢ = 9 (P,) is asymptotically linear with influence function ¢ if the
estimator can be approximated by an empirical average in the sense that

U — Yo = Pdo(2)} + 0,(1//n), (8.6)

where ¢ has mean zero and finite variance (i.e., E{¢(Z)} = 0 and E{¢(Z)®?} < 00).
Here 0,(1/+/n) employs the usual stochastic order notation so that X,, = o0,(1/r,)

P P . .
means r,X, — 0 where — denotes convergence in probability.

Importantly, by the classical central limit theorem, an estimator i with influence
function ¢ is asymptotically normal with

VA = yo) > N(0, Blg(2)®%}), (8.7)

where ~> denotes convergence in distribution. Thus if we know the influence
function for an estimator, we know its asymptotic distribution, and we can easily
construct confidence intervals and hypothesis tests, for example. Also, the efficient
influence function for an asymptotically linear estimator is almost surely unique
(i.e., unique up to measure zero sets) [53], so in a sense the influence function
contains all information about an estimator’s asymptotic behavior (up to 0,(1//n)
error).

Consider our running example where Y is the average causal effect defined
in Eqgs.(8.1) and (8.3). Suppose we are in a randomized trial setting where the
propensity score w(l) = p(A = 1 | L = [) is known. A simple inverse-probability
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weighted estimator is given by

AY  (1-A)Y

A0 -7 (8.8

‘&ipw =P,

(Note that E(g@,-pw) = 1 by iterated expectation.) The influence function for the
estimator 1/7,«pw is clearly given by

. (Z)ZA_Y_w_w (8.9)
bt =T T =y " ‘

since @ipw — Yo = Pu{@ipw(Z)} exactly, without any o, (1/+/n) approximation error.

Now suppose we are in an observational study setting where the propensity
score 7 ([) needs to be estimated, and suppose we do so with a correctly specified
parametric model 7 (l; &), with @ € RY, so that the estimator & solves some esti-
mating equation ,{S(Z; @)} = 0. Then the inverse-probability-weighted estimator
www is given by (8.8) above, except with the estimated propensity score 7w (L; &)
replacing the true propensity score 7 (L). We can find the corresponding influence
function by standard estimating equatlon techniques [49]. Specifically, we have that
6= (wlpw, a")" solves P,{m(Z; 9)} = 0 where m(z; 0) = {@ipw(Z: ¥, @), S(Z; )" }"
are the stacked estimating equations for i and ¢, with the influence function for
known propensity score given by @i, (Z; ¥, @) = AY/n(L;o) — (1 —A)Y/{1 —
7 (L; )} — . Then under standard regularity conditions [27, 53, 64] we have

. -1
R = ] P

which after evaluating and rearranging implies that the influence function for 1#
when the propensity score 7 (/; ) is estimated is

ipw

Qi (Z; Yo, Olo)} E { 0S(Z; ap)

—1
ot o } S(Z; ap).

P (Z) = ipw(Z; Yo, 20) — E {

Surprisingly, even if the propensity score is known, it can be shown [53] that the
inverse-probability-weighted estimator lzi;w based on an estimated propensity score
is at least as efficient as the inverse-probability-weighted estimator @ipw that uses
the known propensity score. In other words, the variance of the influence function
(pl;W(Z) is less than or equal to the variance of the influence function ¢;,,(Z) for
known propensity score. Thus the propensity score should be estimated from the
data (according to a correct model, of course) even when it is known; discarding
information can actually yield better efficiency.

So far we have seen that, given an estimator 1/A/, we can learn about its asymptotic
behavior by considering its influence function ¢(Z). But we can also use influence
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functions to find or construct estimators. Suppose we are given a candidate influence
function ¢(Z; ¥, n) that depends on the target parameter { as well as a nuisance
parameter 1 as in the previous examples. Then we can construct an estimator by
solving the estimating equation P,{¢(Z; ¥, 1)} = 0 in ¥, where 7] is some estimate
of the nuisance parameter. Under standard regularity conditions, along with some
additional conditions on the nuisance estimation, the corresponding estimator will
itself be asymptotically linear with an influence function related to ¢(Z; ¥, n9)
depending on the form of the function ¢ and how the nuisance parameter 7 is
estimated (as in the previous example). Other approaches for constructing estimators
based on a particular influence function are also possible [60, 61].

There is a deep connection between (asymptotically linear) estimators for a given
model and the influence functions under that model. In some sense, if we know one
then we know the other. Thus if we can find all the influence functions for a given
model, we can characterize all asymptotically linear estimators for that model.

3.3 Tangent Spaces

In this subsection we discuss the fundamental problem of how to find influence
functions for a given semiparametric model, by characterizing the space in which
influence functions reside. As noted previously, once we have solved this problem
we can characterize valid estimators under our model. In particular, we can use
influence functions to construct estimators and explore their efficiency.

To ease notation, consider the case where the target parameter is a scalar, so
that ¥ € R. As discussed in the previous subsection, influence functions ¢ are
functions of the observed data Z with mean zero and finite variance. These influence
functions reside in the Hilbert space L,(P) of measurable functions g : 2 — R
with Pg?> = [ g*> dP = E{g(Z)*} < oo, equipped with covariance inner product
(g1,82) = P(g1£2)- The space of influence functions will be a subspace of this
Hilbert space. A Hilbert space is a complete inner product space, and can be viewed
as a generalization of usual Euclidean space; it provides a notion of distance and
direction for spaces whose elements are potentially infinite-dimensional functions.

A fundamentally important subspace of L,(P) in semiparametric problems is the
tangent space. First we will discuss the tangent spaces for parametric models. For
parametric models indexed by real-valued parameter & € R?*!, the tangent space
T is defined as the linear subspace of L, (P) spanned by the score vector, i.e.,

T = {b"Se(Z;6p) : b € RIT1}, (8.11)

where Sy (Z; 6y) = dlogp(z; 0)/90|g=,. If we can decompose 6 = (¥, n), then we
can equivalently write = 7, @ 7, for

y,/, = {blSw(Z; 90) :by € R} s ,7,; = {b;SW(Z; 90) 1 by € Rq}, (8.12)
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where Sy (Z;0p) = 0logp(z;0)/0V¥|¢=g, is the score function for the target
parameter, and similarly S,(Z;0)) = 0logp(z;0)/dn|¢=4, is the score for the
nuisance parameter (A B denotes the direct sum A@B = {a+b:a € A,b € B}).In
the above formulation, the space .7}, is called the nuisance tangent space. Influence
functions for i reside in the orthogonal complement of the nuisance tangent space,
denoted by ZJ- = {g € Ly(P) : P(gh) = 0 forany & € Z,}. In such parametric

settings, this orthogonal space ﬂnl can be written as

L771L2<{g€l,2(1))gZh_I—I(h|<y'7)’ hELz(P)}

={g € L,(P) : g = h— P(hS))P(S,S;)™'S,. h € Ly(P)}. (8.13)

where I1( g | S) denotes projections of g on the space S, i.e., P[h{g—11(g | S)}] =0
for all & € S. The subspace of influence functions is the set of elements ¢ € ZJ-
that satisty P(¢Sy) = 1. The efficient influence function is the influence function
with the smallest covariance P(¢?), and is given by @ = P(ngf)_lseﬁ‘, where Ser
is the efficient score, given by Seir = Sy — I1(Sy | Fp).

Thus if we can characterize the nuisance tangent space and its orthogonal
complement, then we can characterize influence functions. In fact, one can show that
all regular asymptotically linear estimators have influence functions ¢ that reside
in ZJ- with P(¢Sy) = 1, and conversely any element in this space corresponds
to the influence function for some regular asymptotically linear estimator [53].
Thus characterizing the nuisance tangent space allows us to also characterize all
regular asymptotically linear estimators. (Recall that a regular estimator is one
whose limiting distribution is insensitive to local changes to the data generating
process, as defined, for example, in [53, 64] and elsewhere.)

We have seen that in parametric models the tangent space is defined as the span
of the score vector Sy. However, in semiparametric models, the nuisance parameter
is infinite-dimensional and cannot be indexed by a real-valued parameter, so we
cannot define scores in the usual way, since this requires differentiation with respect
to the nuisance parameter. How can we extend the concept of the tangent space to
semiparametric settings?

Constructing tangent spaces in semiparametric models requires a technical
device called a parametric submodel. A parametric submodel &, indexed by real-
valued parameter € is a set of distributions contained in the larger model &2, which
also contains the truth (i.e., Py € Z2.); typically, we have &, = {P. : € € R}
with P,|c=9 = Py. Thus a parametric submodel needs to respect the semiparametric
model & and also needs to equal the true distribution at ¢ = 0. A typical example
of a parametric submodel is given by

Pe(z) = po(2){1 + €g(2)}, (8.14)

where E{ g(Z)} = 0 and we have sup, |g(z)| < M and |¢| < 1/M so that p.(z) > 0.
We will often index the parametric submodel by the function g, and so let P, = P, ;.
Note again that parametric submodels like the one above are a technical device
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for constructing tangent spaces and analyzing semiparametric models, rather than a
usual model whose parameters we want to estimate from data (since P, depends on
the true distribution Py, it cannot be used as a model in the usual sense) [53].

One intuition behind parametric submodels can be expressed in terms of
efficiency bounds as follows [64]. First note that it is an easier problem to estimate
¥ under the parametric submodel &, € & than it is to estimate ¥ under the
entire (larger) semiparametric model &. Therefore the efficiency bound under the
larger model & must be larger than the efficiency bound under any parametric
submodel. In fact we can define the efficiency bound for semiparametric models
as the supremum of all such parametric submodel efficiency bounds.

Now that we have defined parametric submodels, how can they be used to
construct tangent spaces? Just as the tangent space is defined as the linear span
of the score vector in parametric models, in semiparametric models the tangent
space 7 is defined as the (closure of the) linear span of scores of the parametric
submodels. In other words, we first define scores on the parametric submodels P,
with S.(z) = dlogpe(z)/0€|e=0, and then construct parametric submodel tangent
spaces as described earlier for standard parametric models, i.e., 7, = {b"S.(Z) :
b € R}. Note that for parametric submodels like the one defined in (8.14) we have

Se(z) = g(2) /{1 + €g(2) }le=0 = g(2), (8.15)

so that the functions g indexing the parametric submodels are set up to equal the
parametric submodel scores. The closure .7 of the parametric submodel tangent
spaces .7, is the minimal closed set that contains them; roughly speaking, .7 is
the union of all the spaces .7, along with their limit points. Similarly, the nuisance
tangent space .7, for a semiparametric model is the set of scores in .7 that do not
vary the target parameter v, i.e.,

Ty =18 € T : 0y (Pey)/0¢€|e=0 = 0}. (8.16)

Importantly, in nonparametric models the tangent space is the whole Hilbert space of
mean zero functions. For more restrictive semiparametric models the tangent space
will be a proper subspace.

Now that we are equipped with definitions of tangent spaces and nuisance tangent
spaces in semiparametric models, we can define influence functions, efficient
influence functions, and efficient scores in much the same way we did before with
parametric models.

Specifically, the subspace of influence functions is the set of elements ¢ € ZJ-
that satisfy P(¢Sy) = 1. The efficient influence function is the influence function
with the smallest covariance P(p%;) < P(¢?) for all ¢; it is given by @er =
P(ngf)_lseff, where S is the efficient score defined as the projection of the score
onto the tangent space, i.e., Seir = I1(Sy | ZJ-) =Sy —I1(Sy | ;) as before. The
efficient influence function can also be defined as the projection of any influence
function ¢ onto the tangent space, ger = I1(p | 7) for any influence function
@, which is also a pathwise derivative of the target parameter in the sense that

P(QDSE) = aw(Pe)/8€|e=0-
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3.4 Efficient Influence Function for Average Treatment Effect

As an illustration, return to our example involving the average treatment effect ¥ =
E(Y!' — Y% = E{u(L, 1) — u(L,0)}, where we let u(l,a) = E(Y | L = LA = a)
denote the outcome regression function. Also let 7([) = P(A = 1 | L = [) denote
the propensity score as before. In this subsection, we will show using the results
from previous subsections that, under a nonparametric model where the distribution
P is unrestricted, the efficient influence function for v is given by ¢(Z; ¢, n) =
my(Z;n) —mo(Z;n) — Y, where

Y — ) _ IA=a{Y —plL.a)}
mg(Z;n) = ma(Z;r, ) = ar D) T (-l — 2@} + u(L,a) (8.17)

with n = (s, u) the nuisance function for this problem.

We will show this result by checking that the proposed efficient influence
function ¢ is a pathwise derivative in the sense that 9y (P,)/0¢|c=0 = P(¢S.).

Here we let p.(z) = p(z; €) denote a parametric submodel with parameter € € R.
For notational simplicity let f/(#; 0) = {3f(z; €)/ € }|c=o for any function f of € and
z,and also let £(v | w; €) = logp(v | w; €) for any partition (V, W) C Z, so that, for
example, scores on the parametric submodels are denoted by S¢(z) = £.(z;0). Then
by definition from (8.3) we have

C(ze) =Ly |Lae)+L(a]le)+L(e). (8.18)

First consider the term 0y (P¢)/d€|c—o = ¥.(0). By definition we have ¥ =
[[{ydP(y|l,a=1)—ydP(y|la=0)}dP(l),so that

w;<e>=/[{ye;(y|z,a=1;e>dP<y|z,a:1;e)

—yl(y|la=0;€)dP(y|l.a=0:€)}dP(;e)

+ [ [waro ta=ti0-yary La=0:ojee dpiio).
(8.19)
where we used the fact that dP.(v | w;€) = £.(v | w;€)dP(v | w;€). This follows
since dlogf(e)/de = {df(€)/de}/f (¢) for general functions f by definition of the
logarithmic derivative. Recall that when we evaluate the above at ¢ = 0, we have
dP(y|1,a;0) = dP(y|l,a)and dP(l;0) = dP(l).
Now consider the term P(¢S.) = E{¢(Z; ¥, n)£.(Z; 0)}, which equals

B {1 (i) = mo(Zi ) = WHELY | LA 0) + EL(A | L:0) + €/(L:0)}]

A 1-A , . -
—F H 20 Tom@ PV LA+ @ D = p(L O 0)}
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- E[E{Y@Q(Y |LA=1:0) | LA=1}—E{Ye.(Y | L.A = 0:0) | LA =0}
+ (L. 1) = p(L.OBEL:0)

= //{yﬁé(yll,cm 1;0)dP(y | LLa=1)

—yl.(y|l,a=0;0)dP(y|l,a=0)}dP(l)

—l—//{y dP(y|l,a=1)—ydP(y|l,a=0)}.(l;0)dP(]). (8.20)

The first equality follows from iterated expectation and the fact that, by usual
properties of score functions, E{¢.(V | W;0) | W} = 0. The second equality
follows from iterated expectation, and the third follows by definition.

Since the last expression for the covariance P(¢S.) in Eq.(8.20) equals the
expression for ¥/(¢) from Eq.(8.19) when evaluated at ¢ = 0, we have shown
that ¢ is in fact the efficient influence function.

3.5 Fullvs. Observed Data Influence Functions

So far we have introduced the notion of a tangent space and discussed how influence
functions ¢ for regular asymptotically linear estimators can be viewed as elements
of a subspace of the Hilbert space L,(P), namely the orthogonal complement of
the nuisance tangent space, i.e., ¢ € fnl. We also illustrated how to check that a
proposed influence function is the efficient influence function. But how does one
find the space 9# in a given problem? In many cases this is a bit of an art: one
conjectures the form of 9# and then checks that the conjectured space satisfies
the required properties. For nonparametric models, one can sometimes deduce the
form of the efficient influence function from the nonparametric maximum likelihood
estimator, assuming discrete data [60]. However, in some settings it can be useful to
characterize influence functions with hypothetical “full data” (i.e., had we observed
all counterfactuals), and then map these to observed data influence functions [59].

To characterize full-data influence functions in causal inference problems we
need to start by presenting causal inference as a missing data problem [53, 59]. Thus
far we have supposed that we observe an independent and identically distributed
sample of observations Z ~ P. In general missing data problems, we conceive
of hypothetical full data Z, of which the observed data Z is a coarsened version.
The problem is that we want to learn about the distribution P of the full data Z,
but we only get to observe the coarsened version Z of the full data Z.In general
coarsened data problems, Z = ®(Z, C) is a known many-to-one function ®(-) of
both Z and a coarsening variable C that indicates what portion of Z is observed.
In causal inference settings, the coarsening variable generally equals the treatment
process so that C = A, and
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Z=1{Z2":aed}. (8.21)

Thus the full data Z are the potential outcomes under different levels a € o7 of a
general treatment process A (here A could be multivariate, e.g., a treatment sequence
over multiple timepoints). For a given unit we only get to observe Z = ®(Z,A) =
7A ie., the potential outcome under the observed treatment process. For instance, in
our running example where Z = (L, A, Y) with binary treatment so that & = {0, 1},
the full data for a given unit could be represented as

Z={L"Y):aec{0,1}}=(LYY". (8.22)

Note that the last equality follows since L* = L if we make the usual assumption
that events in the past cannot be affected by the future. In some cases we might
also want to include the observed treatment process in the full data, so that in the
above example we would have Z = (L, A, Y°, Y"). In a longitudinal setting where
covariates and a binary treatment are updated at timepoints ¢+ = 1,...,K and an
outcome is measured at the end of follow-up, we could have

Z={(L, L8, L5, ... LF= L% Y%) Gy € {0,153, (8.23)

where @; = (ay, ..., a,;) denotes the past history of a variable through time z. The
observed data in this case would be Z = (L{,Ay,...,L,A,,...,Lx,Ag,Y) for a
given unit. Not every causal inference problem fits in the above framework, but
when the framework applies it can often be very useful.

Now that we have defined the full data Z and given some examples, we
can also define corresponding tangent spaces, influence functions, and parametric
submodels, using semiparametric models & for the full data just as we did for the
observed data previously. The advantage is that it is often more straightforward to
derive tangent spaces and influence functions for full data problems (or else results
may already be known for common models), and then translate them to observed
data, rather than working with observed data directly and using the results from
previous subsections. Of course, in order to translate full data influence functions to
observed data influence functions, we need identifying assumptions.

Under a coarsening at random assumption [14], results for mapping full data to
observed data tangent spaces are given, for example, in [59] and [53]. In general,
coarsening at random means P(Z = z | Z = %|) = P(Z = z | Z = %) whenever
7 = ®(z1,a) = P(Zz,a) for some a € 7. In many problems [40], this can be
equivalently expressed by saying that PA =a | Z =2%) = PA =a | Z = %)
only depends on z whenever z = ®(z;,a) = D(Zp,a). Under some conditions,
coarsening at random also reduces to a randomization assumption, which says
treatment is independent of potential outcomes given the observed past, e.g., A L
L Y* | L in our running example, or A, 1L Y% | L,,A,_, in the above longitudinal
example. More details on these issues are given in [40, 59]. Again we point out
that this framework does not always apply: sometimes coarsening at random is not
equivalent to treatment randomization, or is not the identifying assumption we wish
to utilize.
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Here we will be content giving a simple example of how to map a full data
influence function to the observed data, rather than discussing details in full
generality; see [59] and [53] for more general results. Assume coarsening at random
holds, and that the treatment assignment process is known. Further suppose the
observed data is Z = (L,A,Y) with A € {0,1} and our goal is to estimate
EY' | V) = y(V;¥), where V C L is a subset of the covariates. The full data
orthogonal complement of the nuisance tangent space includes functions of the form

Go(Z* ;) = g(VI{Y' —y(Viy)} (8.24)

for arbitrary functions g. From Theorem 7.2 in [53],if () = PA =1 | L =1)is
bounded away from zero, then the observed data space ZJ- comprises functions of
the form

AT,
DL =R OID) | - (1= Hh2) (8.25)
for arbitrary functions / (the simplest estimator would use the above as an estimating
function with 2~ = 0). Note that functions of the above form only depend on
observed data since Y' = Y when A = 1. This represents an inverse-probability-
weighting approach for mapping full data spaces to observed data spaces.

4 Empirical Processes

In the previous section we discussed how to construct influence functions ¢ (Z; ¥, 1)
in semiparametric models. We also discussed how one can use these influence
functions to construct estimators 1& for v, by solving (up to order 0,(1/4/n)) the
estimating equation

PuloZ:y. )} =0 (8.26)

in v, where 7 is an estimator of the nuisance function. As in the previous section
we let P, = n7')", 8 denote the empirical measure so that sample averages
can be written as n~!' >, f(Z) = [f(z) dP, = P,{f(Z)}. We briefly discussed
the asymptotics of the estimators 1/7 given above for the case where 7 € RY is
a finite-dimensional real-valued parameter, itself estimated from some estimating
equation; a standard estimating equation analysis can then be used by simply
stacking estimating equations for 1 and n together.

In contrast, in this section we consider how to analyze the asymptotic behavior
of @ when the nuisance function 7 is estimated nonparametrically, in the sense
that 7 cannot be characterized by a finite-dimensional real-valued parameter. This
can be accomplished with tools from empirical process theory. Our discussion
in this section comes from work by Andrews [1, 2], Pollard [35, 36], van der
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Vaart [64, 65, 67], and Wellner [48, 67], among many others [21, 60]. The field
of empirical process theory is vast; we limit our discussion to tools for handling
nuisance estimation.

4.1 Motivation and Setup

To motivate our study of empirical processes, consider our running example where
the goal is to estimate the average treatment effect ¥ = E(Y! — ¥?). Specifically
consider the doubly robust estimator for v that solves an estimated version of the
efficient influence function presented in Sect. 3.4, i.e., the estimator given by 1//} =
P {m(Z; 1) — mo(Z; 1)} where

I(A = a){Y — u(L,a)}
ar(L) + (1 —a){1 — (L)}

my(Z;n) = my(Z; 7, u) = + (L, a). (8.27)

Note that in this case the nuisance function is given by n = (7, ). In observational
studies the covariates L are often high-dimensional, and little might be known about
the propensity score and outcome regression functions 7 and p, in which case
it makes sense to use flexible, nonparametric, data-adaptive methods to estimate
them. Of course then the asymptotic analysis presented in Sect. 3.2 does not apply,
since the estimators used to construct j = (7, i) will not be described by a single
finite-dimensional parameter. Nonetheless under some conditions we can still learn
about the asymptotics of 1/A/ and obtain valid confidence intervals, using tools from
empirical process theory.

Before going further, we need to introduce some notation. Throughout this
section we will use P{f(Z)} = [ f(z) dP to denote expectations of f(Z) for a new
observation Z (treating the function f as fixed); thus, P{f (2)} is random when f is
random (e.g., estimated from the sample). Contrast this with the fixed non-random
quantity E{f (Z)}, which averages over randomness in both Z and f and thus will not
equal ]P’{f (Z)} except when f = f is fixed and non-random.

Suppose for simplicity that I/} = P,{m(Z;n)} for some m, as in the above
example. If we only have P,{¢(Z; \&, )} = 0, then we can proceed similarly,
with an extra step requiring differentiability of P{¢(Z; v, 1)} in ¥, at Y in a
neighborhood of 7 [64]. Also suppose that P{m(Z;no)} = o (alternatively we
can define ¥ so that this holds by definition). For instance, it is straightforward
to check for the doubly robust estimator described above that P{m(Z; my, u)} =
P{m(Z; m, o)} = Yo where m = m; — my. Then consider the decomposition

¥ — Yo = Pu{m(Z; 1)} — P{m(Z: no)}
= (B, — PY{m(Z; 1)} + P{m(Z; ) — m(Z; no)}, (8.28)

where the first line is true by definition, and the second follows by simply adding
and subtracting P{m(Z; 7)}.
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We will show that the first term (P, — P){m(Z; 1})} above can be handled under
general conditions with empirical process theory. Specifically, we will discuss
conditions under which

(B, = PYm(Z: 1)} = (Py — P){m(Z: 10)} + 0,(1//n), (8.29)

where 7] converges to 7, so that (P, —P){m(Z; #}) } is asymptotically equivalent to its
limiting version (P,—P){m(Z; 10)} (up to order o, (1//n)) and can be analyzed with
a standard central limit theorem. The second term in the decomposition in (8.28)
typically requires a case-by-case analysis, but we will give examples shortly. Note
that if we have P{m(Z; 7)) — m(Z; o)} = (P, — P)¢(Z: no) + 0,(1//n) for some
finite-variance function ¢, then

¥ — Yo = (P, — P)m(Z; no) + ¢(Z: 10)} + 0,(1//n) (8.30)

and thus 1} is regular and asymptotically linear with influence function (m + ¢).

4.2 Donsker Classes

From an empirical process perspective, a primary way to control how close the term
(P, — P){m(Z; 1)} is to its limiting version (P, — P){m(Z; no)} (in large samples)
is to restrict the complexity of the nuisance function 79 and its estimator 7. If these
functions are not too complex, then the terms will not differ by more than 0, (1//n).
In this subsection we will discuss characterizing complexity with Donsker classes.

We will start by giving the main result in the context of our example, and will
then describe the conditions in detail. Suppose our nuisance estimator 7) converges
to some limit 7y in the sense that

[m(: ) —mG o)l > = /{m(z; 1) —m(z;10)}> dP(2) = 0,(1), (8.31)

and suppose the function class .# = {m(;n) : n € H} is a Donsker class (to be
defined shortly), where H is a function class containing the nuisance estimator 7).
Then the result in (8.29) holds, i.e.,

(B, = PHm(Z: )} = (P — P){m(Z: o)} + 0,(1/ /). (8.32)

Thus, asymptotically, nuisance estimation only affects the second term in (8.28).

In order to define a Donsker class, we need to introduce a few concepts first.
Throughout this section we use G, = +/n(P, — P) for ease of notation. Let .#
denote a class of functions f : 2 — R, and consider the empirical process

(G,f :f € F). (8.33)
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This is a type of stochastic process since it is a collection of random variables
indexed by a set (the function class .%). From one standpoint, given a function
f, we can view G,f = /n(P, — P)f(Z) as a random variable mapping the sample
(product) space Z™ to R. Alternatively, given a sample (Zy, ..., Z,), we can also
view G,,f as a map from the function class .% to R. Therefore (if these latter maps
are bounded) we can view the empirical process as a random function, mapping
the sample space 2" to the space £>°(.%) of bounded functions / : .% — R with
supyez [h(f)] = lIhll> < oc.

The above discussion of the empirical process {G,f : f € %} was all for a
fixed sample size n. Now consider a sequence of empirical processes {G,f : f €
Z }a>1. We say this sequence converges in distribution to element G (equivalently,
converges weakly to G) in the space £° (%), denoted G,, »> G, if

E*1(G,) — Eh(G) (8.34)

for all continuous bounded functions # : £>*°(%#) — R, where E* denotes outer
expectation. (Outer expectation is a measure-theoretic subtlety that we will largely
sidestep here; roughly, E* can be viewed as a generalization of expectation that
accounts for the fact that 4(G,,) may not be measurable). Thus we have a notion of
convergence for empirical processes viewed as random functions. Finally, we say a
generic measurable random element G is tight if for all € > 0 there is a compact set
S for which P(G € S) > 1 — ¢, i.e,, if the element G stays in a compact set with
high probability.

We are now ready to define a Donsker class. A function class .# is called a
Donsker class if the sequence of empirical processes {G,f : f € % },> converges
in distribution to some tight limit G (in fact this limit must be a zero-mean Gaussian
process Gp, known as a P-Brownian bridge).

The Donsker property, along with the continuous mapping theorem, allows us to
obtain results like that given in (8.29). Specifically, suppose f € % for a Donsker
class .%, and suppose f converges to f; in the sense that ||f — fo|| = op(1), where
[|[f]|*> = Pf?* denotes the L,(P) norm as before. Then (as in Lemma 19.24 of [64])
we can apply the continuous mapping theorem to (G, f) > (Gp, f) with function
h(z,f) = z(f) — z(fo) to obtain that

Gof = Gufy + 0,(1). (8.35)

Thus (P, — P)f = n~'/2G,f is asymptotically equivalent to (P, — P)fy, up to
0,(1/4/n) error.

In our setting, where 1} = P,{m(Z; n)}, it is often more natural to put Donsker
conditions on the estimated nuisance functions themselves, i.e., to assume that
7 € H for a Donsker class H, rather than to put conditions on the transformed
function class .# = {m(;n) : n € H}. Fortunately, “nice enough” transformations
of Donsker function classes will also be Donsker. Specifically, suppose the function
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classes .# and f] are Donsker; then, as discussed in Sect. 2.10 of [67], asin [1, 64],
the following transformations of .7 and .%; are also Donsker:

. Subsets: ¢ C F

. Unions: ¢ = %, U %,

. Closures: 9 = {g : f,, — g pointwise and in L,, for f;, € %}

. Convex combinations: 4 = {g : g = > .wfiforf; € F,) ;|wi| <1}

. Lipschitz transformations: 9 = {g : g = ¢(fi,....fe) for f; € F;} if ¢ satisfies
lp(frr- o DX = DS, SO < 325(fi —f)(x)* for all fj, f7, and x, and if
supre 7, |Pf| < 00 and [ @(fi,....fi)(x)*dx < oco.

The convex combination result suggests using ensemble methods that use
weighted combinations of estimators, e.g., Super Learner [58, 60, 62]. The Lipschitz
transformation result given above is particularly useful. It means, for example, that
the following function classes are Donsker [1, 64, 67]:

W AW N =

. Minimums: 4 = {g : ¢ = min(fi, f>) for f; € %}

. Maximums: 4 = {g : g = max(f1,f>) forf; € F;}

. Sums: 9 ={g:g=fi +frforf; € F}

. Products: 9 = {g : g = fif> for f; € F;} if #; are uniformly bounded
. Ratios: 9 ={g:g=1/fforf € F}iff >§ > 0forallf € &

| S R S

Repeated use of stability results like those above often allows one to conclude
Donsker properties for the class .# = {m(;n) : n € H} based on Donsker
assumptions about the class H.

For example, consider the doubly robust estimator lﬁ =P, {m(Z; 1) —mo(Z; 1))}
given in (8.27). If 7 and ji take values in Donsker classes .%, and .%,,, respectively,
then m,(Z; 1) does as well (provided that 7 is bounded away from zero and one
for all # € .%,). This follows from Lipschitz results 3 and 5 for sums and ratios
above.

4.3 Examples of Donsker Classes

To this point we have seen that, if we assume the estimated nuisance functions 7 are
contained in Donsker function classes, we can use a standard central limit theorem
to analyze (P, — P)m(Z; 7)) since it is asymptotically equivalent to (P, — P)m(Z; no)
up to order 0,(1//n). We have defined Donsker classes and shown how they can be
combined and modified to produce new Donsker classes, but we have yet to give any
specific examples of such classes. For the prior results to be useful over and above
more standard parametric techniques, we need Donsker classes to be able to capture
sufficiently flexible functions. Luckily, this is in fact the case, as we will discuss in
this subsection using specific examples.

First we will simply provide a short list of function classes that are Donsker,
and then we will briefly discuss how one typically shows that a particular class



8 Semiparametric Theory and Empirical Processes in Causal Inference 161

is Donsker (using bracketing and covering numbers). Results showing that certain
classes are Donsker are somewhat scattered across the literature, but examples and
nice overviews are given by [64, 67], for example. Among many other kinds of
classes, the following simple classes of functions are Donsker classes [13, 64, 67]:

. Indicator functions: F = {f . f(x) = I(x < 1),t € R}

. Vapnik—Cervonenkis (VC) classes

. Bounded monotone functions

. Lipschitz parametric functions: F = {f : f(x) = f(x;0),0 € © C R?} with
[f (x; 61) — f(x; 62)] < b(x)||61 — 6>]| for some b with [ |b(x)|"dP(x) < oo

. Smooth functions: F = {f : sup, |m—y;‘j)| < B < 00, witha > ¢g/2}
0%,

. Sobolev classes: {f : sup, |f(x)| < 1,f* Dabsolutelycts., [ [f®(x)|> dx < 1}

7. Uniform sectional variation: {f : sup,, |[f(x1,)||wn < B1,sup,, |[[f(-,x2)|l < Ba}
where By, B, < oo and || - ||, denotes the total variation norm.

AW N —

AN W

Thus we see that Donsker classes include usual parametric classes, but many
other classes as well, including infinite-dimensional classes that only require certain
smoothness or boundedness. Many other function classes can also be shown to be
Donsker. For example, any appropriate combination or transformation of the above
classes as discussed in the previous subsection will also be Donsker.

Showing that a function class is Donsker is often accomplished using bracketing
or covering numbers [64, 67], which are measures of the size of a class .%.
These measures also provide simple sufficient conditions for a function class being
Donsker. An e-bracket (in L, (P)) is defined as all functions f bracketed by functions
[1,u] (ie., | <f < u) satisfying [{u(z) — I(z)}*dP(z) < €*. The bracketing number
of a class .% is the smallest number of e-brackets needed to cover .%, and is denoted
by Np(e, .%). Similarly, the covering number of a class % (with envelope F, i.e.,
sup & |f| < F) is the smallest number of L,(Q) balls of radius € needed to cover .%,
and is denoted by N¢(e, .%). Then the class .% is Donsker if either

1 1
/ V91og Np(e, F) de < 0o, or / \/log sup Nc(ev/ QF?, F) de < 0o. (8.36)
0 0 0

4.4 Average Treatment Effect Example

Now we return to analyze the asymptotic behavior of the doubly robust estimator
of the average treatment effect Yy = E(Y ' — Y% from Sect. 3.4, which is given by
¥ =Pu{m(Z:0)} = Pu{mi(Z:7) — mo(Z: )} with

cy ) 1A =a){Y —u(L,a)}
my(Z;n) = my(Z; 7, ju) = PR + u(L,a). (8.37)

Throughout we assume the identification assumptions from Sect.2.2, or else
suppose we are estimating the observed data quantity E{u(L, 1) — u(L,0)} under
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the positivity assumption. Suppose the estimator 7 = (7, fi) converges to some
7 = (7w, @) in the sense that ||j — 7|| = op(l), where either T = m or
" = o (or both) correspond to the true nuisance function. Thus at least one

nuisance estimator needs to converge to the correct function, but one can be
misspecified. Then P{m(Z;7)} = P{m(Z;no)} = v, from the easy-to-check fact
that P{m(Z; 7o, n)} = P{m(Z; 7, uo)} for any 7 and z. Thus as in Sect. 4.1 we can
write

¥ — Vo = (P, — Pym(Z; ) + P{m(Z; ) — m(Z; 7))} (8.38)

As discussed in Sect. 4.2, if the estimators 7 and [i take values in Donsker classes,
then m,(Z; 1) does as well (as long as functions in the class containing 7 are
uniformly bounded away from zero and one). Therefore the result in (8.29) applies,
and we have

¥ — Yo = (B, — P)ym(Z; ) + P{im(Z; ) — m(Z: 1)} + 0,(1//n). (839

Now it remains to analyze P{m(Z; ) — m(Z;7)}. By iterated expectation this
term equals

mo(L) — 7 (L) A
ae%.:l}]? [“ﬁ(L) + (1 —a){l =7 (L)} ro(L.a) — (L, a)}} : (8.40)

Therefore, by the fact that 7 is bounded away from zero and one, along with the
Cauchy—-Schwarz inequality (P(fg) < ||f] ||gl]), we have that (up to a multiplicative
constant) [P{m(Z; ) — m(Z;7)}| is bounded above by

Y o) = AW | po(L, @) = AL, @) (8.41)

ac{0,1}

Thus, for example, if 7 is based on a correctly specified parametric model, so that
||# —mo|| = O,(n~"/?), then we only need /i to be consistent, || — uo|| = 0,(1), to
make the product term P{m(Z; ))—m(Z; )} = 0,(1/+/n) asymptotically negligible.
Then the doubly robust estimator satisfies & — Yo = (P, —P)ym(Z; no) + 0,(1//n)
and it is efficient with influence function ¢(Z; ¥, n) = m(Z;n) — . Thus if we
know the treatment mechanism, the outcome model can be very flexible.

Another way to achieve efficiency is if we have both || — 7o|| = 0,(n""/*) and
|4 — pol| = 0,(n~'/*), so that the product term is 0,(1//n) and asymptotically
negligible. This of course occurs if both 7 and /i are based on correctly specified
models, but it can also hold even for estimators that are very flexible and not
based on parametric models. However, completely nonparametric (e.g., kernel or
nearest-neighbor) estimators are typically not an option in this setting since they
will generally converge at rates slower than n~'/4; exceptions include cases where
there are very few covariates or very strong smoothness assumptions. Explicit
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conditions ensuring given convergence rates for kernel estimators are described,
for example, in [27]. Thus some modeling is in general required to attain n~'/4
rates, but luckily numerous semiparametric models yield estimators that can satisfy
this condition. In particular, faster than n~'/# rates are possible with single index
models, generalized additive models, and partially linear models (see, for example,
[17] for a review of such models, which typically yield estimators with n~2/° rates),
as well as regularized estimators such as the Lasso [5, 6]. Cross-validation-based
weighted combinations of such estimators (e.g., Super Learner) can also satisfy this
rate condition if one of the candidate estimators does [58].

Inference after nonparametric estimation of 5 in truly doubly robust settings
where one arbitrary nuisance estimator can be misspecified is more complicated.
If one of the estimators 7 or [t is misspecified so that either ||7 — mo|| = O,(1) or
[|fi — pol| = O,(1), then obtaining root-n rate inference for standard estimators will
typically require knowledge of which estimator is correctly specified, as well as that
the correctly specified estimator is based on a parametric model. More sophisticated
estimators that weaken this requirement are discussed in the next section (e.g., [56]).

5 Extensions and Future Directions

In this section we briefly describe some future directions and extensions to
semiparametric causal inference beyond the theory we have presented in this review.
A number of authors have worked to extend semiparametric causal inference to, for
example, settings involving non-standard sampling, estimation and inference under
yet weaker conditions on the nuisance estimators, and complex non-regular or non-
smooth parameters.

Throughout this review we presumed access to an independent and identically
distributed sample from the distribution P of interest; however, many studies use
alternative sampling schemes. For example, authors have developed results for
semiparametric causal inference in case control studies [45, 50, 54, 70, 71] and
matched cohort studies [19, 63]. There has also been progress made for causal
inference in studies using network data with possible interference [18, 29, 52, 55].
Much more work is needed in settings related to both study designs with non-
standard sampling and network data with interference. The latter should be a
growing concern as data from, e.g., social networks becomes more commonplace.

In Sect. 4 we showed that semiparametric estimators can have appealing asymp-
totic behavior, including standard root-n rates of convergence and straightforward
confidence intervals, even when using flexible nonparametric estimates of nuisance
functions. However, as noted in Sect. 4.4, this can require a delicate balance in
settings where one does not want to rely on parametric models, and also wants to be
agnostic about whether the treatment or outcome process is correctly estimated.
Efforts to weaken the conditions needed on the nuisance estimation have been
made using approaches based on higher-order estimation [8, 12, 56], which were
inspired by work by Robins et al. [42, 44, 66] that focused on minimax estimation
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in settings where root-n rates of convergence are not possible. Further, Donsker-type
regularity conditions (though not rate conditions) can be weakened via cross-
validation approaches, proposed, for example, by Zheng and van der Laan [72].

We also supposed in this review that our target parameter was a low-dimensional
Euclidean parameter ¥ € R? that admitted regular asymptotically linear estimators.
However, in some settings these conditions fail to hold. As mentioned above,
Robins et al. [42, 44, 66] considered semiparametric minimax estimation in settings
where the parameter of interest is Euclidean, but root-n rates of convergence cannot
be attained due to high-dimensional covariates. Estimation of functional effect
parameters was considered by Diaz and van der Laan [11], Kennedy et al. [20]
in the context of continuous treatment effects; in such settings the target parameter
is a non-pathwise differentiable curve, and root-n rates of convergence are again
not possible. Inference for a non-regular parameter in an optimal treatment regime
setting was considered by Luedtke and van der Laan [22]; in this case, non-regularity
does not preclude the existence of root-n rate inference.

Numerous other authors have also made important contributions extending
semiparametric causal inference to novel settings; unfortunately, we cannot list all
of them here. In addition, much important work is left to be done, both in the areas
mentioned above and in many other interesting settings.

Acknowledgements Edward Kennedy acknowledges support from NIH grant RO1-DK090385,
and thanks Jason Roy and Bret Zeldow for very helpful comments and discussion.
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Chapter 9
Structural Nested Models
for Cluster-Randomized Trials

Shanjun Helian, Babette A. Brumback, Matthew C. Freeman,
and Richard Rheingans

Abstract In clinical trials and epidemiologic studies, adherence to the assigned
components is not always perfect. In this book chapter, we are interested in estimat-
ing the causal effect of cluster-level adherence on an individual-level outcome. Two
different methodologies will be provided, based on ordinary and weighted structural
nested models (SNMs). We also applied the jackknife to construct confidence
intervals. The computation is straightforward with application of instrumental
variables software, and the programming schemes are developed for both ordinary
and weighted structural nested models. Simulation studies under ordinary structural
nested models with different link functions (loglinear SNM, logistic SNM, and
linear SNM) were conducted to validate our methods. We then applied the methods
to a school-based water, sanitation, and hygiene study to estimate the causal effect of
increased adherence to intervention components on student absenteeism. The results
calculated from these two methodologies are quite close.

