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Preface 

This book is is designed for the risk analyst who wishes to better understand 
the mathematical models and methods used in the management of operational 
risk in the banking and insurance sectors. Many of the techniques in this book 
are more generally applicable to a wide range of risks. However, each sector 
has its unique characteristics, its own data sources, and its own risk migation 
and management strategies. Other major risk classes in the banking sector 
include credit risk and market risk. In addition to these, the insurance sector 
also assumes the risk in the insurance contracts that it sells. The product risk 
in the insurance sector may dominate all other risk classes. 
This book is organized around the principle that much the analysis of opera- 
tional risk consists of the collection of data and the building of mathematical 
models to describe risk. I have not assumed that the reader has any substan- 
tial knowledge of operational risk terminology or of mathematical statistics. 
However, the book is more challenging technically than some other books on 
the topic of operational risk but less challenging than others that focus on 
risk mathematics. This is intentional. The purpose of the book is to provide 
detailed analytical tools for the practicing risk analyst as well as serving as a 
text for a university course. 
This book could serve as a text a t  the senior undergraduate or first-year 
graduate level for a course of one semester for students with a reasonable 
background in statistics, because many sections of the book can be covered 
rapidly. Without a moderate background in statistics, students will require 
two semesters to cover the material in this book. For chapters involving nu- 
merical computations, there are many exercises for students to practice and 

... 
X l l l  



xiv PREFACE 

reinforce concepts in the text. 
Many of the concepts in this book have been developed in the insurance field, 
where the modeling and management of risk is a core activity. This book is 
built on previous books by this author along with co-authors, in particular 
Loss Distributions [53] ,  Insurance Risk Models [93], and two editions of Loss 
Models: From Data to  Decisions [SS]. 

H. H. PAXJER 



Acknowledgments 

I thoroughly enjoyed writing this book. I was very much inspired by the 
dramatic level of growth of interest in modeling and managing operational risk 
in the banking and insurance sectors. In particular, many emerging methods 
and models that have appeared in the operational risk literature are directly 
related to the content of the book, Loss Models: From Data to Decisions [69], 
which I coauthored with Stuart Klugman and Gordon Willmot. That book 
was focused on applications in the insurance sector. They have been very 
generous in allowing to use large parts of that book in modified form in the 
present book. 

I am also indebted to two students, Yixi Shi and Shuyin Mai who assisted 
in numerous technical aspects of producing this book. And finally, thanks to 
my wife Joanne Coyle, who tolerated my many weekends and evenings at the 
ofice. 

H.H.P. 

xv 



This Page Intentionally Left Blank



Part I 

Introduction to  
operatzonal risk modeling 



This Page Intentionally Left Blank



Operational risk 

Anything tha t  can go wrong will go wrong. 
-Murphy 

1.1 INTRODUCTION 

Operational risk has only in recent years been identified as something that 
should be actively measured and managed by a company in order to meet its 
objectives for stakeholders, including shareholders, customers, and manage- 
ment. These objectives include future survival of the company, avoidance 
of downgrades by rating agencies and remaining solvent for many years to 
come. Operational risk is becoming a major part of corporate governance 
of companies, especially in the financial services industry. This industry in- 
cludes both banks and insurance companies, although they have somewhat 
different historical cultures in most countries. More recently in other fields 
such as energy, where trading and hedging activity mirrors similar activity in 
the financial services industry, operational risk is being recognized as a vital 
part of a broader enterprise risk management framework. 

The definition of operational risk has not yet been universally agreed upon. 
In very general terms, operational risk refers to “risk” associated with the 
“operations” of an organization. “Risk” is not defined very specifically, nor is 
“operations.’) Generally, the term “risk” refers to the possibility of things go- 
ing wrong, or the chances of things going wrong, or the possible consequences 
of things that can go wrong. “Operations” refers to  the various functions of 

3 



4 OPERATlONAL RISK 

the organization (usually a company such as a bank or insurance company) 
in conducting its business. It does not refer specifically to  the products or 
services provided by the company. In banking, operational risk does not in- 
clude the risk of losing money as a result of normal banking activities such 
as investing, trading, or lending except to  the extent that operational activ- 
ities affect those normal activities. An example of such an operational risk 
in banking is fraudulent activity, such as unauthorized lending where a loan 
officer ignores rules, or rogue trading in which a trader is involved in trading 
activity beyond limits of authorization. The well-known classic example of a 
rogue trader is Nick Leeson, whose activities resulted in the failure of Barings 
Bank, leading to its takeover by the ING financial services conglomerate. 

operational risk is generic in nature. The operational risk concept applies 
to organizations of all types. However, the specifics of operational risk will 
vary from company to  company depending on the individual characteristics 
of the company. For example, a manufacturer will be exposed to somewhat 
different operational risks than a bank or an insurance company, but many 
are the same. The risk of shutdown of the operations of a company because 
of IT failure, flooding, or an earthquake exists for any company. While the 
principles of operational risk modeling and management apply to all types of 
organization, in this book we will look at operational risk from the vantage 
point of a financial institution, such as a bank or insurance company. 

Measurement and modeling of risk associated with operations for the finan- 
cial sector began in the banking industry. Operational risk is one of several 
categories of risk used in enterprise risk management (ERM). ERM involves 
all types of risk faced by a company. Operational risk is one part only. 

Many financial institutions have incorporated ERM into a new governance 
paradigm in which risk exposure is better understood and managed. The 
responsibility for the risk management function in a company often falls under 
the title of chief risk officer (CRO), a title first held by James Lam in the 1990s 
[72]. The CRO is responsible for the entire ERM process of the company in 
all its business units. Within the ERM process are processes for each risk 
category. Within the operational risk category, the responsibilities include: 

Developing operational risk policies and internal standards 
Controlling the operational risk self-assessment in each business unit 
Describing and modeling all internal processes 
Testing all processes for possible weaknesses 
Developing operational risk technology 
Developing key risk indicators 
Planning the management of major business disruptions 
Evaluating the risk associated with outsourcing operations 
Maintaining a database of operational risk incidents 
Developing metrics for operational risk exposure 
Developing metrics for effectiveness of risk controls 
Modeling losses using frequency and severity 
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Modeling potential losses using statistical tools 
Calculating economic capital required to support operational risk 

This book is primarily concerned with the last three items in this list. 
In the banking sector, risks are generally described to be part of market 

risk, credit risk, or operational risk. In carrying out normal banking activities 
associated with investment in bonds issued by other companies, a loss in value 
due to overall interest rate changes in the market place is considered market 
risk, a loss in value due to a downgrade or bankruptcy of the issuer is a credit 
risk, but a loss due to an execution error, such as an error in timing or delivery 
of a trade, by the bank is an operational error. 

At the time of writing this book, market and credit risk are much more 
well developed than operational risk. One of the reasons for this is the general 
dearth of publicly available operational risk data. This is in direct contrast to  
market risk and credit risk, for which data are widely available, particularly 
for the shares and bonds (and the related derivative products) of publicly 
traded companies. In the very recent past, the situation has changed as a 
result of gathering and sharing of historical data on operational risk losses. 
At the time of writing of this book, many organizations are building historical 
databases on past operational events in addition to building systems for the 
reporting and recording of new operational risk events as they occur. One 
major challenge, which is addressed later in this book, is how to combine 
data from several companies or the industry as a whole in building a model 
for a single company. This problem is sometimes called “scaling” because 
different companies are of different sizes and are therefore subject to risks of 
different sizes. 

Although operational risk was originally defined to  capture all sources of 
risk other than market and credit risk, several more specific definitions of oper- 
ational risk have become well-known. In a paper published in 1998, the Basel 
Committee 191 on Banking Supervision (BCBS) identified the most important 
aspects of operational risk as relating to breakdowns in internal control and 
corporate governance. Effective internal controls should result in minimizing 
internal errors, fraud by staff, and failures to execute obligations in a timely 
manner. Failure of corporate governance can lead to poor internal controls. 

The British Bankers Association [18] defined risk as the “risk associated 
with human error, inadequate procedures and control, fraudulent criminal ac- 
tivities; the risks caused by technological shortcomings, system breakdowns; 
all risks which are not “banking” and arise from business decisions as competi- 
tive action, pricing, etc.; legal risk and risk to business relationships, failure to 
meet regulatory requirements or an adverse impact on the bank’s reputation; 
“external factors” including natural disasters, terrorist attacks and fraudulent 
activity, etc.” 

This all-encompassing definition was narrowed somewhat in the definition 
provided by the Basel Committee. In its consultative document on a capital 
adequacy framework [lo] and its subsequent document on operational risk 
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[ll], the BCBS defined operational risk as “the risk of losses resulting from 
inadequate or failed internal processes, people and systems or from external 
events.” It includes strategic, reputational risk and systemic risks. 

In its monograph dealing with capital requirements for insurance compa- 
nies, the International Actuarial Association (IAA) [60] adopted the Basel 
Committee definition. It further noted that the definition is intended to in- 
clude legal risks but exclude strategic, reputational risk and systemic risks. 
There remains some controversy over these items. Is a strategic decision that 
is later found to be in error really an operational risk? Is a loss in reputation 
an operational risk or simply the result of an operational risk event? 

Operational risk in the banking sector is believed to represent about 30% of 
the total risk assumed by a bank. This contrasts with 60% for credit risk , 5% 
for market risks, and 5% for remaining miscellaneous risks. It is likely that the 
operational risk is proportionately smaller in the insurance sector. There have 
been some well-known significant operational losses in the insurance sector. 
The “misselling” of pension annuity products in the UK in the 1990s was 
a direct result of a lack of controls on the way in which the products were 
represented to potential customers. 

It should be noted that losses from both internal and external events are 
included in the definition of operational risk. Internal events are events that 
result from the failure of some process or system operated by the organization. 
External events are those whose occurrence cannot be controlled by the com- 
pany. The company can only mitigate the impact of these external events. It 
cannot prevent an earthquake, but it can ensure that its main computers are 
in an earthquake-proof building. In contrast, the occurrence of internal events 
is directly under the control of the company. Its risk management strategies 
can address both minimizing the occurrence of the event and mitigating the 
impact of the event when it occurs. 

1.1.1 Basel II - General 

The Basel Committee (in its “Basel 11” framework) has been working on de- 
veloping a framework for the determination of minimum capital requirements 
for banks. Included in the minimum capital requirement to  be implemented 
in 2006 or later is a capital charge for operational risk. The minimum capital 
requirement falls under Pillar I of a three-pillar concept. The remaining two 
pillars relate to the supervisory process and market conduct. In this book, 
we shall focus on this first pillar only by addressing the question of how to 
probabilistically model losses arising from operational risk events. However, 
it is useful to understand the entire Basel I1 framework. 

Pillar I: Minimum capital requirements There are three fundamental elements 
in the minimum capital requirement for regulatory purposes: the definition of 
regulatory capital, risk-weighted assets, and the minimum ratio of capital to 
risk-weighted assets. Risks are categorized into five categories: 
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1. credit risk 
2. market risk 
3. operational risk 
4. liquidity risk 
5 .  legal risk 

Explicit and separate minimum capital requirements for operational risk 
have been added to the Base1 I1 framework. Specifically for operational 
risk, there is a range of options for determining minimum regulatory capital 
requirements including building internal models of the company’s operational 
risk profile. However, such minimum capital requirements will need to  be 
supported by a robust implementation of the second and third pillars. 

Pillar 11: Supervisory review process The second pillar focuses on the prudential 
supervision by regulatory authorities of banks’ capital adequacy as well as the 
banks’ internal risk management systems. There are four key principles under 
Pillar 11: 

1. Banks should have a process for assessing their overall capital ad- 
equacy in relation to their risk profile and a strategy for maintaining their 
capital levels. This requires: i) strong board and management oversight; ii) 
sound capital assessment; iii) a comprehensive system for assessment of risks; 
iv) ongoing monitoring and reporting; and v) internal control review. 

2. Supervisors should review and evaluate banks’ internal capital ad- 
equacy assessments and strategies, as well as their ability to monitor and 
ensure their compliance with regulatory capital ratios. Supervisors should be 
able to take action when they are not satisfied with the results of this process. 

3. Supervisors should expect banks to operate above the minimum 
capital ratios and should have the ability to require banks to  hold capital in 
excess of the minimum. 

4. Supervisors should seek to intervene at  an early stage to prevent 
capital from falling below the minimum levels required to support the risk 
characteristics of a particular bank and should require rapid remedial action 
if capital is not maintained or restored. 

For operational risk, this means that banks must monitor all operational 
risk events and have internal control processes in place that are transparent 
to  banking supervisors. This will assist both banks and supervisors to under- 
stand past and potential future areas of losses from operational risk events. 
This better understanding of operational risk should have a direct effect on 
the operational risk by identifying areas where the bank can reduce both the 
frequency and the severity of those events. 

Pillar 111: Market discipline The objective of Pillar I11 is to encourage mar- 
ket discipline by developing a set of disclosure requirements that will allow 
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market participants to assess key pieces of information on the scope of ap- 
plication, capital, risk exposures, risk assessment processes, and hence the 
capital adequacy of the institution. These are especially useful when banks 
are given the authority to use bank-specific internal models in assessing their 
own risk profiles. 

1.1.2 Basel II - Operational risk 

Under Basel 11, banks will be allowed to  chose from three approaches: the 
basic indicator approach, the standardized approach, and the advanced mea- 
surement approach (AMA). Banks are encouraged to move along the spectrum 
of methods as they develop the capabilities to do more advanced modeling. 
Under the basic indicator approach for operational risk, banks are required 
to hold a flat percentage (15%) of positive gross income over the past three 
years. Under the standardized approach, banks’ activities are divided into 
eight business lines: i) corporate finance, ii) trading and sales, iii) retail bank- 
ing, iv) commercial banking, v) payment and settlement, vi) agency services, 
vii) asset management, and viii) retail brokerage. A flat percentage, ranging 
from 12% to 18%, is applied to the three-year average positive gross income 
for each business line. The minimum capital is the sum over all business lines. 
Both the basic indicator approach and the standardized approach are rela- 
tively crude methods that do not in any way allow banks to take credit for 
doing a good job in mitigating operational risk. 

Under the AMA, banks are allowed to develop sophisticated internal models 
of the actual risks of the company including the interactions between them 
and any risk mitigation strategies used by the company. However, the bank 
is required to  make significant investment in the management of operational 
risk. Specifically, i) a bank’s board of directors and senior management must 
be actively involved in the oversight of the operational risk framework, ii) its 
operational risk management system must be conceptually sound and must 
be implemented with integrity, and iii) it must devote sufficient resources to  
the use of the AMA in the major business lines as well as in the control and 
audit areas. 

Before full implementation, banks will be required to demonstrate that 
their systems are credible and appropriate by reasonably estimating unex- 
pected losses based on the combined use of internal and relevant external loss 
data, scenario analysis and bank-specific environment and internal control 
factors. Furthermore, the bank must have an independent operational risk 
management function that is responsible for designing and implementing the 
bank’s risk operational management framework. The bank’s internal opera- 
tional risk management system must be closely integrated into the day-to-day 
risk management processes of the bank. There must be regular reporting of 
operational risk exposures and loss experience to business unit management, 
senior management, and the board of directors. The bank’s operational risk 
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management system must be well documented and reviewed regularly by in- 
ternal or external auditors. 

On the quantitative requirements for using the AMA approach, the Basel 
Committee [I21 states: 

Given the continuing evolution of analytical approaches f o r  opera- 
tional risk, the Committee is not specifying the approach or  distribu- 
tional assumptions used to generate the operational risk measure for 
regulatory capital purposes. However, a bank must be able to demon- 
strate that its approach captures potentially severe “tail” loss events. 
Whatever approach is used, a bank must demonstrate that its opera- 
tional risk measure meets a soundness standard comparable to that of 
the internal ratings-based approach for  credit risk, (i.e. comparable to a 
one- year holding period and a 99.9th percentile confidence interval). 

The Committee recognises that the A M A  soundness standard pro- 
vides significant flexibility to banks in  the development of an operational 
risk measurement and management system. However, in the develop- 
ment of these systems, banks must have and maintain rigorous pro- 
cedures for  operational risk model development and independent model 
validation. Prior to implementation, the Committee will review evolving 
industry practices regarding credible and consistent estimates of poten- 
tial operational losses. It will also review accumulated data, and the 
level of capital requirements estimated by the A M A ,  and may refine its 
proposals if appropriate. 

This book will focus on probabilistic models and statistical tools that can 
be used for building the internal models of operational risk that can be used 
under the AMA by a bank or an insurance company. 

In the same document, the Basel Committee goes on to state: 

A bank’s risk measurement system must be sufficiently “granular” to 
capture the major drivers of operational risk affecting the shape of the 
tail of the loss estimates. 

This means that any model acceptable for the AMA must be very detailed 
and be sensitive to the possibility of extreme events. The shape of the tail of 
a loss distribution determines the likelihood of large losses. These need to be 
well understood because a single large loss can have a significant impact on a 
company. The issue of different tails of distributions is addressed throughout 
this book. 

Continuing in the same document, the Committee states: 

Risk measures for  different operational risk estimates must be added 
for purposes of calculating the regulatory minimum capital requirement. 
However, the bank may be permitted to use internally determined corre- 
lations in operational risk losses across individual operational risk esti- 
mates, provided it can demonstrate to the satisfaction of the national su- 
pervisor that its systems for determining correlations are sound, imple- 
mented with integrity, and take into account the uncertainty surrounding 
any such correlation estimates (particularly in periods of stress). The 
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bank must validate its correlation assumptions using appropriate quan- 
titative and qualitative techniques. 

This means that it is important to understand that there may be a possi- 
bility of diversification between operational risks. However, it is recognized 
that this may not be possible “in periods of stress,” that is, in periods where 
everything seems to be going wrong. This idea can be captured through tail 
correlation, which is covered later in this book. 

The Base1 Committee document goes on to discuss data requirements for 
an internal risk measurement system. Internal loss data are crucial for the 
credible modeling of an organization’s operational risk profile. 

Banks must track internal loss data according to the criteria set out 
in this section. The tracking of internal loss event data is an  essential 
prerequisite to the development and functioning of a credible operational 
risk measurement system. Internal loss data is crucial for tying a bank’s 
risk estimates to its actual loss experience. This can be achieved in a 
number of ways, including using internal loss data as the foundation 
of empirical risk estimates, as a means of validating the inputs and 
outputs of the bank’s risk measurement system, or as the link between 
loss experience and risk management and control decisions. 

Internal loss data is most relevant when it is clearly linked to a bank’s 
current business activities, technological processes and risk management 
procedures. Therefore, a bank must have documented procedures for 
assessing the on-going relevance of historical loss data, including those 
situations in which judgement overrides, scaling, or other adjustments 
may be used, to what extent they may be used and who is authorised to 
make such decisions. 

Internally generated operational risk measures used for  regulatory 
capital purposes must be based on a minimum five-year observation pe- 
riod of internal loss data, whether the internal loss data is used directly 
to build the loss measure or to validate it. When the bank first moves 
to the A M A ,  a three-year historical data window is acceptable .... 

Thus building a loss data history is imperative to moving to an AMA for 
modeling risk capital. A bank’s internal loss collection processes must meet 
the certain standards established by the Committee. The Committee is also 
very explicit about what data should be collected: 

A bank’s internal loss data must be comprehensive in that it cap- 
tures all material activities and exposures f rom all appropriate sub- 
systems and geographic locations. A bank must be able to justify that 
any excluded activities or exposures, both individually and i n  combina- 
tion, would not have a material impact on the overall risk estimates. A 
bank must have an appropriate de minamis gross loss threshold for in- 
ternal loss data collection, f o r  example 10,000 Euros. The appropriate 
threshold may vary somewhat between banks, and within a bank across 
business lines and/or event types. However, particular thresholds should 
be broadly consistent with those used b y  peer ban,ks. 
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The concept of a threshold becomes very important in the statistical analy- 
sis of operational risk losses. In statistical terms, ignoring small losses is called 
truncation of the data, in particular left truncation. It is important to know 
the truncation threshold for each recorded loss, because the threshold could 
be changed over time, or it could be different for different types of losses. It is 
particularly important when combining data from different banks into a single 
industry database or when combining external data with a bank’s own data. 
The statistical issue of truncation will be dealt with thoroughly in this book. 
External data can be combined with bank data in a rigorous systematic way. 

A bank’s operational risk measurement system must  use releuant ex- 
ternal data (either public data and/or pooled industry data), especially 
when there is  reason to  believe that the bank is exposed to infrequent, 
yet potentially severe, losses. These external data should include data 
o n  actual loss amounts,  information on the scale of business operations 
where the event occurred, information o n  the causes and circumstances 
of the loss events, or other information that would help in assessing the 
relevance of the loss event f o r  other banks. A bank must  have a system- 
atic process for determznzng the situatzons f o r  which external data must  
be used and the methodologies used to incorporate the data (e.g. scaling, 
qualitative adjustments, or informing the development of improved sce- 
nario analysis). The  conditions and practices f o r  external data use must 
be regularly reviewed, documented, and subject t o  periodic independent 
review. 

1.2 OPERATIONAL RISK IN INSURANCE 

On the insurance side of the financial services industry, the development of 
capital requirements for operational risk has significantly lagged the develop- 
ments in the banking sector. Insurers deal with risk and the management of 
risk on a day-to-day basis. However, this risk is primarily the risk inher- 
ent in the insurance contracts assumed by the insurer. In the jargon of risk 
management this type of risk is “business risk.” As a business that is less 
transaction-oriented and less trading-oriented than banks, insurance compa- 
nies have paid less attention to operational risk. But this is changing. At the 
global level, the International Association of Insurance Supervisors (IAIS) is 
in the process of developing a parallel but somewhat similar framework for 
the overall regulation of insurance. Its early work suggests three blocks of 
issues and a set of eight principles or “cornerstones” that will result in guid- 
ance to insurance companies. The three blocks of issues roughly parallel the 
three pillars of Basel 11. The fifth principle dealing with absorption of losses 
states, “Capital requirements are needed to absorb losses that can occur from 
technical and other risks.” The discussion of this principle refers directly to  
operational risk. The International Actuarial Association (IAA) book [60] 
reflects early work conducted by the IAA as a contribution to the IAIS effort 
in developing the regulatory framework. 
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Within Europe, the European Commission has initiated a “Solvency II” 
project for insurance regulation that also parallels Basel I1 but is applicable 
to European insurers. What we refer to as operational risks are somewhat 
covered by the term “risks that are difficult to quantify or to measure a pri- 
ori.” These include failings of management, major business decision risk, and 
failings in underwriting and claims handling. This list is rather short and 
misses some other key operational risks associated with failings in other oper- 
ational areas such a.~ sales. Furthermore, risk of external events has not been 
considered. At the time of writing this book, because of the dearth of available 
data and other difficulties in definition and measurement, operational risk is 
to be treated within the second pillar (governance process and controls) under 
Solvency 11. However, as databases are developed, it is expected that Pillar 
I-type measurement and modeling will become the norm. Some insurance- 
related organizations are building data bases that make use of data coming 
directly from insured losses covering events that might be considered oper- 
ational risks. The IAA book [60] recommends that operational risk should 
ultimately be handled with a Basel I1 approach under the first pillar. How- 
ever, it would be reasonable to use a second pillar approach until insurance 
regulators, the industry, and the actuarial profession develop definitions and 
methods of measurement necessary for a first pillar approach. 

Some recent external operational risk events in the US have pointed North 
American insurers in the direction of more active risk management (second 
pillar). The concentration of insurance brokerage employees in the World 
Trade Center on September 11, 2001 identified a personnel concentration risk 
to insurers. Extensive power blackouts in 2003 tested companies’ computer 
systems and business continuity plans. The SARS epidemic in 2004 tested 
the abilities of banks and insurers in Hong Kong to continue operations as the 
movement of employees was severely restricted. 

In this book, we will not try to define the various types of operational risk 
events that must be considered. This needs to be done at some point by every 
company, by industry groups, and by regulators. However those events are 
defined, in this book we will focus on modeling the chances that the event will 
occur and the consequences of the occurrence of the event. 

1.3 THE ANALYSIS OF OPERATIONAL RISK 

Various definitions of operational risk refer to events. The only events that 
are interesting to us from the point of view of operational risk are those that 
result in a loss. Inconsequential events are of no interest and as such are not 
treated as events for the purpose of the analysis of risk. As will be pointed 
out later in this and later chapters, the definition of an event is critical to any 
analysis because the definition affects how we count the events. 

In order to measure the impact of operational risk, it seems natural to 
consider both how many events might occur and the potential impact of each 
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of those events. This approach to analysis is called a frequency/severity ap- 
proach. This approach is commonly used in studies of losses in the insurance 
industry. The approach requires the risk analyst to separate the “count” or 
frequency of losses from the “impact” or severity of the losses. This is espe- 
cially natural when the severity (per loss) does not depend on the number of 
losses, as is commonly assumed in modeling most risks. Consider, for exam- 
ple, errors made by automatic banking machines in dispensing money. An 
operational error can occur if the machine dispenses two bills that stick to- 
gether as one bill. The number of errors increases as the number of machines 
increase, but the loss per loss event is unaffected. 

Also for many types of losses, the severity or size of individual losses may 
be expected to increase over time as a result of normal inflationary growth. 
Similarly, expected frequency also increases as the number of exposure units 
(customers, employees, transactions, etc.) increases. 

Risk managers use a variety of tools to assess and manage risk exposure. 
Frequency and severity are usually separately addressed in risk management 
strategies. Process control of internal processes can be used to minimize the 
frequency of risks associated with internal procedures. The development of 
internal policy and procedure manuals assists in defining what is acceptable 
activity and, more importantly, what is not acceptable activity. Process con- 
trol systems, such as “six sigma” methodologies, can be employed to  study and 
improve the performance of high-frequency transactions. Risk managers can 
also employ methods to control the severity of operational loss. For example, 
most organizations purchase directors and officers liability insurance coverage 
to protect against actions taken against directors and officers. Similarly, the 
company may purchase business interruption insurance to protect it against 
loss as a result of external events such as power grid failure (as occurred in 
the US and Canada in 2003), terrorist attack (as occurred in the US in 200l), 
or a hurricane (as occurs frequently in the US). Insurance usually carries with 
it a deductible so that a portion of the risk is still retained (or self-insured) 
by the company. 

Risk managers will measure all risks consistently but may add special proce- 
dures for very large risks, often called L‘jumbo’’ risks. This reflects the different 
approaches to  risks with different frequency/severity profiles. Risks can be 
classified according to  whether the frequency is high or low and whether the 
severity is high or low. Here the terms “high” and “low” are used in a purely 
relative sense, that is, relative to other risks or, perhaps, relative to the size 
of the company. In general, we shall refer to the spectrum running from high- 
frequency-low-severity (HFLS) to low-frequency-high-severity (LFHS) . It is 
not necessary to discuss high-frequency-high-severity risk because a history 
of this type of risk will certainly put a company out of business! Similarly, 
low-frequency-low-severity risk has little potential impact. 

Model-based frequency/severity modeling is a main focus of this book. Be- 
cause senior management (and regulators, rating agencies, and shareholders) 
are interested in the potential overall impact, frequency and severity modeling 
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are combined in the development of “aggregate” loss models. Frequency and 
severity modeling is done the same way for both LFHS and HFLS situations, 
at least in principle. However, LFHS will often attract additional analysis, 
that is, there will be serious analysis of the single possible big events that can 
bring down (or at least impair) the company. The next section discusses the 
model-based approach to  operation risk management. Later, Chapter 7 will 
deal with possible extreme losses. 

Model-based approaches to operational risk require significant amounts of 
data in order to  calibrate the models to provide realistic outcomes. In the 
banking sector, a number of databases have been developed to help under- 
stand the frequency and severity of various types of operational risk. On the 
insurance side, at the time of preparation of this book, some organizations 
have begun to build databases. However it will be some time before their 
databases are broadly usable for calibrating models. 

The remainder of this book is premised on the assumption that data will 
be available for the risk analyst. The tools in this book come mainly from the 
insurance industry, where actuaries have been involved in modeling the risk 
assumed by insurers in the insurance contracts that they sell. 

1.4 THE MODEL-BASED APPROACH 

The model-based approach involves the building of a mathematical model 
that can be used to describe, forecast, or predict operational loss costs or to 
determine the amount of capital necessary to absorb operational losses with 
a high probability. The results of the model can be used to better understand 
the company’s exposure to operational risk, and the potential impact on the 
company of various possible mitigation and management strategies. 

A model is a simplified mathematical description that is constructed based 
on the knowledge and experience of the risk analyst combined with data from 
the past. The data guide the analyst in selecting the form of the model as 
well as in calibrating the parameters in the model. 

Any model provides a balance between simplicity and conformity to the 
available data. Simplicity is measured in terms of such things a s  the number 
of unknown parameters; the fewer the simpler. Conformity to data (or “fit”) 
is measured in terms of the discrepancy between the data and the model or, 
equivalently, how well the model fits the data. 

There are many models and many models with the same level of complex- 
ity; for example, the same number of parameters. Model selection requires 
consideration of both the mathematical form of the model and the number of 
parameters in the model. Model selection is based on an appropriate balance 
between the two criteria, namely, fit and simplicity. Appropriateness may 
depend on the specific purpose of the model. 
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I 

Fig. 1.1 The modeling process 

1.4.1 The modeling process 

The modeling process is illustrated in Figure 1.1, which describes six stages. 

Stage 1 One or more models are selected based on the risk analyst’s prior 
knowledge and experience and possibly on the nature and form of avail- 
able data. In studies of the size of operational risk losses, a set of 
statistical distributions, such as lognormal, gamma, or Weibull, may be 
chosen. 

Stage 2 The model is calibrated based on available data. In studies of oper- 
ational losses, the data may be information about each of a set of actual 
losses. The model is calibrated by estimation of parameters based on 
the available data. 

Stage 3 The calibrated model is validated to determine whether it conforms 
adequately to the data. Various diagnostic tests can be used. These 
may be well-known statistical tests, such as the chi-square goodness-of- 
fit test or the Kolmogorov-Smirnov test, or may be more qualitative in 
nature. The choice of test may relate directly to  the ultimate purpose 
of the modeling exercise. 

Stage 4 This stage is particularly useful if Stage 3 revealed that all models 
are inadequate. It is also possible that more than one valid model will 
be under consideration at  this stage. 

Stage 5 All valid models considered in Stages 1-4 are compared, using some 
criteria to select between them. This may be done by using the test 
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results previously obtained or may be done by using other criteria. Once 
the best model is selected, the others may be retained for later model 
sensitivity analysis. 

Stage 6 Finally, the model is adapted for application to the future if the 
data were from the past and the model is to be used for the future. This 
could involve adjustment of parameters to reflect anticipated inflation or 
change in exposure from the time the data were collected to the period 
of time to  which the model will be applied. 

As new data are collected or the environment changes, the six stages will 
In practice, this should be a need to be repeated to improve the model. 

continuous process. 

1.5 ORGANIZATION OF THIS BOOK 

This book takes the reader through the tools used in modeling process begin- 
ning with organization of the remainder of this book is as follows: 

1. Review of probability-Almost by definition, uncertain events imply 
probability models. Chapter 2 reviews random variables and some of 
the basic calculations that may be done with such models. 

2. Probabilistic measurement of risk-Probability models provide a prob- 
abilistic description of risk. Risk measures are functions of probability 
models. They summarize in one number (or very few numbers) the de- 
gree of risk exposure. Chapter 3 provides a technical description of the 
state of the art in risk measurement analytics. 

3. Understanding probability distributions-In order to select a probabil- 
ity model, the risk analyst should possess a reasonably large collection 
of such models. In addition, to  make a good a priori model choice, char- 
acteristics of these models should be available. In Chapters 4 and 5, 
a variety of distributional models are introduced and their characteris- 
tics explored. This includes both continuous and discrete distributions. 
The range of distributions in these chapters is much greater than in 
most standard books on statistical methods. 

4. Aggregate losses-To this point the models are either for the amount 
of a single loss or for the number of payments. What is of primary 
interest to the decision-maker, when modeling operational losses, is the 
total possible amount of losses. A model that combines the probabilities 
concerning the possible number of losses and the possible amounts of 
each loss is called an aggregate loss model. Calculations for such models 
are covered in Chapter 6. 
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5. Extreme value theory-In studying operational risk, special attention 
must be paid to high-impact extreme, but rare, events. This is the 
subject of Chapter 7. 

6. Copula methods-Dependencies among risks must be understood so 
that appropriate credit can be given for diversification when risks may 
exhibit correlation of some type. Chapter 8 introduces many relevant 
copula models. 

7. Review of mathematical statistics-Techniques of mathematical statis- 
tics are needed to calibrate models and make formal choices among mod- 
els based on available data. While Chapter 9 is not a replacement for a 
thorough treatment of mathematical statistics, it reviews the essential 
items needed later in this book. The reader with a good background 
can skim this chapter quickly. 

8. Calibrating parametric models-Chapters 10 and 11 provide methods 
for parameter estimation for the continuous and discrete models intro- 
duced earlier. Model selection is covered in Chapter 12. 

9. Chapter 13 applies special statistical methods for the study of very large 
possible losses, the jumbo risks that require deeper individual study. 

10. Finally, in Chapter 14, we consider estimation methods for multivariate 
models, in particular the estimation and selection of copulas. 

This book provides many tools necessary for carrying out the modeling 
of operational risk for an organization. However, we do not attempt to 
discuss building an operational risk management program for an organi- 
zation, a program that would include process controls and other aspects 
of risk management. As such, our scope is relatively narrow. Within 
this narrow scope, the treatment of topics is quite comprehensive and 
from a practical perspective. We have not incorporated some topics 
that are, at this stage, more interesting to the theoretician than the 
practicing risk analyst. 
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2 
Basic probability concepts 

Whenever you set out to do something, something else must be done first. 
-Murphy 

2.1 INTRODUCTION 

An operational risk model is a set of mathematical functions that represents 
uncertain future losses. The uncertainty may be with respect to any or all 
of occurrence ( I s  there a loss?), timing (When does the loss event occur?), 
and severity (What is the size of the loss when the event occurs?). Because 
the most useful means of representing uncertainty is through probability, we 
concentrate on probability models. In this first part of the book, the following 
aspects of operational risk probability models will be covered: 

1. Definition of random variable, important functions, and some examples 

2. Basic calculations from probability models 

3. Specific probability distributions and their properties 

4. More advanced calculations using loss models 

Before we begin, we need to be clear about a few basic definitions used in 
probability. Phenomena are occurrences that can be observed. An exper- 
iment is an observation of a given phenomenon under specified conditions. 

19 
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The result of an experiment is called an outcome; an event is a set of one 
or more possible outcomes. Probability is a measure of the likelihood of the 
occurrence of an event. It is measured on a scale of increasing likelihood from 
0 (impossible) to 1 (certain). A random variable is a function that assigns 
a numerical value to every possible outcome. 

The following list contains a number of random variables encountered in 
operational risk work: 

1. The percentage of the dollar value of a transaction lost as a result of an 
error (Model 1) 

2. The number of dollars lost as a result of a fraudulent transaction (Model 

2) 

3. The number of fraudulent transactions in one year (Model 3) 

4. The total dollars lost as a result of fraudulent transactions in one year 
(Model 4) 

Because all of these phenomena can be expressed as random variables, the 
machinery of probability and mathematical statistics is at our disposal both 
to create and to  analyze models for them. Key probability concepts will be 
illustrated with the above four models. Later, two additional models will be 
introduced. 

2.2 DISTRIBUTION FUNCTIONS AND RELATED CONCEPTS 

Definition 2.1 The cumulative distribution function (also called the 
distribution function and usually denoted F x ( x )  or F(x) ) l  of a random 
variable X is the probability that X is  less than or equal to a given number x .  
That is, F x ( z )  = Pr(X 5 z). 

The abbreviation cdf is often used for the distribution function. 
The distribution function must satisfy the following requirements2: 

0 5 F ( x )  5 1 for all z. 

0 F ( x )  is nondecreasing. 

When denoting functions associated with random variables, it is common to identify the 
random variable through a subscript on the function. Here, subscripts will be used only 
when needed to distinguish one random variable from another. In addition, for the six 
models to  be  introduced shortly, rather than writing t,he distribution function for random 
variable 2 as F x z ( z ) ,  it will simply be denoted F2(2).  

‘The first point follows from the last, three. 
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0 F ( x )  is right-continuous.3 

0 l imz~--oo  F ( x )  = 0. 

0 limz-m F ( x )  = 1. 

It is possible for the distribution function to have jump, that is, to be 
discontinuous at some points. When it jumps, the value of the distribution 
function at the point of the jump is assigned to the top of the jump as a result 
of the right-continuity requirement. 

Here are possible distribution functions for each of the four models. 

Model 1 

5 < 0, 
0 5 x < 100, 
x 2 100. 

Fl(x) = Pr(X 5 x) = 

This random variable could serve as a model for the percentage loss for an 
operational risk event. In the above model (the uniform distribution) all loss 
percentages are equally likely to  occur. 

Model 2 

2 < 0, { :,- ( 2000 ) 3  , x20. F~(x) = Pr(X 5 x) = 

x + 2000 

This random variable could serve as a model for the actual loss in a single 
transaction as measured in dollars (or other currency). In the above model 

0 (a Pareto distribution), there is no upper limit on the loss. 

Graphs of the distribution function for Models 1 and 2 appear in Figures 
2.1 and 2.2. (Graphs for the other models are requested in Exercise 2 . 2 ) .  

Model 3 

2 < 0, 
[::5, 0 5 x < l ,  

0.75, 15 x < 2, 
0.87, 2 5 x < 3, 

F3(x) = Pr(X 5 x) = 

0.95, 3 5 x < 4, I 1, 2 2 4. 

3RR.ight-continuous means that a t  any point z o  the limiting value of F ( z )  as 2 approaches 
zo from the right is equal to  F(z0) .  This need not be true as z approaches z o  from the left. 
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Fig. 2.1 Distribution function for Model 1 

Fig. 2.2 Distribution function for Model 2 

This random variable could serve as a model for the number of losses on one 
type of risk in one year. Probability is concentrated at the five points (0, 1, 2, 
3, 4), and the probability at each is given by the size of the jump in the dis- 
tribution function. While the above model places a maximum on the number 
of losses, models with no limit (such as the Poisson distribution) could also 
be used. Distributions whose distribution functions look like step functions 

0 (as the above one does) are called discrete distributions (see below). 

Model 4 

x < 0, 
, x20. 1 - o,3e-o.oooo1z F ~ ( x )  = Pr(X 5 x) = 
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This random variable could serve as a model for the total losses from a 
single risk over a one-year period. Most of the probability is at zero because 
there is a 70% chance of no loss. The remaining 0.3 of probability is distributed 
over positive values. It should be noted that this type of random variable can 
be used for the sum of random variables (representing losses) of the Model 2 
type where the number of such random variables in the sum is itself a random 
variable (representing number of losses) of the Model 3 type. This can be 
represented as 

X = XI + x.2 + ... + X N  

where N is the (random) number of losses. When N = 0, there are no losses 
and X = 0. 0 

Definition 2.2 The support of a random variable is the set of numbers that 
are possible values of the random variable. 

Definition 2.3 A random variable is  of the discrete type i f  the support con- 
tains at most a countable number of values. I t  is of the continuous type i f  
the distribution function is continuous and is diflerentiable everywhere with 
the possible exception of a countable number of values. It is of the mixed type 
i f  it i s  not discrete and is continuous everywhere with the exception of at least 
one value and at most a countable number of values. 

The distribution function for a discrete variable looks like a step function. 
It has constant value except a t  the jump points. The jumps are the values with 
positive probability. A distribution of the mixed type will have at least one 
jump. Requiring continuous variables to  be differentiable allows the variable 
to have a density function (defined later) a t  almost all values. 

Example 2.4 For each of the four models, determine the support and indi- 
cate which type of random variable it is. 

The distribution function for Model 1 is continuous and differentiable ex- 
cept a t  0 and 100 and therefore is a continuous distribution. The support is 
values from 0 to 100 with it not being clear whether 0 or 100 are included. 
The distribution function for Model 2 is continuous and differentiable except 
at 0 and therefore is a continuous distribution. The support is all positive 
numbers and perhaps 0. The random variable for Model 3 places probability 
only at 0, 1, 2, 3, and 4 (the support) and thus is discrete. The distribution 
function for Model 4 is continuous except at 0, where it jumps. It is a mixed 

0 distribution with support on nonnegative numbers. 

These four models illustrate the most commonly encountered forms of the 
distribution function. For the remainder of this text, values of functions like 



24 BASK PROBABILITY CONCEPTS 

the distribution function will be presented only for values in the range of the 
support of the random variable. 

Definition 2.5 The survival function (also called the decumulative dis- 
tribution function and usually denoted p(x) or S(z)) fo r  a random vari- 
able X is the probability that X is greater than a given number. That is, 
Pr(X > x) = 1 - ~ ( z )  = F ( z )  = ~ ( z ) .  

As a result, from the properties of the cumulative distribution function, 
the survival function has the following properties: 

o 5 F ( x )  5 1 for all x. 

F ( x )  is nonincreasing. 

p(x)  is right-continuous. 

limz--mF(z) = 1. 

limz+m F ( x )  = 0. 

It is possible for the survival function to jump (down). When it jumps, the 
value is assigned to the bottom of the jump as a result of the right continuity. 

Because the survival function is the complement of the distribution func- 
tion, knowledge of one implies knowledge of the other. In practice, when the 
random variable is measuring time, the survival function is usually presented 
because it represents the proportion of “survivors.” When it is measuring 
losses, the distribution function is usually presented. However, there is noth- 
ing lost by not following this convention. 

Example 2.6 The survival functions for  the four models: 

- 

- 

- 
F1(z )  = 1 - 0.012, 0 5 x < 100, 

0.5, 
0.25, 

0.05, 
0, 2 2 4. 

0 F x < 1, 
1 F x < 2, 

3 5 x < 4, 
F~(x) = 0.13, 2 5 2 < 3, 

, X ? O .  

1 - 

- F4(z) = 0.3e-0.00001z 

Graphs of the survival functions for Models 1 and 2 appear in Figures 2.3 
and 2.4. 
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Fig. 2.3 Survival function for Model 1 

0.1. - ~ 

0 -  
0 500 1,000 1,500 2,000 2,500 3,000 

X 

Fig. 2.4 Survival function for Model 2 

Either the distribution or the survival function can be used to determine 
probabilities. Let F(b-)  = lim,/bF(x) and let F ( b - )  = lim,,y,F(x) be 
defined as the limits as x approaches b from below. Then we have Pr(a  < X 5 
b) = F(b)  - F ( a )  = F(a)  - F(b) and Pr(X = b) = F(b)  - F(b-) = F(b-) - 
F(b) .  When the distribution function is continuous at  x, Pr(X = x) = 0; 
otherwise the probability is the size of the jump. The next two functions are 
more directly relat,ed to  the probabilities. The first is for distributions of the 
continuous type, the second for discrete distributions. 

Definition 2.7 The probability density funct ion (also called the density 
function and usually denoted fx(x) or f(x)) is the first derivative (i.e., 
the slope) of the distribution function or, equivalently, the negative of the 
derivative of the survival function. That is, f(x) = F’(x)  = -F (x). The 
density function is defined only at those points where the derivative exists. 

- 

- 

--I 
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Fig. 2.5 Density function for Model 1 

The abbreviation pdf is often used for the probability density function. 
Although the probability density function does not directly provide probabili- 
ties, it does provide relevant information. Values of the random variable in re- 
gions with higher density values are more likely to occur than those in regions 
with lower values. Probabilities for intervals and the distribution and survival 
functions can be recovered by integration for distributions of the continuous 
type. That is, when the density function is defined over the relevant interval, 
Pr(a < X 5 b) = J," f ( z ) d z ,  F(b) = 

Example 2.8 The density function of the four models are 

f(x)dz, and F(b) = JF f(x)dx. 

jl(Ic) = 0.01, 0 < Ic < 100, 

f3(x)  is not defined, 

f4 (x )  = 0.000003e-0~0000'", x > 0. 

It should be noted that in Model 3, we could also interpret the pdf as being 
zero at  all points except 0, 1, 2, 3 and 4. Model 4 is a mixed distribution; 

0 there is also discrete probability at 0. 

Graphs of the density functions for Models 1 and 2 appear in Figures 2.5 
and 2.6. 

Definition 2.9 The probability function (also called the probability mass 
function, usually denoted p x ( x )  or p(x)) describes the probability at a dis- 
tinct point x. The formal definition i s  p x ( x )  = Pr(X = x). 
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Fig. 2.6 Density function for Model 2 

For discrete random variables, the distribution and survival functions can 
be recovered as F ( x )  = C,<,p(y) and F ( x )  = C,,,p(y). 

Example 2.10 For the four models, 

PI(%) is not defined, 

pz(x)  is not defined, 

0.50, x = 0,  
0.25, x = 1, 

0.08, x = 3, 1 0.05, x = 4, 

p3(x) = 0.12, x = 2, 

p4(0) = 0.7. 

It is again noted that the distribution in Model 4 is mixed, so the above 
describes only the discrete portion of that distribution. For Model 4 we would 
present the complete probability (density) function as 

When the density function is assigned a value at a specific point, as opposed 
to being defined on an interval, it is understood to be a discrete probability 
mass. 

Definition 2.11 The hazard rate (or failure rate, usually denoted h x ( x )  
or h ( x ) )  is the ratio of the probability density function to the survival function 
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at all points where the probability density function is defined. That is, h(x) = 

f ( X ) / W .  

In actuarial or demographic applications, the hazard rate is often called 
the force of mortality. When called the force of mortality, the hazard rate 
is often denoted p(x), and when called the failure rate, it is often denoted 
X(x). In this book we will always use h(s )  to  denote the hazard rate. Re- 
gardless of notation, it may be interpreted as the probability density at x 
conditional on knowing that the argument will be at least x. From the sim- 
ple relationship between distribution and survival functions, we also have 
h(x) = --F’(s)/F(x) = -dlnF(x)/dx. For any interval (0 ,b )  where the haz- 
ard rate exists, the survival function can be recovered from the expression 
~ ( b )  = e- S,” ~(ZPZ. - 

Example 2.12 For the four models, 

J 
x > 0, h2(x) = x + 2,000’ 

h3(x) = undefined, 

h4(x) = 0.00001, x > 0. 

Once again, note that for the mixed distribution the hazard rate is only 
0 defined over the continuous part of the support of the distribution. 

Graphs of the hazard rate functions for Models 1 and 2 appear in Figures 

The following model illustrates a situation in which there is a point where 
2.7 and 2.8. 

the density and hazard rate functions are not defined. 

Model 5 An alternative to the simple distribution in Model 1 is given 
below. 

- 1 - 0.012, 0 5 2 < 50, 
F5(x) = { 1.5 - 0 . 0 2 ~ ,  50 5 x < 75. 

It is piecewise linear and the derivative at x = 50 is not defined . Therefore, 
neither the density function nor the hazard rate function is defined at x = 50 
because the slopes to  the left and right of x = 50 have different values. Unlike 
the mixed model of Model 4, there is no discrete probability mass at this point. 
Because the probability of the occurrence of x = 50 is zero, the density or 
hazard rate at x = 50 could be arbitrarily defined with no effect on subsequent 
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fig. 2.7 Hazard rate function for Model 1 

Fig. 2.8 Hazard rate function for Model 2 

calculations. In this book, such values will be arbitrarily defined so that the 
function is right cont inu~us .~  0 

A variety of commonly used continuous distributions are presented in Chap- 
ter 4, and many discrete distributions are presented in Chapter 5. An inter- 
esting characteristic of a random variable is the value that is most likely to 
occur. 

'By arbitrarily defining the value of the density or hazard rate function a t  such a point, 
it is clear that  using either of them to obtain the survival function will work. If there is 
discrete probability at this point (in which case these functions are left undefined). then 
the density arid hazard functions are not sufficient to completely describe the probability 
distribution. 
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Definition 2.13 The mode of a random variable (or equivalently of a distri- 
bution) is the most likely value of th,e random variable. For a discrete variable 
it is the value with the largest probability. For a continuous iiariable it is the 
value for which the density function is  largest. 

Example 2.14 Determine the mode for Models 1-5. 

Model 1: The density function is constant. All values from 0 to 100 could 
be the mode, or equivalently, it could be said that there is no (single) mode. 

Model 2: 

Model 3: 
Model 4: 

Model 4. 
Model 5: 

values from 

0. 
The density function is strictly decreasing and so the niode is at 

The probability is largest at 0, so the mode is at 0. 
As a mixed distribution, it is not possible to  define a mode for 

The density function is constant over two intervals, with higher 
50 to 75. The values between 50 and 75 are all modes, or equiv- 

alently, it could be said that there is no single mode. 17 

2.3 MOMENTS 

The moments of a distribution are characteristics that can be used in describ- 
ing a distribution. 

Definition 2.15 The Icth raw moment of a distribution is the expected (av- 
erage) value of the Icth power of the random variable, provided it exists. It is 
denoted by  E(Xk) or by  pk. The first raw moment is called the mean and is  
usually denoted by  p. 

For random variables that take on only nonnegative values (i.e., Pr(X 2 
0) = l), k may be any real number. When presenting formulas for calculating 
this quantity, a distinction between continuous and discrete variables must be 
made. The formula for the kth raw moment is 

z k f ( x ) d z  if the random variable is of the continuous type 

= x:p(x,) if the random variable is of the discrete type, 
3 

(2.1) 

where the sum is to be taken over all possible values of z~j. For mixed mod- 
els, evaluate the formula by integrating with respect to its density function 
wherever the random variable is continuous and by summing with respect to 
its probability function wherever the random variable is discrete and adding 
the results. Finally, it should be noted that it is possible that the integral or 
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sum will not converge to a finite value, in which case the moment is said not 
to exist. 

Example 2.16 Determine the first two raw moments for each of the five 
models. 

The subscripts on the random variable X indicate which model is being 
used. 

100 

E ( X 1 )  = 1 x(O.Ol)dx = 50, 

E ( X f )  = 1 x2(0.01)dx = 3,333.33, 
100 

dx = 1,000, 
(. + 2,000)4 

dx = 4,000,000, O0 3(2,000)3 
(x + 2,000)4 E ( X ; )  -1 x 2  

E ( X 3 )  = O(0.5) + l(0.25) + 2(0.12) + 3(0.08) + 4(0.05) = 0.93, 
E(X:) = O(0.5) + l(0.25) + 4(0.12) + g(0.08) + 16(0.05) = 2.25, 

E ( X 4 )  = O(0.7) + x(0.000003)e-0~00001”dx = 30,000, Lm 
E ( X 2 )  = 02(0.7) + x2(0.000003)e-0~000012d~ = 6,000,000,000, im 

1-50 1-75 

E ( X 5 )  = z(O.Ol)dx + z(0.02)dz = 43.75, 

Before proceeding further, an additional model will be introduced. This 
one looks similar to Model 3, but with one key difference. It is discrete, 
but with the added requirement that all of the probabilities must be integral 
multiples of some number. In addition, the model must be related to sample 
data in a particular way. 

Definition 2.17 The empirical model is a discrete distribution based on a 
sample of size n that assigns probability l /n  to each data point. 

Model 6 Consider a sample of size 8 in which the observed data points 
were 3,  5, 6, 6 ,  6 ,  7, 7, and 10. The empirical model then has probability 
function 
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0.125, x = 3,  
0.125, x = 5, 

0.25, x = 7, 
0.125, x = 10. I? 

Alert readers will note that many discrete models with finite support look 
like empirical models. Model 3 could have been the empirical model €or a 
sample of size 100 that contained 50 zeros, 25 ones, 12 twos, 8 threes, and 5 
fours. Regardless, we will use the term empirical model only when it is based 
on an actual sample. The two moments for Model 6 are 

E(X6) = 6.25, E(Xi) = 42.5 

using the same approach as in Model 3. It should be noted that the mean 
of this random variable is equal to the sample arithmetic average (also called 
the sample mean). 

Definition 2.18 The k t h  central moment of a random variable is the ex- 
pected value of the k t h  power of the deviation of the variable from its mean. 
I t  is  denoted by  E [ ( X  - P ) ~ ]  or by  pk. The second central moment is usually 
called the variance and often denoted g2, and its square root, u,  is culled 
the standard deviation. The ratio of the standard deviation to the mean is  
called the coefficient of variation. The ratio of the third central moment 
to the cube of the standard deviation, y1 = p3/a3, is called the skewness. 
The ratio of the fourth central moment to the fourth power of the standard 
deviation, 7 2  = p4/a4, is called the Ic~r tos i s .~  

For distributions of continuous and discrete types, formulas for calculating 
central moments are 

pk = - P I k ]  
00 

(x - ~ ) ~ f ( z ) d x  if the random variable is continuous 

= c ( x j  - p)‘p(xj) if the random variable is discrete. (2.2) 
j 

In reality, the integral need be taken only over those x values where f(z) is 
positive because regions where f(x) = 0 do not contribute to the value of the 
integral. The standard deviation is a measure of how much the probability 

‘It would be more accurate to  call these items the “coefficient of skewness” and “coefficient 
of kurtosis” because there are other quantities tha t  also measure asymmetry and flatness. 
The  simpler expressions will be used in this text.  
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is spread out over the random variable’s possible values. It is measured in 
the same units a.s the random variable itself. The coefficient of variation 
measures the spread relative to the mean. The skewness is a measure of 
asymmetry. A symmetric distribution has a skewness of zero, while a positive 
skewness indicates that probabilities to the right tend to be assigned to values 
further from the mean than those to the left. The kurtosis measures flatness 
of the distribution relative to a normal distribution (which has a kurtosis of 
3). Kurtosis values above 3 indicate that (keeping the standard deviation 
constant), relative to a normal distribution, more probability tends to  be at 
points away from the mean than at points near the mean. The coefficients of 
variation, skewness, and kurtosis are all dimensionless quantities. 

There is a link between raw and central moments. The following equation 
indicates the connection between second moments. The development uses the 
continuous version from equations (2.1) and (2.2), but the result applies to  
all random variables. 

00 m 

( x  - p ) 2 f ( x ) d x  = (2 - 2 x p  + p2)  f ( z ) d x  
IL2 = I, L 

= E(X2) - 2pE(X) + p2 = pk - p2.  (2.3) 

Example 2.19 The density function of the gamma distribution with pdf  

appears to be positively skewed (see Figure 2.9). Demonstrate that this is true 
and illustrate with graphs. 

The first three raw moments of the gamma distribution can be calculated 
as cr6, (Y((Y + 1)Q2, and CY((Y + 1)(a + 2)e3. From formula (2.3) the variance is 
o02, and from the solution to Exercise 2.5 the third central moment is 2ae3. 
Therefore, the skewness is 2cr-’I2. Because (Y must be positive, the skewness 
is always positive. Also, as (Y decreases, the skewness increases. 

Consider the following two gamma distributions. One has parameters (Y = 

0.5 and 6 = 100, while the other has a = 5 and 6 = 10. These have the same 
mean, but their skewness coefficients are 2.83 and 0.89, respectively. Figure 
2.9 demonstrates the difference. I? 

Note that when calculating the standard deviation for Model 6 in Exercise 
2.6 the result is the sample standard deviation using n as opposed to the more 
commonly used n - 1 in the denominator. Finally, it should be noted that 
when calculating moments it is possible that the integral or sum will not exist 
(as is the case for the third and fourth moments for Model 2). For the models 
we typically encounter, the integrand and summand are nonnegative and so 
failure to exist implies that the required limit that gives the integral or sum 
is infinity. See Example 4.14 for an illustration. 
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0.09 , 1 

Fig. 2.9 Densities of f(z) -gamma(0.5,100) and g(z) ~gamma(5, lO) 

Definition 2.20 For a given value of a threshold d with Pr(X > d )  > 0, the 
excess loss variable i s  Y = X - d given that X > d .  Its expected value, 

e x ( d )  = e(d)  = E ( Y )  = E ( X  - d / X  > d ) ,  

is called the mean excess loss function. Other names for this expectation, 
which are used an other contexts, are mean residual life function and 
expectation of life. 

The conditional random variable X - dlX > d is a left-truncated and 
shifted random variable. It is left-truncated because values below d are not 
considered; i.e., they are ignored. It is shifted because d is subtracted from 
the remaining values. When X is a payment variable, as in the insurance 
context, the mean excess loss is the expected amount paid given that there is 
a positive payment in excess of a deductible of d.  In the demographic context, 
X is interpreted as the age at death; and, the mean excess loss (expectation 
of life) is the expected remaining lifetime given that the person is alive at age 
d.  The lcth moment of the excess loss variable is determined from 

if the variable is of the continuous type S,"(x - d)"(z)dz e%(d) = 
1 - F(d)  

if the variable is of the discrete type. (2.4) 
- C Z , > d ( X 3  - d)"(xJ 
- 

1 - F(d)  

Here, e$(d) is defined only if the integral or sum converges. There is a partic- 
ularly convenient formula for calculating the first moment. The development 
is given below for the continuous version, but the result holds for all ran- 
dom variables. The second line is based on an integration by parts where the 



MOMENTS 35 

Definition 2.21 The left-censored and shifted random variable is 

The random variable is left-censored because values below d are not ignored 
but are, in effect, set equal to 0. There is no standard name or symbol for 
the moments of this variable. For events such as losses that are measured in 
a monetary unit, the distinction between the excess loss variable and the left- 
censored and shifted variable is important. In the excess loss situation, any 
losses below the threshold d are not recorded in any way. In the operational 
risk context, if small losses below some threshold d are not recorded at all, 
the distribution is left-truncated. If the number of such small (and treated 
as zero) losses is recorded, the loss amount random variable is left-censored. 
The moments can be calculated from 

roo 

E[(X - d)'",] = 1 (z - d) 'f(z)dz if the variable is of the continuous type, 
d 

= (zj - d) 'p(zj)  if the variable is of the discrete type. 
x3 >d 

(2.6) 

Example 2.22 Construct graphs to illustrate the diference between the ex- 
cess loss random variable and the left-censored and shifted random variable. 

The two graphs in Figures 2.10 and 2.11 plot the modified variable Y as 
a function of the unmodified variable X .  The only difference is that for X 
values below 100 the variable is undefined while for the left-censored and 

0 shifted variable it is set equal to zero. 

The next definition provides a complementary function to the excess loss. 

Definition 2.23 The limited loss random variable is 

x, x < u, 
u, x 2 u. Y = x A u =  
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Fig. 2.10 Excess loss variable 
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f;g. 2.11 Left censored and shifted variable 

Its expected value, E[X A u],  is culled the limited expected value. 

This variable could also be called the right-censored random variable. 
It is right-censored because values above u are set equal to u. In the opera- 
tional risk context a limit to a loss can occur if losses in excess of that amount 
are insured so that the excess of a loss over the limit u is covered by an insur- 
ance contract. The company experiencing the operational risk loss can lose 
at most u. 

Note that ( X  - d)+ + (X A d )  = X .  An insurance analogy is useful here. 
Buying one insurance contract with a limit of d and another with a deductible 
of d is equivalent to buying full coverage. This is illustrated in Figure 2.12. 
Buying only the insurance contract with a deductible d is equivalent to self- 
insuring losses up to d. 
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Fig. 2.12 Limit of 100 plus deductible of 100 equals full coverage 

Simple formulas for the kth moment of the limited loss variable are 

E[(X A u ) ~ ]  = /: z'f(z)dz + uk[ l  - F(u) ]  

if the random variable is continuous 

= c z;p(zj)  + u k [ l  - F(u) ]  
5 3  5.. 

if the random variable is discrete. 

Another interesting formula is derived as follows: 

0 

= z"(z)O_, - Lm kz"'F(x)dz 

- z"(2); + 1% kz"-'- F ( z ) d z  + U k F ( U )  

- - - s, kz"-1F(z)dz + I" kzk-'F(z)dz, 0 

(2.8) 

where the second line uses integration by parts. For k = 1, we have 

0 

E(X A u) = - F ( z ) d z  + 1.. F(z)ds.  L 
If the loss distribution has only nonnegative support, then the first term in 
the right-hand side of the above two expressions vanishes. The kth limited 
moment of many common continuous distributions is presented in Chapter 



38 BASIC PROBABILITY CONCEPTS 

4. Exercise 2.12 asks you to develop a relationship between the three first 
moments introduced previously. 

2.4 QUANTILES OF A DISTRIBUTION 

One other value of interest that may be derived from the distribution function 
is the quantile function. It is the value of the random variable corresponding 
to a particular value of the distribution function. It can be thought of as the 
inverse of the distribution function. A percentile is a quantile that is expressed 
in percentage terms. 

Definition 2.24 The lOOpth percentile (or quantile) of a random variable 
X i s  any value xp such that F (xp- )  5 p 5 F ( x p ) .  The 50th percentile, 20 .5  

is called the median. 

If the distribution function has a value of p for exactly one 2 value, then 
the percentile is uniquely defined. In addition, if the distribution function 
jumps from a value below p to a value above p ,  then the percentile is at the 
location of the jump. The only time the percentile is not uniquely defined 
is when the distribution function is constant at a value of p over a range of 
values. In that case, any value in that range can be used as the percentile. 

Example 2.25 Determine the 50th and 80th percentiles f o r  Models 1 and 3.  

For Model 1, the pth percentile can be obtained from p = F ( z p )  = 0 . 0 1 ~ ~  
and so xp = loop, and in particular, the requested percentiles are 50 and 80 
(see Figure 2.13). For Model 3 the distribution function equals 0.5 for all 
0 5 z < 1 and so all such values can be the 50th percentile. For the 80th 
percentile, note that a t  2 = 2 the distribution function jumps from 0.75 to 

0 0.87 and so 50.8 = 2 (see Figure 2.14). 

2.5 GENERATING FUNCTIONS 

Sums of random variables are important in operational risk. Consider the op- 
erational risk losses arising from k units in the company. The total operational 
risk losses over all k units is the sum of the losses for the individual units. 
Thus it is useful to  be able to determine properties of Sk = X I  + . . . + X k .  
The first result is a version of the central limit theorem. 

Theorem 2.26 For a random variable Sk as defined above, E(Sk) = E ( X 1 ) +  
. . . +E(Xk). Also, i f X 1 , .  . , , x k  are mutually independent, Var(Sk) =Var(X1)+ 
. . . +Var(Xk). If the random variables X I ,  X z ,  . . . , Xk are mutually indepen- 
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Fig. 2.13 Percentiles for Model 1 
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f i g .  2.14 Percentiles for Model 3 

dent and their first two moments meet certain regularity conditions, the stan- 
dardized sum [Sk - E ( S k ) ] / d w  has a limiting normal distribution with 
mean 0 and variance 1 as k becomes infinitely large. 

Obtaining the exact distribution of Sk may be very difficult. We can rely on 
the central limit theorem to give us a normal approximation for large values 
of k. The quality of the approximation depends in the size of k and on the 
shape of the distributions of the random variables X I ,  X z ,  . . . , X k .  

Definition 2.27 For a random variable X ,  the moment generating func- 
tion (mgf) is hfx( t )  = E ( e t x )  for all t for  which the expected value exists. 
The probability generating function (pgf) is Px(.z) = E(zx) for all z for  
which the expectation exists. 
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Note that M x ( t )  = Px(et)  and P,y(z) = Mx(1nz). Often the mgf is used 
for continuous random variables and the pgf for discrete random variables. For 
us, the value of these functions is not so much that they generate moments or 
probabilities but that there is a one-to-one correspondence between a random 
variable's distribution function and its mgf and pgf (i.e., two random variables 
with different distribution functions cannot have the same mgf or pgf). The 
following result aids in working with sums of random variables. 

Theorem 2.28 Let s k  = X I  + . . . + xk, where the random variables in the 
sum are mutually independent. Then the exact distribution of the sum is given 
by  the mgf and pgf  as M s , ( t )  = n:=, M x , ( t )  and Psk(z) = rr,"=, Px,(z) 
provided all the component mgfs and pg f .  exist. 

Proof: We use the fact that the expected product of independent random 
variables is the product of the individual expectations. Then, 

k k 
= E ( e t x J )  = n Mx, ( t ) .  

3 = 1  j=1 

A similar argument can be used for the pgf. 0 

Example 2.29 Show that the sum of independent gamma random variables, 
each with the same value of 8, has a gamma distribution. 

The moment generating function of a gamma variable is 

Now let X j  have a gamma distribution with parameters aj and 8. Then the 
moment generating function of the sum is 

which is the moment generating function of a gamma distribution with para- 
meters a1 +.  . . + ak and 6. 0 
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Example 2.30 Obtain the mgf and pgf for the Poisson distribution with pf  

The pgf is 

Then the mgf is M x ( t )  = P x ( e t )  = exp[X(et - I)]. 0 

2.6 EXERCISES 

2.1 Determine the distribution, density, and hazard rate functions for Model 
5 .  

2.2 Construct graphs of the distribution function for Models 3-5. Also graph 
the density or probability function as appropriate and the hazard rate func- 
tion, where it exists. 

2.3 A random variable X has density function f ( ~ )  = 4 ~ ( 1  + x’ ) -~ ,  x > 0 .  
Determine the mode of X .  

2.4 A nonnegative random variable has a hazard rate function of h(x )  = 
A + e2x, x 2 0. You are also given F(0.4) = 0.5. Determine the value of A.  

2.5 Develop formulas similar to (2 .3)  for p3 and p4. 

2.6 Calculate the standard deviation, skewness, and kurtosis for each of the 
six models. 

2.7 A random variable has a mean and a coefficient of variation of 2. The 
third raw moment is 136. Determine the skewness. 

2.8 Determine the skewness of a gamma distribution that has a coefficient of 
variation of 1. 

2.9 Determine the mean excess loss function for Models 1-4. Compare the 
functions for Models 1, 2, and 4. 

2.10 For two random variables, X and Y ,  ey(30)  = e x ( 3 0 )  + 4 .  Let X have 
a uniform distribution on the interval from 0 to 100 and let Y have a uniform 
distribution on the interval from 0 to w. Determine w. 
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2.11 A random variable has density function f(x) = A-'e-"/', x,A > 0. 
Determine .(A), the mean excess loss function evaluated at z = A. 

2.12 Show that the following relationships holds: 

E(X) = E(X A d )  + F ( d ) e ( d )  (2.9) 
= E(X A d )  + E [(X - d)+] . 

2.13 Determine the limited expected value function for Models 1-4. Do this 
using both (2.7) and (2.9). For Models 1 and 2 also obtain the function using 
(2.8). 

2.14 Define a right-truncated variable and provide a formula for its kth mo- 
ment. 

2.15 The distribution of individual losses has pdf 

f(z) = 2 . 5 ~ - ~ ' ~ ,  z >_ 1. 

Determine the coefficient of variation. 

2.16 Possible loss sizes are for $100, $200, $300, $400, or $500. The prob- 
abilities for these values are 0.05, 0.20, 0.50, 0.20, and 0.05, respectively. 
Determine the skewness and kurtosis for this distribution. 

2.17 Losses follow a Pareto distribution with (Y > 1 and 0 unspecified. Deter- 
mine the ratio of the mean excess loss function at x = 20 to the mean excess 
loss function at  x = 0. 

2.18 The cdf of a random variable is F ( s )  = 1 - x - ~ ,  z 2 1. Determine the 
mean, median, and mode of this random variable. 

2.19 Determine the 50th and 80th percentiles for Models 2, 4, 5, and 6. 

2.20 Losses have a Pareto distribution with parameters (Y and 0. The 10th 
percentile is 0 - k .  The 90th percentile is 58 - 3k. Determine the value of a. 

2.21 Losses have a Weibull distribution with cdf 

F ( x )  = 1 - e-(Z'Qy z > 0. 

The 25th percentile is 1,000 and the 75th percentile is 100,000. Determine 
the value of T .  

2.22 Consider 16 independent risks, each with a gamma distribution with 
parameters (Y = 1 and 6 = 250. Give an expression using the incomplete 
gamma function for the probability that the sum of the losses exceeds 6,000. 
Then approximate this probability using the central limit theorem. 
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2.23 The sizes of individual operational risk losses have the Pareto distribu- 
tion with parameters a = 8/3,  and 19 = 8,000. Use the central limit theorem 
to approximate the probability that the sum of 100 independent losses will 
exceed 600,000. 

2.24 The sizes of individual operational risk losses have the gamma distrib- 
ution with parameters LY = 5 and 8 = 1,000. Use the central limit theorem to 
approximate the probability that the sum of 100 independent losses exceeds 
525,000. 

2.25 A sample of 1,000 operational risk losses produced an average loss of 
$1,300 and a standard deviation of $400. It is expected that 2,500 such losses 
will occur next year. Use the central limit theorem to estimate the probability 
that total losses will exceed the expected amount by more than 1%. 
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3 
Measures of risk 

It is impossible to make everything foolproof, because fools are so ingenious. 
-Murphy 

3.1 INTRODUCTION 

Probability-based models provide a description of risk exposure. The level of 
exposure to risk is often described by one number, or at least a small set of 
numbers. These numbers are necessarily functions of the model and are often 
called “key risk indicators.” Such key risk indicators indicate to risk managers 
the degree to which the company is subject to particular aspects of risk. In 
particular, Value-at-Risk (VaR) is a quantile of the distribution of aggregate 
risks. Risk managers often look at “the chance of an adverse outcome.” This 
can be expressed through the VaR at a particular probability level. VaR 
can also be used in the determination of the amount of capital required to 
withstand such adverse outcomes. Investors, regulators, and rating agencies 
are particularly interested to the company’s ability to withstand such events. 

VaR suffers from some undesirable properties. A more informative and 
more useful measure of risk is Tail-Value-at-Risk (TVaR). It has arisen inde- 
pendently in a variety of areas and has been given different names including 
Conditional-Value-at-Risk (CVaR), Conditional Tail Expectation (CTE) and 
Expected Shortfall (ES). In this book we first focus on developing the under- 
lying probability model, and then apply a measure of risk to the probability 
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model to provide the risk manager with useful information in a very simple 
format. 

The subject of the determination of risk capital has been of active inter- 
est to researchers, of interest to regulators of financial institutions, and of 
direct interest to  commercial vendors of financial products and services. At 
the international level, the actuarial and accounting professions and insurance 
regulators through the International Accounting Standards Board, the Inter- 
national Actuarial Association, and the International Association of Insurance 
Supervisors are all active in developing a framework for accounting and capital 
requirements for insurance companies. Similarly, the Basel Committee and 
the Bank of International Settlements have been developing capital standards 
for use by banks. 

3.2 RISK MEASURES 

Value-at-Risk (Van) has become the standard risk measure used to evaluate 
exposure to risk. In general terms, the VaR is the amount of capital required 
to ensure, with a high degree of certainty, that the enterprise doesn’t become 
technically insolvent. The degree of certainty chosen is arbitrary. In prac- 
tice, it can be a high number such as 99.95% for the entire enterprise, or it 
can be much lower, such as 95%, for a single unit or risk class within the 
enterprise. This lower percentage may reflect the inter-unit or inter-risk type 
diversification that exists. 

The promotion of concepts such as VaR has prompted the study of risk 
measures by numerous authors (e.g., Wang [122], [123]). Specific desirable 
properties of risk measures were proposed as axioms in connection with risk 
pricing by Wang, Young, and Panjer [la51 and more generally in risk mea- 
surement by Artzner et al. [6]. 

We consider a random variable X j  representing the possible losses (in our 
case losses associated arising from operational risk) for a business unit or 
particular class of risk. Then the total or aggregate losses for n units or risk 
types is simply the sum of the losses for all units 

x = XI fX2 +. .  . +x,,. 
The study of risk measures has been focused on ensuring consistency be- 

tween the way risk is measured at the level of individual units and the way 
risk is measured after the units are combined. The concept of “coherence” of 
risk measures was introduced by Artzner et a1 IS]. This paper is considered 
to be the groundbreaking paper in the area of risk measurement. 

The probability distribution of the total operational losses X depends not 
only on the distributions of the operational losses for the individual business 
units but also on the interrelationships between them. Correlation is one such 
measure of interrelationship. The usual definition of correlation (as defined in 
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statistics) is a simple linear relationship between two random variables. This 
linear relationship may not be adequate to capture other (nonlinear) aspects 
of the relationship between the variables. Linear correlation does perform 
perfectly for describing interrelationships in the case where the operational 
losses from the individual business units form a multivariate normal distribu- 
tion. Although the normal assumption is used extensively in connection with 
the modeling of changes in the logarithm of prices in the stock markets, it 
may not be entirely appropriate for modeling many processes including op- 
erational loss processes. For financial models and applications, where much 
of the theory is based on Brownian motion or related processes resulting in 
normal distributions, the normal distribution model serves as a benchmark 
and provides insight into key relationships. From the insurance field, it is well 
known that skewed distributions provide better descriptions of losses than 
symmetric distributions. 

There are two broad approaches to the application of risk measurement to 
the determination of capital needs for complex organizations such as insurance 
companies and banks. One approach is to develop a mathematical model for 
each of the risk exposures separately and assign a capital requirement to each 
exposure based on the study of that risk exposure. This is often called the 
risk-based capital (RBC) approach in insurance and the Base1 approach in 
banking. The total capital requirement is the (possibly adjusted) sum of 
the capital requirements for each risk exposure. Some offset may be possible 
because of the recognition that there may be a diversification or hedging 
effect of risks that are not perfectly correlated. The second approach uses 
an integrated model of the entire organization (the internal model approach). 
In this approach, a mathematical model is developed to describe the entire 
organization. The model incorporates all interactions between business units 
and risk types in the company. All interrelationships between variables are 
built into the model directly. Hence, correlations are captured in the model 
structure. In this approach, the total capital requirement for all types of 
risks can be calculated at the highest level in the organization. When this 
is the case, an allocation of the total capital back to the units is necessary 
for a variety of business management or solvency management reasons. The 
first approach to capital determination is often referred to as a “bottom-up” 
approach, while the second is referred to as a L‘top-do~n’’ approach. 

A risk measure is a mapping from the random variable representing the 
loss associated with the risks to the real line (the set of all real numbers). 
A risk measure gives a single number that is intended to quantify the risk 
exposure. For example, the standard deviation, or a multiple of the standard 
deviation of a distribution, is a measure of risk because it provides a measure 
of uncertainty. It is clearly appropriate when using the normal distribution. 
One of the other most commonly used risk measures in the fields of finance and 
statistics is the quantile of the distribution or the Value-at-Risk (VaR). VaR is 
the size of loss for which there is a small (e.g. 1%) probability of exceedence. 
VaR is the most commonly used method for describing risk because it is 
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easily communicated. For example an event at the 1% per year level is often 
described as the “one in a hundred year” event. However, for some time it has 
been recognized that Van suffers from major problems. This will be discussed 
further after the introduction of coherent risk measures. 

Throughout this book, the risk measures are denoted by the function p ( X ) .  
It is convenient to think of p(X) as the amount of assets required for the risk 
X .  We consider the set of all random variables X, Y such that both cX and 
X + Y are also in the set. This is not very restrictive, but it does eliminate 
risks that are measured as percentages as with Model 1 of the Chapter 2. 
Nonnegative loss random variables that are expressed in dollar terms and 
that have no upper limit satisfy the above requirements. 

Definition 3.1 A coherent risk measure p ( X )  is defined as one that has 
the following four properties for  any two bounded loss random variables X and 
Y: 

1. Subadditivity: p ( X  + Y )  5 p(X) + p ( Y ) .  
2. Monotonicity: If X 5 Y for all possible outcomes, then p ( X )  5 p ( Y ) .  
3. Positive homogeneity: For any positive constant c,  p ( c X )  = cp(X). 
4. Translation invariance: For any positive constant c,  p(X+c) = p(X)+c. 

Subadditivity means that the risk measure (and hence the capital required 
to support it) for two risks combined will not be greater than for the risks 
treated separately. This reflects the fact that there should be some diversifi- 
cation benefit from combining risks. This is necessary at the corporate level, 
because otherwise companies would find it to be an advantage to disaggregate 
into smaller companies. There has been some debate about the appropriate- 
ness of the subadditivity requirement. In particular, the merger of several 
small companies into a larger one exposes each of the small companies to  the 
reputational risk of the others. We will continue to require subadditivity as 
it reflects the possibility of diversification. 

Monotonicity means that if one risk always has greater losses than another 
risk under all circumstances, the risk measure (and hence the capital required 
to support it) should always be greater. This requirement should be self- 
evident from an economic viewpoint. 

Translation invariance means that there is no additional risk (and hence 
capital required to support it) for an additional risk for which there is no 
additional uncertainty. In particular, by making X identically zero, the assets 
required for a certain outcome is exactly the value of that outcome. Also, 
when a company meets the capital requirement by setting up additional risk- 
free capital, the act of injecting the additional capital does not, in itself, trigger 
a further injection (or reduction) of capital. 

Positive homogeneity means that the risk measure (and hence the capital 
required to support it) is independent of the currency in which the risk is 
measured. Equivalently, it means that, for example, doubling the exposure to 
a particular risk requires double the capital. This is sensible because doubling 
the position provides no diversification. 
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Risk measures satisfying these four criteria are deemed to be coherent. 
There are many such risk measures. 

Example 3.2 (Standard deviation principle) The standard deviation is a 
measure of uncertainty of a distribution. Consider a loss distribution with 
mean p and standard deviation a .  The quantity p + ka ,  where k is  the same 
fixed constant for  all distributions, is a risk measure (often called the s tan-  
dard deviation principle). The coeficient k is usually chosen to ensure 
that losses will exceed the risk measure for  some distribution, such as the nor- 
mal distribution, with some specified small probability. The standard deviation 
principle is not a coherent risk measure. Why? While properties 1, 3, and 4 

0 hold, property 2 does not. Can you construct a counterexample? 

If X follows the normal distribution, a value of k = 1.645 results in an 
exceedence probability of Pr  (X > p + ka)  = 5%. Similarly, if k = 2.576, 
then Pr  (X > p + k a )  = 0.5%. However, if the distribution is not normal, 
the same multiples of the standard deviation will lead to different exceedence 
probabilities. One can also begin with the exceedence probability, obtaining 
the quantile /I + k a  and the equivalent value of k .  This is the key idea behind 
Value-at-Risk. 

Definition 3.3 Let X denote a loss random variable. The Value-at-Risk of 
X at the loop% level, denoted VaR,(X) or +, is the 1OOp percentile (or 
quantile) of the distribution of X .  

For continuous distributions, we can simply write VaRp(X) for random 
variable X as the value of zp  satisfying 

Pr  ( X  > xP) = p. 

It is well known that VaR does not satisfy one of the four criteria for coherence, 
the subadditivity requirement. The failure of VaR to be subadditive can 
been shown by a simple counter but extreme example inspired by a more 
complicated one from Wirch [128]. 

