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Preface

Machine learning experienced a great advance in the 1980s and 1990s due to the active re-
search in artificial neural networks, adaptive schemes and fuzzy systems. These methodologies
demonstrated good results in many real applications, especially for classification and regres-
sion tasks, since neither a priori knowledge about the model of the distribution of the available
data nor the relationships among the independent variables should be necessarily assumed.
These desirable properties are at the basis of the success of these methods in the field of the
analysis of remote sensing images, where a wide literature refers to the definition of classifiers
and estimation algorithms based on neural networks and fuzzy systems.

In the 1990s, Kernel methods emerged as innovative techniques in the framework of
machine learning. Kernel methods can be simply viewed as a two-fold methodology. The
first step consists of mapping the data from the original input space into a kernel feature
space of higher dimensionality through a nonlinear function. The second step solves a linear
problem in the transformed kernel space. These methods allow us to design and interpret
learning algorithms geometrically in the kernel space (which is nonlinearly related to the
input space), thus combining statistics and geometry in an effective way, and all of this while
obtaining solutions with that desirable property that is uniqueness. A few sets of free parameters
are commonly needed to make the algorithms work properly. In addition, the inclusion of
regularization in the function to be optimized becomes a natural and theoretically well-founded
task. This theoretical elegance is also matched by their practical performance. Interestingly,
this framework allows us to create non-linear methods from linear well-established ones.

The recent application of machine learning and pattern recognition approaches based on
kernel methods (KMs) to the field of remote sensing data analysis provided excellent results in
many different application domains. Kernel methods proved effective in the analysis of images
of the Earth acquired from airborne and satellite sensors, by improving the results offered
by traditional statistical and neural networks methods in real-life applications (e.g. natural
resource control, detection and monitoring of antrophic infrastructures (e.g. urban areas),
agriculture inventorying, disaster prevention and damage assessment, anomaly and target
detection, biophysical parameter estimation, etc.). Nowadays, KMs are standard techniques
for many remote sensing applications.

The book Kernel Methods for Remote Sensing Data Analysis presents research related to
remote sensing based on the recent advances in kernel methods. The book is organized into five
parts. The first part of the book presents two background chapters on the key aspects of machine
learning for remote sensing, and the theoretical and practical foundations of kernel methods.
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The remaining four parts address the most recent research in developing kernel methods in
remote sensing for supervised classification, semi-supervised classification, regression, and
feature extraction.

The four main parts of the book are preceded with introductory chapters. Chapter 1, written
by Waske, Fauvel, Benediktsson and Chanussot, reviews the main concepts of machine learn-
ing in the context of remote sensing, and focuses on the supervised classification case. Written
by Gehler and Schölkopf, Chapter 2 provides the reader with an exhaustive introduction to the
framework of kernel methods. The authors address the main concepts and theoretical deriva-
tions, discuss theoretical and practical issues, and give pointers to useful references. These
introductory chapters can be useful both for the non-expert reader in remote sensing and
kernel methods, and for practitioners interested in the theoretical and practical issues of kernel
machines. Then, three parts are devoted to the application and development of kernel methods
in different learning paradigms, i.e., in supervised classification, semi-supervised classifica-
tion, function approximation and regression, and feature extraction. The fourteen chapters
of these blocks include a literature review of the specific application, a critical discussion of
the needs and demands of each one, novel research contributions, and experimental results to
demonstrate method capabilities. Chapters are written by leading experts in their respective
fields. A brief description on the specific contribution of each of the chapters follows.

The first block of chapters is devoted to supervised image classification. This is the most
active research area for kernel methods in remote sensing due to the special characteristics of
the problems and the advantages offered by kernel machines. In Chapter 3, Gualtieri reviews
the formulation and foundations of the classical support vector machine (SVM), and shows re-
sults in hyperspectral image classification. Also, special attention is paid to the parallelization
of the algorithm. In all cases, theory is supported with experimental results. In Chapter 4,
Foody analyses in detail the design of training and testing stages for image classification
with SVM. Next, in Chapter 5, Dundar and Fung analyse another kernel method, the Kernel
Fisher’s Discriminant. After reviewing the formulation, a novel version with heterogeneous
kernels is presented, and results in multi and hyperspectral image classification are presented.
Chapter 6 by Muñoz-Marı́, Gómez-Chova, Martı́nez-Ramón, Rojo-Álvarez, Calpe-Maravilla
and Camps-Valls presents a general framework based on composite kernels for dealing with
multitemporal and multisource image classification and change detection. Two kernel classi-
fiers are used to illustrate the properties of the framework: the standard SVM and the one-class
SVM. The latter is useful for target detection and anomaly detection problems. Related to this,
in Chapter 7, Nasrabadi provides a performance comparison of various linear and nonlinear
anomaly detection techniques based on kernels. In particular, subspace anomaly detectors are
reviewed and their kernel versions discussed. Also, the kernel Reed–Xiaoli (RX) anomaly de-
tector is presented and benchmarked. This book part is concluded with Chapter 8 by Banerjee,
Burlina and Diehl, in which one-class SVMs for hyperspectral anomaly detection is pro-
posed as an alternative to the RX method. Performance is illustrated in airborne mine and
hyperspectral imagery detection.

The third part of the book is devoted to the emerging field of semi-supervised image
classification. In particular, depending on whether training and test data are drawn from the
same remote-sensing image or not, one should work under a domain adaptation problem or
under a sample selection bias problem. The first case is treated in Chapter 9 by Marconcini
and Bruzzone, where a novel domain adaptation SVM technique that extends SVMs to the
domain adaptation framework is presented, and a novel validation strategy for domain adapta-
tion is proposed. The second case is treated in Chapter 10, by Gómez-Chova, Calpe-Maravilla,
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Bruzzone, Camps-Valls, which presents a semi-supervised SVM classifier based on the combi-
nation of the expectation-maximization (EM) algorithm for Gaussian mixture models (GMM)
and the mean map kernel.

The fourth part of this book is devoted to the field of regression and model inversion. Several
interesting applications are included. First, in Chapter 11, written by Broadwater, Banerjee, and
Burlina, the concept of a kernel unmixing algorithm for hyperspectral imagery is introduced.
This new model generalizes the linear mixing model allowing for both linear and nonlinear
mixture estimation. Then, in Chapter 12 by Wang, Yang and Li, the theory and methods
for quantitative remote sensing inverse problems with kernel-based operator equations is
developed. The authors focus on the important bidirectional reflectance distribution function
(BRDF) model inverse problem and the distribution function of atmospheric aerosols. Finally,
in Chapter 13, written by Moser and Serpico, land and sea surface temperature estimation
with support vector regression is treated in detail, and the span bound is proposed for free
parameter tuning.

Finally, the book finishes with a part dealing with kernel-based feature extraction. Three
chapters are included. Chapter 14 by Arenas-García and Brandt Petersen reviews the principles
of several multivariate analysis methods and their kernel extensions. Application to contextual
multispectral image classification and pixel-based hyperspectral classification are illustrated.
Then, in Chapter 15, by Gu, kernel PCA is revised in detail for target and anomaly detec-
tion. An improved selective KPCA is proposed in hyperspectral images. The book ends with
Chapter 16, by Kuo, Yang and Li which deals with the kernel nonparametric weighted feature
extraction (KNWFE). The experimental results show that KNWFE outperforms KPCA and
GDA remote sensing image classification.

Gustavo Camps-Valls and Lorenzo Bruzzone
València and Trento, 2009
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Several applications have been developed in the field of remote sensing image analysis during
the last decades. Besides well-known statistical approaches, many recent methods are based
on techniques taken from the field of machine learning. A major aim of machine learning
algorithms in remote sensing is supervised classification, which is perhaps the most widely
used image classification approach. In this chapter a brief introduction to machine learning and
the different paradigms in remote sensing is given. Moreover this chapter briefly discusses the
use of recent developments in supervised classification techniques such as neural networks,
support vector machines and multiple classifier systems.

1.1 Introduction

1.1.1 Challenges in remote sensing

Owing to the recent development of different Earth observation platforms with increased
spatial and spectral resolution as well as higher revisit times, remote sensing provides more
detailed information on land cover and the environmental state than ever before. Moreover,
different Earth-observation systems, such as multi-spectral and SAR systems operate in dif-
ferent wavelengths, ranging from visible to microwave. The data sets consequently provide
different, but complementary information. The classification of such data might be considered
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complex on the one hand, but with regard to recent and upcoming missions, remote sensing
applications become even more attractive, on the other.

Many early techniques have been taken directly from signal processing and these methods
are often based on simple data models and approaches. However, when dealing with recent
data sets these well-known classifiers can be limited (Richards 2005). In addition, increased
performance requirements such as speed (e.g., for operational monitoring systems and near-
real time applications) and accuracy, further demand the development of more sophisticated
analysis concepts (Jain et al. 2000). Thus, the development of adequate methods for various
data sets is an important ongoing research topic in the field of remote sensing. This chapter
is organized as follows. In Section 1.1.2 a general introduction to machine learning is given,
followed by a discussion on different paradigms in remote sensing. In Section 1.2 various
supervised classifiers are introduced. A conclusion is given in Section 1.3.

1.1.2 General concepts of machine learning

Machine Learning is an area of artificial intelligence and generally refers to the development of
methods that optimize their performance iteratively by learning from the data. Such methods
can be predictive (e.g., a regression model) and make a prediction of a specific phenomenon
or descriptive (e.g., a classification model) and distinguish for example between different
classes of patterns. In the field of remote sensing, descriptive machine learning algorithms
often focus on land cover classifications, and thus provide important input information in
several environmental monitoring systems, as for instance in the area of flood forecast, urban
sprawl and land degradation. In this context, we are dealing with the differentiation between
several land cover classes, and the algorithm learns to differentiate between different types of
patterns (i.e. land cover classes).

Let us assume the detection of a specific land cover class, e.g., buildings, to be a general
machine learning problem. The corresponding machine learning formulation will be:

Find f : x �→ y = f (x), (1.1)

where x is a feature vector from the image and y is a scalar that indicates the presence
(y = 1) or the absence (y = 0) of a building x. Note that the values chosen for y are arbitrary.
Machine learning theory aims at estimating the functional f from some prior data. Several
techniques have been introduced to achieve this goal. They can be separated into several
categories, e.g., depending on the type of the training data, the form of function f (x) and
potential assumptions on the underlying density function (Figure 1.1). Two main categories,
unsupervised and supervised, based on whether they include a priori knowledge during the
decision process by using labelled training samples or not. In contrast to this, semi-supervised
concepts are a special type that rely on both labelled and unlabelled samples.

1. Supervised algorithms: These correspond to the situation where a set of labelled sam-
ples, {(xi, yi)}�i=1, our training data, is available and the objective is to predict the value
y corresponding to a new sample x, i.e. determining the class-memberhsip of x.

2. Unsupervised algorithms: These correspond to the situation where only the data, i.e.,
(xj)�j=1, are known and the objective is to describe how the data are organized or
clustered.
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Figure 1.1 Overview of different classifier categories (after Jain et al. 2000).

3. Semi-supervised algorithms: In this case, the two previous approaches are combined.
The learning is based not only on the available set of labelled samples {(xi, yi)}�i=1, but
also on some additional data (xj)

�+u
j=�+1 for which no prior knowledge yj is available.

In a supervised setting, (1.1) can be reformulated as

using (xi, yi)�i=1, find f : x �→ y = f (x). (1.2)

In order to find the best functional f , and consequently to optimize the detection performances,
an additional constraint needs to be included in the formulation of the problem. DenotingE[f ]
as a measure of error, i.e. the prediction f (x) differs from the truth y, (1.2) should be rewritten
as:

Using (xi, yi)�i=1, find f : x �→ y = f (x) for which E[f ] is minimal. (1.3)

Depending on f (x) the machine learning algorithms can be further differentiated into two
subgroups:

1. Linear algorithms: The variables x and the output y are assumed to be linearly related
and f is an affine function f (x) = 〈w, x〉 + b.

2. Nonlinear algorithms: The relation between x and the output y is nonlinear and f can
be any function. On example is the quadratic function f (x) = x�Ax + b�x + c.

When using nonlinear algorithms, the user hence needs to choose the set of functions that will
be considered. Depending on the application and on the level of the user’s knowledge, this
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choice may be difficult. For instance, if it is assumed that grey-level of building pixels follow
a Gaussian distribution N1(�1,�1) and background pixels follow N2(�2,�2), where � and
� denote the variance–covariance matrix and mean vector, respectively. Following a Bayesian
framework (see Section 1.2.1), the decision function can be derived as follows (Duda et al.
2001):

f (x) =
{ 1 if −1

2
(x − �1)��1(x − �1) + 1

2
(x − ��

2 )�2(x − �2) − ln

( |�1|
|�2|

)
> 0

0 otherwise.

The training samples are used to estimate the different parameters (�1,�1,�2 and �2). Such
approaches, which assume that p(x|y) follows a specific distribution, are called parametric
approaches. In many remote sensing applications it is assumed that the distributions follow the
form of a multivariate normal Gaussian model. In addition, many processes can be described
by this model assumption and it is computationally relatively simple because the model is only
described by the mean and the covariance matrix. However, when dealing with multisensor
and multi-temporal data sets, the class distributions can often not be modelled by adequate
multivariate statistical models. Recall our general machine learning application, i.e. the de-
tection of buildings in a remote sensing data set. What if the background pixels do not follow
a Gaussian distribution or we would like to include additional information, such as texture or
shape descriptors? In these cases a new model p(x|y) should be defined.

Non-parametric approaches seem particularly interesting in this context because they
are not constrained to prior assumptions on the distribution of input data. Kernel methods,
for example, enable the definition of general functions that can be tuned directly during the
training step. These functions typically have the following form:

f (x) =
�∑
i=1

˛iK(xi, x) + b, (1.4)

where k is a kernel function and
(
(˛i)�i=1, b

)
are the parameters of the decision function.

1.1.3 Paradigms in remote sensing

Machine learning in remote sensing comprises several different paradigms such as classifica-
tion, regression, clustering, feature extraction, dimensionality reduction and density estima-
tion. These aspects are often interdependent, e.g., before performing a classification one might
extract some additional texture features and also reduce the dimensionality of the data set with
feature selection techniques (Figure 1.2). Perhaps the most commonly undertaken applications
in remote sensing are feature reduction, clustering and classification. In the following, a brief
formal description of these machine learning concepts is given.

Feature extraction and selection

Terms such as feature extraction and feature selection are closely related to dimensionality re-
duction, which refers to the mapping of the data from the original feature space into a space of
a lower dimension, without discarding any meaningful information. Furthermore, meaningful
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Figure 1.2 Overview on a computational remote sensing application. Bold lettering indicates
where machine learning approaches are most effective.

information is defined according to the final application. Hyperspectral imaging, for example,
is characterized by high spectral resolution with up to hundreds of data channels with nar-
row bands, ranging from the visible to the short-wave infrared region of the electromagnetic
spectrum. Although such data provide detailed spectral information, theoretical and practical
problems arise with increasing dimensionality of the data in the spectral domain. The idea of
the dimension is intuitive, driven by experiments in one-, two- or three-dimensional space, and
geometric concepts that are self-evident in these spaces do not necessarily apply in higher-
dimensional space (Kendall 1961; Landgrebe 2003). For example, normally-distributed data
have a tendency to concentrate in the tails, which seems to contradict its bell-shaped density
function. For the purpose of classification, these problems are related to the curse of dimen-
sionality. In particular, Hughes showed that with a limited training set, beyond a certain limit,
the classification accuracy decreases as the number of features increases (Hughes 1968). This
is paradoxical, since with a higher spectral resolution one can discriminate more classes and
have a finer description of each class, but the data complexity leads to poorer classification.

To mitigate this phenomenon, a dimensionality reduction is performed by feature selection
and feature extraction. A feature reduction algorithms can be supervised or unsupervised. The
objective is to find f :

f : Rn → R
d

x �→ x̃ (1.5)

with d � n.
Feature selection refers to a selection of a subset of relevant features, whereas feature

extraction combines and transforms the original features–both in order to obtain a relevant
representation of the data in a lower-dimensional space. Such strategies were initially designed
in accordance with both the specific characteristics of the remote sensors and the objectives
(e.g., crop monitoring). Well-known extraction methods are vegetation indices and transfor-
mations such as the Tasseled Cap Transformation (Kauth and Thomas 1976). The Tassled
Cap was proposed to underline significant spectral characteristics in crop development in a
multi-spectral Landsat image, to improve the differentiation between crops and other vege-
tation types. However, such transformations are sensor-dependent and the physical analysis
associated with each transformation can be intractable for hyperspectral data.

Transformations based on statistical analysis have already proved to be useful for
classification, detection, identification or visualization of remote sensing data (Chang 2003;
Keshava 2004; Richards and Jia 1999; Ünsalan and Boyer 2004). Two main approaches can
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be defined. (1) Supervised transformation is in general well suited to pre-processing for the
task of classification, since the transformation improves class separation. However, its effec-
tiveness is correlated with how well the training set represents the whole data set. Moreover,
this transformation can be extremely time-consuming. Unsupervised methods do not focus
on class discrimination, but aim for another representation of the data in a lower-dimensional
space, satisfying some given criterion. For Principal Component Analysis (PCA), the data are
projected into a subspace that minimizes the reconstruction error in the mean square sense.
Note that both the unsupervised and supervised cases can be also divided into linear and
nonlinear algorithms.

PCA plays an important role in the processing of remote sensing images. Even though its
theoretical limitations for hyperspectral data analysis have been pointed out (Landgrebe 2003;
Lennon 2002), in a practical situation the results obtained using the PCA are still competitive
for the purpose of classification (Journaux et al. 2006; Lennon et al. 2001). The advantages
of the PCA are its low complexity and the absence of parameters. However, the PCA only
considers the second-order statistic, which can limit the effectiveness of this method. Part IV
of this book presents a nonlinear version of the PCA, namely Kernel Principal Component
Analysis (KPCA), which considers higher-order statistics.

Clustering algorithms

In contrast to supervised approaches, which construct the decision boundaries from training
data, clustering algorithms are based on a set of unlabelled data. In general, cluster algorithms
aim to indentify data (unknown) structure, such as natural groups or clusters within the multi-
dimensional feature space by measuring similarities between different pixels. The pixels within
a cluster or group are more similar to each other than those pixels belonging to other clusters
(Jain et al. 2000).

As for classification, the goal is to learn a function f

f : Rn → N

x �→ ĉ, (1.6)

where no labelled data are available and the training relies only on the observations x.
Thanks to kernel functions, the similarity can be computed easily (Hofmann et al. 2008).

Moreover, it can be adapted to the data by using an appropriate kernel. Nevertheless, the most
common similarity measurement is the Euclidean distance. However, when dealing with data
that contains clusters of different shapes and sizes the definition of clusters and the selection of
an adequate similarity measure are critical and thus the clustering process can be difficult (Jain
et al. 2000). After measuring the similarity, the cluster algorithm merges the individual pixels
into groups. Of course, the same data set can result in several potential combinations of clusters
and some kind of accuracy assessment is required to evaluate the quality of the generated
clusters. A common quality measurement is the squared error measure that is also used as
the cluster criterion. Clustering techniques are also used for unsupervised classifications.
After generating groups of pixels with similar properties, the user usually assign a class label
to each cluster. Clustering approaches, such as ISODATA and k-means are well known in
remote sensing. They usually assign each pixel to only one cluster (hard techniques), whereas
fuzzy approaches as the fuzzy c-mean results in a degree of membership for all clusters.
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Probably the widest used is the ISODATA (iterative self-organizing data analysis). In contrast
to the k-means clustering, the approach enables an optimization of the individual clusters (e.g.,
splitting and merging) during the clustering process. The basic algorithm might be described
as follows.

1. Initialization: The number of clusters is defined (by the user) or estimated. For each
cluster a pixel is (often randomly) selected as cluster centre.

2. Clustering process: Each pixel is assigned the nearest cluster, using the distance
measurement (e.g. Euclidean distance) between the pixel and the cluster centre.

3. Test: Compute the new cluster centres and compare them with the previous centres. If
a centre has changed return to step 2, otherwise the procedure is terminated.

4. Optimization: Optimize clusters (at the end and any suitable processing step) by merging
clusters that are close together or contain only a few pixels and splitting incompact
clusters.

Other approaches as the agglomerative hierarchical clustering techniques do not rely on spe-
cific cluster centres. In the beginning each pixel is handled as a separate cluster. During the
process neighbouring pixels (or clusters) are sequentially merged, depending on a distance
measurement. The process of clustering can be represented in a tree diagram or so-called
dendogram. This figure shows how the pixels are grouped and at what distance measure-
ment individual pixels and clusters are merged. In addition to agglomerative algorithms that
sequentially reduce the number of clusters, by merging similar groups (bottom-up approach),
divisive techniques procedures start with all the pixels belonging to one cluster and split it
iteratively into smaller clusters (bottom-down approach). An alternative clustering approach
is based on mixture models. This approach is based on the assumption that each natural group
is described by a different probability distribution. Whereas the form of the distribution is
similar for all groups, the parameter values are different. In addition, a mixture can contain
different models and more complex density functions can be modelled (Jain et al. 2000).

Supervised classification algorithms

The major part of machine learning algortihms for remote sensing image analysis is aiming
perhaps for a supervised classification of the data. The machine learning problem is to learn the
function f , from a set of labelled examples, i.e. our training samples whose class membership
is known:

f : Rn → N

x �→ ĉ, (1.7)

which assigns each sample to a particular class ĉ. In general such learning problems are
ill-posed and it is necessary to restrict the space of possible functions f . Using a Bayesian
framework, this is done by choosing an appropriate prior density function. In Section 1.2
different supervised classifiers are introduced.

In machine learning, a trade-off is made between how well the function fits the data
and how complicated the function is. Several measures can be used to assess the complex-
ity of a function. One that has played an important role in the last decades is the so-called



10 INTRODUCTION

VC-dimension (Vapnik 1998). The trade-off leads to solving the following general minimiza-
tion problem:

min
f

1

�

�∑
i=1

V (f (xi), ci) + �‖f‖2, (1.8)

where the norm ‖ · ‖ is a measure of complexity (low norm corresponding to a simple function)
and V is a loss function. For instance, V (f (xi), ci) = max(0, 1 − f (xi)ci) for the SVM. Note
that the resolution of (1.8) can involve supervised or semi-supervised algorithms. Different
supervised classifiers are introduced in Section 1.2, semi-supervised kernel algorithms are
discussed in Chapters 9 and 10.

Regression problem are very similar to classification problem. The only change occurs for
the outputs of the function that is now defined on R. Actually, many classification algorithms
can be turned to regression ones by a simple change in the loss function: for the SVM, the
loss function is changed to the �-insensitive function (Vapnik 1998). As for classification, the
regression may be supervised or semi-supervised. In Chapter 13 the use of support vector
machines for regression is discussed.

1.2 Supervised classification: algorithms and applications

1.2.1 Bayesian classification strategy

Classification approaches that rely on the Bayesian framework are one of the basic concepts
in (statistical) pattern recognition. The (Gaussian) maximum likelihood classifier, which is
derived from the Bayes rule when classes have equal priors, is doubtlessly the most common
supervised classification technique in the field of remote sensing. In contrast to geometrical
and discriminant analysis-based approaches, Bayesian concepts are density based and assume
specific density functions for each information class.

Following the Bayesian decision strategy a pixel x is classified to class yi if p(yi|x) >
p(yj|x), for all i /= j, where p(yi|x) is called the a-posteriori probabilities and refers to the
probability that x belongs to class p(yi|x). In this context it is assumed that our feature vector
x have a specific probability density, that is dependent on the observed information class.
The pixel x belonging to class yi is understood as an observation drawn randomly from the
class-conditional probability density functionp(x|yi). Following Bayes’ theorem, the required
a-posteriori probabilities can be computed by the class-conditional probability density function
or likelihoods and the a-priori probabilities, which describe the probability that a specific class
occurs in the data set.

Generally, the Bayesian decision rule is aiming at minimizing the conditional risk and
expected loss, respectively, that is associated with each potential classification. A so-called
loss function enables a weighting of the different classifications, which can be important if
the costs of misclassification vary with different types of classes. However, often a so-called
0/1 loss function is used, which weights all misclassifications equally.

Thus, the final decision rule is based only on the a-posteriori probabilities. This classifica-
tion rule is also referred to as the maximum a posteriori rule (MAP). However, the conditional
probability density function p(x|yi) are generally not known and must be estimated from the
training data. Often (particularly in remote sensing) it is assumed that the data follow the form
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of a multivariate normal (Gaussian) model, which is an adequate assumption for many remote
sensing data sets. Moreover the normal model is defined by only two parameters, the mean
and the covariance matrix, which are derived from the training data. However, the use of a
Bayesian classifier might be critical if an adequate multivariate statistical model is not avail-
able and the number of training samples is limited (with respect to the dimensionality of our
data set). In such cases, the performance of the classifier can be affected, resulting in a lower
classification accuracy. However, if the form of the density function is unknown, it is possi-
ble to operate in a non-parametric mode: Approaches such as histogram methods, k-nearest
neighbour and kernels methods enable an estimation of the class-conditional densities and,
thus, a classification in the context of the Bayesian framework.

1.2.2 Neural networks

In the past there has been great research focus on neural networks (NN) in the context of
pattern recognition and remote sensing (Atkinson and Tatnall 1997; Benediktsson et al. 1990).
In several studies the performance of NN was compared with widely-used statistical methods,
as for the classification of multi-spectral (Bischof et al. 1992; Paola and Schowengerdt 1995),
SAR (Bruzzone et al. 2004; Del Frate et al. 2003), hyperspectral (Benediktsson et al. 1995)
and multi-source data sets (Benediktsson et al. 1990). The results in several of these studies
demonstrate that NN approaches perform better or at least equally as well as conventional
approaches. In the context of remote sensing image analysis, several different NN models have
been proposed (Benediktsson et al. 1997, 1990; Serpico et al. 1996). A general introduction
to neural networks in the context of pattern recognition is given for example in Bishop (1995),
an overview on remote sensing applications can be found in Atkinson and Tatnall (1997).

Like other machine learning techniques, neural networks have an advantage over traditional
statistical methods in that they are distribution-free, i.e. they do not rely on any underlying
statistical distribution of the data. In the context of classification, a neural network can be
considered as a black box model that receives a set of input vectors and produces responses
from its output neurons, where the number of neurons depends on the number of information
classes (i.e. land cover classes). A neural network is an interconnection of neurons, where a
neuron receives input signals that represent the activity at the input or the momentary frequency
of neural impulses delivered by another neuron to this input. The output value or the frequency
of the neuron is often represented by a function, which is controlled, among others factors, by
the so-called synaptic efficacies or weights. The weights are modified by an adaptive training
process in which a set of training samples is presented at the input. The network gives an output
response for each sample. The actual output response is compared with the desired response
for the sample and the error difference between the desired output and the actual output is
used to modify the weights in the neural network. The training process ends when the error
is reduced to a pre-specified threshold or cannot be minimized any further (i.e, the network
structure is stabilized and the weights do not change or are less that a specific threshold).

Neural network approaches enable the determination of the weights for each data source
during the classification procedure, which makes them particularly valuable for multi-source
applications (e.g., multi-temporal and multisensor land cover classifications). In this context an
adequate multivariate statistical model is often not known, and traditional statistical approaches
can be limited. However, the NN approach can be computationally complex and requires a
large number of training samples. Moreover, compared with statistical methods, the approach
has more problems, classifying unknown pixels that are not identical to training samples.
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Figure 1.3 Schematic diagram of a fully connected feed forward neural network.

Consequently the performance of a neural network strongly depends on representative training
samples, whereas statistical models require an appropriate model for each class (Benediktsson
et al. 1990). Whereas the performance of networks with a single layer of adaptive weights is
limited, the use of several layers enables a more general application. It has been shown that
with two hidden layers a neural network can approximate any function in the mean square
sense. However, in remote sensing applications, one hidden layer is most often sufficient. A
schematic overview of a fully connected feed forward neural network is given in Figure 1.3.

Several different neural network algorithms have been proposed. A widely used approach,
for instance, is a multilayer perceptron network (MLP) with an error backpropagation algo-
rithm. It is a multilayer feedforward algorithm that can be used to discriminate data that are
not linearly separable. During the training process, the error from the outputs of the network
is propagated backwards and the weights are changed in order to reduce this error. However
this method has some limitations, e.g., the slow convergence of the error backpropagation, the
potential convergence to a local minimum, and the incapacity to detect that an input sample
has fallen in a region of the feature space without training data (Bruzzone et al. 2004; Serpico
et al. 1996). This is a serious weakness, especially when the dimensionality of the data is very
high. Therefore, neural networks require an efficient feature extraction method when dealing
with very high dimensional data sets.

A radial basis function (RBF) network can solve some of the problems mentioned above
and the training can be much faster (Bishop 1995; Bruzzone and Prieto 1999). The RBF
approach is based only on a single hidden layer and is considered as a design for a curve-fitting
problem in a high-dimensional space. In regard to this, learning is comparable to defining a
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surface in a multi-dimensional space that provides a best fit to the training samples, with the
criterion for best fit being measured in some statistical sense. In the RBF neural network, the
hidden units provide a set of functions that constitute an arbitrary basis for the input patterns
when they are expanded into the hidden unit space (radial basis functions). The transformation
from the input space to the hidden-unit space is nonlinear, whereas the transformation from
the hidden-unit space to the output space is linear.

Another development is the family of ART (Adaptive Resonance Theory) and ARTMAP
networks, proposed by Carpenter and Grossberg (Carpenter et al. 1997, 1991, 1992), which
is different from other networks, such as the backpropagation algorithms. The original ART
framework is an unsupervised approach that groups pixels into stable clusters. The number of
clusters depends on the so-called vigilance parameter. Using a distance metric vigilance defines
how outspread individual groups might be distributed in the feature space. The ARTMAP
approach, an supervised extension of ART, is iteratively modifying the vigilance parameter in
case of a misclassification (Muchoney and Williamson 2001).

The last decade has seen the emergence of more efficient supervised machine learning
algorithms: Regularization networks (RN) and support vector machines (SVM) (Girosi et al.
1995; Vapnik 1998). While classical neural networks and radial basis classifiers learn the
classification problem by minimizing the Empirical Risk (i.e. the number of errors made on
the training set), the RN and the SVM implement Structuring Risk Minimization (SRM): the
optimal solution is found by selecting the function that minimizes both the Empirical Risk
and a measure of the complexity of the function.

The RN and SVM can be described using the framework of VC theory (Evgeniou et al.
1999): for instance the use of kernel functions in Reproducing Kernel Hilbert Space (RKHS)
as regularizer and SRM principle. However, SVM and RN do not provide equal solution since
they do not use the same loss functions to compute the training errors (Evgeniou et al. 1999).
Classically, the RN uses the square errors while SVM uses the hinge loss (Chapelle 2007). It
implies that SVM finds solutions that emphasize the separating surface and provide very good
results in real world problem.

SVM have been intensively studied in remote sensing. The following section reviews some
remote sensing applications of SVM.

1.2.3 Support Vector Machines (SVM)

Support Vector Machines (SVM) were introduced to context pattern recognition and machine
learning and are a relatively recent development in the context of remote sensing and still ex-
hibit further improvement and modification, e.g., in the context of semi-supervised approaches
(Bruzzone and Carlin 2006; Chi and Bruzzone 2007) and the introduction of new kernel con-
cepts (Camps-Valls et al. 2008, 2006). SVM were originally introduced as binary classifiers.
The concept is based on an optimal linear separating hyperplane that is fitted to the training
patterns of two classes within a multi-dimensional feature space. The optimization problem
that has to be solved relies on structural risk minimization and is aiming at a maximization
of the margins between the hyperplane and the closest training samples. For linearly not sep-
arable samples the input data are mapped into a high dimensional space. In doing so a linear
hyperplane can be fitted, which is nonlinear in the original input space. The computation-
ally extensive mapping process is handled by using a positive definite kernel function. This
kernel-trick enables us to work within the newly transformed feature space, without explicitly
knowing the map but only the kernel function.
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In the context of remote sensing, binary classification problems generally do not exist,
thus the binary nature of SVM requires a method to solve multi-class problems. The most
frequently used approaches are the one-against-one rule, which separates each pair-wise class-
combination, and the one-against-all, which is based on the separation of each class from the
rest. For a detailed introduction to SVM the reader is referred to the following chapters.

SVMs have been used successfully in several remote sensing studies (Foody and Mathur
2004; Huang et al. 2002; Pal and Mather 2005). In many studies they performed more accu-
rately than other classifiers or performed at least equally well. Because the approach considers
only samples close to the class boundary, it works well with small training sets, even when
high dimensional data sets are classified (Melgani and Bruzzone 2004; Pal and Mather 2006).
In van der Linden et al. (2007) the use of SVM on segmenting HyMap data urban areas was
discussed. SVM achieved high overall accuracies using a purely pixel-based classification,
underlining the high efficiency of SVM to describe complex class distributions. The approach
differentiated broad thematic classes without a preliminary definition of spectrally homoge-
neous sub-classes or separate treatment of dark areas. In another study a framework for the
classification of multi-spectral and hyperspectral data was presented (Farag et al. 2005), which
is based on the maximum a posteriori (MAP) concept. The MAP approach aims on maximiz-
ing the posterior probabilities that are represented as the product of the class prior probability
and the class conditional probability (CCP). In the proposed approach, SVM were used to
estimate the required CCP.

In other experiments, spectral and spatial image information were combined to improve the
classification accuracy (Camps-Valls et al. 2006; Fauvel et al. 2006). An alternative approach
for classifying very high resolution urban imagery is based on the use of different segmentation
results at various scales (Bruzzone and Carlin 2006). The result demonstrates that different
levels provide different types of information, which seems particularly interesting regarding
high- resolution images.

Although SVM achieved promising results in several studies, SVM was rarely applied to
multi-source classification problems. Whereas some of these application are based on the use
of the original SVM and common kernel functions (Koetz et al. 2008; Song et al. 2005), in
other experiments the SVM approach was extended and modified for classifying multi-source
data sets. In Halldorsson et al. (2003) a common kernel function was extended for classifying a
multi-source data set containing Landsat MSS data and topographical information. In Camps-
Valls et al. (2006) so-called composite kernels were introduced, for combing contextual and
spectral information from hyperspectral imagery.

Another approach for combining spatial and spectral information was proposed by Fauvel
et al. (2008). It is based on the use of both the spatial and spectral information for classification.
The spatial information is modelled by the spatial response to morphological filters while the
spectral information is the spectral components themselves. The approach was successfully
applied on very high spatial resolution hyperspectral images.

In another study, SVM were used for combining a set of multi-temporal SAR data and
multi-spectral imagery (Waske and Benediktsson 2007). The overall accuracy was further
improved by training individual SVM classifiers on the two data sources and fusing the pre-
liminary outputs (i.e. distances to the hyperplane) by a third SVM. This concept was further
extended by a multilevel component (Waske and van der Linden 2008). In doing so they
include different segmentation scales from each source, i.e. the SAR data and multi-spectral
imagery. The main reason for the success of these strategies could be the different nature of
the used data types, i.e. the multi-spectral imagery and the SAR data. The multi-temporal
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SAR data and the multi-spectral images provide different information and may not be equally
reliable. Furthermore, different aggregation levels contribute unequally to the classification of
the various classes and hence the sources do not appear equally reliable. The application of a
single SVM for the whole heterogeneous data sets requires the definition of one single kernel
function. However, it seems more adequate to define the kernel functions for each data source
separately and fuse the derived outputs

In the context of multi-temporal and multi-source classification by SVM, new kernel
functions were proposed in (Camps-Valls et al. 2008). In that study a general framework
based on composite kernels for remote sensing data was presented that combines spectral,
spatial, multi-temporal and multisensor information. The classification results underline the
good performance of these concepts, which outperform a traditional stacked-vector approach
in terms of accuracy. Other developments in the context of SVM and remote sensing are the
introduction of semi-supervised techniques (Bovolo et al. 2008; Bruzzone et al. 2006; Chi
and Bruzzone 2007).

Toy classification example: kernel method versus parametric method

To illustrate the ability of kernel approaches to deal with hyperspectral remote sensing data,
a toy classification example is presented. We compare three techniques: one parametric, the
quadratic Bayesian classifier and two machine learning algorithms, one naive, the minimum
distance to the mean classifier and the most powerful SVM. The decision rule are:

1. Minimum distance to the mean classifier: Samples are assigned to whichever class has
the smallest Euclidean distance to its mean. The decision boundary is

{
x|2x�(�− − �+) + (��

+�+ − ��
−�−) = 0

}
. (1.9)

2. The linear SVM classifier: We use the soft margin formulation, where the decision
boundary is

{
x

∣∣∣∣
�∑
i=1

˛iyi〈xi, x〉 + b = 0

}
. (1.10)

3. The quadratic Bayesian classifier: Under the Gaussian assumption and with the same
covariance matrix, the decision boundary is

{
x|

(
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−�
−1�−) = 0

}
. (1.11)

To test the behaviour of SVM in the ‘high dimensional space / small training set’ situation,
a typical setting in remote sensing, two Multivariate Gaussian clusters were generated with
increasing dimension, and classification was performed using the three classifiers, but with
a fixed training set of 40 samples per class. For each dimension, 100 experiments with 1000
test samples per class were performed and the mean results are plotted in Figure 1.4. The
minimum distance classifier performs the worst and, as in the previous experiment, the SVM
and Gaussian classifiers perform equally well for low and moderate dimensions. But, above
a certain dimension (≈ 28), classification accuracy decreases for the Gaussian classifier. The
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Figure 1.4 Toy example: two Gaussian clusters in high-dimensional space. The line shows
the mean classification accuracy and the bar is the standard deviation over 100 experiments.

problem is related to the estimated covariance matrix, which becomes badly conditioned and
hence noninvertible. Unlike the other classifiers, SVM does not suffer from the dimensionality
and performs perfect classification.

These experiments reveal some properties of SVM that render it suitable for remote-
sensing applications. However, it is well known that classes of interest in remote sensing are
partially overlapped (Richards and Jia 1999). Hence the choice of a linear function may not be
optimal. Hopefully, the use of kernel methods will make it possible to have both the effective
linear training model and the powerful discriminant ability of a nonlinear model.

To illustrate the effectiveness of nonlinear SVM, we performed another experiment. We
generated data with two clusters: one Gaussian cluster with zero mean and one cluster with
ring distribution with zero mean, see Figure 1.5. Linear classifiers cannot handle this sort of
data set. For the experiments, we use a polynomial kernel with p = 2 and q = 0 with the
SVM. The minimum distance classifier can also be kernelized, since it can be expressed in
terms of inner product. For the Bayesian classifier, we made the assumption of two Gaussian
clusters, with identical means but different covariance. This leads to the following decision
rules:

1. Minimum distance to the mean classifier:

⎧⎨
⎩x|2

�

�/2∑
i,k=1

〈xi, xk〉2 − 2

�

�/2∑
j,l=1

〈xj, xl〉2 − 2

�

�∑
m=1

ym〈xm, x〉2 = 0

⎫⎬
⎭ . (1.12)
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Figure 1.5 Toy example: two nonlinearly separable clusters. Black circles: support vectors.
Grey line: decision boundary minimum distance classifier, light grey line: SVM, black line:
Bayesian classifier.

2. The SVM classifier:

{
x|

�∑
i=1

˛iyi〈xi, x〉2 + b = 0

}
. (1.13)

3. The quadratic Bayesian classifier:

{
x|x�

(
�−1

+ −�−1
−

)
x + log

(
det(�+)

det(�−)

)
= 0

}
. (1.14)

The decision functions are plotted in Figure 1.5. The Bayesian classifier is unable to classify
the data correctly. In this situation, the Gaussian assumption is not verified and thus the
classification is not optimal. The SVM classifier fits the ellipsoidal geometry of the data well,
which is not true for the minimum distance classifier. It is important to note that if the SVM
performs better than the Bayesian classifier, it is because the Gaussian assumption does not
hold and the data are linearly separable in the feature space induced by the polynomial kernel.

1.2.4 Use of multiple classifiers

Classifier ensembles, also known as multiple classifier systems, have been used successfully
in recent years and are particularly interesting for multi-source and high-dimensional data
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sets. Several applications in the context of remote sensing and pattern recognition have shown
that the classification accuracy can be increased by combining different independent classifiers
(e.g. Briem et al. 2002; Gislason et al. 2006; Ham et al. 2005; Waske and van der Linden 2008).
These concepts rely on the combination of different classifier methods or the combination of
variants of the same classifier. In the latter approach, a set of independent classifier is generated
by training the base-classifier on modified input data (e.g., a subset of training samples or
input features). The final results are most often determined by a voting scheme, and often
a simple majority vote is used. Because the individual classifiers are using only a fraction
of the input data, each single classifier performs worst in context of classification accuracy
(i.e. also known as weak classifiers). However, the concept is based on the assumption that
independent classifiers produce individual errors that are not produced by the majority of the
other classifiers. Consequently, the errors are eliminated by combining the outputs. Although
classifier ensembles can be generated with different classifier algorithms, e.g., neural networks
(Hansen and Salamon 1990) and SVM (Kim et al. 2003) often tree-like classifiers are used.
Numerous concepts for generating classifier ensembles have been introduced, whereas bagging
and boosting are the main approaches, which are discusssed below.

Boosting, bagging and variants

Boosting is a concept to improve the performance of any classifier. The AdaBoost.M1 approach
widely used the boosting concept in remote sensing (Freund and Schapire 1996). In the be-
ginning of the iterative boosting procedure, all training samples are equally weighted and the
classifier CB is the same base classifier. The weights of the training samples are modified after
each step and the next classifier within the ensemble uses the newly distributed reweighted sam-
ples. Whereas misclassified samples are assigned a stronger weight, the weights of correctly
classified samples go down. Thus the classifier is concentrating on the difficult samples and the
overall accuracy is generally improved. AdaBoost is appropriate for classification problems
that include training samples that are not equally difficult to classify. It tends to exhibit virtu-
ally no overfitting when the data is noiseless. Moreover boosting can reduce both the variance
and the bias of the classification. Nevertheless, in contrast to other ensemble techniques that
can be performed simultaneously (e.g., bagging), boosting is based on a sequentially process.
Consequently, the computation time is relatively long. The sensitivity to noisy training data is
another disadvantage of boosting (Bauer and Kohavi 1999). The AdaBoost.M1 approach can
be described as follows:

Input: A training set T = {(xj, yj)}�j=1, base classifier CB and number of classi-
fiers I.

1. T1 = S and weight(xj) = 1 for j = 1 . . . l (x ∈ S1)

2. FOR i = 1 to I{

3. Ci = CB(Si)

4. calculate error rate �i

5. if �i > 0.5, terminate procedure

6. calculate weight ˇi = �i/(1 − �i)
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7. for each xj ∈ Ti{ if Ci(xj) /= yj then

weight(xj) = weight(xj) · ˇi}.

8. normalize weights that the total sum of weights is 1}.

9. END

10. C∗(x) = arg max
∑

Ci(x)=y
log (1/ˇi)

A new framework on boosting was discussed in Rätsch et al. (2002), introducing a boosting
like one class classifier algorithm. In this study it was shown that the SVM approach can be
theoretically transferred into an equivalent boosting like algorithm and vice versa. Although
the general similarities between the two concepts have already been discussed in different
papers, the authors in Rätsch et al. (2002) have recalled these statements to make it clearer.
The boosting like approach was derived by using equivalence between the boosting and SVM
on the mathematical concepts underlying these algorithms. The authors finally concluded that
the presented concept shows new research prospects for boosting: unsupervised learning.

Bagging is the abbreviation of bootstrap aggregating and was originally introduced by
Breiman (1996). It is based on combining independent classifier outputs, which were gener-
ated by training the base classifier using different training sample sets (also known as boot-
strapped aggregates or bags). Although both bagging and boosting rely on the generation of
various classifiers and their combination by a vote, the two approaches are dissimilar: Bagging
always uses resampling instead of reweighting, thus it does not change the distribution of the
samples and all classes are equally weighted. In general a random and uniform selection is
performed, selecting � samples from a training set of same size �. This process is performed
with replacement, i.e. a training sample can be selected several times in the same sample set
and perhaps another sample is not considered in this particularly bag. Each individual training
set is used to generate a separate classifier, resulting in various independent outputs. The final
classification map is created by combining the individual outputs, and often a simple majority
vote is performed. The approach can be described as follows:

A training set T={(xj, yj)}�j=1, the base classifier CB and number of randomly
generated training sets I.

1. FOR i = 1 to I{

2. Ti = bootstrapped bag from S

3. Ci = C(Ti)}

4. END

5. the class with the maximum number of votes is chosen

If the base classifier is unstable, i.e., a small change in training samples can result in a large
change in classification accuracy, then bagging can improve the classification accuracy sig-
nificantly. On the other hand, the use of a stable base classifier, such as, for example, a
k-NN classifier, results in reduced classification accuracy, because each classifier receives less
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information (Briem et al. 2002). In contrast to the aforementioned modification of the training
patterns by bagging and boosting, other concepts are based on resampling of input features
(Bryll et al. 2003; Ho 1998), also referred to as random feature selection. For each classifier a
subset of features is created. These techniques can outperform other concepts in terms of accu-
racy (Bryll et al. 2003; Ho 1998) and also seems adequate for classifying remote sensing data
(Waske et al. 2006). Breiman (2001) introduced random forests (RF), a tree-based ensemble,
which was applied in several remote sensing studies (Gislason et al. 2006; Ham et al. 2005;
Waske and van der Linden 2008). RF further improves the classification performances and
overcome the shortcomings of the previous approaches of bagging and boosting. It combines
the conventional bootstrap aggregating and a random feature selection method: in training,
the algorithm creates multiple decision trees, each trained on a bootstrapped sample of the
original training data. Moreover the decision rule at each split node is determined using only a
randomly selected feature subset of the input data. A simple majority vote is used to create the
final classification result. By reducing the number of features at each split, the computationally
complexity of the individual DT classifier is simplified, resulting in a computationally lighter
method than bagging and boosting. This enables an RF to handle high-dimensional data sets.
In addition the correlation between the classifiers is decreased, which generally improves the
performance of the ensemble.

Combination of different classifiers

In contrast to the methods above, which are based on the same classifier algorithm, other
approaches combine different classifiers (Benediktsson and Kanellopoulos 1999; Fauvel et al.
2006; Steele 2000; Waske and van der Linden 2008). Consequently the advantages of different
methods can be combined. Perhaps each classifier was developed in a diverse context and
enables a different description of the same classification problem. Furthermore, each method
may have its own region in the feature space where it outperforms other classifiers in terms of
accuracy (Jain et al. 2000).

In many remote sensing studies the different outputs were combined by decision fusion.
Decision fusion can be described as combining information from different data sources, after
each individual data set has been classified previously. It has often been based on the consensus
theory, which employs single probability functions to summarize estimates from various data
sources using consensus rules (Benediktsson and Swain 1992). However, these techniques are
relatively costly and computationally less demanding voting concepts like majority voting and
complete agreement have been proposed (Benediktsson and Kanellopoulos 1999).

1.3 Conclusion

In recent years, machine learning algorithms have been designed to address various applica-
tions in remote sensing. Besides the development in the field of (supervised) classification ma-
chine learning concepts provide a significant contribution to other related fields in the context
of remote sensing, such as feature extraction and the retrieval of surface parameters by regres-
sion models. Nevertheless, most of the machine learning applications deal with supervised
classification and this chapter briefly discussed the use of different algorithms such as SVM,
neural networks and ensemble techniques. All these algorithms provide very promising results
in the context of different data sets. Regarding the recent developments of Earth observation
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platforms with increased spatial resolutions and higher revisit times as well as the availability
of multisensory data sets, future trends will rise from the following subjects: (1) integration of
time-series, which seems particularly interesting over regions that are characterized by typical
temporal variability, e.g., agricultural regions. The research might focus on the handling of the
temporal variability within the image time series on the one hand and the determination of ade-
quate acquisition dates on the other. (2) Spatial high resolution data sets are often integrated into
urban applications. In this context the combination of spectral and spatial features as well as the
extraction of multiple features is particularly interesting. For instance, the spectral reflectance,
which characterizes the physical nature of different surface materials, is complementary to
the spatial information (describing the shape and geometry of the different natural objects,
such as buildings, trees etc.). Thus the development of advanced feature extraction methods
is useful to derive spatial information. Moreover, adequate classifier concepts are needed to
take advantage of these complementary sources. (3) The combination of different data sets
and classifiers, e.g. by decision fusion, will be the important focus for multisensor imagery. In
this context the reliability of each source is a critical issue when generating a fusion strategy,
requiring adequate methods to assess the reliability of different data sources and individual
classifiers. (4) Finally, land cover classifications provide an important input to several environ-
mental monitoring and decision support systems. In the context of operational applications,
user interaction is often minimized in these applications. Consequently, future developments
in will aim towards automatic or semiautomatic land cover classification methods.
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An introduction to kernel
learning algorithms

Peter V. Gehler and Bernhard Schölkopf
Max Planck Institute for Biological Cybernetics

Kernel learning algorithms are currently becoming a standard tool in the area of machine
learning and pattern recognition. In this chapter we review the fundamental theory of kernel
learning. As the basic building block we introduce the kernel function, which provides an
elegant and general way to compare possibly very complex objects. We then review the
concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we
give an overview of the most prominent algorithms, which are support vector classification and
regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning
and structured output prediction we also introduce some more recent advancements in the
field.

2.1 Introduction

Algorithms making use of positive definite kernels have considerably influenced the field of
machine learning, pattern recognition and related fields over the last decade. For example
the prominent Support Vector Machine has been applied with much success to a variety of
tasks and belongs nowadays to the standard toolbox of every practitioner. In addition to their
empirical success kernel methods have a solid theoretical foundation and have also been
studied in the mathematics and statistics communities. In this chapter we will review the
basic mathematical concepts of kernel learning and introduce some prominent algorithms. In
contrast to the majority of work on Support Vector Learning we will avoid using duality theory
but rather use the regularized risk formulation as the underlying basis for the derivation.
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Image processing and in particular remote sensing applications are very challenging
because they confront us with a variety of different problems. To begin with, image data,
and representations thereof, are typically of very high dimension while, on the other hand,
one has access to only very few labelled examples. Algorithms have to account for noise in
the observations in a robust way. In particular the acquisition of hyperspectral image data is
prone to different noise sources such as instrumental and observational noise. Furthermore,
image data may stem from different sources demanding ways of combining information.
Kernel algorithms are suited to tackle such problems. With the design of a kernel function it is
possible to combine different feature entities, different feature dimensionalities and account
for high dimensional data. With the framework of regularized risk minimization, kernel
methods are efficient even with little training data and offer ways to incorporate unlabelled
examples through semi-supervised models. Such algorithms have already proven to be a
valuable tool for image processing applications such as image coding, image de-noising,
image segmentation and image classification (Camps-Valls et al. 2007; Kim et al. 2005). In
particular for classification of hyperspectral images, kernel classifiers have found to yield
state-of-the-art results, as also reported in Part 2 of this book.

The selection of topics for this chapter is by no means comprehensive and aims to obtain a
self-contained exposition of the basic concepts of kernel learning and the most used algorithms.
For a more detailed introduction to the field we refer to the articles by Hofmann et al. (2008),
Shawe-Taylor and Cristianini (2004) and Schölkopf and Smola (2002), who also cover the
statistical background of kernel algorithms.

This chapter is divided into three sections. We start in Section 2.2 with a basic introduction
to the notion of kernels and introduce the reproducing kernel Hilbert space. In Section 2.3
we state the representer theorem, which serves as the foundation of all the algorithms that are
presented in Section 2.4.

2.2 Kernels

2.2.1 Measuring similarity with kernels

Suppose that we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X × Y .

We will call xi the inputs that are taken from the nonempty set X and yi ∈ Y the targets. The
problem of learning is to use this data in order to make statements about previously unseen
elements x ∈ X . For example in binary classification where the training data stems from two
classes with labels Y = {−1,+1} one aims to construct a function f : X → Y that assigns to
each element of X a class label. The function one is interested in should not be arbitrary but
one that generalizes well, that is, loosely speaking, making few errors on unseen data from
the same problem. In the classification example this corresponds to making as few mistakes as
possible when inferring the class labels. In order to enable generalization we need to exploit the
structure of the training examples and in order to impose a structure we will define a similarity
between pairs of data points. The most general setting would be to define such a similarity
between pairs of inputs (x, y) including the targets. For now we will restrict ourselves and
define similarities only between inputs x ∈ X and refer to Section 2.4.5 for a generalization.
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There was no other assumption about X other than it being a set and, in particular, nothing
has been said about inputs being similar to each other. Therefore we will first map the data
into a space where we have a notion of similarity, namely a dot product space H, using the
mapping

� : X → H, x �→ �(x).