1 Introduction

Estimating the causal effect of treatment or exposure on subjects’ outcomes is the
main purpose of many clinical trials and epidemiologic studies. It is common to
use instrumental variables to adjust for unmeasured confounding when estimating
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the causal effect of adherence in randomized studies. Researchers tend to use
the instrumental variables within one of three frameworks: regression with an
endogenous variable [3, 5, 6, 17, 21, 22, 31], principal stratification [1, 2, 7-9, 11,
13-15, 19, 20, 26], or structural nested models [4, 12, 16, 18, 23, 24, 27-30]. In this
book chapter, we will focus on using structural nested models to estimate the effect
of cluster-level adherence on individual level outcomes.

Structural nested models (SNMs) were introduced by Robins [23, 24] to address
non-compliance in clinical trials. Vansteelandt and Goetghebeur [28] further devel-
oped a double-logistic structural mean model to estimate the effect of observed
exposure on the success of treatment in a randomized trial with non-compliance.
Korhonen et al. [18] developed and applied SNMs for time-to-event outcomes. Her-
nan and Robins [12] provided an accessible introduction to instrumental variables
embedded within structural nested models, and the models have proven to be useful
for adjusting estimated causal effects of adherence for unmeasured confounding.
Vansteelandt et al. [30] offered a review of the use of SNMs with binary outcomes,
and pointed out that in some instances, the estimating equation has no solution.

In this book chapter, we will focus on using structural nested models to estimate
the causal effect of cluster-level adherence on an individual-level outcome. Two
different methodologies will be provided, based on ordinary and weighted structural
nested models [4]. With the ordinary SNMs, we will adjust for the individual-level
confounders by including the individual-level covariates into our structural nested
model. In the weighted SNMs, we will adjust for the individual-level confounders
by weighting the sampled data as in Brumback et al. [4]. For both methodologies,
we will develop an easily programmed iterative algorithm for solving the estimating
equations, using Newton’s method. To construct confidence intervals, we will
consider a sandwich estimator, the bootstrap, and the jackknife for complex survey
data. Furthermore, for each methodology, we will apply and compare three different
structural nested modeling approaches to estimating causal relative risks based on
a linear, loglinear, and logistic SNM. We will investigate the performance of both
methodologies using simulated data sets, and then apply them to the school-based
water, sanitation, and hygiene (WASH) study data. Both methodologies work quite
well, but if the initial setup values are too far away from real ones when applying
iterative algorithm or when the SNM does not fit the data, either the iterative
estimation algorithm may not converge or there may be no solution to the estimating
equation.

2 Motivating Example

As described by Brumback et al. [4], the school-based WASH study in Nyanza
is designed to affect several outcomes, including pupil absence. The study area
is divided into three geographical strata—Nyando/Kisumu East, Rachuonyo, and
Suba Districts. The WASH intervention randomized public primary schools nested
in three geographical strata to one of three study arms: water treatment and hygiene
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(hand-washing) promotion (WH), additional sanitation improvement that included
latrine construction (WH+S), or control. Freeman et al. [10] showed that there is no
overall effect of the intervention on absence. However, among schools in two of the
geographical areas (Rachuonyo and Suba Districts) not affected by post-election
violence, the school-based WASH components can improve school attendance,
particularly for girls. In this book chapter, as in Freeman et al. [10], we will focus
on these two geographical strata, and girls only. Also, because pupils were selected
into the study with unequal probabilities, sampling weights need to be incorporated
into the analysis.

In the WASH study, adherence at schools to the assigned components (W, H, or S)
is far from perfect, but the randomized assignment can be used as an instrumental
variable. For the purpose of analysis, we dichotomized the measure of adherence
for each of the three components as adequate or not, then categorized it into three
levels: an inadequate degree of water treatment, hygiene promotion, and sanitation
improvement, an adequate degree of exactly one of these three components, or an
adequate degree of two or more of these components.

In this book chapter, we hypothesize that increased adherence to intervention
components would reduce absenteeism. In Sect. 6, we will use ordinary structural
nested models to analyze the school-based WASH intervention study, and compare
the results provided by Brumback et al. [4] based on weighted structural nested
models.

3 Estimands

In this section, we will introduce the concept of potential outcomes and provide
notations we are going to use in this chapter. We choose the causal relative risk as
the estimand of interest in the study. Some sophisticated assumptions are required
under different approaches. The causal relative risks are defined for ordinary and
weighted structural nested models, respectively.

3.1 Potential Outcomes

Potential outcomes are possible values of an individual’s measurement of interest
when competing treatments are received. Suppose all potential outcomes are well
defined. We let Z; denote the randomized treatment arm, let A; denote the adherence
level of cluster i, and let Xj; denote the individual-level covariates for individual j in
cluster i. Define Yj;(a, z) as the potential outcome for individual j in cluster i who
had been assigned to treatment arm Z; = z with subsequent adherence A; = a. We
assume that Yj;(a, z) does not depend on z. We also assume Yji(a) = Y;i(A;)) = Yj;
when A; is observed to equal a.
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3.2 Estimands

For the ordinary SNM approach, the estimand of interest is the causal relative risk,
as a factor of a

E[Y;(@)|A; = d]

RR(@) = —F7—. 9.1
E[Y;(0)|A; = a]
For the weighted SNM approach, the estimand of interest is
EW Y;i A =
RRY (q) = £ Y@ = d] 9.2)

EM[Y;(0)|A; = a]

where Yj;(a) as the potential outcome for individual j in cluster i who had adherence
A; = a and W, is the weight adjustment. Define P”(V) as the probability that V
equals its observed value based on the distribution of the population data. Let Wj;; =
PP(Z;)/PP(Zi|X;). We define P"1(Y;(0), Z;, X;j) = PP(Y;(0). Z;, X;) Wis1.

3.3 Assumptions

For the ordinary SNM approach, we first posit a model representing the effect of
individual-level covariates X;; on Y;;(0) as

E[Y;0)|Xy] = f(Xi3 ), 9.3)

where f(X;;; y) is a simple linear model.
Besides requiring that the potential outcomes are well defined at baseline and
that Y;;(A) = Yj;, the methodology requires two assumptions. They are

Assumption 1 given X;; = x, the population distribution of Y;;(0) does not depend
on Z;; that is, P(YU(O)|ZI,XU = X) = P(YU(0)|XU = X).

AssumptionZ h{E(YU(a)|A, = a,X,-j = X,Zi)} = h{E(Ylj(O)|Al = a,Xij =
x,Z)} + f(ay,x; ), where f(0,x;€) = 0, a, is defined as a dummy vector
indicates the adherence level, and A(-) is a canonical link corresponding to
a generalized linear model, such as h(p) = p, h(p) = log(p), or h(p) =

log(p/1 —p).
For the weighted structural nested model approach developed by Brumback

et al. [4], besides requiring that the potential outcomes are well defined at baseline
and that Yj;(A) = Yj;, we require two additional assumptions.

Assumption 3 conditional on Xj;, the population distribution of Y;;(0) does not
depend on Z;; that is, P’ (Y;;(0)|Z;, X;;) = PP (Y;;(0)|X;).
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By Assumption 3, P"1(Y;(0),Z;, X;) = PP(Y;(0), X;)PP(Z;). This weighted
distribution reflects the distribution of the population data we would have observed
if we could have randomized schools so that the distribution of X;; were the
same at each level of Z; (e.g., by paired matching or frequency matching [25] of
schools); note that for this distribution, Y;;(0) L Z;. Thus, Assumption 3 implies
that EV1(Y;;(0)|Z;) = E"(Y;;(0)) = EP(Y;;(0)), where EV1(V|C) is the conditional
expectation of V given C with respect to the weighted distribution P"1(V|C), and
EP(V) is the expectation of V with respect to the population distribution P?(V). We
further assume that

Assumption 4 H{EV(Y;(a)|A; = a.Z)} = MEM(Y;(0)|A; = a,Z)} + a)é,
where A(-) is a canonical link corresponding to a generalized linear model,

such as h(p) = p, h(p) = log(p), or h(p) = log(p/(1 — p)).

4 Estimation

In this section, the estimation methodology based on ordinary structural nested mod-
els with different link functions (linear SNM, loglinear SNM, and logistic SNM)
is provided, and the weighted structural nested models developed by Brumback
et al. [4] are reviewed. Different approaches to constructing confidence intervals
are compared and discussed. Computing and programming schemes are provided
for both ordinary and weighted structural nested models.

4.1 Estimation Using an Ordinary Structural Nested Model

For the ordinary SNM approach, suppose that for each level of X;; we could have
randomized all clusters in the population and observed both cluster-level adherence
and individual-level outcomes, so that Xj;, Z;, A;, and the potential outcomes Yj;(a)
for all @ in all levels of x are defined for each individuals in the population. Based
on Assumption 1, we have that conditional on Xj;, ¥;;(0) does not depend on Z;. We
further let f(X;;: y) = Xuij¥1 + yo, where X,;; is defined as a vector-valued function
of Xj; (perhaps denoting dummy variables, e.g. when Xj; is a multinomial random
variable).

Let Wjj, be the inverse probability that individual j from cluster i was selected
into the study. Let 1(A;, Z;, X;5; 1) be a parametric model for E(Yj;|A;, Z;, X;;) with
parameter 7. When A; and X;; are multinomial random variables, one could use the
model (A;, Zi, Xy ) = g(Avim + Zyina + AixZins + Xujjna), where Ay; and Zy,;
are defined as vector functions of A; and Z; (perhaps denoting dummy variables,
e.g. when A; and Z; are multinomial random variables), and A;*Z; represents a
multidimensional interaction. Under Assumption 2, letting f(a,, x;§) = a,x€ and
assuming that 1 (A;, Z;, X;5; n) is correctly specified, we can consistently estimate
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(&, n) by solving the estimating equations

DO Win(Avi Zuis AvikZois Xoi) [V — (Ai, Zi, Xy m)) = 0

t J

Z Z Wi (Zoi, Xoi)) {0 (e (A, Zi, Xy 1)) — AviXiiE] — Xoigy — Yo} = 0
i
9.4)

for (£,n,y). The first estimating equation at (9.4) is unbiased assuming
WAL Z, Xiin) = g(Awm + Zyiny + AixZins + X,;m4) is correctly specified.
The second equation at (9.4) is unbiased because
E{(h Th((Ai Zi, X 1) — AuiXiE] — Xoyy1 — volZi Xy}

= E{h ' [ME(Y;(0)|A; = a. Xy = ¢, Z)} — Xoyy1 — Yol Zi, Xij}

= E[E(Y;(0)|Ai, Zi, X;j) — X;iy1 — volZi, Xij]

= E[Y;(0)|Z;, X;] — Xuijy1 — Yo

= E[Y;(0)[Xy] — Xuy1 — v0 = 0. (9.5)

If we use a generalized linear model for 1 (A;, Z;, X;;; n) with a canonical link
function g~ !(-), the first estimating equation at (9.4) can be solved by using weighted
GLM software (e.g., PROC GLM in SAS). If we furthermore let h(-) = g~ '(:)
and D; = (Ai, Zyi, Ai-Z;, Xy;5), then substituting 7 for 1 into the second estimating
equation at (9.4), it reduces to

DY Win(Zui Xui) " [8(Dif) — AiXg) — Xuy — v0] = 0, (9.6)

J

which can be solved iteratively using Newton’s method by linearizing g(D;7] —
A,iX;€) about a current estimate of £, then solve the second estimating equation
at (9.4) by using weighted instrumental software (e.g., PROC SYSLIN in SAS).

For example, define g(x) = exp(x), and let &' denote the current estimate of .
We have

g'(x) = g(x) = exp(x). 9.7)
Let f(§) = g(Dif) — AyiX;§), then
f1(€) = —AuX;g' (Dif) — AviX;j€) = —AuiX;g(Din) — AyiXié). 9.8)

By the Delta method, we have
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&) —fE) ~ (E—EN'E) = E—E)fE. (9.9)

Let A, = Avig(Dif) — AviXyi§); then f(§) — f(§) = —AGX;(§ — &), where

f(E) = g(Din—AyiX;€"). Also, letting Y7 = f(§') + A}, X;§', the second estimating
equation at (9.4) simplifies to

DY WinlZui X)) (Y — AL XE — Xozy — v0) = 0, (9.10)
i

which can be solved iteratively using weighted instrumental variables software (e.g.,
PROC SYSLIN in SAS) with Y77 as the outcome, A}, X;; and X,; as the endogenous
regressor, and Z,; and X,; as the instrument variables.

The linearization can also be applied to logit link function. We have

= X
s = 1 4 exp(x)
g = P9 - g, ©.11)

(1 + exp(x))?
Let f(§) = g(Dif) — AyiX;§), then

(&) = —A,Xi8 (Dif) — AyiX§)

= —A,iX;jig(Din — AyiX;§)[1 — g(Dii) — AyiXy€)]. (9.12)

Let A:l = Av,'g(D[ﬁ — AD,XU%-)[I — g(D,ﬁ — AU,X,js)] and Y; If(gt) =+ A:iXijgt'
Again, the second estimating equation at (9.4) simplifies to

DO Win(Zoi X" (Y — AL XyE — Xy — v0) = 0, (9.13)
i

which can be solved iteratively using weighted instrumental variables software (e.g.,
PROC SYSLIN in SAS) with Y; as the outcome, A,;X;; and X,;; as the endogenous
regressor, and Z,; and X,; as the instruments.

If we let h(p) = p in Assumption 2, then the estimating equations at (9.4) can
be solved by using weighted linear regression, and the second estimating equation
at (9.4) becomes

D0 WinZui Xo)" (Dif) — AviXi€ — Xy — v0) = 0, (9.14)

L J

which can be solved without iteration using weighted instrumental variables
software (e.g., PROC SYSLIN in SAS) with D;#) as the outcome, A,;X;; and X,;
as the endogenous regressor, and Z,; and X,; as the instruments.
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Assumption 2 states that the distribution of potential outcomes Y;;(a) in the
population satisfies an ordinary generalized structural nested model. Then we can
estimate E[Y;(0)|A; = a] and E[Y;;(a)|A; = d] via

EY;OlA; = al = D" )" Wiplg(Din — ack; 7. E)I(A; = a)
i

ElYy@|Ai =a] =YY WipleDin: DA = a), 9.15)

J

where é is the estimator solved by the estimating equations at (9.4), and I(A; = a)
is an indicator function taking the value 1 when A; = a, and otherwise equaling 0.
Then the Causal relative risk is estimated as

_ E[Y;(a)|A; = d]

RR(q) = - .
E[Y;(0)|A; = qa]

(9.16)

4.2 Estimation Using a Weighted Structural Nested Model

We next review the weighted structural nested modeling approach presented in
Brumback et al. [4]. Let W;; = W;; Wjj, where Wy = PP(Z;)/PP(Zi|X;;) as we
discussed in Sect. 3. Let j(A;, Z;; n) be a parametric model for EV (Y;|A;, Z;) with
parameter 1. When A; is multinomial random variables, one could use the saturated
model w(A;, Z;,;n) = g(Avin1 + Zyina + AixZins), where Ay, Z,;, and A;*Z; have
been defined in the previous section. Let D; = (Ay;, Zvi, A;*Z;)T. Under Assumption
3 and 4, define EV1(Y;;(0)) = « and assume ji(A;, Z;; ) is correctly specified, we
can consistently estimate (£, ) by solving the estimating equations

Z Z W;D;"[Y; — (Ai. Zizm)] = 0
i

DY WyZu BT (AL Zis ) — Avik] — e} = 0 (9.17)

J

for (&, n). The first estimating equation at (9.17) is unbiased conditional on A; and
Z; provided 1 (A;, Z;; n) is correctly specified; if one uses a saturated model, that is
automatic. The second estimating equation at (9.17) is unbiased because

EM h((A Zism) — Avi§] — o}
= EV'{hT [WE(Y(0)|A; = a. Z)}] — o}
= EME(Y;(0)|A; = a,Z;) —a]
= EM[Y;(0)|Z] — «
=E"[Y;(0)] —a = 0. (9.18)
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Similarly, if we use a generalized linear model for w(A;, Z;; n) with a canonical
link function g~!(-), the first estimating equation at (9.17) can be solved using
weighted GLM software (e.g., PROC GLM in SAS). If we further assume that
h(-) = g~ !(-), then substituting 7 for 7 into the second estimating equation at (9.17),
the equation reduces to

3> WiZu[g(Dify — Avik) —a] = 0, (9.19)

i J

which can be solved iteratively using Newton’s method by linearizing g(D;7} — A ;)
about a current estimate of £, then solve the second estimating equation at (9.17) by
using weighted instrumental software (e.g., PROC SYSLIN in SAS).

Similarly as the linearization procedure in the ordinary SNM approach, the
second estimating equation at (9.17) can be simplified as

DO Wz (V) - ALE — ) =0, (9.20)
J

i

where Y; is the outcome, A}, is the endogenous regressor, and Z,; is the instrument
variable.

Assumption 2 states that the distribution of potential outcomes Yj(a) in the
population satisfies a weighted generalized structural nested mean model. Then we
can estimate

EM[Y;0)|A; = al = YY" Wyg(Din — af: I(A; = a)

EM[Yy(@)A; =a] =YY Wyg(Din: DI(A; = a). 9.21)
i

where é is the estimator solved by the estimating equations at (9.17).
Then the Causal relative risk is estimated as

EM[Y;(a)|A; = d]

RR" () = = .
EM[Y;(0)|A; = d]

(9.22)

4.3 Constructing Confidence Intervals

As discussed in Brumback et al. [4], to construct confidence intervals, one could
use the sandwich estimator of variance. The estimating equations at (9.4) and (9.17)
have the form U(f) = Zle Zfil Upw(d) = 0, where 6 is a vector of
parameters, ¢ indexes primary sampling units (PSU, e.g. the schools), and & indexes
the primary strata. Uj.(6) is a sum of weighted estimating equations, with the
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weighted components each having an expected value of zero unconditionally, but
not conditionally upon stratum 4. The sandwich estimator of variance for the 6
which solves U(#) = 0 has the form

var(0) = (VU@ v vu@é)"y !, (9.23)

where VU (é) is the gradient of U(6) with respect to 6, and

H

Cp
V(6) =Y ACh/(Ch— D} D (U () — Up(O)H{Une(6) — Un ()}, (9.24)

h=1 c=1

where Uh.(é) = (1/Cy) ZCCLI Upe (é) By the law of large numbers and central limit
theorem, 6 approximately follows multivariate normal distribution with mean 6 and
variance var(6).

However, the sandwich estimator of variance is difficult to program. An easier
way to estimate \721?(9) is to use the bootstrap or jackknife for complex survey data.
Let A° be an estimate of 6 based on the data from the bth bootstrap sample, then the
estimator of variance is

B B 2
vatg(f) = {1/B— 1)}y [éb— §(1/B)Zéb” : 9.25)
b=1 b=1

where B is the total number of bootstrap samples, and 6 approximately follows
normal distribution.

Unfortunately, if we use the bootstrap, sometimes the estimating equations have
no solution. Thus, we will use the jackknife to estimate variance. Let 6" be an
estimate of 6 based on deleting the cth PSU within stratum h. The jackknife
estimator of variance we used is

Ch

H
vat, (9) = ) {(Ch—1)/Chy Y (0" ). (9:26)
h=1

c=1

For estimating confidence intervals for functions ¢(6) of 6, such as relative risks,
we use the normal approximation to the log of ¢(6).

5 Simulation Study

For the weighted SNM approach, Brumback et al. [4] provide a simulation study.
For the ordinary SNM approach, we conducted three additional sets of simulations,
the first based on a loglinear SNM, with A(p) = log(p) in Assumption 2; the
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Table 9.1 Distribution of Xj; Z = Z =

en 7
givent PX; =1]Z) |12 13
PX;=21Z) 12 |23

Table 9.2 Joint distribution Z, = 7, =

f X, and Z,
ot Ay an PX;=1.2) | 16 119

second based on a logistic SNM, with A(p) = log(p/(1 — p)) in Assumption 2;
and the third based on a linear SNM, with i(p) = p in Assumption 2. Constructing
simulations for the ordinary SNM approach is more difficult than for the weighted
SNM approach, due to needing to satisfy more modeling assumptions. For the
simulation, we let Z; = 0, 1 with equal probability. Then generate the distribution of
Xjj conditional on Z; as listed in Table 9.1, where Z;, A;, and Xj; all have two levels.

Based on the distribution of X;; given Z;, we can calculate the joint distribution
of X;; and Z; as listed in Table 9.2.

For the loglinear SNM, we let no = —1.5, n; = 0.05, n, = 0.1, n3 = 0.05
and ns = 0.1. For the logistic SNM, we let ny = —1.25, n; = 0.05, n, = 0.1,
n3 = 0.05 and n4 = 0.1. For the linear SNM, we let 5o = 0.55, n; = —0.05,
n2 = —0.08, n3 = —0.05 and n4 = —0.04. First, we generated Yj;(a) according
to P(Yjj(a) = 1|A;,Z;, X)) based on w(A;, Z;, Xij;n). We then generated Yj;(0)
according to P(Y;;(0) = 1|A;, Z;, X;;) based on Assumption 2, which for the loglinear
and logistic SNMs, we let £ = 0.25, and for the linear SNM, we let £ = 0.08.
The distribution of Y;;(0) and Yj;(a) given A;, Z;, and Xj; are listed in Table 9.3. The
distribution of P(Y;(a) = 1|A; = a, X, Z;) is given as P! (Y;(a) = 1|A; = a,X;;, Z;)
for the logistic SNM, as P*(Y;;(a) = 1|A; = a, Xj;, Z;) for the loglinear SNM and as
P3(Y;(a) = 1|A; = a,X;j, Z;) for the linear SNM.

Now, to satisfy the Assumption 1 that Y;;(0) L Z]|X;;, we let yo = 0.217 and
y1 = 0.015 for the loglinear SNM; let Yo = 0.218 and y; = 0.011 for the logistic
SNM; let yp = 0.442 and y; = —0.107 for the linear SNM. Take P(A; = 0|Z; =
0,X;; = 1) and P(A; = 1|Z; = 0,X;; = 1) as an example, then the distribution of A;
given Z; and Xj; can be solved by the equations below:

1
D OPY(0) = 1|A; = a.X; = 1.Z; = 0] x P(A; = a|Zi = 0.X;; = 1)

a=0

= P[Y;(0) = 1|Z; = 0. X;; = 1], (9.27)
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Table 9.3 Distribution of 7.=0 |7 =
Y;;(0) and Y;;(a) given . .

Ai Zi, Xjj

PL(Y;(0) = 1|4; = 0,X; = 1,Z;) | 0.2231 | 0.2466
P2(Y;(0) =114, = 0,X; = 1,Z) |0.2227 | 0.2405
P3(Y;(0) = 114, = 0,X; = 1,Z;) | 0.55 0.47
P'(Y;(0) = 114, = 1,X; = 1,Z;) |0.1827 | 0.2122
Pl(Y;(D) =14, = 1,X; = 1,Z) |0.2346 | 0.2725
P2(Y;(0) = 1|4, = 1,X; = 1,Z;) | 0.1900 | 0.2142
P2(Yy;(1) = 1|4 = 1,X; = 1,Z;) | 0.2315 | 0.2592
P3(Y;(0) = 1|A; = 1,X; = 1,Z;) | 0.42 0.29
P (Y;(1) = 114 = 1,X; = 1,Z) | 0.50 0.37
PY(Y;(0) = 1|A; = 0,X; = 2,Z) | 0.2466 | 0.2725
P2(Y;(0) = 1|4; = 0,X; = 2,Z;) | 0.2405 | 0.2592
P3(Y3(0) = 114; = 0,X; = 2,Z) | 0.51 0.43
PY(Y;(0) = 1|A; = 1,X; = 2,Z) | 0.1572 | 0.1827
Pl(Y;(1) = 114 = 1,Xy; = 2,Z) | 0.2592 | 0.3012
P2(Y3(0) = 114; = 1,X; = 2,Z;) | 0.1680 | 0.1900
P2(Yy(1) = 1|4, = 1,X; = 2,Z;) | 0.2497 | 0.2789
P3(Y(0) =114, =1,X; =2,Z) 030 | 0.17
P3(Y;(1) = 1|A; = 1,X; =2,Z) | 0.46 0.33

where from Eq. (9.3) with f(Xj;; ) = X1 + yo and Assumption 1, we have

PIY;(0) = 11Z; = 0,X;; = 2] = P[Y;(0) = 1|Z; = L. X;; = 2] = yo + 1.
(9.28)

The distribution of A; given Z; and Xj; is shown in Table 9.4, where P'(A; =
alXy, Z;) and P'(Y;(0) = 1|Z;, X;) correspond to the loglinear SNM, P*(4; =
alXy, Z;) and P*(Y;(0) = 1|Z;, X;) correspond to the logistic SNM, and P3(A; =
alX;;, Z;) and P3(Y;(0) = 1|Z;, X;) correspond to the linear SNM.

Based on the above distributions, we calculate P(A; = a|Z; = z) =
S P(Ai=alZi = 2,X; = ¢)P(Xy = c|Z; = z) and P(A; = a) = Y., P(A; =
alZ; = 7)P(Z; = z). The distribution of A; given Z; is listed in Table 9.5, where
PY(A; = a|Z;) is for the loglinear SNM, P?(A; = a|Z;) is for the logistic SNM, and
P3}(A; = a|Z;) is for the linear SNM.

In the loglinear simulated model, we would have P(A; = 0) = Zi:o PA; =
01Z; = z)P(Z; = z) = 0.6273 and P(A; = 1) = Zi:o PA; = 1|Z; = »)P(Z; =
z) = 0.3727. Similarly, in the logistic simulated model, we would have P(A; =
0) = 0.6365 and P(A; = 1) = 0.3635; and in the linear simulated model, we would
have P(A; = 0) = 0.4363 and P(A; = 1) = 0.5637. Then we can calculate the joint
distribution of X;; and Z; given A; as listed in Table 9.6, where P! Xij =c,ZilAi = a)
is for the loglinear SNM, P2(Xij = ¢,Z;|A; = a) is for the logistic SNM, and
P3(X;j = ¢, Zi|A; = a) is for the linear SNM.
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Table 9.4 Distribution of A;
given Z; and Xj;

Table 9.5 Distribution of A;
given Z;

Table 9.6 Joint distribution
of Xj; and Z; given A;

181
X;=1 |X;=2
PY(A; = 01Z; = 0,X;) |0.8484 | 0.8366
PY(A; =11Z; = 0,X;) |0.1516 |0.1634
P'(4; =01Z; = 1.X;) |0.1384 |0.5489
P'(A; = 1]Z; = 1,X;) |0.8617 |0.4511
PY(Y;(0) = 11Z,X;) |0.217 | 0.232
P2(A4; = 0]Z; = 0,X;) |0.8563 | 0.8415
P2(A; = 1]Z; = 0,X;) |0.1437 | 0.1585
P2(A; =01Z; = 1,X;) |0.1457 |0.5634
P2(A; = 11Z: = 1,X;) |0.8543 | 0.4366
P2(Yy(0) = 11Z;,X;) 0218 | 0.229
P3(A; =0[Z; = 0,X;) 0.1692 | 0.1667
P3(A; =11Z: = 0,X;) |0.8308 | 0.8333
P3(A; =01Z; = 1,X;) |0.8444 | 0.6346
PYA; =11Z; = 1.X;) |0.1556 |0.3654
P3(Y;(0) = 11Z,X;) |0.442 |0.335
Z,' = Zi =
P'(A; = 0|Z) |0.8425 |0.4120
P'(A; = 1|Z) |0.1575 |0.5880
P*(A; = 0|Z;) |0.8489 |0.4241
PX(A; = 1|Z) |0.1511 |0.5759
P3(A; = 0|Z) 0.1679 |0.7046
P¥(A; = 1|Z;) |0.8321 |0.2954
Z=0 |z =
PY(X; =1,Z:|A; = 0) |0.3381 | 0.0368
P'(X; =2,Zi]A; = 0) 0.3334 | 0.2917
P'(X; =1,Z]A; = 1) |0.1017 | 0.3853
P'(X; =2,7Z]4; =1) |0.1096 | 0.4035
P2(X; = 1,Z;]A; = 0) | 0.3363 | 0.0381
P2(Xy = 2,Z;]A; = 0) |0.3305 | 0.2950
P2(X; =1,Z|A; = 1) | 0.0989 | 0.3917
P2(X; = 2,Z]A; = 1) |0.1090 | 0.4004
P (X; = 1,Z:]A; = 0) |0.0970 |0.3226
P3(X;j = 2,Z;]A; = 0) | 0.0955 | 0.4849
P3(X; =1,Z|A; = 1) | 0.3684 | 0.0460
P (Xy =2,Z]A; = 1) 0.3696 | 0.2160
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Table 9.7 Loglinear simulation results

Simulation |y stderr | TRUE | Pvalue |y, stderr | TRUE | Pvalue
100 0.2166 |0.0009 |0.2170 |0.6577 |0.0165 0.0009 |0.0150 |0.0987
500 0.2172 |0.0004 |0.2170 |0.6173 | 0.0149 0.0003 |0.0150 |0.7390
1000 0.2169 |0.0003 |0.2170 |0.7390 | 0.0154 0.0003 |0.0150 |0.1827
Simulation | & stderr | TRUE |Pvalue |log(RR(1)) |stderr | TRUE | Pvalue
100 0.2492 | 0.0063 | 0.2500 |0.8992 | 0.3844 0.0088 |0.3781 |0.4757
50 0.2506 |0.0026 |0.2500 |0.8176 |0.3806 0.0057 |0.3781 |0.5323
1000 0.2509 |0.0019 |0.2500 |0.6358 | 0.3709 0.0042 |0.3781 |0.1434

Table 9.8 Logistic simulation results

Simulation | stderr TRUE | Pvalue |y, stderr TRUE | Pvalue
100 0.2185 |0.0009 |0.2180 |0.5755 |0.0111 0.0008 |0.0110 |0.9008
500 0.2179 |0.0004 |0.2180 |0.7950 |0.0113 0.0003 |0.0110 |0.3178
1000 0.2181 |0.0003 |0.2180 |0.7390 |0.0108 0.0003 |0.0110 |0.5051
Simulation | & stderr | TRUE |Pvalue |log(RR(1)) |stderr |TRUE | Pvalue
100 0.2545 | 0.0083 |0.2500 |0.5889 |0.2960 0.0100 |0.2896 |0.5237
500 0.2489 |0.0035 |0.2500 |0.7554 |0.2970 0.0044 |0.2896 |0.0932
1000 0.2528 |0.0025 |0.2500 |0.2630 |0.2933 0.0030 |0.2896 |0.2177

Based on the above distributions, we calculate E(Y;;(0)|A; = a) as

E(Y;(0)|A; = a) = P(Y;(0) = 1|]A; = a)
1 2
=Y > PY(0) = 1|A = a.Z; = 2. X = )P(Z; = 2. Xy = c|A; = a).

z=0 c=1

(9.29)

To check our results, we simulated a data set with 10,000 observations for 100,
500, and 1000 repetitions. Assume all parameter estimates (e.g., £ and y) and
log(RAR(l)) approximately follow normal distribution. We can use one sample t-test
to check the bias. The simulation results of all three SNMs are listed in Tables 9.7,
9.8, and 9.9. From the results we can see that generally, our estimating procedure
performs well.

To study the performance of the jackknife method, we simulated 500 data
sets with 500 observations for each SNM approach and computed the confidence
intervals with jackknife variance estimators. The coverage of 95 % confidence
intervals for yp, yi, &, and causal relative risk RR(1) for logistic SNM, loglinear
SNM, and linear SNM are listed in Table 9.10. From the results, we can conclude
that the jackknife performs well.
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Table 9.9 Linear simulation results

Simulation | y stderr | TRUE |Pvalue |y, stderr | TRUE | Pvalue
100 0.4424 |0.0009 |0.4420 | 0.6541 —0.1086 0.0014 |—0.1070 | 0.3559
500 0.4415 |0.0005 |0.4420 | 0.3178 —0.1078 0.0006 |—0.1070 | 0.1830
1000 0.4424 |0.0003 |0.4420 | 0.1324 —0.1070 0.0004 |—0.1070 | 1.0000
Simulation | & stderr | TRUE |Pvalue |log(RR(1)) |stderr | TRUE Pvalue
100 0.0812 |0.0013 |0.0800 | 0.3582 | 0.3280 0.0057 | 0.3376 | 0.0953
500 0.0807 |0.0005 |0.0800 | 0.1621 | 0.3392 0.0026 | 0.3376 |0.5386
1000 0.0798 |0.0004 |0.0800 |0.6172 | 0.3385 0.0018 | 0.3376 |0.6172

Table 9.10 Jackknife simulation results

Approaches | yo (%) 71 (%) § (%) RR(1) (%)
logistic 95.0+1.9 (95019 (96.4+1.6 93.0+22
loglinear 952+1.9 |974£14 966+1.6 954+1.8
linear 954+1.8 |952+19 94.6£2.0 96.0%+1.7

6 Analysis of the WASH Intervention

For the school-based WASH analysis, we let A; be a three-level ordinal variable,
a = 0, 1, or 2. Define a = 0 as the reference level, representing inadequate
degrees of water treatment, hygiene promotion, and sanitation improvement; a = 1
as an adequate degree of exactly one of those three components; and a = 2 as an
adequate degree of two or more of those components. Since we are interested in
the effect of adherence on pupils school absence, we let Yj; indicate that outcome.
Wi is the inverse probability of an individual being selected into the study. Let Z;
denote randomization level (Control, WH, or WH+S). Let C;; denote grade level as
individual-level covariate.

In the ordinary SNMs, we used linear, logistic, and loglinear SNMs to analyze
the effect of intervention adherence on absenteeism for the school-based WASH
trial. Table 9.11 summarizes the estimates and 95 % confidence intervals based on
the jackknife estimators of variance. The analysis of the WASH study based on the
weighted structural nested models can be found in Brumback et al. [4]. However,
some of those results are incorrect due to accidentally using the bootstrap formula,
rather than the jackknife formula, to combine the jackknife estimates to compute
the CI. The corrected results are listed in Table 9.12.

Comparing the results in Tables 9.11 and 9.12, we can see that both ordinary
and weighted methodologies generated similar results. All three approaches (linear,
loglinear, and logistic) generated similar point estimates, and the results support
the hypothesis that increased adherence to intervention components would reduce
absenteeism. The relative risk is closer to one for the A = 2 group than for the A = 1
group, but this is due to the estimate of the risk of absence had been set to 0 being
higher in the a = 1 group. For example, for the logistic ordinary SNM, the estimate
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Tabl.e 9..11 Estimated Approach | RR(1) RR(2)

relative risks and 95 % - 6

confidence intervals with Linear 0.44 (0.23, 0.83) | 0.64 (0.40, 1.03)

ordinary SNM Logistic 0.38 (0.17,0.85) |0.67 (0.39, 1.14)
Loglinear |0.42 (0.17, 1.02) | 0.67 (0.40, 1.14)

T{Ibtle 9.12k ESt(lln';?;t;d Approach RRW] (1) RRW] (2)

relative risks an o -

confidence intervals with Linear 0.45 (0.24, 0.86) | 0.66 (0.41, 1.08)

weighted SNM Logistic 0.41(0.19, 0.89) |0.69 (0.40, 1.19)
Loglinear |0.40 (0.15,1.03) | 0.72 (0.39, 1.31)

for A = 1 was 0.51, whereas that for A = 2 was 0.27. Therefore more reduction in
risk of absenteeism was possible in the schools with A; = 1. However, when using
Newton’s method to solve the estimating equations at (9.4) with the loglinear or
logistic ordinary generalized SNM approaches, our initial values for £ and y have to
be close enough to the true ones. Otherwise, the iterative algorithm we use to solve
the estimating equations at (9.4) may fail to converge for some jackknife samples.

7 Discussion

In this book chapter, we presented two methods based on structural nested models
for the analysis of multi-armed cluster-randomized trials with unequal probabilities
of sampling individuals. With the weighted structural nested model, we used
individual-level covariates X;; to construct weights in order to adjust for individual-
level confounding. With the ordinary structural nested model, we included the
individual covariates into our structural nested model. Software and programming
schemes were provided for both weighted and ordinary structural nested models
assuming different link functions (linear SNM, loglinear SNM, and logistic SNM).
We also applied our methods to analyze the effect of adherence in the school-
based WASH study. The computation is straightforward with the application of
instrumental variables software (e.g., SAS PROC SYSLIN). With nonlinear link
functions (e.g., loglinear SNM and logistic SNM), we can solve the estimating
equations at (9.4) and (9.17) iteratively using Newton’s method to linearize the
canonical link functions. However, with the ordinary structural nested models, when
we used Newton’s method to solve the estimating equations, the starting values
have to be close to the true ones, otherwise, we may have convergence issues.
To construct confidence intervals, we discussed three different methodologies,
sandwich estimator, bootstrap, and jackknife. However, the sandwich estimator of
variance is difficult to program, and the bootstrap may fail to generate solutions of
the estimating equations. Thus, we turned to the jackknife variance estimator.

To verify our methodologies, we conducted a simulation study for the ordinary
structural nested model. A simulation study for the weighted structural nested model
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can be found in Brumback et al. [4]. Generally, the simulation results supported
our methods, and jackknife variance estimations performed well. However, when
using the ordinary SNM with nonlinear link functions (e.g., loglinear and logistic)
to analyze data sets, the initial values have to be close enough to the real ones in
order to avoid convergence issues.
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Chapter 10
Causal Models for Randomized Trials
with Continuous Compliance

Yan Ma and Jason Roy

Abstract In behavioral medicine trials, such as smoking cessation trials, 2 or more
active treatments are often compared. Noncompliance by some subjects with their
assigned treatment poses a challenge to the data analyst. In particular, the joint
distribution of the observed and counterfactual compliance variables cannot be iden-
tified, without imposing strong assumptions. However, due to randomization, each
marginal compliance distribution can be identified. These marginal distributions
impose bounds on the joint distribution. Our approach is to use a copula model
to link the two marginal distributions, up to a sensitivity parameter. We then take a
principal stratification approach to estimate causal effects. We develop this approach
when compliance is either binary (yes/no) or continuous (dose).

1 Introduction and Motivating Example

We consider the situation where subjects were randomized to one of two active
treatments, and compliance with each treatment was measured on a continuous
scale. Examples of continuous measures of compliance include the duration of
compliance and the proportion of assigned treatment actually received.

The motivating example for this research was a smoking cessation clinical trial.
The Commit to Quit (CTQ) trials [1-3] comprise two longitudinal follow-up studies
of supervised exercise to promote smoking cessation. One arm included cognitive-
behavioral smoking cessation therapy (CBT) augmented by an individualized,
supervised exercise program. In the control arm, CBT was augmented by a wellness
education program that included lectures, films, handouts, and discussions covering
issues such as healthy eating and prevention of cardiovascular disease. Interest is in
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the comparison between standard therapy augmented by wellness education and
standard therapy augmented by an exercise regimen. However, many subjects only
attended some of the exercise or wellness classes.

One approach that has been proposed for inferring causal effects from trials
with non-compliance is structural mean models [4—6]. A structural model must be
specified that relates the mean of the outcome at the observed compliance level with
the mean of the potential outcome at some reference level. For example, the refer-
ence outcome could be the treatment-free outcome. These methods have primarily
been used for placebo-controlled trials. An appealing aspect of that approach is
causal effects can be inferred for the entire population at various compliance levels.
However, for two-arm behavioral intervention trials it is difficult to conceive of
fixing compliance levels for the entire population. Whatever incentives would have
to be used to entice non-compliers with exercise into perfect compliance might also
affect the outcome directly. Further, interest is in comparing the two interventions
in their current form. If the interventions were implemented in practice, which one
would yield better results overall (the intention-to-treat effect)? What is the extent to
which the causal effect depends on the compliance level with each arm? We propose
answering these questions using principal stratification [7].

The principal stratification approach stratifies the population based on what
each subject’s compliance status would be under assignment to each of the two
treatments. Thus, only compliance levels that could have been observed in the
particular trial are considered. A difficulty with this approach is it stratifies on
the pair of potential compliance variables, only one of which is observed. Thus,
assumptions about the joint compliance distribution are necessary.

Efron and Feldman [8] assumed the percentiles of the two potential compliance
variables in a placebo-controlled trial would be the same for each subject. Jin
and Rubin [9] considered the same situation, but instead proposed a weaker
assumption—side-effect monotonicity. Essentially, the assumption is that side-
effects would be greater for the drug compared to placebo, and therefore compliance
would not be smaller in the placebo arm. However, in behavioral intervention
trials, it is not difficult to imagine scenarios where different patients have different
intervention preferences. We therefore deal with the problem from a different
perspective, and explicitly model the joint distribution of compliance. The joint
distribution of potential values of compliance is modeled by linking the two
marginal distributions using a copula model [10]. This is similar to the approach
taken by Bartolucci and Grilli [11]. One difference between the approaches is
we use a Gaussian copula and they use a Plackett copula [12]. In a simulation
study, we explore the sensitivity to the choice of copula [13]. Another difference
is they estimate the copula association parameter, which cannot be identified non-
parametrically, using a profile likelihood approach. Instead, we vary the copula
parameter as part of a sensitivity analysis. In addition, we propose to estimate
causal effects not just at particular points, but within regions of the compliance
distributions. In that way, our approach is similar to the work of Dominici et al.[14].
A key difference is that our approach allows the outcome to be from any expo-
nential family distribution. We also propose some computational simplifications for
maximum likelihood estimation.
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For the CTQ trial, we measure compliance by the proportion of assigned classes
that were actually attended. We then consider the effect of treatment assignment
among interesting subpopulations. Examples could include: the subpopulation that
would be perfectly compliant with either treatment; the subpopulation that would
be highly compliant with either treatment; the subpopulation that would be highly
compliant with wellness but not exercise.