Example 3.4 (Incoherence of Van) Let Z denote a loss random variable of 
the continuous type with cdf at $1, $90, and $100 satisfying the following three 
equations: 

Fz(1) = 0.91, 

Fz(90) = 0.95, 

Fz(100) = 0.96. 

The 95% quantile, the VaRS,%(Z) is $90 because there is  a 5% chance of 
exceeding $90. 
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Suppose that we now split the risk Z into two separate (but dependent) risks 
X and Y such that the two separate risks in total are equivalent to risk 2, 
that is, X + Y = Z. One way to do this is by defining risk X as the loss if it 
falls up to $100, and zero otherwise. Similarly define risk Y as the loss if it 
falls over $1 00, zero otherwise. The cdf for  risk X satisfies 

Fx (1) = 0.95, 

Fx(90) = 0.99, 

Fx(100) = 1. 

indicating a 95% quantile of $1. 
Similarly the cdf for risk Y satisfies Fz(0) = 0.96 indicating that there 

is a 96% chance of no loss. Therefore the 95% quantile cannot exceed $0. 
Consequently, the sum of the 95% quantiles f o r  X and Y is less than the 
VaRgS%(Z) which violates subadditivity. 0 

Although this example may appear to be somewhat artificial, the existence 
of such possibilities creates opportunities for strange or unproductive manip- 
ulation. Therefore we focus on risk measures that are coherent. 

3.3 TAI L-VA LU E- AT- RISK 

As a risk measure, Value-&Risk is used extensively in financial risk manage- 
ment of trading risk over a fixed (usually relatively short) time period. In 
these situations, the normal distribution are often used for describing gains 
or losses. If distributions of gains or losses are restricted to the normal distri- 
bution, Value-at-Risk satisfies all coherency requirements. This is true more 
generally for elliptical distributions, for which the normal distribution is a 
special case. However, the normal distribution is generally not used for de- 
scribing operational risk losses as most loss distributions have considerable 
skewness. Consequently, the use of Van is problematic because of the lack of 
subadditivity. 

Definition 3.5 Let X denote a loss random variable. The Tail- Value-at-Risk 
of X at the loop% confidence level, denoted TVaR,(X),  is the expected loss 
given that the loss exceeds the loop percentile (or  quantile) of the distribution 
of X .  

For the sake of notational convenience, we shall restrict consideration to  
continuous distributions. This avoids ambiguity about the definition of Van. 
In general, we can extend the results to discrete distributions or distributions 
of mixed type by appropriately modifying definitions. For practical purposes, 
it is generally sufficient to  think in terms of continuous distributions. 
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We can simply write TVaR,(X) 

TVaR,(X) = E (X 

for random variable X as 

where F(z) is the cdf of X .  Furthermore, for continuous distributions, if the 
above quantity is finite, we can use integration by parts and substitution to 
rewrite this as 

- s,’ vartzL(X) du 
- 

1 - P  

Thus, TVaR can be seen to average all VaR values above confidence level p. 
This means that TVaR tells us much more about the tail of the distribution 
than Van alone. 

Finally, TVaR can also be written as 

TVaRp(X) = E(X I X > xP) 

= xp + 
= VaRp(x) + e(zp)  

Jx; t. - Z P )  dF(x)  

1 - F ( X p )  

where e(xp) is the mean excess loss function. Thus TVaR is larger than 
the corresponding VaR by the average excess of all losses that exceed Van. 
TVaR has also been developed independently in the insurance field and called 
Conditional Tail Expectation (CTE) by Wirch [128] and widely known 
by that term in North America. It has also been called Tail Conditional 
Expectation (TCE). In Europe, it has also been called Expected Shortfall 
(ES). (See Tasche [113] and Acerbi and Tasche [3]). 

Overbeck 1871 also discusses VaR and TVaR as risk measures. He argues 
that VaR is an “all or nothing” risk measure, in that if an extreme event 
in excess of the Van threshold occurs, there is no capital to  cushion losses. 
He also argues that the VaR quantile in TVaR provides a definition of “bad 
times,” which are those where losses exceed the VaR threshold, thereby not 
using up all available capital when TVaR is used to determine capital. Then 
TVaR provides the average excess loss in “bad times,” that is, when the VaR 
“bad times” threshold has been exceeded. 

Example 3.6 (Normal distribution) 
mean p, standard deviation 0, and pdf 

Consider a normal distribution with 
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Let $ ( x )  and @ ( x )  denote the pdf and the cdf of the standard normal dis- 
tribution (p = 0,  u = 1). Then 

VaR,(X) = p + a@-' ( p )  

and, with a bit of calculus, it can be shown that 

Note that, in both cases, the risk measure can be translated to the standard 
0 deviation principle with a n  appropriate choice of k. 

Example 3.7 (t distribution) Consider a t distribution with location para- 
meter p, scale parameter u, with u degrees of freedom and pdf 

Let t ( x )  and T ( x )  denote the pdf and the cdf of the standardized t distrib- 
ution (p = 0,  LT = 1)  with v > 2 degrees of freedom. Then 

VaR,(X) = p + uT-' ( p )  

and, with some more calculus, it can be shown that 

Example 3.8 (Exponential distribution) Consider an exponential distribu- 
tion with mean 6 and pdf  

1 
0 

f ( x )  = - exp (-;) , 2 > 0. 

Then 
VaR,(X) = Oln(1 - p )  

and 
T V ~ R , ( X )  = v a ~ , ( x )  + e. 

The excess of TVaR over Van is  a constant 8 fo r  all values o f p  because of 
the memoryless property of the exponential distribution. 



TAIL- VA L UE-A T- RISK 53 

TVaR is a coherent measure. This has been shown by Artzner et al. [6] .  
Therefore, when using it, we never run into the problem of subadditivity of 
the VaR. TVaR is one of many possible coherent risk measures. However, it 
is particularly well-suited to applications in operational risk where you may 
want to reflect the shape of the tail beyond the VaR threshold in some way. 
TVaR represents that shape through a single number, the mean excess or 
expected shortfall. 
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Part II 

Probabilistic tools for  
operational risk modeling 
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4 
Models for  the size of 

losses: Continuous 
distributions 

If everything seems to be going well, you have probably overlooked something. 
-Murphy 

4.1 INTRODUCTION 

In this chapter, we will focus on models that can be used for the size of losses. 
We restrict ourselves to distributions that do not take on negative values. 
Negative losses are positive gains. Because our focus is on losses, we will 
not consider, for example, errors that result in gains. Random variables that 
cannot take on negative values are said to have nonnegative support. The set 
of all possible distribution functions with nonnegative support is the set of all 
possible nondecreasing functions that take on value 0 for all negative values of 
the random variable and take on, or approach, value 1 as the random variable 
becomes very large. When searching for a distribution function to use as a 
model for a random phenomenon, it can be helpful if the field can be narrowed 
from this infinitely large set to a small set containing distribution functions 
with a sufficiently large variety of shapes to capture shapes of distributions 
encountered in practice. Beyond classification into discrete, continuous, and 
mixed distributions, we can classify distributions according to other criteria. 
Section 4.2 lists many distributions. They are ordered on the basis of the 
number of parameters in the model. Section 4.3 provides a unified approach 
to these distributions by combining them into “families.” Several subsequent 
sections examine the shape of the distributions and methods for creating even 
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more distributions. By the end of this chapter, most of the distributions whose 
details appear in this book will have been introduced. 

4.2 AN INVENTORY OF CONTINUOUS DISTRIBUTIONS 

We will examine a number of distributions that can be used for modeling losses 
from operational events. By definition, losses can only take on values that 
are nonnegative. Hence we only look at distributions whose random variable 
can only take on nonnegative values. For most distributions, the domain runs 
from zero to infinity. In practice, however, losses are limited by some large 
amount (such as the total assets of the firm). Often in modeling losses we 
ignore this fact because the probability of such an event is extremely small. 
If the probability of such a loss is sufficiently large to be material we could 
apply a limit x to the loss random variable X ,  and consider the distribution 
of x A x. 

We now introduce a selected set of continuous distributions with support 
on (0, ca) . In the descriptions of the distributions given in the next subsections 
are the moments of both X and X A x. We list the distributions and their 
properties for easy later reference. Relationships between the distributions 
are discussed in the Section 4.3. The gamma function I'(a), the incomplete 
gamma function r(a; x), and the beta function P(T, a;  x) that are used are 
defined in Appendix A. 

4.2.1 One-parameter distributions 

4.2.1.1 Exponential distribution The exponential is the only continuous dis- 
tribution with a hazard rate that is constant, h(x) = l /6 ,  and a conditional 
expected excess loss that is also constant, ed(x )  = 6. Therefore, the expected 
size of the excess loss above a threshold doesn't depend on the threshold. 

1 f(.) = -,-z/* 

F ( X )  = 1 - e-x/e  
0 

E [ x ~ ]  = @ r ( k  + I), k > -1 

E[Xk] = O'k! if k is an integer 

E[X A x] = 6(1 - ePx/ ' )  

E[(X A x)~] = Bkr(k  + l)r(k + 1; x / 6 )  + xke-z/*,  k > -1 

E[(X A x ) ~ ]  = 6'k!r(k + 1; x / 6 )  + xke-z /O if k > -1 is an integer 

M ( t )  = (1 - &-I, t < l /6 

Mode = 0 
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4.2.1.2 Inverse exponential distribution The inverse exponential is closely re- 
lated to the exponential distribution. Further discussion of inverse distribu- 
tions is in Section 4.7. Note that the inverse exponential has an infinite mean 
(and higher moments), indicating a very heavy tail. 

F ( x )  = e - O / x  

E[Xk] = 8'q 1 - k ) ,  k < 1 

E[(X A z ) ~ ]  = o k q i  - k ; 0 / ~ )  + 2( i  - e-e/x), all k 
Mode = 8/2 

4.2.1.3 Single-parameter Pareto distribution The support of this distribution 
begins at 0. Usually the value of 0 is known and therefore not considered a 
parameter. The Pareto distribution is described as heavy tailed because it has 
only a finite number of moments. From the following information you should 
be able to deduce that the mean excess function is linear in d. 

f ( x )  = aoaz-=--l, 3: > B 

a@ 
a - k '  

E[X'] = - k < a  

x > 8  aOk k0" 
E[(X A z ) ~ ]  = - - 

cy - k (a  - IC)xa-k' 

Mode = 8  

4.2.2 Two-parameter distributions 

4.2.2.1 Gamma distribution The gamma distribution is commonly used for 
many applications. If a is an integer, the gamma distribution can be con- 
sidered as the distribution of the sum of a independent and identically (iid) 
exponential random variables. 

e k q a  + k )  
r (a )  E[Xk] = , k > - a  
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E [ X k ]  = @(a + k - 1 ) .  . . a if k is an integer 

E [ ( X   AX)^] = + ")r(a + k ;  x /6 )  + x k [ l  - r (a ;  x / 6 ) ] ,  k > -a 
U a )  

E [ ( X  A x ) ~ ]  = ~ r ( ~ r  + 1 ) .  . . (a  + k - i)ekr(a + k ;  X / O )  

+ x k [ l  - r (a ;  x /6) ]  if k is an integer 

M ( t )  = (1 - t < 1/6 

Mode = 6(a - l ) ,  if a > 1,  else mode is at 0 

4.2.2.2 Inverse gamma distribution The inverse gamma distribution (also 
known as the Vinci distribution). 

4.2.2.3 
tained from the normal cdf by replacing x by lnx. 

Lognormal distribution The cdf of the lognormal distribution is ob- 

E [ X k ]  = exp ( k p  + ; k 2 a 2 )  

E [ ( X   AX)^] = exp ( k p  + i k 2 a 2  ) + x k [ l  - F ( x ) ]  

Mode = exp(p - a') 
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4.2.2.4 Inverse Gaussian distribution The inverse Gaussian distribution is 
also known as the inverse normal or the Hadwiger distribution. 

E[X] = p, V a r [ X ]  = p3/6 

4.2.2.5 
ponential cdf by replacing x/6 by ( ~ / 6 ) ~ .  

Weibull distribution The Weibull cdf can be obtained from the ex- 

4.2.2.6 Inverse Weibull distribution The inverse Weibull distribution is also 
known as the log-Gompertz distribution. 

11' 

Mode = 6 (2) 
r + l  
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4.2.2.7 Loglogistic distribution The loglogistic distribution looks a lot like 
the lognormal distribution but with much heavier tails. It is also known as 
the Fisk distribution. 

4.2.2.8 The Pareto distribution has a very heavy tail and 
is used extensively in loss modeling when there is a high probability of very 
large losses. It is also known as the Pareto Type I1 or Lomax distribution. 

Pareto distribution 

F ( x )  = 1 - (L) " 
X + B  

@r(k + i )qa - I C )  
r(Q) 

E [ X k ]  = , - 1 < k < a  

if k is an integer 
Okk! 

E[XAX] = - a - 1  [l- (y7, x + 6  a # l  

E[X A x] = -81n - (A9)> a = 1  

Mode = O  
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4.2.2.9 Inverse Pareto distribution 

Okr(r + k ) r ( i  - k )  
r(7) 

E[Xk] = , - 7 - < I c < 1  

0 k (  - k ) !  
(7-  - 1). . . ( r  + k )  E[Xk] = if k is a negative integer 

+ 2 k  [l- (')I, x + 0  
k >  -7- 

7 - 1  
Mode = 0- 

2 '  
if 7- > 1, else the mode is at 0 

4.2.2.10 Paralogistic distribution 

a 1 
F ( x )  = - (1 + (./U)") 

okr(i + - I ~ / Q )  

r(Q) 
ekr(i + k/Q)r(Q - k / a )  

r(Q) 

E[Xk] = , - f f < k < Q 2  

P(1+ k/ff, ff - k / a ;  1 - u) E[(X = 

1 / a  a - 1  
a2 + 1 

Mode = 0 (-) , if Q > 1, else the mode is a t  0 
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4.2.2.11 Inverse paralogistic distribution 

, - r 2 < k < r  Q k r ( r  + k / r ) r ( l -  k / r )  
E[X'"] = 

r (7.) 

B k r ( T  + k / r ) F ( l -  k / r )  
E[(X AX)'"] = ,B(r + k / r ,  1 - k / r ;  u) + zk[l - 21'1 

r(7) 
Mode = 0 ( T  - l)'/' , if r > 1, else mode is at 0 

4.2.3 Three-parameter distributions 

4.2.3.1 Transformed gamma distribution The transformed (or generalized) 
gamma cdf is obtained from the gamma by replacing x/0 by (z/O)'. Such 
transformations are discussed further in Section 4.7. 
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4.2.3.2 Inverse transformed gamma distribution The inverse transformed gamma 
distribution is also known as the inverse generalized gamma distribution. 

, k < a r  8kr(a - k / ~ )  
r(Q) 

E[Xk] = 

l l r  

Mode = 8 (i) a7 + 1 

4.2.3.3 Generalized Pareto distribution The generalized Pareto distribution 
is also known as the beta of the second kind distribution. 

7 - 1  
Mode = 0- 

Q+1 '  
if 7 > 1, else mode is at 0 
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4.2.3.4 
XI1 or Singh-Maddala distribution. 

Burr distribution This distribution is also known as the Burr Type 

4.2.3.5 
tained from the Burr by replacing x/O by (z/Q)-' 

lnverse Burr distribution The inverse Burr (or Dagum) cdf is ob- 
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4.2.3.6 Log-t distribution Let Y have a t distribution with r degrees of free- 
dom. Then X = exp(aY + p )  has the log-t distribution. Positive moments 
do not exist for this distribution. Just as the t distribution has a heavier 
tail than the normal distribution, this distribution has a heavier tail than the 
lognormal distribution. 

r ( T )  
2 (,+1)/2 f ( x )  = 

1 l n z - p  
z g f i r  (i) [I + ; (7) ] 

F ( z )  = F, (+) with F,(t) the cdf of a t distribution with r degrees of freedom 

1 r 1  r 
'-8 I-.-: 

L \ "  

4.2.4 Four-parameter distributions 

4.2.4.1 Transformed beta distribution 
generalized beta of the second kind, or Pearson Type VI distribution. 

This distribution is also known as the 

r y  - 1 

*y+ 1 
Mode = 6 (-) , if r y  > 1, else the mode is at 0 
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We now introduce some distributions with finite support. Such distrib- 
utions can be used in connection with describing losses as percentages of 
maximum losses with support on [0,1]. In the distributions listed below, the 
support is on [0,6]. A shift to support to [d, 6 + d] is accomplished by replacing 
x by x - d in the formulas given below. 

4.2.5 Distributions with finite support 

4.2.5.1 Beta distribution 

B'"a(u + 1). . ' (u + k - 1) 
if k is an integer, 

E[xkl = (U  + b ) ( ~  + b +  1) . . . (  U +  b +  k - 1) 

Bku(u + 1). . . (a  + k - 1) 
E[(X A z ) ~ ]  = P(. + k, b; .) 

( U  + b ) ( ~  + b + 1) . . .  ( U  + b + k - 1) 

+ x"[l - D(u, b; u)] 

4.2.5.2 Generalized beta distribution 

4.3 SELECTED DISTRIBUTIONS AND THEIR RELATIONSHIPS 

4.3.1 Introduction 

There are many ways to organize distributions into groups. Families such 
as Pearson (13 types including the normal distribution), Burr (12 types), 
Stoppa ( 5  types), and Dagum (11 types) are discussed in Chapter 2 of the 
book by Kleiber and Kotz [67]. The same distribution can appear in more 
than one system, indicating that there are many relationships among the 
distributions beyond those presented here. The systems presented in Section 
4.3.2 are particularly useful for risk modeling because all the members have 
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Transformed beta 

Fig. 4.1 Transformed beta family 

I Transformed gamma ) 

Gamma Weibull 

Inverse transformed gamma 

Inverse exponential 

Fig. 4.2 Transformed/inverse transformed gamma family 

support on the positive real line and all tend to be skewed to the right. For a 
comprehensive set of continuous distributions, the two volumes by Johnson, 
Kotz, and Balakrishnan ([63], [64]) are a valuable reference. In addition) 
there are entire books devoted to single distributions (such as Arnold [5] for 
the Pareto distribution). 

4.3.2 Two important parametric families 

As noted when defining parametric families, many of the distributions pre- 
sented in this section are special cases of others. For example, a Weibull distri- 
bution with r = 1 and 0 arbitrary is an exponential distribution. Through this 
process, many of our distributions can be organized into related groupings, as 
illustrated in Figures 4.1 and 4.2. The transformed beta family includes two 
special cases of a different nature. The paralogistic and inverse paralogistic 
distributions are created by setting the two nonscale parameters of the Burr 
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I 

X 

Fig. 4.3 Transformed beta nested members - I 

i, n - ~ I , -Pareto 

X 

Fig. 4.4 Transformed beta nested members -11 

and inverse Burr distributions equal to  each other rather than to a specified 
value. 

Figure 4.3 and 4.4 each show three nested members of the transformed beta 
family. “Nested” means that the distribution with fewer parameters can be 
obtained as special cases by setting one or more parameters to a fixed number. 

Figures 4.5 and 4.6 show some nested members from the transformed and 
inverse transformed gamma families. 

4.4 LIMITING DISTRIBUTIONS 

The classification in Section 4.3 involved distributions that are special cases 
of other distributions. Another way to  relate distributions is to see what 
happens as parameters go to their limiting values of zero or infinity. 

Example 4.1 Show that the transformed gamma distribution is a limiting 
case of the transformed beta distribution as 8 -+ co, a -+ 03, and Bla ’ lY  ---f <, 
a constant. 
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-Exponential 

4 -Transformed Gamma 
& 

X 

fig. 4.5 Transformed gamma nested members 

~ 

l-lnwrse transfonned' 
~ exponential I 

Fig. 4.6 Inverse transformed gamma nested members 
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The demonstration relies on two facts concerning limits: 

= 1  
e-aCya-1/2 (27r )1 /2  

lim 
a-00 r (a )  

and 
a+b 

lim (I+:) = e x .  
a-00 

The limit in equation (4.1) is known as Stirling's formula and provides an 
approximation for the gamma function. The limit in equation (4.2) is a stan- 
dard result found in most calculus texts. To ensure that the ratio 6/a1/Y goes 
to a constant, it is sufficient to force it to be constant as a and 6 become 
larger and larger. This can be accomplished by substituting [al/Y for 6 in 
the transformed beta pdf and then letting Q -+ M. The first steps, which also 
include using Stirling's formula to replace two of the gamma function terms, 
are 

r(a + r )yzyT-- l  

f(.) = r(Cy)r(T)w(i + Z Y ~ - - Y ) a + T  

e -a -T (~y  + r)a+T-l/2(2,)l/2yzY'-1 
- - 

e-aQa-1/2 ( 2 7 r ) 1 / 2 r ( r ) ( ~ a 1 / ~ ) ~ ~ ( 1  + z y ~ - - y C y - l ) a + r  

- epr [ ( a  + ~ ) / a ] ~ + ~ - ~ / ~ y z ~ ~ - ~  
- 

r(7)p [i + ( z / E ) ~ / c ~ ] * + ~  ' 

The two limits 

a+r-1/2 

(I-M 
lim (1 + %) 

(I-00 

can be substituted to yield 

yz'YT-le-("/<)7 
lim f ( z )  = 
a-00 F(7)€YT 

which is the pdf of the transformed gamma distribution. 0 

With a similar argument, the inverse transformed gamma distribution is 
obtained by letting r go to  infinity instead of a (see Exercise 4.3). 

Because the Burr distribution is a transformed beta distribution with r = 1, 
its limiting case is the transformed gamma with 7 = 1 (using the parameteri- 
zation in the previous example), which is the Weibull distribution. Similarly, 
the inverse Burr has the inverse Weibull as a limiting case. Finally, letting 
r = y = 1 shows that the limiting case for the Pareto distribution is the 
exponential (and similarly for their inverse distributions). 

As a final illustration of a limiting case, consider the transformed gamma 
distribution as parameterized above. Let y- ' f l+  n and y-' ( < Y r  - 1) ---f 1-1. 
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"Transformed Beta" Family of Distributions 

Mode > 0 Mean and higher 

moments m r  exist 

Specialcase 
Limiting case 
(parameters approach zero or infinity) 

-... ._._. .- b 

Fig. 4.7 Distributional relationships and characteristics 

If this is done by letting T ---$ co (so both y and < must go to  zero), the limiting 
distribution will be lognormal. 

In Figure 4.7 some of the limiting and special case relationships are shown. 
Other interesting facts about the various distributions are also given.l 

4.5 T H E  ROLE OF PARAMETERS 

One way to classify models is on the basis of the number of parameters in the 
model. The number of parameters needed in the model is an indication of the 
complexity of the model. Arguments for a simple model include the following: 

With few parameters required in its specification, it is more likely that 
each one can be determined more accurately. 

A simple model is more likely to be stable when used across time and 
across settings. That is, if the model does well today, it (perhaps with 
necessary changes to  reflect inflation or other temporal phenomena) will 
probably do well tomorrow and will also do well in other, similar, situ- 
ations. 

'Thanks to David Clark for creating this picture 
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Because data can often be irregular, a simple model may provide neces- 
sary smoothing. 

Of course, a complex model also has advantages: 

With many parameters required in its specification, it can more closely 
match reality. 

With many parameters required in its specification, it can more closely 
match irregularities that are observed in the data. 

Another way to express the difference is that simpler models can be esti- 
mated more accurately, but the simple model itself may not be a good de- 
scription of the underlying phenomenon. The principle of parsimony states 
that the simplest model that adequately reflects reality should be used. The 
definition of “adequately” will depend on the purpose for which the model is 
to be used. 

In the following subsections, we will move from simpler models to more 
complex models. There is some difficulty in naming the various classifica- 
tions because there is not universal agreement on the definitions. With the 
exception of parametric distributions, the other category names have been 
created by the authors. It should also be understood that these categories 
do not cover the universe of possible models, nor will every model be easy to 
categorize. These should be considered as qualitative descriptions. 

4.5.1 Parametric and scale distributions 

These models are simple enough to be specified by a few key numbers. 

Definition 4.2 A parametric distribution is a set of distribution func- 
tions, each member of which is determined by  specifying one or more values 
called parameters. The number of parameters is fixed and finite. 

The most familiar parametric distribution is the normal distribution with 
parameters p and 0. When values for these two parameters are specified, the 
distribution function is completely known. 

These are the simplest distributions in this subsection, because typically 
only a small number of values need to be specified. Within the class of para- 
metric distributions, distributions with fewer parameters are simpler than 
those with more parameters. 

For much of risk modeling work, it is especially convenient if the form 
of the distribution is unchanged when the random variable is multiplied by a 
constant. The most common uses for this phenomenon are to model the effect 
of inflation and to accommodate a change in the monetary unit. 

Definition 4.3 A parametric distribution is a scale distribution if, when 
a random variable from that set of distributions is multiplied by  a positive 
constant, the resulting random variable i s  also in that set of distributions. 
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Example 4.4 Demonstrate that the exponential distribution is a scale distri- 
bution. 

The distribution function of the exponential distribution is 

F x ( x ) = l - e  - X / O  , z>O. 

FY(Y)  = Pr(Y 5 Y )  

. Let Y = c X ,  where c > 0. Then, 

: Pr(cX 5 y )  

= P r  X < -  ( -3 
> Y > O .  - - 1 - e-Y/cQ 

This is an exponential distribution with parameter c6. So the form of the 
distribution has not changed, only the parameter value. 

Definition 4.5 For random variables with nonnegative support, a scale pa- 
rameter is a parameter for a scale distribution that meets two conditions. 
First, when the random variable of a member of the scale distribution is multi- 
plied by a positive constant, the parameter is multiplied by  the same constant. 
Second, when the random variable of a member of the scale distribution is 
multiplied by a positive constant, all other parameters are unchanged. 

Example 4.6 Demonstrate that the gamma distribution has a scale parame- 
ter. 

Let X have the gamma distribution and Y = CX 
plete gamma notation given in Appendix A, 

Then, using the incom- 

indicating that Y has a gamma distribution with parameters Q: and c6. There- 
0 fore, the parameter 6 is a scale parameter. 

It is often possible to  recognize a scale parameter from looking at the 
distribution or density function. In particular, the distribution function would 
have x always appear together with the scale parameter 6 as x l 6 .  

4.5.2 Finite mixture distributions 

Distributions that are finite mixtures have distributions that are weighted 
averages of other distribution functions. 
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Definition 4.7 A random variable Y is  a k-point mixture2 of the random 
variables XI, x ~ ,  . . . , x k  i f  its cdf is  given by 

F Y ( y )  =alFXz(Y) +a2FXz(y)  + . - . + a k F X k ( ? / ) ,  (4.3) 

where all aj > 0 and al + a2 + . . . + ak = 1. 

This essentially assigns weight aj to the j t h  distribution. The weights are 
usually considered as parameters. Thus the total number of parameters is the 
sum of the parameters on the k distributions plus k - 1. Note that, if we 
have 20 different distributions, a two-point mixture allows us to create over 
200 new  distribution^.^ This may be sufficient for most modeling situations. 
Nevertheless, these are still parametric distributions, though perhaps with 
many parameters. 

Example 4.8 Models used in insurance can provide some insight into models 
that could be used for  operational risk losses, particularly those that are insur- 
able risks. For models involving general liability insurance, the Insurance Ser- 
vices Ofice has had some success with a mixture of two Pareto distributions. 
They also found that jive parameters were not necessary. The distribution 
they selected has cdf 

Note that the shape parameters in the two Pareto distributions difler by 2. The 
second distribution places more probability on  smaller values. This might be 
a model for  frequent, small losses while the first distribution covers large, but 
infrequent losses. This distribution has only fou r  parameters, bringing some 

0 parsimony to the modeling process. 

Suppose we do not know how many distributions should be in the mix- 
ture. Then the value of k itself also becomes a parameter, as indicated in the 
following definition. 

Definition 4.9 A variable-component mixture distribution has a dis- 
tribution function that can be written as 

K K 

F ( x )  = C a j F j ( x ) ,  C a j  = I, aj > 0, j = 1,. . . , K ,  K = 1,2 , .  . 
j=1 j = 1  

2The words “mixed” and “mixture” have been used interchangeably to refer to the type 
of distribution described here as well as distributions that are partly discrete and partly 
continuous. This text will not attempt to resolve that confusion. The context will make 
clear which type of distribution is being considered. 
“There are actually (y) + 20 = 210 choices. The extra 20 represent the cases where both 
distributions are of the same type but with different parameters. 
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These models have been called semiparametric because in complexity they 
are between parametric models and nonparametric models (see Section 4.5.3). 
This distinction becomes more important when model selection is discussed 
in Chapter 12. When the number of parameters is to  be estimated from 
data, hypothesis tests to determine the appropriate number of parameters 
become more difficult. When all of the components have the same parametric 
distribution (but different parameters), the resulting distribution is called a 
“variable mixture of gs” distribution, where g stands for the name of the 
component distribution. 

Example 4.10 Determine the distribution, density, and hazard rate func- 
tions for the variable mixture of exponential distributions. 

A combination of exponential distribution functions can be written 

and then the other functions are 

The number of parameters is not fixed nor is it even limited. For example, 
when K = 2 there are three parameters (a1,61,&), noting that a2 is not a 
parameter because once a1 is set the value of a2 is determined. However, 
when K = 4 there are seven parameters. 

Example 4.11 Illustrate how a two-point mixture of gamma variables can 
create a bimodal distribution. 

Consider a mixture of two gamma distributions with equal weights. One 
has parameters a = 4 and 0 = 7 (for a mode of 21) and the other has 
parameters a = 15 and 0 = 7 (for a mode of 98). The density function is 

and a graph appears in Figure 4.8. 0 
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0 50 100 150 200 

X 

Fig. 4.8 Two-point mixture of gammas distribution. 

4.5.3 Data-dependent distributions 

For Models 1-5 and many of the examples, we postulate a shape for a distrib- 
ution by assuming that the distribution is of a particular form (e.g., uniform, 
lognormal, gamma). The distribution is completely specified when its para- 
meters are specified. It is also possible to construct models for which we do 
not specify the form a priori. We can require data in the determination of 
shape. Such models also have parameters but are often called nonparametric. 
It is convenient to think of parameters in a broader sense: as an independent 
piece of information required in specifying a distribution. Then the number 
of independent pieces of information required to fully specify a distribution is 
the number of parameters. 

Definition 4.12 A da ta -dependen t  d i s t r ibu t ion  is  at least as complex as 
the data or knowledge that produced it, and the number of ‘rparameters” in- 
creases as the number of data points or amount of knowledge increases. 

Essentially, these models have as many (or more) “parameters” than ob- 
servations in the data set. The empirical distribution as illustrated by Model 
6 on page 31 is a data-dependent distribution. Each data point contributes 
probability l /n  to the probability function, so the n parameters are the n 
observations in the data set that produced the empirical distribution. 

Another example of a data-dependent model is the kernel smoothing den- 
sity model. Rather than placing a mass of probability l / n  at each data point, 
a continuous density function with weight l /n  replaces the data point. This 
continuous density function is usually centered at the data point. Such a 
continuous density function surrounds each data point. The kernel-smoothed 
distribution is the weighted average of all the continuous density functions. 
As a result, the kernel smoothed distribution follows the shape of data in a 
general sense, but not exactly as in the case of the empirical distribution. 
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fig. 4.9 Kernel density distribution 

A simple example is given below. The idea of kernel density smoothing is 
illustrated in Example 4.13. Included, without explanation, is the concept of 
bandwidth. The role of bandwidth is self-evident. 

Example 4.13 Construct a kernel smoothing model from Model 6 using the 
uniform kernel and a bandwidth of 2. 

The probability density function is 

Ix - xjj > 2, Kj(x) = { O1 
0.25, /Z - xjCjl 5 2, 

where the sum is taken over the five points where the original model has 
positive probability. For example, the first term of the sum is the function 

x <  1, 
~C(Z~)K~(X) = 0.03125, 1 5 z 5 5, {:: x > 5 .  

The complete density function is the sum of five such functions, which are 
illustrated in Figure 4.9. 0 

Note that both the kernel smoothing model and the empirical distribution 
can also be written as mixture distributions. The reason that these models 
are classified separately is that the number of components is directly related 
to the sample size. This is not the case with finite mixture models where the 
number of components in the model is not a function of the amount of data. 
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4.6 TAILS OF DISTRIBUTIONS 

The tail of a distribution (more properly, the right tail) is the portion of the 
distribution corresponding to large values of the random variable. Under- 
standing large possible operational risk loss values is important because these 
have the greatest impact on the total of operational risk losses. Random vari- 
ables that tend to assign higher probabilities to larger values are said to be 
heavier-tailed. Tail weight can be a relative concept (model A has a heavier 
tail than model B) or an absolute concept (distributions with a certain prop- 
erty are classified as heavy-tailed). When choosing models, tail weight can 
help narrow the choices or can confirm a choice for a model. Heavy-tailed 
distributions are particularly important of operational risk in connection with 
extreme value theory (see Chapter 7). 

4.6.1 Classification based on moments 

Recall that in the continuous case the kth raw moment for a random variable 
that takes on only positive values (like most insurance payment variables) is 
given by sow xkf(x)dx .  Depending on the density function and the value of k ,  
this integral may not exist (that is, it may be infinite). One way of classifying 
distribution is on the basis of whether all moments exist. It is generally agreed 
that the existence of all positive moments indicates a light right tail, while 
the existence of only positive moments up to a certain value (or existence of 
no positive moments at all) indicates a heavy right tail. 

Example 4.14 Demonstrate that for the gamma distribution all positive mo- 
ments exist but for the Pareto distribution they do not. 

For the gamma distribution, the raw moments are 

= ~ 3 3 ( y B ) * ( y 6 ) ' - 1 e - y 8 d y ,  r(Q)oa making the substitution y = x/8 

Bk 

r(a> = -r(a + k )  < co for all k > 0. 

For the Pareto distribution, they are 

00" 
(Y - 8 ) k F d y ,  making the substitution y = x + 8 

= 
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The integral exists only if all of the exponents on 9 in the sum are less than 
-1. That is, if j - cy - 1 < -1 for all j ,  or, equivalently, if k < a. Therefore, 
only some moments exist. 0 

By this classification, the Pareto distribution is said to have a heavy tail 
and the gamma distribution is said to have a light tail. A look at the moment 
formulas in this chapter reveals which distributions have heavy tails and which 
do not, as indicated by the existence of moments. 

4.6.2 Classification based on tail behavior 

One commonly used indication that one distribution has a heavier tail than 
another distribution with the same mean is that the ratio of the two survival 
functions should diverge to infinity (with the heavier-tailed distribution in 
the numerator) as the argument becomes large. This classification is based 
on asymptotic properties of the distributions. The divergence implies that 
the numerator distribution puts significantly more probability on large values. 
Note that it is equivalent to  examine the ratio of density functions. The limit 
of the ratio will be the same, as can be seen by an application of L’HBpital’s 
rule: 

Example 4.15 
than the gamma 
tions. 

Demonstrate that the Pareto distribution has a heavier tail 
distribution using the limit of the ratio of their density func- 

To avoid confusion, the letters r and X will be used for the parameters of 
the gamma distribution instead of the customary Q and 8. Then the required 
limit is 

= c lim 
5-32 (x + Q ) a + 1 ~ 7 - 1  

ex/X 
> c lim 

5-92 (X + 6)a+7 

and, either by application of L’H6pital’s rule or by remembering that expo- 
nentials go to infinity faster than polynomials, the limit is infinity. Figure 
4.10 shows a portion of the density functions for a Pareto distribution with 
parameters cy = 3 and Q = 10 and a gamma distribution with parameters 
LY = and B = 15. Both distributions have a mean of 5 and a variance of 75. 

0 The graph is consistent with the algebraic derivation. 
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Fig. 4.10 Tails of gamma and Pareto distributions 

4.6.3 Classification based on hazard rate function 

The hazard rate function also reveals information about the tail of the distri- 
bution. Distributions with decreasing hazard rate functions have heavy tails. 
Distributions with increasing hazard rate functions have light tails. The dis- 
tribution with constant hazard rate, the exponential distribution, has neither 
increasing nor decreasing failure rates. For distributions with (asymptoti- 
cally) monotone hazard rates, distributions with exponential tails divide the 
distributions into heavy-tailed and light-tailed distributions. 

Comparisons between distributions can be made on the basis of the rate of 
increase or decrease of the hazard rate function. For example, a distribution 
has a lighter tail than another if, for large values of the argument, its hazard 
rate function is increasing at a faster rate. 

Example 4.16 Compare the tails of the Pareto and gamma distributions by  
looking at their hazard rate functions. 

The hazard rate function for the Pareto distribution is 

Q - - - f (z) Q P ( z  + B)--a--l h(x) = T = 
F ( x )  8 " ( ~ + 8 ) - "  z + 6  

which is decreasing. For the gamma distribution we need to be a bit more 
clever because there is no closed form expression for F ( x ) .  Observe that 

and so, if f (x + y)/ f (z) is an increasing function of x for any fixed y, then 
l /h(x) will be increasing in x and so the random variable will have a decreasing 
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hazard rate. Now, for the gamma distribution 

which is strictly increasing in x provided a < 1 and strictly decreasing in 
x if a > 1. By this measure, some gamma distributions have a heavy tail 
(those with cy < 1) and some have a light tail. Note that when a = 1 we have 
the exponential distribution and a constant hazard rate. Also, even though 
h(x) is complicated in the gamma case, we know what happens for large x. 
Because f (x)  and F (x )  both go to 0 as x --+ 00, L'HBpital's rule yields 

That is, h(x) --+ 1/6' as x + 00. 0 

The mean excess function also gives information about tail weight. If the 
mean excess function is increasing in d, the distribution is considered to have 
a heavy tail. If the mean excess function is decreasing in d, the distribution 
is considered to have a light tail. Comparisons between distributions can 
be made on the basis of the rate of increase or decrease of the mean excess 
function. For example, a distribution has a heavier tail than another if, for 
large values of the argument, its mean excess function is increasing at a lower 
rate. 

In fact, the mean excess loss function and the hazard rate are closely related 
in several ways. First, note that 

- exp [ - s,"'" h(z)dz] Yfd F(Y - + d )  - - = exp [ - h(x)dx] 
F(d) exp[- h(z)dx] 

= e x p [ - l y h ( d + t ) d t ] .  

Therefore, if the hazard rate is decreasing, then for fixed y it follows that 
h(d + t)dt is a decreasing function of d, and from the above F ( y  + d ) / F ( d )  

is an increasing function of d. But from (2.5), the mean excess loss function 
may be expressed as 

Thus, if the hazard rate is a decreasing function, then the mean excess loss 
function e(d) is an increasing function of d because the same is true of F ( y  + 
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d ) / F ( d )  for fixed y. Similarly, if the hazard rate is an increasing function, 
then the mean excess loss function is a decreasing function. It is worth noting 
(and is perhaps counterintuitive), however, that the converse implication is 
not true. Exercise 4.16 gives an example of a distribution that has a decreasing 
mean excess loss function, but the hazard rate is not increasing for all values. 
Nevertheless, the implications described above are generally consistent with 
the above discussions of heaviness of the tail. 

There is a second relationship between the mean excess loss function and 
the hazard rate. As d ---f m, F(d)  and SF F(z)dz go to 0. Thus, the limiting 
behavior of the mean excess loss function as d -+ 00 may be ascertained using 
L’HGpital’s rule because formula (2.5) holds. We have 

- 
1 

- lim __ - F ( d )  = lim - - 
g= F ( x ) d s  

lim e(d)  = lim - 
d-ca d-03 F ( d )  d-ca - f(d) d - w  h(d)  

as long as the indicated limits exist. These limiting relationships may useful 
if the form of F ( z )  is complicated. 

Example 4.17 Examine the behavior of the mean excess loss function of the 
gamma distribution. 

Because e (d )  = s’ F ( x ) d z / F ( d )  and F(z) is complicated, e(d)  is compli- 
cated. But e(0)  = E(X)  = Q B ,  and, using Example 4.16, we have 

= 0. 
1 - - 

1 
lim e ( x )  = lirn - 
2-33 2-33 h ( z )  lim h(z)  

z-+w 

Also, from Example 4.16, h(z) is strictly decreasing in z for Q < 1 and 
strictly increasing in s for Q > 1, implying that e(d) is strictly increasing 
from e(0)  = a6 to e ( m )  = 0 for a < 1 and strictly decreasing from e(0) = a0 
to e ( m )  = 8 for cy > 1. For (Y = 1, we have the exponential distribution for 
which e(d)  = 8. 0 

4.7 CREATING NEW DISTRIBUTIONS 

4.7.1 Introduction 

This section indicates how new parametric distributions can be created from 
existing ones. Many of the distributions in this chapter were created this way. 
In each case, a new random variable is created by transforming the original 
random variable in some way or using some other method. 

4.7.2 Multiplication by a constant 

This transformation is equivalent to applying loss size inflation uniformly 
across all loss levels and is known as a change of scale. For example, if this 
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year’s losses are given by the random variable X ,  then uniform loss inflation of 
5% indicates that next year’s losses can be modeled with the random variable 
Y = 1.05X. 

Theorem 4.18 Let X be a continuous random variable with pdf fx(x) and 
cdf Fx(x). Let Y = OX with 8 > 0. Then 

Proof: 

0 

Corollary 4.19 The parameter 0 is a scale parameter for the random variable 
Y .  

Example 4.20 illustrates this process. 

Example 4.20 Let X have pdf  f(x) = e-”, x > 0. Determine the cdf and 
pd j  of Y = ex. 

Fx(x) = 1 - e-“, 
Fy(y )  = 1 - e- Y P ,  

l --YP. f Y ( Y )  = Be 

We recognize this as the exponential distribution. 

4.7.3 

Theorem 4.21 Let X be a continuous random variable with pdf fx(x) and 
cdf Fx(x) with Fx(0) = 0.  Let Y = X I I T .  Then,  if^ > 0 ,  

Transformation by raising to a power 

F Y ( Y )  = F x ( Y T ) ,  f Y ( Y )  = TYT-l”fx(YT)’ Y > 0 

FY(Y) = 1 - F x ( Y ~ ) ,  fY(Y)  = - ~ Y T T - l f x ( Y T ) .  (4.4) 

while, if r < 0,  
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Proof: If r > 0 
FY(!/) = Pr(X I Y') = FX(Y'), 

while if r < 0 
F Y ( y )  = Pr(X 2 y') = 1 - Fx(yT). 

The pdf follows by differentiation. 0 

It is more common to keep parameters positive and so, when r is negative, 
we can create a new parameter r* = -r. Then (4.4) becomes 

We will drop the asterisk for future use of this positive parameter. 

Definition 4.22 When raising a distribution to a power, if r > 0 the result- 
ing distribution is called transformed, i f  r = -1 i t  is called inverse, and 
if r < 0 (but is not -1) it is  called inverse transformed. To create the 
distributions in Section 4.2 and to retain 8 as a scale parameter, the random 
variable of the original distribution should be raised to a power before being 
multiplied by 6 .  

Example 4.23 Suppose X has the exponential distribution. Determine the 
cdf of the inverse, transformed, and inverse transformed exponential distribu- 
tions. 

The inverse exponential distribution with no scale parameter has cdf 

~ ( y )  1 1 - [1 - e-11~1 = e--l/Y. 

With the scale parameter added it is F ( y )  = e-'/Y. 
The transformed exponential distribution with no scale parameter has cdf 

F ( y )  = 1 - exp(-9'). 

With the scale parameter added it is F ( y )  = 1 - exp[-(y/8)']. This distrib- 
ution is more commonly known as the Weibull distribution. 

The inverse transformed exponential distribution with no scale parameter 
has cdf 

F(y)  = 1 - [I - exp(--y-')] = exp(-y-'). 

With the scale parameter added it is F ( y )  = exp[-(8/y)']. This distribution 
is the inverse Weibull. 17 

Another base distribution has pdf f (x) = xa-le--z/r(Cy). When a scale 
parameter is added, this becomes the gamma distribution. It has inverse 
and transformed versions that can be created using the results in this section. 
Unlike the distributions introduced to this point, this one does not have a 
closed form cdf. The best we can do is define notation for the function. 
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Definition 4.24 The incomplete gamma function with parameter a > 0 
is  denoted and de5ned by  

while the gamma function is denoted and defined b y  

In addition, r (a )  = (a - l)I’(a - 1) and for positive integer values of 
n, r(n) = (n - l)!. Appendix A provides details on numerical methods of 
evaluating these quantities. Furthermore, these functions are built into most 
spreadsheets and many statistical and numerical analysis software packages. 

4.7.4 Transformation by exponentiation 

Theorem 4.25 Let X be a continuous random variable with pdf f x ( x )  and 
cdf Fx(x)  with f x ( x )  > 0 f o r  all real x, that is support on  the entire real line. 
Let Y = exp(X). Then, fo r  y > 0 ,  

Proof: ~ y ( y )  = Pr(ex 5 y) = Pr(X 5 Iny) = Fx(h y). 0 

Example 4.26 Let X have the normal distribution with mean p and variance 
g 2 .  Determine the cdf and pdf of Y = e x .  

We could try to  add a scale parameter by creating W = BY, but this 
adds no value, as is demonstrated in Exercise 4.21. This example created the 
lognormal distribution (the name has become the convention even though 
“expnormal” would seem more descriptive). 
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4.7.5 Continuous mixture of distributions 

The concept of mixing can be extended from mixing a finite number of random 
variables to  mixing an uncountable number. In Theorem 4.27, the pdf f i \ ( X )  
plays the role of the discrete “probabilities” aJ in the k-point mixture. 

Theorem 4.27 Let X have pdf fx iA(xlx)  and cdf FxIA(z IX) ,  where A is a 
parameter. Let X be a realization of the random variable A with pdf f A ( X ) .  
Then the unconditional pdf of X is 

f X ( x )  = / f X ] A ( x i x ) f A ( ~ )  dX,  (4.5) 

where the integral is taken over all values of X with positive probability. The 
resulting distribution is  a mixture distribution. The distribution function 
can be determined from 

F X ( x )  = IZ / fXlA(g\A)fA(X)dAdy 
= / [l fX[i\(y/lX)fA(X)&dX 

= / F X  I A ( x  1 A) f A (A) d 

-02 

Moments of the mixture distribution can be found from 

E(Xk) = E[E(X’\A)] 

and, in particular, 

Var(X) = E[Var(XIA)] + Var[E(XlA)]. 

Proof: The integrand is, by definition, the joint density of X and A. The 
integral is then the marginal density. For the expected value (assuming the 
order of integration can be reversed), 

For the variance, 

Var(X) = E(X2) - [E(X)I2 

= EIE(X21A>l - ~ E l E ( X l ~ ) l ) 2  
= E(Var(X1A) + [E(X/A)]2} - {E[E(XlA)]}2 
= E[Var(X/A)] + Var[E(X/A)]. 
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Note that, if f i \ ( A )  is a discrete distribution, the integrals are replaced with 
sums. An alternative way to write the results is fx(z) = Ei\[fxli\(z/A)] and 
F x ( z )  = EA[F~I I \ (ZJR) ] ,  where the subscript on E indicates that the random 
variable is A. 

An interesting phenomenon is that mixture distributions are often heavy- 
tailed; Therefore, mixing is a good way to generate a heavy-tailed model. In 
particular, if fxl*(z/A) has a decreasing hazard rate function for all A, then 
the mixture distribution will also have a decreasing hazard rate function (see 
Ross [103], pp. 407-409). Example 4.28 shows how a familiar heavy-tailed 
distribution may be obtained by mixing. 

Example 4.28 Let XlA have an exponential distribution with parameter 1/A.  
Let A have a gamma distribution. Determine the unconditional distribution 
of x. 

We have (note that the parameter 8 in the gamma distribution has been 
replaced by its reciprocal) 

ff8" - - 
(z + e)a+l 

This is a Pareto distribution. 

Example 4.29 is adapted from Hayne [50]. It illustrates how this type of 
mixture distribution can arise naturally as a description of uncertainty about 
the parameter of interest. Continuous mixtures are particularly useful in 
providing a model for parameter uncertainty. The exact value of a parameter 
is not known, but a probability density function can be elucidated to describe 
possible values of that parameter. The example arises in insurance. It is 
easy to imagine how the same type model of uncertainty can be used in the 
operational risk framework to describe the lack of precision of quantifying a 
scale parameter. A scale parameter can be used as a basis for measuring a 
company's exposure to risk. 

Example 4.29 I n  considering risks associated with automobile driving, it is 
important to recognize that the distance driven varies from driver to driver. 
It is also the case that for a particular driver the number of miles varies f rom 
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year to year. Suppose the distance fo r  a randomly selected driver has the 
inverse Weibull distribution but that the year-to- year variation in the scale 
parameter has the transformed gamma distribution with the same value for  r. 
Determine the distribution f o r  the distance driven in a randomly selected year 
by a randomly selected driver. 

The inverse Weibull distribution for miles driven in a year has parameters 
A (in place of 0)  and r while the transformed gamma distribution for the 
scale parameter A has parameters r ,  0, and a. The marginal density is 

In the above, the third line is obtained by the transformation y = XT(x-7 + 
Ow.). The final line uses the fact that r(a + 1) = ar(o). The result is an 
inverse Burr distribution. Note that this distribution applies to a particular 
driver. Another driver may have a different Weibull shape parameter r. As 
well, the driver's Weibull scale parameter 0 may have a different distribution 

0 and, in particular, a different mean. 

In an operational risk context, it is easy to imagine replacing the driver by a 
machine that processes transactions, and the mixing distribution as describing 
the level of the number of transactions over all such machines. 

4.7.6 Frailty models 

An important type of mixture distribution is a frailty model. Although the 
physical motivation for this particular type of mixture is originally from the 
analysis of lifetime distributions in survival analysis, the resulting mathemat- 
ical convenience implies that the approach may also be viewed as a useful way 
to generate new distributions by mixing. 
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We begin by introducing a frailty random variable A > 0 and define the 
conditional hazard rate (given A = A) of X to be 

hXlA(xlA) = Aa(x) 

, where a(.) is a known function of x; that is, a(.) is to be specified in a 
particular application. The frailty is meant to quantify uncertainty associated 
with the hazard rate. In the above specification of the conditional hazard rate, 
the uncertain quantity X acts in a multiplicative manner. Thus, the level of 
the hazard rate is the uncertain quantity, not the shape of the hazard function. 

The conditional survival function of XlA is therefore 

where A ( x )  = so3) a(t)dt .  In order to specify the mixture distribution (that is, 
the marginal distribution of X ) ,  we define the moment generating function 
of the frailty random variable A to be MA(t)  = E(etA). Then the marginal 
survival function is 

and obviously Fx(x) = 1 - F x ( z ) .  
The most important subclass of the frailty models is the class of exponential 

mixtures with a(.) = 1, so that A(z)  = x and Fxp(xlA) = e-'", x 2 
0. Other useful mixtures include Weibull mixtures with a(.) = yz7-l and 
A(x)  = xy. 

Evaluation of the frailty distribution requires an expression for the moment 
generating function MA(t)  of A. The most common choice is gamma frailty, 
but other choices such as inverse Gaussian frailty are also used in practice. 

Example 4.30 Let A have a gamma distribution and let XlA have a Weibull 
distribution with conditional survival function F x l ~  (.[A) = e-'"? . Determine 
the unconditional or marginal distribution of X .  

It follows from Example 2.29 that the gamma moment generating function 
is M l ( t )  = (1 - & - a ,  and from formula (4.6) that X has survival function 

- 
F x ( x )  = M A ( - X 7 )  = (1 + 8Zy)-". 

This is a Burr distribution with the usual parameter 6 replaced by 6- ' /7.  Note 
that when y = 1 this is an exponential mixture which is a Pareto distribution, 

0 considered previously in Example 4.28. 

As mentioned earlier, mixing tends to create heavy-tailed distributions, and 
in particular a mixture of distributions that all have decreasing hazard rates 
also has a decreasing hazard rate. In Exercise 4.29 the reader is asked to prove 
this fact for frailty models. For an extensive treatment of frailty models, see 
the book by Hougaard [56]. 
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4.7.7 Splicing pieces of distributions 

Another method for creating a new distribution is splicing together pieces of 
different distributions. This approach is similar to mixing in that it might be 
believed that two or more separate processes are responsible for generating 
the losses. With mixing, the various processes operate on subsets of the 
population. Once the subset is identified, a simple loss model suffices. For 
splicing, the processes differ with regard to the loss amount. That is, one 
model governs the behavior of losses in some interval of possible losses while 
other models cover the other intervals. Definition 4.31 makes this precise. 

Definition 4.31 A k-component spliced distribution has a density func- 
tion that can be expressed as follows: 

a1f1 (x ) ,  
a z f z ( ~ ) ,  

co < x < c1, 
c1 < 5 < c2, 

a k f k ( x ) ,  ck-I  < x < ck. 

For j = 1,. . . , k, each aj > 0 and each fj(x) must be a legitimate density 
function with all probability o n  the interval ( ~ j - ~ ,  c j ) .  Also, a1 f.. . + ak = 1. 

Example 4.32 Demonstrate that Model 5 on page 28 is a two-component 
spliced model. 

The density function is 

0.01, 0 5 x < 50, 
f(x) = { 0.02, 50 5 x < 75 

and the spliced model is created by letting fl(x) = 0.02, 0 5 x < 50, which 
is a uniform distribution on the interval from 0 to  50, and f2(x) = 0.04, 
50 5 x < 75, which is a uniform distribution on the interval from 50 to 75. 

0 The coefficients are then a1 = 0.5 and a2 = 0.5. 

When using parametric models, the motivation for splicing is that the 
tail behavior for large losses may be different from the behavior for small 
losses. For example, experience (based on knowledge beyond that available 
in the current, perhaps small, data set) may indicate that the tail has the 
shape of the Pareto distribution, but that the body of the distribution is 
more in keeping with distributions that have a shape similar to  the lognormal 
or inverse Gaussian distributions. 

Similarly, when there is a large amount of data below some value but a 
limited amount of information above, for theoretical or practical reasons, we 
may want to use some distribution up to a certain point and a parametric 
model beyond that point. One such theoretical basis for models for large 
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losses is given by extreme value theory. In this book, extreme value theory is 
given separate treatment in Chapter 7. 

The above Definition 4.31 of spliced models assumes that the break points 
C O ,  . . . , ck are known in advance. Another way to construct a spliced model 
is to use standard distributions over the range from co to c k .  Let gj (x)  be 
the j t h  such density function. Then, in Definition 4.31, one can replace fj(z) 
with g j ( z ) / [ G ( c j )  - G ( c j - ~ ) ] .  This formulation makes it easier to have the 
break points become parameters that can be estimated. 

Neither approach to splicing ensures that the resulting density function will 
be continuous (that is, the components will meet a t  the break points). Such 
a restriction could be added to the specification. 

Example 4.33 Create a two-component spliced model using an exponential 
distribution from 0 to  c and a Pareto distribution (using y in  place of 8) from 
c to 53. 

The basic format is 

o < x < c ,  

However, we must force the density function to integrate to  1. All that is 
needed is to  let a1 = v and a2 = 1 - v. The spliced density function becomes 

o < x < c ,  
, O , C Y , Y , C  > 0,  0 < v < 1. 

c < z < w  

0 

Figure 4.11 illustrates this density function using the values c = 100, v = 0.6, 
8 = 100, y = 200, and cr = 4. It is clear that this density function is not 
continuous. 

f x ( x )  = 

4.8 TVaR FOR CONTINUOUS DISTRIBUTIONS 

The Tail-Value-at-Risk (TVaR) for any quantile xp  can be computed directly 
for any continuous distribution with a finite mean. From Exercise 2.12, it 
follows that 

E(X)  = E(X A z P )  + F(x,)e(x,) 
= E(X A ~ p )  + E [(X - zp)+]  
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0.01 , I 

0 4  

0 50 100 150 200 250 

X 

Fig. 4.11 Two-component spliced density. 

and 

TVaR,(X) = E ( X  1 X > xP) 

= xp + 
= xp + e(xp) 

= xp + - 

Jz; (x - ZP) dF(x)  

1 - F(XP) 

E(X) - E(X A xp) 

F(XP) 

For the each distribution in Section 4.2, the elements in the second term 
are listed there. The TVaR is easily computed. The specific results for each 
distribution do not provide much insight into the relationship between the 
TVaR and the shape of the distribution. Sections 4.8.1 and 4.8.2 provide 
general formulas for two large families of continuous distributions. 

4.8.1 Continuous elliptical distributions 

“Elliptical distributions” are distributions where the contours of the multivari- 
ate version of the distribution form ellipses. Univariate elliptical distributions 
are the corresponding marginal distributions. The normal and t distributions 
are both univariate elliptical distributions. The exponential distribution is 
not. In fact, the class of elliptical distribution consists of all symmetric dis- 
tributions with support on the entire real line. These distributions are not 
normally used for modeling losses because they have positive and negative 
support. However they can be used for modeling random variables, such as 
rates of return, that can take on positive or negative values. The normal 
and other distributions have been used in the fields of finance and risk man- 
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agement. Landsman and Valdez [73] provide an analysis of TVaR for such 
elliptical distributions. In an earlier paper, Panjer [89] showed that the Tail- 
Value-at-Risk for the normal distribution can be written as 

TVaR,(X) = p + cT2 
1 - @(V) 

where xp =VaR,(X). Landsman and Valdez [73] show that this formula can 
be generalized to  all univariate elliptical distributions with finite mean and 
variance. They show that any univariate elliptical distributions with finite 
mean and variance can be written as 

f ( x )  = [i 1 (T)2] x - p  

where g ( x )  is a function on [O,m) with sooo g ( x ) d z  < 00. Now let G(z) = 

cs :g(y)dy  and c(x) = G(m) - G(x) .  Similarly let F ( x )  = ST", f ( y ) d y  and - 
F ( z )  = 1 - F ( x ) .  

Theorem 4.34 Consider any univariate elliptical distribution with finite mean 
and variance. Then  the Tail-Value-at-Risk at p-quantile xp, where p > l / 2 ,  
can be written as 

T V a R p ( X )  = p + Xu2 

where 

Proof: From the definition of TVaR, 

Letting t = (x - p) /o ,  

= p + Xu2 

where 
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Example 4.35 (Logistic distribution) The logistic distribution has density of 
the form 

where 

and c=1/2. Thus 

exp(-u) 

1 

and 

Therefore, we see that 
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4.8.2 Continuous exponential dispersion distributions 

Landsman and Valdez [74] also obtain analytic results for a broad class of 
distributions generalizing the results for the normal distribution but also ex- 
tending to random variables that have support only on positive numbers. 
Examples include distributions such as the gamma and inverse Gaussian. We 
consider two exponential dispersion models, the additive exponential disper- 
sion family and the reproductive exponential dispersion family. The defini- 
tions are the same except for the role of one parameter A. 

Definition 4.36 A continuous random variable X has a distribution from 
the additive exponential dispersion f a m i l y  (AEDF) i f  its pdf may be 
parameterized in terms of parameters 6 and X and expressed as 

f (z; 0, A) = eez-’lc(’) 4 2 ;  A). (4.7) 

Definition 4.37 A continuous random variable X has a distribution from 
the reproductive exponential dispersion f a m i l y  (REDF) if its pdf may  
be parameterized in terms of parameters 6 and X and expressed as 

The mean and variance of these distributions are 
Mean: AEDF p = X d ( 6 )  

Variance: AEDF Var(X) = X K ” ( ~ )  = .”(0)/o2 
Var(X) = .”(@)/A = tc”(6)02 

REDF p =  .ye) 

REDF 
where 1 /X  = o2 is called the dispersion parameter. 

Example 4.38 (Normal distribution) The normal distribution has density 

which can be rewritten as 

By setting X = 1/a2, ~ ( 6 )  = 02/2 and 

we can see that the normal density satisfies equation (4.8) and so the normal 
0 distribution is a member of the REDF. 
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Example 4.39 (Gamma distribution) The gamma distribution has density 

where we have chosen P to denote the scale parameter to avoid confusion 
between 0s. By setting 6 = -l/p, X = a ,  K ( 0 )  = - In (-0) and 

y Y - 1  

q(x; A) = - 

we can see that the gamma density satisfies equation (4.7) and so the gamma 
distribution is  a member of the AEDF. 

Example 4.40 (Inverse Gaussian distribution) The inverse Gaussian distri- 
bution has density that can be written as 

which is  equivalent, but with a different parametrization, to the fo rm given in 
Section 4.2. By setting 0 = -1/ (2p2), K ( 0 )  = -1/p = -- and 

we can see that the inverse Gaussian density satisfies equation (4.8) and so 
CI the inverse Gaussian distribution is  a member of the REDF. 

We now consider the main results of this section. We consider random 
variables from the AEDF and REDF. For the purpose of this section, we will 
also require that the support of the random variable is an open set that does 
not depend on 6 and the function K ( 0 )  is a differentiable function. These are 
technical requirements that will be satisfied by most commonly used distrib- 
utions. 

Theorem 4.41 Let X be a member of the AEDF subject to the above condi- 
tions. Then the Tail- Value-at-Risk can be written as 

where h = & In F (xP; 8, A)] 
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Proof: We have 

= TVaR,(X) - p 

and the result follows by rearrangement. 

The case of the REDF follows in similar fashion. 

Theorem 4.42 Let X be a member of the REDF subject to the above condi- 
tions. Then the Tail-Value-at-Risk can be written as 

T V a R p ( X )  = p + ha2 

where o2 = l / A  and 
a 
86 

h = - In (zp ;  6, A)] . 

Proof: We have 

= A [TVaR,(X) - p] 

= [TVaR,(X) - p] /az 

and the result follows by rearrangement. 0 

Example 4.43 (Normal distribution) because the normal distribution is a 
member of the REDF, its TVaR is 

TVaR,(X) = p + ho2 
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where u2 = 1/X and 

a h = - In (F (z,; 8, A)) ae 

- - 

1 - a [ A ( x ,  - 011 . 

Then the TVaR of the normal distribution is 

TVaR,(X) = p + - 1 d [ f i ( s - Q ) ]  g2. 

1 - Q? [ 4 ( x ,  - 0)] 

Example 4.44 (Gamma distribution) The gamma distribution is a member 
of the AEDF, so its TVaR is 

TVaR,(X) = p + h 

where 
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Example 4.45 (Inverse Gaussian distribution) The inverse Gaussian distri- 
bution is a member of the AEDF, so its TVaR is 

TVaRp(X)  = p + hcr2 

The cdf of the inverse Gaussian distribution is 

so that 

d 
88 

h = - In (F (xp;  8, A)) 

Let 

so that 

we have 

Then the TVaR of the inverse Gaussian distribution is 
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4.9 EXERCISES 

4.1 For a Pareto distribution, let both Q and 6' go to infinity with the ratio 
a/r3 held constant. Show that the result is an exponential distribution. 

4.2 Determine the limiting distribution of the generalized Pareto distribution 
as Q and 6' both go to infinity. 

4.3 Show that as r -+ 03 in the transformed beta distribution the result is 
the inverse transformed gamma distribution. 

4.4 Demonstrate that the lognormal distribution is a scale distribution but 
has no scale parameter. Display an alternative parametrization of this distri- 
bution that does have a scale parameter. 

4.5 Which of Models 1-6 could be considered as members of a parametric 
distribution? For those that are, name or describe the distribution. 

4.6 Losses have a Pareto distribution with Q = 2 and 6' unknown. Losses the 
following year experience additional inflation of 6%. Let T be the ratio of the 
proportion of losses that will exceed d next year to the proportion of losses 
that exceed d this year. Determine the limit of T as d goes to infinity. 

4.7 Determine the mean and second moment of the two-point mixture distri- 
bution in Example 4.8. The solution to this exercise provides general formulas 
for raw moments of a mixture distribution. 

4.0 Determine expressions for the mean and variance of the mixture of gam- 
mas distribution. 

4.9 Which of Models 1-6 could be considered to be from parametric distri- 
bution families? Which could be considered to be from variable-component 
mixture distributions? 

4.10 There are two types of losses. Seventy-five percent of losses have a 
normal distribution with a mean of $3000 and a standard deviation of $1000. 
The remaining 25% have a normal distribution with a mean of $4000 and 
a standard deviation of $1000. Determine the probability that a randomly 
selected loss exceeds $5000. 

4.11 Let X have a Burr distribution with parameters Q = 1, y = 2 ,  and 
t9 = v'i@% and let Y have a Pareto distribution with parameters Q = 1 
and 8 = 1000. Let 2 be a mixture of X and Y with equal weight on each 
component. Determine the median of 2. Let W = 1.12. Demonstrate that 
W is also a mixture of a Burr and a Pareto distribution and determine the 
parameters of W .  
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4.12 Demonstrate that the model in Example 4.13 is a mixture of uniform 
distributions. 

4.13 Show that the Weibull distribution has a scale parameter. 

4.14 Using the methods in this section (except for the mean excess loss), 
compare the tail weight of the Weibull and inverse Weibull distributions. 

4.15 Arguments as in Example 4.15 place the lognormal distribution be- 
tween the gamma and Pareto distributions with regard to tail weight. To 
reinforce this conclusion, consider a gamma distribution with parameters 
CY = 0.2, O = 500; a lognormal distribution with parameters p = 3.709290, 
cr = 1.338566; and a Pareto distribution with parameters CY = 2.5, 8 = 150. 
First, demonstrate that all three distributions have the same mean and vari- 
ance. Then numerically demonstrate that there is a value of the argument 
such that the gamma pdf is smaller than the lognormal and Pareto pdfs for 
all larger arguments and that there is another value of the argument such that 
the lognormal pdf is smaller than the Pareto pdf for all arguments above that 
value. 

4.16 You are given that the random variable X has probability density func- 
tion f(z) = (1 + 2 z ’ ) e ~ ’ ~ ,  z 2 0. 

(a) Determine the survival function F(z). 
(b) Determine the hazard rate h(z) .  
(c) Determine the mean excess loss function e(z). 

(d) Determine limz-.+w h(z)  and limz-m e(z). 

(e) Prove that e(z) is strictly decreasing but h(z)  is not strictly in- 
creasing. 

4.17 Let X have cdf F x ( z )  = 1 - (1 + z ) - ~ ,  Z , Q  > 0. Determine the pdf 
and cdf of Y = OX. 

4.18 For a large bank, with 100 observed losses resulting from a certain type 
of error, the amounts of such losses that occurred in the year 2005 were 
arranged grouped by size (in hundreds of thousands of dollars): 42 were below 
$300, 3 were between $300 and $350, 5 were between $350 and $400, 5 were 
between $400 and $450, 0 were between $450 and $500, 5 were between $500 
and $600, and the remaining 40 were above $600. For the next three years, 
all losses are inflated by 10% per year. Based on the empirical distribution 
from the year 2005, determine a range for the probability that a loss exceeds 
$500 in the year 2008. (There is not enough information to determine the 
probability exactly.) 
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4.19 Let X have the Pareto distribution. Determine the cdf of the trans- 
formed, inverse, and inverse transformed distributions. Determine which of 
these distributions appear in Chapter 4 . 

4.20 Let X have the loglogistic distribution. loglogistic distribution Dernon- 
strate that the inverse distribution also has the loglogistic distribution. This 
shows that there is no need to identify a separate inverse loglogistic distribu- 
tion. 

4.21 Let Y have the lognormal distribution with parameters 1-1 and g. Let 
Z = OY. Show that Z also has the lognormal distribution and therefore the 
addition of a third parameter has not created a new distribution. 

4.22 Let X have a Pareto distribution with parameters cy and 0. Let Y = 
ln(1 +X/O) .  Determine the name of the distribution of Y and its parameters. 

4.23 Venter [120] noted that if X has the transformed gamma distribution 
and its scale parameter 0 has an inverse transformed gamma distribution 
(where the parameter T is the same in both distributions), the resulting mix- 
ture has the transformed beta distribution. Demonstrate that this is true. 

4.24 Given a value of 0 = 0, the random variable X has an exponential dis- 
tribution with hazard rate function h(x)  = 0, a constant. The random variable 
0 has a uniform distribution on the interval ( 1 , l l ) .  Determine Fx(0.5) for 
the unconditional distribution. 

4.25 Determine the probability density function and the hazard rate of the 
frailty distribution. 

4.26 Suppose that XIA has the Weibull survival functionFxlA(zlX) = e-xz7, 
x 2 0, and A has an exponential distribution. Demonstrate that the uncon- 
ditional distribution of X is loglogistic. 

4.27 Consider the exponential-inverse Gaussian frailty model with a(z) 
0/(2~’-), where 0 > 0. 

(a) Verify that the conditional hazard rate hxp(z1X) of XIA is indeed 

(b) Determine the conditional survival function Fxl~(zlA). 

(c) If A has a gamma distribution with parameters 0 = 1 and cy re- 
placed by 2cy, determine the marginal or unconditional survival 
function of X .  

(d) Use (c) to argue that a given frailty model may arise from more 
than one combination of conditional distributions of XIA and frailty 
distributions of A. 

a valid hazard rate. 
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4.28 Suppose that X has survival function F x ( x )  = 1 - Fx(x) given by 
equation (4.6). Show that F l ( x )  = Fx(x)/[E(A)A(z)] is again a survival 
function of the form (4.6), and identify the distribution of A associated with - 
F1 (XI. 

4.29 Fix s 2 0, and define an "Esscher-transformed" frailty random variable 
A, with probability density function (or discrete probability mass function in 
the discrete case) ~ A , ~ ( X )  = e - " f ~ ( x ) / M ~ ( - s ) ,  X 2 0. 

(a) Show that A, has moment generating function 

(b) The cumulant generating function of A is defined as ~ ( t )  = 
In[MA ( t ) ] .  
Use (a) to prove that 

c;(-s) = E(A,) and cx(-s) = Var(A,). 

(c) For the frailty model with survival function given by equation (4.6), 
prove that the associated hazard rate may be expressed as 

hx(.) = .(x)c61-A(.>1, 

where CA is defined in (b). 

(d) Use (c) to show that 

(e) Prove using (d) that, if the conditional hazard rate h x l ~ ( ~ \ X )  is 
nonincreasing in 2, then h x ( x )  is also nonincreasing in x. 

4.30 Write the density function for a two-component spliced model in which 
the density function is proportional to a uniform density over the interval 
from 0 to 1,000 and is proportional to an exponential density function from 
1,000 to 03. Ensure that the resulting density function is continuous. 

4.31 Let X have pdf f (x)  = exp(-iz/6/)/26 for -03 < x < 03. Let Y = ex. 
Determine the pdf and cdf of Y .  

4.32 Losses in 2006 follow the density function f(x)  = 3 ~ : - ~ ,  x 2 1, where x 
is the loss size expressed in millions of dollars. It is expected that individual 
loss sizes in 2007 will be 10% greater. Determine the cdf of losses for 2007 
and use it to determine the probability that a 2007 loss exceeds $2.2 millions. 
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4.33 Consider the inverse Gaussian random variable X with pdf 

where 0 > 0 and p > 0 are parameters. 

(a) Derive the pdf of the reciprocal inverse Gaussian random variable 

(b) Prove that the ‘Ijoint” moment generating function of X and 1/X 

1/x.  

is given by 

~ ( t ~ , t ~ )  = E ( e t l X + t z x - ’  1 
6’ - J(0 - 2 p 2 t 1 )  (0 - 2t2)  

P = J”exp 6 - 2t2 ( 
where tl < 0/ ( 2 p 2 )  and t 2  < 0/2.  

(c) Use (b) to show that the moment generating function of X is 

M x ( t ) = E ( e t x ) = e x p  0 

(d) Use (b) to show that the reciprocal inverse Gaussian random vari- 
able 1/X has moment generating function 

Hence prove that 1/X has the same distribution as 21 + 2 2 ,  where 
2 1  has a gamma distribution, 2 2  has an inverse Gaussian distrib- 
ution, and 2 1  is independent of 2 2 .  Also, identify the gamma and 
inverse Gaussian parameters in this representation. 

(e) Use (b) to show that 

2 1 x - p  
Z = & T )  

has a gamma distribution with parameters LY = 3 and the usual 
parameter 8 replaced by 2/0.  



3 
Models for the number of  

rJ 

losses: Countin; 
distribution: 

If anything simply cannot go wrong, it will anyway. 
-Murphy 

5.1 INTRODUCTION 

The purpose of this chapter is to introduce a large class of counting distri- 
butions. Counting distributions are discrete distributions with probabilities 
only on the nonnegative integers; that is, probabilities are defined only at the 
points 0 ,1 ,2 ,3 ,4 , .  . . . In an operational risk context, counting distributions 
describe the number of losses or the number of events causing losses such as 
power outages that cause business interruption. With an understanding of 
both the number of losses and the size of losses, we can have a deeper under- 
standing of a variety of issues surrounding operational risk than if we have 
only information about historical total losses. The impact of risk mitigation 
strategies that address either the frequency of losses or the size of losses can 
be better understood. Another reason for separating numbers and amounts 
of losses is that models for the number of losses are fairly easy to obtain and 
experience has shown that the commonly used frequency distributions per- 
form well in modeling the propensity to generate losses. In this chapter, we 
introduce many frequency distributions. 

We now formalize some of the notation that will be used for models for 
discrete phenomena. The probability function (pf) pk denotes the proba- 
bility that exactly k events (such as losses) occur. Let N be a random variable 
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representing the number of such events. Then 

pk=Pr(N=IC),  IC=0,1,2 ,.... 

As a reminder, the probability generating function (pgf) of a discrete random 
variable N with pf pk is 

00 

P ( z )  = PN(z) = E (P) = C ~ k . 2 ~ .  (5.1) 
k=O 

As is true with the moment generating function, the pgf can be used to 
generate moments. In particular, P’(1) = E(N) and P”(1) = E[N(N - l)] 
(see Exercise 5.3). To see how the probabilities are obtained from the pgf, the 
mth derivative of the pgf and its value when the argument z is set to zero are: 

m 

k=m 

P(m) (0) P(m)(0) = m!p,  so that p ,  = ~ m! 

5.2 THE POISSON DISTRIBUTION 

The probability function for the Poisson distribution is 

The probability generating function from Example 2.30 is 

P(z )  = e+l), x > 0. 

The mean and variance can be computed from the probability generating 
function as follows: 

E(N) = P’(1) = X 

E [ N ( N  - l)] = P”(1) = X2 

Var(N) = E [ N ( N  - 1)] + E(N) - [E(N)J2 

= X 2 + X - A 2  
= A. 

Thus, for the Poisson distribution the variance is equal to the mean. The 
Poisson distribution can arise from a Poisson process. The Poisson distribu- 
tion and Poisson processes are also discussed in many books including those 
by Panjer and Willmot [93] and Ross [104]. 
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The Poisson distribution has at least two additional useful properties. The 
first is given in Theorem 5.1. 

Theorem 5.1 Let N1 , .  . . , N, be independent Poisson variables with para- 
meters X I ,  . . . , A,. Then N = N1 + . . . + N, has a Poisson distribution with 
parameter A1 + . . . + A,. 
Proof: The pgf of the sum of independent random variables is the product 
of the individual pgfs. For the sum of Poisson random variables we have 

n n 

j=1 j=1 

where A = A1 +. . .+A,. Just as is true with moment generating functions, the 
pgf is unique and therefore N must have a Poisson distribution with parameter 
A. I? 

The second property is particularly useful in modeling operational risk 
events. Suppose that the number of losses in a fixed time period, such as 
one year, follows a Poisson distribution. Further suppose that the losses can 
be classified into m distinct types. For example, losses could be classified by 
size, such as those below a fixed threshold and those above the threshold. It 
turns out that, if we are interested in studying the number of losses above 
the threshold, that new distribution is also Poisson but with a new Poisson 
parameter. 

This is also useful when considering the impact of removing or adding a 
type of risk to the definition of operational risks. Suppose that the number 
of losses for a particular set of types of operational risks follows a Poisson 
distribution. If one of the types of losses is eliminated, the distribution of the 
number of losses of the remaining types will still have a Poisson distribution 
but with a new parameter. 

In each of the cases mentioned in the previous paragraphs, the number of 
losses of the different types will not only be Poisson distributed but will also 
be independent of each other; that is, the distributions of the number of losses 
above the threshold and the number below the threshold will be independent. 
We now formalize these ideas in Theorem 5.2. 

Theorem 5.2 Suppose that the number of events N is a Poisson random 
variable with mean A. Further suppose that each event can be classified into 
one of m types with probabilities PI,. . . , p ,  independent of all other events. 
Then the number of events N1 , .  . . , N,  corresponding to event types 1,. . . , m 
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respectively, are mutually independent Poisson random variables with means 
Xp1, . . . , Xp,, respectively. 

Proof: For fixed N = n, the conditional joint distribution of ( N l ,  . . . , N,) 
is multinomial with parameters ( n , p l , .  . . ,pm) .  Also, for fixed N = n, the 
conditional marginal distribution of Nj is binomial with parameters (n, p j ) .  

The joint pf of (N1, . . . , N,) is given by 

Pr(N1 = n1,. . . ,Nm = n,) = Pr(N1 = 721,.  . . , N ,  = n,IN = n) 
x Pr (N = n) 

where n = n1 + 122 + . . . + n,. Similarly, the marginal pf of Nj is determined 
below. 

Hence the joint pf is the product of the marginal pfs, establishing mutual 
independence. 0 

5.3 THE NEGATIVE BINOMIAL DISTRIBUTION 

The negative binomial distribution has been used extensively as an alternative 
to the Poisson distribution. Like the Poisson distribution, it has positive 
probabilities on the nonnegative integers. Because it has two parameters, it 
has more flexibility in shape than the Poisson. 
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The probability function of the negative binomial distribution is given 

bY 

Pr (N  = k )  = p k  = (,+;-l) ( & ) r ( & ) k ,  

k = O , 1 , 2  ,..., r > O , P > O .  (5.2) 

The binomial coefficient is to be evaluated using 

(3 = X(X - 1). . . ( X  - k + 1) 
k!  

While k must be an integer, x may be any real number. When x > k - 1, it 
can also be written as 

which may be useful because the gamma function r ( x )  is available in most 
spreadsheets, programming languages, and mathematics packages. 

It is not difficult to show that the probability generating function for the 
negative binomial distribution is 

P(2) = 11 - @(. - l)]-r. 

From this it follows that the mean and variance of the negative binomial 
distribution are 

E(N) = rP and Var(N) = r@(1+  P) .  

Because @ is positive, the variance of the negative binomial distribution can 
be seen to exceed the mean. This is in contrast to the Poisson distribution, for 
which the variance is equal to the mean. This suggests that for a particular 
set of data, if the observed variance is larger than the observed mean, the 
negative binomial might be a better candidate than the Poisson distribution 
as a model to be used. 