The similarity between the elements in H can now be measured using its associated dot
product 〈·, ·〉H. For convenience we introduce the following function that does exactly that

K : X × X → R, (x, x′) �→ K(x, x′),

which we require to satisfy for all x, x′ ∈ X

K(x, x′) = 〈�(x), �(x′)〉H. (2.1)

This function is called a kernel. The mapping � is referred to as its feature map and the space
H as its feature space.

Although this construction seems a bit inconspicuous we will see that it has far reaching
consequences. Sometimes we will drop the subscript specifying the origin of the dot product
in those cases where it should be clear from the context.

2.2.2 Positive definite kernels

The construction of the similarity measure as the dot product in some space H is rather
general. Different measures of similarity can be obtained by simply varying the feature
map �. A particular simple case is when X is itself a dot product space in which case one may
choose � to be the identity. We will now show that the class of kernels that can be written
in the form of (2.1) coincides with the class of positive definite kernels. This yields a very
comfortable situation due to the following observation. Algorithms that operate on the data
only in terms of dot product can be used with any positive definite kernel by simply replac-
ing 〈�(x), �(x′)〉H with kernel evaluations K(x, x′), a technique also known as the kernel
trick (Schölkopf et al. 1998). Another direct consequence is that for a positive definite kernel
one does not need to know the explicit form of the feature map since it is implicitly defined
through the kernel. We will even encounter examples where H is infinite dimensional and thus
the replacement of the dot product is crucial in order to evaluate the dot product at all.

We need some definitions before we can state the equivalence between K(x, x′)
and 〈�(x), �(x′)〉H.

Definition 2.2.1 (Gram matrix) Given a kernelK: X × X → R and inputs x1, . . . , xn ∈
X . We call the n× n matrix K with entries

Kij = K(xi, xj) (2.2)

the Gram matrix or the kernel matrix of K with respect to x1, . . . , xn.
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Definition 2.2.2 (Positive definite matrix) A real symmetric n× n matrix K is called
positive definite if for all c1, . . . , cn ∈ R

n∑
i,j=1

cicjKij ≥ 0. (2.3)

If equality in (2.3) occurs only for c1 = . . . = cn = 0 then the matrix is called strictly positive
definite.

A positive definite kernel is one that always produces a positive definite Gram matrix for
elements in X . More precisely:

Definition 2.2.3 (Positive definite kernel) If for all n ∈ N and for all x1, . . . , xn ∈ X the
Gram matrix Kij = K(xi, xj) is positive definite we call the kernel a positive definite kernel.
If furthermore for all n ∈ N and distinct x1, . . . , xn ∈ X the kernel K gives rise to a strictly
positive definite Gram matrix we will call it a strictly positive definite kernel.

Now we are ready to state one of the most important observations for kernel methods. To
this end we need the concept of a Hilbert space. Recall that a Hilbert space H is a real (or
complex valued) inner product space that is complete by the inner product 〈·, ·〉H. Some simple
examples of Hilbert spaces are Rd and Cd .

Proposition 2.2.4 A function K : X × X → R is a positive definite kernel if and only if
there exists a Hilbert space H and a feature map � : X → H such that for all x, x′ ∈ X we
have K(x, x′) = 〈�(x), �(x′)〉H.

Proof: ‘⇐’ Assume the kernel can be written in the form (2.1). It being positive definite is a
simple consequence of the bilinearity of the dot product 〈·, ·〉H

n∑
i,j=1

cicj〈�(xi), �(xj)〉H =
〈

n∑
i=1

ci�(xi),
n∑
j=1

cj�(xj)

〉
H

=
∥∥∥∥∥
n∑
i=1

ci�(xi)

∥∥∥∥∥
2

H

≥ 0.

‘⇒’ In the next section (2.2.3) we will present how to construct, given a positive definite kernel,
a Hilbert space along with a feature map � with the desired properties. This will conclude the
proof. �

Owing to this equivalence we will sometimes refer to a positive definite kernel simply as a
kernel. Although kernels compute dot products in some space H, they should not be mistaken
to be themselves dot products in the input space. For example they are in general not bilinear.
However they share important properties such as the Cauchy–Schwarz inequality.

Proposition 2.2.5 (Cauchy–Schwarz) If K is a positive definite kernel, and x1, x2 ∈ X ,
then

K(x1, x2)2 ≤ K(x1, x1)K(x2, x2).
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Proof: Since K is positive definite, so is the 2 × 2 Gram matrix Kij = K(xi, xj). Therefore
the eigenvalues of K are non-negative and so is its determinant. Writing out the determinant
completes the proof

0 ≤ det(K) = K(x1, x1)K(x2, x2) −K(x1, x2)2.

�

2.2.3 Constructing the reproducing kernel Hilbert space

Using the positive definite kernels as building blocks we will now go one step further and
consider functions that can be expressed as linear combinations of kernels. This leads us to
the concept of a reproducing kernel Hilbert space (RKHS) . In the following we will present
a construction scheme for a fixed kernelK, which will also conclude the proof of Proposition
2.2.4. The main idea is to construct a Hilbert space whose elements are functions. For a given
kernel K we define the following set

F =
{
f (·) =

n∑
i=1

˛iK(·, xi); n ∈ N, ˛i ∈ R, xi ∈ X
}

⊆ RX ,

where the elementK(·, x) : X → R denotes a function. ObviouslyK(·, x) itself is an element
in F . It is easy to see that this set can be turned into a vector space if we endow it with the
two operations addition (f + g)(x) = f (x) + g(x) and multiplication by a scalar (�f )(x) =
�f (x), � ∈ R. Now we define an inner product between two elements of this space

f (·) =
n∑
i=1

˛iK(·, xi) and g(·) =
n′∑
j=1

ˇjK(·, x′
j)

with n, n′ ∈ N, ˛i, ˇj ∈ R, xi, x′
j ∈ X , simply as

〈f, g〉F :=
n∑
i=1

n′∑
j=1

˛iˇjK(xi, x′
j).

This is a well defined construction and does not depend on the choice of the expansion
coefficients of f or g. To see this note that we can also write

n′∑
j=1

ˇjf (x′
j) = 〈f, g〉F =

n∑
i=1

˛ig(xi),

where the left term does not depend on the expansion of f and the right term does not depend
on the expansion of g. This also shows that 〈·, ·〉F is bilinear. Furthermore it is symmetric
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and positive definite, which follows directly from the positive definiteness of the kernel K,
since

〈f, f 〉F =
n∑

i,j=1

˛i˛jK(xi, xj) ≥ 0

implies that for any functions f1, . . . , fp ∈ F and any coefficients c1, . . . , cp ∈ R we have

p∑
i,j=1

cicj〈fi, fj〉F =
〈

p∑
i=1

cifi,

p∑
j=1

cjfj

〉
F

≥ 0.

From the last equation we see that 〈·, ·〉F is a positive definite kernel defined on a vector space
of functions.

If we choose g(·) = K(·, x) it follows directly from the definition of the inner product that

〈f,K(·, x)〉F =
n∑
i=1

˛iK(xi, x) = f (x), (2.4)

and in particular

〈K(·, x),K(·, x′)〉F = K(x, x′).

This property is known as the reproducing property of the kernel. A function f can thus be
represented as a linear function defined by an inner product in the vector space F .

We still need to show definiteness of the inner product. Applying (2.4) and the Cauchy–
Schwarz inequality we obtain

|f (x)|2 = |〈K(·, x), f 〉F |2 ≤ K(x, x) · 〈f, f 〉F ,

which proves that 〈f, f 〉F = 0 ⇔ f = 0. The space we constructed can be completed by
adding all limit points of sequences that are convergent in the norm ‖f‖F = √〈f, f 〉, which
yields the Hilbert space H, see e.g. Aronszajn (1950) for details.

Owing to the property (2.4) this space is called a reproducing kernel Hilbert space (RKHS)
forK. The RKHS uniquely determinesK and vice versa. This is the statement of the following
theorem.

Theorem 2.2.6 (Moore–Aronszajn, see Aronszajn (1950)) To every positive definite
kernelK there exists a unique reproducing kernel Hilbert space H whose kernel isK and vice
versa.

Proof: It remains to show uniqueness. Let H′ be another Hilbert space for which K is the
reproducing kernel. Then for all x, x′ ∈ H

〈K(·, x),K(·, x′)〉H = K(x, x′) = 〈K(·, x),K(·, x′)〉H′ .
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Owing to the linearity of the dot product and the uniqueness of the completion it must hold
H = H′. Now assume K,K′ ∈ H,K /= K′ are two different reproducing kernels of H. Then
there exists a x ∈ X for which

0 < ‖K(·, x) −K′(·, x)‖2
H = 〈

K(·, x) −K′(·, x),K(·, x) −K′(·, x)
〉
H

= 〈K(·, x),K(·, x) −K′(·, x)〉H − 〈K′(·, x),K(·, x) −K′(·, x)〉H = 0,

which is a contradiction. �

We have constructed a Hilbert space that can act as the feature space for our kernel. The
corresponding feature map for this space is the so-called Aronszajn map

� : X → R
X , x �→ K(·, x).

For this � it is easy to see that the kernel K is indeed of the form (2.1). We want to point out
that although there exists a unique RKHS to each kernel K, it might well be that the kernel
computes the inner product of different spaces as well. If the two feature maps �1, �2 map
into the feature spaces H1, resp. H2 then it might be the case that

K(x, x′) = 〈�1(x), �1(x′)〉H1 = 〈�2(x), �2(x′)〉H2 ,

for all x, x′ ∈ X , but that does not necessarily imply that �1 = �2. For our purposes however
we can consider the two spaces identical since we are only interested in the kernel evaluation
as the dot product and this remains identical.

We will see examples of kernels for which the corresponding RKHS is infinite dimensional.
To prevent complications we generally assume that the RKHS are separable, i.e. there exists a
countable complete orthonormal system. For this special case we have the following theorem,
which states that there in fact is only one such space.

Theorem 2.2.7 All separable infinite dimensional Hilbert spaces are isometrically
isomorphic.

2.2.4 Operations in RKHS

We will turn our attention to some basic operations in the reproducing kernel Hilbert space and
show how they can be computed in terms of kernel function evaluations. Although the space
H can be very high dimensional or even infinite dimensional, in some cases basic operations
can still be computed. Essentially this is the case whenever we can express its elements in
terms of kernel evaluations.

Translation

A translation in feature space can be written as the modified feature map �̃(x) = �(x) + �

with � ∈ H. We expand the dot product for 〈�̃(x), �̃(x′)〉H to write

〈�(x) + �, �(x′) + �〉 = 〈�(x), �(x′)〉 + 〈�(x), �〉 + 〈�, �(x′)〉 + 〈�,�〉.
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In general only the first term can be evaluated via the kernel function. But if we restrict �
to lie in the span of the functions �(x1), . . . , �(xn) ∈ H we can calculate the translated dot
product

〈�̃(x), �̃(x′)〉 = K(x, x′) +
n∑
i=1

˛iK(x, xi) +
n∑
i=1

˛iK(x′, xi) +
n∑

i,j=1

˛i˛jK(xi, xj). (2.5)

Centring

The translation operations allows us to centre data x1, . . . , xn ∈ X in the feature space.
The mean of the data is �� = 1

n

∑n
i=1 �(xi) and thus fulfills the requirements for the

translation element �. Applying (2.5) with � = −�� thus yields a feature map for which
0 = 1

n

∑n
i=1 �̃(xi).

Computing distances

With the kernel corresponding to a dot product in a Hilbert Space H and thus inducing a norm
it is natural to ask if one can also compute the distances of the images of elements in X . Such
a distance can be evaluated entirely in terms of kernel evaluations as is evident from

d(x1, x2) = ‖�(x1) − �(x2)‖H =
√
K(x1, x1) +K(x2, x2) − 2K(x1, x2)

for x1, x2 ∈ X and � being the feature map for K. This is a very elegant way to measure the
similarity between arbitrary objects, for example between two graphs or two sentences.

Subspace projections

For two points �,� in the RKHS the projection of � onto the subspace spanned by � is

�′ = 〈�,�〉H
‖�‖2

H
�.

We immediately see that if we have a kernel expansion of the points�,� we can compute the
projection �′ and express it also in terms of kernel evaluations.

2.2.5 Kernel construction

The following proposition states some operations that preserve the positive definiteness of
kernels. These can be used to create new, possibly complicated, kernels from existing ones.

Proposition 2.2.8 Let K1,K2, . . . be arbitrary positive definite kernels on X × X , where
X is a nonempty set. Then

(i) ˛1K1 + ˛2K2 is positive definite for ˛1, ˛2 ≥ 0.

(ii) If K(x, x′) := limn→∞Kn(x, x′) exists for all x, x′, then K is positive definite.

(iii) The pointwise product K1K2 is positive definite.
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(iv) Assume for i = 1, 2,Ki is a positive definite kernel onXi × Xi, whereXi is nonempty.
The tensor productK1 ⊗K2 and the direct sumK1 ⊕K2 are positive definite kernels
on (X1 × X2) × (X1 × X2).

(v) The function K(x, x′) := f (x)f (x′) is a positive definite kernel for any function
f : X → R.

Proof: For proofs see Berg et al. (1984). �

The first two statements of the last proposition state that the set of positive definite kernels is
a closed convex cone. Loosely speaking the operations of (i)–(iv) are the only simple operations
that preserve positive definiteness. Without stating the result we mention that it is possible to
fully characterize the class of functions that preserve positive definiteness (FitzGerald et al.
1995; Hofmann et al. 2008).

2.2.6 Examples of kernels

With the closure properties of the last result we finally turn our view to some concrete examples
of kernel functions. We concentrate on the most prominent ones and also introduce two kernels
that have been used for several image processing tasks. For a more general overview including
examples for other data structures such as graphs, trees, strings, etc. we refer to Bakir et al.
(2007), Hofmann et al. (2008), Shawe-Taylor and Cristianini (2004) and Schölkopf and
Smola (2002). We will first present three simple kernels that which operate on real vector
spaces. The later kernels are more suited for the task of image processing, that is whenever
the elements that need to be compared are themselves images.

Linear kernel

The most simple kernel is arguably the ordinary dot product in Rd . Functions that are build
upon this kernel are of the form

f (x) =
n∑
i=1

˛i〈x, xi〉 = 〈x,
n∑
i=1

˛ixi〉 = 〈x,w〉, (2.6)

where we defined w = ∑n
i=1 ˛ixi. Thus the RKHS of a linear kernel consists of all hyperplanes

in Rd .

Polynomial kernel

The homogeneous polynomial kernel K(x, x′) = 〈x, x′〉p is positive definite for all p ∈ N
and x, x′ ∈ Rd as a direct consequence of Proposition 2.2.8(iii). This again is an example
where the input space X is itself a dot-product space. One can write down the corresponding
feature space; it is of finite dimension and consists of all monomials of degree p in the input
coordinates. Another prominent polynomial kernel is the inhomogeneous polynomial kernel
that computes the inner product of all monomials up to degree p: K(x, x′) = (〈x, x′〉 + c

)p
.



34 INTRODUCTION

Gaussian kernel

From the Taylor series expansion of the exponential function ez = ∑∞
i=0

1
i!z
i and Proposition

2.2.8(ii) we see that

K(x, x′) = e�〈x,x
′〉

is a positive definite kernel for all x, x′ ∈ Rd, � ∈ R. It follows immediately that the Gaussian
function

e−�‖x−x′‖2 = e−�〈x,x〉e2�〈x,x′〉e−�〈x
′,x′〉 (2.7)

is a valid positive definite kernel. Furthermore we observe from the Taylor series expansion
that it is a polynomial kernel with infinite degree. The corresponding Hilbert space is infinite
dimensional, in fact it corresponds to a mapping into C∞ the space of smooth functions.

Set kernels

So far we have presented kernels for rather simple input spaces only but the power of kernel
methods also stems from the fact that we can measure similarity between possibly complex
objects. Assume an input space to be the power set of some other set, e.g. X = 2K for some
finite dictionary K. A similarity on this space could for example be defined by just counting
the number of equal elements in the sets. The corresponding kernel for X,X′ ∈ X reads

K(X,X′) =
∑
x∈X

∑
x′∈X

ıx,x′,

where we used upper case letters for the elements of X to make explicit that those elements
are in fact sets. This kernel is widely used in text classification and is also referred to as the
sparse vector kernel, see for example Joachims (1998). Consider a text document as being
represented as an unordered collection of words, the so-called bag-of-words representation.
This kernel is measuring the similarity between two texts by just counting the number of
common words.

A more general kernel can be defined on the same input set with the use of a base kernel
K0. It sums up the similarities between all elements in the two sets

K(X,X′) =
∑
x∈X

∑
x′∈X

K0(x, x′).

In Haussler (1999) it was shown that this is a kernel if and only if K0 itself is a kernel.

Histogram kernels

Suppose an image is represented as a collection of image features fi, e.g. small image patches
or some detected keypoints. Two images that are to be compared might have a different number
of such features. Quantization into a histogram is a convenient way to transform such data
into a feature vector of fixed length.
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In order to obtain a histogram one needs a codebook of finite size K; this is usually
obtained by clustering in the feature space, e.g. k-means. Using this codebook the features
are quantized to yield a histogram h ∈ NK. Each histogram bin hj ∈ N stores the number of
features fi which were quantized to the jth codebook entry. In the context of image data the
elements of such a codebook are also referred to as ‘visual words’ and the representation itself
as a ‘bag-of-visual-words’. Similar to the bag-of-words representation for text data, all spatial
structure of the features is disregarded.

This pipeline of transforming features into histograms is of course very general and appli-
cable to many tasks. Normalized histograms hi/

∑d
j=1 hj can also be thought of as probability

distributions and the following two histogram kernels are in fact special cases of the larger class
of kernels between probability distributions (Hein and Bousquet 2005). For two histograms
h, h′ we define the histogram intersection kernel as

K(h, h′) =
d∑
i=1

min
(
hi, h′

i

)
.

It can be understood as computing the overlap between the two histograms. Another prominent
choice is the the �2 kernel for histograms

K(h, h′) = exp

(
−�

d∑
i=1

(
hi − h′

i

)2

hi + h′
i

)
,

where we used the convention 0/0:= 0.

Spatial kernels

A spatial kernel for image processing is an instructive example of how special structure in
the data can be incorporated into the kernel function. The idea is very simple and dates back
to the local receptive fields of neural networks. A kernel value is computed using not all
features of an image but only those that fall into some subwindow, e.g. only those of the upper
half of the image. This kernel was first used in Schölkopf (1997) for an application to digit
classification. Recently it gained some attention in the field of visual object classification. The
spatial pyramid match kernel was proposed in Lazebnik et al. (2006) as the spatial variant of
the so called pyramid match kernel (Grauman and Darrell 2005).

Different spatial layouts are conceivable but we will only present the pyramidal represen-
tation that turned out to give good performance for visual object classification. The image is
subdivided into a grid of 1 × 1, 2 × 2, . . . equally spaced subwindows. Each such subdivision
is referred to as a level of the pyramid. Starting with level 0 as the entire image, the lth level
has 4l non-overlapping subwindows. For each level l an histogram hl is computed by concate-
nating the histograms of all subwindows within the level. Two images x, x′ are compared by
combining the similarity of the individual levels

K(x, x′) =
L−1∑
l=0

dlK(hl, h′
l),
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where dl ∈ R+ is an extra weighting parameter for each level. In both Grauman and Darrell
(2005) and Lazebnik et al. (2006) it is proposed to set dl = 2L−l in order to give more weight
to a finer griding of the image, but in general these parameters can also be optimized over
(cf. Section 2.4.4). There are several choices for the kernel K, using the �2 kernel described
above good results on visual object classification datasets have been achieved (Bosch et al.
2007).

2.3 The representer theorem

In the last chapter we saw that a kernel centred at a point x ∈ X is an element in an RKHS H
associated with the kernel K. Other functions f ∈ H can be represented as linear combina-
tions of kernel expansions but have a possibly infinite number of expansion coefficients. The
representer theorem (Cox and O’Sullivan 1990; Kimeldorf and Wahba 1971) states that the
solutions of a large class of optimization problems are expressible by only a finite number of
kernel functions. We present a slightly more general version of the theorem from Schölkopf
et al. (2001).

Theorem 2.3.1 (Representer theorem) Let 	 : [0,∞) → R be a strictly monotonic
increasing function and V :

(
X × R2

)n → R ∪ {∞} be an arbitrary loss function. Further-
more let H be a RKHS with reproducing kernel K. Each minimizer f ∈ H of the regularized
functional

V ((x1, y1, f (x1)), . . . , (xn, yn, f (xn))) +	
(
‖f‖2

H

)
(2.8)

admits a representation of the form

f (x) =
n∑
i=1

˛iK(x, xi), (2.9)

with ˛i ∈ R.

Proof: We decompose an element f ∈ H into the part f ‖ that is inside the span of kernel
functions K(·, x1), . . . , K(·, xn) and its orthogonal complement f⊥ and show that the latter
is always zero. We write

f (x) = f ‖(x) + f⊥(x) =
n∑
i=1

˛iK(x, xi) + f⊥(x)

with ˛i ∈ R and 〈f⊥,K(·, xi)〉H = 0, ∀i ∈ {1, . . . , n}. Using the reproducing property of H
we can write

f (x) = 〈f,K(·, x)〉H =
n∑
i=1

˛iK(x, xi) + 〈f⊥,K(·, x)〉H =
n∑
i=1

˛iK(x, xi).
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We thus see that the term f⊥ is irrelevant for the value of c in (2.8). Making use of the fact
that 	 is monotonically decreasing we get the following inequality

	
(
‖f‖2

H

)
= 	

⎛
⎝

∥∥∥∥∥
n∑
i=1

˛iK(·, xi)

∥∥∥∥∥
2

H

+ ‖f⊥‖2
H

⎞
⎠ ≥ 	

⎛
⎝

∥∥∥∥∥
n∑
i=1

˛iK(·, xi)

∥∥∥∥∥
2

H

⎞
⎠ .

Thus for any fixed ˛i ∈ R the function 	 in (2.8) is minimized for f⊥ = 0. �

This theorem has far reaching consequences. It tells us that whenever we can formulate an
objective function in the form of (2.8) we can rest assured that the solution can be expressed
in terms of finitely many kernel evaluations. Even if the function space is infinite dimensional,
we only need to search for the n expansion coefficients.

Monotonicity of 	 does not ensure a unique minimizer of (2.8), we have to require con-
vexity to prevent the possibility of several solutions and indeed many algorithms make use of
convex loss functions. The strictness of the monotonicity of	 can be discarded but then there
might be minimizers of (2.8) that do not admit the form (2.9); it still follows that there is at
least one other solution that is as good and that does admit the expansion form.

The minimizer of the regularized risk formulation should on the one hand minimize the
training error, as measured by the cost term c and, on the other hand, have a low norm. Since
the function spaces are usually extremely rich, for most problems there will be functions that
incur no cost at all, for example by just memorizing the examples. However such solutions
will be arbitrarily complex and therefore will not generalize well. The regularizer 	 can
be understood as resolving this issue. Loosely speaking it can be seen as favouring smooth
functions, where smoothness measured by the RKHS norm ‖ · ‖H (see Schölkopf and Smola
(2002) for a detailed review of its regularization properties).

2.4 Learning with kernels

With the ingredients of the last two sections we can now introduce some kernel based
algorithms. Given a training set of observations (x1, y1), . . . , (xn, yn) ∈ X × Y we aim to find
a function f : X → Y that minimizes the empirical risk on this dataset. For binary classifica-
tion problems where Y = {−1,+1}, this can be posed as the search of a function f : X → R

that maximizes the agreement between sgnf (x) and the label of the pattern y(x). The space of
functions we are searching over is implicitly defined by the kernel that is used as a similarity
measure between the data points. From the representer theorem we know which parame-
ters we have to search over, namely the coefficients of the kernel expansion. Note that one
can think of the functions as being linear functions in a high, or even infinite dimensional,
space. The functions can thus also be written as f (x) = 〈w, �(x)〉H or an affine function
f (x) = 〈w, �(x)〉H + b, with w ∈ H and b ∈ R.

Minimizing the empirical risk with respect to the parameters (w, b) confronts us with
several problems. To begin with, the minimization is a NP hard problem already shown
by Minsky and Papert (1969). Even approximately minimizing the empirical risk is NP
hard not only for linear functions but also for other simple geometrical objects such as
spheres (Ben-David et al. 2000). Furthermore the true target function, the indicator function
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ıf (x) /= y is discontinuous and small changes in f may lead to large changes in both empirical
and expected risk.

In order to overcome the difficulties arising from the exact minimization of the empirical
risk we will use upper bounds and minimize those instead. This is not only computationally
effective but has also the benefit of yielding consistent estimators (Hofmann et al. 2008).

2.4.1 Support vector classification

Consider binary classification with input data {(x1, yn), . . . , (xn, yn)} ⊂ X × {−1,+1}. We
seek a function assigning to each point x ∈ X its label sign. The search for f : X → R over
the function space H is implemented as the following regularized risk functional (Cortes and
Vapnik 1995; Vapnik 1995)

min
f∈H

1

2
‖f‖2

H + C

n∑
i=1

V (yi, f (xi)). (2.10)

Typical choices for the loss function are V (y, t) = max{0, 1 − yt}p with p = 1, 2. For
p = 1 the loss is usually referred to as the Hinge loss, for p = 2 as the quadratic loss. Both
choices are upper bounds on the indicator function ıy /=f (x) and both functions are convex in
the second argument. It is due to this convexity that the minimizer of (2.10) is unique. We
have also introduced the regularization parameter C ∈ R ∪ ∞ to the optimization problem
to control the trade-off between the smoothness of the function measured by ‖f‖H and the
ability of the function to explain the data correctly. We may as well set C = ∞ in which case
we enforce the solution f to incur no loss at all (Vapnik and Lerner 1963). For this choice
it might be possible that the problem becomes infeasible because the function class H may
not contain a function perfectly separating the data. The regularization constant C is usually
selected using a cross-validation scheme as it is done for selecting the appropriate kernel for
the problem at hand.

The representer theorem states that the solution of (2.10) can be written in terms of kernel
expansions around the training points. This fact can also be seen from taking the derivative of
(2.10) with respect to f , assuming a differentiable loss. At the optimal solution f ∗ the gradient
vanishes

f ∗ + C

n∑
i=1

∂V

∂t
(yi, f

∗(xi))K(·, xi) = 0,

where we made use of the reproducing property of the kernel and denote by ∂V/∂t the partial
derivative of V w.r.t. its second argument. This allows us to reformulate the optimization
problem and obtain the equivalent problem to (2.10)

min
˛∈Rn

n∑
i,j=1

˛i˛jK(xi, xj) + C

n∑
i=1

V

⎛
⎝yi, n∑

j=1

˛jK(xi, xj)

⎞
⎠ . (2.11)

The SVM formulation (2.10) is a quadratic program and can thus be solved efficiently (Boyd
and Vandenberghe 2004). Several algorithmic strategies have been proposed for this particular
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problem, see for example the SMO algorithm (Platt 1999). But of course for a differentiable
loss it is conceptually easier to resort to simple gradient descent techniques. A detailed analysis
of a Newton optimization scheme can be found in Chapelle (2007).

2.4.2 Support vector regression

As the next example of a kernel based learning algorithm we consider the task of regression
with target space Y ⊆ R. Again we use a regularized risk functional and write

min
f∈H

1

2
‖f‖2

H + C

n∑
i=1

V (yi, f (xi)).

Several loss functions can be used, for example the �-insensitive loss V�(y, t) = max{0, |y − t|
− �} as proposed in Drucker et al. (1997), Vapnik (1995) and Vapnik et al. (1997) or the
simple quadratic loss V (y, t) = (y − t)2 yielding penalized least squares regression (Hoerl
and Kennard 1970; Morozov 1984; Tikhonov 1963; Wahba 1990). The representer theorem
always ensures a finite representation of the optimal function. Plugging this into the problem
and using the quadratic loss we obtain the following closed form solution for the optimal
parameters ˛∗, where we assume C > 0

˛∗ = arg min
˛∈Rn

1

2
˛�K˛+ C‖K˛− y‖2

=
(

K + 1

2C
I
)−1

y,

with y = (y1, . . . , yn)�. Due to the structure of the solution this is also referred to as kernel
ridge regression, the ‘ridge’ 1/2C added to the kernel matrix is a consequence of the regularizer.
Using the shorthand Kx(·) = (K(·, x1), . . . , K(·, xn))� the prediction function becomes

f (x) = Kx(x)�
(

K + 1

2C
I
)−1

y.

2.4.3 Gaussian processes

Another way of looking at the regression problem is from the viewpoint of Gaussian Processes
(GPs). Gaussian processes provide a probabilistic approach for kernel learning and are not
limited to regression. For a more general overview of the GP framework we refer to the work
of MacKay (1998) and Rasmussen and Williams (2006).

A GP defines a distribution over functions f : X → R and is fully described by a mean
m : X → R and covariance function K : X × X → R

m(x) = E[f (x)], K(x, x′) = E[(f (x) −m(x))(f (x′) −m(x′))].

For notational simplicity we will set m to be the zero function. Given a finite collection of
data x1, . . . , xn we first compute its covariance matrix Kxx in the same way that we did for
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the Gram matrix (2.2). The covariance matrix defines a distribution over the vector of output
values fx = (f (x1), . . . , f (xn))�

fx ∼ N (0,Kxx), (2.12)

which is a multivariate Gaussian distribution. Therefore the specification of the covariance
function implies the form of the distribution over the functions. The role of the covariance for
GPs is the same as the role of kernels we used so far, both specify the notion of similarity.
This is also the reason why we choose K to denote both quantities.

Let us consider again the task of real-valued regression. Given training data pairs of inputs
(x1, y1), . . . , (xn, yn) the goal is to predict the output value y∗ for a new test data point x∗.
We will assume that the output values we have access to are only noisy observations of
the true underlying function y = f (x) + �. Furthermore we assume the noise to be additive
independently identically Gaussian distributed with zero mean and variance �. For notational
convenience we define the following vectors, using bold symbols for vectorial variables:
the stacked output values y = (y1, . . . , yn)�, the covariance terms of the test point K∗ =
(K(x∗, x1), . . . , K(x∗, xn))� as well as K∗∗ = K(x∗, x∗). From the model assumption (2.12)
we know that the output values are distributed according to

[
y

f (x∗)

]
∼ N

(
0,

(
(K + �2I) K∗

K∗� K∗∗

))
.

The predictive equations for the Gaussian process we are interested in are then obtained by
computing the conditional distribution

f (x∗)|y, {x1, . . . , xn}, x∗ ∼ N
(

K�
∗ (K + �2I)−1y,K∗∗ − K�

∗ (K + �2I)−1K∗
)
.

Comparing this with (2.4.2) we observe that the GP mean predictor is exactly the same solution
that we have obtained for Kernel Ridge Regression. The noise variance term �2 appeared as a
regularization constant in the kernel ridge regression case. Also note that we have witnessed yet
another manifestation of the representer theorem, which we not used explicitly. The difference
from Kernel Ridge Regression is that not only a mean prediction is defined but we obtained a
full distribution over the output values including an uncertainty of the prediction.

2.4.4 Multiple kernel learning

A new development in the field of kernel learning that goes in the direction of automatically
selecting an appropriate kernel for a given task is the framework of Multiple Kernel Learning
(Bach et al. 2004; Lanckriet et al. 2004; Rakotomamonjy et al. 2008; Sonnenburg et al. 2006).
Instead of using only one kernel K, or equivalently only one feature map � one uses a set
of M different kernels K1, . . . , KM and optimizes for a linear combination of those. This
corresponds to the search of a function f (x) = ∑M

m=1 fm(x) where each function fm ∈ Hm

is an element of the RKHS Hm of the kernelKm. The associated optimization problem can be
formulated as a joint convex problem in all parameters. We use the convention that 0/0:= 0
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and x/0 = ∞, x /= 0 to write the MKL formulation as

min
fm∈Hm,dm

1

2

M∑
m=1

1

dm
‖fm‖2

Hm
+ C

n∑
i=1

V

(
yi,

M∑
m=1

fm(xi)

)
(2.13)

subject to
M∑
m=1

dm = 1, dm ≥ 0 m = 1, . . . ,M.

Skipping some details we directly mention that the final kernel will be of the form

K(x, x′) =
M∑
m=1

dmKm(x, x′)

with d1, . . . , dM ∈ [0, 1] and thus the final function can be written as

f (x) =
n∑
i=1

˛i

M∑
m=1

dmKm(x, xi).

The same formulation can also be applied with an infinite number of kernelsK1,K2, . . ., e.g.
all Gaussian kernels with positive definite covariance matrix. The optimum is still expressible,
that is there is only a finite number of nonzero weights dm > 0 (Argyriou et al. 2006; Gehler
and Nowozin 2008; Özög̃ür-Akyüz and Weber 2008).

Comparing this with the SVM optimization problem (2.11) we see that the only difference
is the new parameters dm, which are also minimized over and that the final kernel is now
a convex combination of kernels. The weight dm controls the influence of the norm of the
function fm on the overall objective value. Whenever dm = 0 the corresponding function fm
must be the zero function in order to yield a finite objective value. The simplex constraint
of the dm ensures that the resulting kernel is always positive definite. One could in principle
allow for negative weights, in which case it is not assured that the resulting kernel is positive
definite. This would have to be enforced as a constraint, turning the problem into a semi-
definite programming problem (SDP) for which the best known algorithm scalesO(n6) for an
n× n constraint matrix (Lanckriet et al. 2004).

With the new parameters d1, . . . , dM one has the additional freedom to search also over
a suitable feature space from which the final function is taken. Therefore the optimization
problem (2.13) is over both the feature space and a function therein. Disregarding some details,
for a fixed choice of the parameters dm the associated feature space is the vector product of
all participating feature spaces H1, . . . ,HM for which dm > 0. A detailed derivation can be
found in Rakotomamonjy et al. (2008).

Several different algorithms have been proposed to solve this problem, e.g.
Rakotomamonjy et al. (2007) and Sonnenburg et al. (2006). For example, Chapelle et al. (2002)
and Rakotomamonjy et al. (2007) derive a simple gradient descent algorithm that alternates
between updating the parameters dm and the SVM parameters. For fixed weights dm one can
compute the joint Gram matrix and optimize over the SVM parameter using any standard
SVM algorithm.
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With MKL one can optimize over a linear combination of kernels instead of selecting
between them via cross-validation. One has to bear in mind that the latter might be a better
estimator for the empirical risk, which is what we are ultimately interested in. In visual object
classification MKL has been used with much success to combine different image representa-
tions (Bosch et al. 2007). For example, one kernel could be defined solely on colour information
while another is defined on shape or appearance information. For the spatial kernel one can
select between different spatial layouts associating to each subwindow a different kernel and
learning the combination via MKL. Sonnenburg et al. (2006) have used the feature selec-
tion correspondence of MKL to build interpretable SVMs for splice data from computational
biology.

2.4.5 Structured prediction using kernels

So far we have considered only very simple target spaces Y , for example Y = {−1,+1} and
Y = R. This however is a very limited scenario as in many tasks the objects of interest are
more complex than being only binary class membership. For example ranking a set of web
pages according to their relevance for a given query is a task that is not easily expressible in
the previously used framework. Making predictions about graph layouts, entire image patches
or multi-label problems are a few more of examples that call for a more general framework.

We want to apply kernel methods to all these kinds of problems and the following simple
modification of the kernel function allows us to reuse the results we have obtained so far
(Altun et al. 2004; Cai and Hofmann 2004; Tsochantaridis et al. 2005). We extend the class
of functions to be of the form

f : X × Y → R, (x, y) �→ f (x, y),

i.e. they depend on elements of both input and target space. Since the predictions we are
interested in live in the space Y we will use the following prediction rule

y∗(x) = arg max
y∈Y

f (x, y). (2.14)

Note that besides this new prediction function little has changed from the setup we have
developed so far. We just extended the input space and restricted the output space to always
be R. The feature map is of the form � : X × Y → H, the corresponding kernel is the dot
product in the RKHS H

K(x, y, x′, y′) = 〈�(x, y), �(x′, y′)〉H

and the representer theorem ensures us that the solutions of regularized risk functionals can
be expressed in terms of expansions around training data points. The dependency of f on the
target space opens up the possibility of taking into account its structure.

The loss function can also encode the structure in the target set. In binary classification
there is no such structure beyond two elements being equal (belonging to the same class) or
different (belonging to separate classes). Now consider the task of retrieving a ranked list of
websites given some text query. Missing the most relevant website should incur a higher cost
than missing the tenth most relevant website. This is encoded using a loss function of the
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type 
 : Y × Y → R+. We will think of 
(y, y′) as the cost of predicting y′ where it should
have been y and therefore set 
(y, y) = 0 ∀y ∈ Y . If the maximum of (2.14) is taken at the
correct labelling no cost is produced. Predicting a different y incurs a cost which, however,
depends on the similarity of the true and the predicted output. This gives rise to the following
regularized risk formulation (Tsochantaridis et al. 2005)

min
f∈H

1

2
‖f‖2

H + C

n∑
i=1

max

{
0,max

y∈Y
(
(yi, y) − (f (xi, yi) − f (xi, y)))

}
.

This is a convex problem and can be efficiently solved whenever the inner maximization, that
is (2.14), can be solved efficiently. Usually this is not the case and one can only hope for
approximate solutions. A standard way of solving the problem is by dualizing the problem
and using column-generation techniques (Bennett et al. 2000; Hettich and Kortanek 1993).

For the regularized risk formulation above the optimal function is of the form

f (·, ·) =
n∑
i=1

∑
y∈Y

˛iyK((·, ·), (xi, y)).

We will outline only a few applications of this model and refer to (Bakir et al. 2007) for a
more detailed overview.

• The classical binary setup is recovered by simply setting �(x, y) = y�(x) and

(y, y′) = ıy=y′ . The inner maximum reduces to 1 − 2yi

∑n
j=1 ˛jyjK(xi, xj), which

(ignoring some offsets) yields exactly the SVM optimization problem (2.10) with the
hinge loss.

• Multiclass classification (Allwein et al. 2000; Collins 2002; Crammer and Singer 2000;
Rätsch et al. 2003) can be cast in this framework. Let N denote the number of classes.
Then y ∈ {1, . . . , N} and the loss function is a multicategory version of the 0 − 1
loss, namely 
(y, y′) = 1 − ıy,y′ . Corresponding kernels are typically chosen to be
ıy,y′K(x, x′).

• In the case of multilabel estimation one is interested in predicting a set of labels y ∈
2{1,...,n} for each input point. This is described in Elisseeff and Weston (2001), where
a ranking scheme is devised such that f (x, i) > f (x, j) if the label i ∈ y but j /∈ y.

2.4.6 Kernel principal component analysis

Principal Component Analysis (PCA) is a widely used algorithm with many applications
such as feature extraction, dimensionality reduction and data visualization. Its benefits are
that it is easy to compute and easy to interpret. Given some data x1, . . . , xn the PCA is an
orthogonal projection of these points onto their principal axis, which are those which minimize
the average projection cost measured as the squared distance between the points and their
projections. The PCA algorithm boils down to an eigenvalue decomposition of the empirical
covariance matrix of the dataCemp = Eemp[(x − Eemp(x))(x − Eemp(x))�], i.e. solving the system
of equations Cempvk = �kvk . For d-dimensional data xi this problem can be solved in O(d3)
time.
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In Schölkopf et al. (1998) this problem is posed in the feature space by simply replacing
x with �(x). Since the empirical covariance lies in the span of {�(x1), . . . , �(xn)} we can
compute it in terms of kernel evaluations at the data points. For notational convenience we
assume that we already centred the data in the feature space such that

∑n
i=1 �(xi) = 0. Then

we can write out the eigenvalue problem as

Cempvk = 1

n

n∑
i=1

�(xi)�(xi)�vk = �kvk (2.15)

and thus see that the eigenvectors are of the form vk = ∑n
i=1 ˛ki�(xi). Resubstituting this into

(2.15) we find that the coefficients ˛ are easily computed by the Eigenvalue problem

K˛ = �˛

with K being the kernel matrix of the data. Having solved this eigenvalue problem we
can compute the projection of any point x onto the kth principal component of the data
as 〈vk, �(x)〉 = ∑n

i=1 ˛kiK(x, xi).
Kernel PCA can be used as a preprocessing step for algorithms which are not ‘kernelizable’,

that is algorithms not based entirely on dot products.

2.4.7 Applications of support vector algorithms

Probably much of the success of kernel based algorithms and the SVM and SVR formulation
in particular is due to the empirical success on diverse practical problems. Just to name a
few we mention that SVMs were used to achieve the best classification scores on the MNIST
benchmark dataset for handwritten recognition (DeCoste and Schölkopf 2002) and visual ob-
ject recognition (Blanz et al. 1996; Bosch et al. 2007; Chapelle et al. 1999). Other applications
include Object Detection (Romdhani et al. 2004), microarray processing tasks (Brown et al.
2000), text categorization (Dumais 1998), ranking (Herbrich et al. 2000), novelty detection
(Hayton et al. 2001) and many more. More recently interdependent label problems have been
attacked using SVMs (McCallum et al. 2005; Tsochantaridis et al. 2005).

Several authors applied kernel learning algorithms to image processing applications. While
this book provides an overview of the special area of remote sensing we refer the reader to
Camps-Valls et al. (2007) for applications on the classical problems of image processing,
namely image coding, image de-noising and image segmentation. In Kim et al. (2005) image
models based on Kernel PCA are proposed and it is shown that they perform well on image
de-noising and super-resolution tasks.

2.4.8 Available software

There are several software packages using kernel algorithms available. For example for SVM
and SVR optimization the most prominent to date are LibSVM (Chang and Lin 2001), SVM-
Struct (Tsochantaridis et al. 2005), SVMlight (Joachims 1999) but also plain stochastic gra-
dient descent (Bottou 2008). The website www.mloss.org, accompanied by a special track
in the Journal of Machine Learning Research on open source software, makes an effort to
support the dissemination of machine learning software. It provides a good source to obtain
implementations for many kernel learning algorithms including those reviewed in this chapter.
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2.5 Conclusion

In this chapter we introduced the most basic concepts of positive definite kernels and presented
some algorithms that build on those. The main idea is that positive definite kernels provide a
measure of similarity between possibly complex objects. With the regularized risk framework
one can implement the search over rich classes of functions and still obtain functions that can
be expressed in finitely many terms of kernel evaluations. Another benefit is that this search
can be made convex and thus yield problems that can be solved efficiently but on the other
hand guarantee global optimality.
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The Support Vector Machine
(SVM) algorithm for supervised
classification of hyperspectral
remote sensing data

J. Anthony Gualtieri
NASA/GSFC, CISTO & Global Science and Technology

The Support Vector Machine (SVM) algorithm provides an effective way to perform supervised
classification of hyperspectral remote sensing data. The problem is to learn from a training
set of examples – hyperspectral data with class labels attached – and then generalize to find
the class labels of hyperspectral data outside the training set. The high dimensionality of
hyperspectral data, due to the many spectral channels a sensor simultaneously measures, causes
problems for other supervised classification algorithms, both parametric and nonparametric.
A key feature of the nonparametric SVM supervised classification algorithm is its ability to
use high-dimensional data without the usual recourse to a feature selection step to reduce the
dimensionality of the data, as is required by many other algorithms in order for them to work.
Additionally, SVM can utilize the Kernel method of projecting the data into a different space
to improve performance. We give an introduction to hyperspectral data and its acquisition and
for most of the sequel focus on using only the spectral information available in the data for
performing the classification. We then present an overview of the mathematical foundations
of statistical learning theory, show how the large margin SVM, appropriate to supervised
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Chang, Transworld Research Network, 2006.
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classification, can be derived in the context of these very general results, show its realization as
a quadratic optimization problem, and indicate the Kernel method, which extends the efficacy
of the SVM by using nonlinear transformation of the training data. These results are then
applied to several benchmark hyperspectral data sets, and the SVM results are compared with
other supervised classification methods. Then we indicate how using the spatial content of
the data can further improve the classification results. Finally we close with an exploration of
the reasons why the SVM offers improved performance over other algorithms and summarize
with a brief conclusion.

3.1 Introduction

Remote sensing with imaging spectrometers that provide hundreds of channels over contiguous
wavelength bands, possibly with some gaps, has immense promise as a tool to provide data
for scientific and commercial applications. Some diverse examples include environmental
monitoring for the U.S. Environmental Protection Agency remediation of old mine tailings
(Swayze et al. 1997), mapping of invasive species (Ustin et al. 2005), disaster management in
New York City after the Sept. 11, 2001 attack (Clark et al. 2001), precision farming (Garegnani
et al. 2000; Goel et al. 2003), archeology (Bianchi et al. 1997) and depth measurement and
shallow water benthic mapping of coral (Goodman and Ustin 2002; Gualtieri and Howard
2003; Lee et al. 2001). A valuable collection of work concerning development of hyperspectral
remote sensing and many applications can be found at the NASA/JPL AVIRIS website, where
workshop publications dating from 1987–2004 are available online (Green 2004), and where
a large hyperspectral data archive can also be found. AVIRIS is an acronym for the NASA
Airborne Visible InfraRed Imaging Spectrometer and is a premier instrument in the realm
of Earth remote sensing from aircraft platforms. The AVIRIS programme has fostered the
development and application of instrumentation, algorithms, and applications demonstrating
the unique capabilities of hyperspectral remote sensing for geoscience.

To put the promise and challenge of hyperspectral remote sensing into context, at a recent
AVIRIS workshop Joe Boardman of Analytical Imaging and Geophysics (Boardman 2005) put
it thus: ‘Our algorithms and processing systems must grow exponentially in capability to match
the information content in the current and future (we’re really just getting started, still).’ In this
chapter we will address an important hyperspectral remote sensing application, performing
supervised classification on hyperspectral data, which has provided a new approach to address-
ing Boardman’s challenge. The approach, introduced in the machine learning community in
1992, is the Support Vector Machine (SVM). The term Machine in Support Vector Machine
is only a name and does not imply a hardware device. The SVM algorithm was first applied to
hyperspectral data in 1998 (Gualtieri and Cromp 1998; Gualtieri et al. 1999), and has produced
a quantitative improvement in classification accuracy of hyperspectral data, and provided a
new set of tools for geoscientists to render hyperspectral data into Earth science products.

In the sequel we will summarize some aspects of hyperspectral data acquisition so that
algorithm practitioners are aware of what has been done to the data that they will use in their
algorithms. We will introduce the Support Vector Machine and place it in the context of the
more general problem of supervised classification. We will discuss an earlier expectation that
the large number of measurements associated with a pixel should have improved previous
supervised classification algorithm accuracies, but have in fact led to reduced accuracies
(Hughes 1968). This led to pre-processing techniques such as hand selecting channels to use,
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or more principled approaches, such as Principle Components Analysis (PCA), (Duda et al.
2001, p. 115). However, we will show for the SVM this ‘curse of dimensionality’ (Bellman
1961) is, in principle and in practice, not a limitation, thereby making SVM a valuable tool
for supervised classification for hyperspectral data. In what follows we will relate some very
general results from statistical learning theory, and from them lay out in a principled manner
how this leads to a SVM called the large margin SVM. We go on to indicate a quadratic
version that implements this idea. Then we describe its implementation in software, and
show its application to a toy problem to give insight into how SVM works. We go on to
apply SVM to a small, but well known benchmark data set, describe the dependencies of
the classification accuracy on adjustable parameters in the algorithm, and give comparative
results for its classification accuracy versus other supervised techniques. Following this we
will describe some more recent developments that further improve the classification accuracy,
and give some answers as to why SVMs perform so well in comparison with other methods.

3.2 Aspects of hyperspectral data and its acquisition

In hyperspectral remote sensing the data are derived from a sensor, an imaging spectrometer
on an aircraft or satellite, that measures the at-sensor upwelling radiance from the ground at
many contiguous spectral wavelengths. The basic data object is a hyperspectral cube, which
can be thought of as a registered stack of spectral images of a scene on the ground. Thus a
data element is a spectral measurement of the upwelling at sensor radiance in an instantaneous
field of view from a region (pixel) on the ground in a narrow wavelength channel centred at a
particular spectral wavelength �. The cube is indexed by two ground spatial coordinates, and
a spectral wavelength. More details of the actual acquisition and production that creates the
cube will be described below.

Typical sensors are constructed with one or more CCD arrays (depending on the desired
wavelength coverage), and image at each time step a single cross-track of ground pixels that are
then dispersed across the two-dimensional CCD surface to provide an array of measurements
with spectral wavelength in one direction and cross-track spatial location in the other direction.
The forward motion of the sensor over time then creates the perpendicular along-track other
spatial dimension. This approach is called push broom imaging. For push broom sensors, the
wavelength ranges, depending on CCD technology, can cover 400–900 nm, with of the order
of a hundred or more contiguous channels with 3–10 nm widths, or can cover from the visible
out to the the near infrared with bands each of 10 nm width using multiple CCDs.

By comparison, NASA’s AVIRIS sensor is unique in that it uses four spectrometers, each
covering a part of the full range of 400–2500 nm, in 224 contiguous channels, with each
acquiring only a single pixel at a time. A mirror sweeps perpendicular to the forward direction
of the aircraft to create the cross-track. This approach is called whisk boom imaging. This has
the advantage that no correction for variation in the individual regions of the CCD is required.
However AVIRIS is mechanically more complex and expensive to build.

The set of radiances measured at one pixel can be thought of as spectra and described
as a vector. The collection of these spectra comprising a scene is then assembled into a
three-dimensional array indexed by the two spatial coordinate of the pixel and one spectral
wavelength index, and is called a hyperspectral cube.

Typically this at-sensor radiance is post-processed to geo-register and geo-rectify the data.
Geo-registration means registering the data in the scene with an Earth based coordinate system



54 SUPERVISED IMAGE CLASSIFICATION

such as latitude longitude coordinates. This can be accomplished using either known control
points on the ground, or data derived from on-board global positioning data to obtain platform
spatial coordinates and inertial measurement data to obtain platform angular coordinates of
orientation. From these measurements, geometrical computation yields the ground coordinates
for each pixel. Geo-rectifiying the data means converting the position and size data of pixels
taken in the frame of reference of the sensor platform, to a ground based reference system of the
scene, and restructuring them so that the pixels form a rectangular grid. Owing to the motion of
the sensor platform, especially on low flying aircraft, which are subject to turbulence and other
motion in addition to forward translation, this implies resampling and possible interpolation
will occur during geo-rectification. Thus while the data before geo-rectification is a rectangular
structure, its coverage of the ground after geo-rectification may be a substantially distorted
rectangle due to the effects of the platform movement. Geo-registration can be performed
on the data before or after geo-rectification. That these processing steps can have dramatic
consequences is seen in Figure 3.1, (Boardman 1999), which shows the dramatic distortions
and corrections that can occur.

Practitioners have pointed out that it would be better to perform classification on scenes
before geo-rectification, thereby removing errors and biases due to the re-sampling and
interpolation, and then subsequently apply geo-rectification. These biases and interpolations
mean that classification after geo-rectification is performed on changed spectral data, due to
combining spectral information from nearby pixels in the resampling process. By comparison
satellite platforms are extremely stable, and this distortion is not present, though off-nadir
pixels will suffer some distortion due to the imaging geometry.

Figure 3.1 From raw AVIRIS image to geo-corrected AVIRIS image. The left figure shows an
image constructed from a few bands in a hyperspectral cube acquired at low altitude. The data
are rectangular, but the ground image is dramatically distorted due to aircraft motion as the
sensor acquires cross-tracks sequentially from top to bottom along the flight path. The middle
image shows how the cross-track actually registers to ground coordinates, The AVIRIS whisk
broom acquisition is shown in the left to right lines on the diagonals. The right image shows
the corrected image. Now the shapes on the ground are as expected, but the image borders
are far from straight. Images courtesy NASA/JPL-Caltech.
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Often the data have also been post-processed to perform atmospheric correction. This
transforms the measured at-sensor based upwelling spectral radiance to a ground based spectral
reflectance, a projected intrinsic property of the surface being imaged. Spectral reflectance is
a dimensionless quantity with values in the range [0 1], derived from the ratio of upwelling
radiance scattered from the pixel to the solar down welling radiance illuminating the pixel
at a given wavelength in a small wavelength range. Atmospheric correction, (Gao and Davis
1997; Gao et al. 1993; Montes et al. 2001; Tanré et al. 1983, 1979), is used to remove the
effects of the intervening atmosphere between the sensor and the ground on the hyperspectral
data. These effects include absorption and scattering by atmospheric gases, and scattering by
aerosols in the path that the radiation travels between the Sun and the ground and back to the
sensor. Water vapour can vary rapidly in position and time, and thus atmospheric correction
is best done on a pixel by pixel basis. Modern software packages such as ENVI, produced by
ITT, provide a range of tools to handle these prepossessing steps, as well as many tools to
process hyperspectral cubes into products.

We note there are other potential corrections that could be applied, such as topographic
correction that recognizes that the surface scattering the light may lie at some orientation
relative to level surface, or that the surface elevation has an effect on the atmospheric correction,
due to varying optical path lengths from the Sun to the surface and back to the sensor.