The remainder of the chapter is organized as follows. In Sect. 2 we introduce the
notation, assumptions, and models. In Sect. 3 we describe our estimation procedure.
The example is presented in Sect.4. Finally, we conclude with a discussion
in Sect. 5.

2 The Structural Principal Effects Model

2.1 Notation and Assumptions

We consider experimental trials with two active treatments. Let R € {0, 1} denote a
randomization indicator, where R = 1 indicates randomization to the new treatment
(e.g., supervised exercise plus CBT), and R = 0 indicates randomization to standard
therapy (e.g., wellness sessions plus CBT). Let A, denote compliance with assigned
treatment under assignment r. We assume A, is continuous and possibly bounded
(e.g., the proportion of assigned treatment actually taken). Similarly, define Y, to be
the outcome under assignment r. Each person has two potential compliance levels,
Ao and Ay, that characterize compliance under either treatment assignment; however
only A = RA; + (1 — R)Ay is observed. Similarly, each subject has two potential
outcomes, Yy and Y7, with Y = RY; + (1 — R)Y, observed.

We make three standard assumptions for the development of analytic methods:
(1) the stable unit treatment value assumption (SUTVA), which is the assumption
that the value of the potential outcomes and potential compliance variables for
subject i only depend on the treatment assigned to subject i, not on the treatment
assigned to other subjects; (2) randomization (R L {Yy, Y1,Ap,A1}); and (3)
the exclusion restriction. SUTVA essentially states that there is no interference
between subjects. Randomization requires that treatment assignment was unrelated
to potential outcomes. The exclusion restriction is the assumption that treatment
assignment affects the outcome entirely through its affect on treatment received;
knowledge of treatment assignment alone will not affect the outcome. These
assumptions have been described in detail elsewhere [15]. We make one additional
assumption that subjects in group R = r do not have access to the treatment assigned
inarm R = 1 — r, for r = 0, 1. This assumption has been referred to as the
“treatment access restriction” [16] or “strong treatment access monotonicity” [9].
Without the treatment access restriction assumption, we would have four potential
compliance levels rather than two: compliance to treatment j if assigned to treatment
k, for j, k € {0, 1}*. The assumption holds for the CTQ study, as subjects were not
allowed to attend sessions to which they were not assigned.



190 Y. Ma and J. Roy

Other identifying assumptions could be made as well. For example, a side-
effect monotonicity assumption [9], such as A} < Ay for every subject, could be
specified. This states that every subject would be less compliant with treatment 1
than they would have been with treatment 0. The assumption is plausible in many
placebo-controlled trials, but is unrealistic in many behavioral intervention trials
(and therefore will not be used in our analysis).

2.2 Causal Effects

Our interest is in the intention to treat (ITT) effects in subpopulations that have
similar compliance behavior. Let u(r,ap,a;) = E(Y.|[Ag = ap,A1 = a;) =
E(YIR = r,Ay = ayp,A1 = a;). We are interested in comparing quantities
w(1,ag,ar) and p(0, ag, a;). Such comparisons have been called principal effects
[7]. For example, if compliance was a proportion of assigned dose actually received,
investigators might be interested in the comparison p(1, 1, 1) and @ (0, 1, 1), which
is the causal effect of assignment to new treatment compared to standard treatment,
among perfect compliers.

Even if both Ay and A; were observed for all subjects, we would not be able
to identify w(r, ap, a;) non-parametrically. Notice that this differs from the binary
(yes/no) compliance case, where the principal effects could be identified if the
potential compliance variables were known. With continuous measures of compli-
ance, additional structure is needed to identify wu(r, ag, a;). One possibility would be
just estimate the causal effects within regions of the compliance space. Alternatively,
fully parametric (e.g., linear model) or semi-parametric (e.g., smoothing spline)
could be specified.

In order to identify the causal parameters, we propose the use of a structural
model for the principal effects. We assume the data Y; given A;p and A;; are from an
exponential family with distribution

fOi) = expl{yimi — ¥ (n:)}/ (miw) + h(yi, )]

where E(Y;) = g7 '(n;)) = v¥'(n), n; is the linear predictor, ¥ (-) is a known
function, w is a scale parameter, and m; is the prior weight. This family includes
normal (¥ (x) = x%/2), binomial ((x) = log(1 + ¢¥)), and Poisson (¥ (x) = ¢*)
distributions, among others. We then model E(Y;) as a function of the potential
compliance variables and regression coefficients 8. We denote this by

w(r.ag.ay; B) = g {n(r, ao, ar: B)}. (10.1)

where g() is a link function and 7 is a linear predictor. For example, if Y is binary,
one might specify a logistic model u(r,ag,ar; B)=logit™" (Bo + Biao + Bra; +
Bsrag + Baray). By the exclusion restriction, the model should be specified so that
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u(1,0,0; 8) = wu(0,0,0; B). Baseline covariates X could potentially be included
in the model by including, for example, B7x as an additional term in the linear
predictor.

2.3 Compliance Distributions

We next consider the joint distribution of the potential compliance variables,
Ap and A;. Because only one of Ag and A; is observed for each subject, there
is an identifiability problem. The identifiability problem would persist, even if
compliance was binary [16, 17]. For the continuous case the problem is even more
pronounced.

Due to the randomization assumption, we can identify the two marginal distri-
butions f(ag) = f(a|r = 0) and f(a;) = f(alr = 1). Our strategy therefore is to
first specify the two marginal models, which are identifiable. We will then link the
two marginal distributions using a copula model, which will include an association
parameter that cannot be identified.

For the marginal models, we assume that f(a,) follows a parametric distri-
bution. For example, if A, is continuous and bounded in the interval (0, 1), as
would be the case if compliance is a proportion, then a Beta distribution might
be appropriate. One could include covariates via a beta regression model [18],
with E(A,)=logit™'(X"y,) and scale parameter ¢,. Alternatively, if compliance is
an unbounded positive scalar (a duration), then a gamma distribution might be
appropriate. Standard diagnostic techniques can be used to check the adequacy of
the assumptions.

To link the two marginal distributions, which are identifiable, to the joint
distribution, we propose the use of a Gaussian copula model with correlation p [10].
To make notation easier to follow, we will use the following shorthand notation
for the marginal compliance cumulative distribution functions (CDFs), Fa,(ag) =
Fa,(ao; yo, ¢o) and Fu,(a1) = Fa,(a1; y1, ¢1). We will use similar notation for the
joint CDF. The joint distribution is then

Faga, (ag. a1) = @, [®; {Fay(a0)}. @7 ' {Fa, (a1)}]

where @ is the univariate standard normal CDF and @, is the bivariate normal CDF

with mean (0, 0)7, variance (1, 1) and correlation p. Essentially, this implies that

the joint distribution f(zo, z;) is bivariate normal with correlation p, where zg =

& Y{Fa,(ao)} and z; = @ '{Fy4, (a1)}. Therefore, the joint distribution f(ao, a;) is
flao,a1) = f(z0,21) det(J)

1 _z(z) —2pz071 + 2}

—.€X
27/1— p? P 2(1 = p?)

where J is the Jacobian and f() is a density function.

- det(J),
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There is no information in the data about the parameter p, as it represents the
association between two variables that are never observed simultaneously. We will
therefore treat p as known and vary it as part of a sensitivity analysis.

Special Case Assuming p = 1 in the marginal models for Ay and A; would be
equivalent to the “equipercentile equating of compliances” assumption of Efron and
Feldman [8] and discussed in Jin and Rubin [9].

3 The Likelihood and Inference Methods

3.1 Likelihood

Without loss of generality, suppose the first ny subjects are in group R = 0 and the
next ny subjects are in group R = 1 (n = ny + n;). The likelihood function involves
integrating out missing data from the complete data likelihood. The likelihood
contribution for a subject in group R = 0 can be written

Lio(B. yo, Y1, ¢0. 91 p) = /f(yi0|ai0»ail;ﬁ)f(aiOvail; Y0, Y1, $o, 1, p)dai
(10.2)

where the distributions f(yy|ai,ai1; B) and  f(aw, air; Yo, V1, Po, P1, p) were
defined previously. Define L;(B, yo, Y1, ¢, ¢1; p) similarly for subjects in arm
R = 1, except there Ay is integrated out of the likelihood. The loglikelihood
is therefore log L(B.yo.y1.do.¢1:0) = 22Z;1og Lio(B.yo.y1.¢0.d1:p) +
> imny+110g Li (B, vo, 1, $o, $1; p).-

3.2 Estimation: Two-Stage Approach

Maximizing the full likelihood can be computationally intensive, due to numeri-
cal integration and optimization procedures. We propose a two-stage estimation
approach as an alternative, which is potentially faster and more stable than full MLE.
In the first stage, the parameters from the marginal compliance distributions are
estimated using only the compliance data. For example, ¥, and ¢, are estimated by
maximizing the likelihood corresponding to the distribution f'(ag; Yo, ¢o) = f(a|lR =
0; Y0, ¢o). Similar calculations are carried out for the R = 1 group. In the second
stage, we find the values of 8 that maximize log L(B. 7. P1. ¢o, é1; p), where the
estimated values of the compliance parameters from stage one are plugged in to the
likelihood.

The right-hand side of (10.2) will typically not have closed form. We therefore
look to approximate the integral, before proceeding with estimation. To approximate
the integration, we first use a transformation, in order to take advantage of the fact
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that (@ {Fa,(ai)}, P; ' {Fa, (an)}] follows a bivariate normal distribution. The
right-hand side of (10.2) can be written as

[}

where zjp = @[ '{Fa,(ai)}. The distribution of [z;] is standard normal and
[zi1|zio; p] ~ N(pzio, 1—p?). We can then approximate (10.3) using a Gauss—Hermite
quadrature as follows:

aio. aiy = Fy {®(zi1)}: ﬂ}f(dio)f(ZidZio; p)dzi (10.3)

J
Lio(B, 0. 71, 0. d1:p) = Y _f |:)’i0
=1

ajo, ajp = F/T,.ll{@l (Zél)}; :3:|f(ai0)wj

where (z’ \ — pzio)/ /1 — p? is the jth of J nodes from a standard normal distribution
and W is the correspondlng welght Typically, J = 10 points provides sufficient
accuracy. We define L,l(ﬁ 70, V1, qu ¢1 0) analogously Our approximation of the
loglikelihood is

no n
1(B. 90, 91, b0, $1:p) = Y _log Lio(B. Po. 1. bo. d1: p)+ Y log Liu (B, 90, 71, bo. b1 p).

i=1 i=ng+1

We estimate the parameters B by maximizing I(8, Po. 71. (]30, <]31; p). Variances are
estimated by inverting the observed information matrix, which is approximated
using numerical differentiation.

Intuitively, there should be little information in the outcome data about the
compliance distribution parameters. Therefore, we do not anticipate much loss in
efficiency with the two-stage approach. The gain in computational efficiency comes
from estimating fewer parameters in the likelihood that requires integration. The
performance of the two-stage estimator is explored in a simulation study [13].

3.3 Estimation of Effects in Compliance Regions

The ITT effect for a particular combination of the compliance variables might
be of limited interest, primarily because very few subjects would have poten-
tial compliance equal to those two values. Therefore, researchers might also be
interested in causal effects within certain regions defined by a range of values of
the two compliance variables. Consider the situation where Ay and A; represent
the proportion of assigned treatment actually taken (so that O represents non-
compliance and 1 represents perfect compliance). Suppose we would like to
estimate E (Y] — Yy|Ag,A; € ®), where @ is some region of [0, 1]2. Consider the
following examples. The region ® = {Aj,A; € [0.7,1],]A; — Ag| < 0.2} includes
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subjects who would be at least 70 % compliant with either treatment, and whose
compliance level would not differ by more than 20 % between the two arms. This
region would be of interest if investigators wanted to know the ITT effect among
highly compliant subjects. The region ® = {A; > 0.7,A; < 0.3} would include
subjects who would be highly compliant with treatment Z = 0 but poorly compliant
with treatment Z = 1. In the CTQ example, this would include subjects that seemed
to prefer wellness to exercise. Finally, one could consider ® = {A; > 0.8}. In
our example, this would include subjects who would be at least 80 % compliant
with exercise, regardless of how compliant they would be with wellness. One could
imagine many regions @ that might be of interest. Once the model parameters are
estimated, causal effects within a region @ can then be estimated in a separate step.
We next provide the computational details for a specific example.
In general, the causal effect is

1
E(Y1 — Y0|a0,a1 (S @) = lim _ZE(Y“ — Y,'()|Cl,'0,cl,'1 € @)
n—00 4=
1
~ ;ZE(YH — Yiolaio.an € ),

where the approximation holds for large n, and

/ E (Yi — Yolaio. an) f(ai,ai)daidajp
E (Yi — Yilai, an € ©) = =2

/ f(air, aip)dajdaj
o

Suppose we would like to estimate E (Y] — Yy|Ag,A; € ®) where ©® = {Ap, A, €
[0.7,1],|A; — Ag| < 0.2}. This group might be of interest because it represents
a group of people who would take a similar dose of either treatment, and would
receive most of their assigned treatment. We can approximate the double integrals
in the numerator and denominator using Gauss—Hermite quadrature. For example,
the numerator can be written as follows:

[ E (Yi — Yplaw, an) f(ai, air )daj day
6

9

1 pmin(lai40.2) .

= / Alaio, air; B)f (aio, aiYdaydair
0.7 J max(0.7,a;1—0.2)

where A(ay, air; /§) = u(l, ap, ajr; ,é) — (0, ay, an; ,3). After a transformation of
variables, the above expression can be written

ur - puo(zil) R
/ / A[Fa @} ol 1 @b ] Flao zndzndzn— (104)
I lo(zi1)
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where [} = @ {Fy, (0.7)}, u; = &7 {Fa, (1)},

lo(zit) = max [®; " {F4,(0.7)}, &' {Fa, (Fi! (®1(201)) — 0.2)}]
and

uo(zi1) = min [@; " {Fa, (1)}, &7 {Fa, (FrH(@1(z01) + 0.2)}].

In the above expressions, parameters are replaced by their MLEs, e.g., F4,,(0.7) =
FAio (O~7; )70’ ¢0)

The joint distribution f(z;0,z;1) is bivariate normal with mean 0, variance 1
and correlation p. This joint distribution can also be written as f(zio|zi1)f (zi1),
where [zio|lzi] ~ N(pzii.1 — p?) and [z;1] ~ N(0,1). Thus, we can apply a
Gaussian quadrature to approximate the integral in (10.4). In particular, (10.4) can
be approximated by

33 afridfo o} it () )1 ot a2 i

k=1j=1

where /() is the indicator function, z§, and (2}, — pz)/+/1 — p? are nodes from a

standard normal distribution, and w]f and w{) are weights. The totals J and K are
selected to ensure an adequate (e.g., 10) number of valid nodes.

4 Example: Commit to Quit Trial

4.1 Data

The CTQ study [1] was a randomized controlled trial designed to assess the efficacy
of supervised vigorous exercise as an adjuvant to cognitive behavioral therapy
(CBT) for promotion of smoking cessation among women. The study enrolled and
assigned 134 women to receive CBT plus vigorous exercise (the new treatment)
and 147 to receive CBT plus a wellness education program (the control treatment).
CBT represents the standard of care for smoking cessation; the wellness education
was added to the control arm to equalize staff contact time between the two arms.
The CBT program was administered to all women in group format weekly over the
course of 12 weeks. The exercise program was supervised, and individually tailored
to each woman based on achieving a target heart rate. Women in the control arm
participated in a program of supervised lectures, films, and discussions. Both the
wellness and exercise interventions were held three times per week. None of the
women in the control arm had access to the supervised exercise program, and none
in the exercise group had access to wellness classes.
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Cessation status was evaluated weekly, assessed by self-report and verified by
carbon monoxide (<8 ppm) and saliva cotinine (<10 ng/mL), over the course of 12
weeks. To be considered abstinent, an individual needed to submit to testing and
meet both the carbon monoxide and saliva cotinine criteria.

The target quit date was week 5 following randomization. The primary outcome
of the study was continuous abstinence during the 8 weeks after the quit date. By
definition, an individual who was not present for scheduled testing at one or more
occasions could not be counted as continuously abstinent. The compliance variable
was defined during the pre-quit date period (weeks 1-4). Specifically, we defined A,
as the proportion of the 12 classes that were attended, where A, € [0, 1], r = 1 for
the exercise training and r = 0 for the wellness training.

4.2 Model Specification

We next describe the specific models that were fitted to the CTQ data.

Compliance Model Because A, was a proportion (approximately continuous,
bounded between O and 1), we specified beta distributions for the compliance
variables A,. To assess the fit of the models, we plotted the empirical probability
density function (PDF) and the model-based PDF. Specifically, the empirical PDF
was obtained as a histogram of Ay and A, using ten bins of size 0.1 each. The model-
based PDF was based on the assumption that A, follows a beta distribution with
parameters y, and ¢, estimated by maximizing the likelihood. This model-based
estimated PDF was smoothed over the distribution of a,. The empirical and model-
based PDFs are plotted in Fig. 10.1 for p = 0.1 (the figure looks the same for other
values of p, as p affects the joint distribution, but not the marginal). The marginal
PDFs that were estimated from the model appear to capture the key features of the
data. For example, in the wellness arm, the function appears to decrease initially,
then increase as Ay approaches 1. The distribution of A; appears to be an increasing
function.

Principal Effects To model the causal effects wu(r, ag, a;) in Sect. 2.2, we assumed
the distribution f(Y;|Ag, A1; ) was Bernoulli with

P(Y, = l]ag.a1) = logit™" (Bo, + Birao + Baray),

for r = 0, 1. Recall that Y, is the indicator that a subject assigned treatment » would
abstain from smoking during the final 8 weeks of the trial. The exclusion restriction
implies that randomization should have no impact among non-compliers (those with
Ay = Ay = 0), and thus By9p = Bo1. We believe this assumption is plausible for the
CTQ study. However, as part of a sensitivity analysis we allow the two intercepts to
vary. We define § as the ratio of risks among subjects who would be non-compliant
with either intervention, i.e.,
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Fig. 10.1 Empirical PDF (histogram) and model-based estimated PDF (dashed line) of compli-
ance from the Commit to Quit trial

_ P(ri=1]A0=0,4, =0)
C P(Yo=1|A) =0,A; =0)

We can write fo; as a function of By and §: Byp; = log (8/(1 + e Poo — 8)). We
propose to estimate B and fix the value of §, which will determine the value of
Bo1- The exclusion restriction implies § = 1. We also consider § equal to 1.2 and
1/1.2. For example, § = 1.2 implies that, among subjects that would not comply
with either intervention, the risk of the outcome is 20 % greater if randomized to
Z = 1 (exercise).

The model also relies on the assumption that the effects of Ay and A; are
linear and additive on the logit scale. Non-linear terms or interactions could also
be specified, but we found that inference was relatively unaffected by these added
complexities.

We fitted the models at values of p equal to 0.1, 0.5, and 0.9. These values
represent three values within the range of plausible values of p. Recall that p is the
correlation between transformed values of Ay and A;. Independence between A and
A; would occur if p = 0. We believe it is unlikely that Ay and A are independent, as,
for example, a subject might miss a visit for personal reasons that are unrelated to the
treatment itself. We also believe that negative correlation is unlikely. We therefore
focus on positive values of p, while acknowledging that we cannot rule out O or

negative values.
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4.3 Results

Estimation In order to obtain the estimates of the parameters, we maximized
the likelihood in two stages using the approach described in Sect.3.2. Shown in
Table 10.1 are the estimates of the parameters from wellness/exercise compliance
models, and from the principal effects model. The results are only displayed for one
value of p (p = 0.1), as the compliance parameter estimates have no dependence on
p, and the principal effects model parameters are only of secondary interest.

To get an idea of what affect p has on the joint distribution of the compliance
variables, we simulated 500 values from marginal Beta distributions, using the
parameter values from Table 10.1, at p equal to 0.1 and 0.9. The results are displayed
in Fig. 10.2. The plot demonstrates that there is less information in the data about
causal effects near the diagonal when p is small. When p is close to 1, there

Table 10.1 Maximum

o . Wellness compliance model
likelihood estimates (standard

error) from Commit to Quit Yo 0.60 (0.10)

trial when p = 0.1 and § = 1 ap | —0.28 (0.10)
Exercise compliance model
Vi 1.02 (0.11)

a; | —0.75(0.11)
Principal effects model
Boo | —7.66 (10.60)
Bio | 6.87(6.14)
B | —0.24 (20.62)
B | 0.54(15.17)
Bai 6.97 (2.51)

a b
o e
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Fig. 10.2 Plots of 500 simulated values of gy and a; from a copula model with Beta marginal
distributions estimated from the Commit to Quit trial and correlation. (a) p = 0.1 and (b) p = 0.9
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are regions in the graph with little to no data. For example, inference about the
population of people who would be highly compliant with exercise and poorly
compliant if assigned to wellness would be based on extrapolation if p is 0.9.

Causal Effects We next consider parameters from the causal model. First, we focus
on principal effects in subpopulations that would have the same compliance in either
treatment, i.e., Ay = u(1,a,a) — u(0,a,a) where ay = a; = a. We estimated the
effects by plugging the MLEs of § into the following formula

logit™'{Bor + (Bi1 + Br2)a} — Logit™{Boo + (Bor + Bo2)a}

In Table 10.2 we present the estimated principal effects Zl and their standard
errors at compliance levels > 0.7 when p = 0.1, 0.5, and 0.9 and § = 0.83, 1,
and 1.2. For all values of p, the causal effects increased as the compliance level

Table 10.2 Estimated causal effects from Commit to Quit trial

§=1 p=0.1 p=0.5 p =09
Compliance level Zl (se)

0.7 0.038 (0.05) | 0.062 (0.033) | 0.06(0.03)
0.8 0.075 (0.14) | 0.13(0.093) 0.11(0.05)
0.9 0.13 (0.29) 0.25 (0.23) 0.19(0.11)
1.0 0.20 (0.36) 0.38 (0.39) 0.28(0.18)
Compliance region Zz (se)

e 0.11(0.33) 0.24 (0.26) 0.20 (0.10)
§=12 p=0.1 p=0.5 p =09
Compliance level Zl (se)

0.7 0.037 (0.045) | 0.064 (0.031) |0.059(0.033)
0.8 0.076 (0.15) | 0.13(0.091) 0.11(0.049)
0.9 0.13(0.32) 0.25 (0.23) 0.19(0.11)
1.0 0.19 (0.38) 0.38 (0.40) 0.28 (0.19)
Compliance region Zz (se)

C) 0.12 (0.36) 0.24 (0.26) 0.20 (0.10)
§=1/12 p=0.1 p=0.5 p=0.9
Compliance level Zl (se)

0.7 0.033 (0.05) |0.06 (0.034) |0.054(0.032)
0.8 0.076 (0.16) | 0.13(0.095) 0.11(0.051)
0.9 0.13(0.32) 0.24 (0.23) 0.19(0.11)
1.0 0.19 (0.38) 0.38 (0.40) 0.28(0.18)
Compliance region Zz (se)

e 0.12 (0.36) 0.24 (0.26) 0.20 (0.095)

Reported are Zl and Zz when p = 0.1, 0.5 and 0.9, and § = 0.83,
1, and 1.2, where Ay = {u(l,a0,a1) — u(0,a0,a1)lay = a},
Ay = {u(l,a0,a1) — p(0,a0,a1)|ap.a; € O} and O = {Ag.A| €
[0.7,1], |A; — Aq] < 0.2}
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increased. There were no prominent causal effects (effects are less than 0.01) for
the compliance levels below 0.6 (results not displayed). Estimated causal effects
were greater than 0.1 for compliance levels 0.9 or above. While the point estimates
suggest a benefit from exercise when compliance is high, the evidence was only
strong (estimate about twice as large as SE) when p = 0.9. Causal effect estimation
at the compliance levels that we focused on was insensitive to variations in § within
the range of values that we considered (0.83-1.2).

Causal Effects in Compliance Regions Finally, we consider estimation of A, =
E(Y, — Yylag,a; € ®) where @ = {ay, a; € [0.7,1], |a; — ag| < 0.2}, as discussed
in Sect. 3.3. This is the estimated effect of being randomized to exercise compared
to wellness, among the group of people who would attend a similar (not differ by
more than 20 %) number of classes in either arm, and would attend most (at least
70 %) of their assigned classes. The estimates and SEs are given in Table 10.2. For
this group of subjects, those in the exercise arm appeared more likely to quit than
those in the wellness arm. For 0.9, the estimated difference in quit rates between
treatment arms was about 0.20, with p-values of about 0.05. Thus, for the group
that would be highly compliant with either arm, there was moderate evidence of a
benefit of exercise.

5 Discussion

We have developed methods that are designed to estimate the principal effects
in clinical trials, such as smoking cessation trials, in which subjects have access
to only one of two active treatments and the compliance variable is continuous
(and possibly bounded). The joint distribution of the observed and counterfactual
compliance is specified by linking the two marginal compliance distributions
utilizing a Gaussian copula with a sensitivity correlation parameter. At each of
the value of the correlation parameter, we obtain the MLEs of all parameters and
estimate the causal effects at a particular combination of the compliance variables
or within certain compliance regions in subpopulations that have similar compliance
behavior. In the smoking cessation analysis, the exercise arm appeared to have lower
quit rates among subjects that would be highly compliant with either intervention.

The two-stage ML approach is relatively easy to implement. However, we found
that for small sample sizes the optimization algorithm can be unstable. A fully
Bayesian approach is a viable alternative that could potentially resolve some of the
convergence problems by helping to identify parameters using informative priors.

Our approach relies heavily on the structural form of outcome model. In
particular, we specify a parametric model for p(r, ag, a;)—the mean of the potential
outcome given the potential compliance variables. In principle, it would not be
difficult to extend our approach to the semiparametric setting, where, for example,
u(r,ap,ay) could be modeled using bivariate smoothing via penalized splines.
However, because one of the compliance variables is always missing, too much
flexibility in the model can lead to identifiability problems.
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Another related issue is that when p is close to 1, ay and a; contain about the same

information. In that case, it might be sufficient to just include one of the compliance
variables in the model, which should improve computational stability. This suggests
that the form of w(r, ag, a;) could depend on p. These issues, among others, are in
need of additional research.
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Chapter 11

Causal Ensembles for Evaluating the Effect
of Delayed Switch to Second-Line
Antiretroviral Regimens

Li Li and Brent A. Johnson

Abstract Transitioning from a failing antiretroviral regimen to a new regimen is a
critical period in managing treatments to suppress HIV-1 RNA because it can have
lasting effects on the durability of disease and likelihood of developing resistant
mutations. Evaluating the timing of a switch to the subsequent therapy is difficult
because patients are not randomly assigned to switch failing regimens at designed
time points. Li et al. (J. Am. Stat. Assoc. 107:542-554, 2012) proposed and applied
doubly robust semi-parametric methods to evaluate the effect of early versus late
regimen switch in a two-stage design setting. These semi-parametric estimators
are consistent if a parametric treatment model is correctly specified and achieve
optimal performance if a parametric outcome model is also correctly specified.
Here, we propose a new non-parametric estimator of the same causal estimand using
an ensemble-type statistical learner. Compared to earlier estimators, the proposed
estimator requires fewer model assumptions and can easily accommodate a large
number of potential confounders. We illustrate the methods through simulation
studies and application to data from the AIDS Clinical Trials Group Study A5095.

1 Introduction

In current clinical practice, HIV-1 infected patients are treated through a sequence
of combined antiretroviral therapies (cART). Although HIV-1 is a viral agent and
causes acquired immunodeficiency syndrome (AIDS), modern treatment successes
and the lack of a cure suggest similarities in treatment of HIV-1 infection and a
chronic disease. The primary goal of cART is to reduce viremia below a limit of
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detection, but providers also make treatment decisions to help patients manage
adverse side effects and opportunistic infections. For a variety of reasons, including
co-morbidities, genetic mutations, and poor adherence, patients eventually fail their
current CART and move to the next-in-line cART. Then, similar to individuals that
live with chronic diseases, HIV-1 infected individuals transition from treatment
regimen to regimen, as necessary, until all treatment options have been exhausted
or death.

Despite all that the scientific community has learned about treating HIV-1
infection and AIDS over the last four decades, there is still much that is unknown.
In particular, there are many open questions about the timing of treatment decisions
that leads to better patient outcomes given a patient’s medical and treatment
history. Collecting scientific evidence to identify better treatment decisions is
difficult because of patient heterogeneity and because designing and enrolling
patients in randomized controlled trials to investigate these scientific questions
is challenging [25]. In the absence of controlled clinical trials, investigators may
conduct secondary analyses of existing databases in an attempt to address the same
questions. However, in secondary analyses of observational data, there is often
confounding between treatment and outcome and this issue must be addressed
statistically. For HIV-1 infected patients who move failing cARTs to new cARTs,
the reasons for switching cARTSs can be extremely important and are expected to be
related to clinical outcome. In addition to controlling for confounding, there may
be other features of the database that are tangential to the scientific question of
interest but must nevertheless be addressed by the data analyst. Therefore, a fair and
objective evaluation of treatment decisions in a sequence of cARTs is challenging
for several reasons but important for public health and the infected individual’s
quality of life.

Our methods are motivated by data from the AIDS Clinical Trials Group
(ACTG) Study A5095, a controlled clinical trial designed to compare two efavirenz-
containing regimens and a triple nucleoside regimen [15]. After patients failed
their initial cARTS, patients were allowed to switch to second-line cARTSs and then
followed per study protocol. We are interested in assessing whether it is clinically
beneficial to delay switching to second-line cART post-virologic failure or whether
patients ought to switch as soon as possible. Because switching from a failing initial
cART may depend on the initial cART, Li et al. [20] argued that it may be prudent to
analyze the ACTG A5095 data as a two-stage design problem [21, 31], where “two-
stage” refers to treatment assignment/decision at two points in time. Here, in our
early versus late two-stage framework, patients are randomly assigned to one of two
treatment arms at the first stage. Then, if a patient fails the initial cART, the patient
decides to switch cART immediately or delay switch at the second stage. The two
levels for each of initial cART and delay versus immediate switch comprise the four
treatment combinations. A key feature of the statistical framework for two-stage
methods is the introduction of a Bernoulli indicator for eligibility to second-stage
randomization [21] and makes evident the connection to intent-to-treat inference in
a randomized controlled trial.
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In the methods below, we propose and investigate a non-parametric extension of
our earlier work in Li et al. (2012) for evaluating early versus late switch from a
failing cART. The estimators in Li et al. (2012) are semi-parametric insofar as they
rely on parametric regression models of treatment assignment and outcome. The
proposed estimator differs fundamentally from our earlier work because it is non-
parametric and based on regression trees and boosting. We illustrate the method
in an analysis of the data from ACTG A5095 and evaluate it through simulation
studies.

2 Methods

Because of the close connection between missing data problems and causal
inference [28], it will be instructive to develop methods in both contexts. Methods
for estimating E(Y) when some outcomes Y are missing are described in Sect. 2.1
while methods for two-stage designs are described in Sect. 2.2.

2.1 Missing Data

Without loss of generality, assume that the full data are {(X1, Y1), ..., (X, Y,)}, i.i.d.
pairs from the distribution of (X1, Y;), and the scientific interest is to estimate yu =
E(Y;). However, some outcomes Y are missing and the missingness mechanism
depends on X but not on Y. The observed data are

0 = {(Xh Y1 Yl» }/1), e (Xn, ann» Vn)},

ii.d. random triples from the distribution of (X1, y1Y1, y1), where y; = 0 if ¥; is
missing and y;Y; is the product of y; and Y; for i = 1,...,n. The conditional
probability that Y; is missing given X; is denoted by 7 (X;) = P(y; = 1|X;) and
the conditional expectation of Y; given X; is f(X;) = E(Y;|y; = 1,X;). Our working
assumption is that 7 (X;) = P(y; = 1|Y;,X;), also known as the missing at random
assumption.

Under the missing at random assumption, two estimators of p are the inverse
probability weighted estimator and outcome regression estimator,

I &
fupw = — Z n(X) flor = - D FX),
i=1

where 7 (-) and f (+) are consistent estimators for 7 (-) and f(-). In many applications,
7 (X) and f(X) are assumed to be simple parametric functions of the covariates X;
for example, 7 (X) and f(X) are fitted quantities from a logistic regression model for
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7(X) and linear model for f(X). Then, one can show that fi;pw and jior are unbiased
for p if 7(X) and f(X) are correctly specified. Using semiparametric theory, Robins
et al. [26] proposed a doubly-robust estimator which would be consistent for p
if either 7(X) or f(X) was correctly specified. Also, the doubly-robust estimator
will be semi-parametric efficient if both 7(X) and f(X) are correctly specified.
However, assuming that 7r(X) is correctly specified, authors subsequently showed
that a consistent, doubly robust estimators can be rather imprecise when f(X) is
misspecified even if it is semi-parametric efficient when f(X) is correctly modeled.
To overcome this shortcoming, Robins et al. [27] proposed an estimator that aims
to minimize the variance of the doubly robust estimating function when f(X) is
misspecified; however, the resulting estimator is no longer doubly robust. Tan [32]
proposed a constrained maximum likelihood estimator that is doubly robust, semi-
parametric efficient when 7(X) and f(X) are correctly modeled, and minimum
variance when 7 (X) is correctly modeled but f(X) may be misspecified. All three
of these estimators may be expressed in the form of

n

R R 1 Yi— X)) »
Lo = jipw — ke [EZ{Wéf(XZ)} (11.1)

i=1

We define jiappw in (11.1) as the doubly robust, augmented inverse probability
weighted (AIPW) estimator with kajpw = 1, flrrz and fir., are defined by kgrz
and kry, given in [33, p.563]. For the family of semi-parametric estimators defined
through (11.1), 7(X) and f(X) are parametric functions of X through known link
functions [22].

In the interest of robustness, we investigate non-parametric extensions of jigr.
Note that the outcome regression estimator may be written

n

flor = % > {)/U?(Xi) +0- )/i)f(xi)} = % > {)’iYi + (- )’i)f(xi)} - (11.2)
i=1

i=1

So, a completely non-parametric estimator for p can be defined through (11.2) with
a non-parametric regression estimatorf‘ (+) for f(-). When there is only one covariate
X, one can simply use the Nadaraya-Watson [23] estimator [30]; for example, see
[6]. However, as the dimension of X increases, the curse of dimensionality precludes
any simple extension of kernel regression and one must typically impose more struc-
ture on the data to propose practical, interpretable solutions. Some nonparametric
regression methods include local polynomial regression [8], generalized additive
models [1, 17], and smoothing splines [14]. See [30] for a review of these methods.
Alternatively, one can use statistical methods that have little or no interpretability
and this is the approach we take here.

In this note, we use blackbox statistical learners to construct a prediction model
f (-) and subsequently define our estimator flog in (11.2). Blackbox method is
a generic umbrella term used to describe classification algorithms in artificial
intelligence, computer science, engineering, machine learning, mathematics, and
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statistics that aim to separate a vector of class labels (nx 1) using a data input matrix
X (n x p). Authors noted that, in most if not all cases, the same algorithms could
be used to construct predictions for a continuous response Y by simply modifying
the loss function. There are many overlapping names and methods associated with
these algorithms including ensemble methods, aggregation, bagging, and boosting.
There exists a massive literature on these topics and we refer the interested reader
elsewhere for a review (e.g., [18]).

Our estimator of w is based on boosted regression trees (e.g., [4]), one of
many blackbox statistical learners that scales up easily to handle large dimensional
covariates X under mild restrictions on the data [9, 10] and is tersely outlined in
the Appendix. There is some empirical evidence to suggest that boosting offers
improvements in the misclassification rates compared to bagging [2] but such a
comparison is beyond the scope of this note. In short, our estimator is constructed
in the following three steps. First, the ensemble prediction f (+) is built with the
complete data {(X;, y;Y:,¥;) : vi = 1}. Second, predictions are computed for the
observations with missing outcomes where y; = 0, finally, the estimator is defined

ANew = % z": {ViYi + (- Vi)JAc(Xi)} .

i=1

We use the blackboost function from the mboost package in R, fivefold cross-
validation to determine the stopping iteration, and all other default settings. We
adopt the nonparametric bootstrap to estimate var(finew) as outlined in Sect. 2.3.

2.2 Two-Stage Designs

Following the framework in [21], let Y}, be the potential outcome if a patient
followed a treatment policy (A = a,B = b), where A and B are the first- and
second-stage treatment random variables, respectively. In our problem, A is a binary
random variable and represents the initial CART in ACTG A5095: A = 0 denotes
the triple nucleoside regimen and A = 1 represents the combined efavirenz-
containing regimens. The second-stage treatment B is also binary and denotes
switching early or late to second-line regimen after confirmed virologic failure on
the initial regimen. Based on discussions with our collaborators, we define an early
switch to second-line regimen as less than 8 weeks after confirmed virologic failure.
Hence, the four potential outcomes for this simple design are (Y7,, a,b = 0, 1) and
the goal is to estimate E(Y;). If we can derive a consistent estimator for E(Y},),
then we can extend those statistics to draw inference on the expected difference
in potential outcomes E(Y; — Y})) to assess the value in switching to second-line
regimen within 8 weeks of virologic failure on the initial regimen. This is a summary
of the introductory arguments given in [20].

If the observed data consisted of i.i.d. copies of (Y, A, B, X), where treatment
assignment to (a, b) depended on X only, then, under suitable regularity conditions,
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unbiased estimators for E(Y};) could be derived using usual arguments from causal
inference. However, the observed data are more complex. A challenge in the analysis
of data from two-stage designs is the possibility that not all patients fail their first-
line regimen and, hence, do not switch to second-line regimen. Lunceford et al. [21]
refer to this random variable as an indicator of eligibility to second-stage treatment
assignment and include it as part of the definition of treatment policy; see also,
[20, p.543]. Define A as the binary random variable indicating whether patients
fail the initial regimen and are therefore eligible to switch to second-line regimen.
Scientifically, we have no priori interest in A. In an intent-to-treat analysis of data
from a randomized clinical trial where we knew (A, B) at baseline, the indicator
A would be ignored. In observational data, we do not know (A, B) for a randomly
selected patient from the population. Instead, we observe (A, B) when A = 1 and
only observe A when A = 0. Nevertheless, the intent-to-treat estimand is still
the parameter of interest. This makes the analysis of data from two-stage designs
different and interesting.
In our framework, the observed data are

0= {(leAl, Ala AIBI, Yl)v cees (XnvAn» An» Aan» Yn)}v

assumed to be i.i.d. copies from the distribution of (X;,A;, A;, A1By, Y;). Under
standard assumptions in causal inference and the identifiability condition,

Y;():Y*

al»

ifA=0,fora=0,1,

Lunceford et al. [21] show that

o 1 < Ad(B; =b
MHQWZZZYiI(Ai=a)%(1—Ai)+ d(8 = b) }
i=1

P(Bl = blA, =da, A,’ = 1,X,‘)

is an unbiased estimator for E(Y},). Along the lines described in Sect.2.1, Li
et al. [20] showed that a general family of augmented inverse probability weighted
estimators for £(Y)))) in a two-stage design is

~al _ ~al 1 “ ) Bi_ﬂa(Xi) .
Ao = Hipw — ke |:; Z {Az (—Na(Xi) )fa(Xl)}:| : (11.3)

i=1

where JTa(Xi) = P(Bl = 1|A, = a, A,‘ = l,X,') andfal(X,-) = E(Y,|A, = da, Ai =
1,B; = 1,X;). Setting ke = 1 leads to the AIPW estimator, krrz and kr,, lead
to estimators in the spirit of Robins et al. [27] and Tan [32], respectively. See [20,
p.547] for details of this approach. Estimators for E(Y)y,) are defined analogously.
To construct the new estimator for E(Y);) that accommodates blackbox pre-
diction tools, we must extend the definition of outcome regression estimator in
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Sect. 2.1 and consider the role of the eligibility random variable A. Using standard
arguments, one can show that the outcome regression estimator for E(Y}) is

1

st = 23 104 = @ [0 - apvi+ By + - Bafa0)]. a1
i=1

The corresponding estimator for E(YX) is /i{0, given by the expression in (11.4)
except that B; and (1 — B;) in curly brackets are reversed and f,o(X;) = E(Y|A; =
a,A; = 1,B; = 0,X;) replaces f,1(X;). As in Sect.2.1, the estimator [L“NLW is
computed in three steps: build the blackbox f‘al () using the complete data, calculate
the predictions for subjects where B; = 0, and compute the estimate. The stopping
iteration in the blackbox algorithm is chosen via fivefold cross-validation and
minimizing a L, loss function.

2.3 Variance Estimate

To estimate var(finew) for missing data or var(ﬂ“Nbew) in the two-stage design,
we used a nonparametric bootstrap procedure. More details were in [7]. Because
missing data are imputed in our estimators, we follow the recommendation of Shao
and Sitter [29] who argue that “...the bootstrap data set should also be imputed
in the same way as the original data set was imputed.” This is in contrast to
some authors who have suggested that the imputed data should be regarded as
truth, which clearly underestimates the sampling variance. Therefore, in the case
of var(finew), we (1) draw a simple random sample of size n with replacement from
the original data set, then (2) compute the bootstrap estimate f[L3,,, , using the bth
resampled dataset. We repeat the process B times and then take the sample variance
Of {fAew.17 -+ » PNew.s s+ We estimate var(% ) in the two-stage design using an
identical resampling plan.