The negative binomial distribution is a generalization of the Poisson in 
at least two different ways, namely as a mixed Poisson distribution with a 
gamma mixing distribution (demonstrated later in this subsection) and as a 
compound Poisson distribution with a logarithmic secondary distribution (see 
Section 5.7).  

The geometric distribution is the special case of the negative binomial 
distribution when T = 1. The geometric distribution is, in some senses, the dis- 
crete analogue of the continuous exponential distribution. Both the geometric 
and exponential distributions have an exponentially decaying probability func- 
tion and hence the memoryless property. The memoryless property can be 
interpreted in various contexts as follows. If the exponential distribution is 
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a distribution of lifetimes, then the expected future lifetime is constant for 
any age. This is often the case for electronic components. If the exponential 
distribution describes the size of operational risk losses, then the memoryless 
property can be interpreted as follows: Given that a loss exceeds a threshold 
d ,  the expected amount of the loss in excess of d is constant and so does not 
depend on  d. If the geometric distribution describes the number of losses, then 
the memoryless property can be interpreted as follows: Given that there are at 
least m losses, the probability distribution of the number of losses in excess of 
m does not depend on m. Among continuous distributions, the exponential 
distribution is used to distinguish between subexponential distributions with 
heavy (or fat) tails and distributions with light (or thin) tails. Similarly for 
frequency distributions, distributions that decay in the tail slower than the 
geometric distribution are often considered to have heavy tails, whereas dis- 
tributions that decay more rapidly than the geometric have light tails. The 
negative binomial distribution has a heavy tail (decays more slowly than the 
geometric distribution) when r < 1 and a lighter tail than the geometric 
distribution when r > 1. 

As noted earlier, one way to  create the negative binomial as Poisson mixture 
distribution is as a mixture of Poisson distributions. Suppose that it is known 
that an operational risk has a Poisson distribution for the number of losses 
when the risk parameter X is known. We now treat X as being the outcome 
of a random variable A. Denoting the pf of A by .(A), where A may be 
continuous or discrete, and denoting its the cdf by V(X), the idea is that X is 
the outcome of a random variable can be justified in several ways. First, we 
can think of the population of risks as being heterogeneous with respect to the 
risk parameter A. In practice this makes sense. The parameter X measures 
the expected number of losses, but there is a degree of uncertainty associated 
with A. The true value of X is unobservable because we observe the number 
of losses arising from the risk and not the risk parameter itself. Compared to 
the Poisson distribution, there is an additional degree of uncertainty, that is, 
uncertainty about the parameter, in the mixed Poisson model. 

This is the same mixing process that was discussed with regard to contin- 
uous distributions in Section 4.7.5. As discussed above, this is often referred 
to as parameter uncertainty. In the Bayesian context, the distribution of A is 
called a prior distribution and the parameters of its distribution are sometimes 
called hyperparameters. 

When the parameter X is unknown, the probability that exactly k losses 
will arise can be written as the weighted average of the same probability con- 
ditional on A = X where the weights are the probabilities from the distribution 
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of A. From the law of total probability, we can write 

00 e - X X k  
= Jd ---u(X)dX. 

k! 

Now suppose A has a gamma distribution. Then 

From the definition of the gamma distribution in Appendix A, this expres- 
sion can be evaluated as 

r ( k + @ )  ok 
k!r(@) (1  + ~ ) k + a  

Pk = 

This formula is of the same form as formula (5.2), demonstrating that the 
mixed Poisson, with a gamma mixing distribution, is a negative binomial 
distribution. 

It is worth noting that the Poisson distribution is a limiting case of the 
negative binomial distribution. To see this, let r go to infinity and /3 go to 
zero while keeping their product constant. Let X = r/3 be that constant. 
Substituting /3 = X/r in the pgf leads to (using L'HBpital's rule in lines 3 and 
5 below) 

r-m r - "I I 
ln[l - X(z - l)/r] 

=exp - lim { T-00  r-l 
[I - X(z - l)/r]-lX(z - 1) / r2  { T'33 r-2 

r X ( z  - 1) 

= exp lim 

T-= r - X(z - 1) 

= exp { lim [ ~ ( z  - I)]} 

= exp[X(z - l)] 
T-m 

which is the pgf of the Poisson distribution. 
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5.4 THE BINOMIAL DISTRIBUTION 

The binomial distribution is another counting distribution that arises natu- 
rally in loss number modeling. It possesses some properties different from the 
Poisson and the negative binomial that make it particularly useful. First, its 
variance is smaller than its mean. This makes it potentially useful for data 
sets in which the observed sample variance is less than the sample mean. This 
contrasts with the negative binomial, where the variance exceeds the mean, 
and the Poisson distribution, where the variance is equal to the mean. 

Second, it describes a physical situation in which m risks are each subject to 
loss. We can formalize this as follows. Consider m independent and identical 
transactions each with probability q of making a loss. Then the number of 
losses for a single transactions follows a Bernoulli distribution, a distribution 
with probability 1 - q at 0 and probability q at 1. The probability generating 
function of the number of losses per transaction is then given by 

P ( z )  = (1 - q)zO + qzl = 1 +- q(z - 1). 

Now, if there are rn such independent transactions, then the probability gen- 
erating functions can be multiplied together to give the probability generating 
function of the total number of losses arising from the m transactions. That 
probability generating function is 

P(z )  = [ 1 +  q(z  - l)]", 0 < q < 1. 

Then from this it is easy to show that the probability of exactly k losses is 

p k  = Pr(N = k )  = q k ( l -  qIrnpk, IC = 0,1,. . . ,m, (3 
the pf for a binomial distribution with parameters m and q. From this 
Bernoulli trial framework, it is clear that at most rn losses can occur. Hence, 
the distribution only has positive probabilities on the nonnegative integers up 
to and including m. 

Consequently, an additional attribute of the binomial distribution that is 
sometimes useful is that it has finite support; that is, the range of values for 
which there exist positive probabilities has finite length. In many cases, it 
may be reasonable to have an upper limit on the range of possible values. 
The mean and variance of the binomial distribution are given by 

E(N) = mq, Var(N) = mq(1 - 4 ) .  

5.5 THE ( a ,  b, 0) CLASS 

The following definition characterizes the members of this class of distribu- 
t ions. 
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Table 5.1 Members of the ( a ,  b, 0)  class 
~~ ~ 

Distribution a b Po 
Poisson 0 x 

- 0 (1 + P1-l P Geometric 
1 + P  

Definition 5.3 Let Pk be the p f  of a discrete random variable. It is a member 
of the (a, b, 0 )  class of distributions, provided that there exists constants 
a and b such that 

This recursive relation describes the relative size of successive probabilities 
in the counting distribution. The probability at zero, PO, can be obtained 
from the recursive formula because the probabilities must add up to 1. This 
provides a boundary condition, which, in addition to the recursive formula, 
will uniquely define the probabilities. The ( a ,  b, 0) class of distributions is a 
two-parameter class, the two parameters being a and b. By substituting in the 
probability function for each of the Poisson, binomial, and negative binomial 
distributions on the left-hand side of the recursion, it can be seen that each of 
these three distributions satisfies the recursion and that the values of a and 
b are as given in Table 5.1. In addition, the table gives the value of P O ,  the 
starting value for the recursion. Also in the table is the geometric distribution, 
the one-parameter special case ( r  = 1) of the negative binomial distribution. 

It is well known (see Panjer and Willmot 193, Chapter 61) that these are 
the only possible distributions satisfying this recursive formula. 

The recursive formula can be rewritten as 

P k  

pk-1 
k - = a k + b ,  k = 1 , 2 , 3  , . . . .  

The expression on the left-hand side is a linear function in k .  Note from Ta- 
ble 5.1 that the slope a of the linear function is 0 for the Poisson distribution, 
is negative for the binomial distribution, and is positive for the negative bino- 
mial distribution, including the geometric. This suggests a graphical way of 
indicating which of the three distributions might be selected for fitting. First, 
we can plot the observed sample probabilities (indicated by “hats”) 

f i k  nk k-=k- 
Pk-1 nk-1 
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Table 5.2 Accident profile 

Number of Number of 
nk 
nk-1 

accidents, k automobiles, n k  k- 

0 
1 
2 
3 
4 
5 
6 
7 
81- 
Total 

7840 
1317 0.17 
239 0.36 
42 0.53 
14 1.33 
4 1.43 
4 6.00 
1 1.75 
0 

9461 

against k .  The observed values should form approximately a straight line if 
one of these models is to be selected, and the value of the slope should be an 
indication of which of the models should be selected. Note that this cannot 
be done if any of the 721, are 0. Hence this procedure is less useful for a small 
number of observations. 

Example 5.4 This example is f rom insurance data, where we are interested 
in finding a distribution fo r  the number of accidents per automobile. Consider 
the accident data in Table 5.2, which is taken f r o m  Thyrion 11171. For the 
9461 automobiles studied, the number of accidents is recorded in the table. 
Also recorded in the table is the observed value of the quantity that should be 
linear. 

Figure 5.1 plots the value of the quantity of interest against k ,  the number 
of accidents. It can be seen from the graph that the quantity of interest 
looks approximately linear except for the point at k = 6. The reliability of 
the quantities as k increases diminishes because the number of observations 
becomes small and the variability of the results grows. This illustrates the 
weakness of this ad hoc procedure. Visually, all the points appear to  have 
equal value. However, the points on the left are more reliable than the points 
on the right. From the graph, it can be seen that the slope is positive and 
the data appear approximately linear. This suggests the negative binomial 
distribution is an appropriate candidate for a model. Whether or not the slope 
is significantly different from 0 is also not easily judged from the graph. By 
rescaling the vertical axis of the graph, the slope can be made to look steeper 
and hence the slope could be made to  appear to be significantly different 
from 0. Graphically, it is difficult to distinguish between the Poisson and 
the negative binomial distribution because the Poisson requires a slope of 0. 



7 -1 
I 

6;  

5 J  

2 4  
I '1 + + 
0 1 2 3 4 

0 -  

k 

Fic. 5.1 Plot of the ratio knr-Ink 

THE(a,b,O) CLASS 117 

+ 

+ + 

5 6 7 

against k. " .", ..-I " 

However, we can say that the binomial distribution is probably not a good 
choice because there is no evidence of a negative slope. In this case, it is 
advisable to  try the Poisson and negative binomial distributions and conduct 
a more formal test to choose between them. 0 

It is also possible to compare the appropriateness of the distributions by 
looking at the relationship of the variance to the mean. For this data set, the 
mean number of losses per policy is 0.2144. The variance is 0.2889. Because 
the variance exceeds the mean, the negative binomial should be considered as 
an alternative to the Poisson distribution. Again this is a qualitative comment 
because we have, at this point, no formal way of determining whether the 
variance is sufficiently larger than the mean to warrant use of the negative 
binomial distribution. In order to do some formal analysis, Table 5.3 gives 
the results of maximum likelihood estimation (to be discussed in Chapter 10) 
of the parameters of the Poisson and negative binomial distributions and the 
negative loglikelihood in each case. In Chapter 12 formal selection methods 
are presented. They would indicate that the negative binomial is superior to 
the Poisson as a model for this data set. However, those methods also indicate 
that, in many cases, the negative binomial is not a particularly good model, 
and some of the distributions yet to be introduced should be considered. 

In subsequent subsections we will expand the class of the distributions 
beyond the three discussed in this section by constructing more general models 
related to the Poisson, binomial, and negative binomial distributions. 
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Table 5.3 Poisson-negative binomial comparison 

Parameter 
Distribution estimates -Log likelihood 

Poisson = 0.2143537 5,490.78 

Negative binomial ,b = 0.3055594 5,348.04 
? = 0.7015122 

5.6 THE ( a ,  b, 1) CLASS 

At times, the distributions discussed previously do not adequately describe 
the characteristics of some data sets encountered in practice. This may be 
because the tail of the negative binomial is not heavy enough or because the 
distributions in the ( a ,  b, 0) class cannot capture the shape of the data set in 
some other part of the distribution. 

In this section, we address the problem of a poor fit at the left-hand end 
of the distribution, in particular the probability at zero. 

For loss count data, the probability at zero is the probability that no losses 
occur during the period under study. When the probability of occurrence of 
a loss is low (as is often the case in insurance), the probability at zero has the 
largest value. Thus, it is important to pay special attention to the fit at this 
point. By analogy in the operational risk context, if the probability of a loss 
for a particular business process is low, the probability at zero is largest. 

Similarly, it is possible to have situations in which there is less than the 
expected number, or even zero, occurrences at zero. Any adjustment of the 
probability at zero is easily handled by modifying the Poisson, binomial, and 
negative binomial distributions. 

Definition 5.5 A counting distribution is a member of the (a,b,l) class of 
distributions provided that there exist constants a and b such that 

Note that the only difference from the ( a ,  b, 0) class is that the recursion 
begins at pl  rather than po. This forces the distribution from k = 1 to k = co 
to have the same shape as the (a ,  b, 0) class in the sense that the probabilities 
are the same up to a constant of proportionality because cEp=, pk can be set 
to any number in the interval (0, 11. The remaining probability is at k = 0. 

We will distinguish between the situations in which po = 0 and those 
where po > 0. The first subclass is called the truncated (more specifically, 
zero-truncated) distributions. The members are the zero-truncated Poisson, 
zero-truncated binomial, and zero-truncated negative binomial (and its special 
case, the zero-truncated geometric) distributions. 
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The second subclass will be referred to as the zero-modified distributions 
because the probability is modified from that for the (a ,  b, 0) class. These 
distributions can be viewed as a mixture of an (a,b,O) distribution and a 
degenerate distribution with all the probability at zero. Alternatively, they 
can be called truncated with zeros distributions because the distribution 
can be viewed as a mixture of a truncated distribution and a degenerate 
distribution with all the probability a t  zero. We now show this more formally. 
Note that all zero-truncated distributions can be considered as zero-modified 
distributions, with the particular modification being to set po = 0. 

With three types of distributions, notation can become confusing. When 
writing about discrete distributions in general, we will continue to let p k  = 
Pr (N = k). When referring to a zero-truncated distribution, we will use p:, 
and when referring to a zero-modified distribution, we will use pf. Once 
again, it is possible for a zero-modified distribution to be a zero-truncated 
distribution. 

Let P(z )  = C E o p k ~ l C  denote the pgf of a member of the (a,b,O) class. 
Let P M ( z )  = C E O p r z k  denote the pgf of the corresponding member of the 
( a ,  b, 1) class; that is, 

and p 2  is an arbitrary number. Then 

M 

k=l 
03 

k= I 

Because PM (1) = P( 1) = 1, 

resulting in 

This relationship is necessary to  ensure that the p f  sum to 1. We then have 

M 
P"(Z) =po + ___ [P(Z) -Po] 

1 -Po 
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This is a weighted average of the pgfs of the degenerate distribution and 
the corresponding ( a ,  b, 0) member. Furthermore, 

Let P T ( z )  denote the pgf of the zero-truncated distribution corresponding to  
an ( a ,  b, 0) pgf P(z) .  Then, by setting p f  = 0 in formulas (5.3) and (5.4), 

P(,> -Po  P T ( z )  = 
1-Po 

and 
p z  = - p k  k =  1 ,2 ,  ... 

1 -Po '  (5.5) 

Then from formula (5.4) 

p f  = (1 -p,")pr,  k = 1,2, . .  . , (5.6) 

PM(Z)  = #(1) + (1 - p?)PT(z ) .  (5.7) 
and 

Then the zero-modified distribution is also the weighted average of a degen- 
erate distribution and the zero-truncated member of the ( a ,  b, 0) class. The 
following example illustrates these relationships. 

Example 5.6 Consider a negative binomial random variable with parameters 
/3 = 0.5 and r = 2.5. Determine the first four probabilities f o r  this random 
variable. Then  determine the corresponding probabilities f o r  the zero-truncated 
and zero-modified (with pf = 0.6) versions. 

From Table 5.4 on Page 123 we have, for the negative binomial distribution, 

PO = (1 + 0.5)-2.5 = 0.362887, 
0.5 1 
1.5 3' 

1.5 

a = - - - -  - 

(2.5 - 1)(0.5) 1 - - - 
2 '  

b =  

The first three recursions yield 

p i  = 0.362887 (5  + it) = 0.302406, 

p2 = 0.302406 ( 5  + f f) = 0.176404, 

p3 = 0.176404 ( 5  + ii) = 0.088202. 

For the zero-truncated random variable, p r  = 0 by definition. The recur- 
sions start with [from formula (5.5)] p r  = 0.302406/(1-0.362887) = 0.474651. 
Then 

p; = 0.474651 (3 + i) = 0.276880, 

pF = 0.276880 (5  + ii) = 0.138440. 
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If the original values were ail available, then the zero-truncated probabilities 
could have all been obtained by multiplying the original values by 1/(1 - 
0.362887) = 1.569580. 

For the zero-modified random variable, pf = 0.6 arbitrarily. From (5.4), 
p r  = (1 - 0.6)(0.302406)/(1 - 0.362887) = 0.189860. Then 

p? = 0.189860 ( 5  + $+) = 0.110752, 

p y  = 0.110752 (5 + $4) = 0.055376. 

In this case, each original negative binomial probability has been multiplied 
by (1 - 0.6)/(1 - 0.362887) = 0.627832. Also note that, for j 2 1, p y  = 
0.4~;. 0 

Although we have only discussed the zero-modified distributions of the 
(a, b, 0) class, the ( a ,  b, 1) class admits additional distributions. The ( a ,  b) 
parameter space can be expanded to admit an extension of the negative bi- 
nomial distribution to include cases where -1 < T < 0. For the (a, b, 0) class, 
T > 0 is required. By adding the additional region to the sample space, the 
“extended” truncated negative binomial (ETNB) distribution has parameter 
restrictions ,B > 0, T > -1, T # 0. 

To show that the recursive equation 

p k = p k - l  U S -  , k = 2 , 3  , . . . ,  (5.8) ( 3 
with po = 0 defines a proper distribution, it is sufficient to show that for any 
value of pl , the successive values of pk obtained recursively are each positive 
and that C&pk < co. For the ETNB, this must be done for the parameter 
space 

(see Exercise 5.5). 
When T ---f 0, the limiting case of the ETNB is the logarithmic distribution 

with 

(see Exercise 5.6). The pgf of the logarithmic distribution is 

(5.10) 

(see Exercise 5.7). The zero-modified logarithmic distribution is created by 
assigning an arbitrary probability at zero and reducing the remaining proba- 
bilities. 
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It is also interesting that the special extreme case with -1 < r < 0 and 
p -+ 00 is a proper distribution, sometimes called the Sibuya distribution. 
It has pgf P ( z )  = 1 - (1 - z ) - ~ ,  and no moments exist (see Exercise 5.8). 
Distributions with no moments are not particularly interesting for modeling 
loss numbers (unless the right tail is subsequently modified) because an infinite 
number of losses are expected. If this is the case, the risk manager should be 
fired! 

Example 5.7 Determine the probabilities for an ETNB distribution with r = 
-0.5 and /3 = 1. Do this both for the truncated version and for the modified 
version with p f  = 0.6 set arbitrarily. 

We have a = 1/(1 + 1) = 0.5 and b = (-0.5 - 1)(1)/(1 + 1) = -0.75. We 
also have p r  = -0.5(1)/[(1 + l)0.5 - (1 + l)] = 0.853553. Subsequent values 
are 

p;  = 0.5 - - (0.853553) = 0.106694, ( O,,) 

p;  = ( 0.5 - - O,,) (0.106694) = 0.026674. 

For the modified probabilities, the truncated probabilities need to  be multi- 
plied by 0.4 to produce p y  = 0.341421, p y  = 0.042678, and p y  = 0.010670. 

Note: A reasonable question is to  ask if there is a “natural” member of the 
ETNB distribution, that is, one for which the recursion would begin with p l  
rather than pa. For that to be the case, the natural value of po would have 
to satisfy pl  = (0.5 - 0.75/l)p0 = -0.25~0. This would force one of the two 
probabilities to be negative and so there is no acceptable solution. It is easy 

0 to show that this occurs for any r < 0. 

There are no other members of the ( a ,  b, 1) class beyond those discussed 
above. A summary is given in Table 5.4. 

5.7 COMPOUND FREQUENCY MODELS 

A larger class of distributions can be created by the processes of compounding 
any two discrete distributions. The term compounding reflects the idea that 
the pgf of the new distribution P(z )  is written as 

P ( z )  = PrV LPM ( z ) ]  7 (5.11) 

where PN(z) and PM ( z )  are called the primary and secondary distributions, 
respectively. 

The compound distributions arise naturally as follows. Let N be a count- 
ing random variable with pgf PN(z). Let M I ,  M2,. . . be identically and 
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Table 5.4 Members of the ( a ,  b, 1) class 

a b Parameter space Distributiona Po 
Poisson e-' 0 X X > O  
ZT Poisson 0 0 X X > O  
ZM Poisson Arbitrary 0 X X > O  

Binomial (1 - q y  -- (m + 1)- O < q < l  

ZT binomial 0 (m + 1)- O < q < l  

ZM binomial Arbitrary -- (m + 1)- O < q < l  

4 

4 
1 - 4  1 '4  

' 7 4  1 - 4  
_- 

1 - 4  1 - 4  

P ( r  - 1)- P r > O , P > o  
1 + P  

Negative binomial (1 + P)-' - 

ETNB 0 P r > - l , b  P > o  
1 + P  

( r  - 1)- P 
1 + P  

r > - - I ,~  P > o P 
1 + P  

( r  - 1)- P Arbitrary - 
1 + P  l + P  

ZM ETNB 

Geometric (1 + P Y  1-tp P o  P > O  

ZT geometric 0 L o  P > O  

Arbitrary ~ P o  P > O  

1 + P  

1 + D  
ZM geometric 

P > O  

P > O  

P 
1 + P  

P 
1 + P  

p -- 
1 + P  

P ZM logarithmic Arbitrary - 
l+B 

Logarithmic 0 

-- 

aZT = zero truncated, ZM = zero modified. 

bExcluding T = 0, which is the logarithmic distribution. 

independently distributed counting random variables with pgf PM ( 2 ) .  As- 
suming that the M j s  do not depend on N ,  the pgf of the random sum S = 
M I  + M2 +. . + MN (where N = 0 implies that S = 0) is Ps ( Z )  = PN [PM ( 2 ) ) .  

This is shown as 
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k=O n=O 

n=O k=O 
33 

n=O 

= piv [ P M  (.)I. 
In operational risk contexts, this distribution can arise naturally. If N repre- 
sents the number of loss-causing events and {Mk;  k = 1,2, .  . . , N }  represents 
the number of losses (errors, injuries, failures, etc.) from the events, then 
S represents the total number of losses for all such events. This kind of in- 
terpretation is not necessary to justify the use of a compound distribution. 
If a compound distribution fits data well, that may be enough justification 
itself. Also, there are other motivations for these distributions, as presented 
in Section 5.9. 

Example 5.8 Demonstrate that any zero-modified distribution is a compound 
distribution. 

Consider a primary Bernoulli distribution. It has pgf PN(z) = 1 - q + 42 .  
Then consider an arbitrary secondary distribution with pgf PM(z) .  Then, 
from formula (5.11) we obtain 

PS(z)  = P N [ P M ( z ) ]  = 1 - q + q p M ( z ) .  

From formula (5 .3) ,  it is clear that this is the pgf of a ZM distribution with 

q = -. 

That is, the ZM distribution has assigned arbitrary probability p y  at zero, 
while PO is the probability assigned at zero by the secondary distribution. 0 

M 1 - Po 
1 -Po 

Example 5.9 Consider the case where both M and N have the Poisson dis- 
tribution. Determine the pgf  of this distribution. 

This distribution is called the Poisson-Poisson or Neyrnan Type A distri- 
bution. Let PN(z) = e and Phf(z) = eA2('-'). Then 
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When X2 is a lot larger than X I  (for example, XI = 0.1 and Xz = 10) the 
17 resulting distribution will have two local modes. 

Example 5.10 Demonstrate that the Poisson-logarithmic distribution is a 
negative binomia1,as compound Poisson-logarithmic distribution. 

The negative binomial distribution has pgf 

P(.) = [l - P(. - 1)]-r. 

Suppose P N ( z )  is Poisson(X) and P M ( z )  is logarithmic(P); then 

eV[P&f(.)l = .xp{"IM(.) - 11) 

- A /  ln( l+B) = [l - P(. - l)] 
= [l - P(. - 1) ] -T ,  

where r = A/ ln(l+P). This shows that the negative binomial distribution can 
be written as a compound Poisson distribution with a logarithmic secondary 
distribution. 0 

The above example shows that the "Poisson-logarithmic" distribution does 
not create a new distribution beyond the ( a ,  b, 0) and ( a ,  b, 1) classes. As a 
result, this combination of distributions is not useful to us. Another com- 
bination that does not create a new distribution beyond the ( a ,  b, 1) class is 
the compound geometric distribution where both the primary and secondary 
distributions are geometric. The resulting distribution is a zero-modified geo- 
metric distribution, as shown in Exercise 5.12. The following theorem shows 
that certain other combinations are also of no use in expanding the class of dis- 
tributions through compounding. Suppose Ps(z) = p ~ [ P j ~ ( z ) ;  01 as before. 
Now, PM(T)  can always be written as 

h f ( z )  = fo  + (1 - fo)Pif(.) (5.12) 

where P&(z) is the pgf of the conditional distribution over the positive range 
(in other words, the zero-truncated version). 

Theorem 5.11 Suppose the p g f P N ( z ;  0) satisfies 

PN(z ;  0) = B[O(Z - l)] 

for some parameter 0 and some function B ( z )  that is independent of0. That 
is, the parameter 0 and the argument z only appear in the pgf as O(z - 1). 
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There may be other parameters as well, and they may appear anywhere in the 
pgf. Then  Ps(z)  = P l v [ P ~ ( z ) ;  61 can be rewritten as 

Proof: 

This shows that adding, deleting, or modifying the probability at zero in the 
secondary distribution does not add a new distribution because it is equivalent 
to modifying the parameter 6 of the primary distribution. This means that, 
for example, a Poisson primary distribution with a Poisson, zero-truncated 
Poisson, or zero-modified Poisson secondary distribution will still lead to a 
Neyman Type A (Poisson-Poisson) distribution. 

5.8 RECURSIVE CALCULATION OF COMPOUND PROBABILITIES 

The probability of exactly k losses can be written as 

02 

Pr(S = I C )  = C Pr (S  = k j ~  = n) Pr(N = n) 
n=O 
30 

= C Pr (Ml+  . . . + M~ = I C ~ N  = n) Pr(N = n) 
n=O 
30 

= C Pr(M1+ . . . + M~ = I C )  Pr(N = n). (5.13) 
n = O  

Letting gn = Pr(S = n),  p ,  = Pr (N = n) ,  and f, = Pr(M = n),  this is 
rewritten as 

gk xl)nfzn (5.14) 

where fin, k = O , l , .  .., is the n-fold convolution of the function f k ,  k = 
0,1, .  . ., that is, the probability that the sum of n random variables which are 
each independent and identically distributed (iid) with probability function 
f k  will take on value k .  

oi) 

n = O  
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When P ~ y ( z )  is chosen to be a member of the ( a ,  b, 0) class, 

p k =  U - k -  P k - 1 ,  k = 1 , 2  ,..., (5 .15)  

and a simple recursive formula can be used. This formula avoids the use of 
convolutions and thus reduces the computations considerably. 

Theorem 5.12 (Panjer recursion) If the primary distribution is a member of 
the ( a ,  b, 0 )  class, the recursive formula i s  

( 3 

(5.16) 

Proof: From formula (5.15), 

T Z P ~  = a ( n  - l ) p n - I +  ( U  + b)pn- l .  

Multiplying each side by [P~(z)]~-lPh(z) and summing over n yields 

n = l  n=l  
33 

Because Ps ( z )  = C,"==, p ,  [ Pm ( z ) ] " ,  the previous equation is 
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Therefore, 

Rearrangement yields the recursive formula (5.16). 0 

This recursion (5.16) has become known as the Panjer recursion after its 
introduction as a computational tool for aggregate losses by Panjer [88]. Its 
use here is numerically equivalent to  its use for aggregate losses in Chapter 6. 
In order to use the recursive formula (5.16), the starting value go is required 
and is given in Theorem 5.15. 

Theorem 5.13 If the primary distribution is a member of the (a, b, 1) class, 
the recursive formula is 

[p l  - ( a  + b)PO]fk  + c:=, (a  + b j / k )  f j g k - j  
g k  = , k = 1 , 2 , 3  ,... . (5.17) 

Proof: It is similar to  the proof of Theorem 5.12 and is left to the reader. 0 

Example 5.14 Develop the Panjer recursive formula for the case where the 
primary distribution is Poisson. 

1 - afo 

In this case a = 0 and b = A, yielding the recursive form 

The starting value is, from (5.11), 

go = Pr (S  = 0 )  = P(O) 
= e v j P M ( 0 ) l  = P N ( f 0 )  

- - , - W - f o ) .  (5.18) 

Distributions of this type are called compound Poisson distributions’. When 
the secondary distribution is specified, the compound distribution is called 

0 Poisson-X, where X is the name of the secondary distribution. 

The method used to obtain go applies to any compound distribution. 

Theorem 5.15 For any compound distribution, go = PN( f o ) ,  where PN(z) is 
the pgf of the primary distribution and fo is the probability that the secondary 
distribution takes on the value zero. 

‘ In  some textbooks, the term conipound distribution, as in “compound Poisson,” refers to 
what are called in this book “mixed distributions.” 
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Proof: See the second line of equation (5.18). 0 

Note that the secondary distribution is not required to be in any special 
form. However, to keep the number of distributions manageable, secondary 
distributions will be selected from the ( a ,  b, 0) or the ( a ,  b, 1) class. 

Example 5.16 Calculate the probabilities for  the Poisson-ETNB distribution 
where X = 3 for the Poisson distribution and the E T N B  distribution has 
r = -0.5 and f l =  1. 

From Example 5.7 the secondary probabilities are fo = 0, f1 = 0.853553, 
f2 = 0.106694, and f3 = 0.026674. From equation (5.18), go = exp[-3(1 - 
O)] = 0.049787. For the Poisson primary distribution, a = 0 and b = 3. The 
recursive formula (5.16) becomes 

3 j  
k k c j = 1 (3j lk)  fj g k -  j - - c T f j g k - 3 .  

j=1 
1 - O(0) g k  = 

Then, 

3 0 )  

3(1) 3(2) 

91 = -0.853553(0.049787) = 0.127488, 
1 

2 2 

3 3 

3 

92 = -0.853553(0.127488) + -0.106694(0.049787) = 0.179163, 

g3 = "00.853553(0.179163) + -0.106694(0.127488) 3(2) 

+-0.026674(0.049787) 3(3) = 0.1841 14. 

r- 
U 

The following example uses the Panjer recursion to illustrate the equiva- 
lence between the Poisson-X and Poisson-zero-modified-X distributions, where 
X can be any distribution. 

Example 5.17 Determine the probabilities for  a Poisson-zero-modified E T N B  
distribution where the parameters are X = 7.5, p f  = 0.6, r = -0.5, and /3 = 1. 

From Example 5.7 the secondary probabilities are fo = 0.6, f l  = 0.341421, 
f2  = 0.042678, and f3 = 0.010670. From equation (5.18), go = exp[-7.5(1 - 
0.6)] = 0.049787. For the Poisson primary distribution, a = 0 and b = 7.5. 
The recursive formula (5.16) becomes 
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Then, 

91 = __ 7'5(1) 0.341421 (0.049787) = 0.127487, 
1 

9 2  = - 7~5~(')0.341421(0.127487) + 7'5(2)0.042678(0.049787) = 0.179161, 

9 3  = - 7~5(1)0.341421(0.179161) + 7'5(2) 0.042678(0.127487) 

2 

3 

3 
+- 7.5(3) 0.010670(0.049787) = 0.184112. 

Except for slight rounding differences, these probabilities are the same as those 
obtained in Example 5.16. 0 

5.9 A N  INVENTORY OF DISCRETE DISTRIBUTIONS 

In the previous sections of this chapter, we have introduced the simple ( a ,  b, 0) 
class, generalized to the ( a ,  b, 1) class, and then used compounding to create 
a larger class of distributions. In this section, we summarize the distributions 
introduced in those sections. 

There are relationships among the various distributions similar to those of 
Section 4.3.2. The specific relationships are given in Table 5.5. 

It is clear from earlier developments that members of the ( a ,  b,O) class 
are special cases of members of the ( a ,  b, 1) class and that zero-truncated 
distributions are special cases of zero-modified distributions. The limiting 
cases are best discovered through the probability generating function, as was 
done on page 113, where the Poisson distribution is shown to be a limiting 
case of the negative binomial distribution. 

We have not listed compound distributions where the primary distribution 
is one of the two parameter models such as the negative binomial or Poisson- 
inverse Gaussian. This was done because these distributions are often them- 
selves compound Poisson distributions and, as such, are generalizations of 
distributions already presented. This collection forms a particularly rich set 
of distributions in terms of shape. However, many other distributions are 
also possible. Many others are discussed in Johnson, Kotz, and Kemp [65], 
Douglas [24], and Panjer and Willmot [93]. 

5.9.1 

The distributions in this class have support on 0 ,1 , .  . . . For this class, a 
particular distribution is specified by setting PO and then using pk = ( a  + 
b/k)pk- l .  Specific members are created by setting P O ,  a ,  and b. For any 
member, p(1) = ( a + b ) / ( l - a ) ,  and for higherj, = ( a j + b ) p ~ ( ~ - ~ ) / ( l - a ) .  
The variance is (a  + b ) / ( l  - u ) ~ .  

The (a, b, 0) class 
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Table 5.5 Relationships among discrete distributions 

Distribution Is a special case of Is a limiting case of 

Poisson 

ZT Poisson 
ZM Poisson 
Geometric 

Z T  geometric 
ZM geometric 
Logarithmic 
ZM logarithmic 
Binomial 
Negative binomial 

Poisson-inverse Gaussian 
Polya- Aeppli 
Neyman-A 

ZM Poisson 

ZM Poisson 

Negative binomial, 
ZM geometric 
Z T  negative binomial 
ZM negative binomial 

Negative binomial 
Poisson-binomial 
Poisson-inv . Gaussian 
Polya-Aepplia 
Neyman-Ab 
ZT negative binomial 
ZM negative binomial 
Geometric-Poisson 

ZT negative binomial 
ZM negative binomial 

ZM binomial 
ZM negative binomial, 
Poisson-ETNB 
Poisson-ETNB 
Poisson-ETNB 

Poisson-ETNB 

aAlso called Poisson-geometric. 

bAlso called Poisson-Poisson. 

5.9.1.1 Poisson 

5.9.1.2 Geometric 

b = 0, P 
1 +P’ a = -  1 

Po = - 1 + P ’  
P k  

E“1 = P, Var“] = P(1 + P I ,  
P ( 2 )  = [l - P(. - 1)]-1. 

pk = (1 + p ) k + l ’  

This is a special case of the negative binomial with T = 1. 
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5.9.1.3 Binomial 

E [ N ]  = mq, Var[N] = m q ( 1  - q) ,  

P(2)  = [l + q(2  - l)]”. 

5.9.1.4 Negative binomial 

( r  - 1)P 
p o = ( l + P ) - T ,  a = -  P b =  1 + p  ’ 1 + P ’  

T(T  + 1 ) .  ’ .  (T + Ic - 1)pk 
k ! ( l  + /3)T+k 

Pk = 7 

E [ N ]  = rP, Var[N] = r P ( l +  P ) ,  
P(,) = [l - p(2 - 1)]-7. 

5.9.2 

To distinguish this class from the ( a ,  b, 0) class, the probabilities are denoted 
Pr (N = k )  = p p  or Pr(N = k )  = p z  depending on which subclass is being 
represented. For this class, p f  is arbitrary (that is, it is a parameter) and 
then p v  or pT is a specified function of the parameters a and b. Subsequent 
probabilities are obtained recursively as in the ( a ,  b, 0) class: p p  = (u + 
b / Ic )pE1 ,  k = 2 , 3 , .  . ., with the same recursion for p; There are two sub- 
classes of this class. When discussing their members, we often refer to the 
“corresponding” member of the ( a ,  b, 0) class. This refers to the member of 
that class with the same values for a and b. The notation Pl, will continue to 
be used for probabilities for the corresponding ( a ,  b, 0) distribution. 

The (a, b, 1) class 

5.9.3 The zero-truncated subclass 

The members of this class have p: = 0 and therefore it need not be estimated. 
These distributions should only be used when a value of zero is impossible. 
The first factorial moment is p(1) = ( a  + b ) / [ ( l  - a ) ( l  - P O ) ] ,  where po is the 
value for the corresponding member of the ( a ,  b, 0) class. For the logarithmic 
distribution (which has no corresponding member), p(1) = p/  In(l+P). Higher 
factorial moments are obtained recursively with the same formula as with the 
( a ,  b, 0) class. The variance is ( a  + b ) [ l  - (u + b + l ) p o ] / [ ( l  - a ) ( l  - po)12.For 
those members of the subclass that have corresponding ( a ,  b, 0) distributions, 
P; = P d ( 1  - P o ) .  
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5.9.3.1 Zero-truncated Poisson 

5.9.3.2 Zero-truncated geometric 

PT = 

P: = 

E[N] = 

P ( z )  = 

b = 0, P a=--- 1 

1+’ 1 + P ’  
P“-l 

(1 + P ) k ’  
1 + p, v a r [ ~ ]  = P(1+ P ) ,  
[l - P(z  - 1)I-l - (1 + P)-l 

1 - (1 + P)-1 

This is a special case of the zero-truncated negative binomial with r = 1. 

5.9.3.3 Logarithmic 

This is a limiting case of the zero-truncated negative binomial as r -+ 0. 
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5.9.3.4 Zero-truncated binomial 

5.9.3.5 Zero- trunca ted negative binomial 

rP 
1 - (1 +P)-" E[N] = 

[l - P(. - l)]-' - (1 +PI-' 
1 - (1 + P)- P(.) = 

This distribution is sometimes called the extended truncated negative bi- 
nomial distribution because the parameter r can extend below 0. 

5.9.4 The zero-modified subclass 

A zero-modified distribution is created by starting with a truncated distri- 
bution and then placing an arbitrary amount of probability at zero. This 
probability, p f  , is a parameter. The remaining probabilities are adjusted 
accordingly. Values of p f  can be determined from the corresponding zero- 
truncated distribution as p f  = (1 - p f ) p z  or from the corresponding ( a ,  b, 0) 
distribution as p f  = (1 - pf)pk/(l - PO). The same recursion used for the 
zero-truncated subclass applies. 

The mean is 1 - p f  times the mean for the corresponding zero-truncated 
distribution. The variance is 1 - pf times the zero-truncated variance plus 
py(1-pf) times the square of the zero-truncated mean. The probability gen- 
erating function is PM(z) = p? +(1 -pf)P(z), where P(z) is the probability 
generating function for the corresponding zero-truncated distribution. 
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5.9.5 The compound class 

Members of this class are obtained by compounding one distribution with 
another. That is, let N be a discrete distribution, called the primary distri- 
bution and let M I ,  M2, .  . . be identically and independently distributed with 
another discrete distribution, called the secondary distribution. The com- 
pound distribution is S = M I  +-.  .+ M N .  The probabilities for the compound 
distributions are found from the Panjer recursion 

k 

for k = 1,2 , .  . ., where a and b are the usual values for the primary distribution 
[which must be a member of the ( a ,  b, 0) class] and f j  is the probability from 
the secondary distribution. The only two primary distributions listed here 
are Poisson (for which po = exp[-X(l - fo)]) and geometric [for which po = 
l/[l+P-pfo]]. The probability generating function is P ( z )  = f " [ P ~ ( z ) ] .  In 
the following list the primary distribution is always named first. For the first, 
second, and fourth distributions, the secondary distribution is the ( a ,  b, 0) 
class member with that name. 

5.9.5.1 Poisson-binomial 

This distribution has a Poisson primary distribution and a binomial 
secondary or, equivalently, a Poisson primary and a zero-truncated sec- 
ondary distribution. 

5.9.5.2 Poisson-Poisson 

The parameter A1 is for the primary Poisson distribution, and X2 is for 
the secondary Poisson distribution. This distribution is also called the 
Neyman Type A. 

5.9.5.3 Geometric-extended truncated negative binomial 

The parameter ,& is for the primary geometric distribution. The last 
two parameters are for the secondary distribution, noting that for T = 0 
the secondary distribution is logarithmic. The truncated version is used 
so that the extension of r is available. 

5.9.5.4 Geometric-Poisson 

This is a special case of a negative binomial-Poisson, which could itself 
be described as a Poisson-logarithmic-Poisson. 

5.9.5.5 Poisson-extended truncated negative binomial 
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When r = 0 the secondary distribution is logarithmic, resulting in the 
negative binomial distribution. This distribution is also called the gen- 
eralized Poisson-Pascal. 

5.9.5.6 Polya-Aeppli 

This is a special case of the Poisson-extended truncated negative bino- 
mial with r = 1. It is actually a Poisson-geometric or, equivalently, a 
Poisson-truncated geometric distribution. 

5.9.5.7 Poisson-inverse Gaussian 

This is a special case of the Poisson-extended truncated negative bino- 
mial with r = -0.5. 

5.10 A HIERARCHY OF DISCRETE DISTRIBUTIONS 

The following table indicates which distributions are special or limiting cases 
of others. For the special cases, one parameter is set equal t o  a constant to 
create the special case. For the limiting cases, two parameters go to infinity 
or zero in some special way. 

Distribution Is a special case of Is a limiting case of 

Poisson 

ZT Poisson 
ZM Poisson 
Geometric 

ZT geometric 
ZM geometric 
Logarithmic 
ZM logarithmic 
Binomial 
Negative binomial 
Poisson-inverse Gaussian 
Polya-Aeppli 
Neyman-A 

ZM Poisson 

ZM Poisson 

Negative binomial 
ZM geometric 
ZT negative binomial 
ZM negative binomial 

ZM binomial 
ZM negative binomial 
Poisson-ETNB 
Poisson-ETNB 

Negative binomial, 
Poisson-binomial, 
Poisson-inv. Gaussian, 
Polya-Aeppli, 
Ne y man- A 
ZT negative binomial 
ZM negative binomial 
Geometric-Poisson 

ZT negative binomial 
ZM negative binomial 

Poisson-ETNB 

Poisson-ETNB 
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5.11 FURTHER PROPERTIES OF THE COMPOUND POISSON 
CLASS 

Of central importance within the class of compound frequency models is the 
class of compound Poisson frequency distributions. Physical motivation for 
this model arises from the fact that the Poisson distribution is often a good 
model to describe the number of loss-causing accidents, and the number of 
losses from an accident is often itself a random variable. In addition, there 
are numerous convenient mathematical properties enjoyed by the compound 
Poisson class. In particular, those involving recursive evaluation of the prob- 
abilities were also discussed in Section 5.9.5. In addition, there is a close 
connection between the compound Poisson distributions and the mixed Pois- 
son frequency distributions which is discussed in more detail in Section 5.13. 
Here we consider some other properties of these distributions. The compound 
Poisson pgf may be expressed as 

where Q(z) is the pgf of the secondary distribution. 

Example 5.18 Obtain the pgf fo r  the Poisson-ETNB distribution and show 
that it looks like the pgf  of a Poisson-negative binomial distribution. 

The ETNB distribution has pgf 

[ I  - p(z - 1)]+ - (1 + 
Q(z) = 1 - ( 1  + /3)+ 

for P > 0, r > -1, and r # 0. Then the Poisson-ETNB distribution has as 
the logarithm of its pgf 

[l - p ( z  - - ( 1  + D ) r T  
{ l - ( l + P ) - '  

lnP(z) = 

= p{[l- p(z  - 1)l-T - l}, 

where p = X / [ 1  - ( 1  + p)-']. This defines a compound Poisson distribution 
with primary mean p and secondary pgf [l -,B(z - l)]-', which is the pgf of a 
negative binomial random variable, as long as r and hence p are positive. This 
illustrates that the probability at zero in the secondary distribution has no im- 
pact on the compound Poisson form. Also, the above calculation demonstrates 
that the Poisson-ETNB pgf P ( z ) ,  with lnP(z) = p { [ l  - P ( z  - l)]-' - l}, has 
parameter space {,B > O,r > -1,pr > O } ,  a useful observation with respect 
to estimation and analysis of the parameters. 
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We can compare the skewness (third moment) of these distributions to 
develop an appreciation of the amount by which the skewness, and hence the 
tails of these distributions, can vary even when the mean and variance are 
fixed. From equation (5.19) (see Exercise 5.14) and Definition 2.18, the mean 
and second and third central moments of the compound Poisson distribution 
are 

(5.20) 

where mi is the j t h  raw moment of the secondary distribution. The coefficient 
of skewness is 

For the Poisson-binomial distribution, with a bit of algebra (see Exercise 5.15) 
we obtain 

(5.21) 

m - 2 (2 - p ) 2  
m - 1  p 

p3 = 3a2 - 2 p  + - 

Carrying out similar exercises for the negative binomial, Polya-Aeppli (Poisson- 
geometric), Neyman Type A, and Poisson-ETNB distributions yields 

Negative binomial: p3 = 3a2 - 2p + 2 - 'I2 
P 

3 (a2 - p)2 
Polya-Aeppli: p3 = 3a2 - 2p + 

P 

Neyman Type A: p 3  = 3g2 - 

T + 2 ( 0 2  - p)2  

r + l  p 
Poisson-ETNB: p 3  = 3a2 - 2p + - 

For the Poisson-ETNB distribution, the range of T is -1 < T < 00, T # 0. 
Note that as T -+ 0 the secondary distribution is logarithmic, resulting in the 
negative binomial distribution. 

Note that for fixed mean and variance the third moment only changes 
through the coefficient in the last term for each of the five distributions. For 
the Poisson distribution, p3 = X = 3a2 - 2p, and so the third term for each 
expression for p3  represents the change from the Poisson distribution. For the 
Poisson-binomial distribution, if m = 1,  the distribution is Poisson because 
it is equivalent to a Poisson-zero-truncated binomial as truncation at zero 
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leaves only probability a t  1. Another view is that from the formula for the 
third moment (5.21), we have 

2 p3 =3a -2p+ - 
m - 2 (rn - 1)2q4X2rn2 

m - 1  Xmq 
= 3a2 - 2p + (rn - 2)(rn - q q 3 h ,  

which reduces to  the Poisson value for p3 when m = 1. Hence, it is necessary 
that m 2 2 for non-Poisson distributions to be created. Then the coefficient 
satisfies 

m - 2  
0 5 -  < 1. 

m - 1  

For the Poisson-ETNB, because r > -1, the coefficient satisfies 

r + 2  1 < -  
r t l  <m’ 

Hence, the Poisson-ETNB distribution provides any desired degree of skew- 
ness greater than that of the Poisson distribution. Note that the Polya-Aeppli 
and the negative binomial distributions are special and limiting cases of the 
Poisson-ETNB with r = 1 and r -+ 0, respectively. 

Example 5.19 The data in Table 5.6 are taken from Hossack et al. [55] and 
give the distribution of the number of losses on  accidents involving automobiles 
in Australia. Determine an appropriate frequency model based on the skewness 
results of this section. 

The mean, variance, and third central moment are 0.1254614, 0.1299599, 
and 0.1401737, respectively. For these numbers, 

p3 - 3a2 + 2p 
(a2 - P I 2 / P  

= 7.543865. 

From among the Poisson-binomial, negative binomial, Polya-Aeppli, Neyman 
Type A, and Poisson-ETNB distributions, only the latter is appropriate. For 
this distribution, an estimate of r can be obtained from 

r + 2  
r f l  

7.543865 = - 

resulting in r = -0.8471851. In Example 12.13 a more formal estimation and 
selection procedure will be applied, but the conclusion will be the same. 0 

A very useful property of the compound Poisson class of probability distri- 
butions is the fact that it is closed under convolution. We have the following 
theorem. 
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Table 5.6 Hossack et al. data 

No. of losses No. of cars 

0 
1 
2 
3 
4 
5 
6+ 

565,664 
68,714 

5,177 
365 
24 

6 
0 

Theorem 5.20 Suppose that Si has a compound Poisson distribution with 
Poisson parameter X i  and secondary distribution {qn(i) ;  n = 0,1 ,2 , .  . . } for 
i = 1,2,3, .  . . , k .  Suppose also that s1 , Sz, . . . , S k  are independent random 
variables. Then  S = SI + SZ +. . ‘ + s k  also has a compound Poisson distribu- 
tion with Poisson parameter A = A1 + A2 +. . . + Ak and secondary distribution 
{qn; n = 0,1,2, .  . . }, where qn = [Aiqn(l) + Azqn(2) + . . . + A k q n ( k ) ] / A .  

Proof: Let Q i ( z )  = Cr=oqn( i ) zn  for i = 1 , 2 , .  . . , k .  Then Si has pgf 
P , , ( z )  = E(zsS) = exp{Ai[Qi(z) - 11). Because the Sis are independent, 
S has pgf 

k 

i=l 
k 

P S ( Z )  = n PSZ(Z) 
= n ex~{Ai[Qi(z) - 11) 

where A = Cf=lAi and Q ( z )  = Cf=lAiQi(z)/A. The result follows by the 
uniqueness of the generating function. 

One main advantage of this result is computational. If we are interested 
in the sum of independent compound Poisson random variables, then we do 
not need to compute the distribution of each compound Poisson random vari- 
able separately (i.e., recursively using Example 5.14) because Theorem 5.20 
implies that a single application of the compound Poisson recursive formula 
in Example 5.14 will suffice. The following example illustrates this idea. 

Example 5.21 Suppose that k = 2 and 5’1 has a compound Poisson distri- 
bution with A1 = 2 and secondary distribution qI(1) = 0.2,q2(1) = 0.7, and 
q3(1) = 0.1. Also, 5’2 (independent of 5’1) has a compound Poisson distrib- 
ution with A2 = 3 and secondary distribution 42(2) = 0.25,q3(2) = 0.6, and 
q4(2) = 0.15. Determine the distribution of S = S1 + Sz. 
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We have X = X I  + X2 = 2 + 3 = 5. Then 

41 = 0.4(0.2) + 0.6(0) = 0.08, 
q2 = 0.4(0.7) + O.s(O.25) = 0.43, 
43 = 0.4(0.1) + O.S(O.6) = 0.40, 
q4 = 0.4(0) + 0.6(0.15) = 0.09. 

Thus, S has a compound Poisson distribution with Poisson parameter X = 5 
and secondary distribution q1 = 0.08,qz = 0 . 4 3 , ~  = 0.40, and 4 4  = 0.09. 
Numerical values of the distribution of S may be obtained using the recursive 
formula 

beginning with P r (S  = 0) = eP5 .  

In various situations the convolution of negative binomial distributions is 
of interest. Example 5.22 indicates how this distribution may be evaluated. 

Example 5.22 (Convolutions of negative binomial distributions). Suppose 
that Ni has a negative binomial distribution with parameters ri and pi for  
i = 1,2, .  . . , k and that N I ,  N2,. . . , Nk are independent. Determine the dis- 
tribution of N = N1 + Nz +.  . . + Nk, 

The pgf of Ni is Pjv,(z) = 11 - p i ( z  - 1)ILT1 and that of N is PN(z) = 

n i = , P ~ , ( z )  = nF=,[l - pi(z - l)]-Tz. If pi = p for i = 1 , 2 , .  .. ,k, then 
P N ( z )  = [l - P(.z - 1)]-(T1+T2+"'+Tk), and N has a negative binomial distrib- 
ution with parameters r = r1 + r2 + . . . + rk and p. 

If not all the pis are identical, however, we may proceed as follows. From 
Example 5.10, 

k 

pjv,(z) = [1 - p i (z  - 1)]-~1 = e ~ ~ [ Q ~ ( z ) - ' I  

where X i  = ri ln(1 + pz) and 

with 

But Theorem 5.20 implies that N = Nl + N2 + . . . + Nk has a compound 
Poisson distribution with Poisson parameter 
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and secondary distribution 

The distribution of N may be computed recursively using the formula 
. n  

beginning with P r (N  = 0) = e-’ = n:=,(l + and with X and qn as 
given above. 

It is not hard to see that Theorem 5.20 is a generalization of Theorem 
5.1, which may be recovered with q1(i)  = 1 for i = 1,2 , .  . . , k. Similarly, 
the decomposition result of Theorem 5.2 may also be extended to compound 
Poisson random variables, where the decomposition is on the basis of the 
region of support of the secondary distribution. See Panjer and Willmot [93], 
Section 6.4 or Karlin and Taylor [66], Section 16.9 for further details. 

5.12 MIXED FREQUENCY MODELS 

Many compound distributions can arise in a way that is very different from 
compounding. In this section, we examine mixture distributions by treating 
one or more parameters as being “random” in some sense. This section ex- 
pands on the ideas discussed in Section 5.3 in connection with the gamma 
mixture of the Poisson distribution being negative binomial. 

We assume that the parameter is distributed over the population under 
consideration (the collective) and that the sampling scheme that generates 
our data has two stages. First, a value of the parameter is selected. Then, 
given that parameter value, an observation is generated using that parameter 
value. 

Let P(zj8) denote the pgf of the number of events (e.g., losses) if the risk 
parameter is known to be 6. The parameter, 8 ,  might be the Poisson mean, 
for example, in which case the measurement of risk is the expected number 
of events in a fixed time period. 

Let U ( 8 )  = P r ( 0  I 8) be the cdf of 0, where 0 is the risk parameter, 
which is viewed as a random variable. Then U ( 8 )  represents the probability 
that, when a value of 0 is selected (e.g., a driver is included in our sample), 
the value of the risk parameter does not exceed 8. Let u(8) be the pf or pdf 
of 0. Then 

(5.22) 
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is the unconditional pgf of the number of events (where the formula selected 
depends on whether 0 is discrete or continuous2). The corresponding proba- 
bilities are denoted by 

The mixing distribution denoted by U ( 0 )  may be of the discrete or contin- 
uous type or even a combination of discrete and continuous types. Discrete 
mixtures are mixtures of distributions where the mixing function is of the 
discrete type. Similarly, continuous mixtures are mixtures of distributions 
where the mixing function is of the continuous type. This phenomenon of 
mixing was introduced for continuous mixtures of severity distributions in 
Section 4.7.5 and for finite discrete mixtures in Section 4.5.2. 

It should be noted that the mixing distribution is unobservable because the 
data are drawn from the mixed distribution. 

Example 5.23 Demonstrate that the zero-modified distributions may be cre- 
ated by using a two-point mixture. 

Suppose 

P ( z )  = p .  1 + (1 -p)Pz(z). 

This is a (discrete) two-point mixture of a degenerate distribution that places 
all probability at zero and a distribution with pgf Pz(z). From formula (5.12), 
this is also a compound Bernoulli distribution. 0 

Many mixed models can be constructed beginning with a simple distribu- 
tion. Two examples are given here. 

Example 5.24 Determine the pf  for a mixed binomial with a beta mixing dis- 
tribution. This distribution is  called binomial-beta, negative hypergeometric, 
or Polya-Eggenberger. 

The beta distribution has pdf 

'We could have written the more general P ( z )  = SP(zlO)dU(O), which would include 
situations where 0 has a distribution that is partly continuous and partly discrete. 
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Then the mixed distribution has probabilities 

- r ( a  + b ) F ( m  + l)r(a + k)F(b  + m - k )  
r(a)I'(b)r(k + l ) r (m - k + l)r(a + b + m) 

- 

- - , k = O , 1 , 2  ,.... 

(-:- b, 

Example 5.25 Determine the p f  for a mixed negative binomial distribution 
with mixing on  the parameter p = (1 + p)- ' .  Let p have a beta distribution. 
The mixed distribution is called the generalized Waring distribution. 

Arguing as in Example 5.24 we have 

k = O , l , 2  ).... - r ( r  + k )  r ( a  + b)  r ( a  + r ) F ( b  + k )  
r(r)r(k + 1)  r ( a ) r ( b )  r(a + r + b + k )  ' 

- 

When b = 1, this distribution is called the Waring distribution. When r = 
b = 1, it is termed the Yule distribution. 

5.13 POISSON MIXTURES 

If we let pk(0)  in formula (5.23) have the Poisson distribution, this leads to a 
class of distributions with useful properties. A simple example of a Poisson 
mixture is the two-point mixture. 

Example 5.26 Suppose risks can be classified as "good risks" and "bad risks, " 
each group with its own Poisson distribution. Determine the p f  for  this model 
and fit it t o  the data from Example 11.5. This model and its application t o  
the data set are from Trobliger [118] in connection with automobile drivers. 

From formula (5.23) the pf is 
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The maximum likelihood estimates3 were calculated by Trobliger to be 
p = 0.94,il = 0.11, and i 2  = 0.70. This means that about 94% of drivers 
were “good” with a risk of XI = 0.11 expected accidents per year and 6% were 

0 “bad” with a risk of A2 = 0.70 expected accidents per year. 

This example illustrates two important points about finite mixtures. First, 
the model is probably oversimplified in the sense that risks (e.g., drivers) 
probably exhibit a continuum of risk levels rather than just two. The second 
point is that finite mixture models have a lot of parameters to be estimated. 
The simple two-point Poisson mixture above has three parameters. Increasing 
the number of distributions in the mixture to r will then involve r - 1 mixing 
parameters (i.e., the coefficients) in addition to the total number of parameters 
in the r component distributions. As a result of this, continuous mixtures are 
frequently preferred. 

The class of mixed Poisson distributions has some interesting properties 
that will be developed here. 

Let P ( z )  be the pgf of a mixed Poisson distribution with arbitrary mixing 
distribution U ( 0 ) .  Then (with formulas given for the continuous case), by 
introducing a scale parameter A, we have 

(5.24) 

where M e ( z )  is the mgf of the mixing distribution. 
Therefore, P’(z) = AM&[X(z-l)] and with z = 1 we obtain E(N) = XE(O), 

where N has the mixed Poisson distribution. Also, P”(z) = A2M&[X(z - l)], 
implying that E[N(N - l)] = A2E(02) and therefore 

Var(N) = E[N(N - l)] + E(N) - [E(N)]’ 

= X2E(02) + E(N) - X2[E(0)]2 

= X2 Var(0) + E(N)  

> E ( N )  

and thus for mixed Poisson distributions the variance is always greater than 
the mean. 

Douglas [24] proves that for any mixed Poisson distribution the mixing 
distribution is unique. This means that two different mixing distributions 
cannot lead to  the same mixed Poisson distribution. This allows us to identify 
the mixing distribution in some cases. 

There is also an important connection between mixed Poisson distributions 
and compound Poisson distributions. 

:’Maximum likelihood estimation is discussed in Section 10.3. 
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Definition 5.27 A distribution is  said to be infinitely divisible if fo r  all 
values of n = 1,2,3,. . . its Characteristic function cp(z) can be written as 

where cpn(z) is the characteristic function of some random variable. 

In other words, taking the ( l /n ) th  power of the characteristic function still 
results in a characteristic function. The characteristic function is defined as  
follows. 

Definition 5.28 The characteristic function of a random variable X is 

px(z) = E(e iZx)  = E(coszX + i s inzX) ,  

where i = m. 
In Definition 5.27, "characteristic function" could have been replaced by 

"moment generating function" or "probability generating function," or some 
other transform. That is, if the definition is satisfied for one of these trans- 
forms, it will be satisfied for all others for the same random variable. We 
choose the characteristic function because it exists for all distributions whereas 
the moment generating function does not exist for some distributions with 
heavy tails. Because many earlier results involved probability generating func- 
tions, it is useful to note the relationship between it and the characteristic 
function. 

Theorem 5.29 If the probability generating function exists for  a random 
variable X, then Px(z)  = cp(-ilnz) and cpx(z) = P ( e z z ) .  

Proof: 

Px(z)  = E(zx) = E ( e X 1 " " )  = E[e-i( i ' "")X] = cpx(-ilnz) 

yx (z )  = E(e iZx)  = E[(ei")x] = Px(e2").  
and 

The following distributions, among others, are infinitely divisible: normal, 
gamma, Poisson, negative binomial. The binomial distribution is not infi- 
nitely divisible because the exponent m in its pgf must take on integer values. 
Dividing m by n = 1,2 ,3 , .  . . will result in nonintegral values. In fact, no 
distributions with a finite range of support (the range over which positive 
probabilities exist) can be infinitely divisible. Now to the important result. 

Theorem 5.30 Suppose P(z )  is a mixed Poisson pgf with an infinitely divis- 
ible mixing distribution. Then P(z )  is also a compound Poisson pgf and may  
be expressed as 

~ ( 2 )  = eX[P2(~)-11 
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where Pz(z) is a pgf. If we also adopt the convention that Pz(0) = 0 ,  then 
Pz(z) is unique. 

A proof can be found in Feller [35] ,  Chapter 12. If we choose any infinitely 
divisible mixing distribution, the corresponding mixed Poisson distribution 
can be equivalently described as a compound Poisson distribution. For some 
distributions, this is a distinct advantage when carrying out numerical work 
because the recursive formula (5.16) can be used in evaluating the probabilities 
once the secondary distribution is identified. For most cases, this identification 
is easily carried out. A second advantage is that, because the same distribution 
can be motivated in two different ways, a specific explanation is not required 
in order to use it. Conversely, the fact that one of these models fits well does 
not imply that it is the result of mixing or compounding. For example, the 
fact that losses follow a negative binomial distribution does not imply that 
individuals have the Poisson distribution and the Poisson parameter has a 
gamma distribution. 

Example 5.31 Use the above results and formula (5.24) to demonstrate that 
a gamma mixture of Poisson variables is negative binomial. 

If the mixing distribution is gamma, it has the following moment generating 
function (as derived in Example 2.29 and where p plays the role of l/O): 

It is clearly infinitely divisible because [Me(t)]l’n is the mgf of a gamma 
distribution with parameters a /n  and p. Then the pgf of the mixed Poisson 
distribution is 

which is the form of the pgf of the negative binomial distribution where the 
negative binomial parameter r is equal to a and the parameter /3 is equal to 
V P .  

It was shown in Example 5.10 that a compound Poisson distribution with a 
logarithmic secondary distribution is a negative binomial distribution. There- 
fore the theorem holds true for this case. It is not difficult to see that, if u(O) 
is the pf for any discrete random variable with pgf Pe(z) ,  then the pgf of the 
mixed Poisson distribution is Po [ex(’-’)], a compound distribution with a 
Poisson secondary distribution. 

Example 5.32 Demonstrate that the Neyman Type A distribution can be 
obtained by mixing. 
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If in formula (5.24) the mixing distribution has pgf 

Po(.) = e d - l ) ,  

then the mixed Poisson distribution has pgf 

the pgf of a compound Poisson with a Poisson secondary distribution, that is, 
the Neyman Type A distribution. 

A further interesting result obtained by Holgate 1541 is that if a mixing 
distribution is absolutely continuous and unimodal, then the resulting mixed 
Poisson distribution is also unimodal. Multimodality can occur when discrete 
mixing functions are used. For example, the Neyman Type A distribution can 
have more than one mode. The reader should try this calculation for various 
combinations of the two parameters. 

Most continuous distributions in this book involve a scale parameter. This 
means that scale changes to distributions do not cause a change in the form 
of the distribution, only in the value of its scale parameter. For the mixed 
Poisson distribution, with pgf (5.24), any change in X is equivalent to a change 
in the scale parameter of the mixing distribution. Hence, it may be convenient 
to simply set X = 1 where a mixing distribution with a scale parameter is used. 

Example 5.33 Show that a mixed Poisson with an inverse Gaussian mixing 
distribution is the same as a Poisson-ETNB distribution with r = -0.5. 

The inverse Gaussian distribution has pdf 

which is conveniently rewritten as 

( x - p )  , z > o ,  P 
f(x) = (2npIc"1/2 exp [- 2 p x  2 ]  

where /3 = p2/8 . The mgf of this distribution is 

M ( t )  =exp - { --[(l- P 
4 2pt)1/2 - 11) . 

Hence, the inverse Gaussian distribution is infinitely divisible ( [ M ( t ) ]  l/n is 
the mgf of an inverse Gaussian distribution with p replaced by p / n ) .  From 
(formula 5.24) with X = 1, the pgf of the mixed distribution is 

411'2 - 1)) . 
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Table 5.7 Pairs of compound and mixed Poisson distributions 

Compound secondary Mixing 
Name distribution distribution 

Negative binomial Logarithmic Gamma 
Neyman-A Poisson Poisson 
Poisson-inverse Gaussian ETNB ( r  = -0.5) Inverse Gaussian 

By setting 
P x = -[(l+ 2P)1/2 - 11 
P 

and 
[l - 2P(z - 1 ) y  - (1 + 2 p y 2  

1 - (1 + 2 p y  P2(z) = , 

fY.1 = exp{X[P2(z) - 111, 

we see that 

where P2(z) is the pgf of the extended truncated negative binomial distribu- 
tion with r = -;. 

Hence, the Poisson-inverse Gaussian distribution is a compound Poisson 
0 distribution with an ETNB ( r  = -+) secondary distribution. 

The relationships between mixed and compound Poisson distributions are 
given in Table 5.7. 

In this chapter, we have focused on distributions that are easily handled 
computationally. Although many other discrete distributions are available, 
we believe that those discussed here form a sufficiently rich class for most 
problems in modeling count data. 

5.14 EFFECT OF EXPOSURE ON LOSS COUNTS 

Assume that the current set of risks consists of n entities, each of which could 
produce losses. Let Nj be the number of losses produced by the j t h  entity. 
Then N = N1 + . . . + N,. If we assume that the Nj are independent and 
identically distributed, then 

PrV(z) = [PN,(z)ln. 

Now suppose the set of risks is expected to expand to n* entities with 
frequency N*.  Then 

P"(2) = [PN1(Z)] , '  = [ P N ( Z ) l n * / ,  
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Thus, if N is infinitely divisible, the distribution of N* will have the same 
form as that of N ,  but with modified parameters. 

Example 5.34 It has been determined from past studies that the number of 
losses for a group of 300 machines carrying on  certain transactions (e.g., a 
cash-dispensing machine) has the negative binomial distribution with p = 0.3 
and r = 10. Determine the frequency distribution for a group of 500 such 
machines. 

The pgf of N* is 

which is negative binomial with p = 0.3 and r = 16.67. 17 

For the ( a ,  b, 0) class, all members except the binomial have this property. 
For the (a ,  b, 1) class, none of the members does. For compound distributions, 
it is the primary distribution that must be infinitely divisible. In particular, 
compound Poisson and compound negative binomial (including the geomet- 
ric) distributions will be preserved under an increase in exposure. Earlier, 
some reasons were given to support the use of zero-modified distributions. If 
exposure adjustments are anticipated, it may be better to choose a compound 
model, even if the fit is not quite as good. It should be noted that compound 
models have the ability to place large amounts of probability at zero. 

5.15 TVaR FOR DISCRETE DISTRIBUTIONS 

In general, in operational risk modeling, we will not compute risk measures 
for the number of losses, although this is possible. We are generally interested 
in the sum of the total losses measured in dollar terms. A Tail-Value-at-Risk 
measure for the number of losses would give the expected number of losses 
conditional on the fact that a certain quantile was exceeded. This may be 
useful for gaining insight into risk processes but has not yet been used in 
operational risk management. For discrete distributions, the definition of the 
quantile is not unique because the cdf F ( x )  is a step function that is constant 
between successive points on the x-axis. It is possible to  refine the definition 
of quantile to deal with this problem. However, it is probably easier, from a 
pedagogical perspective, to consider only the quantiles corresponding to the 
points of support of the distribution. We then consider only the quantiles 
xp that are points of support of the probability distribution4 f(x). Thus we 

JWe will use the letter f to denote the pf for discrete distributions in this section rather 
than p as in earlier sections because of the use of the letter p as a probability in this section. 
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consider only the probabilities p that correspond to those points of support 
through the relation5 

p = P r ( X < x , ) .  

This restriction will allow us to use the formulas that are in the same form 
as for continuous distributions. Then the Tail-Value-at-Risk for any quantile 
xp can be computed directly for any discrete distribution with a finite mean 
because from Exercise 2.12 

TVaR, (X) = E (X I X > xP) 

(5.25) 

where the sum needs only to be taken over all possible values of x that are 
greater than xp. The (possibly) infinite sum in formula (5.25) is easily avoided 
by rewriting that infinite sum as 

X X X 

= E(X) - XP + c ("P - ")+ f (XI  
X 

and noticing that this last summation has a finite number of nonzero terms. 
Hence, Tail-Value-at-Risk is easily computed for any discrete distribution with 
nonnegative support using formula (5.26) and substituting the result into 
(5.25). 

As with the case of continuous distributions, the specific results for each 
distribution do not provide much insight into the relationship between the 
TVaR and the shape of the distribution. Section 5.15.1 provides general for- 
mulas for large families of discrete distributions. 

5.15.1 

Landsman and Valdez [74] obtain analytic results for a broad class of distri- 
butions that includes both continuous and discrete distributions. The results 
for continuous distributions were discussed in Chapter 4. We now consider 
the two exponential dispersion models, the additive exponential dispersion 
family and the reproductive exponential dispersion family, but apply them to 
discrete distributions. 

TVaR for discrete exponential dispersion distributions 

>This is not very restrictive. For example, if you are interested in the 99% quantile. the 
nearest points of support will correspond to quantiles close to and on either side of 99%. 
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Definition 5.35 A discrete random variable X has a distribution from the 
additive exponential dispersion family  (AEDF) i f  its probability func- 
tion may be parameterized in terms of parameters 6 and X and expressed as 

4(x ;  A). (5.27) ‘a: --Xtc( 8 )  f ( x ;  6 ,  A) = e 

Definition 5.36 A discrete random variable X has a distribution from the 
reproductive exponential dispersion family  (REDF) if its probability 
function may be parameterized in terms of parameters 6 and X and expressed 

Q(x ;  A). (5.28) 

As in the case of continuous distributions, the mean and variance of these 

as 
A[8z-n(6)] f ( x ;  6, A) = e 

distributions are 
Mean: AEDF p = An’(6) 

Variance: AEDF Var(X) = X d ( 6 )  = d’ (6) /az 
Var(X) = n”(6)/X = n”(6)a2 

REDF p = ~ ’ ( 6 )  

REDF 
where 1/X = a’ is called the “dispersion parameter.” 

Example 5.37 Show that the Poisson distribution is a member of the AEDF 
class. 

The Poisson distribution with mean p has probability function 

which can be rewritten as 

1 
X !  

f(x) = - e x p ( z l n p - p ) .  

By setting X = 1, 6 = lnp,  n(8) = e’ and q(x;  A) = l/x!, 

1 
X! 

j ( x )  = - exp ( ex  - e’) 

and so we can see that the Poisson distribution has the form 5.27. Therefore 
the Poisson distribution is a member of the AEDF. 

Example 5.38 Show that the binomial distribution is a member of the AEDF 
class. 

The binomial distribution with mean p = rnq has probability function 
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where m is an integer. By letting 8 = In (&), we can rewrite the pf as  

f(x) = (;)e'x(l+e')-m 

5 = 0, 1,2, .... 

Now by setting X = m, ~ ( 8 )  = In (1 + e') and q(s; A) = (T), we can see 
that the binomial pf has the form 5.27. Therefore the binomial distribution 
is a member of the AEDF. 

Example 5.39 Show that the negative binomial distribution is a member of 
the AEDF class. 

The negative binomial distribution with mean p = r/3 has probability 

where p = &. We can rewrite the pf as 

Now by setting 8 = In (1 - p )  , X = T ,  4 6 )  = - In (1 + e') and q(x; A) = 

(?+:-'), we can see that the negative binomial pf has the form 5.27. Therefore 
0 the negative binomial distribution is a member of the AEDF. 

We now consider the main results of this section. We consider random 
variables from the AEDF and the REDF. For the purpose of this section, 
we will also require that the support of the random variable is an open set 
that does not depend on 0 and the function ~ ( 8 )  is a differentiable function. 
These are technical requirements that will be satisfied by most commonly used 
distributions. We repeat, for convenience, the statement of a theorem already 
used in the case of continuous distributions. The theorem applies equally to 
discrete distributions. 

Theorem 5.40 Let X be a member of the AEDF subject to the above condi- 
tions. Then the Tuil-Value-&Risk can be written as 

TVaR,(X) = p + h 

where o2 = 1/X  and h = & In (F (xp; 8, A)) . 0 
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Example 5.41 Obtain the TVuR for the Poisson distribution. 

The Tail-Value-at-Risk is p + h where 

d 
a@ h = - In (F (x,; 8, , A)) 

r 

Hence the TVaR for the Poisson distribution is 

or, equivalently, 

Recall that the mean and variance are equal for the Poisson distribution. 
It is curious that the above formula is of the same form as for the normal 
distribution. 
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Example 5.42 Obtain the TVaR for the binomial distribution. 

The Tail-Value-at-Risk is p + h where 

d h = - In (F (xp; 8,  , A)) 
de 

L 

Hence the TVaR for the binomial distribution is 
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Example 5.43 Obtain the TVaR for the negative binomial distribution. 

The Tail-Value-at-Risk is p + h where 

d 
dB 

h = - In (F ixp ;  o , ,  A)) 

1 - p F (x, - 1; 8, r + 1) 

- ll 
= r - [  - 

P F ( x p ;  0, T )  
- 
F (x, - 1; 0, T + 1) =.[ - - 11 

F ( x p ;  8, 

Hence the TVaR for the negative binomial distribution is 

5.16 EXERCISES 

5.1 For each of the data sets in Exercises 11.3 and 11.5 calculate values similar 
to those in Table 5.2. For each, determine the most appropriate model from 
the (a, b, 0) class. 

5.2 Calculate Pr(N = 0), Pr (N = l), and Pr(N = 2) for each of the following 
distributions. 

(a) Poisson (A = 4) 
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(b) Geometric (p  = 4) 

(c) Negative binomial ( r  = 2, p = 2) 

(d) Binomial (m = 8, q = 0.5) 

(e) Logarithmic (p  = 4) 

(f) ETNB ( r  = -0.5,p = 4) 

(g) Poisson-inverse Gaussian (A = 2, p = 4) 

(h) Zero-modified geometric (p,” = 0.5, p = 4) 

(i) Poisson-Poisson(Neyman Type A) (Aprimary = 4, Asecondary = 1) 

(j) Poisson-ETNB (A = 4, r = 2, /3 = 0.5) 

(k) Poisson-zero-modified geometric distribution (A = S,p,” = 0.5, T = 
2, p = 0.5) 

5.3 The moment generating function (mgf) for discrete variables is de- 
fined as 

05 

k=O 

Demonstrate that PN(-z)  = MN(1n-Z). Use the fact that E ( N k )  = MF’(0)  to 
show that P’(1) = E ( N )  and P”(1) = E [ N ( N  - l)]. 

5.4 Use your knowledge of the permissible ranges for the parameters of the 
Poisson, negative binomial, and binomial to determine all possible values of 
a and b for these members of the (a ,  b, 0) class. Because these are the only 
members of the class, all other pairs must not lead to a legitimate probability 
distribution (nonnegative values that sum to 1). Show that the pair a = -1 
and b = 1.5 (which is not on the list of possible values) does not lead to a 
legitimate distribution. 

5.5 Show that for the negative binomial distribution with any p > 0 and 
r > -1, but r # 0, the successive values of p k  given by formula (5.8) are, for 
any p l ,  positive and C& p k  < 03. 

5.6 Show that when, in the zero-truncated negative binomial distribution, 
r --+ 0 the pf is as given by equation (5.9). 

5.7 Show that the pgf of the logarithmic distribution is as given by equation 
(5.10). 

5.8 Show that for the Sibuya distribution, which is the ETNB distribution 
with -1 < r < 0 and ,B -+ 03, the mean does not exist (that is, the sum which 
defines the mean does not converge). Because this random variable takes on 
nonnegative values, this also shows that no other positive moments exist. 
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5.9 A frequency model that has not been mentioned to this point is the zeta 
distribution. It is a zero-truncated distribution with p z  = k- (p+ ' ) /< (p  + 
l), k = 1,2 , .  . . , p > 0. The denominator is the zeta function, which must be 
evaluated numerically as ( ( p  + 1) = C,"=, k-(P+l). The zero-modified zeta 
distribution can be formed in the usual way. More information can be found 
in the article by Luong and Doray [78]. Verify that the zeta distribution is 
not a member of the ( a ,  b, 1) class. 

5.10 Do all the members of the ( a ,  b, 0) class satisfy the condition of Theorem 
5.11? For those that do, identify the parameter (or function of its parameters) 
that plays the role of 8 in the theorem. 

5.11 For i = 1, . . . , n let Si have independent compound Poisson frequency 
distributions with Poisson parameter X i  and a secondary distribution with pgf 
P~(z). Note that all n of the variables have the same secondary distribution. 
Determine the distribution of S = Sl + . . . + S,. 

5.12 Show that the following three distributions are identical: (1) geometric- 
geometric, (2) Bernoulli-geometric, (3) zero-modified geometric. That is, for 
any one of the distributions with arbitrary parameters, show that there is a 
member of the other two distribution types that has the same pf or pgf. 

5.13 Show that the binomial-geometric and negative binomial-geometric (with 
negative binomial parameter T a positive integer) distributions are identical. 

5.14 Show that, for any pgf, P("(1) = E [ N ( N  - 1) .  . . (N - k + l)] provided 
the expectation exists. Here P(')(z) indicates the kth derivative. Use this 
result to confirm the three moments as given by equations (5.20). 

5.15 Verify the three moments as given by equations (5.21). 

5.16 Show that the negative binomial-Poisson compound distribution is the 
same as a mixed Poisson distribution with a negative binomial mixing distri- 
bution. 

5.17 For i = 1,. . . , n let Ni have a mixed Poisson distribution with parameter 
A. Let the mixing distribution for N, have pgf Pi(,). Show that N = N1 + 
. . . + N, has a mixed Poisson distribution and determine the pgf of the mixing 
distribution. 

5.18 Let N have a Poisson distribution with (given that 0 = 6) parameter 
X6. Let the distribution of the random variable 0 have a scale parameter. 
Show that the mixed distribution does not depend on the value of A. 