At this point the data has been rendered by processing into a hyperspectral cube, where each
element of the cube contains either a measurement of the upwelling radiance or a reflectance
from a small patch of surface area described by two spatial coordinates and centred at a
particular spectral wavelength covering a small spectral range. We take as our stating point –
the basic data element – a vector of spectral radiances or spectral reflectances and call it a
feature vector associated to a spatial pixel. It is conventional to call the number of channels the
dimensionality of the data, though for hyperspectral data this is not the number of independent
coordinates that the feature vector possesses. The use of dimension to describe the number
of channels in hyperspectral data does not imply that the spectral radiances in the various
channels are all independent of each other. Indeed, depending on the complexity of the scene
and the Signal-to-Noise Ratio (SNR) of the sensor, one can estimate the number of independent
pieces of information available in a scene. Various definitions of the SNR for hyperspectral
sensors are possible. A simple scene dependent definition is the ratio of the mean power in the
signal of an image at a given wavelength to the root mean square of the signal in the image at
that wavelength. The SNR is wavelength dependent. A study across 510 scenes measured by
the AVIRIS sensor taken in 1999 over varied terrain including open water, deserts, vegetation,
and cities showed that there were at least 60 independent dimension in AVIRIS’s 224 channels
that were significantly above the noise floor of the sensor (Boardman and Green 2000).

Our problem in supervised classification is then, given a training set of feature vectors,
each with a class label that attaches meaning to that vector, to use them to train a learning
machine, a SVM, to provide class labels to the feature vectors without labels, called the testing
set. For hyperspectral data the training set labels are based on ground truth that can be obtained
by field work where ground locations are typically found by using a global positioning device
or by using data from other sensors or maps. Labels can be found simply by the observation of
what is on the ground, to hyperspectral measurements made with portable devices that directly
measure a spectrum at a single location. At best, the ground truth is gathered coincident in time
with the overflight of the sensor. However the gathering of ground truth is expensive in term of
peoples’ time, and typically only covers a small fraction of the scene being studied. The training
set is often taken from the hyperspectral cube at hand, but can come from another source.
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In summary, we wish to use these labelled examples to construct an algorithm that will
subsequently classify feature vectors from the pixels in the hyperspectral cube without class
labels, called the test set, according to the list of labels from the training set.

3.3 Hyperspectral remote sensing and supervised
classification

In order to understand more fully why the SVM provides good classification accuracy as a
supervised classifier on high dimensional data, we present an overview of some foundations.
To set the stage, we quote from Burges’s helpful tutorial on Support Vector Machines (Burges
1998):

The problem which drove the initial development of SVM’s occurs in several
guises–the bias variance trade off (Geman et al. 1992), capacity control (Guyon
et al. 1992), over fitting (Montgomery and Peck 1992), complexity regularization
trade-off (Girosi et al. 1995)–but the basic idea is the same. Roughly speaking,
for a given learning task, with a given finite amount of training data, the best
generalization classification accuracy will be achieved if the right balance is struck
between the accuracy attained on that particular training set, and the capacity of
the machine, that is, the ability of the machine to learn any training set without
error. A machine with too much capacity is like a botanist with a photographic
memory who, when presented with a new tree, concludes that it is not a tree
because it has a different number of leaves from anything she has seen before; a
machine with too little capacity is like the botanist’s lazy brother, who declares
that if it is green, it is a tree. Neither can generalize well. The exploration and
formalization of these concepts has resulted in one of the shining peaks of the
theory of statistical learning (Vapnik 1998).

We also wish to give understanding to the issue of dimensionality of the data. Traditionally,
many supervised classifiers use the training set data to build models of the underlying den-
sity in the feature space of the data for each of the various classes in the training set. Thus
each class can be thought of as a distribution of points in a space of the dimension of the
feature space, the number of spectral channels. Thus we can imagine a local density of such
points in the feature space, and thereby model training data by local densities in the feature
space.

We then seek a set of separating surfaces which partition the feature space so that each
cluster of points described by its local density is separated from the other clusters. However
this density estimation in high-dimensional spaces suffers from the Hughes effect (Hughes
1968; Landgrebe 1999): for a fixed amount of training data, the classification accuracy as a
function of the dimension of the data (the number of hyperspectral bands) reaches a maximum
and then declines with increasing dimension, because there is a limited amount of training
data to estimate the larger and larger number of parameters needed to describe the model of
the densities of each class. To deal with this, usually a feature selection step is first performed
on the high-dimensional data to reduce its dimensionality.

In fact, first doing density estimation as a step toward supervised classification is unnec-
essary. As pointed out by Vapnik (1995, pp. 28, 169):
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When solving a given problem, try to avoid solving a more general problem as an
intermediate step.

This cuts to the heart of the supervised classification problem. We should seek to directly find
the separating surface, which by definition is characterized by the dimension of the feature
space and not by the dimensions of the structures that describe the density distributions.
Those structures, if thought of as skewed ellipsoids, can have of the order of the square of
the dimension of the feature space number of parameters to describe them. This is part of
the explanation of the Hughes effect in which the classification accuracy first increases with
the dimensionality of the data, but then goes down as the dimensionality increases further.
Other approaches make assumptions of the distributions of the data in the training set, called
parametric supervised classification, but this introduces biases.

In what follows we will restrict our attention to using only the spectral information asso-
ciated to each pixel (carrying the spatial information along as ancillary information). We will
not utilize the spatial information available from the spatial correlation among neighbouring
pixels to help perform classification. Indeed the results we obtain would be the same were
we to randomly permute the pixel location in the image. However later, in Section 3.8, we
will allude to how spatial information can be integrated into classification methods. This is an
active area of research.

The task at hand is how to perform supervised classification on such data using all the
available channels – that is, how to attach class labels to pixels that describe objects with
similar characteristics.

3.4 Mathematical foundations of supervised classification

To formalize the problem of supervised classification, we adopt the following abstraction and
notation. For classification, a known set of examples is given, called the training set, taken from
a world of examples, where each example consists of a class label and a feature vector. You
desire to find a classifier function that gives correct answers on these examples, and has low
generalization error, meaning it gives good results for the class labels when applied to feature
vector inputs that it has not seen before, called the test set. For the moment we will allow for
only two class labels. The case of more than two classes will be taken up later. Thus we are
given l training pairs, {(yi, xi) i = 1, . . . l}, each consisting of a class label, yi ∈ {1,−1}, and
an N-dimensional feature vectors, xi = (xi1, . . . , xiN) ∈ RN .

We wish to find a function, f (·;˛) : x �→ y, that represents the classifier y = f (x;˛),
where ˛ ∈ �, represents the parameters of a particular classifier, and � is the space of all
possible parameters values for that classifier. Figure 3.2 shows a block diagram of the process
associated with the abstract classifier model. We introduce this model as it will illustrate the
notions involved in classification. For a given problem there are data vectors characterized by
a cumulative probability distribution, p(x), describing the world of examples that is unknown.
A supervisor obtains samples, x of the world, such as a hyperspectral measurement from a
sensor, and ascertains a label y for that measurement from ground truth with a conditional
probability p(y|x).

The classifier generates an output y∗ when applied to x. We wish to examine the error the
classifier makes called the Expected Risk, R(˛),

R(˛) =
∫
dp(y, x)Q(y, f (x, ˛)),
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Figure 3.2 Abstract model of a learning machine being trained by a supervisor.

where

Q(y, f (x, ˛)) =
{

0 y = y∗

1 y /= y∗

is an indicator function for counting correct answers, the case where y∗ = y.
The best classifier will be the one that minimizes the expected risk. However, in general we

can not obtain the Expected Risk, R(˛), since p(x) is unknown, and thus we cannot perform
the minimization. But we can measure the error on the training set, called the Empirical Risk,
Remp(˛l), given by

Remp(˛l) = 1

l

l∑
i=1

Q(yi, f (xi, ˛l)).

3.4.1 Empirical risk minimization

A standard way to find the best classifier is to use Empirical Risk Minimization (ERM), that
is, to search the space of classifiers ˛ ∈ � to find the particular classifier, ˆ̨l, that minimizes
Remp(˛):

ˆ̨l = min
˛l ∈ �

1

l

l∑
i=1

Q(yi, f (xi, ˛l))

The hope is then that this classifier will also work well on unlabelled data, that is, the classifier
will be able to generalize. This was the more restrictive view of classification before the
developments of Statistical Learning Theory.

3.4.2 General bounds for a new risk minimization principle

Here we will report theoretical results on mathematical bounds found by Vapnik and coworkers
that form the underpinning of the specific implementation of the SVM we will use, and show
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that a nonparametric supervised classifier can be constructed in which the dimensionality of
the data does not appear. Though the bounds found are mathematically precise, they provide
only a guide as to how to obtain good classification results. But, we need to do more than
finding the ˆ̨l. To go beyond ERM we must also show that the classifier has good generalization
capability. Thus we seek an approach that provides for consistency–conditions under which the
expected risk and empirical risk converge to the same limit as liml→∞, and to characterize that
rate of convergence. It is here that Vapnik (1982, 1995, 1998) and Vapnik and Chervonenkis
(1971, 1974a, 1991) laid the groundwork for a general answer to this problem. They developed
a set of bounds independent of the unknown underlying probability distribution of the data
p(x). A paper by Vapnik summarizes succinctly this theory (Vapnik 1999).

Vapnik and Chervonenkis showed for the pattern recognition problem that, independent of
the distribution function, p(x), the empirical risk, Remp(˛) and the actual risk, R(˛), converge
in probability, to the same value as as the training set grows, and does so exponentially fast.
And, that there are general ways to characterize the difference between the expected risk and
the empirical risk. This characterization is given in terms of a quantity, called the growth
function,G∧(l), to be defined below, and this is the quantity that describes the capacity of the
learning machine to learn in terms of the number of training vectors (Vapnik and Chervonenkis
1991; Vapnik 1995, p. 54; Vapnik 1998, pp. 117–120). Convergence in probability of value
R(˛l)

P−→
l → ∞

R(˛0) means that for any ε > 0 and for any � > 0, there exists a number l0 =
l0(ε, �), such that for any l > l0 with probability at least 1 − �,R(˛l) − R(˛0) < ε. In equations
(Vapnik 1995, p. 71, Equation 3.10, Equation 3.11; p.72, Equation 3.15, p. 73, Equation 3.16;
Vapnik 1998, p. 148, Equation 4.46, Equation 4.47, Equation 4.48):

IF lim
l → ∞

G∧(l)/l = 0

THEN P

{
sup
˛ ∈ �

∣∣R(˛) − Remp(˛)
∣∣ > ε

}
≤ 4 exp

{(
G∧(2l)
l − ε2

)
l
}
,

P

{
sup
˛ ∈ �

(R(˛) − Remp(˛))/
√
R(˛)) > ε

}
≤ 4 exp

{(
G∧(2l)
l − ε2/4

)
l
}
,

(3.1)

where ε > 0. An alternative form of the first bound above1, assuming lim
l → ∞

G∧(l)/l = 0), is

P

⎧⎨
⎩R(˛) − Remp(˛) ≤

√
G∧(2l) − ln(�4 )

l

⎫⎬
⎭ ≥ 1 − �, (3.2)

where 1 > � > 0. Here P{u(l) > ε} in Equation (3.1) means the probability of u being larger
than ε is bounded by exp(−cε2l) (c is a positive constant), and means exponentially rapid
convergence. The term that bounds the difference of the expected risk and the empirical risk

1To see this define � = 4 exp
{(

G∧(2l)
l

− ε2/4
)
l
}

and solve for ε in terms of � to get ε =
√

G∧(2l)−ln( �4 )
l

. Now

because total probability over all events adds to 1, P
{

sup˛∈�|R(˛) − Remp(˛)| ≤ ε
}

= 1 − P
{

sup˛∈�|R(˛)−
Remp(˛)| > ε

}
≥ 1 − �. From the second bound we see R(˛) > Remp(˛) and this is always less than the sup bound,

thus we may remove the sup˛∈�| | and substituting for ε gives the result.
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is called the risk bound or the confidence term. What this means is that if the Growth function
grows with l slower than linearly, then the worst case difference between the actual risk and
the empirical risk converges exponentially fast to 0 as the number of examples goes to infinity,
for all possible classifiers and for any underlying probability distribution of data vectors. And
the the actual risk is always larger then the empirical risk. In the past it was assumed that the
empirical risk as liml→∞ would always converge to the actual risk. Vapnik and Chervonenkis
showed under what conditions this would be true for any distribution for the pattern recognition
problem, and where it would not be true.

The growth function, G∧(l), characterizes the capacity of the learning machine to learn
(generalize), and how that generalization scales with the number of training examples, l. To
explain the growth function, think of the l training examples as points in an N-dimensional
space and then define N∧(l) as the largest number of ways that any arrangement of those
points can be divided into two classes. This is a characterization of the capacity of the learning
machine to learn. In particular G∧(l) is defined by

G∧(l) = ln

(
sup
x1, . . . , xl

N∧(x1, . . . , xl)

)
,

where supx1,...,xl means find the largest value ofN∧(x1, . . . , xl) over all possible arrangements
of points (x1, . . . , xl). If the classifier can always separate any arrangement of l points for any
l into two classes then N∧(l) = 2l and G∧(l) = l ln 2, which in the theorem above means we
cannot make any claims of fast convergence of the empirical risk to the actual risk as the
risk bound (the square root quantity in Equation (3.2)) does not go to 0 as l → ∞. But what
Vapnik and Chervonenkis were able to show is that any growth function either satisfies the
equality

G∧(l) = l ln 2

or is bounded by the inequality

G∧(l) ≤ h(ln
l

h
+ 1),

where h is an integer called the VC-dimension, such that when l = h

G∧(h) = h(ln 2)

G∧(h+ 1) < (h+ 1) ln 2.

Figure 3.3 shows two possible growth functions, and a growth function that cannot occur: for
the lower curve the actual risk and the empirical risk converge to each other; for the upper
curve they do not converge, and that the middle curve is not possible.

We can then see that if a finite VC dimension exists, then the risk bound will go to 0
exponentially fast as liml→∞.
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Figure 3.3 The two forms of the growth function are shown in solid lines. A growth function
scaling as

√
l (dotted line) cannot occur according to the theorem proved by Vapnik and

Chervonenkis.

To gain some intuition as to the value of the VC dimension consider a linear classifier for
data in a space R2. Here the classifier is represented by a straight line in the plane separating
the two classes. A line can always separate any arrangement of three points into any of the
23 = 8 arrangements of two classes, but a line cannot always separate four points into all
possible arrangements 24 = 16. In fact it can be shown that a hyperplane inN dimensions can
separate at most N + 1 points into two classes (Burges 1998, p. 160).

The VC-dimension is then a dimensionless number that characterizes the capacity of the
classifier through its role in the growth function as the scaling exponent of the number of
examples that can be separated. For a set of indicator functionsQ(y, f (x, ˛)), ˛ ∈ �, the VC
dimension, h, is equal to the largest number of vectors x1, . . . xl that can be separated into
two different classes in all the 2h possible ways using this set of functions. For points in R2,
h = 3.

Inserting the bound for the growth functionG∧(l) ≤ h(ln l
h

+ 1) into Equation (3.2) gives

P

⎧⎪⎪⎨
⎪⎪⎩R(˛) ≤ Remp(˛) +

√√√√h
(

ln 2l
h

+ 1
)

− ln( �4 )

l

⎫⎪⎪⎬
⎪⎪⎭ ≥ 1 − �. (3.3)

We can use this bound in a constructive way to formulate a new minimization principle for
finding the best classifier, with the caveat that we are only using Equation (3.3) as a guide,
because this gives (with some chosen probability) an upper bound on the actual risk. This does
not prevent a particular machine with the same value for empirical risk, and whose function
set has higher VC dimension, from having better classification accuracy.

3.4.3 Structural risk minimization

Now for minimization, we must minimize over both the empirical risk and the term describing
the capacity of the machine. This is called Structural Risk Minimization (SRM). For a fixed
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Figure 3.4 Learning curve.

number of training vectors, l, the two terms inside {} to the right of the ≤ in Equation (3.3),
represent the complexity regularization trade-off. As the class of functions parametrized by ˛
gets larger (more complex)Remp(˛) will get smaller as there is more flexibility in f (x, ˛) to fit
the data, but the VC dimension will get larger. Conversely if the class of functions parametrized
by ˛ gets smaller (less complex), then Remp(˛) will get larger, but the VC dimension will
get smaller and accordingly the second term will get smaller. This gives the intuition that
the uniform deviation between expected risk and empirical risk decreases with number of
data points l, but increases with the VC-dimension, and therefore with the complexity of the
classifier functions f (x, ˛), as shown in Figure 3.4.

Thus we are now minimizing the empirical risk and the risk bound. Now the risk bound is
defined for a class of functions, so in order to minimize this term we must impose a structure
on the class of all functions. Following Vapnik we do this using nested subsets:

�1 ⊂ �2 ⊂ . . . ⊂ �

for which the VC-dimension for the classes of functions satisfy

h�1 ≤ h�2 ≤ . . . ≤ h�.

With this in place, the principle of Structural Risk Minimization can be cast as: Minimize
R(˛) over ˛ in each subset class of functions, �i, and over the sequence of nested subsets of
classes of functions �i ∈ � in Equation (3.3) for a fixed �.

ˆ̨ = arg min
˛ ∈ �i
�i ⊂ �

⎛
⎜⎜⎝Remp(˛) +

√√√√h�i

(
ln 2l

h�i
+ 1
)

− ln( �4 )

l

⎞
⎟⎟⎠ .
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3.5 From structural risk minimization to a support
vector machine algorithm

Here we summarize the steps from SRM to an algorithm we can solve for supervised classi-
fication (Niyogi et al. 1999).

3.5.1 SRM for hyperplane binary classifiers

We begin with supervised binary classification and later generalize to multiple class classifica-
tion, which can be handled by aggregating results from binary classification. A simple binary
classifier functions is defined by a hyperplane that attempts to separate the data into classes.
Thus define a parametrization of the classifier function � from SRM to be

� = {˛ : RN → {−1, 1} | f (x, ˛) = sgn(w · x + b)}, ˛ = (w, b),

where w is a vector perpendicular to the hyperplane and b is the closest distance of the
hyperplane to the origin, and x ∈ RN . Now we can extend the ordering relationship imposed
by increasing values of the VC dimension, h, for SRM by finding a relationship between h and
the classifier parameters ˛ = (w, b). For this we use theorem of (Vapnik 1995, Theorem 5.1,
p. 128; Vapnik 1998, Theorem 10.3, p. 413; Burges 1998, Theorem 6, p. 30) that bounds the
VC dimension for a subset of canonical hyperplanes by a bound on the hyperplane properties.
Canonical means a particular normalization that defines a length scale in the problem. Given
the space in which the training vectors lie is xi ∈ RN , then

IF Bx1...xl = {x ∈ RN | ‖x − a‖ ≤ D, a ∈ RN, ‖xi − a‖ ≤ D, i = 1, . . . l}
is the smallest ball, with radius D, centred at a, containing the training set, and

�A = {˛ = {w, b} | f (x, ˛) = sgn(w · x + b), ‖w‖ ≤ A}
is a subclass of hyperplanes in canonical form,

THEN h ≤ min(
D2A2�, l) + 1. (3.4)

Thus the natural structure for SRM on hyperplanes classifiers is the monotonic dependence
of h on the parameter A, which for a fixed set of training data are an upper bound on the norm
of w. We write the ordering relationship of the SRM as

h�1 ≤ h�2 ≤ . . . ≤ h�

A1 ≤ A2 ≤ . . . ≤ A

�A1 ⊂ �A2 ⊂ . . . ⊂ �A

and the SRM principle becomes

�̂ = arg min
˛ ∈ �Ai
�Ai ∈ �,

(Remp(w, b) + �w · w) or (ŵ, b̂) = arg minw,b(Remp(w, b) + �w · w),

(3.5)



64 SUPERVISED IMAGE CLASSIFICATION

where � is a parameter that trades off the fit to the training data, Remp(w, b) with a measure of
the model complexity or capacity of the classifier to learn, w · w. Note this is a related result
to that given in Chapters 1 and 2 for the case of quadratic loss.

Though we have parametrized the classifier, there is no recourse to a parametrization of
the distribution of the training data. Also no consideration of the dimensionality of the data has
been made. Thus at least at this point the issue of the curse of dimensionality is not explicit.
There is continuing work to refine these bounds, and derive new theoretical results for a variety
of cases, and we point the interested reader to the following papers: Ikeda (2003), Malzahn
and Opper (2005), Mukherjee et al. (2006), Schaback and Werner (2006), Zhou (2003),
Zhou and Jetter (2006).

3.5.2 SVM algorithm

To proceed further, consider the two cases for training a hyperplane binary classifier: either
the training data can or cannot be separated by a hyperplane. Figure 3.5 shows these two
case for two dimensional data. For separable training data Remp(w, b) is zero. The condition
of separability is that all training vectors of class +1 lie on one side of the hyperplane and
all training vectors of class −1 lie on the other side. The positive distance di of any training
vector from the hyperplane is given by di = yi

(w·xi+b)
‖w‖ > 0, where multiplying by yi (recall

yi = ±) assures all such distance are positive. Because an arbitrary change in scale of w →
cw, b → ˛c, di → cdi, where c is a constant, does not affect the minimization equations, we
will remove this arbitrariness by choosing the length scale in the problem to be the minimum

Figure 3.5 Left: Schematic of separable data in R2. The circles are feature vectors in class
+1 and the squares are feature vectors in class −1. The placement of the hyperplane shown is
optimal. The dotted lines are the margin boundaries. Right: Schematic of non-separable data
in R2. The circles are feature vectors in class +1 and the squares are feature vectors in class
−1. There is one feature vector that is not separable.
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of the distances di. This will make the distance from the separating hyperplane to the nearest
training vectors 1/|w|. This is called the canonical form. With this scaling we then have

yi(w · xi + b) ≥ 1, (3.6)

and the statement of our minimization problem for finding the separable hyperplane is

minw,b
1
2‖w‖2

yi(w · xi + b) − 1 ≥ 0 i = 1, . . . , l.
(3.7)

By minimizing 1
2 ‖w‖2, we are making 1/‖w‖ the largest, and from the discussion above,

that is maximizing the distance of the hyperplane from the nearest training vectors of the two
classes. That distance is called the margin and lends the name maximum margin SVM to this
type of classifier. The boundaries beyond which all the training vectors of each class lie are
called the margin boundaries. One can see that to solve the minimization problem we are
solving a quadratic optimization problem that is always guaranteed to have a unique solution.
The optimum solution giving the best hyperplane is where the hyperplane is placed so that
the distance of the closest feature vectors in the two classes are the furthest they can be from
the hyperplane. Thus the optimization problem will find those closest vectors and locate the
hyperplane to lie between them so that perpendicular distance from the hyperplane to the those
feature vectors are 1/‖w‖. Clearly the more distant feature vectors from the hyperplane do
not affect the solution. These special closest feature vectors are called the support vectors, and
they then determine the position and orientation of the separating hyperplane. Because of the
linearity of the problem we can write the hyperplane parameters w, b as linear combinations
of the training vectors. Write

w =
l∑
i=1

�iyixi, (3.8)

where the linear coefficients �i are the indicator values for the support vectors when �i > 0,
and where we have explicitly included yi so that �i ≥ 0. Using any one of the constraint
equations from above we can also express the other hyperplane parameter, b, as

b = 1 −
l∑
i=1

�iyixi · xj. (3.9)

Thus the outcome of the minimization is to find the �i. Note that the dimensionality of the
feature vector does not explicitly enter our minimization optimization problem.

The standard method used to actually solve the minimization’s equations is to recast this
problem into a simpler form by using Lagrange undetermined multipliers – the �i we have
introduced above – in order to transform the problem into the dual representation, (Gualtieri
and Cromp 1998),

max�1...�l

[
− 1

2

∑l
i=1
∑l
j=1 �iyi(xi · xj)yj�j +∑l

i=1 �i

]
�i ≥ 0 i = 1, . . . , l∑l
i=1 �iyi = 0.

(3.10)
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For the non-separable problem, Figure 3.5 (right), Remp is no longer 0. We can construct a
version ofRemp for this case by introducing a variable �i, associated with each training vector,
which measures the distance of that training vector beyond the margin boundary if it is a non-
separable, and �i = 0 if it is a separable training vector. Then we write Remp = C

∑l
i=1 �i,

where C is a constant, to be set, that measures the strength of the non-separable contribution
relative to the capacity of the classifier to learn in the term 1

2‖w‖2. We also must change
Equation (3.6) so as to relax the requirement that all training vectors of the same class lie on
the same side of the hyperplane. We now have

yi(w · xi + b) ≥ 1 − �i

�i ≥ 0.
(3.11)

This can also be cast in a dual form using Lagrange undetermined multipliers, (Gualtieri and
Cromp 1998), and gives

max�1...�l

[
− 1

2

∑l
i=1
∑l
j=1 �iyi(xi · xj)yj�j +∑l

i=1 �i

]
C ≥ �i ≥ 0 i = 1, . . . , l∑l
i=1 �iyi = 0 i = 1, . . . , l.

(3.12)

Note, the only difference from the dual of the separable case, Equation (3.10), is that the �i are
bounded above by C, reflecting the fact that the original inequality constraint, Equation (3.6),
holds only while �i = 0 and then becomes soft when �i > 0. Knowing the solutions �i, we
can again find w and b for the hyperplane.

3.5.3 Kernel method

Up to this point we have dealt only with classification as a linear function of the training
data – the decision surface is a hyperplane defined by linear equations on the training data.
However, it can be the case that no hyperplane exists to separate the data. The non-separable
method provides one way to deal with this. As an alternative we would like a way to build a
nonlinear decision surface. An extremely useful generalization that can give nonlinear decision
surfaces and improved separation of the training data are possible using the following idea, first
introduced by Aizerman, Braverman and Rozoner (Aizerman et al. 1964), and incorporated
into machine learning as part of the Support Vector Machine by Boser, Guyon, and Vapnik
(Boser et al. 1992). We refer the reader to Chapter 2 for details of this method, where the SVM
optimization problem Equation (2.10) is transformed by means of a Kernel transformation,
K, to Equation (2.11).

For our purposes we give a short synopsis of how to make a nonlinear transformation that
projects the input space to a a higher dimensional Euclidean space, by means of a nonlinear
vector function: � : RN �→ H, and in this space pose the problem of finding a hyperplane
that best separates the projected training vector data. Then we may again pose the optimal
margin problem in the space H by replacing xi · xj , by �(xi) · �(xj). Then, as before, solve the
optimization problem for the �i. This finds the support vectors among the transformed vectors,
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�(xi), by association with the �i > 0. We then use these to build the classifier function:

f (x, �1, . . . , �l) = sgn

(
l∑
i=1

�iyi�(xi) · �(x) + b

)
. (3.13)

The Kernel method is to note that there are classes of functions � that satisfy the special
property of a Kernel function K where

K(xi, xj) = �(xi) · �(xj). (3.14)

Then everywhere that xi · xj occurs, we replace it with K(xi, xj). A Kernel function is a
function defined on two variables, u ∈ Rk and y ∈ Rk, such that K : Rk × Rk → R, where
the form ofK is given byK(u, v) = �(u) · �(v), and where �() is a vector valued function on
a vector argument.

We need not explicitly compute �(x), which could be computationally expensive, but only
need compute the Kernel functions. In fact we need not have an explicit representation of � at
all, but onlyK. The restrictions on what functions can qualify as Kernel functions is that they
must satisfy Mercer’s condition, which is the case for Kernels of positive integral powers of the
dot product, such as, K(xi, xj) = ((xi · xj) + 1)p. See Burges (Burges 1998, Section 4.1) for
further discussion and Chapter 2. What is gained is that we have moved the data into a larger
space where the training data may be spread further apart and a larger margin may be found
for the optimal hyperplane. In the cases where we can explicitly find �, then we can use the
inverse of � to construct the nonlinear separator in the original space. Clearly there is a lot of
freedom in choosing the Kernel function and work has gone into the study of this idea both for
SVM and for other problems (Smola et al. 1998). In addition, due to Mercer’s conditions on
Kernels, unlike in other machine learning techniques based on Neural Networks, the positive
semi-definite Kernel ensures that the objective function is convex and hence there are no local
minima, only a global minimum.

With respect to the curse of dimensionality, we never explicitly work in the higher
dimensional space, so we are never confronted with computing the large number of vec-
tor components in that space. And there is no significant computational burden of working in
the high dimensional space since the dot products are formed in the original space, and that
dot product scalar is all that is transformed to the higher dimensional space.

Two popular Kernel transformations are the polynomial Kernel and the radial basis function
Kernel. The polynomial Kernel function is given by

K(x, y) = (x · y + 1)d, (3.15)

and the radial basis function Kernel (RBF) is given by

K(x, y) = exp

(
−‖x − y‖2

�2

)
. (3.16)

Further work on Kernel functions can be found in (Schölkopf et al. 1998, pp. 89–102) and in
Chapter 2 of this book.
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3.5.4 Hyperparameters

In the basic SRM equation, Equation (3.5), the parameters to be found that characterize the
classifier are w, b. In addition there are the parameters, called hyperparameters, that are used to
handle the case of non-separable data,C, and with the introduction of the Kernel method there
are the choices of what particular Kernel function is to be used. Thus for the polynomial Kernel
function, there is d, the dimensionality of the polynomial, while for the radial basis function
Kernel there is �. The usual approach once having chosen a Kernel function is to do k fold
validation. The training data are split into k parts of size l/k. A discrete range of possible values
of the hyperparameter is chosen and for each hyperparameter value a SVM classifier is trained
using k − 1 parts and tested on the remaining 1 part from which a classification accuracy is
measured since we know the labels of the data. This is repeated one by one through all k such
splits of the training data into k − 1 folds for training with testing on the remaining fold, and
an average classification accuracy is obtained. This is repeated for each of the hyperparameter
values and the value with the highest classification accuracy is chosen. If k = l− 1, then this
approach, also called leave one out, will give an unbiased estimate of the hyperparameter.
Clearly even for a moderate value of k this can be an expensive computation. Work has been
done to find computationally inexpensive ways to estimate or bound the hyperparameters
(Duan et al. 2003).

3.5.5 A toy example

As an illustration of the Kernel Method, consider its application inN = 2. Using the package
LIBSVM (Chang and Lin 2001), we show for two dimensions in Figure 3.6, the shape of
the separating surface for several values of d. Note that only when d = 7 is reached does a
separating surface exist that completely separates the two classes.

3.5.6 Multi-class classifiers

When we have K > 2 classes, labelled 1, 2, . . . K, we choose to create all the possible pair
classifiers, K(K − 1)/2 in number, which are trained using training set data from class, 1 vs.
2, 1 vs. 3, ..., 1 vs. K, 2 vs. 3, ..., K-1 vs. K. To decide a class label in the testing phase,
apply the K(K − 1)/2 pair classifiers to the test vector and record which label each of the
pair classifiers gives. From each such pair classifier place a vote into one of K bins labelled
1, 2, . . . , K, and when all of the pair classifiers have voted, record the bin with the most votes,
as the classification label for that test vector. For ties randomly select one of the competing bins.

We have chosen this approach, called in the literature one-against-one (OAO) over creating
K classifiers that are trained from training sets of 1 vs. { 2 3 4 ... K }, 2 vs. {1 3 ... K} , ..., K
vs. {1 2 ... K-1 } called one-against-all (OAA), because it appear to be more accurate (Hsu
and Lin 2002). We note that for training the time complexity is less for OAO vs. OAA. This
can be seen in Table 3.1, which gives the time complexities O(K2m2), O(K3m2) for OAO
and OAA respectively. Here we assume that the training sets are each of size m/2 and that
the time complexity of a single pair classifier training on m total training vectors is O(m2),
because we are solving a quadratic optimization problem for training. Other work (Melgani
and Bruzzone 2004) comparing OAO, OAA, and two hierarchical methods indicate that OAO
and OAA have similar classification accuracy and are superior to hierarchical methods, but
that OAO is faster for training and slower for testing than OAA.
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Figure 3.6 The white dots and the grey squares in each of the six panels represent the same
training data, while the light grey and black backgrounds show the division of the space into
two contiguous regions with various separating curves between them. The polynomial Kernel
function K(x, y) = (x · y + 1)d is used with SVM for d = 1, 2, 3, 4, 5, 7 (left to right top to
bottom), withC = 1000. For d = 7 the separating curve completely separates the two classes
of points. The software package LIBSVM (Chang and Lin 2001) was used to produce this
example.

3.5.7 Data centring

An important preprocessing step for all applications of SVM is to mean centre and scale the
data according to

x′(r, �) = xi(r, �) −∑r xi(r, �)/
∑

r 1

S
,

where x(r, �) is the original feature vector (spectra) at pixel position r and at band � and S is a
constant scale factor. The reason for doing this is that hyperspectral data are always all positive

Table 3.1 Time complexity on a single processor for performing
SVM training for a classifier of K classes, each class containing
m/2 exemplars

Pairwise classification One-versus-the-rest

O(K2m2) O(K3m2)
K(K − 1)/2 ∗ O(m2) K ∗ O(((K − 1)m2 + m

2 )2)
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in value and thus the original data lies only in the positive ‘quadrant’ occupying 1/2N of the
available space of RN , whereas the mean centred data fills the entire space of RN , thereby
dramatically spreading out the data, which improves the SVM classification accuracy.

3.6 Benchmark hyperspectral data sets

A particular hyperspectral data set that has become something of a benchmark for testing
hyperspectral supervised classification algorithms is the AVIRIS 1992 Indian Pines data set
AVIRIS, first used by David Landgrebe and hist students (Jackson and Landgrebe 2001;
Jiménez and Landgrebe 1996; Kuo, and Landgrebe 2001; Tadjudin and Landgrebe 1998a).
These data were acquired on June 12, 1992 in the northern part of the state of Indiana, in
the U.S. The data set and ground truth are available at the website (Landgrebe 1992). The
data consists of 145 × 145 pixels (each pixel is 18 m × 18 m in size) by 220 bands in band
interleaved format (BIL) format of at-sensor spectral radiance data as 2 byte unsigned integers
digital numbers (DN) that have been scaled and offset from the at-sensor spectral radiance,
Rad, in unitsW [cm2 nm sr], to give digital numbers (DN) according to DN = 500 * em Rad +
1000. No atmospheric correction has been performed. However. because of atmospheric water
absorption the bands [104 : 108, 150 : 163] are not meaningful, as the sensor only reports noise
in these bands. Thus they are removed as they will only serve to decrease the accuracy of the
SVM classifier. Also band 220 is very noisy. Thus for analysis these bands should be removed
leaving a 200 band data set. Ground truth gathered by Landgrebe and students is also available
and delineates 16 classes. The scene consists of about two-thirds agriculture, and one-third
forest or other natural perennial vegetation. There are two major dual lane highways, a rail
line, as well as some low density housing, other built structures, and smaller roads. Since the
scene is taken in June some of the crops present, corn, soybeans, are in early stages of growth
with less than 5% coverage. The ground truth available is designated into sixteen classes and
is not all mutually exclusive. This data set has been used as the 16 class full scene, as the 9
class full scene, and in a 4 class subset scene.

3.6.1 The 4 class subset scene

The subset scene consists of pixels [27 − 94] × [31 − 116] for a size of 68 × 86. (Upper left
in the original scene is at (1, 1).) There is ground truth for over 75% of this scene and it
comprises the three row crops, Corn-notill, Soybean-notill, Soybean-mintill, and Grass-Trees,
where notill and mintill describe tillage practices when planting these crop types. Table 3.2

Table 3.2 Data description of the Indian Pines 4 class subset scene

Class Number of ground Number of Number of
name truth vectors training vectors test vectors

Corn-notil 1008 201 807
Soybean-notill 727 145 582
Soybean-mintill 1926 385 1541
Grass-Trees 732 146 586
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Table 3.3 Data description of the 16 class Indian Pines Full scene

Class Number of ground Number of Number of
name truth vectors training vectors test vectors

Alfalfa 54 10 44
Corn-notil 1434 286 1148
Corn-min 834 166 668
Corn 234 46 188
Grass-Pasture 497 99 398
Grass-Trees 747 149 598
Grass-Pasture-mowed 26 5 21
Hay-windrowed 489 97 392
Oats 20 4 16
Soybean-notill 968 193 775
Soybean-mintill 2468 493 1975
Soybean-clean 614 122 492
Wheat 212 42 170
Woods 1294 258 1036
Bldgs-Grass-Trees-Drives 380 76 304
Stone-steel-towers 95 19 76

gives further details. We choose a random selection of pixels with ground truth to yield a
training/testing split of 20%/80%.

3.6.2 The 16 class scene

For the full 16 class scene we also used a random selection of 20% of the ground truth data
and tested on the remaining 80%. Table 3.3 describes this data.

A difference with the data and results reported by (Tadjudin and Landgrebe 1998a,b) is
that they studied the scene using 17 classes whereas we only used 16. The difference being that
they further resolved the class Soybeans-notill into two subclasses of Soybeans-notill based
on fields that were in different locations in the full scene.

3.6.3 The 9 class scene

Papers by Camps-Valls and Bruzzone (2005) and Melgani and Bruzzone (2004) have studied
the same Indian Pines 1992 data set using SVM, Kernel Fisher Discriminants, AdaBoost
and Regularized RBF neural networks. From the 16 different land-cover classes available in
the original ground truth, 7 were discarded as these authors deemed there were insufficient
number of training samples available. The remaining nine classes were used to generate a
set of 4757 training samples (for the learning phase of the classifiers) and 4588 test samples
(for validating their classification accuracy). See Table 3.4 (Camps-Valls and Bruzzone 2005,
Table II, p. 1357), which summarizes their use of the data. Their training data were about 2.5
times larger than the 16 class data set above, indicating they were training on roughly 50% of
the available data as compared with our 20%.
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Table 3.4 Indian Pines 9 class scene. Number of Training and Test
Samples used in the the experiments of Camps-Valls and Bruzzone

Class Training Test

C1 Corn-notil 742 692
C2 Corn-mintil 442 392
C3 Grass/Pasture 260 237
C4 Grass/Trees 380 358
C5 Hay-windrow 236 253
C6 Soybean-notil 487 481
C7 Soybean-mintil 1245 1223
C8 Soybean-cleantil 305 309
C9 Woods 651 643

Total 4757 4588

3.7 Results

3.7.1 SVM implementation

SVM has been implemented using two open source codes: SVMlight by T. Joachim (Joachims
1998a) together with quadratic optimization code written by A. Smola (Smola 1998) and
LIBSVM (Chang and Lin 2001). These codes consist of a learning module that finds the
support vectors, given two sets of training vectors, and a specification of the non-separable
parameter C, and the Kernel function (in this work a polynomial with parameter d), and a
classification module that classifies any test vector into one of the pair of classes. To handle
multiple classes we have embedded theses code in calling routines that implement the OAO
classifier built onK(K − 1)/2 pair classifiers 2. Central to the learning module is the quadratic
optimization as formulated above in Equations (3.12). Direct application of quadratic opti-
mization to large numbers of training vectors can be computationally slow. For SVMlight

Joachim (Joachims 1998b) has shown a way to reformulate the problem as a series of smaller
optimization problems. The solution of these smaller optimizations is accomplished using a
quadratic optimization code written by A. Smola (Smola 1998). For LIBSVM the optimization
builds on Platt’s Sequential Minimal Optimization (Platt 1999).

3.7.2 Effect of hyperparameter d

To test the effect of changing the hyperparameter parameter d in the kernel function, Equa-
tion (3.15), in the 4 class subset scene, five different random choices of training testing vectors
were used to obtain classification accuracy for d = 1, 2, . . . , 15 and C = 1000. The results
are shown in Figure 3.7. A significant increase in classification accuracy occurs by going to
a nonlinear classifier with d ≥ 2. The five lines are for each of the different random choices
of training vectors respectively. Also note that the classification accuracies of the five differ-
ent cases all lie within a ±1% envelope, suggesting that differences in classification results
greater than 1% is significant. We did not vary the parameter C. Later work to be reported

2LIBSVM has options built in for multiclass classification, but it was not suitable for our application.
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Figure 3.7 Effect on classifier classification accuracy by varying the kernel parameter d, in
K(x, y) = (x · y + 1)d. The five lines are the results for each of the different random choices
of training vectors respectively. In all cases the parameter C = 1000.

below investigated the effect of varying this hyperparameter for the case of the radial basis
function kernel (RBF).

3.7.3 Measure of accuracy of results

To gain a measure of the accuracy of the classification results five different trials for the 4 class
subset scent were conducted with different random selection of the 20%/80% training testing
splits with d = 7 andC = 1000. For a trial, the overall classification accuracy is the sum of the
number of samples correctly labelled for each class in the test set divided by the total number
of samples in the test set. Table 3.5 summarizes these results and shows that the results are
consistent within one percent and the average classification accuracy was 96%.

Table 3.5 Summary of trials on SVM classifier for the 4 class subset scene

Trial Overall Class correct(%)

Correct(%) Corn-notill Grass-Trees Soybean-notill Soybean-mintill

1 96.3 94.3 100.0 96.1 95.7
2 95.8 92.8 99.8 95.7 96.0
3 96.1 95.2 99.8 95.7 94.7
4 95.5 94.7 100.0 95.1 93.5
5 95.6 95.7 99.8 94.8 93.3

Average 95.9 94.5 99.9 95.5 94.6
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Table 3.6 A comparison of results for the Indian Pines 4 class subset
scene (68 × 86 pixels) and the 16 class full scene (145 × 145 pixels).
The results labelled bLOOC+DAFE+ECHO and Euclidean are taken
from their works (Tadjudin and Landgrebe 1998a, 1999), and represent
the best classifier results reported for this scene in that work. All training
is based on 20% of the ground truth and testing on the remaining 80%

Method Performance

4 class subset scene 16 class full scene

Support Vector Machine 95.9% 87.3%
bLOOC+DAFE[+ECHO] 93.5% 82.9%
Euclidean 66.7% 48.2%

3.7.4 Classifier results for the 4 class subset scene
and the 16 class full scene

SVM Results for the 4 class subset scene and the 16 class full scene are given in Table 3.6
and compared with the results of the earlier work and was first studied by D. Landgrebe and
students (Tadjudin and Landgrebe 1998a, 1999) who developed results for the Indian Pines
4 class subset scene with a classifier called bLOOC+DAFE, and for the 16 class scene, with
a classifier called bLOOC+DAFE+ECHO. Here bLOOC stands for Bayesian Leave One Out
Covariance Estimator (Tadjudin and Landgrebe 1999), DAFE stands for Discriminant Analysis
Feature Extraction (Fukunaga 1990), and ECHO stands for Extraction and Classification of
Homogeneous Objects (Kettig and Landgrebe 1976). Additionally they reported results for a
Euclidean classifier, which we include below. The Euclidean classifier is not expected to give
good accuracy for hyperspectral data, as it simply finds the mean spectral feature vectors of
each of the training classes, and then classifies testing data by using a Euclidean distance of
those means to the test spectra, selecting as the class of that spectra the one with the smallest
such distance.

Results for the full scene were produced with a polynomial kernel with hyperparameters
d = 7 and C = 1000. No preprocessing of the data was used, besides mean centering of the
data.

For both the 4 class subset scene and the 16 class full scene, we see that the SVM outper-
forms bLOOC+DAFE+ECHO by values outside the variation due to random selection of the
training/testing split, and both outperform the Euclidean classifier as expected.

3.7.5 Results for the 9 class scene and comparison of SVM
with other classifiers

Camps-Valls and Bruzzone (2005) give SVM results for the Gaussian kernel (RBF) and the
polynomial kernel. The hyperparameters to be found for the RBF SVM are the Gaussian width
�, and the regularization parameter C. They tuned over the ranges � = (1, . . . , 50) (same
for all RBFs) and C = {10−2, . . . , 106}. For the polynomial kernel they tuned d, and the the
regularization parameterCwith values in the ranged = {1, . . . , 15} andC = {10−2, . . . , 106}.
Also in their results they adopted the OAA approach for handling classification with more than
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two classes. In Melgani and Bruzzone (2004) they report training/testing times (in seconds)
for OAA 2361 s/341 s on a single processor machine, and for OAO 212 s. / 554 s giving rough
agreement with Table 3.1.

Now consider Table 3.7, which shows a classification accuracy comparison of the linear
discriminant analysis (LDA), regularized RBF neural network (Reg-RBFNN), SVMs with
RBF kernel (SVM-RBF) and with polynomial kernel (SVM-Poly), kernel Fisher discriminant
(KFD) analysis (with RBF kernel) and regularized AdaBoost (Reg-AB), for the 200 band data
in the upper part of the table and for the 220 band (noisier due to inclusion of noisy channels)
data set. In both cases, SVM-Poly has the best classification accuracy, closely by followed by
SVM-RBF and then Reg-AB. In a later section we offer some insight as to the nature of these
results.

3.7.6 Effect of training set size

Also in Camps-Valls and Bruzzone (2005) was an investigation of the effect of training set
size as shown in Figure 3.8. Here SVMs and Reg-AB have a clear advantage of 3% to 8 %
over KFD and Reg-RBFNN. Note that LDA show a threshold.

3.7.7 Effect of simulated noisy data

Camps-Valls and Bruzzone (2005) also studied the effect of adding random Gaussian and
uniform distributed noise and impulsive noise spikes only to the the test set, but using the
classifiers trained as above using training sets without additive noise. What was found is that
the SVM classifiers, both polynomial kernel and RBF kernel are more robust with respect to
Gaussian and uniform distributed noise than linear discriminant analysis (LDA), regularized

Figure 3.8 The effect of size of the training set on classifier accuracy. Taken with permission
from Camps-Valls and Bruzzone (2005, Fig. 6). ©2005 IEEE.
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RBF neural network (Reg-RBFNN), kernel Fisher discriminant (KFD) analysis (with RBF
kernel) and regularized AdaBoost (Reg-AB).

3.8 Using spatial coherence

Clearly there is useful information in the local spatial coherence of the spectral data. By
this we mean that we expect the spectral shape in nearby pixels to be correlated, and vary
slowly except near edges between classes. In Section 3.3 we noted that we would restrict our
attention to only using the spectral information associated with each pixel (carrying the spatial
information along as ancillary information). Approaches have been developed in unsupervised
classification (Gualtieri and Tilton 2002; Plaza et al. 2002) that demonstrate methods that use
both the spectral and spatial information of hyperspectral data without dimension reduction,
however with substantial computational cost. These results could subsequently be used with
supervised classification to yield improved results.

Here we mention results of how the spatial data can be incorporated into the SVM approach
to improve subsequent classification. Mercier et al. (2002) use a preprocessing step that rear-
ranges the spectral data by using the Minimum Noise Fraction transform, Green et al. (1988)
and Lee et al. (1990) followed by vector anisotropic diffusion (Lennon et al. 2002). The idea is
that since the spatial correlation of the signal is strong (except across edges between classes),
as compared with the spatial correlation of the noise, then a noise covariance matrix can be
estimated for each band by computing the mean of the spatial differences (in the x and y
direction). With this estimate of the noise covariance matrix, the hyperspectral image cube
is then transformed in the wavelength regime to yield a new image cube where the strength
of the signal-to-noise ratio (SNR) is ordered by increasing band number in the transformed
cube. This image cube is then subjected to anisotropic diffusion, a nonlinear sequential fil-
tering operation that smooths regions with spectral similarity (regions of the same class) and
sharpens the differences where there are rapid changes in spectral similarity (the boundary
edges between classes). Because the MNF transform is reversible the nonlinearly processed
cube is back transformed to the original wavelength domain, where now the image cube has
noise removed, and regions that are spectrally similar are more uniform and the boundaries
between classes are sharpened.

When a supervised classification method is applied to this transformed image using 10, and
then 20 training vectors for each of ten classes, the overall classification accuracy of SVM using
the OAO approach for multiple classes with a polynomial kernel transformation, as compared
with classical techniques such as Spectral Angle Mapper (SAM), and Gaussian Maximum
Likelihood (GML), the classification accuracy improves by 5% and 8% respectively. But
when the data were preprocessed with the MNF/anisotropic diffusion, the SVM saw a 12%
and 10–14% improvement in classification accuracy over SAM and GML results for 10 and
20 training vectors respectively. Compared with SVM on non-preprocessed data, SVM with
preprocessed data for both 10 and 20 training sample data classification accuracy was improved
by 10% to 82% and 92% respectively. Thus SVM can provide superior results when used in
concert with another method for very small training samples for multiple class problems.

In another development of incorporating spatial information with spectral information
Camps-Valls et al. (2005) first create from neighbourhood textural spatial information indices
associated with each pixel for each wavelength. Then they created kernel transformations for
spatial and spectral information separately and formed both direct products of the two kernels
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as well as cross information kernels. When compared with the earlier results found above for
the two Indian Pines scenes, subset and full, in Table 3.6, Camps-Valls et al. demonstrated
2–3% improvement and 8–9% improvement for overall classification accuracy respectively,
depending on the particulars of the spatial-spectral kernel used.

3.9 Why do SVMs perform better than other methods?

We have already mentioned in Section 3.3 Vapnik’s dictum about solving the appropriate
problem, and the problem of the Hughes effect and why density estimation as a first step in
solving for the separating surface for supervised classification is inappropriate. For supervised
classification with two classes, we only need to find a separating single surface. The Support
Vector Machine directly seeks that separating surface by finding the exemplars that form the
boundaries of the classes, the support vectors. This is significant because it is usually the case
that there are a small subset of all the training data that are involved in defining the separating
surface, i.e., those training vectors that are closest to the separating surface. However, we
quickly see that in the original space finding such linear separating surface will not in general
work as shown in Figure 3.5(right). However, adding a penalty term for finding training vectors
that lie on the wrong side of the separating surface, and using the Kernel transformation we
can generalize the kinds of separating surfaces that can effectively be used. The nonlinear
transform of the data to a higher dimensional space effectively spreads the data out making
a linear separation more feasible, and reduces the need for the penalty term. For cases of
the Kernel transformation where the high-dimensional linear separating surface can be back
transformed to the original space, this yields nonlinear separating surfaces as seen in the toy
example of Figure 3.6. Thus the limited training data are being used to find a small number
of high-dimensional objects, the support vectors, and this computation is not directly affected
by the data dimensionality, as it is for the density estimation approach. This aspect of SVM is
described by saying that it uses a sparse representation, meaning with a few objects, each with
substantial complexity, the SVM is capable of modelling the object sought – the separating
surface.

To further examine why SVMs work better than feed forward neural networks we consider
an observation from Vapnik (Vapnik 1995, Section 5.64) which elucidates a comparison of
SVMs and neural networks. If the Kernel function for the SVM is chosen as K(x, x′) = S(x ·
x′), whereS(u) = tanh(au+ b) (a, b are constants) is the sigmoid function, then for a restricted
set of values of a, b that satisfy the Mercer condition for valid Kernels, the architecture of
the SVM is that of a two layer neural network where the number of support vectors are the
number of hidden layer nodes, and the weight vectors for neural network are the coefficients
�i, the Lagrange multipliers. Thus the SVM automatically optimally computes the number of
hidden layer nodes and their strengths. However while the quantity that a Neural Network is
minimizing is the empirical risk,

∑
i

(yi − f (xi, ˛))2, (3.17)

the quantity that the SVM version of a NN above is minimizing is the upper bound of the
generalization error as derived from the Structural Minimization Principle, which we have
argued in Section 3.4.3 is more robust and has its derivation based on general principles
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applicable to these types of problems. Camps-Valls and Bruzzone (2005) also elucidate the
effectiveness of SVMs in comparison with regularized RBF neural networks (Reg-RBFNN)
and Kernel Fisher Discriminant (KFD). SVMs working from the Structural minimization
Principle (SRM) minimize both the Empirical Risk and the Risk Bound, which is a measure
of the classifier model’s complexity or learning capacity, whereas KFD and Reg-RBFNN
minimize only the Empirical Risk. Since empirical risk is defined for KFD and Reg-RBFNN
is defined by a sum of squared deviations, Equation (3.17), where (yi, xi) are the training data,
and f (xi, ˛) is the desired classifier function, all the data are included equally, whereas the
SVM approach explicitly finds the most important training data (those nearest the separating
surface) and only uses those in the object to be minimized.

3.10 Conclusions

We have described an approach to building a supervised learning machine called the Support
Vector Machine and applied it to classify hyperspectral remote sensing data. We have given
some insight into the issues of how hyperspectral data are acquired and processed before any
classification is performed to alert users to issues in the data.