3 Analysis of ACTG AS095 Data

The goal of our analysis is to compare clinical endpoints for patients who switch
early versus late from a failing efavirenz-containing combined antiretroviral therapy
(cART). The question of when to switch from a failing cART has been discussed and
debated in the HIV & AIDS literature for more than 15 years although some recent
research has suggested a preference for switching “early” from a failing regimen
(e.g., [19, 20, 24]). The data analysis below expands on an earlier analysis performed
by our research team [20]. Here, we present new comparisons of the mean clinical
endpoints using non-parametric ensemble methods discussed in Sect. 2.2 that make
weaker modeling assumptions than the semi-parametric methods in [20].

The data are taken from the AIDS Clinical Trials Group (ACTG) Study A5095.
Briefly, ACTG A5095 was a randomized, multi-center clinical trial designed to



210 L. Li and B.A. Johnson

compare three antiretroviral regimens in HIV-infected, antiretroviral therapy-naive
patients with HIV-RNA levels <400 copies/mL. The goal of the study was to
suppress and maintain HIV-1 RNA levels <200 copies/mL and the study was
designed to last 96 weeks. After 32 weeks of follow-up, 82 of 382 patients
(21 %) in the triple NRTI group versus 85 of 765 patients (11 %) in the combined
efavirenz group experienced virologic failure; hence, the triple nucleoside reverse-
transciptase inhibitor (NRTI) regimen appeared inferior when compared to the
combined efavirenz-containing regimens. All study patients who failed on the initial
cART had the opportunity to switch regimens in favor of another regimens, subject
to study protocol restrictions and recommendations. Although the initial regimen
was randomized independent of patient characteristics, the switch to second-line
regimen was left to patient and provider discretion. Thus, the comparison of early
versus late regimen change is subject to confounding. Additional study details are
provided in the primary sources [15, 16].

Using the same length-adjusted area under the curve (AUC) outcomes presented
in [20], we compared doubly robust and optimal semi-parametric estimates to non-
parametric causal ensembles proposed in Sect. 2.2. In addition to these statistically
justified procedures, we also presented naive estimates that simply took the sample
average of outcomes conditional on those patients that failed the initial regimen.
All methods used six potential confounding variables: age, height, weight, baseline
CD4 cell counts, baseline CDS, and time to first failure. The parameter estimates
and their standard errors are given in Table 11.1. As reported in [20], we found that

Table 11.1 Estimates of mean potential outcomes E(Y};,) for n = 744 patients switching less than
(early) or greater than (late) 8-weeks after confirmed virologic failure on an efavirenz-containing
regimen

HIV-1 RNA? Detection limit® CD4¢

Method | Switch | Est. (SE) T Est. (SE) T Est. (SE) T

Naive Early 2.600 (0.181) |0.513 |0.592 (0.054) |0.800 2.436 (0.055) 10.458
Late 2.685 (0.068) 0.546 (0.023) 2.466 (0.026)

IPW Early 1.835(0.041) [4.970 |0.837 (0.030) |2.720 2.21 (0.093) 0.369
Late 1.914 (0.032) 0.787 (0.011) 2.564 (0.015)

AIPW Early 1.848 (0.048) |2.325 |0.829(0.033) |1.614 2.593 (0.035) |0.764
Late 1.915 (0.033) 0.787 (0.011) 2.563 (0.015)

RRZ Early 1.833 (0.043) 14.218 |0.828 (0.01) 19.860 |2.600 (0.015) |9.800
Late 1.914 (0.033) 0.787 (0.011) 2.561 (0.015)

Tan Early 1.835 (0.040) | 4.948 |0.830(0.011) |21.235 |2.599 (0.014) |18.326
Late 1.914 (0.033) 0.788 (0.011) 2.563 (0.015)

New Early 1.849 (0.048) | 1.192 |0.808 (0.012) | 7.087 2.593 (0.017) |5.364
Late 1.899 (0.030) 0.788 (0.010) 2.567 (0.015)

Standard errors are reported in parentheses and we report the Wald test statistic (T) for a nominal
test of the null hypothesis that the average causal effect is zero

“Length-adjusted AUC of HIV-1 RNA level, logarithm scale

PProportion of time spent with HIV-1 RNA below limit of detection

‘Length-adjusted AUC of CD4 T-cell counts, logarithm scale
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augmented doubly robust semi-parametric estimators suggest there were statistically
significant differences in cumulative HIV-1 RNA, proportion of time spent below
a limit of detection, and cumulative CD4 cell counts between patients switching
early versus late. At the same time, parameter estimates were not statistically
different using simple and naive methods. When evaluating differences using the
non-parametric causal ensemble, we found statistically significant differences in the
limit of detection endpoint and cumulative CD4 endpoint but not the cumulative
HIV-1 RNA endpoint.

4 Simulation Studies

We performed simulation studies to compare the non-parametric causal ensembles
with semi-parametric estimators. To simplify the study design, we considered the
missing data estimators in Sect. 2.1 rather than the two-stage problem in Sect.2.2.
Our simulation setup followed an outline similar to experiments in [5, 20]. For
eachi = 1,...,n,let Z;, j = 1,...,4 be independent, standard normal random
variables and then define X;; = exp(Z;/2), Xn = Zpn/(1 + exp(Zy)) + 10,
X3 = (ZuZ3/25 4+ 0.6)° and Xy = (Zy + Zp)?>. The true propensity score
model is 7o(Z;) = expit(—Z; + 0.5Zp — 0.25Z;3 — 0.1Z;). The true outcome
regression model is a linear model of (Z,Z,, Z3,Z,) with a coefficient vector of
(210,27.4,13.7,13.7,13.7).

We evaluated the performances of the estimators in four scenarios, as described in
Table 11.2. In the first scenario, both PS and OR models are correctly specified and
we expected all estimators to perform well. In the second scenario, the working PS
model is correct while the working OR model is not. True outcomes are generated
from an exponential distribution; however, the working outcome regression model
assumes a normal distribution on the outcome. Moreover, covariates in the working
model include X1, ..., X, instead of Zy, ..., Z4. In scenario 3, in addition, working
PS model is built on Xj,...,X,. In Scenario 4 we considered 50 confounders in
the true OR model. Because the semi-parametric methods do not perform variable
selection automatically, we expected the finite sample performance of the semi-
parametric estimators to be worse than the causal ensemble.

Table 11.2 Simulation scenarios

True True P(Yy <y) |No.of Correct | Correct
Scenario PS OR Skewed confounders PS OR
1 Zi,.... 7 Zy,..., 72y No 4 Yes Yes
2 Zi,.... 7 Zy,..., 2y Yes 4 Yes No
3 Z],...,Z4 Zl,...,Z4 Yes 4 No No
4 Zi,....Zs5 Z\,...,.Z5 No 50 Yes Yes
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Table 11.3 Simulation results based on 200 Monte Carlo replications

Scenario IPW AIPW RRZ Tan New

1 1.7 (18.7) 0.1 (3.8) 2.9 (8.0) 0.2 (2.7) 1.4 (4.7)

2 2.3 (47.5) 1.3 (41.2) 8.0 (38.9) 1.8 (42.8) 8.9 (28.3)
3 0.4 (66.7) 2.9 (48.9) 8.6 (38.1) 0.4 (59.4) 10.5 (31.5)
4 - - - - 0.02 (12.9)

Table entries are Monte Carlo bias and standard deviation and the true value is 210

Our simulation results are summarized in Table 11.3. Table entries are the Monte
Carlo bias and standard deviation from 200 Monte Carlo datasets. For the first
scenario where both PS and OR models are correct specified, the non-parametric
estimator had similar bias to the semi-parametric estimators but was less precise
than AIPW estimator and Tan estmator. For the second and third scenario where
the OR models were incorrectly specified, [PW, AIPW, and Tan had small Monte
Carlo bias while the non-parametric estimator had bias similar to the RRZ estimator.
The variance of the non-parametric estimator was smaller than any semi-parametric
estimator in scenarios 2-3. In the last scenario where the PS and OR models depend
on 50 covariates, the semi-parametric estimators failed while the non-parametric
causal ensemble had small bias and variance.

5 Discussion

We have proposed a non-parametric estimator for missing data in Sect.2.1 and
for a two-stage causal estimand in Sect.2.2. The latter two-stage estimator is
a non-parametric alternative to the semi-parametric estimators proposed in our
earlier work [20] for comparing early versus late switch from a failing combined
antiretroviral therapy. In general, doubly robust semi-parametric estimators of the
causal estimand in [20] require that either one or both of the propensity score or
outcome regression models are correctly modeled. The non-parametric estimator
proposed here is based on blackbox boosted ensemble methods, does not model the
propensity score, and places minimal assumptions on the outcome regression model.
Our estimator uses readily available software via the mboost package in R.

Our simulation studies suggest the non-parametric estimator performs similar to
the semi-parametric methods under linear regression with normal error models, but
better than semi-parametric methods when the number of potential confounders is
large. When the errors are heterogeneous or are otherwise non-normal, we found
that doubly robust semi-parametric methods have the potential to offer smaller bias
and variance when at least one of the treatment or outcome models is correctly
specified. In the data analysis, non-parametric estimates of the mean potential
outcome for the switch-early group were better than those for the delayed-switch
group. This conclusion is similar to what we found using semi-parametric methods
in Table 11.1 and reported in our earlier report [20].
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Appendix

Boosting is machine learning algorithm from a theory that attempts to construct a
strong learner from a series or collection of weak learners and the earliest substantial
contribution is widely attributed to [9, 10]. Freund and Schapire developed an
early version of an adaptive resampling and combination scheme that became
adaptive boosting or AdaBoost. Breiman [3] showed that AdaBoost can be viewed
as functional gradient descent in function space while Friedman et al. [12, 13]
linked AdaBoost and other boosting algorithms to a statistical framework in
function estimation. The work by Breiman [3] and Friedman et al. [12, 13] brought
boosting to a wide array of statistical regression and prediction applications beyond
classification and our proposed estimator builds on this idea of function estimation.

Biihlmann and Hothorn [4] recently reviewed the literature in boosting and
aggregation and their review informed our outline here. Boosting algorithms can
be written as functional gradient descent techniques [3, 12, 13] and we adopt this
view here. Briefly, the goal of functional gradient descent is to estimate a function
by minimizing an expected loss

E[p{Y.f(X)}].

where p(-,-) is a (loss) function of data O = {(X1, Y1),..., (X, Y,)} and convex
with respect to the second argument. Friedman [11] provided a generic outline of a
descent algorithm through the following steps:

1. Initialize f” 0(.) with an offset value. A common choice is
0 = argminl ip(Y- );
n pr 15 ’

for a constant ¢ or letf‘o(-) =0.Setm = 0.
2. Increase m by 1. Compute the negative gradient (3/9f)p(Y.f) and evaluate it at
fm—l (Xi):

_ i f)

Jd=1,...,n.
U =1

U,'=

3. Fit the negative gradient vector Uy, ..., U, to Xy, ..., X, by the real-valued base
procedure

, Dbaseprocedure
Xi. Uiz — §"0).

4. Update f(-) = f™'(-) + vg"(-), where v is a step-length factor.
5. Iterate steps 2—4 until m = myg,p for some stopping iteration migop.
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We need to determine two user-defined parameters in the algorithm above; namely,
Mgop in step 5 and the step-length factor v in step 4. The stopping iteration gy
is determined via cross-validation or some information criterion, such as corrected
AIC criterion. The choice of the step-length factor v is chosen to be sufficiently
small (e.g., v = 0.1). Popular loss functions p(y,f) are exp{—(2y — 1)f} or
log,[1+exp{—(2y—1)f}] for binary outcomes and squared error loss for continuous
outcomes.

BlackBoost was developed by Friedman [11] and uses regression trees as the
base learner. Bithlmann and Hothorn [4] reviewed both theory and applications
and have highlighted the advantage that estimates will be invariant under monotone
transformations of variables. In addition, regression trees can handle continuous and
categorical covariates in a unified way.

References

1. Binder, H., Tutz, G.: A comparison of methods for the fitting of generalized additive models.
Stat. Comput. 18, 87-99 (2008)

2. Borra, S., Ciaccio, A.: Improving nonparametric regression methods by bagging and boosting.
Comput. Stat. Data Anal. 38, 407—420 (2002). doi:10.1016/S0167-9473(01)00068-8

3. Breiman, L.: Prediction Games and Arcing Algorithms. Technical Report 504. Statis-
tics Department, University of California, Berkeley (1997/1998), revised. http://stat-www.
berkeley.edu/tech-reports/index.html

4. Biithlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting.
Stat. Sci. 22, 477-505 (2007). doi:10.1214/07-STS242

5. Cao, W, Tsiatis, A.A., Davidian, M.: Improving efficiency and robustness of the doubly robust.
Biometrika 96, 723-734 (2009)

6. Cheng, P.E.: Nonparametric estimation of mean functionals with data missing at random. J.
Am. Stat. Assoc. 89, 81-87 (1994)

7. Efron, B., Tibshirani, R.: Bootstrap methods for standard errors, confidence intervals, and other
measures of statistical accuracy. Stat. Sci. 1, 54-75 (1986). doi:10.1214/ss/1177013815

8. Fan, J., Gijbels, I.: Local polynomial fitting. In: Smoothing and Regression. Approaches,
Computation and Application (M.G. Schimek), pp. 228-275. Wiley, New York (2000)

9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997)

10. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14, 771-
780 (1999)

11. Friedman, J.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29,
1189-1232 (2001)

12. Friedman, J., Hastie, T., Tibshirani, T.: Additive logistic regression: a statistical view of
boosting. Ann. Stat. 28, 337-374 (2000)

13. Friedman, J., Hastie, T., Tibshirani, T.: Rejoiner for additive logistic regression: a statistical
view of boosting. Ann. Stat. 28, 400-407 (2000)

14. Gu, C.: Smoothing Spline ANOVA Models. Springer, New York (2002)

15. Gulick, R.M., Ribaudo, H.J., Lustgarten, S., Squires, K.E., Meyer, W.A., Acosta, E.P.,
Schackman, B.R., Pilcher, C.D., Murphy, R.L., Maher, W.L., Witt, M.D., Reichman, R.C.,
Snyder, S., Klingman, K.L., Kuritzkes, D.R.: Triple-nucleoside regimens versus efavirenz-
containing regimens for the initial treatment of HIV-1 infection. N. Engl. J. Med. 350,
1850-1861 (2004)


http://dx.doi.org/10.1016/S0167-9473(01)00068-8
http://stat-www.berkeley.edu/tech-reports/index.html
http://stat-www.berkeley.edu/tech-reports/index.html
http://dx.doi.org/10.1214/07-STS242
http://dx.doi.org/10.1214/ss/1177013815

11

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

Causal Ensembles and Applications to Therapeutic AIDS Studies 215

Gulick, R.M., Ribaudo, H.J., Shikuma, C.M., Lalama, C., Schackman, B.R., Meyer, W.A.
3rd., Acosta, E.P.,, Schouten, J., Squires, K.E., Pilcher, C.D., Murphy, R.L., Koletar, S.L.,
Carlson, M., Reichman, R.C., Bastow, B., Klingman, K.L., Kuritzkes, D.R., AIDS Clinical
Trials Group (ACTG) A5095 Study Team: Three- vs four-drug antiretroviral regimens for the
initial treatment of HIV-1 infection: a randomized controlled trial. J. Am. Med. Assoc. 296(7),
768-781 (2006)

Hastie, T., Tibshirani, R.: Generalized Additive Models, 1st edn. Monographs on Statistics and
Applied Probability. Chapman and Hall/CRC, Boca Raton (1990)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd edn. Springer, New York (2001)

Johnson, B.A., Ribaudo, H., Gulick, R.M., Eron, J.J.: Modeling clinical endpoints as a function
of time of switch to second-line ART with incomplete data on switching times. Biometrics 69,
732-740 (2013)

Li, L., Eron, J., Ribaudo, H., Gulick, R.M., Johnson, B.A.: Evaluating the effect of early versus
late ARV regimen change after failure on the initial regimen: results from the AIDS clinical
trials group study A5095. J. Am. Stat. Assoc. 107, 542-554 (2012)

Lunceford, J., Davidian, M., Tsitatis, A.: Estimation of survival distributions of treatment
policies in two-stage randomization designs in clinical trials. Biometrics 58, 48-57 (2002)
McCullagh, P., Nelder, J.A. :Generalized Linear Models, 1st edn. Chapman and Hall, London
(1983)

Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 9(1), 141-142 (1964).
doi:10.1137/1109020

Petersen, M.L., van der Laan, M.J., Napravnik, S., Eron, J., Moore, R., Deeks, S.: Long term
consequences of the delay between virologic failure of highly active antiretroviral therapy and
regimen modification: a prospective cohort study. AIDS 22, 2097-106 (2008)

Riddler, S., Jiang, H., Tenorio, A., Huang, H., Kuritzkes, D., Acosta, E., Landay, A., Bastow,
B., Haas, D., Tashima, K., Jain, M., Deeks, S., Bartlett, J.: A randomized study of antiviral
medication switch at lower- versus higher-switch thresholds: AIDS clinical trials group study
AS5115. Antivir. Ther. 12, 531-541 (2007)

Robins, J.M., Rotnitzky, A., Zhao, L.P.: Estimation of regression coefficients when some
regressors are not always observed. J. Am. Stat. Assoc. 89, 846-866 (1994)

Robins, J.M., Rotnitzky, A., Zhao, L.P.: Analysis of semiparametric regression models for
repeated outcomes in the presence of missing data. J. Am. Stat. Assoc. 90, 106-121 (1995)
Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies
for causal effects. Biometrika 70, 41-55 (1983)

Shao, J., Sitter, R.R.: Bootstrap for imputed survey data. J. Am. Stat. Assoc. 91, 1278-1288
(1996)

Simonoff, J.: Smoothing Methods in Statistics. Springer Science and Business Media, New
York (1996)

Stone, R.M., Berg, D.T., George, S.L., Dodge, R.K., Paciucci, P.A., Schulman, P, Lee, E.J.,
Moore, J.O., Powell, B.L., Schiker, C.A.: Granulocyte- macrophage colony-stimulating factor
after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. N.
Engl. J. Med. 322, 1671-1677 (1995)

Tan, Z.: A distributional approach for causal inference using propensity scores. J. Am. Stat.
Assoc. 101, 1619-1637 (2006)

. Tan, Z.: Understanding OR, PS and DR. Stat. Sci. 22, 560-568 (2007)
34,

Watson, G.S.: Smooth regression analysis. Sankhya Indian J. Stat. Ser. A 26(4), 359-372
(1964) [JSTOR 25049340]



Chapter 12
Structural Functional Response Models
for Complex Intervention Trials

Pan Wu and Xin M. Tu

Abstract Estimating causal effect under different treatment exposures in empirical
research is sometimes difficult because of lack of control for the distribution of such
exposure in either randomly assigned or self-selected treatment groups. In clinical
studies, when the treatment doesn’t follow standard design under a consistent and
single-layer intervention for each subject, the estimation and inference on causal
treatment effect would become more complicated than the standard intervention
for the most of the statistical models. In this book chapter, we are interested in
introducing a new class of structural models in estimation of causal treatment effect,
the structural functional response models (SFRM), which is an extended version of
existing structural mean models (SMM), but more effectively used in addressing
imperfect of treatment compliance in clinical trials. In contrast with SMM, the
SFRM has a flexible model structure and is naturally adaptive to complex interven-
tion design for both experimental and non-experimental studies. The computation
of the SFRM is more straightforward than the G-estimation algorithm that is widely
used by SMM. Moreover, the SFRM is ready to be generalized to binary and count
outcomes through logit and log-linear functions. Simulation studies are conducted
to illustrate its strength and superiority of model performance. Then, the SFRM
is applied to a randomized clinical trial in comparison of a new intervention with
standard therapy in improvement of teenage’s mental health to estimate the causal
treatment effect under the multi-layered intervention design.
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1 Introduction

The randomized controlled trials (RCTs) has been treated as the gold standard in
causal inference since the effect of randomization ensures that no pre-treatment
variables could potentially confound both treatment assignment and outcomes of
interest. This effort is rewarded by a simple design with robust results that is
easily understood and implementable in the general public. The RCTs, however,
may not always guarantee the causality of treatment on the outcome of interest
when the after-randomization treatment suffers imperfect or non-compliance issue
in practices, such as the inconsistent exposure of intervention for each individual
subject in active treatment arms or less control on other variables (mediators) related
to both treatment and outcomes. The traditional intention to treat (ITT) approach
is recommended to use in RCTs for its simplicity in study design, control, and
implementation, but isn’t capable of addressing the post-treatment confounding and
may lead to biased inference and make analytic results without causal interpretation.

In the past decades, the problem of estimating the causal effect of compliance
with active treatment in randomized trials has received much attention in statistical
literature. Efron and Feldman [3] introduced a one-one monotone mapping between
compliance and treatment and implemented with a full parametric model. Angrist
etal. [1] used the Instrumental Variables approach to calculate the complier average
treatment effect for the placebo-controlled trials and generated this further to
binary compliance on binary outcome. Frangakis and Rubin [7] developed the
Principal Stratification (PS) method to adjust post-treatment compliance within
the stratified covariate groups and estimate causal effect for each strata using
Bayesian approach. Robins [23] proposed the structural nested mean models (SMM)
to find the causal parameters in a quite robust semiparametric framework with
(repeated) continuous outcomes. Goetghebeur and Lapp [8] and Vansteelandt and
Goetghebeur [29] applied this theory to address confounding issue of treatment
compliance in placebo-controlled trials and then extended to generalized SMM in
accommodating binary and count data. SMM give a precise but subtle meaning in
efficient estimation of causal treatment effect. This model can be seen as a robust
regression with unpaired data.

Although RCTs remain as a benchmark for clinical research and practice,
observational studies with self-selected treatment and semi-RCTs (trials that initiate
treatment dynamically when needed) have become more popular, especially in
studies in the behavioral and social sciences, epidemiological studies, and healthcare
research, because of the large amount of data generated by new web technologies
and social media. Even within the standard RCTs, we have found that single inter-
vention design is becoming less attractive in empirical research due to its simplicity
of treatment structural. More and more studies would prefer using complex design,
such as multi-level, multi-layered, or multi-modal, dynamic interventions to take
advantage of both static (e.g., genetic traits) and dynamic (e.g., treatment response)
information during the treatment.
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In this chapter, we focus on community-based multi-layered RCTs and introduce
a new class of structural functional response models (SFRM) to address complex
design with treatment compliance issues when evaluating intervention effects. This
SFRM can be treated as an extended version of SMM, but is more flexible to
establish the treatment—effect relationships under complex intervention design when
the treatment exposures are not completely controlled.

The proposed approach is motivated by a community-based multi-layered
RCT—the child resilience project (CRP), where post-treatment noncompliance
arises from both the primary (subject) and supportive (support group) layer. The
CRP is designed to promote behaviorally and emotionally healthy trajectories in
1st-3rd grade urban children who are showing aggressive-disruptive and school
socialization problems, a group at elevated risk for future mental health disorders,
substance abuse problems, reduced educational outcomes, and costly services. The
study involved 401 children randomized to the intervention and control groups.
In addition, the study interventionists also worked with parents to teach children
a set of skills to strengthen emotion self-regulation, adaptive social behavior, and
classroom conduct. Parent visits focus first on identifying parent goals for the child,
then on introducing and preparing parents to use activity sets that teach and reinforce
children’s use of emotion self-regulation skills and incorporating those skills into
their everyday relationship.

The initial intention-to-treat (ITT) analyses failed to show any treatment effect
for the primary behavior outcomes. Since ITT estimates are defined based on
treatment assignment at randomization, rather than what actually goes on during the
trial, such estimates completely ignore issues pertaining to violations of treatment
protocols such as treatment noncompliance. For example, had only a small fraction
of subjects in the intervention condition taken the treatment as prescribed, ITT
would unduly underestimate the effect of receiving the intervention. However,
child participation over 18 months was, as expected, high due to skill lessons
being delivered in the school setting; 97 % of children in the intervention condition
completed all 14 lessons in the first year, and 81 % completed all ten lessons in the
second year. Of the 39 non-completers, 33 were children relocating to non-study
schools. Non-participation was unrelated to any baseline outcome measure.

Parent participation, however, was significantly lower; as shown in Table 12.1,
with only 63.4 % of parents (128 of 203 enrolled) participating in one or more
intervention visits (Sessions > 0) and few completing the 15 scheduled sessions.
Under this condition of lower participation, ITT analyses are less informative about

Table 12.1 Child resilience complete dataset

Total sessions attended by parents of children in intervention

Sessions 0 1 2 3 4 5 6 7 8 9+ Total
Frequency 74 138 26 |11 9 |10 3 1 2 30 202
Percent 36.6 | 188 [129 | 54 | 45| 50| 15| 05| 1 15 100

Cumulative percent | 36.6 | 55.4 | 68.3 |73.8 |78.2 |83.2 |84.7 | 85.1 |86.1 | 100.0 | 100
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the true causal effects of parent involvement in the program, especially if the effect
of treatment on child outcomes is achieved in part through parental participation.

As we introduced, a number of approaches for addressing treatment noncompli-
ance in RCTs have been developed based on the counterfactual outcome framework.
Unfortunately, none of the available methods is able to address treatment noncom-
pliance in multi-layered intervention studies. The new approach we have developed
is to extend the principles in these approaches to this new setting with treatment
noncompliance from multiple layers of the intervention. In Sect.2, we briefly
review the counterfactual outcome based causal framework and introduce a class of
SFRM to address both pre- and post-treatment confounding. In Sect. 3, the SFRM is
extended to address treatment noncompliance in multi-layered interventions within
a longitudinal study setting. Simulation studies are presented in Sect. 4 to evaluate
the performance of the proposed SFRM. In Sect. 5, we apply the approach to address
the variability in parent participation in the two-layered CRP study. We conclude
with a discussion in Sect. 6.

2 Structural Functional Response Models for Causal
Inference

2.1 Counterfactual Outcomes

The concept of counterfactual outcome, the underpinning of the modern causal
inference paradigm, addresses the fundamental question of causal treatment effect
[25]. Under this framework, associated with every patient is a potential outcome
for each treatment condition, and the treatment effect is defined by the difference
between the outcomes in response to the respective treatments from the same
individual, thereby free of any confounding effect and providing a conceptual basis
for causal effect without relying on the notation of randomization.

For example, if the two potential outcomes for the ith child in the CRP Study are
vi1 and y;o for the intervention and control condition, the difference A; = y;; —y;o is
the treatment effect for the child. Since this difference is based on the outcomes from
the same child, it must be the result of the intervention. Unfortunately, since only the
outcome from the treatment condition actually assigned is observed, this difference
is unobservable. A large part of the causal inference literature centers on how to
estimate the average, or population-level, causal treatment effect, A = E (y;; — yio).

In RCTs, treatment assignment is independent of potential outcomes, i.e., yi Lz,
where z; denotes a binary indicator for treatment assignment and L denotes
stochastic independence. In this case, the average causal effect E (y;; — y;) can
be estimated by the difference between the two sample means from the intervention
and control group:

no
1

1 « _
1 = n_IZYill, y.() = Zyi()()v (121)

n
i=1 0 i=1

<l

A= Y _y-o,
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where n;, denotes the number of subjects assigned to the kth treatment group such
that n = n; + no and i, denotes the ith subject within the kth treatment group.
Note that y;, refers to the observed outcome for the i;th subject in the assigned
kth treatment, while y; denotes the potential outcome corresponding to the kth
treatment.

The above shows that standard statistical models such as linear regression and
mixed-effects models can be applied to RCTs to infer causal treatment effects.
Randomization is key to the transition from the unobserved individual level differ-
ence, y;; — Yio, to the estimable average treatment effect by the computable sample
means in (12.1). For non-randomized trials such as most epidemiological studies,
exposure to treatment or agent is non-random, in which case (12.1) generally does
not estimate the average causal effect A = E (y;; — yio). Thus, associations found
in observational studies generally do not imply causation.

2.2 Structural Functional Response Models

Since only one of the potential outcomes yj is observable, we cannot model the y;’s
directly using conventional regression models. One way around this is to model
the observed outcomes such as y;x as in the preceding section. Alternatively, we
can circumvent this difficulty by constructing an observable response based on the
unobserved y; and relate the response created to the mean of y;;, as follows:

E(zt( Z) Yik

- ) Ezi:ﬂ, Zi:0917 lfifna k:()sl»
ka(l—]T)l_k ) Kk ( )

(12.2)

where p; = E (y;) is the mean of potential outcome yy, since it is readily checked
that

k(1 =)' k(1 =)'+

k 1—k
i (1—z i 1 -
E( L ) yk) = E(Zf(l—zi)l k)’ik) = Mk-

Although y; are not both observed, the functional response, f (viy, Vi1,zi) =

ko oNl—k.
W, in (12.2) is still well defined. If 7 is known as in most RCTs, it is

unnecessary to model z; and (12.2) reduces to the first equation.

The model in (12.2) is not a conventional regression model such as the
generalized linear or non-linear models, since f (yio, Vi1, z;) is not a single linear
response such as yjy or z;. Rather, this model is a member of the following class of
functional response models (FRM):

E[f(yil,...,yiq,O) |Xil,...,Xiq] :h(Xil,...,Xiq;O), (i],...,iq) € C;,
(12.3)
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where f () is some function, # (-) is some smooth function (e.g., continuous second-
order derivatives), y; and x; denote some response and explanatory variables, Cj
denotes the set of (Z) combinations of ¢ distinct elements (il, e, iq) from the
integer set {1,...,n}, and @ a vector of parameters. The response f (yil, ooy Vigs 0)
in (12.3) for the general FRM can be quite a complex function of multiple outcomes
[e.g., Vik, z in (12.2)] from different subjects as well as unknown parameters 0 [e.g.,
7 in (12.2)]. By generalizing the response variable in this fashion, (12.3) provides
a general framework for modeling a broad set of problems involving higher-order
moments and between-subject attributes. The FRM has been applied to a range of
methodological issues involving multi-subject responses such as extensions of the
Mann-Whitney-Wilcoxon rank sum test to longitudinal and causal inference settings
[2, 31], social network analysis [4, 14, 32], gene expression analysis [11], reliability
coefficients [10, 12, 15-18, 27], and complex response functions such as models for
population mixtures [33] and structural equation models [9].

Because of its relationship to (12.3), the model in (12.2) will be referred to as the
structural FRM (SFRM):

ZiYi 1 —2z)yi
E i Qo)) = b 0), fy = 220 gy = L2200
4 1—m

hit (0) = 1, hip(0) = po, hi3z(0) =m,

fiz =z, (12.4)

where 0 = (w1, to, n)T denotes the collection of the parameters for this SFRM.
Before adding more complexity to this SFRM to address treatment noncompliance
within our context, let us first extend it to address selection bias in observational
studies.

2.2.1 Selection Bias by Pre-treatment Confounders

If subjects are not randomized with respect to the treatment condition (or exposure)
as in observational studies (e.g., survey, epidemiologic studies), y; L z; is generally
not true. In the presence of such selection bias, if w; is a vector of covariates
containing all sources of confounding such that the ignorability condition [26],
vit L z; | w;, holds, then we have

&1 =2)"Fyu B (1= 2)" \1_
£ (”(Wi)k (1—m (Wi))l_k) =E |:E (n(wi)k (=7 (w))* [wi ]| = i
(12.5)

where 7 (w;) = E (z; | w;). We may model z; using a generalized linear model such
as logistic regression:

E(z|w)=m(win), logit(mr(win)=n"w, 1<i<n (12.6)
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By combining (12.5) and (12.6), we have the following SFRM to provide valid
. T . .
inference about § = (ul, Mo, 1 ) under selection bias:

E (fit (yio. yi1. zi» Wi) | Fi) = hy (0)

_ (1 —2z)yio
1 —m(w;n)

— ZiYil
m(win)
hit (0) = 1, hp(0) = o,  hiz (Wi 0) = w (wisy),

m(win) =logit '(nTwy). Fi=F=1{0}, F={w},

fin Jio fa=z 1=Zi<n (127

where F; {0} (k =1,2) denotes the sigma field generated by the constant
0 and F; = w; denotes the sigma field generated by w;. Note that E(fi(yio,
vits 2o Wi |Fr) = E(fu(yio. yi1, 2i» Wi)), since Fy is contained in F3 for k = 1,2
(e.g., see Kowalski and Tu [12]).

2.2.2 Treatment Noncompliance as Post-treatment Confounders

In many RCTs, even well-planned and executed ones, treatment effect may be
significantly modified by levels of exposure of intervention (e.g., compliance or
dosage) due to treatment noncompliance. One popular approach for addressing this
primary post-treatment confounder is the structural mean model (SMM) [8, 23, 29].
Other competing approaches also address treatment noncompliance such as the
instrumental variable [1] and principal stratification methods [7]. However, only
SMM models treatment compliance on a continuous scale, which is more appro-
priate for session attendance within our context. We first frame this model within
the FRM framework and then discuss its extensions to accommodate complex
intervention design study, such as multi-layered treatments and missing data in
Sect. 3.

Consider a randomized medication vs. placebo study and let d;; denote a
continuous potential outcome of medication use, if the ith subject is assigned to
the medication condition. The SMM models the dose effect on treatment difference
as follows:

E(ya —yo | di,xi) = g(din, X)), (12.8)

where g (-) is known up to a set of parameters (i.e., only the functional form of
g (di, x;) is specified) and x; is the baseline covariates. However, the above model
cannot be fit directly using conventional statistical methods, since only one of the
potential outcomes (y;1,y;p) is observed. For RCTs, we have y;, yio L z; and the
above Eq. (12.8) follows that

E(ynldan,xi,zi=1) = g(dn. X)) + E(yio | din,Xi,2s = 0). (12.9)
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By conditioning on the assigned treatment z; = k, yi in (12.9) represents
the observed outcome from the kth treatment group (k = 0,1). Thus,
E (yio | di1,X;,z; = 0) cannot be modeled directly, since d;; is not observed for
the subjects assigned to the placebo condition.

If treatment compliance is tracked for the subjects in the placebo group, then
dj, the potential outcome of placebo use if the subject is assigned to the placebo
condition, is observed. Because of randomization and the fact that subjects cannot
distinguish between medication and placebo, djy has the same distribution as d;;.
Thus, we may replace d;; by dj in E (v | di1, z; = 0) to re-express (12.9) as

E(yn | din,xi,2i=1) = g (di,x;) + E (yio | dio, Xi,zi = 0) . (12.10)

Under this treatment compliance explainable condition, we will be able to model
the right side to obtain estimates of dose—response relationships g (d;1, x;) [5].

Although applicable to medication studies, the SMM in (12.10) in general does
not apply to psychosocial research. Many psychosocial intervention studies do offer
attention or information controls for both treatment arms such that subjects in the
control groups may also be tracked for their treatment noncompliance. However,
unlike medication studies, compliance observed in the control group d; generally
does not have the same distribution as d;;. For example, consider a HIV prevention
intervention study for teenage girls at high risk for HIV infection, in which the
intervention condition contains information on HIV infection, condom use, and
safe sex, while the control condition consists of nutritional and dietary information.
Subjects with high compliance in the intervention group are generally different
from their counterparts in the control condition; sexually active girls may form a
majority of those with high attendance in the intervention group, while such girls
might have low attendance rates, had they been assigned to the control condition.
Thus, when assessing the effect of prevention intervention using outcomes of HIV
risk behavior such as the number of unprotected vaginal sex over the past month,
it is not meaningful to compare compliant subgroups between the two treatment
conditions.

Thus for psychosocial research studies, we cannot simply replace d;; in E(yjo |
di1,x;,z; = 0) by a measure of treatment compliance such as session attendance
in the control group djp as in medication trials. In many studies, it is reasonable
to assume that there is sufficient information to predict d;;, i.e., given a set of
covariates X;, d;; is independent of y;. For example, if x; contains information
on sexuality and other information on a subject’s interest to attend sessions in the
intervention condition of the HIV study example above, y;p may no longer depend on
d; given x;. In this case, E (yio | di1,Xi,zi = 0) = E (yio | Xi, zi = 0). Thus, under
this ignorability condition, yjy L di1 | x; (12.9) becomes

E(yil | X;,di,z = 1) = g(dl'l,X,') + E(yiO | X, 2 = 0) (12.11)

Note that the SMM in this case is essentially the same as the Principal Stratification
Model, except that it requires neither discretization of d;; nor parametric distribution
models for y, since (12.11) only specifies the conditional mean of y; given d;, X;,
and z;.



12 Structural Functional Response Models for Complex Intervention Trials 225

By modeling E (y;o | X;,z; = 0) and casting (12.11) in the form of FRM, we
obtain the following SFRM for modeling treatment compliance measured by a
continuous dose variable d;; (for the intervention condition only):

ZiYil

. (1 —2z)yio
fir = . fo=
g

. fa=z, l1=<i=Zn, (12.12)
A — h(x (xidi 0) = o (dn xi 4 _(gT ,T \'
hi (% B) = h(xi.B).  hi2 (xi.din, 0) = g (@i xi.y) +h(xi.B), 0= (BT.yT.7)

where 4 (X, 8) (g (d,x,p)) is some function of x (d) parameterized by 8 (y). As
before, n is the sample size of the study, i.e., the sample size of the intervention plus
the control group. Although for RCTs it is not necessary to include 7 as a parameter,
the general SFRM in (12.12) allows us to extend this model to observational studies.
For example, for non-randomized studies, y; L z; in general is not true. If y; L z;
holds conditional on a set of covariates w; (possibly overlapping with x;), then by
modeling 7 as a function of w; as in (12.6), the following SFRM still provides
consistent estimates in the face of selection bias:

Zyi (I —2z)yi
ﬁl = 1 B fi2 = '0 5
m (Wisn) 1 —m (wism)

hiy = hiy (i, B) . hip (Xi,din, By ¥) = g (din, Xi, ¥) + hit (xi, B)

hiy =7 (wi;m), logit(m (win) =n'w, 6= (ﬂT,)’T, WT)

fa=z 1<i<n, (12.13)
T

We can model & (x;, ) and g (d;;,y) in various ways. For example, we may
simply model both as a linear function: 4 (x;, B) = x;rﬁ and g (di1, x;, ¥) = diy.
By specifying an appropriate form for g (d;;, X;, ¥), we may also extend (12.12)
to non-continuous dose variables such as categorical variables. Further, by appro-
priately specifying Ay (x;, B) and h; (x;,d;1, B), we can also generalize (12.12) to
non-continuous responses. For example, for a binary y;, we may specify h; (x;, B)
and h; (x;,d;1, B) as follows:

hy (x;, B) = logit™" (X,'Tﬂ)s hy (x;, din, B) = logit™" (g (dit, Xi, ¥) + hi1 (xi, B)) .

2.2.3 Inference for Structural Functional Response Models

T
We focus on inference about = (ﬁT, yT. nT) for the SFRM in (12.13), from
which (12.7) and (12.12) follow as a special case. Let

f(yiz) = (fu.fofa) o hi(8) = (ha,ho hiz)T, 1 <i<n,
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where f;; and hy, are defined in (12.13). Then, consistent estimates of @ are readily
obtained by using the generalized estimating equations (GEE) for FRM [9, 12, 33]:

! 3
U@)=) DV'Si=0, Si=fi—h, D= g (12.14)

i=1
1 1
Vi=AR(@)A7, A; = diag, (Var (fir | Fi)).

where R (a) denotes a choice of working correlation matrix.

The choice of R («) and associated properties for the GEE estimate of # have
been extensively discussed in the literature, which are stated for ease of reference
without justifications [6, 21]. In particular, the GEE estimate may not be consistent
in the presence of time-varying covariates under working correlation structures
other than the working independence model [21]. Thus, the working independence
model may be used in general to ensure valid inference. Although this simple
working correlation structure may incur some loss of efficiency for time-dependent
covariates [6] and thus other models such as the uniform compound symmetry
matrix may be used in some specific applications to improve power, it suffices
for the purpose of illustrating the proposed approach. We focus on the working
independence model in what follows unless otherwise stated.

3 Extension to Complex Studies
We first extend the SFRM in Sect. 2 to longitudinal data and then to multi-layered
intervention studies.

3.1 Longitudinal Data with Missing Values

Lety;, = ( y,-,l,y,-to)—r (x;s) denote the potential outcomes of y; (a vector of
explanatory variables) of interest with i (#) indexing the subject (assessment time)
for1 <i<nand1 <t < T. By applying (12.13) to each time point, we obtain a
longitudinal version of the SFRM:

f,=(€1....£1.2) . h= (... .hl.z) E(f|x)=h(x.0). (12.15)
Zi 11—z .

fi = (fitl,fizZ)T s firl = — Vil fit2 = —Yi0, I<i<n,
TT; 1—77.’,'

hy = (hin, hin) T hin =l %, B) . hip = & (din, ¥) + hints

mi=logit™ (nTw;), 6= (ﬂT, y'. 7]T>T
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Inference for the FRM above is based on the following GEE for FRM [9, 12, 33]:

. d
U@)=) DV'Si=0, Si=fi—h, D= g1 (12.16)

i=1
1 1
Vi=AR(a)A], A; = diag, (Var(f; | xi)),

where D; and V; are readily computed given (12.15) and R («) denotes a choice of
working correlation matrix.

Missing data is a common issue in longitudinal studies. The GEE in (12.16)
generally yields biased estimates under the missing at random (MAR) mecha-
nism [13, 24, 30]. The weighted generalized estimating equations (WGEE), a
common approach for addressing this issue, has been extended to the FRM [9, 33].
We adapt this approach to the current context, with an alternative implementation to
simplify the inference procedure. As in the literature, we assume monotone missing
data patterns (MMDP) to facilitate inference [9, 13, 24, 30, 33].