5.19 Let N have a Poisson distribution with (given that 0 = 0) parameter 
8. Let the distribution of the random variable 0 have pdf 740) = a2(a + 
1)-*(6 + l)e-*', 8 > 0. Determine the pf of the mixed distribution. Also, 
show that the mixed distribution is also a compound distribution. 
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5.20 For the discrete counting random variable N with probabilities p ,  = 
Pr(N = n); n = 0,1 ,2 , .  . . , let a, = Pr(N > n) = C E n + l p k ;  n = 0,1,2, .  . . . 

(a) Demonstrate that E(N) = C;=,u, 
(b) Demonstrate that A(z)  = C ~ = O u n z n  and P ( z )  = Cr=opnzn are 

related by A ( z )  = [l - P ( z ) ]  /(1 - z ) .  What happens as z --f I? 

(c) Suppose that N has the negative binomial distribution 

where r is a positive integer. Prove that 

(d) Suppose that N has the Sibuya distribution with pgf P ( z )  = 1 - 
(1 - z ) - ~ ,  - 1 < T < 0. Prove that 

, n = 1 , 2 , 3  , . . . ,  (-r)r(n + r )  
n!r( 1 + r )  Pn = 

and that 

(e) Suppose that N has the mixed Poisson distribution with 

where U(f9) is a cumulative distribution function. Prove that 

n - X B  

a, = X lm [l - U ( S ) ]  do, n = 0,1,2,. . . . 
n! 

5.21 Consider the mixed Poisson distribution 

where U(B)  = 1 - (1 - 6)k, 0 < 8 < 1, k = 1,2, .  . . . Prove that 

3o Xm+n(m + k - l)! 
p ,  = ke-' C , n = 0 , 1 ,  . . . .  

rn!(nz + k + n)! m = O  
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5.22 Using Exercise 5.20, prove that 

O0 Am+n+l (m + k ) !  
Pr(N > n) = e-' C 

m!(m + k + n + l)!. m=O 

(a) When k = 1, prove that 

Arne-' /m! 
x , n = O , l , 2 ,  .... 1 - c",* 

Pn = 

5.23 Consider the mixed Poisson distribution 

where the pdf u(8) is that of the positive stable distribution (see, for example, 
Feller [36], pp. 448, 583) given by 

where 0 < a < 1. The Laplace transform is SO" e-"eu(8)d6 = exp(-sa), s 2 
0. Prove that { p n ;  n = 0, I , .  . .} is a compound Poisson distribution with 
Sibuya secondary distribution (this mixed Poisson distribution is sometimes 
called a discrete stable distribution). 

5.24 Consider a mixed Poisson distribution with a reciprocal inverse Gaussian 
distribution as the mixing distribution. 

(a) Use Exercise 4.33 to show that this distribution is the convolution 
of a negative binomial distribution and a Poisson-ETNB distribu- 
tion with T = -; (i.e., a Poisson-inverse Gaussian distribution). 

(b) Show that the mixed Poisson distribution in (a) is a compound 
Poisson distribution and identify the secondary distribution. 



Aggregate loss models 

Left to themselves, things tend to go from bad to worse. 
-Murphy 

6.1 INTRODUCTION 

The purpose of this chapter is to develop models of aggregate losses, the total 
amount of all losses occurring in a fixed time period. 

We can represent the aggregate losses as the sum, S ,  of a random number, 
N ,  of the individual loss amounts ( X I ,  X2, .  . . , X N ) .  Hence, 

S = X i  + X2 + ...  + X N ,  N = 0,1,2, .  .. , (6.1) 

where it is understood that S = 0 when N = 0. 
The distribution of S is obtained from the distribution of N and the dis- 

tribution of the Xjs .  Using this approach, the frequency and the severity of 
losses are modeled separately. The information about these distributions is 
used to obtain information about S.  An alternative to this approach is to 
simply gather information about S (e.g., total losses each month for a period 
of months) and to use some model from Chapter 4 to model the distribution of 
S. Modeling the distribution of N and the distribution of the X j s  separately 
has some distinct advantages: 

1. When the expected number of operational risk losses changes as the 
company grows, growth needs to be accounted for in forecasting the 

161 
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number of operational risk losses in future years based on past years’ 
data. 

2. The effects of general economic inflation may need to be reflected in the 
sizes of losses that are subject to inflationary pressures. 

3. The impact of changing limits that result from covering excess losses 
with insurance as a risk mitigation strategy is more easily studied. This 
is done by changing the specification of the severity distribution. 

4. The impact on loss frequencies of changing thresholds for small losses is 
better understood. 

5. Data that are heterogeneous in terms of thresholds and limits can be 
combined to obtain the hypothetical loss size distribution. This is useful 
when data from several years are combined. 

6. The shape of the distribution of S depends on the shapes of both dis- 
tributions of N and X .  For example, if the severity distribution has a 
much heavier tail than the frequency distribution, the shape of the tail 
of the distribution of aggregate losses or losses will be determined by the 
severity distribution and will be insensitive to the choice of frequency 
distribution. 

In summary, a more accurate and flexible model can be constructed by 
examining frequency and severity separately. 

Because the random variables N, X I ,  Xz, . . ., and S provide much of the 
focus for this chapter and the two that follow, we want to be especially careful 
when referring to them. We will refer to N as the loss count (or frequency) 
random variable and will refer to its distribution as the loss count (or 
frequency) distribution. The expression number of losses will also be 
used. The X j s  are the individual or single loss (or severity) random 
variables. The modifier individual or single will be dropped when the 
reference is clear. Finally, S is the aggregate loss random variable or the 
total loss random variable. 

6.2 MODEL CHOICES 

In many cases of fitting frequency or severity distributions to  real data, several 
distributions may be good candidates for models. However, some distributions 
may be preferable for a variety of practical reasons. 

In general, it is useful for the severity distribution to be a scale distribution 
(see Definition 4.3) because the choice of currency (e.g., U.S. dollars or Euros) 
should not affect the result. Also, scale families are easy to adjust for infla- 
tionary effects over time (this is, in effect, a change in currency; e.g., 2004 
U.S. dollars to 2005 U S .  dollars). When forecasting the costs for a future 
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year, the anticipated rate of inflation can be factored in easily by adjusting 
the parameters. 

A similar consideration applies to frequency distributions. As a company's 
business grows, the number of operational losses can be expected to grow, all 
other things being equal. If we choose models that have probability generating 
functions of the form 

PN(z;  a )  = Q(z)" (6.2) 

for some parameter a, then the expected number of losses is proportional to 
a. Increasing the volume of business by 100r% results in expected losses being 
proportional to a* = (1 + r)a.  This was discussed in Section 5.14. Because 
r is any value satisfying r > -1, the distributions satisfying equation (6.2) 
should allow a to take on any positive values. Such distributions can be seen 
to be infinitely divisible (see Definition 5.27). 

A related consideration also suggests frequency distributions that are infi- 
nitely divisible. This relates to  the concept of invariance over the time period 
of study. Ideally the model selected should not depend on the length of the 
time period used in the study of loss frequency. The expected frequency 
should be proportional to  the length of the time period after any adjustment 
for growth in business. This means that a study conducted over a period of 
5 years can be used to develop loss frequency distributions for periods of a 
month, a year, or any other period. Furthermore, the form of the distribution 
for a one-year period is the same as for a one-month period with a change 
of parameter. The parameter a corresponds to the length of a time period. 
For example, if Q = 1.7 in equation (6.2) for a one-month period, then the 
identical model with a = 20.4 is an appropriate model for a one-year period. 

6.3 THE COMPOUND MODEL FOR AGGREGATE LOSSES 

Let S denote aggregate losses associated with a set of N observed losses 
X I ,  X z ,  . . . , XN satisfying the following independence assumption: Given that 
there are n losses, the loss sizes are mutually independent random variables 
whose common distribution does not depend on n. 

The approach in this chapter is to: 

1. Develop a model for the distribution of N based on data. 

2. Develop a model for the common distribution of the X,s based on data. 

3. Using these two models, carry out necessary calculations to obtain the 
distribution of S. 

Completion of the first two steps follows the ideas in earlier chapters. We 
now presume that these two models are developed and that we only need to 
carry out numerical work in obtaining solutions to problems associated with 
the distribution of S. 
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The random sum 
s=x1 + X : ! $ . . . . + X N  

(where N has a counting distribution) has distribution function 

Fs(x) = Pr(S  5 x) 
M 

n=O 
00 

where Fx(x) = Pr(X 5 x) is the common distribution function of the X j s  
and p ,  = Pr(N = n). In (6.3), F/;"(x) is the %-fold convolution" of the cdf 
of X .  It can be obtained as 

0, x < 0, 

1, x 2 0, 
FS0(x) = 

00 
and 

FGk(x) = F:('-')(z - y) dFx(y)  for k = 1,2, .  . . . (6.4) 
-00 

If X is a continuous random variable with probability zero on negative values, 
(6.4) reduces t o  

F:k(x) = J l f x  F:("-')(x - y)fx(y) dy for k = 2,3,. , . . 

For k = 1 this equation reduces to F;-'(x) = Fx(z).  By differentiating, the 
pdf is 

f G k ( x )  = ix f ; c ( k - l ) ( x  - y ) f ~ ( y )  dy for k = 2,3, .  . . . 

In the case of discrete random variables with positive probabilities a t  0, I,  2 , .  . ., 
Equation (6.4) reduces to 

5 

*(k-1)  
F i k ( z )  = F, (x - y)fx(y)  for x = 0, I , .  . . , k = 2,3 , .  . . . 

y=o 

The corresponding pf is 
X 

*(k-I) 
fGk(x) = f, (x - y)fx(y) for x = 0,1, .  . . , k = 2,3, 

p=O 

The distribution (6.3) is called a compound distribution, and the pf for 
the distribution of aggregate losses is 

n=O 
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Arguing as in Section 5.7, the pgf of S is 

Ps(z) = E[z'] 
rn 

- - C E [ Z X I + X Z + ' - + X -  I N  = n] Pr(N = n) 

= F E  [ c z X J ]  Pr(N = n) 

= C Pr (N = n ) ~ ~ x ( z ) l ~  

= E [ P x ( z ) N ]  = P"PX(Z) l  (6.5) 

n=O 

n=O 

rn 

n=O 

because of the independence of X I , .  . . , X n  for fixed n. 

times more convenient to  use the characteristic function 
A similar relationship exists for the other generating functions. It is some- 

c P S ( Z )  = E(eiZS) = P"cPX(Z)l1 

which always exists. Panjer and Willmot [93] use the Laplace transform 

Ls(z )  = E(e-") = PN[LX(Z>] ,  

which always exists for random variables defined on nonnegative values. With 
regard to the moment generating function, we have 

M s ( z )  = P l v [ J 4 X ( Z ) l .  

The pgf of compound distributions was discussed in Section 5.7 where the 
"secondary" distribution plays the role of the loss size distribution in this 
chapter. 

In the case where PN(z) = P l [ P 2 ( z ) ]  (that is, N is itself a compound 
distribution), the pgf of aggregate losses is Ps(z) = P ~ { P ~ [ P x ( z ) ] } ,  which in 
itself produces no additional difficulties. 

From equation (6.5), the moments of S can be obtained in terms of the 
moments of N and the X j s .  The first three moments are 

E(S) = P.sI = P"1Pk1 = E ( N ) E ( X ) ,  
Var(S) = ps2 = pk.Ipx2 + C L N ~ ( P ~ I ) ~ ~  (6.6) 

E{[S - wi3) = ps3 = p ~ l p X 3  + 3 P N 2 P k 1 P x 2  + p N 3 ( p ; 1 ) 3 .  

Here, the first subscript indicates the appropriate random variable, the second 
subscript indicates the order of the moment, and the superscript is a prime 
(') for raw moments (moments about the origin) and is unprimed for central 
moments (moments about the mean). The moments can be used on their own 
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to provide approximations for probabilities of aggregate losses by matching 
the first few model and sample moments. 

Example 6.1 The observed mean (and standard deviation) of the number 
of losses and the individual losses over the past 10 months are 6.7 (2.3) and 
179,247 (52,141), respectively. Determine the mean and variance of aggregate 
losses per month. 

E(S)  = 6.7(179,247) = 1,200,955, 

Var(S) = 6.7(52,141)2 + (2.3)2(179,247)2 

= 1.88180 x loll.  

Hence, the mean and standard deviation of aggregate losses are 1,200,955 
and 433,797, respectively. 0 

Example 6.2 (Example 6.1 continued) Using normal and lognormal distrib- 
utions as approximating distributions for  aggregate losses, calculate the prob- 
ability that losses will exceed 140% of expected costs. That is, 

Pr(S > 1.40 x 1,200,955) = Pr(S > 1,681,337). 

For the normal distribution 

Pr(S > 1,681,337) = Pr (>--:::; > 1,681,337 - 1,200,955 
433,797 

= P r ( 2  > 1.107) = 1 - Q(1.107) = 0.134. 

The mean and second raw moment of the lognormal distribution are 

and E(S) = exp(p + 40’) E(S2) = exp(2p + 2 0 ~ ) .  

Equating these to 1.200955 x lo6 and 1.88180 x 10l1 + (1.200955 x 106)2 = 
1.63047 x 10” and taking logarithms results in the following two equations in 
two unknowns: 

p + 40’ = 13.99863, 2p + 2a2 = 28.11989. 

From this, p = 13.93731 and cr2 = 0.1226361. Then 

In 1,681,337 - 13.93731 [ (0.1226361)0.5 
Pr(S > 1,681,337) = 1 - Q 

= 1 - Q(1.135913) = 0.128. 
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The normal distribution provides a good approximation when E(N) is large. 
In particular, if N has the Poisson, binomial, or negative binomial distribu- 
tion, a version of the central limit theorem indicates that, as A, m, or T ,  

respectively, goes to infinity, the distribution of S becomes normal. In this 
example, E(N) is small so the distribution of S is likely to be skewed. In this 
case the lognormal distribution may provide a good approximation, although 
there is no theory to support this choice. 

Example 6.3 (Illustration of convolution calculations) Suppose individual 
losses follow the distribution given an Table 6.1 (given in units of $1000). 

Table 6.1 Loss distribution for Example 6.3 

X fx (x) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.150 
0.200 
0.250 
0.125 
0.075 
0.050 
0.050 
0.050 
0.025 
0.025 

Furthermore, the frequency distribution is given in Table 6.2. 

Table 6.2 Frequency distribution for Example 6.3 

n Pn 

0.05 
0.10 
0.15 
0.20 
0.25 
0.15 
0.06 
0.03 
0.01 
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Table 6.3 Aggregate probabilities for Example 6.3 

0 1 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 
11 0 
12 0 
13 0 
14  0 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
21 0 

0 
,150 
.200 
.250 
,125 
,075 
,050 
.050 
,050 
,025 
,025 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

,02250 
,06000 
,11500 
,13750 
,13500 
.lo750 
,08813 
.07875 
.07063 
.06250 
.04500 
,03125 

,01125 
.00750 
.00500 
.00313 
,00125 
.(I0063 

0 

.oi750 

0 
0 
0 

,00338 
.01350 
.03488 
,06144 
,08569 
.a9750 
.09841 
.a9338 
,08813 
,08370 
.07673 
.06689 
,05377 
.04125 
.03052 
.(I2267 
,01673 
.01186 
,00800 

0 
0 
0 
0 

,00051 
,00270 
.00878 
.01999 
.03580 
,05266 
46682 
,07597 
.08068 
,08266 
,08278 
.08081 
,07584 
,068 11 
,05854 
.04878 
,03977 
,03187 

0 
0 
0 
0 
0 

.00008 
,00051 
.00198 
.00549 
,01194 
,02138 
,03282 
.04450 
,05486 
,06314 
,06934 
,07361 
,07578 
,07552 
.07263 
.06747 
.06079 

0 
0 
0 
0 
0 
0 

.00001 

.00009 

.00042 
,00136 
.00345 
.00726 
,01305 
,02062 
,02930 
.03826 
,04677 
.05438 
,06080 
,06573 
,06882 
.a6982 

0 
0 
0 
0 
0 
0 
0 

.00000 

.00002 

.00008 
,00031 
,00091 
.00218 
,00448 
,00808 
.a1304 
.01919 
,02616 
,03352 
,04083 
,04775 
,05389 

0 
0 
0 
0 
0 
0 
0 
0 

.00000 

.00000 

.00002 

.00007 

.00022 
,00060 
,00138 
,00279 
,00505 
,00829 
.01254 
,01768 
,02351 
,02977 

.05000 

.01500 
,02338 
.03468 
.03258 
.(I3579 
,03981 
,04356 
,04752 
.04903 
,05190 
,05138 
,05119 
,05030 
,04818 
,04576 
,04281 
,03938 
,03575 
.03197 

.02479 

.ma32 

Pn .05 .10 .15 .20 .25 .15 .06 .03 .O1 

The probability that the aggregate loss is x thousand dollars is 
8 

n=O 

Determine the pf of S up to $21,000. Determine the mean and standard 
deviation of total losses. 

The distribution up to amounts of $21,000 is given in Table 6.3. To obtain 
fs(x), each row of the matrix of convolutions of fx(x) is multiplied by the 
probabilities from the row below the table and the products are summed. 

The reader may wish to  verify using (6.6) that the first two moments of 
the distribution f s ( x )  are 

E(S) = 12.58, Var(S) = 58.7464. 

Hence the aggregate loss has mean $12,580 and standard deviation $7664. 
(Why can’t the calculations be done from Table 6.3 ?) 

6.4 SOME ANALYTIC RESULTS 

For most choices of distributions of N and the X j s ,  the compound distribu- 
tional values can only be obtained numerically. Subsequent sections of this 
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chapter are devoted to such numerical procedures. However, for certain com- 
binations of choices, simple analytic results are available, thus reducing the 
computational problems considerably. 

Example 6.4 (Compound geometric-exponential) Suppose X I ,  X2,  . . . are 
iid with common exponential distribution with mean 8 and that N has a geo- 
metric distribution with parameter P. Determine the (aggregate loss) distrib- 
ution of S. 

The mgf of X is M x ( z )  = (1 -&)-I. The mgf of N is PN(z) = [l - P(z  - 
1)I-l (see Chapter 5). Therefore, the mgf of S is 

M s ( z )  = Ev[Mx(z)l 
= (1 - ~ [ ( l -  eZ)-l - i]}-I 

with a bit of algebra. 
This is a two-point mixture of a degenerate distribution with probability 1 

at zero and an exponential distribution with mean 8(1 + P).  Hence, P r (S  = 
0) = (1 + P)-', and for x > 0, S has pdf 

It has a point mass of (1 
over the positive axis. Its cdf can be written as 

at zero and an exponentially decaying density 

It has a jump at zero and is continuous otherwise. 

Example 6.5 (Exponential severities) Determine the cdf of S for  any com- 
pound distribution with exponential severities. 

The mgf of the sum of n independent exponential random variables each 
with mean 0 is 

M X l + X 2 + . . . + X , ( ~ )  = (1 - 8 Z ) - n ,  

which is the mgf of the gamma distribution with cdf Fzn(x) = r' (n; 5 ) .  

Appendix A for the derivation) as 
For integer values of a, the values of r(a;  x) can be calculated exactly (see 

n-1 

r (n;x)  = 1 - n = 1,2,3, 
j = O  
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From equation (6.3) 

Substituting in equation (6.7) yields 

n=l 

Interchanging the order of summation yields 

where P j  = C T = j + l p n  for j = 0,1, .  . . . 

The approach of Example 6.5 may be extended to the larger class of mixed 
Erlang severity distributions, as shown in Exercise 6.10. 

For frequency distributions that assign positive probability to all nonneg- 
ative integers, the right-hand side of equation (6.8) can be evaluated by 
taking suffcient terms in the first summation. For distributions for which 
Pr (N > n*) = 0, the first summation becomes finite. For example, for the 
binomial frequency distribution, equation (6.8) becomes 

ExampIe 6.6 (Compound negative binomial-exponential) Determine the dis- 
tribution of S when the frequency distribution is negative binomial with an 
integer value for  the parameter r and the severity distribution is  exponential. 

The mgf of S is 

Ms(.) = PNiMX(Z)j 
= P"(1- e z ) - l ]  

= (1 - Pi(1- Bz)-1 - l]}-. 

With a bit of algebra, this can be rewritten as 
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where 

the pgf of the binomial distribution with parameters r and p / ( l  + P ) ,  and 
M;(z )  is the mgf of the exponential distribution with mean 6 ( l +  P).  

This transformation reduces the computation of the distribution function 
to the finite sum of the form (6.9), that is, 

Example 6.7 (Severity distributions closed under convolution) A distribu- 
tion is said to be closed under convolution if adding iid members of a 
family produces another member of that family. Further assume that adding n 
members of a family produces a member with all but one parameter unchanged 
and the remaining parameter is multiplied by  n. Determine the distribution 
of S when the severity distribution has this property. 

The condition means that, if f x ( z ; a )  is the pf of each X j ,  then the pf of 
XI + X2 + . . . + X n  is fx (z; nu). This means that 

00 

n=l 
cx) 

n=l 

eliminating the need to  carry out evaluation of the convolution. Severity 
distributions that are closed under convolution include the gamma and inverse 
Gaussian distributions. See Exercise 6.7. 

6.5 EVALUATION OF T H E  AGGREGATE LOSS DISTRIBUTION 

The computation of the compound distribution function 

00 

(6.10) 
n=O 
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or the corresponding probability (density) function is generally not an easy 
task, even in the simplest of cases. In this section we discuss a number of 
approaches to numerical evaluation of the right-hand side of equation (6.10) 
for specific choices of the frequency and severity distributions as well as for 
arbitrary choices of one or both distributions. 

One approach is to use an approximating distribution to avoid direct 
calculation of formula (6.10). This approach was used in Example 6.2 where 
the method of moments was used to estimate the parameters of the approx- 
imating distribution. The advantage of this method is that it is simple and 
easy to apply. However, the disadvantages are significant. First, there is no 
way of knowing how good the approximation is. Choosing different approx- 
imating distributions can result in very different results, particularly in the 
right-hand tail of the distribution. Of course, the approximation should im- 
prove as more moments are used; but after four moments, we quickly run out 
of distributions! 

The approximating distribution may also fail to  accommodate special fea- 
tures of the true distribution. For example, when the loss distribution is of 
the continuous type and there is a maximum possible loss (for example, when 
there is insurance in place that covers any losses in excess of a threshold), 
the severity distribution may have a point mass (“atom” or “spike”) at the 
maximum. The true aggregate loss distribution is of the mixed type with 
spikes at integral multiples of the maximum corresponding to 1 ,2 ,3 , .  . . losses 
of maximum size. These spikes, if large, can have a significant effect on the 
probabilities near such multiples. These jumps in the aggregate loss distribu- 
tion function cannot be replicated by a smooth approximating distribution. 

A second method to  evaluate the right-hand side of equation (6.10) or the 
corresponding pdf is direct calculation. The most difficult (or computer 
intensive) part is the evaluation of the n-fold convolutions of the severity 
distribution for n = 2,3,4, . . . . In some situations, there is an analytic form- 
for example, when the severity distribution is closed under convolution, as 
defined in Example 6.7 and illustrated in Examples 6.4-6.6. Otherwise the 
convolutions must be evaluated numerically using 

(6.11) 

When the losses are limited to nonnegative values (as is usually the case), the 
range of integration becomes finite, reducing formula (6.1 1) to 

F$k(Z) = /z qy- - l ) (s  - y) dFx(y). (6.12) 

These integrals are written in Lebesgue-Stieltjes form because of possible 
jumps in the cdf Fx(x) at  zero and at other points.’ Numerical evaluation 

0- 

Without going into the formal definition of the Lebesgue-Stieltjes integral, it suffices to 
interpret ]g(y) dFx(y) as to be evaluated by integrating g(y)fx(y) over those y values for 
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of (6.12) requires numerical integration methods. Because of the first term 
inside the integral, the right-hand side of (6.12) needs to be evaluated for all 
possible values of 3: and all values of k. This can quickly become technically 
overpowering! 

A simple way to avoid these technical problems is to replace the severity 
distribution by a discrete distribution defined at multiples 0 ,1 ,2 .  . . of some 
convenient monetary unit such as $1,000. This reduces formula (6.12) to (in 
terms of the new monetary unit) 

5 

y=o 

The corresponding pf is 

X 
*(k-1) f m  = c fx (3: - Y)fX(Y). 

y=o 

In practice, the monetary unit can be made sufficiently small to accommo- 
date spikes at maximum loss amounts. One needs only the maximum to be a 
multiple of the monetary unit to  have it located at exactly the right point. As 
the monetary unit of measurement becomes smaller, the discrete distribution 
function will approach the true distribution function. The simplest approach 
is to round all amounts to the nearest multiple of the monetary unit; for ex- 
ample, round all losses or losses to the nearest $1,000. More sophisticated 
methods will be discussed later in this chapter. 

When the severity distribution is defined on nonnegative integers 0, 1 ,2 ,  . . ., 
calculating f;;"(x) for integral 3: requires 3: + 1 multiplications. Then carrying 
out these calculations for all possible values of Ic and 3: up to m requires a 
number of multiplications that are of order m3, written as 0(m3) ,  to obtain 
the distribution (6.10) for 3: = 0 to 3: = m. When the maximum value, m, 
for which the aggregate losses distribution is calculated is large, the number 
of computations quickly becomes prohibitive, even for fast computers. For 
example, in real applications n can easily be as large as 1,000. This requires 
about lo9 multiplications. Further, if Pr(X = 0) > 0, an infinite number 
of calculations are required to obtain any single probability exactly. This is 
because FSn(3:) > 0 for all n and all 3: and so the sum in (6.10) contains 
an infinite number of terms. When Pr(X = 0) = 0, we have F/;n(z) = 0 for 
n > 3: and so the right-hand side (6.10) has no more than 3: + 1 positive terms. 
Table 6.3 provides an example of this latter case. 

Alternative methods to more quickly evaluate the aggregate losses distri- 
bution are discussed in Sections 6.6 and 6.7. The first such method, the 

which X has a continuous distribution and then adding g(y,) Pr(X = yz) over those points 
where Pr(X = yz) > 0. This allows for a single notation to he used for continuous. discrete, 
and mixed random variables. 



174 AGGREGATE LOSS MODELS 

recursive method, reduces the number of computations discussed above 
to O(m2) ,  which is a considerable savings in computer time, a reduction of 
about 99.9% when m = 1000 compared to direct calculation. However, the 
method is limited to certain frequency distributions. Fortunately, it includes 
all frequency distributions discussed in Chapter 5. 

The second method, the inversion method, numerically inverts a trans- 
form, such as the characteristic function or Fourier transform, using general 
or specialized inversion software. 

6.6 T H E  RECURSIVE METHOD 

Suppose that the severity distribution f x ( z )  is defined on 0,1,2,. . . , m rep- 
resenting multiples of some convenient monetary unit. The number m rep- 
resents the largest possible loss and could be infinite. Further, suppose that 
the frequency distribution, p k ,  is a member of the (a ,  b, 1) class and therefore 
satisfies 

P k =  a + -  pk-1, k = 2 , 3 , 4  , . . . .  ( 3 
Then the following result holds. 

Theorem 6.8 (Extended Panjer recursion) For the (a ,  b, 1) class, 

bl - ( a  + b)poIfx(z) + c&fY(a + by/z)fx(Y)fs(z  - Y) 
1 (6.13) 

1 - a f x ( 0 )  fsk) = 

noting that z A m zs notation for min(z, m) . 

Proof: This result is identical to  Theorem 5.13 with appropriate substitution 
of notation and recognition that the argument of fx(x) cannot exceed m. 0 

Corollary 6.9 (Panjer recursion) For the ( a ,  b, 0 )  class, the result (6.13) re- 

(6.14) 

Note that when the severity distribution has no probability at zero, the 
denominators of equations (6.13) and (6.14) are equal to  1. The recursive 
formula (6.14) has become known as the Panjer formula in recognition of the 
introduction to the actuarial literature by Panjer [88]. The recursive formula 
(6.13) is an extension, of the original Panjer formula. It was first proposed by 
Sundt and Jewel1 [112]. 

In the case of the Poisson distribution, equation (6.14) reduces to  

(6.15) 
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The starting value of the recursive schemes (6.13) and (6.14) is fs(0) = 

P~[fx(0)] following Theorem 5.15 with an appropriate change of notation. 
In the case of the Poisson distribution, we have 

Table 6.4 gives the corresponding initial values for all distributions in the 
(a, b, 1) class using the convenient simplifying notation fo = fx(0). 

Table 6.4 Starting values (fs(0)) for recursions 

Distribution fS(0) 

Poisson exp[Wo - 1)1 

Geometric [ I +  P(1- f o r '  

Binomial [ I +  S(f0 - 111" 

Negative binomial [I + P(1 - fo)l-' 

ZM Poisson 

ZM geometric 

ZM binomial 

ZM negative binomial 
[ I +  P(1 - fo)l-' - (1 +P)-' 

Piy+( l -P iy )  1 - (1 + 

6.6.1 Compound frequency models 

When the frequency distribution can be represented as a compound distribu- 
tion (e.g., Neyman Type A, Poisson-inverse Gaussian) involving only distri- 
butions from the ( a ,  b, 0) or ( a ,  b, 1) classes, the recursive formula (6.13) can 
be used two or more times to obtain the aggregate loss distribution. If the 
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frequency distribution can be written as 

then the aggregate loss distribution has pgf 

which can be rewritten as 

(6.17) 

Now equation (6.17) has the same form as an aggregate loss distribution. 
Thus, if P~(z) is in the (a,b,O) or (a,b,  1) class, the distribution of S1 can be 
calculated using (6.13). The resulting distribution is the '(severity" distribu- 
tion in (6.17). A second application of formula (6.13) in (6.16) results in the 
distribution of S. 

The following example illustrates the use of this algorithm. 

Example 6.10 The number of losses has a Poisson-ETNB distribution with 
Poisson parameter X = 2 and ETNB parameters P = 3 and r = 0.2. The 
loss size distribution has probabilities 0.3, 0.5, and 0.2 at 0 ,  10, and 20, 
respectively. Determine the total loss distribution recursively. 

In the above terminology, N has pgf PN(z) = PI [P~(z)], where Pl(z) and 
P2(z) are the Poisson and ETNB pgfs, respectively. Then the total dollars of 
losses has pgf Ps(z) = PI [Psl(z)] ,  where Ps,(z) = P2 [Px(z)] is a compound 
ETNB pgf. We will first compute the distribution of S1. We have (in monetary 
units of 10) f x (0 )  = 0.3, fx(1) = 0.5, and fx(2) = 0.2. In order to  use the 
compound ETNB recursion, we start with 

The remaining values of fs, (x) may be obtaimd using formula (6.13) with S 
replaced by S1. In this case we have a = 3/(1 + 3) = 0.75,b = (0.2 - 1)a = 
-0.6,po = 0 and p l  = (0.2)(3)/ [(1+ 3)'.*'* - (1 + 3)] = 0.46947. Then 
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formula (6.13) becomes 

[0.46947 - (0.75 - 0.6)(0)] f x ( ~ )  
+ C&=, (0.75 - 0.6Y/Z) fX(Y)fS,  (X - Y) 

1 - (0.75)(0.3) f S l ( X )  = 

= 0.60577fx(~) + 1.29032 (0.75 - O.Sy) fx (1~) f s ,  (X - Y). 
X 

y= 1 

The first few probabilities are 

fs,(l) = 0.60577(0.5) + 1.29032 [0.75 - 0.6 ( f ) ]  (0.5)(0.16369) 

= 0.31873, 

f s ,  (2) = 0.60577(0.2) + 1.29032 { [0.75 - 0.6 ($)I (0.5)(0.31873) 

+ [0.75 - 0.6 (+)I (0.2)(0.16369)} = 0.22002, 

fs, (3) = 1.29032 { 110.75 - 0.6 (f)] (0.5)(0.22002) 

+ c0.75 - 0.6 (3)] (0.2)(0.31873)} = 0.10686, 

fs ,  (4) = 1.29032 { [0.75 - 0.6 (+)I (0.5)(0.10686) 

+ [0.75 - 0.6 (f)] (0.2)(0.22002)} = 0.06692. 

We now turn to evaluation of the distribution of S with compound Poisson 
Pgf 

Ps(.) = PI [PSI ( z ) ]  = eXIPSl(4-11. 

Thus the distribution {fs ,  (x), x = 0,1,2,. , .} becomes the “secondary” or 
“loss size” distribution in an application of the compound Poisson recursive 
formula. Therefore, 

fs(0)  = PS(0) = ex[pSl (01-11 = , x [ fS l (0 ) -1 ]  = e2(0.16369--1) ~ 0.18775. 

The remaining probabilities may be found from the recursive formula 

The first few probabilities are 

fs(1) = 2 (t) (0.31873)(0.18775) = 0.11968, 

fs(2) = 2 (i) (0.31873)(0.11968) + 2 (5) (0.22002)(0.18775) = 0.12076, 

fs(3) = 2 ( 5 )  (0.31873)(0.12076) + 2 (5) (0.22002)(0.11968) 

+ 2 ($) (0.10686)(0.18775) = 0.10090, 

fs(4) = 2 (i) (0.31873)(0.10090) + 2 (f) (0.22002)(0.12076) 

+ 2 (3) (0.10686)(0.11968) + 2 (2) (0.06692)(0.18775) 

= 0.08696. 
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This simple idea can be extended to  higher levels of compounding by re- 
peatedly applying the same concepts. The computer time required to carry 
out two applications will be about twice that of one application of formula 
(6.13). However, the total number of computations is still of order O(m2) 
rather than O(m3) as in the direct method. 

When the severity distribution has a maximum possible value at r ,  the 
computations are speeded up even more because the sum in formula (6.13) will 
be restricted to at most r nonzero terms. In this case, then, the computations 
can be considered to be of order O(m). 

6.6.2 Underflow/overflow problems 

The recursion (6.13) starts with the calculated value of P(S = 0) = Pj~[fx(O)] .  
For a very large portfolio of risks, this probability is very small, sometimes 
smaller than the smallest number that can be represented on the computer. 
When this occurs, this initial value is represented on the computer as zero and 
the recursion (6.13) fails. This problem can be overcome in several different 
ways (see Panjer and Willmot [92]). One of the easiest ways is to start with 
an arbitrary set of values for fs(O), fs(l), . . . , f s ( k )  such as ( O , O , O , .  . . ,0,  l), 
where k is sufficiently far to the left in the distribution so that Fs(Ic) is still 
negligible. Setting Ic to a point that lies six standard deviations to  the left of 
the mean is usually sufficient. The recursive formula (6.13) is used to gener- 
ate values of the distribution with this set of starting values until the values 
are consistently less than f s ( k ) .  The “probabilities” are then summed and 
divided by the sum so that the “true” probabilities add to 1. Trial and error 
will dictate how small k should be for a particular problem. 

Another method to obtain probabilities when the starting value is too 
small is to carry out the calculations for a smaller risk set. For example, 
for the Poisson distribution with a very large mean A, we can find a value 
of A *  = A/2n so that the probability a t  zero is representable on the com- 
puter when A’ is used as the Poisson mean. Equation (6.13) is now used 
to obtain the aggregate losses distribution when A* is used as the Poisson 
mean. If P*(z) is the pgf of the aggregate losses using Poisson mean A*, then 
P , ( z )  = [P*(z)12”. Hence, we can obtain successively the distributions with 
pgfs [P*(z)l2, [P*(z)]*, [P*(z)]*, . . . , [P*(z)]~~ by convoluting the result at each 
stage with itself. This requires an additional n convolutions in carrying out 
the calculations but involves no approximations. This procedure can be car- 
ried out for any frequency distributions that are closed under convolution. 
For the negative binomial distribution, the analogous procedure starts with 
T* = ~ / 2 ~ .  For the binomial distribution, the parameter m must be integer 
valued. A slight modification can be used. Let m* = [m/2”] when 1.1 indi- 
cates the integer part of function. When the n convolutions are carried out, 
we still need to carry out the calculations using formula (6.13) for parameter 
m - m*2”. This result is then convoluted with the result of the n convolu- 
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tions. For compound frequency distributions, only the primary distribution 
needs to be closed under convolution. 

6.6.3 Numerical stability 

Any recursive formula requires accurate computation of values because each 
such value will be used in computing subsequent values. Some recursive 
schemes suffer the risk of errors propagating through all subsequent values 
and potentially blowing up. In the recursive formula (6.13), errors are in- 
troduced through rounding or truncation at each stage because computers 
represent numbers with a finite number of significant digits. The question 
about stability is, “How fast do the errors in the calculations grow as the 
computed values are used in successive computations?” 

The question of error propagation in recursive formulas has been a sub- 
ject of study of numerical analysts. This work has been extended by Panjer 
and Wang [91] to study the recursive formula (6.13). The analysis is quite 
complicated and well beyond the scope of this book. However, some general 
conclusions can be made here. 

Errors are introduced in subsequent values through the summation 

in recursion (6.13). In the extreme right-hand tail of the distribution of S, 
this sum is positive (or at least nonnegative), and subsequent values of the 
sum will be decreasing. The sum will stay positive, even with rounding errors, 
when each of the three factors in each term in the sum is positive. In this 
case, the recursive formula is stable, producing relative errors that do not 
grow fast. For the Poisson and negative binomial -based distributions, the 
factors in each term are always positive. 

On the other hand, for the binomial distribution, the sum can have negative 
terms because a is negative, b is positive, and y/x is a positive function not 
exceeding 1. In this case, the negative terms can cause the successive values to 
blow up with alternating signs. When this occurs, the nonsensical results are 
immediately obvious. Although this does not happen frequently in practice, 
the reader should be aware of this possibility in models based on the binomial 
distribution. 

6.6.4 Continuous severity 

The recursive method has been developed for discrete severity distributions, 
while it is customary to  use continuous distributions for severity. In the case of 
continuous severities, the analog of the recursion (6.13) is an integral equation, 
the solution of which is the aggregate loss distribution. 
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Theorem 6.11 For the (a ,  b, 1) class of frequency distributions and any con- 
tinuous severity distribution with probability on the positive real line, the fol- 
lowing integral equation holds: 

For a detailed proof, see Theorems 6.14.1 and 6.16.1 of Panjer and Willmot 
[93], along with the associated corollaries. They consider the more general 
(a ,  b, m) class of distributions, which allow for arbitrary modification of m 
initial values of the distribution. Note that the initial term in the right-hand 
side of equation 6.18 is plfx(x), not [1?1 - (a  + b)po] f x ( x )  as in equation 
(6.13). It should also be noted that equation (6.18) holds for members of the 

Integral equations of the form (6.18) are Volterra integral equations of the 
second kind. Numerical solution of this type of integral equation has been 
studied in the book by Baker [8]. We will develop a method using a discrete 
approximation of the severity distribution in order to use the recursive method 
(6.13) and avoid the more complicated methods. The more sophisticated 
methods of Baker for solving equation (6.18) are described in detail by Panjer 
and Willmot [93]. 

(a, b, 0). 

6.6.5 Constructing arithmetic distributions 

In order to implement recursive methods, the easiest approach is to construct a 
discrete severity distribution on multiples of a convenient unit of measurement 
h,  the span. Such a distribution is called arithmetic because it is defined on 
the nonnegative integers. In order to arithmetize a distribution, it is important 
to preserve the properties of the original distribution both locally through the 
range of the distribution and globally-that is, for the entire distribution. 
This should preserve the general shape of the distribution and at the same 
time preserve global quantities such as moments. 

The methods suggested here apply to the discretization (arithmetization) 
of continuous, mixed, and nonarithmetic discrete distributions. 



THE RECURSIVE METHOD 181 

6.6.5.1 
placed at j h ,  j = 0 , 1 , 2 , .  . . . Then set2 

Method of rounding (mass dispersal) Let f j  denote the probability 

This method splits the probability between ( j  + l ) h  and j h  and assigns it 
to j + 1 and j .  This, in effect, rounds all amounts to the nearest convenient 
monetary unit, h, the span of the distribution. 

6.6.5.2 Method of local moment matching In this method we construct an 
arithmetic distribution that matches p moments of the arithmetic and the true 
severity distributions. Consider an arbitrary interval of length p h ,  denoted 
by [ x k ,  xk + p h ) .  We will locate point masses m,k, mf,. . . , mk at  points x k ,  

xk + h, . . . , xk + p h  so that the first p moments are preserved. The system of 
p + 1 equations reflecting these conditions is 

P Zk +ph - 0 

x ‘ d F x ( ~ ) ,  T = 0,1 ,2 , .  . . , p ,  (6.19) L o  c ( x k  +jh)‘mjk = 
j = O  

where the notation “-0” at  the limits of the integral indicates that discrete 
probability at x k  is to be included but discrete probability a t  x k  + p h  is to be 
excluded. 

Arrange the intervals so that Xk+l = X k  +ph and so the endpoints coincide. 
Then the point masses a t  the endpoints are added together. With xo = 0, the 
resulting discrete distribution has successive probabilities: 

(6.20) 

By summing equation (6.19) for all possible values of k ,  with xo = 0, it is 
clear that the first p moments are preserved for the entire distribution and 
that the probabilities add to 1 exactly. It only remains to solve the system of 
equations (6.19). 

Theorem 6.12 The solution of (6.19) is 

f o  = m:, f l  =my, f 2 = r n : ,  ..., 
1 fp = m: + m;, fp+l = mi, fp+2 = m2,. . . . 

2The notation F x ( z  - 0) indicates that  discrete probability at z should not be included. 
For continuous distributions this will make no difference. 
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Proof: The Lagrange formula for collocation of a polynomial f (y)  at points 
?JO,Yl , . . . ,Yn  is 

Applying this formula to the polynomial f (y) = yT over the points X k ,  xk + 
h, . . . , X k  + p h  yields 

Integrating over the interval [zk, x k  + p h )  with respect to the severity distri- 
bution results in 

where m$ is given by (6.21). Hence, the solution (6.21) preserves the first p 
moments, as required. 

Example 6.13 Suppose X has the exponential distribution with pdf f ( x )  = 
O.le-O.'x. Use a span of h = 2 to  discretize this distribution by  the method of 
rounding and by matching the first moment. 

For the method of rounding, the general formulas are 

f o  = F ( 1 )  = 1 - e-'.'(') = 0.09516, 
f ,  = ~ ( 2 j  + 1 )  - ~ ( 2 j  - 1)  = e-O.1(2j-') - e-O.1(2j+l). 

The first few values are given in Table 6.5. 

equations become 
For matching the first moment we have p = 1 and xk = 2k. The key 

and then 

to = mg = 5e-0.2 - 4 = 0.09365, 
f .  - m j - l  + m j  - 5e-0.1(2j-2)  - 1oe-0.1(2j) + 5e-0.1(2j+2) 

3 -  1 0 -  

The first few values also are given in Table 6.5. A more direct solution for 
0 matching the first moment is provided in Exercise 6.11. 
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Table 6.5 Discretization of the exponential distribution by two methods 

j fj rounding fj matching 

0 0.095 16 0.09365 
1 0.16402 0.16429 
2 0.13429 0.13451 
3 0.10995 0.11013 
4 0.09002 0.09017 
5 0.07370 0.07382 
6 0.06034 0.06044 
7 0.04940 0.04948 
8 0.04045 0.04051 
9 0.03311 0.03317 
10 0.02711 0.02716 

This method of local moment matching was introduced by Gerber and 
Jones [48] and Gerber [47] and further studied by Panjer and Lutek [90] for 
a variety of empirical and analytical severity distributions. In assessing the 
impact of errors, Panjer and Lutek [go] found that two moments were usually 
sufficient and that adding a third moment requirement adds only marginally 
to  the accuracy. Furthermore, the rounding method and the first-moment 
method ( p  = 1) had similar errors while the second-moment method ( p  = 2) 
provided significant improvement. The specific formulas for the method of 
rounding and the method of matching the first moment are given in Appen- 
dix B. A reason to favor matching zero or one moment is that the resulting 
probabilities will always be nonnegative. When matching two or more mo- 
ments, this cannot be guaranteed. 

The methods described here are qualitatively similar to numerical methods 
used to solve Volterra integral equations such as equation (6.18) developed in 
numerical analysis (see, for example, Baker [8]). 

6.7 FAST FOURIER TRANSFORM METHODS 

Inversion methods discussed in this section are used to obtain numerically the 
probability function, from a known expression for a transform, such as the 
pgf, mgf, or cf of the desired function. 

Compound distributions lend themselves naturally to  this approach be- 
cause their transforms are compound functions and are easily evaluated when 
both frequency and severity components are known. The pgf and cf of the 
aggregate loss distribution are 
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and 
cps(z) = E[eiS"I = P"cpx(z)l, (6.22) 

respectively. The characteristic function always exists and is unique. Con- 
versely, for a given characteristic function, there always exists a unique dis- 
tribution. The objective of inversion methods is to obtain the distribution 
numerically from the characteristic function (6.22). 

It is worth mentioning that there has recently been much research in other 
areas of applied probability on obtaining the distribution numerically from 
the associated Laplace-Stieltjes transform. These techniques are applicable 
to the evaluation of compound distributions in the present context but will 
not be discussed further here. A good survey is in the article [l]. 

The FFT is an algorithm that can be used for inverting characteristic func- 
tions to obtain densities of discrete random variables. The FFT comes from 
the field of signal processing. It was first used for the inversion of character- 
istic functions of compound distributions by Bertram [16] and is explained in 
detail with applications to aggregate loss calculation by Robertson [loll. 

Definition 6.14 For any continuous function f (x), the Fourier transform 
is the mapping 

f ( z )  = / f ( z ) e i z x  d z .  (6.23) 
33 

-m 

The original function can be recovered from its Fourier transform as 

1 " O  
f(x) = 2.rr 1- f ( ~ ) e ? ' ~  dz.  

When f(x) is a probability density function, f(z) is its characteristic func- 
tion. For our applications, f ( z )  will be real valued. From formula (6.23), 
j ( z )  is complex valued. When f(x) is a probability function of a discrete (or 
mixed) distribution, the definitions can be easily generalized (see, for example, 
Fisz [38]). 

Definition 6.15 Let f z  denote a function defined fo r  all integer values ofx 
that is periodic with period length n (that is, fz+n = f x  for all x), For the 
Xector ( f o ,  fl,. . . , f n - l ) ,  the discrete Fourier transform is the mapping 
f z ,  x = . . . , - 1 , O ,  1,. . ., defined by 

(6.24) 

This mapping is bijective. I n  addition, f k  is  also periodic with period length 
n. The inverse mapping is  

( 2:i ) 1 n-l 
f . - - C f k e x p  --kj , j =  ..., - I , o , ~ , . .  

k=O 
' - n  (6.25) 
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This inverse mapping recovers the values of the original function. 

Because of the periodic nature of f and f ,  we can think of the discrete 
Fourier transform a5 a bijective mapping of n points into n points. From 
formula (6.24), it is clear that, in order to obtain n values of fk ,  the number 
of terms that need to be evaluated is of order n2, that is, O(n2). 

The Fast Fourier Transform (FFT) is an algorithm that reduces the 
number of computations required to be of order O(n In2 n). This can be a 
dramatic reduction in computations when n is large. The algorithm exploits 
the property that a discrete Fourier transform of length n can be rewritten 
as the sum of two discrete transforms, each of length n/2, the first consisting 
of the even-numbered points and the second consisting of the odd-numbered 
points. 

when m = n/2. Hence 

(6.26) 

These can, in turn, be written as the sum of two transforms of length m/2. 
This can be continued successively. For the lengths n/2, rnj2,. . . to be inte- 
gers, the FFT algorithm begins with a vector of length n = 2'. The successive 
writing of the transforms into transforms of half the length will result, after 
r times, in transforms of length 1. Knowing the transform of length 1 will 
allow us to successively compose the transforms of length 2, 22, 23,. . . ,2' by 
simple addition using formula (6.26). Details of the methodology are found 
in Press et al. [96]. 

In our applications, we use the FFT to invert the characteristic function 
when discretization of the severity distribution is done. This is carried out as 
follows: 

1. Discretize the severity distribution using some methods such as those 
described in Section 6.6, obtaining the discretized severity distribution 

f X ( O ) ,  fx ( l ) ,  . . . , fx(n - 11, 

where n = 2' for some integer r and n is the number of points desired 
in the distribution fs(x) of aggregate losses. 
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2. Apply the FFT to this vector of values, obtaining c p ~ ( z ) ,  the charac- 
teristic function of the discretized distribution. The result is also a 
vector of n = 2T values. 

3. Transform this vector using the pgf transformation of the loss frequency 
distribution, obtaining ps(z) = PN [cpx(z)], which is the characteristic 
function, that is, the discrete Fourier transform of the aggregate losses 
distribution, a vector of n = 2' values. 

4. Apply the Inverse Fast Fourier Transform (IFFT), which is identical 
to the FFT except for a sign change and a division by n [see formula 
(6.25)]. This gives a vector of length n = 2T values representing the 
exact distribution of aggregate losses for the discretized severity model. 

The FFT procedure requires a discretization of the severity distribution. 
When the number of points in the severity distribution is less than n = 2T, 
the severity distribution vector must be padded with zeros until it is of length 
n .  

When the severity distribution places probability on values beyond x = n, 
as is the case with most distributions discussed in Chapter 4, the probability 
that is missed in the right-hand tail beyond n can introduce some minor error 
in the final solution because the function and its transform are both assumed 
to  be periodic with period n,  when in reality they are not. The authors suggest 
putting all the remaining probability a t  the final point at 2 = n so that the 
probabilities add up to 1 exactly. This allows for periodicity to be used for 
the severity distribution in the FFT algorithm and ensures that the final set 
of aggregate probabilities will sum to 1. However, it is imperative that n be 
selected to be large enough so that most all the aggregate probability occurs 
by the nth point. Example 6.16provides an extreme illustration. 

Example 6.16 Suppose the random variable X takes OR the values 1, 2, and 
3 with probabilities 0.5, 0.4, and 0.1, respectively. Further suppose the number 
of losses has the Poisson distribution with parameter X = 3. Use the FFT to 
obtain the distribution of S using n = 8 and n = 4096. 

In either case, the probability distribution of X is completed by adding 
one zero at the beginning (because S places probability a t  zero, the initial 
representation of X must also have the probability a t  zero given) and either 
4 or 4092 zeros at the end. The results from employing the FFT and IFFT 
appear in Table 6.6. For the case n = 8, the eight probabilities sum to 1. For 
the casc n = 4096, the probabilities also sum to 1, but there is not room here 
to show them all. It is easy to apply the recursive formula to this problem, 
which verifies that all of the entries for n = 4096 are accurate to the five 
decimal places presented. On the other hand, with n = 8, the FFT gives 
values that are clearly distorted. If any generalization can be made, it is that 
more of the extra probability has been added to the smaller values of S. 
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Table 6.6 Aggregate probabilities computed by the FFT and IFFT 

S 

n = 8  

fs (s) 
n = 4,096 

fs (s) 
0.11227 
0.11821 
0.14470 
0.15100 
0.14727 
0.13194 
0.10941 
0.08518 

0.04979 
0.07468 
0.11575 
0.13256 
0.13597 
0.12525 
0.10558 
0.08305 

Because the FFT and IFFT algorithms are available in many computer 
software packages and because the computer code is short, easy to write, 
and available (e.g., [96], pp. 411-412), no further technical details about the 
algorithm are given here. The reader czn read any one of numerous books 
dealing with FFTs for a more detailed understanding of the algorithm. The 
technical details that allow the speeding up of the calculations from O(n2)  to 
0(10g2 n) relate to the detailed properties of the discrete Fourier transform. 
Robertson [loll  gives a good explanation of the FFT as applied to calculating 
the distribution of aggregate loss. 

6.8 USING APPROXIMATING SEVERITY DISTRIBUTIONS 

Whenever the severity distribution is calculated using an approximate method, 
the result is, of course, an approximation to the true aggregate distribution. 
In particular, the true aggregate distribution is often continuous (except, per- 
haps, with discrete probability at zero or a t  an aggregate censoring limit) while 
the approximate distribution either is discrete with probability a t  equally 
spaced values as with recursion and Fast Fourier Transform (FFT),or is dis- 
crete with probability l / n  at arbitrary values as with simulation. In this sec- 
tion we introduce reasonable ways to obtain values of F s ( z )  and E[(S A x ) ~ ]  
from those approximating distributions. In all cases we assume that the true 
distribution of aggregate losses is continuous, except perhaps with discrete 
probability at S = 0. 

6.8.1 Arithmetic distributions 

For both recursion and FFT methods, the approximating distribution can be 
written as po,p1, .  . ., where p j  = Pr(S* = j h )  and S* refers to the approx- 
imating distribution. While several methods of undiscretizing this distribu- 
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Table 6.7 Discrete approximation to the aggregate loss distribution 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

0.009934 
0.01 9605 
0.019216 
0.018836 
0 .O 18463 
0.018097 
0.017739 
0.017388 
0 .O 1 7043 
0.016706 
0 .0 16375 

0.335556 
0.004415 
0.004386 
0.004356 
0.004327 
0.004299 
0.004270 
0.004242 
0.0042 14 
0.004 186 
0.004158 

tion are possible, we will introduce only one. It assumes that we can obtain 
go = Pr(S = 0), the true probability that aggregate losses are zero. The 
method is based on constructing a continuous approximation to S* by assum- 
ing that the probability p j  is uniformly spread over the interval ( j  - $ ) h  to 
( j  + i ) h  for j = 1,2,. . . . For the interval from 0 to h/2,  a discrete proba- 
bility of go is placed at zero and the remaining probability, po - go, is spread 
uniformly over the interval. Let S** be the random variable with this mixed 
distribution. All quantities of interest are then computed using S**. 

Example 6.17 Let N have the geometric distribution with p = 2 and let X 
have the exponential distribution with B = 100. Use recursion with a span 
of 2 to approximate the distribution of aggregate losses and then obtain a 
continuous approximation. 

The exponential distribution was discretized using the method that pre- 
serves the first moment. The probabilities appear in Table 6.7. Also presented 
are the aggregate probabilities computed using the recursive formula. We also 
note that go = Pr(N = 0) = (1 + p)-' = $. For j = 1,2,. . . the continuous 
approximation haspdf fs-(z) = fs*(2j)/2, 2j-1 < x I 2j+l. We also have 
Pr(S** = 0) = i and f s * * (z )  = (0.335556 - i)/l = 0.002223, 0 < z 5 1. 0 

Returning to the original problem, it is possible to work out the general 
formulas for the basic quantities. For the cdf, 

h O I X I - ,  
2 
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and 

j-1 
z - ( j  - 1 / 2 ) h  p j ,  ( j - i ) h < x <  ( j + i ) h .  

= C P i  + h 
i=O 

For the limited expected value (LEV), 

2X"YPO - go)  h + Z"1- Fs*.(Z)], 0 < Z 5 -, h ( k  + 1 )  2 
- - 

and 

j-' hk[( i  + 1/2)"l - (i - 1/2)"+'] 
Pi +C k + l  

- - (h/2)"Po - go)  
i=l k + l  

xkfl - [ ( j  - 1/2)h]"I 
h ( k  + 1)  P3 + 

For k = 1 this reduces to 

2 2  h 
0 < 2 I-, 

2 4 1  - 9 0 )  - h ( " 0  -go) ,  

 PO - go)  + ihpi + P j  
h j - 1  x 2  - [ ( j  - 1/2)hI2 

i=l 

i ~ [ l - F s * * ( ~ ) ] ,  j - -  h < x <  j + -  k.  

( 1 ) 2 h  ( f )  (6.27) 
These formulas are summarized in Appendix B. 

Example 6.18 (Example 6.17 continued) Compute the cdf and LEV at inte- 
gral values f rom 1 to 10 using S*, S**, and the exact distribution of aggregate 
losses. 

The exact distribution is available for this example. It was developed in 
Example 6.4 where it was determined that Pr(S = 0) = ( 1  + p)-' = f and 
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Table 6.8 Comparison of true aggregate payment values and two approximations 

cdf LEV 
X S S* S** S S* S** 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.335552 
0.337763 
0.339967 
0.342163 
0.344352 
0.346534 
0.348709 
0.350876 
0.353036 
0.355189 

0.335556 
0.339971 
0.339971 
0.344357 
0.344357 
0.348713 
0.348713 
0.353040 
0.353040 
0.357339 

0.335556 
0.337763 
0.339970 
0.342 163 
0.344356 
0.346534 
0.34871 2 
0.350876 
0.353039 
0.355189 

0.66556 
1.32890 
1.99003 
2.64897 
3.30571 
3.96027 
4.6 1264 
5.26285 
5.91089 
6.55678 

0.66444 
1.32889 
1.98892 
2.64895 
3.30459 
3.96023 
4.61152 
5.26281 
5.90977 
6.55673 

0.66556 
1.32890 
1.99003 
2.64896 
3.30570 
3.96025 
4.61263 
5.26284 
5.9 1088 
6.55676 

the pdf for the continuous part is 

P X e-x/300 , x > o .  fd.) = Q(1 + P ) 2  exp [-Q(1  + p ) ]  = 900 

From this we have 

and 

The requested values are given in Table 6.8. 

6.9 COMPARISON OF METHODS 

The recursive method has some significant advantages over the direct method 
using convolutions. The time required to compute an entire distribution of 
n points is reduced to O(n2) from O(n3) for the direct convolution method 
when its support is unlimited and to O(n)  when its support is limited. Fur- 
thermore, it provides exact values when the severity distribution is itself dis- 
crete (arithmetic). The only source of error is in the discretization of the 
severity distribution. Except for binomial models, the calculations are guar- 
anteed to  be numerically stable. This method is very easy to program in a 
few lines of computer code. However, it has a few disadvantages. The recur- 
sive method only works for the classes of frequency distributions described in 
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Chapter 5. Using distributions not based on the (a ,  b, 0) and (a, b, 1) classes 
requires modification of the formula or developing a new recursion. Numerous 
other recursions have been developed in the actuarial and statistical literature 
recently. 

The FFT method is easy to use in that it uses standard routines available 
with many software packages. It is faster than the recursive method when n is 
large because it requires calculations of order n In2 n rather than n2. However, 
if the severity distribution has a fixed (and not too large) number of points, the 
recursive method will require fewer computations because the sum in formula 
(6.13) will have at most m terms, reducing the order of required computations 
to be of order n, rather than n2 in the case of no upper limit of the severity. 
The FFT method can be extended to the case where the severity distribution 
can take on negative values. Like the recursive method, it produces the entire 
distribution. 

6.10 TVaR FOR AGGREGATE LOSSES 

The calculation of the Tail-Value-at-Risk for continuous and discrete distribu- 
tions was discussed in Sections 4.8 and 5.15. So far in the current chapter, we 
have dealt with the calculation of the exact (or approximating) distribution of 
the sum of a random number of losses. Clearly, the shape of this distribution 
depends on the shape of both the discrete frequency distribution and the con- 
tinuous (or possibly discrete) severity distribution. If the severity distribution 
is light-tailed and the frequency distribution is not, then one could expect the 
tail of the aggregate loss distribution to be largely determined by the fre- 
quency distribution. Indeed, in the extreme case where all losses are of equal 
size, the shape of the aggregate loss distribution is completely determined by 
the frequency distribution. On the other hand, if the severity distribution is 
heavy-tailed and the frequency is not, then one could expect the shape of the 
tail of the aggregate loss distribution to be determined by the shape of the 
severity distribution because extreme outcomes will be determined with high 
probability by a single, or at least very few, large losses. In practice, if both 
the frequency and severity distribution are specified, it is easy to compute the 
TVaR at a specified quantile. 

6.10.1 

As discussed in earlier sections in this chapter, the numerical evaluation of 
the aggregate loss distribution requires a discretization of the severity distrib- 
ution resulting in a discretized aggregate loss distribution. We, therefore, give 
formulas for the discrete case. Consider the random variable S representing 
the aggregate losses. The overall mean is the product of the means of the 

TVaR for discrete aggregate loss distributions 
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frequency and severity distributions Then the TVaR at quantile x,  for this 
distribution is3 

TVaR, ( S )  = E ( S  1 S > x,) 

Noting that 

(6.28) 

X X X 

= E(S) - X P  + c ( X p  - " I +  f d x )  
X 

= E(S) - xp + C (xp - X )  ~ s ( x ) ,  
XtX, 

(6.29) 

we see that, because S 2 0, the last sum in equation (6.29) is taken over a 
finite number of points, the points of support up to the quantile x,. 

Then the result of the equation (6.29) can be substituted into equation 
(6.28) to obtain the value of the TVaR. The value of the TVaR at high quan- 
tiles (as are required in operational risk) depends on the shape of the aggregate 
loss distribution. For certain distributions, we have analytic results that can 
give us very good estimates of the TVaR. To do this we first need to give 
some results on the extreme tail behavior of the aggregate loss distribution. 
We first focus on frequency distributions and then on severity distributions. 

6.10.2 

We shall use the notation A ( x )  N B ( x )  as TC -+ 00 to denote that 

TVaR for some frequency distributions 

- 1. lim - - A ( x )  
2-00 B ( x )  

Definition 6.19 A function C ( x )  is said to be slowly varying at infinity 
zf C(tz)  - C ( x )  as x 00 for all t > 0. 

The logarithm function h ( x )  and any constant function are slowly varying 
at infinity while the exponential function exp(x) is not. 

We now consider frequency distributions that satisfy 

"The quantile must he one of the points of support of the aggregate loss distributions. If 
the selected quantile is not such a point, the TVaR can be calculated a t  the two adjacent 
points and the results interpolated t o  get an approximate value of the desired TVaR. 
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p ,  - BnnYC(n) (6.30) 

where 0 < 0 < 1 and C(n) is slowly varying at infinity. Distributions satisfying 
formula (6.30) include the negative binomial, the geometric, the logarithmic, 
Poisson-ETNB (when -1 < r < 0) (see Teugels and Willmot [116]) including 
the Poisson-inverse Gaussian, and mixed Poisson distributions with mixing 
distributions that are sufficiently heavy-tailed (see Willmot [127]) and many 
compound distributions (see Willmot [126]). 

We also consider severity distributions that have a moment generating func- 
tion. In addition, we assume that there exists a number K > 0 satisfying 

(6.31) 

In very general terms, this condition ensures that the severity distribution 
is not too heavy-tailed. For distributions whose moment generating functions 
increase indefinitely, the condition is always satisfied. However, some distri- 
butions (e.g. inverse Gaussian) have moment generating functions that have 
an upper limit, in which case condition (6.31) is satisfied only for some values 

The following theorem of Embrechts, Maejima, and Teugels [32] gives the 
asymptotic shape of the tail of the aggregate loss distribution for large quan- 
tiles. 

1 
M ( K )  z= -. 

8 

of e. 

Theorem 6.20 Let p ,  denote that probability function of a counting distri- 
bution satisfying condition (6.30) and let M ( z )  denote the mgf of a non- 
arithmetic severity distribution satisfying condition (6.31). Then  if -M'( K )  < 
00, the tail of the corresponding aggregate loss distribution satisfies 

(6.32) 

This theorem shows that the tail of the aggregate loss distribution looks 
like the product of a gamma density and a slowly varying function. The terms 
in the denominator form the necessary normalizing constant. The asymptotic 
formula for the tail in Theorem 6.20 can be used as an approximation for 
the tail for high quantiles. Having obtained this, we can obtain approximate 
values of the TVaR from 

TVaR, ( S )  = E ( S  1 S > x P )  
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In some situations, we can get an asymptotic formula for the TVaR. It 
is often the case that the slowly varying function C(x)  in the asymptotic 
formula (6.32) is constant. This is the case for all examples given above, 
except possibly for the mixed Poisson case with certain mixing functions. 
When C(x)  is constant, we can rewrite formula (6.32) as 

- 
Fs(x )  - cxYe-nx, x ---$ co 

where the constant c absorbs all the constant terms in (6.32) (including the 
constant C(x)). Then using L’HBpital’s rule, 

- 
F S ( X , )  = lim 

1 

zp-33 cxp?e-“”p [. - 2-1 
- - - 
K 

Thus, we obtain the TVaR approximately as 

TVaR, ( S )  = E ( S  I S > x,) 

1 
- x , + -  

K 

which is exactly the TVaR for the exponential distribution with mean l /n .  
In this case, the extreme tail becomes approximately exponential and so the 
conditional expected excess over the quantile xp is constant. 

6.10.3 

In this subsection, we consider a class of severity distributions for which (6.31) 
does not hold. However, using different arguments than those used in the last 
Section 6.10.2, we can still obtain asymptotic results for the tail and the TVaR 
of the aggregate loss distribution. We consider the class of subexponential 
distributions with distribution functions satisfying 

TVaR for some severity distributions 

1 - F*2(z)  
2-30 l - F ( X )  
lim = 2. 

It can be shown that if condition (6.33) holds then also 

1 - F*”(z) 
lim = n. 

2-30 ~ - F ( x )  

(6.33) 
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This class is quite broad and includes many of the distributions discussed 
in Section 4.2. We consider this class of severity distributions together with a 
general class of frequency distributions. The following theorem of Embrechts, 
Goldie and Veraverbeke 1291 provides the asymptotic form of the tail of the 
distribution of aggregate losses. 

Theorem 6.21 Let N denote a random variable from a counting distribution 
with finite mean E ( N )  and with mgf M ( z )  that exists for some z > 0. Let 
X denote a continuous random variable whose cdf satisfies condition (6.33). 
Then 

All discrete distributions with finite means that were considered in Chapter 
5 have moment generating functions. This theorem means that for subexpo- 
nential severity distributions the asymptotic tail of the aggregate loss distri- 
bution mirrors that of the severity distribution but multiplied by a factor 
reflecting the expected number of losses. It is interesting to note that the 
subexponential class includes those distributions satisfying 

- 
F ( x )  - x-YC(x) ,  x + 00 (6.34) 

where C ( x )  is slowly varying at  infinity and IyI < m. 

Example 6.22 Approximate the TVaR for the transformed beta distribution. 

The transformed beta distribution (see Section 4.2) has pdf 

Then, using L'HGpital's rule, 

Thus 
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which satisfies (6.34). Then from Theorem 6.21 

Using L’H6pital’s rule, the resulting asymptotic shape of the conditional 
expected excess amount over a quantile can be found to be 

- XP - 
a y -  1’ 

Thus for large quantiles, the TVaR is approximately a multiple of the 
quant ile 

TVaRp (5’) = E ( S  1 S > xP) 

The mean of the transformed beta distribution exists only if a y  > 1. The 
special cases of this distribution are the generalized Pareto (y = l), the Pareto 

0 (y = 1, 7 = l), the Burr (7 = l), and the loglogistic (a  = 1, 7 = 1). 

Example 6.23 Approximate the TVaR for the lognormal distribution. 

Embrechts, Goldie, and Veraverbeke [29] show that the lognormal distrib- 
ution is subexponential. The tail of the distribution satisfies 

- F ( z )  ,., - 1 (-1 ff exp [-5 1 (7)2] l n x - p  , x + m. 
JG 1 n x - p  

Therefore the tail of the aggregate loss distribution satisfies 

The expected loss in excess of a high quantile xp is easily obtained as 
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Finally the TVaR for the asymptotic approximation for the lognormal dis- 
tribution is then 

TVaR, ( S )  = E ( S  I S > x,) 

which increases a t  a rate slower than linear. 0 

An intermediate class of distributions that can be used as severity dis- 
tributions has been discussed by Embrechts and Goldie [28]. This class of 
medium-tailed distributions may or may not determine the tail of the aggre- 
gate loss distribution. 

Definition 6.24 A distribution is medium tailed i f  there exists a y > 0 
with 

and 

1 - F*2(.) 
lim = 2 M ( y )  < 00 
2-30 l - F ( X )  

1 - F(x  - Y) = e y y  lim 
Z’M l - F ( X )  

for any y. 

If y = 0, the subexponential class results. For the medium-tailed class, 
Teugels [115] shows that Theorem 6.21 generalizes to  

if P’ [ M ( y ) ]  < 00. 

Example 6.25 Approximate TVaR of the inverse Gaussian distribution. 

The inverse Gaussian distribution with pdf 

can be shown to be medium-tailed. The tail of the distribution satisfies 

From this, y = 4 and M ( y )  = exp - . Then for a particular choice 

of frequency distribution, if P’ [M(y)] < co, the tail of the aggregate loss 
distribution satisfies 

2P (9 
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Finally, the conditional expected excess loss over quantile xp can be shown 
to satisfv 

So the approximate TVaR for the inverse Gaussian distribution is 

TVaR, ( S )  = E ( S  j S > xP) 

Embrechts 1271 showed that the generalized inverse Gaussian (which in- 
cludes the inverse Gaussian) distribution can be light- or medium-tailed de- 
pending on the choice of parameters. 

6.10.4 Summary 

Section 6.10 and related results suggest that the tail behavior of the aggregate 
loss distribution is essentially determined by the heavier of the frequency and 
severity distributions. If the frequency distribution is sufficiently heavy-tailed 
and the severity distribution is light-tailed, the tail of the aggregate loss dis- 
tribution is determined by the frequency distribution through Theorem 6.20. 
If the severity distribution is sufficiently heavy-tailed and if the frequency 
distribution has a moment generating function, and is thus light-tailed, the 
tail of the aggregate loss distribution looks like a rescaled severity distribu- 
tion. For medium-tailed distributions, such as the inverse Gaussian, the tail 
may or may not be determined by the severity distribution, depending on the 
parameter values of that severity distribution. 

6.11 EXERCISES 

6.1 For pgfs satisfying equation (6.2), show that the mean is proportional to 
a. 

6.2 From equation (6.5), show that the relationships between the moments 
in formulas (6.6) hold. 

6.3 Aggregate losses have been modeled by a compound negative binomial 
distribution with parameters r = 15 and ,8 = 5. The loss amounts are uni- 
formly distributed on the interval (0,lO). Using the normal approximation, 
determine the amount such that the probability that losses will exceed that 
amount is 0.05. 



EXERCISES 199 

6.4 Assume XI, X2, and X 3  are mutually independent loss random variables 
with probability functions as given in Table 6.9. Determine the pf of S = 
xl+ x2 + x3. 

Table 6.9 Distributions for Exercise 6.4 

X 

0 0.90 0.50 0.25 
1 0.10 0.30 0.25 
2 0.00 0.20 0.25 
3 0.00 0.00 0.25 

6.5 You have been asked by a risk manager to  analyze office cigarette smoking 
patterns in order to assess health cost risks of employees. The risk manager has 
provided the information in Table 6.10 about the distribution of the number 
of cigarettes smoked during a workday. The number of male employees in 
a randomly selected office of n employees has a binomial distribution with 
parameters n and 0.4. Determine the mean and the standard deviation of the 
number of cigarettes smoked during a workday in a randomly selected office 
of eight employees. 

Table 6.10 Data for Exercise 6.5 

Male Female 

Mean 6 
Variance 64 

3 
31 

6.6 A portfolio of risks produces N losses with the probabilities Pr ( N  = n) 
and loss amount distribution f x ( ~ )  according to the tables: 

Table 6.11 Frequency Data for Exercise 6.6 

n Pr(N = n) 

0 
1 
3 

0.5 
0.4 
0.1 

Individual loss amounts and N are mutually independent. Calculate the 
probability that aggregate losses will exceed expected losses by a factor of 3 
or more. 
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Table 6.12 Severity Data for Exercise 6.6 

1 
10 

0.9 
0.1 

6.7 The following questions concern closure under convolution. 

(a) Show that the gamma and inverse Gaussian distributions are closed 
under convolution. Show that the gamma distribution has the 
additional property mentioned in Example 6.7. 

(b) Discrete distributions can also be used as severity distributions. 
Which of the distributions in Chapter 5 are closed under convolu- 
tion? How can this information be used in simplifying calculation 
of compound probabilities of the form (5.14)? 

6.8 A compound negative binomial distribution has parameters /3 = 1, r = 2, 
and severity distribution { fx(Ic); 3: = 0,1 ,2 , .  . .}. How do the parameters of 
the distribution change if the severity distribution is ( g ~ ( 3 : )  = fx(z)/[l - 
fx(O)]; 3: = 1 ,2 , .  . .} but the distribution of aggregate losses remains un- 
changed? 

6.9 Consider the compound logarithmic distribution with exponential sever- 
ity distribution. 

(a) Show that the probability density function of aggregate losses may 
be expressed as 

(b) Reduce this to 

6.10 Consider a severity distribution that is a finite mixture of gamma distri- 
butions with integer shape parameters (such gamma distributions are called 
Erlang distributions), that is, one that may be expressed as 
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Show that the moment generating function may be written as 

M x ( z )  = Q((1- Qz)-’) ,  

where 
r 

k=l 

is the pgf of the distribution { q l ,  q 2 , .  . . , qr } .  Thus interpret fx(x) 
as the pf of a compound distribution. 

Show that the mgf of S is 

M ~ ( z )  = c { ( i  -&-I}, 

M 
where 

k=O 

Describe how the distribution {Ck; k = 0,1,2,. . .} may be calcu- 
lated recursively if the number of losses distribution is a member 
of the ( a ,  b, 1) class (Section 5.6). 

Show that the distribution function of S is given by 

6.11 Show that the method of local moment matching with k = 1 (matching 
total probability and the mean) using equations (6.20) and (6.21) results in 

E[X A h] 
h 

fo=l- 

2E[X A Zh] - E[X A (i - l )h]  - E[X A (i + l)h] 
, i = 1 , 2 , . . . ,  h fi = 

and that {fi; i = 0,1,2, .  . .} forms a valid distribution with the same mean 
as the original severity distribution. Using the formula given here, verify the 
formula given in Example 6.13. 

6.12 You are the agent for a baseball player who wants an incentive contract 
that will pay the amounts given in Table 6.13. The number of times at bat 
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has a Poisson distribution with k = 200. The parameter x is determined so 
that the probability of the player earning at  least $4,000,000 is at least 95%. 
Determine the player’s expected compensation. 

6.13 A weighted average of two Poisson distributions 

has been used by some authors,for example Trobliger [118], to treat automo- 
bile drivers as either “good” or “bad” (see Example 5.26). 

(a) Find the pgf I+(.) of the number of losses in terms of the two pgfs 
PI(.) and Pz(z) of the number of losses of the two types of drivers. 

(b) Let fx(x)  denote a severity distribution defined on the nonneg- 
ative integers. How can formula (6.15) be used to compute the 
distribution of aggregate loss for the entire group? 

(c) Can this be extended to other frequency distributions? 

6.14 A compound Poisson aggregate loss model has five expected losses per 
year. The severity distribution is defined on positive multiples of $1,000. 
Given that fs(1) = e-’ and fs(2) = 5e-5, determine fx(2) .  

6.15 For a compound Poisson distribution, X = 6 and individual losses have 
pf fx(1) = fx (2 )  = fx(4) = 5.  Some of the pf values for the aggregate 
distribution S are given in Table 6.14. Determine fs(6). 

6.16 Consider the ( a ,  b, 0) class of frequency distributions and any severity 
distribution defined on the positive integers {1,2,. . . , M < co}, where M is 
the maximum possible single loss. 

(a) Show that for the compound distribution the following backward 
recursion holds: 

Table 6.13 Data for Exercise 6.12 

Probability of hit Compensation 
Type of hit per time at bat per hit 

Single 
Double 
Triple 
Home run 

0.14 
0.05 
0.02 
0.03 

X 

2x 
32 
42 
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(b) For the binomial (m, q )  frequency distribution, how can the above 
formula be used to obtain the distribution of aggregate losses? See 
Panjer and Wang [91]. 

6.17 On a given day, interruptions to activity of certain business processes are 
of two types labelled A and C. Let the number of such interruptions per month 
be NA and N c  respectively. Assume N A  and NC have Poisson distributions 
with parameters 3 and 2, respectively. The distributions of length of such 
interruptions are given in Table 6.15 It is reasonable to assume that NA,  N c ,  
and the lengths of interruption are independent. If losses are $200 per hour 
while a machine is broken. Determine the probability that the loss in a given 
month is less than or equal to $800. 

6.18 You are given two independent compound Poisson random variables S1 
and S2, where fj(z), j = 1,2 ,  are the two single-loss size distributions. You 
are given X I  = A2 = 1, fl(1) = 1, and f2(1)  = f i (2)  = 0.5. Let Fx(rc) 
be the single-loss size distribution function associated with the compound 
distribution S = S1 + S2.  Calculate FG'(6). 

6.19 The variable S has a compound Poisson losses distribution with the 
following: a) Individual loss amounts are equal to 1, 2, or 3; b) E(S) = 56; c) 
Var(S) = 126; and, d) X = 29. Determine the expected number of losses of 
size 2. 

6.20 For a compound Poisson distribution with positive integer loss amounts, 
the probability function follows: 

1 
f s ( ~ )  = ;[O.lSfs(~ - 1) + k f s ( ~  - 2) + 0.72fs(a: - 3 ) ] ,  2 = 1,2,3,. . . . 

The expected value of aggregate losses is 1.68. Determine the expected num- 
ber of losses. 

6.21 A population has two classes of drivers. The number of accidents per 
individual driver has a geometric distribution. For a driver selected at random 
from Class I, the geometric distribution parameter has a uniform distribution 

Table 6.14 Data for Exercise 6.15 

0.0132 
0.0215 
0.0271 

0.0410 
fs(6) 
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Table 6.15 Data for Exercise 6.17 

1 hour 0.4 0.9 
2 hour 0.6 0.1 

over the interval (0 , l ) .  Twenty-five percent of the drivers are in Class I. All 
drivers in Class I1 have expected number of losses 0.25. For a driver selected 
at random from this population, determine the probability of exactly two 
accidents. 

6.22 Demonstrate that if the exponential distribution is discretized by the 
method of rounding, the resulting discrete distribution is a ZM geometric 
distribution. Use a computer and compare the successive probabilities. 

6.23 The physical damage incurred by the trucks in a company’s fleet are 
self-insured by the company and treated as operational risk. The number of 
losses in a year has a Poisson distribution with X = 5. The amount of a single 
loss has a gamma distribution with (Y = 0.5 and 6 = 2,500 where 6 is measure 
in dollars. The company is considering buying insurance to mitigate part of 
the risk. The proposed insurance contract covers aggregate losses in excess 
of $20,000. Determine the probability that losses will reach the threshold of 
$20,000. Use a span of $100 and the method of rounding. This requires a 
computer. 



7 
Ext re m e 

The study of 

~ 

value theory: 
jumbo losses 

If there is a possibility of several things going wrong, the one that causes the 
most damage is the one to  go wrong. 
Corollary: If there is a worse time for something to  go wrong, it will happen 
then. 