The inherent high dimensionality of this data is challenging for traditional classifiers due
to the Hughes effect and the curse of dimensionality. We have indicated some of the theoretical
foundations of SVMs that point to why the dimensionality of the data is not a handicap as it has
been for traditional classifiers, and how the SVMs give improved results, and thus are suitable
for use with hyperspectral data. The results we have obtained show SVMs to be competitive
with other classifiers for hyperspectral data for hyperspectral scenes with as many as 16 classes.
And more recent developments show how to incorporate local spatial information and show
further improvement is possible.
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On training and evaluation
of SVM for remote sensing
applications

Giles M. Foody
School of Geography, University of Nottingham, UK

The design of the training and testing stages of a supervised classification is, to differing
degrees, classifier-dependent. This chapter provides an overview of the some of the key issues
in the design of training and testing stages for image classification, with particular regard to
classification by SVM. A key issue stressed is that only effective support vectors are required
in training an SVM. This feature enables SVM to derive accurate classifications from small
training sets. The accuracy of an SVM may be assessed using a variety of approaches but
some may not be practical for all types of SVM classification.

4.1 Introduction

Remote sensing has been used in a wide variety of application areas. In particular, satellite re-
mote sensing has been widely used as a source of thematic information such as land cover. This
is valuable for many reasons, not least because land cover and land cover change are major com-
ponents of global environmental change. Indeed, land cover and its dynamics greatly impact
on issues of environmental, social and economic significance and are recognized as grand
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challenges for research (Aspinall, 2008). As a result of the importance of land cover as
an environmental variable, accurate and up-to-date land-cover maps are required for many
applications.

Remote sensing can be an efficient tool for the provision of up-datable information on
land cover information at frequent intervals and for large regions. Despite remote sensing’s
considerable potential as a source of land cover information many problems are encountered.
In particular, the accuracy of land cover maps derived from remote sensing has often be
viewed as being insufficient by many in the user community (Wilkinson 1996; Foody 2002,
2008; Gallego 2004). A wide range of factors may be responsible for this situation including
the nature of the classes being studied, the properties of sensing system used to acquire the
imagery and the techniques used to extract thematic information from the imagery (Foody
2002; Pal and Mather 2003). Although aspects of accuracy assessment in remote sensing
are pessimistically biased (Foody 2008) it appears, therefore, that many challenges have to
be addressed in mapping land cover accurately from remotely sensed data. Attention in this
chapter is focused on some of the issues connected with the extraction of land cover information
via a SVM-based classification.

4.2 Classification for thematic mapping

Information on land cover and land cover change is commonly derived from remotely sensed
data with the aid of a supervised image classification analysis. A variety of classification
approaches are available and these can differ greatly in detail. Some analyses may, for example,
use only the remotely sensed data on a per-pixel basis while others may make use of ancillary
data and be undertaken on a per-parcel basis. The basic nature of the classification process is,
however, the same for most scenarios. For simplicity, this chapter will assume that a per-pixel
based classification using only spectral information (e.g. reflectance) is used but the discussion
could be generalized for other approaches.

Assuming that the remotely sensed data have been fully and rigorously pre-processed,
a supervised classification analysis may be considered to comprise three stages: training,
allocation and testing (Figure 4.1). In the first, training, stage, regions of known ground identity
(class membership) are typically identified on the image. The spectral response of these training
sites or areas may be used to generate descriptive statistics for the land cover classes to inform
the second, class allocation, stage of the classification analysis. The class allocation stage
essentially acts to convert the remotely sensed data set into a thematic map depicting the
spatial distribution of the classes of interest in the region represented by the image. In the
third, testing, stage, the accuracy of the derived thematic map is evaluated. This evaluation is
typically based on the class allocations made for the cases in the testing set, a sample of pixels
that ideally were not used in training the classifier. The assessment of classification accuracy
is typically based on a confusion matrix, which is a cross-tabulation of the actual and classifier
predicted class labels for the cases contained in the testing set. The accuracy statement derived
in the testing stage is an important summary of the quality of the classification and its suitability
for use. The end product of the supervised classification analysis is, therefore, a thematic map
of known accuracy.

For many applications, the value of the thematic map derived with a supervised classifica-
tion analysis is a function of its accuracy. The latter is a function of many variables, including
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Figure 4.1 Overview of thematic mapping from remotely sensed data with a supervised
classification. Note one popular pre-processing analysis is feature reduction, in which the
original data set of dimensionality Nb is reduced to a smaller size, Nf , without substantial
loss of information. The end of the process is a thematic map or classification of known
accuracy (the latter typically estimated from a confusion matrix).
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a suite of issues connected with the initial two stages of the classification analysis over which
the analyst has considerable influence. Since classification accuracies have often been viewed
negatively, much research effort has focused on the training and class allocation stages with
an overall aim of increasing the accuracy of classification. Considerable work has addressed
the potential of a variety of different classifiers with much recent interest focused on kernel
based techniques such as the SVM. The SVM has become popular as it has often been ob-
served in many studies to classify data sets with an accuracy equivalent to or higher than that
derived from the application of a range of alternative classifiers (Huang et al. 2002; Foody
and Mathur 2004a; Melgani and Bruzzone 2004; Dixon and Candade 2008; Oommen et al.
2008). In addition, there is scope to increase the accuracy of SVM classification further, as,
for example, is evident in studies such as those directed at including prior knowledge into the
analysis (e.g. Lauer and Bloch 2008).

This chapter focuses on the first (training) and third (testing) stages of supervised clas-
sification by SVM; details on the nature of SVM-based classifiers is given elsewhere in this
book (see especially Chapters 2–4). For completeness and to ensure that this discussion is
self-contained, however, a very brief overview of some of the salient features of classification
by SVM is given before addressing the issues connected with training a SVM classification
and evaluating its accuracy. The discussion relating to both the training and testing stages
will be placed within the context of the general approaches used in remote sensing before
considering concerns connected more specifically with SVM-based classifiers. A key focus in
this discussion of the testing stage will be on issues connected with the comparison of classifi-
cation accuracy statements as this is often the basis for evaluations of the relative performance
of image classifiers in remote sensing.

4.3 Overview of classification by a SVM

Research aimed at increasing the accuracy with which thematic maps may be derived from
remote sensing has witnessed the evaluation of many classifiers. Recent history has seen a
progression from conventional statistical classifiers such as the maximum likelihood classifier
through artificial neural networks to kernel based classifiers. The discussion here is focused
mainly on issues connected with one particularly widely used kernel-based approach, the
SVM. SVM were originally designed for binary classification problems. Although binary
applications are sometimes encountered (e.g. Sánchez-Hernández et al. 2007) most stud-
ies involve multiple classes. Fortunately, the basic binary SVM approach to classification
can be extended for the common multi-class classification problem. Frequently, this type
of classification is based on a series of multiple binary analyses following either the one-
against-all or one-against-one strategies (Huang et al. 2002; Gualtieri and Cromp 1998).
With these strategies, a multi-class problem is sub-divided into to a set of binary problems,
allowing the basic binary approach of SVM to be utilized to yield a multi-class classifica-
tion. These approaches can involve considerable time in training all of the component clas-
sifiers, especially if there are many classes or if the data set is large. Various approaches
may be used to speed up the analysis including methods that aim to reduce the size of the
input data (e.g. Cervantes et al. 2008) or reduce the number of binary analyses required
through the exclusion of redundant sub-classifiers (Ye and Teng 2007). An alternative and
computationally efficient strategy for multi-class classification is the adoption of a one-shot
multi-class SVM classifier (Hsu and Lin 2002). Irrespective of the precise method used, the
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fundamental feature of classification by a SVM is the nature in which the optimal separat-
ing hyperplane (OSH) is fitted between classes. The OSH is oriented in space such that it is
placed at maximum distance between the classes, maximizing the margin between them. This
latter property should allow a SVM to generalize more accurately on unseen cases as com-
pared with classifiers such as the multilayer perceptron neural network that aim to minimize
the training error.

A detailed mathematical explanation of SVM can be found in Vapnik (1995) with examples
in a remote sensing context including the discussions provided by Huang et al. (2002), Melgani
and Bruzzone (2004), Pal and Mather (2005) and Watanachaturaporu et al. (2008), as well as
in other chapters in this book. Here, only some of the main features are discussed to aid the
discussion on the training stage below. The key feature is to note that the OSH is formulated
from some of the training samples that lie at the edge of the class distribution in feature space
(Figure 4.2). This, often small, sub-set of a standard training set are the support vectors that
are fundamental to classification by a SVM. The classification decision function may often be
considered to be

f (x) =
l∑
i

˛iyiK(x, xi), (4.1)

where, for each of the l training cases, a vector, xi, represents the spectral response of the case
together with a definition of class membership, yi, ˛i, i = 1, . . . , l are Lagrange multipliers
and K(x, xi) is a kernel function. The magnitude of ˛i is determined by the parameter C
and lies on a scale of 0–C (Belousov et al. 2002). More detailed discussions are provided in
Chapters 3 and 4.

Figure 4.2 The fitting of the OSH between 2 classes (open and closed circles).
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The accuracy of an SVM classification varies as a function of the magnitude of the param-
etersC and � . For example, if � and/orC are set at large values then there is a tendency for the
SVM to over-fit to the training data, which can negatively impact on the ability to generalize
and accurately label previously unseen pixels. Since a high degree of generalizability is typi-
cally desirable in thematic mapping from remotely sensed data, the values for the parametersC
and � must be determined carefully for the specific task in hand. A variety of approaches may
be used for this application. For example, the training data set could be sub-divided into two
independent sets: training and validation. A variety of parameter value scenarios could then
be used with those that provide the most accurate classification of the validation set adopted.
This approach, the hold out method, may not be attractive if training data are scarce or difficult
to acquire (Bishop 1995). A popular alternative is to adopt a cross-validation analysis. With
this approach, the training set is typically broken down into S independent subsets. An SVM
may then be trained with S − 1 subsets and its accuracy evaluated on the remaining subset.
By repeating this process S times, ensuring that each subset is used only once for validation
purposes, and calculating the average validation accuracy an overall measure of the general-
izability, a particular SVM classifier, is obtained that may be used to help select parameter
settings. This approach does allow the use of a large fraction of training data for the purpose of
training, as opposed to validation, but does require the training process to be repeated S times
(Bishop 1995). A related alternative is to adopt bootstrapping, which is based on subsamples
rather than subsets of the training data set. From the various methods available to evaluate the
generalizability of a SVM the use of a cross-validation analysis is particularly popular (e.g.
Belousov et al. 2002).

The key issue to note in this chapter is that the SVM classification is based on just the
training samples that lie at the edge of the class distributions, the support vectors. The latter
are the training samples for which ˛i > 0. All of the other training cases (˛i = 0) do not
contribute to the formulation of the classifier (Equation (4.1)) and, are, therefore, irrelevant
and unnecessary. Such training cases may be removed from a training set without negative
impact on the accuracy of the classification. Perhaps more constructively, effort and resources
need not be spent in the acquisition of such training cases as they are not used in fitting the
OSH. With the classification dependent on just the support vectors, it is possible to derive an
accurate classification from a SVM trained with only a small training set (Foody and Mathur
2004b; Foody et al. 2006). A similar situation occurs for related classifiers such as the one-
class SVDD (Muñoz-Marı́ et al. 2007; Sánchez-Hernández et al. 2007) and RVM, which is a
probabilistic counterpart to the SVM (Bowd et al. 2005); although the relevance vectors for a
RVM are generally of a more anti-boundary nature than the support vectors of a SVM analysis
(Tipping 2001).

Having provided a brief overview of the nature of class allocation by a SVM, attention
now turns to the two other stages of the supervised classification. Again it is worth stressing
that the discussion is based around the use of a conventional per-pixel based classification
but should provide general material of relevance to a wide variety of other classification
scenarios.

4.4 Training stage

The basic aim of the training stage is, essentially, to provide descriptive statistics for each class
in the image that may be used to inform the class labelling process undertaken by the classifier.
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Unless using a resource such as a spectral library, the typical approach adopted involves the
acquisition of a sample of pixels of known class membership from the image to characterize
the classes spectrally. These selected pixels represent the training set that describes the classes
upon which the remainder of the supervised classification analysis is based.

Typically, the descriptive statistics derived from the training pixels are used to characterize
the classes statistically and ultimately convey the information needed to partition feature space
so that class membership may be determined for all image pixels in the allocation stage of the
classification. In the latter, each pixel of unknown class membership is allocated to the class
with which it appears to have the greatest spectral similarity. Obtaining an accurate description
of each class is therefore often seen as fundamental to the derivation of an accurate classification
(Kuo and Landgrebe 2002; Mather 2004).

Since the training stage provides the class descriptors upon which all allocations are
based the quality of the training data set used is of fundamental importance to a supervised
classification and a major determinant of classification accuracy. Many studies have shown that
the accuracy of a classification varies as a function of a range of training set properties (Zhuang
et al. 1994; Foody et al. 1995; Foody and Arora 1997; Staufer and Fischer 1997; Fardanesh
and Ersoy 1998; Foody 1999; Tsai and Philpot 2002). Indeed the nature of the training stage
can have a larger impact on classification accuracy than the type of classifier used (Campbell
2002). This situation has prompted research on the design of the training stage. The latter has
addressed issues such as those connected with the sampling design used to select training sites
(Campbell 2002; Chen and Stow 2002), size of the training set (Congalton 1991; Foody and
Arora 1997; Foody and Mathur 2004a), composition of the training set (Foody et al. 1995) as
well as issues such as the spacing of training samples, the time of sampling with respect to that
of image acquisition and the potential to automate aspects of the process (Huang et al. 2008).
However, most attention has focused on the size of training set, the number of training cases
acquired. This issue has frequently attracted attention because of the costs, especially in terms
of time and finance, involved in the acquisition of a training set (Buchheim and Lillesand
1989; Jackson and Landgrebe 2001) and its known importance for many classifiers including
SVM (see Chapter 3).

4.4.1 General recommendations on sample size

The remote sensing literature contains a range of recommendations on the size of the training
set required for a supervised classification. Much of this literature is based on a classical
statistical view of the classification process and an assumption that a complete description of
each class in feature space is required. One common recommendation in the literature is that the
size of the training set be defined as a function of the number of discriminatory variables used.
For the common situation of a classification using only the data acquired in a set of spectral
wavebands, it is often suggested that a sample comprises at least 10–30Nb cases, where Nb
defines the number of spectral wavebands used (Piper 1992; Mather 2004; van Niel et al. 2005).
The sample size estimated by this method can be large, especially if a hyperspectral data set
is to be classified. Alternatively, as the derivation of an accurate and unbiased description of
each class is often seen as an aim in the training stage, conventional statistical theory may be
used to define the required sample size. To derive the representative and unbiased description
of the classes that is commonly perceived as a requirement of training, basic sampling theory
suggests the use of some variant of random sampling to define the location of training sites.
With simple random sampling, the sample size required to characterize the spectral response
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of a class, assuming it follows a normal distribution, could be estimated using

n = �2z2

W2 , (4.2)

whereW is a specified half-width of the confidence interval, � the planning or estimated value
for the population standard deviation and z is the value of the z score at a specified level of
confidence.

Equation (4.2) provides an estimate of the sample size required to estimate the mean value
of a distribution with a specified degree of precision. The theoretical basis of this equation can
also used to determine the sample size required in a testing set for accuracy assessment, where
the aim is typically to determine the sample size required to estimate a proportion. Equation
(4.2), like the 10–30Nb heuristic, defines the minimum sample required and a ‘bigger is better’
attitude is often held by researchers. Note for example that from Equation (4.2) it is evident
that the precision of the estimate is linked to sample size; the more precise the estimate of the
mean needed, and so the smaller W , the larger the sample size that is required.

Conventional guidance is, therefore, to collect as large a sample of training cases as pos-
sible. This can have advantages in helping to control for unspecified variables that may have
an effect on the analysis. The acquisition of a large sample by random sampling will, for
example, help to accommodate for geographical variation in spectral response (e.g. variations
in crop reflectance arising as a consequence of regional variations in variables such as soil
background reflectance and growth stage or condition). Consequently, analysts are encour-
aged to embark on an expensive programme of training data acquisition driven by a desire
to have a large number of training samples from locations spread over the entire image area
capture and represent the full spectral variability of the classes. Although this can be costly
in time and resources the literature does, however, show that, for a variety of classifiers and
environments, classification accuracy is positively related to training set size (Pal and Mather
2003; Zhuang et al. 1994; Foody et al. 1995; Arora and Foody 1997; Foody and Mathur
2004a) and so that the effort expended in aquiring the training data set would seem to be
worthwhile. It should be noted, however, that the standard recommendations on training set
size estimation are of a very general nature and are often made without any regard to the
specific study area, the complexity of the classes to be mapped (e.g. the Anderson level)
or the classifier to be used and the aim of the analysis (Foody et al. 2006). The adoption
of a standard approach to training will require the acquisition of a large training set, which
may be undesirable as training data acquisition is often expensive (Chi and Bruzzone 2005;
Mantero et al. 2005) and may be unnecessary as some of the training data may be of little
or no value. The latter, as discussed below, is important in the context of classification by an
SVM.

The size of training set is not the only variable to consider in the design of the training stage.
The acquisition of and post-processing of training data often includes actions that may have
an important impact on the training data and so ultimately the classification and its accuracy.
For example, it is desirable that only pixels that actually represent an area of the class being
described are used in its description. Thus, the pixels selected for training purposes should
ideally be pure members of the relevant classes. To achieve this researchers often deliberately
mask out or exclude boundary regions where the mixing of class spectral responses may occur
(e.g. Arikan 2004). Additionally, some analysts apply post-acquisition refinement operations
to the training data that remove outliers or down-weight the contribution of cases perceived
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to be atypical of the class being characterized (Buttner et al. 1989; Aria 1992; Ediriwickrema
and Khorram 1997; Mather 2004). Alternatively, some researchers use seed functions in the
acquisition of training data (e.g. Sun et al. 2003), which do not allow the inclusion of pixels with
values greatly different from the seed. The use of such post-acquisition refinement operations
and seed functions will generally act to shift focus towards the purest exemplars of the classes.
This situation may be useful if interest is focused on the characterization of the class centroid
but, as discussed below, may be unsuitable if using a SVM.

In summary, therefore, the aim of the training stage has conventionally been to acquire a
large sample of pure pixels to describe the classes. Some approaches for training set definition
or refinement adopted may, however, act to bias the description by placing emphasis on cases
typical of the class centroid. This may be suitable for some classification analyses but need
not be generally desirable. Indeed, the basis of the conventional approach to training set
design may not actually be focused on the provision of the critical information needed for an
accurate image classification. It may be preferable instead to tailor the approach to training
data acquisition to the particular problem in hand (Foody et al. 2006; Sánchez-Hernández
et al. 2007), with particular regard to the selected classifier.

Classifiers may differ greatly in how they use the training data in order to partition feature
space for class allocation. It is, therefore, unsurprising that different classifiers applied to an
image often produce dissimilar allocations even if using the same training set (Huang et al.
2002; Foody and Mathur 2004a). As classifiers differ in the way they partition feature space
into classes, the value of individual training cases and the nature of an ideal training set
may vary considerably from one application to another. For example, the training data for a
parallelepiped classification should ideally describe accurately the extremities of the classes
in feature space, while it is more important to estimate accurately the class centroids for a
minimum distance to means classifier. Classifiers also differ in how the training data set is used.
The popular maximum likelihood classifier, for instance, uses parameters such as the mean
and covariance matrix that summarize the spectral response of each class while a feedforward
neural network such as the multi-layer perceptron uses each training case directly. Classifiers
can, therefore, be expected to differ greatly in terms of the required training information for an
accurate classification and individual training cases may vary greatly in value. It is possible that
a training set which could be used to derive a highly accurate classification from one classifier
may yield a considerably lower accuracy if used with another classifier (Foody 1999). For
classification by a multi-layer perceptron neural network or a SVM, the training cases that lie
both at the border of class distributions and between class centroids in data space are the most
important in terms of helping to derive an accurate classifier (Foody 1999; Foody and Mathur
2004b). These training data would, however, poorly describe the typical spectral response
of the classes and so be expected to be inappropriate for use with, for instance, a minimum
distance to means classifier.

As individual training cases vary in their value to a classifier and training sets vary in
suitability for use with different classification algorithms, the nature of the classifier selected for
a particular application should inform the design of a training data collection programme. The
typically classifier-independent design recommendations in the literature should be viewed
critically but may still be used to inform the development of a design that is suited to the
classifier selected. Critically, for a SVM, the variation in the value of the individual training
samples may be used constructively as it points to a potential to limit total training set size and
cost of training through a focus on the informative training cases. Indeed the way that some
classifiers operates makes it possible to tailor the training stage in a way that could require
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a relatively small training sample (Foody and Mathur 2004b; Foody et al. 2006). This is
the case for the SVM where the potential for accurate classification from small training sets
stems from the fundamentals of SVM-based classification, namely that only the training cases
that are support vectors are needed for accurate discrimination with all others being redundant.
In recognition of the variation in the importance of the individual training cases some studies
have sought to identify and use only the most important training samples (Foody and Mathur
2004b) or to weight training cases by importance (Yang et al. 2007). Some of the major issues
are discussed in the following section.

4.4.2 Training a SVM

The training cases in a SVM-based classification vary greatly in importance, with those
lying near the hyperplanes being most informative (Foody and Mathur 2004b). Thus with
a SVM, the desire need not be to obtain as large a training sample as possible but one
that contains the most useful training cases. These are the training samples that lie at the
edge of the class distributions but between the class centroids in feature space (the sup-
port vectors) and only these are needed in the establishment of the decision surface; the
other training cases can effectively be discarded without impacting negatively on the ac-
curacy of the classification as they do not contribute to the fitting of the OSH (Brown
et al. 2000; Belousov et al. 2002; Wang et al. 2005). Thus, the accuracy of a SVM clas-
sification depends not so much on the size of the training set but more on the location of
training data cases in the feature space. Moreover, since the computation of the decision
surface is not dependent on the dimensionality of the data, SVM can accurately classify
data in high dimensional space with a limited number of training data. SVM may, there-
fore, possibly overcome, or at least be less sensitive to, the curse of dimensionality or the
Hughes phenomenon which may negatively impact on other classifiers (Pal and Mather 2004;
Oommen et al. 2008). Consequently, it may also sometimes be unnecessary to undertake
pre-processing operations such as feature-reduction analysis (Melgani and Bruzzone 2004),
although this can sometimes remain a useful part of a classification project (Neumann
et al. 2005).

The potential to use small training sets that contain appropriate support vectors for the
derivation of an accurate classification could allow considerable savings in training data acqui-
sition to be achieved relative to the use of conventional practices. However, the realization of
this potential requires and ability to identify the most useful training cases (Foody and Mathur
2004b). A variety of approaches have been suggested for the identification of informative
training sites. For example, one approach to identify potential support vectors is to identify
the extremities of the class distributions in feature space with the aid of knowledge on the
variables controlling the spectral response of the classes. The principles of this knowledge-
based or intelligent approach to training have been identified (Foody and Mathur 2004b) and
may be illustrated by a simple hypothetical example.

The basis of the intelligent training approach is to use knowledge of the factors that influ-
ence the spectral response of the classes to help identify informative training sites. Consider
a project that aims to derive a thematic map of a stereotypical tropical island. Aside from the
large sandy beaches that ring the island, the island is covered in forest. This simple scenario
involves three classes: vegetation, beach and water. Each class has a distinctive interaction
with the electromagnetic radiation used commonly in remote sensing but there is a degree
of intra-class variation which is summarized in Figure 4.3. As a result of the intra-class
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Figure 4.3 The spectral properties of the three classes in the hypothetical example. (a)
Classes in feature space defined by the infrared and red wavebands, circles highlight the
possible location of candidate support vectors. (b) The spectral response curves of the classes,
the solid line in each class indicates the response of a candidate location highlighted in (a).

variation, the spectral response observed from a location of a particular class may lie within
an envelope of possible responses for the class (Figure 4.3(b)). Furthermore, the intra-class
variation may be evident in the area of feature space that the classes occupy (Figure 4.3(a)).
The training of a supervised classifier requires descriptive information on the location of the
classes in feature space. Rather than characterize the spectral response of each class fully, a
SVM only needs some of the relatively extreme cases of each class to be used in training.
Potential candidate training cases are highlighted in feature space by circles in Figure 4.3(a).
The spectral response associated with each location is then highlighted as a line plotted within
the spectral response envelope for each class in Figure 4.3(b). To make the intelligent training
approach operational there is, therefore, a need to be able to locate training sites that may
have the spectral response similar to the highlighted cases. Fortunately, this is often possible.
For example, the most informative training sites for the water class have a relatively high
reflectance in each of the wavebands defining the feature space. Basic knowledge of the inter-
actions of radiation with water bodies (e.g. Curran 1985) should allow the analyst to deduce
that regions of deep clear water would be inappropriate training sites as they are typically
associated with low reflectance but regions of shallow water overlying a bright toned substrate
or of turbid water would be expected to have a high reflectance. Again, a simple deduction
is that candidate locations for useful training sites for water would lie close to the shoreline,
where the water is shallow and likely to have relatively high turbidity. Similarly, for the beach
class it is known that a major determinant of the reflectance of bare sand its moisture content
(Curran 1985). Dry sand sites would be expected to have a relatively high reflectance and so
be expected to be relatively poor candidate locations for training site acquisition. However,
wet sand would be expected to have a low reflectance and so training sites acquired from
such a region would be expected to have spectral properties near the highlighted part of the
spectral response in Figure 4.3(a). Note also that these would be expected to lie near the shore-
line and so close to where the training sites for the water class would be located, providing
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a basis for an efficient fieldwork programme to collect the ground data set. Finally, in this
example, with the vegetation class, the aim would be to locate vegetated regions that had a
relatively low infra-red reflectance and high red reflectance. From knowledge of the impacts
of variables such as vegetation amount (e.g. leaf area index) and its condition (e.g. chloro-
phyll content) on the remotely sensed response (Curran 1985) the analyst might deduce that
locations likely to make suitable candidate sites for training a SVM are regions of relatively
low vegetation amount, while locations of more luxuriant coverage should be avoided. Thus
to map the land covers of the region, quite basic knowledge may be used to locate sites that
may be expected to be of particular informative value to a SVM classification. Clearly the
example used is very basic and simplified (e.g. impacts of variable such as shadow or surface
roughness have been ignored for simplicity) but its potential has been illustrated in practice.
For example, Mathur and Foody (2008a) used easy to acquire information on variables such
as crop maturity status, proximity to water bodies and soil type to direct fieldwork to define
informative training sites for a SVM classification. The use of this approach yielded a classifi-
cation of comparable accuracy to that obtained when a larger training set, acquired following
conventional practice, was used and reduced costs by approximately a quarter (Mathur and
Foody 2008a). It is also worth noting that a focus on extreme training cases has been found
to be valuable in related analyses such as support vector regression analysis (Guo and Zhang
2007).

An alternative approach to defining useful training data is to focus on areas of spectral
mixing. This is because the most useful training cases are those that lie close to where the
hyperplane is to be fitted and this lies between the classes and so in the region in which mixtures
of the class spectral responses occur. Consequently, mixed spectral responses and mixed pixels
may sometimes represent useful and informative training cases for a classification (Foody and
Mathur 2006). Such locations are normally deliberately avoided in contemporary approaches
to the training stage that focus on homogeneous regions (pure pixels). This approach would
not, however, be expected to work well if the spectral response observed from a mixture of
two classes resembled that of another class in the image.

The nature of the thematic mapping programme may also be amenable to use of a very
small training set. This is particularly apparent when attention is focused on one or just a
small sub-set of the classes present in the area imaged. This is the case in a wide range of
applications including studies focused on mapping alien species, particular crops or specific
habitats for conservation (e.g. Foody et al. 2006; Goodwin et al. 2005;. Ramsey et al. 2002;
Underwood et al. 2003; Laba et al. 2005; Hill et al. 1980; Pinter et al. 2003; Boyd et al.
2006). While conventional approaches to image classification require a large training sample
as the set of classes must be exhaustively defined and each class characterized fully, the use
of SVM-based classifiers offers the potential to derive the desired information from a small
training set in which effort has been focused on the class(es) of interest rather than what
may be considered as background. Here, the binary nature of the SVM is attractive as it may
allow the analyst to focus on separating the class of interest from all others (Boyd et al.
2006). Furthermore, when attention is focused entirely on a single class, mis-classification
amongst the classes that are not of interest is completely unimportant and can be ignored in
the testing stage of the classification. Finally, alternative scenarios for classification by SVM
exist. Of particular relevance to this section of the book is the potential for semi-supervised
classification, which makes use of unlabelled cases in training (Bruzzone et al. 2006; Camps-
Valls et al. 2007).
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4.4.3 Summary on training

Conventional recommendations on the design of the training stage appear to be focused on
describing the classes. This approach can also be biased towards the purest cases (and to
the class centroid), which is far from ideal for SVM classification as the most informative
training cases, which make good support vectors, are located towards the edge of the class
distribution in feature space and not the centre. Thus, the standard approach to training may
not actually be based on meeting the fundamental aim of training. The latter is not to describe
the classes accurately but to provide information on the classes that will aid the fitting of
classification decision boundaries or hyperplanes to separate them accurately. Approaches to
training should therefore be viewed as being classifier-dependent. This is especially important
for a SVM as the targetting of extreme cases could be seen as running directly in opposition to
the conventional guidance, especially as a small, intelligently selected training sample drawn
deliberately from sites that could be viewed as relatively atypical, even impure members, of
the classes is stressed as useful for a SVM classification. This may be a successful approach
because only the support vectors are needed and hence the highly unrepresentative sample
of cases acquired with a judgemental sample design may provide the required information.
A variety of approaches may be used depending on the specific nature of the mapping task
in-hand (Foody et al. 2006). Critically, it is possible to suggest the spectral properties of
candidate support vectors and so target training data acquisition activities to locations likely
to have the desired spectral characteristics. This presents opportunities for substantial savings
in time and effort. For example, Mathur and Foody (2008a) report ∼26% reduction in cost
of ground data collection activities without any significant loss in the ability to discriminate
classes through the use of the intelligent approach to training site selection.

Although the general basis of SVM operation applies to the various strategies of multi-
class classification there are some important differences that are worthy of discussion. Note,
for example, that the size of the training set needed may vary with different strategies to SVM
classification. For example, a one shot multi-class based SVM, which requires the solution
to a single optimization problem, may require fewer support vectors than either of the two
widely used strategies for multi-class classification based on a series of binary analyses, the
one-against-one and one-against-all approaches (Mathur and Foody 2008b). Even smaller
training sets may be used in some situations. For example, if interest is focused on a single
class using a one-class classifier such as the SVDD, which is based on the principles of the
SVM, a very small training set may provide all the necessary information for an accurate
classification (Tax and Duin 2004; Sánchez-Hernández et al. 2007). In all situations, the key
feature is that the training data are not required to describe the classes precisely but to enable
them to be separated and with a SVM this only requires effective support vectors.

4.5 Testing stage

The main aim of the testing stage of a supervised classification analysis is to convey information
on the quality of the class allocations made by the classifier. The quality of a classification may
be expressed and measured in various ways but attention is most commonly focused on the
accuracy of the class allocations. Accuracy is a measure of bias (or more strictly unbias) and
precision (Atkinson and Foody 2002). In terms of a standard image classification analysis, an
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allocation is correct if the label predicted by the classifier matches that contained in the ground
reference data set. Classification accuracy may be evaluated from various perspectives, with
particular attention focused on measures of overall accuracy (i.e. that of the entire multi-class
classification as a whole) as well as per-class accuracy (e.g. when interest is focused on just
one of the classes). Measures of classification accuracy provide a basis on which potential
users of the classification may evaluate its fitness for a proposed application.

Although the provision of a classification accuracy statement to describe the quality of
a classification is a major aim it is not the sole issue to consider in the testing stage of a
supervised classification. Classification accuracy assessment is, for example, central to stud-
ies that have sought to evaluate different classifiers with the superiority of one classifier over
another commonly based on observed differences in classification accuracy. In the design
of the testing stage this comparative aspect may need explicit consideration as it can have
important implications, not least on the required size of the testing set (Foody 2009a). Indeed,
while classification accuracy assessment and accuracy comparison may seem relatively simple
issues there are many challenges to be faced in their undertaking (Foody 2002, 2004, 2008,
2009a). With many challenges to address, the subject is one still open for research and devel-
opment. Here, the discussion is focused on some fundamental issues in accuracy assessment
and comparison with particular regard to SVM-based classification.

4.5.1 General issues in testing

Classification accuracy assessment has developed considerably in recent years and many
methods may be used to estimate and convey accuracy information (e.g. Congalton 1991,
1994; Congalton and Green 1999; Pontius 2000, 2002; Foody 2002; Pontius and Cheuk 2006;
Lu and Weng 2007; Liu et al. 2007). Most commonly, classification accuracy is assessed
through the use of site-specific techniques based on the analysis of the entries in a confusion
or error matrix (Congalton and Green 1999; Foody 2002). This matrix is a simple cross-
tabulation of the predicted and actual class labels observed for the sample of cases contained
in the testing set (Figure 4.4). A properly constructed confusion matrix should provide a
simple summary of classification accuracy and highlight the two types of misclassification
error that may occur: omission (cases of a class incorrectly allocated to another class, and so
omitted from the class of interest) and commission (cases of another class incorrectly allocated
to the class of interest, and so commissioned by the class of interest). There are, of course,
many problems associated with the derivation of a confusion matrix and measures of accuracy
from it. This includes, amongst other things, issues connected with the sample design used
to acquire the testing set and the quality of the ground data (Foody 2002, 2009b). Thus some
of the issues encountered in the training stage, such as determination of required sample size,
also feature in the testing stage. For simplicity, it will be assumed that the analyst has been
able to generate a confusion matrix following a simple random sampling design. Discussion
on other sample designs and their implications as well as general background to the testing
stage is given in the literature (e.g. Stehman 1999, 2000; Wickham et al. 2004). Attention will
also focus only on the standard situation in which a raw or unprocessed confusion matrix is
used as some, albeit popular, approaches such as matrix normalisation are often inappropriate,
especially if interest is focused on an individual class (Stehman 2004; Liu et al. 2007).

The confusion matrix may be used to derive a variety of measures to express the accuracy
of a classification (Trodd 1995; Stehman 1997; Liu et al. 2007). The two most widely used
measures of overall classification accuracy are the proportion of correctly allocated cases and
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Figure 4.4 The assessment of image classification accuracy. (a) The actual and classifier
predicted class label of each of the n testing cases is defined. (b) The cross-tabulation of
the actual and predicted labels yields a confusion matrix from which various measures of
accuracy may be derived. The total in each row or column defines the matrix marginal values.
Note there is no accepted style of matrix presentation and so the row and column labels can
be swapped but their meaning must be remembered when producing per-class estimates of
accuracy.

the kappa coefficient of agreement (Trodd 1995). The proportion of correctly allocated cases
is simply the sum of cases contained in the main diagonal of the confusion matrix divided
by the total number of cases used to define the confusion matrix. This value is often mul-
tiplied by 100 to yield the percentage of correctly allocated cases, which provides a basic
measure of the overall accuracy of a classification. If interest is focused on the accuracy with
which a specific class has been classified rather than on the overall classification accuracy,
the key concern is the proportion of cases of that class that have been correctly classified. In
this situation, the measure of per-class accuracy is based on the ratio of cases contained in
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the relevant element of the matrix’s main diagonal to the relevant marginal value. Note that
the latter may be derived from two perspectives depending on whether the matrix is viewed
along the rows or columns. As there is no accepted standard way of presenting the matrix,
with rows, for example, sometimes used for the ground data and at other times for the
predictions of the classifier it may be appropriate to consider the two perspectives in terms
of the mis-classification errors to which they relate. If attention is focused on omission
errors, accuracy may be expressed by what is commonly referred to as producer’s accu-
racy. The latter is the number of correctly allocated cases of the class divided by the total
number of cases of that class; the latter would be represented by the row marginal of the
matrix depicted in Figure 4.4(b). Conversely, if attention was focused on commission error,
accuracy could be expressed by what is commonly referred to as the user’s accuracy. User’s
accuracy is the number of correctly allocated cases of the class divided by the total number
of cases predicted to belong to that class (i.e. the column marginal of the matrix depicted in
Figure 4.4(b).

The kappa coefficient of agreement has been widely used in remote sensing as a measure
of classification quality. The kappa coefficient is a re-scaled measure of the proportion of
correctly allocated cases that accounts for the effects of chance agreement (Congalton et al.
1983; Congalton and Green 1999; Smits et al. 1999; Wilkinson 2005) and the general formula
for its calculation is

�̂ = mo −mc

1 −mc
, (4.3)

where mo is the proportion of cases in agreement (i.e., the proportion of correctly allocated
cases in the testing set) andmc is the proportion of agreement that is expected by chance. The
resulting value provides a measure of overall classification quality. A per-class based measure,
conditional kappa, may also be derived if interest is focused on the accuracy with which a
particular class has been classified (Congalton and Green 1999).

The kappa coefficient has often been promoted on the basis that its calculation includes
a correction for chance agreement and that a variance term can be calculated for it which
facilitates statistical comparisons (e.g. Congalton et al. 1983; Monserud and Leemans 1992;
Janssen and van der Wel 1994; Smits et al. 1999; Wheeler and Alan 2002). The latter issue
is especially important as there is often a desire to compare classifications in order to aid the
evaluation of two or more classifiers. For example, one might wish to determine if a SVM
provided a more accurate classification than some other classifier. The variance term is critical
here as the classification accuracy statements derived typically are estimates of accuracy and
so the simple summary measures of accuracy derived from a confusion matrix should not be
compared directly without regard to their estimated variances. Instead a statistically rigorous
approach that compares the derived summary measures with regard to the variances should
be followed to determine the statistical significance of the differences.

The kappa coefficient has been widely promoted in the remote sensing literature as a mea-
sure for accuracy assessment because of the ability to compare kappa coefficients rigorously
(Congalton and Mead 1983; Congalton et al. 1983; Janssen and van der Wel 1994; Smits et al.
1999). From a classification accuracy comparison perspective, the aim is to determine if the
difference in the derived estimates can be inferred to indicate a difference in the associated
population parameters of map accuracy. The statistical significance of the difference in accu-
racy between two classifications with independent kappa coefficients, represented by �̂1 and
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�̂2, may be evaluated with the normal curve deviate,

z = �̂1 − �̂2√
�̂2
�1

− �̂2
�2

, (4.4)

where �̂2
�1

and �̂2
�2

represent the estimated variances of the derived coefficients.
The significance of the difference between the two kappa coefficients and so, by inference,

the difference in classifier performance may assessed by comparing the value of z calculated
from Equation (4.4) against tabulated values. At the widely used 0.05 significance level, a
value of z > 1.96 indicates that two coefficients are significantly different (Congalton et al.
1983; Congalton and Green 1999). Although this approach has been widely used in classifier
comparisons its use may often be inappropriate. This is because the kappa coefficient itself
is of debatable value as an index of classification accuracy and the assumptions underlying
the comparison of coefficients are often invalid in remote sensing applications. Indeed the
meaning and value of the kappa coefficient in classification accuracy assessment has often
been questioned (Stehman 1997; Turk 2002; Jung 2003; Foody 2008) with each of the com-
monly argued reasons for using the kappa coefficient as a measure of map accuracy open to
criticism (Foody 2008). In relation to comparative studies, a key issue is that the approach
outlined assumes that the samples used to estimate the kappa coefficients are different and
independent. This is often not the case in remote sensing studies. In the latter, it is common
to use the same testing set of cases in the evaluation of each classification. The samples are,
therefore, related and this feature needs to be recognized in the comparison (McKenzie et al.
1996; Donner et al. 2000). Methods to compare related kappa coefficients could be used in-
stead, which account for the covariance between kappa statistics due to the use of a related
sample (e.g. Donner et al. 2000), but the limitations of kappa coefficients as a measure of
classification accuracy remain. Fortunately, however, there are other approaches that could be
used to measure classification accuracy and to compare accuracies. One simple approach is to
use the proportion of correctly allocated cases as a measure of accuracy. A variance term can
be derived for this, and other measures of accuracy, which also facilitates accuracy comparison
(Foody 2004). For example, the statistical significance of differences in the proportion of cor-
rectly allocated cases observed from two classifications,m1 andm2, may be estimated instead
from

z = m1 −m2√
m̄(1 − m̄)[ 1

n1
+ 1

n2
]
, (4.5)

where m̄ = (o1 + o2)/(n1 + n2), in which o1 and o2 are the number of correctly allocated
cases in two independent samples of size n1 and n2 respectively. Equation (4.5) may be
viewed as the alternative to (4.4) for independent samples. If the samples are related the
statistical significance of the difference between two proportions may be evaluated us-
ing McNemar’s test. The latter is based focused on the discordant cases, those that were
correctly classified by one classifier but mis-classified by the other. This test has been
used in the comparison of classifications derived from remotely sensed data (Foody 2004;
Ouyang et al. 2006; De Leeuw et al. 2006) and is based on a matrix of the type shown in
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Figure 4.5 The basis of the McNemar test for comparing classifiers. Each of the n cases is
allocated to the relevant element of the 2 × 2 matrix. For example, cases 1and 2 would be
contributors to the subset of cases that form n21 while case 3 would contribute to n22. The test
focuses on the discordant subset of cases (contained in n12 and n21).

Figure 4.5. Using the notation defined in Figure 4.5, the McNemar test is typically based on

z = n12 − n21√
n12 + n21

. (4.6)

Irrespective of whether the samples are independent or related, the size of the testing set needs
to be large enough to detect a meaningful difference in accuracy (Foody 2009a). Determining
the required sample size requires specification of a minimum important difference in accuracy
(effect size) together with the desired significance level and power (Foody 2009a). For example,
the sample size required for a typical remote sensing scenario using the McNemar test may
be estimated from

n = |z˛�1/2 + zˇ(� − ı2)1/2|2
ı2 , (4.7)

where z˛ and zˇ are appropriate values of z for the selected significance level (˛) and power
(1 − ˇ) of analysis respectively, � is the proportion of mismatched cases and ı the effect size
or minimum detectable difference (Connor 1987). Further details in a remote sensing context
are given in Foody (2009a).

Although popular, hypothesis testing based approaches to accuracy comparison, such
as those outlined above, are not problem-free. One major limitation is that the hypothesis
text based approach only gives a basic dichotomous outcome, in which the hypothesis (e.g.
that a difference in accuracy exists) is ‘accepted’ or rejected but conveys no information
on the magnitude of the difference. An alternative to hypothesis test based approaches for
classifier comparison is to base evaluations of differences on the confidence interval fitted to
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derived estimates (Di Stefano 2004). The latter can provide a richer basis on which to evaluate
differences in accuracy. In addition, the approach may also be easily used for a range of
scenarios commonly encountered in remote sensing studies, including testing for a difference,
equivalence or non-inferiority. A discussion of this approach for these three scenarios is given
in Foody (2009c).

4.5.2 Specific issues for SVM classification

Although classification accuracy assessment is often thought to be independent of the classifier
this is not strictly the case. In particular, with a SVM one problem is that it may sometimes
be impossible to generate a full confusion matrix to summarize the class allocations made.
This is evident with multi-class classification following the one-against-all strategy. With this
approach it is possible for a case to be of uncertain class membership (Mathur and Foody
2008b) and so make it impossible to calculate measures such as the kappa coefficient. While
this is not a major problem given the limitations of the kappa coefficient as a measure of accu-
racy it can still be undesirable for some applications. For example, some users may wish to use
the confusion matrix for post-classification analyses such as rescaling estimates of class areal
extent on the basis of the pattern of misclassification depicted in the matrix (e.g. Prisley and
Smith 1987). The inability to define the matrix fully means that the full nature of misclassifica-
tion is unknown and this may limit some post-classification activities. Thus, the classifier to be
used in a study should be considered as a variable impacting on the design of the testing stage.

4.6 Conclusion

The training and testing stages of a supervised image classification require careful planning
and design in order to optimize a classification analysis. Both stages are, to differing degrees,
classifier-dependent. For classification by a SVM, the nature of the SVM operation can have
important implications in both the training and testing stages.

In training the classifier, the dependence of the SVM on only the training cases that lie at
the edge of the class distributions between class centroids (the support vectors) provides an
opportunity to derive an accurate classification from a small training set. The realization of
this potential requires a means of predicting the most useful training areas and fortunately this
may sometimes be possible. Knowledge of the variables that influence the spectral response of
the classes to be mapped may, for example, allow the nature of the most informative training
cases to be defined and this information used to steer the training data acquisition programme.
By focusing attention upon only these training cases it is possible to derive a classification
that is as accurate as one derived from a much larger training set derived following standard
procedures. Critically, rather than acquire a large and representative sample to describe the
classes it may be more appropriate with a SVM to acquire a small, unrepresentative sample
from deliberately selected locations. This enables the use of a small, potentially inexpensive,
training set for the derivation of an accurate image classification; the accuracy should be
comparable to that derived from a classification based on a much larger training set acquired
following conventional practices.

Although the testing stage is less classifier-dependent than the training stage there are some
critical issues of relevance to studies based on SVM. First, it must be stressed that with the
one-against-all strategy to multi-class classification it may not always be possible to formulate
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a complete confusion matrix. Although the partial matrix derived may be perfectly adequate
for the derivation of some accuracy measures such as the proportion of correctly allocated
cases it may not, for example, be possible to calculate some measures of overall (e.g. the
kappa coefficient) or some per-class indices of accuracy. Second, in relative comparisons of
classification accuracy comparing SVM against other classifiers it is common to use the same
test set. The statistical significance in the difference between two classifications of the same
test set may be evaluated with the use of a test such as the McNemar test or through comparison
of confidence intervals fitted to the derived estimates of accuracy. In comparative analyses,
however, it is important to consider issues of sample size, significance level and power if the
analysis is to have the potential to yield useful results.
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In this chapter we first present a framework suitable for obtaining a nonlinear version of the
Fisher’s Discriminant (KFD). Then we propose an iterative classification algorithm for KFD
using heterogeneous kernel models (AKFD). In contrast with the standard KFD that requires
the user to predefine a kernel function, we incorporate the task of choosing an appropriate
kernel into the optimization problem to be solved. The choice of kernel is defined as a linear
combination of kernels belonging to a potentially large family of different positive semi-
definite kernels. Experiments on a Hymap dataset demonstrate that the AKFD algorithm
outperforms the linear version of the Fisher’s discriminant and also significantly reduces the
time required to train the KFD algorithm while maintaining similar performance.

5.1 Introduction

In hyperspectral data analysis, materials of practical interest, such as agricultural crops, forest
plantations, natural vegetation, minerals, and fields of interest in urban areas exist in a variety
of states and are usually observed in a number of conditions of illumination. That is, most
land-cover types do not have a single spectral response. For example a crop type will show
different spectral characteristics at different times of the day and year. Similarly, roof tops
are usually made of a variety of different materials including concrete, tile, bricks, glass, etc.
all of which have different spectral responses. The number of such examples can easily be
augmented.
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One possible way to deal with this problem is to model each class distribution data using
Finite Mixture models (McLachlan and Peel 2004). Finite Mixture Models usually leads to
competitive performance when there is enough labelled data to reveal the underlying structure
of the class distributions. However, in most real world settings, this may not be the case. The
price one must pay for labelled data is usually prohibitively expensive, as acquiring labelled
data requires a tedious and time-consuming process of human labelling.

Another alternative for modelling multi-modal class distributions is kernel machines.
Kernel machines was first introduced with Support Vector Machines (Vapnik 2000) but later
adapted to several other classification algorithms including Fisher’s Discriminant (Mika et al.
1999). Kernel concept provides the flexibility required to model complex data structures that
originate from a wide range of class conditional distributions. Earlier studies show that Fisher’s
discriminant when implemented with kernel machines yields favourable results for the analy-
sis of hyperspectral data with multimodal class distributions and limited training data (Dundar
and Landgrebe 2004a, 2004b).

In the KFD algorithm the type of the kernel function and its parameters are usually
estimated from a designated set of kernel models by cross-validation. With this approach
the tuning procedure becomes quite computational for training set sizes larger than a few
hundred samples. We propose an iterative classification algorithm for Kernel Fisher’s dis-
criminant (KFD) using heterogeneous kernel models. In contrast to the standard KFD that
requires the user to predefine a kernel function, we incorporate the task of choosing an appro-
priate kernel into the optimization problem to be solved. The choice of kernel is defined as a
linear combination of kernels belonging to a potentially large family of different kernels.

Preliminary results with some benchmark datasets have been presented earlier (Fung et al.
2004). In this study additional experimental results on a hyperspectral dataset are presented to
further validate the effectiveness of the proposed algorithm in learning the optimal combination
of kernel functions. The results demonstrate that the prediction accuracy of the proposed
algorithm is not significantly different from that achieved by the standard KFD in which the
kernel parameters have been tuned using cross-validation, yet the training with the proposed
algorithm is multiple folds faster than that of standard KFD.

This chapter is organized as follows. In the next section we will briefly review the Linear
Fisher’s Discriminant (LFD). Then we will present a mathematical formulation of the Fisher’s
Discriminant algorithm that will form the basis for the Kernel Fisher’s Discriminant (KFD).
Next, we will discuss the implementation of KFD with heterogeneous kernel models and
present an iterative algorithm for automatically selecting the kernels. Finally we will present
results to validate the applicability of the proposed approach on a real-world problem with a
hyperspectral dataset.

5.2 Linear Fisher’s Discriminant

It is well known that in supervised classification problems the probability of error due to a
Bayes classifier is the best that can be achieved. The Bayes classifier compares the a-posteriori
probabilities of all classes, and assigns the sample to the class with the highest probability.
However for most classes of distributions, designing an optimum Bayes classifier is very
difficult if not impractical. The primary problem stems from the finite size of the training
set, leading to an imperfect estimate of the class probability density functions. The most
common way to mitigate this problem is to assume normal distributions for all classes. Under
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this hypothesis standard classifiers using quadratic and linear discriminant functions can be
designed.

The well-known Linear Fisher’s Discriminant (LFD) (Fukunaga 1990) arises in the special
case when the considered information classes have a common covariance matrix. LFD is a
classification method that projects the high dimensional data onto a line and performs classifi-
cation in this one-dimensional space. This projection is chosen such that the ratio of the scatter
matrices (between and within classes) or the so-called Rayleigh quotient is maximized. Even
though LFD is mainly designed for binary classification problems its extension to multiclass
classification problems is also possible. For multiclass problems the ratio of between and
within class scatter matrices can be maximized by solving a generalized eigenvalue problem.
This leads to a projection matrix with K − 1 eigenvectors where K is the number of classes
in the dataset (Fukunaga 1990).

In the rest of this chapter we will limit our discussion to binary classification problems.
More specifically, we are given a training dataset {(xi, yi)}ni=1, where xi ∈ Rd are input vari-
ables and yi ∈ {−1, 1} are class labels. Let X ∈ Rd×n be a matrix containing all the training
samples and letXk ⊆ X ∈ Rd×nk be a matrix containing the nk training samples for class ωk,
k ∈ {±}. Then, the LFD is the projection w, which maximizes

J (w) = w�SBw
w�SWw

, (5.1)

where

SB = (�+ − �−) (�+ − �−)� (5.2)

and

SW =
∑
k∈{±}

1

nk

(
Xk − �ke

�
nk

) (
Xk − �ke

�
nk

)�
(5.3)

are the between and within class scatter matrices respectively and

�k = 1

nk
Xkenk (5.4)

is the mean of class ωk and enk is an nk dimensional vector of ones.
The above problem can be reformulated as follows. First notice that if w is a solution to

(5.1), then so is any scalar multiple of it. Therefore, to avoid multiplicity of solutions, we
impose an arbitrary constraint on w�SBw = 4, which is equivalent to w� (�+ − �−) = 2.
Then the optimization problem of (5.1) becomes

minw∈Rd w�SWw
s.t. w� (�+ − �−) = 2.

(5.5)

A closed-form solution w∗ for (5.5) can be obtained by optimizing the Lagrange function
associated with the above problem. This givesw∗ = �S−1

W (�+ − �−), where� is the Lagrange
multiplier obtained as � = 1/(�+ − �−)� S−1

W (�+ − �−). For d > n, i.e. the number of
dimensionality is greater than the number of samples, SW can be singular and thus the inverse
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does not exist. To avoid such ill-conditioned settings it is a common practice to replace SW
by SW� = SW + �I. Here � acts as a regularizer over the classifier.

When classes are normally distributed with equal covariance, w∗ is in the same direction
as the discriminant in the corresponding Bayes classifier. Hence, for this special case LFD
is equivalent to the Bayes optimal classifier. Although LFD relies heavily on assumptions
that are not true in most real world problems, it has proved to be very powerful. In particular
when the distributions are unimodal and separated by the scatter of means, LFD becomes very
effective. One reason why LFD may be preferred over more complex classifiers is that as a
linear classifier it is less prone to overfitting.