Let y;; denote the observed potential outcome, i.e., y; = yiu if the subject is
assigned the kth treatment. Let

T T
Yi— = (yil,---,yi(t—l)) , Xy = (X?;,---,X?(—,_l)) , 1 =<t=<m,

denoting the all individual responses (y;—) and explanatory variables (x;—) prior to
time ¢. Let

i { 1 if i th subject is observed at time ¢ ’ (12.17)

0 otherwise
)1 ifr=1
= E("it= L rig—1) = l,Xm,ynf) ift>1"~

Pit = logit71(§01 + E;Xit— + g;vl;)’it—),
, —1
Yy = (npit) rily, W (§) = diag, (W),
s=1

g = (sn8l8]) . E= (e 87)

We assume no missing data at baseline such that ;; = 1 (1 <i < n). Under
MAR and MMDP assumptions, p;, in (12.17) is well defined for 1 < ¢ < T. By
integrating the weights ¥; into the GEE in (12.16), we obtain the following WGEE
for inference about §:

U(6,8) =) DiV's; =0. (12.18)

i=1
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In the extant literature, an estimate E of &, obtained from a separate set of estimating
equations, is substituted into the WGEE and (12.18) is then solved for 6 to obtain
the WGEE estimate 8 of 6. Since @ is conditional upon /‘;'\ its asymptotic variance
is then adjusted to account for the sampling varlablhty of E If a is /n-consistent
and E is asymptotically normal, the WGEE estimate ® obtained from (12.17) is
consistent and asymptotically normal [9, 30, 33]. The procedure for adjusting the
sampling variability of E in the asymptotic variance is quite complex and thus we
discuss an alternative approach to estimate & and 6 simultaneously.
Let

T T
f (fl—ll—,...,f;;,Zi,riz,...,ViT) s hi:(h;lr,...,h;l;,ﬂi,piz,...,pﬂ“) s (1219)
T
0—(/3T T T) , l<i<n 1<t<T,

where f;, h;, and 7; are defined in (12.15), and r;; and p;; are defined in (12.17).
Consider the WGEE in (12.18), but with D; and ¥; redefined as follows to provide
estimates for both 6 and &:

9 Vim 0 0 |
D; = @hh Vi= 0 Vip O , Vi = AZR(()()A2 Vio =i (1 —my),
0 0 Vs
pio (1 —pin) -+ 0 Wy 00
Vizz = : , Y= 0 V¥ 0 |, (12.20)
- pir (1 = pit) 0 0 W3
p -1 rip = 0
Vi = diag(Wir) . Wi =it (l_[ Pis) L, ¥m=1 Y=
Ti(r—1)

where A; is defined in (12.17). Unlike (12.18), the WGEE in (12.19) makes joint
inference about # and &. Thus, no adjustment is necessary for the asymptotic
variance of the WGEE estimate of @ to account for the sampling variability of E
as in the standard approach above.

3.2 Multi-layered Intervention Study

We now extend the SFRM above to multi-layered interventions to address treatment
noncompliance from different intervention layers, such as the child and parent
layers of the CRP. For notational brevity, we focus on two-layered interventions,
since extensions to multi-layered interventions with more than two layers are
straightforward.
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Consider a two-layered intervention study and let u;; denote some (continuous)
treatment compliance measure for the second layer. By taking into account both
compliance measures d;; and u;;, we obtain from (12.11) the following dose—
response relationship :

E(ya | Xidi,un,zi =1) = g(di,un) + E(yio | Xi,zs =0). (12.21)

where g(d;, u;1) does not depend on x; for model simplicity. We assume that
the covariates x; sufficiently explain treatment compliance patterns for both the
primary and secondary layers of the multi-layered intervention, i.e., d;, yio L X;
and u;1, yio L x;. In some studies, treatment noncompliance may be limited to some
intervention layers, in which case x; is only required to explain the affected layers.
For example, in the CRP, noncompliance is a major issue only for the second parent
support layer and the ignorability condition only needs to be assumed for parent
participation.

By formulating (12.21) as an FRM as in the case of single-layered intervention
study, we obtain the following SFRM for modeling the effect of treatment noncom-
pliance on the outcome in a two-layered intervention study:

fu = Zi}’i.l e (1—21’)).’1'0,
7T (Wisn) 1 —m (wisn)

hip = hi (xi, B),  hip (X, diy, uin) = g (din, uin, y) + hy (%3, B)

fa=z, 1<izn, (12.22)

.
mi=nWw;n), E(zl|x.diup,0)=m, 0= (ﬁT»J’TvWT>

where 1 < i < n. The above has essentially the same form as the single-layered
SFRM, except that the treatment effect g (d;, u;1, y) is a function of compliance
from both the primary and secondary intervention layers. Note that (12.22) applies
to observational studies well, in which case w; is assumed to account for all sources
of selection bias.

We can model treatment effect g (d;,u;1, y) to reflect treatment compliance
in both layers. For example, we may specify an additive effect function,
g(di,ui1,y) = yidy + you;; or we may also include a between-layer treatment
compliance interaction d;; u;; . If the treatment effect is moderated by some covariate
X;, we may also include treatment moderating effect by setting g (di1, u;1,x;, ) =
x; (y1di1 + y2u;). If the moderating effect only occurs to one of the intervention
layers, we may model g (dj1, uir, x;, y) as y1xidi +yaui1 or yidii +yaxiu;1, depending
on whether the moderating effect operates at the primary or secondary layer of the
intervention.

As in the case of single-layered intervention study, the cross-sectional SFRM
in (12.22) is readily extended to longitudinal studies. For example, by replacing
the treatment effect function g, (d;, y) in (12.15) by g; (di1, ui1, y) in (12.22), the
SFRM in (12.15) can be applied to model the effect of treatment compliance for two-
layered observational studies. As well, by modeling the missing data under MAR
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using (12.17), we can make joint inference about # in (12.22) and & for the missing
data model using a WGEE akin to (12.18), but with D;, V;, ¥;, and S; in (12.20)
redefined based on (12.22).

In the above, we have assumed that both d;; and u;; are continuous. The models
are easily extended to non-continuous compliance variables, if either d;; or u;; or
both are non-continuous.

4 Simulation Studies

We carried out a series of simulation studies to assess the performance of the
proposed SFRM for multi-layered intervention studies for the most general case
under both pre-treatment and post-treatment confounders. Since our CRP is a two-
layered intervention study, we only considered this special case for the simulation
study. We assessed the performance of the models under both cross-sectional and
longitudinal data.

We considered continuous and binary outcomes y; for both cross-sectional and
longitudinal data settings, with a continuous treatment noncompliance variable for
both the primary and secondary layer. For space consideration, we only report
results for two sample sizes n = 50 and 200 for a continuous response in cross-
sectional data (Model I) and » = 100 and 400 for a binary response in longitudinal
data (Model II). The increase in sample size for the binary outcome is to achieve
more reliable estimates because of data sparseness in this binary response case,
especially in the presence of missing data in the longitudinal data setting. All
simulations were performed with a Monte Carlo (MC) sample of 1000. All analyses
were carried out using codes developed by the authors for implementing the models
considered using the R software platform [22].

For the cross-sectional data scenario, let y; (k = 0, 1) be a continuous outcome
in Model I and let d; (u;) denote a continuous treatment noncompliance variable for
the primary (secondary) intervention layer. Model I for the continuous yj is defined
as follows:

Model I—Continuous y; for Cross-sectional Data (12.23)
yio | xi,bi = pu(xi; B) + bi + e, pulxi; B) = Bo + Bixi,

. di, wi, xi, by = g1(di, u;, xi; ) + ju(xi; B) + b + e
o di, ui, x;, ci, b = gadi, ug, xisci5y) + u(xis B) + b +en

g1(di ui, xi3y) = yodi + yiu; + youid;,  g2(di, ui, xi, i y) = cigi(di, ui, x5 ),
7 = logit™ ! (no + mx;), diu; ~U(0,5), xi,ci~N(0,1),

i~ (F = Dy02/2, en e~ (xi — Dy0o?2/2,,

B =(Bo.B)T=(52), ¥=0r,y2)T =(05,05,0.4),

.
=G0 =0.-). of=0’=1 6=(8Ty ") .

S
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where z; is the indicator of treatment assignment, x; is a confounding variable (for
both pre- and post-treatment), ¢; is a treatment moderator, g; (g2) is a function
modeling the effect of treatment noncompliance without (with) the treatment
moderator, U (a,b) denotes a uniform over the interval between a and b, and
X; denotes a 2 distribution with p degrees of freedom. Since (yjo,y;;) share
the same random effect b;, they are not independent. Note that to demonstrate
robustness of the SFRM, both the random effect b; and model error ¢; followed
non-normal distributions. In (12.23), we considered two treatment effect functions,
g1(di, u;, x;; ) and g»(d;, u;, x;, ¢;; y), with the latter including a moderating effect
of the former by a treatment moderator c¢;. This moderator ¢; can be associated with
either the primary or secondary layer of the multi-layered intervention.

Shown in Table 12.2 are the estimates of @, along with their model-based (Mod.
S.E.) and empirical (Emp. S.E.) standard errors for Model 1. The model-based
standard errors were computed based on the estimated asymptotic variance, while
their empirical counterparts were calculated from the MC replicates. At the larger
sample size n = 200, all parameter estimates were quite close to the true values
of the respective parameters. The model-based standard errors also matched their
empirical counterparts quite well. Although the difference all increased between
the parameter estimates and their true values and between the model-based and
empirical standard errors for the smaller sample size n = 50, the SFRM still
performed quite well.

For the longitudinal data, as noted earlier, we only report results for a binary
response. We extended both the mean for the control group, u, (x;; B), and the
treatment effect function, g; (d;, u;, x;, ¢;; ), in the cross-sectional case to include
a temporal trend. In addition, to reflect the treatment noncompliance patterns in
the CRP study, where treatment noncompliance only occurred in the supportive
parent layer, we only considered treatment noncompliance in the second layer. As
in the cross-sectional data setting, we also included a treatment moderator c;in
&: (d;, u;, x;, ¢;; y). For notational brevity, we only considered one treatment effect
function and two assessments, with = 1 (2) denoting the baseline (follow-up). We
created about 22 % missing data at the follow-up.

We discussed two approaches for longitudinal data analysis. The first employs the
conventional WGEE that conditions on the estimates of the missing data model and
adjusts the variance estimates of parameter estimates to account for the sampling
variability in the estimates of the missing data model. Since the adjustment part is
quite complex, we also discussed an alternative that utilized the flexibility of FRM
to model both missing data and treatment effect simultaneously. We used this latter
approach in the simulation study.
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For the binary response y;, the SFRM is given by

Model I[I—Binary y;; for Longitudinal Data Setting (12.24)
yio | xi = logit™" (u,(xi: B)) . pe(xi: B) = Bo + Bit + Boxi + Paxit,
i | disui, xi, ¢; = logit™! (gu(dy, wi, xi, iz ¥)) + pa(xis B)}
mi = logit™ (o + mx;) . g(di.ui. xi. civy) = youit + yaciuit,
pi = logit™" (& + €1)%) .  diui ~ U(0,4), x.c;~N(0.1)
B = (Bo.B1. B2, B3)T = (=1, 1,1,=1), ¥y = (o, y)T=(1,1),

.
1= =0-D. §=G.&T=01. 0=(8Tr"n"gT) .

where p; = E(r;; = 1 | y;) is the probability of missing data at the follow-
up t = 2 for both the treatment and control groups. For the control group, we
included a time as well as a time by covariate interaction. As indicated earlier,
the treatment effect function g, (d;, u;, x;, ¢;; ) also included a treatment moderator
c;. Since the probability of missing response at post-treatment p; depends on the
baseline y;;, the missing data mechanism follows the MAR. Under the specified &,
there was about 22 % missing data. The correlated y;; were created by the copula
methods [20, 34]. The correlation between the two potential outcomes with each
assessment time as well as between two assessments within the same potential
outcome in our simulation study was set at about 0.5, uncontrolled for any of the
explanatory variables.

Shown in Table 12.3 are the estimates of @, along with their model-based (Mod.
S.E.) and empirical standard (Emp. S.E.) errors for Model II. In comparison with the
cross-sectional data case, Table 12.3 contains estimates for the additional parameters

Table 12.3 Parameter estimates and standard errors for Model II with a longitudinal binary
response

Parameter estimates and standard errors for Model II

n =100 n = 400
Parameter Est. Mod. S.E. Emp. S.E. Est. Mod. S.E. Emp. S.E.
yo =1 0.873 0.497 0.508 1.047 0.290 0.321
y1 =1 0.964 0.512 0.586 1.070 0.284 0.317
Bo = —1 —1.067 0.468 0.491 —1.022 0.216 0.213
B =1 1.128 0.461 0.525 1.025 0.205 0.217
Br=1 1.089 0.589 0.605 1.016 0.264 0.279
By =—1 —1.182 0.583 0.690 —1.044 0.261 0.275
no =0 0.021 0.209 0.224 —0.001 0.108 0.109
nm=-—1 —1.058 0.291 0.303 —1.008 0.144 0.148
& =1 1.022 0.273 0.292 1.010 0.131 0.135

& =1 1.088 0.689 0.702 1.033 0.325 0.346
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& = (&, &))T for the missing data model. As in the case of cross-sectional data, both
the parameter estimates and model-based standard errors were quite good when
compared to their true values or empirical counterparts.

5 Child Resilience Project

The Child Resilience Project (CRP) is a randomized two-layered intervention study
with significant treatment noncompliance by the parent, whose participation forms
the second supportive layer of the intervention. The study’s enrollment began
in Fall 2006, with data collection for the final cohort completed by June 2011.
There were 401 students from first up to third grade from Rochester City School
District elementary schools. The study examines how children with a higher risk of
developing behavioral problems in the intervention condition improve as compared
to the control condition over a 30-month period. Each child was assessed at baseline,
and 6, 18, and 30 months post baseline.

Since treatment compliance was quite good for the children in the study,
we only considered variability in the parent participation. In order to apply the
proposed SFRM to analyze the data in this study, we first examined the baseline
covariates to see if any of these variables effectively predicted the patterns of
treatment noncompliance. We treated the second-layer noncompliance measure, u;,
the number of session attendance by the parent, as a continuous variable and applied
linear regression.

Shown in Table 12.4 are the estimated coefficients, standard errors, and
p-values of the variables that significantly predicted the number of session
attendance u; from the linear regression model. The variable School Number
represents the different schools which the children attended. The variable PNC
stands for the Perceived Need for Care scale, assessing frequency over the past
six months that parent viewed her child as needing help for behavior or emotional
problems, including from communication with others about child [19]. The DomEX

Table 12.4 Estimates,
standard errors, and p-values
for significant predictors of

Significant predictors for parent participation
Explanatory variable | Estimate | Standard error | p-value

parent participation for the PNC 0.9191 | 0.2698 0.0008
Rochester Resilience Project Parent age 0.0882 | 0.0293 0.0030
from generalized linear DomEX baseline 0.9127 | 0.0373 0.0154
models School number <.0001
School 19 —4.1065 |0.8446 <.0001
School 22 —3.3860 |0.9122 0.0003
School 30 —3.1342 | 0.9873 0.0018
School 45 —4.3626 | 0.8440 <.0001

School 50 0.0000
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Baseline denotes the baseline value of the subscale of the Dominic Interactive self-
report, assessing symptoms of three externalizing (oppositional defiant, conduct
problems, and ADHD) problems [28]. The results from the regression show that
session participation was significantly different across the different schools and
children with different PNC and DomEX baseline values. In addition, parent age
also significantly predicted the session attendance.

For our illustrations of the model, we focused on two primary behavior outcomes
of the study, the Teacher ratings of aggressive behavior (AthAcc) and Parent
rating of internalizing behavior problem (PIntD). For both outcomes, higher values
indicate fewer problems. For each of these behavior outcomes y;, let y;; and y;yo
denote the potential outcomes of y;, at baseline (+ = 1) and each of the three follow-
ups (2 <t < 4). We modeled the causal treatment effect as a function of treatment
compliance from the parent layer using an SFRM as follows:

l_Zi Zi
E (1 _]Tyi") | ui) = Mit, E(;Yitl | "‘i) =gy + i, E(z)=mn, (12.25)

Wi = Bo + Pit + xu Ba + Baxiat + Paxip + Bsxiz + Pexis +
+B7xis + Bsxis + Poxiz + Bioxis,
g = yuit, 1=<t=<4,

where z; is the indicator variable of treatment assignment with z; = 1 (0) for
intervention (control), x;; denotes the age of the child at baseline, x;; — x;5 denote the
four binary indicators of School 19, 22, 30, 45, and x;¢, X;7, and x;3 denote the PNC,
DomEXT Baseline, and Parent Age variables, respectively. In addition, we included
Age and Age by time interaction, since our theory and preliminary analyses show
that these behavioral outcomes have different trajectories for children of different
ages.

Prior to fitting the SFRM, we examined the missing data mechanism using
logistic regression to determine whether missing data at each of the follow-up
times, 6, 18, and 30 months post-baseline, depended on the observed outcomes
at prior assessment times. Results indicated that missing data was not associated
with the observed data for any of the two behavior outcomes considered. Thus, we
assumed the dropouts for these two behavior outcomes in this CRP study followed
the Missing Complete at Random (MCAR) mechanism. The MCAR mechanism
was also consistent with the excellent treatment compliance observed for the study
subjects (children), since unlike parent participation both the intervention and
assessment were performed during the regular school time.

Shown in Table 12.5 are the estimates (Est.), standard errors (S.E.), and p-values
(p-value) for the parameter y in the treatment effect function g;, in (12.25) for the
two behavior outcomes analyzed. Within the context of the study, this parameter y
measures the rate of change of the behavior outcome per month for each additional
session attended by the parent. The results show that for both behavior outcomes
y was quite significant, with the positive estimate indicating that the intervention
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Table 12.5 Child resilience complete dataset

Estimation results of treatment time effect (y)

Causal effect ITT effect

Est. S.E. p-value | Est. S.E. p-value
AthAcc |0.0167 |0.0014 | <0.0001 |0.0053 | 0.0069 |0.2235
PIntD 0.1640 |0.0163 | <0.0001 |0.0476 |0.0663 | 0.2365

improved the child’s behaviors and reduced the risk for future mental disorder and
substance abuse. With the SFRM in (12.25), causal treatment effect is given by yu;.
For example, if the parent of the child attended all the planned 15 sessions, then
u; = 15 and the causal effect is B4u; = 0.25 per month time in the scale of the
AthAcc outcome. Thus, in 18 months post-baseline, for instance, the intervention
will on average increase the child AthAcc outcome by 4.32 points.

For comparison purposes, we also performed the intent-to-treat (ITT) analysis
for the two behavior outcomes by setting u; = 1 in g;; of the SFRM in (12.25). The
estimated y, standard errors (S.E.), and p-values (p-value) are shown in Table 12.5
under the column “ITT Effect.” As seen, y was not significant for either outcome.
Thus, parent support played a significant role in improving the two child behavior
outcomes in this two-layered intervention study.

6 Discussion

We developed an approach to address treatment noncompliance in multi-layered
intervention studies. This approach extends the structural mean model (SMM) to
multi-layered intervention and longitudinal data settings. We selected the SMM to
develop our approach because of the need to model treatment noncompliance on
a continuous scale. Other competing approaches such as the Principal Stratifica-
tion method characterize variability in treatment noncompliance using categorical
outcomes. However, within the context of multi-layered intervention study, such
methods yield a large number of noncompliance categories, limiting their appli-
cations. For example, if a four-level categorical outcome is used to characterize
treatment noncompliance for each layer of a two-layered intervention, we will
need a 16-level categorical outcome to understand treatment noncompliance when
considering interactions of noncompliance patterns between the two intervention
layers. The larger number of levels of a categorical outcome may cause problems for
fitting models, if there are a limited number of subjects in one or more strata (defined
by the levels of the categorical outcome). With the freedom to choose a continuous
or categorical noncompliance measure as in the SMM and proposed SFRM, we can
consider between-layer interactions in a more parsimonious and reliable fashion.
We also adopted the distribution-free framework of SMM for inference for our
proposed model. Using the framework of FRM, we are able to provide robust infer-
ence about model parameters like the SMM and accommodate noncompliance from
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multiple intervention layers as well as missing data under MAR. Our simulation
studies show that the proposed approach perform quite well even for a sample size as
small as 50 (for combined intervention and control groups). As well, applications of
the proposed model to the Rochester Resilience Project demonstrate the importance
to consider treatment noncompliance from the supportive parent layer in this two-
layered intervention study.
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Chapter 13
Identification of Causal Mediation Models
with an Unobserved Pre-treatment Confounder

Ping He, Zhenguo Wu, Xiaohua Douglas Zhang, and Zhi Geng

Abstract In this paper, we discuss identifiability of mediation, direct and indirect
effects of treatment on outcome. The mediation effects are represented by a causal
mediation model which includes an unobserved confounder (i.e., a common cause
of the mediator and the outcome variable), and the direct and indirect effects are
represented by the mediation effects. Without requiring the sequential ignorability
assumption or the exclusion restriction assumption (i.e., the absence of direct effect
of treatment on outcome), we require that only treatment is randomized and that the
degree of equation nonlinearity for the treatment effect on the mediator is higher
than that for the outcome. If the requirement of nonlinearity degree is not satisfied,
we may use a covariate as an instrumental variable to improve the identifiability.
In this paper, we focus on the identifiability of parameters, although, to illustrate
our identifiability results, we describe estimation approaches. The simulations show
good estimation performance by our approach compared to the standard mediation
approach.

1 Introduction

A main goal of mediation analysis is to investigate how an independent variable (or
a treatment variable) changes an intermediate variable (or a mediator) and how this
change in the mediator in turn affects a dependent variable (or an outcome variable).
In causal mediation models, the indirect and direct effects are the effects of treatment
on the outcome through and not through the mediator, respectively [2, 11, 12]. Baron
and Kenny [1] discussed the concept of mediator and its distinction to moderator
and proposed methods for examining mediator effects. MacKinnon et al. [9]
reviewed three main approaches to statistical mediation analysis: (a) causal steps,
(b) difference in coefficients, and (c) product of coefficients, and Li et al. [8]
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presented an approach for a binary mediator. All of these approaches use three
linear models which include three variables: a treatment, a mediator, and an
outcome variable, but do not include an unobserved confounder which affects
both the mediator and the outcome variables (i.e., a strong form of sequential
ignorability). Jo [6] compared two different mediation analysis approaches: the
structural equation modeling approach and the principal stratification model. The
former assumes that there is no confounder which affects both the mediator and
the dependent variable, that is, the ignorability assumption of the mediator status.
The latter assumes that the effect of treatment on the outcome is completely
mediated through the mediator, that is, no direct effect of treatment on the outcome,
also called the exclusion restriction assumption. VanderWeele [15] discussed the
estimation of direct and indirect effects under the assumptions of no unobserved
variable which confounds the treatment—outcome relationship or the mediator—
outcome relationship. Imai et al. [5] discussed the identification of causal mediation
effects under the sequential ignorability assumption, which is different from the
no observed confounder assumption. Sobel [13] discussed the identification and
estimation of causal effects using an instrumental variable (IV) which satisfies
the exclusion restriction assumption. However the exclusion restriction assumption
means no direct treatment effect on the outcome variable which requires that all
treatment effects on the outcome variable are blocked by the mediator, and it
may be too strong in many real applications. For these approaches, the required
assumptions are untestable from observed data and may be very restrictive or
impractical in observational studies and even in experimental studies where only
the treatment assignments can be manipulated. Herting [4] and Kaufman et al. [7]
pointed out, respectively, that the models with and without direct effect of treatment
on the outcome are statistically indistinguishable and that the parameters are not
identifiable when there exists an unobserved confounder between the mediator
and the outcome. For models with unobserved confounders, Ten Have et al. [14]
presented an approach for estimating direct and indirect effects via G-estimation
equations which requires an additional covariate satisfying some conditions.

In this paper, we describe models of the outcome and the mediator which include
an unobserved pre-treatment confounder (i.e., a common cause of the mediator and
the outcome). For an experimental study of randomized treatment assignment or an
observational study where the assignment of treatment is ignorable conditionally
on observed covariates, we propose an approach for identifying parameters in the
models. Without requiring the sequential ignorability assumption or the exclusion
restriction assumption, we require that the degree of equation nonlinearity for the
treatment on the mediator is higher than that for the treatment on the outcome.
For example, the mediator model is nonlinear with respect to treatment, and the
outcome model is linear with respect to treatment. Especially when the mediator
is a binary variable and it has a logistic regression model, then the nonlinearity
condition may be generally satisfied. As an example, let an binary variable indicate
whether an irregular heartbeat is corrected as the intermediator between a treatment
variable and the outcome of survival time. The nonlinear requirement can be
considered as a parametric and functional assumption on the model of treatment
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effect on mediator. Unlike the untestability of sequential ignorability assumption,
the nonlinearity assumption on the model of treatment effect on mediator is testable
by using the observed data. This testability is one advantage of our approach.
If the nonlinearity is not satisfied, we may try to use a covariate to improve
the identifiability. The covariate Z requires a model assumption like that for an
instrumental variable which can be used to remove the confounding bias generated
by an unobserved confounder. In our models, the outcome variable is continuous,
the treatment may be continuous or ordinal or discrete, and the mediator may be
discrete or continuous. In this paper, we first discuss the identifiability of parameters
in mediation models, and then to illustrate our identifiability results, we describe
an instrumental variable estimation approach via the efficient instrument variable
proposed by Newey and McFadden [10] and the generalized method of moments
(GMM) estimators developed by Hansen [3].

Section 2 gives the notation and definitions of mediation models and direct and
indirect effects. The conditions for identifiability of parameters in the models are
presented in Sect. 3. An estimation approach of parameters is presented in Sect. 4. In
Sect. 5, we compare our approach with the ordinary least squares (OLS) regression
via simulations. In Sect. 6, we extend the results to more general models, such as
the moderated-mediation model which has an interaction of treatment and mediator
on the outcome. Finally we give discussions in Sect. 7. Most proofs of theoretical
results are presented in the supplementary material.

2 Notation and Definitions

Let Y be an outcome, X be a treatment, and M be a mediator. Two main equations
of a standard mediation model are

Y = by + bi1M + b, X + ¢y,
M= yX, ey),

where v (-) is an arbitrary function (usually a linear function), and ey and &), are
two mutually independent random errors with means 0 and variances o and o7,
respectively [8, 9]. In the linear structural model, the model for M is

M =ay+ aX + ey.

The mediation effect of X on Y is interpreted as a;b; [9]. Since the standard
mediation model requires that there is not any unobserved confounders which
affect both M and Y, the parameters a;, b1, b, can be identified and consistently
estimated by two linear regressions. Unfortunately, the no unobserved confounder
assumption generally does not hold in practical studies. To identify the parameters
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of the standard mediation model, we can design a two-step randomized experiment
to obtain two data sets:

e Step I, only treatment X is randomized and we obtain one data set of X and M.
Then the parameters ay and a; of the model for M can be identified and estimated
by this data set;

* Step II, both treatment X and mediator M are randomized and we obtain the other
data set of X, M, and Y. Then the parameters by, by, and b, in the model for Y
can be identified and estimated by this data set.

Thus the mediation effect a;b; can be identified by the two data sets. Notice
that the randomization of both the treatment and the mediator is not sufficient
for the sequential ignorability assumption. However, such a two-step randomized
experiment may not be practical for many applications. Especially the mediator
(e.g., the blood pressure as a mediator in a clinical trial) is almost impossible to
be randomized since it cannot be manipulated or controlled directly.

Below we consider how to identify and estimate the mediation effect without the
requirement of no unobserved confounder assumption. Allowing the existence of an
unobserved confounder between mediator and outcome, we introduce the following
causal model. Let U be an unobserved pre-treatment confounder which is a common
cause of ¥ and M, and U may be a continuous or discrete variable or a variable
vector. Hereafter we assume that treatment X is randomized or that the assignment
of X is ignorable conditionally on observed covariates and we omit these covariates
for simplicity. Then X is independent of the confounder U, and the relationships
among X, U, M, and Y can be depicted as a causal diagram in Fig. 13.1.

Below we use the potential outcome framework to describe the causal model of
X,M,U,Y.Let M, and Y, be the values of M and Y that would have been observed
if X and M were set to x and m, respectively [15]. Consider the following linear
models for M, and Y,,, with the unobserved pre-treatment confounder U

Yon = bo + bim + box + ¢ (U, ey), (13.1)
Mx = W(& U’ 8M)5 (132)
Fig. 13.1 A causal diagram U

with a randomized X and an
unobserved confounder U
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where ¥ (-) and ¢(-) are arbitrary functions, and ey and &y, with means O are
independent of (X, M, U) and (X, U), respectively.

With the definitions and notation of Pearl [11], the average total effect 7 (x, x’) of
treatment X on outcome Y, the average controlled direct effect nc(x, x’; m) of X on
Y when controlling M, and the average natural direct effect ny(x, x’) of X on Y are
defined for treatment levels x versus x’, respectively, as follows:

t(x,x) = E(Y, —Yy) = b [E(M,) — EMM)] + bao(x — %), (13.3)
nC(xJC/;m) = E(Yxm - x’m) = b2(x —)C,), (134)
T’N()C,)C/) = E(YX,MX/ - Yx’) = bZ(x —)C/), (135)

where M, in (13.3) denotes the value of M if X were set to x’. The average
controlled direct effect nc(x, x'; m) means the average effect of x versus x’ on Y
when the mediator M is fixed at a value m; The average natural direct effect 7y (x, x')
means the average effect of x versus x’ on Y when the mediator M is fixed at
the value of M,y which would have been set naturally under X = x' [11, 16].
For model (13.1), we have that the controlled direct effect n¢ does not depend
on m and that the controlled direct effect equals the natural direct effect, that is,
ne(x, x';m) = ny(x, x'), hereafter denoted as n(x, x).
Pearl [11] defines the average natural indirect effect as

v(x,x') = EXay, — Yo, ).

It represents the average difference between the potential outcome Y, = Yy, that
would result under treatment status x, and the potential outcome Yy, that would
occur if the treatment status is the same and yet the mediator takes a value M, that
would result under the other treatment status x’, called the average causal mediation
effect [5].

Since model (13.1) is a linear model, the average natural indirect effect v(z, ') of
T on Y is equal to the difference of the average total effect and the average direct
effect

v(x,x) = t(x,x") = n(x, x") = bi[E(M,) — E(M,)], (13.6)

which is b; times the average causal effect of X on M. Thus the identifiability
of average total, direct, and indirect effects is equivalent to the identifiability of
parameters by and b, while E(M,) = E(M|X = x) is identifiable for a randomized
treatment experiment.

Note that if both treatment X and mediator M are randomized, then b, b, and
the average direct effect of X on Y can be identified, but the effect of treatment
on mediator is not identifiable. Similar to the two-step randomized experiment,
to identify the average indirect effect, we need identify the effect of treatment X
on mediator M using an additional data set from an experiment where we only
randomize the treatment X and observe the mediator M.
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For observed variables X, M, and Y, we have M = My and Y = Yxy. Thus the
models (13.1) and (13.2) imply that the models for the observed variables X, M, and
Y should be

Y=b0+blM+b2X+¢(U»8Y)v (137)
M= (X, U ey). (13.8)

Parameters b, and b, are called mediation effects in Jo [6]. For (13.7), the OLS
estimates of parameters by, b, and b, are inconsistent because U is correlated to M.
It will be shown in Sect. 3 that these parameters in (13.7) are not identifiable if the
function v (-) in (13.8) is linear with respect to X, as assumed in the traditional IV
method.

3 Identifiability of Parameters in Mediation Models

In this paper, we assume that treatment X is randomly assigned or that the
assignment of treatment X is ignorable conditionally on an observed covariate
and we omit the observed covariate for simplicity. But we do not assume that the
assignment of mediator M is ignorable or sequentially ignorable. According to the
equations (13.3), (13.4), (13.5), and (13.6), the average direct and indirect effects
are identifiable if the parameters in model (13.7) are identifiable.

In this section, we first present a general condition for identifiability of these
parameters, then we discuss two special cases where the mediator M is discrete
or continuous, and finally we discuss an approach to improve identifiability via a
covariate when the identifiability condition is not satisfied.

3.1 General Conditions for Identifiability

To avoid the mathematical complexity, we first consider model (13.7) and then
extend the result to more general models, such as moderated-mediation and
nonlinear direct effect models in Sect. 6, without any essential difficulty. Suppose
that treatment X is a continuous variable or an ordinal discrete variable. Without loss
of generality, assume that E[¢ (U, ey)] = 0. By randomization of X, we have that
X is independent of (U, gy) and then E[¢ (U, ey)|X = x] = 0. Hereafter let E(-|x)
denote E(:|X = x) for simplicity. Thus from model (13.7), we have the following
equation

E(Y|x) = by + biE(M|x) + box + E[¢p(U, ey)|x] = by + b1 E(M|x) + byx. (13.9)
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Comparing different treatment levels x1, .. ., xx, we obtain

[ ]-

EM|x;) — EM|xz)  x1 — X3 E(Y|x1) — E(Y|x2)

E(YIX[(_l) —_ E(leK)
(13.10)

EM|xg—1) — E(M|xg) xg—1 — xg

Let A denote the (K — 1) x 2 matrix on the left-hand side. According to this equation,
parameters b, and b, are identifiable if there exist K(K > 3) different levels of
treatment X such that the matrix A has full column rank.

If M has a linear model M = ay + a1 X + a,U + &) as usually assumed in
simultaneous equation models or X is a binary treatment, then the matrix A is not
full rank, and thus parameters b, and b, are not identifiable, although ay and a; can
be identified via an ordinary method by treating axU + &) as an error term since X
and (U, &y) are independent. Alternatively applying the IV method to model (13.7),
we obtain

Cov(X,Y) = b1Cov(X, M) + byVar(X) = (bya; + by)Var(X).

Parameters b; and b, are also not identifiable since there are two parameters but
only one equation.

Below we discuss the necessary and sufficient condition for identifiability of
parameters in the model (13.7), and we show that parameters are identifiable if and
only if the conditional expectation E(M|X) of M given X is not linear with respect
to X. Trivially, E(M|X) is linear with respect to X when X is binary.

Theorem 1. Assume that treatment X is randomly assigned. Parameters by and b,
in model (13.7) are identifiable if and only if the conditional expectation of M given
X is not linear with respect to X, that is, |p(E(M|X), X)| < 1, where p(E(M|X), X)
is the correlation coefficient of E(M|X) and X.

The proof of Theorem 1 is given in Appendix 1. From Theorem 1, we
immediately have the following corollary for a continuous or discrete X.

Corollary 1. Assume that treatment X is randomly assigned. Parameters by and b,
in model (13.7) are identifiable if

1. for a continuous X, 3*E(M|x)/0x*|,=x, # O for some xq in the support of the
distribution of X, or
2. for a discrete X,

EM|x;) — EM|x;) ” EM|x;) — E(M|xi)
Xi — Xj Xj — Xk

for some x; < x; < xy.
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In the following two subsections, we discuss the identifiability via models of the
mediator M for the cases of a discrete or continuous M separately.

3.2 The Case of a Discrete Mediator M

For a discrete variable M with a logistic model, we discuss the identifiability of
parameters b and b, in model (13.7). When M is a nominal variable with L (> 2)
categories, it can be represented by a vector of L — 1 dummy variables, and a logistic
model is used for each dummy variable. When M is an ordinal variable, a cumulative
logistic model is often used. For the identifiability problem, we can treat the discrete
mediator M as a binary variable without loss of generality. Consider the logistic
model

PM = 1|x,u)
log
1—PM = 1|x,u)

= oy + a1x + oou.

For a continuous X, we have

PPM =1|x)

=3 of / P(M = 1|x,u)P(M = O|x, u)[1 — 2P(M = 1|x, u)]dP(u).

According to Corollary 1, a sufficient condition for identifiability of parameters b,
and b is (1) «; # 0, and (2) there is some xy such that P(M = 1|xp,u) € (0,0.5)
for all u or P(M = 1|xp,u) € (0.5,1) for all u. For the condition (2), we generally
have the probability P(M = 1|xg,u) < 0.5 for all u when M = 1 denotes a rare
event (say a kind of rare disease). When U is a normal variable, we can show that the
nonlinear condition in Theorem 1 generally holds, that is, 3>P(M = 1|x)/dx*> # 0
for all x except a special value x = —[og + E(U)]/1. When X is an ordinal discrete
variable, the differential with respect to X is replaced by the difference between two
adjacent levels of X and we can obtain a similar result.

3.3 The Case of a Continuous Mediator M

As an example of a nonlinear model of M with respect to X, we consider the
following quadratic model:

M = a\X + a;X> + (U, ey). (13.11)

Then parameters a; and a, can be estimated without bias via an ordinary method
by treating ¥ (U, &) as an error term since X is independent of (U, &y). Since
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0°E(M|x)/0x*> = as, according to Corollary 1, parameters b; and b, in model (13.7)
are identifiable if and only if a, # 0.

3.4 The Case of a Linear Model of M with Respect to X

When the nonlinearity of the expectation of M conditional on X required in
Theorem 1 does not hold, that is, E(M|X) = a1X + ay, the parameters b; and
b, in model (13.7) are unidentifiable, as shown in Sect. 3.1. In this case, we can try
to find a covariate Z to improve the identifiability.

Introducing a pre-treatment covariate Z, model (13.7) can be rewritten as

Y = by + biM + boX + ¢(U. Z, &y). (13.12)

First we use a simple example to show how covariate Z can be used to identify
the parameters in (13.12). Suppose that the model of M has an interaction of X
and Z:

M = ay + aiX + a:ZX + $(U, Z, ex). (13.13)

Marginalizing the above model by ignoring Z, we have from the randomization
assumption of X

EM|X) = ap + [a1 + a:E(Z)]X,

and then the nonlinearity condition required for identifiability in Theorem 1 does
not hold. Thus the parameters in (13.12) cannot be identified. Below we show how
to use the covariate Z for identifying the parameters. If treatment X is randomly
assigned conditionally on Z or not conditionally on Z, then we have X1 (U, ¢y)|Z,
and we obtain from (13.12)

EM|x1,z1) — E(M|x},z1) x1 —x]
EM|x2,22) — E(M|x}, 22) X2 —X) |:b1:|

E(M|xk, zx) — E(S|xk. zx) xx — Xy

E(Y|x1,21) — E(Y|x},21)

E(Y|x2,22) — E(Y|x), 22)
= . : (13.14)

E(Y|xg,zk) — E(Y|xk, zk)
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where K > 2, x; # x| for different values of treatment X and z; # z; for i # j. The
matrix on the left-hand side of the equation has full column rank since z; # z; for
i # jand E(M|x;,z)) — E(M|x},z) = a»z;(x; — x;) from model (13.13). Thus the
parameters b; and b, in (13.12) is identifiable if a, # 0 in (13.13).

Next we present the following general result to improve identifiability via a
covariate Z when M has a linear model of treatment X.

Theorem 2. Assume that X1 (U,ey)|Z. Then parameters by and b, in
model (13.12) are identifiable if and only if EMM|X,Z) # cX + u(Z), where ¢
is a constant and ((Z) is an arbitrary function.

The proof of Theorem 2 is given in Appendix 2. The assumption in Theorem 2
that X1l (U, ey)|Z is looser than the completely randomization assumption of X
in Theorem 1. The necessary and sufficient condition for identifiability given in
Theorem 2 implies that the conditional expectation of M given X and Z is nonlinear
with respect to X. For a binary treatment X, we obtain the following special result
from Theorem 2.

Corollary 2. Assume that X1L.(U, ey)|Z. For a binary treatment X, the parameters
in model (13.12) are identifiable if and only if EMM|X = 1,z7) — E(M|X = 0,2)
depends on z.

The necessary and sufficient conditions in Theorem 2 and Corollary 2 mean
that there is an interaction between X and Z on M, which implies but is not
equivalent to E(M|X = 1,z) # E(M|X = 0,z). The condition is similar to the
requirement of a valid estimation in [14], although their estimation equation requires
the randomization assumption of X while our approach can relax the randomization
assumption to X [ (U, ey)|Z.

4 Estimation of Parameters

The identifiability discussed in the previous section requires that the distribution
of observed variables has sufficient information on parameters. After confirming
the identifiability, we can use various estimation approaches to estimate these
parameters, such as the moment estimation, and the maximum likelihood estimation
if we can assume the parametric models of ¢ (U, ¢ey) and ¥ (X, U, ey) and the
distributions of random errors ey and e),. In this section, we try to find an efficient
estimation of parameters in the semi-parametric model (13.7).

In our estimation approach, the pivotal condition is independency between
randomized treatment X and (U, &y, €y), which implies the following equation:

E[(Y — by — biM — brX)E(X)] = E[¢p (U, ey)|E[f(X)] = 0, (13.15)
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where f(-) = (fi(-), -+ ,fx(-))’ is an arbitrary vector function and 0 is a K x 1 zero
vector.

In the following two subsections, we first present a simple but efficient estimator
for the case of a three-value treatment X, and then we describe a GMM estimator
with the efficient instrument (a function of X) for the case of a general treatment X
proposed by Newey and McFadden [10], which has the minimum variance among
all estimators satisfying the Eq. (13.15).