-Murphy 

7.1 INTRODUCTION 

As discussed in Chapter 1, operational risks range from high-frequency-low- 
severity (HFLS) to low-frequency-high-severity (LFHS) types. Losses of the 
HFLS type lend themselves naturally to aggregate loss modeling as described 
in Chapter 6. The primary focus is on the impact of the sum of all the losses. 
While the same can be said of LFHS type, there also must be a focus on 
individual events that are increasingly rare but that have very large potential 
losses when a loss occurs. In the insurance field these are called “jumbo” risks 
or “jumbo” losses. In operational risk, jumbo losses are those that, with a 
single occurrence, can have a major impact on the organization, even putting 
its survival in jeopardy. 

In practice, there are two major problems with managing jumbo risks. First, 
there are many risk types for which a loss has never occurred. Statistical 
analysis of historical data cannot in itself be very useful, except to indicate 
that the type of loss in question is very rare. The best statistical analysis 
is based on the study of very large losses over a period of time. The second 

205 
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problem with studying extreme outcomes, in particular the single largest loss 
each year, is that there can only be one observation per year. In practice, 
this means that the number of data points for analysis is inevitably small. 

There are alternatives. One alternative is to study the largest loss each 
month rather than each year. This increases the number of data points by a 
factor of 12. However, if we are interested in understanding the annual maxi- 
mum, it will be necessary to  “translate” monthly results into annual results. 
Fortunately, this is easy to do in practice. Another alternative is to study 
several of the largest losses each year rather than the single largest. However, 
the statistical analysis of such high-order statistics becomes significantly more 
complex. 

Another alternative is to  study all the large losses, where “large” is defined 
by some threshold. All losses in excess of the threshold are considered large. 
Then one can study the impact of increasing the level of the threshold on the 
distribution, or some characteristics of the distribution) of the remaining large 
losses. In particular, we will examine the mean excess loss over the threshold 
as the threshold changes. 

Extreme value theory (EVT) is a well-developed body of knowledge. It fo- 
cuses on the asymptotic shape of the distribution of the largest observations 
and the excesses over thresholds. The use of EVT in the analysis of oper- 
ational risk may be somewhat different from that in other fields. Consider 
the applications in the study of flood damage. Engineers designing dams for 
flood control are interested in knowing the probability of high water levels. 
These are typically described in terms like “the 100-year level” or the “one- 
year-in-a-hundred’’ event and are usually interpreted as the 99% percentile of 
the distribution of annual maxima. Building a dam at this level indicates a 
1% annual probability of exceedence. This means that there is a 1% chance 
of loss as a result of flooding in a one-year period. In our operational risk 
environment, the focus is not only on the single largest event. Because we are 
interested in the impact of all operational risk losses, study of the extreme loss 
does not give complete insight in to the overall impact, unless that extreme 
loss is so much larger than other losses that it completely dominates them. 
If this is the case, understanding the potential impact of the largest losses 
provides opportunities for developing mitigation strategies for the occurrence 
of such extreme events. The study of all losses in excess of a threshold is 
useful in understanding the impact of those large losses and dealing with the 
consequences of those very large losses. 

One of the key results in EVT is that the limiting distribution of the largest 
observation must be one of a very small number of distributions. Similarly, in 
a closely related result, the limiting distribution of the excess over a threshold 
must be one of a small number of distributions. The shape of the distribution 
from which the sample is drawn determines which one of the distributions is 
appropriate. This convenient theory allows us to rationally extrapolate to loss 
amounts that are well in excess of any historic loss and thus gives an idea of 
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the magnitude of probabilities of jumbo losses, even when those losses have 
never before occurred. 

7.2 EXTREME VALUE DISTRIBUTIONS 

In this section, we introduce some distributions known as extreme value distri- 
butions. We do this here to provide background to the theoretical justification 
for the use of these distributions in later sections of this chapter. There are 
three related distributions, the Gumbel, Frkhet, and Weibull, in the family 
known as extreme value distributions. We also introduce some notation for 
convenient reference to these distributions used by Reiss and Thomas [98] in 
their comprehensive book dealing with extreme value theory and its applica- 
tions. 

Gumbel distribution 
The standardized Gumbel distribution has df 

F ( z )  = Go(%) = exp [- exp (-x)] , J: > 0. 

With location and scale parameters p and 8 included, it has df 

F ( z )  = Go,,,e(x) = exp [ -exp ( -- x 7 ) ] , T > p , 0 > 0 .  

F'rhchet distribution 
The standardized Frkchet distribution has df 

F ( z )  = Gl,"(z) = exp (-x-"), x 2 0, Q > 0 

where Q is a shape parameter. 
With location and scale parameters p and 8 included, it has df 

Note that the Frkchet distribution has support only for values of J: greater 
than the location parameter p. In the applications considered in this book, 
the location parameter will sometimes be set to zero, making the distribution 
a two-parameter distribution. The df of that two-parameter distribution will 
be denoted by Gl,,,o,e(x). 

Weibull distribution 
The standardized Weibull distribution has df 

~ ( z )  = G ~ , " ( Z )  = exp - (-J:)-"] , x 5 0, Q: < 0. L 
With location and scale parameters p and 8 included, it has df 
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Note that this Weibull distribution has support only for values of x smaller 
than the location parameter p. This distribution is often associated with the 
distribution of the minimum values of distributions and with distributions 
that have a finite right-hand endpoint of the support of the distribution. 
Because of this, it will not be considered in this book. It is referenced only 
for completeness of exposition of extreme value theory. It should be noted 
that because it has support only on values below a fixed maximum p and 
because the parameter CY is negative, this distribution is not the same as the 
Weibull distribution described in Chapter 4. However, that distribution can 
be obtained by a simple shifting and change of sign. 

Generalized extreme value distribution 
The generalized extreme value distribution is the family of distributions 

incorporating, in a single expression, the above three distributions as spe- 
cial cases. The general expression for the Standardized df of the generalized 
extreme value distribution is 

For notational convenience, it is often written as 

~ ( x )  = G J ~ )  = exp I - (1 + yz)-lly 1 . (7.1) 

Because the limiting value of (1 + yx)-l/' is exp(-z) as y + 0, it is 
clear that Go(x) is the standardized Gumbel distribution function. When y 
is positive, the df Gy(x) has the form of a Frkchet distribution. When y is 
negative, the df Gy(x) has the form of a Weibull distribution. With simple 
location and scale changes, these distributions can be written as standardized 
Frkhet and Weibull distributions. 

7.3 DISTRIBUTION OF THE MAXIMUM 

7.3.1 

Consider a set of n observations of independent and identically distributed 
nonnegative random variables with common distribution function FX (x), where 
n is a fixed number. Let the maximum value of the n observations be denoted 
by Mn and let its distribution and density functions be denoted by F,, (x) and 
fn(x). Then, because no observation can exceed the maximum, the df of the 
maximum is 

From a fixed number of losses 
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Because of the independence of the observations, we can write 

This shows that the distribution function of the maximum is a simple func- 
tion of the common distribution of the original random variables. As n -+ 00, 

the value of the right-hand side approaches either 0 or 1 depending on whether 
Fx(z) < 1 or Fx(z )  = 1. Thus, the limiting distribution of the maximum is 
degenerate'. To avoid the effect of degeneracy in the limit, the study of the 
behavior of the maximum for large values of n requires appropriate normal- 
ization. This will be studied later in this chapter. 

For nonnegative random variables, the mean (if it exists) of the maximum 
can be obtained as 

= J, [l - Fx(zy] d2. 

It should be noted that for distributions with no upper limit of support, 
this maximum continues to increase without limit as n -+ oc). For distribu- 
tions with a right-hand endpoint, the maximum approaches that right-hand 
endpoint as n -+ oc). 

The second raw moment (if it exists) of the maximum can be obtained as 

m 

E (M:) = / z2fn(z)dx 
0 

= 2 I" 2 [I - Fn(2)] dz 

Example 7.1 From monthly to annual maxcima. 

Suppose that we have carried out studies of the largest losses over many 
months and determined the distribution of the monthly maximum to be given 
by df F (2). Then from equation (7.2), it follows that the distribution function 

0 of the annual maximum is given by [ F  (x)]'" 

' A  degenerate distribution is a distribution that has all the probability at a single point. 
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Example 7.2 Suppose that the monthly maximum in Example 7.1 follows a 
Gumbel distribution with df  given by  

F ( z )  = G O , ~ , Q ( X )  = exp -exp -- i ( x7)1. 
The annual maximum has distribution function given by 

= exp [-exp (-?)I 
= GO+* ,Q (x) 

where p* = p + 61n 12. 0 

This example shows that if the monthly maximum has a Gumbel distribu- 
tion, the annual maximum also has a Gumbel distribution, but with a change 
in location. 

Example 7.3 Suppose instead that the monthly maximum in Example 7.1 
follows a Frkchet distribution with df  given by  

Then the annual maximum has df given by 

where 6* = 12-1/“8. cl 

This example shows that if the monthly maximum has a Frkchet distribu- 
tion, the annual maximum also has a Frkchet distribution, but with a change 
in scale. 

7.3.2 From a random number of losses 

The distribution given by equation (7.2) assumes that the sample size each 
period is fixed. However, in operational risk modeling, because the number 
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of losses is unknown in advance, we are generally interested in studying the 
behavior of a random number of losses. In this case, we can also get a very 
convenient expression for the largest of a random number of losses in a fixed 
time period. 

Let N denote the random number of losses and its pgf by PN(z) .  We make 
the same independence assumptions as we did at  the beginning of Chapter 6 
where we studied the distribution of the sum of N losses. Here we consider 
the distribution of the maximum loss MN where N is a random number: 

= c P r ( M N  5 x 1 N = n ) P r ( N  = n) 
n=O 
M 

= Pr  (N = n) [Fx(z)ln. 
n=O 

Then, if we can specify the distribution of the frequency and severity of 
losses, we can easily have the exact distribution of the maximum loss. The 
distribution can be calculated for values for all nonnegative values of 2.  The 
distribution function (7.3) has value zero for negative values of x because only 
positive losses are considered. It has a jump at 2 = 0. The jump at z = 0 
has value PN (Fx (0)), the probability of no loss cost (either no loss event 
occurs, or all loss events have no cost). Further, if FX (0) = 0 (all loss events 
have a positive loss), a s  is the case in most applications, the jump reduces to 
PN (0) = PO,  the probability that no loss occurs, that is, that N = 0. 

Example 7.4 Consider a Poisson process that generates Poisson losses at a 
rate of X losses per year. 

Then from (7.3), for a single year, the df of the maximum loss is given by 

and, for a period of k years, the df of the maximum loss is given by 

Example 7.5 (Example 7.4 continued) Suppose, in addition, that the indi- 
vidual losses are exponentially distributed with 

~x(x) = I - exp (-5) ,x > 0. 
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Then the distribution of the maximum loss for a k-year period has df 

FM~(z) = exp -IcXexp [ (-31 
which can be rewritten as 

where p = 8 log ( kX)  . This is the df of an extreme value distribution, the 
Gumbel df Go,+o(s). 

Example 7.6 (Example 7.4 continued) Suppose instead that the individual 
losses are Pareto distributed with df 

Then the distribution of the maximum loss for a k-year period has df 

which can be rewritten as 

D 
where 

This is the df of an extreme value distribution, the Frkchet df GI,~,+,Q(z) .  0 

Examples 7.5 and 7.6 illustrate how the Gumbel and Frkchet distributions 
are distributions of extreme statistics, in this case maxima. We do not consider 
the Weibull, which plays the corresponding role for minima. Later, we will use 
some key theoretical results from the field of extreme value theory to show how 
extreme value distributions are the limiting distributions of extreme statistics 
for any distribution. 

Example 7.7 Suppose that the number of losses follows a negative binomial 
distribution with parameters r and p. 

Then from formula (7.3), the df of the maximum loss is given by 

F b f N ( Z )  = pN(Fx(Z)) 

= (1 - B{FX(Z) - l}]-T 

= [1+ P ( 1 -  Fx(Z)}]-'. 
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Example 7.8 (Example 7.7 continued) Suppose, in addition, that the indi- 
vidual losses are exponentially distributed with 

Then the distribution of the maximum loss for a k-year period has df 

Example 7.9 (Example 7.8 continued) Suppose instead that the individual 
losses are Pareto distributed with df 

Then the distribution of the maximum loss for a k-year period has df 

F M N  (X) = 11 + P{ 1 - Fx (.)}I -T 

= [ 1+p (‘:;”-a]-T,X>o. - 

7.4 STABILITY OF THE MAXIMUM OF THE EXTREME VALUE 
DISTRIBUTION 

The Gumbel, Frkchet, and Weibull distributions have another property, called 
“stability of the maximum” or “max-stabilty” that is very useful in extreme 
value theory. This is already hinted at in Examples 7.1, 7.2, and 7.3. 

First, for the standardized Gumbel distribution, we note that 

[Go(z + 1nn)ln = exp[-nexp(-z - Inn)] 

= exp [- exp (-x)] 

= Go (x) . 

Equivalently, 
[Go ( x ) ] ~  = Go (x - Inn) .  

This shows that the distribution of the maximum of n observations from 
the standardized Gumbel distribution has itself a Gumbel distribution, after 
a shift of location of Inn. Including location and scale parameters yields 
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x - p - Blnn 
= G o (  

where p* = p + 0 Inn. 
Similarly, for the standardized Frkchet distribution 

[Gl,a(n' /"x)]n = exp (-n ( T L ' / ~ Z ) - ~ )  

Equivalently, 
X 

iGl,a(X)l" = G1,a (m) . 

This shows that the distribution of the maximum of n observations from 
the standardized Frkchet distribution, after a scale change, has itself a Frkhet 
distribution. Including location and scale parameters yields 

= Gi,a,p,e+ (XI 
where 6' = en'/". 

The key idea of this section is that the distribution of the maximum, after 
a location or scale normalization, for each of the extreme value (EV) distri- 
butions also has the same EV distribution. Section 7.5 shows that these EV 
distributions are also approximate distributions of the maximum for (almost) 
any distribution. 

7.5 THE FISHER-TIPPETT THEOREM 

We now examine the distribution of the maximum value of a sample of fixed 
size n (as n becomes very large) when the sample is drawn from any distribu- 
tion. As n + 00, the distribution of the maximum is degenerate. Therefore, in 
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order to understand the shape of the distribution for large values of n, it will 
be necessary to normalize the random variable representing the maximum. 
We require linear transformations such that 

x - b, 
12-00 lim F, ( T )  = G (x) 

for all values of x ,  where G ( x )  is a nondegenerate distribution. If such a linear 
transformation exists, Theorem [?] gives a very powerful result that forms a 
foundational element of extreme value theory. 

Theorem 7.10 Fisher-Tippett Theorem 
n 

If [. (*)I has a nondegenerate limiting distribution as n --+ cm, for 
some constants a, and b, that depend on n, then 

[ . ( % ) I n  -+ G ( x )  

as n + cm, for  all values of x ,  for  some extreme value distribution G, which 
is one of Go, G I ? ~  or G2,a f o r  some location and scale parameters. 

The original theorem was given in a paper by Fisher and Tippett[37]. A 
detailed proof can be found in Resnick [99]. The Fisher-Tippett theorem 
proves that the appropriately normed maximum for any distribution (subject 
to the limiting nondegeneracy condition) converges in distribution to exactly 
one of the three extreme value distributions: Gumbel, Frkchet, and Weibull. 
This is an extremely important result. If we are interested in understanding 
how jumbo losses behave, we only need to look at three (actually two, because 
the Weibull has an upper limit) choices for a model for the extreme right-hand 
tail. 

The Fisher-Tippett theorem requires normalization using appropriate norm- 
ing constants a, and b, that depend on n. For specific distributions, these 
norming constants can be identified. We have already seen some of these for 
the distributions considered in the examples in Section 7.3. 

The Fisher-Tippett theorem is a limiting result that can be applied any 
distribution F ( z ) .  Because of this, it can be used as a general approximation 
to the true distribution of a maximum without having to completely specify 
the form of the underlying distribution F ( x ) .  This is particularly useful when 
we only have data on extreme losses as a starting point, without specific 
knowledge of the form of the underlying distribution. 

It now remains to describe which distributions have maxima converging to 
each of the three limiting distributions and to determine the norming con- 
stants a, and b,. 

Example 7.11 (Maximum of exponentials) Without any loss of generality, 
for  notational convenience, we use the standardized version of the exponen- 
tial distribution. Using the norming constants a, = 1 and b, = - Inn, the 
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distribution of the maximum is given by 

P r ( M n - b n  5~ = P r ( M n 5 a a , x + b n )  
an 

= [Pr ( X  5 a,x + b,)]" 
= [Pr ( X  5 x - Inn)]" 

= [I - exp(-x - Inn)]" 

+ exp(-exp(-x)) as n -+ 00. 

Having chosen [somehow) the right norming constants, we see that the limiting 
distribution of the maximum of exponential random variables is the Gumbel 
distribution. 0 

Example 7.12 (Maximum of Paretos) Using the Pareto df 

and the norming constants a, = 0n'/"/a and b, = en1/" - 0, 

= [Pr ( X  5 a,x + bn)ln 
n 

= Pr X I -  x + 0n'la - 0)] [ (  

This shows that the maximum of Pareto random variables has a Frkchet 
distribution with p = -a and t9 = a. 
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7.6 M A X I M U M  D O M A I N  OF ATTRACTION 

Definition 7.13 The maximum domain of attraction (MDA) for any 
distribution G,  is the set of all distributions that has G as the limiting distrib- 
ution as n + m of the normalized maximum ( M ,  - b,) l a ,  f o r  some norming 
constants a, and b,. 

Essentially, distributions (with nondegenerate limits) can be divided into 
three classes according to their limiting distribution: Gumbel, Frkchet and 
Weibull. If we can identify the limiting distribution, and if we are only inter- 
ested in modeling the extreme value, we no longer need to worry about trying 
to identify the exact form of the underlying distribution. We can simply treat 
the limiting distribution as an approximate representation of the distribution 
of the extreme value. 

Because we are interested in the distribution of the maximum, it is natural 
that we only need to worry about the extreme right-hand tail of the underlying 
distribution. Furthermore, the MDA should depend on the shape of only the 
tail and not on the rest of the distribution. This is confirmed in Theorem 
7.14. 

Theorem 7.14 MDA characterization by tails 
A distribution F belongs to the maximam domain of attraction of an ex- 

treme value distribution Gi with norming constants a ,  and b, if and only 

lim n F  (a,x + b,) = - In Gi(z). 
if 

n-+m 

This result is illustrated in Examples 7.15 and 7.16. 

Example 7.15 (Maximum of exponentials) As  in Example ?',ll, we use the 
standardized version of the exponential distribution. Using the norming con- 
stants a ,  = 1 and b, = - Inn, the distribution of the maximum is given 
by  

n F ( x + b , ) = n P r ( X > z + I n n )  

= n P r  ( X  > IC +Inn)  

= n exp( -x - Inn) 

- n  

= exp (-x) 
= - lnGo(z). 

- exp(-x) 
n 

Having chosen the right norming constants, we see that the limiting dis- 
tribution of the maximum of exponential random variables is the Gumbel 
distribution. 0 
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It is also convenient, for mathematical purposes, to be able to treat distri- 
butions that have the same asymptotic tail shape in the same way. The above 
example suggest that if any distribution has a tail that is exponential, or close 
to exponential, or exponential asymptotically, then the limiting distribution 
of the maximum should be Gumbel. Therefore, we define two distributions 
FX and Fy as being tail-equivalent if 

where c is a constant. (Here the notation x -+ 00 should be interpreted as 
the x increasing to the right-hand endpoint if the distribution has a finite 
right-hand endpoint.) Clearly, if two distributions are tail-equivalent, they 
will be in the same maximum domain of attraction, because the constant c 
can be absorbed by the norming constants. 

Then in order to determine the MDA for a distribution, it is only neces- 
sary to study any tail-equivalent distribution. this is illustrated through the 
Example 7.16. 

Example 7.16 (Maximum of Paretos) Using the Pareto df 

and the norming constants a, = On-’/“ and b, = 0,  and the tail-equivalence 

for large x, we obtain 

lim nF(a,x+ b,) N 

n-CX 

= x-0 

= - l n G ~ ( z ) .  

This shows that the maximum of Pareto random variables has a Frkhet 
distribution. 0 

Because tail-equivalent distributions have the same MDA, all distributions 
with tails of the asymptotic form c z P a  are in the Frkchet MDA and all dis- 
tributions with tails of the asymptotic form Ice-”/* are in the Gunibel MDA. 
Then, all other distributions (subject to the riondegenerate condition) with 
infinite right-hand limit of support must be in one of these classes; that is, 
some have tails that are closer, in some sense, to exponential tails. Similarly, 
some are closer to Pareto tails. There is a body of theory that deals with the 
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issue of “closeness” for the Frechet MDA. In fact, the constant c above can 
be replaced by a slowly varying function (see Definition 6.19). Slowly varying 
functions include positive functions converging to a constant and logarithms. 

Theorem 7.17 If a distribution has its right-tail characterized by F ( x )  - 
x-”C(x), where C ( x )  is a slowly varying function, then it is in the Frkchet 
maximum domain of attraction. 

Example 7.16 illustrates this concept for the Pareto distribution that has 
C ( x )  = 1. Distributions that are in the Frechet MDA of heavier-tailed distri- 
butions include all members of the transformed beta family and the inverse 
transformed gamma family that appear in Figures 4.1 and 4.2. 

The distributions that are in the Gumbel MDA are not as easy to  charac- 
terize. The Gumbel MDA includes distributions that are lighter-tailed than 
any power function. Distributions in the Gumbel MDA have moments of all 
orders. These include the exponential, gamma, Weibull, and lognormal dis- 
tributions. In fact, all members of the transformed gamma family appearing 
in Figure 4.2 are in the Gumbel MDA, as is the inverse Gaussian distribu- 
tion. The tails of the distributions in the Gumbel MDA are very different 
from each other, from the very light-tailed normal distribution to the much 
heavier-tailed inverse Gaussian distribution. 

7.7 GENERALIZED PARETO DISTRIBUTIONS 

In this section, we introduce some distributions known as generalized Pareto 
(GP) distributions’ that are closely related to extreme value distributions. 
They are used in connection with the study of excesses over a threshold. In 
operational risk, this means losses that exceed some threshold in size. For 
these distribution functions, we use the general notation W ( x ) .  Generalized 
Pareto distributions are related to the extreme value distributions by the 
simple relation 

with the added restriction that W ( x )  must be nonnegative, that is, requiring 
that G(x)  2 exp(-1). 

Paralleling the development of extreme value distributions, there are three 
related distributions in the family known as generalized Pareto distributions. 

W ( x )  = 1 + lnG(x) (7.4) 

*The ”generalized Pareto distribution” used in this chapter differs from the distribution 
with the same name used in Section 4.2. It is unfortunate that the term ”generalized” 
is often used by different authors in connection with different generalizations of the same 
distribution. Since the usage in each chapter is standard usage (but in different fields), 
we leave it to the reader t o  be cautious about which definition is being used. The same 
comment applies to the used of the terms ”beta distribution’’ and ”Weibull distribution.” 
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Exponential distribution 
The standardized exponential distribution has df of the form 

F ( x )  = Wo(x) = 1 - exp (-x) , x > 0. 

With location and scale parameters p and 6 included, it has df 

Note that the exponential distribution has support only for values of x greater 
than p. In the applications considered in this book, p will generally be set to 
zero, making the distribution a one-parameter distribution with a left-hand 
endpoint of zero. The df of that one-parameter distribution will be denoted 
by 

F ( x )  = Wo,e(x) = 1 - exp (-i), x > 0 .  

Pareto distribution 
The standardized Pareto distribution has df of the form 

With location and scale parameters p and 6 included, it has df 

F ( x )  = 1 - 

Note that the Pareto distribution has support only for values of 2 greater 
than p + 6. In the applications considered in this book, p will generally be 
set to -6, making the distribution a two-parameter distribution with a zero 
left-hand endpoint. The df of the two-parameter Pareto distribution will be 
denoted by 

Beta distribution 
The standardized beta distribution has df of the form 

With location and scale parameters p and 6 included, it has df 

Note that the beta distribution has support only for values of x on the 
interval [p - 6, p].  As with the Weibull distribution, it will not be considered 
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further in this book. It is included for completeness of exposition of extreme 
value theory. It should also be noted that the beta distribution is a (shifted) 
subclass of the usual beta distribution on the interval (0,l.) interval which has 
an additional shape parameter, and where the shape parameters are positive. 

Generalized Pareto distribution 
The generalized Pareto distribution is the family of distributions incorpo- 

rating, in a single expression, the above three distributions as special cases. 
The general expression for the df of the generalized Pareto distribution is 

F ( z ) = l -  (1+3)-*. 
For notational convenience, it is often written as 

Because the limiting value of (1 + 7$)-’” is exp(-$) as y -+ 0, it is clear 
that Wo(x) is the exponential distribution function. When y (or equivalently 
a)  is positive, the df W,,Q(X) has the form of a Pareto distribution. 

7.8 THE FREQUENCY OF EXCEEDENCES 

7.8.1 

An important component in analyzing excesses (losses in excess of a threshold) 
is the change in the frequency distribution of the number of observations that 
exceed the threshold as the threshold is changed. When the threshold is 
increased, there will be fewer exceedences per time period; whereas if the 
threshold is lowered, there will be more exceedences. 

Let X j  denote the severity random variable representing the “g r~und-up”~  
loss on the j t h  loss with common df F ( x ) .  Let N L  denote the number of 
ground-up losses. We make the usual assumptions that the X j s  are mutually 
independent and independent of N L .  

Now consider a threshold d such that F(d)  = 1 - F (d )  = Pr(X > d ) ,  
the survival function, is the probability that a loss will exceed the threshold. 
Next, define the indicator random variable Ij  by I j  = 1 if the j t h  loss results 
in an exceedence and Ij = 0 otherwise. Then I j  has a Bernoulli distribution 
with parameter F(d)  and the pgf of I j  is  PI^ ( 2 )  = 1 - F(d)  + F(d)z .  

From a fixed number of losses 

“The  term “ground-up’’ is a term that comes from insurance. Often there is a deductible 
amount so that the insurer pays less than the full loss to  the insured. A ground-up loss 
is the full loss to the insured, not the (smaller) loss to the insurer. In the operational risk 
context, ground-up losses are measured from zero and are not the losses measured from the 
threshold. 
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If there are a fixed number n of ground-up losses, N E  = I1 + . . . + I ,  
represents the number of exceedences. If I1,12,. . . are mutually independent, 
then N E  has a binomial distribution with pgf 

P N E ( Z )  = [PI2 (2))" = [l + F ( d ) ( z  - l)]" 

Thus the binomial distribution with parameters n and F ( d )  represents the 
number of exceedences. This concept is similarly extended to  the number 
of exceedences above some threshold dz, when the number of exceedences 
above a lower threshold d l  is known and denoted by 7 ~ 1 .  In this case, the 
number of exceedences NE has a binomial distribution with parameters n1 
and F ( d 2 )  / F ( d l ) .  

It is often argued that the number of very rare events in a fixed time period 
follows a Poisson distribution. When the threshold is very high the probability 
of exceeding that threshold is very small. When also the number of ground- 
up losses is large the Poisson distribution serves as an approximation to  the 
binomial distribution of the number of exceedences. This can be argued as 
follows: 

P N E ( Z )  = [ P I j ( z ) ] "  = [1 +'S(d)(z- I)]" 
--f exp (A ( z  - 1)) 

where X = nF (d )  as n -+ a. Thus, asymptotically, the number of exceedences 
follows a Poisson distribution. 

7.8.2 From a random number of losses 

In practice, the number of losses is unknown in advance. In this case, the 
number of exceedences over the threshold d is random. If there is a random 
number of exceedences, N E  = I1 + . . . + I N L  represents the number of excee- 
dences. If I l , IZ , .  . . are mutually independent and are also independent of N L ,  
then N E  has a compound distribution with N L  as the primary distribution 
and a Bernoulli secondary distribution. Thus 

P N E ( z )  = PNL  PI^ (211 = PNL [I + F(d) ( z  - I)]. 

In the important special case in which the distribution of N L  depends on 
a parameter 6 such that 

P N L  (z) = PNL (2;  6 )  = B[O. ( 2  - I)], 

where B ( z )  is functionally independent of 0 (as in Theorem 5.11), then 

P N E  (2) = BIB. (1 - F(d)  + F ( d ) z  - l)] 

= B[F(d)  .6. ( 2  - l)] 

= P N L  (2 ;  F ( d ) 6 ) .  
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This implies that NL and N E  are both from the same parametric family and 
only the parameter 0 need be changed. 

Example 7.18 Demonstrate that the above result applies to the negative bi- 
nomial distribution. Illustrate the eflect when a threshold of $250 is applied 
to a Pareto distribution with CY = 3 and 6 = $1000. Assume that NL has a 
negative binomial distribution with parameters of r = 2 and p = 3. 

The negative binomial pgf is P,L(z) = [l - p ( z  - 1)IpT. Here p takes 
011 the role of 6 in the result and B ( z )  = (1 - z ) - ~ .  Then NE must have a 
negative binomial distribution with r* = T and p* = pF(d ) .  For the particular 
situation described, 

- ( 1 0 ~ ~ 2 5 0 ) 3  = 0.512 
F (250) = 1 - F(250) 

and so T* = 2 and p* = 3(0.512) = 1.536. 0 

This result may be generalized for zero-modified and zero-truncated distri- 
butions. Suppose NL depends on parameters Q and CY such that 

(7.5) 
B [ ~ ( z  - l)] - B(-6) PNL(z)=PNL(z;~,Q) = c Y + ( ~ - c Y )  

1 - B(-6) 

Note that cy = PNL(O) = Pr(NL = 0) and so is the modified probability at 
zero. It is also the case that, if B[O(z - l)] is itself a pgf, then the pgf (7.5) 
is that for the corresponding zero-modified distribution. However, it is not 
necessary for B [ ~ ( z  - l)] to be a pgf in order for P,L ( 2 )  as given in formula 
(7.5) to be a pgf. In particular, B ( z )  = 1 + ln(1 - z )  yields the zero-modified 
(ZM) logarithmic distribution, even though there is no distribution with B ( z )  
as its pgf. Similarly, B ( z )  = (1 - z)-‘ for -1 < T < 0 yields the ETNB 
distribution. A few algebraic steps reveal that for formula (7.5) 

P N E ( Z )  = PN”(z;BF(z) ,a*) ,  

where CY* = Pr(NE = 0) = P N E ( O )  = PN~(F(d);6,cr). It is expected that 
imposing a threshold will increase the value of CY because periods with no 
exceedences will become more likely. In particular, if N L  is zero-truncated, 
NE will be zero-modified. 

Example 7.19 Repeat the Example 7.18) only now let the frequency distrib- 
ution be zero-modified negative binomial with r = 2, p = 3, and p y  = 0.4. 

The pgf is 

[l - p ( z  - l ) ]y  - (1 + mT hl PNL(Z) = POM + (1 -Po  1 1 - (1 + 
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Then Q = p f  and B ( z )  = (1 - z)-'. We then have r* = r ,  /3* = /3F (d) ,  and 

- PF - (1 + /3)-' + (1 + /3*)-' - p F ( 1 +  P*)-' 
- 

1 - (1 + p)-' 

For the particular distribution given, the new parameters are r* = 2, p* : 
3(0.512) = 1.536, and 

M* - 0.4 - 4-2 + 2.536-2 - 0.4(2.536)-2 
= 0.4595. 

1 - 4-2 Po - 

0 

If we have values of the amounts of the excesses over a threshold, we may 
want to  determine the distribution of N L  from that of N E .  That is, we may 
want to know the distribution of ground-up losses if the threshold is removed. 
Arguing as before, 

P p J L ( Z )  = PpJE(1 - F(fd-1 + z F ( d ) - l ) .  

- This implies that the formulas derived previously hold with F(d)  replaced by 
F(d)- ' .  However, it is possible that the resulting pgf for N L  is not valid. If 
this occurs, one of the modeling assumptions is invalid (for example, the as- 
sumption that changing the threshold does not change loss-related behavior). 

Example 7.20 Suppose that the number of exceedences with a threshold of 
$250 have the tero-modified negative binomial distribution with r* = 2, /3* = 
1.536, and pf* = 0.4595. Suppose also that ground-up losses have the Pareto 
amount distribution with CY = 3 and 9 = $1000. Determine the distribution of 
the number of losses when the threshold is removed. Bepeat this calculation 
assuming p f *  = 0.002. 

In this case the formulas use F(d)  = 1/0.512 = 1.953125 and so r = 2 and 
/3 = 1.953125(1.536) = 3. Also, 

0.4595 - 2.536C2 + 4-2 - 0.4595(4)-2 
p E *  = = 0.4 

1 - 2.536-2 

as expected. For the second case, 

M *  - 0.002 - 2.536-2 + 4C2 - 0.002(4)-2 
= -0.1079, 

1 - 2.536-2 Po - 

which is not a legitimate probability. 0 

All members of the ( a ,  b, 0) and ( a ,  b, 1) classes meet the conditions of this 
section. Table 7.1 indicates how the parameters change when moving from 
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Table 7.1 Frequency adjustments 

N L  Parameters for N E  

Poisson A *  = F ( d ) A  

ZM Poisson 
,-A + e-A* - p f e - A *  

M *  = &!?- 
Po 1 - e-A 

Binomial q* = F ( d ) q  

ZM binomial 

Negative binomial p* = F ( d ) P  

ZM negative binomial p f *  = 

ZM logarithmic 

p y  - (1 - + (1 - -POMP - Q*Y p f *  = 
1 - (1 - q)m 

p f  - (1 + /3)+ + (1 + P-'  -Po ( 1 + p*)-' 
1 - (1 + D)-' 

PoM* - - 1 - (1 - p,") In ( l+  p*) /  h(l+ p) 

N L  to N E .  If N L  has a compound distribution, then we can write P N L ( z )  = 
PI [Pz(z)] and therefore 

P N E ( ~ )  = f " L [ 1  + F ( d ) ( z  - I)] = P1{&[1 +F'(d)(z - I)]}. 

Thus N E  will also have a compound distribution with the secondary distri- 
bution modified as indicated. If the secondary distribution has an ( a ,  b, 0) 
distribution, then it can modified as in Table 7.1. Example 7.21 indicates the 
adjustment to be made if the secondary distribution has an (a ,  b, 1) distribu- 
tion. 

Example 7.21 If N L  has a Poisson-ETNB distribution with X = 5, p = 0.3, 
and r = 4. If F ( d )  = 0.5, determine the distribution of N E .  

From the discussion above, N E  is compound Poisson with A* = 5, but the 
secondary distribution is a zero-modified negative binomial with (from Table 
7.1) p* = 0.5(0.3) = 0.15, 

0 - 1.3-4 + 1.15-4 - 0(1.15)-4 
M *  - = 0.34103, Po - 1 - 1.3-4 

and r* = 4. This would be sufficient, except we have acquired the habit of us- 
ing the ETNB as the secondary distribution. From Theorem 5.11 a compound 
Poisson distribution with a zero-modified secondary distribution is equivalent 
to  a compound Poisson distribution with a zero-truncated secondary distrib- 
ution. The Poisson parameter must be changed to  (1 - p f * ) A * .  Therefore, 
N E  has a Poisson-ETNB distribution with A* = (1 - 0.34103)5 = 3.29485, 

0 /3* = 0.15, and r* = 4. 
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7.9 STABILITY OF EXCESSES OF T H E  GENERALIZED PARETO 

The exponential, Pareto, and beta distributions have another property, called 
“stability of excesses,” that is very useful in extreme value theory. Let Y = 
X - d 1 X > d denote the conditional excess random random variable. 

When X has an exponential distribution with zero left-hand endpoint 

P r (X  5 x )  = w O , ~  ( x )  = 1 - exp (;) , z > 0. 

Then 

P r (Y  5 y) = P r ( X  5 d +  y I X > d )  

= 1 - exp ($) 
= W0,S (Y) 1 Y > 0. 

This shows that the distribution of the excess from the exponential distri- 
bution itself has an exponential distribution. The excess of the loss over the 
threshold has the same distribution as the original loss random variable X. 
This is known as the “memoryless property” of the exponential distribution. 

Similarly, for the Pareto distribution beginning at zero, 

Pr (X 5 x )  = Wl,a,O (z) = 1 - (y)-”, x > O ;  a ,8>0 ,  

we have 

Y + (d + 0) 
= l - (  d + $  ) - a  

= Wl,a,d+B (Y) 1 Y > 0. 

This shows that the excess over a threshold from the Pareto distribution, 
has itself a Pareto distribution. The excess over the threshold has a Pareto 
distribution that is the same as the original loss random variable, but with a 
change of scale from 8 to 8 + d. 

A similar result holds for the beta distribution, but will not be consid- 
ered further. Thus, for the generalized Pareto distribution, the conditional 
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distribution of the excess over a threshold is of the same form as the underly- 
ing distribution. The form for the distribution of conditional excesses of the 
generalized Pareto distribution can be written as 

P r (Y  5 y) = P r ( X  5 d + y 1 X > d )  
- 

- F ( d  + Y) -1 -  - 
F ( d )  

= 1 -  ( l+y-  t i Y y d ) - ’ ”  

7.10 MEAN EXCESS FUNCTION 

The mean of the distribution of the excess over d for a general distribution 
F ( x )  can be written as 

We use the “star” notation for the conditional distribution of the excess 
Y = X - d I X > d:  

F*(y )  = Pr (Y 5 9 )  
= P r ( X  5 2 I X > d )  

where x = y+d. In terms of this distribution the mean excess can be rewritten 

00 
as 

e ( d )  = E [Y] = / [I - F* (y)] d y  = 

Because of the memoryless property of the exponential distribution, the 
mean excess function is constant 0 for all threshold levels. For the gener- 
alized Pareto distribution, the mean excess function is ( d  + 8) / (0 - 1) = 
(d + t i )  y/ (1 - y) which increases linearly as a function of the threshold d.  

F’ (y) dy.  
d r- 
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When examining data, a very useful ad hoc procedure for identifying an ap- 
propriate distribution is to compute the empirical mean excess at each data 
point and examine its shape. This will be discussed in Chapter 13 dealing 
with fitting distributions for extreme value distributions. 

7.11 LIMITING DISTRIBUTIONS OF EXCESSES 

We now examine the distribution of excesses over some threshold d of a sample 
of size n for any distribution as n becomes very large. In particular, we are 
specifically interested in the limiting distribution as the threshold increases. 
As with the study of the maximum, in order to understand the shape of the 
distribution, it will be necessary to normalize the loss random variable in some 
way. This becomes clear in the following theorem. 

We continue to use the “star” notation for the conditional distribution of 
the excess Y = X - d I X > d :  

where x = y + d. 

cesses. 
Theorem 7.22 is the analogue of the Fisher-Tippett theorem, but for ex- 

Theorem 7.22 Balkema-de Haan-Pickands Theorem 
If, fo r  some constants a, and b, that depend on  n, the conditional distri- 

bution of excesses F* (unx + b,) has a continuous limiting distribution as d 
approaches the right-hand endpoint of the support of X ,  then 

F * ( x )  -+ W (x) 

as d -+ 00, fo r  all x, for  some generalized Pareto distribution W that i s  one 
of W0,od, Wl,a,ed or W Q , ~ , ~ ~  f o r  some scale parameter Bd > 0. 

The Balkema-de Haan-Pickands Theorem (see [7] and [94]) shows that the 
right-hand tail of distribution of the excess converges in shape to exactly one 
of the three generalized Pareto distributions: exponential, Pareto and beta as 
the threshold becomes large. In practice, the limiting distribution serves as 
an approximating distribution for small sample sizes when the threshold is 
very high. Very high thresholds are of interest in studying the distribution of 
the size of jumbo losses. 

It is also interesting to note that the upper tails of the standardized EV 
distribution and the standardized GP distribution converge asymptotically as 
x + cm. However, the left-hand end of the distributions are very different. 
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The similarity of the right-hand tails can be seen by examining the series 
expansion of the survival functions of each. From (formula 7.4), 

- 
W(Z) = -1n(1 - C ( x ) )  

- - 
- G ( z ) ~  G ( x ) ~  

2 
As x grows very large, the right-hand side is dominated by the first term 

+-- = G(2) - - 
3 *.+. 

and the remaining terms become insignificant. 

7.12 TVaR FOR EXTREME VALUE DISTRIBUTIONS 

The limiting distribution of the conditional excess over a threshold follows a 
generalized Pareto distribution. If the excess over a threshold d of a random 
variable X is assumed to follow a generalized Pareto distribution, then, for 
x > d ,  the tail of the (unconditional ) distribution of X can be written as 

- 
F x ( x )  = Pr  (X > x) 

= P r ( X  > d ) P r ( X  > x I X > d) 

= F ( d ) P r ( X  - d  > x - d  1 X > d )  
- 

= F x ( d ) F y * ( Y ) ,  
where Y is the conditional random variable X - d I X > d , y = x - d and 
Fy*(y )  is the tail of the distribution of Y which is given by 
- 

This distribution has mean 

= (8 + 7 4  / (1 - 7) 

-+- d, 
1 -7  1 -7  

8 - - 

which is a linear function in d and exists only if y < 1. When y = 0, we have 
the exponential distribution and the memoryless property. 

If the threshold d is the Value-at-Risk xP = Va%(X), then we can write 
the Tail-Value-at-Risk as 

8 Y 
X P  TVaR,(X) = zP + - + - 

1 - 7  1 -7  
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If the threshold d is less than the Value-at-Risk, xp = VaRp(X), then from 
formula (7.6), we can write the tail probability as  

From this the quantile, xp =VaEtp(X), can be obtained as 

and the Tail-Value-at-Risk follows as 

VaRp(X) 6 
TVaR,(X) = + -. 

l - y  l-y 

7.13 FURTHER READING 

The theory of extreme values was treated relatively informally in this chap- 
ter. Numerous recently published books are specially devoted to extreme 
value theory. The book by Embrechts et al. [30] was published in 1997 and 
remains one of the most comprehensive books. It provides a comprehensive 
treatment of relevant theory. Numerous papers by Embrechts and his collab- 
orators, especially Alexander McNeil, (see for example McNeil [81] on various 
aspects of EVT are the leading papers and are frequently cited in the applied 
operational risk literature. 

7.14 EXERCISES 

7.1 Show that when y is positive, the df Gy(x) (7.1) has the form of a Frkchet 
distribution. What is the left-hand endpoint of the support of the distribu- 
tion? Express it as a function of y. 

7.2 Show that when y is negative, the df Gy(x) (7.1) has the form of a 
Weibull distribution. What is the right-hand endpoint of the support of the 
distribution? Express it as a function of y. 

7.3 Consider a Poisson process in which 10 losses are expected each year. 
Further assume that losses are exponentially distributed with an average size 
of one million dollars. Calculate the 99%-Value-at-Risk, that is, the 99th 
percentile of the distribution. 
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7.4 Redo the calculation in Exercise 7.3 but using a Pareto loss distribution 
with the same average loss of one million dollars. Do the calculation for each 
of the shape parameters a: equal to 20, 10, 5, 2 ,  1.5, and 1.1. 

7.5 Suppose there is additional uncertainty about the expected number of 
loss. Suppose that the expected number of losses is given by a gamma prior 
distribution with mean 10 and standard deviation 5. Redo Exercise 7.3 incor- 
porating this additional uncertainty. 

7.6 Redo the calculations in Exercise 7.4 but incorporating the additional 
uncertainty described in Exercise 7.5. 

7.7 Consider the standardized half-Cauchy distribution with pdf 

2 > 0. 1 
f(z)= 2 7 r ( l + 2 2 ) ’  

Prove that this has the FrBchet distribution as the limiting distribution of the 
maximum. 

7.8 Show that when y is positive, the df W,(x) has the form of a Pareto dis- 
tribution. What is the left-hand endpoint of the support of the distribution? 
Express it as a function of y. 

7.9 Show that when y is negative, the df W,(x) has the form of a beta 
distribution. What are the left-hand and right-hand endpoints of the support 
of the distribution? Express them as a function of y. 

7.10 Individual losses have a Pareto distribution with Q = 2 and 6 = $1000. 
With a threshold of $500 the frequency distribution for the number of excee- 
dences is Poisson-inverse Gaussian with X = 3 and f l  = 2. If the threshold 
is raised to $1000, determine the distribution for the number of exceedences. 
Also, determine the pdf of the corresponding severity distribution (the excess 
amount per exceedence) for the new threshold. 

7.11 Losses have a Pareto distribution with a: = 2 and 9 = $1000. The 
frequency distribution for a threshold of $500 is zero-truncated logarithmic 
with = 4. Determine a model for the frequency when the threshold is 
reduced to 0. 

7.12 Suppose that the number of losses N L  has the Sibuya distribution (see 
Exercises 5.8 and 5.20) with pgf P N L ( z )  = 1 - (1 - z ) - ~ ,  where -1 < T < 
0. Demonstrate that the number of exceedences has a zero-modified Sibuya 
distribution. 
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8 
Multivariate models 

Everything goes wrong all at once. 
-Murphy 

8.1 INTRODUCTION 

To this point, this book has focused on the modeling of specific risk types us- 
ing univariate distributions. This chapter will focus on addressing the issue of 
possible dependencies between risks. The concern in building capital models 
for operational risk is that it may not be appropriate to  assume that risks are 
mutually independent. In the case of independence the univariate probability 
(density) functions for each risk can be multiplied together to give the multi- 
variate joint distribution of the set of risks. When risks are not independent, 
we say the risks are dependent. 

There are a variety of sources for bivariate and multivariate models. Among 
them are the books by Hutchinson and Lai [58], Kotz, Balakrishnan, and 
Johnson [71], and Mardia [79]. Most distributions in these and other texts 
usually focus on multivariate distributions with marginal distributions of the 
same type. Of more interest and practical value are methods that construct 
bivariate or multivariate models from (possibly different) known marginal 
distributions and a dependence between risks. 

There are many ways of describing this dependence or association between 
random variables. For example, the classical measure of dependence is the 
correlation coefficient. The correlation coefficient is a measure of the linearity 

233 
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between random variables. For two random variables X and Y ,  the correlation 
coefficient is exactly equal to  1 or -1 if there is a perfect linear relationship 
between X and Y ,  that is, if Y = aX + b. If a is positive, the correlation 
coefficient is equal to  1; if a is negative, the correlation coefficient is equal 
to -1. This explains why the correlation described here is often called linear 
correlation. Other measures of dependence between random variables are 
Kendall’s tau, TK, and Spearman’s rho, p s ,  both of which will be discussed 
further in this chapter. Similar to the linear correlation coefficient, these 
measures of dependence take on values of 1 for perfect positive dependence 
and -1 for perfect negative dependence. 

In developing capital models for operational risk, we will be especially in- 
terested in the behavior in the tails of the distributions, that is when very 
large losses occur. In particular, we will be interested in understanding de- 
pendencies between random variables in the tail. We would like to be able to  
address questions like “If one risk has a very large loss, is it more likely that 
another risk will also have a large loss?” and “What are the odds of having 
several large losses from different risk types?” The dependence in the tail is 
generally referred to, naturally, as tail dependence. This chapter will focus on 
modeling tail dependence. 

Because all information about the relationship between random variables 
is captured in the multivariate distribution of those random variables, we 
begin our journey with the multivariate distribution, and a very important 
theorem that allows us to separate the dependence structure from the marginal 
distributions. 

8.2 SKLAR’S THEOREM AND COPULAS 

We shall define a d-variate copula C as the joint distribution function of 
d Uniform (0,l) random variables. If we label the d random variables as 
u1, u2, ..., Ud, then we can write the copula c as 

Now consider any continuous random variables XI, X2, ..., xd with distri- 
butions functions F1, F 2 ,  ..., F d  respectively and joint distribution function F. 
Because we also know from basic probability that the probability integral 
transforms Fl(X1), F2(X2), ..., Fd(Xd) are each distributed as Uniform (0,l) 
random variables, copulas can be seen to be joint distribution functions of Uni- 
form (0,l) random variables. A copula evaluated at Fl(q), F2(z2), ..., F d ( Z d )  

can be written as 
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F’T1(u) = inf {z : F,(z) 2 u } ,  
the copula evaluated at Fl(zl), Fz(zz) ,  ..., F d ( z d )  can be rewritten as 

Sklar’s theorem [lo91 states this result in a more formal mathematical way 
(see Nelsen [85]). Essentially, Sklar’s theorem states that for any joint distri- 
bution function F, there is a unique copula C that satisfies 

F(z1, ... , z d )  = C(Fl(Zl), ..., F d ( 2 d ) ) .  

Conversely, for any copula C and any distribution functions Fl (XI), Fz(z2), 
..., Fd(zd), the function C(F1(zl), ..., Fd(zd) )  is a joint distribution function 
with marginals Fl(z1), Fz(zz), ..., Fd(zd).’ 

Sklar’s theorem proves that in examining multivariate distributions, we 
can separate the dependence structure from the marginal distributions. Con- 
versely, we can construct a multivariate joint distribution from (i) a set of 
marginal distributions, and (ii) a selected copula. The dependence struc- 
ture is captured in the copula function and is independent of the form of 
the marginal distributions. This is especially useful in typical situations en- 
countered in operational risk. Typically in practice, distributions of losses of 
various types are identified and modeled separately. There is often very little 
understanding of possible associations or dependencies among different risk 
type. However, there is a recognition of the fact that there may be linkages. 
Sklar’s theorem allows us to experiment with different copulas while retaining 
identical marginal distributions. 

In the rest of this chapter, we focus on bivariate copulas, or equivalently, on 
dependency structures between pairs of random variables. In the multivari- 
ate case, we will only be considering pairwise dependence between variables, 
reducing consideration to the bivariate case. It should be noted that in multi- 
variate models, there could be higher-level dependencies based on interactions 
between three or more variables. From a practical point of view, this level 
of dependence is almost impossible to observe without vast amounts of data. 
Hence, we restrict consideration to the bivariate case. 

In the bivariate case, it is interesting to note from basic probability argu- 
ments that 

For pedagogical reasons,we consider only distributions of the continuous type. It is possible 
to extend Sklar’s theorem to distributions of all types. However, this requires more tech- 
nical detail in the presentation. Furthermore, in operational risk modeling, it is generally 
sufficient to consider that  the distributions of losses are of the continuous type. 
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Pr (Ui > ui, UJ > u J )  = 1 - ui - uj + C(ui,uj). 
Then we have 

C(ui, uj) = ui + uj - 1 + Pr (Ui > ui, Uj > uj) 
> u z + u j - l .  (8.1) 

From inequality (8.1) and the fact that ui + uj - 1 can be negative, we see 
that a lower bound on the copula cdf is 

C(ui,uj) >max{O,u i+u j - l } .  (8.2) 

The lower bound corresponds to the copula of the joint random variable 
(U, 1 - U )  the “countermonotonic” copula in which the random variables are 
perfectly negatively dependent. It is called the Frechet lower bound. The 
copula density has no support in the lower left region of the unit square. 

The corresponding Frkchet upper bound can be obtained from the simple 
fact that both 

and 
Pr(Ui 5 ui,Uj 5 uj) 5 Pr(Uj 5 uj) = uj 

Pr (Ui 5 ui, Uj 5 uj) 5 min {ui,uj}. 
so that 

Thus we have Frkchet bounds 

max{O,ui+uj-l} sC(ui ,u j )  <min{ui,uj}. 

It should also be noted that copulas are invariant under strictly increasing 
transformations of the underlying random variables. Because the copula links 
the ranks of random variables, transformations that preserve the ranks of 
random variable will also preserve the copula. For example, it makes no 
difference whether one models the random variables X j  or their logarithms 
ln(Xj). In financial fields, this is particularly important because the same 
copula applies to both prices as it does to (continuously compounded) returns. 
The resulting copulas for the multivariate distributions are identical. 

Classical statistical analysis of multivariate distributions involved the mul- 
tivariate distribution directly. One feature of these multivariate distributions 
is that all the marginals are of the same type, but with possible different pa- 
rameter values. Hence, the distributions are typically described accordingly, 
for example, multivariate normal, multivariate t ,  etc. The multivariate dis- 
tribution is usually analyzed directly without reference to the corresponding 
copula that exists in the multivariate distribution. 

The copula approach allows us to separate the selection of the marginal 
distributions from the selection of the copula. The marginal distributions 
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contain the information of the separate risks. The copula contains the infor- 
mation about the structure of dependency. The marginals contain information 
for the separate risk types and do not need to be of the same type. A good 
general introduction to copulas can be found in the article by Frees and Valdez 

j411. 

8.3 MEASURES OF DEPENDENCY 

It is well known that the linear correlation coefficient is a function of the 
marginal distributions. For example, changing the form of the marginals 
will necessarily change the value of the correlation coefficient. In describing 
dependency using copulas, it would be much more natural to  have dependency 
measures that depend only on the copula and not on the marginals, because 
the copula does not depend on the form of the marginals and dependency is 
captured exclusively in the copula. 

Fortunately, there are such measures of dependency available. The two 
most popular measures of association are Spearman’s rho, and Kendall’s tau 
which were originally developed in the field of non-parametric statistics. 

8.3.0.1 Spearman’s rho 

Definition 8.1 Consider a continuous bivariate random variable ( X I ,  X2) 
with marginal distributions FI(x1) and Fz(x2). The measure of association, 
Spearman’s rho, pS(Xl,Xz), is given by 

where p denotes (linear) correlation. 

Thus Spearman’s rho represents the ordinary linear correlation between the 
variables U and V, where the U and V are the transformed random variables 
U = Fl(X1) and V = F2(X2). Because U and V are both Uniform (0,l)  
random variables with mean 1/2 and variance 1/12, we can rewrite Spearman’s 
rho as 

E [~l(X1)~2(X2)1 - E[Fl(Xl)IE[F2(X2)1 
Jvar(~l(~*))var(~z(~z)) 

ps(X1, X2) = 

= 12E [F~(X~)F~(XZ)] - 3. 

In terms of copulas, Spearman’s rho is then 

ps(X1, X2) = 12E [UV] - 3 

= 12 l1 UV dC(zl, 2)) - 3 

r l  r l  

= 12 C(u, v) du dv - 3. 
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Spearman’s rho is the (linear) correlation coefficient between the integral 
transforms of the underlying random variables. This justifies the description 
of ps as the Spearman’s rank correlation coefficient. However, Kendall’s tau 
has become more popular in connection with modeling using copulas. The 
will be seen later in connection with Archimedean copulas. 

8.3.0.2 Kendall’s tau 

Definition 8.2 Consider two independent and identically distributed contin- 
uous bivariate random variables ( X I ,  X2)  and ( X ; ,  X ; )  with marginal distri- 
bution Fl(x1) for X I  and X y  and marginal distribution Fz(x2) f o r  X2 and 
X ; .  The measure of association, Kendall’s tau, T K ( X I ,  X2) ,  is given by  

T K ( x I , x 2 )  = P r [ ( X 1 -  X ; ) ( X z  - X,”)  > 0 ] - P r [ ( X 1 -  X;) (XZ - X,”) < 01. 

The first term measures concordance, in the sense that for each of the two 
dimensions, the differences between the random variables have the same sign. 
The second term then measures discordance. From the definition, it is easy 
to see that Kendall’s tau can be rewritten as 

TK(x1,XZ)  = E [sign(X1 - X ; ) ( X 2  - X,”)] . (8.3) 

We now obtain an expression for Kendall’s tau in terms of the copula 
function as follows: 

r ~ ( X 1 ,  X,) = Pr [ (XI  - X ; ) ( X z  - X,”) > 01 - Pr  [ (XI  - X;) (X2  - X,”) < 01 
= Pr  [ (XI - X ; ) ( X z  - X l )  > 01 

-{1-Pr[(X1-X;)(X2-X,”)>0]} 

because the random variables are of the continuous type. From this 

T K ( X ~ ,  X2)  = Pr  [ (XI - X ; ) ( X 2  - X ; )  > O] - Pr  [ (XI  - X ; ) ( X ,  - X ; )  < 0] 
= 2Pr [ ( X I  - X;) (X2  - X,”) > O] - 1. 

Because the random variables are interchangeable, 

1 
= 4 1 ’ 1  C ( 2 1 , U )  dC(u ,v) -1 .  
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Thus, in terms of the copula function for bivariate distributions C(u,u) 
with Uniform (0,l)  marginals, Kendall’s tau is given by 

If the copula is absolutely continuous, then this can be rewritten as 

8.4 TAIL DEPENDENCE 

In recent years in the risk management field, there has been much focus not 
only on the question of the general behavior of random variables but specif- 
ically on behaviors in the tail of the distribution. This is because extreme 
outcomes are among the main concerns of those who have responsibility to 
manage risk and potential volatility. When there is dependence between loss 
random variables, there is also a need to understand the joint behavior when 
extreme outcomes occur. It has been observed that if extreme outcomes occur 
for one risk, there may be an increased chance of extreme outcomes for other 
risks. It has been suggested that, although in LLnormal times” there may be 
little correlation, in “bad times” there may be significant correlation between 
risks. (“Everything seems to go wrong at once.”) Hence, this is especially im- 
portant in risk management where the focus of attention is on the tail. The 
concept of tail dependence addresses this question. Measures of tail depen- 
dence have been developed to  evaluate how strong the correlation is in the 
upper (or lower) tails. 

Consider two continuous random variables X and Y with marginal distri- 
butions F ( z )  and G(y). The index of upper tail dependence X u  is defined 
as 

Xu = lim Pr  { X  > F-’(u) I Y > G-’(u)}.  
u-1 

Roughly speaking, the index of upper tail dependence measures the chances 
that X is very large if it is known that Y is very large, where “very large” 
is measured in terms of equivalent quantiles. This can be seen simply by 
rewriting X u  as 

X u  = lim Pr{F(X) > u I G ( Y )  > u) 
U“ 1 

= l i m P r { U > u j V > u }  
u-1 

where U and V are both Uniform (0,l) random variables. 
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This can be further rewritten as 

1 - Pr{U 5 u} - Pr{V 5 u} +Pr{U 5 u,V 5 u} 
X u  = lim 

u-1 1 -Pr{V 5 u} 
1 - 2u + C(u,u)  

= lim 
21-1 1 - u  

This formula demonstrates that tail dependency of X and Y as defined 
above can be measured by looking at the copula rather than the original 
distribution. The trick was to define tail dependence in terms of quantiles, 
which is completely natural in any case. Because Xu was originally defined as 
a probability, it takes on values ranging from 0 to 1. 

An index of lower dependence can be similarly defined. It is easily obtained 
by substituting 1 - u for u in the above, leading to 

XL = lim Pr{U 5 u I V 5 u }  
u-0 

u-0 u 

However, because our focus is on the right-tail of losses, we will not consider 
it further except occasionally to compare it with the index of upper tail de- 
pendence. The index of tail dependence is a very useful measure in describing 
a copula and in terms of comparing copulas. 

8.5 ARCHIMEDEAN COPULAS 

Archimedean copulas of dimension d are those of the form 

where 4(u) is called a generator. The generator is a strictly decreasing, 
convex, and continuous function that maps [0, I] into [0, m] with d(1) = 0. In 
addition, the inverse of the generator 4-l ( t )  must be completely monotonic 
on [0, m]. A function f(x) is completely monotonic on [a, b] if it satisfies 

m 
(-l)"-f(x) 2 0, n = 1,2,3, .... 

dxn 
From the definition of the bivariate Archimedean copula distribution c (u, v), 

its support is the area in the unit square where 4(u) + 4(v) 5 4(0). Thus if 
Cp(0) = a, then the support is the entire unit square. Otherwise, it may be 
possible that a contiguous region in the lower left region of the unit square 
has C(u,v)  = 0. The upper boundary of this region is the curve defined by 
4(u) + 4(v) = 4m. 
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The paper by Genest and McKay [45] introduced bivariate (d = 2) Archimedean 
copulas and proved that it is also possible to characterize the measure of as- 
sociation, Kendall’s tau, directly from the generator function of a copula as 

This allows very easy comparisons of Archimedean copulas based solely on 
their generators. 

The upper tail dependence of bivariate Archimedean copulas (or any two 
dimensions of a multivariate Archimedean copula) can be obtained from 

1 - 2 u + C ( u , u )  
X u  = lim 

u-1 1 - u  

or from the copula generator because 

1 - 2u + 4-l[2d(u)] 
X u  = lim 

U“ 1 1 - u  

= 2 - 2 lim ”-’ [24(u)1 using L’HBpital’s rule 
u-1 LL du 4- [4(41 

provided that limt,o $@-‘(t) = -w. If limt+o &4-’(t) # -m, then there 
is no upper tail dependence. It is also interesting to note that in similar 
fashion the corresponding index of lower tail dependence has the form 

provided that limt,, -$4-’(t) = 0. Otherwise, there is no lower tail depen- 
dence. 

Independence copula 
For n independent random variables with common cumulative distribution 

function F ( z j ) ,  j = 1,2 ,  ..., d, the joint cdf is given by n;=lF(zj). The 
corresponding copula is called the independence (or product) copula and is 
given by 

d 

C(u1, ..., ud) = n u j .  
j=1 

It is an Archimedean copula with generator 4(u) = -1nu. This trivial 
example is only included here to  illustrate the fact that is Archimedean. The 
measure of association, Kendall’s tau can be computed to be 0 as we should 
expect due to independence. 
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Note that in the bivariate case 

1 - 2u+C(u,u) 
X - lim 

- u-1 1 - u  
1 - 221 + uz 

= lim 

= lim 1 - u 

= 0, 

u-1 1 - u  

u-1 

demonstrating that independence does indeed result to no upper tail depen- 
dence as we would expect from the definition of independence. The corre- 
sponding index of lower tail dependence is also equal to 0. Note that 

Cook-Johnson copula 
The Cook-Johnson copula [23] has generator #(u) = u-' - 1, 8 > 0. Hence, 

the Cook-Johnson copula is the form 

C(ul,  ..., ud) = (u;' + ... + ud' - d + 1)-' . 

The Cook-Johnson copula is tuned through a single parameter 8 which 
can be estimated from data using a statistical procedure, such as maximum 
likelihood. In a bivariate framework, the Cook-Johnson copula is also known 
as the Clayton copula [22]. 

The measure of association, Kendall's tau, is easily calculated to be 

The (pairwise) index of upper tail dependence is X u  = 0 because 

It does, however, have lower tail dependence of XL = 2-ll'. The density of 
the Clayton copula is shown in Figure 8.1. The left panel shows the contours 
of the density function. The right panel shows a simulation of points from the 
Clayton copula. Note that there is a strong correlation in the lower left corner 
of each panel. This indicates the lower tail dependence. In contrast, in the 
upper right corner, there is no evidence of dependence. The corresponding 
Clayton copula pdf is shown in Figure 8.2. 
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Fig. 8.1 Clayton copula density (6 = 3) 

Fig. 8.2 Clayton copula pdf (6 = 3) 
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fig. 8.3 Gumbel copula density (0 = 3) 

Gumbel-Hougaard copula 
The Gumbel-Hougaard copula[49] has generator 

Hence, the Gumbel-Hougaard copula is the form 

The Gumbel-Hougaard copula is also tuned through a single parameter 6. 

The measure of association, Kendall's tau, is easily calculated to  be 
In the bivariate case, it is known as the Gumbel copula [49]. 

T K ( X ~ , X ~ )  = 1 - l/6. 

The index of upper tail dependence is X u  = 2 - 2 ' /@.  This upper tail de- 
pendence is evident in the upper right corner of each panel in Figure 8.3. 
The corresponding Gumbel copula pdf is shown in Figure 8.4. It is a bit 
difficult to see the tail dependence directly from this figure. The upper tail 
dependence is captured in the narrowness and steepness of the ridge in the 
upper right-hand corner. It should also be noted that there is no upper tail 
dependence when 6 = 1, and that tail dependence approaches 1 as 6 becomes 
large. 

Frank copula 
The Frank copula [39] has generator 
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Fig. 8.4 Gumbel copula pdf (6 = 3) 

Hence, the Frank copula is the form 

The Frank copula is also tuned through a single parameter 6. The measure 
of association, Kendall’s tau, for the Frank copula is 

@ u  d u +  - I ) ,  
2 

T K ( X 1 , X 2 )  = 1 - 

which is a rather complicated function. 

copula has no upper tail dependence. This can be seen from the fact that 
The index of upper tail dependence is X u  = 0, indicating that the Frank 

1 - ee # -m. lim --4-’(t) = - lim - In [I - (1 - e-@) e-t]  = - 
t-O dt  t-io 6 t? 

d 1 

The lack of tail dependence can be seen from both Figures 8.5 and 8.6, where 
there is no concentration of points in the upper right and lower left corners. 
Frees, Carriere, and Valdez [40] use Frank’s copula for a study of joint life- 
times. 

Ali-Mikhail-Haq copula 
The Ali-Mikhail-Haq (AMH) copula [4] has generator 

1 - 6(1 - u) d(u )  = In , - 1 < 8 < 1 .  
U 
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Fig. 8.5 Frank copula density (0 = 3) 

Fig. 8.6 Frank copula pdf (0 = 2) 
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f ig. 8.7 Ali-Mikhail-Haq copula density (6 = 0.8) 

Hence, the AMH copula is the form 

The AMH copula is also tuned through a single parameter 0. The measure of 
association, Kendall's tau, for the AMH copula can be calculated as 

The index of upper tail dependence is X u  = 0 because 

This is also evident from Figures 8.7 and 8.8 by examining the upper right- 
hand corners. 

Joe copula 
The Joe copula [61] has generator 

+(u) = -In [I - (1 - u ) ~ ]  , e 2 1. 

The Joe copula has the form 

110 d 

C ( U 1 ,  ..., U d )  = 1- c(1 - Uj)' - n ( l - U j ) ' ]  . ir j = 1  j=1 

Note that 4-'(t) = 1-(1 - e-t)"e, which has aslope of -co as t -+ 0. The 
measure of association, Kendall's tau, is very complicated, with no convenient 
closed form. With a bit of calculus, it can be shown that the index of upper 
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Fig. 8.8 Ali-Mikhail-Haq copula pdf (0 = 0.8) 

0 0 2  0 4  06 0.8 1 0 0 2  0 4  06 0 8  1 
U U 

fig. 8.9 Joe copula density (0 = 2) 
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fig. 8.10 Joe copula density (6 = 2) 

tail dependence is 2 - 2'/@. The concentration in the upper right-hand corner 
is seen in both Figures 8.9 and 8.10. 

BB1 copula 
The BB1 copula [62] is a two-parameter copula with generator 

qqu) = ( U P  - l)Q, 6 > 0,  e 2 1. 

It has the form 

The upper tail dependence can be calculated to be 2 - 2'/@. Both upper 
and lower tail dependence can be seen in Figures 8.11 and 8.12. 

BB3 copula 
The BB3 copula [62] is a two-parameter copula with generator 

It has the form 
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Fig. 8.11 BB1 copula density (Q = 2, 6 = 1.5) 

Fig. 8.12 BB1 copula pdf (Q = 2, b = 1.5) 
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Fig. 8.13 BB3 copula density (0 = 2, 6 = 1.5) 

Fig. 8.14 BB3 copula pdf (6' = 2, b = 1.5) 

The BB3 copula has upper tail dependence of Xu = 2 - 2'-l/'. The upper 
tail dependence is evident in Figures 8.13 and 8.14. 

BB6 copula 
The BB6 copula [62] is a two-parameter copula with generator 
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Fig. 8.15 BB6 copula density (6 = 2, 6 = 2) 

Fig. 8.16 BB6 copula pdf (6 = 2, 6 = 2) 

It has the form 

The BB6 copula has upper tail dependence of X u  = 2 - 2'/(06). See Figures 
8.15 and 8.16 to confirm the tail dependence visually. 
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Fig. 8.17 BB7 copula density (6 = 2.7, b = 1.8) 

BB7 copula 
The BB7 copula [62] is a two-parameter copula with generator 

It has the form 

The BB7 copula has upper tail dependence of 2 - 21/6 .  The tail dependence 
is evident from Figures 8.17 and 8.18. 

8.6 ELLIPTICAL COPULAS 

Elliptical copulas are those associated with elliptical distributions. The two 
main models are the Gaussian copula associated with the multivariate normal 
distribution and the (Student) t copula associated with the multivariate t 
distribution. 

Gaussian copula 
The Gaussian copula is given by 

c ( U 1 ,  ..., U d )  = @p (a-1 ( U l ) ,  ..., @--l ( U d ) )  

where @(z) is the cdf of the standard univariate normal distribution and 
@p(q, ..., zd) is the joint cdf of the standard multivariate normal distribution 
(with zero mean and variance of 1 for each component) and correlation matrix 



254 MULTIVARIATE MODELS 

Fig. 8.18 BB7 copula pdf (6 = 2.7, 6 = 1.8) 

P. Because the correlation matrix contains d(d - 1)/2 pairwise correlations, 
this is the number of parameters in the copula. There is no simple closed 
form for the copula. In the two-dimensional case (with only one correlation 
element p), the Gaussian copula can be written as 

It should be noted that if all the correlations in P are zero, then the Gaussian 
copula reduces to the independence copula. 

The measure of association, Kendall’s tau, has been shown to be 

2 
T K ( X ~ ,  X 2 )  = - arcsin ( p )  

7T 

by Fang and Fang [34] in the context of a much larger class. Then in the 
multivariate case, the pairwise Kendall’s tau is 

2 ~ x ( X i , X j )  = - arcsin(pij). 
7T 

The Gaussian copula has no tail dependence ( X u  = XL = 0) except in the 
special case with p = 1, where there is perfect correlation resulting in indices 
of upper and lower tail dependence of 1. It is possible to construct copulas 
that are closely related by using finite mixtures of normal distributions rather 
than normal distributions. However, this approach does not introduce tail 
dependence. 
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Fig. 8.19 Gaussian copula density ( p  = 0.6) 

Fig. 8.20 Gaussian copula pdf ( p  = 0.6) 

Figures 8.19 and 8.20 illustrate the Gaussian copula density function. It is 
interesting to note that it appears that there is some tail dependence, However, 
the definition of tail dependence is asymptotic in nature, that is, when it is a 
limiting function as the argument goes to either 0 or 1. 

The t copula 
The t copula is given by 

c (u1, ..., U d )  = t;,; ( t i '  ( U l )  , '", t i 1  (%I) 
where t v ( x )  is the cdf of the standard univariate t distribution with v degrees 
of freedom and tv,p(zl, ..., Q) is the joint cdf of the standard multivariate t 
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Fig. 8.21 t copula density ( p  = 0.3, v = 4) 

distribution with v degrees of freedom for each component and where P is a 
correlation matrix. In the two-dimensional case (with only one correlation 
element p ) ,  the t copula can be written as 

The measure of association, Kendall’s tau, has been shown by Lindskog et al. 
[77] to be 

T K ( X ~ , X ~ )  = - arcsinp 

identical to that of the Gaussian copula. It should be noted that, unlike the 
Gaussian copula, having the correlation p equal to zero does not result in the 
independence copula. The t copula has upper tail dependence of 

2 
7r 

Note that for p = 0, the upper tail dependence is not zero. 

pairwise index of upper tail dependence for dimensions i and j as 
In the multivariate case, we can obtain pairwise Kendall’s tau and the 

2 
T K ( X , , X ~ )  = - arcsinpi, 

7-r 

Figures 8.21 and 8.22 illustrate the t copula density function. It is inter- 
esting to note that the density looks a lot like the Gaussian density but much 
more concentrated in the upper and lower corners. This feature has made the t 
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Fig. 8.22 t copula pdf ( p  = 0.3, v = 4) 

copula the most popular alternative to the Gaussian copula. For a fixed corre- 
lation coefficient p, the degree of upper tail dependence can be tuned through 
the single parameter v, known as the “number of degrees of freedom,” a term 
that comes from the application of the t distribution in statistical sampling 
theory. 

8.7 EXTREME VALUE COPULAS 

Another very important class of copulas is the extreme value class which is 
associated with the extreme value distributions discussed in Chapter 7. This 
class of copulas is defined in terms of the scaling property of extreme value 
distributions. A copula is an extreme value (EV) copula if it satisfies 

c (u?, ..., U Z )  = C” (u1, ..., U d )  

for all ( ~ 1 ,  ..., ud) and for all n > 0. This scaling property results in the EV 
copula having the stability of the maximum (or max-stable) property. To see 
this, we consider the bivariate case. Suppose that ( X I )  Y1) , ( X 2 ,  Yz) , ..., ( X n ,  Y,) 
are n independent and identically distributed random pairs (bivariate ran- 
dom variables) drawn from joint distribution F ( z ,  y), with marginal distrib- 
utions F x ( z )  and Fy(y)  and copula C ( x ,  y). Let M X  = max(X1, ..., X,) and 
M y  = max(Y1, ...) Yn) denote the component-wise maxima. Then the distrib- 
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ution function of the random pair (M.x, My) is 

Pr (Mx 5 z, M y  5 y) = Pr ( X i  5 z, Yi 5 y, for all i )  
= F" (2 ,  y) . 

Similarly, the marginal distributions of MX and M y  are F;4-(z) and F; (y) . 
Then because 

E(GY) = c(Fx(z),FY(Y)L 
we can write the joint distribution of the maxima as 

F" (z,y) = C" (FX(Z),FY(Y)) 

Therefore the copula of the maxima is given by 

cm, (.I, .2) = C"(.:? u y l  
or equivalently 

Cm, (.;, u;) = C n ( ~ l ,  ~ 2 ) -  

Thus if the copula for the maxima Cm,, is of the same form as the orig- 
inal copula C,  then the copula has the max-stable property. Extreme value 
copulas are then defined as those copulas with the max-stable property. Max- 
stability means that the copula associated with the random pair (Mx, M y )  
is also C(x ,  y). The result is illustrated for two dimensions above, but can be 
extended to the d-dimensional copula. The dependency of the random pair 
of maxima is very important in risk modeling. A positive dependency can 
be very dangerous because an extreme outcome of one risk means a greater 
chance of a simultaneous extreme outcome of the other. In operational risk, 
it is conceivable that there may be a common underlying cause driving both 
extremes. 

In two dimensions, it can be shown [62] that the EV copula can be repre- 

where A is a dependence function satisfying 

1 
A(w) = 1 max [x (1 - w), w (1 - x)] dH(z) 

for any w E [O, 11 and H is a distribution function on [O, 11. It turns out that 
A(w) must be a convex function satisfying 

max(w, 1 - w) 5 A ( 2 0 )  5 1, 0 < w < 1 

and that any differentiable, convex function A(w) satisfying this inequality can 
be used to construct a copula. Note that the independence copula results 
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from setting A(w) to its upper bound A(w) = 1. At the other extreme, if 
A(w) = max(w, 1 - w), then there is perfect correlation, and hence perfect 
dependency with C (u, u) = u. 

It is convenient to  write the index of upper tail dependence in terms of the 
dependence function A(w) .  The result is that 

1 - 2 u + C ( u , u )  

1 - 2u + u2A(1/2) 

Xu = lim 

= lim 

u-1 1 - u  

u-1 1 - u  
= lim 2 - 2A( 1 / 2 ) ~ ' ~ ( ~ / ' ) - ~  

u-1 

= 2 - 2A(1/2). 

If a copula is specified through A(w), then the index of upper tail depen- 
dency is easily calculated. There are several well-known copulas in this class. 

Gumbe l  copula  
The Gumbel copula was discussed previously as an example of an Archimedean 

copula. It is also an extreme value copula with dependence function 

From this, by setting w = l /2 ,  the Gumbel copula is seen to  have index of 
upper tail dependence of 2 - 2'1'. 

Galambos  copula  
The Galambos copula [42] has the dependence function 

Unlike the Gumbel copula, it is not Archimedean. It has index of upper tail 
dependence of 2Y1/'. The bivariate copula is of the form 

An asymmetric version of the Galambos copula with three parameters has 
dependence function 

0 5 a,p 5 1. 

It has index of upper tail dependence of (a-' +p-')-'/'. The one-parameter 
version is obtained by setting a 5 ,B = 1.The bivariate asymmetric Galambos 
copula has the form 
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Fig. 8.23 Galambos copula density (6 = 2.5) 

fig. 8.24 Galambos copula pdf (6 = 2.5) 
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Figures 8.23 and 8.24 demonstrate the clear upper tail dependence. 

Hiisler and Reiss copula 
The Husler and Reiss copula [57] has dependence function 

where Q ( x )  is the cdf of the standard normal distribution. When w = 1/2, 
A(1/2) = @ ( l / O ) ,  resulting in an index of upper tail dependence of 2-2@(1/6). 

Tawn copula 
The Gumbel copula can be extended to  a three-parameter asymmetric ver- 

sion by introducing two additional parameters, CY and /3, into the dependence 
function [114] 

A(w) = (1 - a ) w + ( l - p )  (1  - W ) + { ( C Y W ) ~ +  [@(I - w)]”’} , 0 5 a , P  5 1. 

This is called the Tawn copula. Note that the one-parameter version of A(w) 
is obtained by setting Q = /3 = 1. The bivariate asymmetric Gumbel copula 
has the form 

BB5 copula 
The BB5 copula [62] is another extension of the Gumbel copula but with 

only two parameters. Its dependence function is 

The BB5 copula has the form 
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Fig. 8.25 BB4 copula density (6 = 3, 6 = 1.2) 

8.8 ARCHIMAX COPULAS 

Archimedean and extreme value copulas can be combined into a single class 
of copulas called Archimax copulas. Archimax copulas are represented as 

where 4(u) is a valid Archimedean generator and A ( w )  is a valid dependence 
function. This 
general setup allows for a wide range of copulas and therefore shapes of dis- 
tributions. The BB4 copula is one such example. 

It can be shown [20] that that this is itself a valid copula. 

BB4 copula 
The BB4 copula [62] is an Archimax copula with 

6 
4 ( U )  = u- - 1, K9 2 0 ,  

as with the Clayton copula and 

A(w)  = 1 - {wP6 + (1 - w ) - ~ } - " ' ,  K9 > 0 ,  6 > 0,  

leading to the copula of the form 

It is illustrated in Figures 8.25 and 8.26. 
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Fig. 8.26 BB4 copula pdf (6 = 2, 6 = 1.2) 

8.9 EXERCISES 

8.1 Prove that the Clayton, Frank, and Ali-Mikhail-Haq copulas have no 
upper tail dependence. 

8.2 Prove that the Gumbel copula has index of upper tail dependence equal 
to 2 - 2-‘f@. 

8.3 Prove that the Gaussian copula has no upper tail dependence. Hint: 
Begin by obtaining the conditional distribution of X given Y = y from the 
bivariate normal distribution. 

8.4 Prove that the t copula has index of upper tail dependence 

xu = 2 t ” + l ( - / Y )  l + P  u + l )  

Hint: Begin by showing that if ( X ,  Y )  comes from a bivariate t distribution, 
each with v degrees of freedom, conditional on Y = y, the random variable 

v + l  x - p y  J- V + Y 2  d iq?  
has a t distribution with v + 1 degrees of freedom. 