For most real world data, a linear discriminant is clearly not complex enough. Classical
techniques tackle these problems by using more sophisticated distributions in modelling the
optimal Bayes classifier; however, these often sacrifice the closed form solution and are com-
putationally more expensive. A relatively new approach in this domain is the kernel version of
Fisher’s Discriminant (Mika et al. 1999), which is known in the literature as Kernel Fisher’s
Discriminant (KFD). The main characteristic of this approach is the kernel concept, which was
originally applied in Support Vector Machines and allows the efficient computation of Fisher’s
Discriminant in the kernel space. The linear discriminant in the kernel space corresponds to
a powerful nonlinear decision function in the input space. Furthermore, different kernels can
be used to accommodate the wide-range of nonlinearities that may occur in the data set. In
the next section we derive the kernel version of the Fisher’s Discriminant.

5.3 Kernel Fisher Discriminant

5.3.1 Mathematical programming formulation

The formulation in (5.5) is a parametric formulation of Fisher’s Discriminant. The dis-
criminative approach to the same problem can be obtained as follows. First, we define
�i := w�(xi − �k), ∀i ∈ ωk, k ∈ {±} and imposew��+ = 1,w��− = −1. Let �k be a vector
containing all the �i for class ωk and y be the vector of class labels. Then the problem in (5.5)
becomes

min
(w,�,�)∈Rn+d+1

1
2

∑
k∈{±}

1
nk�
�k

�
�k + 1

2w
�w

s.t. � = X�w− y

e�nk�
k = 0, k ∈ {±} .

(5.6)

The Lagrangian of (5.6) is given by

L(w, �, �1, �2) = 1

2
(��D� + w�w) + ��

1 (� −X�w+ y) + ��
2 B

��, (5.7)

where D is an n× n diagonal matrix with the first n+ entries equal to 1/(n+�) and the
remaining n− ones equal to 1/(n−�), B is an n× 2 indicator matrix with the first n+ entries
in the first column and the last n− entries in the second column set to one with all others being
zero. Here �1 ∈ Rn and �2 ∈ R2 are the Lagrange multipliers corresponding to � = X�w− y

and e�nk�
k = 0, respectively. Solving for the gradient of (5.7) equal to zero, we obtain the

Karush–Kuhn–Tucker (KKT) necessary and sufficient optimality conditions (Mangasarian
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1994) for the FLD problem with equality constraints given by

w−X�1 = 0

D� + �1 + B�2 = 0

B�� = 0

X�w− y − � = 0.

(5.8)

The first two Equations of (5.8) give the following expressions for the original problem vari-
ables (w, �) in terms of the Lagrange multipliers �1 and �2:

w = X�1, � = −D−1(�1 + B�2). (5.9)

Substituting these in the last two equalities of (5.8) gives us an explicit expression for �1 and
�2 in terms of X and y as follows:

[
X�X+D−1 D−1B

B�D−1 B�D−1B�

] [
�1

�2

]
=

[
y

B�y − B�X�X

]
. (5.10)

Solving the linear system of Equations (5.10) gives us the solution

[
�∗

1

�∗
2

]
, which in turn yields

w∗ = X�∗
1 from (5.9). Here ∗ denotes optimal solutions. In the rest of this chapter we drop

the subscript from �1 for notational simplicity.
The ‘kernelized’ version of the Fisher’s Discriminant can be obtained in this framework

by replacing the primal variable w by its dual equivalent w = X� in (5.6) to obtain:

min
(�,�)∈Rn+d

1
2

∑
k∈{±}

1
nk�
�k

�
�k + 1

2�
��

s.t. � = X�X�− y

e�nk �
k = 0, k ∈ {±} ,

(5.11)

where the objective function has also been modified to minimize weighted 2-norm sums of
the dual variables. If we now replace the X�X by a nonlinear kernel K(X�, X), we obtain
a formulation that is equivalent to the Kernel Fisher Discriminant described in (Mika et al.
2000):

min
(�,�)∈Rn+d

1
2

∑
k∈{±}

1
nk�
�k

�
�k + 1

2�
��

s.t. � = K(X�, X)�− y

e�nk�
k = 0, k ∈ {±} .

(5.12)

Recent SVM formulations with least squares loss (Suykens and Vandewalle 1999) are much
the same in spirit as the problem in (5.6). Using a similar duality analysis to the one presented
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here, and then ‘kernelizing’, the authors obtain the objective function

�
1

2
‖�‖2 + 1

2
��K(X�, X)�. (5.13)

The regularization term ��K(X�, X)� determines that the model complexity is regularized
in a reproducing kernel Hilbert space (RKHS) associated with the specific kernel K where
the kernel function K has to satisfy Mercer’s conditions and K(X�, X) has to be positive
semi-definite.

By comparing the objective function (5.13) with problem (5.12), we can see that problem
(5.12) does not regularize in terms of RKHS. Instead, the columns in a kernel matrix are
simply regarded as new featuresK(X�, X) of the classification task in addition to the original
features X. We can then construct classifiers based on the features introduced by a kernel in
the same way we build classifiers using original features X.

5.4 Kernel Fisher’s Discriminant with heterogeneous
kernels

The kernelized version of the Fisher’s Discriminant (KFD) gives us the flexibility required
to model complex data structures that originate from a wide range of class conditional
distributions. Like its linear space counterpart, the statistics estimation is performed at full
dimensionality (no feature extraction is needed) allowing us to exploit all the separability
that the data provides without having to deal with severe numerical issues.

Like most other kernel-based approaches KFD also suffers from the computational com-
plexity of working with kernel functions to a greater extent. The computational complexity
of the algorithm is on the order of O(n3), making its use impractical for large datasets. A
common way around this problem is to expand the kernel matrix in terms of a random subset
of the training samples. However, the problem of selecting the best kernel function type and
parameters still remains. Usually, cross-validation is used to optimize the algorithm over a
large number of kernel parameters and the parameter set that maximizes the cross-validation
performance is chosen as the optimum set.

Cross-validation is a method for estimating predictive error of the classifier with the training
data. It splits the training dataset into k equal-sized pieces called folds. At each stage one fold
is left out as testing data and the classifier is trained with the remaining k − 1 folds. This
process is repeated until all k folds are tested and the aggregate test error is recorded as the
k-fold cross-validation performance.

In this section we propose a methodology for selecting the optimum kernel function as a
weighted summation of several other kernel functions where the weights of the kernel functions
are learned automatically through an alternating optimization technique. To be more specific,
let us suppose that instead of the kernel K being defined by a single kernel mapping (i.e.,
Gaussian, polynomial, etc.), the kernel K is composed of a linear combination of kernel
functions Kj, j = 1, . . . , k, as below

K(X�, X) =
k∑
j=1

ajKj(X
�, X), (5.14)

where aj ≥ 0.



KERNEL FISHER’S DISCRIMINANT WITH HETEROGENEOUS KERNELS 117

As pointed out in Lanckriet et al. (2003), the set {K1(A,A′), . . . , Kk(X�, X)} can be seen
as a predefined set of initial ‘guesses’ of the kernel matrix and it could contain very dif-
ferent kernel matrix models, (e.g., linear, Gaussian, polynomial) with different parameter
values. In this formulation parameters specific to each kernel are fixed a priori. Instead of
fine tuning the kernel parameters for a predetermined kernel via cross-validation, we can op-
timize the set of values ai ≥ 0 in order to obtain a positive semi-definite linear combination
K(X�, X) = ∑k

j=1 ajKj(X
�, X) suitable for the specific classification problem. Substitut-

ing Equation (5.14) into Equation (5.11), we obtain the KFD formulation with heterogeneous
linear combinations of kernels as follows

min
(�,�,a)∈Rn+d+k

1
2

∑
k∈{±}

1
nk�
�k

�
�k + 1

2�
��

s.t. � = ∑k
j=1 ajKj�− y

e�nk�
k = 0, k ∈ {±}
aj ≥ 0, j ∈ {1, . . . , k},

(5.15)

where Kj = Kj(X�, X). When considering linear combinations of kernels, the hypothesis
space may become larger, making the issue of capacity control an important one. It is known
that if two classifiers have similar training error, a smaller capacity may lead to better general-
ization on future unseen data (Cherkassky and Mulier 1998; Vapnik 2000). In order to reduce
the size of the hypothesis and model space and to gain strong convexity in all variables, an
additional regularization term 1

2a
′a is added to the objective function of problem (5.15). The

problem then becomes

min
(�,�,a)∈Rn+d+k

1
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∑
k∈{±}

1
nk�
�k

�
�k + 1

2�
��+ 1

2a
�a

s.t. � = ∑k
j=1 ajKj�− y

e�nk �
k = 0, k ∈ {±}
aj ≥ 0, j ∈ {1, . . . , k}.

(5.16)

A new sample x is then classified by the following classifier:

�

k∑
j=1

(ajKj(x,X)) =
{≥ b, x ∈ ω+,
< b, x ∈ ω−,

(5.17)

where b is a predefined threshold that adjusts the trade-off between incorrectly classifying a
positive sample as negative, i.e. false negative, and incorrectly classifying a negative sample
as positive, i.e., false positive.

Even though the objective function in (5.16) is strictly convex in terms of the problem
variables �, � and a, the problem itself is not convex due to the nonconvex equality constraint
� = ∑k

j=1 ajKj�− y. However, the problem in (5.16) can be treated as a biconvex program-
ming problem first by fixing a = a∗ and solving (5.16) for � and �∗ and then fixing � = �∗
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and solving for � and a∗. More specifically when we fix a = a∗ we obtain the following
subproblem

min
(�,�)∈Rn+d

1
2

∑
k∈{±}

1
nk�
�k

�
�k + 1

2�
��

s.t. � = ∑k
j=1 a

∗
jKj�− y

e�nk�
k = 0, k ∈ {±}

(5.18)

and similarly when we fix � = �∗ we obtain the subproblem

min
(�,a)∈Rn+k

1
2

∑
k∈{±}

1
nk�
�k

�
�k + 1

2a
�a

s.t. � = ∑k
j=1 ajKj�

∗ − y

e�nk �
k = 0, k ∈ {±}
aj ≥ 0, j ∈ {1, . . . , k}.

(5.19)

Note that both problems in (5.18) and (5.19) are strongly convex with a unique optimizer,
which implies that the original objective function is guaranteed to improve at each iteration.
We are now ready to describe our proposed algorithm.

5.5 Automatic kernel selection KFD algorithm

Algorithm 5.5.1 Automatic kernel selection KFD Algorithm (AKFD)
Given n data points in Rd represented by the d × n matrix X and vector y of ±1 labels
denoting the class of each data point (i.e., each column of X), the parameter � and an initial
a0 ∈ Rk, we generate the nonlinear classifier (5.17) as follows:

(0) Calculate K1, . . . , Kk , the k kernels on the kernel family, where for each j, Kj =
Kj(X�, X).

For each iteration i do:

(i) Given a(i−1) calculate the linear combination K = ∑k
j=1 a

(i−1)
j Kj.

(ii) Solve subproblem (5.18) to obtain �(i).

(iii) Calculate Kj�(i) for j = 1, . . . , k.

(iv) Solve subproblem (5.19) to obtain ai.

Stop when a predefined maximum number of iterations is reached or when the change in value
of the objective function (5.16) evaluated in successive iterations is less than �.

The most common cases arise when k 
 n (i.e., the number of kernel functions considered
on the kernel family is much smaller than the number of data points). In such situations, the
complexity of the AKFD algorithm 5.5.1 is approximately O(n3).

Since each of the two optimization problems ((5.18) and (5.19)) that are required to be
solved by the AKFD algorithm are strongly convex and thus each of them have a unique
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Figure 5.1 A saddle point for the function z = x2 − y2. It behaves like a local minimizer
when projected along the x-axis.

minimizer, the AKFD algorithm can also be interpreted as an Alternate Optimization (AO)
problem (Bezdek and Hathaway 2003). Alternate Optimization divides the entire variable
space into a predefined number of subspaces and optimizes one group of variables at a time
while the remaining variables are fixed. Classical instances of AO problems include fuzzy
regression c-models and fuzzy c-means clustering.

The AKFD algorithm then, inherits the convergence properties and characteristics of AO
problems. As stated in Bezdek and Hathaway (2002), the set of points for which Algorithm
5.5.1 can converge may include certain types of saddle points (i.e. points behaving like local
minimizers only when projected along a subset of the variables, see Figure 5.1). However,
it is also stated that it is extremely difficult to find examples where convergence occurs to a
saddle point rather than to a local minimizer. If the initial estimate is chosen sufficiently near a
solution, AO is shown to converge linearly to a local minimizer (Bezdek and Hathaway 2002).
In practice, we found that Algorithm 5.5.1 typically converges in 3 or 4 iterations to a local
solution of problem (5.16).

5.6 Numerical results

5.6.1 Dataset used: Purdue Campus data

This data set is a flightline over the Purdue University West Lafayette Campus. The hyper-
spectral data used was collected on September 30, 1999 with the airborne HYMAP system
(Kruse et al. 2000), providing image data in 126 spectral bands in the visible and IR regions
(0.4–2.4�). The system was flown at an altitude such that the pixel size is about 5 metres.
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Table 5.1 Number of labelled samples available for
each class identified in the Purdue Campus Dataset

Classes Number of samples

Roof tops 10 182
Streets 4571
Grass 1539
Trees 1743
Paths 907
Shadow 434
Cars 934
Fields 608

Total 20 918

The data set contains 358 scan lines with 390 pixels in each scan line. The list of classes and
number of labelled samples for each class is given in Table 5.1. The image of the scene and
the corresponding ground-truth regions of interest are shown in Figure 5.2.

5.6.2 Classifier design

We designed three different versions of Fisher’s discriminant. As a baseline classifier Linear
Fisher’s Discriminant (LFD) is considered. To find out if the kernel version of the Fisher’s
Discriminant improves our baseline, we implemented the Kernel Fisher’s Discriminant (KFD).
Finally we design the automatic kernel selection algorithm for the Fisher’s discriminant
(AKFD) to see how much we save from the training time and if this is achieved while
maintaining the similar performance levels achieved by KFD.

The classifier parameters namely the regularization parameter, �, and the type of the ker-
nel function and the corresponding parameter are optimized using a 10-fold cross-validation

Figure 5.2 Gray-level image and Ground Truth Fields for the Purdue Campus Dataset.
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Table 5.2 Percentage overall classification accuracies averaged over ten runs. Numbers in
parenthesis are standard deviations

Classifiers n = 209 n = 418 n = 627 n = 836

LFD 81.0 84.1 84.2 84.6
(5.2) (1.0) (0.4) (0.8)

KFD 82.5 86.5 89.3 89.9
(3.2) (2.9) (1.9) (1.5)

AKFD 80.6 85.8 87.9 90.1
(2.9) (1.6) (1.4) (0.9)

approach. For the regularization parameter a discrete set of 10 values are considered,
i.e. � = [10−10, 10−8, 10−6, 10−5, 10−4, 10−3, 5 × 10−2, 10−2, 5 × 10−1, 10−1, 1]. For the
kernel function we considered linear and radial basis function (RBF Gaussian Functions)
kernels. For the width of the RBF we considered 	 = [10−2, 10−1, 1, 10]. The data is normal-
ized such that each feature is between −1 and 1. One-against-all multi-class strategy is used
throughout the experiments (Hsu and Lin 2002).

To be more specific for the KFD algorithm a single RBF Gaussian kernel is used. The width
	 of this kernel is chosen from one of the four different values considered via cross-validation.
However, for the AKFD algorithm a linear combination of five kernel functions (i.e., a linear
and 4 RBF Gaussian functions one for each of the 	 considered) is used.

The AKFD algorithm is initialized with a set to all ones (i.e., initially all kernels are
assumed to contribute equally). The algorithm is terminated when the improvement in the
objective function at any iteration over the previous iteration is less than 0.1% or a maximum
number of 20 iterations is reached. We ran our experiments for four different sizes of training
sets, i.e. r = 0.01 (n = 209), r = 0.02 (n = 418), r = 0.03 (n = 627), r = 0.04 (n = 836),
where r denotes the ratio of the training to labelled samples. Training samples are selected
randomly and each experiment is repeated ten times. The size of the expansion set S for the
kernel matrices is limited to 250 randomly selected samples, i.e. kernel matrices are computed
usingK(X�, S) instead ofK(X�, X) where S ⊂ X and size of S is 250. The labelled samples
that are not used for training are used for testing.

5.6.3 Analysis of the results

Table 5.2 and Table 5.3 show the percentage average classification accuracies averaged over
ten runs achieved and the total time taken by each algorithm respectively. The following

Table 5.3 Total computational time (in seconds) for ten iterations of each algorithm

Classifiers r = 0.01 r = 0.02 r = 0.03 r = 0.04

LFD 99 114 147 176
KFD 3967 26 276 35 667 74 773
AKFD 2125 5902 11 834 26 133
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Figure 5.3 Classification maps obtained for LFD, KFD and AKFDR for r = 0.04, with test
accuracies of 86.5%, 90.5% and 90.6%, respectively. (See plate 1)

conclusions can be drawn from these results. When the training size is small the linear version
performs as well as the kernel version. As the training size increases, the linear version is no
longer competent yet the prediction accuracy for the kernel version increases with increasing
r. The proposed AKFD algorithm generates results comparable to the KFD algorithm yet it is
multiple folds faster than the KFD algorithm. For r = 0.04 (roughly 800 samples) the entire
training plus testing took roughly 21 hours of running time. The same task is completed in
7 hours by the AKFD algorithm. The computer used for these experiments was equipped with
intel core 2 duo CPU with a 1.8 GHz clock speed.

The classification maps obtained for r = 0.04 (for one of the iterations) are dis-
played in Figure 5.3 for LFD, KFD and AKFD. As the classification maps corresponding
to KFD and AKFD suggest, the difference between the predictive accuracies of KFD and
AKFD is quite negligible, (i.e., test accuracy for AKFD is 90.6% and for KFD is 90.5%). The
areas of the image where LFD performs poorly are annotated by the gray rectangles.

The optimized values of the kernel weights, a, obtained by the AKFD algorithm and the
value of the kernel parameter, 	, selected by cross-validation for KFD are shown in Table 5.4
for each one-against-all classification task. The results suggest that AKFD favours a linear
combination with mostly non-zero weights for the individual kernel functions as opposed to
KFD, which uses only one kernel function selected from several others available. Despite
seemingly different kernel models being used by the two algorithms, we observe almost
identical predictive accuracies for the two classifiers.

Table 5.4 The optimized values of the kernel weights, a obtained by the AKFD algorithm.
The last column shows the value of the 	 selected by cross-validation for the KFD algorithm

Model, 	 Linear RBF, 0.01 RBF, 0.1 RBF, 1 RBF, 10

Roof tops 1.3 0.3 0.2 0.3 0.3 	 = 0.01
Roads 0 0.8 0 1.1 1.2 	 = 0.1
Grass 0 0.7 0 0.5 0.9 	 = 0.01
Trees 0 0.3 0 0.1 0.5 	 = 0.01
Paths 0 1.1 0 0.8 1.0 	 = 0.01
Shadow 0.9 1.0 1.2 0.9 1.0 	 = 0.1
Cars 1.2 1.1 0 0.6 0.9 	 = 0.1
Fields 1.3 0.5 0.4 0.9 1.1 	 = 0.1
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5.7 Conclusion

In this chapter we first reviewed the basics of Fisher’s Discriminant, then presented a mathemat-
ical programming approach for kernelizing the algorithm so as to obtain nonlinear classifiers
and finally proposed an alternating optimization algorithm for automatically learning the ker-
nel function. Unlike LFD, KFD has the potential to deal with data of complex structures such
as multimodal data. However, this comes at the cost of increased computational time. The
computational time for training increases, at the order of O(n3) for KFD. Moreover, to opti-
mize the algorithm for different kernel functions and parameters, a cross-validation scheme is
required. More specifically, if one is considering p different parameters for the kernel function
and using a k-fold cross-validation approach, the algorithm needs to run p× k times to find
the optimum kernel parameter. The proposed AKFD algorithm on the other hand eliminates
the need for the cross-validation by automatically learning the weights of the different ker-
nel functions considered. Let the number of iterations before convergence be N; then, for
N 
 p× k the computational gain could be significant.

In our experimental setting the AKFD algorithm usually converged in less than five it-
erations. We considered five different values for the kernel width and adopted a ten-fold
cross-validation framework. So instead of running the KFD algorithm 5 × 10 = 50 times to
select the optimum kernel parameter, we just run the AKFD algorithm once. Each iteration
of the AKFD algorithm takes roughly the same amount of time as KFD. Thus in the AKFD
algorithm the optimum kernel is selected in around five iterations whereas in KFD this task
takes fifty iterations. As for the online testing, the AKFD algorithm is slower because all of the
kernel matrices needs to be computed during testing, which takes more time than computing
just one kernel matrix as in KFD. As the numbers in Table 5.3 suggest, even when the testing
times are included, the overall computational times clearly favours AKFD over KFD.

As the experimental results suggest, the predictive accuracy of the proposed algorithm is
not significantly different from that obtained by the KFD algorithm. That is, the computational
gain is achieved while maintaining similar predictive performance.

The results in Table 5.4 indicate that the kernel functions obtained by KFD and AKFD
could be significantly different, yet both algorithms yield similar predictive performance. We
believe further research is required to investigate how the kernel selected by the KFD algorithm
correlates with that obtained by AKFD. Another area that needs attention is the initialization
of the weights, a in Section 5.5. In this study we assumed that all kernel models are a priori
likely and thus assigned equal weights for each of them. However it is worthwhile to analyse
the impact of initialization on the final weights optimized and how this in turn affects the
predictive performance of the algorithm.
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In generic problems of multi-temporal classification of remote sensing images, different
sources of information such as temporal, contextual or multi-sensor, are commonly avail-
able. The combination of these heterogenous sources of information is still an active research
area. In this chapter, we present a classification framework based on kernel methods for multi-
temporal classification of remote sensing images. The proposed kernel classifiers not only
process multi-temporal images simultaneously, and with different levels of sophistication, but
also allow one to properly combine different data sources, such as contextual information
and multi-sensor images. In this chapter, we also present two nonlinear kernel classifiers for
well-known change detection methods formulating them in an adequate high dimensional
kernel-induced feature space. The developed kernels are used in two core classification
machines: the binary Support Vector Machine classifier (SVM), and the one-class Support
Vector Domain Description (SVDD) classifier.
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6.1 Introduction

The problems of classifying and detecting changes in images from the same scene taken at
different instants of time are highly relevant in many application domains, including video
surveillance (Collins et al. 2000), medical diagnosis and treatment (Bosc et al. 2003; Lemieux
et al. 1998), driver assistance (Fang et al. 2003), and remote sensing (Bruzzone and Cossu 2002;
Bruzzone and Serpico 1997; Collins and Woodcock 1996), among others (Radke et al. 2005). In
Earth observation, the formal definition of change detection involves the use of multi-temporal
data to discriminate areas of the land cover that changed between dates (Lillesand et al. 2004).
Therefore, multi-temporal classification can be seen as a more general task, and it includes
the change detection problem as a particular case. Multi-temporal classification and change
detection techniques have become more useful in the last decade with the increasing multi-
temporal and multi-source data available from remote sensing platforms. Excellent surveys
of the remote sensing change detection literature can be found in Coppin and Bauer (1996)
and Singh (2003), and the MultiTemp workshop (http://www.ing.unitn.it/∼multi/) gathers the
related researchers and disciplines periodically. As shown in these works, efficient exploitation
and fusion of this unprecedented wealth of data is a critical issue and, consequently, many
automatic methods have been proposed in the literature for this purpose. The procedure of
identifying changed pixels in an image is of special relevance in updating digital remote-
sensing databases, follow multi-seasonal crop covers phenology, or for the automatic detection
of growing urbanization (Coppin and Bauer 1996; Singh 2003).

Two main approaches to the change detection problem are made in the literature: (1)
post-classification comparison, and (2) multi-temporal classification, also known as pre-
classification enhancement (Lillesand et al. 2004; Singh 2003). In post-classification appli-
cations, images from different dates are independently classified and co-registered, and an
algorithm is used to identify those pixels whose labels change between dates. In multi-temporal
classification applications, a single classification is performed on the combined image dataset
for the two dates. As pointed out in Lillesand et al. (2004), the post-classification approach
can fail as it relies on the accuracy of each classifier, while the multi-temporal approach could
produce poor results if the classifier is sensitive to high input dimensionality, low number of
labelled training samples, or colinearity. Therefore, in any of these approaches, we need the
classifiers not only to be accurate, but also to be robust to high dimension input spaces and low
number of labelled samples. Also, these algorithms should be able to combine the temporal
information efficiently.

6.1.1 Multi-temporal classification methods

Given two (or more) images at times t1 and t2, (t1 < t2), the problem of multi-temporal clas-
sification consists in classifying pixels at time t2 by learning the changing mapping between
t1 and t2. If the images are labelled, meaning that we know the class of some of the pixels
in the images (usually by a previous manual classification), supervised or semi-supervised
methods can be used to build an automatic classifier, which will not only classify the image
with an improved performance compared with unsupervised methods, but it will also give a
deeper insight into the problem by further inspection of the classifier decision function. Other
advantages over the unsupervised approach are the capability to explicitly detect land cover
transitions, robustness to different atmospheric and light conditions at the two acquisition
times, and their demonstrated ability to process multi-sensor/multi-source images (Bruzzone
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and Serpico 1997). To this end, many supervised methods have been developed during the
last years, such as evidence reasoning (Wang 1993), generalized least squares (Morisette and
Khorram 1997), neural networks (Civco 1993; Gopal and Woodcock 1996; Kushardono et al.
1995) and SVMs (Li and Narayanan 2003; Liu et al. 2005). In spite of being an excellent
classification framework, many of the presented supervised methods suffer from high false
alarm detection rates when the contextual information of the change is not considered. This is
an important issue in multi-temporal image classification and change detection, as in practice
the user is ultimately interested in detecting very precisely both the position and the spatial
extent of the class of interest (change). Moreover, classifiers are often sensitive to the high
dimensionality of the input space generated by putting together multi-sensor features at differ-
ent time instants, increasing the well-known curse of dimensionality (Hughes 1968). Finally,
most methods do not consider the (potentially nonlinear) cross-information between pixels at
different time instants. Several strategies have been presented to tackle these problems. Multi-
temporal and multi-band synthetic aperture radar (SAR) classification of urban areas using
spatial analysis has been addressed with both statistical and neural approaches (Pellizzeri et al.
2003). A dynamic approach to link Gaussian Markov Random Fields (GMRF) at different
dates was used in Melgani and Serpico (2003). In Melgani (2004), the scene classification is
attained using a fuzzy fusion of the spatial, spectral, and temporal information, whereas tempo-
ral information is handled using transition probabilities. In Gamba et al. (2006), feature-based
and pixel-based information from multiple SAR images was successfully used. Finally, it is
worth noting that in most cases the examples are limited to change detection between only
two dates, and thus the performance of the algorithms in long-term operational studies is un-
clear. In Boucher et al. (2006), a methodology that encompasses the use of both temporal and
contextual information is presented for the classification of long time series of satellite data.
The method is based on krigging-integrated variograms and Gaussian Maximum Likelihood
(GML) classification, and shows very good results. It should be remarked that working with
a low number of possibly high dimensional training pixels is a very challenging problem for
classical methods such as GML or neural networks, something that can be alleviated using
kernel methods.

6.1.2 Change detection methods

Changes in images have been analysed using unsupervised techniques such as multi-date
principal component analysis, temporal image substraction or ratioing, change vector analy-
sis, clustering and cross-correlation analysis (Lillesand et al. 2004). These techniques aim to
visualize, analyse or compute the differences between sample distribution for the two dates
in a low-dimensional subspace (such as two principal components or several bands). The na-
ture of changes detected in a representative-enough space can be analysed by inspecting the
spectral signatures involved in it. These techniques are unsupervised as they do not require a
labelled image at time t1 from which to learn, and then extrapolate to the subsequent image at
time t2, as supervised or semi-supervised methods do. Early approaches, considering simple
threshold-based image differencing or ratioing operators were soon proved to be inefficient,
whereas researchers have paid more attention to suitable thresholds using Bayesian crite-
ria (Bruzzone and Cossu 2002; Bruzzone and Serpico 1997). Other representative examples
are the Kittler–Illingworth thresholding algorithm for unsupervised SAR change detection
(Moser and Serpico 2006), the fuzzy hidden Markov chains model (combined with the ratio
approach) (Carincotte et al. 2006), the full methodology for change detection based on the
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analysis of the difference vectors in the polar domain (Bovolo and Bruzzone 2006), and the
study of local statistics evolution with Kullback–Leibler (KL) divergence (Inglada and Mercier
2007). Nonlinear kernel-based methods have been recently pointed out as being suitable for
change detection, since they allow large-margin classifications, and they intrinsically match
the well-known nonlinear nature of the change (Carlotto 1997). A semi-supervised oil-slick
detection is proposed in Mercier and Girard-Ardhuin (2006), using a SVDD in the wavelet
decomposition of SAR images, and a SVM for abrupt change detection was presented in
Potin et al. (2006) for detecting buried landmines from ground-penetrating radar data.
Nevertheless, none of these preceding proposals has been specially designed either to consider
cross-relations between time instants, or to include contextual and multi-source data in the
classifier.

Summarizing, in multi-temporal image classification, one tries to classify pixels of an
image at the observation time by using all available (instantaneous and/or previous) informa-
tion whereas the aim in change detection is to identify only those pixels that have changed,
according to a pre-specified criterion. They are very similar problems, but the second one will
usually require less effort and information (Radke et al. 2005). As we have seen, unsupervised
or partially supervised approaches can be used for both approaches (Bruzzone and Cossu
2002; Bruzzone and Fernandez-Prieto 2002; Bruzzone and Serpico 1997). In this chapter,
however, we focus on supervised approaches in the sense that at least a few labelled pixels
from the observation time are available.

6.1.3 The proposed kernel-based framework

Taking into account all these needs of real remote sensing applications, we present a family
of powerful nonlinear classification methods for multi-temporal, contextual, and multi-source
classification and change detection. These methods are developed under the kernel methods
framework (Schölkopf and Smola 2002; Shawe-Taylor and Cristianini 2004). The conven-
tional kernel methodology has demonstrated good results in remote sensing image classifi-
cation due to their ability to work with few labelled training samples and (potentially) high
dimensional spaces (Camps-Valls et al. 2004; Camps-Valls and Bruzzone 2005). Certainly,
these are important characteriztics of kernel methods due to the intrinsically high dimension
of hyperspectral pixels, which can be increased when multi-temporal features are stacked.
The good classification performance shown by kernel methods using the spectral signature as
input features has been recently improved by including contextual (or textural) information
in the classifier by means of composite kernels (Camps-Valls et al. 2006b). In this chapter,
we explicitly formulate a full family of kernel-based classifiers that can simultaneously take
into account spectral, spatial, and local cross-information in remote sensing data for multi-
temporal classification. We also give specific formulations for the peculiarities of the change
detection problem, and then we propose two novel kernel developments on the basis of both
the difference and the ratioing of images in the kernel space, thus constituting nonlinear dif-
ference and ratio change detection new methods. This methodology also allows efficiently
integrating different information sources, such as optical and SAR data. Several scenarios are
considered where labelled information at the prediction time may or may not be available.
The developed methods are then tested using different kernel-based classification methods:
(1) binary Support Vector Machine classifiers (SVM) (Schölkopf and Smola 2002), and (2)
one-class Support Vector Domain Description (SVDD) classifiers (Tax and Duin 1999), in
which only samples of a class of interest are used for training.
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The next sections are organized as follows. In Section 6.2 we develop a full family of
kernel classifiers for multi-temporal classification and change detection that considers the
temporal relations between pixels. Section 6.3 further develops the methodology to integrate
the contextual, textural and multi-source information in the kernel matrix. Section 6.4 shows
experimental results. Finally, Section 6.5 draws some concluding remarks and provides some
guidelines for future applications.

6.2 Multi-temporal classification and change detection
with kernels

This section first introduces a set of formulations for the problem of multi-temporal classi-
fication. The methodology exploits some principles of functional analysis and linear algebra
to construct a family of kernels of growing sophistication, in which static or dynamic multi-
temporal classification is performed. Then, we formulate kernel versions of the well-known
difference and ratio methods for change detection.

All the presented formulations are valid for any kernel method, including both for binary
SVM and the one-class SVDD. The former builds the kernel among samples belonging to all
labelled classes�, whereas the later only considers samples belonging to the class of interest.
A multi-class strategy can be subsequently used, such as one-against-one, one-against-all, or
error correcting codes. Finally, note that not only is the quadratic programming problem the
same size as in the conventional algorithm for all the proposed composite kernels, but also the
collinearity between features, and the dimensionality increase of the training samples due to
stacking features, are alleviated by constructing dedicated kernels to process each information
source.

6.2.1 Problem statement and notation

In multi-temporal classification, one tries to classify pixels of an image at the observation
time tT by using all available (instantaneous and/or previous) information, t ≤ tT , whereas
the aim in change detection is to identify only those pixels that have changed, according to a
pre-specified criterion. We follow a cascade strategy for classification, which means that only
the previously acquired information is used to classify a given image. Another possibility is
to use the information from all acquired images, as presented in Bruzzone and Cossu (2002)
and Bruzzone and Serpico (1997).

We present a family of kernels to address the more general problem of supervised multi-
temporal classification by using kernels, but we will also show that the problem of change
detection is a special case of multi-temporal classification under the composite kernels frame-
work. Two situations can take place in the supervised learning framework, according to the
availability of previous information (see Figure 6.1):

1. Labelled information is available only for t < tT , which is the most usual scenario.
This situation discourages the use of pure supervised classifiers (as SVM) trained on
the available samples, t < tT , in order to classify samples at t = tT , as far as poor results
are usually obtained. These classifiers are trained and tested with data from different
distributions, due to differences in the atmospheric and light conditions at the image
acquisition dates, sensor drifts, and others.
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Figure 6.1 Scheme for multi-temporal classification and change detection. The first problem
consists of classifying a given pixel j at time tT , xtTj using information from t ≤ tT , whereas
the second one aims to detect those pixels whose class label has changed.

2. Labelled information is available for t ≤ tT . This represents a softer problem, which
enables the use of supervised classifiers, such as binary and one-class schemes.

In both scenarios, we will compare the performance of SVM and SVDD classifiers according
to the availability of full information on the class labels or only of the class(es) of interest,
respectively.

Notationally, let {xti} ∈ RN be a multi-temporal set of labelled training samples
(pixels) at time t, and {yti} ∈ N be their corresponding output labels, where i = 1, . . . , n,
and t = 1, . . . , tT − 1 or t = 1, . . . , tT , depending on the available data. In the following, we
will assume that images at subsequent dates are co-registered. This implies (from a machine
learning point of view) that pixels {xti} are different (temporal) samples of the same object or
pixel entity xi. Also, we will assume that the spatial distribution of such classes changes, but
their number does not, and hence, � = {ω1, . . . , ωNC } is the set of NC classes that character-
ize the geographical area at any time. This can be assumed in standard situations because the
number of classes of interest is usually prespecified by the user.

6.2.2 Mercer’s kernels properties

Before starting, let us review some Mercer’s kernel properties that are relevant for this work.
More details are provided in Chapter 2. Let K1 and K2 be Mercer’s kernels over X × X with
x, z ∈ X ⊆ RN . Let us define A as a symmetric positive semi-definiten× nmatrix, and� > 0.
Then, the following are valid Mercer’s kernels:

K(x, z) = K1(x, z) +K2(x, z) (6.1)

K(x, z) = K1(x, z) ·K2(x, z) (6.2)

K(x, z) = �K1(x, z) (6.3)

K(x, z) = x�Az. (6.4)

These properties allow one to easily combine positive definite kernel matrices.
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6.2.3 Composite kernels for multi-temporal classification

The stacked input vectors kernel

The most used approach to exploit the multi-temporal information is to stack vectors at different
time instants in order to predict the label of sample at tT , such that the new input vector has
N · T elements, xi ≡ {x1

i , x2
i , . . . , xtTi }, and then build a generic mapping �(·) with these new

samples, which induces a kernel matrix whose terms are defined as:

K(xi, xj) = 〈�(xi),�(xj)〉. (6.5)

This straightforward approach to data merging can yield a good performance compared with
previously proposed methods. However, it does not consider explicit cross-relations between
samples at different time instants.

The direct summation kernel

A simple composite kernel combining the static available information can be obtained by
concatenating nonlinear transformations for each xti. Let us assume a nonlinear transforma-
tion ϕ(·) into corresponding Hilbert spaces H, and At linear transformations from Ht to H,
respectively. Then, the following mapping to H can be used:

� (xi) =
{

A1ϕ
(

x1
i

)
,A2ϕ

(
x2
i

)
, . . . ,AT ϕ

(
xtTi

)}
(6.6)

and the corresponding dot product can be easily computed as follows:

K(xi, xj) = 〈�(xi),�(xj)〉
=

〈{
A1ϕ

(
x1
i

)
, . . . ,AT ϕ

(
xtTi

)}
,
{

A1ϕ
(

x1
j

)
, . . . ,AT ϕ

(
xtTj

)}〉

=
T∑
t=1

ϕ
(
xti

)� A�
t Atϕ

(
xtj

)
(6.7)

=
T∑
t=1

Kt

(
xti, xtj

)
,

where, in the last step, we have exploited property (6.4) of Mercer’s kernels (see Section 6.2.2).
This composite kernel is simply a sum of the individual sample’s similarities at each time
instant and, again, no temporal correlation between pixels in different images is taken into
account by the classifier. However, the main advantage of using a summation approach comes
from the fact that individual kernels are computed with lower dimensional vectors, thus
alleviating overfitting problems.
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The weighted summation kernel

By exploiting Property (6.3), a composite kernel that takes into account the temporal content
in (6.7) can be made:

K(xi, xj) =
T∑
t=1

�tKt

(
xti, xtj

)
, (6.8)

where �t gives different weights to each time-dependent kernel. This temporal weight can
be either estimated from the data or fixed by the user and, in practice, a good choice is an
exponential decay, �t = �−(tT−t), � ∈ (0, 1].

The cross-information kernel

The preceding kernel classifiers can be conveniently modified to account for the cross rela-
tionship between subsequent time instants by including an additional linear transform in the
definition of the mapping function. At and B are linear transformations from the corresponding
Hilbert space to H:

� (xi) =
{

A1ϕ
(

x1
i

)
,A2ϕ

(
x2
i

)
, . . . ,AT ϕ

(
xtTi

)
,B

(
ϕ

(
x1
i

)
+ · · · + ϕ

(
xtTi

))}
. (6.9)

Then, the corresponding dot product can be easily computed:

K
(
xi, xj

) = 〈
� (xi) ,�

(
xj

)〉
=

〈{
A1ϕ

(
x1
i

)
, . . . ,AT ϕ

(
xtTi

)
,B

(
ϕ

(
x1
i

)
+ · · · + ϕ

(
xtTi

))}
,{

A1ϕ
(

x1
j

)
, . . . ,AT ϕ

(
xtTj

)
,B

(
ϕ

(
x1
j

)
+ · · · + ϕ

(
xtTj

))}〉

=
T∑
t=1

ϕ
(
xti

)� (
A�
t At + B�B

)
ϕ

(
xtj

)
+

T∑
t=1

T∑
t′=1

ϕ
(
xti

)� B�Bϕ
(

xt
′
j

)

=
T∑
t=1

Kt

(
xti, xtj

)
+

T∑
t=1

T∑
t′=1

Kt,t′
(

xti, xt
′
j

)
. (6.10)

This is a complex composite kernel, given that it contains the cross-information between all
possible kernel matrices computed at different time instants. This general equation can be
easily simplified when considering only correlation for time instants t and t + 1, and then the
composite kernel is

K
(
xi, xj

) =
T−1∑
t=1

[
Kt

(
xti, xtj

)
+Kt+1

(
xt+1
i , xt+1

j

)
+Kt,t+1

(
xti, xt+1

j

) ]
, (6.11)

where we forced subsequent time relationships just by replacing B with (ıt,t′B) in (6.10), being
ıt,t′ = 1 if t′ = t + 1 and zero otherwise.

It is also worth stressing here that each kernel in the summation must not necessarily have
the same structural form (for instance, RBF or polynomial).
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6.2.4 Composite kernels for change detection

Two kernel-based formulations are next presented. They allow us to address the change de-
tection problem, inspired in the traditional difference and ratioing operations. Defining these
operations in a high dimensional feature space allows us to deal with nonlinear relationships
between samples, and more, the (few) free parameters per feature and combination can be
readily learned from the data.

Image difference in feature spaces

In change detection, changes in the scene are to be detected, and hence this is just a particular
case of multi-temporal classification. The traditional procedure in remote sensing followed to
identify changes consists in substracting the subsequent images and then applying a threshold,
this last being tuned either heuristically or with some adequate criterion (Bovolo and Bruzzone
2006; Bruzzone and Cossu 2002; Bruzzone and Serpico 1997; Moser and Serpico 2006). This
criterion can easily be formulated in the kernel feature spaces by defining a convenient kernel
mapping function. Let us define the difference in the same sample in two subsequent images
as follows:

� (xi) = AtT ϕ
(
xtTi

) − AtT−1ϕ
(

xtT−1
i

)
. (6.12)

The corresponding dot product 〈�(xtTi ),�(xtTj )〉 can be computed as:

K
(
xi, xj

) = KtT

(
xtTi , xtTj

)
+KtT−1

(
xtT−1
i , xtT−1

j

)
−KtT ,tT−1

(
xtTi , xtT−1

j

)
−KtT−1,tT

(
xtT−1
i , xtTj

)
. (6.13)

This difference kernel can only be used if supervised information at time tT is available,
which makes it a particular case of the cross-information kernel defined in (6.10). Note that
this kernel is the nonlinear extension of simple difference in input spaces, which is a common
approach in unsupervised change detection. Difference-based methods are typically applied to
optical multi-spectral data change detection problems since the noise model can be reasonably
assumed as additive.

Image ratioing in feature spaces

Another classical change detection method is the ratioing between images at two different
dates, which accommodates change factors such as the Sun angle or the shadows. Defining
the mapping:

� (xi) =

{(√
�AtT ϕ

(
xtTi

))�
,
(

AtT−1ϕ
(

xtT−1
i

))�}�

√〈
AtT ϕ

(
xtTi

)
,AtT ϕ

(
xtTj

)〉 (6.14)

and computing the dot product, we obtain the ratioing operation in the kernel feature space:

K
(
xi, xj

) = �I +
KtT−1

(
xtT−1
i , xtT−1

j

)
KtT

(
xtTi , xtTj

) , (6.15)
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where regularization parameter � makes the kernel matrix positive semidefinite, which ensures
that this is a valid Mercer’s kernel. Note that this kernel is the nonlinear extension of a simple
ratio between time images in input spaces, which is typically applied to SAR data, as the noise
model can be reasonably assumed to be multiplicative.

6.3 Contextual and multi-source data fusion with kernels

In this section we briefly review the formulation of this family of composite kernels that
incorporates the contextual or textural information in the kernel, and also we extend it in order
to deal with multi-source data.

6.3.1 Composite kernels for integrating contextual information

Let the spectral content of a pixel at time tT be denoted as ωtTi ∈ RNω , with Nω the number
of its spectral bands, and let some (local or global) spatial feature extraction on the image
yielding vector be stTi ∈ RNs , with Ns the spatial (contextual or textural) features. A kernel-
based classifier that accounts for both the spectral and the spatial features consists of stacking
both vectors, xi ≡ {ωtTi , stTi } and using them with a standard classifier. However, the previous
composite tricks allow us to define several kernel classifiers (Camps-Valls et al. 2006b), as
follows:

• The stacked input vectors approach: K(xi, xj) = 〈�(xi),�(xj)〉.
• The direct summation kernel: K(xi, xj) = Ks

(
s
tT
i , s

tT
j

)
+Kω

(
ω
tT
i ,ω

tT
j

)
.

• The cross-information kernel: K
(
xi, xj

) = Ks

(
s
tT
i , s

tT
j

)
+ Kω

(
ω
tT
i ,ω

tT
j

)
+

Ksω

(
s
tT
i ,ω

tT
j

)
+ Kωs

(
ω
tT
i , s

tT
j

)
, where stTi and ωtTj must have the same dimension

(Nω = Ns) for this formulation to be valid. A possibility to enable its use is to extract
a spatial feature per spectral band.

6.3.2 Composite kernels for dealing with multi-source data

Multi-sensor information can also be integrated in the kernel itself in a very elegant way. If
we have optical and radar information available for the same co-registered pixel at time tT , we
can define the optical feature vector (otTi ), the radar feature vector (rtTi ), and its concatenation
(xi ≡ {otTi , rtTi }). Several combinations of dedicated kernels can be made:

• The stacked features approach: K(xi, xj) = 〈�(xi),�(xj)〉
• The direct summation kernel: K(xi, xj) = Ko(o

tT
i , otTj ) + Kr(r

tT
i , rtTj )

• The cross-information kernel:K(xi, xj) =Ko(otTi , otTj )+Kr(rtTi , rtTj )+Kor(otTi , rtTj )+
Kro(r

tT
i , otTj ), where otTi and rtTj must have the same dimension (Nr = No) for this

formulation to be valid.

6.3.3 Remarks

According to the previously presented ideas, the general problem of multi-temporal classifica-
tion consists of many constituents (temporal, spectral, spatial, source, and maybe others) that
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can be mapped into different feature spaces, and combined there by using composite Mercer’s
kernels. Some of the advantages of this approach are that we are working with dedicated
kernels for each information source, we are combining them linearly, and we are alleviat-
ing the problem of the curse of dimensionality, as long as stacking features are no longer
necessary.

6.4 Multi-temporal/-source urban monitoring

In this section, extensive comparisons are conducted for all scenarios (partial or complete
labelled information at the prediction time), for multi-temporal classification and change
detection, multi-source information fusion, and for many composite kernels combinations.
We illustrate the performance of the classification framework in a problem of multi-temporal
and multi-source image classification and change detection with two real test sites.

6.4.1 Model development and free parameter selection

We used the linear and the RBF kernel in our experiments. The linear kernel is tested to
show the performance of standard linear techniques, though it represents a more sophisticated
model than the usual approaches in the literature (maximum margin learned from the data).
The linear kernel classifiers yield a fair comparison to the nonlinear RBF kernel by following
the same composite kernels framework for including temporal, contextual, and multi-source
information. Since the number of potentially useful combinations of spatial, spectral, temporal
and multi-source composite kernels is very high, we will present results for those combinations
showing the best performances (Camps-Valls et al. 2006a,b; Camps-Valls et al. 2007).

For the linear kernel classifiers, only C had to be tuned. For the nonlinear RBF kernel
classifiers, and depending on the composite kernel used, a different � parameter was addition-
ally tuned for each kernel component. The kernel sum was normalized in the feature spaces,
this is

K̂(xi, xj) =
〈
�(xi)

‖�(xi)‖ ,
�(xj)

‖�(xj)‖
〉

= K(xi, xj)√
K(xi, xi)K(xj, xj)

. (6.16)

Free parameters were tuned in the ranges � = {10−3, . . . , 103} andC = {10−1, . . . , 103}, and
rejection fraction 	 for the SVDD was in 	 = {10−3, . . . , 100}. For multi-temporal weighted
summation kernel, � was in the range [0,1]. A non-exhaustive iterative search strategy
(
 iterations) was used. At each iteration, a sequential search of the minimum v-fold
cross-validation estimated kappa statistic on each parameter domain was performed (pa-
rameter range split in L points). In our experiments, 
 = 3 and L = 20 exhibited good
performance. A one-against-one multi-classification scheme and the multi-class scheme
presented in Muñoz Marı́ et al. (2007) were adopted for SVM and for one-class SVDD,
respectively.

6.4.2 Data collection and feature extraction

We used images collected in the Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP
project (Castracane et al. 2003). Results from the UrbEx project were used for analysing
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Figure 6.2 Images of the test areas of Rome (left) and Naples (right) at 1999. Both are
an RGB composite from L3, L2 and L1 bands (top row) and SAR log-intensities (bottom
row).

the selected test site and for validation (for further details see http://dup.esrin.esa.int/
ionia/projects/summaryp30.asp). Images from ERS2 SAR and Landsat TM sensors (acquired
in 1995 and 1999) of Rome and Naples (Italy) were used as test sites (see Figure 6.2). Only two
time instants are available here, and the classifier complexity significantly reduces (tT = 2).

An external Digital Elevation Model and a reference land cover map (Italian Institute
of Statistics) were also available. The ERS2 SAR 35-day interferometric pairs were used
and, in order to obtain the interferometric coherence from each complex SAR image pair,
perpendicular baselines between 20 m and 150 m were selected. The available features were
initially labelled as L1-L7 for Landsat bands, as In1-In2 for the SAR backscattering intensities
(0–35 days), and as Co for coherence.

Given that features were acquired by different sensors, a specific processing and condi-
tioning of optical and SAR data was previously required, and all images were co-registered.
The seven bands of Landsat TM were co-registered with the ISTAT classification data, and
resampled to 30 × 30 m (nearest-neighbour). The registration for multi-source images was at
sub-pixel level, with root-mean-squared error of about 10 m, potentially enabling good urban
classification ability (Gómez-Chova et al. 2004). For optical images, the seven Landsat TM
spectral bands (containing three VIS, one Near IR, two Short-Wave IR, and one Thermal IR
bands) were directly used, oi = {L1, . . . ,L7}. For SAR images, intensity and coherence were
computed (Fanelli et al. 2000). Since speckle noise disturbs image interpretation, a multi-stage
spatial filtering approach over coherence images was followed to increase the urban areas dis-
crimination (Gómez-Chova et al. 2006), hence yielding the fourth radar input feature, Co’.
Therefore, we defined in this case ri = {In1, In2, Co, Co’}i.

Once features were extracted from optical and SAR images, we analysed their potential
use for urban change detection. For that purpose, we represented scatter plots between fea-
tures in the different dates (1995 and 1999), see Figure 6.3. As can be observed, the high
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Figure 6.3 Scatter plots of the different considered features (both from Landsat and SAR
data sources) for the Rome image; 1995 data is represented versus 1999 data. Big gray dots
represent ‘class change’ and small black dots represent both ‘no-change’ or ‘unknown class’
in the image. These representations are very usual in the literature since one can promptly
identify changes due to natural variability (ellipse-shaped distribution), atmospheric haze or
sensor drift (skew of the ellipsoid), or the appearance of brighter/darker pixels (isolated areas
in the plot).

degree of overlapping of change and no-change pixels, along with the wide spread out of
the plot, indicate an extremely difficult change detection problem and suggests that nonlinear
methods should be deployed. One can also observe that the extracted feature Co’ can help in
discriminating between changed and unchanged pixels. We also computed spatial and textural
features from these optical and SAR features. Specifically, the spatial features for the optical
images were the average of all pixels in the surrounding 7 × 7 window, and the textural fea-
tures for the SAR data were Gabor-filtered (Clausi and Yue 2004) versions of ri at different
scales (� = 1, . . . , 4) and orientations ({0◦, 45◦, 90◦, 135◦}) thus yielding the textural radar
features.

In the following experiments, subset images from Rome and Naples scenes containing
200 × 200 pixels in areas with substantial urban changes were selected. For the Rome scene,
1392, 780 and 2978 pixels changed to ‘non-urban’, to ‘urban’, and to the ‘unknown’ status,
respectively, in this 4-year period. For the case of the Naples scene, 1826, 215 and 1973 pixels
changed to ‘urban’, to ‘non-urban’, and to ‘unknown’, respectively. Pixels in the unknown
class were not considered, hence becoming a classical binary problem of change vs. no-change
identification. In both cases, we randomly selected 25% of changed pixels for training, and
five-fold cross-validation was used for free parameter tuning. The built classifier was finally
tested on the whole image.
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6.4.3 Multi-temporal image classification

Table 6.1 shows the results for supervised classifiers. In particular, we compared SVM and
SVDD under multi-temporal classification (left) and change detection (right) using different
temporal, spatio-spectral and multi-source composite kernels for the scenes of Rome and
Naples. The best overall accuracy (OA)[%] and estimated � values are provided. We also
analysed class-by-class accuracies for selected cases, and statistical differences between
classifiers are assessed with Wilcoxon’s rank sum test at 95% confidence interval.

The following conclusions can be obtained from Table 6.1. In all cases and scenes, the
use of the RBF kernel provides much better results than the linear kernel. In turn, the linear
kernel is an upper bound of model’s performance for (change detection) thresholding methods.
For the Rome scene (Table 6.1[top]), and with unlabelled information of the prediction date
image (1999), i.e. t < tT , only labelled samples in 1995 can be used to train a classifier and
predict in 1999. In this complex situation, a purely supervised approach like SVM yields poor
solutions (OA[%]< 70% and � < 0.6), since there is no information on the change. However,
SVDD still offers good results in this situation, since rather than building a separating hyper-
plane ‘urban’/‘non-urban’, the method tries to model the ‘urban’ class . In all cases, the best
composite kernel for integrating the spatial and the different data sources was the summa-
tion kernel, i.e. dedicating different kernels for the Landsat bands, SAR features, contextual
Landsat features, and textural Gabor-filtered SAR features. This best method yielded a maxi-
mum accuracy of 84.2%, but with biased classifications, i.e., � = 0.51, which was confirmed
by looking at the individual class accuracies (90.3% for urban and 53.4% for non-urban,
respectively). Note also that solutions are much sparser for the SVDD (average of 22% of
SVs) than for the SVM (average of 59% of SVs). For the Naples scene, similar results are
obtained (Table 6.1[bottom]). Again, when no information is available at time tT , the SVDD
is a better approximation, either with RBF or with linear kernel embedding. Differences were
statistically significant (see star symbols in Table 6.1, p < 0.05).