4.1 The Case of a Three-Value Treatment

For this case of a three-value treatment X, we choose the function f*(X) =
(X =1),8(X =2),6(X = 3)). From Eq. (13.15), we have

E[(Y — by — byM — b,X)f*(X)] = 0. (13.16)
Define ,3 = (b(), b], bz)/,
CE[S(X = 1)] E[MS(X = 1)] E[X§(X = 1)]

G* = | E[5(X = 2)] EIMS(X = 2)] E[X8(X = 2)] |
| E[8(X = 3)] E[M8(X = 3)] E[XS(X = 3)]

CE[YS(X = 1)]
H* = | E[Y§(X = 2)]
L E[YS(X = 3)]

The Eq. (13.16) can be rewritten as H* — G* = 0. Then we can estimate 8 by
3* — 6\*—113;

where the elements of G* and H* are sample means of the corresponding elements
of G* and H*. Thus ,é * is a valid estimator only when G* has full rank. Now we
show that the nonlinearity of E(M|X) with respect to X can ensure G* has full rank.
The determinant of the matrix G* is

det(G*) = P(X = DP(X = 2)P(X = 3)
‘REM|X =2)—EM|X =1)— EM|X = 3)].
Thus G* has full rank if and only if 2E(M|X = 2)—E(M|X = 1)—E(M|X = 3) # 0.
This inequality is equivalent to that E(M|X) is nonlinear with respect to X.

In Appendix 3, we show for a three-value treatment that any f(-) which makes
the Eq. (13.15) have the unique solution leads to the same estimator of parameters
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as that obtained by £*(X). Thus for a three-value treatment, our estimator is efficient
and it is not necessary to choose a complicated f(-) to improve the efficiency.

4.2 The Case of a General Treatment

Different from the case of a three-value treatment, for a general treatment X with
more values, different f(-)’s for X in (13.15) lead to different estimators. In this
section, we derive a GMM estimator with the efficient instrument proposed in [10].
Equation (13.15) can be rewritten as
E[fi(X)] EMfi(X)] E[Xf1(X)] E[Yfi(X)]
: : : B = : . (13.17)

Elfe(X)] EMFc (0] EDXfic ()] E¥f(X)]

Let G denote the K x 3 matrix on the left-hand side of Eq. (13.17) and H denote the
vector on the right-hand side. The Eq. (13.17) can be denoted as G = H.

Define m(B) = E[(Y — by — biM — b, X)f(X)]. Note that § can be identified
only when r(G) = 3, where r(-) denotes the rank of a matrix. Then for any f(-) that
makes r(G) = 3, a GMM estimate of f is

B = arg rr}gin{fﬁ(ﬂ)’ff\vﬁ(ﬁ)} = (GWG)"'G'WH, (13.18)

where W is required to be a positive semi-definite weighting matrix for K > 3 and to
be positive definite for K = 3) whose elements are functions of observed data, and
the elements of m(f), G, and H are sample means of the corresponding elements of
m(p), G, and H, respectively [3].

Let N denote the sample size. According to [10], if W — Win probability
where W is positive semi-definite, then the GMM estimator ,é has the following
properties:

1. ﬁ — B in probability as N — oo, where 8y denotes the true parameter, and

2. VN (,é — Bo) converges in distribution to a normal variable with mean zero and
variance (G'WG)™'G'WE[f(X)f(X)'|WG(G'WG)~'o2,, where 02, is the variance
of p(U, ey).

Newey and McFadden [10] also showed that the estimator B has a minimum
variance when the instrument f(X) is defined as

dp(X,M,Y,p)

s Pnlx ]| = a,po. 0.

(X)) = {E[
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From (13.18), the GMM estimator of 8 with the efficient instrument is
Beff — [(aeff)/waeff]—l (aeff)/ﬁ/i_\]eff

where G and H°T are the sample means of

1 EM) EX) E(Y)
G = | E(M) E[E(M|X)?] EXM) | .H*" = | E[YE(M|X)]
E(XX) EXM) EX? E(XY)

When X is discrete, E(M|x) can be estimated by sample means of M given X = x.
When X is continuous, E(M|x) can be estimated by parametric (e.g., a polynomial
fitting) or nonparametric (e.g., a kernel smoothing) approaches.

It is proved in Appendix 4 that the matrix G equals E[f*(X)f*(X)'] and has
full rank if the nonlinearity condition of identifiability in Theorem 1 holds. Thus
et is a valid estimator. Since G and the positive definite W for K = 3 are full
rank, B can be simplified as

Iéeff — (aeff)—lﬁl—l[(aeff)/]—l(aeff)/ﬁ/ﬁeff — (aeff)—lﬁeff’ (13.19)

which does not rely on the choice of W. From the above property 2 of the GMM
estimator, we can obtain the asymptotic variance of B¢t

V(,éeff) — (Geff)—lE[feff(x)ieff(x)l](Geff)—la)Z/ — (Geff)—larZes‘

The estimate of V(Beff) can be obtained by G and 62, which is the sample variance
of residuals of linear model (13.7).

For the case of a three-value treatment, as shown in the previous subsection, we
have /§* = ,36“. From property 2 of the GMM estimator, the variance of /§* can be
estimated by

V(B*) = GTE[f* (0OF (X))(G*) 152

res?
where

PX=1 0 0
E[fF X (X)] = 0 PX=2 0
0 0 PX=3)

and ﬁ(X = i) is estimated by the observed frequency of X = i.
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5 Simulation Study

In this section, we compare our estimates with the OLS estimates via simulations.
In our simulations, data are generated from the causal diagram depicted in Fig. 13.1,
and the underlying model is

Y =b/M+ b,X +dU + ¢y,
Logit P(M = 1|X,U) = -1 +3X + cU,

where the true parameters b; = 1.0 and b, = 0.6.

We conduct 3 x 5 scenarios for all combinations of parameter ¢ = 0, 2, and 4
and the parameter d = 0, =1 and £2. Nonzero parameters ¢ and d mean that there
is the unobserved confounder U which affects both M and Y. For each scenario, we
replicate 1000 samples with sizes n = 300 and 600. The data are generated for each
individual in the following process:

1. Draw X from 1, 2, and 3 with equal probabilities (i.e., PX = 1) = P(X =2) =
P(X=3)=1/3).

2. Draw U from a normal distribution N(0, 0.3%).

3. Draw M from a Bernoulli one with P(M = 1|X, U) which has a logistic model

Logit P(M = 1|1X,U) = -1 4+ 3X + cU.
4. Draw ey from N(0, 0.3%), and then compute
Y=M+0.6X 4 dU + ¢y.

Since X is a three-value treatment, we used the estimators given in Sect.4.1.
The means of estimates obtained in 1000 simulations for each scenario are given in
Table 13.1. (l31 , 132) denotes our estimates and (131,132) denotes the OLS estimates.
The average lengths of the 95 % confidence intervals and the rates of the confidence
intervals covering the true value of a parameter are given in Table 13.2. For the
scenarios 1 to 5, ¢ = 0 means that the latent variable U does not affect the mediator
M, and thus U is not a confounder and can be treated as an error term in the models
of Y and M. From Tables 13.1 and 13.2, we can see that both our approach and the
OLS approach performed well in these scenarios. For the scenarios 6-10 with ¢ = 2
and d # 0, the confounder U is correlated to M in the model of Y, and thus U is a
confounder and cannot be treated as an error term in the models. It can be seen from
Table 13.1 that the biases of OLS estimates (131,132) increase greatly as d departs
from 0. From Table 13.2, it can also be seen that for OLS estimates, the coverage
rates of 95 % confidence intervals decrease as ¢ and d departs from 0, and few of
the 1000 confidence intervals of b, covered the true parameter b, for the scenarios
with d # 0. Our estimates (l;l , l;z) are close to the true parameters (by, b,), and the
coverage rates of 95 % confidence intervals always are around 95 % in all scenarios.
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Table 13.1 Means of estimates for 1000 simulations (The true values by = 1.0 and b, = 0.6)
¢ = 0 or d = 0 means that U is not a confounder

N = 300 N = 600
OLS estimates Our estimates OLS estimates Our estimates
El Ez l;l [;2 Z;l Bz l;l 132
c=0 =-=2 10999 0.601 0.994 10.602 0995 |0.602 |0.996 |0.602
d=—1 0.999 0.601 0.996 0.602 0.996 |0.601 0.996 | 0.602

d=0 1.000 0.600 0.998 0.601 0.997 |0.601 |0.994 | 0.602
d=1 1.001 |0.600 |1.001 |0.600 |0.998 |0.600 |0.993 | 0.602

d= 1.001 0.599 | 1.003 |0.600 |0.998 |0.599 ]0.992 |0.601

c=2 =-2 |0.700 |0.693 |1.008 |0.598 |0.698 0.694 |1.005 |0.599
=-—1 |0.849 [0.647 |1.003 |0.600 |0.848 |0.647 |1.000 |0.600

d= 0.999 10.600 |0.997 ]0.601 |0.998 |0.600 |0.994 |0.602

d=1 1.148 10.554 [0.991 |0.602 | 1.148 0.554 0.989 |0.603
d=2 1.297 10.508 0.985 0.604 |1.299 |0.507 |0.983 | 0.604
c=4 |d=-2 0443 |0.767 |1.072 |0.582 |0.443 |0.768 |1.017 |0.596
d=-—1 10721 0.684 |1.035 [0.591 0.720 |0.684 |1.006 | 0.599
d=0 0.998 10.601 0.997 |0.601 |0.997 |0.601 |0.993 |0.602
d= 1.276 |0.517 |0.959 |0.610 |1.274 |0.517 [0.979 |0.605
d=2 1.553 10.434 10.921 |0.620 |1.551 |0.433 |0.967 |0.608

Comparing the results for two different sample sizes, we can see for the larger size
N = 600 that our estimates are closer to the true values and have smaller standard
errors but that the OLS estimates become even worse, have lower coverage rates,
and do not reduce the biases. We also did simulations for other sample sizes and got
the similar results.

6 Extension

In the previous sections, we discussed the model (13.7) of Y which is linear with
respect to M and X. These results can be extended to more general models, such
as the presence of an interaction term or a nonlinear direct effect of treatment on
outcome in (13.1). First we consider the model of moderated-mediation analysis
which has an interaction of X and M on Y as an example to illustrate the extension.
Consider the following moderated-mediation model:

Y = by + b1M + bX + b3XM + ¢(U, ey), (13.20)
M =YX, U, en).

From the model (13.20), we get the following equation:
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Table 13.2 Coverage rates of 95 % confidence intervals and estimated standard deviations in

brackets for 1000 simulations

by
0.943
(0.067)
0.938
(0.042)
0.953
(0.030)
0.943
(0.042)
0.950
(0.067)
0.701
(0.065)
0.776
(0.042)
0.945
(0.030)
0.802
(0.042)
0.708
(0.065)
0.227
(0.062)
0.437
(0.040)
0.941
(0.029)
0.451
(0.040)
0.239

N = 300
OLS estimates
by b
c=0 |d=-2 0955
(0.135)
d=—1 0945
(0.085)
d=0 0.957
(0.060)
d=1 0.952
(0.085)
d=2 0.950
(0.134)
c=2 |d=-2 0368
(0.131)
d=—1 0548
(0.083)
d=0 0.952
(0.059)
d=1 0.565
(0.083)
d=2 0.388
(0.131)
c=4 |d=-20.005
(0.121)
d=—1 0.054
(0.078)
d=0 0.952
(0.056)
d=1 0.060
(0.078)
d=2 0.003
(0.121)

(0.062)

Our estimates

by
0.985
(0.378)
0.982
(0.240)
0.984
(0.170)
0.979
(0.240)
0.979
(0.379)
0.984
(0.426)
0.983
(0.270)
0.988
(0.192)
0.982
0.271)
0.978
(0.428)
0.981
(0.758)
0.987
(0.469)
0.995
(0.305)
0.989
(0.434)
0.982
(0.724)

by
0.966
(0.128)
0.969
(0.081)
0.974
(0.058)
0.963
(0.082)
0.971
(0.129)
0.970
(0.141)
0.974
(0.089)
0.979
(0.063)
0.974
(0.089)
0.972
(0.141)
0.968
(0.224)
0.973
(0.139)
0.988
(0.092)
0.982
(0.132)
0.980
0.217)

N = 600
OLS estimates Our estimates
Bl 272 ZJ 1 52

0.957 |0.950 |0.966 |0.967
(0.095) | (0.047) | (0.255) | (0.088)
0.956 |0.959 |0.968 |0.959
(0.060) | (0.030) | (0.161) | (0.055)
0.957 0950 |0.967 |0.956
(0.043) | (0.021) | (0.114) | (0.039)
0953 [0952 0976 |0.962
(0.060) | (0.030) | (0.161) | (0.056)
0957 |0.954 0976 |0.962
(0.095) | (0.047) | (0.255) | (0.088)
0.088 |0459 0970 |0.970
(0.092) | (0.046) | (0.283) | (0.095)
0.265 |0.638 |0.972 |0.961
(0.059) |(0.029) | (0.179) | (0.060)
0.949 0950 0971 |0.962
(0.042) | (0.021) | (0.126) | (0.042)
0269 |0.626 0977 |0.967
(0.059) | (0.029) | (0.179) | (0.060)
0092 |0485 0982 |0.967
(0.092) | (0.046) | (0.284) | (0.095)
0 0.031 |0971 0973
(0.086) | (0.044) | (0.373) | (0.118)
0.002 [0.149 (0975 [0.970
(0.055) | (0.028) | (0.235) | (0.074)
0941 0947 0982 0970
(0.040) | (0.020) | (0.165) | (0.052)

0 0.169 0985 |0.970
(0.055) |(0.028) |(0.236) | (0.074)
0 0.033 /0984 |0.973

(0.086) | (0.044) | (0.374) | (0.118)

E(Y|x) = by + biE(M|x) + byx + bsxE(M|x).

For different levels xi, ..

., Xk of treatment, we obtain the following equations:
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1 EM|x1) x1 xiE(M|x)) ZO E(Y|x1)
. . . . 1| _ .
. . . . b2 - .
L EM|xk) xk xk EM|xk) 1 | p, E(Y|xk)

Both E(M|x;) and E(Y|x;) can be estimated from data by a parametric or nonpara-
metric approach. Parameters b;’s are identifiable if K > 4 and the K x 4 matrix
on the left-hand side has full column rank. It can be shown that the matrix has full
column rank if and only if E(M|x) is not a linear function of x, which is the same
as the condition of Theorem 1. Notice that this identifiability condition can also be
checked by observed data. It is obvious that under the commonly used assumption
of a linear regression of M on X in the simultaneous equation model, we cannot
identify these parameters in mediation models.

Next we consider the case of a nonlinear direct effect of treatment on outcome.
For example, consider a quadratic equation of X

Y = by + DM + byX + b3X> + ¢(U, ey).

To identify the parameters, we need a higher degree of equation nonlinearity for M,
such as

M =ay+ a X + aX* + a:X> + Y (X, U, ey),

and we need to manipulate the treatment X for K(> 4) levels. The higher degree
nonlinearity of treatment effect on mediator M can be used to distinguish the indirect
effect of treatment on outcome from the lower-degree direct effect of treatment on
outcome. This essentially means that the change rates of outcome through the direct
arrow X — Y and through the path X — M — Y are different, and thus we can
separate the direct effect from the indirect effect.

Similarly for a more general model of Y, to identify the parameters in the model,
we require that the treatment X has the number K of levels larger than or equal to
the number of the parameters in the model of Y and that the nonlinearity degree
of treatment effect on mediator is higher than the nonlinearity degree of the direct
effect of treatment on outcome such that the equations of the expectations of Y
conditional on these levels have a unique solution for the parameters.

7 Discussions

To identify and estimate parameters in mediation models, different approaches
require different assumptions or manipulation experiments. The structural equation
modeling approach requires the sequential ignorability assumption of the mediator
status, the principal stratification approach and the instrumental variable approach
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require the exclusion restriction assumption, and the experimental approach requires
that the mediator is manipulatable. When a mediation model has a single mediator, it
is difficult to satisfy the exclusion restriction assumption. The sequential ignorability
assumption is hardly satisfied even if the mediator could be manipulated, and the
manipulation experiment of the mediator may not be practical in many applications.

Removing these untestable assumptions, the approach proposed in this paper
requires that the regression equation of the mediator on the treatment variable
is nonlinear, otherwise a covariate is necessary for the identifiability. For the
case of a binary mediator, a logistic regression equation is commonly used and
the nonlinearity may be generally satisfied. The important difference between
our nonlinear requirement and the assumptions of other approaches is that our
nonlinearity requirement of the mediator M with respect to the treatment X is
testable by the observed data of M and X, while the assumptions required by other
approaches are untestable by observed data. This testability is an advantage of our
approach.

When the nonlinearity required in Theorem 1 is not satisfied, we may try to
find a covariate Z such that the slope of the regression of M on X depends on Z,
see Theorem 2. This covariate is essentially used to try a possible nonlinearity
between the treatment and the mediator such that the effects of treatment on the
mediator are different conditionally on different levels of the covariate. In a sense,
the covariate Z requires a model assumption like an instrumental variable so that
we can remove the confounding bias generated by an unobserved confounder. Our
approach may be more realistic for observational studies and experimental studies in
which we cannot manipulate the mediator. For a pure observational study in which
the treatment X cannot be manipulated, we need the commonly used assumptions for
causal inference, such as the ignorability assumption of the treatment assignment.

Acknowledgements This research was supported by NSFC (11171365, 11021463, 10931002),
863 Program of China (2015AA020507) and a project founded by Merck (China).

Appendix 1: Proof of Theorem 1

We separately show the necessity and sufficiency for the identifiability of parameters
in model (13.7). For necessity, suppose that the non-linearity condition does not
hold, that is, |p(E(M|X),X)| = 1. This implies that there exist some ay and a;
satisfying E(M|X) = a1X + ao almost everywhere. Then from the model (13.7) we
have

E(Y|X) = by + biE(M|X) + by X
= (by + aopby) + (a1b) + br)X.
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The above equation implies that Y is marginally linear with respect to X. For this
linear model, only the intercept (by + aopb;) and the slope (a;b; + b,) are identifiable
as a whole, while parameters by, b, and b, cannot be distinguished each other.

For sufficiency, if M is not marginally linearly related with respect to X, then we
can find 3 levels: xi, x5, and x3, which satisfy [E(M|x1) — E(M|x)]/(x1 — x2) #
[E(M|x;) — E(M|x3)]/(x2 — x3). Hence the matrix in (13.10) has full rank. Thus
parameters b; and b, can be identified, and then parameter by can be identified from
by = E(Y|x;) — biE(M|x;) — byx;.

Appendix 2: Proof for Theorem 2

For sufficiency, when E(M|X,Z) # c¢X + ¥(Z), there are two situations: (i)
EM|X,Z) = V(X)) + ¥ (Z), where W(-) is a nonlinear function of X; (ii) E(M|X, Z)
is not additive with respect to X and Z.

For situation (i), since W(-) is not a linear function, we can choose three levels
of X (say xi,x2,x3) and some z satisfying [E(M|x{,z) — E(M|x2,2)]/(x1 — x2) #
[E(M|x3,7z)—E(M|x3, )]/ (x2—x3). Then the following equation from model (13.12)
has a unique solution because the coefficient matrix has full rank:

|:E(M|xl»1) — EM|x5,2) x1 —Xz] [bl] _ [E(Ylm,z) —E(YIX2,Z)}
EM|xy,2) — E(M|x3,2) X —x3 | [ ba | | E(Y|x2,2) — E(Y}x3,2) |

Thus the parameters can be identified.

For situation (ii), since E(M|X, Z) is not additive with respect to X and Z, we
can find two levels of X (say xj,x;) and two levels of Z (say zj,z») satisfying
EM|x1,21) — EM|x2,z1) # EM|x1,22) — E(M|x2,z2). The following equation
derived from model (3.4) has a unique solution because the coefficient matrix has
full rank:

|:E(M|x1,z]) —EM|x2,21) x1 —Xz] [bl ] _ |:E(Y|x1,Z1) — E(Y|X2,Zl)i|
EM|x1,z2) — E(S|x2,22) X1 —x2 | | b2 E(Y|x1,22) — E(Y|x2, 22)

Thus the parameters can be identified.
For necessity, if E(M|X,Z) = ¢X + ¥ (Z) for some constant ¢ and v (-), then
from model (13.12), we have

E(Y|X,Z) = by + biE(M|X,Z) + boX + E[¢p(U,Z, ey)|Z]
= by + (bic + br))X + O(2).

where ®(Z) = b1y (Z) + E[¢(U, Z, ey)|Z]. We can easily see that only ¢, bic + b,
and ®(Z) can be identified given observed data of (Z, X, M, Y). by and b, cannot be
identified because (1) E(M|X, Z) is linear with respect to X, and (2) E[¢ (U, Z, ey)|Z]
cannot be identified since U and ey are never observed. Thus the parameters in
model (13.12) are identifiable only if E(M|X, Z) # cX + ¥ (2).
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Appendix 3: Proof for the Equivalence of Different Choices
of f(-) in Eq. (13.15) for the Estimation When the
Identifiability Condition in Theorem 1 Holds

We want to show that an arbitrary vector function f(-) that identifies B via Eq. (13.15)
leads to the same estimator as that based on the function f*(-). For an arbitrary vector
function f(-) = (fi(),/2(), -+ ,.fk (")) (K > 2), we can denote it as

L) AQ) AG) [ Tsx =1)
f(x)=| : = X =2 |. (13.21)

() fi@) fi3) ] LIX=3)
Let Q denote the K x 3 matrix on the right-hand side. Equation (13.15) can be
rewritten as G = H, where G = E[f(X), Mf(X), Xf(X)] and H = E[Yf(X)]. Then
the estimation equation for 8 is G = H. From (13.21), we have
G = E[f(X), ME(X), XE(X)]

= E[Of* (X), MOF* (X), XOf* (X)]

= QE[f* (X). Mf* (X). Xf* (X)]

= 0G"

where E(-) denotes the sample mean of the corresponding variable. Similarly, we
have

H = oH*.

Then by the function f(-), the estimation equation for 8 is equivalent to

~ A

GB—H=0G*p-H") =0.

Since B* satisfies the equation é;,é* —H = 0, we have that ,3* also satisfies
GB* —H = 0. Thus we proved 8 = * when Q has full rank, which means that the
above equation of 8 has a unique solution.
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Appendix 4: Proof for Matrix G*T in Sect. 4.2 Equals
E[fT(X)f*(X)’] and Has Full Rank When Non-linearity
Condition in Theorem 1 Holds

(i) We show that G = E[f*(X)f*T(X)']. It is obvious that

1 EMIX) X
Ef"COf"(X)] = E { |:E(M|X) E(M|X)* E(M|X)X } }
X XEMX) X?

1 EM)  EX)
= |:E(M) E[E(M|X)¥] E(XM):| = G,
EX) EXM) EX?

(ii) We prove that G*" has full rank when non-linearity condition in Theorem 1
holds. To prove that G has full rank, we only need show that det(G°™) # 0
when |p(X, E(M|X))| < 1. We have

1 EM)  EX)
det(G*™) = | E(M) E[E(M|X)?] E(XM)
EXX) E(XM) EX?)

= | 0 E[E(M|X)*] — [E(M)]* E(XM) — E(X)E(M)
0 E(XM)—EX)EM) EX*)—[EX)]

1 E(M) E(X) |

Since
var[E(M|X)] = E[E(M|X)’] — [E(M)]’, var(X) = E(X*) — [E(X)]
and
cov(X,E(M|X)) = E[XEMM|X)] — EX)E[E(M|X)] = E(XM) — EXX)E(M),
we have

1 E(M) E(X)
det(G™) = |0 var[E(M|X)] cov(X, E(M|X))
0 cov(X, E(M|X)) var(X)

= var[E(M|X)]var(X) (1 — [p(X. E(M|X)’) > 0,

since |p(X, E(M|X))| < 1.
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Chapter 14
A Comparison of Potential Outcome Approaches
for Assessing Causal Mediation

Donna L. Coffman, David P. MacKinnon, Yeying Zhu, and Debashis Ghosh

Abstract Mediation occurs as part of a hypothesized causal chain of events: An
intervention or treatment, 7, has an effect on the mediator, M, which then affects an
outcome variable, Y. Within the potential outcomes framework for causal inference,
three different definitions of the mediation effects have been proposed: principal
strata effects (e.g., Rubin, Scand. J. Stat. 31:161-170, 2004; Jo, Psychol. Methods
13:314-336, 2008), natural effects (e.g., Pearl, Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence, 2001; Imai et al., Psychol.
Methods 15:309-334, 2010), and controlled effects (e.g., Robins and Greenland,
Epidemiology 3:143-155, 1992; VanderWeele, Epidemiology 20:18-26, 2009). We
illustrate that each of these definitions answers a different scientific question. We
examine five different estimators of the various definitions and discuss identifying
assumptions about unmeasured confounding, the existence of direct effects (i.e.,
the effect of 7 on Y that is not due to M), iatrogenic effects of T on M, the
existence of post-treatment confounders, and the existence of interactions. We
assess the robustness of each of the estimators to violations of the assumptions
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using a simulation study that systematically challenges different aspects of these
assumptions. We found that when no assumptions were violated, as may be
expected, each approach was unbiased for its respective population value and 95 %
confidence interval (CI) coverage was maintained. However, when assumptions are
violated, the effects may be severely biased and 95 % CI coverage is not maintained.
We suggest that researchers choose the appropriate definition based on the scientific
question to be addressed and the identifying assumptions that are plausible given
their data.

Mediation is fundamental to many areas of research because many interventions
attempt to change one variable in order to cause another variable to change
[1]. Mediation analysis helps identify the intermediary processes by which an
intervention achieves its effects; understanding the causal mediation pathway can
help design interventions that are more effective and less expensive. Given a
hypothesized theory regarding the effect of an intervention on a mediator and
outcome, mediation analysis can evaluate whether the intervention status affects
the mediator and whether the mediator affects the outcome as predicted by theory.
Because of its practical and theoretical importance, mediation analysis is now
commonly applied in many research disciplines [1]. Recently, more attention has
been devoted to the causal aspects of mediation (e.g., [2-6]) and this work has
identified several serious shortcomings of traditional mediation analysis (see also
[7]). Fortunately, this work has also generated new methods to deal with the
shortcomings of traditional mediation analysis. A primary goal of this paper is to
introduce and compare these new methods to estimate causal mediation effects so
that researchers can make informed decisions about which method to use.

Most of the new approaches to mediation analysis focus on the potential
outcomes framework [8, 9]. Within this framework, three definitions of mediation
effects have been proposed: natural, controlled, and principal strata effects. Within
each of these definitions, different assumptions have been proposed for identifying
and estimating the causal effects. Given the variety of choices, it is difficult for
researchers to determine the ideal method for a research question. We compare
the various definitions in terms of the assumptions typically used to identify and
estimate causal effects and to examine how robust each approach is to violations of
assumptions in a simulation study. The data generation for the simulation study is
designed to be very general to avoid favoring one approach over another.

This article is organized as follows. First, we review the potential outcomes
framework and notation. Second, we describe each definition of causal mediation
effects under the potential outcomes framework. Next, for each of these definitions,
we introduce the assumptions typically used to identify causal effects and the
methods for estimating them. Finally, we turn to the simulation study, including
data generation and results, followed by a general discussion.
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1 Potential Outcomes Framework for Causal Inference

In the potential outcomes framework (see [8—10]), each individual has a potential
outcome for each possible treatment condition, namely the value of the outcome
that would have occurred had the individual received the given treatment condition.
For simplicity, consider a binary treatment indicator, 7;, where T; = 1 denotes the
intervention condition and 7; =0 denotes the control condition for participant i,
i=1,...,n. The potential outcome if the individual receives the intervention is
denoted Y;(1), and the potential outcome if the individual is in the control condition
is denoted Y;(0). The individual causal effect is the difference between these two
potential outcomes. Because each participant is observed in only one condition, only
one of these potential outcomes is observed; the other is missing and, therefore,
the individual causal effect cannot be computed. However, strategies have been
implemented to estimate the causal effect averaged over participants in the study.
This average causal effect (ACE) is defined as E[Y;(1) — Y;(0)]; that is, the expected
(or average) difference between the two potential outcomes. Information on the
potential outcomes framework outside of the context of mediation is provided by
Little and Rubin [11], Schafer and Kang [12], and Winship and Morgan [13].

Extending the potential outcomes framework to mediation is more complicated
because a mediator is an outcome of the intervention and, therefore, there are also
potential values for the mediator under each treatment condition for each individual.
The potential mediator under the intervention condition is denoted M;(1), and the
potential mediator under the control condition is denoted M;(0). The notation for
the potential outcomes is then expanded to include the potential mediators; this
notation is referred to as nested potential outcomes. Thus, Y;(1,M;(1)) is the potential
outcome if individual i receives the intervention and the potential mediator takes
on the value that would have been obtained had they received the intervention;
and Y;(0,M;(0)) is the potential outcome if individual i is in the control condition
and the potential mediator takes on the value that would have been obtained had
they been in the control condition. There are two other potential outcomes that
can never be realized in practice and illustrate the challenge of identifying causal
mediation effects. These two potential outcomes are needed to define the natural
effects and correspond to Y;(1,M;(0)), the potential outcome if individual i receives
the intervention and has the potential value of the mediator that would have been
obtained had they been in the control condition, and Y;(0,M;(1)), the potential
outcome if individual i is in the control condition and has the potential value of
the mediator that would have been obtained had they received the intervention. The
impossibility of ever observing these two potential outcomes is one of the reasons
that causal mediation analysis is controversial.

Throughout the article, we use Y; to denote the observed value of the outcome, M;
to denote the observed value for the mediator, and Y;(¢,M;(t)) to denote the potential
outcomes where ¢ is one of the levels of treatment. We use X; to denote mea-
sured baseline (i.e., pre-treatment) confounders. We assume throughout that if an
individual receives the intervention, then Y; = Y;(1) = Y;(1,M;(1)) and M; = M;(1).
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Likewise, if an individual is in the control condition, then Y; = Y;(0) = Y;(0,M;(0))
and M; = M;(0). This assumption is usually referred to as the consistency assump-
tion. In addition, the treatment variation irrelevant assumption [14] states that
the potential mediator, M;(¢), for individual i when exposed to treatment 7; =1
will be the same no matter what mechanism is used to assign treatment ¢ to
individual i. Similarly, the potential outcome, Y;(¢,M;(¢)), for individual i when
exposed to treatment 7; = ¢ and mediator level M;(f) = m will be the same no matter
what mechanism is used to assign ¢ and m to individual i. The notation defined
above is sufficient for describing the potential outcomes under each treatment
level. Additionally we assume throughout that there is no interference among
individuals, meaning that an individual’s potential outcomes do not depend on
another individual’s treatment assignment. Thus, the potential outcome notation is
a function of only 7; and not T;, where i and j denote two different individuals.
Finally, we assume common support, meaning that the probability of receiving the
treatment, P[T; = 1], is between O and 1. If P[T;=1]=0 or P[T;=1] =1, then
a causal effect is not meaningfully defined for that individual. This assumption is
often referred to as positivity (see, e.g., [15]). Similarly for the mediator, we assume
that all individuals have non-zero probability for all levels of mediator.

2 Using the Potential Outcomes Framework to Define
Mediation Effects

There are several different definitions of mediation within the potential outcomes
framework: natural effects, controlled effects, and principal strata effects. Before
defining the effects using the potential outcomes framework, we define the effects
as they have been traditionally defined in the social science literature. Briefly, in
the social science literature, mediation has traditionally been assessed by fitting two
linear regression models: one for the mediator,

E[M‘T:t] = Bou + it (14.1)
and one for the outcome,
E [Y‘T — M= m] = Boy + Pat + Pam. (14.2)

The direct effect is defined as 85, and the indirect effect is defined as the product of
B1 and B3. Note that these definitions do not involve counterfactuals, as the models
presented above are models for the observed mediator and outcome. These effects
may be interpreted as causal effects only under certain assumptions to be discussed
in the Identification section below.

Principal Strata Effects Principal stratification [16—18] was initially developed to
handle non-compliance in intervention studies; recognizing that actual receipt of
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an intervention is a mediating variable between intervention assignment and the
outcome, these methods have recently been applied to mediation analysis more
broadly. Generally, the population is divided into subgroups, called principal strata,
based on a cross-classification of the potential values for the mediator. A local ACE
can then be defined within each principal stratum. Suppose that the mediator can
take on values of 1 or 0. The four possible principal strata effects are defined as

L. E[Y,(1) = Y (0)|M;(1) = M;(0) = 1],

2. ETYi(1) = Yi(0)|M;(1) = M;(0) =0],

3. E[Y:(1)—Y:(0)|M;(1) =1, M;(0) = 0], and
4. E[Y(1) = Y(0)|M;(1) = 0, M;(0) = 1].

The effect in the first stratum is the causal effect of the intervention on the
outcome, among those who would have a value 1 on the mediator regardless
of intervention condition. In other words, in this stratum, the intervention had
no causal effect on the mediator because the mediator would be 1 regardless
of intervention condition. In the compliance literature, this principal stratum is
referred to as the always-takers, since they would take the treatment whether they
were randomized to it or not. The effect in the second stratum is the causal effect
of the intervention on the outcome among those who would have a value 0 on the
mediator regardless of intervention condition. In the second stratum, the mediator
would be 0 regardless of intervention condition so the intervention had no causal
effect on the mediator in this stratum either. In the compliance literature, this
principal stratum is referred to as the never-takers. The effect in the third stratum
is the causal effect of the intervention on the outcome among those who would
have a value of 1 on the mediator if they received the intervention and O if they
did not. In the compliance literature, this principal stratum is referred to as the
compliers. The effect in the fourth stratum is the causal effect of the intervention
on the outcome among those who would have a value of 0 on the mediator if
they received the intervention and a 1 if not. In the compliance literature, this
principal stratum is referred to as the defiers, since their treatment status reflects
the opposite of their randomization. For the latter two strata, the intervention does
have a causal effect on the mediator. Thus, the principal strata effects in these two
strata represent the causal effects of the intervention on the outcome among those
for whom the intervention had an effect on the mediator. The distinction between
these two strata is that the effect of the intervention on the mediator is in opposite
directions. All of these are causal effects of the intervention on the outcome among
a latent subgroup or stratum of individuals: stratum membership is latent because
only one of the potential mediators is observed. Finally, the ACE, E[Y(1) — Y(0)],
or total effect (TE), is defined as the sum of the four principal strata effects,
E[Y(1)=Y(O)M©O)=M1)=1]*PM (0)=M (1)= 1]+ E[Y (1) - Y(0) | M(0) =
M(1) = 0]* P[M(0) = M(1) = 0] + E[Y(1) — Y(0)|M(0) = 0,M(1) = 1] * P[M(0) =0,
M(1) = 1]+ E[Y(1) = Y(0)|M(0) = 1, M(1) = 0] * P[M(0) = 1,M(1) =0] = E[Yi(1,
M;(1)) — Y:(0,M;(0))]. It is referred to as the intent-to-treat effect in the compliance
literature.
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Note that the principal strata effects do not rely on nested potential outcomes
of the form, Y;(#,M;(?)). Principal strata effects rely only on the potential outcomes,
Y;(0), Y;(1), M;(1), and M;(0). Thus, principal strata effects do not rely on Y;(1,M;(0))
or Y;(0,M;(1)), which cannot be realized for any individual. This focus on only
possible potential outcomes is both a strength and a limitation of this approach;
we return to this point later.

Natural Effects Natural direct effects (NDEs) are defined by setting the mediator
to one of its potential values and changing the intervention status. One NDE of
interest, E[Y;(1,M;(0)) — Y;(0,M;(0))], often called the pure NDE (e.g., [19]), defines
a causal effect of the intervention on the outcome when the mediator is held to the
value that would have been obtained had the individual not received the intervention
(i.e., the effect of the intervention on the outcome if the intervention did not cause
a change in the mediator or if the effect of the intervention on the mediator was
in some way blocked). Additionally E[Y;(1,M;(1)) — Y;(0,M;(1))], sometimes called
the total NDE, defines a causal effect of the intervention on the outcome when
the mediator is held to the value that would have been obtained had the individual
received the intervention (i.e., the effect of the intervention on the outcome if
absence of the intervention did not prevent a change in the mediator). Note that since
each individual’s set of potential mediators may be unique, setting the mediator to
one of the potential mediators (i.e., M;(0) or M;(1)) is not equivalent to setting the
mediator to a given value of the mediator m. In other words, the value at which the
mediator is set can be different for every individual. We will denote pure NDE and
the total NDE as NDE, ) and NDE,(), respectively, where the subscript indicates
the potential value the mediator is set to.

Natural indirect effects (NIEs) are defined by setting the intervention condition
and changing the values of the potential mediator, E[Y;(1,M;(1)) — Y;(1,M;(0))] or
E[Y;(0,M;(1)) — Y;(0,M;(0))]. The former, sometimes referred to as the total NIE,
defines the causal effect of receiving the intervention and having the value on the
mediator that would be obtained under the intervention versus having the value on
the mediator that would be obtained under the control condition; in other words, the
effect of the intervention due to intervention-induced changes in the mediator. The
latter, sometimes referred to as the pure NIE, defines the causal effect of receiving
the control condition and having the value on the mediator that would be obtained
under the intervention condition versus having the value on the mediator that
would be obtained under the control condition. Note that again, these effects are
defined with respect to potential mediators rather than a specific observed value
of the mediator. Therefore, the value of the potential mediators may differ across
individuals. We will denote the two NIEs as NIE; and NIE,, where the subscript
denotes the value to which the intervention status is set.

Note that for NDEs and NIEs, there is an effect for each level of the inter-
vention. For example, in the case of a binary treatment, there are two NDEs and
two NIEs. The TE, defined as E[Y(1)— Y(0)] = E[Y;(1,M;(1)) — Y;(0,M;(0))], can
be decomposed into E[Y;(1,M;(1)) — Y;(1,M;(0))] + E[Y;(1,M;(0)) — Y;(0,M;(0))] or
E[Y;(0,M;(1)) — Y;(0,M;(0))] + E[Y;(1,M;(1)) — Y;(0,M;(1))]. That is, the TE is the
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sum of the total NIE, NIE,, and the pure NDE, NDE(); or of the pure NIE, NIE,
and the total NDE, NDE,(;y. The terms pure and total refer to whether interaction
effects are included with the direct or indirect effect. Specifically, pure means that
the interaction effects are not included and total means that they are. Therefore, the
TE must include a total and a pure effect.

Controlled Effects The controlled direct effect (CDE; [20]) is the causal effect of
the intervention on the outcome when setting the mediator to a specific value, m, for
the entire population. That is, E[Y;(1,m)— Y;(0,m)] where Y;(t,m) is the potential
outcome when T =t and M =m. We will denote the controlled direct effect as
CDE,,, where the subscript m denotes the particular value to which m is held or
set. Note the difference between the CDE and the NDE. For the CDE, the value at
which the mediator is set (i.e., held constant) is the same for every individual. Also,
for a binary treatment, there are two NDEs, but there are as many CDEs as there are
possible values of the mediator. We have continued to use the i subscript through
this section to emphasize that the CDE sets the value of the mediator to be the same
for all individuals, whereas the NDE allows the value at which the mediator is set to
vary across individuals.

There is not a controlled indirect effect that is comparable to the NIE without fur-
ther assumptions, which will be discussed below. To illustrate, consider defining the
effect E[Y;(1,m) — Y;(1,m")] for two different values, for example m =0 and m’ = 1.
We will denote this effect as 0s,—; and the corresponding E[Y;(0,m) — Y;(0,m")] as
Omir=0- The former is the effect of, for example, a one-unit change in the mediator
on the outcome when T; = 1. This effect does not tell us how the one-unit difference
between m and m’ has come about: it could have happened through the treatment
intervention or through some other mechanism. On the other hand, consider the
NIE, E[Y;(1,M;(1)) — Y:(1,M;(0))], the effect of the intervention due to intervention-
induced changes in the mediator. This effect, unlike E[Y;(1,m)— Y;(1,m)], does
indicate that the intervention caused the difference in M;(1) and M;(0) because these
are potential outcomes under two different levels of the intervention. This distinction
may seem subtle but it is extremely important. The NIE is what behavioral scientists
typically think of as the mediation effect, commonly denoted ab in the behavioral
science literature, whereas E[Y;(1,m) — Y;(1,m’)] is the causal effect of the mediator
on the outcome, holding constant the intervention status, and is commonly denoted
as b in the behavioral science literature. The effects 6),—; and 6,7,—¢ also imply
that it is possible to set the mediator to the same value for all individuals as
mentioned above. For elaboration of these conceptual issues, see VanderWeele and
Vansteelandt [21].

It has been shown that under certain assumptions, the various definitions given
above for the direct and indirect effects are equivalent (e.g., [, 22, 23]). We will
return to this point after discussing identification assumptions. These assumptions
are summarized in Table 14.1.
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Table 14.1 Summary of assumptions

Effects

Natural effects Controlled effects| Principal strata effects
Assumptions Imai et al. [4] | IPW| RPM TSLS| Bayesian
No unmeasured confounders of
@T&M v v |V v v
b)T&Y v v |V v v
Ce)M&Y v v
No interactions between
T&MonY v |V
T&XonY v v
M&XonY v
Interactions between 7' & X on M v
(d) No post-T confounders v v v |V
Monotonicity (no defiers) v
Exclusion restriction (full mediation) v

3 Identification

The causal effects defined above are written in terms of potential outcomes, not all
of which can be observed. If all the potential outcomes were observed, then all of the
above effects could be easily estimated. In order to estimate causal effects based on
the observed data, assumptions must be made in order to identify the causal effects.

Principal Strata Effects Generally, principal strata effects are identified by assum-
ing that there is no one for whom the intervention has an iatrogenic (i.e., undesirable)
effect (e.g., P[M(0)=1, M(1)=0]=0), which is typically referred to as the
monotonicity assumption. Note that the CACE is the causal effect of interest under
the hypothesis that the intervention will increase the value of the mediator (i.e.,
increasing values of the mediator are desirable). If the hypothesis happens to be
that the intervention decreases the value of the mediator (i.e., decreasing values
of the mediator are desirable), the monotonicity assumption is that P[M(0) =0,
M(1) = 1] =0, and thus, scientific interest lies in DACE. That is, the DACE would
be the causal effect of interest.