8.5 For the EV copula, show that if A(w)=max(w, 1 - w) , the copula is the 
straight line C (u, u) = u. 
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8.6 For the bivariate EV copula, show that A (w) = - 1nC (e-", e-('-")) . 

8.7 Prove that the index of upper tail dependence of the Gumbel copula is 
2 - 2118. 
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Review of mathematical 
statistics 

Nothing is as easy as it looks. 
-Murphy 

9.1 INTRODUCTION 

In this chapter, we review some key concepts from mathematical statistics. 
Mathematical statistics is a broad subject that includes many topics not cov- 
ered in this chapter. For those topics that are covered in this chapter, it is 
assumed that the reader has had at least some prior exposure. The topics 
of greatest importance for constructing models are estimation and hypothesis 
testing. Because the Bayesian approach to statistical inference is often either 
ignored or treated lightly in introductory mathematical statistics texts and 
courses, it receives a more in-depth coverage in this text in Section 10.5. 

We begin by assuming that we have some data; that is, we have a sam- 
ple. We also assume that we have a model ( i e ,  a distribution) that we wish 
to calibrate by estimating the “true” values of the parameters of the model. 
This data will be used to estimate the parameter values. The formula form of 
an estimate is called the estimator. The estimator is itself a random vari- 
able because it is a function of random variables, sometimes called a random 
function. The numerical value of the estimator based on data is called the 
estimate. The estimate is a single number. 

Because the parameter estimates are based on a sample from the population 
and not the entire population, they will not be exactly the true values, but 
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only estimates of the true values. In applications, it is important to have an 
idea of how good the estimates are by understanding the potential error of the 
estimates. One way to express this is with an interval estimate. Rather than 
focusing on a particular value, a range of plausible values can be presented. 

9.2 POINT ESTIMATION 

9.2.1 Introduction 

Regardless of how a model is estimated, it is extremely unlikely that the 
estimated model will exactly match the true distribution. Ideally, we would 
like to be able to measure the error we will be making when using the estimated 
model. But this is clearly impossible! If we knew the amount of error we had 
made, we could adjust our estimate by that amount and then have no error 
at all. The best we can do is discover how much error is inherent in repeated 
use of the procedure, as opposed to  how much error we actually make with our 
current estimate. Therefore, this section is about the quality of the answers 
produced from the procedure, not about the quality of a particular answer. 

When constructing models, there are a number of types of error. Several 
will not be covered here. Among these are model error (choosing the wrong 
model) and sampling frame error (trying to draw inferences about a popula- 
tion that differs from the one sampled). An example of model error is selecting 
a Pareto distribution when the true distribution is Weibull. An example of 
sampling frame error is using sampled losses from one process to estimate 
those of another. 

The type of error we can measure is the error that is due to  the use of a 
sample from the population to make inferences about the entire population. 
Errors occur when the items sampled do not represent the population. As 
noted earlier, we cannot know whether the particular items sampled today do 
or do not represent the population. We can, however, estimate the extent to 
which estimators are affected by the possibility of a nonrepresentative sample. 

The approach taken in this section is to consider all the samples that might 
be taken from the population. Each such sample leads to an estimated quan- 
tity (for example, a probability, a parameter value, or a moment). We do not 
expect the estimated quantities to always match the true value. For a sensible 
estimation procedure we do expect that for some samples the quantity will 
match the true value, for many it will be close, and for only a few it will be 
quite different. If we can construct a measure of how well the set of potential 
estimates matches the true value, we have a good idea of the quality of our es- 
timation procedure. The approach outlined here is often called the classical 
or frequentist approach to estimation. 
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9.2.2 

9.2.2.1 Introduction There are a number of ways to measure the quality of 
an estimator. Three of them are discussed here. Two examples will be used 
throughout to  illustrate them. 

Example 9.1 A population contains the values 1, 3, 5, and 9. W e  want to 
estimate the population mean by  taking a sample of size 2 with replacement. 

Example 9.2 A population has the exponential distribution with a mean of 
8. W e  want to estimate the population mean by taking a sample of size 3 with 
replacement. 

Measures of quality of estimators 

Both examples are clearly artificial in that we know the answers prior to 
sampling (4.5 and d ) .  However, that knowledge will make apparent the error 
in the procedure we select. For practical applications, we will need to be able 
to  estimate the error when we do not know the true value of the quantity 
being estimated. 

9.2.2.2 Unbiasedness When constructing an estimator, it would be good if, 
on average, the errors we make cancel each other out. More formally, let 
8 be the quantity we want to estimate. Let 6 be the random variable that 
represents the estimator and let E(eld) be the expected value of the estimator 
8 when 6 is the true parameter value. 

Definition 9.3 A n  estimator, 8, is unbiased if E(618) = 8 for all 8. The 
bias is biase(8) = E(6jd) - 8. 

The bias depends on the estimator being used and may also depend on the 
particular value of d. 

Example 9.4 For Example 9.1 determine the bias of the sample mean as an 
estimator of the population mean. 

The population mean is 8 = 4.5. The sample mean is the average of the two 
observations. It is also the estimator we would use when using the empirical 
approach. In all cases, we assume that sampling is random. In other words, 
every sample of size n has the same chance of being drawn. Such sampling 
also implies that any member of the population has the same chance of being 
observed as any other member. For this example, there are 16 equally likely 
ways the sample could have turned out. They are listed in Table 9.1. 

This leads to the 16 equally likely values for the sample mean appearing in 
Table 9.2. 

Combining the common values, the sample mean, usually denoted X, has 
the probability distribution given in Table 9.3. 

The expected value of the estimator is 

E(X) = [1(1) + 2(2) + 3(3) + 4(2) + 5(3) + 6(2) + 7(2) + 9(1)]/16 = 4.5 
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Table 9.1 The 16 possible outcomes in Example 9.4 

Table 9.2 The 16 possible sample means in Example 9.4 

1 2 3 5 2 3 4 6 
3 4 5 7 5 6 7 9 

Table 9.3 Distribution of sample mean in Example 9.4 

X 1 2 3 4 5 6 7 9 
p,y(x)  1/16 2/16 3/16 2/16 3/16 2/16 2/16 1/16 

and so the sample mean is an unbiased estimator of the population mean for 
this example. 0 

Example 9.5 For Example 9.2 determine the bias of the sample mean and 
the sample median as estimators of the population mean. 

The sample mean is X = (XI + X2 + X3)/3, where each Xj represents one 
of the observations from the exponential population. Its expected value is 

E(X) = E ( x1 + 
+ ”) = 4 [E(XI) + E(X2) + E(X3)] 

= $ ( e + e + e )  = e 

and therefore the sample mean is an unbiased estimator of the population 
mean. 

Investigating the sample median is a bit more difficult. The distribution 
function of the middle of three observations can be found as follows, using 
Y as the random variable of interest and X as the random variable for an 
observation from the population: 
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The probability density function is 

The expected value of this estimator is 

This estimator is clearly biased,' with biasy(6) = 56/6 - 6 = -6/6. On 
average, this estimator underestimates the true value. It is also easy to see that 
the sample median can be turned into an unbiased estimator by multiplying 
it by 1.2. 0 

For the problem in Example 9.2, we have found two estimators (the sample 
mean and 1.2 times the sample median) that are both unbiased. We will need 
additional criteria to decide which one we prefer. 

Some estimators exhibit a small amount of bias, which vanishes as the 
sample size goes to infinity. 

Definition 9.6 Let 8, be an estimator of 6 based on  a sample size of n. The 
estimator is asymptotically unbiased i f  

lim E(6,iO) = 6 
n - a  

for  all 0. 

Example 9.7 Suppose a random variable has the uniform distribution on the 
interval (0,O). Consider the estimator 6, = max(X1, . . . , X,). Show that this 
estimator is  asymptotically unbiased. 

Let Y, be the maximum from a sample of size n. Then 

'The  saniple median is not likely to  be a good estimator of the population mean. This 
example studies it for comparison purposes. Because the population median is 61112, the 
sample median is biased for the population median. 
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The expected value is 

6 n y n + l g n / *  = 
E(Yn16) = 1 n y n K n d y  = - 

n + l  n + l -  

As n + 00, the limit is 0, making this estimator asymptotically unbiased. 0 

9.2.2.3 Consistency A second desirable property of an estimator is that it 
works well for extremely large samples. Slightly more formally, as the sample 
size goes to infinity, the probability that the estimator is in error by more 
than a small amount goes to zero. A formal definition follows. 

Definition 9.8 A n  estimator is consistent (often called, in this con.text, 
weakly consistent) i f ,  for all 6 > 0 and any 6, 

A sufficient (although not necessary) condition for weak consistency is that 
the estimator be asymptotically unbiased and Var(6,) --+ 0. 

Example 9.9 Prove that, i f  the variance of a random variable is finite, the 
sample mean is a consistent estimator of the population mean. 

From Exercise 9.2, the sample mean is unbiased. In addition, 

l n  
n2 

Var ( X  ) 
n 

= - C v a r ( x j )  
j=1 

+ 0. - - 

The second step follows from assuming that the observations are independent.0 

Example 9.10 Show that the maximum observation from a uniform distrib- 
ution on  the interval (0,6) is a consistent estimator of 0. 

moment is 
From Example 9.7, the maximum is asymptotically unbiased. The second 

and then 

no2 2 

Var(Yn) = - - - + 0. n + 2  ne2 (::I) = ( n + 2 ) ( n + 1 ) 2  
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9.2.2.4 Mean-squared error While consistency is nice, many estimators have 
this property. What would be truly impressive is an estimator that is not only 
correct on average but comes very close most of the time and, in particular, 
comes closer than rival estimators. One measure for a finite sample is moti- 
vated by the definition of consistency. The quality of an estimator could be 
measured by the probability that it gets within 6 of the true v a l u e t h a t  is, by 
measuring Pr(j6,-8J < 6). But the choice of 6 is arbitrary, and we prefer mea- 
sures that cannot be altered to  suit the investigator’s whim. Then we might 
consider E(l6, - el), the average absolute error. But we know that working 
with absolute values often presents unpleasant mathematical challenges, and 
so the following has become widely accepted as a measure of accuracy. 

Definition 9.11 The mean-squared error ( M S E )  of an estimator is  

MSEi(6) = E[(6 - 6)’16]. 

Note that the MSE is a function of the true value of the parameter. An 
estimator may perform extremely well for some values of the parameter but 
poorly for others. 

Example 9.12 Consider the estimator 6 = 5 of an unknown parameter 8. 
The M S E  is (5 - 8)2, which is very small when 8 is near 5 but becomes poor 
for  other values. Of course this estimate is both biased and inconsistent unless 
0 is  exactly equal to 5. 

A result that follows directly from the various definitions is 

MSEi(8) = E{[6 - E(@) + E(@) - 812]8} = Var(618) + [biase(8)12. (9.1) 

If we restrict attention to only unbiased estimators, the best such could be 
defined as follows. 0 

Definition 9.13 A n  estimator, 6, is called a uniformly minimum vari- 
ance unbiased estimator ( U M V U E )  i f  i t  i s  unbiased and fo r  any true 
value of 8 there is no other unbiased estimator that has a smaller variance. 

Because we are looking only at unbiased estimators, it would have been 
equally effective to  make the definition in terms of MSE. We could also gen- 
eralize the definition by looking for estimators that are uniformly best with 
regard to MSE, but the previous example indicates why that is not feasible. 
There are a few theorems that can assist with the determination of UMVUEs. 
However, such estimators are difficult to determine. On the other hand, MSE 
is still a useful criterion for comparing two alternative estimators. 

Example 9.14 For the problem described in Example 9.2 compare the MSEs 
of the sample mean and 1.2 times the sample median. 
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The sample mean has variance 

Var(X) - 62 ~- - 
3 3 '  

When multiplied by 1.2, the sample median has second moment 
00 

E[(1.2Y)2] = 1 . 4 4 1  y 2 i  (e-2y/8 - e-3y/8 

for a variance of 
1302 e2 

0 2  = - 38G2 -- 
25 25 >3' 

The sample mean has the smaller MSE regardless of the true value of 8. 
0 Therefore, for this problem, it is a superior estimator of 6. 

Example 9.15 For the unijorm distribution on  the interval (0,O) compare 
the MSE of the estimators 2X and [ (n+l) /n]  max(X1,. . . , X,).  Also evaluate 
the MSE ofmax(X1, ..., X,). 

The first two estimators are unbiased, so it is suffcient to compare their 
variances. For twice the sample mean, 

4 402 o2 
Var(2X) = - v a r ( x )  = - = -. 

n 12n 3n 

For the adjusted maximum, the second moment is 

( n +  no2 ( n +  1)202 ~- - 
E [ (FV,.)?] = 

- 
n2 n + 2  (n+2)n 

for a variance of 
( n +  1)202 O2 
(n + 2)n 

- 0  = 
n(n + 2) ' 

Except for the case n = 1 (and then the two estimators are identical), the one 
based on the maximum has the smaller MSE. The third estimator is biased. 
For it, the MSE is 
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(n  + l ) (n  + 2) ' 
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which is also larger than that for the adjusted maximum. 0 

9.3 INTERVAL ESTIMATION 

All of the estimators discussed to this point have been point estimators. 
That is, the estimation process produces a single value that represents our 
best attempt to determine the value of the unknown population quantity. 
While that value may be a good one, we do not expect it to  exactly match 
the true value. A more useful statement is often provided by an interval 
estimator. Instead of a single value, the result of the estimation process is 
a range of possible numbers, any of which is likely to  be the true value. A 
specific type of interval estimator is the confidence interval. 

Definition 9.16 A l O O ( 1  -a:)% confidence interval for a parameter 8 is a 
pair of random variables L and U computed f rom a random sample such that 
Pr(L 5 8 1. U )  2 1 - a: for all 8. 

Note that this definition does not uniquely specify the interval. Because the 
definition is a probability statement and must hold for all 6, it says nothing 
about whether or not a particular interval encloses the true value of 8 from a 
particular population. Instead, the level of confidence, 1-a, is a property of 
the method used to obtain L and U and not of the particular values obtained. 
The proper interpretation is that, if we use a particular interval estimator 
over and over on a variety of samples, a t  least l O O ( 1  - a:)% of the time our 
interval will enclose the true value. 

Constructing confidence intervals is usually very difficult. For example, we 
know that, if a population has a normal distribution with unknown mean and 
variance, a l O O ( 1  - a:)% confidence interval for the mean uses 

where s = dCy.-,(Xj - X ) 2 / ( n  - 1) and t a p ,  is the l O O ( 1  - a/2)th per- 

centile of the t distribution with b degrees of freedom. But it takes a great 
deal of effort to verify that this is correct (see, for example, [52], p. 214). 

However, there is a method for constructing approximate co@dence inter- 
vals that is often accessible. Suppose we have a point estimator 6 of parameter 
8 such that E(8) = 8, Var(6) v(B), and 6 has approximately a normal dis- 
tribution. Theorem 10.13 shows that this is often the case. With all these 
approximations, we have that approximately 

where z a p  is the lOO(l-a:/2)th percentile of the standard normal distribution. 
Solving for 8 produces the desired interval. Sometimes this is difficult to do 
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(due to the appearance of 6 in the denominator) and so, if necessary, replace 
v(6) in (9.3) with v(6) to obtain a further approximation, 

1 - a Pr (6 - z a / 2 f i  5 6 5 6 + a , l 2 f i )  . (9.4) 

Example 9.17 Use formula (9.4) to construct an approximate 95% confi- 
dence interval for  the mean of a normal population with unknown variance. 

Use 6 = X and then note that E(6) = 6 ,  Var(6) = 02/n,  and 6 does have a 
normal distribution. The confidence interval is then X i 1.96s/fi.  Because 
t,025,n-1 > 1.96, this approximate interval must be narrower than the exact 
interval given by formulas (9.2). That means that our level of confidence is 
something less than 95%. 

Example 9.18 Use formulas (9.3) and (9.4) t o  construct approximate 95% 
confidence intervals for  the mean of a Poisson distribution. Obtain intervals 
for the particular case where 11 = 25 and x = 0.12. 

Let 6 = X ,  the sample mean. For the Poisson distribution, E(6) = E(X) = 
B and v(6) = Var(X) = Var(X)/n = B/n. For the first interval 

- is true if and only if 

which is eauivalent to 
3.84 166 

n 
( X  - 6)2 5 ~ 

or 

Solving the quadratic produces the interval 

1.9208 1 15.3664X + 3.81162/n 
x i -  -t’ 2 n 

and for this problem the interval is 0.19710.156. For the second approximation 
the interval is X * 1 . 9 6 m  and for the example it is 0.12 i 0.136. This 
interval extends below zero (which is not possible for the true value of 6). 
This is because formula (9.4) is too crude an approximation in this case. 0 
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9.4 TESTS OF HYPOTHESES 

Hypothesis testing is covered in detail in most mathematical statistics texts. 
This review will be fairly straightforward and will not address philosophical 
issues or consider alternative approaches. A hypothesis test begins with two 
hypotheses, one called the null and one called the alternative. The traditional 
notation is Ho for the null hypothesis and H I  for the alternative hypothesis. 
The two hypotheses are not treated symmetrically. Reversing them may alter 
the results. To illustrate this process, a simple example will be used. 

Example 9.19 Your bank has been assuming that, for a particular type of 
operational risk, the average loss is $1200. You wish to put this assumption 
to a rigorous test. The following data representing recent operational risk 
losses of the same type. What are the hypotheses for this problem? 

27 82 115 126 155 161 243 294 340 384 
457 680 855 877 974 1193 1340 1884 2558 15,743 

Let p be the population mean. One possible hypothesis (the one you claim 
is true) is that p > 1200. The other hypothesis must be p 5 1200. The only 
remaining task is to decide which of them is the null hypothesis. Whenever 
the universe of continuous possibilities is divided in two there is likely to be 
a boundary that needs to be assigned to one hypothesis or the other. The 
hypothesis that includes the boundary must be the null hypothesis. Therefore, 
the problem can be succinctly stated as: 

Ho : p 5 1200 

HI  : p > 1200. 

The decision is made by calculating a quantity called a test statistic. It 
is a function of the observations and is treated as a random variable. That is, 
in designing the test procedure we are concerned with the samples that might 
have been obtained and not with the particular sample that was obtained. 
The test specification is completed by constructing a rejection region. It 
is a subset of the possible values of the test statistic. If the value of the test 
statistic for the observed sample is in the rejection region, the null hypothesis 
is rejected and the alternative hypothesis is announced as the result that is 
supported by the data. Otherwise, the null hypothesis is not rejected (more 
on this later). The boundaries of the rejection region (other than plus or 
minus infinity) are called the critical values. 



278 REVIEW OF MATHEMATICAL STATISTICS 

Example 9.20 (Example 9.19 continued) Complete the test using the test 
statistic and rejection region that are promoted in most statistics books. As- 
sume that the population has a normal distribution with standard deviation 
3435. 

The traditional test statistic for this problem is 

x - 1,200 

3435/v'% 
z =  = 0.292 

and the null hypothesis is rejected if z > 1.645. Because 0.292 is less than 
1.645, the null hypothesis is not rejected. The data do not support the asser- 

0 tion that the average loss exceeds $1200. 

The test in the previous example was constructed to meet certain objec- 
tives. The first objective is to control what is called the Type I error. It is the 
error made when the test rejects the null hypothesis in a situation where it 
happens to be true. In the example, the null hypothesis can be true in more 
than one way. This leads to the most common measure of the propensity of 
a test to  make a Type I error. 

Definition 9.21 The significance level of a hypothesis test is the probabil- 
i ty of making a Type I error given that the null hypothesis is true. If i t  can be 
true in more than one way, the level of significance is the maximum of such 
probabilities. The significance level is usually denoted b y  the letter a. 

This is a conservative definition in that it looks at the worst case. It is 
typically a case that is on the boundary between the two hypotheses. 

Example 9.22 Determine the level of significance for  the test in Example 
9.20. 

Begin by computing the probability of making a Type I error when the null 
hypothesis is true with p = 1200. Then, 

P r ( 2  > 1.6451~ = 1200) = 0.05. 

That is because the assumptions imply that 2 has a standard normal distri- 
bution. 

Now suppose p has a value that is below $1,200. Then 

> 1.645) 
x - 1200 

Pr (3435/d% 

= p r (  3 4 3 5 / m  

= Pr (3435/&% 

> 1.645) 
x - p + p - 1200 

x - p  p - 1200 

3435/&Ti 
> 1.645 - 
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Because p is known to be less than $1200, the right-hand side is always greater 
than 1.645. The left-hand side has a standard normal distribution and there- 
fore the probability is less than 0.05. Therefore the significance level is 0.05.0 

The significance level is usually set in advance and is often between 1% 
and 10%. The second objective is to keep the Type I1 error (not rejecting 
the null hypothesis when the alternative is true) probability small. Generally, 
attempts to  reduce the probability of one type of error increase the probability 
of the other. The best we can do once the significance level has been set is to 
make the Type I1 error as small as possible, although there is no assurance 
that the probability will be a small number. The best test is one that meets 
the following requirement. 

Definition 9.23 A hypothesis test is uniformly most powerful i f  no other 
test exists that has the same or lower significance level and for a particular 
value within the alternative hypothesis has a smaller probability of making a 
Type 11 error. 

Example 9.24 (Example 9.22 continued) Determine the probability of mak- 
ing a Type 11 error when the alternative hypothesis is true with p = 2000. 

x - 1200 
< 1.6451~ = 2000 

Pr ( 3 4 3 5 1 0  

= Pr(X - 1200 < 1263.511~ = 2000) 

= Pr(X < 2463.511~ = 2000) 

X - 2000 2463.51 - 2000 

= Pr ( 3 4 3 5 / m  < 3 4 3 5 / m  

For this value of p, the test is not very powerful, having over a 70% chance of 
making a Type I1 error. Nevertheless (though this is not easy to prove), the 

0 test used is the most powerful test for this problem. 

Because the Type TI error probability can be high, it is customary to  not 
make a strong statement when the null hypothesis is not rejected. Rather 
than say we choose to  accept the null hypothesis, we say that we fail to reject 
it. That is, there was not enough evidence in the sample to make a strong 
argument in favor of the alternative hypothesis, so we take no stand at all. 

A common criticism of this approach to hypothesis testing is that the choice 
of the significance level is arbitrary. In fact, by changing the significance level, 
any result can be obtained. 

Example 9.25 (Example 9.24 continued) Complete the test using a signifi- 
cance level of a = 0.45. Then determine the range of significance levels f o r  
which the null hypothesis is rejected and fo r  which it is  not rejected. 
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Because Pr(2 > 0.1257) = 0.45, the null hypothesis is rejected when 

x - 1200 

3 4 3 5 / m  
> 0.1257. 

In this example, the test statistic is 0.292, which is in the rejection region, 
and thus the null hypothesis is rejected. Of course, few people would place 
confidence in the results of a test that was designed to  make errors 45% of 
the time. Because P r ( 2  > 0.292) = 0.3851, the null hypothesis is rejected for 
those who select a significance level that is greater than 38.51% and is not 
rejected by those who use a significance level that is less than 38.51%. 0 

Few people are willing to make errors 38.51% of the time. Announcing this 
figure is more persuasive than the earlier conclusion based on a 5% significance 
level. When a significance level is used, readers are left to wonder what the 
outcome would have been with other significance levels. The value of 38.51% 
is called a p-value. A working definition is: 

Definition 9.26 For a hypothesis test, the p-value is  the probability that the 
test statistic takes on  a value that is  less in agreement with the null hypothesis 
than the value obtained from the sample. Tests conducted at a significance level 
that is greater than the p-value will lead to a rejection of the null hypothesis, 
while tests conducted at a significance level that is smaller than the p-value 
will lead to a failure to reject the null hypothesis. 

Also, because the p-value must be between 0 and 1, it is on a scale that 
carries some meaning. The closer to zero the value is, the more support the 
data give to the alternative hypothesis. Common practice is that values above 
10% indicate that the data provide no evidence in support of the alternative 
hypothesis, while values below 1% indicate strong support for the alternative 
hypothesis. Values in between indicate uncertainty as to the appropriate 
conclusion and may call for more data or a more careful look at the data or 
the experiment that produced it. 

9.5 EXERCISES 

9.1 For Example 9.1, show that the mean of three observations drawn without 
replacement is an unbiased estimator of the population mean while the median 
of three observations drawn without replacement is a biased estimator of the 
population mean. 

9.2 Prove that for random samples the sample mean is always an unbiased 
estimator of the population mean. 
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9.3 Let X have the uniform distribution over the range (6 - 2,6 + 2). That 
is, fx(z) = 0.25, 6 - 2 < x < 6 + 2. Show that the median from a sample of 
size 3 is an unbiased estimator of 6. 

9.4 Explain why the sample mean may not be a consistent estimator of the 
population mean for a Pareto distribution. 

9.5 For the sample of size 3 in Exercise 9.3, compare the MSE of the sample 
mean and median a s  estimates of 6. 

9.6 You are given two independent estimators of an unknown quantity 6. For 
estimator A ,  E ( ~ A )  = 1000 and Var(6A) = 160,000, while for estimator B, 
E ( ~ B )  = 1,200 and Var(6,) = 40,000. Estimator C is a weighted average, 
6~ = W O A  + (1 - w)6g. Determine the value of w that minimizes Var(&). 

9.7 A population of losses has the Pareto distribution with 0 = 6000 and 
(Y unknown. Simulation of the results from maximum likelihood estimation 
based on samples of size 10 has indicated that E(&) = 2.2 and MSE(6) = 1. 
Determine Var(S) if it is known that Q = 2. 

9.8 Two instruments are available for measuring a particular nonzero dis- 
tance. The random variable X represents a measurement with the first in- 
strument, and the random variable Y with the second instrument. Assume 
X and Y are independent with E(X) = 0.8m, E(Y) = m, Var(X) = m2, and 
Var(Y) = 1.5m2, where m is the true distance. Consider estimators of m that 
are of the form 2 = O X  + ,BY. Determine the values of (Y and ,B that make 2 
a UMVUE within the class of estimators of this form. 

9.9 Two different estimators, 81 and 82, are being considered. To test their 
performance, 75 trials have been simulated, each with the true value set at 
0 = 2. The following totals were obtained: 

75 75 75 75 

j=1 j=l j=1 

where 8ij is the estimate based on the j t h  simulation using estimator 8,. 
Estimate the MSE for each estimator and determine the relative efficiency 
(the ratio of the MSEs). 

9.10 Determine the method-of-moments estimate for an exponential model 
for Data Set B with observations censored at 250. 

9.11 Let 21,. . . ,z, be a random sample from a population with pdf f(x) = 
$-Ie-5 /B , x > 0. This exponential distribution has a mean of 6 and a variance 
of 02. Consider the sample mean, X ,  as an estimator of 6. It turns out that 
XI6  has a gamma distribution with (Y = n and 6 = l/n, where in the second 
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expression the “6” on the left is the parameter of the gamma distribution. For 
a sample of size 50 and a sample mean of 275, develop 95% confidence intervals 
by each of the following methods. In each case, if the formula requires the 
true value of 8, substitute the estimated value. 

(a) Use the gamma distribution to determine an exact interval. 

(b) Use a normal approximation, estimating the variance before solving 

(c) Use a normal approximation, estimating 6 after solving the inequal- 

the inequalities, as in equation (9.3). 

ities, as in Example ??. 

9.12 (Exercise 9.11 continued) Test Ho : 6 2 325 vs H I  : 0 < 325 using 
a significance level of 5% and the sample mean as the test statistic. Also, 
compute the pvalue. Do this using the exact distribution of the test 
statistic and a normal approximation. 



I0  
Paramet er estimation 

Everything takes longer than you think. 
-Murphy 

10.1 INTRODUCTION 

If a phenomenon is to be modeled using a parametric model, it is necessary 
to assign values to the parameters. This could be done arbitrarily based on 
educated guessing. However, a more reasonable is to base the assignment on 
any observations that are available from that phenomenon. In particular, we 
will assume that n independent observations have been collected. For some 
of the techniques it will be further assumed that all the observations are from 
the same random variable. For others, that restriction will be relaxed. 

The methods introduced in Section 10.2 are relatively easy to implement 
but tend to give poor results. Section 10.3 covers maximum likelihood es- 
timation. This method is more difficult to use but has superior statistical 
properties and is considerably more flexible. 

Throughout this chapter, four examples will used repeatedly. Because they 
are simply data sets, they will be referred to as Data Sets A, B, C, and D. 

Data Set A This data set was first analyzed in the paper [25] by Dropkin in 
1959. He collected data f rom 1956-1958 on the number of accidents per driver 
per year. The results f o r  94,935 drivers are in Table 10.1. 

283 
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Table 10.1 Data Set A 

Number of accidents Number of drivers 

0 
1 
2 
3 
4 
5 or more 

81,714 
11,306 
1,618 

250 
40 
7 

Table 10.2 Data Set B 

$27 $82 $115 $126 $155 $161 $243 $294 $340 $384 
$457 $680 $855 $877 $974 $1193 $1340 $1884 $2558 $15,743 

Table 10.3 Data Set C 

Payment range Number of losses 

0-$7500 
$7500-$17,500 
$17,500-$32,500 
$32,500-$67,500 
$67,500-$125,000 
$125,000-$300,000 
Over $300,000 

99 
42 
29 
28 
17 
9 
3 

Data Set B These numbers are artificial. They represent the full amount of 
the loss of a random sample of 20 losses ( in  units of $1000) as given in Table 
10.2. 

Data Set C These numbers are artificial. 
losses. The data are in Table 10.3. 

Data Set D These numbers are artificial. Forty machines are being studied 
for their reliability in providing accurate transactions. The period of study 
is the first 5 years of age of the machines. For each machine, one of three 
possible times is recorded. If the machine fails at some time before age 5, 
the age of first failure is recorded. If the machine is  removed from the study 
(while operating without failure) f o r  a reason unrelated to performance, the 
time of removal is recorded. If at age 5, the machine is  still in the study 
and operating without failure, that time is recorded. Thirty machines are new 
at the beginning of the study. Ten machines (that are operating without past 
failure) enter the study at an advanced age. 

They represent losses on  227 
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First Last 
Machine observed observed Event 
1 0 0.1 w 
2 0 0.5 w 
3 0 0.8 w 
4 0 0.8 f 
5 0 1.8 w 
6 0 1.8 w 
7 0 2.1 w 
8 0 2.5 w 
9 0 2.8 w 
10 0 2.9 f 
11 0 2.9 f 
12 0 3.9 w 
13 0 4.0 f 
14 0 4.0 w 

First Last 
Machine observed observed Event 
16 0 4.8 f 
17 0 4.8 W 

18 0 4.8 W 

19-30 0 5.0 e 
31 0.3 5.0 e 
32 0.7 5.0 e 
33 1 .0 4.1 f 
34 1.8 3.1 f 
35 2.1 3.9 W 

36 2.9 5.0 e 
37 2.9 4.8 W 

38 3.2 4.0 f 
39 3.4 5.0 e 
40 3.9 5.0 e 

Table 10.4 records the age of the first event (failure, removal, or expiration) 
for  all 40 machines. The column headed “First observed” gives the age at 
which the policy was first observed in the study; the column headed “Last 
observed” gives the duration at which the policy was last observed; and the 
column headed ‘%vent” is coded (y fo r  failure, “w” for  withdrawal, and lie’’ 
for expiration of the study at age five without failure period. 

When observations are collected from a probability distribution, the ideal 
situation is to have the (essentially) exact’ value of each observation. This is 
referred to as the case of “complete, individual data.” This is the situation 
in Data Set B. There are two reasons why exact data may not be available. 
One is grouping, in which all that is recorded is the range of values in which 
the observation belongs. This is the case for Data Set C and for Data Set A 
for those with five or more accidents. 

A second reason that exact values may not be available is the presence of 
censoring or truncation. When data are censored from below, observations 
below a given value are known to be below that value but the exact value is 
unknown. When data are censored from above, observations above a given 
value are known to be above that value but the exact value is unknown. Note 
that censoring effectively creates grouped data. For example, for the data 
in Data Set C, the censoring from above at $300,000 creates a group from 
$300,000 to infinity. In many settings, censoring from above is common. For 

’Some measurements are never exact. Ages may be rounded to the nearest whole month, 
monetary amounts to the nearest dollar, car mileage to  the nearest tenth of a mile, and so 
on. This text is not, concerned with such rounding errors. Rounded values will be treated 
as if they are exact. 
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example, if a given loss is estimated to be above $300,000 but the actual 
amount is unknown, the loss is censored from above at $300,000. 

In Data Set D, we also have censoring. Consider machine number 5. All 
that is known about the time of failure of the machine is that it will be after 
age 1.8 years. All of the policies are censored (from above) at 5 years of age by 
the nature of the study itself. Also, note that Data Set A has been censored 
from above at  5. In this case, it is more common to describe this as censoring 
than to say that Data Set A has some individual data and some grouped data. 

When data are truncated from below, observations below a given value are 
not recorded. The existence of such losses is treated as unknown. Truncation 
from below is fairly common. If small losses, say less than $250, are never 
recorded, any losses below $250 will never come to  the attention of the risk 
analyst and so will not appear in any data sets. Left truncation points may be 
different of different observations. For example, in Data Set D, observations 
31-40 are truncated from below at varying values. 

These four data sets will be used extensively to  illustrate various concepts 
in the remainder of this chapter. 

10.2 METHOD OF MOMENTS AND PERCENTILE MATCHING 

For these methods we assume that all n observations are from the same para- 
metric distribution. In particular, let the distribution function be given by 

F ( x )  = F ( ~ l 8 ) ,  BT = (el,&, . . . ,8,) 

where QT is the transpose of 8. That is, % is a column vector containing the 
p parameters to be estimated. Furthermore, let &(e)  = E(X'18) be the lcth 
raw moment and let ~ ~ ( 8 )  be the 1OOgth percentile of the random variable. 
That is, F[.rrg(8)j6] = g. If the distribution function is continuous, there will 
be at least one solution to that equation. 

For a sample of n independent observations from this random variable, let 
@I = ; xjzl xcj" be the empirical estimate of the kth moment and let ?tg be 
the empirical estimate of the lOOgth percentile 

i n  

Definition 10.1 A method-of-moments estimate of 8 i s  any solution of 
the p equations 

pk(8) = &, k = 1 ,2 , .  . . , p .  

The motivation for this estimator is that it produces a model that has the 
same first p raw moments as the data (as represented by the empirical dis- 
tribution). The traditional definition of the method of moments uses positive 
integers for the moments. 

Example 10.2 Use the method of moments to estimate parameters f o r  the 
exponential, gamma, and Pareto distributions .for Data Set B. 
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The first two sample moments are 

b; = L ( 2 7  + . .. + 15,743) 

& = h(27’  + .. . + 15,7432) = 13,238,441.9. 

1,424.4, 
20 

For the exponential distribution the equation is 

8 = 1424.4 

with the obvious solution, 8 = 1,424.4. 
For the gamma distribution, the two equations are 

E ( X )  = a8 = 1424.4, 

E(X2) = ~ ( C Y  + 1)02 = 13,238,441.9. 

Dividing the second equation by the square of the first equation yields 

Q f l  - = 6.52489, 1 = 5.52489~ 
Q 

and so 6 = 115.52489 = 0.18100 and 8 = 1424.4/0.18100 = 7869.61. 
For the Pareto distribution, the two equations are 

- 1424.4, 
8 

C Y - 1  
E ( X )  = - - 

= 13,238,441.9. 
202 

E(X2) = (a  - 1)(Q - 2) 

Dividing the second equation by the square of the first equation yields 

2(CY - 1) 

(Q. - 2) 
= 6.52489 

with a solution of & = 2.442 and then 8 = 1424.4(1.442) = 2053.985. 

There is no guarantee that the equations will have a solution or, if there is 
a solution, that it will be unique. 

Definition 10.3 A percentile matching estimate of 8 is any solution of 
the p equations 

7rgk (8) = ifgk, k = 1,2, .  . . , p ,  

where 91, g2, . . . , g p  are p arbitrarily chosen percentiles. From the definition 
of percentile, the equations can also be written 

F ( ? g k I 6 ) = g k ,  k = I , 2 ,  . . . , p .  

The motivation for this estimator is that it produces a model with p per- 
centiles that match the data (as represented by the empirical distribution). 
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As with the method of moments, there is no guarantee that the equations will 
have a solution or, if there is a solution, that it will be unique. One problem 
with this definition is that percentiles for discrete random variables (such as 
the empirical distribution) are not always well defined. For example, Data 
Set B has 20 observations. Any number between 384 and 457 has 10 observa- 
tions below and 10 above and so could serve as  the median. The convention 
is to use the midpoint. However, for other percentiles, there is no “official” 
interpolation scheme.2 The following definition will be used here. 

Definition 10.4 The smoothed empirical estimate of a percentile is  found 
by  

?rg = (1 - h ) q j )  + hz(j+l), where 

j = [ (n  + 1)gj and h = (n  + l )g  - j .  

Here 1.1 indicates the greatest integer function and x(1) 5 ~ ( 2 )  5 . . . 5 X C ( ~ )  

are the order statistics f rom the sample. 

Unless there are two or more data points with the same value, no two 
percentiles will have the same value. One feature of this definition is that ?fg 
cannot be obtained for g < l / (n+ l )  or g > n/(n+l) .  This seems reasonable as 
we should not expect to be able to infer the value of large or small percentiles 
from small samples. We will use the smoothed version whenever an empirical 
percentile estimate is called for. 

Example 10.5 Use percentile matching to estimate parameters for the expo- 
nential und Pareto distributions f o r  Data Set B. 

For the exponential distribution, select the 50th percentile. The empirical 
estimate is the traditional median of ji0.5 = (384 + 457)/2 = 420.5 and the 
equation to solve is 

0.5 = F(420.516) = 1 - e-420.5’6, 

-420.5 
1110.5 = ___ 

0 ’  
-420.5 

$=-- - 606.65. 
In 0.5 

For the Pareto distribution, select the 30th and 80th percentiles. The 
smoothed empirical estimates are found as follows: 

30th: j = 121(0.3)1 = 16.31 = 6, h = 6.3 - 6 = 0.3, 

80th: j = 121(0.8)] = 116.81 = 16, h = 16.8 - 16 = 0.8, 
?fo,3 = 0.7(161) + 0.3(243) = 185.6, 

?f0.8 = 0.2(1,193) + 0.8(1,340) = 1,310.6. 

‘Hyndrnan and Fan [59] present nine different methods. They recommend a slight modifi- 
cation of the one presented here using j = [g(n + $)  + and h = g(n + $) + - j .  
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The equations to solve are 

0.3 = F(  185.6) = 1 - (185.: + 0)O' 
Q e 

(1310.6 + 0)  ' 
0.8 = F(1,310.6) =z 1 - 

6 
(185.6 + 0 )  ' 

(1,310.6 + 6) ' 

In 0.7 = -0.356675 = a In 

ln0.2 = -1.609438 = a In 
6 

- 1.609438 
-0.356675 

= 4.512338 = 

Numerical methods can be used to solve this equation for $ = 715.03. Then, 
from the first equation, 

0.3 = 1 - ( 185.~?~5.03) a ' 

which yields & = 1.54559. 

The estimates are much different from those obtained in Example 10.2. 
This is one indication that these methods may not be particularly reliable. 

10.3 MAXIMUM LIKELIHOOD ESTIMATION 

10.3.1 introduction 

Estimation by the method of moments and percentile matching is often easy 
to do, but these estimators tend to perform poorly. The main reason for this 
is that they use a few features of the data, rather than the entire set of obser- 
vations. It is particularly important to use as much information as possible 
when the population has a heavy right tail. For example, when estimating 
parameters for the normal distribution, the sample mean and variance are 
~ufficient.~ However, when estimating parameters for a Pareto distribution, 
it is important to know all the extreme observations in order to  successfully 
estimate a. Another drawback of these methods is that they require that all 
the observations are from the same random variable. Otherwise, it is not clear 

"This applies both in the formal statistical definition of sufficiency (not covered here) and 
in the conventional sense. If the population has a normal distribution, the sample mean 
and variance convey as much information as the original observations. 
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what to use for the population moments or percentiles. For example, if half 
the observations have a threshold (i.e., in insurance terms, a deductible) of 
50 and half have a threshold of 100, it is not clear to what the sample mean 
should be equated. Finally, these methods allow the analyst to make arbitrary 
decisions regarding the moments or percentiles to  use. 

There are several estimation methods that use the individual data points. 
All of them are implemented by setting an objective function and then de- 
termining the parameter values that optimize that function. For example, we 
could estimate parameters by minimizing the maximum difference between 
the distribution function for the parametric model and the empirical distri- 
bution function. This is actually a very bad method! We will focus on the 
maximum likelihood method to  produce estimates. The estimate is obtained 
by maximizing the likelihood function. The general form of this estimator is 
presented in this introduction. This is followed with useful special cases. 

In order to  keep the explanation simple, suppose that a data set consists 
of the outcomes of n events Al,  . . . ,A,, where Aj represents whatever was 
observed for the j t h  observation. For example, Aj may consist of a single 
point or an interval. Observations that are intervals arise in connection with 
grouped data or when there is censoring. For example, when there is censor- 
ing at u, and an observation greater than u is observed (although its exact 
value remains unknown), the observed event is the interval from u to infinity. 
Further assume that the event Aj results from observing the random variable 
Xj. The random variables XI, . . . , X, need not have the same probability dis- 
tribution, but their distributions must depend on the same parameter vector, 
8. In addition, the random variables are assumed to be independent. 

Definition 10.6 The likelihood function is 
n 

L(8) = n Pr(Xj  E AjlO) 
j=1 

and the maximum likelihood estimate of 8 is the value of 8 that maximizes 
the likelihood f ~ n c t i o n . ~  

There is no guarantee that the function has a maximum at eligible para- 
meter values. For example, if a parameter is required to be positive, it is still 
possible that the likelihood function “blows up’’ (becoming larger as the para- 
meter approaches 0 from above or that the likelihood increases indefinitely as 
a parameter increases. Care must also be taken when maximizing this func- 
tion because there may be local maxima in addition to the global maximum. 
Finally, it is not generally possible to maximize the likelihood function (by 

lSome authors write the likelihood function a s  L(6lx).  where the vector x represents the ob- 
served data.  Because observed data  can take many forms, the dependence of the likelihood 
function on the data is suppressed in the notation. 
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setting partial derivatives equal to zero) analytically. Numerical approaches 
to maximization will usually be needed. 

Because the observations are assumed to be independent, the product in 
the definition represents the joint probability Pr(X1 E A1,. . . , X n  E An18), 
that is, the likelihood function is the probability of obtaining the sample 
results that were obtained, given a particular parameter value. The estimate 
is then the parameter value that produces the model under which the actual 
observations are most likely to be observed. One of the major attractions of 
this estimator is that it is very general in principle and almost universally 
applicable. 

Example 10.7 Suppose the data in Data Set B were censored at $250. De- 
termine the maximum likelihood estimate of 8 for a n  exponential distribution. 

The first seven data points are uncensored. For them, the set Aj contains 
the single point equal to the observation xj. When calculating the likelihood 
function for a single point for a continuous model, it is necessary to interpret 
Pr(Xj  = zj) = f ( x j ) .  That is, the density function should be used. Thus the 
first seven terms of the product are 

For the final 13 terms, the set Aj is the interval from 250 to infinity and 
therefore Pr(Xj E Aj) = Pr(Xj  > 250) = e-250/e. There are 13 such factors 
making the likelihood function 

It is easier to maximize the logarithm of the likelihood function. Because it 
occurs so often, we denote the loglikelihood function as Z(O) = lnL(8). 
Then 

Z(8) = -71nO - 4159 8-', 

Z'(8) = -78-1 + 4159 O-' = 0, 

= 594.14. 
4159 e=-- 

7 
In this case, the calculus technique of setting the first derivative equal to  zero 
is easy to do. Also, evaluating the second derivative at this solution produces 

0 a negative number, verifying that this solution is a maximum. 

10.3.2 Complete, individual data 

When there is no truncation and no censoring and the value of each observa- 
tion is recorded, it is easy to write the loglikelihood function. 

n n 
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The notation indicates that it is not necessary for each observation to come 
from the same distribution. 

Example 10.8 Using Data Set B determine the maximum likelihood esti- 
mates for an exponential distribution, for a gamma distribution where (Y is  
known to equal 2, and for a gamma distribution where both parameters are 
unknown. 

For the exponential distribution, the general solution is 
n 

i(e) = C (- In6 - xj8-l) = -n1n0 - n30-', 

~ ' ( 6 )  = -no-' + nz6p2 = 0, 

j=1 

n0 = nit, 

0 = 3. 

For Data Set B, 6 = 3 = 1424.4. The value of the loglikelihood function is 
-165.23. For this situation the method-of-moments and maximum likelihood 
estimates are identical. 

For the gamma distribution with a = 2, 

lnf(zl6) = lnx-21n8-z6- ' ,  
n 

Z(0) = E h x j  - 2nln6 - n%6-', 

Z'(6) = -2n6-l + nx6-' = 0, 

j=1 

6 = ;3. 

For Data Set B, 6 = 1424.4/2 = 712.2 and the value of the loglikelihood func- 
tion is -179.98. Again, this estimate is the same as the method of moments 
estimate . 

For the gamma distribution with unknown parameters the equation is not 
as simple. 

The partial derivative with respect to  a requires the derivative of the gamma 
function. The resulting equation cannot be solved analytically. Using numer- 
ical methods, the estimates are 13 = 0.55616 and 6 = 2561.1 and the value 
of the loglikelihood function is -162.29. These do not match the method-of- 
moments estimates. 0 



MAXIMUM LIKELIHOOD ESTIMATION 293 

10.3.3 Complete, grouped data 

When data are complete and grouped, the observations may be summarized 
as follows. Begin with a set of numbers co < c1 < . . . < ck, where co is the 
smallest possible observation (often zero) and ck is the largest possible obser- 
vation (often infinity). From the sample, let nj be the number of observations 
in the interval (cj-l,cj]. For such data, the likelihood function is 

k 

L(O) = ~ [ F ( c ~  10) - qcjPl l e p  
j=1 

and its logarithm is 

k 

l (6 )  = En3 ln[F(cj/6) - F ( C ~ - ~ ] O ) ] .  

Example 10.9 From Data Set C, determine the maximum likelihood esti- 
mate for an exponential distribution. 

j=1 

The loglikelihood function is 

l ( O )  = 99 lnjF(7500) - F(O)] + 421n[F( 17,500) - F(7500)] + . . . 
+ 3 ln[l - F(300,000)] 
- - 99 in( 1 - e-7500/@) + 42 ln(e-7500/@ - e-17,500/@) + . . . 
+ 3 ln e - 3 0 ~ , 0 ~ O / @  

A numerical routine is needed to  produce % = 29,721, and the value of the 
loglikelihood function is -406.03. 

10.3.4 Truncated or censored data 

When data are censored, there is no additional complication. As noted in 
Example 10.7, right censoring simply creates an interval running from the 
censoring point to infinity. In that example, data below the censoring point 
were individual data, and so the likelihood function contains both density and 
distribution function terms. 

Truncated data present more of a challenge. There are two ways to pro- 
ceed. One is to  shift the data by subtracting the truncation point from each 
observation. The other is to accept the fact that there is no information 
about values below the truncation point but then attempt to fit a model for 
the original population. 

Example 10.10 Assume that the values in Data Set B are truncated f rom 
below at $200 and that only that portion of losses above $200 are known. Using 
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both methods, estimate the value of a for a Pareto distribution with B = 800 
known. Then use the model to estimate the losses in excess of thresholds of 
0,  $200, and $400. 

Using the shifting approach, the data set has 14 points ($43, $94, $140, 
$184, $257, $480, $655, $677, $774, $993, $1140, $1684, $2358, and $15,543). 
The likelihood function is 

14 

l(a) = c [ l n a  + aln800 - (a + 1) ln(zj + SOO)] 

= 14 In a + 93.5846a - 103.969(a + 1) 

= 14 In a - 103.969 - 10.384a, 

j=1 

1’(a) = 14a-’ - 10.384, 

- 1.3482. 
14 

10.384 
a=--  

Because the data are shifted, it is not possible to estimate the loss with thresh- 
old 0. With a threshold of $200, the expected cost is the expected value of the 
estimated Pareto distribution, 80010.3482 = $2,298. Raising the threshold to 
$400 is equivalent to imposing a threshold of $200 on the modeled distribution. 
From each loss, the expected loss over the $400 threshold is 

800 f 800 \0‘3482 

- -- l’ooo - $2872. E(X) - E(X A 200) - 0.3482 [ZOO + 800) 
- 

0.3482 1.3482 - 
1 - F (  200) f 800 \ 

[ 200 + 800) 

For the unshifted approach we need to ask a key question required when 
constructing the likelihood function. What is the probability of observing 
each value knowing that values under 200 are omitted from the data set? 
This becomes a conditional probability and therefore the likelihood function 
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is (where the x j  values are now the original values) 

a( 1,oooa) 
14 

- - 
j=1 (800 + X ~ ) ~ + I  ’ 

14 

l(a) = 14lna+14aln1,000-  ( a + l ) ~ l n ( 8 0 0 + x j ) ,  
j=1 

= 141na + 96.709~ - ( a  + 1)105.810, 

I’(a) = 14a-1 - 9.101, 

& = 1.5383. 

This model is for losses with no threshold (i.e. deductible), and therefore the 
expected cost without a threshold is 800/0.5383 = $1486. Imposing thresholds 
of $200 and $400 produces the following results for excess losses: 

E(X) - E(X A 200) 1000 $1858, --= - 
1 - F(200) 0.5383 

E(X) - E(X A 400) 1200 
- - - = $2229. 

1 - F(400) 0.5383 

It should now be clear that the contribution to the likelihood function can 
be written for most any observation, whether exact or grouped, and for any 
truncation of censoring situation. The following two steps summarize the 
process of setting up the likelihood function: 

1. For the numerator, use f(x) if the exact value, x, of the observation is 
known. If it is only known that the observation is between y and z ,  use 
F ( z )  - F ( Y ) .  

2. For the denominator, let d be the threshold (use zero if there is no 
truncation). The denominator is then 1 - F(d) .  

Example 10.11 Determine Pareto and gamma models f o r  the time to failure 
for  Data Set D. 

Table 10.5 shows how the likelihood function is constructed for these val- 
ues. For failures, the time is known and so the exact value of z is available. 
For withdrawals or those reaching age 5, the observation is censored and 
therefore failure is known to be some time later; that is, in the interval from 
the withdrawal time, y, to  infinity. In the table, z = co is not noted be- 
cause all interval observations end at infinity. The likelihood function must 
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Table 10.5 Likelihood function for Example 10.11 

Obs. x , y  d L  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

y = 0.1 

y = 0.5 

y = 0.8 

x = 0.8 

y = 1.8 

y = 1.8 

y = 2.1 

y = 2.5 

y = 2.8 

x = 2.9 

x = 2.9 

y = 3.9 

x = 4.0 

y = 4.0 

y = 4.1 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

1 - F(O.l) 

1 - F(0.5) 

1 - F(0.8) 

f (0.8) 
1 - F(1.8) 

1 - F(1.8) 

1 - F(2.1) 

1 - F(2.5) 

1 - F(2.8) 

f (2.9) 

f (2.9) 
1 - F(3.9) 

f (4.0) 
1 - F(4.0) 

1 - F(4.1) 

Obs. x , u  d L  
16 

17 

18 

19-30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

x = 4.8 

y = 4.8 

y = 4.8 

y = 5.0 

y = 5.0 

y = 5.0 

x = 4.1 

x = 3.1 

y = 3.9 

y = 5.0 

y = 4.8 

x = 4.0 

y = 5.0 

y = 5.0 

0 

0 

0 

0 

0.3 

0.7 

1.0 

1.8 

2.1 

2.9 

2.9 

3.2 

3.4 

3.9 

f (4.8) 
1 - F(4.8) 

1 - F(4.8) 

1 - F(5.0) 
1-F(5.0)  
1 -F(0.3)  
1 - F (  5.0) 
1 - F (  0.7) 

f (4 .1)  
1 - F (  1.0) 

f (3 .1)  

l -F(2.1)  

1 -F(  1.8) 
1-F(3.9) 

1-F(5.0)  
1 -F(2.9) 
1 - F (  4.8) 
1-F(2.9) 

1-F(3.2) 
1 -F(  5.0) 
1 - F(3.4) 
1 -F(5.0) 
1-F(3.9) 

f (4.0) 

be maximized numerically. For the Pareto distribution there is no solution. 
The likelihood function keeps getting larger as cy and 6 get larger.5 For the 

0 gamma distribution the maximum is at  & = 2.617 and 0 = 3.311. 

Discrete data present no additional problems. 

Example 10.12 For Data Set A ,  assume that the seven drivers with five 
or more accidents all had exactly jive accidents. Determine the maximum 
likelihood estimate for  a Poisson distribution and fo r  a binomial distribution 
with m = 8. 

In general, for a discrete distribution with complete data, the likelihood 
function is 

“or a Pareto distribution, the limit as the parameters LY and 6’ become infinite with the ratio 
being held constant is an exponential distribution. Thus, for this example, the exponential 
distribution is a better model (as measured by the likelihood function) than any Pareto 
model. 
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where x j  is one of the observed values, p(xjl8) is the probability of observing 
x j ,  and n, is the number of times x was observed in the sample. For the 
Poisson distribution 

nZ 
x V ( x )  = -n + - = 0,  

x = 2.  

For the binomial distribution 

m 
l ( q )  = C [ n X  lnm! + xn, Inq + (rn - x)n, In(1- g)] 

x=o 
m 

- C [ n x  Inx! + nx In(m - x)!l1 
x=o 
m xn, (m-x)nx n Z  rnn-nZ 

= 0, --- l'(q) = c - - - 

x=o Q 1 - q  4 1 - 9  
- 

- 3 :  q = - .  
rn 

For this problem, Z = [81,714(0) + 11,306(1) + 1618(2) + 250(3) + 40(4) + 
7(5)]/94,935 = 0.16313. Therefore, for the Poisson distribution = 0.16313, 

In Exercise 10.21 you are asked to estimate the Poisson parameter when 

and for the binomial distribution q = 0.16313/8 = 0.02039. 

the actual values for those with five or more accidents are not known. 

10.4 VARIANCE AND INTERVAL ESTIMATION 

In general, it is not easy to determine the variance of complicated estimators 
such as the maximum likelihood estimator. However, it is possible to approx- 
imate the variance. The key is a theorem that can be found in most math- 
ematical statistics books. The particular version stated here and its multi- 
parameter generalization are taken from reference [lo21 and stated without 
proof. Recall that L(6)  is the likelihood function and Z(8) its logarithm. All 
of the results assume that the population has a distribution that is a member 
of the chosen parametric family. 
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8 3  
- In f ( x ;  6 )  1803 

Theorem 10.13 Assume that the pdf (pf in the discrete case) f ( x ; 6 )  sat- 
isfies the following for  0 in a n  interval containing the true value (replace 
integrals by sums for  discrete variables): 

< H ( x ) .  This makes sure that the population is  not 

( i )  In f (5;  6 )  is  three times differentiable with respect t o  0. 

(ii) J” - f ( x ;  0) d x  = 0. This implies that the derivative may be taken out- 
side the integral and so we are just differentiating the constant 1.6 

d 
a9 

d2 
86 (iii) f (2;  0) dx = 0. This is the same concept for  the second derivative. 

d2  
802 

(iv) -00 < J f (x ;  0)- In f (x; 6 )  d x  < 0.  This establishes that the indicated 
integral exists and that the location where the derivative is  zero is a 
maximum. 

Then the following results hold: 

(a) A s  n -+ 00, the probability that the likelihood equation [L’(6) = 01 has a 
solution goes to 1. 

(b) As  n -+ 00, the distribution of the maximum likelihood .estimator 6, 
converges to a normal distribution with mean 0 and variance such that 
I(0)Var(en) + 1, where 

= n E [ ( $ l n f ( X ; 6 ) ) 2 ]  = n / f ( x ; H )  ( $ l n f ( x ; O ) )  2 dx.  

For any z ,  the last statement is to be interpreted as 

GThe integrals in (ii) and (iii) are to be evaluated over the range of 2 values for which 
f(2; 0) > 0. 
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and therefore is a useful approximation for Var(6,). The quantity 
I ( @  is called the information (sometimes more specifically, Fisher’s infor- 
mation). It follows from this result that the maximum likelihood estimator 
is asymptotically unbiased and consistent. The conditions in statements (2)- 

(v) are often referred to as “mild regularity conditions.” A skeptic would 
translate this statement as “conditions that are almost always true but are 
often difficult to establish, so we’ll just assume they hold in our case.” Their 
purpose is to ensure that the density function is fairly smooth with regard to 
changes in the parameter and that there is nothing unusual about the density 
it self. 

The results stated above assume that the sample consists of independent 
and identically distributed random observations. A more general version of 
the result uses the logarithm of the likelihood function: 

The only requirement here is that the same parameter value apply to each 
observation. 

If there is more than one parameter, the only change is that the vector 
of maximum likelihood estimates now has an asymptotic multivariate normal 
distribution. The covariance matrix8 of this distribution is obtained from the 
inverse of the matrix with (r ,  s)th element, 

The first expression on each line is always correct. The second expression 
assumes that the likelihood is the product of n identical densities. This ma- 
trix is often called the information matrix. The information matrix also 
forms the Cram&-Rao lower bound. That is, under the usual conditions, no 
unbiased estimator has a smaller variance than that given by the inverse of 
the information. Therefore, at least asymptotically, no unbiased estimator is 
more accurate than the maximum likelihood estimator. 

Example 10.14 Estimate the covariance matrix of the maximum likelihood 
estimator for the lognormal distribution. Then apply this result to Data Set 
B. 

’For an example of a situation where these conditions do not hold, see Exercise 10.42. 
“For any multivariate random variable the covariance matrix has the variances of the indi- 
vidual random variables on the main diagonal and covariances in the off-diagonal positions. 
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The likelihood function and its logarithm are 

The first partial derivatives are 

n 
n (Inxj - p)2 

a3 
dl 

The second partial derivatives are 

d21 n - = -- 
8/42  a2, 

n d2 1 l n z j  - p  - =-2c 
ar7dP j=1 a3 ’ 

- -  ---3c 
an2 a2 j=l  r74 

n d21 n (Inxj - p ) 2  

The expected values are (1nXj has a normal distribution distribution, nor- 
malwith mean p and standard deviation r7) 

Changing he signs and inverting produce an estimate of he covariance matrix 
(it is an estimate because Theorem 10.13 only provides the covariance matrix 
in the limit). It is 

U2 [;: 4. 2n 

For the lognormal distribution, the maximum likelihood estimates are the 
solutions to the two equations 
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From the first equation j i  = ( l /n)  C;=, lnxj ,  and from the second equation 
e2 = ( l /n )  Cy=l( lnzj  - j i ) 2 .  For Data Set B the values are ,& = 6.1379 and 
62 = 1.9305 or 6 = 1.3894. With regard to  the covariance matrix the true 
values are needed. The best we can do is substitute the estimated values to 
obtain 

[ ‘’OF5 0.0483 O I  . 

h 

Var(p1 6) = (10.1) 

The multiple “hats” in the expression indicate that this is an estimate of the 
variance of the estimators. 0 

The zeros off the diagonal indicate that the two parameter estimates are 
asymptotically uncorrelated. For the particular case of the lognormal distri- 
bution, that is also true for any sample size. One thing we could do with this 
information is construct approximate 95% confidence intervals for the true 
parameter values. These would be 1.96 standard deviations on either side of 
the estimate: 

p: 

0: 

6.1379 i 1.96(0.0965)1/2 = 6.1379 zt 0.6089, 

1.3894 zt 1.96(0.0483)1/2 = 1.3894 i 0.4308. 

To obtain the information matrix, it is necessary to  take both derivatives 
and expected values. This is not always easy to do. A way to avoid this 
problem is to simply not take the expected value. Rather than working with 
the number that results from the expectation, use the observed data points. 
The result is called the observed information. 

Example 10.15 Estimate the covariance in Example 10.14 using the ob- 
served information. 

Substituting the observations into the second derivatives produces 

n 20 
- - - d2 1 

dp2 a2 0 2 ’  
- _ _ - _ _  

122.7576 - 20p n 
lnx j  - p 

= -2c = -2 d2 1 
j=1 f f3  ff3 

2o 3 ( lnz j  - p ) 2  - - 

1 

792.0801 - 245.5152~ + 20p2 
0 4  

-- -- d21 ---3c n 
0 4  0 2  

j = 1 
da2 0 2  

Inserting the parameter estimates produces the negatives of the entries of the 
observed information. 

= -20.7190. 
d21 

= 0, - 
d21 
dP2 da d p  8 0 2  

a21 
- -10.3600, - -- 
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Changing the signs and inverting produce the same values as in equation 
(10.1). This is a feature of the lognormal distribution that needs not hold for 
other models. 0 

Sometimes it is not even possible to take the derivative. In that case an 
approximate second derivative can be used. A reasonable approximation is 

- f (6  - $h,e, + +h,e,) + f ( O  - $hzez - ih,e,)], 

where ei is a vector with all zeros except for a 1 in the ith position and 
hi = O i / l O v ,  where v is one-third the number of significant digits used in 
calculations. 

Example 10.16 Repeat the Example 10.15 using approximate derivatives. 

Assume that there are 15 significant digits being used. Then hl = 6.1379/105 
and h2 = 1.3894/105. Reasonably close values are 0.00006 and 0.00001. The 
first approximation is 

- d2Z - . 1(6.13796,1.3894) - 21(6.1379,1.3894) + 1(6.13784,1.3894) 
dP2 (0.00006) 

- 

- -157.71389308198 - 2(-157.71389304968) + (-157.71389305468) 
- 

( 0.00006)2 

= -10.3604. 

The other two approximations are 

1-20.7208. 
d21 

-- 0.0003, - - 
dc7 dp do2 

d2 1 

We see that here the approximation works very well. 0 

The information matrix provides a method for assessing the quality of the 
maximum likelihood estimators of a distribution's parameters. However, we 
are often more interested in a quantity that is a function of the parameters. 
For example, we might be interested in the lognormal mean as an estimate of 
the population mean. That is, we want to use exp(b + b2/2) as an estimate 
of the population mean, where the maximum likelihood estimates of the pa- 
rameters are used. It is very difficult to  evaluate the mean and variance of 
this random variable because it is a complex function of two variables that 
already have complex distributions. Theorem 10.17(from [97]) can help. The 
method is often called the delta method. 
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Theorem 10.17 Let X, = ( X l n , .  . . , Xkn)T be a muk5variate random vari- 
able of dimension k based on  a sample of size n. Assume that X is asymptot- 
ically normal with mean 8 and covariance matrix X / n ,  where neither 6 nor X 
depend on n. Let g be a function of k variables that is totally differentiable. 
Let G, = g(X1, , . , . ,Xkn) .  Then G, is asymptotically normal with mean 
g(8) and variance ( a g ) T C ( a g ) / n ,  where d g  is the vector of first derivatives, 
that is, a g  = (dg/d61, . . . , dg/d6k)T and it is to be evaluated at 8 ,  the true 
parameters of the original random variable. 

The statement of the theorem is hard to decipher. The X s  are the estima- 
tors and g is the function of the parameters that are being estimated. For a 
model with one parameter, the theorem reduces to  the following statement: 
Let 0 be an estimator of 6 that has an asymptotic normal distribution with 
mean 8 and variance a’/.. Then g ( 8 )  has an asymptotic normal distribution 
with mean g(6)  and asymptotic variance [g’(8)](a2/n)[g’(6)] = g’(8)2a2/n. 

Example 10.18 Use the delta method to approximate the variance of the 
maximum likelihood estimator of the probability that an observation from an 
exponential distribution exceeds 200. Apply this result to Data Set B. 

From Example 10.8 we know that the maximum likelihood estimate of 
the exponential parameter is the sample mean. We are asked to estimate 
p = Pr(X > 200) = exp(-200/8). The maximum likelihood estimate is 
f i  = exp(-200/6) = exp(-200/2). Determining the mean and variance of 
this quantity is not easy. But we do know that Var(X) = Var(X)/n = 02/n .  
Furthermore, 

g ( e )  = e-’O0/’, g’(e) = 2006- e 7 
2 -200/6 

and therefore the delta method gives 

(2000-2~-200/6 ) 2 0 2 40,0008-2e-400/6 - Var(@) = - 
n n 

For Data Set B, 

Z = 1,424.4, 

f i = e x p ( - i E i z )  2oo =0.86900 

- 
Var(p) = 

40,000( 1424.4)-2 exp( -400/1424.4) = o.0007444. 
20 

A 95% confidence interval for p is 0.869 1 . 9 6 d m  or 0.869 f 0.053. (7 

Example 10.19 Construct a 95% confidence interval fo r  the mean of a log- 
normal population using Data Set B. Compare this to the more traditional 
confidence interval based on  the sample mean. 
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From Example 10.14 we have ji = 6.1379 and 8 = 1.3894 and an estimated 
covariance matrix of 

The function is g(p,  a )  = exp(p + a2/2). The partial derivatives are 

89 - = exp ( p  + +a2) 
d/J 
89 - = aexp  ( p  + ;a2) 
do 

and the estimates of these quantities are 1,215.75 and 1,689.16, respectively. 
The delta method produces the following approximation: 

0.0965 0 
G [ g ( j i , 6 ) ]  = [ 1215.75 1689.16 ] [ o.0483 ] [ ~ $ ~ : ~ ~  ] 

= 280,444. 

The confidence interval is 1215.75 41 1 . 9 6 q ’ m  or 1,215.75 f 1037.96. 
The customary confidence interval for a population mean is 1 f 1.96s/& 

where is s2 is the sample variance. For Data Set B the interval is 1424.4 i 
1.96(3435.04)/~% or 1424.42~ 1505.47. It is not surprising that this is a wider 
interval because we know that (for a lognormal population) the maximum 
likelihood estimator is asymptotically UMVUE. 

10.5 BAYESIAN ESTIMATION 

All of the previous discussion on estimation has assumed a frequentist ap- 
proach. That is, the population distribution is fixed but unknown, and our 
decisions are concerned not only with the sample we obtained from the pop- 
ulation but also with the possibilities attached to other samples that might 
have been obtained. The Bayesian approach assumes that only the data ac- 
tually observed are relevant and it is the population that is variable. For 
parameter estimation the following definitions describe the process and then 
Bayes’ theorem provides the solution. 

10.5.1 Definitions and Bayes’ theorem 

Definition 10.20 The p r i o r  distribution is a probability distribution over 
the space of possible parameter values. I t  is denoted n(I3) and represents our 
opinion concerning the relative chances that various values of I3 are the true 
value of the parameter. 
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As before, the parameter 6 may be scalar or vector valued. Determination 
of the prior distribution has always been one of the barriers to the widespread 
acceptance of Bayesian methods. It is almost certainly the case that your 
experience has provided some insights about possible parameter values before 
the first data point has been observed. (If you have no such opinions, perhaps 
the wisdom of the person who assigned this task to you should be questioned.) 
The difficulty is translating this knowledge into a probability distribution. An 
excellent discussion about prior distributions and the foundations of Bayesian 
analysis can be found in Lindley [76], and for a discussion about issues sur- 
rounding the choice of Bayesian versus frequentist methods, see Efron [26]. 
A good source for a thorough mathematical treatment of Bayesian methods 
is the text by Berger [15]. In recent years many advancements in Bayesian 
calculations have occurred. A good resource is [21]. The paper by Scollnik ?? 
addresses loss distribution modeling using Bayesian software tools. 

Because of the difficulty of finding a prior distribution that is convincing 
(you will have to convince others that your prior opinions are valid) and the 
possibility that you may really have no prior opinion, the definition of prior 
distribution can be loosened. 

Definition 10.21 A n  improper p r i o r  distribution is one fo r  which the 
probabilities ( o r  p d f )  are nonnegative but their sum ( o r  integral) is infinite. 

A great deal of research has gone into the determination of a so-called 
noninformative or vague prior. Its purpose is to reflect minimal knowledge. 
Universal agreement on the best way to construct a vague prior does not exist. 
However, there is agreement that the appropriate noninformative prior for a 
scale parameter is ~ ( 6 )  = l /6 ,  6 > 0. Note that this is an improper prior. 

For a Bayesian analysis, the model is no different than before. 

Definition 10.22 The model distribution i s  the probability distribution fo r  
the data as collected giiien a particular value fo r  the parameter. Its pdf is 
denoted fXp(xlO), where vector notation fo r  x i s  used to  remind us that all 
the data appear here. Also note that this is identical to the likelihood function 
and so that name may also be used at tames. 

If the vector of observations x = (XI,. . . , x,)~ consists of independent and 
identically distributed random variables, then 

We use concepts from multivariate statistics to obtain two more definitions. 
In both cases, as well as in the following, integrals should be replaced by sums 
if the distributions are discrete. 

Definition 10.23 The j o i n t  distribution has pdf 
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Definition 10.24 The marginal distribution of x has pdf 

Compare this definition to that of a mixture distribution given by formula 
(4.5) on page 88. The final two quantities of interest are the following. 

Definition 10.25 The posterior distribution is the conditional probability 
distribution of the parameters given the observed data. I t  i s  denoted .iro~~(Oix). 

Definition 10.26 The predictive distribution is the conditional proba- 
bility distribution of a new observation y given the data x. It is  denoted 
fulx(Ylx).g 

These last two items are the key output of a Bayesian analysis. The pos- 
terior distribution tells us how our opinion about the parameter has changed 
once we have observed the data. The predictive distribution tells us what 
the next observation might look like given the information contained in the 
data (as well as, implicitly, our prior opinion). Bayes’ theorem tells us how 
to compute the posterior distribution. 

Theorem 10.27 The posterior distribution can be computed as 

(10.2) 

while the predictive distribution can be computed as 

~ Y I X ( Y ~ X )  = / fuio(dQ)~oix(Qlx) do, (10.3) 

where fu lo (y lQ)  is  the pdf of the new observation, given the parameter value. 

The predictive distribution can be interpreted as a mixture distribution 
where the mixing is with respect to the posterior distribution. Example 10.28 
illustrates the above definitions and results. 

Example 10.28 Consider the following losses: 

125 132 141 107 133 319 126 104 145 223 

this section and in any subsequent Bayesian discussions, we reserve f(.) for distribu- 
tions concerning observations (such as the model and predictive distributions) and K(.) for 
distributions concerning parameters (such as the prior and posterior distributions). The 
arguments will usually make it clear which particular distribution is being used. To make 
matters explicit, we also employ subscripts to enable us to keep track of the random vari- 
ables. 
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The amount of a single loss has the single-parameter Pareto distribution with 
6 = 100 and cu unknown. The prior distribution has the gamma distribution 
with cu = 2 and 6 = 1. Determine all of the relevant Bayesian quantities. 

The prior density has a gamma distribution and is 

~ ( a )  = ae-a, a > 0 ,  

while the model is (evaluated at the data points) 

10 -3.801121a-49.852823 = a  e 
a y  100)10* 

fXiA(xlQ) = 

The joint density of x and A is (again evaluated at  the data points) 

11 -4.801121a-49.852823 
f X , A ( X ,  a )  = a e 

The posterior distribution of a is 

cu11e-4.801121a-49.852823 alle-4.801121a 
- - (10.4) 

There is no need to evaluate the integral in the denominator. Because we 
know that the result must be a probability distribution, the denominator is 
just the appropriate normalizing constant. A look at the numerator reveals 
that we have a gamma distribution with cu = 12 and 9 = 1/4.801121. 

x A I x ( c u I x )  = cu11e-4.801121a-49.852823 ,-ja (11!)(1/4301121)12' 

The predictive distribution is 

00 a,OOa alle-4.801121a 
dcu 

fyix(y'x) = Jo' 7 (11!)(1/4.801121)12 
00 

- 1 cu12e-(0.195951+ln 9)" da 
y( 11!)( 1/4.801121)12 Jo' - 

- 1 (12!) 
- 

y(11!)(1/4.801121)12 (0.195951 + lny)13 

y > 100. 
12( 4.801 121) l 2  

~(0.195951 + lny)I3' 
- - (10.5) 

While this density function may not look familiar, you are asked to show in 
Exercise 10.43 that 1nY - In 100 has the Pareto distribution. 

10.5.2 Inference and prediction 

In one sense the analysis is complete. We begin with a distribution that 
quantifies our knowledge about the parameter and/or the next observation 
and we end with a revised distribution. However, you will likely want to 
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produce a single number, perhaps with a margin for error, is what is desired. 
The usual Bayesian solution is to pose a loss function. 

Definition 10.29 A loss function l j ( 6 j , 6 j )  describes the penalty paid by  
the investigator when 8, is the estimate and 6, is the true value of the j t h  
parameter. 

It is also possible to have a multidimensional loss function l (&  0) that allows 
the loss to depend simultaneously on the errors in the various parameter 
estimates. 

Definition 10.30 The Bayes estimator for a given loss function is the 
estimator that minimizes the expected loss given the posterior distribution of 
the parameter in question. 

The three most commonly used loss functions are defined as follows. 

Definition 10.31 For squared-error loss the loss function is (all subscripts 
are dropped f o r  convenience) l ( 6 , 6 )  = (6 - 6)2. For absolute loss it is 
l ( 6 , O )  = 16 - 61. For zero-one loss it is  l ( 6 , 6 )  = 0 i f  6 = 6 and is 1 
otherwise. 

Theorem 10.32 indicates the Bayes estimates for these three common loss 
functions. 

Theorem 10.32 For squared-error loss, the Bayes estimator is the mean of 
the posterior distribution, for  absolute loss i t  is a median, and fo r  zero-one 
loss it is a mode. 

Note that there is no guarantee that the posterior mean exists or that the 
posterior median or mode will be unique. When not otherwise specified, the 
term Bayes estimator will refer to the posterior mean. 

Example 10.33 (Example 10.28 continued) Determine the three Bayes esti- 
mates of a. 

The mean of the posterior gamma distribution is a6 = 12/4.801121 = 
2.499416. The median of 2.430342 must be determined numerically while the 
mode is (a - 1)6 = 11/4.801121 = 2.291132. Note that the CY used here is 
the parameter of the posterior gamma distribution, not the CY for the single- 

0 parameter Pareto distribution that we are trying to estimate. 

For forecasting purposes, the expected value of the predictive distribution 
is often of interest. It can be thought of as providing a point estimate of the 
(n+ 1)th observation given the first n observations and the prior distribution. 
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It is 

J 

Equation (10.6) can be 
distribution as weights. 

(10.6) 

interpreted as a weighted average using the posterior 

E x a m p l e  10.34 (Example 10.28 continued) Determine the expected value of 
the 11th observation, given the first 10. 

For the single-parameter Pareto distribution, E(Y/a)  = 1 0 0 a / ( a  - 1)  for 
a > 1. Because the posterior distribution assigns positive probability to values 
of a 5 1, the expected value of the predictive distribution is not defined. I7 

The Bayesian equivalent of a confidence interval is easy to construct. The 
following definition will suffice. 

Definition 10.35 The points a < b define a lOO(1- a)% credibility inter- 
val for 0, provided that Pr(a < Oj 5 bjx) > 1 - a. 

The inequality is present for the case where the posterior distribution of 
0, is discrete. Then it may not be possible for the probability to be exactly 
1 - a. This definition does not produce a unique solution. Theorem 10.36 
indicates one way to produce a unique interval. 

Theorem 10.36 If the posterior random variable Bjlx is continuous and uni- 
modal, then the lOO(1 - a)% credibility interval with smallest width b - a is 
the unique solution to  

~ b 7 r ~ 3 ~ x ( B j j x ) d B j  = 1 - a ,  

" q x ( a l 4  = " o ~ x ( w .  
This interval is a special case of a highest posterior density ( H P D )  credibility 
set. 

Example 10.37 may clarify the theorem. 

E x a m p l e  10.37 (Example 10.28 continued) Determine the shortest 95% 
credibility interval f o r  the parameter a. Also determine the interval that places 
2.5% probability at each end. 
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Fig. 10.1 Two Bayesian credibility intervals 

The two equations from Theorem 10.36 are 

Pr(a 5 A 5 blx) = r(12;4.801121b) - r(12;4.801121~) = 0.95, 
a11e-4.801121a = b11e-4.801121b 

7 

and numerical methods can be used to find the solution a = 1.1832 and 
b = 3.9384. The width of this interval is 2.7552. 

Placing 2.5% probability at each end yields the two equations 

r(12; 4.801121b) = 0.975, r(12; 4.801121~) = 0.025. 

This solution requires either access to the inverse of the incomplete gamma 
function or the use of root-finding techniques with the incomplete gamma 
function itself. The solution is a = 1.2915 and b = 4.0995. The width is 
2.8080, wider than the first interval. Figure 10.1 shows the difference in the 
two intervals. The solid vertical bars represent the HPD interval. The total 
area to the left and right of these bars is 0.05. Any other 95% interval must 
also have this probability. To create the interval with 0.025 probability on each 
side, both bars must be moved to the right. To subtract the same probability 
on the right end that is added on the left end, the right limit must be moved a 
greater distance because the posterior density is lower over that interval than 
it is on the left end. This must lead to a wider interval. 

Definition 10.38 provides the equivalent result for any posterior distribu- 
tion. 

Definition 10.38 For any posterior distribution the 100(1-a)% HPD cred- 
ibility set is the set of parameter values C such that 

Pr(Bj E C) 2 1 - Q (10.7) 

and 
C = (6 ,  : 7re,IX(Bjjx) 2 c} for some c, 
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where c is the largest value for which the inequality (10.7) holds. 

This set may be the union of several intervals (which can happen with a 
multimodal posterior distribution). This definition produces the set of mini- 
mum total width that has the required posterior probability. Construction of 
the set is done by starting with a high value of c and then lowering it. As it 
decreases, the set C gets larger, as does the probability. The process contin- 
ues until the probability reaches 1 - a. It should be obvious to see how the 
definition can be extended to the construction of a simultaneous credibility 
set for a vector of parameters, 8. 

Sometimes it is the case that, while computing posterior probabilities is 
difficult, computing posterior moments may be easy. We can then use the 
Bayesian central limit theorem. The following theorem is paraphrased from 
Berger [15]. 

Theorem 10.39 If  748) and fxp(x10) are both twice diflerentiable in the el- 
ements of f? and other commonly satisfied assumptions hold, then the posterior 
distribution of 0 given X = x is  asymptotically normal. 