In the case with available labelled information for tT , several composite kernels dramat-
ically improved the results in both scenes, because of the use of labelled samples from the
tT image. In these cases, SVM classifiers exhibit the best results, but SVDD classifiers also
yield stable and robust outcomes, which confirms its suitability to application scenarios in
which incomplete or partially complete information is available. Similar results have been
observed in Muñoz Marı́ et al. (2007). The same behaviour can be also seen for the neural
network, which provides lower accuracies than the nonlinear SVM and SVDD classifiers (both
numerical and statistical). The best overall results were obtained by using simple summation
kernels for integrating the spatio-spectral information and, in some cases, more complex cross-
information kernels to process the temporal information. This classifier yielded a maximum
OA = 94.3%, statistically compensated model (� = 0.78), and good individual classification
accuracies (97.1% for urban and 82.5% for non-urban, respectively) in the Rome image, and
a maximum OA = 96.8% (� = 0.64), and individual classification accuracies of 98.3% for
urban and 83.3% for non-urban in the Naples image.

6.4.4 Change detection

Table 6.1 (right) shows the results for the difference and ratio kernels in the change detection
problem. Labelled information for tT is now provided in the form of ‘change’ vs. ‘no-change’
for the 1999 image and, hence, it can be seen as a supervised learning strategy. In general, a
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(both numerical and statistical) significant difference is given by RBF-based kernel classifiers
(e.g. accuracy is about 12% higher). SVMs yield very good results in terms of accuracy
(OA > 90%, � > 0.7), but SVDD provides better kappa values (but no significant statistical
differences), which indicates well-balanced classifications with reduced false detections. For
the best SVM (SVDD) classifier, individual accuracies were 97% (98%) for the change class
and 69% (74%) for the unchange class in the Rome image dataset. For the Naples dataset,
results between SVM and SVDD did not differ significantly (98% vs. 97% for the change
class, and 75% vs. 74% for the unchange class), probably because this constitutes an easier
problem and no particular guiding to learn a specific class is included in the methods. Note,
however, that this is a different (and much easier) experimental setup than the multi-temporal
approach, as the classifier only has to detect whether the pixel labels changed or not, rather
than to estimate the class label.

6.4.5 Classification maps

Figure 6.4 represents the classification maps from the best methods (bold type in Table 6.1),
for Rome (top) and Naples (bottom). The previously discussed numerical results are in general
confirmed by visual inspection. For instance, results obtained by the SVDD method for t < tT
are much better than the SVM (more homogenous areas and lower number of false detec-
tions), also observed in the case of using the difference or ratio kernels for change detection,
even though (slightly) better accuracies are obtained using the SVM. In the case of t ≤ tT ,
SVDD does not outperform SVM, mainly because it poorly integrates the spatial/textural
information, e.g. southern parts of the Rome scene or Naples middle east, where evident
changes occur. Also, the neural network gives noisier classification maps, specially in change
detection.

6.5 Conclusions

In this chapter we have introduced a general framework based on composite kernel methods for
multi-temporal classification of remote sensing images that simultaneously take into account
spectral, spatial and multi-sensor information. We also introduced composite kernel versions
for the well-known difference and ratioing methods for change detection. All methods used,
as core learners, classifiers based on statistical learning theory: the binary SVM and the one-
class SVDD classifier. Experimental results show that binary SVM was more suitable than
the SVDD when labelled data from the prediction instant was available. However, this is not
the common situation, thus revealing the one-class SVDD as a particularly well-fitted tool for
learning the change detection problem.

Results have also demonstrated that the use of the basic composite kernels approach yields
good results in the particular application domain of urban monitoring, outperforming the tradi-
tional stacked vector approach in all cases. More sophisticated composite kernels that explicitly
include cross-relations between different information sources show better performance at the
expense of an increased computational burden. This might imply that more data need to be
available for validation purposes, something to be confirmed in the future.

Further work will also consider the formulation of semi-supervised kernel-based tech-
niques in the multi-temporal and multi-source change detection framework. At present,
good results have been obtained using the graph-based method approach presented in
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Bandos et al. (2006) and Camps-Valls et al. (2007), but other transductive and one-class
approaches could be developed for this purpose. Chapters 9 and 10 are devoted to the analysis
of semi-supervised methods.
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Kernel-based framework for multi-temporal and multi-source remote sensing data classification and
change detection. IEEE Transactions on Geoscience and Remote Sensing, 46(6), 1822–1835.

Carincotte, C., Derrode, S. and Bourennane, S. (2006) Unsupervised change detection on SAR images
using fuzzy hidden Markov chains. IEEE Transactions on Geoscience and Remote Sensing, 44(2),
432–441.

Carlotto, M. (1997) Detection and analysis of change in remotely sensed imagery with application to
wide area surveillance. IEEE Transactions on Image Processing, 6(1), 189–202.

Castracane, P., Iavaronc, F., Mica, S., Sottile, E., Vignola, C., Arino, O., Cataldo, M., Fernandez-Prieto,
D., Guidotti, G., Masullo, A. and Pratesi, I. (2003) Monitoring urban sprawl and its trends with EO
data. UrbEx, a prototype national service from a WWF-ESA joint effort. 2nd GRSS/ISPRS Joint
Workshop on Remote Sensing and Data Fusion over Urban Areas, pp. 245–248.

Civco, D. (1993) Artificial neural networks for land cover classification and mapping. International
Journal of Geographic Information Systems, 7(2), 173–186.

Clausi, D. and Yue, B. (2004) Comparing co-occurrence probabilities and Markov random fields for
texture analysis of SAR sea ice imagery. IEEE Transactions on on Geoscience and Remote Sensing,
42(1), 215–228.

Collins, J.B. and Woodcock, C.E. (1996) An assessment of several linear change detection techniques
for mapping forest mortality using multi-temporal Landsat TM data. Remote Sensing of Environment,
56, 66–77.

Collins, R., Lipton, A. and T. Kanade, T. (2000) Introduction to the special section on video surveillance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 745–746.

Coppin, P. and Bauer, M. (1996) Digital change detection in forest ecosystems with remote sensing
imagery. Remote Sensing Reviews, 13(6), 207–234.
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Target detection with kernels

Nasser M. Nasrabadi
US Army Research Laboratory

This book chapter provides a performance comparison of various linear and nonlinear anomaly
detection techniques based on kernels. Three different subspace anomaly detectors based on
Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD) Analysis, and the
Eigenspace Separation Transform (EST) are reviewed and their nonlinear versions (kernel
extensions) are discussed. In addition to the subspace-based anomaly detectors, the well-
known Reed–Xiaoli (RX) anomaly detector and its kernel version are also implemented.
Comparisons between all linear and nonlinear anomaly detectors are made using receiver
operating characteristics (ROC) curves for simulated toy data and real hyperspectral imagery.

7.1 Introduction

Hyperspectral imagery can be used in reconnaissance and surveillance applications where
objects of interest are detected and identified. This chapter describes kernel-based techniques
that are used to detect anomalies. These anomalies could be possible military targets or cam-
ouflaged objects. Hyperspectral imagery provides a significant amount of information about
the spectral characteristics of the materials in the scene that can be used for anomaly and target
detection (Chang et al. 1998; Harsanyi and Chang 1994; Healey and Slater 1999; Kwon et al.
2001; Manolakis and Shaw 2002; Reed and Yu 1990; Scharf and Friedlander 1994; Schweizer
and Moura 2001; Stein et al. 2002).

The process of detecting and identifying a target in hyperspectral imagery can be consid-
ered as consisting of two stages. The first stage is an anomaly detector that identifies spectral
anomalies or a localized spectral difference. The second stage is to identify whether or not the
anomaly is a target or natural clutter. This stage can be achieved if the spectral signature of
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the target is known, which can be obtained from a spectral library or using a spectral subspace
matched filter designed from a set of training data (Healey and Slater 1999; Manolakis and
Shaw 2002).

Almost all the anomaly and target detectors are based on a linear process that exploits the
first and second order moments of the data to identify anomalies or targets. For example, a well
known spectral anomaly detection algorithm was developed in Reed and Yu (1990) called the
RX algorithm, which is now considered as a benchmark anomaly detector. The RX algorithm
is based on exploiting the difference between the spectral signature of an input pixel with its
surrounding neighbours (Chang and Chiang 2002; Kwon et al. 2003; Stein 2001; Stein et al.
2002; Yu and Reed 1993). This distance comparison is very similar to the Mahalanobis distance
measure, which is done by comparing the corresponding wavelengths (spectral bands) of two
measurements normalized by the covariance matrix of background statistics. The conventional
RX distance measure does not take into account the higher order relationships (higher order
correlation) between the spectral bands at different wavelengths. The nonlinear relationships
between different spectral bands within the target or clutter spectral signature need to be
exploited in order to distinguish between target and background better. Similarly, most of the
target detection algorithms are based on linear matched (subspace) filters where the spectral
characteristics of a target or a target subspace representing target information is assumed to
be known. In spectral matched filters (Manolakis et al. 2000; Robey et al. 1992) a linear
mixing model is assumed where a known target spectral signature is used in conjunction
with the covariance matrix of the background data to identify a specific target. In matched
subspace detection (Scharf and Friedlander 1994; Thai and Healey 2002) a subspace linear
mixture model is used for target detection where the target and background signatures are
represented by their corresponding linear subspaces. Two other detectors, adaptive subspace
detection (Kraut et al. 2001) and orthogonal subspace projection (Harsanyi 1993) have also
been developed; they are based on using different linear models. All these target-based matched
filter like detectors are based on linear mixture models that ignore the higher order correlations
between the spectral bands.

In this chapter, we consider only the subspace-based anomaly detectors and their nonlinear
versions using a kernel approach (Müller et al. 2001; Schölkopf and Smola 2002; Vapnik 1999).
Kernel methods have emerged as new nonlinear-based learning techniques that implicitly
exploit the dot product of feature vectors generated by the nonlinear mapping of the input
vectors using kernel representations. The implicit exploitation of nonlinear features through
kernels provides crucial information about given data that, in general, the learning methods
based on linear models cannot achieve. In kernel methods the learning is performed in a high
dimensional feature space where the complexity of the given data can be possibly reduced,
subsequently generating simpler decision rules and improving generalization performance.

Many linear techniques have been extended to their corresponding kernel versions and
promising results have been reported for many applications. For example, PCA, FLD and
EST have been extended to their kernel versions corresponding to Kernel Principal Component
Analysis (KPCA) (Schölkopf et al. 1999), Kernel Fisher Discriminant (KFD) analysis (Mika
et al. 2003) and Kernel Eigenspace Separation Transform (KEST) (Goldberg et al. 2007),
respectively. In Camps-Valls and Bruzzone (2005) several regularized kernel-based methods
such as Support Vector Machine (SVM) (Vapnik 1998), KFD analysis, radial basis func-
tion neural network (Haykin 1999) and regularized AdaBoost (Rätsch et al. 2004) were
implemented and their performance was compared for classification using hyperspectral
imagery. In Melgani and Bruzzone (2004) the problem of multiclass discrimination was
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addressed by using binary SVMs for hyperspectral classification. The use of a single-class
SVM anomaly detection in hyperspectral imagery and the use of KFD for outlier detection
of faces and characters were reported in Banerjee et al. (2006) and Roth (2006), respec-
tively. A kernel-based nonlinear subspace method using KPCA was implemented in Maeda
and Murase (2002) for classification of Japanese characters. In Kwon and Nasrabadi (2005b)
the well-known hyperspectral RX anomaly detector (Reed and Yu 1990) was extended to its
nonlinear kernel version, Kernel RX (KRX). In Kwon and Nasrabadi (2007a) several target de-
tection techniques, such as Kernel SMF (KSMF) (Kwon and Nasrabadi 2007b), Kernel MSD
(KMSD) (Kwon and Nasrabadi 2006b), Kernel OSP (KOSP) (Kwon and Nasrabadi 2005a),
and Kernel ASD (KASD) (Kwon and Nasrabadi 2006a) were reviewed and their performance
was compared with their corresponding linear versions.

This chapter is organized in the following manner. Section 7.2 contains a brief overview
of kernel-based learning techniques. In 7.3 the subspace anomaly detection methods based on
PCA, FLD and EST are described. Their kernel extensions using their corresponding nonlinear
subspaces generated by the KPCA, KFD and KEST, respectively are also reviewed. RX and
KRX are also discussed for comparison with the subspace-based anomaly detectors. Results
and analysis of the anomaly and target detectors that are reviewed in this chapter with their
kernel versions can be found in Section 7.4 as applied to simulated data as well as multiple
hyperspectral data sets. Finally, concluding remarks are made in Section 7.5.

7.2 Kernel learning theory

Suppose the input data set lies in the data space (X ⊂ RJ ) and let F be a feature space (also
known as a Hilbert space) associated with X by some nonlinear mapping function �. In
particular,

� : X → F

x �→ �(x), (7.1)

where x is an input vector (x ∈ X ) that is mapped into a much higher dimensional feature
space. Mapping the data using � into F is useful in many ways. The most significant benefit
is that it is possible to define a similarity measure using the dot product in F in terms of a
function of the corresponding data in the input space. Thus, it is possible to write

k(xi, xj) = 〈�(xi),�(xj)〉. (7.2)

Equation (7.2), which is commonly referred to in the machine learning literature as the kernel
trick (Schölkopf and Smola 2002) states that all dot products in F (a task that is otherwise
computationally infeasible) can be implicitly computed by simply using a kernel function
defined on the input data. Moreover, all of this can be accomplished without actually mapping
the input vectors intoF . Hence, conveniently, the mapping�does not even need to be identified
or defined. In other words, Equation (7.2) illustrates that all dot products in F can be replaced
by an appropriately chosen Mercer kernel function k. For a more comprehensive discussion
about the properties of various types of kernels and for more information on kernel-based
learning in general, see one of the many references devoted to kernel methods (Schölkopf and
Smola 2002; Shawe-Taylor and Cristianini 2004).
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7.3 Linear subspace-based anomaly detectors
and their kernel versions

Anomaly detectors (Ahlberg and Renhorn 2004; Banerjee et al. 2006; Kwon and Nasrabadi
2005b; Kwon et al. 2003; Manolakis and Shaw 2002; Ranney and Soumekh 2006; Reed and
Yu 1990; Stein et al. 2002; Willis 2005) are pattern recognition schemes that are used to detect
objects of interest. Almost all anomaly detectors attempt to locate anything that looks different
either spatially or spectrally from its surroundings using a dual-window approach. Its use is
predicated on the fact that it exploits both spatial variability in the image as well as spectral
variability among different materials. In the dual-window approach, two concentric windows
centred at each test pixel are opened creating two disjoint regions: an inner-window region
(IWR) and an outer-window region (OWR). Hence, the local pixel neighbourhood is separated
into two smaller regions. The size of the inner window is generally set so that the inner window
can fully enclose a target. In most anomaly detectors another concentric window centred at
the test pixel known as the ‘guard band’ is utilized as well. An example of a dual-window
with guard band is seen in Figure 7.1. The guard band is slightly larger in size than the IWR,
yet still smaller than the OWR and is used to reduce the probability that some target spectra
will contaminate the OWR statistics and hence affect the background model (Ranney and
Soumekh 2006).

One way of designing an anomaly detector is by projecting the input spectra on to a sub-
space whose bases are defined by some projection vectors. In Kwon et al. (2003) researchers
compared subspace-based anomaly detection algorithms using projection vectors that were
generated using three common pattern recognition techniques – PCA (Joliffe 1986), FLD
Analysis (Duda et al. 2001) and EST (Torrieri 1999). In addition, they compared the per-
formance of the RX algorithm with the performances of the aforementioned subspace-based
anomaly detectors. In this chapter, we extend these linear subspace-based anomaly detectors
proposed in Kwon et al. (2003) to their nonlinear kernel versions.

Figure 7.1 An example of a dual window with guard band. The numbers represent the length
in pixels making up the side of each window. Each × in the IWR represents one pixel. The
pixel in the middle of the figure represents the current test pixel. The figure is not necessarily
drawn to scale.
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In subspace-based anomaly detection techniques, projection (basis) vectors are generated
using the statistical properties of the IWR and OWR covariance matrices. For example, using
the eigenvalue decomposition of the covariance matrices of IWR or OWR spectra it is possible
to generate basis vectors for a subspace onto which vectors from the IWR or OWR are projected
for discrimination. Denote a spectral vector within the IWR of a dual window centred at a
test pixel by xk = (xk(1), xk(2), . . . , xk(J))� where J is the number of spectral bands and
k = 1, . . . , Nin. Assuming that there are a total of Nin pixels in the IWR, the matrix X =
[x1, x2, . . . , xNin ] is of size J ×Nin and contains the spectra of each one of these samples
as one of its Nin columns. Similarly, let a spectral vector within the OWR of the same dual
window be denoted by yl where l = 1, . . . , Nout . Given that there areNout pixels in the OWR,
the J ×Nout matrix Y = [y1, y2, . . . , yNout ] is one whose columns are the spectral vectors of
the pixels in the OWR representing the background clutter samples. The background clutter
covariance statistics are estimated using the spectra of the pixels in the OWR. The covariance
matrices of the IWR and OWR spectra are given by

CX = 1

Nin

Nin∑
i=1

(xi − �̂X) (xi − �̂X)� , (7.3)

CY = 1

Nout

Nout∑
i=1

(yi − �̂Y ) (yi − �̂Y )� , (7.4)

where �̂X and �̂Y represent the means of the IWR and OWR spectra, respectively.
The projection separation statistic for an input test pixel, r, is calculated using

s′ = (r − �̂Y )�WW�(r − �̂Y ), (7.5)

where W = [w1 w2 . . . wm] is a matrix whose columns arem projection vectors. The product
WW� is known as a projection operator and represents a subspace characterizing the spectral
region represented by the projection vectors wi. An anomaly is detected if the projection
separation, s′, is greater than some threshold, �. It is also possible to project the difference
(r − �̂Y ) onto the complement subspace (I − WW�) given by

s′′ = (r − �̂Y )�(I − WW�)(r − �̂Y ). (7.6)

Several methods could be used to generate the projection vectors, wi, for Equations (7.5)
or (7.6). In this chapter, three different methods PCA, FLD and EST as well as their kernel
versions are implemented and their performance are compared.

7.3.1 Principal component analysis

PCA is one of the most commonly used methods for feature extraction and dimensionality
reduction. The underlying goal is to find a projection that best represents some input data in
the least-square sense (Joliffe 1986). In order to generate the PCA projection vectors, WPCA,
the background clutter covariance matrix, CY , is written in terms of its eigenvectors V and
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their corresponding eigenvalues � as

CY = V�V�, (7.7)

the firstm eigenvectors with the highest corresponding eigenvalues form the projection vectors.
Thus,

WPCA = [v1, v2, · · · , vm] , (7.8)

where m is a configurable constant. Altering the value of m (i.e. changing the number of
eigenvectors used) will change the performance of the anomaly detector as shown by the
experimental results. Using (7.8) as the projection vectors and substituting this result into
(7.5) and (7.6) we obtain the corresponding projections of the input onto the PCA-based
subspace anomaly detector, which is given by

PCA(r) = (r − �̂Y )�
(

WPCAW�
PCA

)
(r − �̂Y ), (7.9)

and the projection onto its complement subspace is given by

PCÁ(r) = (r − �̂Y )�
(

I − WPCAW�
PCA

)
(r − �̂Y ). (7.10)

The idea behind using the PCA eigenvectors lies in the fact that since these eigenvectors
are optimal (i.e. they minimize the mean-square error) in terms of their representation of the
spectral vectors of the OWR, the projection of the difference between the test pixel, r, and the
OWR mean, �̂Y , should ideally be large if the dual window is centred on an anomalous target.

The algorithm outlined above can also be developed using samples collected from the
IWR. In this case, Equations (7.9) and (7.10) remain the same with the exception that the
projection vectors WPCA are generated using the spectral information contained in the IWR
rather than the OWR.

7.3.2 Kernel PCA subspace-based anomaly detection

In this section the linear PCA subspace-based method in Section 7.3.1 is extended into the
kernel feature space F and then kernelized by replacing all dot products in the feature space
by kernel functions using the kernel trick (7.2). Using a nonlinear mapping �, the original
data, X and Y, in the input space are mapped into the feature space F denoted by

X� = �(x) = [
�(x1)�(x2) . . . �(xNin )

]
(7.11)

Y� = �(Y) = [
�(y1)�(y2) . . . �(yNout )

]
. (7.12)

This means that X� represent the mapped IWR spectra and Y� represents the mapped OWR
spectra. The statistical means of the mapped data in F are represented by �̂X� and �̂Y� ,
respectively. For many of the following methods, it is assumed that the mapped data is mean-
removed (centred) in F . Thus, denote each centred vector for the IWR in F as �c(xi) =
�(xi) − �̂X� , i = 1, . . . , Nin and similarly for the OWR spectra (i.e.�c(yj) = �(yj) − �̂Y� ,



TARGET DETECTION WITH KERNELS 153

j = 1, . . . , Nout). Then, let xc� and Yc� be matrices whose columns are the centred IWR and
OWR in the feature space, respectively. Also, let CX� and CY� be the covariance matrices of
the centred spectra in the feature space. The projection of the mapped test pixel spectra �(r)
onto a linear subspace in the feature space that is equivalent to a nonlinear subspace in the
original input domain is given by

s′ = (�(r) − �̂Y� )�W�W�
�(�(r) − �̂Y�), (7.13)

where W� = [
w1
� w1

� . . . wm
�

]
is a matrix whose columns are the set ofm projection vectors

in F . Similarly, projection onto the complement subspace is given by

s′ = (�(r) − �̂Y�)�
(

I� − W�W�
�

)
(�(r) − �̂Y�). (7.14)

In order to find the PCA eigenvectors in the feature space, simply solve the mapped version
of Equation (7.7); specifically, the eigenvalues and eigenvectors of CY� in F can be found by
solving

CY� = V���V�
�, (7.15)

where �� = diag
(
�1
� �

2
� . . . �

p
�

)
and V� = [

v1
� v2

� . . . vp�
]

contain only the p nonzero
eigenvalues and corresponding eigenvectors of CY� . All eigenvectors in the feature space lie
in the span of the vectors in Yc� . Therefore, they can be represented as

V� = ��
−1/2Yc�A, (7.16)

where A = [˛1 ˛2 · · · ˛Nout ] as shown in Schölkopf et al. (1999) is a matrix whose columns
are the nonzero eigenvectors of the centred Gram (kernel) matrix Kc and �� contains the
associated nonzero eigenvalues. The centred kernel matrix can be calculated by Kc = (K −
1NoutK − K1Nout + 1NoutK1Nout ) where K is the kernel matrix whose elements are (K)ij =
k(yi, yj) with i, j = 1, . . . , Nout and (1Nout ) is an Nout ×Nout with each element equal to
1/Nout . It is shown in Schölkopf et al. (1999) that the eigenvalue decomposition of the centred
kernel matrix is given by

Kc = A��A�. (7.17)

Utilizing only themmost significant eigenvectors in the features space they can be written
as Ṽ� = Yc�ÃKPCA, where ÃKPCA = [ ˜̨ 1 ˜̨ 2 · · · ˜̨m] are themmost significant eigenvectors
of Kc normalized by the square roots of their respective eigenvalues. Using vectors Ṽ� as
the projection vectors in the feature space (W�) in (7.13) we obtain KPCA-based anomaly
detector

KPCA(r) = (�(r) − �̂Y� ))�
(

Ṽ�Ṽ�
�

)
(�(r) − �̂Y�)

= (�(r) − �̂Y� )�Yc�ÃKPCAÃ�
KPCAY�

c�
(�(r) − �̂Y�). (7.18)
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For notational simplicity, let k�
Yr = �(r)�Yc� and k�

Y�̂ = �̂�
Y�

Yc� ; these are commonly re-
ferred to as empirical kernel expansions (Schölkopf and Smola 2002). Substituting these
expressions into (7.18) results in

KPCA(r) =
(

k�
Yr − k�

Y�̂

)�
ÃKPCAÃ�

KPCA

(
k�
Yr − k�

Y�̂

)
. (7.19)

As in the linear case, we can also project onto the complement subspace (I − Ṽ�Ṽ�
�) in the

feature space. As mentioned above, the KPCA algorithm can also be formulated using the
IWR spectra rather than the OWR spectra to generate the projection vectors W� in the feature
space.

7.3.3 Fisher linear discriminant analysis

Although PCA has proven to be very useful for efficient representation of data, it does not
exploit the information in the IWR and OWR at the same time in order to generate the target or
background subspaces. However, the FLD analysis attempts to seek an optimal direction for
discriminating between IWR and OWR data samples. First, the between-class scatter matrix is
defined as SB = (�̂X − �̂Y )(�̂X − �̂Y )� while the within-class scatter matrix can be written
as SW = CX + CY where CX and CY are the covariance matrices of the samples in the IWR
and OWR defined by Equations (7.3) and (7.4), respectively. The matrix SB is a measure of
how well the means of the two classes are separated while the matrix SW is a measure of the
compactness of each class cluster.

In order to calculate the optimal discrimination direction, w∗, the criterion function

w∗ = max
w

J(w) = |w�SBw|
|w�SWw| (7.20)

needs to be maximized over all possible w and has been shown (Duda et al. 2001) to be given
by

wFLD = w∗ = S−1
W (�̂X − �̂Y ). (7.21)

Using (7.21) as the projection vector and substituting this result into (7.5) gives

FLD(r) = (r − �̂Y )�
(

wFLDw�
FLD

)
(r − �̂Y ). (7.22)

The idea behind using FLD is that it will produce a large projection separation if the spectral
means of the IWR and OWR are sufficiently dissimilar while the spectral vectors in each
region are tightly clustered. In this chapter, Equation (7.22) is used as the FLD-based anomaly
detector and referred to as the FLD detector.

7.3.4 Kernel fisher discriminant analysis

It has been shown in Baudat and Anouar (2000) and Mika et al. (2003) how to extend FLD
analysis to its nonlinear version by using the kernel trick to compute the Fisher discriminant in
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the feature space (see Chapter 5). Defining FLD in the feature space is equivalent to maximizing
the cost function given by

J(w�) = |w�
�S�Bw�|

|w�
�S�Ww�| , (7.23)

where w� is the projection vector, S�W = CX� + CY� and S�B = (�̂X� − �̂Y�)(�̂X� − �̂Y�)�
are the within-class and between-class scatter matrices, respectively, in F .

Finding an optimal w� by maximizing (7.23) is not mathematically tractable considering
the simple fact that the feature space is of high (possibly infinite) dimensionality. Fortunately,
we can reformulate this problem in terms of dot products in the feature space and then re-
place them with kernel functions. Based on reproducing kernel theory, any solution w� to
Equation (7.23) can be expanded as

w� =
Nt∑
i=1

˛i�(zi) = Z�˛, (7.24)

where Z� = [z1 , z2 , . . . , zNt ] = [�c(x1) , . . . , �c(xNin ) ,�c(y1) , . . . , �c(yNout )] is a
matrix whose columns are the mapped vectors in F of the corresponding spectra in both
the IWR and OWR concatenated together, Nt = Nin +Nout and ˛ = (˛1, ˛2, . . . , ˛Nt ) is the
KFD vector in the kernel space satisfying (7.25).

It has been shown in Mika et al. (2003) that maximizing the Fisher’s discriminant (7.23)
in F is equivalent to maximizing a dual representation given by

J(˛) = ˛�A˛
˛�B˛

, (7.25)

where

A = (Min − Mout)(Min − Mout)
�, (Min)j = 1

Nin

Nin∑
l=1

k(xj, xl),

(Mout)j = 1

Nout

Nout∑
l=1

k(yj, yl) and B = Kin(I − 1Nin )K�
in + Kout(I − 1Nout )K

�
out,

I is the identity matrix, Kin is anNt ×NinGram matrix, Kout is also anNt ×Nout Gram matrix,
1Nin and 1Nout are matrices with each entry equal to 1/Nin and 1/Nout , respectively. Each
element of Kin and Kout are defined to be (Kin)mn = k(xn, xm) and (Kout)mn = k(yn, ym),
respectively. As in the solution to the analogous problem in the input space (Equation (7.20)),
(7.25) can be solved simply by finding the leading eigenvector, ˛KFD, of B−1A. Thus, the
identity in Equation (7.24) becomes wFLD� = w� = Z�˛KFD. Substituting this result into
(7.13), gives

KFD(r) = (�(r) − �̂Y�)�
(

wFLD�w�
FLD�

)
(�(r) − �̂Y�)

= (�(r) − �̂Y�)�Z�˛KFD˛
�
KFDZ�

�(�(r) − �̂Y� ). (7.26)
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To simplify (7.26), let

�(r)�Z� = �(r)�
[
�(z1) �(z2) . . . �(zNt )

] = k (Z, r)� = KZr, (7.27)

and similarly

�̂�
Y�

Z� = 1

Nout

∑
y∈OWR

k (Z, y)� = KZ�̂. (7.28)

Using (7.27) and (7.28), we can rewrite (7.26) as

KFD(r) =
(

K�
Zr − K�

Z�̂

)�
˛KFD˛

�
KFD

(
K�
Zr − K�

Z�̂

)
. (7.29)

Equation (7.29) is the expression used for the Kernel Fisher Discriminant anomaly detector
in this chapter, referred to as the KFD detector.

7.3.5 Eigenspace separation transform

The EST was developed by Torrieri (Torrieri 1999) as a preprocessing technique to extract
features for neural network classifiers and has been successfully used by researchers for
automatic clutter rejection (Chan et al. 2001). Like PCA, EST aims to extract features from a
training set by projecting the input patterns onto a lower-dimensional orthogonal subspace. In
this chapter, it is used to generate projection vectors in order to separate anomaly pixels from
background clutter.

In the EST algorithm we first compute the J × J Difference Correlation (DCOR) matrix

R̂ = RX − RY = 1

Nin
XX� − 1

Nout
YY�, (7.30)

where R̂ is simply the difference of the correlation matrices of the IWR (RX) and OWR
(RY ), which represents the second order statistic differences between the two regions. The
eigenvalue decomposition of DCOR can be rewritten in block-matrix form in terms of its
positive and negative eigenvalues and eigenvectors as

R̂ =
[

V+ V−
] [
�+ 0

0 �−

] [
V�+
V�−

]
, (7.31)

where the columns of V+ and V− are the eigenvectors with their corresponding nonzero
positive (�+) and negative (�−) eigenvalues, respectively.

The matrix WEST is then chosen to be the set of m positive or negative eigenvectors
associated with R̂. The choice of which set to use hinges on which set of eigenvalues (positive
or negative) has the largest absolute sum. Thus, the EST projection vectors are given as

WEST = [v1, v2, . . . , vm], (7.32)



TARGET DETECTION WITH KERNELS 157

where vi (i = 1, . . . , m) are the m most significant (either positive or negative) eigenvectors
for R̂. Using (7.32) as the projection vectors and substituting this result into (7.5) gives

EST(r) = (r − �̂Y )�
(

WESTW�
EST

)
(r − �̂Y ). (7.33)

It is also possible to project onto the complement subspace,
(
I − WESTW�

EST

)
. Thus, substi-

tuting (7.32) into (7.6) yields

EST́(r) = (r − �̂Y )�
(

I − WESTW�
EST

)
(r − �̂Y ). (7.34)

Since it is possible to use either the positive eigenvectors or the negative eigenvectors, there
are four possible equations that can be used. This is outlined in the result section 7.4. In this
chapter, Equations (7.33) and (7.34) are referred to as the EST-based anomaly detector or
simply as the EST detector.

7.3.6 Kernel eigenspace separation transform

In Goldberg et al. (2007) EST is kernelized by first defining it in the feature space F and then
reformulating it solely in terms of dot products where the kernel trick is utilized to convert it
into its kernel version. The difference correlation matrix (DCOR) R� in the feature space can
be written as

R� = RX� − RY�= 1

Nin
�(X)�(X)�− 1

Nout
�(Y)�(Y)�

=
[
�(x) −�(Y)

][ �(x)�/Nin
�(Y)�/Nout

]
, (7.35)

where RX� = �(X)�(X)�/Nin and RY� = �(Y)�(Y)�/Nout are the correlation matrices in
the feature space for IWR and OWR, respectively.

In order to diagonalize the DCOR matrix R� we must find all the eigenvectors V� =
[V+� V−� ] (both positive V+� and negative V−�) and all the nonzero eigenvalues �� =
[�+� �+�]� (both positive �+�and negative �−�) that satisfy the equation

��V� = R�V�. (7.36)

Each eigenvector vk� in the feature space can be written as a linear combination of the centred
input data as

vk� = 1√
Nin

Nin∑
i=1

˛ki �(xi)�
− 1

2
i − 1√

Nout

Nout∑
j=1

ˇkj�(yj)�
− 1

2
j

= 1√
Nin

�(x)˛k�
− 1

2+�
− 1√

Nout
�(Y)ˇk�

− 1
2−�
, (7.37)
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where the expansion coefficients, ˛k and ˇk, are defined as ˛k = (˛k1, ˛
k
2, . . . , ˛

k
Nin

)� and
ˇk = (ˇk1, ˇ

k
2, . . . , ˇ

k
Nout

)� for k = 1, . . . , Nt where Nt = Nin +Nout . In Goldberg et al.
(2007) it has been shown that each concatenated expansion coefficients dk = [˛k ˇk]� for
k = 1, . . . , Nt is an eigenvector of the KEST kernel matrix

KKEST =
⎡
⎣ KXX

Nin
−KXY

Nin

KYX
Nout

− KYY
Nout

⎤
⎦ , (7.38)

where KXX = �(X)��(X) is an Nin ×Nin kernel matrix, KYY = �(Y)��(Y) is an
Nout ×Nout kernel matrix, KXY = �(X)��(Y) is an Nin ×Nout kernel matrix, and
KYX = �(Y)��(X) is an Nout ×Nin kernel matrix. Each of the entries in all four matri-
ces is obtained in terms of the kernel function k.

Let the KEST projection vectors, WKEST be either the first m positive or negative eigen-
vectors of (7.38) normalized by the square roots of their corresponding eigenvalues. Thus,
either

WKEST = W+
KEST = [

d̃1 d̃2 · · · d̃m
]

WKEST = W−
KEST = [

d̃Nt d̃Nt−1 · · · d̃Nt−m+1
]
, (7.39)

where, as with KPCA, m is a configurable constant. The choice of using most positive sig-
nificant or most negative significant is a data dependent choice and is determined using the
same procedure outlined for the linear EST method in Section 7.3.5. Using (7.39) and (7.37)
we can obtain the projection vectors, V�, substituting this result in (7.13) yields

KEST(r) = (
�(r) − �̂Y�

)� (
V�V�

�

)
(�(r) − �̂Y�)

= (�(r) − �̂Y�)��(Z)WKESTW�
KEST�(Z)�

(
�(r) − �̂Y�

)
, (7.40)

where �(Z) = [�(X) −�(Y)]. For notational convenience, let

�(r)��(Z) = �(r)�
[
�(x1), . . . , �(xNin ),−�(y1), . . . ,−�(yNout )

]
= [

k(x1, r), . . . , k(xNin, r),−k(y1, r), . . . ,−k(yNout , r)
]

= k(Z, r)� = KZr. (7.41)

Similarly, define

�̂�
Y�
�(Z) = 1

Nout

∑
y∈OWR

k (Z, y)� = KZ�̂. (7.42)

Using (7.41) and (7.42), Equation (7.40) becomes

KEST(r) =
(

K�
Zr − KZ�̂

�
)�

WKESTW�
KEST

(
KZr

� − KZ�̂
�
)
. (7.43)
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As in the case of linear EST in Section 7.3.5, it is also possible to obtain a kernel version
projecting onto the complement subspace (I − WKESTW�

KEST ) in the feature space.

7.3.7 RX algorithm

In Reed and Yu (1990) the RX algorithm was developed; this was based on a generalized
likelihood ratio test (GLRT) for multi-dimensional image data assuming that the spectrum of
the received signal (target) s and the covariance of the background clutter, C, are unknown. In
the conventional RX algorithm a non-stationary local mean is subtracted from each spectral
pixel. The local mean �̂ is estimated by sliding a dual window over every spectral pixel in the
image and calculating the mean of the spectral pixels falling within the OWR. The size of the
IWR is assumed to be the size of the typical target of interest in the image. The residual signal
after mean subtraction is assumed to approximate a zero-mean pixel-to-pixel independent
Gaussian random process.

Let each input spectral signal consisting of J spectral bands be denoted by xn =
(xn(1), xn(2), . . . , xn(J))�. Define X to be a J ×N matrix of the N reference background
clutter pixels (or pixels in the OWR when the dual-window approach is used). Each obser-
vation spectral pixel is represented as a column in the sample matrix X = [x1 x2 . . . xN ].
The model assumes that the data arises from two normal PDFs (H0 and H1) with the same
covariance matrix but different means. Under H0 the data (background clutter) is modelled as
N (0,C) and under H1 it is modelled as N (s,C). The background covariance, C, is estimated
from the reference background clutter data given by

Ĉ = 1

N

N∑
i=1

(xi − �̂b)(xi − �̂b)
�, (7.44)

where �̂b is the estimated background clutter sample mean

�̂b = 1

N

N∑
i=1

xi. (7.45)

Assuming a single pixel target r as the observation test vector and using the GLRT the RX
algorithm is formulated as

RX(r) = (r − �̂b)
�C−1(r − �̂b). (7.46)

Using eigenvalue value decomposition of the background covariance matrix Ĉ = V�V�,
where the columns of V represent eigenvectors and the diagonal matrix � represents the
corresponding non-zero eigenvlaues, we can rewrite the RX algorithm as

RX(r) = (r − �̂b)
�V�−1V�(r − �̂b) = (r − �̂b)

�ṼṼ�(r − �̂b), (7.47)

where Ṽ = �−1/2V are the normalized eigenvectors with their corresponding eigenvalues.
Therefore, the RX algorithm Equation (7.47) can be considered as a special case of the
subspace-based anomaly detectors with subspace defined by the projection operator ṼṼ�.
We can also use a regularized RX algorithm where only the m significant eigenvectors are
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used to define the subspace. Therefore, the RX algorithm is very similar to the PCA-based
anomaly detector and the difference is that the basis in the regularized RX algorithm are
weighted by their corresponding eigenvalues.

7.3.8 Kernel RX algorithm

Modelling the RX algorithm in the feature space by assuming that the input data has al-
ready been mapped into a high dimensional feature space via a nonlinear mapping �, the
corresponding RX algorithm in the feature space is now represented as

RX(�(r)) = (�(r) −�(�̂b))
�Ĉ−1

� (�(r) −�(�̂b)), (7.48)

where Ĉ� and �̂b are the estimated covariance and mean of the background clutter pixels in
the feature space, respectively. The estimated covariance matrix for the mapped data�(X) =
X� := [�(x1) �(x2) . . . �(xN )] is given by

Ĉ� = 1

N

N∑
i=1

(�(xi) −�(�̂b))(�(xi) −�(�̂b))
�, (7.49)

where �(�̂b) is the estimated background clutter sample mean given by

�(�̂b) = 1

N

N∑
m=1

�(xn). (7.50)

The RX algorithm given by Equation (7.48) is now in the feature space that cannot be
implemented explicitly due to the nonlinear mapping � that produces a data space of
high dimensionality. In order to avoid implementing Equation (7.48) directly we need to
kernelize it.

The estimated background covariance matrix can be represented by its eigenvector de-
composition given by

Ĉ� = V���V��, (7.51)

where�� is a diagonal matrix consisting of the eigenvalues and V� is a matrix whose columns
are the eigenvectors of Ĉ� in the feature space:

V� = [v1
�, v2

�, . . . , vN�], (7.52)

where N is the maximum number of the eigenvectors with nonzero eigenvalues.
The pseudoinvese of the estimated background covariance matrix can also be written in

terms of its eigenvectors and eigenvalues as

Ĉ#
� = V��

−1
� V��. (7.53)
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All the eigenvectors in the feature space span in the space of the input vectors X�. Therefore,
they can be represented as

V� = �
−1/2
� X�B, (7.54)

where B = (ˇ1, ˇ2, . . . , ˇN )� are the eigenvectors of the centred kernel matrix K̂ as shown
in Schölkopf and Smola (2002). Substituting Equation (7.54) into (7.53) yields

Ĉ#
� = X�B��−2B�X��. (7.55)

Inserting Equation (7.55) into (7.48), it can be rewritten as

RX(�(r)) = (�(r) −�(�̂b))
�X�B�−2

� B�X��(�(r) −�(�̂b)). (7.56)

The dot product term �(r)�X� in the feature space can be represented in terms of the kernel
function

�(r)�X� = (k(r, x1) k(r, x2) . . . , k(r, xN )) = k(r,X)� = k�
r . (7.57)

Similarly �(�̂b)
�X�,

�(�̂b)
�X� = (k(�̂b, x1) k(�̂b, x2) . . . , k(�̂b, xN )) = k(�̂b,X)� = k�

�̂b
. (7.58)

Also the inverse kernel matrix, as shown in Schölkopf and Smola (2002), can be written as

K̂−1 = B�−1
� B�, (7.59)

where we denote the centred background kernel matrix K̂ = (K − 1NK − K1N + 1NK1N )
where (1N )ij = 1/N is an N ×N matrix and K = K(X,X) = (K)ij a N ×N kernel matrix
whose entries K(xi, xj) are the dot products< �(xi),�(xj) >. Substituting (7.57), (7.58), and
(7.59), into (7.56) and replacing X� with X� −�(�̂b) in (7.57), and (7.58) (due to centring)
the kernelized version of the RX algorithm (Kwon and Nasrabadi 2005b) is given by

RX(k(r)) = (k̂(X, r) − k̂(X, �̂b))
�K̂−2

b (k̂(X, r) − k̂(X, �̂b))

= (k̂r − k̂�̂b )
�K̂−2

b (k̂r − k̂�̂b ), (7.60)

where k̂�
r = k�

r − ∑N
i=1 (xi, r) and k̂�

�̂b
= k�

�̂b
− ∑N

i=1 k(xi, �̂b), respectively. The expres-

sion (7.60) can now be implemented with no knowledge of the mapping function�. The only
requirement is a good choice for the kernel function k.

7.4 Results

In this section, the proposed subspace-based anomaly detectors are implemented using both
simulated toy data as well as real hyperspectral imagery from the Hyperspectral Digital Im-
agery Collection Experiment (HYDICE) data set. In this chapter, we use a Gaussian Radial
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Basis Function (RBF) kernel which takes the form k(x, y) = exp(−‖x − y‖2/2�2) where
� > 0 is a critical kernel parameter representing the width of the Gaussian kernel. This pa-
rameter must be chosen so that the RBF function can fully exploit the data variations. One
method of automatically selecting this parameter is to set it to a multiple of the variance of
the data similarity difference (mean of the Euclidean distance between the data points). In
this chapter, the value of � was initially set to the variance of the data similarity difference
for each image and the best value was determined experimentally for each algorithm using
a cross-validation technique. Performance results using ROC curve analysis for each of the
methods and their kernel versions are provided and compared.

7.4.1 Simulated toy data

The toy data set, shown in Figure 7.2(a), consists of two nonlinear Gaussian mixtures. Class 1
is represented by the red (*) points; Class 2 is represented by the blue (o) points. It is clear from
this figure that no linear separating hyperplane can be placed that perfectly separates the two
data classes. In order to implement the algorithms, Class 1 and Class 2 were defined as the two
sets corresponding to the data in the IWR and OWR of a fictional dual window, respectively.
Extending the problem to an anomaly or target detection setting, Class 1 represents the target
data and Class 2 represents the background data. The results using each of the methods on
the simulated data set are shown in Figures 7.2(b)–(i). To improve visual quality, the points
in Class 2 are now yellow (o). The green lines in Figures 7.2(c)–(e) are the projection vectors

Figure 7.2 (a) Original simulated 2-D data set. A mixture of two nonlinear Gaussian distri-
butions. The red points (*) represent the data in Class 1 and the blue (o) represent the data
in Class 2. Contour and surface plots for the 2-D simulated data set using (b) RX, (c) PCA,
(d) FLD, (e) EST, (f) KRX, (g) KPCA, (h) KFD and (i) KEST. (See plate 2)
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used in each case. The blue contour lines are decision boundaries at different thresholds. The
shading defines relative projection separation values; lighter shading means a larger projection
separation value, which in turn implies a higher likelihood that points will be classified as
anomalies. Similarly, darker areas correspond to points that are more likely to be classified as
background clutter. It is clear that all four of the nonlinear methods have significantly better
discrimination abilities than their linear counterparts. Each of the nonlinear methods generates
a decision boundary which very nicely conform to the overall shape of the distribution. While
it is difficult actually to compare the performances of the four nonlinear algorithms, it is
nonetheless easy to see that the nonlinear methods perform better detection than do the linear
methods.

7.4.2 Hyperspectral imagery

Two real hyperspectral images were used to compare the performance of all the algorithms in
this chapter. The images are from the HDICE data set. The HYDICE sensor collects radiance
information over a spectral range spanning the VNIR and SWIR frequency ranges (0.4–
2.5�m). Each band is approximately 10 nm wide generating a spectral resolution consisting
of 210 spectral bands. Owing to water absorption and low signal-to-noise ratio (SNR), only
150 of those bands are actually used here: bands 1–22, 102–108, 137–151 and 195–210 have
been removed. The two HYDICE images used in this chapter are the Desert Radiance (DR-II)
and Forest Radiance (FR-I) data sets. The DR-II image consists of six ‘targets of interest’ on
a dirt road running through a dusty terrain with light vegetation. The FR-I image has fourteen
‘targets of interest’ in a grassy field situated near a densely wooded area. The DR-II and FR-I
images are shown in Figures 7.3(a) and 7.4(a), respectively.

Figure 7.3 (a) Original DR-II HYDICE image. (b) Ground truth for the DR-II HYDICE
image. Output results at 80% detection rate using (c) RX, (d) KRX, (e) PCA, (f) KPCA,
(g) FLD, (h) KFLD (i) EST, (j) KEST.
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Figure 7.4 (a) Original FR-I HYDICE image. (b) Ground truth for the FR-I HYDICE image.
Output results at 80% detection rate using (c) RX, (d) KRX, (e) PCA, (f) KPCA, (g) FLD,
(h) KFLD (i) EST, (j) KEST.

Before any processing is done, all spectra in each image are normalized so that all values
in the data cube lie between zero and one. The normalization factor is calculated as the largest
value of all the spectral components in each hyperspectral image. This normalization helps
to use the dynamic range of the RBF kernel effectively (Kwon and Nasrabadi 2005b). In all
algorithms a dual-window approach was used to process input data. To provide consistency,
an IWR of 7×7 pixels, a guard band of 9×9 pixels, and an OWR of 19×19 pixels were used
with all algorithms and for all images. It was stated that the IWR size should be about as large
as the biggest target in the image. This is more or less the case for all images. The size of the
OWR was chosen such that there are a sufficient number of vectors available for calculating
the background local statistics (background covariance matrix with a stable pseudo-inverse)
and for obtaining meaningful empirical kernel expansions for the nonlinear techniques.

Whenever a small set of highly correlated background samples are used to represent the
data statistics the kernel matrices need to be regularized (Nasrabadi 2007) in order to obtain a
numerically stable pseudo-inverse. In this chapter, the regularized version of the kernel matrix
is obtained by discarding all the eigenvectors with eigenvalues below a small threshold, 10−5.

In order to compare the performance of each of the methods discussed in this chapter,
receiver operating characteristic (ROC) curves were generated based on ground truth infor-
mation obtained from each image. The ROC curves provide a visual quantitative comparison
by plotting the probability of correct detection,PD, versus the false alarm rate (FAR),RFA. For
each hyperspectral image, ground truth was obtained by determining the locations of all pixels
in the image that correspond to a target to be detected. The probability of detection is defined
as PD = Nhit/NT and the false alarm rate is calculated by RFA = Nmiss/NTP where, at each
threshold T,Nhit is the number of pixels correctly identified as target, NT is the total number
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Figure 7.5 ROC curves obtained by conventional anomaly detectors and the corresponding
kernel versions for (a) the DR-II image and (b) the FR-I image.

of target pixels in the ground truth for that image, Nmiss is the number of pixels incorrectly
labelled as targets, and NTP is the total number of pixels in the image. For visual purposes,
all outputs shown below have been binary thresholded at a value that corresponds to an 80%
detection rate for that image.

The ground truth for the DR-II image is shown in Figure 7.3(b). It clearly shows the
location of the six ‘targets of interest’. All the anomaly detectors and their kernel versions
were implemented for this image and the best outputs for each can be seen in Figures 7.3(c)–(j).
For PCA-based anomaly detector, the first six eigenvectors using the OWR spectra were used in
Equation (7.10). For KPCA, the first six eigenvectors using the OWR spectra were used in the
complement subspace form of (7.19). For EST and KEST, the first three positive eigenvectors
were used. The ROC curves for DR-II image at low FAR for each of the eight methods can be
seen in Figure 7.5(a). From these results, it appears that each of the four nonlinear methods
performs better than its respective linear counterpart. In addition, all four nonlinear anomaly
detectors aggregately exhibit better results than all four linear detectors. At low FAR, KPCA
performs the best of all methods followed by KRX, KEST and KFD. Of the linear methods,
PCA, EST and RX all perform about the same, with FLD clearly performing the worst of all
the anomaly detectors.

The ground truth for the FR-I HYDICE image is shown in Figure 7.4(b). It clearly shows
the location of the fourteen ‘targets of interest’. All eight algorithms were implemented for
this image and the best outputs for each can be seen in Figures 7.4(c)–(j). The results shown
are the best results obtained using the eight detectors outlined above. For PCA-based anomaly
detector, the first six eigenvectors using the OWR spectra were used in (7.10) and for KPCA,
the first six eigenvectors using the OWR spectra were used in the complement subspace form
of (7.19). For EST and KEST, the first three negative eigenvectors were used. The ROC curves
for each of the eight anomaly detectors at low FAR are shown in Figure 7.5(b). From these
results, it is clear that KPCA performs the best of all the eight algorithms for this image since
it detects very few background clutter regions. The results for KFD, KEST and PCA also
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appear to perform very well with slightly more false alarms appearing at this detection rate.
At very low RFA, PCA outperforms all algorithms except KPCA and KFD. KEST appears to
perform much better than EST for this image as EST exhibits a large number of false alarms
around the tree line region. A region similar to this one could prove to be problematic for
anomaly detectors as there is an abrupt change from foliage material to a shadowed grassy
region. Once again, the result using FLD is the poorest of all the detectors. The results for this
image indicate that each of the nonlinear algorithms performs better than its respective linear
version. However, since PCA performs well for this image, it cannot be said that all nonlinear
versions as a whole perform this task better than the four linear methods.

7.5 Conclusion

This chapter provides a performance comparison of linear and nonlinear subspace-based
anomaly methods for hyperspectral target detection. To generate the subspace for each of
the anomaly detectors, four different algorithms (RX, PCA, FLD, EST) are proposed. In each
algorithm the test pixel is projected onto its subspace by an appropriate projection operator.
Each of these algorithms is then kernelized in an attempt to exploit the higher-order correla-
tion between the spectral characteristics of the pixels. All eight anomaly detection algorithms
are briefly explained and implemented using a toy example as well as two real hyperspectral
data cubes containing a varying number of ‘targets of interest’. It is shown that the nonlinear
kernel-based anomaly detection techniques outperform their linear versions.
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One-class SVMs for
hyperspectral anomaly detection

Amit Banerjee, Philippe Burlina and Chris Diehl
Applied Physics Laboratory, The Johns Hopkins University, USA

A support vector framework for hyperspectral anomaly detection is developed in this
chapter. Conventional methods for detecting anomalies in hyperspectral images are based
on the popular Reed–Xiaoli (RX) detector. However, these algorithms typically suffer from
a large numbers of false alarms, due to the assumptions that the background is Gaussian and
homogeneous. In practice, these assumptions are often violated, especially when the neigh-
bourhood of a pixel contains multiple types of terrain.

To remove these assumptions, a novel anomaly detector is proposed and derived that
incorporates a nonparametric background model based on the Support Vector Data Description
(SVDD). The SVDD is a one-class support vector classifier that can model the support of a
distribution. Expanding on prior work, a geometric interpretation of the SVDD is developed
to propose a decision rule that utilizes a new test statistic and shares some of the properties
of constant false-alarm rate (CFAR) detectors. Two versions of the algorithm are presented
to detect either local or global anomalies and an analysis of their computational requirements
is provided. Using receiver operating characteristic (ROC) curves, the improved performance
and reduction in the false alarm rate when using the SVDD-based detector are demonstrated on
Wide Area Airborne Mine Detection (WAAMD) and Hyperspectral Digital Imagery Collection
Experiment (HYDICE) hyperspectral imagery.