Additionally, it is assumed that the only way in which the intervention can affect
the outcome is through the mediator. This is known as the exclusion restriction
and implies that E[Y;(1) — Y;(0)|M;(1) = M;(0)] = 0. That is, among those for whom
there is no causal effect of the intervention on the mediator, there is no causal effect
of the intervention on the outcome. However, the exclusion restriction also means
that there is no direct effect of the intervention on the outcome, among those for
whom there is a causal effect of the intervention on the mediator (i.e., those in either
stratum 3 or 4; the compliers or defiers). In fact, the only way that the principal
strata effects for stratum 3 or 4 can be interpreted as an indirect effect is if the
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exclusion restriction holds. Otherwise, the causal effect estimated is the total effect
of the intervention on the outcome among those for whom the intervention had a
causal effect on the mediator. The exclusion restriction is particularly difficult to
rationalize given that most interventions are designed to affect multiple mediators
that are hypothesized to affect the outcome. In addition, an interaction between T
and M is a violation of the exclusion restriction [5, 24].

Finally, it is assumed that there are no unmeasured confounders of 7" and Y (e.g.,
there is random assignment to T), which can be stated formally as T L Y(0),Y(1)|Xp.
This assumption allows T to be used as an instrumental variable (IV) in the two-
stage least-squares (TSLS) estimation to be described below. Note that unlike other
causal mediation methods, the principal strata approach does not require a no-
unmeasured-confounding assumption for M and Y (given the other assumptions
stated above).

Note that the assumptions stated above are not the only set that could be used
for identification. Gallop et al. [25] proposed alternative identification assumptions.
They do not require the exclusion restriction or monotonicity assumption. Instead,
baseline covariates, which predict the principal strata, are used to identify the
stratum-specific ACE. In addition, they assume that there are no interactions
between these baseline covariates and 7 within each principal stratum and that there
are no unmeasured confounders of 7 and Y.

Natural Effects To identify the natural effects, it is usually assumed (e.g., [22, 26])
that (a) there are no unmeasured confounders of the intervention and the mediator,
T L M(0),M(1)|Xp; (b) there are no unmeasured confounders of the intervention
and the outcome; (c) there are no unmeasured confounders of the mediator and
the outcome; and that (d) there are no measured or unmeasured confounders of
the mediator and outcome that have themselves been influenced by the intervention
(i.e., no post-treatment confounders, denoted X1). Note that the set of variables in
Xo do not need to be the same for (a) and (b) and that if X; is not affected by
the intervention, then it does not violate (d) [27]. If individuals are randomized to
the intervention, then (a) and (b) will typically hold as long as the randomization
does not fail (e.g., individuals comply with the assigned intervention and there is
no selective attrition). However, unless individuals are also randomized to levels of
the mediator, which is typically impossible in practice, (c) is not guaranteed to hold.
These are obviously very strong assumptions that cannot be tested in any empirical
application. Nevertheless, if the researcher has given careful thought to all potential
confounders, measured them, and properly adjusted for them, assumptions (a)—(c)
are plausible. Furthermore, sensitivity analyses have been developed and conducted
to assess the impact of violations of these assumptions (e.g., [4, 28, 29]).

Assumption (d) of no post-treatment confounders of the mediator and outcome
is more difficult to rationalize. Note that confounders of the mediator and outcome
that have been influenced by the intervention are essentially mediators themselves,
although they may not be of scientific interest (i.e., the investigator is not inter-
ested in their effects and simply wishes to control for them). Assumption (d) is
problematic given that most interventions target multiple mediators and because the
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assumption is that there are no measured or unmeasured variables such as these.
Even if they are known to exist and have been measured, they must be assumed not
to exist. The mathematical proof of this identification assumption is given in Avin
et al. [30].

As with principal strata effects, other assumptions may be used to identify
the natural effects ([31-33], but these assumptions do not relax assumption (d).
Parametric assumptions, such as linearity, can be used to relax assumption (d).

Controlled Effects Identification of this approach for obtaining the indirect effect
requires assuming that there are no unmeasured confounders of the intervention
and the mediator (i.e., assumption (a) from above), the intervention and the
outcome (i.e., assumption (b) from above), and the mediator and the outcome
(i.e., assumption (c) from above); and (e) that there are no interactions between
the intervention and the mediator. As discussed by VanderWeele [26], if there is
no interaction between the intervention and the mediator, then the CDE is the
same for every level of the mediator. In this case, the CDE is equal to the NDEs
(NDEy ) = NDE) = CDE,,) and the CDE can be subtracted from the TE, via
the decomposition for natural effects (e.g., TE-CDE,, = TE-NDE ) = NIE)), to
obtain the indirect effect. If there is no interaction, the NIE; = NIE,, and, therefore,
the decomposition may also be written as TE-NDEy ;) = NIE,. Note that this
approach does not, however, require assumption (d) but replaces it with a parametric
assumption. As before, if individuals are randomized to levels of the intervention,
then assumptions (a) and (b) will hold, and if individuals could be randomly
assigned to levels of the mediator, then assumption (c) would also hold.

Assumptions (a) and (e) are not required for identification of the CDE or for
0y, the causal effect of M on Y. These two assumptions are only needed to identify
the indirect effect. Note that assumption (e) is not as innocuous as it may seem at
first. For linear models, it requires the absence of a T by M interaction (i.e., a non-
significant coefficient estimate for the product term, 7 x M). In non-linear models,
this assumption is more restrictive; the controlled direct effects at every level, m, of
the mediator must be equal.

As with natural effects and principal strata effects, other assumptions may
be used to identify the causal effects instead of (a)-(c) and (e). Specifically,
assumption (c) can be replaced by assuming that (f) there are no interaction effects
between baseline covariates and the mediator, and between baseline covariates and
intervention assignment on the potential outcomes; and that (g) there are strong
interaction effects between the baseline covariates and intervention assignment on
the mediator. The latter two assumptions are key for using the G-estimator proposed
by Ten Have et al. [34], described below. All assumptions are summarized in
Table 14.1.

When certain conditions or assumptions are met, some of the estimands dis-
cussed may be equivalent. For example, as discussed above, if there are no
interactions between the intervention and the mediator, the NDE will equal the
CDE. Jo [5] and Sobel [24] showed that the traditional behavioral science definitions
correspond to the principal strata definitions of effects if there are no unmeasured



14 A Comparison of Potential Outcome Approaches for Assessing Causal Mediation 273

confounders of M and Y, of T and Y, and of T and M; no interactions between
T and M; and the exclusion restriction, monotonicity assumption, and linearity
hold. VanderWeele [23] discusses the relations between definitions of principal
strata effects and natural effects, and between principal strata effects and controlled
effects. Lynch et al. [35] compared and contrasted direct effect definitions in the
Ten Have et al. [34] approach with those of the traditional [29] approach and
the principal stratification approach. Ten Have and Joffe [33] reviewed identifying
assumptions for direct effects under each of the three approaches. However, to our
knowledge, the comparisons presented here are the first to focus on definitions,
identification assumptions, and estimation methods for all of the effects defined
under each approach.

4 Estimation

For each of the definitions, different estimators have been proposed using different
sets of identifying assumptions described above. We will consider only a few
estimators for each definition. For principal strata effects, we will consider a TSLS
IV estimator [36] and a Bayesian estimator [25]. For natural effects, we will consider
the estimator proposed by Imai et al. [4]. For controlled effects, we will consider the
G-estimator proposed by Ten Have et al. [34] and an inverse propensity weighted
(IPW) estimator [3, 26].

Principal Strata Effects Given the monotonicity and exclusion restriction identi-
fying assumptions, the TSLS IV estimator [36], in which intervention assignment is
the instrument, is typically used to estimate the principal strata effects. In order for
the intervention assignment to be considered an instrumental variable, individuals
should be randomly assigned to intervention conditions such that assumptions
(a) and (b) hold. Further, for all practical purposes, the principal stratification
framework requires a binary mediator.! Even for a mediator that takes on, say, 5
values, the number of latent principal strata grows tremendously. Specifically, for a
mediator that takes on 5 possible values, there would be 25 latent strata or subgroups
of individuals and thus it would be difficult to identify and estimate principal
strata effects. Given a binary mediator, monotonicity, the exclusion restriction, and
random assignment to the intervention (i.e., no unmeasured confounders of 7 and
M or T and Y), the latent subgroups of individuals are no longer latent because all
but one stratum is eliminated.

In the recent statistical literature, there have been attempts to use different
identifying assumptions and Bayesian estimation procedures (e.g., [25, 37]) in order
to relax the exclusion restriction. The Elliott et al. estimator is limited to both binary
mediators and outcomes. We use the Bayesian estimator proposed by Gallop et al.

!Gallop [59] proposed Bayesian estimation of direct effects when the mediator is continuous.
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to estimate the principal strata effect. This approach was developed to estimate
the direct effect, although it estimates all four principal strata effects. Because the
authors were not interested in an unbiased causal estimate of the indirect effect, they
did not need an assumption of no unmeasured confounders of M and Y. However,
if interest lies in a causal estimate of the indirect effect, then this assumption is
required. In addition, both the TSLS IV and Bayesian estimators require assumption
(d). Although not explicitly stated in the previous literature, a post-7' confounder
violates the exclusion restriction because there is pathway from 7 to Y that does not
go through M.

Natural Effects Several estimators have now been proposed for estimating natural
effects (e.g., [38, 39]) but we will focus on the estimator proposed by Imai and
colleagues [4, 22] and implemented in the R package mediation [40], which uses
identifying assumptions (a)—(d). This estimator involves generating bootstrapped
samples and fitting models, which may be parametric or non-parametric, for the
observed outcome and observed mediator. From these models, potential values of
the mediator are simulated and then potential values of the outcome are simulated
given the simulated values of the mediator. Once all of the potential values for the
mediator and outcome have been simulated, the natural effects can be computed as
defined previously.

Controlled Effects VanderWeele [26] proposed using a marginal structural model
(MSM; [41]) with an IPW estimator for defining and estimating the controlled direct
effect in the mediation context. MSMs are models for the potential outcomes and are
used to define causal effects. For example, for a continuous outcome, the MSMs may
be given as E [M(t)] = Boy + Bitand E[Y (¢, m)] = Boy + B2t + Bzm, where 8, =
E[Y(1,m)—Y (0,m)] = (Boy + B2 + Bzm) — (Boy + Bzm) is the CDE defined
above, B; = E[M(1) — M(0)] = (Bom + B1) — Bowu is the effect of the intervention
on the mediator, and 83 = E[Y (t,m) — Y (¢, m)] is the effect of the mediator on
the outcome for T =t. A T x M interaction term can also be included in the MSM.
MSMs are fit by choosing an appropriate model for the observed outcome (e.g.,
linear regression, logistic regression, survival model), but using the IPW estimator
instead of the usual ordinary least squares or maximum likelihood estimator. As
long as assumption (e) holds, an estimate of the indirect effect may be obtained by
subtracting the CDE from the TE.

For controlled effects, we will also examine the modified G-estimator for the
rank preserving model (RPM) described in Ten Have et al. [34]. This estimator does
not require assumption (c); however, it does require that individuals are randomized
to the intervention (i.e., assumptions (a) and (b)). It also assumes that there are no
interaction effects between baseline covariates, X, and the mediator and between
baseline covariates, Xy, and intervention assignment on the potential outcomes.
However, there should be strong interaction effects between the baseline covariates,
X, and intervention assignment on the mediator. Essentially, this estimator is using
the interactions between baseline covariates, X, and intervention assignment as
instrumental variables. The G-estimator also requires assumption (e). Thus, in
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summary, the G-estimator exchanges assumption (c) for an assumption of strong
interaction effects between the baseline covariates and intervention assignment on
the mediator. Although not a stated assumption of the G-estimator (see [34, 35]),
assumption (d) is also required. The assumptions for each estimator are summarized
in Table 14.1.

S Simulation Study: Method

5.1 Simulation Study Conditions

The simulation study crosses four assumption violation conditions with four
confounding conditions. The first confounding scenario (A) does not involve
any confounders. The second confounding scenario (B) involves a pre-treatment
confounder, Xy, of M and Y that has not been influenced by 7. The third confounding
scenario (C) involves a post-treatment but pre-mediator confounder, X;, of M and Y
that has been influenced by 7. The fourth confounding scenario (D) involves a pre-
treatment confounder of 7, M, and Y, such that there is not random assignment to 7.
These confounding conditions are crossed with two sample size conditions, N = 100
and N = 500, and three other conditions that systematically violate the assumptions
of the different approaches; specifically, monotonicity, the exclusion restriction, and
the no-interaction between 7 and M assumption. A fourth condition in which none
of these assumptions are violated is also included. To summarize, for each sample
size, there are 16 simulation conditions as follows: no confounders/no violations, no
confounders/exclusion restriction violated, no confounders/monotonicity violated,
no confounders/no-interaction violated, unmeasured pre-7 confounder of M and
Y/no violations, unmeasured pre-T confounder of M and Y/exclusion restriction
violated, unmeasured pre-7" confounder of M and Y/monotonicity violated, unmea-
sured pre-T confounder of M and Y/no-interaction violated, post-7" confounder
of M and Y/no violations, post-7 confounder of M and Y/exclusion restriction
violated, post-T confounder of M and Y/monotonicity violated, post-7" confounder
of M and Y/no-interaction violated, unmeasured pre-7 confounder of 7, M, and
Y/no violations, unmeasured pre-7" confounder of 7, M, and Y/exclusion restriction
violated, unmeasured pre-7 confounder of 7, M, and Y/monotonicity violated,
unmeasured pre-T" confounder of 7, M, and Y/no-interaction violated.

In each of the simulation conditions, we generated 1000 data sets and estimated
the following causal effects: principal strata effects with TSLS IV estimator,
principal strata effects with Bayesian estimator, controlled effects using the IPW
estimator, controlled effects using the RPM G-estimator, and natural effects using
the Imai et al. [4] estimator.



276 D.L. Coffman et al.
5.2 Data Generation

The goal is for the data generation to be general enough that it does not favor one
approach over another. However, we also need to know the population values for
each of the effects. Therefore, we generated all of the potential outcomes for each
individual, including the ones that would never be observed for any individual—Y(1,
M(0)) and Y(0,M(1))—so that the causal effects defined previously may be directly
computed for each individual. By generating data for all potential outcomes, the true
values in all conditions are known.

Each of the simulation study conditions described above dictates the specific
values of population parameters (given in Table 14.2), but here we describe the
data generation generally. M is binary so that the comparison between principal
stratification and the other approaches is more straightforward. However, note that a
binary M is not necessary for estimating the controlled or natural effects. T is binary
and is generated from a binomial distribution with probability of 0.5 in confounding
scenarios A, B, and C. In confounding scenario D, T was generated from a binomial
distribution with a probability dependent on Xj. In other words, T is randomized
in confounding scenarios A, B, and C but not in D. Y is a continuous, normally
distributed variable.

The potential outcomes for M were generated according to a multinomial
distribution,

L,1Y) pu

0,0
M. M) =10 P
) Pio

0,1) pot
where, for confounding scenarios B, C, and D,

o0 Ty Xo+ry X
pll = 1 1

} :E :ey{j’+yifxo+ygxl

i=0 j=0

Thus, poo = P[M(0) =0, M(1) = 0], p11 = P[M(0) = 1,M(1) = 1], p1o = P[M(0) = 1,
M(1)=0], and po; = P[M(0)=0,M(1)=1]. For confounding scenario A, the
multinomial probabilities were set to particular values depending on whether or not
the monotonicity assumption was violated.

The potential outcomes for ¥ were generated according to a multivariate normal
distribution with mean,

E[Y (1, M(1))] = Bo + Bit + B2M(1) + B3tM(1) + BaXo + BsXi,
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where Xj is a pre-treatment confounder and X is a post-treatment/pre-mediator
confounder. The correlations among the four potential outcomes were set to 0.3 and
the error variance was set to 1.0. For the confounders, Xy was generated from an
N(0,1) distribution and X was generated from 7 + N(0,1), such that the intervention
had an effect on X;.

5.3 Population Values

The population values for each condition of the simulation study are given in
Table 14.2. For confounding scenario A in the conditions in which the monotonicity
assumption holds, p;o = 0 and poo = p11 = po1 = 1/3. The proportions for confound-
ing scenario A when monotonicity was violated were set to pgg =0.2, p;; =0.2,
p1o=0.1, and py; =0.5. For confounding scenario A only, we also studied a
condition in which the monotonicity assumption was violated and all proportions
were set to 0.25. The purpose of this condition was to examine what happens as the
proportion of defiers increases. In addition, because the proportions are equal, the
indirect effect is zero because for 25 % of the sample the indirect effect is positive
and for another 25 % of the sample, the indirect effect is equally negative. Thus, the
effects cancel out. Although it is unlikely that the stratum proportions would ever
be exactly equal or that the proportion of defiers would ever be as large as 0.25, this
condition provides some idea of how extreme the bias may become. In the mediation
context, the proportion of defiers represents the proportion of individuals for whom
the intervention has an iatrogenic effect on the mediator.

For confounding scenario D, the parameter settings were the same as confound-
ing scenario B. However, in confounding scenario D, T was generated from a
Bernoulli distribution with p = 1/(1 4+ exp(—0.2 * X)) so that the pre-T confounder
had an effect on intervention assignment. For only the N =500 sample size
condition, we examined a large effect size condition in which we replaced 0.39
with 0.59 for B, B, and B3 in Table 14.2.

6 Simulation Study: Results

The true values for each of the effects were computed according to the definitions
presented previously using the potential outcomes. For estimation of the effects, we
used only the data that would be available to an investigator (e.g., M;(1), Y;(1,M;(1))
if 7; = 1). We computed the Monte Carlo (MC) mean and standard deviation (SD)
across the 1000 replications. We computed the bias as the difference between the
MC mean and the true value, the mean squared error (MSE) as the squared bias plus
the squared MC SD, and the 95 % coverage as the number of times the confidence
interval (CI) included the true value divided by 1000 and multiplied by 100. The
results of the simulations, along with the true values, are given in Tables 14.3,



14 A Comparison of Potential Outcome Approaches for Assessing Causal Mediation

279

Table 14.3 Confounding scenario A (no unmeasured confounders) results (N = 500) for medium

effect size

IPWCDE IPW6, RPM6,,| RPMCDE| TSLSIV| Bayesian

NIE NDE |TE

No violations
TRUE |0.13 0 0.13 0 0.39 0.39 0
MEAN |0.131 | —0.002|/0.129 | —0.002 |0.391 |0.391 | —0.002
BIAS 0.001 | —0.002| —0.001| —0.002 |0.001 |0.001 | —0.002
SD 0.037 |0.094 | 0.090 |0.095 0.095 |0.095 |0.095
MSE 0.001 |0.009 |0.008 |0.009 0.009 |0.009 | 0.009
Coverage| 94.4% 94.9% | 94.8% | 94.0% |93.9% |93.9% |94.0%

Exclusion restriction violated
TRUE |0.13 0.39 0.52 0.39 0.39 0.39 0.39
MEAN |0.130 [0.391 |0.521 |0.391 0.392 10.392 |0.391
BIAS —0.000/ 0.001 |0.001 |0.001 0.002 | 0.002 |0.001
SD 0.034 |0.096 |0.091 |0.095 0.095 |0.095 |0.095
MSE 0.001 |0.009 |0.0083 | 0.009 0.008 |0.008 | 0.009
Coverage| 96.2% 1 953% [952% | 95.6% |95.7% |95.7% |95.6%

Monotonicity violated (all proportions equal)
TRUE |0 0 0 0 0.39 0.39 0
MEAN | —0.000/ 0.003 |0.003 |0.003 0.388 |0.388 | 0.003
BIAS —0.000/ 0.003 |0.003 |0.003 —0.002| —0.002 | 0.003
SD 0.018 |0.094 |0.097 |0.090 0.090 |0.090 |0.090
MSE 0.000 |0.009 |0.009 |0.009 0.008 |0.008 |0.009
Coverage| 95.1% 1 92.9% | 92.7% | 93.4% |95.7% |95.7% |93.4%

Monotonicity violated (p1g = 0.1, po; = 0.5, poo = p11 =0.2)
TRUE |0.156 |0 0.156 |0 0.39 0.39 0
MEAN |0.154 | —0.001|0.154 | —0.001 |0.387 |0.387 | —0.001
BIAS —0.002| —0.001| —0.002| —0.001 | —0.003| —0.003 | —0.001
SD 0.042 | 0.100 |0.093 |0.098 0.098 |0.098 | 0.098
MSE 0.002 | 0.010 |0.009 |0.010 0.010 |0.010 |0.010
Coverage| 96.3% 94.7% | 94.7% | 94.8% 953 % |953% |94.8%

0.39
0.383
—0.007
0.273
0.072
95.9 %

0.78
1.591
0.811
0.318
0.771
23.2%

0.39
1.444
1.054
43448.8
2236.32
99.7 %

0.39
0.387
—0.003
0.227
0.054
94.8 %

0.39
0.390
0.000
0.146
0.021
99.8 %

0.78
0.783
0.003
0.151
0.023
99.9 %

0.39
0.365
—0.025
0.285
0.082
99.3 %

0.39
0.390
—0.001
0.159
0.025
97.8 %

14.4, 14.5, 14.6, and 14.7 for the N =500 sample size condition. The results for
N =100 were similar; therefore, they are not presented here but are available
as supplementary online materials. Likewise, the results for the large effect size
condition were similar and are not presented here but are available as supplementary

online materials.

6.1 No Confounders

The results for the no confounders/no violations, no confounders/exclusion restric-
tion violated, and no confounders/monotonicity violated conditions are reported
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Table 14.5 Confounding scenario B (unmeasured pre-7 confounder of M and Y) results
(N = 500) for medium effect size
NIE |NDE |TE IPWCDE IPW6,,| RPM6,,| RPMCDE| TSLSIV| Bayesian
No violations
TRUE [0.132 |0 0.132 |0 0.39 0.39 0 0.39 0.39
MEAN |0.153 | —0.021/ 0.132 | —0.021 |0.450 |0.450 | —0.021 |0.388 |0.462
BIAS 0.021 | —0.021| —0.000| —0.021 |0.060 |0.060 | —0.021 |—0.002 |0.072
SD 0.038 | 0.097 |0.094 | 0.097 0.097 10.097 | 0.097 0.276 | 0.158
MSE 0.002 | 0.010 |0.009 |0.010 0.012 [0.012 |0.010 0.077 | 0.030
Coverage| 93.3%|93.5% 94.5% |94.0% |91.7% |91.7% |94.0% 95.6% | 99.8%
Exclusion restriction violated
TRUE |0.132 |0.390 |0.522 | 0.39 0.39 0.39 0.39 0.78 0.78
MEAN | 0.150 | 0.369 |0.519 |0.369 0.449 10449 0.369 1.567 |0.815
BIAS 0.019 | —0.021| —0.002| —0.021 |0.059 |0.059 |—0.021 |0.787 |0.035
SD 0.038 | 0.099 |0.095 |0.097 0.097 10.097 |0.097 0.315 | 0.165
MSE 0.002 | 0.010 |0.009 |0.010 0.013 | 0.013 0.010 0.719 | 0.028
Coverage| 93.0%| 94.5% | 95.0% | 94.6% | 90.1% |90.1% | 94.6% 257% |99.7%
Monotonicity violated
TRUE |0.005 |0 0.005 |0 0.39 0.39 0 0.39 0.39
MEAN | 0.005 | —0.001|0.005 |—0.001 |0.427 |0.427 |—0.001 |0.300 |0.426
BIAS 0.000 | —0.001| —0.000| —0.001 | 0.037 |0.037 |—0.001 | —0.090 |0.036
SD 0.020 [ 0.092 |0.094 |0.091 0.091 |0.091 |0.091 277.276 | 0.233
MSE 0.000 | 0.009 |0.009 |0.009 0.010 |0.010 |0.009 795.214 | 0.056
Coverage| 94.5%|94.9% | 95.0% [ 95.1% |91.9% [91.9% 95.1% 98.5% |99.7 %

in Table 14.3. For these conditions, there is no interaction between 7 and M.
Therefore, NIE; = NIE, and only one value, NIE, is reported; likewise for NDE
and CDE. In the no confounders/no-interaction violated condition, there are two
NIEs, NDEs, and CDEs, and results are reported in the top panel of Table 14.4. For
the principal strata effects, the results reported in the tables are for the estimand,
E[Y(1)=YO)|M(1)=1,M(0)=0].

For the condition in which all assumptions hold (i.e., exclusion restriction,
monotonicity, no interaction between 7 and M), all approaches give the same
unbiased results for all effects. For the condition in which the exclusion restriction
is violated, the TSLS IV results are biased with 24 % coverage but the Bayesian
principal strata effects are unbiased. Natural and controlled effect estimates are all
unbiased.

For the no confounders/monotonicity violated condition, we examined different
values (0.1 and 0.25) for the proportion of defiers. Thus, Table 14.3 reports two sets
of results for this condition. When monotonicity is violated, the TSLS IV results
are biased, with the bias increasing as the proportion of defiers increases from 0.1
to 0.25. The TSLS IV estimates are only slightly biased when the proportion of
defiers is small (0.1). When the proportion of defiers is larger (0.25), the MC SD
and therefore the MSE became very large. A proportion of defiers of 0.25 is an
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Table 14.6 Confounding scenario C (post-7° confounder of M and Y) results (N =500) for
medium effect size
NIE |NDE |TE IPWCDE IPW6,,| RPM6,,| RPMCDE| TSLSIV| Bayesian
No violations
TRUE |0.153 0.2 0.353 0.2 0.39 0.39 0.2 0.59 0.59
MEAN |0.173 /0.003 |0.176 |0.200 0.392 1 0.401 | 0.000 0.398 | 0.389
BIAS 0.020 | —0.197| —0.177, 0.000 0.002 | 0.011 |—0.200 | —0.192 | —0.201
SD 0.047 | 0.109 |0.103 |0.107 0.107 10.966 | 0.397 0.260 |0.235
MSE 0.003 | 0.051 |0.042 | 0.012 0.010 10932 0.197 0.107 | 0.096
Coverage| 94.4%| 55.4%  59.6% | 949% |96.3% |96.5% |94.9% 88.5% |97.8%
Exclusion restriction violated
TRUE | 0.153 | 0.590 |0.743 |0.59 0.39 0.39 0.59 0.98 0.98
MEAN |0.171 | 0.388 |0.559 |0.583 0.388 | 0.387 | 0.389 1.390 |0.772
BIAS 0.018 | —0.203| —0.185| —0.007 | —0.002| —0.003 | —0.201 | 0.410 | —0.208
SD 0.050 | 0.111 |0.104 |0.107 0.107 10925 0.379 0.287 ]0.228
MSE 0.003 | 0.053 |0.045 | 0.012 0.011 [0.854 |0.184 0.258 | 0.095
Coverage| 94.4%| 52.2% | 55.8% 93.2% | 95.8% 959% 93.0% 741% |99.6%
Monotonicity violated

TRUE |0.040 | 0.2 0.240 0.2 0.39 0.39 0.2 0.59 0.59
MEAN | 0.055 | 0.004 |0.058 |0.199 0.389 0412 |0.001 —1.278 1 0.362
BIAS 0.014 | —0.196/ —0.182| —0.001 | —0.001|0.022 |—0.199 | —1.868 | —0.228
SD 0.023 | 0.100 |0.101 |0.095 0.096 0438 0.110 3539.23 | 0.344

MSE 0.001 | 0.048 |0.043 |0.009 0.009 |0.193 |0.359 5859.25|0.170
Coverage| 96.0%|51.9% | 58.0% [ 95.4% | 949% 942% | 56.0% 99.3% | 95.6%

extreme case, as it is unlikely that the proportions in each stratum would be equal or
that the intervention would have an iatrogenic effect on this many individuals. Also
note that in this case, because the proportions for all strata were equal, the NIE true
value is zero because there is an equal proportion with a positive indirect effect and
anegative indirect effect and they cancel out. Natural and controlled effect estimates
are all unbiased regardless of the proportion of defiers.

For the condition in which the no-interaction between 7" and M assumption is
violated, TSLS IV estimates are biased with 2 % coverage. As mentioned previously
when discussing principal strata effects, this condition is also a violation of the
exclusion restriction. All other effect estimates were unbiased (see Table 14.4)
including the Bayesian principal strata estimate.

6.2 Pre-T Confounder of M and Y

The models fitted to the simulated data in this confounding scenario did not adjust
for the pre-T confounder. Thus, this set of conditions represents a violation of
the no unmeasured confounding assumption. Results are reported in Table 14.5
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Table 14.7 Confounding scenario D (unmeasured pre-7 confounder of 7, M, and Y) results
(N = 500) for medium effect size
NIE |NDE |TE IPWCDE | IPW6,,| RPM#6,, RPMCDE | TSLSIV | Bayesian
No violations
TRUE 0.132 |0 0.132 |0 0.39 0.39 0 0.39 0.39
MEAN | 0.157 |0.014 |0.171 |0.014 0452 10452 |0.014 0.492 1 0.468
BIAS 0.026 1 0.014 | 0.040 | 0.014 0.062 |0.062 |0.014 0.102 | 0.078
SD 0.039 | 0.097 | 0.093 | 0.098 0.098 |0.098 |0.098 0.267 |0.152
MSE 0.002 1 0.010 |0.010 | 0.010 0.013 |0.013 |0.010 0.082 | 0.029
Coverage| 91.3%| 94.6 %| 92.3% 94.5% |90.5% |90.5% |94.5% 93.8% |99.5%
Exclusion restriction violated
TRUE 0.132 1 0.390 |0.522 |0.39 0.39 0.39 0.39 0.78 0.78
MEAN |0.158 |0.404 |0.561 | 0.404 0452 10452 |0.404 1.624 1 0.851
BIAS 0.026 |0.014 |0.040 |0.014 0.062 | 0.062 |0.014 0.844 10.071
SD 0.039 1 0.097 | 0.093 | 0.098 0.098 |0.098 |0.098 0.304 | 0.150
MSE 0.002 |0.010 |0.010 |0.010 0.013 | 0.013 |0.010 0.803 | 0.027
Coverage| 91.7%| 94.4%| 92.4%|94.5% | 90.5% [90.5% | 94.5% 13.9% 99.3 %
Monotonicity violated

TRUE |0.005 |0 0.005 |0 0.39 0.39 0 0.39 0.39

MEAN | 0.008 |0.041 |0.049 |0.041 0.426 0.426 |0.041 0.152 0452
BIAS 0.004 |0.041 | 0.045 |0.041 0.036 | 0.036 |0.041 —0.238 | 0.062
SD 0.019 0.091 |0.092 |0.091 0.091 0.091 |0.091 134.72 | 0.237

MSE 0.000 |0.010 |0.011 |0.010 0.010 | 0.010 |0.010 212.72 | 0.060
Coverage| 95.2%|92.2%|92.4%|92.5% | 93.4% |93.4% 92.5% 513% 99.6%

for the unmeasured pre-7 confounder of M and Y/no violations, unmeasured
pre-T confounder of M and Y/exclusion restriction violated, and unmeasured
pre-T confounder of M and Y/monotonicity violated conditions. Results for the
unmeasured pre-7 confounder of M and Y/no-interaction violation condition are
reported in the second panel of Table 14.4.

For the unmeasured pre-T confounder of M and Y/no violations condition, the
TSLS IV estimates and the natural direct and indirect, and controlled direct effects
are unbiased. However, the Bayesian principal strata effects, and the estimates of
0y using either IPW or the RPM are slightly biased.

For the condition in which the exclusion restriction is violated, the TSLS IV
estimates are more severely biased, and the IPW and RPM estimates of 6, are
moderately biased. The remaining effects are unbiased. Coverage for the TSLS IV
estimate is 26 % but the NIE, NDE, and CDE have adequate coverage (approx. 93—
95 %).

For the condition in which monotonicity is violated, the NIE, NDE, and CDE
are unbiased. However, the TSLS IV and Bayesian principal strata estimates and the
estimates of 6, using either [IPW or RPM are biased. The TSLS IV estimate is more
biased than the RPM or IPW estimates of 6, and the Bayesian estimate. Again, the
MC SD and therefore MSE for the TSLS IV estimate are extremely large.
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For the condition in which the no-interaction between 7" and M assumption
is violated, the NIE;, NDEy ), CDEy, 6=, and the Bayesian principal strata
estimates were slightly biased, the NIEy, NDEy1), CDE;, and 6,,—¢ estimates
were unbiased, and the TSLS IV estimate was severely biased with unacceptable
95 % coverage (3 %, see Table 14.4).

6.3 Post-T Confounder of M and Y

In this confounding scenario, the exclusion restriction is violated in all the con-
ditions due to the post-7 confounder. For this confounding scenario, the models
fit to the simulated data included both the pre- and post-T confounders. Thus, the
no-unmeasured confounding assumptions are not violated. Results are reported in
Table 14.6 for the post-T confounder of M and T/no violations, post-7' confounder
of M and T/exclusion restriction violated, and post-7' confounder of M and
T/monotonicity violated conditions. Results for the post-7' confounder of M and
T/no-interaction violated condition are reported in the third panel of Table 14.4.

For the post-T' confounder of M and T/no violations condition (however, the
exclusion restriction is violated due to the post-7' confounder although there is
not otherwise a direct effect of T on Y), the TSLS IV and Bayesian principal
strata estimates, the NDE, and the CDE estimated via the RPM are biased to
approximately the same degree. The CDE estimated via IPW, the NIE, and 6y,
estimated via either IPW or the RPM are unbiased although the MSE of 6, for
the RPM is much larger than the MSE for the IPW estimates. The 95 % coverage
for the NDE and TSLS IV estimates is unacceptable.

For the condition in which the exclusion restriction is violated (i.e., there is
a direct effect of T on Y in addition to the effect through the post-intervention
confounder), the TSLS IV and Bayesian principal strata estimates, the NDE, and
the CDE estimated via the RPM are biased. The CDE estimated via IPW, the NIE,
and 0, estimated via either IPW or the RPM are unbiased although the MSE of 6,
for the RPM is much larger than the MSE for the IPW estimates. The 95 % coverage
for the NDE and TSLS IV estimates is unacceptable.

For the condition in which monotonicity is violated, the TSLS IV and Bayesian
principal strata estimates, the NDE, and the CDE estimated via the RPM are biased.
The CDE estimated via IPW, the NIE, and 6, estimated via either IPW or the RPM
are unbiased although the MSE of 6, for the RPM is much larger than the MSE
for the IPW estimate. The 95 % coverage for the NDE and TSLS IV estimates is
unacceptable.

For the condition in which the no-interaction between 7" and M assumption is
violated, all effects are biased to some degree. The TSLS IV estimate is the most
severely biased with unacceptable 95 % coverage (33.5 %, see Table 14.4). The
NDE),y0), NDEu1), CDE, the IPW 6,,—;, and the Bayesian principal strata effect
estimates were moderately biased. Coverage for these effects was also unacceptable.
The NIE;, NIEy, CDE;, and IPW 6 ,,,—, estimates were slightly biased.
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6.4 Pre-T Confounder of T, M, and Y

The models fitted to the simulated data in this confounding scenario did not adjust
for the pre-T confounder. Thus, these conditions represent a violation of the no-
unmeasured-confounders of 7 and Y, T and M, and M and Y assumptions. Results
are reported in Table 14.7 for the unmeasured pre-7 confounder of 7, M, and
Y/no violations, unmeasured pre-7" confounder of 7, M, and Y/exclusion restriction
violated, and unmeasured pre-7 confounder of 7, M, and Y/monotonicity violated
conditions. Results for the unmeasured pre-7 confounder of 7, M, and Y/no-
interaction violated condition are reported in the fourth panel of Table 14.4. There
is no post-7' confounder in any of the conditions for this confounding scenario
(Table 14.8).

For the unmeasured pre-T confounder of 7, M, and Y/no violations condition, the
TSLS IV estimate is biased. In this confounding scenario, the use of 7 as an IV is not
justified for the TSLS IV estimator. All other estimates are slightly biased. The bias
is most notable when compared to the corresponding bias in Tables 14.3 and 14.5.
For example, in Table 14.3, the no-unmeasured-confounding assumption holds and
there is no bias. In Table 14.5, the no-unmeasured-confounding assumption holds
with regard to T but not M. Bias for the NIE and 0, estimates using either IPW
or the RPM are essentially the same between Tables 14.5 and 14.7. However, the
bias for the NDE and CDE estimated using either IPW or the RPM are larger in
Table 14.7 than in Table 14.5 because the no-unmeasured-confounding assumption
for T is also violated in Table 14.7. Finally, the bias for the Bayesian principal strata
estimates increased in Table 14.7 compared to Table 14.5.

For the condition in which the exclusion restriction is violated, the results follow
the exact same pattern except that now the TSLS IV estimate is more severely
biased due to violation of the exclusion restriction. In addition, the 95 % coverage
for the TSLS IV estimate is unacceptably low (13.9 %). For the condition in which
monotonicity is violated, the results again follow the same pattern except that, in
addition, the MC SD for the TSLS IV estimate, and therefore the MSE, is extremely
large (Table 14.9).

For the condition in which the no-interaction between T and M assumption
is violated, the NIEy, NDEy ), and 6,— estimates are unbiased. The TSLS
IV estimates were again severely biased with unacceptable coverage (1.4 %, see

Table 14.8 Results of empirical data analysis for natural effects

Without interaction With interaction

Estimate | 95 % CI Estimate | 95 % CI
NIE, 1.384 0.215 |2.825 |2.251 0.348 | 4.859
NIE; 1.384 0.215 |2.825 |0.898 —0.494 |2.588
NDEy ) |1.313 —1.249 |3.680 | 1.595 —0.885 |4.334
NDEy;), |1.313 —1.249 |3.680 | 0.242 —2.631 |3.034

TE 2.697 0.321 |4.917 |2.493 0.300 |4.870



286 D.L. Coffman et al.

Table 14.9 Results of empirical data analysis for controlled effects using inverse
propensity weighted estimator

Without interaction With interaction

Estimate | SE 95 % CI Estimate | SE 95 % CI
CDE, |2.879 1.063 0.796 | 4.963 | 3.824 1.076 1.714 | 5.933
CDE, |2.879 1.063 0.796 | 4.963 | 0.972 2228 | —3.394 |5.338
Omy=o0 | 2.194 1.183 | —0.125 |4.513 |3.847 2.073 | —=0.216 | 7911
Omy=1 | 2.194 1.183 | —0.125 |4.513 |0.996 1.350 | —1.650 |3.641

Table 14.10 Results of Estimate | SE 95 9% CI

empirical data analysis for

Bayesian principal strata CACE 5.1318 [2.6897 | —0.5840 |10.4499

effects AACE | —1.3870 |4.8571 | —9.7951 |10.0298
NACE 24501 [2.9214 | —3.2872 | 8.5401

DACE 0.3493 | 6.1052 | —11.2820 | 13.2813

Table 14.4). The 6=, estimate was moderately biased. The NIE;, NDEy),
CDE,, CDE,;, and Bayesian principal strata estimates were all slightly biased
(Table 14.10).

6.5 Additional Overall Observations Regarding Results
of Simulation Study

The MC SD for the Bayesian estimates was generally larger than the MC SD for the
other methods. The MC SD for the TSLS IV estimates were much larger than that
for the other methods when there was an interaction between T and M. Coverage
for the Bayesian principal strata estimates was over 99 % in almost all simulation
conditions. The results were similar for the N = 100 sample size condition, which
are included in supplementary online materials. We also examined a large effect
size, 0.59 (see [42]), and obtained similar results. That is, all 0.39 values in
Table 14.2 were replaced with 0.59. These results are included in supplementary
online materials.

The IPW CDE and 6, estimates were unbiased when the no-interaction between
T and M assumption is violated (see top panel of Table 14.4). These estimates were
also unbiased when there was a post-7 confounder of M and Y (see Table 14.6).
However, when both of these assumptions were violated, these estimates were
biased (see third panel of Table 14.4). We examined this situation further by
generating 1000 replications for a sample size N = 10,000 and estimating the IPW
CDE and 6, effects. Although the MC SD decreased as would be expected due to
the increased sample size, the bias did not decrease. In fact, it remained consistent



14 A Comparison of Potential Outcome Approaches for Assessing Causal Mediation 287

with the bias reported in the third panel of Table 14.4. Thus, IPW CDE and
0y estimates are not robust for the post-7 confounder of M and Y/no-interaction
violation condition.

7 Discussion

The simulation study results illustrate that if the identifying assumptions used by
an estimator hold, then the estimator performs well in terms of bias, and if they
do not hold, then the estimator does not perform well in terms of bias. In addition,
some estimators seem to be more robust than others when assumptions are violated.
Specifically, the simulation study illustrates that the TSLS IV estimator of the
principal strata effects and the RPM G-estimator, which relies on interaction terms
that act as instrumental variables, require that the instrumental variable assumptions
hold and if they do not, these methods are just as biased as those that rely on
sequential ignorability. This problem has been known for quite some time when
attempting to estimate the causal effect of an endogenous variable on an outcome
[43] and it carries over to mediation analysis as well. Unfortunately, many of the
assumptions cannot be verified in empirical data, leaving the researcher to attempt
to justify the assumptions based on rational argument. However, we suggest that
researchers who use instrumental variable methods, such as the RPM, report the
strength of the interaction term on the mediator, as well as the strength of the
interaction term on the outcome. Note that the lack of an effect of the interaction
term on the outcome does not guarantee that the exclusion restriction holds and that
violation of the exclusion restriction cannot be verified or refuted from the observed
data [44]. Furthermore, weak instruments may actually amplify bias in comparison
with an unadjusted estimate (see e.g., [43—45]). In other words, using no instrument
can be better than using a weak instrument. We propose that researchers take the
following steps: define the causal estimand, justify the identification assumptions,
and try several estimators.