The “commonly satisfied assumptions” are like those in Theorem 10.13. As 
in that theorem, it is possible to do further approximations. In particular, the 
asymptotic normal distribution also results if the posterior mode is substituted 
for the posterior mean and/or if the posterior covariance matrix is estimated 
by inverting the matrix of second partial derivatives of the negative logarithm 
of the posterior density. 

Example 10.40 (Example 10.28 continued) Construct a 95% credibility in- 
terval for CY using the Bayesian central limit theorem. 

The posterior distribution has a mean of 2.499416 and a variance of aQ2 = 
0.520590. Using the normal approximation, the credibility interval is 2.499416It 
1.96(0.520590)1/2, which produces a = 1.0852 and b = 3.9136. This interval 
(with regard to the normal approximation) is HPD because of the symmetry 
of the normal distribution. 

The approximation is centered at the posterior mode of 2.291132 (see Ex- 
ample 10.33). The second derivative of the negative logarithm of the posterior 
density [from formula (10.4)] is 

11 QI 11 -4.801 121 (1 
--In[ d2 I = -  

d a 2  (11!)(1/4.801121)12 cy2’  

The variance estimate is the reciprocal. Evaluated at  the modal estimate of 
a we get (2.291132)’/11 = 0.477208 for a credibility interval of 2.29113 It 

0 1.96(0.477208)1/2, which produces a = 0.9372 and b = 3.6451. 

The same concepts can apply to the predictive distribution. However, 
the Bayesian central limit theorem does not help here because the predictive 
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sample has only one member. The only potential use for it is that for a large 
original sample size we can replace the true posterior distribution in equation 
(10.3) with a multivariate normal distribution. 

Example 10.41 (Example 10.28 continued) Construct a 95% highest density 
prediction interval fo r  the next observation. 

It is easy to see that the predictive density function (10.5) is strictly de- 
creasing. Therefore the region with highest density runs from a = 100 to b. 
The value of b is determined from 

12(4.801121)'2 

ln(b/ lOO) 12 (4.801 12 1)12 

~(0.195951 + In y)13 dY 

d x  

s 0.95 = 

= 1 (4.801121 + 2 ) 1 3  

= 1 - [  
4.801121 

4.801121 + ln(b/100) 

and the solution is b = 390.1840. It is interesting to note that the mode of 
the predictive distribution is 100 (because the pdf is strictly decreasing) while 
the mean is infinite (with b = co and an additional y in the integrand, after 
the transformation, the integrand is like e2x-13, which goes to infinity as x 
goes to infinity). 0 

Example 10.42 revisits a calculation done in Section 5.3. There the negative 
binomial distribution was derived as a gamma mixture of Poisson variables. 
Example 10.42 shows how the same calculations arise in a Bayesian context. 

Example 10.42 The number of losses in one year fo r  a given type of trans- 
action is known to have a Poisson distribution. The parameter is not known, 
but the prior distribution has a gamma distribution with parameters a and 6.  
Suppose in the past year there were x such losses. Use Bayesian methods to 
estimate the number of losses in the next year. Then repeat these calculations 
assuming loss counts for the past n years, 21, . . . , 2,. 



BAYESIA N ESTIMATION 31 3 

The key distributions are (where x = 0,1,. . ., A, a,6 > 0): 

~ a - 1  -X /Q  e 
Prior: r ( X )  = r (a)& 

Axe-’ 
Model: p(xJX) = - 

X! 
X”+”-le-(l+l/e)x 

x!r(ff)o~ Joint: p ( z ,  A) = 

03 ~z+a-l~-(l+l/Q)X 
Marginal: p(x) = dX 

~“+a-l~-(1+1/Q)X(1 + 1/6)z+a 
- - 

r(x + a )  

The marginal distribution is negative binomial with r = a and p = 0. The 
posterior distribution is gamma with shape parameter “a” equal to x + a and 
scale parameter “6” equal to (1 + 1/0)-’ = 6/(l + 6). The Bayes estimate 
of the Poisson parameter is the posterior mean, (x + a)O/(l + 6). For the 
predictive distribution, formula (10.3) gives 

and some rearranging shows this to be a negative binomial distribution with 
T = x + a and ,l? = O/( 1 + 0). The expected number of losses for the next year 
is (x + a)6/(1 + 6). Alternatively, from (10.6), 

30 XZ+”-le-(1+1/6’))X(1 + 1/@)Z+a (x + ale 
r(x + a )  1 + 6  . dX = W l X )  = .I 

For a sample of size n, the key change is that the model distribution is now 

X”l+...+zne-nX 

dXJX) = x.! ...xn! . 
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Following this through, the posterior distribution is still gamma, now with 
shape parameter z1 +.  . . + xn + Q = nz + Q and scale parameter Q/( l  + no) .  
The predictive distribution is still negative binomial, now with T = nz + Q 

0 and ,8 = Q/(l + nQ). 

When only moments are needed, iterated expectation formulas can be very 
useful. Provided the moments exist, for any random variables X and Y, 

E(Y) = E[E(YIX)I, (10.8) 

Var(Y) = E[Var(YIX)] + Var[E(YIX)]. (10.9) 

For the predictive distribution, 

and 

Var(Y[x) = Eolx[Var(YIO,x)] + Varq,[E(YI@,x)] 

= Eelx[Var(Y/@)] + Varol,[E(YI@)]. 

The simplification on the inner expected value and variance results from the 
fact that, if 0 is known, the value of x provides no additional information 
about the distribution of Y .  This is simply a restatement of formula (10.6). 

Example 10.43 Apply  these formulas to obtain the predictive mean and vari- 
ance for the previous example. . 

The predictive mean uses E(YIA) = A. Then, 

(na + a)Q 
1 + n Q  ' 

E(Y1x) = E(Alx) = 

The predictive variance uses Var(Y / A )  = A, and then 

Var(Y1x) = E(X/x) + Var(A1x) 

(na + a)O (n3 + a)Q2 + - - 
1 +nQ (1 

= (n? + a)- Q ( I + & )  
1 + n0 

These agree with the mean and variance of the known negative binomial 
distribution for y. However, these quantities were obtained from moments 
of the model (Poisson) and posterior (gamma) distributions. The predictive 
mean can be written as 

nQ 1 
1 + n Q  l+nQ z + -  ao, 
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which is a weighted average of the mean of the data and the mean of the prior 
distribution. Note that as the sample size increases more weight is placed on 
the data and less on the prior opinion. The variance of the prior distribution 
can be increased by letting 6 become large. As it should, this also increases 

0 the weight placed on the data. 

10.5.3 Computational issues 

It should be obvious by now that all Bayesian analyses proceed by taking in- 
tegrals or sums. So at least conceptually it is always possible to do a Bayesian 
analysis. However, only in rare cases are the integrals or sums easy to obtain 
analytically, and that means most Bayesian analyses will require numerical in- 
tegration. While one-dimensional integrations are easy to do to a high degree 
of accuracy, multidimensional integrals are much more difficult to approxi- 
mate. A great deal of effort has been expended with regard to solving this 
problem. A number of ingenious methods have been developed. Some of them 
are summarized in Klugman [68]. However, the one that is widely used today 
is called Markov chain Monte Carlo simulation. A good discussion of this 
method can be found in the article by Scollnik [105]. 

There is another way that completely avoids computational problems. This 
is illustrated using the example (in an abbreviated form) from Meyers [82], 
which also employed this technique. The example also shows how a Bayesian 
analysis is used to estimate a function of parameters. 

Example 10.44 Data were collected on  100 losses in excess of $100,000. 
The single-parameter Pareto distribution i s  to be used with 6 = $100,000 and 
a unknown. The objective is to  estimate the average severity fo r  the portion of 
losses in excess of $1,000,000 but below $5,000,000. This is called the "layer 
average severity(LAS) "in insurance applications'O . For the 100 losses, we 
have computed that lnx j  = 1,208.4354. 

The model density is 

fX(A(X/a) = 
a( 100,000)* 

100 

j=1 xja+l 

100 ln a + 100a In 100,000 - ( a  + 1) C In xj 
j = 1  loo I 

100lna - - 100a - 1,208.4351) . 
1.75 

'"LAS can be used in operational risk modeling to estimate losses below a threshold when 
the corripany or bank obtains insurance to protect it against losses on a per occurrence 
basis. 
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The density appears in column 3 of Table 10.6. To prevent computer overflow, 
the value 1,208.4354 was not subtracted before exponentiation. This makes 
the entries proportional to  the true density function. The prior density is 
given in the second column. It was chosen based on a belief that the true 
value is in the range 1-2.5 and is more likely to be near 1.5 than at the ends. 
The posterior density is then obtained using (10.2). The elements of the 
numerator are found in column 4. The denominator is no longer an integral 
but a sum. The sum is at the bottom of column 4 and then the scaled values 
are in column 5. 

We can see from column 5 that the posterior mode is at ct = 1.7, as 
compared to the maximum likelihood estimate of 1.75 (see Exercise 10.45). 
The posterior mean of a could be found by adding the product of columns 1 
and 5. Here we are interested in a layer average severity. For this problem it 
is 

LAS(a) = E(X A 5,000,000) - E(X A 1,000,000) 

) a # L  
1 - 1 - - '","!; ( 1,000,000"-1 5,000,000a-1 ' 

= 100,000 (ln5,000,000 - In 1,000,000) , a = 1. 

Values of LAS(a) for the 16 possible values of ct appear in column 6. The 
last two columns are then used to obtain the posterior expected values of the 
layer average severity. The point estimate is the posterior mean, 18,827. The 
posterior standard deviation is 

J445,198,597 - 18,8272 = 9,526. 

We can also use columns 5 and 6 to  construct a credibility interval. Discard- 
ing the first five rows and the last four rows eliminates 0.0406 of posterior 
probability. That leaves (5,992, 34,961) as a 96% credibility interval for the 
layer average severity. In his paper [82], Meyers observed that even with a 
fairly large sample the accuracy of the estimate is poor. 

The discrete approximation to the prior distribution could be refined by 
using many more than 16 values. This adds little to  the spreadsheet effort. 

0 The number was kept small here only for display purposes. 

10.6 EXERCISES 

10.1 Determine the method-of-moments estimate for a lognormal model for 
Data Set B. 

10.2 The 20th and 80th percentiles from a sample are 5 and 12, respectively. 
Using the percentile matching method, estimate F(8)  assuming the population 
has a Weibull distribution. 
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Table 10.6 Bayesian estimation of a layer average severity 

.(a) f(x1a) n(a)f(xIa) n(a[x) LAS(a)  TXL’ n(ajx)l(a)2 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

0.0400 
0.0496 
0.0592 
0.0688 
0.0784 
0.0880 
0.0832 
0.0784 
0.0736 
0.0688 
0.0640 
0.0592 

0.0496 
0.0448 
0.0400 

0.0544 

1 . 5 2 ~  lowz5 
6 . 9 3 ~ 1 0 - ~ ~  
1 . 3 7 ~ 1 0 - ~ ’  
1 . 3 6 ~ 1 0 - ~ ~  
7 . 4 0 ~  lo-” 
2.42 x 

7 . 1 8 ~ 1 0 - ~ ~  
7 . 1 9 ~ 1 0 - ~ ~  
5 . 2 9 ~  
2 . 9 5 ~ 1 0 - ~ ~  
1 . 2 8 ~ 1 0 - ~ ~  
4 . 4 2 ~  
1.24x1OW2’ 
2 . 8 9 ~ 1 0 - ~ ~  

5.07x 10-20 

5.65 x 10-23 

6 . 1 0 ~  lo-” 
3.44 x 
8 . 1 3 ~  

5 . 8 0 ~ 1 0 - ~ ~  
2 . 1 3 ~ 1 0 - ~ ’  
4 . 2 2 ~  
5.63xlO-” 
5 . 2 9 ~  

1 . 8 9 ~  

2 . 4 0 ~  lo-’‘ 
6 . 1 6 ~ 1 0 - ~ ~  
1 . 2 9 ~  
2.26 x 

9 . 3 3 ~ 1 0 - ~ ~  

3.64x 10-21 

7.57x10-22 

0.0000 
0.0000 
0.0003 
0.0038 
0.0236 
0.0867 
0.1718 
0.2293 
0.2156 
0.1482 
0.0768 
0.0308 
0.0098 
0.0025 
0.0005 
0.0001 

160,944 
118,085 
86,826 
63,979 
47,245 
34,961 
25,926 
19,265 
14,344 
10,702 
8,000 
5,992 
4,496 
3,380 
2,545 
1,920 

0 6,433 
2 195,201 

29 2:496,935 
243 15,558,906 

1,116 52,737,840 
3,033 106.021,739 
4,454 115,480,050 
4,418 85,110,453 
3,093 44,366,353 
1,586 16,972,802 

614 4,915,383 
185 1.106,259 
44 197,840 
8 28,650 
1 3,413 
0 339 

1 .0000 2 . 4 6 ~ 1 0 - ~ ’  1.0000 18,827 445,198,597 

*n( a 1x)LAS ( a )  

10.3 From a sample you are given that the mean is 35,000, the standard 
deviation is 75,000, the median is 10,000, and the 90th percentile is 100,000. 
Using the percentile matching method, estimate the parameters of a Weibull 
distribution. 

10.4 A sample of size 5 produced the values 4, 5, 21, 99, and 421. You 
fit a Pareto distribution using the method of moments. Determine the 95th 
percentile of the fitted distribution. 

10.5 From a random sample the 20th percentile is 18.25 and the 80th per- 
centile is 35.8. Estimate the parameters of a lognormal distribution using 
percentile matching and then use these estimates to estimate the probability 
of observing a value in excess of 30. 

10.6 A loss process is a mixture of two random variables X and Y ,  where X 
has an exponential distribution with a mean of 1 and Y has an exponential 
distribution with a mean of 10. A weight of p is assigned to  the distribution of 
X and 1 - p to the distribution of Y .  The standard deviation of the mixture 
is 2. Estimate p by the method of moments. 

10.7 The following 20 losses (in millions of dollars) were recorded in one year: 

$1 $1 $1 $1 $1 $2 $2 $3 $3 $4 
$6 $6 $8 $10 $13 $14 $15 $18 $22 $25 

Determine the sample 75th percentile using the smoothed empirical esti- 
mate. 
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10.8 The observations $1000, $850, $750, $1100, $1250, and $900 were ob- 
tained as a random sample from a gamma distribution with unknown para- 
meters cy and 6. Estimate these parameters by the method of moments. 

10.9 A random sample of losses has been drawn from a loglogistic distri- 
bution. In the sample, 80% of the losses exceed 100 and 20% exceed 400. 
Estimate the loglogistic parameters by percentile matching. 

10.10 Let z1,. . . ,J:, be a random sample from a population with cdf F ( z )  = 
z p ,  0 < J: < 1. Determine the method of moments estimate of p.  

10.11 A random sample of 10 losses obtained from a gamma distribution is 
given below: 

1500 6000 3500 3800 1800 5500 4800 4200 3900 3000. 

Estimate cy and 6 by the method of moments. 

10.12 A random sample of five losses from a lognormal distribution is given 
below: 

$500 $1000 $1500 $2500 $4500. 

Estimate p and c by the method of moments. Estimate the probability 
that a loss will exceed $4500. 

10.13 The random variable X has pdf f(x) = p-2xexp(-0.5x2/P2), z ,p  > 
0. For this random variable, E(X) = (/3/2)& and Var(X) = 2p2 - 7rp2/2. 
You are given the following five observations: 

4.9 1.8 3.4 6.9 4.0. 

Determine the method-of-moments and maximum likelihood estimates of 4 .  

10.14 The random variable X has pdf f(z) = d " ( X  + z) -~- ' ,  J:, a ,  X > 0. 
It is known that X = 1,000. You are given the following five observations: 

43 145 233 396 775. 

Determine the method-of-moments and maximum likelihood estimates of 
a. 

10.15 Use the data in Table 10.7 to  determine the method-of-moments esti- 
mate of the parameters of the negative binomial model. 

10.16 Use the data in Table 10.8 to  determine the method-of-moments esti- 
mate of the parameters of the negative binomial model. 

Repeat Example 10.8 using the inverse exponential, inverse gamma with 
a = 2, and inverse gamma distributions. Compare your estimates with the 
method-of-moments estimates. 
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Tabie 10.7 Data for Exercise 10.15 

No. of losses No. of observations 

0 
1 
2 
3 
4+ 

9,048 
905 
45 

2 
0 

~ 

Table 10.8 Data for Exercise 10.16 

No. of losses No. of observations 

0 86 1 
1 121 
2 13 
3 3 
4 1 
5 0 
6 1 
7+ 0 

10.17 From Data Set C, determine the maximum likelihood estimates for 
gamma, inverse exponential, and inverse gamma distributions. 

10.18 Determine maximum likelihood estimates for Data Set B using the 
inverse exponential, gamma, and inverse gamma distributions. Assume the 
data have been censored at  250 and then compare your answers to those 
obtained in Example 10.8 and Exercise 10.16. 

10.19 Repeat Example 10.10 using a Pareto distribution with both parame- 
ters unknown. 

10.20 Repeat Example 10.11, this time finding the distribution of the time 
to  withdrawal of the machine. 

10.21 Repeat Example 10.12, but this time assume that the actual values for 
the seven drivers who have five or more accidents are unknown. Note that 
this is a case of censoring. 

10.22 The model has hazard rate function h(t)  = XI, 0 5 t < 2, and h(t)  = 
X2, t 2 2. Five items are observed from age zero, with the results in Table 
10.9. Determine the maximum likelihood estimates of XI and X2. 

10.23 Five hundred losses are observed. Five of the losses are $1100, $3200, 
$3300, $3500, and $3900. All that is known about the other 495 losses is that 
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Table 10.9 Data for Exercise 10.22 

Age last observed Cause 

1.7 
1.5 
2.6 
3.3 
3.5 

Failure 
Censoring 
Censoring 
Failure 
Censoring 

they exceed $4000. Determine the maximum likelihood estimate of the mean 
of an exponential model. 

10.24 The survival function of the time to  finally settle a loss (the time it 
takes to determine the final loss value) is F( t )  = 1 - t / w ,  0 5 t 5 w. Five 
losses were studied in order to estimate the distribution of the time from the 
loss event to settlement. After five years, four of the losses were settled, the 
times being 1, 3, 4, and 4. Analyst X then estimates w using maximum 
likelihood. Analyst Y prefers to wait until all losses are settled. The fifth loss 
is settled after 6 years, at which time analyst Y estimates w by maximum 
likelihood. Determine the two estimates. 

10.25 Four machines were first observed when they were 3 years old. They 
were then observed for r additional years. By that time, three of the machines 
had failed, with the failure ages being 4, 5, and 7. The fourth machine was still 
working at age 3+r. The survival function has the uniform distribution on the 
interval 0 to  w. The maximum likelihood estimate of w is 13.67. Determine 
r. 

10.26 Ten losses were observed. The values of seven of them (in thousands) 
were $3, $7, $8, $12, $12, $13, and $14. The remaining three losses were all 
censored at $15. The proposed model has a hazard rate function given by 

X I ,  O < t  < 5 ,  
xz, 5 5 t < 10, 
As, t 2 10. 

Determine the maximum likelihood estimates of the three parameters. 

10.27 You are given the five observations 521, 658, 702, 819, and 1217. Your 
model is the single-parameter Pareto distribution with distribution function 

Determine the maximum likelihood estimate of a. 
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10.28 You have observed the following five loss amounts: 11.0, 15.2, 18.0, 
21.0, and 25.8. Determine the maximum likelihood estimate of p for the 
following model: 

10.29 A random sample of size 5 is taken from a Weibull distribution with 
r = 2. Two of the sample observations are known to exceed 50 and the three 
remaining observations are 20, 30, and 45. Determine the maximum likelihood 
estimate of 8. 

10.30 A sample of 100 losses revealed that 62 were below $1000 and 38 were 
above $1000. An exponential distribution with mean 8 is considered. Using 
only the given information, determine the maximum likelihood estimate of 
8. Now suppose you are also given that the 62 losses that were below $1000 
totalled $28,140 while the total for the 38 above $1000 remains unknown. 
Using this additional information, determine the maximum likelihood estimate 
of 0. 

10.31 The following values were calculated from a random sample of 10 losses: 

Elo 3=1 xT2 3 = 0.00033674, x:zl x?' = 0.023999, 

c:p, xyo.5 = 0.34445, 

x3 = 31,939, xi!?l ~5 = 211,498,983. 

Losses come from a Weibull distribution with r = 0.5 so that F ( x )  = 1 - 
e-(./')' 5 .  Determine the maximum likelihood estimate of 8. 

10.32 A sample of n independent observations 21,. . . , x, came from a distri- 
bution with a pdf of f(x) = 28xexp(-8x2), x > 0. Determine the maximum 
likelihood estimator of 8. 

10.33 Let 21,. . . , xn be a random sample from a population with cdf F ( s )  = 
xp, 0 < 3: < 1. 

(a) Determine the maximum likelihood estimate of p .  
(b) Determine the asymptotic variance of the maximum likelihood es- 

timator of p .  
(c) Use your answer to obtain a general formula for a 95% confidence 

interval for p .  

(d) Determine the maximum likelihood estimator of E(X) and obtain 
its asymptotic variance and a formula for a 95% confidence interval. 
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10.34 A random sample of 10 losses obtained from a gamma distribution is 
given below: 

1500 6000 3500 3800 1800 5500 4800 4200 3900 3000 

(a) Suppose it is known that Q = 12. Determine the maximum likeli- 

(b) Determine the maximum likelihood estimates of a and 8. 

hood estimate of 8. 

10.35 A random sample of five losses from a lognormal distribution is given 
below: 

$500 $1000 $1500 $2500 $4500 

Estimate p and g by maximum likelihood. Estimate the probability that 
a loss will exceed $4500. 

10.36 Let 2 1 , .  . . ,x, be a random sample from a random variable with pdf 
f ( ~ )  = e-le--s/e, z > 0. 

(a) Determine the maximum likelihood estimator of 8. Determine the 
asymptotic variance of the maximum likelihood estimator of 8. 

(b) Use your answer to obtain a general formula for a 95% confidence 
interval for 8. 

(c) Determine the maximum likelihood estimator of Var(X) and obtain 
its asymptotic variance and a formula for a 95% confidence interval. 

10.37 Let 2 1 , .  . . , x, be a random sample from a random variable with cdf 
F ( x )  = 1 - x-a, 2 > 1, a > 0. 

(a) Determine the maximum likelihood estimator of a. 

10.38 The following 20 observations were collected. It is desired to estimate 
Pr(X > 200). When a parametric model is called for, use the single-parameter 
Pareto distribution for which F ( x )  = 1 - ( 1 0 0 / ~ ) ~ ,  x > 100, a > 0. 

$132 $149 $476 $147 $135 $110 $176 $107 $147 $165 
$135 $117 $110 $111 $226 $108 $102 $108 $227 $102 

(a) Determine the empirical estimate of Pr (X > 200). 

(b) Determine the method-of-moments estimate of the single-parameter 

(c) Determine the maximum likelihood estimate of the single-parameter 

Pareto parameter a and use it to  estimate P r (X  > 200). 

Pareto parameter a and use it to estimate Pr (X > 200). 
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Loss No. of observations 
0-25 5 
25-50 37 
50-75 28 
75-100 31 
100-125 23 
125-150 9 
150-200 22 
200-250 17 
250-350 15 

Loss No. of observations 
350-500 17 
500-750 13 
750-1000 12 
1,000-1,500 3 
1,500-2,500 5 
2,500-5,000 5 
5,000-10,000 3 
10,000-25,000 3 
25,000- 2 

10.39 The data in Table 10.10 are the results of a sample of 250 losses. 
Consider the inverse exponential distribution with cdf F(x) = e -B/x ,  x > 
0, 8 > 0. Determine the maximum likelihood estimate of 8. 

10.40 Consider the inverse Gaussian distribution with density given by fx (x) = 

(A)1 ’2exp[ -& (y,”] , x > 0. 

(a) Show that 

where 5 = ( l /n)  C,”=, xj. 

timators of p and 8 are 
(b) For a sample (21, ... ,xn), show that the maximum likelihood es- 

@ = 3 :  

10.41 Determine 95% confidence intervals for the parameters of exponential 
and gamma models for Data Set B. The likelihood function and maximum 
likelihood estimates were determined in Example 10.8. 

10.42 Let X have a uniform distribution on the interval from 0 to 8. Show 
that the maximum likelihood estimator is 6 = max(X1,. . . , Xn). Use Exam- 
ples 9.7 and 9.10 to show that this estimator is asymptotically unbiased and 
to  obtain its variance. Show that Theorem 10.13 yields a negative estimate 
of the variance and that item (ii) in the conditions does not hold. 
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10.43 Show that, if Y is the predictive distribution in Example 10.28, then 
In Y - In 100 has the Pareto distribution. 

10.44 Determine the posterior distribution of a in Example 10.28 if the prior 
distribution is an arbitrary gamma distribution. To avoid confusion, denote 
the first parameter of this gamma distribution by y. Next determine a partic- 
ular combination of gamma parameters so that the posterior mean is the max- 
imum likelihood estimate of a regardless of the specific values of 51, . . . , x,. 
Is this prior improper? 

10.45 For Example 10.44 demonstrate that the maximum likelihood estimate 
of a is 1.75. 

10.46 Let 21,. . . , x, be a random sample from a lognormal distribution with 
unknown parameters p and 5, Let the prior density be ~ ( p ,  5) = 5-l. 

(a) Write the posterior pdf of p and o up to a constant of proportion- 
ality. 

(b) Determine Bayesian estimators of p and 0 by using the posterior 
mode. 

(c) Fix 5 at the posterior mode as determined in (b) and then deter- 
mine the exact (conditional) pdf of p. Then use it to determine a 
95% HPD credibility interval for p. 

10.47 A random sample of size 100 has been taken from a gamma distribution 
with a known to be 2, but 6 unknown. For this sample, C:zp,xj = 30,000. 
The prior distribution for 6 is inverse gamma with p taking the role of a and 
X taking the role of 6. 

(a) Determine the exact posterior distribution of 8. At this point the 
values of /3 and X have yet to  be specified. 

(b) The population mean is 26. Determine the posterior mean of 26 
using the prior distribution first with p = X = 0 [this is equivalent 
to  n(6) = 6-'] and then with p = 2 and X = 250 (which is a prior 
mean of 250). Then, in each case, determine a 95% credibility 
interval with 2.5% probability on each side. 

(c) Determine the posterior variance of 26 and use the Bayesian central 
limit theorem to construct a 95% credibility interval for 26 using 
each of the two prior distributions given in (b). 

(d) Determine the maximum likelihood estimate of 6 and then use the 
estimated variance to  construct a 95% confidence interval for 20. 

10.48 Suppose that given 0 = 8 the random variables X I , .  . . , X ,  are 
independent and binomially distributed with pf 
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and 0 itself is beta distributed with parameters a and b and pdf 

(a) Verify that the marginal pf of X j  is 

and E(Xj) = aKj/(a+b). This distribution is termed the binomial- 
beta or negative hypergeometric distribution. 

(b) Determine the posterior pdf .irolx(S\x) and the posterior mean 
E( 0 1 x) . 

10.49 Suppose that given 0 = 8 the random variables X I , .  . . X ,  are inde- 
pendent and identically exponentially distributed with pdf 

fxJie(xjje) = Be-exJ, xj > 0 ,  

and 0 is itself gamma distributed with parameters cr > 1 and /3 > 0, 

(a) Verify that the marginal pdf of X j  is 

and that 7 

This distribution is one form of the Pareto distribution. 

E(0lx). 
(b) Determine the posterior pdf relx(8lx) and the posterior mean 

10.50 Suppose that given 0 = 8 the random variables X I , .  . . X ,  are in- 
dependent and identically negative binomially distributed with parameters r 
and 0 with pf 

and 0 itself is beta distributed with parameters a and b and pdf ~ ( 0 )  = 

r ( a ) r ( b )  
r(a+b) o a - l ( i  - q b - 1 ,  o < e < 1. 
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(a) Verify that the marginal pf of X j  is 

x j = o , 1 , 2  ,..., r ( r  + zj) F(u + b )  F(a + r ) r (b + zj) 
r(7-)2j! r(a)r(b) r(a + T + b + ZJ ' fX,(Xj) = 

and that 
rb 

a- 1' 
E ( X j )  = - 

This distribution is termed the generalized Waring distribu- 
tion. The special case where b = 1 is the Waring distribution 
and the Yule distribution if r = 1 and b = 1. 

(b) Determine the posterior pdf felx(0lx) and the posterior mean 
E(0lx) .  

10.51 Suppose that given 0 = 0 the random variables X I , .  . . , X ,  are inde- 
pendent and identically normally distributed with mean /I and variance 0-l 
and 0 is gamma distributed with parameters Q and (0 replaced by) l/p. 

(a) Verify that the marginal pdf of X j  is 

which is a form of the t-distribution. 

(b) Determine the posterior pdf felx(0lx) and the posterior mean 

E(0Ix). 

10.52 The number of losses in one year, Y ,  has the Poisson distribution 
with parameter 6 .  The parameter 0 has the exponential distribution with 
pdf ~ ( 6 )  = ePe. A particular risk had no losses in one year. Determine the 
posterior distribution of 0 for this risk. 

10.53 The number of losses in one year, Y ,  has the Poisson distribution with 
parameter 6.  The prior distribution has the gamma distribution with pdf 
n(6) = Oe-'. There was one loss in one year. Determine the posterior pdf of 
0. 

10.54 Each machine's loss count has a Poisson distribution with parameter 
A. All machines are identical and thus have the same parameter. The prior 
distribution is gamma with parameters cy = 50 and 0 = 1/500. Over a two- 
year period, the bank had 750 and 1100 such machines in years 1 and 2, 
respectively. There were 65 and 112 losses in years 1 and 2, respectively. 
Determine the coefficient of variation of the posterior gamma distribution. 

10.55 The number of losses, T ,  made by an individual risk in one year has the 
binomial distribution with pf f ( r )  = (:)0'(1 - 19)~ - ' .  The prior distribution 



EXERCISES 327 

for 8 has pdf r ( 0 )  = 6(0 - Q2). There was one loss in a one-year period. 
Determine the posterior pdf of 0. 

10.56 The number of losses of a certain type in one year has a Poisson dis- 
tribution with parameter A. The prior distribution for X is exponential with 
an expected value of 2. There were three losses in the first year. Determine 
the posterior distribution of A. 

10.57 The number of losses in one year has the binomial distribution with 
n = 3 and 8 unknown. The prior distribution for 8 is beta with pdf r ( 8 )  = 
28063(1 - ~ 9 ) ~ ~  0 < 8 < 1. Two losses were observed. Determine each of the 
following: 

(a) The posterior distribution of 8. 

(b) The expected value of 8 from the posterior distribution. 

10.58 A risk has exactly zero or one loss each year. If a loss occurs, the 
amount of the loss has an exponential distribution with pdf f(x) = te-tz, x > 
0. The parameter t has a prior distribution with pdf ~ ( t )  = te-t. A loss of 5 
has been observed. Determine the posterior pdf of t. 
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Estimation for  discrete 
distributions 

Every solution breeds new problems. 
-Murphy 

11.1 INTRODUCTION 

The principles of estimation of parameters of continuous models can be applied 
equally to  frequency distributions. In this chapter we focus on the application 
of the maximum likelihood method for the classes of discrete distributions 
discussed in previous chapters. We illustrate the methods of estimation by 
first fitting a Poisson model. 

11.2 POISSON DISTRIBUTION 

Example 11.1 The number of liability losses over a 10-year period are given 
in  Table 11.1. Estimate the Poisson parameter using the method of moments 
and the method of maximum likelihood. 

These data can be summarized in a different way. We can count the number 
of years in which exactly zero losses occurred, one loss occurred, and so on, 
as in Table 11.2. 

The total number of losses for the period 1985-1994 is 25. Hence, the 
average number of losses per year is 2.5. The average can also be computed 

329 
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Table 11.1 Number of losses by year 

Year Number of losses 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 

6 
2 
3 
0 
2 
1 
2 
5 
1 
3 

Table 11.2 Losses by frequency 

Frequency ( k )  Number of observations (nk) 

0 
1 
2 
3 
4 
5 
6 
7+ 

from Table 11.2. Let nk denote the number of years in which a frequency of 
exactly k losses occurred. The expected frequency (sample mean) is 

where nk represents the number of observed values at frequency k .  Hence the 
method-of-moments estimate of the Poisson parameter is X = 2.5. 

Maximum likelihood estimation can easily be carried out on these data. 
The likelihood contribution of an observation of k is pk. Then the likelihood 
for the entire set of observations is 

M 

L = J-I@ 
k=O 

and the loglikelihood is 
m 

k=O 
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The likelihood and loglikelihood functions are considered to be functions of 
the unknown parameters. In the case of the Poisson distribution, there is only 
one parameter, making the maximization easy. 

For the Poisson distribution. 

and 

lnpk = -A + kInX - Ink!. 

The loglikelihood is 

k=O k=O 

where n = Cr=o nk is the sample size. Differentiating the loglikelihood with 
respect to  A, we obtain 

1 
M dl 

- = - n + x k  n". 
dX 

k=O 

By setting the derivative of the loglikelihood to  zero, the maximum likelihood 
estimate is obtained as the solution of the resulting equation. The estimator 
is then 

From this it can be seen that for the Poisson distribution the maximum like- 
lihood and the method-of-moments estimators are identical. 

If N has a Poisson distribution with mean A, then 

E(A) = E(N) = X 

and 

A Var(N) - X Var(X) = ~ - -. 
n n 

Hence, is unbiased and consistent. From Theorem 10.13, the maximum 
likelihood estimator is asymptotically normally distributed with mean X and 
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variance 

In this case the asymptotic approximation to the variance is equal to its 
true value. From this information, we can construct an approximate 95% 
confidence interval for the true value of the parameter. The interval is f 
1.96(i/n)'lZ. For this example, the interval becomes (1.52, 3.48). This con- 
fidence interval is only an approximation because it relies on large sample 
theory. The sample size is very small, and such a confidence interval should 
be used with caution. 0 

The formulas presented so far have assumed that the counts at each ob- 
served frequency are known. Occasionally, data are collected so that this is 
not given. The most common example is to have a final entry given as k+, 
where the count is the number of times k or more losses were observed. If n k +  

is the number of times this was observed, the contribution to the likelihood 
function is 

(Pk + Pk+l + . . -yk+ = (1 -Po - .  .. - p k - l y + .  

The same adjustments apply to grouped frequency data of any kind. Sup- 
pose there were five observations at frequencies 3-5. The contribution to the 
likelihood function is 

(P3 + P4 + P S I 5 .  

Example 11.2 For the data in Table 11.3' determine the maximum likeli- 
hood estimate for the Poisson distribution. 

The likelihood function is 

47 97 109 62 25 16 9 L = Po PI Pz P3 P4 P5 (1 -Po  - Pl - P2 - P3 - P4 - P5) > 

and when written as a function of A, it becomes somewhat complicated. While 
the derivative can be taken, solving the equation when it is set equal to  zero 
will require numerical methods. It may be just as easy to  use a numerical 

'This is the same data as will be analyzed in Example 12.14 except the observations a t  6 
or more have been combined. 
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Table 11.3 Data for Example 11.2 

No. of losses/year Observed no. of years 

0 
1 
2 
3 
4 
5 
6 t  

47 
97 

109 
62 
25 
16 
9 

method to directly maximize the function. A reasonable starting value can be 
obtained by assuming that all nine observations were exactly at 6 and then 
using the sample mean. Of course, this will understate the true maximum 
likelihood estimate, but should be a good place to start. For this particular 
example, the maximum likelihood estimate is = 2.0226, which is very close 
to  the value obtained when all the counts were recorded. 

11.3 NEGATIVE BINOMIAL DISTRIBUTION 

The moment equations are 

(11.1) 

and 

with solutions = ( s 2 / 2 )  - 1 and i = Z/p. Note that this variance estimate is 
obtained by dividing by n, not n - 1. This is a common, though not required, 
approach when using the method of moments. Also note that, if s2 < 1, the 
estimate of p will be negative, an inadmissible value. 

Example 11.3 (Example 11.1 continued) Estimate the negative binomial pa- 
rameters by the method of moments. 

The sample mean and the sample variance are 2.5 and 3.05 (verify this), 
respectively, and the estimates of the parameters are i = 11.364 and P = 
0.22. 0 

When compared to the Poisson distribution with the same mean, it can be 
seen that /3 is a measure of “extra-Poisson” variation. A value of /3 = 0 means 
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no extra-Poisson variation, while a value of P = 0.22 implies a 22% increase in 
the variance when compared to the Poisson distribution with the same mean. 

We now examine maximum likelihood estimation. The loglikelihood for 
the negative binomial distribution is 

M 

k=O 

The loglikelihood is a function of the two parameters ,B and r .  In order to find 
the maximum of the loglikelihood, we differentiate with respect to each of the 
parameters, set the derivatives equal to zero, and solve for the parameters. 
The derivatives of the loglikelihood are 

and 

00 ,, k-I 

" I  k=O m = O  

1 
30 k-1 

= -nln( l+ P )  + C n k  c rSm 
k = l  m=O 

Setting these equations to zero yields 

and 

(11.3) 

(11.4) 

(11.5) 

(11.6) 

Note that the maximum likelihood estimator of the mean is the sample mean 
(as, by definition, in the method of moments). Equations (11.5) and (11.6) 
can be solved numerically. Replacing 6 in equation (11.6) by b/2 yields the 
ecluation 
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If the right-hand side of equation (11.2) is greater than the right-hand side of 
equation (ll.l), it can be shown that there is a unique solution of equation 
(11.7). If not, then the negative binomial model is probably not a good model 
to use because the sample variance does not exceed the sample mean.2 

Equation (11.7) can be solved numerically for i using the Newton-Raphson 
method. The required equation for the kth iteration is 

A useful starting value for ro is the moment-based estimator of r .  Of course, 
any numerical root-finding method ( e g  , bisection, secant) may be used. 

The loglikelihood is a function of two variables that can be maximized 
numerically. For the case of the negative binomial distribution with complete 
data, because we know the estimator of the mean must be the sample mean, 
setting ,O = %C/r reduces this to a one-dimensional problem. 

Example 11.4 Determine the maximum likelihood estimates of the negative 
binomial parameters for  the data in Example 11.1. 

The maximum occurs at ? = 10.9650 and B = 0.227998. 0 

Example 11.5 Trobliger [I181 studied the driving habits of 23,589 automo- 
bile drivers by  counting the number of accidents per driver in a one-year time 
period. The data as well as fitted Poisson and negative binomial distributions 
are given in Table 11.4. Based on  the information presented, which distribu- 

0 tion appears to provide a better model? 

The expected counts are found by multiplying the sample size (23,589) by 
the probability assigned by the model. It is clear that the negative binomial 
probabilities produce expected counts that are much closer to  those that were 
observed. In addition, the loglikelihood function is maximized at a signifi- 
cantly higher value. Formal procedures for model selection (including what 
it means to be significantly higher) are discussed in Chapter 12. However, in 

0 this case, the superiority of the negative binomial model is apparent. 

*In other words, when the sample variance is less than or equal to the mean: the loglikelihood 
function will not have a maximum. The function will keep increasing as T goes to infinity 
and B goes to zero with the product remaining constant. This effectively says that the 
negative binomial distribution that best matches the data  is the Poisson distribution that 
is a limiting case. 
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Table 11.4 Two models for automobile claims frequency 

No. of No. of Poisson Negative binomial 
claims/ year drivers expected expected 

0 
1 
2 
3 
4 
5 
6 
7 f  

20,592 
2,651 

297 
41 
7 
0 
1 
0 

20,420.9 
2,945.1 

212.4 
10.2 
0.4 
0.0 
0.0 
0.0 

20,596.8 
2,631.0 

318.4 
37.8 
4.4 
0.5 
0.1 
0.0 

Parameters X = 0.144220 T = 1.11790 
,b’ = 0.129010 

Loglikelihood -10,297.84 -10,223.42 

11.4 BINOMIAL DISTRIBUTION 

The binomial distribution has two parameters, m and q. Frequently, the 
value of m is known and fixed. In this case, only one parameter, q, needs to  
be estimated. In many situations, q is interpreted as the probability of some 
event such as death or failure. In such cases the value of Q is usually estimated 
as 

number of observed events 
= maximum number of possible events ’ 

which is the method-of-moments estimator when m is known. 
In situations where frequency data are in the form of the previous examples 

in this chapter, the value of the parameter m, the largest possible observation, 
may be known and fixed or unknown. In any case, m must be no smaller than 
the largest observation. The loglikelihood is 

m 

k=O 

When rn is known and fixed, we need only to maximize 1 with respect to q. 
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Setting this equal to zero yields 

which is the sample proportion of observed events. For the method of mo- 
ments, with m fixed, the estimator of q is the same as the maximum likelihood 
estimator because the moment equation is 

When m is unknown, the maximum likelihood estimator of q is 

(11.8) 

where riz is the maximum likelihood estimate of m. An easy way to approach 
the maximum likelihood estimation of m and q is to create a likelihood 
profile for various possible values of m as follows: 

Step 1: 
Step 2: 
Step 3: 
Step 4: 
Step 5: 

Start with riz equal to the largest observation. 
Obtain 4 using formula (11.8). 
Calculate the loglikelihood at these values. 
Increase riz by 1. 
Repeat steps 2-4 until a maximum is found. 

As with the negative binomial, there need not be a pair of parameters that 
maximizes the likelihood function. In particular, if the sample mean is less 
than or equal to  the sample variance, the procedure above will lead to ever 
increasing loglikelihood values as the value of riz is increased. Once again, the 
trend is toward a Poisson model. This can be checked out using the data from 
Example 11.1. 

Example 11.6 The number of losses per machine during a one-year period 
for a block of 15,160 machines are given in Table 11.5. Obtain moment-based 
and maximum likelihood estimators. 

The sample mean and variance are 0.985422 and 0.890355, respectively. 
The variance is smaller than the mean, suggesting the binomial as a reasonable 
distribution to try. The method of moments leads to 

mq = 0.985422 

and 
mq(1- 9)  = 0.890355. 

Hence, 4 = 0.096474 and riz = 10.21440. However, m can only take on 
integer values. We choose m = 10 by rounding. Then we adjust the es- 
timate of q to 0.0985422 from the first moment equation. Doing this will 
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Table 11.5 Number of losses per machine 

No. of losses/machine No. of machines 

0 
1 
2 
3 
4 
5 
6 
7 
8+ 

5,367 
5,893 
2,870 

842 
163 
23 
1 
1 
0 

Table 11.6 Binomial likelihood profile 

m 4 - Loglikelihood 

7 0.140775 
8 0.123 178 
9 0.109491 
10 0.098542 
11 0.089584 
12 0.082119 

19,273.56 
19,265.37 
19,262.02 
19,260.98 
19,261.11 
19,261.84 

result in a model variance that differs from the sample variance because 
10(0.0985422)(1 - 0.0985422) = 0.888316. This shows one of the pitfalls of 
using the method of moments with integer-valued parameters. 

We now turn to maximum likelihood estimation. From the data m 2 7. 
If m is known, then only q needs to be estimated. If m is unknown, then we 
can produce a likelihood profile by maximizing the likelihood for fixed values 
of m starting at 7 and increasing until a maximum is found. The results axe 
in Table 11.6. 

The largest loglikelihood value occurs at m = 10. If, a priori, the value 
of m is unknown, then the maximum likelihood estimates of the parameters 
are riL = 10 and q = 0.0985422. This is the same as the adjusted moment 

0 estimates. This is not necessarily the case for all data sets. 

11.5 THE (a, b, 1) CLASS 

Estimation of the parameters for the (a, b, 1) class follows the same general 
principles that were used in connection with the (a, b, 0) class. 
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Assuming that the data are in the same form as the previous examples, the 
likelihood is, using formula (5.6), 

k=l k = l  

The loglikelihood is, 

w 

k=l 

where the last statement follows from p z  = &/(I -PO).  The three parameters 
of the (a, b, 1) class are pf, a,  and b, where a and b determine p l , p z , .  . . . 

Then it can be seen that 
1 = lo + I ]  

with 
M 

k=l 
w 

where 10 depends only on the parameter pf and 11 is independent of p p ,  
depending only on a and b. This simpiifies the maximization because 

resulting in 

the proportion of observations at zero. This is the natural estimator because 
pf represents the probability of an observation of zero. 

Similarly, because the likelihood factors conveniently, the estimation of a 
and b is independent of pf. Note that although a and b are parameters 
maximization should not be done with respect to  them. That is because not 
all values of a and b produce admissible probability  distribution^.^ For the 

3Maximization can be done with respect to any parameterization because maximum likeli- 
hood estimation is invariant under parameter transformations. However, it is more difficult 
to maximize over bounded regions because numerical methods are difficult to constrain and 
analytic methods will fail because of the lack of differentiability. Therefore, estimation is 
usually done with respect to particular class members, such as the Poisson. 
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zero-modified Poisson distribution, the relevant part of the loglikelihood is 

= -(n - no)[X + ln(1- e-')I + n? In x + c, 

00 where 3 = $ xkZO knk is the sample mean, n = CEO nk, and c is indepen- 
dent of A. Hence, 

n-no n? -- - - 
1 -.-A + X' 

~ ( 1  - e-') = - A. 

Setting this to zero yields 

(11.9) 
n - no 

n 
By graphing each side as a function of A, i t  is clear that, if no > 0, there exist 
exactly two roots: one is X = 0, the other is X > 0. Equation (11.9) can be 
solved numerically to obtain A. Note that, because pF = no/n and po = e-', 
(11.9) can be rewritten as 

(11.10) 

Because the right-hand side of equation (11.10) is the theoretical mean of the 
zero-modified Poisson distribution (when p," is replaced with p,"), equation 
(11.10) is a moment equation. Hence, an alternative estimation method yield- 
ing the same results as the maximum likelihood method is to equate p f  to 
the sample proportion at zero and the theoretical mean to the sample mean. 
This suggests that, by fixing the zero probability to the observed proportion 
at zero and equating the low-order moments, a modified moment method can 
be used to get starting values for numerical maximization of the likelihood 
function. Because the maximum likelihood method has better asymptotic 
properties, it is preferable to use the modified moment method only to obtain 
starting values. 

For the purpose of obtaining estimates of the asymptotic variance of the 
maximum likelihood estimator of A, it is easy to obtain 

n? -- 8211  e-' 
(1-e-')2 X 2 '  dX2 = (n  - no) 

and the expected value is obtained by observing that 

E(?) = (1 - ~ ? ) X / ( I -  e-') 
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. Finally, pf may be replaced by its estimator, no/n. The variance of pf 
is obtained by observing that the numerator, no, has a binomial distribution 
and therefore the variance is p f (1  - pf) /n .  

For the zero-modified binomial distribution, 

/ m  \ m 

\k=l 1 k=l 
m 

=n31nq+m(n-no)In(l-q)-n3ln(l  - q )  

- (n  - no) h[l- (1 - Q ) ~ ]  + c 

where c does not depend on q and 

Setting this to zero yields 

(11.11) 

where we recall that po = (1 - q)m. This equation matches the theoretical 
mean with the sample mean. 

If m is known and fixed, the maximum likelihood estimator of p p  is still 

However, even with m known, (1 1.11) must be solved numerically for q. When 
m is unknown and also needs to be estimated, the above procedure can be 
followed for different values of m until the maximum of the likelihood function 
is obtained. 

The zero-modified negative binomial (or extended truncated negative bi- 
nomial) distribution is a bit more complicated because three parameters need 
to  be estimated. Of course, the maximum likelihood estimator of pf is 
py = no/n as before, reducing the problem to the estimation of r and p. 
The part of the loglikelihood relevant to  T and p is 

M 

l1 = E n k  Inpk - (n - no) ln(1 - P O ) .  
k= 1 

(1 1.12) 
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Hence 

(11.13) 

This function must be maximized over the ( T ,  p)  plane to obtain the maximum 
likelihood estimates. This can be done numerically using maximization pro- 
cedures. Starting values can be obtained by the modified moment method by 
setting pf = no/n and equating the first two moments of the distribution to 
the first two sample moments. It is generally easier to use raw moments (mo- 
ments about the origin) than central moments for this purpose. In practice, 
it may be more convenient to  maximize (11.12) rather than (11.13) because 
we can take advantage of the recursive scheme 

in evaluating (11.12). This makes computer programming a bit easier. 
For zero-truncated distributions there is no need to  estimate the proba- 

bility a t  zero because it is known to be zero. The remaining parameters are 
estimated using the same formulas developed for the zero-modified distribu- 
tions. 

Example 11.7 T h e  data set  in Table 11.7 comes f r o m  Beard et  al. 1131. 
Determine a model that adequately describes the data. 

When a Poisson distribution is fitted to it, the resulting fit is very poor. 
There is too much probability for one accident and two little at subsequent 
values. The geometric distribution is tried as a one-parameter alternative. It 
has loglikelihood 

33 

= - n I n ( l + p )  + C ~ c n k [ l n ~ - l n ( l + ~ ) ]  

= -n In( 1 + p)  + nx[ln p - In( 1 + p)]  
= -(n + nz)  ln(1 + p)  + nx lnp ,  

k=l 

00 where a: = CkZl k nk/n and n = c E o n k .  
Differentiation reveals that the loglikelihood has a maximum at  

p = 3. 
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Table 11.7 Fitted distributions to Beard data 
~ 

Accidents 0 bserved Poisson Geometric ZM Poisson ZM geometric 
~~ ~ 

0 370,412 369,246.9 372,206.5 370,412.0 370,412.0 
1 46,545 48,643.6 43,325.8 46,432.1 46,555.2 
2 3,935 3,204.1 5,043.2 4,138.6 3,913.6 
3 317 140.7 587.0 245.9 329.0 
4 28 4.6 68.3 11.0 27.7 
5 3 0.1 8.0 0.4 2.3 
61- 0 0.0 1.0 0.0 0.2 

Parameters A: 0.13174 p: 0.13174 p f :  0.87934 p f :  0.87934 
A: 0.17827 0: 0.091780 

Loglikelihood -171,373 -171,479 - 171,160 - 171,133 

A qualitative look at the numbers indicates that the zero-modified geometric 
distribution matches the data better than the other three models considered. 

0 A formal analysis is done in Example 12.15. 

11.6 COMPOUND MODELS 

For the method of moments, the first few moments can be matched with the 
sample moments. The system of equations can be solved to obtain the moment 
based estimators. Note that the number of parameters in the compound 
model is the sum of the number of parameters in the primary and secondary 
distributions. The first two theoretical moments for compound distributions 
are 

E(S) = E(N)E(M) 

Var(S) = E(N) Var(M) + E(M)’Var(N). 

These results were developed in Chapter 6. The first three moments for the 
compound Poisson distribution are given in (5.20). 

Maximum likelihood estimation is also carried out as before. The loglike- 
lihood to be maximized is 

When I& is the probability of a compound distribution, the loglikelihood can 
be maximized numerically. The first and second derivatives of the loglikeli- 
hood can be obtained by using approximate differentiation methods as applied 
directly to the loglikelihood function at the maximum value. 
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Table 11.8 Automobile claims by year 

Year No. of machines No. of losses 

1996 
1997 
1998 
1999 
2000 
2001 

2145 207 
2452 227 
3112 34 1 
3458 335 
3698 362 
3872 359 

Example 12.16 provides a data set for which the Polya-Aeppli (Poisson- 
geometric) distribution is a good choice. Another useful compound Poisson 
distribution is the Poisson-extended truncated negative binomial (Poisson- 
ETNB) distribution. Although it does not matter whether the secondary 
distribution is modified or truncated, we prefer the truncated version here 
so that the parameter r may be e ~ t e n d e d . ~  Special cases are: r = 1, which 
is the Poisson-geometric (also called Polya-Aeppli); r -+ 0, which is the 
Poisson-logarithmic (negative binomial); and r = -0.5, which is called the 
Poisson-inverse Gaussian. This name is not consistent with the others. Here 
the inverse Gaussian distribution is a mixing distribution (see Section 5.12). 
Example 12.17 provides a data set for which the Poisson-inverse Gaussian 
distribution is a good choice. 

11.7 EFFECT OF EXPOSURE ON MAXIMUM LIKELIHOOD 
ESTIMATION 

In Section 5.14 the effect of different exposures on discrete distributions was 
discussed. When aggregating data over several years, maximum likelihood 
estimation is still possible. The following example illustrates this for the 
Poisson distribution. 

Example 11.8 Determine the maximum likelihood estimate of the Poisson 
parameter for  the data in Table 11.8. 

Let X be the Poisson parameter for a single exposure. If year k has ek 
exposures, then the number of losses has a Poisson distribution with parameter 

4This does not contradict Theorem 5.11. When -1 < r < 0, it is still the case that changing 
the probability a t  zero will not produce new distributions. What is true is that there is 
no probability at zero that will lead to an ordinary ( a ,  b, 0) negative binomial secondary 
distribution. 
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Xek. If nk is the number of losses in year k, the likelihood function is 

e-xek (Aek)"k 
nk! 

6 

L = J J  
k=l 

The maximum likelihood estimate is found by 

6 

1 = 1nL = C[-Aek + nk In(xek) - ln(nk!)], 
k=l 

In this example the answer is what we expected it to be, the average number 
of losses per exposure. This technique will work for any distribution in the 
( a ,  b, 0)5  and compound classes. 

11.8 EXERCISES 

11.1 Assume that the binomial parameter m is known. Consider the maxi- 
mum likelihood estimator of q. 

(a) Show that the maximum likelihood estimator is unbiased. 

(b) Determine the variance of the maximum likelihood estimator. 

(c) Show that the asymptotic variance as given in Theorem 10.13 is 
the same as that developed in (b). 

(d) Determine a simple formula for a confidence interval using formula 
(9.4) on page 276 that is based on replacing q with q in the variance 
term. 

11.2 Use equation (11.5) to determine the maximum likelihood estimator 
of ,B for the geometric distribution. In addition, determine the variance of 
the maximum likelihood estimator and verify that it matches the asymptotic 
variance as given in Theorem 10.13. 

11.3 A set of 10,000 risks produced the loss counts in Table 11.9. 

'For the binomial distribution, the usual problem that m must be an integer remains. 
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Table 11.9 Data for Exercise 11.3 

No. of claims No. of risks 

0 
1 
2 
3 
4+ 

9,048 
905 
45 
2 
0 

Table 11.10 Data for Exercise 11.4 

No. of claims Underinsured Uninsured 

0 
1 
2 
3 
4 
5+ 

90 1 947 
92 50 
5 2 
1 1 
1 0 
0 0 

Determine the maximum likelihood estimate of X for a Poisson 
model and then determine a 95% confidence interval for A. 

Determine the maximum likelihood estimate of p for a geometric 
model and then determine a 95% confidence interval for p. 
Determine the maximum likelihood estimate of T and p for a neg- 
ative binomial model. 

Assume that m = 4. Determine the maximum likelihood estimate 
of q of the binomial model. 

Construct 95% confidence intervals for q using the methods devel- 
oped in (d) of Exercise 11.1. 

Determine the maximum likelihood estimate of m and q by con- 
structing a likelihood profile. 

11.4 (From insurance) An automobile insurance policy provides benefits for 
accidents caused by both underinsured and uninsured motorists. Data on 
1,000 policies revealed the information in Table 11.10. 

(a) Determine the maximum likelihood estimate of X for a Poisson 
model for each of the variables Nl = number of underinsured losses 
and Nz = number of uninsured losses. 

(b) Assume that N1 and Nz are independent. Use Theorem 5.1 on 
page 109 to determine a model for N = Nl + Nz. 
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Table 11.11 Data for Exercise 11.5 

No. of claims No. of policies 

0 
1 
2 
3 
4 
5 
6 
7+ 

86 1 
121 
13 
3 
1 
0 
1 
0 

11.5 An alternative method of obtaining a model for N in Exercise 11.4 would 
be to record the total number of underinsured and uninsured losses for each 
of the 1,000 policies. Suppose this was done and the results were as in Table 
11.11. 

(a) Determine the maximum likelihood estimate of X for a Poisson 

(b) Determine the maximum likelihood estimate of p for a geometric 

(c) Determine the maximum likelihood estimate of T and p for a neg- 

(d) Assume that m = 7. Determine the maximum likelihood estimate 

(e) Determine the maximum likelihood estimates of m and q by con- 

model. 

model. 

ative binomial model. 

of q of the binomial model. 

structing a likelihood profile. 
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12 
Mod el s election 

If you perceive that there are four possible ways in which a procedure can go 
wrong, and circumvent these, then a fifth way, unprepared for, will promptly 
develop. 

-Murphy 

12.1 INTRODUCTION 

When using data to build a model, the process must end with the announce- 
ment of a “winner.” While qualifications, limitations, caveats, and other 
attempts to escape full responsibility are appropriate, and often necessary, a 
commitment to a solution is often required. In this chapter we look at a vari- 
ety of ways to evaluate a model and compare competing models. But we must 
also remember that whatever model we select it is only an approximation of 
reality. This is reflected in the following modeler’s motto’: 

All models are wrong, but some models are useful. 
Thus, our goal is to determine a model that is good enough to use to 

answer the question. The challenge here is that the definition of good enough 
will depend on the particular application. Another important modeling point 
is that a solid understanding of the question will guide you to the answer. 
The following quote from John Tukey [119] sums this up: 

‘ I t  is usually attributed to George Box. 

349 
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Far better an approximate answer to the right question, which is often 
vague, than an exact answer to the wrong question, which can always 
be made precise. 

In this chapter, a specific modeling strategy will be considered. Our pref- 
erence is to have a single approach that can be used for any probabilistic 
modeling situation. A consequence is that for any particular modeling situ- 
ation there may be a better (more reliable or more accurate) approach. For 
example, while maximum likelihood is a good estimation method for most 
settings, it may not be the best’ for certain distributions. A literature search 
will turn up methods that have been optimized for specific distributions, but 
they will not be mentioned here. Similarly, many of the hypothesis tests used 
here give approximate results. For specific cases, better approximations, or 
maybe even exact results, are available. They will also be bypassed. The goal 
here is to outline a method that will give reasonable answers most of the time 
and be adaptable to a variety of situations. 

This chapter assumes the reader has a basic understanding of statistical 
hypothesis testing as reviewed in Chapter 9. The remaining sections cover 
a variety of evaluation and selection tools. Each tool has its own strengths 
and weaknesses, and it is possible for different tools to lead to different mod- 
els. This makes modeling as much art as science. At times, in real-world 
applications, the model’s purpose may lead the analyst to favor one tool over 
another. 

12.2 REPRESENTATIONS OF THE DATA A N D  MODEL 

All the approaches to be presented attempt to compare the proposed model 
to the data or to another model. The proposed model is represented by 
either its density or distribution function or perhaps some functional of these 
quantities such as the limited expected value function or the mean excess loss 
function. The data can be represented by the empirical distribution function 
or a histogram. The graphs are easy to construct when there is individual, 
complete data. When there is grouping or observations have been truncated or 
censored, difficulties arise. Here, the only cases to be covered are those where 
all the data have been truncated at the same value (which could be zero) and 
are all censored at the same value (which could be infinity). Extensions to 
the case of multiple truncation or censoring points are detailed by Rioux and 
Klugman [loo]. It should be noted that the need for such representations 
applies only to continuous models. For discrete data, issues of censoring, 

‘There are many definitions of “best.” Combining the Cramer-Rao lower bound with 
Theorem 10.13 indicates that  maximum likelihood estimators are asymptotically optimal 
using unbiasedness and minimum variance as the definition of best. 



GRAPHICAL COMPARISON OF THE DENSITY AND DISTRIBUTION FUNCTIONS 351 

Table 12.1 Data Set B with highest value changed 

$27 $82 $115 $126 $155 $161 $243 
$294 $340 $384$457 $680 $855 $877 
$974 $1193 $1340 $1884 $2558 $3476 

truncation, and grouping rarely apply. The data can easily be represented by 
the relative or cumulative frequencies at each possible observation. 

With regard to representing the data, the empirical distribution function 
will be used for individual data and the histogram will be used for grouped 
data. 

In order to compare the model to truncated data, we begin by noting 
that the empirical distribution begins at the truncation point and represents 
conditional values (that is, they are the distribution and density function 
given that the observation exceeds the truncation point). In order to make a 
comparison to the empirical values, the model must also be truncated. Let 
the truncation point in the data set be t .  The modified functions are 

, X L t ,  1 - F ( t )  

12.3 GRAPHICAL COMPARISON OF T H E  DENSITY AND 
DISTRIBUTION FUNCTIONS 

The most direct way to see how well the model and data match up is to plot 
the respective density and distribution functions. 

Example 12.1 Consider Data Sets B and C. However, for  this example and 
all that follow, in Data Set B we replace the value at $15,743 b y  $3,476 (this 
is to allow the graphs to fit comfortably on a page). These data sets are 
reproduced here in Tables 12.1 and 12.2. Truncate Data Set B at $50 and 
Data Set C at $7,500. Estimate the parameter of an exponential model fo r  
each data set. Plot the appropriate functions and comment on the quality of 
the fit of the model. Repeat this for Data Set B censored at $1,000 (without 
any truncation). 

For Data Set B, there are 19 observations (the first observation is re- 
moved due to truncation). A typical contribution to the likelihood function 
is f(82)/[1 - F(50)]. The maximum likelihood estimate of the exponential 
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Table 12.2 Data Set C 

1 
0.9 
0.8 
0.7 
0.6 

& 0.5 
U. 0.4 

1 

0.3 
0.2 
0.1 

0 

Payment range Number of payments 

0-$7500 99 
$7500-$17,500 42 
$17,500-$32,500 29 

$67,500-$125,000 17 
$32,500-$67,500 28 

$125,000-$300,000 9 
Over $300,000 3 

Exponential fit 

1 

0 700 1,400 2,100 2,800 3,500 

X 

-Model , 
-Empirical I 

Fig. 12.1 Model vs. data cdf plot for Data Set B truncated at 50. 

parameter is 0 = 802.32. The empirical distribution function starts a t  50 and 
jumps 1/19 at  each data point. The distribution function, using a truncation 
point of 50, is 

1 - e-x/802.32 - (1 - e--50/802.32 
- 1 - e-(x-50)/802.32 - 

1 - (1 - e-50/802.32)  F*(x) = 

Figure 12.1 presents a plot of these two functions. 
The fit is not as good as we might like because the model understates the 

distribution function at  smaller values of LG and overstates the distribution 
function at larger values of 2. This is not good because it means that tail 
probabilities are understated. 
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Exponential tit 

0.000035 , i 

0.00003 

0.000025 - 0.00002 

0.000015 

0.00001 

0.000005 

0 

-Model ! 
-Empirical I 

0 50,000 100,000 150,000 200,000 

X 

fig. 12.2 Model vs. data density plot for Data Set C truncated at 7,500. 

For Data Set C, the likelihood function uses the truncated values. For 
example, the contribution to the likelihood function for the first interval is 

F(17,500) - F(7500) [ 1 - F(7500) 

The maximum likelihood estimate is 6 = 44,253. The height of the first 
histogram bar is 

= 0.0000328 
42 

128( 17,500 - 7500) 

and the last bar is for the interval from $125,000 to $300,000 (a bar cannot be 
constructed for the interval from $300,000 to infinity). The density function 
must be truncated at $7,500 and becomes 

e- (x-7500)/44,253 
, x > 7500. - - 

44.253 

The plot of the density function versus the histogram is given Figure 12.2. 
The exponential model understates the early probabilities. It is hard to  

tell from the picture how the curves compare above $125,000. 
For Data Set B modified with a limit, the maximum likelihood estimate is 

8 = 718.00. When constructing the plot, the empirical distribution function 
must stop at $1,000. The plot appears in Figure 12.3. 

0 Once again, the exponential model does not fit well. 
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Exponential fit 

0.9 0.8 ~ 

0.7 
0.6 - 0.5 2 0.4 
0.3 
0.2 
0.1 

0 

~ ~~ 

0 200 400 600 800 1,000 

X 

Fig. 12.3 Model vs. data cdf plot for Data Set B censored at 1,000. 

When the model’s distribution function is close to the empirical distrib- 
ution function, it is difficult to make small distinctions. Among the many 
ways to amplify those distinctions, two will be presented here. The first is 
to simply plot the difference of the two functions. That is, if F,(x) is the 
empirical distribution function and F*(x) is the model distribution function, 
plot D ( x )  = F,(z) - F*(x) .  

Example 12.2 Plot D ( x )  for Example 12.1. 

For Data Set B truncated at $50, the plot appears in Figure 12.4. The lack 
of fit for this model is magnified in this plot. 

There is no corresponding plot for grouped data. For Data Set B censored 
at $1,000, the plot must again end at that value. It appears in Figure 12.5. 

0 The lack of fit continues to be apparent. 

Another way to highlight any differences is the p p  plot, which is also 
called a probability plot. The plot is created by ordering the observations as 
5 1  5 ... 5 x,. A point is then plotted corresponding to  each value. The 
coordinates to plot are (F,(xj)lF*(xj)). If the model fits well, the plotted 
points will be near the 45” line running from (0,O) to (1,l). However, for this 
to be the case, a different definition of the empirical distribution function is 
needed. It can be shown that the expected value of F,(xj) is j / ( n  + 1) and 
therefore the empirical distribution should be that value and not the usual 
j /n .  If two observations have the same value, either plot both points (they 
would have the same (‘y” value but different “x” values) or plot a single value 
by averaging the two (‘x” values. 



GRAPHICAL COMPARISON OF THE DENSITY AND DISTRIBUTION FUNCTIONS 355 

Exponential fit 

0.15 - 
0.1 

~ 0.05 
25 
Q 0 -  

-0.05 - 

-0.1 
0 500 1,000 1,500 2,000 2,500 3,000 3.500 

X 

Fig. 12.4 Model vs. data D ( z )  plot for Data Set B truncated at 50. 

Exponential fit 

-0.1 ~ 

-0.15 

0 200 400 600 800 1 ,OOo 

X 

Fig. 12.5 Model vs. data D ( z )  plot for Data Set B censored at 1,000. 

Example 12.3 Create a p p  plot for Example 12.1. 

For Data Set B truncated at $50, n = 19 and one of the observed values is 
2 = 82. The empirical value is Fn(82) = $ = 0.05. The other coordinate is 

~ * ( 8 2 )  = 1 - e-(82--80)/802.32 = 0.0391. 
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Exponential fit 

1 
0.9 
0.8 
0.7 
0.6 

k 0.5 u. 
0.4 
0.3 
0.2 
0.1 

0 

T 

0 0.2 0.4 0.6 0.8 1 

Fn tx) 

Fig. 12.6 p p  for Data Set B truncated at 50. 

One of the plotted points will be (0.05,0.0391). The complete picture appears 
in Figure 12.6. 

From the lower left part of the plot it is clear that the exponential model 
places less probability on small values than the data call for. A similar plot 
can be constructed for Data Set B censored at $1,000 and it appears in Figure 
12.7. 

This plot ends at about 0.75 because that is the highest probability ob- 
served prior to the censoring point at $1,000. There are no empirical values 
at higher probabilities. Again, the exponential model tends to underestimate 
the empirical values. 

12.4 HYPOTHESIS TESTS 

A picture may be worth many words, but sometimes it is best to replace the 
impressions conveyed by pictures with mathematical demonstrations. One 
such demonstration is a test of the hypotheses 

Ho : The data came from a population with the stated model. 

H I  : The data did not come from such a population. 

The test statistic is usually a measure of how close the model distribution 
function is to the empirical distribution function. When the null hypothesis 
completely specifies the model (for example, an exponential distribution with 
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Exponential fit 

0.7 
0.6 

4 s ;:; 
0.3 
0.2 
0.1 

0 
0 0.2 0.4 0.6 0.8 1 

F" (XI 

Fig. 1 2 7  p p  plot for Data Set B censored at 1,000. 

mean $loo), critical values are well known. However, it is more often the case 
that the null hypothesis states the name of the model but not its parameters. 
When the parameters are estimated from the data, the test statistic tends to 
be smaller than it would have been had the parameter values been prespecified. 
That is because the estimation method itself tries to choose parameters that 
produce a distribution that is close to the data. In that case, the tests become 
approximate. Because rejection of the null hypothesis occurs for large values 
of the test statistic, the approximation tends to increase the probability of a 
Type I1 error while lowering the probability of a Type I error.3 

One method of avoiding the approximation is to randomly divide the sam- 
ple in half. Use one half to estimate the parameters and then use the other 
half to conduct the hypothesis test. Once the model is selected, the full data 
set could be used to reestimate the parameters. 

12.4.1 Kolmogorov-Smirnov test 

Let t be the left truncation point ( t  = 0 if there is no truncation) and let 2~ 
be the right censoring point (u = 03 if there is no censoring). Then, the test 

3Among the tests presented here, only the chi-square test has a built-in correction for this 
situation. Modifications for the other tests have been developed, but they will not be 
presented here. 
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Table 12.3 Calculation of D for Example 12.4 

82 
115 
126 
155 
161 
243 
294 
340 
384 
457 
680 
855 
877 
974 
1,193 
1,340 
1,884 
2,558 
3,476 

0.0391 
0.0778 
0.0904 
0.1227 
0.1292 
0.2138 
0.2622 
0.3033 
0.3405 
0.3979 
0.5440 
0.6333 
0.6433 
0.6839 
0.7594 
0.7997 
0.8983 
0.9561 
0.9860 

0.0000 
0.0526 
0.1053 
0.1579 
0.2105 
0.2632 
0.3158 
0.3684 
0.4211 
0.4737 
0.5263 
0.5789 
0.6316 
0.6842 
0.7368 
0.7895 
0.8421 
0.8947 
0.9474 

0.0526 
0.1053 
0.1579 
0.2105 
0.2632 
0.3158 
0.3684 
0.421 1 
0.4737 
0.5263 
0.5789 
0.6316 
0.6842 
0.7368 
0.7895 
0.8421 
0.8947 
0.9474 
1 .oooo 

0.0391 
0.0275 
0.0675 
0.0878 
0.1340 
0.1020 
0.1062 
0.1178 
0.1332 
0.1284 
0.0349 
0.0544 
0.0409 
0.0529 
0.0301 
0.0424 
0.0562 
0.0614 
0.0386 

statistic is 
D = max IFn(z) - F * ( x ) / .  

t < X < U  

This test should only be used on individual data. This is to  ensure that 
the step function F,(x) is well defined. Also, the model distribution function 
F * ( z )  is assumed to be continuous over the relevant range. 

Example 12.4 Calculate D for Example 12.1. 

Table 12.3 provides the needed values. Because the empirical distribution 
function jumps at each data point, the model distribution function must be 
compared both before and after the jump. The values just before the jump 
are denoted F,(x-) in the table. The maximum is D = 0.1340. 

For Data Set B censored at  $1,000, 15 of the 20 observations are uncensored. 
Table 12.4 illustrates the needed calculations. The maximum is D = 0.0991.0 

All that remains is to  determine the critical value. Commonly used critical 
values for this test are l .22 / f i  for cy = 0.10, 1.36/fi for cy = 0.05, and 
1.63/fi for a = 0.01. When u < 00, the critical value should be smaller 
because there is less opportunity for the difference to  become large. Modi- 
fications for this phenomenon exist in the literature (see reference [lll], for 
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Table 12.4 Calculation of D for Example 12.4 with censoring 

27 
82 

115 
126 
155 
161 
243 
294 
340 
384 
457 
680 
855 
877 
974 

1000 

0.0369 
0.1079 
0.1480 
0.1610 
0.1942 
0.2009 
0.2871 
0.3360 
0.3772 
0.4142 
0.4709 
0.6121 
0.6960 
0.7052 
0.7425 
0.7516 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.75 

0.0369 
0.0579 
0.0480 
0.0390 
0.0558 
0.0991 
0.0629 
0.0640 
0.0728 
0.0858 
0.0791 
0.0621 
0.0960 
0.0552 
0.0425 
0.0016 

example, which also includes tables of critical values for specific null distrib- 
ution models), and one such modification is given in reference [loo] but will 
not be introduced here. 

Example 12.5 Complete the Kolmogorov-Smirnov test for Example 12.4. 

For Data Set B truncated at $50 the sample size is 19. The critical value 
at a 5% significance level is 1 . 3 6 / m  = 0.3120. Because 0.1340 < 0.3120, the 
null hypothesis is not rejected and the exponential distribution is a plausible 
model. While it is unlikely that the exponential model is appropriate for 
this population, the sample size is too small to  lead to that conclusion. For 
Data Set B censored at  1,000 the sample size is 20 and so the critical value 
is 1 . 3 6 / m  = 0.3041 and the exponential model is again viewed as being 
plausible. 0 

For both this test and the Anderson-Darling test that follows, the criti- 
cal values are correct only when the null hypothesis completely specifies the 
model. When the data set is used to estimate parameters for the null hypoth- 
esized distribution (as in the example), the correct critical value is smaller. 
For both tests, the change depends on the particular distribution that is hy- 
pothesized and maybe even on the particular true values of the parameters. 
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12.4.2 Anderson-Darling test 

This test is similar to the Kolmogorov-Srnirnov test, but uses a different 
measure of the difference between the two distribution functions. The test 
statistic is 

[Fn(x) - F*(X)l2 f*(x)&.. 
F*(x)[ l  - F*(x ) ]  

That is, it is a weighted average of the squared differences between the empir- 
ical and model distribution functions. Note that when x is close to  t or to u 
the weights might be very large because of the small value of one of the factors 
in the denominator. This test statistic tends to place more emphasis on good 
fit in the tails than in the middle of the distribution. Calculating with this 
formula appears to be challenging. However, for individual data (so this is 
another test that does not work for grouped data), the integral simplifies to 

A’ = -nF*(u)  + nz[l- ~ , ( y j ) ] ~ { l n [ l -  ~ * ( y j ) ]  - l n [ l -  ~ * ( y j + l ) ] )  
k 

j = O  

k 

+ 72 c Fn(Yj l 2  [In F* ( Y j + l )  - In F* (Yj 11 , 
j=1 

where the unique noncensored data points are t = yo < y1 < ... < yk < 
yk+l = u. Note that when u = co the last term of the first sum is zero 
[evaluating the formula as written will ask for ln(O)]. The critical values are 
1.933, 2.492, and 3.857 for lo%, 5%, and 1% significance levels, respectively. 
As with the Kolmogorov-Smirnov test, the critical value should be smaller 
when u < 03. 

Example 12.6 Perform the Anderson-Darling test for the continuing exam- 
ple .  

For Data Set B truncated at $50, there are 19 data points. The calculation 
is in Table 12.5, where “summand” refers to the sum of the corresponding 
terms from the two sums. The total is 1.0226 and the test statistic is -19(1)+ 
lg(1.0226) = 0.4292. Because the test statistic is less than the critical value 
of 2.492, the exponential model is viewed as plausible. 

For Data Set B censored at $1000, the results are in Table 12.6. The total 
is 0.7602 and the test statistic is -20(0.7516) + 20(0.7602) = 0.1713. Because 
the test statistic does not exceed the critical value of 2.492, the exponential 

0 model is viewed as plausible. 

12.4.3 Chi-square goodness-of-fit test 

Unlike the previous two tests, this test allows for some discretion. It begins 
with the selection of k - 1 arbitrary values, t = co < C I  < . . . < Ck = co. Let 
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Table 12.5 Anderson-Darling test for Example 12.6 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

50 
82 

115 
126 
155 
161 
243 
294 
340 
384 
457 
680 
855 
877 
974 

1193 
1340 
1884 
2558 
3476 
co 

0.0000 
0.0391 
0.0778 
0.0904 
0.1227 
0.1292 
0.2138 
0.2622 
0.3033 
0.3405 
0.3979 
0.5440 
0.6333 
0.6433 
0.6839 
0.7594 
0.7997 
0.8983 
0.9561 
0.9860 
1.0000 

0.0000 
0.0526 
0.1053 
0.1579 
0.2105 
0.2632 
0.3158 
0.3684 
0.4211 
0.4737 
0.5263 
0.5789 
0.6316 
0.6842 
0.7368 
0.7895 
0.8421 
0.8947 
0.9474 
1 .oooo 
1.0000 

0.0399 
0.0388 
0.0126 
0.0332 
0.0070 
0.0904 
0.0501 
0.0426 
0.0389 
0.0601 
0.1490 
0.0897 
0.0099 
0.0407 
0.0758 
0.0403 
0.0994 
0.0592 
0.0308 
0.0141 

C 

p j  = F*(c j )  - F*(c j - l )  be the probability that a truncated observation falls 
in the interval from cj-1 to cj- Similarly, let p,j = Fn(cj)  - Fn(cj-l) be the 
same probability according to the empirical distribution. The test statistic is 
then 

where n is the sample size. Another way to write the formula is to let Ej = npj 
be the number of expected observations in the interval (assuming that the 
hypothesized model is true) and Oj = npnj be the number of observations in 
the interval. Then, 

The critical value for this test comes from the chi-square distribution with 
degrees of freedom equal to the number of terms in the sum (k) minus 1 minus 
the number of estimated parameters. There are a number of rules that have 
been proposed for deciding when the test is reasonably accurate. They center 
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Table 12.6 Anderson-Darling calculation for Example 12.6 with censored data 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0 
27 
82 

115 
126 
155 
161 
243 
294 
340 
384 
457 
680 
855 
877 
974 

1000 

0.0000 
0.0369 
0.1079 
0.1480 
0.1610 
0.1942 
0.2009 
0.2871 
0.3360 
0.3772 
0.4142 
0.4709 
0.6121 
0.6960 
0.7052 
0.7425 
0.7516 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.75 

0.0376 
0.0718 
0.0404 
0.0130 
0.0334 
0.0068 
0.0881 
0.0493 
0.0416 
0.0375 
0.0575 
0.1423 
0.0852 
0.0093 
0.0374 
0.0092 

around the values of Ej = npj. The most conservative states that each must 
be at least 5. Some authors claim that values as low as 1 are acceptable. All 
agree the test works best when the values are about equal from term to term. 
If the data are grouped, there is little choice but to use the groups as given, 
although adjacent groups could be combined to  increase Ej. For individual 
data, the data can be grouped for the purpose of performing this test.4 

Example 12.7 Perform the chi-square goodness-of-fit test for  the exponential 
distribution for  the continuing example. 

All three data sets can be evaluated with this test. For Data Set B trun- 
cated at $50, establish boundaries at $50, $150, $250, $500, $1000, $2000, 
and infinity. The calculations appear in Table 12.7. The total is x2 = 1.4034. 
With four degrees of freedom (6 rows minus 1 minus 1 estimated parameter) 
the critical value for a test at a 5% significance level is 9.4877. The exponential 
model is a good fit. 