8.1 Introduction

Recent advances in hyperspectral sensors with high spectral and spatial resolution have led to
increased interest in exploiting spectral imagery for target detection. Given the availability of
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spectral libraries for a wide range of materials, detection algorithms that exploit a known tar-
get signature have been widely investigated. It has been shown (Scharf and Friedlander 1994)
that such algorithms are dependent on the degree of signal mismatch between the spectral
libraries and the spectra observed in an image. Complications arising from (a) accurate spec-
tral calibration, (b) compensating for atmospheric effects to convert radiance spectra to the
reflectance domain, or (c) the availability of reliable atmospheric data to convert reflectance
values to the radiance spectra can lead to errors that hinder the performance of known signature
detectors.

Such complications can be avoided by using an anomaly detector. Detecting anomalies in
hyperspectral imagery entails the task of locating pixels with spectral signatures that deviate
significantly from the local background. Anomaly detectors have the advantage of not requir-
ing a priori knowledge of the target’s spectral signature, and therefore can process images
completely in-scene. However, anomaly detectors usually suffer from a high false-alarm rate
due to simplifying assumptions imposed on the background signature distribution. This chap-
ter presents a new kernel-based approach that removes these assumptions in order to detect
spectral anomalies while mitigating the false alarm rate.

Lacking prior target signatures, anomaly detection methods model the background and
find pixels in the scene that are not well described by the background model. This is typically
achieved by identifying the region of the given feature space that contains most of the back-
ground pixels. If the pixel under test falls in this region, it is labelled as part of the background;
if it lies outside of the background’s region of support, it is detected as an outlier and declared
a target.

In general, there are two types of methods for computing the region of support for the
background. One is to estimate the underlying probability density function (PDF) for the
background signature and threshold the result. The form of the PDF resolves the shape and
the threshold value determines the size of the support region. The most commonly used models
for the density function f (x) are the local Gaussian model, the global Gaussian mixture model,
and the global linear mixture model. The second approach is to estimate the region of support
directly without making assumptions about the distribution.

The RX algorithm, which is the benchmark anomaly detector for hyperspectral imagery,
uses the local Gaussian model (Lu et al. 1997). With this approach, the background pixels in
a local neighbourhood around the pixel under test are assumed to be independent, identically
distributed Gaussian random variables. After estimating the background mean vector and
covariance matrix, the Mahalanobis distance between the pixel under test and the background
mean vector is compared with a threshold to detect an anomaly (Lu et al. 1997).

There are two issues with the RX algorithm that limit its performance. In many envi-
ronments, it has been shown empirically that the local normal model provides an inadequate
representation of the underlying distribution (Stein et al. 2002) leading to poor false alarm
performance. This is especially true when the local background contains multiple classes of
terrain. Using a goodness-of-fit test statistic for hyperspectral imagery based upon the Barring-
haus, Henze, Epps and Pully (BHEP) test, it has been shown that the normal model is not valid
in most situations (Henze and Wagner 1997). In addition, the RX algorithm is computationally
intensive when operating on hyperspectral imagery. This is due to the need to estimate and
invert large covariance matrices.

If the local background contains multiple types of terrain, the background cannot be prop-
erly modelled by a unimodal distribution. To more properly characterize non-homogeneous
backgrounds, researchers have employed the mixture of Gaussians model (Beaven et al. 2000).
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This approach models the background signature distribution as a linear combination of Gaus-
sian distributions. The number of distributions, their weights, and the parameters of the nor-
mal PDFs are estimated using a stochastic Expectation Maximization (SEM) method (Stocker
1999). Given the parameters of the mixture of Gaussian model, a generalized likelihood ratio
test (GLRT) is applied to detect outliers. While this Gaussian mixture model provides im-
proved performance over the RX algorithm, it still requires the estimation and inversion of
large covariance matrices and is further limited by the need to know or estimate a priori the
number of classes of terrain in the image.

In Schweizer and Moura (2001), the use of Gauss–Markov random fields (GMRFs) is
introduced for hyperspectral anomaly detection. The spectral and spatial correlations of back-
ground clutter in hyperspectral imagery are described by a GMRF. The estimated parameters
of the GMRF are then used in a GLRT to detect outliers. The principal advantages of this
method are that it is computationally efficient, even for high dimensional data, and uses spa-
tial information that is usually ignored by most detectors. However, the model assumes that
the background is locally homogeneous, which can lead to poor performance when targets are
located along clutter boundaries.

To perform anomaly detection, the ultimate goal is to estimate the shape and size of the
support region. Since the values of the PDF are ultimately not of interest, estimating the density
function across the entire feature space is unnecessary. In keeping with Vapnik’s (Vapnik 1998)
principle of avoiding more difficult estimation problems along the path to the desired solution,
one can estimate the region of support directly for the background and avoid the problem of
estimating the underlying PDF.

Large margin techniques such as support vector machines (SVMs) have received con-
siderable attention for classification tasks with high-dimensional, non-Gaussian data. SVMs
yield good generalization performance on such problems by directly estimating a decision
boundary with maximal separability. Motivated by the success of SVMs in classifying pixels
in hyperspectral imagery (Gualtieri et al. 1999; Gualtieri and Cromp 1998) this work seeks to
extend the SVM approach to detect spectral anomalies. For the particular problem of anomaly
detection, several one-class classifiers have been derived in the literature, including the sup-
port vector data description (SVDD) (Tax et al. 1999; Tax and Duin 1999) and the �-SVM
(Scholkopf et al. 1999) methods. These classifiers are able to estimate directly the support
region for a given dataset. The SVDD is a technique that has been used in several domains
such as faulty machine part detection (Tax et al. 1999) and image retrieval (Lai et al. 2004).
In the following, the SVDD is utilized to detect spectral anomalies that lie outside the region
of support for the background pixels.

For anomaly detection, the SVDD approach has the following benefits: Non-parametric:
it is a data-driven method that avoids prior assumptions about the distribution of the data;
Sparsity: fewer training samples are needed, and thus fewer pixels are needed to accurately
characterize the background; Good generalization: the method avoids overfitting and yields
good generalization results when compared with other classical methods (Tax et al. 1999;
Vapnik 1998); Use of kernels: by exploiting the ‘kernel trick’, the SVDD method is able to
model accurately the support of non-trivial, multi-modal distributions. Therefore, the SVDD-
based anomaly detector yields a more powerful detection performance for targets embedded
in non-Gaussian and non-homogeneous backgrounds.

The recently introduced kernel RX algorithm (Kwon and Nasrabadi 2006) is a related
technique for anomaly detection. It is a nonlinear version of the RX detector that uses kernels
to model non-Gaussian distributions. The kernel RX detector has two key differences from
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the SVDD approach. While the SVDD avoids the problem of density estimation, the kernel
RX assumes a Gaussian distribution in the kernel space. This assumption is the equivalent to
a Parzen estimate for the distribution in the original input space (Kwon and Nasrabadi 2006).
The second difference is that the kernel RX requires the estimation and inversion of a large
covariance matrix, a computational burden that the SVDD avoids.

This chapter is organized as follows: Section 8.2 provides an overview of the derivation
of the SVDD one-class classifier. A discussion on optimizing the SVDD function is given in
Section 8.3. The algorithm to detect hyperspectral anomalies using the SVDD is presented in
Section 8.4, along with a discussion of a new SVDD test statistic. Experimental results are
provided in Section 8.5 to evaluate the RX and SVDD anomaly detectors. Finally, concluding
remarks are given in Section 8.6.

8.2 Deriving the SVDD

Following Tax and Duin (1999), this section describes the derivation of the SVDD. The
linear SVDD that models the support of the distribution as the minimal enclosing hypersphere
containing the data in the original input space is introduced. Then it is generalized through
the use of kernel functions to the nonlinear SVDD, which first maps the input space to a
high-dimensional feature space and then estimates the minimum enclosing hypersphere in the
feature space.

Before proceeding, it should be noted that the one-class classifiers mentioned above, the
SVDD and the �-SVM, are related. While the SVDD computes an optimal hypersphere that
contains the data, the �-SVM estimates a large margin hyperplane that separates the data and
the origin of the space in which the data resides (Scholkopf et al. 2000). It has been shown
(Scholkopf et al. 1999, 2000) that these methods are equivalent when the radial basis function
(RBF) is chosen as the kernel function, as is common practice.

8.2.1 The linear SVDD

To determine the minimum enclosing hypersphere S = x :‖ x − a ‖2≤ R2 that contains the
training set T = {xi|i = 1, . . . ,M} , the following constrained optimization problem must be
solved:

min(R) subject to xi ∈ S, i = 1, . . . ,M. (8.1)

The centre a and radius R of the minimum enclosing hypersphere can be found by optimizing
the following Lagrangian:

L(R, a, ˛) = R2 −
∑
i

˛i[R
2 − 〈xi, xi〉 − 2〈a, xi〉 + 〈a, a〉]. (8.2)

The first term in (8.2) is the radius that is to be minimized. The second term constrains each
training point xi to lie within the sphere with centre a and radiusR. The optimal solution must
satisfy the Karush–Kuhn–Tucker (KKT) conditions. Taking the partial derivatives of L with
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respect to R and a and setting them to 0 yields:

∂L

∂R
= 0 ⇒

∑
i

˛i = 1 (8.3)

∂L

∂a
= 0 ⇒ a =

∑
i ˛ixi∑
i ˛i

. (8.4)

Combining Equations (8.3) and (8.4), a simple expression for the centre of the sphere is found:

a =
∑
i

˛ixi. (8.5)

The centre of the sphere is the centre of mass of all training points, with the weights equal to the
Lagrange multipliers. Furthermore, the inequality ‖ xi − a ‖2≤ R2 implies ˛i ≥ 0, according
to the non-negativity constraint of the KKT. Substituting Equations (8.3) and (8.5) into (8.2)
yields another expression for the Lagrangian function to be maximized with respect to the ˛i:

L =
∑
i

˛i〈xi, xi〉 −
∑
i,j

˛i j̨〈xi, xj〉. (8.6)

After optimizing L with respect to ˛i, it is typical to discover that a large fraction of the ˛i is
equal to zero. The training examples with nonzero ˛i are called support vectors and lie on the
boundary of the support region. This is a result of the complementary slackness condition of
the KKT that states that (‖ xi − a ‖2)˛i = 0 for optimality. Hence, the support vectors must
lie on the boundary of the hypersphere. Therefore the SVDD yields a sparse representation of
the support expressed entirely in terms of the support vectors.

Once the minimum enclosing hypersphere has been found, outliers are identified by testing
whether or not the test examples lie within or outside the hypersphere. When the decision rule
‖ y − a ‖2> R2 holds true for a test example y, the example is labelled as an outlier. Expanding

‖ y − a ‖2 = (y − a)	(y − a) (8.7)

=
(

y −
∑

˛ixi)	(y −
∑

˛ixi
)

(8.8)

= 〈y, y〉 − 2
∑
i

˛i〈y, xi〉 +
∑
i,j

˛i˛j〈xi, xj〉, (8.9)

the decision rule becomes:

〈y, y〉 − 2
∑
i

˛i〈y, xi〉 +
∑
i,j

˛i j̨〈xi, xj〉 > R2, (8.10)

which is referred to as the linear SVDD decision rule.

8.2.2 The kernel-based SVDD

In most instances, a hypersphere does not provide a tight representation of the support of the
data in the original input space. Additional flexibility is needed to model arbitrarily complex
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distributions. To address this, the nonlinear SVDD maps the data from the input space to a
higher-dimensional feature space through the use of a mapping and models the support of
the distribution as a minimum enclosing hypersphere in the feature space. This hypersphere
corresponds to a tighter boundary for the support region in the original input space.

Proceeding as in the previous section, the algorithm seeks the smallest hypersphere in the
induced feature space S = �(x) :‖ �(x) − c ‖2≤ R2 including the entire set of mapped train-
ing examples T = �(xi), i = 1, . . . ,M. Therefore, the following constrained optimization
problem needs to be solved:

min(R) subject to �(xi) ∈ S, i = 1, . . . ,M. (8.11)

The corresponding Lagrangian is expressed as:

L(R, a, ˛) = R2 −
∑
i

˛i

(
R2 − 〈�(xi),�(xi)〉 − 2〈c,�(xi)〉 + 〈c, c〉

)
(8.12)

with Lagrange multipliers ˛i. Setting the partial derivatives of L with respect to R and a to
zero and substituting the results into L yields:

L =
∑
i

˛i〈�(xi),�(xi)〉 −
∑
i,j

˛i˛j〈�(xi),�(xj)〉 (8.13)

with ˛i ≥ 0,
∑
i ˛i = 1. This also gives an expression for the centre of the sphere:

c =
∑
i

˛i�(xi). (8.14)

As above, the hypersphere centre is the centre of gravity of the support vectors given the
optimal weights ˛i. The corresponding decision rule to detect an anomaly for a test pixel y is
SVDD(y) =‖ �(y) − c ‖2> R2, which expands to

SVDD(y) = ‖ �(y) − c ‖2

= ‖ �(y) −
N∑
i=1

˛i�(xi) ‖2

= 〈�(y),�(y)〉 − 2
∑
i

˛i〈�(y),�(xi)〉 +
∑
i,j

˛i˛j〈�(xi),�(xj)〉.

Note that the above expression consists of inner products of the mapping function �. Using the
well-known ‘kernel trick’, these inner products can be represented by a kernel functionK(x, y).
Kernel functions provide a computationally efficient technique to map implicitly the data into
the induced feature space and compute the inner product. The only requirement imposed on
the kernel function is that it satisfy Mercer’s theorem (Vapnik 1998). Mercer’s theorem states
that in order for a kernel function K(x, y) : RN × RN → R, (x, y) �→ z = K(x, y) to admit
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an eigenfunction expansion of the form

K(x, y) = 〈�(xi),�(yi)〉 =
∞∑
k=1

bk�(x)�(y), (8.15)

it must be positive and semi-definite:∫
K(x, y)g(x)g(y)dxdy ≥ 0 ∀g(·) ∈ L2. (8.16)

Under these conditions, the SVDD statistic can be simply expressed as:

SVDD(y) = K(y, y) − 2
∑
i

˛iK(y, xi) +
∑
i,j

˛i˛jK(xi, xj) > R2. (8.17)

Such continuous symmetric positive semi-definite kernel functions play the role of a dot
product, thereby forming a new Hilbert space where the problem of determining the minimum
enclosing hypersphere can be posed in a sensible fashion.

This work employs the popular Gaussian radial basis function (RBF) as the kernel function,
defined as:

K(x, y) = exp

(− ‖ x − y ‖2

�2

)
. (8.18)

The choice of the RBF simplifies the SVDD(y) test statistic to:

SVDD(y) = 1 − 2
∑
i

˛iK(y, xi) +
∑
i,j

˛i˛jK(xi, xj) > R2, (8.19)

since K(y, y) = 1. The RBF has one free parameter, which is the scale parameter �. This
parameter affects the tightness-of-fit for the training data (and therefore boundary smoothness),
as shown in Figure 8.1 (Tax and Duin 1999). By varying the scale parameter of the RBF, the

Figure 8.1 SVDD decision boundary using � = 5 (left) and � = 3 (right). Note how using
a smaller value for sigma leads to a tighter decision boundary. (Modified from Banerjee,
A., Burlina, P. and Diehl, C.P. (2006) A support vector method for anomaly detection
in hyperspectral imagery, IEEE Trans. on Geoscience and Remote Sensing, 44(8), 2282–
2291)
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SVDD can determine multiple regions of support for a dataset. As can be seen Figure 8.1, this
allows the SVDD to model multi-modal distributions. For anomaly detection, this implies that
the SVDD can detect targets embedded in multiple types of clutter with fewer false alarms.

8.3 SVDD function optimization

Finding the SVDD decision boundary requires the following optimization:

min
�

1

2

∑
i,j

˛i˛jK(xi, xj) subject to 0 ≤ ˛i ≤ 1,
∑

˛i = 1. (8.20)

Traditional support vector algorithms use standard quadratic programming (QP) techniques
such as active set and conjugate gradient methods to minimize the function. These methods
have a complexity of O(N3), where N is the number of training samples. However, given a
large number of training samples, standard QP techniques cannot solve the problem efficiently.
They involve a matrix whose size scales quadratically with the number of active constraints
(non-zero ˛is) and therefore require a lot of memory and a large number of iterations to arrive
at a solution. For hyperspectral anomaly detection, this is a critical issue since many training
pixels are needed to characterize the statistics of high-dimensional spectra.

To address this issue, a ‘chunking’ method was introduced in Vapnik (1982) to solve the
dense SVM QP problem. The chunking algorithm uses the fact that the value of the quadratic
function is the same if you remove the rows and columns of the matrix that correspond to
zero Lagrange multipliers. Therefore, the large QP problem can be broken down into a series
of smaller QP problems, whose ultimate goal is to identify and remove all of the nonzero
Lagrange multipliers. Chunking reduces the size of the matrix from the number of training
examples squared to approximately the number of nonzero Lagrange multipliers squared.
However, chunking still cannot handle large-scale training problems, since even this reduced
matrix cannot fit into memory.

In Osuna et al. (1997), a new class of QP algorithms was proposed by Osuna et al. for
SVMs. They demonstrate that the large QP problem can be broken down into a series of
smaller QP sub-problems. Sequential Minimal Optimization (SMO) is an example of such a
fast method to find the solution for a very large QP optimization problem. SMO breaks this
large QP problem into a series of QP problems involving only two examples. These small
QP problems are solved analytically, which avoids using a time-consuming numerical QP
optimization as an inner loop. The amount of memory required for SMO is linear in N, which
allows SMO to handle very large training sets.

The results presented in Section 8.5 utilizes the SVDD implementation found in the NTU
SVM software package (Chang and Lin 2001). This implementation uses the SMO minimiza-
tion method to find the optimal hypersphere. To illustrate the increase in speed when using
the SMO method, the SVDD algorithm is run using both the standard QP and SMO methods
on the same data with the same value for sigma while varying the number of training samples.
Plots of the run-times as a function of the number of samples are given for both methods
in Figure 8.2. The plots show that the runtime for the standard QP increases exponentially
with the number of training sample, while SMO increases linearly. Furthermore, SMO is an
order-of-magnitude faster. This is a key benefit to using SMO for local hyperspectral anomaly
detection, since the optimal SVDD decision boundary is computed for every pixel in the image.
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Figure 8.2 Comparing the speed of QP and SMO optimization methods. (Left) The runtime
of the standard QP solver increases exponentially with the number of training samples, while
SMO increases linearly. (Right) SMO runtime increases linearly with the number of samples.

Finally, it should be noted that incremental learning/update techniques found in the ma-
chine learning literature can be used to further improve the speed of local anomaly detectors
(Syed et al. 1999). The local background of neighbouring pixels greatly overlap and share
a large percentage of the same training data. Instead of retraining the SVDD at each pixel,
incremental learning methods can efficiently update the SVDD model by considering only the
new background spectra in the local neighbourhood.

8.4 SVDD algorithms for hyperspectral anomaly detection

This section presents local and global anomaly detection algorithms based upon the SVDD.
A local anomaly detector finds pixels in the image that have different spectra from the clutter
background in the local neighbourhood. A global anomaly detector finds pixels whose spectra
are different from the other spectra in the entire image. The RX algorithm can also be used either
as a local or global anomaly detector, depending on how the background samples are collected.

Both approaches have complementary advantages and disadvantages. Local anomaly de-
tectors can use simpler models to describe the local background. However, they are compu-
tationally intensive and are susceptible to false alarms that are isolated spectral anomalies.
For global background modelling, the background is estimated once for the entire hypercube.
Since the global background contains many materials, the modelling required is much more
complex than that required locally. They are often faster than the local anomaly detectors since
the background clutter model is not computed for each pixel. Furthermore, global methods also
provide the capability for enhanced ROC performance due to: (a) more accurate background
characterization in the presence of closely spaced targets that is corrupted when a local model
is used, and (b) the rejection of local anomalies that are not truly anomalous in the scene (e.g.
isolated trees and shadows).

8.4.1 Outline of algorithms

The multi-modal background characterization of SVDD is virtually automatic and does not
require any a priori knowledge of background characteristics (e.g. the number of components
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to be used in a mixture model). As a result, SVDD is well suited for global background
characterization and is able to achieve high detection performance and low false alarm rates
with extremely rapid computational processing.

The steps for the global SVDD anomaly detector are as follows.

1. Randomly select a set of N background pixels from the image as the training set.

2. Given the set of background spectra, estimate an optimal value for�, the scale parameter
of the RBF kernel.

3. Using the spectra from the training pixels, estimate the SVDD parameters (a, ˛i, R) to
model the region of support for the background clutter.

4. For each pixel in the image perform the decision test:

• If SVDD(y), the SVDD test statistic for pixel y, is less than the detection threshold
t, the pixel is part of the background.

• Else, declare the pixel as an anomaly.

Note that since this is a global method, only the last step needs to be performed for each pixel,
as the training is done only once for the entire image. To reduce the computational expense
of the algorithm further, a closer look at the SVDD(y) (8.19) yields:

SVDD(y) = � − c(y)
∑
i

˛iCi exp

(−2y	x
�2

)
, (8.21)

where � = 1 + ∑
i,j ˛i˛jK(xi, xj), c(y) = exp(−y	y/�2) and Ci = exp(−x	

i xi/�2) may be
pre-computed at the beginning after training when the support vectors xi have been found.
Therefore, only the inner-product in the exponential term on the right-hand side of the above
equation needs to be computed at every pixel.

The local SVDD anomaly detector is similar to the RX algorithm. The SVDD statistic is
computed at each pixel to determine if the pixel lies within the support region of the background
pixels. This approach replaces the Mahalanobis distance used in the RX detector with the
SVDD(y) measure. The steps for the local SVDD based anomaly detector are as follows.

1. Select the dimensions of the hollow background window.

2. Estimate �, the scale parameter of the RBF kernel.

3. Given the window size and scale parameter, for each pixel:

• Sample pixels from the local neighbourhood using the background window.

• Using these pixels, compute the SVDD parameters (a, ˛i, R) to model the region of
support for the background clutter.

• Decision:

◦ If SVDD(y), the SVDD test statistic for pixel y is less than the detection threshold
T , the pixel is part of the background.

◦ Else, declare the pixel as a target.

Details for steps 1 and 2 of the algorithm are given below.
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Figure 8.3 Example of a hollow window used to collect pixels for background estimation.

8.4.2 Dimensions for the background window

Local background samples around the pixel under test are used to estimate the background
SVDD parameters. The samples are collected from a hollow rectangular window centred at
the pixel. The window consists of two regions, the inner and outer window regions, as shown
in Figure 8.3.

The dimensions of each region are based on the spatial resolution of the image and the
expected size of the targets. The size of the inner area should accommodate the typical or
largest expected target in the scene. The size of the outer window should be large enough to
collect a sufficient number of training samples for background estimation.

8.4.3 Estimating sigma

Choosing an appropriate value for the RBF kernel scale parameter sigma is critical for accept-
able detection performance. Typically, the performance of anomaly detectors is commonly
characterized by two measures of error: the false alarm rate (classifying a background pixel as
an outlier), and the false acceptance rate (accepting a target pixel as part of the background).
Since the target spectra are unknown, it is not possible to estimate the false acceptance rate
from the training samples directly.

To reliably estimate sigma, a Neyman–Pearson framework is developed based on two
observations. First, it has been shown (Tax et al. 1999; Scholkopf et al. 2000; Tax and Duin
1999) that an upper bound on the false alarm rate for the SVDD is:

PFA ≤ E
[

#SV

N

]
. (8.22)

In this expression, Pfa is the false alarm rate, #SV is the number of support vectors in the
SVDD model and N is the total number of training samples.

The second observation is that anomaly detectors implicitly assume that the target space
is simply the complement of the support region of the background training samples. Without
knowledge of the target spectra and their distribution, anomaly detectors attempt to model the
support region of the background spectra. They consider any pixels whose spectra lie outside
the support region as targets.
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Analogous to the Neyman–Pearson framework, an estimate for sigma that seeks to maxi-
mize the probability of detection while maintaining a desired false alarm rate can be defined
as follows:

�̂ = max
�

(PD) such that PFA ≤ �, (8.23)

where PD is the probability of detection and � is the desired false alarm rate. Utilizing the two
observations above,

�̂ = max
�

1

C

∫
RC

1(x)dx such that E

[
#SV

N

]
≤ � (8.24)

= max
�
volume(Rc) such that E

[
#SV

N

]
≤ � (8.25)

= min
�
volume(R) such that E

[
#SV

N

]
≤ �, (8.26)

where 1(·) is the indicator function and R is the support region for the background pixels, and
C is a normalizing constant. The probability of detection is approximated as the volume of the
feature space that lies outside of the support region (Rc). Thus, the estimator seeks the value
of sigma that (a) minimizes the size of the support region for the background spectra and (b)
generates an average fraction of support vectors that is less than the desired false alarm rate.

As shown in Tax et al. (1999), Scholkopf et al. (2000) and Tax and Duin (1999), the choice
of sigma affects the size of the support region and the number of support vectors. Figure 8.1
illustrates the SVDD support regions for a set of training data with two different values for
sigma. It shows that if the value of sigma is small, the resulting support region is small and the
decision boundary overfits the data. If sigma is big, the support region is large and the classifier
underfits the data with a possibly trivial decision boundary. Since sigma is proportional to the
volume of the support region, the estimate for sigma can be expressed as:

�̂ = min
�
� such that E

[
#SV

N

]
≤ �. (8.27)

Furthermore, sigma is inversely proportional to the number of support vectors (Scholkopf et al.
2000; Tax and Duin 1999). Hence, the choice for sigma should be small enough to minimize
the volume of the support region while large enough to maintain the desired false alarm rate.

Given the expectation in the above expression is over training sets of sizeN, the expectation
from a single training set cannot be estimated. Therefore the resulting number of support
vectors for the SVDD model is substituted in place of the expectation to obtain an approximate
upper bound.

To avoid the computational expense of estimating sigma for every pixel, one can choose
to estimate a value of sigma that minimizes the average false alarm rate across the entire
image, i.e.

1

M

M∑
i=1

PFAi ≈ 1

M

M∑
i=1

E

[
#SVi
N

]
≈ 1

M

M∑
i=1

#SVi
N

≤ �, (8.28)
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Figure 8.4 Fraction of support vectors as a function of sigma for three SVDD models. Sigma
can be estimated using a Neyman–Pearson criterion.

whereM is the number of training sets,N is the number of examples in each training set, PFAi
is the ith training set, and #SVi is the number of support vectors found for the ith training set.
This approximation results in the following estimate for sigma:

�̂ = min
�
� such that

1

M

M∑
i=1

#SVi
N

≤ �. (8.29)

The algorithm to obtain this global estimate for sigma is as follows. Generate multiple sets of
training data by randomly selecting pixels from the image. For each set of training data, the
SVDD decision boundary is determined using different values for sigma. For each value of
sigma, the average fraction of support vectors is computed over all of the training sets. The
smallest sigma such that the average fraction of support vectors is less than � is the estimated
value.

Figure 8.4 provides an example of the � estimate as described above. In this example,
three sets of 1000 training samples are randomly selected from a hyperspectral image. The
SVDD classifier is trained on all three datasets with varying values for sigma. In this example,
the smallest value for sigma that satisfies the desired false alarm rate of 0.01 is 1400, which
is used as the estimate.

8.4.4 Normalized SVDD test statistic

Anomaly detectors compute a statistic that provides a measure of similarity to the background
for each pixel in the image. The statistic can be used to compare the pixels directly and identify
those that are more likely to be anomalies. This allows for the use of a single threshold for
the entire image, which is a key consideration for local anomaly detectors. By varying this
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global threshold, an empirical receiver operating characteristic (ROC) curve can be generated
to evaluate the detector’s performance.

One class of such detectors is the constant false alarm rate (CFAR) detectors. The CFAR
property is useful because it allows for the determination of a single detection threshold that
(a) generates a desired number of false alarms, (b) is independent of the estimated parameters,
and (c) can be used for every pixel in the image.

The RX algorithm is an example of a CFAR detector (Beaven et al. 2000). Using the
Mahalanobis distance, each pixel is normalized to yield a zero-mean Gaussian random variable
with an identity covariance matrix. This allows the algorithm to compute a detection threshold
via ∫

x:f (x)<T
f (x)dx = PFA, (8.30)

where f (x) ∼ N(0, I), and PFA is the desired false alarm rate. Note that T is computed
independently of the estimated background parameters. Furthermore, if the pixels are Gaussian
distributed, the threshold will generate the desired number of false alarms.

For the SVDD, a normalized test statistic can be similarly derived. In contrast to the
RX algorithm, the following normalization procedure is motivated geometrically and strictly
avoids imposing assumptions about the underlying distribution. Recall from Section 8.2 that
the nonlinear SVDD estimates the minimum enclosing hypersphere centred at a with radius
R in the feature space as the support region for the background pixels. From Equation (8.11),
the distance between the mapped example �(y) and the centroid of the hypersphere c is:

‖ �(y) − c ‖2= 1 − 2
∑
i

˛iK(y, xi) +
∑
i,j

˛i˛jK(xi, xj), (8.31)

which is the original SVDD statistic. Since the radius of the optimal hypersphere will vary
from pixel to pixel, the distance to the centroid cannot be used to compare the similarities of
multiple pixels to their respective backgrounds. Hence, a normalized version of the SVDD
test statistic is given as:

SVDDN (y) = ‖ �(y) − c ‖2

R2 = 1 − 2
∑
i ˛iK(y, xi) + ∑

i,j ˛i˛jK(xi, xj)

R2 . (8.32)

By dividing the original statistic by the squared radius, the SVDDN (y) function effectively
transforms the feature space so that the minimum enclosing hypersphere encompassing the data
has unit radius. This normalization allows for direct comparison of the SVDD function values
for different pixels in the image. The detection threshold T can now be chosen independently
of the estimated SVDD parameters.

Selecting the detection threshold analytically is an important consideration. CFAR detec-
tors, such as the RX, allow for the estimation of a threshold based on a desired false alarm
rate. However, if the data is non-Gaussian, the CFAR properties of the RX detector no longer
hold. As the SVDD avoids estimating a PDF, it is difficult to compute the threshold analyti-
cally. Instead, its detection threshold can be determined empirically by using nonparametric
approaches for data modelling. One example is to use extreme value theory (EVT) (Pickands
1975), a branch of statistics dealing with extreme deviations from the mean. EVT methods
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attempt to model the tails of the distribution empirically and determine a detection threshold
based upon a desired false alarm rate. As this is an emerging area of study, its usefulness will
be examined in future work.

8.5 Experimental results

In this section, the computational and detection performance of the SVDD anomaly detectors
are evaluated. The first set of experiments compares the local anomaly detectors, in particular
the RX, SVDD and normalized SVDD algorithms. Examples of how the false alarm rate is
affected by the signal-to-noise ratio and the background clutter statistics are given. An analysis
of how algorithm speed varies with the number of spectral bands and the number of training
samples is provided. The analysis offers some insight into selecting the appropriate anomaly
detector for different situations.

The second set of experiments compares these local anomaly detectors with the global
SVDD algorithm. The computational complexity of the algorithms is discussed, and their
detection capabilities are analysed using ROC curves.

Data overview

The detectors are compared using images taken from the Wide Area Airborne Mine Detection
(WAAMD) and Hyperspectral Digital Imagery Collection Experiment (HYDICE) datasets.
The WAAMD imagery is provided by the Night Vision Electronic Systems Directorate
(NVESD). The COMPASS sensor, providing 256 bands in the VIS/NIR/SWIR part of the
spectrum (400–2350 nm), was used to image the minefields. For the images used in this study,
the sensor was flown at an altitude of 1000 and 2000 feet, with a GSD of approximately 4 and
8 inches, respectively. The images contain two types of mines whose sizes are approximately
2×2 pixels.

The HYDICE sensor was used to acquire the Forest Radiance II data collect. The sensor
provides 210 spectral bands in the VIS/NIR/SWIR wavelengths with approximately 1 metre
spatial resolution. Two images that contain the targets from detection experiments 2, 3 and
4 are considered. There are over 20 target vehicles in the scenes, including many that are
partially hidden along tree lines. There are a handful of additional ‘transient’ non-military
vehicles in the images that are not marked as ground truth, but used in the evaluation.

Pre-processing

The detection algorithms are evaluated on both multi-spectral and hyperspectral versions of
the imagery. For hyperspectral data, the only pre-processing step involved manually removing
the water and CO2 absorption bands. The number of remaining bands is 145 for the WAAMD
data and 133 for the HYDICE imagery. To generate multi-spectral data, an additional step
was taken reduce the total number of bands to seven by averaging adjacent spectral bands.
The spectrum was divided into seven regions where the averaging was performed; the regions
correspond to red, green, blue, two near IR and two short-wave IR regions.

For all of the detectors, a hollow window is used to estimate the local background model.
The window dimensions are determined by the largest expected target size in the scene,
which can be determined by the pixel resolution of the data. A hollow window is used to
avoid incorporating target pixels in the estimation of the background statistics. For the RX
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detector, a mean vector and covariance matrix is estimated for each pixel from the pixels
in the hollow window. For the SVDD detectors, the samples from the background window
are used to train the SVDD classifier at each pixel. The dimensions of the window are the
same for all detectors. However, a larger window is used for hyperspectral data, since more
training samples are required to estimate the covariance matrix for the RX algorithm. The
actual window sizes used in the experiments are given below.

Performance evaluation of local anomaly detectors

The detectors are evaluated by comparing their ROC curves using groundtruthed imagery. The
locations of the target pixels are represented by rectangular boxes. To generate the ROC curves,
multiple thresholds are used for the RX, SVDD(y) and the SVDDN (y) test statistics. After
applying a threshold, the detected pixels are clustered via a connected components algorithm;
each cluster is counted as one detection or false alarm. If any part of the cluster falls within
the target box, it is considered to be a detection, else it is a false alarm. In addition, detections
arising from bad lines in the image are removed manually.

In Figures 8.5–8.8, ROC curves are provided to evaluate the ability of the algorithms to
detect mines using the WAAMD data. A total of 44 mines were placed in a highly cluttered
dirt field, resulting in a non-homogeneous background. The mine field was imaged with the
COMPASS sensor at altitudes of 1000 and 2000 feet, with a GSD of 4 and 8 inches, respectively.
The size of the 1000 and 2000 ft. altitude images are 1400 × 256 pixels and 1200 × 256 pixels,
respectively. For multi-spectral processing, the dimensions of the inner and outer regions for
the hollow background window are 7 × 7 and 13 × 13, respectively. For hyperspectral, the
dimensions of the inner and outer regions for the hollow background window are 7 × 7 and
15 × 15, respectively.

Figure 8.5 ROC curve comparing SVDD and RX detectors on WAAMD imagery using seven
bands. The 1400 × 256 image contains 44 live mines in a dirt field and was taken at 1000 ft
altitude.
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Figure 8.6 ROC curve comparing SVDD and RX detectors on WAAMD imagery using 145
bands. The 1400 × 256 image contains 44 live mines in a dirt field and was taken at 1000 ft
altitude.

The ROC curves comparing the detectors on the 1000 ft. altitude image are shown in
Figures 8.5 and 8.6. In the multi-spectral example of Figure 8.5, the SVDD detectors clearly
outperform the RX algorithm throughout the curve. For 100% detection, the SVDD detectors
reduce the false alarm rate by a factor of five. In the hyperspectral case (Figure 8.6), the
SVDD detectors generate approximately the same false alarm rate as with the multi-spectral

Figure 8.7 ROC curve comparing SVDD and RX detectors on WAAMD imagery using seven
bands. The 1200 × 256 image contains 44 live mines in a dirt field and was taken at 2000 feet
altitude.
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Figure 8.8 ROC curve comparing SVDD and RX detectors on WAAMD imagery using 145
bands. The 1200 × 256 image contains 44 live mines in a dirt field and was taken at 2000 feet
altitude.

data (nearly 0.015 FA/m2). However, the false alarm rate of the RX detector nearly doubles
when processing hyperspectral data. In the hyperspectral representation of the image, the false
alarm rate of the SVDD detectors is nearly an order of magnitude less than the RX algorithm.
One explanation for the performance difference is the distribution of the background spectra.
With a 4 inch GSD, the rocks and variations in the dirt field are more pronounced, making
the background highly cluttered and non-homogeneous. Hence, the Gaussian assumption of
the RX detector results in a high false alarm rate. The SVDD is better able to model the non-
Gaussian and possibly multi-modal support of the background pixels and reduce the number
false alarms.

From the curves in Figures 8.7 and 8.8, similar results are observed for the image at
2000 feet altitude. Processing the multi-spectral data, the SVDD detectors outperform the RX
detector throughout the ROC curve. For 100% detection, they generate half of the false alarms
of the RX. When analysing hyperspectral data, the ROC curves for the SVDD detectors remain
consistent, yielding a false alarm rate of 0.01 FA/m2 for 100% detection. For this image, the
SVDD reduces the false alarm rate by a factor of nearly 2.5, instead of 10. One possible
explanation for the difference is that the background for the higher altitude image is more
homogeneous and therefore does not violate the unimodal assumption of the RX algorithm.
It is also instructive to examine the Signal-to-Interference Noise Ratio (SINR) for the targets
in the two images. The SINR for each target is computed by using the target spectrum and its
covariance matrix estimated from a local neighbourhood of pixels. For the 1000 feet image,
the range of SINR values is between 23 dB and 28 dB for multi-spectral data, and 20 to 26 dB
for hyperspectral data. For the 2000 feet image, the SINR ranges between 26 dB and 29 dB
for both multi- and hyperspectral versions of the image. These numbers suggest that for lower
SINR levels, the SVDD detectors offer significant improvement over the RX algorithm. As
the SINR increases, the performance gain between the algorithms appears to lessen.
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Figure 8.9 ROC curve comparing SVDD and RX detectors on HYDICE multi-spectral
imagery. The 1280 × 320 image contains vehicles that are on roads and are partially
camouflaged near tree lines.

The algorithms are also evaluated using the Forest Radiance II dataset to detect vehicles in
various degrees of concealment. The HYDICE sensor was used to image vehicles on dirt roads
in a heavily forested region at 1m GSD. The background consists of foliage, grass and roads,
and is smoothly varying and homogeneous. The size of the image used in this study is 1280 ×
320 pixels. For multi-spectral processing, the dimensions of the inner and outer regions for
the hollow background window are 10 × 10 and 13 × 13, respectively. For hyperspectral, the
dimensions of the inner and outer regions for the hollow background window are 10 × 10 and
17 × 17, respectively.

The ROC curves in Figures 8.9 and 8.10 show that all of the detectors work equally well in
the low false-alarm region. In this area of the curve, the vehicles are predominantly in the open,
so they are easier to detect. Using hyperspectral data (Figure 8.10), there is clear separation in
the ability of the RX and SVDD algorithms to detect targets partially occluded along tree lines.
Since the local background of these targets contains multiple types of terrain, a multi-modal
representation for the background is required. In such cases, the SVDD is able to compute a
more robust detection threshold than the RX detector. Furthermore, the SINR values for the
targets in the multi-spectral image are above 30 dB. In the hyperspectral image, the SINR
ranges from 27 dB to 33 dB. At such high signal-to-noise ratios, the targets are well-separated
from the background. Therefore detectors, such as the RX, that use linear decision boundaries
perform similarly to nonlinear detectors, such as the SVDD (as seen in Figure 8.9).

The results are summarized with two observations. First, the SVDD detectors are partic-
ularly useful for detecting low SINR targets. The spectra for these targets may not be linearly
separable from the background, so a nonlinear decision boundary is required. Second, the
SVDD detectors work well with both multi-spectral and hyperspectral data. They are able
to incorporate the extra information provided by the addition spectral bands to reduce the
number of false alarms for 100% detection. In contrast, the performance of the RX detector
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Figure 8.10 ROC curve comparing SVDD and RX detectors on HYDICE hyperspectral im-
agery. The 1280 × 320 image contains vehicles that are on roads and are partially camouflaged
near tree lines.

appears to be sensitive to the number of bands. Among the reasons for the difference are (a) the
Gaussian assumption of the RX may be less valid for higher dimensional data, as explained
in Landgrebe (2002), and (b) robust estimation of the covariance matrix is more difficult as
the number of bands increases.

Computational complexity

The ROC curves in Figures 8.5–8.10 illustrate the increase in detection performance offered
by the SVDD approach. In addition to reducing the false alarm rate, anomaly detectors should
also be computationally efficient in order to process a datacube in near real-time. Thus, the
computational complexity of the RX and SVDD algorithms are considered.

The two critical factors that impact the speed of the detectors are the number of spectral
bands and the number of pixels in the hollow window used to estimate the background model.
For the RX detector, it has been shown (Schweizer 2001) that its computational complexity
is linear with respect to the number of pixels used to estimate the background statistics. Since
it needs to estimate and invert a B× B covariance matrix (where B is the number of spectral
bands), the number of floating point operations per second (FLOPS) for the RX detector is
approximately quadratic with respect to the number of bands (Schweizer and Moura 2001).

For the SVDD, the converse is true. By avoiding the need to invert large covariance
matrices, the complexity of the SVDD increases linearly with the number of bands, as only
dot products need to be computed. However, the speed of the SVDD detectors scales with
the training set size (Lai et al. 2004). They require the inversion of an N ×N kernel matrix,
where N is the number of background pixels used to train the classifier at each pixel. Hence,
their complexity is exponential with respect to the size of the background window.

In Figure 8.11, the processing times for both algorithms as function of the number of
spectral bands and number of training samples are shown. The algorithms are implemented
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Figure 8.11 Illustration of how the computational complexity of the RX and SVDD anomaly
detectors vary with the number of spectral bands and the number of training samples. Note
that the speed of the SVDD in this example is based on the use of standard QP optimization.

in C++ on a 2.8 GHz Pentium machine, and the code has not been fully optimized. The CPU
time required to process a 256 × 100 pixel image are measured. Figure 8.11(left) shows that
for a fixed number of training samples (144 local background pixels), the processing time
for the SVDD increases linearly with the number of spectral bands, while the RX increases
quadratically. In Figure 8.11(right), it can be seen that the converse is true. For a fixed number
of bands (60 in this example), the SVDD increases quadratically with the number of training
samples, while the RX increases linearly.

Performance evaluation of global anomaly detectors

Finally, the performance of the global SVDD algorithm is compared with the local SVDD
and RX anomaly detectors using the WAAMD imagery. Figure 8.12 shows their ROC

Figure 8.12 (Left) ROC performance for the RX, local SVDD and global SVDD detectors.
(Right) Zoomed in view of upper left region of ROC plots providing a clearer view of global
SVDD performance.



190 SUPERVISED IMAGE CLASSIFICATION

Table 8.1 Processing complexity and algorithm characteristics affecting detector
performance

Processing complexity Clutter model/Notes

RX O(NpN3
b ) Local, Unimodal, Normal

SVDD (local) O(NpN3
c ) Local, Multimodal

SVDD (global) O(N3
c ) Global, Multimodal

Key: Np, Nb, Nc: Number of pixels, spectral bands, clutter training samples

performance on the WAAMD hyperspectral image captured at 2000 foot altitude containing
38 targets.

The global SVDD results in enhanced false alarm suppression due to the rejection of
candidates that are locally anomalous but not globally anomalous (e.g. isolated trees). In
addition, it provides enhanced detection due to enhanced background characterization that is
not forced to include target spectra when targets are in close proximity to each other.

The computational complexity of the RX method stems from the inversion of the covariance
matrix that is required for the background estimation, which in general is of order O(N3

b )
where Nb is the number of bands. Owing to the local nature of the estimation, this inversion
is required at every pixel, so the actual processing time is of order O(NpN3

b ), where Np is the
number of spatial pixels in the hyperspectral image. By using a global background estimate for
RX, Np can be removed from the order of magnitude of the processing, and thereby achieve
rapid processing of the image. However, the anomaly detector will not work well since the
background is generally not globally unimodal.

The SVDD approach does not require a covariance matrix inverse computation and is also
linear with respect to spectral dimensionality. Processing is commensurate with the inversion
of the system matrix kernel, which is of order O(N3

c ). Since SVMs are effective with few
exemplars, the background modelling is very robust to low training so Nc may be relatively
low. In addition, since the background modelling is multi-modal, automatic and does not
require any a priori knowledge of background characteristics (e.g. the number of components
to be used in a mixture model), global background characterization may be reliably performed.
As a result, SVDD is able to achieve high detection performance and a low false alarm rate
with rapid computational processing. Computational complexity and associated characteristics
affecting algorithm performance are summarized in Table 8.1.

8.6 Conclusions

A geometric interpretation of the SVDD is used to derive a normalized metric that is appropriate
for anomaly detection in spectral imagery. ROC curves comparing the performance of the RX
and the proposed detector show a marked reduction in the number of false alarms when using
the SVDD. Further analysis of the background clutter and SINR for the targets to explain the
differences in performance is also provided.

Other algorithms, such as the mixture of Gaussian anomaly detector and the sub-space
RX (SSRX) produce similar reductions in the false alarm rate. However, the proposed SVDD
approach for anomaly detection has several key differences.
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• It is nonparametric and has the ability to model non-Gaussian background clutter.

• It can model nonhomogeneous backgrounds using multi-modal distributions. without
making any prior assumptions (i.e. number of modes).

• It avoids the need to invert large covariance matrices when processing hyperspectral
data.
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A domain adaptation SVM
and a circular validation strategy
for land-cover maps updating

Mattia Marconcini and Lorenzo Bruzzone
Dept. Information Engineering and Computer Science
University of Trento, Italy

In this paper, we present a novel domain adaptation classifier based on SVMs (DASVM)
for land-cover maps updating, which can be employed in real operational situations when
ground-truth labels are available only for a reference image acquired over the investigated
geographical area before the one to classify. In addition, we also propose a circular validation
strategy for the accuracy assessment of the classification results when no labelled samples are
available for the image to be categorized.

9.1 Introduction

In the last few years, automatic image classification has become a challenging and impor-
tant task in the framework of remote sensing thanks to the technological development of
new sensors and the growing importance of related applications. In this context, two main
families of learning methods are commonly employed, depending on whether true labels are
available for the considered remote-sensing image or not: supervised learning methods and

Some parts of this chapter have been derived from papers currently under consideration in IEEE journals (Bruzzone
and Marconcini 2008, 2009).
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unsupervised learning methods. The default assumption of supervised learning methods is
that training and test data are drawn from the same domain (i.e., a domain D is defined as a
distributionp(x, y) = p(x)p(y|x), x ∈ X̃ , y ∈ �, that governs the classification problem under
investigation, where X̃ and � represent all possible instances and all possible information
classes for the considered problem, respectively). In this scenario, a representative set of
labelled samples for the training of the classifier is assumed to be available and the learning of
the algorithm is associated with the solution of a well-posed problem (i.e., the solution is stable
with respect to small perturbations of the data). In unsupervised learning methods, instead,
no training data are available and the problem is addressed according to the solution of ill-
posed clustering problems (i.e., small changes in data can arbitrarily cause large unpredictable
changes in results).

Nonetheless, in many applications, hybrid conditions can be encountered where, even if
prior ground-truth information is available, it is not sufficient to define a training set repre-
sentative of the distribution to which the trained model should be applied. These kinds of
ill-posed problems can be addressed according to transfer learning methods. In particular,
transfer learning refers to the problem of retaining and applying the knowledge available for
one or more tasks, domains, or distributions to develop efficiently an effective hypothesis for
a new task, domain or distribution. Depending on whether training and test data are drawn
from the same remote-sensing image or not, two specific transfer learning sub-problems can
be encountered: (i) learning under sample selection bias; and (ii) domain adaptation.

Learning under sample selection bias is associated with cases in which unlabelled test
data are assumed to be drawn from the same remote-sensing image (i.e., the same domain) of
training data. However, although training patterns are available (thus completely unsupervised
methods are not optimal to solve the classification problem properly), they do not allow for re-
liable learning of supervised algorithms (unrepresentative training set). In particular, since the
number and/or the quality of labelled samples is assumed to be inadequate for properly training
the classifier, the estimated distribution p̂(x, y) = p̂(x)p̂(y|x) does not correctly model the true
underlying distributionp(x, y). On the one hand, a relatively small number of training samples
(with respect to the number of free parameters of the classifier) may lead to a poor estimation
p̂(x) and results, generally, in the well-known Hughes phenomenon (Hughes 1968). On the
other hand, unrepresentative training patterns (e.g., correlated patterns violating the assump-
tion of independence, samples that do not properly model all the realizations of the information
classes, etc.) introduce a bias in the estimated class prior distribution (i.e., p̂(y) /= p(y)) and
may cause a poor estimation of the conditional distribution (i.e., p̂(y|x) /= p(y|x)).

Domain adaptation is related to more critical situations in which no training patterns are
available for the considered dataset, but where labelled samples are known for a different
dataset that refers to the same scenario under investigation. This is the case of land-cover
maps updating when training samples are only provided for a reference image acquired at
one date, but no true labels are available for a new image acquired over the same area at a
different date (gathering reliable ground truth for each new acquisition is not realistic and is
generally very expensive both in terms of time and economic cost). Although the considered
images refer to the same area, it is reasonable to expect that relevant changes might occur
between the information class distributions characterizing each specific acquisition date for
several possible reasons (e.g., different acquisition system state, changes occurred on the
ground, alterations in the phenologic state of vegetation, dissimilar illumination conditions,
etc.). Therefore, unlabelled test patterns of the new image belong to a target domain Dt different
from the source domain Ds of training samples of the reference image. In this context, the
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key idea is to infer a good approximation of pt(x, y) by exploiting ps(x, y), where ps(x, y) =
ps(y|x) · ps(x) and pt(x, y) = pt(y|x) · pt(x) represent the true underlying distributions for
Ds and Dt , respectively. In the framework of domain adaptation, most of the learning methods
are inspired by the idea that, although different, the two considered domains are intimately
related (Ben-David et al. 2007; Daumé III and Marcu 2006; Jiang and Zhai 2007; Satpal and
Sarawagi 2007). In particular, it is intuitive to observe that considering the unlabelled data of
the target domain in the training phase could improve the performances over the case when
this information source is ignored.

It is worth noting that, in the context of sample selection bias the available training set,
even if unrepresentative, provides a raw description of the analysed image, whereas in do-
main adaptation the available labelled samples are not related to the specific problem under
investigation. This aspect involves an important difference in the learning strategies: in the
context of sample selection bias, the unlabelled samples allow one to integrate and complete
the information provided by training patterns; in domain adaptation, the available labelled
samples can be used only for driving the learning problem, whose solution should reflect only
the structure of the unlabelled patterns.

Recently, in the remote-sensing community great attention has been focused on solv-
ing problems with the sample selection bias hypothesis. In such situations, transductive and
semi-supervised learning methods proved capable of recovering satisfactory discrimination
performances by exploiting unlabelled data (taken from the image to classify) along with
the unrepresentative training data. In particular, while transductive classifiers are specifically
designed to handle only the unlabelled samples used in the learning process, semi-supervised
classifiers allow one to handle any unlabelled data of the considered image. In several appli-
cations, these approaches proved to be particularly effective and resulted in a relevant increase
of the classification accuracy with respect to supervised approaches (Zhu 2005).

On the other hand, due to its intrinsic higher complexity, less attention has been devoted to
the development of domain adaptation classifiers for solving the challenging task of land-cover
maps updating when ground truth is available only for a reference image. In this framework,
the authors have defined and developed partially-unsupervised classification techniques in
previous works (Bruzzone and Fernández Prieto 2001, 2002; Bruzzone and Cossu 2002;
Bruzzone et al. 2002). However, even if such approaches proved to be effective, their parametric
nature prevents them from being effectively employed in cases where it is not possible to
explicitly model the type of distribution that governs the investigated classification problem.
In order to overcome this drawback, in this chapter we present a novel domain adaptation
support vector machine (DASVM) technique that extends support vector machines (SVMs)
to the domain adaptation framework. From a general perspective, available labelled data from
the reference image are used for determining an initial unreliable solution for the new image
to be categorized. Then, the proposed technique iteratively selects and labels the unlabelled
patterns of the new image that are most likely to be correctly classified. At the same time,
original labelled samples are gradually erased, as they refer to an image that is different from
the one to be classified.

Besides the intrinsic complexity of the considered problem, another important limitation
in developing operational classification methods for addressing land-cover maps updating is
related to the lack of validation strategies that allow assessing the effectiveness of the classi-
fication results. Under the assumption that no ground-truth labels are available for the image
to classify, in fact, standard statistical validation methods cannot be employed. In this con-
text, as a second contribution of this chapter we present a circular validation strategy for
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automatically estimating the correctness of a land-cover map obtained with the proposed
DASVM technique. In particular, by assuming the existence of an intrinsic structure inti-
mately relating the source and target domains, our strategy (which can be also used for val-
idating the classification results of any domain adaptation method) indirectly analyses the
robustness of the classification map obtained for the new image at the end of a circular (i.e.,
forward and backward) procedure by exploiting available labelled samples for the reference
image.