7.1 Comparison of Approaches in Terms of Definitions

The definitions of the various approaches coincide in very limited situations
in which all assumptions of the various approaches hold. Specifically, when
there are no confounders and all assumptions hold (i.e., exclusion restriction,
monotonicity, no interaction between 7" and M), then NIEy = NIE; = CACE and
NDE(0) = NDE(1y = CDE,,. Thus, one consideration in choosing an approach is
clearly articulating the scientific question of interest. For example, if the researcher
is interested in the causal effect of the intervention on the outcome among those
individuals for whom the intervention had an effect on the mediator in the intended
direction, then the principal strata effects are of interest. If the researcher is
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interested in the effect of the mediator on the outcome, then the controlled effects are
of interest, because the natural effects do not define this effect separately from the
indirect effect. If the researcher is interested in the causal effect of the intervention
on the outcome that is due to the mediator, then the NIEs are of interest.

7.2 Comparison of Approaches in Terms of Identification

For different empirical data sets, certain assumptions are more likely to hold than
others. For example, in some studies the exclusion restriction may be plausible, and
in other studies no post-intervention confounders may be more plausible. Thus, one
consideration in choosing an approach is the plausibility of the various assumptions
for a particular data set. For an extensively studied research area, scientists may have
knowledge about the validity of model assumptions but this knowledge is unlikely
in relative new research areas.

The assumption of no post-treatment confounders (assumption (d)), in which
there might be multiple mediators or confounders of the mediator and outcome that
have been influenced by the intervention, is likely to be violated in many studies.
Suppose a researcher is interested in the NIE, but assumption (d) is not plausible.
If instead assumption (e), no 7' x M interaction, is plausible, then an estimate of
the CDE can be obtained and subtracted from the TE to obtain an estimate of the
indirect effect. Another alternative is to include measures of the additional mediators
of the intervention in the statistical analysis, known as a multiple mediator model.
Accurate estimation of causal effects in this model is an active research area in the
field of causal inference (e.g., [46, 47]).

If a researcher is not able to justify any of the identifying assumptions, or
is particularly interested in a specific estimand and cannot justify the identifying
assumptions for that estimand, then it is important to find ways to assess the sensi-
tivity of the estimates to violations of the assumptions. In some cases, sensitivity
analysis has been developed. For instance, Imai et al. [4] proposed sensitivity
analysis to the no-unmeasured-confounding assumptions used in identifying natural
effects and implemented it in the R mediation package. VanderWeele [28] has
proposed a sensitivity analysis for the no-unmeasured-confounding assumptions
used in identifying controlled effects. Sensitivity analysis for the presence of a post-
treatment confounder for natural effect estimates has recently been developed [46].
However, one type of sensitivity analysis that researchers could try is using several
different estimators that rely on different identifying assumptions for the particular
definition of interest. If the results generally agree, it seems safe to conclude that
either the assumptions are not violated or that the estimates are not sensitive to
violations of them. Of course, if the results do not agree, the researcher does
not know which are correct. In any case, identifying causal effects will require
assumptions; thus, it seems development of sensitivity analysis is an important
direction for future research. Another alternative is to design future research studies
in order to reduce or eliminate the violation of assumptions.
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7.3 Comparison of Approaches in Terms of Estimation

If one particular definition of mediation is of scientific interest and the identifying
assumptions of a particular estimator are not plausible, then a different estimator
using different identifying assumptions may be used. For example, if controlled
effects are of interest and the no-unmeasured-confounders assumption is not
plausible, then the RPM using intervention-by-baseline-covariate interaction effects
on the mediator as IVs may be more plausible. New estimators for each of the
approaches that use different identifying assumptions are rapidly being developed
in the statistical literature (see e.g., [38, 39, 48]). However, none of these estimators
relaxes the no post-treatment confounders assumption for estimation of the natural
effects. If natural effects are of interest, and the no post-treatment confounders
assumption is unlikely to hold, then investigators may be able to define and estimate
the NDEs and NIEs on the treated as described in Vansteelandt and VanderWeele
[32].

7.4 Limitations and Future Directions

In this study, we only considered estimation—we did not consider hypothesis testing
and power. This and sensitivity analysis are directions for future work. We also did
not vary the strength of the confounding because the size of the simulation study
was already large. We would expect that as the effect of the unmeasured pre-T
confounder of M and Y (confounding scenario B), or of 7, M, and Y (confounding
scenario D) increases, the bias resulting from not accounting for the confounder
would also increase. We also did not vary the strength of post-7' confounder of M
and Y or of the interaction between T and M rather we examined only the presence
or absence of violations of these assumptions.

There are other estimators for each approach that we did not consider here.
For the principal stratification approach, we did not implement the Jo et al. [49]
estimator, which uses reference stratification and propensity scores. Elliott et al. [37]
proposed a Bayesian estimator for principal strata effects, although this estimator
is only applicable when there is a binary mediator and a binary outcome. For
estimating the natural effects, Hogan [39] proposed an imputation-based estimator,
Daniels et al. [38] proposed a Bayesian estimator, Vansteelandt et al. [50] proposed
an imputation-based estimator, and VanderWeele and Vansteelandt [51] and Valeri
and VanderWeele [52] proposed an estimator for dichotomous outcomes based on
the mediation formula [6, 53]. Several other estimators for the CDEs have been
proposed, including a sequential G-estimation approach proposed by Vansteelandt
[54] and an estimator proposed by Emsley et al. [55] that is very similar to the RPM
G-estimator. Albert [56] proposed a TSLS estimator that is similar to those proposed
by Dunn and Bentall [57] and Joffe and Greene [58].
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8 Conclusions

We examined three different definitions of causal effects in the mediation context.
For each of these definitions, we presented commonly used identifying assumptions
along with estimation methods using different sets of these identifying assumptions.
Specifically, we examined the TSLS IV and a Bayesian estimator for principal strata
effects, the Imai et al. [4] estimator for natural effects, and IPW and the RPM G-
estimator for controlled effects. In conclusion, we demonstrated that effect estimates
may be biased when the identifying assumptions underlying each method are vio-
lated. We recommend that researchers specify which definition (i.e., causal effect)
they wish to estimate along with consideration of the plausibility of assumptions
made. For the mediation case with randomized 7, two critical assumptions are the
extent to which there is confounding of the M to Y relation and the extent to which
there are effects of the treatment (i.e., post-treatment confounders) that confound the
M to Y relation. Mediation analysis from a potential outcomes framework provides
a more detailed approach to understanding mediating processes by specifying the
definitions and assumptions necessary for causal inferences. Finally, we suggest
that whenever possible researchers conduct sensitivity analyses.
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Chapter 15
Causal Mediation Analysis Using Structure
Equation Models

Douglas Gunzler, Nathan Morris, and Xin M. Tu

Abstract Structural equation modeling (SEM) is an extremely flexible, powerful
technique for causal mediation analysis. In this chapter we discuss advantages to
using the SEM framework in the context of causal mediation analysis. SEM is
designed, in part, to test these more complicated mediation models in a single
analysis. Thus the approach allows for ease of interpretation and estimation, while
simplifying testing of mediation hypotheses. SEM can be used when extending
a mediation process to multiple independent variables, mediators or outcomes,
including latent constructs and performing longitudinal data analyses. In this
chapter we also discuss SEM model fit information about the consistency of the
hypothesized mediational model to the data. Standard causal inference assumptions
used when deriving causal indirect effects can be applied in the SEM framework for
inference with non-continuous outcomes and mediators.

Current SEM methods impose various restrictions on the study designs and
data distributions, limiting the utility of the information they provide in real
study applications. In particular, in longitudinal studies missing data is commonly
addressed under the assumption of missing at random (MAR), where current
methods are unable to handle such missing data if parametric assumptions are
violated. We also discuss in this chapter a robust approach to address the limitations
of current SEM within the context of longitudinal mediation analysis by utilizing
a class of functional response models (FRM). Being distribution-free, the FRM-
based approach does not impose any parametric assumption on data distributions
and can handle different types of outcomes (i.e., continuous, count outcomes).
In addition, by extending the inverse probability weighted (IPW) estimates to the
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current context, the FRM-based SEM provides valid inference for longitudinal
mediation analysis under the two most popular missing data mechanisms; missing
completely at random (MCAR) and missing at random (MAR). We illustrate the
SEM approaches discussed in this chapter with real data.

1 Basic Advantages of Using Structural Equation Modeling
for Causal Mediation Analysis

There are many advantages for using the structural equation modeling (SEM)
framework in the context of mediation analysis [1-3].

* SEM allows for the inclusion of latent variables such as happiness and quality of
life.

* SEM allows for the joint estimation of all parameters of a mediation model in a
single analysis.

* SEM allows for the extension of the mediation process to include multiple
independent variables, mediators, or outcomes in a single model.

* Many techniques are available (i.e., full information maximum likelihood) for
handling missing data under various assumptions for a structural equation model
in a single analysis.

* SEM approach provides model fit information about consistency of the hypothe-
sized mediational model to the data.

* SEM implies a functional relationship among variables via a conceptual model,
path diagram, and mathematical equations thus giving a rich, natural language
for expressing causal relationships.

Causal inference methods can be directly applied in the SEM framework for
causal mediation [4-6]. Thus, these approaches address the issues of potential
confounders of the mediator—outcome relationship, potential interaction between
the mediator and treatment, as well as provide definitions for deriving effects for
analyses involving mediators and outcomes that are not on an interval scale (i.e.,
count data, categorical data) all within the SEM framework. These approaches can
be readily implemented in MPlus (Muthen, 2011) [S]. MPlus is more generally a
program for latent variable modeling of which classical SEM is a special case [7].

SEM allows for ease of extension to longitudinal data within a single framework,
corresponding with a study’s conceptual framework for clear hypothesis articulation
[8]. Latent growth modeling (LGM) is an SEM extension for longitudinal data, and
shows great flexibility in evaluating mediating relationships between multiple time-
varying measures [8]. For example, the parallel process LGM framework can be
used to evaluate how growth in the mediator influences growth in the outcome
[9]. This LGM framework assumes no strong temporal relationship between the
mediator and outcome, only in the growth of the mediator and growth of the
outcome. Autoregressive and latent difference scores have also been used for
longitudinal mediation analyses with SEM given a temporal relationship between
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the mediator and outcome. For more information on the topic of SEM extensions
for longitudinal data in the context of mediation, see MacKinnon [10].

2 An Overview of Structural Equation Modeling

SEM is an extremely powerful and flexible multivariate modeling framework which
addresses two central issues of real-world importance: measurement error (i.e.,
latent variables) and causal networks such as mediation [1, 2]. Classic approaches
to SEM model the relationship between the covariance and the parameters. Suppose
we aim to estimate v unknown model parameters from a total of w observed and w*
unobserved (latent) variables. Then using the classic SEM we model the covariance
matrix as X = X (0) for a vector of unknown parameters 0 of dimension v x 1 and
the variance—covariance matrix of our observed variables X (0) of dimension w x w.

In more modern approaches to SEM, we often have to look outside of the
covariance between variables [11]. For example, with categorical variables the
covariance between variables alone is not a sufficient statistic for determining
the likelihood. In such cases we may require information from individual level
data or information from the fourth-moment instead of the covariance matrix.
Numerous traditional statistical techniques such as ANOVA, linear regression and
factor analysis can all be expressed in the SEM framework. Many more specialized
techniques such as modeling feedback loops, latent constructs, and path analytic
models can also be handled with SEM.

More specific to the nomenclature of SEM, in the context of mediation, we can
view SEM as a conceptual model, path diagram, and system of linked regression-
style equations to capture the mediating relationships among a web of observed
and unobserved variables. The conceptual model is a general idea of the mediating
relationships under study. We explain the concepts of the path diagram and the
general LISREL form of structural equations in Sects. 3 and 4.

Conducting SEM analyses in the context of mediation analysis may involve
four steps (1) specifying the model (2) assessing model fit (3) making any model
modifications (4) testing mediation hypotheses of interest. David A. Kenny defines
model specification as the “translation of theory, previous research, design, and
common sense into a structural model” [12]. In this process, a researcher indicates
causal paths and directionality between variables (latent or observed) under study
based on a hypothesized mediation model. In the context of mediation analysis,
we may be interested in evaluating a specific mediation effect adjusted for other
model components, which in SEM is all done in a single analysis. We discuss model
fit in Sect. 5. Model modifications based on empirical criteria (such as comparing
between competing models or examining modification indices) may be useful in
more complex structural equation models with multiple independent variables,
mediators, and outcomes. However, since we mostly focus on simpler mediation
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models in this chapter to showcase the advantages of SEM in this context, we refer
an interested reader to other resources that discuss model modification in SEM such
as Kline [1] or Gunzler and Morris [11].

3 Path Diagrams

A path diagram for a mediation model will consist of nodes representing the vari-
ables, and arrows showing relations among them. In a path diagram, latent variables
(e.g., depression or stress) are distinguished from their observed counterparts in
convention by using a circle or ellipse rather than the rectangular or square box
used for the observed variables. Error terms are generally denoted by a letter or
symbol (i.e., e or &) notenclosed in a shape. Arrows are generally used to represent
relationships among the variables. A single straight arrow indicates a causal relation
from the base of the arrow to the head of the arrow. Two straight single-headed
arrows in opposing directions connecting two variables may be used to indicate a
feedback loop. A curved two-headed arrow indicates there may be some association
between the two variables.

Path diagrams can be understood as implying certain conditional independence
relations among variables. Such conditional independence relations can be extracted
from the path diagram using the “d-separation” rule. D-separation is a criterion for
determining, from a given diagram, whether a set X of variables is independent of
another set Y, given a third set Z [4]. If the particular variables x and y are not d-
separated by z (i.e., z does not block the causal path between them), then they are
said to be d-connected by z. Note that d-connected is another way of describing
mediation [13]. See Bollen [2] and Pearl [4] for a more complete explanation of
these rules and for details about modeling complex relationships involving latent
constructs using path diagrams and SEM.

As an example of a path diagram for a hypothesized mediation, Fig. 15.1
represents the path diagram for the causal path from time since symptom onset

Time Since Vi Depression Screen

Symptom Onset (x;) Total Score ()

Cognitive Decline /gyi

(z)

T

&

zi

Fig. 15.1 Path diagram for the hypothesized mediation model for the causal path from time since
symptom onset to depression
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in multiple sclerosis (MS) patients to depression. Here, also indirectly, symptom
onset effects depression through cognitive decline. Since this path between symptom
onset and depression is not blocked by cognitive decline, these two measures are d-
connected by cognitive decline. All variables in this path diagram are observed.
However, a concept like depression can potentially be a latent variable constructed
from multiple observed items that are indicators of depression instead of a sum total
score as depicted on this diagram.

In SEM, there are two classes of variables: exogenous and endogenous. Endoge-
nous variables act as an outcome in at least one of the structural equations, while
exogenous variables are always independent variables. Thus, endogenous variables
are those nodes with no arrows pointing into them, and, thus, their variation is not
explained by other factors in the model. From Fig. 15.1, depression and cognitive
decline are endogenous variables, while symptom onset is an exogenous variable.

4 The LISREL Formulation of SEM

LISREL is a popular way to express structural equation models in a general matrix
form [2, 14]. In this approach, two sets of equations are formed: the structural
equations and the measurement equations [2]. The measurement equations explicitly
model measurement error and latent variables. The structural equations show
potential causal links between endogenous and exogenous variables [1, 2].

The measurement equations can be expressed in the following form:

y=uy+An+e (15.1)
X =Wy + AE+8 ’

Here, v is a vector of m unobserved latent endogenous variables which are measured
by the p observed variables y. Similarly, § represents a vector of r unobserved
latent exogenous variables which are measured by the g observed variables x. The
equations for y and x include vectors of intercepts, b, and p,, matrices of slopes,
A, and A, respectively, and vectors of corresponding random error terms, & of
dimension p x 1 and 8 of dimension g x 1, respectively. p, is of dimension p x
1 and p, is of dimension ¢ x 1, and A, is of dimension p xm and A, is of
dimension g x . A, and A, are often referred to as loading matrices.

The structural model, which relates the unobserved latent variables to each other,
can be expressed in the following form:

n=n,+Bn+TE+¢ (15.2)

L, is an m x 1 matrix of intercepts for the unobserved endogenous latent variables,
B is an m x m matrix of slopes relating the unobserved endogenous latent variables
to each other, I' is m x n matrix of slopes for the unobserved exogenous latent
variables, and ¢ is an m x 1 vector of random error terms for the unobserved
endogenous latent variables.
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In the special case of no latent variables, such as in the mediation model
corresponding to Fig. 15.1, there is no measurement model because all variables
are measured without error (i.e., y = n and x = §). Thus the form of the structural
model in (15.2) can be simplified to observed variables only:

y=n, +By+Ix+¢ (15.3)

Here, p, is a p x 1 matrix of intercepts, B is a p X p matrix of slopes for the observed
endogenous variables, I' is p x g matrix of slopes for the observed exogenous
variables, and & is p x 1 vector of random error terms for the observed endogenous
variables.

Given a little algebra, under the assumption that I — B is invertible, from (15.2)
all endogenous variables can be moved onto the left side of the equation, while all
exogenous variables remain on the right side:

n=pn,+Bn+TE+¢{
I-B)n=p,+TE+¢

n=I-B)'n, +I-B)'Te +T-B)'¢
n=0-B)" (k, +T§) +x

(15.4)

where I is the identity matrix of dimension m x mand {*x = (I — B)_li;. As follows,
(15.3) can be rewritten in a similar form to (15.4) given no latent variables:

y=T-B)" (n, +Tx)+Ex (15.5)

5 SEM for a Mediation Model

The SEM for the typical mediation process with a single independent variable,
mediator, and outcome as depicted in Fig. 15.1 can be expressed by the following
structural equations:

Yi="VYo+ VayZi + VxyXi + Eyis (15.6)
i = ﬁ() + ,szxi + &
Note that the two structural equations are linked together and inference about them
is simultaneous, based on a joint distribution, unlike two, independent standard
regression equations.
Here, we might assume, given that multivariate normality is an appropriate
assumption
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. 2
(S-W) ~N@O,¥), W= (Uy 02) . (15.7)
& 0 o

Note that we are assuming that Cov (eyi, ezi) = 0 in assuming no mediator—outcome
confounding.

This mediation model is not linear (i.e., it is curvilinear) in terms of the
parameters [15]. To see this, we can express these equations in the form of (15.3):

Yi|l _ | Yo OVZ Yi Vx X; 8yi
[Zi}_[ﬁo}+[0 g][zl}_'_[ﬂx);} l+[8zz} (9

Likewise, we can express them in a form similar to (15.5):

HE AN DR AN

. (15.9)
— Yo + sz:BO + (yxy + sz,sz) X; + Eyi
Bo + Buzxi + €

The above SEM is clearly not linear in the parameters because of the terms y,80
and y By in the first row of the matrix in (15.9).

The direct effect is the pathway from the exogenous variable to the outcome while
controlling for the mediator. Therefore, in our path diagram in Fig. 15.1 y,, is the
direct effect. The indirect effect describes the pathway from the exogenous variable
to the outcome through the mediator. This path is represented through the product
of By and y_,. Finally, the total effect is the sum of the direct and indirect effects of
the exogenous variable on the outcome, Y.y, + Bi;Vzy-

The primary hypothesis of interest in a mediation analysis is to see whether the
effect of the independent variable or intervention on the outcome can be mediated
by a change in the mediating variable. In a full mediation process, the effect
is 100 % mediated by the mediator that is, in the presence of the mediator, the
pathway connecting the intervention to the outcome is completely broken so that
the intervention has no direct effect on the outcome. In most applications, however,
partial mediation is more common, in which case the mediator only mediates part
of the effect of the intervention on the outcome, that is, the intervention has some
residual direct effect even after the mediator is introduced into the model.

Inference (standard errors and p-values) for testing mediation effects in the SEM
framework is easily performed using the Delta method (e.g., Sobel [16]; Clogg
et al. [17]). Currently a popular approach to assessing mediation is to bootstrap
confidence intervals (percentile, bias-corrected, and bias-corrected, and accelerated)
for total and specific indirect effects [18].

The sample size or power for mediation analysis might be derived using
simulation techniques under full mediation, where the direct effect is equal to zero,
vs. a suitable alternative effect size to be considered for the direct effect.
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Significant advances have been made over the past few decades in the theory and
applications as well as software development for fitting SEM models that can be
used in the context of mediation analysis. For example, in addition to specialized
packages such as LISREL [14], MPlus [19], EQS [20], and Amos [21], procedures
for fitting SEM are also available from general-purposes statistical packages such
as R, SAS, STATA, and Statistica. These packages provide inference based on
maximum likelihood, generalized least squares, and weighted least squares.

Typically, robust maximum likelihood approaches are used for SEM analysis. For
example, in MPlus, the MLR approach uses ML to estimate the parameters, but uses
a robust sandwich type estimator (Huber—White sandwich estimator) to calculate
standard errors that are robust to model assumptions such as multivariate normality
[22]. Bootstrapping is a similar but more computationally intensive approach to
creating robust standard errors [23].

Both ML and MLR provide a method for dealing with missing data under the
missing at random (MAR) assumption. For example, a slight modification of ML,
full information ML (FIML) is one such approach to handle missing data under
MAR assumption as implemented in MPLUS [19]. In this approach, all parameters
and standard errors are derived from the joint distribution of the endogenous
and exogenous variables, given assumptions such as multivariate normality and
conditional independence. Under these assumptions, the marginal likelihood after
integrating out the missing values can be maximized. Individual level data is needed
for FIML.

6 Model Fit

Model fit indices are measures of the discrepancy between the model and data. In
SEM analyses we evaluate a collective group of model fit measures which each
represents different aspects of model fit. We provide a brief introduction here of
some of the statistics and indices that will be useful for mediation analyses.

For starters, an asymptotically chi-squared distributed test statistic (or robust
corrected statistic) provides a basis for assessing model fit, and in itself tests overall
model fit. The null hypothesis is that there is no difference between the proposed
model and the data structure, while the alternative hypothesis is that there is a
difference between the proposed model and the data structure. Thus, a large chi-
squared test with a corresponding small p-value indicates that the model does not fit
the data. However, commonly, studies will reject the null as the chi-squared statistic
is affected by nonnormality, correlation size, low power, and sample size (both too
small or too large).

A commonly used index, Root Mean Square Error of Approximation (RMSEA)
[24], is a point estimate that builds on this chi-squared statistic but is parsimony
and sample size corrected. Confidence intervals can be constructed around the point
estimate. A close fit hypothesis can be tested for the model using RMSEA. There
are several limitations to the fit index, namely, RMSEA may not exactly follow an
assumed non-central chi-square distribution, may be sensitive to nonnormality, and
may favor larger models.
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Another commonly reported fit index, the Comparative Fit Index (CFI) [25], is an
incremental fit measure comparing the fit of the model to a baseline model (typically
the model for the data of interest with no covariance) on a zero to one continuous
scale. The closer the CFI index is to one, the better the model fit.

The Tucker-Lewis Index (TLI) [26] is another commonly reported incremental
fit measure with a higher penalty for adding parameters than CFI, and without
the zero to one range restriction. A commonly used absolute fit index, based
on standardized difference between the observed correlation and the predicted
correlation, is the Standardized Root Mean Square Residual (SRMR) [27].

Some general rule of thumb guidelines in SEM literature are that RMSEA < 0.05
indicates an excellent fit while <0.08 is acceptable; CFI and TLI<0.90 are
acceptable and <0.95 are excellent fit. In addition, all three indices should reach
acceptable (preferably excellent) levels before designating a model as good fitting.
SRMR value < 0.08 represent a good fit with the model.

7 Limitations of SEM for Mediation Analysis

The specified mediation model in an application of SEM must be plausible to obtain
meaningful results. Causal assumptions, such as sequential ignorability or temporal
order of variables, should be based on strong scientific theory and prior evidence.
SEM often requires a large sample size, where the number of parameters vs. sample
size is an important consideration.

Model identifiability is an issue that often arises when performing SEM analyses.
Essentially, models are not identifiable if different values for the parameters (e.g.,
multicollinearity) can lead to the same distribution. Similarly, there may be multiple
equivalent models that fit the data equally well. Again, there is no statistical
inference, only scientific theory and prior evidence, that will allow a researcher to
choose between these equivalent models. Further, there are some similar limitations
with SEM as with traditional methods, as covariance and correlation matrices
analyzed may be influenced by missing data and outliers.

8 Applications to a Multiple Sclerosis-Depression
Study Using MPlus

Cleveland Clinic’s Knowledge Program (KP) links patient-reported PHQ-9 data to
its EPIC electronic health record (EHR) [28]. The Mellen Center [29] for Multiple
Sclerosis manages more than 20,000 visits and 1000 new patients every year for MS
treatment. The KP tracks illness severity and treatment efficacy over time across the
Mellen Center population.
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The PHQ-9 is a nine-item self-reported depression screening tool [30]. Patients
specify frequency in the past 2 weeks (0 =not at all to 3 =every day) of nine
symptoms, yielding a total score (range: 0-27). The KP collects eight Performance
Scales and three assimilated scales (PS) [31-33] which are single item patient-
reported disability measures. These include MS-related fatigue, cognitive, hand
function and mobility domains with six ordinal responses.

We discuss here a retrospective study with observational data from 3507 MS
patients from 2008 to 2011. All patients had a PHQ-9 score, and approximately
90 % of patients had no missing data on the measures assessed in this section. All
missing data could be handled using FIML approach in MPlus.

Considering the context of the study and prior theory about the relationship
between MS and depression, mediation analysis was used to evaluate the hypothesis
that a longer time since symptom onset leads to increased cognitive decline which
leads to higher levels of depression (see Fig. 15.1 for path diagram).

Mediation analysis with SEM was performed in MPlus using a maximum
likelihood estimator while bootstrapping 95 % bias-corrected (BC) confidence
intervals using the percentile method. Age, gender, and race were controlled for
in the structural equations for each endogenous variable in the structural model.
Standardized estimates were reported rather than raw estimates, so that estimates
from different structural equations are on the same scale and are straightforward to
assess in terms of magnitude (between —1 and 1).

In the mediation model, both estimated paths for the indirect effect were
significant (p <0.001) with ,B\xz = 0.08 and ?Zy = 0.60. The direct effect was also
significant (p = 0.001) with ?xy = —0.06. The estimate of the indirect (mediated)

~

effect was thus B,y = 0.08 x 0.60 = 0.05.

The 95 % bootstrapped BC confidence intervals around this point estimate of the
indirect effect were (0.023, 0.075) which does not contain zero. Thus, we could
conclude from this analyses that while a longer time since symptom onset lead to a
decreased PHQ-9 total score (see direct effect), cognitive decline was a mechanism
of change (partial mediator). In line with our prior hypothesis a longer time since
symptom onset leads to increased cognitive decline which leads to a higher PHQ-9
total score. Since this model is just identified (fit the data exactly) tests of model fit
cannot yield useful results.

We discuss an application of a more complex mediation model to showcase
advantages of the SEM framework for mediation and to assess model fit. The
path diagram in Fig. 15.2 corresponds to an extension of the previous mediation
model. Instead of just using the PHQ-9 total score as an outcome, we form a latent
variable for depression using the nine individual PHQ-9 items [11, 34]. This model
includes additional mediators (hand function and mobility) along with another
outcome (fatigue) describing MS symptoms. The relationships specified for our
analyses were derived from a priori theory from MS specialists and prior studies
[34-37]. However, there does not seem to be clear prior evidence for making causal
assumptions about the relationship between cognitive decline and fatigue. Thus, we
omit this relationship.
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Fig. 15.2 Path diagram for the hypothesized multiple mediator multiple outcome model for the
causal path from time since symptom onset to depression and fatigue. For visual ease we leave
out of this diagram all error terms for the endogenous variables and correlations (all are significant
p <0.001 and of a positive magnitude) among the three mediators (cognitive decline, hand function,
and mobility) and among the two outcomes (depression and fatigue)

Given all the additional causal paths, the model did not show a good model fit
according to multiple SEM fit statistics and indices in comparison with our rule of
thumb guidelines: )(2(92) =13722.673, p <0.001; RMSEA (90 % Confidence Inter-
val) = 0.106 (0.103, 0.109); CFI = 0.845; TLI = 0.781; SRMR = 0.055. Therefore,
potentially a researcher may want to modify the model (based on both clinical theory
and empirical criteria) before reporting these findings. For more information on how
to perform model modification using modification indices, see Kline [1] or Gunzler
and Morris [11].

In Table 15.1 we show all the model derived specific and total indirect effects.
We can assess these specific and total indirect effects while accounting for other
model relationships. For example, given this more complex model, controlling
for other relationships, and a latent construct for depression, the mediated effect
is still significant, but of a lower magnitude, from symptom onset — cognitive
decline — depression (see Table 15.3) compared to the simpler model correspond-
ing to Fig. 15.1. The total indirect effect from symptom onset to depression, while
adjusting for all other model relationships, is the sum of the three individual indirect
effects from symptom onset to depression (0.025 + 0.015 + 0.035 = 0.075).

9 FRM-Based Distribution-Free SEM Approach
for Mediation

In mediation analysis for a longitudinal study, missing data is commonly addressed
under the assumption of MAR using a maximum likelihood-based estimator (i.e.,
ML or MLR). However, current methods are unable to handle such missing data
if parametric assumptions are violated. For an example of this, we simulated a
mediation model with missing responses over MAR at three repeated measures
at different sample sizes (n =50, 100, 2000) [38]. This model included central
t-distributed random error terms with 3 degrees of freedom and no missing data
at baseline (# = 1) and about 15 % (30 %) missing data at time # =2 (3). Since the
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Table 15.1 Assessment of potential mediation effects for multiple
mediator multiple outcome MS-depression example using the bias-
corrected bootstrapping method

Pathway Estimate | 95 % lower CI | 95 % upper CI
Symptom onset — Depression

Total effect —0.013 | —0.058 0.032
Direct effect —0.088 | —0.125 —0.051
Total indirect effect 0.075 0.048 0.102
Specific indirect effects via

Cognitive decline 0.025 0.012 0.039
Hand function 0.015 0.003 0.028
Mobility 0.035 0.024 0.045
Symptom onset — Fatigue

Total effect 0.056 0.014 0.098
Direct effect —0.026 | —0.063 0.010
Total indirect effect 0.082 0.058 0.107
Specific indirect effects via

Hand function 0.018 0.003 0.033
Mobility 0.064 0.049 0.079

error terms are z-distributed, the joint normal distribution assumption is not met in
the presence of missing data following MAR. For more technical details about the
simulated model, see Gunzler et al. [38].

As shown in Fig. 15.3 ML-based methods will show bias in estimating the
primary parameters of interest of the mediation model at all sample sizes (small
to large) while the robust Functional Response Modeling (FRM)-based approach
[15] will exhibit little bias that decreases as the sample size increases [38].

We now provide details about the FRM-based approach. Consider the mediation
model in Eq. (15.6). We can replace our outcome, mediator, and independent
variable (y;,z;,x;) with appropriate time-varying versions (y;,Zzi,X;1) given data
collected at three repeated measures at + = 1,2,3 and temporality among the
measures for assessing longitudinal mediation (x;; — 2o — yi3).

yiz = Yo + YaZio + VoXit + Eyizs (15.10)
7o = Bo + BuXit + &

In performing robust inference, we can relax our assumption of multivariate
normality and instead just assume that the distribution of the error terms is
continuous:

. 2
(s'wé) ~ (0, ¥), ¥= ( ) 2), xin L em, xin,zp Ley  (15.11)

&0 0 o;
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Fig. 15.3 Simulation results: mean estimates — population estimates (£ standard errors) show
the bias in ML while FRM performs well with missing data. Adapted from Gunzler D Lu N
Tang W Wu P Tu XM A Class of Distribution-free Models for Longitudinal Mediation Analysis.
Psychometrika 2014, 17(4), 543-568

In (15.11) we apply a stronger independence assumption for no correlation between
the mediator and outcome (termed pseudo-isolation) than in (15.6). It is then readily
checked that:

Cov (8),[3, Eziz) = Cov (8y,'3,Z,'2) =0 (15.12)

To apply FRM in our setting to the revised mediation model for (y;3, zi2, xi1) to
estimate a set of parameters 8 = (Yo, Y2y, Vxy» Bo, Bz 02, 0)?), then let

f, = (7.11)", h;(8) = h(x, 8) = (b, (9),h (8))",
i=1,2,...,n,

fii = i3, z0)" s fo = (y,'23vy53Z527Zi22)T7 X; = X1,

hi: (0) = ((vo + 7B0) + (Vay + VauBrc) Xt Bo + Buexin)

hy (0) =E (£ | x) = (E(y3 | %)) .E (viazo | X)) . E (22 | Xi))T,

(15.13)

where
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E (Zizz | Xi) = UEZZ + (Bo + ﬁxzxil)z»
E (ynzio | Xi) = Vay (Bo + Buzxit) (Bo + Bxexit) + V202

+ (Bo + Buxit) [ (Yo + ¥=yBo) + (Vay + VauBaz) xa] . (15.14)
E (yi23 | Xi) = yfyofz + Uszy + [(VO + VZ»BO) + (ny + szﬁﬂ) xil]z-

Then, the FRM for the SEM in (15.10) is
E(f,»|x,-)=h,»(0), i=l,2,...,n. (1515)

Given the pseudo-isolation assumption as in (15.11), an alternative FRM can be
defined to estimate the parameters of primary interest § = (yo, Yoy Yays Bos ﬁxz)
without the help of higher-order moments. For details on this alternative FRM, see
Gunzler et al. [38].

Let

S;=f—h;(0), Di= %hi 9) (15.16)

The following estimating equations are well defined and readily evaluated in closed
form:

1 1<
W, (0) = ;Z W, = ZZD,'VI-_IS,‘ =0 (1517)
i=1 i=1

V; is the working variance matrix. A necessary condition is to select V; to ensure
that E (w,) = 0. A sufficient condition is that E (Vi_lSi‘x,-) = Vl._lE (Si}x,-) . One
trivial solution for V; is the identity matrix. The estimating equations in (15.17) can

be solved using, for example, the Newton Raphson algorithm.
Under mild regularity conditions, regardless of data distributions:

ﬁ(@— 0) L N@©, %),
20 — B—lE(DlVl—lSlSlT‘/l—lDIT) B_T, (1518)
B =E(D'V:'D;)

Both Wald and Score Tests have been developed to test the true value of parameters
of a mediation model based on the sample estimates using the FRM-based approach
[38].

While these estimating equations provide valid inference under complete data
and the MCAR assumption, weighted estimating equations are necessary for valid
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inference when the missing data follows the MAR assumption. Using Inverse
Probability Weighting (IPW) we can develop a set of weighted estimating equations
for inference about 6. We provide a sketch here. Assume no missing data at baseline
(t=1) and monotone missing data for =2 and 3. Then, let

p= {1 Haeandyiare observed o L)t (15.19)
0 if z; and y;, are missing

mo=Pr(ri=1|x2y), Ay=-", 22123, (15.20)

TCit

Now let
B o 0 0 0
i3
Ti2
00— 0 0 O
Ti2
Ti3
A = 0 0; 0 0 (15.21)
N

0 0 00— O

i3 .

0 0 0 0-2

T2

Then, the weighted estimating equations are
w,(0) = liw P = an:D-VflAS =0 (15.22)
n nl=1 ni nl=1 [ ™~ .

For details about solving these weighted estimating equations and the asymptotic
properties, see Gunzler et al. [38].

The distribution-free FRM-based approach is straightforward to extend to non-
continuous mediators and outcomes (i.e., count, categorical). For example, if y; is a
binary outcome, the revised model

Zo = Bo + BeXxit + &, Yi3|Xit, 2 ~ Binomial (u;, 1),

pi=E (YiS ‘xn,ziz) . logit (i) = yo + yoXin + YaZi, (15.23)
e ~N(0,02), xiLey

Binomial(u;, 1) denotes a Binomial distribution with mean u; and size 1, i.e., a
Bernoulli with mean p;. We can now use the same definitions and formulas (15.13)
through (15.22) to apply the FRM-based approach for inference for this binary
outcome model.
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9.1 Illustration of FRM-Based Approach with Child
Resilience Example

To illustrate the approach to real study data, we applied the FRM to a longitudinal
study known as the Child Resilience Project [39]. Data was collected for this study
from 2006 to 2011. This analysis included 401 students from first up to third grade
in five Rochester City School District elementary schools. The study examines how
children with a higher risk of developing behavioral problems with a mentor socially
improve compared to the control and lower risk children over periods of 6 and 18
months.

We examined what role a potential mediator, self-reported verbal, declarative
knowledge of the skills the child is learning in the Resilience Project at 6 months,
plays in a cause and effect relationship between the treatment at baseline and the
child’s self-initiated demonstration of skills at 18 months (Fig. 15.4). Thus we have
longitudinal data with three assessment times, baseline, 6 months, and 18 months
and temporally the mediator is hypothesized to occur before the outcome.

The treatment is a binary indicator as children either had a mentor or no mentor.
In the hypothesis of interest, the treatment would be expected to predict a higher
demonstration of skills, which would indicate that the children receiving a mentor
improved their social skills over time. The distributions of both the mediator and
outcome were skewed as shown in Fig. 15.5.

We had full information on whether each child received the treatment at baseline.
However, there were a high percentage of missing observations for both the mediator
(37 %) and outcome (59 %). We modeled this missing data using logistic regression:

logit (pi2) = no2 + Nx1xin, logit (pia) = Mo3 + N22a,
(15.24)

pi = Pr (rit =1]rjg-1n = 1)'

This is a simplified special case of a missing data model for applying IPW
in which we are building our missing data models with only observed data at
the previous time point (without using any other information). We estimated the
parameters in R program using the glm function. Since we modeled our missing data
at t = 2 based on the treatment information at baseline, we used all 401 observations.

Treatment at Yxy Demonstration at 18
Baseline months
Prz Knowledge at 6 Yoy
months

Fig. 15.4 Path diagram for the mediation model for the Child Resilience Study with MAR Data
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Fig. 15.5 Histograms of verbal, declarative knowledge of skills and demonstration of skills for
the Child Resilience Study

Taple 15.2 Parameter Estimates, standard errors, and p-value Child Resilience
estimates, standard errors, Example under missing data
and p-values for the missing n Estimate | Standard error asymptotic | p-value

data model for the Child -

Resilience Study Sample size = 401
No2 0.546 |0.147 <0.001
na | —0.019 |0.207 0.926
o3 0.250 |0.201 0.214
Nz2 0.067 |0.029 0.022

Shown in Table 15.2 are the estimates for the missing data model in (15.24).
The p-value for n,, was significant, indicating a MAR mechanism for the missing
data at time 3. Since the p-value for n,; was not significant, missing data at time
2 was MCAR and we would expect no bias for the estimates of time 2 parameters
B = (Bo. B:)" in ML. However, we expect to see a bias for the estimates of the time
3 parameters y = (yo, Vays yzy)T in ML. In the hypothesis of interest, the treatment
would be expected to predict a higher demonstration of skills at 18 months, which
would indicate that the children receiving a mentor improved their social skills over
time.

Shown in Table 15.3 are the estimates of the main parameters of 6§ =
(yo, Yays Yays Bos ﬂxz) and associated standard errors and type I errors for this
mediation model obtained from the alternative FRM and ML. From the table, we see
that the estimates for FRM and ML were practically the same for the 8 parameters,
but different for y parameters. In the B parameter estimates, FRM had a smaller
standard error than ML. We saw from the simulation for longitudinal missing data
in Fig. 15.3 that ML would produce a value of y,, biased less in magnitude than
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Table 15.3 Parameter estimates, standard errors, and type I error rates
for the mediation model for the Child Resilience Study with missing
data

Estimates, standard errors, and type I errors Child Resilience Study
example under missing data (37 %/59 %)

Estimate method Standard error method
0 FRM ML FRM ML
Sample size =401
Yo 1.812 1.810 |0.278 0.352
Yy | —0.042 —0.039 |0.053 0.050
Yy 2.330 2.283 |0.503 0.480
Bo 3.429 3.429 10.370 0.374
Bz 4.390 4.390 | 0.528 0.529

Type I o« for Hy: Y, =0 Wald<0.001 |<0.001

Score <0.001

the true estimate. This appeared true again as the FRM estimate was higher in
magnitude, confirming that the treatment predicted a higher demonstration of skills
at 18 months. The parameter y,, was not significant for either FRM or ML in this
model (p>0.421 for Wald Test in both FRM and ML), implying a non-significant
indirect effect in this mediation analysis.

10 Chapter Conclusion

Structural equation modeling provides a very general, powerful framework for per-
forming causal mediation analysis. By taking advantage of the functional response
models (FRM), we have developed a robust approach to systematically address the
limitations of SEM as it applies to mediation analysis. This class of FRM-based
SEM requires no parametric models for the data distribution and provides valid
inference for longitudinal mediation hypotheses under the two most popular missing
data mechanisms, missing completely at random (MCAR) and missing at random
(MAR). The approach can be extended for noncontinuous mediators and outcomes.
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equivalence of different choices, 260
estimation of parameters
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three-value treatment, 251-252
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discrete variable M, 248
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OLS estimates, 254
OLS regression, 243
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three linear models, 242
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compliance regions, 200
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