'Moore [83] cites a number of rules. Among them are (1) An expected frequency of a t  least 
1 for all cells and arid an expected frequency of a t  least 5 for 80% of the cells; (2) an average 
count per cell of at  least 4 when testing a t  the 1% significance level arid an  average count 
of a t  least 2 when testing at the 5% significance level; and (3)  a sample size of at least 10, 
a t  least 3 cells, and the ratio of the square of the sample size to the number of cells a t  least 
10. 
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Table 12.7 Data Set B truncated at 50 

Range P Expected Observed X 2  

$50-$150 0.1172 2.227 3 0.2687 
$150-$250 0.1035 1.966 3 0.5444 
$250-$500 0.2087 3.964 4 0.0003 
$500-$1000 0.2647 5.029 4 0.2105 
$1000-$2000 0.2180 4.143 3 0.3152 
$2,000-cc 0.0880 1.672 2 0.0644 

Total 1 19 19 1.4034 

Table 12.8 Data Set B censored at 1,000 

Range P Expected Observed X 2  

OM150 0.1885 3.771 
$150-$250 0.1055 2.110 
$250-$500 0.2076 4.152 
$500-$1000 0.2500 5.000 
$1OOO-Cc 0.2484 4.968 

4 0.0139 
3 0.3754 
4 0.0055 
4 0.2000 
5 0.0002 

Total 1 20 20 0.5951 

For Data Set B censored at $1000, the first interval is from $0 to $150 
and the last interval is from $1000 to m. Unlike the previous two tests, the 
censored observations can be used. The calculations are in Table 12.8. The 
total is x2 = 0.5951. With three degrees of freedom (5 rows minus 1 minus 1 
estimated parameter) the critical value for a test at a 5% significance level is 
7.8147 and the pvalue is 0.8976. The exponential model is a good fit. 

For Data Set C the groups are already in place. The results are given Table 
12.9. The test statistic is x2 = 61.913. There are four degrees of freedom for 
a critical value of 9.488. The pvalue is about lo-''. There is clear evidence 
that the exponential model is not appropriate. A more accurate test would 
combine the last two groups (because the expected count in the last group is 
less than 1). The group from 125,000 to infinity has an expected count of 8.997 
and an observed count of 12 for a contribution of 1.002. The test statistic is 
now 16.552 and with three degrees of freedom the pvalue is 0.00087. The test 

0 continues to reject the exponential model. 

Sometimes, the test can be modified to fit different situations. Example 
12.8 illustrates this for aggregate frequency data. 

Example 12.8 Conduct an approximate goodness-of-fit test for the Poisson 
model determined in Example 11.8. The data are repeated in Table 12.10. 
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Table 12.9 Data Set C 

Range P Expected Observed X 2  

$7500-$17,500 0.2023 25.889 42 10.026 
$17,500-$32,500 0.2293 29.356 29 0.004 
$32,500-$67,500 0.3107 39.765 28 3.481 
$67,500-$125,000 0.1874 23.993 17 2.038 
$125,000-$300,000 0.0689 8.824 9 0.003 
$300,000-o0 0.0013 0.172 3 46.360 

Total 1 128 128 61.913 

Table 12.10 Automobile claims by year 

Year Exposure Claims 

1986 
1987 
1988 
1989 
1990 
1991 

2145 207 
2452 227 
3112 34 1 
3458 335 
3698 362 
3872 359 

For each year we are assuming that the number of losses is the result of 
the sum of a number (given by the exposure) of independent and identical 
random variables. In that case the central limit theorem indicates that a 
normal approximation may be appropriate. The expected count ( E k )  is the 
exposure times the estimated expected value for one exposure unit, and the 
variance ( V k )  is the exposure times the estimated variance for one exposure 
unit. The test statistic is then 

Q = C ( n k  - E k ) 2  

k v k  

and has an approximate chi-square distribution with degrees of freedom equal 
to the number of data points less the number of estimated parameters. The 
expected count is E k  = X e k  and the variance is v k  = X e k  also. The test 
statistic is 

(207 - 209.61)2 (227 - 239.61)2 (341 - 304.11)2 
= 209.61 i- 239.61 -t 304.11 

(335 - 337.92)2 (362 - 361.37)2 (359 - 378.38)2 
+ 337.92 + 361.37 -k 378.38 
= 6.19. 
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With five degrees of freedom, the 5% critical value is 11.07 and the Poisson 
hypothesis is accepted. 0 

There is one important point to  note about these tests. Suppose the sample 
size were to double but sampled values were not much different (imagine each 
number showing up twice instead of once). For the Kolmogorov-Smirnov test, 
the test statistic would be unchanged, but the critical value would be smaller. 
For the Anderson-Darling and chi-square tests, the test statistic would double 
while the critical value would be unchanged. As a result, for larger sample 
sizes, it is more likely that the null hypothesis (and thus the proposed model) 
will be rejected. This should not be surprising. We know that the null hy- 
pothesis is false (it is extremely unlikely that a simple distribution using a 
few parameters can explain the complex behavior that produced the observa- 
tions), and with a large enough sample size we will have convincing evidence 
of that truth. When using these tests we must remember that although all 
our models are wrong, some may be useful. 

12.4.4 Likelihood ratio test 

An alternative question to  “Could the population have distribution A?” is 
“IS the population more likely to have distribution B than distribution A?” 
More formally: 

HO : The data came from a population with distribution A. 
HI : The data came from a population with distribution B. 

In order to perform a formal hypothesis test distribution A must be a special 
case of distribution B,  for example, exponential versus gamma. An easy way 
to complete this test is given below. 

Definition 12.9 The likelihood ratio test is conducted as follows. First, let 
the likelihood function be written as L(0). Let 00 be the value of the parameters 
that maximizes the likelihood function. However, only values of the parameters 
that are within the null hypothesis may be considered. Let LO = L(60). Let 
61 be the maximum likelihood estimator where the parameters can vary over 
all possible values f rom the alternative hypothesis and then let L1 = L(61). 
The test statistic is T = 2ln(Ll/Lo) = 2(ln L1 - 1nLo). The null hypothesis 
is rejected i f  T > c, where c is calculated from (Y = Pr(T > c) ,  where T has 
a chi-square distribution with degrees of freedom equal t o  the number of free 
parameters in the model from the alternative hypothesis less the number of 
free parameters in the model f rom the null hypothesis. 

This test makes some sense. When the alternative hypothesis is true, forc- 
ing the parameter to be selected from the null hypothesis should produce a 
likelihood value that is significantly smaller. 
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Example 12.10 You want to test the hypothesis that the population that pro- 
duced Data Set B (using the original largest observation) has a mean that is 
other than $1200. Assume that the population has a gamma distribution and 
conduct the likelihood ratio test at a 5% significance level. Also, determine 
the p-value. 

The hypotheses are: 

HO : gamma with p = 1200. 

H I  : gamma with p # 1200. 

From earlier work the maximum likelihood estimates are & = 0.55616 and 
6 = 2561.1. The loglikelihood at the maximum is lnLl = -162.293. Next, 
the likelihood must be maximized, but only over those values Q and 6 for which 
a6 = 1200. That means Q can be free to range over all positive numbers but 
6 = 1200 /~ .  Thus, under the null hypothesis, there is only one free parameter. 
The likelihood function is maximized at & = 0.54955 and 6 = 2183.6. The 
loglikelihood at this maximum is 1nLo = -162.466. The test statistic is 
T = 2(-162.293 + 162.466) = 0.346. For a chi-square distribution with one 
degree of freedom, the critical value is 3.8415. Because 0.346 < 3.8415, the 
null hypothesis is not rejected. The probability that a chi-square random 
variable with one degree of freedom exceeds 0.346 is 0.556, a pvalue that 

0 indicates little support for the alternative hypothesis. 

Example 12.11 (Example 5.4 continued) Members of the (a ,  b, 0 )  class were 
not suficient to describe these data. Determine a suitable model. 

Thirteen different distributions were fit to the data. The results of that 
process revealed six models with p-values above 0.01 for the chi-square good- 
ness-of-fit test. Information about those models is given in Table 12.11. The 
likelihood ratio test indicates that the three-parameter model with the small- 
est negative loglikelihood (Poisson-ETNB) is not significantly better than the 
two-parameter Poisson-inverse Gaussian model. The latter appears to be an 
excellent choice. 0 

It is tempting to use this test when the alternative distribution simply has 
more parameters than the null distribution. In such cases the test is not 
appropriate. For example, it is possible for a two-parameter lognormal model 
to have a higher loglikelihood value than a three-parameter Burr model. This 
produces a negative test statistic, indicating that a chi-square distribution is 
not appropriate. When the null distribution is a limiting (rather than special) 
case of the alternative distribution, the test may still be used, but the test 
statistic’s distribution is now a mixture of chi-square distributions (see [106]). 
Regardless, it is still reasonable to use the “test” to make decisions in these 
cases, provided it is clearly understood that a formal hypothesis test was not 
conducted. Further examples and exercises using this test to make decisions 
appear in Section ??. 
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Table 12.11 Six useful models for Example 12.11 

Model 
Number of Negative 
parameters loglikelihood x2 p-value 

Negative binomial 2 5348.04 8.77 0.0125 
ZM logarithmic 2 5343.79 4.92 0.1779 
Poisson-inverse Gaussian 2 5343.51 4.54 0.2091 
ZM negative binomial 3 5343.62 4.65 0.0979 
Geometric-negative binomial 3 5342.70 1.96 0.3754 
Poisson-ETNB 3 5342.51 2.75 0.2525 

12.5 SELECTING A MODEL 

SelectionSection 

12.5.1 Introduction 

Almost all of the tools are now in place for choosing a model. Before outlining 
a recommended approach, two important concepts must be introduced. The 
first is parsimony. The principle of parsimony states that unless there is 
considerable evidence to do otherwise a simpler model is preferred. The reason 
is that a complex model may do a great job of matching the data, but that is no 
guarantee that the model matches the population from which the observations 
were sampled. For example, given any set of 10 ( z , ~ )  pairs with unique II: 
values, there will always be a polynomial of degree 9 or less that goes through 
all 10 points. But if these points were a random sample, it is highly unlikely 
that the population values all lie on that polynomial. However, there may 
be a straight line that comes close to the sampled points as well as the other 
points in the population. This matches the spirit of most hypothesis tests. 
That is, do not reject the null hypothesis (and thus claim a more complex 
description of the population holds) unless there is strong evidence to do so. 

The second concept does not have a name. It states that, if you try enough 
models, one will look good, even if it is not. Suppose I have 900 models at 
my disposal. For most data sets, it is likely that one of them will fit well, but 
this does not help us learn about the population. 

Thus, in selecting models, there are two things to keep in mind: (1) Use 
a simple model if at all possible; and, (2). Restrict the universe of potential 
models. 

The methods outlined in the remainder of this section will help with the first 
point. The second one requires some experience. Certain models make more 
sense in certain situations, but only experience can enhance the modeler’s 
senses so that only a short list of quality candidates is considered. 
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The section is split into two types of selection criteria. The first set is based 
on the modeler's judgment whereas the second set is more formal in the sense 
that most of the time all analysts will reach the same conclusions. That is 
because the decisions are made based on numerical measurements rather than 
charts or graphs. 

12.5.2 Judgment- based approaches 

Using one's own judgment to select models involves one or more of the three 
concepts outlined below. In all cases, the analyst's experience is critical. 

First, the decision can be based on the various graphs (or tables based on 
the graphs) presented in this ~ h a p t e r . ~  This allows the analyst to focus on 
aspects of the model that are important for the proposed application. For 
example, it may be more important to fit the tail well or it may be more 
important to match the mode or modes. Even if a score-based approach is 
used, it may be appropriate to present a convincing picture to support the 
chosen model. 

Second, the decision can be influenced by the success of particular models 
in similar situations or the value of a particular model for its intended use. If 
the Pareto distribution has frequently been used to model a particular set of 
losses, it may require more than the usual amount of evidence to change to 
an alternative distribution. 

Finally, it should be noted that the more algorithmic approaches outlined 
below do not always agree. In that case judgment is most definitely required, 
if only to decide which algorithmic approach to use. 

12.5.3 Score-based approaches 

Some analysts might prefer an automated process for selecting a model. An 
easy way to do that would be to assign a score to each model and let the 
model with the best value win. The following scores are worth considering: 

1. Lowest value of the Kolmogorov-Smirnov test statistic 

2. Lowest value of the Anderson-Darling test statistic 

3. Lowest value of the chi-square goodness-of-fit test statistic 

4. Highest pvalue for the chi-square goodness-of-fit test 

5. Highest value of the likelihood function at its maximum 

"Besides the ones discussed here, there are other plots/tables that could be used. Other 
choices are a q-q plot and a comparison of model and empirical limited expected values or 
mean residual life functions. 
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All but the chi-square p-value have a deficiency with respect to parsimony. 
First, consider the likelihood function. When comparing, say, an exponential 
to a Weibull model, the Weibull model must have a likelihood value that is at 
least as large as the exponential model. They would only be equal in the rare 
case that the maximum likelihood estimate of the Weibull parameter r is equal 
to 1. Thus, the Weibull model would always win over the exponential model, 
a clear violation of the principle of parsimony. For the three test statistics, 
there is no assurance that the same relationship will hold, but it seems likely 
that, if a more complex model is selected, the fit measure is likely to  be better. 
The only reason the p-value is immune from this problem is that with more 
complex models the test has fewer degrees of freedom. It is then possible that 
the more complex model will have a smaller pvalue. There is no comparable 
adjustment for the first two test statistics listed. 

With regard to the likelihood value, there are two ways to proceed. One is 
to perform the likelihood ratio test and the other is to extract a penalty for 
employing additional parameters. The likelihood ratio test is technically only 
available when one model is a special case of another (for example, Pareto 
vs. generalized Pareto ). The concept can be turned into an algorithm by 
using the test at a 5% significance level. Begin with the best one-parameter 
model (the one with the highest loglikelihood value). Add a second parameter 
only if the two-parameter model with the highest loglikelihood value shows an 
increase of at least 1.92 (so twice the difference exceeds the critical value of 
3.84). Then move to three-parameter models. If the comparison is to a two- 
parameter model, a 1.92 increase is again needed. If the early comparison led 
to keeping the oneparameter model, an increase of 3.00 is needed (because 
the test has two degrees of freedom). Adding three parameters requires a 
3.91 increase, four parameters a 4.74 increase, and so on. In the spirit of 
this chapter, this algorithm can be used even for nonspecial cases. However, 
it would not be appropriate to claim that a likelihood ratio test was being 
conducted. 

Aside from the issue of special cases, the likelihood ratio test has the same 
problem as the other hypothesis tests. Were the sample size to  double, the 
loglikelihoods would also double, making it more likely that a model with 
a higher number of parameters will be selected. This tends to defeat the 
parsimony principle. On the other hand, it could be argued that, if we possess 
a lot of data, we have the right to consider and fit more complex models. A 
method that effects a compromise between these positions is the Schwarz 
Bayesian criterion (SBC) [107], which recommends that when ranking models 
a deduction of (./a) Inn should be made from the loglikelihood value, where T 

is the number of estimated parameters and n is the sample size. Thus, adding 
a parameter requires an increase of 0.51nn in the loglikelihood. For larger 
sample sizes, a greater increase is needed, but it is not proportional to the 
sample size itself. 
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Table 12.12 Results for Example 12.12 

B truncated at $50 B censored at $1,000 

Criterion Exponential Weibull Exponential Weibull 

K-S* 0.1340 0.0887 0.0991 0.0991 
A-D* 0.4292 0.1631 0.1713 0.1712 
X 2  1.4034 0.3615 0.5951 0.5947 
pValue 0.8436 0.9481 0.8976 0.7428 
Loglikelihood -146.063 -145.683 -113.647 -113.647 
SBC -147.535 -148.628 -115.145 -116.643 

X 2  61.913 0.3698 
pValue 10-12 0.9464 
Loglikelihood -214.924 -202.077 
SBC -217.350 -206.929 

'K-S and A-D refer to the Kolmogorov-Smirnov and Anderson-Darling 

test statistics, respectively. 

Example 12.12 For the continuing example in this chapter, choose between 
the exponential and Weibull models for the data. 

Graphs were constructed in the various examples and exercises. Table 12.12 
summarizes the numerical measures. For the truncated version of Data Set B, 
the SBC is calculated for a sample size of 19, while for the version censored at 
$1,000 there are 20 observations. For both versions of Data Set B, while the 
Weibull offers some improvement, it is not convincing. In particular, neither 
the likelihood ratio test nor the SBC indicates value in the second parameter. 
For Data Set C it is clear that the Weibull model is superior and provides an 
excellent fit. 0 

Example 12.13 I n  Example 5.19 an  ad hoc method was used to  demonstrate 
that the Poisson-ETNB distribution provided a good fit.  Use the methods of 
this chapter to  determine a good model. 

The data set is very large and, as a result, requires a very close correspon- 
dence of the model to the data. The results are given in Table 12.13. 

From Table 12.13, it is seen that the negative binomial distribution does 
not fit well while the fit of the Poisson-inverse Gaussian is marginal at best 
( p  = 2.88%). The Poisson-inverse Gaussian is a special case ( r  = -0.5) of 
the Poisson-ETNB. Hence, a likelihood ratio test can be formally applied 
to determine whether the additional parameter r is justified. Because the 
loglikelihood increases by 5, which is more than 1.92, the three-parameter 
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Table 12.13 Results for Example 12.13 

Fitted distributions 
No. of Observed Negative Poisson- Poisson- 
claims frequency binomial inverse Gaussian ETNB 

0 565,664 565,708.1 565,712.4 565,661.2 
1 68,714 68,570.0 68,575.6 68,721.2 
2 5,177 5,317.2 5,295.9 5,171.7 
3 365 334.9 344.0 362.9 
4 24 18.7 20.8 29.6 
5 6 1 .o 1.2 3.0 
6+ 0 0.0 0.1 0.4 

Parameters /3 = 0.0350662 X = 0.123304 X = 0.123395 
r = 3.57784 ,D = 0.0712027 /3 = 0.233862 

r = -0.846872 

Chi square 12.13 7.09 0.29 

p-value <1% 2.88% 58.9% 
-Loglikelihood 251,117 251,114 251,109 

Degrees of freedom 2 2 1 

SBC -251,130 -251,127 -251,129 

model is a significantly better fit. The chi-square test shows that the Poisson- 
ETNB provides an adequate fit. On the other hand, the SBC favors the 
Poisson-inverse Gaussian distribution. Given the improved fit in the tail for 

0 the three parameter model, it seems to be the best choice. 

Example 12.14 The following example is taken f rom Douglas [24]. The 
number of accidents that cause loses per day are recorded. The data are in 
Table 12.14. Determine if a Poisson model is appropriate. 

A Poisson model is fitted to these data. The method of moments and the 
maximum likelihood method both lead to the estimate of the mean, 

.. 742 
X = - = 2.0329. 

365 

The results of a chi-square goodness-of-fit test are in Table 12.15. Any time 
such a table is made, the expected count for the last group is 

Ek+ = n@k+ = n( 1 - $0 - . . ' - $k- 1). 

The last three groups were combined to  ensure an expected count of at 
least one for each row. The test statistic is 9.93 with six degrees of free- 
dom. The critical value at a 5% significance level is 12.59 and the p-value is 
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Table 12.14 Data for Example 12.14 

No. of claimslday Observed no. of days 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9-t 

47 
97 

109 
62 
25 
16 
4 
3 
2 
0 

Table 12.15 Chi-square goodness-of-fit test for Example 12.14 
~~~~~~~ 

Claims/day Observed Expected Chi square 

0 
1 
2 
3 
4 
5 
6 
7+ 

47 47.8 
97 97.2 

109 98.8 
62 66.9 
25 34.0 
16 13.8 
4 4.7 
5 1.8 

0.01 
0.00 
1.06 
0.36 
2.39 
0.34 
0.10 
5.66 

Totals 365 365 9.93 

0.1277. By this test the Poisson distribution is an acceptable model; however, 
it should be noted that the fit is poorest at the large values, and with the 

0 model understating the observed values, this may be a risky choice. 

Example 12.15 T h e  data set in Table 11.7 come f r o m  Beard et al. (131 and 
were previously analyzed in Example 11.7. Determine a model that adequately 
describes the data. 

Parameter estimates from fitting four models are in Table 11.7. Various 
fit measures are given in Table 12.16. Only the zero-modified geometric dis- 
tribution passes the goodness-of-fit test. It is also clearly superior according 
to the SBC. A likelihood ratio test against the geometric has a test statistic 
of 2(171,479 - 171,133) = 692, which with one degree of freedom is clearly 

0 significant. This confirms the qualitative conclusion in Example 11.7. 
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Table 12.16 Test results for Example 12.15 

Poisson Geometric ZM Poisson ZM geometric 
~~~ ~ ~~ 

Chi square 543.0 643.4 64.8 0.58 
Degrees of freedom 2 4 2 2 
p-value < 1% < 1% < 1% 74.9% 
Loglikelihood - 17 1,373 -171,479 - 171,160 - 171,133 
SRC - 171,379.5 - 171,485.5 - 171,173 - 171,146 

Example 12.16 The data in Table 12.17, f rom Simon [l08], represent the 
observed number of losses per insurance contract fo r  298 contracts. Determine 
an appropriate model. 

The Poisson, negative binomial, and Polya-Aeppli distributions are fitted 
to the data. The Polya-Aeppli and the negative binomial are both plausible 
distributions. The p-value of the chi-square statistic and the loglikelihood both 
indicate that the Polya-Aeppli is slightly better than the negative binomial. 
The SBC verifies that both models are superior to  the Poisson distribution. 
The ultimate choice may depend on familiarity, prior use, and computational 
convenience of the negative binomial versus the Polya-Aeppli model. 0 

Example 12.17 Consider the data in Table 12.18 on automobile accidents 
in Switzerland taken f rom Biihlmann [ 191. Determine an  appropriate model. 

Three models are considered in Table 12.18. The Poisson distribution is 
a very bad fit. Its tail is far too light compared with the actual experience. 
The negative binomial distribution appears to be much better but cannot be 
accepted because the pvalue of the chi-square statistic is very small. The large 
sample size requires a better fit. The Poisson-inverse Gaussian distribution 
provides an almost perfect fit (pvalue is large). Note that the Poisson-inverse 
Gaussian has two parameters, like the negative binomial. The SBC also favors 
this choice. This example shows that the Poisson-inverse Gaussian can have 

0 a much heavier right-hand tail than the negative binomial. 

Example 12.18 (From insurance) Medical losses were studied by  Bevan [17] 
in 1963. Male (955) and female (1291) losses were studied separately. The 
data appear in Table 12.19, where there was a deductible of $25. Can a 
common model be used? 

When using the combined data set the lognormal distribution is the best 
two-parameter model. Its negative loglikelihood (NLL) is 4580.20. This is 
19.09 better than the one-parameter inverse exponential model and 0.13 worse 
than the three-parameter Burr model. Because none of these models is a 
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Table 12.17 Fit of Simon data 

Fitted distributions 
Number of Number of Negative 
losses/contract contracts Poisson binomial Polya-Aeppli 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12+ 

99 
65 
57 
35 
20 
10 
4 
0 
3 
4 
0 
1 
0 

54.0 
92.2 
78.8 
44.9 
19.2 
6.5 
1.9 
0.5 
0.1 
0.0 
0.0 
0.0 
0.0 

95.9 
75.8 
50.4 
31.3 
18.8 
11.0 
6.4 
3.7 
2.1 
1.2 
0.7 
0.4 
0.5 

98.7 
70.6 
50.2 
32.6 
20.0 
11.7 
6.6 
3.6 
2.0 
1.0 
0.5 
0.3 
0.3 

Parameters X = 1.70805 ,B = 1.15907 X = 1.10551 
T = 1.47364 ,B = 0.545039 

Chi square 
Degrees of freedom 
pValue 
Loglikelihood 
SBC 

72.64 4.06 2.84 
4 5 5 

<1% 54.05% 72.39% 
-577.0 -528.8 -528.5 
-579.8 -534.5 -534.2 

special case of the other, the likelihood ratio test (LRT) cannot be used, but 
it is clear that when using the 1.92 difference as a standard, the lognormal is 
preferred. The SBC requires an improvement of 0.5 ln(2246) = 3.86 and again 
the lognormal is preferred. The parameters are p = 4.5237 and o = 1.4950. 
When separate lognormal models are fit to males ( p  = 3.9686 and o = 1.8432) 
and females ( p  = 4.7713 and 0 = 1.2848), the respective NLLs are 1977.25 
and 2583.82 for a total of 4561.07. This is an improvement of 19.13 over a 
common lognormal model, which is significant by both the LRT (3.00 needed) 
and SBC (7.72 needed). Sometimes it is useful to be able to use the same 
nonscale parameter in both models. When a common value of o is used, the 
NLL is 4579.77, which is significantly worse than using separate mode1s.U 
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Table 12.18 Fit of Bhlmann data 

No. of Observed Fitted distributions 
accidents frequency Poisson Negative binomial P.-i.G." 

0 103,704 
1 14,075 
2 1,766 
3 255 
4 45 
5 6 
6 2 
7+ 0 

102,629.6 
15,922.0 
1,235.1 

63.9 
2.5 
0.1 
0.0 
0.0 

103,723.6 
13,989.9 
1,857.1 

245.2 
32.3 
4.2 
0.6 
0.1 

103,710.0 
14,054.7 
1,784.9 

254.5 
40.4 
6.9 
1.3 
0.3 

Parameters X = 0.155140 ,B = 0.150232 X = 0.144667 
,B = 0.310536 r = 1.03267 

Chi square 1332.3 12.12 0.78 

p-Value <1% <1% 85.5% 
Degrees of freedom 2 2 3 

Loglikelihood -55,108.5 -54,615.3 -54,609.8 
SBC -55,114.3 -54,627.0 -54,621.5 

"P.-1.G. stands for Poisson-inverse Gaussian 

12.6 EXERCISES 

12.1 Repeat Example 12.1 using a Weibull model in place of the exponential 
model. 

12.2 Repeat Example 12.2 for a Weibull model. 

12.3 Repeat Example 12.3 for a Weibull model. 

12.4 Use the Kolmogorov-Smirnov test to see whether a Weibull model is 
appropriate for the data used in Example 12.5. 

12.5 Five observations are made from a random variable. They are 1, 2, 3, 
5, and 13. Determine the value of the Kolmogorov-Smirnov test statistic for 
the null hypothesis that f (x)  = 2x-2e-2/x, x > 0. 

12.6 You are given the following five observations from a random sample: 
0.1, 0.2, 0.5, 1.0, and 1.3. Calculate the Kolmogorov-Smirnov test statistic for 
the null hypothesis that the population density function is f (x)  = 2(1+ x ) - ~ ,  
x > 0. 

12.7 Perform the Anderson--Darling test of the Weibull distribution for Ex- 
ample 12.6. 
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Table 12.19 Medical losses for Example 12.18 

Loss Male Female 

$25-$50 
$50-$100 
$100-$200 
$200-$300 
$300-$400 
$400-$500 
$500-$1000 
$1,000-$2,000 
$2000-$3000 
$3,000-$4,000 
$4000-$5000 
$5,000-$6,667 
$6667-$7500 
$7,500-$10,000 

184 
270 
160 
88 
63 
47 
61 
35 
18 
13 
2 
5 
3 
6 

199 
310 
262 
163 
103 
69 

124 
40 
12 
4 
1 
2 
1 
1 

Table 12.20 Data for Exercise 12.10 

No. of incidents Days 

0 209 
1 111 
2 33 
3 7 
4 3 
5 2 

12.8 Repeat Example 12.7 for the Weibull model. 

12.9 Each day, for 365 days, the number of losses is recorded. The results 
were 50 days with no losses, 122 days with one loss, 101 days with two losses, 
92 days with three losses, and no days with four or more losses. For a Poisson 
model determine the maximum likelihood estimate of X and then perform the 
chi-square goodness-of-fit test at a 2.5% significance level. 

12.10 During a one-year period, the number of incidents per day wits dis- 
tributed as given in Table 12.20. Test the hypothesis that the data are from 
a Poisson distribution with mean 0.6 using the maximum number of groups 
such that each group has at least five expected observations. Use a significance 
level of 5%. 
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12.11 Redo Example 12.8 assuming that each exposure unit has a geometric 
distribution. Conduct the approximate chi-square goodness-of-fit test. Is the 
geometric preferable to the Poisson model? 

12.12 Using Data Set B (with the original largest value), determine whether 
a gamma model is more appropriate than an exponential model. Recall that 
an exponential model is a gamma model with a = 1. Useful values were 
obtained in Example 10.8. 

12.13 Use Data Set C to choose a model for the population that produced 
those numbers. Choose from the exponential, gamma, and transformed gamma 
models. Information for the first two distributions was obtained in Example 
10.9 and Exercise 10.17, respectively. 

12.14 Conduct the chi-square goodness-of-fit test for each of the models ob- 
tained in Exercise 11.3. 

12.15 Conduct the chi-square goodness-of-fit test for each of the models ob- 
tained in Exercise 11.5 . 

12.16 For the data in Table 12.18 determine the method-of-moments esti- 
mates of the parameters of the Poisson-Poisson distribution where the sec- 
ondary distribution is the ordinary (not zero-truncated) Poisson distribution. 
Perform the chi-square goodness-of-fit test using this model. 

12.17 You are given the data in Table 12.21 which represent results from 
23,589 machines. The third column headed “fitted model” represents the 
expected number of losses for a fitted (by maximum likelihood) negative bi- 
nomial distribution. 

(a) Perform the chi-square goodness-of-fit test at a significance level of 
5%. 

(b) Determine the maximum likelihood estimates of the negative bino- 
mial parameters r and p. This can be done from the given numbers 
without actually maximizing the likelihood function. 

12.18 The number of accidents for each of a sample of 1000 automobiles 
recorded. The results are in Table 12.22. Without doing any formal tests, 
determine which of the following five models is most appropriate: binomial, 
Poisson, negative binomial, normal, gamma. 

12.19 For Example 12.1, determine whether a transformed gamma model is 
more appropriate than either the exponential model or the Weibull model for 
each of the three data sets. 
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Table 12.21 Data for Exercise 12.17 

Number of Number of Fitted 
losses, k machines, n k  model 

0 
1 
2 
3 
4 
5 
6 
2 7  

20,592 
2651 
297 
41 
7 
0 
1 
0 

20,596.76 
2631.03 
318.37 
37.81 
4.45 
0.52 
0.06 
0.00 

Table 12.22 Data for Exercise 12.18 

No. of accidents No. of automobiles 

0 
1 
2 
3 
4 
5 
6 
Total 

100 
267 
31 1 
208 
87 
23 
4 

1000 

Table 12.23 Results for Exercise 12.21 

Model No. of parameters Negative loglikelihood 

Generalized Pareto 3 219.1 
Burr 3 219.2 
Pareto 2 221.2 
Lognormal 2 221.4 
Inverse exponential 1 224.3 

12.20 From the data in Exercise 12.10 the maximum likelihood estimates 
are = 0.60 for the Poisson distribution and i; = 2.9 and f i  = 0.21 for the 
negative binomial distribution. Conduct the likelihood ratio test for choosing 
between these two models. 

12.21 From a sample of size 100, five models are fit with the results given in 
Table 12.23. Use the Schwarz Bayesian criterion to select the best model. 
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Table 12.24 Data for Exercise 12.24 

No. of medical losses No. of accidents 

0 
1 
2 
3 
4 
5 
6 
7 
8+ 

529 
146 
169 
137 
99 
87 
41 
25 
0 

12.22 Using the results from Exercises 11.3 and 12.14, use the chi-square 
goodness-of-fit test, the likelihood ratio test, and the Schwarz Bayesian crite- 
rion to determine the best model from the members of the (a ,  b, 0) class. 

12.23 Using the results from Exercises 11.5 and 12.15, use the chi-square 
goodness-of-fit test, the likelihood ratio test, and the Schwarz Bayesian crite- 
rion to determine the best model from the members of the (a, b, 0) class. 

12.24 Table 12.24 gives the number of medical losses per reported automobile 

Construct a plot similar to Figure 5.1. Does it appear that a mem- 
ber of the (a, b, 0) class will provide a good model? If so, which 
one? 

Determine the maximum likelihood estimates of the parameters for 
each member of the (a, b, 0) class. 

Based on the chi-square goodness-of-fit test, the likelihood ratio 
test, and the Schwarz Bayesian criterion, which member of the 
(a, b, 0) class provides the best fit? Is this model acceptable? 

12.25 A frequency model that has not been mentioned to this point is the 
zeta distribution. It is a zeretruncated distribution with p r  = k-(P+')/((p+ 
l), k = 1 , 2 , .  . . , p > 0. The denominator is the zeta function, which must be 
evaluated numerically as <(p + 1) 1 IC-(P+l) .  The zero-modified zeta 
distribution can be formed in the usual way. More information can be found 
in Luong and Doray 1781. 

(a) Determine the maximum likelihood estimates of the parameters of 

(b) Is the zero-modified zeta distribution acceptable? 

the zero-modified zeta distribution for the data in Example 11.7. 
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Table 12.25 Data for Exercise 12.26(a) 
~~~~ 

No. of losses No. of automobiles 

0 
1 
2 
3 
4 
5+ 

96,978 
9240 
704 

43 
9 
0 

Table 12.26 Data for Exercise 12.26(b) 

No. of deaths No. of corps 

0 
1 
2 
3 
4 
5+ 

109 
65 
22 

3 
1 
0 

Table 12.27 Data for Exercise 12.26(c) 

No. of wars No. of years 

0 
1 
2 
3 
4 
5+ 

223 
142 
48 
15 
4 
0 

12.26 The five data sets presented in this problem are all taken from Lemaire 
[75]. For each data set compute the first three moments and then use the 
ideas in Section 5.11 to make a guess at an appropriate model from among the 
compound Poisson collection [Poisson, geometric, negative binomial, Poisson- 
binomial (with m = 2 and m = 3), Polya-Aeppli, Neyman Type A, Poisson- 
inverse Gaussian, and Poisson-ETNB]. From the selected model (if any) and 
members of the ( a ,  b,O) and (a, b, 1) classes, determine the best model. 

(a) The data in Table 12.25 represent counts of losses from automobile 
accidents in Belgium. 
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Table 12.28 Data for Exercise 12.26(d) 

No. of runs No. of half-innings 
~~ 

0 
1 
2 
3 
4 
5 
6 
7+ 

1,023 
222 
87 
32 
18 
11 
6 
3 

Table 12.29 Data for Exercise 12.26(e) 

No. of goals No. of games 
~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10+ 

~ 

29 
71 
82 
89 
65 
45 
24 
7 
4 
1 
3 

(b) The data in Table 12.26 represent the number of deaths due to 
horse kicks in the Prussian army between 1875 and 1894. The 
counts are the number of deaths in a corps (there were 10 of them) 
in a given year, and thus there are 200 observations. This data set 
is often cited as the inspiration for the Poisson distribution. For 
using any of our models, what additional assumption about the 
data must be made? 

(c) The data in Table 12.27 represent the number of major interna- 
tional wars per year from 1500 through 1931. 

(d) The data in Table 12.28 represent the number of runs scored in 
each half-inning of World Series baseball games played from 1947 
through 1960. 

(e) The data in Table 12.29 represent the number of goals per game 
per team in the 1966-1967 season of the National Hockey League. 
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12.27 Verify that the estimates presented in Example 5.26 are the maximum 
likelihood estimates. (Because only two decimals are presented, it is probably 
sufficient to observe that the likelihood function takes on smaller values at 
each of the nearby points.) The negative binomial distribution was fit to 
these data in Example 11.5. Which of these two models is preferable? 



13 
Fitting extreme value 

models 

Nature always sides with the hidden flaw. 
-Murphy 

13.1 INTRODUCTION 

The purpose of this chapter is to focus attention on specific issues for mod- 
eling jumbo losses. The probability theory aspects of extreme value theory 
were discussed in Chapter 7. In this chapter, we will discuss a number of 
techniques that are especially useful in the modeling of jumbo losses. The 
methods described in Chapters 9-12 can be used in building and selecting 
models involving extreme outcomes. However, if the primary interest is on 
studying extreme outcomes, there are a number of diagnostic and estimation 
procedures that are especially useful. 

In this chapter, we begin with standard estimation procedures for distri- 
butions associated with extreme value theory. When we use extreme value 
models for only the tail of the distribution, we will also be interested in de- 
termining from data the point in the data at which we are able to rely on 
the extreme value model for the tail; that is, we want to answer the ques- 
tion “Where does the right-hand tail begin?”. This is an important question 
because we rely on asymptotic results from extreme value theory to  capture 
the shape of the tail without reference to the underlying model of ground-up 
losses. 

383 
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13.2 PARAMETER ESTIMATION 

13.2.1 

We begin by assuming that we have a sample of size n of values of extreme 
outcomes. An example might be daily maximum errors in recording a certain 
type of transaction. For the purpose of this theory, we treat the observations 
as being outcomes of independent and identically distributed random vari- 
ables'. As in earlier chapters, we denote the sample by x1,x2, ...,x,. From 
Section 7.5, the distribution of extreme values for large samples is given by 
one of the three distributions that form the special cases of the generalized 
extreme value distribution. The standardized df of the generalized extreme 
value (GEVD) distribution is written as 

ML estimation from the extreme value distribution 

~ ~ ( 5 )  = exp - (1 + yz)-l/y . 

When y is positive, the df Gy(x) has t,he form of a standardized Frkhet 
distribution. When y is negative, the df Gy(x) has the form of a standard- 
ized Weibull distribution. When y = 0, the df is the standardized Gumbel 
distribution function 

[ 1 

Go(z) = exp [- exp (-x)] . 

Inserting location and scale parameters results in the GEV distribution func- 

The corresponding GEV probability density function is 

When y = 0, the density function is the Gumbel density 

The contribution of an observation xi from the GEV to the log likelihood is 

'The assumption of identical distributions may be violated, for example, if the maximum 
losses each period arise from different numbers of actual losses in each period. 
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which can be written as 

1nf(zi)  = lngr,p,e(zi) = - In6 - (1 +y)yi - exp(-yi) 

where 

For a set of n observations, the negative loglikelihood function is then 

n n 

-z(Y, p, 0) = n + (1 + Y) C yi + C exp(-yi). (13.1) 
i=l i=l 

Maximum likelihood estimates of the three parameters are obtained by 
minimizing the above negative loglikelihood (13.1). This can be done in sev- 
eral different ways, If the shape parameter y is expected to be close to zero; 
that is, if the underlying distribution is close to Gumbel, then it would be 
wise to fit initially the Gumbel model which has only two parameters. This 
procedure provides initial estimates for fitting the full three-parameter GEV 
model. In the Gumbel case, the negative log likelihood function reduces to 

The loglikelihood (13.2) should be easily minimized by any standard opti- 
mization routine. Alternatively, we can obtain the estimates by differentiating 
(13.2), setting those derivatives to zero, and solving the resulting likelihood 
equations 

which can be rewritten as 

(13.3) 

(13.4) 

Because equation (13.4) does not involve E, it can be solved iteratively 
by starting with an initial guess of e on the right-hand side. The result is 
then substituted into equation 13.3 to obtain B. The resulting parameter 
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estimates j2 and ê  (along with y = 0) for this special case of the Gumbel 
distribution are useful starting values for minimizing the negative loglikelihood 
(13.1) numerically. 

The hypothesis that y = 0 can be formally tested using the likelihood 
ratio test. In order to justify adding the parameter 7, the difference between 
optimized values of (13.1) and (13.2) should be sufficiently large. Twice the 
difference follows a chi-square distribution with one degree of freedom. For 
example, at the 5% significance level, the chi-square distribution with one 
degree of freedom has a critical value of 3.84. In this case, we would expect 
the difference between the maximized loglikelihood functions to be at least 
1.92 in order to include a nonzero value of y in the model. 

The precision of maximum likelihood estimators can be obtained approxi- 
mately from asymptotic results. Theorem 10.13 shows that, if the regularity 
conditions are satisfied, the maximum likelihood estimates of the parameters 
are asymptotically unbiased and normally distributed with a covariance ma- 
trix that is the inverse of the Fisher information matrix I(6) whose (r ,s) th  
element is 

In the case of a sample of n independent and identically distributed random 
variables, this reduces to 

In the case of the generalized extreme value distribution with 0 = (p,  6 ,  y), 
the elements of the Fisher information matrix have been obtained by Prescott 
and Walden [95] as 
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where I?(.) is the gamma function (see Appendix A), 

P = (1 + Y)2r(l + 2Y), 

is the digamma (psi) function, and 5 = 0.5772157 is Euler’s constant. The 
digamma function can be evaluated in a number of ways. The simplest is to 
obtain the gamma function, take its logarithm, and evaluate the derivative 
numerically using a finite difference approximation to the derivative. 

Note that this 
condition ensures that all the gamma functions in the Fisher information 
matrix have positive arguments. Because we are only interested in the FMchet 
distribution (for which y > 0) as the alternative to the Gumbel distribution, 
the regularity conditions are satisfied and the asymptotic results hold. 

In the special case of the Gumbel distribution with 6 = (p ,  6 ) ,  the elements 
of the Fisher information matrix reduce to 

The regularity conditions are only satisfied if y > -0.5. 

(13.6) 

13.2.2 ML estimation from the generalized Pareto distribution 

We begin by assuming the we have a sample of size n of values of excesses 
over a threshold d. An example might be daily maximum errors in record- 
ing a certain type of transaction. For the purpose of this theory, we treat 
the observations as being outcomes of independent and identically distributed 
random variables. We denote the sample by x1,22, ..., 2,. (These are denoted 
as y1, y2, ..., yn in Section 7.9 where they are denoted as conditional excesses, 
conditional on the underlying random variable exceeding the threshold. In 
effect, this means that we ignore all observed losses that are less than the 
threshold, and consider only the exceedences). From Section 7.9, the distribu- 
tion of excesses for large samples is given by one of the three distributions that 
are the special cases of the generalized Pareto distribution. The standardized 
df of the generalized extreme value distribution is written as 

W+) = 1 - (1 + yx)-”y. 
When y is positive, the df W,(x) has the form of a standardized Pareto distri- 
bution. When y is negative, the df W,(x) has the form of a beta distribution. 
When y = 0, the df is the standardized exponential distribution function 
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Wo(z) = 1 - exp (-z) . 

Inserting location and scale parameters results in the generalized Pareto dis- 
tribution function, 

When y = 0 and p = 0, we have the exponential distribution 

F (x) = Wo,s(z) = 1 - exp (-;), z > o .  

When y > 0, and p = -8, we have, after writing CY for l/y, the Pareto 
distribution 

F ( z )  = WI,,,@(z) == 1 - (1 f 5 > 0. 

The contribution of an observation zi from the generalized Pareto distribution 
to the log likelihood is 

Inf ( x i )  = Inw,,,,e(zi) = - h e  - ( 

which can be written as 

lnf  (zi) = lnwy,,,e(zi) = - ln0 - (1 + y)yi 

where 

For a set of n observations, the negative log likelihood function is then 

n 

- i (y ,p ,  e )  = nine + (I + 7) (13.7) 

When y = 0 and p = 0, the model is the exponential distribution W o , ~ ( z )  
and equation (13.7) reduces to  

i=l 

(13.8) 
i=l 

A 

resulting in the maximum likelihood estimate 0 = 3, the sample mean. 
Maximum likelihood estimates of the two parameters 0 and y (p is nor- 

mally fixed in advance) of the generalized Pareto distribution are obtained by 
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minimizing the negative loglikelihood (13.7) with respect to 0 and y. This 
can be done in several different ways. If the shape parameter y is expected to 
be close to zero; that is, if the underlying distribution is close to exponential, 
then the sample mean can serve as a useful initial estimate of 8. In the Pareto 
case starting at zero (with p = -0 and writing a for l/y) , the negative 
loglikelihood function (13.7) is reduced to 

n 

-I( a,  6 )  = n In 0 + (1 + a )  In (1 + 5) . (13.9) 
i = l  

The negative loglikelihood (13.9) is easily minimized numerically. 
The hypothesis that y = 0 can be formally tested using the likelihood ratio 

test. In order to justify choosing the generalized Pareto over the exponential, 
the difference between optimized values of the negative loglikelihoods (13.8) 
and (13.9) should be sufficiently large. Twice the difference follows a chi- 
square distribution with one degree of freedom. For example, at the 5% 
significance level, the chi-square distribution with one degree of freedom has 
a critical value of 3.84. In this case, we would expect the difference between 
the maximized loglikelihood functions to be at lease 1.92 in order to include 
a non-zero value of y in the model. 

The precision of maximum likelihood estimators can be obtained approxi- 
mately from asymptotic results. For the Pareto distribution with 8 = (a ,  8), 
the elements of the Fisher information matrix are 

(13.10) 

yielding an asymptotic covariance matrix 

(13.11) 

When y = 0, the GPD reduces to the exponential distribution with asymptotic 
variance 02/n. 

13.2.3 

One of the major issues in using extreme value methods is determining when 
such methods are appropriate. Because extreme value theory focuses only on 
the very large (or very small) outcomes, it is only necessary to consider the 
tail of the distribution that generates those extreme outcomes. 

We consider any distribution with a tail that behaves like a Pareto dis- 
tribution. From formula (7.16), the Pareto distribution is tail-equivalent to 

Estimating the Pareto shape parameter 
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($) -" . To develop an estimator for a ,  we assume initially that we have some 
threshold d above which the tail is Pareto-equivalent. Consider a sample of 
n of independent and identically distributed random variables X I ,  X z ,  ..., X n  
coming from the distribution 

- x --a 
Fx(x)= (2) , x > d .  

It is easy to show that the maximum likelihood estimator of Q from this 
distribution is of the form 

We now allow the sample size to be random rather than fixed. The number 
of observations in excess of the threshold d is represented by the random 
variable Nd.The estimator, conditional on Nd, becomes 

The Hill estimator [51] of a is based on the above ideas. We now complete 
the development of the Hill estimator. Consider a continuous distribution with 
a Pareto equivalent tail and with a unspecified form below the threshold: 

Fx(x) = unspecified, 0 < x 5 d 
--Q 

= l - p ( a )  , x > d .  

Note that p represents the expected proportion of observations in excess of d. 
Suppose that the sample drawn from this distribution is of size n, and 

that the actual observations consist of the number of values in excess of d, 
the number of exceedences Nd, and the individual values of the Nd largest 
individual observations . The Nd largest observations are the values in excess 
of d. They can be relabeled Yl, Y2, ..., YN,. Conditional on Nd, these values 
constitute an iid sample from a distribution of the form 

The joint pdf of (Nd, Yl, Y2, ..., Y,) can then be written as the product of 
the pdf of Nd and the conditional pdf of (YI,  Yz, ..., Y, 1 Nd). The number of 
observations Nd in excess of d has a binomial distribution with parameters 
( n , p )  and is independent of the parameter cr . Thus the maximum likelihood 
estimator can be obtained by considering only the distribution of the Yis and 
treating Nd as a fixed quantity. Consequently, the MLE of cr is 
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Because the N d  observations are the largest values of the sample of n ob- 
servations drawn from the distribution Fx(x), we label them from largest to 
smallest as the order statistics  XI,^ 2 X Z , ~ . . . X N ~ , ~ .  Thus, the above estima- 
tor can be rewritten as 

In practice the point at which the tail is Pareto-equivalent is not known in 
advance. The idea of the Hill estimator is to consider the above estimate to be 
a function of the number Nd and to use the high-order statistics as thresholds 
replacing d. The Hill estimator the above estimator based on the kth largest 
observations using the ( k  + 1)st largest observation as the threshold 

When considered as a function of k, the Hill estimator gives a profile of the 
shape parameter for all possible values of k. The Hill estimate is a consistent 
estimator when n + 00 and k/n -+ 0 (see [80]). 

In practice there is no precise way of choosing k. Most authors recommend 
choosing a value of k in a region where the Hill estimator is flat so that small 
changes in the choice of the threshold do not materially affect the result. 

13.2.4 Estimating extreme probabilities 

Fitting generalized Pareto distributions to excesses tells us about the shape 
of the tail of the distribution of losses but does not give us the probabilities 
because we have not used the information about losses below the threshold. 
We can obtain the extreme probabilities without imposing any model restric- 
tions on the portion of the distribution below the selected threshold d. The 
tail of the unconditional distribution of X can be written as 

- 
F ~ ( z )  = G ( d ) F y * ( y ) ,  z > d ,  TJ > 0 

where Y is the conditional random variable X - d 1 X > d , y = ic - d and 
Fy (y) is the tail of the distribution of Y which is given by 
-* 

We are interested in obtaining the estimate F x ( x )  for large values of x. 
If we have obtained estimates of the parameters of the generalized Pareto 
distribution of the tail beyond threshold d using maximum likelihood or some 
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other procedure, we have can obtain an estimate 

A simple nonparametric estimate of G ( d )  is the proportion of observed values 
in excess of d. This can be written as 

The resulting estimate of the extreme tail probability is then 

An advantage of using the nonparametric estimate is that the estimation 
of the tail is not complicated by estimation errors arising from model fitting 
to the left of the threshold, an area where we have much less interest in any 
case. 

13.3 MODEL SELECTION 

When confronted with real data, we need to decide on when to rely on the 
theoretical results on tail behavior and which of the possible models of the tail 
to choose. Graphical plots of the mean excess over various possible thresholds 
can be used to help answer these questions. 

13.3.1 Mean excess plots 

All information about a probability distribution is contained in the cumulative 
distribution function (cdf). Similarly, the same information is contained 
in many other functions. These include the probability density function for 
continuous distributions, the probability function for discrete distributions, 
the moment generating function if it exists, the Laplace transform if it exists, 
or the characteristic function. Another interesting function is the mean excess 
function. A very useful graphical procedure in modeling the right-hand tail 
is to plot the mean excess against the threshold d. The observed mean excess 
at threshold d for a sample of size n is 

which is the total of all excesses divided by the number of excesses. This 
can be calculated easily using each of the observed values as threshold. The 
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resulting plot should assist in choosing which of the GPD distributions should 
be selected as a model. From Chapter 7, for large thresholds, the graph 
should be approximately linearly increasing for the generalized Pareto with a 
positive shape parameter. If the plot looks rather flat, then the underlying 
distribution of the conditional tail is more like an exponential distribution. If 
it is decreasing, then a Weibull with a finite upper limit is the best choice, 
although we have generally ruled out this possibility in Chapter 7. 

It is not advisable to  use any numerical estimates (for example, the slope of 
a fitted mean excess line) of this exercise directly. The mean excess plot can 
by used to identify a t  what threshold value the plot becomes approximately 
linear. This provides guidance on the point a t  which the generalized Pareto 
distribution can be relied upon for the remainder of the distribution. Once 
the threshold is chosen, the estimates of the generalized Pareto distribution 
can be obtained using the maximum likelihood (or some other) method. 
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Fitting copula models 

Mother nature is a b-- . 
-Murphy 

14.1 INTRODUCTION 

Chapter 8 provided a large number of copulas. Each contained one or a small 
number of parameters. In practice, when one has data on operational losses, 
the data are usually from the marginal distributions of each risk type or from 
the corresponding joint multivariate distribution. If data are from each risk 
separately, there is usually no information about the joint distribution. In this 
case, the estimation and selection of a model for each of the risk types is done 
using the univariate methods described in previous chapters. The question 
of the impact of dependence is still important: If things go really wrong for  
one type of risk, are they more likely to go wrong for  other risk types? What 
impact does this have on  the tail of the aggregate loss distribution? These are 
important questions. In the absence of data on the joint behavior of losses, 
the risk analyst still has some choices. This chapter is devoted to the study of 
dependence models. With these tools, the risk analyst can experiment with 
different models and develop an understanding of the sensitivity of results to 
the choice of dependence model. 

In this chapter, we first assume that multivariate data are available and 
that we will need to estimate the full multivariate distribution. As in other 
areas of statistical estimation, we can use parametric, nonparametric, or semi- 

395 
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parametric methods. We begin by using fully parametric methods in which 
we assume some distributions for the marginals and the copula and attempt 
to fit the parameters simultaneously. Within the class of parametric methods, 
as in earlier chapters dealing with univariate distributions, we prefer to  use 
maximum likelihood estimation, the advantages of which have been described 
in earlier chapters. 

14.2 MAXIMUM LIKELIHOOD ESTIMATION 

Consider the joint distribution of a d-variate random variable (XI, X2, ..., Xd) 
with continuous marginal distributions with pdfs fi(zl), f 2 ( z 2 ) ,  ..., fd(~d), 
respectively, and continuous multivariate joint distribution with pdf f(z1, 

5 2 ,  ..., zd).Using the usual convention of using upper case letters for the cor- 
responding cdfs, we write the joint cdf as 

F(zl1 . . . I  zd) = C(Fl(z1)l Fd(Xd)) 

where C(u1, ..., ud) is the copula cdf evaluated at  the point (u1 ,... ,ud). By 
differentiation, the corresponding pdf is given by 

where c(u1, ..., ud) is the copula pdf evaluated at the point (u1, ..., ud). 
From this it is clear that the estimation of the copula is dependent on the 

estimation of the marginal distributions because the arguments of the copula 
density are the cdfs of the marginal distributions f ~ ( z ~ ) ,  f2(22), ..., fd(zd) .  

The number of parameters to be estimated is the sum of the parameters 
in the marginals plus the number of parameters in the copula. This total 
number can be quite large if the number of dimensions d is large. Typically 
the marginals will have two or three parameters each. Similarly, the copula 
can have at least one additional parameter. Thus if d = 5 ,  then the number 
of parameters is at least 11. With such large numbers of parameters, it is 
necessary to have large amounts of data to model to get reasonably accurate 
estimates of the parameters. Furthermore, rriaximization of a function in a 
high number of dimensions can be quite challenging numerically. Maximum 
likelihood estimates of the copula parameter(s) can be unstable because of 
the additional uncertainty introduced by the estimation of the parameters of 
the marginal distributions. 

The logarithm of the pdf is 

d 

lnf(zl , . - ,zd)  = - p L f i ( X Z )  + l.C(Fl(Xl), ...,Fd ( z d ) ) .  
i=l 

Now consider a sample of n iid observations in d dimensions. To index 
Thus xi,j represents the i th  the n observations, we add a second subscript. 
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dimension of the j t h  outcome. Then the loglikelihood function is 

n 

= 1, + I,. (14.2) 

The maximum likelihood estimates are the values of the parameters that 
maximize the loglikelihood function. This form of the loglikelihood suggests 
obtaining approximate estimates of the parameters by first maximizing the 
first term (the. “marginals” term) and then maximizing the second term (the. 
“copula” term). Maximizing the marginals term involves maximizing the d 
different terms in 1, of the form 

n 

li = C l n f i ( x i , j ) ,  i = 1 ,2  ,..., d 

where (14.3) is the loglikelihood function of the ith marginal distribution. 
Thus, we can first obtain all the parameter estimates for the marginal dis- 
tributions using the univariate methods described earlier. It should be noted 
that these are not the ultimate maximum likelihood estimates because the 
ultimate estimates depend also on the estimates of the copula parameter(s) 
which have not yet been estimated. We shall refer to the estimates arising 
from the maximization of (14.3) as. “pseudo-MLEs.” The efficiency of these 
estimates may be low because the information about the parameters contained 
in the second term of the loglikelihood (14.2) is ignored [110]. 

There are several approaches to maximizing the second teLm of loglikeli- 
hood (14.2). One way is to use the pseudo-MLEs. Let ;iii,3 = Fi(xi,j) denote 
the pseudo-estimates of the cdf of the marginal distributions at each observed 
value. Then the pseudo-likelihood of the copula function is 

(14.3) 
j=1 

n 

(14.4) 
j=1 

This is then maximized with respect to the copula parameters to obtain the 
pseudo-MLEs of the copula parameters. This maximization can be done by 
any method, although we prefer the simplex method because it is very stable, 
especially with few parameters. We expect that in most cases in applications, 
where there are not large amounts of data, the principle of parsimony will 
dictate that very few parameters should be used for the copula. Most typi- 
cally, this will be only one parameter. The second stage is to maximize the 
loglikelihood (14.2) overall. This can be done by using all the pseudo-MLEs 
as starting values for the maximization procedure. This will lead to the true 



398 NJTlNG COPULA MODELS 

MLEs of all parameters as long as the necessary regularity conditions are 
satisfied. 

Song et al. [110] suggest another algorithm for obtaining the MLEs. We 
denote the vector of parameters by @.Denote the true value of the parameter 
by 00. They suggest first obtaining the pseudo-estimates 81 by maximizing 
1, as we did above or, by solving the equations 

d 
88 
-lw(8) = 0. 

Because the true MLEs satisfy 

a a 
--lw(6)= --Zc(8), 
d6 d@ 

they recommend solving 

?--. 

for 6 k  iteratively for k = 2,3,  ..., leading to the MLE 0 = 8,. They show that 
if the derivatives of the loglikelihoods are well-behaved, this iterative scheme 
will converge. 

14.3 SEMIPARAMETRIC ESTIMATION OF THE COPULA 

There are several semiparametric or nonparametric procedures that can be 
used for estimating the copula parameters directly from the data without 
reference to the form of the marginal distributions. The first way is to  use 
a nonparametric estimate of the cdf terms Fi(zi,j) using an empirical cdf 
estimator 

where rank(zi,j) is the rank (from lowest to  highest) of the observed values 
z i , ~ ,  xi,2, ..., 

to the ordered values 
(from smallest to largest)'. The copula pseudo-MLEs are obtained by max- 
imizing the pseudo-likelihood (14.4). This method for estimating the copula 
parameters does not depend on the values of the parameters of the marginal 
distributions (only the observed ranks) and the resulting uncertainty intro- 
duced by estimation process of the marginals. 

from the ith marginal distribution. 
The empirical cdf assigns the values A, &, ..., 

'Using n + 1 in the denominator provides a continuity correction and keeps the probilities 
away from 0 and 1. 
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Another approach to obtaining the copula parameter in the single-parameter 
case, is to obtain an estimate of the measure of association, Kendall’s tau, di- 
rectly from the data. From formula (8.3) in the bivariate case, Kendall’s tau 
can be written as 

where (X1,Xz) and (X;,Xz) are iid random variables. Consider a sample 
(zlj,rc2j), j = 1,2 ,  ..., n. for each dimension, there are n(n - 1)/2 distinct 
pairs of points. Thus a natural estimator of Kendall’s tau is 

which is easily calculated. Because there is a one-to-one correspondence be- 
tweenLK and the single copula parameter $, we then can obtain the an esti- 
mate 8. 

Other techniques, or variations of the above techniques along with their 
properties have been discussed in detail by numerous authors including Genest 
and Rivest [46] and Genest, Ghoudri, and Rivest [44]. 

14.4 T H E  ROLE OF T H R E S H O L D S  

In earlier chapters, we discussed thresholds below which losses are not recorded. 
As discussed in Chapter 1, the Base1 I1 framework document suggests using 
a threshold of 10,000 Euros for operational losses. However, in practice it 
may be beneficial to use different thresholds for different risk types. For ex- 
ample, for high-frequency losses, recording lower amounts will give a better 
understanding of aggregate losses of this type. When thresholds are used, 
losses below this level are completely ignored. In any estimation exercise, 
if we want to build models incorporating different thresholds or to estimate 
ground-up losses, it will be necessary to recognize the distribution below the 
threshold(s). This complicates the likelihood function somewhat. We now 
consider the impact on the likelihood function of thresholds either when the 
data are individual observations or when the data are grouped. 

Consider two ground-up loss random variable XI and X2 with thresholds 
d l  and dz, respectively. The joint cdf is 

and the pdf is 
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where c(u1,uz) is the copula density function. We denote the derivatives of 
the copula function as 

For grouped (interval) data in setting up the likelihood function, we need 
to  consider only the interval into which an observation falls. We denote the 
lower and upper limits of the interval for Xlby u1 and w1 and for Xz by v2 
and w2. 

We now consider the four possible cases and express the contribution to the 
likelihood function by a single bivariate observation expressed in terms of the 
distributions of X and Y and also expressed in terms of the copula distribution 
functions and derivatives. Writing down the likelihood contribution is a non- 
trivial. One needs to  be careful about conditioning. If the outcome Xi falls 
below its threshold d l ,  then the outcome (Xl,Xz) is not observed. Hence 
observations need to be conditioned on X1 > d l  and also on X2 > d2. 

Case 1. Individual observation for both X I  and X2 

If the outcome X falls below its threshold dl ,  then the outcome (Xl,X2) 
is not observed. Hence observations need to  be conditioned on X1 > dl;  also 
on X2 > d2 

(14.5) 

Case 2. Individual observation for X1 and grouped observation for Xz 
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Case 4. Individual observation for X I  and grouped observation for Xz 

The likelihood function is the product of the contributions of all observa- 
tions, in this case bivariate observations. The separation into two terms that 
allow a two-stage process (as in the previous section) to get approximate es- 
timates of the parameters is not possible. In this case, it may be advisable 
to choose a representative point within each interval for each grouped obser- 
vation, simplifying the problem considerably. This will lead to approximate 
estimates using the two-stage process. Then these estimates can be used as 
initial values for maximizing the likelihood function using the simplex method 
described in Appendix C. 

14.5 GOODNESS-OF-FIT TESTING 

Klugman and Parsa [70] address the issue of testing the fit of a bivariate 
copula. They point out that it is possible to  use a standard chi-square test 
of fit. However, to do so requires that we group data into intervals, in this 
case rectangles over the unit square. Because the data may be concentrated 
in certain parts of the square, there are likely to be large areas where there 
are fewer than five expected observations falling into a rectangle. Following 
methods used in Chapter 11, it would seem logical to group adjacent intervals 
into larger areas until a minimum of five observations are expected. In two 
dimensions there is no obviously logical way of combining intervals. Thus we 
try a different strategy. 

Consider two random variables X1 and X z  with cdfs F,(z)  and Fz(z)  re- 
spectively. The random variables U1 = Fl(X1)  and Uz = Fz(X2) are both 
uniform (0,l) random variables. (This is key in simulation!) Now introduce 
the conditional random variables V1 = Flz(X1 I X Z )  and VZ = F Z I ( X Z  1 X I ) .  
Then the random variables V1 and Uz are mutually independent uniform (0, 
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1) random variables. This can be argued as follows. Consider the random 
variable Vl = F12(X1 I X2 = z). Because it is a cdf, it must have a uniform 
(0,l) distribution. This is true for any value of z. Therefore, the distribution 
of V1 does not depend on the value of X2 or the value of U2 = F2(X2). An 
identical argument shows that the random variables Vz and U1 are mutually 
independent uniform (0, 1) random variables. 

The observed value of distribution function of the conditional random vari- 
able X2 given XI = z1 is 

F21(z2 I x1 = 51) = c1 ( F X l ( Z l ) ,  Fx, (z2) ) .  (14.9) 

The observed value v2 of the random variable V2 can be obtained from the 
observed values of the bivariate random variables ( X I ,  X 2 )  from 

Thus, we can generate a univariate set of data that should look like a sample 
from a uniform (0,l)  distribution if the combination of marginal distributions 
and the copula fits the data well. 

Klugman and Parsa [70] suggest the following procedure for testing the fit 
based entirely on univariate methods: 

Step 1. Fit and select the marginal distributions using univariate meth- 
ods 

Step 2. Test the conditional distribution of V1 for uniformity 
Step 3. Test the conditional distribution of V2 for uniformity 

The tests for uniformity can be done using a formal goodness-of-fit test 
such as a Kolmogorov-Smirnov test. Alternatively, one can plot the cdf of 
the empirical distributions, which should be linear (or close to it). This is 
equivalent to doing a p-p plot for the uniform distribution. 

In higher dimensions, the problems become more complicated. However, 
by following the above procedures for all pairs of random variables, one can 
be reasonably satisfied about the overall fit of the model (both marginals and 
copula). This requires a significant effort, but can be automated relatively 
easily. 

14.6 AN EXAMPLE 

We illustrate some of the concepts in this chapter using simulated data. The 
data consist of 100 pairs { ( z j ,  yj), j = 1,2,  ..., 100) that are simulated from 
the bivariate distribution with a Gumbel (0 = 3) copula and marginal dis- 
tributions loglogistic (0 = 1, 7 = 3) and Weibull (0 = 1, 7 = 3). This is 
a five-parameter model. We first use maximum likelihood to fit the same. 
“correct” five- parameter distribution but with all parameters treated as un- 
known. We then attempt to fit an “incorrect” distribution with marginals of 
the same form but a misspecified copula. 
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Given the 100 points, the 5-parameter joint distribution is easy to  fit di- 
rectly using maximum likelihood. The loglikelihood function is 

100 

where fl(z) and fi(x) are the marginal distributions and c(z1,uz) is the 
copula density function. The first term was maximized with the following 
results 

Distribution 8 7 

Loglogistic 1.00035 3.27608 
Weibull 0.74106 3.22952 
Gumbel copula - 

These are the maximum likelihood estimates of the marginal distributions. 
The entire likelihood was then maximized. This resulted in the following 
estimates of the five parameters. 

Distribution 8 T 

Loglogistic 1.00031 3.25611 
Weibull 0.75254 3.08480 
Gumbel copula 2.84116 - 

Note that the parameter estimates for the marginal distribution changed 
slightly as a result of simultaneously estimating the copula parameter. The 
overall negative loglikelihood was 10.06897. To illustrate the impact of esti- 
mation errors, we now simulate, using the same random numbers, 100 points 
from the fitted distribution. The results are illustrated in Figure 14.1, where 
both sets of simulated data are plotted. 

The key observation from Figure 14.1 this plot is that the points from 
the fitted distribution are quite close to the original points. We repeat this 
exercise but using the Joe copula as an alternative. The results of the simulta- 
neous maximum likelihood estimation of all five parameters gave the following 
estimates: 

Distribution 8 r 
Loglogistic 0.98330 3.12334 
Weibull 0.74306 2.89547 
Joe copula 3.85403 - 

The overall negative loglikelihood increased to 15.68361. This is a quite 
large increase over that using the Gumbel copula. Note also that the estimates 
of the parameters of the marginal distributions are also changed. To illustrate 
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0 1  

0 0 2  04 0 6  0 8  1 
Logloglstlc 

Fig. 14.1 MLEfitted marginals and Gumbel copula 

the impact of misspecification of the copula together with estimation errors, 
we simulated, using the same random numbers, 100 points from the fitted 
distribution. The results are illustrated in Figure 14.2, where both sets of 
simulated data are plotted. Note that the second set of points are further 
from the original set of simulated points. 

Rather 
than use the observed values of the marginal distribution to  estimate the cop- 
ula parameter, we used the ranks of those values. The ranks are independent 
of the choice of marginal distribution. Using these values, together with the 
“correct” specification of the copula, we also calculated the value of the neg- 
ative loglikelihood with these estimates. Of course, the negative loglikelihood 
will be higher because the MLE method gave the lowest possible value. It 
is 13.67761 which is somewhat greater than the minimum of 10.06897. The 
new estimate of the Gumbel copula parameter is 2.69586. The corresponding 
simulated values are shown in Figure 14.3. 

Finally, we also used the nonparametric approach with the misspecified 
copula function, the Joe copula. The estimate of the Joe copula parameter 
is 3.31770 with a corresponding likelihood of 21.58245, which is quite a lot 
greater than the other likelihood values. The corresponding simulated values 
are plotted in Figure ??. 

It is quite interesting to  note that a visual assessment of the scatterplots 
is not very helpful. It is impossible to  distinguish the different plot in terms 
of the fit to the original data. All four plots look good. However, the values 

For the same data, we also used the semiparametric approach. 
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Fig. 14.2 MLE-fitted marinals and Joe copula 
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Logloglstlc 

fig. 14.4 Semiparametric-fitted Joe copula 

of the likelihood function for the four cases are quite different. This suggest 
that it is important to carry out serious technical analysis of the data rather 
than relying on pure judgement based on observation.0 



Appendix: A 
Gamma and related 

functzons 

The incomplete gamma function’ is given by 

with F(a) = ta-le-t d t ,  a > 0. 6- 
Also, define 

p - I  -t G(a;  x) = LW e d t ,  x > 0. 

At times we will need this integral for nonpositive values of a. Integration by 
parts produces the relationship 

xae-” 1 
G(Q; X) = -- + -G(Q + 1; x). 

Q a 

‘Some references, such as 121, denote this integral P(a,z)  and define r ( a , z )  = 
S,”ta-l e - t  dt. Note that this definition does not, normalize by dividing by r(a). When 
using software to evaluate the incomplete gamma function, be sure to note how it is defined. 

407 
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This can be repeated until the first argument of G is a+ k ,  a positive number. 
Then it can be evaluated from 

However, if a is a negative integer or zero, the value of G(0; x)  is needed. It 
is 

G(0; x) = t-'ept dt = El(x), 

which is called the exponential integral. A series expansion for this integral 
is 

Dci (- l y x n  
n(n!) ' 

El(x)  = -0.57721566490153 - Inx - 
n=l 

When CY is a positive integer, the incomplete gamma function can be eval- 
uated exactly as given in Theorem A.l. 

Theorem A. l  For integer a ,  

Proof: For CY = 1, r(1;x)  = J;eptdt = 1 - e-", and so the theorem is 
true for this case. The proof is completed by induction. Assume it is true for 
a = 1,. . . , n. Then 

1 "  r(n + 1; x) = n! tne-' dt 

The incomplete beta function is given by 
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and when b < 0 (but u > 1 + L-bl), repeated integration by parts produces 

(u - l)xa-Z(l - x)b+l 

( a  - 1) .  . . (u - T ) X a - T - l ( l -  X)b+T 

b(b + 1). . . ( b  + 7- )  

(a  - 1). . . (u - 7- - 1) 
r(a - 7- - 1) 

+. .  
b(b + 1) 

+ 

1 + 

+ b(b+ l ) . . . ( b+r )  

x r(b+ + i )p(u - 7- - i , b +  7- + i ;x) ,  

where 7- is the smallest integer such that b + 7- + 1 > 0. The first argument 

must be positive, that is a - T - 1 > 0. 
Numerical approximations for both the incomplete gamma and the incom- 

plete beta function are available in many statistical computing packages as 
well as in many spreadsheets because they are just the distribution functions 
of the gamma and beta distributions. The following approximations are taken 
from reference [a]. The suggestion regarding using different formulas for small 
and large x when evaluating the incomplete gamma function is from reference 
1961. That reference also contains computer subroutines for evaluating these 
expressions. In particular, it provides an effective way of evaluating continued 
fractions. 

For 2 5 a + 1, use the series expansion 

whereas for x > LY + 1, use the continued-fraction expansion 

2 - a  1 +  
X +  

The incomplete gamma function can also be used to produce cumulative prob- 
abilities from the standard normal distribution. Let @ ( z )  = P r ( 2  5 z ) ,  
where 2 has the standard normal distribution. Then, for z 2 0, @ ( z )  = 
0.5 + r(0.5; z 2 / 2 ) / 2  while, for z < 0, @ ( z )  = 1 - @(-z) .  

The incomplete beta function can be evaluated by the series expansion 
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I Dci (a + b)(a + b + l ) . . .  (a + b+ n)zn+l 

+ c (a+ l ) (a+ 2) .  . . (a + 12 + 1) [ n = O  

The gamma function itself can be found from 

1 1 1 69 1 
+--- +-- +- - -  

+-- 

1 1 
12a 360a3 1 , 2 6 0 ~ ~  1 , 6 8 0 ~ ~  1,188ag 360,360all 

156aI3 1 2 2 , 4 0 0 ~ ~ ~  + 2 4 4 , 1 8 8 ~ ~ ~  1 2 5 , 4 0 0 ~ ~ ~  ' 

For values of a above 10, the error is less than lo-''. For values below 10, 
use the relationship 

lnF(a)  = l n r ( a  + 1) - h a .  

174,611 
- 1 3,617 43,867 



Appendix B 
Discretization of the 
severity distribution 

There are two relatively simple ways to discretize the severity distribution. 
One is the method of rounding, and the other is a mean-preserving method. 

B . l  THE METHOD OF ROUNDING 

This method has two features: All probabilities are positive, and the proba- 
bilities add to 1. Let h be the span and let Y be the discretized version of X .  
If there are no modifications, then 

f j  = Pr(Y = j h )  = Pr [ ( j  - i) h 5 X < ( j  + i) h] 

= Fx [ ( j  + 3) h] - Fx [ ( j  - i) h] . 

The recursive formula is then used with fx(j) = fj. Suppose a threshold of 
d and a limit of u are to be applied. If the modifications are to be applied 
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before the discretization, then 

where gj = P r ( 2  = jah)  and Z is the modified distribution. This method 
does not require that the limits be multiples of h but does require that u - d 
be a multiple of h. Finally, if there is truncation from above at u, change all 
denominators to Fx(u)  - Fx(d )  and also change the numerator of g(u-d)/h 

to F ~ ( u )  - F ~ ( u  - h/2). 

8.2 MEAN PRESERVING 

This method ensures that the discretized distribution has the same mean as 
the original severity distribution. With no modifications the discretization is 

E[X A h] 
h '  

f o = l -  

fJ = , j = 1,2 ,  . . . .  2E[X A jh] - E[X A ( j  - l )h]  - E[X A ( j  + l )h]  
h 

For the modified distribution, 

E[X A d +  h] - E[X A d ]  g o = l -  

g j  = 1 

h[l  - Fx(d)] 7 

2E[X Ad+jh]  - E[X A d  + ( j  - l )h]  - E[X A d S  ( j  + l )h]  
h[l - Fx(d)] 

u - d  
j = l  ,...,-- 1 ,  

h [ l -  Fx(d)] 

h 
E[X A U ]  - E[X A u - h) 

g(u-d)/h = 

To incorporate truncation from above, change the denominators to 

and subtract h[l  - Fx(u)] from the numerators of each of go and g(u-d)lh. 
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B.3 UNDISCRETIZATION OF A DISCRETIZED DISTRIBUTION 

Assume we have go = Pr(S  = 0), the true probability that the random variable 
is zero. Let p j  = Pr(S* = j h ) ,  where S* is a discretized distribution and h 
is the span. The following are approximations for the cdf and LEV of S ,  
the true distribution that was discretized as s’. They are all based on the 
assumption that S has a uniform distribution over the interval from ( j  - $ ) h  to 
( j  + i ) h  for integral j .  The first interval is from 0 to h/2, and the probability 
po -go is assumed to be uniformly distributed over it. Let S** be the random 
variable with this approximate mixed distribution. (It is continuous, except 
for discrete probability go at zero.) The approximate distribution function 
can be found by interpolation as follows. First, let 

j 

Fj=Fs** [ ( j + $ ) h ]  =Cpi, j = O , l , . .  
i=O 

Then, for x in the interval ( j  - i ) h  to  ( j  + i ) h ,  

= Fj-1 + [X - ( j  - i) h] hY1(F’ - Fj-1) 
X 

= ( l - w ) F j - 1 + w F j ,  w = - - j + l  2’ h 

Because the first interval is only half as wide, the formula for 0 5 x 5 h/2 is 

22  
h Fs**(x) = (1 - w)go + wpo, 20 = -. 

It is also possible to express these formulas in terms of the discrete proba- 
bilities: 

2x I go + T [ P O  -go], 
h o < x < , ,  

With regard to the limited expected value, expressions for the first and k th  
LEVs are 

2 2  h 
o < x < - ,  

2 

P j  

4 1  - go) - X ( P 0  - go), 

-(Po - 90) + C i h P i  + 
j-1 E(S**AZ) = h x2 - [ ( j  - 1/2)hI2 

2h 
i=l  

4 I +x[l - Fs** (x)], ( j  - i ) h  < x 5 ( j  + i ) h ,  
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h 
and, for 0 < x 5 -, 

2 

2Xk++l 

h(k + 1) (Po - go) + x k P  - E[(S** = 

while for ( j  - i ) h  < z 5 ( j  + i ) h ,  



A p p e n d i x  C 
Ne 1 d er- Mead  simp 1 ex 

method 

The Nelder-Mead simplex method (which is not related to the simplex method 
from operations research) was introduced for use with maximum likelihood es- 
timation by Nelder and Mead in 1965 [84]. An excellent reference (and the 
source of the particular version presented here) is Sequential Simplex Opti- 
mization by Walters, Parker, Morgan, and Deming [121]. 

Let x be a k x 1 vector and f (x) be the function in question. The iterative 
step begins with k+ 1 vectors, XI,. . . , xk+l, and the corresponding functional 
values, f 1 , .  . . , f k + l .  At any iteration the points will be ordered so that f i  < 
. . . < fk+l. When starting, also arrange for fi < f2. Three of the points have 
names: x1 is called worstpoint, x2 is called secondworstpoint, and xk+l is 
called bestpoint. It should be noted that after the first iteration these names 
may not perfectly describe the points. Now identify five new points. The first 
one, y1, is the center of x2,. . . , Xk+l, That is, y1 = c,kzi xj/k and is called 
midpoint. The other four points are found as follows: 

YZ = 2y1 -x i ,  refpoint, 
y3 = 2y2 -xi, doublepoint, 
y4 = (yi +y2)/2, halfpoint, 
y5 = (yi + x1)/2, centerpoint. 
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Then let g2,. . . ,g5 be the corresponding functional values, that is, gj = 
f (yj) (the value at y1 is never used). The key is to replace worstpoint ( X I )  

with one of these points. The decision process proceeds as follows: 

1. If f2 < g2 < f k + l ,  then replace it with refpoint. 

2. If g2 2 f k + l  and g3 > f k + l ,  then replace it with doublepoint. 

3. If g2 2 f k + l  and 93 5 f k + l ,  then replace it with refpoint. 

4. If f i  < 92 5 f2, then replace it with halfpoint. 

5. If g2 5 f1, then replace it with centerpoint. 

After the replacement has been made, the old secondworstpoint becomes 
the new worstpoint. The remaining k points are then ordered. The one with 
the smallest functional value becomes the new secondworstpoint, and the one 
with the largest functional value becomes the new bestpoint. In practice, 
there is no need to compute y3 and g3 until you have reached step 2. Also 
note that at most one of the pairs (y4,g4) and (y5,gs) needs to be obtained, 
depending on which (if any) of the conditions in steps 4 and 5 hold. 

Iterations continue until the set of k + 1 points becomes tightly packed. 
There are a variety of ways to measure that criterion. One example would be 
to calculate the standard deviations of each of the components and then aver- 
age those values. Iterations can stop when a small enough value is obtained. 
Another option is to keep iterating until all k + 1 vectors agree to a specified 
number of significant digits. 
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