Several experimental results obtained on a multi-temporal and multi-spectral dataset re-
lated to Lake Mulargia (Sardinia Island, Italy) confirmed the effectiveness and the reliability
of the proposed system.

The chapter is organized into six sections. In Section 9.2 a survey on both transductive
and semi-supervised methods is reported, as well as an overview of partially-unsupervised
(domain adaptation) classifiers. Section 9.3 and Section 9.4 present the proposed DASVM
technique and the circular validation strategy defined for addressing automatic land-cover
maps updating, respectively. In Section 9.5 experimental results are reported. Finally, Section
9.6 draws the conclusions of the chapter.

9.2 Literature survey

In this section, we present a brief overview of the main contributions that have been proposed
in the remote-sensing literature for addressing transfer learning classification problems. In
particular, we first focus attention on both transductive and semi-supervised methods defined
for solving problems under the hypothesis of sample selection bias. We then describe partially-
unsupervised methods devised for addressing automatic updating of land-cover maps in the
context of domain adaptation.

9.2.1 Learning under sample selection bias: transductive
and semi-supervised methods

In many remote-sensing applications, several transductive and semi-supervised methods have
been proposed so far for recovering satisfactory classification accuracies in the presence of
unrepresentative training samples.

An effective family of approaches involves the use of generative models, which assume
that data are drawn from an identifiable mixture distribution p(x|y). Under this hypothesis,
it has been demonstrated that, in the presence of a large number of unlabelled patterns, it is
possible to identify the mixture components; thus, only a few labelled samples are actually
needed to estimate p̂(x, y) correctly. In this context, several works presented in the literature
exploit the Expectation-Maximization (EM) algorithm (Dempster et al. 1977) for a maximum
likelihood estimation of the parameters that characterize the distributions of the considered
information classes. Shahshahani and Landgrebe (1994) first introduced the EM algorithm to
estimate model parameters of a Gaussian Maximum Likelihood classifier with both labelled
and unlabelled samples for the classification of hyperspectral remote-sensing images. To limit
the risk that semi-labelled samples (i.e., originally unlabelled samples associated with es-
timated labels during the learning process) could negatively affect the learning process, an
effective weighting strategy was presented by Tadjudin and Landgrebe (2000). In particular,
while full weights are associated to original labelled samples, reduced weights are assigned to
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semi-labelled samples. Since the covariance matrices are generally highly variable when only
very few labelled patterns are available, Jackson and Landgrebe (2002) proposed an adap-
tive strategy that allows one to improve the performances by considering also semi-labelled
patterns in the estimation phase.

In the last few years, in the machine learning community growing attention has been
focused on the development of discriminative models, directly aimed at estimating the con-
ditional distribution p̂(y|x). In this framework, Transductive SVMs (TSVMs) (Vapnik 1998,
1999) and Semi-supervised SVMs (S3VMs) (Bennett and Demiriz 1998) proved particularly
effective in many remote-sensing applications. These approaches are implemented under the
assumption that each cluster of samples belongs to a specific information class; therefore, the
decision boundary is defined between clusters in low density regions of the feature space. Based
on the analysis of the properties of TSVMs, the authors first proposed a transductive classifier
specifically designed for handling ill-posed problems in the context of remote-sensing image
classification (Bruzzone et al. 2006). In particular, this technique: (i) exploits a transductive
procedure that takes advantage of a strategy for weighting semi-labelled samples accord-
ing to a time-dependent criterion and (ii) permits one to address multiclass problems. Also
Dundar and Landgrebe (2004) presented a similar method that exploits a modified version
of the Kernel Fisher’s discriminant using both labelled and unlabelled data. In particular, the
proposed classifier is obtained through an optimization of a quadratic programming problem
that minimizes the total cost of misclassified training samples while maximizing the Rayleigh
coefficient in the kernel space. Chi and Bruzzone (2007) introduced in remote sensing other
two effective S3VM algorithms for the classification of hyperspectral data implemented and
optimized in the primal formulation. The constraints of the labelled and unlabelled samples
are directly included in the cost function in order to obtain an unconstrained minimization
problem as proposed by Chapelle (2007). The first presented algorithm optimizes the un-
constrained objective function by the gradient descent technique, leading to the formula-
tion of the ∇S3VM. The second classifier combines a graph-based kernel matrix with the
∇S3VM.

A third group of methods for addressing learning under sample selection bias includes
graph-based semi-supervised algorithms, which define a graph where the nodes are both
labelled and unlabelled patterns and edges reflect the similarity of the instances. Most of
the graph-based classifiers proposed in the literature aim at estimating an objective func-
tion on the graph, which is expected to be smooth on the whole graph, as well as suf-
ficiently close to the available labelled samples. In this context, an effective approach
for hyperspectral image classification has been presented by Camps-Valls et al. (2007),
who also integrated contextual information in the formulation of the graph-based method
presented by Zhou et al. (2004). Another interesting technique has been recently pre-
sented by Gómez et al. (2008). In particular, the authors extended to the remote-sensing
framework the Laplacian SVM technique proposed by Belkin et al. (2006), which intro-
duces an additional regularization term on the geometry of both labelled and unlabelled
samples by using the graph Laplacian (Jordan 1999). In contrast to most transductive
learning methods, the proposed classifiers follows a non-iterative optimization procedure;
moreover, with respect to other graph-based approaches, it also provides out-of-sample
predictions.

Recently, systems based on ensemble methods have also been defined. As an example, Chi
and Bruzzone (2005, 2006) proposed the employment of semi-labelled sample driven bagging
techniques. Available labelled samples are used to train a base classifier; then a subset of
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representative semi-labelled samples is merged with the original training samples. This new
hybrid set is used to train a number of semi-supervised classifiers whose cost functions account
for the presence of semi-labelled samples. Finally, an ensemble architecture is used to combine
the results provided by each classifier in order to increase the robustness of the classification
results.

9.2.2 Domain adaptation: partially-unsupervised methods

Although several algorithms have been proposed for tackling remote-sensing problems under
the hypothesis of sample selection bias, currently only few methods have been defined for
handling the challenging problem of land-cover maps updating in the framework of domain
adaptation. To this aim, the authors introduced in previous works partially-unsupervised tech-
niques (Bruzzone and Fernández Prieto 2001, 2002; Bruzzone and Cossu 2002; Bruzzone
et al. 2002).

Bruzzone and Fernández Prieto (2001) first presented an effective approach for updating
the parameters of a maximum-likelihood (ML) classifier trained on a reference image on the
basis of the distribution of a new image for which no ground-truth information is available. In
particular, the key idea consists in modelling the observed spaces by a mixture of distributions,
whose components are estimated through the use of a specific version of the EM algorithm
that exploits both labelled samples of the reference image and unlabelled samples of the
new image. To take into account the existence of a temporal correlation between two images
acquired over the same area at different times, the partially-unsupervised ML approach has
been then reformulated in the framework of the Bayesian rule for cascade classification, which
jointly considers the information contained in all the items of a temporal series (Bruzzone and
Fernández Prieto 2002).

Another interesting approach based on a multiple-classifier system has been proposed by
Bruzzone et al. (2002). In particular, the aforementioned unsupervised retraining technique for
the ML classifier was extended also to radial basis function neural networks (RBF-NNs) and
different strategies for the combination of the resulting classifiers have been considered. Suc-
cessively, this approach has been further extended for defining a multiple-cascade-classifier
system (MCCS) architecture where each classifier of the ensemble is developed in the frame-
work of cascade classification (Bruzzone and Cossu 2002). Besides partially-unsupervised
ML and RBF-NNs, hybrid ML and RBF-NNs cascade classifiers have also been devised in
order to increase both the effectiveness and the robustness of the ensemble. In this way, the
resulting MCCS is characterized by a higher reliability than single algorithms composing the
ensemble.

Despite the relevant impact it would have in several applications, nowadays the problem of
automatic land-cover map updating is still scarcely investigated. In order to address this critical
issue, we developed the domain adaptation SVM classifier described in the next section.

9.3 Proposed domain adaptation SVM

In this section, we describe the proposed domain adaptation SVM (DASVM) classifier. The
considered assumptions are discussed in the following; the complete formulation of the
DASVM algorithm is then presented in detail.
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9.3.1 DASVM: problem definition and assumptions

Let I1 and I2 represent two remote-sensing images acquired over the same area at times t1
and t2, respectively. Let X1 = {x1

i |x1
i ∈ I1}Ni=1 and X2 = {x2

i |x2
i ∈ I2}Mi=1 denote two subsets

of I1 and I2 composed of N and M instances, respectively, where x1
i and x2

i represent the
d-dimensional feature vectors associated with the ith sample of I1 and I2. In the formulation
of the proposed DASVM technique, let us assume that:

1. the same set of L information classes, � = {ωi}Li=1, characterizes the two remote-
sensing images I1 and I2;

2. the set of ground-truth labels Y1 = {y1
i |y1

i ∈ �}Ni=1 for X1 is available, therefore it is
possible to define the training set T1 = {X1,Y1} = {(x1

�, y
1
�)}N�=1 for I1;

3. a set of ground-truth labels Y2 = {y2
i |y2

i ∈ �}Mi=1 for X2 is not available, thus it is not
possible to define any training set for I2.

The objective of the DASVM technique is to obtain an accurate classification of the new image
I2 by jointly exploiting labelled training samples T1 from I1 and unlabelled samples X2 from
I2.

Note that it is reasonable to assume the existence of two extreme conditions for the distri-
butions p1(x, y) and p2(x, y) that govern I1 and I2, respectively. If p1(x, y) ≡ p2(x, y), then
adaptation is not necessary and standard supervised learning algorithms can be effectively
employed. Instead, if p1(x, y) and p2(x, y) are independent, then the available training set
T1 for I1 is useless for building a model for I2, therefore adaptation cannot be performed.
Nevertheless, in real applications p1(x, y) and p2(x, y) are generally neither identical nor
independent; thus, it is reasonable to assume the existence of an intrinsic relationship between
I1 and I2 that makes adaptation possible. It is worth noting that the probability of succeeding
in the adaptation process is expected to depend on the intrinsic similarity between the two
distributions (i.e., the larger the difference between p1(x, y) and p2(x, y), the harder it is to
relate one domain to the other).

9.3.2 DASVM: formulation

For simplicity, in the following we describe the proposed DASVM technique in the case of
a two-class problem. With respect to standard supervised SVMs, DASVMs are formulated
directly considering that unlabelled samplesX2 are drawn from a new image I2 that is different
from the reference image I1 of the training samples. Accordingly, labelled patterns are only
exploited for initializing the discriminant function forI2, while successively they are gradually
erased in order to obtain a final separation hyperplane defined only on the basis of the samples
of the new image (Figure 9.1). DASVMs, by iteratively deleting original training samples and
gradually adapting the discriminant function to the unlabelled instances, can recover useful
information and properly seize the classification problem at time t2.

The DASVM algorithm is characterized by three different phases: (i) initialization (only
original training samples T1 are used for initializing the discriminant function); (ii) iterative
domain adaptation (both original training samples T1 and unlabelled samples X2, respectively,
are jointly used for gradually adapting the discriminant function to I2); and (iii) convergence
(only unlabelled samples X2 are used for defining the final discriminant function). In the fol-
lowing, T (i) and X (i)

2 will denote the training set and the unlabelled set (i.e., the set containing
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Figure 9.1 Separation hyperplane (solid lines) and margin bounds (dashed lines) at different
stages of the DASVM algorithm for a toy dataset. Original patterns at time t1 are shown as white
and black circles. Semi-labelled patterns are shown as white and black squares, respectively.
Remaining unlabelled patterns at time t2 are represented as grey squares. Feature space
structure obtained: (a) at the first iteration (the dashed circles and squares highlight the current
semi-labelled patterns and the current original training patterns to delete, respectively; in the
example � = 3); (b) at the second iteration and (c) at the last iteration, respectively, in an
ideal situation (the dashed grey lines represent both the separation hyperplane and the margin
bounds at the beginning of the learning process).

the unlabelled samples that have not been inserted into the training set T (i)) at the current
iteration i, respectively.

Phase 1: Initialization In the first phase, as for supervised SVMs, an initial separation
hyperplane h(0) : f (0)(x) = 〈w(0), x〉 + b(0) = 0 is determined on the basis of the only original
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training patterns available for the reference image I1. We have that T (0) ≡ T1 = {(x1
�, y

1
�)}N�=1

and X (0)
2 = {x2

u}Mu=1. Accordingly, the functional to minimize is:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
w,b,�

{
1
2

∥∥w(0)
∥∥2 + C

N∑
�=1

�1
�

}
y1
�

(〈
w(0), x1

�

〉 + b(0)
) ≥ 1 − �1

� ∀� = 1, . . . , N

�1
� ≥ 0,

(9.1)

where w is a vector normal to h, b is a constant such that b/‖w‖2 represents the distance of h
from the origin, �� are slack variables allowing for (permitted) errors and C is the associated
regularization parameter, which permits one to tune the generalization capability.

Phase 2: Iterative domain adaptation In the second phase, both labelled samples from I1
and unlabelled samples from I2 are jointly taken into consideration. At the generic iteration
i, all the original unlabelled samples of the new image I2 are associated with an estimated
label ŷ2(i)

u = sgn
[
f (i)(x2

u)
]
, wheref (i)

(
x2
u

) = 〈
w(i), x2

u

〉 + b(i) represents the current decision
function. In order to seize the classification problem at time t2, a subset of the remaining
unlabelled samples X (i)

2 is iteratively selected and moved with the corresponding estimated
labels into the training set at the following iteration T (i+1). Let us consider that:

1. the current unlabelled patterns of I2 falling into the margin band M(i) ={
x| − 1 ≤ f (i)(x) ≤ 1

}
have the highest probability of being associated with nonzero

Lagrange multipliers once inserted into T (i+1); accordingly, they have the highest
chance of affecting the position of h(i+1) (samples lying outside the margin band,
instead, are more likely to be associated with null multipliers);

2. the higher the distance of a given unlabelled sample from the separation hyperplane
h(i) :

〈
w(i), x

〉 + b(i) = 0, the higher is the chance that it is classified correctly.

In the light of these two observations, at each iteration of the learning process we progressively
take into account the unlabelled samples into M(i) that are closest to the margin bounds, as
they are those further from the decision boundary h(i). Let us define the two following subsets:

K(i)
+ = {(x2

u, ŷ
2(i)
u = +1)|x2

u ∈ X (i)
2 , 1 ≥ f (i)(x2

u) ≥ f (i)(x2
u+1) ≥ 0}, (9.2)

K(i)
− = {(x2

u, ŷ
2(i)
u = −1)|x2

u ∈ X (i)
2 ,−1 ≤ f (i)(x2

u) ≤ f (i)(x2
u+1) < 0}. (9.3)

The current unlabelled samples of I2 lying to the upper and lower side of M(i) are inserted
with their corresponding estimated labels intoK(i)

+ andK(i)
− , respectively. In particular, samples

of K(i)
+ and K(i)

− are sorted in ascending order with respect to their distance from the upper (i.e.,

h
(i)
+ :

〈
w(i), x

〉 + b(i) = +1) and lower bound (i.e., h(i)
− :

〈
w(i), x

〉 + b(i) = −1) of the margin

band, respectively. Then, at each iteration the first � unlabelled patterns of both K(i)
+ and K(i)

−
(where � > 0 is a free parameter defined a priori by the user) are selected (see Figure 10.1(a)).

Chen et al. (2003) proposed a similar strategy that iteratively considers the only two unla-
belled patterns intoM(i) associated with the maximum and minimum value of the discriminant
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function. However, we assume that in real applications two patterns may not be representative
enough for a proper tuning of the hyperplane. As the cardinality of K(i)

+ and K(i)
− may be

smaller than �, the set of semi-labelled patterns chosen at the generic ith iteration becomes:

K(i) = {(x2
u, ŷ

2(i)
u ) ∈ K(i)

+ |1 ≤ u ≤ �(i)} ∪ {(x2
u, ŷ

2(i)
u ) ∈ K(i)

− |1 ≤ u ≤ ı(i)}, (9.4)

where �(i) = min(�, #K(i)
+ ) and ı(i) = min(�, #K(i)

− ). Patterns of K(i) are then merged into the
current training set T (i).

The main purpose of the proposed DASVM technique is to define and solve a bound mini-
mization problem with respect only to the samples of the new image I2; hence, a strategy for
iteratively erasing the original labelled patterns of the reference image I1 has been developed.
In particular, we gradually delete the remaining original training samples that are furthest
away from the current decision boundary. In fact, it is reasonable to expect that the higher the
distance of a training sample from h(i), the lower is the chance that it can be misclassified after
a new tuning of the hyperplane due to the insertion of semi-labelled samples into the training
set at the following iteration T (i+1). Let us define the two following subsets:

V (i)
+ = {(x1

�, y
1
�) ∈ T (i)|f (i)(x1

�) ≥ f (i)(x1
�+1) ≥ 0}, (9.5)

V (i)
− = {(x1

�, y
1
�) ∈ T (i)|f (i)(x1

�) ≤ f (i)(x1
�+1) < 0}. (9.6)

V (i)
+ and V(i)

− include the remaining original labelled patterns at time t1 that lie above and below
h(i), respectively, sorted in descending order with respect to their distance from the separation
hyperplane. For balancing the contribution of the new semi-labelled samples, at each iteration
the number of patterns to delete from V (i)

+ and V (i)
− is set equal to �(i) and ı(i) (i.e., the number

of semi-labelled patterns selected from the upper and the lower side of the margin band),
respectively. If none of the remaining unlabelled samples of I2 falls into the margin band (i.e.,
K(i) = ∅), the number of samples to delete is set equal to �. Accordingly, the final subset of
patterns to delete is defined as:

V (i) = {(x1
�, y

1
�) ∈ V (i)

+ |1 ≤ � ≤ ς(i)} ∪ {(x1
�, y

1
u) ∈ V (i)

− |1 ≤ � ≤ 	(i)}, (9.7)

where

ς(i) =
{

min(�(i), #V (i)
+ ) if K(i) /= ∅

min(�, #V (i)
+ ) if K(i) = ∅

and 	(i) =
{

min(ı(i), #V (i)
− ) if K(i) /= ∅

min(�, #V (i)
− ) if K(i) = ∅

.

Let 
(i) and �(i) represent the number of remaining labelled samples of I1 and semi-labelled
samples of I2 into the current training set T (i), respectively. For i ≥ 1, the optimization
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problem becomes:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
w,b,�1

,�2

{
1

2

∥∥w(i)
∥∥2 + C(i)


(i)∑
�=1

�1
� +

�(i)∑
u=1

C∗
u�

2
u

}
y1
�

(〈
w(i), x1

�

〉 + b(i)
) ≥ 1 − �1

� ∀� = 1, . . . , 
(i)

ŷ
2(i−1)
u

(〈
w(i), x2

u

〉 + b(i)
) ≥ 1 − �2

u ∀u = 1, . . . , �(i)

�1
� , �

2
u ≥ 0.

(9.8)

With respect to supervised SVMs, one can notice that:

1. semi-labelled samples
(

x2
u, ŷ

2(i−1)
u

)
∈ T (i) of the new image at time t2 are associated

with a specific regularization parameter C∗
u ∈ R+;

2. training patterns
(
x1
�, y

1
�

) ∈ T (i) of the reference image at time t1 are associated with a
regularization parameter C(i) that varies at each iteration.

The purpose of C∗
u and C(i) is to control the number of misclassified samples of the current

training setT (i) associated withI2 andI1, respectively. The larger their values, the higher is the
influence of the associated samples in determining the position of the separation hyperplane.
Accordingly, since it is reasonable to expect that the two distributions p1(x, y) and p2(x, y)
could be rather different, in order to avoid instabilities a weighting strategy based on a temporal
criterion is adopted.

On the one hand, we associate semi-labelled samples with a regularization parameter that
grows depending on the number of iterations for which they have been assigned the same
estimated label until iteration i− 1. The confidence of the system on a semi-labelled pattern is
expected to increase depending on the number of iterations for which that pattern is associated
with the same information class. Hence, by increasing the value of C∗

u, the influence of the
associated sample in the definition of the decision boundary increases. In particular, we make
C∗
u rise iteratively in a quadratic way (see Figure 9.2(a)); thus, for each semi-labelled sample

Figure 9.2 (a) Behaviour of C∗
u (regularization parameter for the semi-labelled patterns

belonging to the current training set T (i)) versus k (index corresponding to the number of
iterations for which they have been associated with the same label until iteration i− 1). (b)
Behaviour of the regularization parameter C(i) for the original training patterns at time t1
versus the number of iterations i.
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x2
u, ŷ

2(i−1)
u

)
the corresponding regularization parameter is defined as:

C∗
u = � · C − C∗

(
 − 1)2 (k − 1)2 + C∗ ⇐⇒
(

x2
u, ŷ

2(i−1)
u

)
∈ J (i)

k k = 1, . . . , 
, (9.9)

where J (i−1)
k includes all the current semi-labelled patterns in T (i) that have been assigned the

same estimated label for k successive iterations,C∗ is the initial regularization value for semi-
labelled samples (this is a user defined parameter), and �, 0 < � ≤ 1, tunes the maximum cost
value of semi-labelled samples (i.e., a reasonable choice has generally proved to be � = 0.5). In
(9.9), 
 is defined as the maximum number of iterations for which the regularization parameter
for semi-labelled samples is allowed to increase by the user.

On the other hand, we make the cost factor C(i) for the original labelled samples of I1
decrease in a quadratic way too depending on i (see Figure 10.2(b)):

C(i) = max

(
C∗ − C


2 i2 + C,C∗
)
. (9.10)

Such a strategy lets us balance the growing importance of semi-labelled samples in tuning the
position of the separation hyperplane. In particular, while at the beginning the position of h
mainly depends on labelled patterns available at time t1, as the number of iteration increases
(i.e., until i = 
) their influence always becomes less relevant.

The strategy adopted for deleting patterns of I1 might also result in the removal of misla-
beled original training samples, which affect the position of the separation hyperplane as they
are associated with nonzero Lagrange multipliers. Nonetheless, this aspect does not seem to
be particularly critical for two main reasons.

1. If any mislabeled training samples of the reference image fall on the wrong side of the
margin band or close to the wrong margin bound, they are expected to be erased when the
learning process is close to convergence or, more generally, when the number of current
semi-labelled samples of I2 is high. It is reasonable to assume that in such a scenario
the decision boundary strongly depends on semi-labelled samples. Accordingly, the
deletion of the aforementioned original training samples is not critical. It is also possible
to notice that, since this is expected to happen after several iterations, training patterns
would be associated with a small value of the regularization parameter.

2. If mislabeled original training samples fall far away from the separation hyperplane
(i.e., �� � 1), they can be reasonably assumed to be outliers (e.g., they could have been
associated with a wrong label while defining the training set at time t1). In general,
at most only a few original training samples are expected to exhibit such behaviour.
Therefore, even if they are still associated with a non-negligible value of the regulariza-
tion parameter, their deletion would not significantly affect the position of the decision
boundary.

Since the training set progressively changes, the position of h is also expected to change at
each iteration (see Figure 9.1(b)). Hence, a dynamical adjustment has been designed to take
into account that a given semi-labelled sample could be associated with different estimated
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labels between two successive iterations. Let

S (i) =
{(

x2
u, ŷ

2(i−1)
u

)
∈ T (i)|ŷ2(i)

u /= ŷ2(i−1)
u

}
(9.11)

represent the set of semi-labelled samples belonging to T (i) whose labels at iteration i (i.e.,
ŷ

2(i)
u ) are different from those at iteration i− 1 (i.e., ŷ2(i−1)

u ). If ŷ2(i)
u differs from ŷ

2(i−1)
u , we

assume that the system is no more confident on that sample. Accordingly, such a label is erased
and the corresponding ‘inconsistent’ pattern is reset to the unlabelled state and moved back
to X (i+1)

2 . This makes it possible to reconsider the same sample in the following iterations of
the learning process.

The second phase ends when the convergence criteria described in the next sub-section
are satisfied.

Phase 3: Convergence As stated above, the goal of the proposed DASVM is to obtain a
final discriminant function that depends only on samples of I2. Accordingly, a mandatory
condition for the system to reach convergence is that all the original labelled samples of the
reference image I1 must be completely erased (i.e., V (i) = ∅). Under this assumption, it can
be assumed that convergence occurs if none of the remaining unlabelled samples at time t2 fall
into M(i), i.e. K(i) = ∅ (see Figure 9.1(c)). However, such an approach might result in a high
computational load, especially when the cardinality of X2 is high. Furthermore, even when
the margin band is empty, it should be taken into consideration that the number of inconsistent
semi-labelled patterns may not be negligible. In the light of these considerations, the following
empirical stopping criteria have been defined:⎧⎪⎨

⎪⎩
V(i) = ∅
#K(i) ≤ �ϑ ·M�
#S(i) ≤ �ϑ ·M�,

(9.12)

where ϑ is a user-defined parameter that allows one to tune the sensitivity of the learning
process, and M is the number of original unlabelled samples drawn from I2. This means
that convergence is reached if both the number of inconsistent semi-labelled patterns and
remaining unlabelled patterns falling into the current margin band M(i) is lower than or equal
to �ϑ ·M�. The final optimization problem at the last iteration ī is defined as:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
min
w,b,�

{
1
2 ‖w‖2 +

�(ī)∑
u=1

C∗
u�u

}

ŷ
2(ī−1)
u

(〈
w, x2

u

〉 + b
) ≥ 1 − �u ∀u = 1, . . . , �(ī)

�u ≥ 0.

(9.13)

At the end, all the patterns of the new image x2
u ∈ I2 are labelled according to the resulting

separation hyperplane, i.e. ŷ2
u = sgn[〈w, x2

u〉 + b].
At each iteration of the learning process the objective function to minimize is convex.

In this context, since a unique solution exists (independently of the number of considered
semi-labelled patterns), convergence always occurs. Nevertheless, note that it is not possible
to guarantee that the system converges towards a final solution that is acceptable for the
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investigated task. Indeed, this strictly depends on the unlabelled samples iteratively considered
in the training phase and, implicitly, on the similarity between source and target domains.

The DASVM algorithm described in this section is defined for two-class problems. For
addressing multiclass problems, a one-against-all (OAA) strategy can be employed (Cristianini
and Taylor 2000; Bruzzone et al. 2007).

9.4 Proposed circular validation strategy

In the framework of land-cover maps updating, when no labelled samples are available for
the new image to classify, standard model selection and statistical validation approaches (e.g.,
holdout, cross-validation, leave-one-out, etc.) cannot be employed. In order to overcome this
limitation, in the following we introduce a novel strategy that can be employed for assessing
the validity of the results obtained with any domain adaptation classifier. The joint use of
the proposed circular validation strategy and the DASVM classifier described in the previous
section let us define an effective system for addressing real land-cover maps updating problems.

9.4.1 Circular validation strategy: rationale

The rationale of the proposed strategy is based on the two following observations.

1. Since the two images I1 and I2 are assumed to be acquired over the same geographi-
cal area at different times, the corresponding distributions p1(x, y) and p2(x, y) are
reasonably neither identical or independent. Under this hypothesis, there exists a
direct relationship between I1 and I2 that depends on the similarity between the two
distributions.

2. Training samples are available only for the reference image I1. Accordingly, we are
forced to define an indirect strategy that exploits such labelled samples at time t1 for
validating the accuracy of the classification results obtained for the new image I2 at
time t2.

Let us assume that the considered domain adaptation algorithm, starting from an acceptable
accuracy for the reference image I1, is able to shape the structure of the problem at time t2
and, thus, to obtain a reliable classification map for I2. In this hypothesis, it is reasonable
to assume that the classifier seized the intrinsic relationship between p1(x, y) and p2(x, y).
Therefore, we expect that it is still possible to obtain an acceptable classification map for I1
by again applying the same domain adaptation algorithm in the reverse sense (i.e., using the
estimated classification labels in place of the missing true labels at time t2, keeping the same
learning parameters, and considering I1 as the new image to be categorized).

In contrast, if the classifier does not provide a classification that is satisfactory for the
investigated task at time t2, it means that it was unable to recover a reliable estimate p̂2(x, y),
thus converging to a wrong solution for I2. In this situation, we assume that it is never possible
to obtain a reliable classification map for I1 again at the end of the backward process from
time t2 to time t1, due to the unreliability of the estimated training set for I2.

According to these expected properties, it is possible to exploit the classification accuracy
evaluated on the original labelled samples T1 to make inferences about the correctness of
the classification maps obtained for the new image after a circular (forward and backward)
application of the considered domain adaptation algorithm.
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In the following, we describe the formulation of the proposed validation strategy in the
specific case of DASVM classifiers.

9.4.2 Circular validation strategy: formulation

Let�(Yk, Ŷk) represent a classification accuracy measure (e.g., the overall accuracy, the kappa
coefficient of accuracy, etc.) that evaluates the similarity between a set of estimated labels Ŷk
(i.e., a solution) predicted by a generic classifier and the corresponding set of true labels Yk.
Let �th represents a threshold for �. If �(Yk, Ŷk) ≥ �th, we assume that the solution Ŷk
is consistent with Yk (i.e., it is acceptable for the investigated problem). Accordingly, let us
define the following four sets.

1. A contains all the solutions consistent with the reference image I1, i.e. �(Y1, Ŷ1) ≥
�th.

2. B contains all the solutions consistent with the new image I2, i.e. �(Y2, Ŷ2) ≥ �th.

3. C contains all the solutions not consistent with the reference image I1, i.e.�(Y1, Ŷ1) <
�th.

4. D contains all the solutions not consistent with the new image I2, i.e.�(Y2, Ŷ2) < �th.

Let us train a supervised SVM using the labelled samples available at time t1, and select a
solution for I1 that belongs to A (i.e., the system is in the state Ā). Then, we train a DASVM
using T1 andX2 as training and unlabelled sets, respectively, and keep the same values adopted
in the aforementioned supervised learning for both the regularization parameter C and the
kernel function free parameters. We assume that, if the choice of the values for the domain
adaptation parameters (i.e., C∗, �, and 
) is adequate, then the accuracy of the classification
map at time t2 is acceptable and the solution belongs to B (i.e., the system moves to the
state B̄). On the other hand, with an improper choice for the parameters, we expect to obtain
an unreliable estimate p̂2(x, y), thus the resulting solution belongs toD (i.e., the system moves
to the state D̄).

Let us now consider the backward domain adaptation problem from time t2 to time t1.
By exploiting the set Ŷ2 of estimated labels for X2, we define the estimated training set
T̂2 = {X2, Ŷ2} for I2. Then, we again train the DASVM classifier keeping the same learning
parameters and jointly exploiting T̂2 and the subset of instances X1 at time t1 (considered
without the corresponding ground-truth labels Y1) in the training phase.

Note that, since true labels Y1 are available, it is possible to evaluate the considered clas-
sification accuracy measure �(Y1, Ŷ1) associated with the results obtained after the circular
learning process. If�(Y1, Ŷ1) ≥ �th the resulting solution is acceptable for I1 (i.e., it belongs
to A) and the system moves back to state Ā. In contrast, if�(Y1, Ŷ1) < �th, the classification
accuracy at time t1 cannot be considered acceptable and the solution belongs to C (i.e., the
system moves to state C̄). All the possible transitions of the system are shown in Figure 9.3.

It is worth noting that, when the system starting from state Ā is able to return again to state Ā
at the end of the circular procedure, the solution obtained at time t2 is always consistent. Thus,
the classification map for I2 represents a reliable updating of the land-cover map obtained for
the reference image I1. This issue is crucial, since it means that it is possible to validate the
correctness of the updated classification map even in the absence of prior ground-truth labels
at time t2.
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Figure 9.3 Diagram of all the possible state transitions of solutions exploited from the
proposed circular validation strategy.

Let Pr
(
Ȳ |X̄)

represent the probability that, by applying the proposed DASVM algorithm,
the system moves to the generic state Ȳ starting from the generic state X̄. Accordingly, the
proposed validation technique is effective under the two following assumptions.

1. Starting from the state B̄ the system can return to the state Ā. If there exists a subset
of solutions obtained for the unlabelled instances X2 in the forward sense (from time
t1 to time t2) that are acceptable for I2 (i.e., B /= ∅), then by applying the DASVM in
the backward sense (from time t2 to time t1) for at least one of them it must be possible
to obtain a consistent solution for I1 (i.e., Pr

(
Ā|B̄)

> 0).

2. Starting from state D̄ the system must never move back to state Ā. If the solution
obtained in the forward sense (from time t1 to time t2) for unlabelled instances X2 is
not consistent, then by applying the DASVM classifier algorithm in the backward sense
(from time t2 to time t1) it must never be possible to obtain an acceptable solution at
time t1 (i.e., Pr

(
Ā|D̄) = 0). Instead, the final solution must always be inconsistent with

the true labels Y1 available for the reference image I1 (i.e., Pr
(
C̄|D̄) = 1). Similarly

to the behaviour of the trajectories that model transitions between different states in
chaotic systems, it seems impossible to recover an acceptable solution for I1 starting
from a wrong solution for I2.

Note that, according to the aforementioned assumptions, it may happen that in some cases
solutions acceptable for I2 are actually rejected. However, this does not represent a critical
issue, since the learning parameters are not optimized for the backward process. Instead, the
relevant aspects are that: (i) a set of consistent solutions can be correctly validated; and (ii) the
system never accepts solutions that are non-consistent at time t2 (a situation that is potentially
very critical in the operational application of DASVM).

9.5 Experimental results

The dataset used in our experiments refers to the Lake Mulargia area, Sardinia Island, Italy (see
Figure 9.4). In particular, we considered two co-registered multi-spectral images composed
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Figure 9.4 Band 5 of the multi-spectral Landsat-5 Thematic Mapper images used in the
experiments. (a) Image acquired in September 1995. (b) Image acquired in July 1996.

of 412 × 382 pixels (i.e., about 11.7 km ×10.8 km) acquired by the Thematic Mapper (TM)
sensor of the Landsat-5 Satellite in September 1995 (I1) and in July 1996 (I2). In our analysis,
the five land-cover classes that mainly characterized the area of interest at both the acquisition
dates were taken into account, i.e. forest, pasture, urban area, water and vineyard. Note that, as
commonly done in the literature, of the seven available TM spectral bands we did not consider
band 6 (i.e., the low-resolution band associated with the thermal infrared channel). Moreover,
in order to characterize the textural properties of the investigated information classes and to
exploit the distribution-free nature of SVMs, in addition to the six remaining TM bands we
also computed five texture features based on the grey-level co-occurrence matrix (GLCM),
i.e. correlation, sum average, sum variance, difference variance and entropy. In particular, the
GLCM was obtained by compressing the original dynamic of 256 levels to 32 levels with an
equal-probability quantizing algorithm (Haralick et al. 1973) and using a 7 × 7 window with
the inter-pixel distance equal to 1.

Table 9.1 Number of labelled patterns available for the September
1995 (I1) and the July 1996 (I2) images and Jensen–Shannon
Divergence (DJS) values

Classes Available labelled patterns DJS

I1 I2

Pasture 554 (24.63%) 589 (30.22%) 0.517
Forest 304 (13.52%) 274 (14.06%) 0.278
Urban area 408 (18.14%) 418 (21.45%) 0.391
Water 804 (35.75%) 551 (28.27%) 0.423
Vineyard 179 (7.96%) 117 (6.00%) 0.567

Overall 2249 1949 0.391
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By exploiting ground-truth information available for the investigated area, we defined two
spatially uncorrelated sets of labelled samples at time t1 (i.e., September 1995) and time t2
(i.e., July 1996), respectively (see Table 9.1). However, note that labelled samples related
to I2 were used only for a quantitative assessment of the performances of the proposed
system.

According to the notation adopted in the previous sections of this chapter, in the following
we will denote as T1 = {X1,Y1} the training set available for I1 (i.e., X1 and Y1 represent
the instances and the corresponding true labels considered at time t1, respectively); whereas,
we will refer to X2 as the subset of instances at time t2 for which ground-truth labels were
actually available but were not considered in the learning phase.

In order to assess the complexity of the investigated problem, we estimated the similarity
between the pattern distributions p1(x) and p2(x) related to I1 and I2, respectively. To this
aim, we computed the Jensen–Shannon divergence DJS (Lin 1991), which is a symmetrized
and smoothed version of the well-known Kullback–Leibler divergence (Kullback and Leibler
1951). DJS is defined as:

DJS

[
p1(x), p2(x)

]
= ˛ ·

∑
n

p1
n log

p1
n

p3
n

+ ˇ ·
∑
n

p2
n log

p2
n

p3
n

, (9.14)

where p1
n and p2

n are point probabilities of p1(x) and p2(x), respectively, whereas p3
n are

point probabilities of p3(x) = ˛ · p1(x) + ˇ · p2(x). In our analysis, we set ˛ = ˇ = 0.5
(in the literature this particular case is referred to as specific DJS), therefore it holds that
DJS[p1(x), p2(x)] ∈ [0; log 2]. This aspect is particularly important, since the existence of
upper and lower bounds forDJS let us guess to what extent the two distributions differ. In par-
ticular, if DJS[p1(x), p2(x)] = 0, then p1(x) and p2(x) can be considered identical, whereas
if DJS[p1(x), p2(x)] = log 2 � 0.693, p1(x) and p2(x) can be considered independent.

Since I1 and I2 were acquired in different periods of the year, the resulting overall DJS
was significant (i.e., 0.391), as reported in Table 9.1. However, in order to stress further the
complexity of the investigated domain adaptation problem, we also evaluated the divergence
between conditional class distributions DJS[p1(x|ωi), p2(x|ωi)]. This let us quantitatively
estimate the distance between the pattern distributions related to corresponding land-cover
classes in the two images. In particular, from the table it is possible to notice that both the
distributions of the class vineyard (i.e.,DJS = 0.567) and the class pasture (i.e.,DJS = 0.517)
experienced relevant changes between the two acquisition dates.

In all the experiments, we chose as reference classification accuracy measure � the
percentage overall accuracy OA% (i.e., the percentage of correctly labelled patterns over
the total number of considered samples). Moreover, we set �th = OA%th = 85 (this value
represents a reasonable lower bound for a solution to be acceptable in the investigated prob-
lem); therefore, solutions were assumed to be acceptable only if OA% ≥ 85.

In the learning phase of both DASVMs and supervised SVMs (used for comparison pur-
poses) we employed Gaussian kernel functions (ruled by the free parameter �), as they gener-
ally proved effective in addressing the classification of multi-spectral remote-sensing images.
In both cases, for handling the multiclass problem, we employed the OAA strategy. The Se-
quential Minimal Optimization algorithm developed by Platt (1998) was used for training both
supervised SVMs and, with proper modifications, also the proposed DASVMs.

At the beginning of the experimental analysis, we trained several supervised SVMs by
exploiting the training patterns T1 available at time t1. In order to identify models with good



A DOMAIN ADAPTATION SVM AND A CIRCULAR VALIDATION STRATEGY 213

generalization capabilities, we adopted a ten-fold cross validation (CV) strategy (Cristianini
and Shawe-Taylor 2000), which permits one to effectively estimate the quality of the predicted
models using the same data exploited for building the models themselves. Accordingly, we
were able to identify the values of the supervised learning parameters (i.e., � and C) that
resulted in solutions acceptable for the reference image I1.

Then we trained several DASVMs using T1 and X2 as labelled and unlabelled sets, re-
spectively. Both � and C were assigned the same values that resulted in solutions consistent
at time t1 with the supervised approach, whereas a grid search strategy was applied to the
remaining domain adaptation parameters (i.e., C∗, � and 
). Concerning the convergence cri-
terion, on the basis of the performances exhibited by the system on a variety of preliminary
experimental trials on toy datasets, we set ϑ = 3 × 10−2. Moreover, as regards the maximum
weight for semi-labelled samples, we fixed in all the trials � = 0.5 (it is reasonable that semi-
labelled samples are associated at most with a regularization parameter equal to one half of
the initial regularization parameter for original training samples). On the one hand, 
 must
be lower than the number of total iterations to let the final regularization parameter for the
most of semi-labelled samples achieve sensible values. On the other hand, the higher is �, the
lower is expected to be the number of total iterations. Accordingly, there exists an intrinsic
inverse proportion between these two parameters, as is confirmed by the behaviour exhibited
in the experiments. A reasonable range for � was [5 − 15]. When � = 5, we obtained consis-
tent solutions for 
 ∈ [45 − 55]; whereas, when � = 15 we obtained consistent solutions for

 ∈ [30 − 40]. The model selection for C∗ never proved to be critical. In fact, for very small
values of C∗ (i.e., in the range [0.5 − 1]) it was always possible to obtain good classification
accuracies.

For assessing the effectiveness of the circular validation strategy described in Section 9.4,
each of the aforementioned DASVMs was re-trained for addressing the backward domain
adaptation problem from I2 to I1. In particular, we used T̂2 = {X2, Ŷ2} (where Ŷ2 is the set
of estimated labels predicted for X2) as the labelled set and the set of instances X1 at time t1
(considered without the associated true labels) as the unlabelled set. The free parameters were
assigned the same values adopted in the forward learning process. Given the availability of
true labels Y1 for X1, it was possible to evaluate theOA% of the solution Ŷ1 obtained at time
t1 at the end of the circular procedure and, thus, to indirectly evaluate the consistency of the
solution Ŷ2 related to the new image I2.

Table 9.2 shows the results obtained in terms of OA% and both percentage producers’
and users’ accuracies (i.e., PA% and UA%, respectively) for each of the considered land-
cover classes at time t2 by: (i) the supervised SVM trained according to the ten-fold CV
strategy with the labelled samples available for I1 that provided the highest OA% at time
t1 (SVMCV

t1
); and (ii) the proposed DASVM technique with supervised selection of domain

adaptation parameters (DASVMbest ). Furthermore, also the average accuracies associated
with the consistent solutions obtained by the presented domain adaptation algorithm and
correctly identified by the circular validation strategy (DASVMave ) are reported (in order to
obtain significant estimations, 400 backward DASVMs have been trained both starting from
consistent and non-consistent solutions at time t2). Note that these values are particularly
important, since they represent an average measure for the quality of the solutions correctly
identified as acceptable for I2 without using any prior ground-truth information at time t2.

At the end of our analysis, the proposed system proved to be particularly effective, re-
sulting in very good classification performances. The increase in the accuracies exhibited by
the DASVM technique is noteworthy with respect to the supervised approach. In particular,
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Table 9.2 Percentage Overall accuracy (OA%), Producer’s Accuracies (PA%) and User’s
Accuracies (UA%) obtained for the new imageI2 by: (i) the supervised SVM trained according
to the ten-fold CV strategy with the labelled patterns available for I1 that provided the highest
OA% at time t1 (SVMCV

t1
); (ii) the proposed DASVM technique with supervised selection

of domain adaptation parameters (DASVMbest). The average accuracies associated with the
consistent solutions obtained by the proposed DASVM technique and correctly identified by
the circular validation strategy (DASVMave) are also given

SVMCV
t1

DASVMbest DASVMave

96.67 93.12
(+17.91) (+14.36)

OA% 78.76

96.60 89.81
(+43.12) (+36.33)

PA% 53.48

96.61 96.36
(+2.58) (+2.33)

UA% 94.03
Pasture

99.63 99.27
(+0.36) (+0.00)

PA% 99.27

94.46 81.68
(+32.64) (+19.86)

UA% 61.82
Forest

97.85 93.54
(+17.51) (+13.20)

PA% 80.34

99.51 99.24
(+1.26) (+0.99)

UA% 98.25
Urban area

100 100
(+0.00) (+0.00)

PA% 100

100 100
(+0.72) (+0.72)

UA% 99.28
Water

70.01 61.54
(+17.87) (+9.40)

PA% 52.14

75.23 59.02
(+53.21) (+37.00)

UA% 22.02
Vineyard

without exploiting ground-truth labels at time t2, the averageOA% exhibited by the solutions
automatically identified as acceptable for I2 was equal to 93.12, which corresponds to a rel-
evant increase with respect to SVMCV

t1
(i.e., +14.36). Moreover, with a supervised selection

of the domain adaptation parameters it was possible to obtain a further increase of the OA%
up to 96.67 (i.e., +17.91 with respect to SVMCV

t1
), which represents a very good result in the

light of the complexity of the considered problem.
The behaviour of DASVMs was significantly different with respect to the standard SVM

approach, as confirmed by the confusion matrices reported in Table 9.3(a) and 9.3(b). Note
that it seems reasonable that SVMCV

t1
provided low accuracies for both pasture and vineyard,

since the corresponding distributions exhibited relevant changes at the two acquisition dates
(see the values for the DJS reported in Table 9.1). In particular, SVMCV

t1
often misclassified

pasture patterns as forest and vineyard areas. The proposed DASVM technique, instead, rarely
incurred these errors. As concerns pasture, the gain in the PA% is noteworthy (i.e., +36.33
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Table 9.3 Confusion matrices obtained at time t2 by: (a) the supervised SVM trained ac-
cording to the ten-fold CV strategy with the labelled patterns available for I1 that provided
the highestOA% at time t1 (SVMCV

t1
); and (b) the proposed DASVM technique with optimal

selection of domain adaptation parameters (DASVMbest)

(a) Pasture Forest Urban area Water Vineyard

Pasture 315 0 2 0 18
Forest 59 272 80 0 29
Urban area 0 1 336 0 5
Water 0 0 0 551 4
Vineyard 215 1 0 0 61

(b) Pasture Forest Urban area Water Vineyard

Pasture 569 0 2 0 18
Forest 1 273 0 0 15
Urban area 0 0 409 0 2
Water 0 0 0 551 0
Vineyard 19 1 7 0 82

on average, +43.12 in the best case). Concerning the vineyard class, the increase of DASVMs
with respect to the supervised approach is significant both in terms of PA% (i.e., +9.40 on
average, +17.87 in the best case) and UA% (i.e., +37.00 on average, +53.21 in the best
case). It is worth noting that in this case the accuracies are smaller than those obtained for the
other information classes; however, this is mainly because the vineyard proved to be the most
critical class since it had the lowest prior probability.

SVMCV
t1

frequently also confused urban areas with forest. On the other hand, DASVMs
never incurred this type of error, thus providing a significant improvement both in the UA%
of forest (i.e., +19.86 on average, +32.64 in the best case) and PA% of urban area (i.e.,
+13.20 on average, +17.51 in the best case). As regards water, although the relatedDJS was
not negligible, the accuracies provided by SVMCV

t1
were also particularly good at time t2,

since the spectral signature of this class is rather different with respect to those of the other
information classes.

For the sake of comparison, in Table 9.4 we report the results obtained for I2 by: (i) a super-
vised SVM trained according to a ten-fold CV strategy at time t2 by exploiting the true labels
available for X2 (SVMCV

t2
); (ii) the partially-unsupervised retraining technique for maximum

likelihood classifiers (denoted as MLretrain ) presented by Bruzzone and Fernández Prieto
in 2001; and (iii) the partially-unsupervised maximum likelihood cascade classifier (denoted
as MLcascade ) proposed by Bruzzone and Fernández Prieto in 2002. As expected, SVMCV

t2
resulted in very good classification accuracy at time t2, due to the supervised selection of
the values for the learning parameters performed according to the CV strategy. However, it
is worth mentioning that for a sub-optimal model selection, the supervised approach pro-
vided results comparable to those exhibited by DASVMs. Moreover, the proposed DASVM
algorithm once again confirmed its effectiveness, exhibiting accuracies higher than those pro-
vided by both the MLretrain and the MLcascade techniques.

In order to characterize the behaviour of the proposed circular validation strategy, in
Figure 9.5 we reported the empirical cumulative distribution function (CDF) of the OA%
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Table 9.4 Percentage Overall accuracy (OA%), Producer’s Accuracies (PA%) and User’s
Accuracies (UA%) obtained at time t2 by: (i) the supervised SVM trained according to the
ten-fold CV strategy at time t2 exploiting true labels for the patterns of X2 (SVMCV

t2
); (ii)

the partially-supervised retraining technique for maximum likelihood classifiers (MLretrain)
presented by Bruzzone and Fernández Prieto in 2001; and (iii) the partially-unsupervised
maximum likelihood cascaded classifier (MLcascade) proposed by Bruzzone and Fernández
Prieto in 2002

SVMCV
t2

MLretrain MLcascade

OA% 99.69 92.76 91.48

PA% 100 94.06 94.25
UA% 99.49 88.50 83.53Pasture

PA% 100 87.22 90.51
UA% 100 88.19 97.45Forest

PA% 99.28 93.06 81.48
UA% 100 97.49 95.69Urban area

PA% 100 100 100
UA% 100 100 100Water

PA% 97.44 64.10 86.90
UA% 97.44 73.53 62.39Vineyard

(denoted as p̂(OA%)) estimated from the solutions obtained for I1 at the end of the circular
learning procedure. In particular, the grey line refers to the solutions obtained at time t1
when the system started from the state D̄ (i.e., non-acceptable classification accuracy for I2);
whereas, the black line refers to the solutions obtained at time t1 when the system started from
the state B̄ (i.e., acceptable classification accuracy for I2). The ordinate of each point of the
considered CDFs (referred to as the quantile) represents the probability that the final OA%
obtained at time t1 at the end of the backward learning process is lower or equal to the OA%
value of the corresponding abscissa.

The two most relevant considerations that emerge from the analysis of the aforementioned
curves, are as follows.

1. The proposed validation strategy was always able to correctly reject solutions that
were not acceptable for I2. Indeed, the distribution corresponding to solutions not
consistent at time t2 (grey line) saturates to 1 for OA% ≈ 78.5, which is lower than
OA%th = 85. This means that, when DASVMs were not able to seize the structure of
the classification problem for the new image, the system could not recover a correct
solution for the reference image I1 at the end of the circular procedure, thus satisfying
the most critical requirement for the operational employment of the proposed strategy
(i.e., Pr(Ā|D̄) = 0).

2. The quantile corresponding toOA%th = 85 [i.e., q0.85(OA%)] of the CDF related to the
solutions acceptable for I2 (black line) is equal to 0.45. Accordingly, since the system
moves to the state C̄ ifOA% < OA%th, we have that Pr

(
C̄|B̄) = q0.85(OA%) = 0.45,

therefore it holds that Pr
(
Ā|B̄) = 1 − Pr

(
C̄|B̄) = 0.55. This aspect is particularly
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Figure 9.5 Empirical cumulative distribution function of the percentage overall accuracy
(OA%) estimated from the solutions obtained for the reference image I1 at the end of the
backward learning procedure when the system started from both state B̄ (i.e., solutions ac-
ceptable for the new image I2, black line) and state D̄ (i.e., solutions not acceptable for the
new image I2, grey line). If OA% < 85 the system moved to the state C̄ (i.e., solutions not
acceptable for I1); if OA% ≥ 85 the system moved to the state Ā (i.e., solutions acceptable
for I1).

important, as it means that it was possible to correctly identify 55% of the correct
solutions obtained in our experiments without exploiting any prior ground-truth label
at time t2. Moreover, as discussed above, the average quality of these solutions is
comparable to that obtained with supervised selection of domain adaptation parameters,
thus confirming the effectiveness and the robustness of the proposed strategy.

Let us now focus attention on the computational load required by the proposed DASVM
technique. It is possible to notice that, while the total number of semi-labelled patterns drawn
from I2 increases, at the same time the number of remaining labelled patterns available for I1
decreases. As a consequence, since the cardinality of the training set does not vary significantly
during the iterative domain adaptation process, the computational load grows almost linearly
with the number of iterations. In our experiments, carried out on a PC mounting an Intel Core2
Duo processor at 2.6 GHz and a 4 Gb DDR2 RAM, training a supervised SVM took about
10 seconds. Some tens of iterations were necessary, instead, for the proposed DASVM to
reach convergence. Therefore, since each iteration of the DASVM algorithm requires a time
equivalent to that necessary for training a supervised SVM, the average learning time resulted
in about 9 minutes. In the light of the complexity of the investigated problem and the huge
increase of the classification accuracy with respect to the standard supervised approach, it is
reasonable to consider this computational cost acceptable.
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9.6 Discussions and conclusion

In this chapter we introduced a novel domain adaptation SVM (DASVM) technique for auto-
matic updating land-cover maps when prior ground information is available only for a reference
image acquired over the same geographical area before the one to classify. Furthermore, for
assessing the correctness of the classification maps in the presence of no labelled patterns
for the remote-sensing image to be categorized, we also presented a novel circular validation
strategy.

The proposed DASVM algorithm directly takes into account that the distribution p2(x, y)
that governs the new image I2 at time t2 is different from the distribution p1(x, y) that char-
acterizes the reference image I1 at time t1. However, since the two images are acquired over
the same geographical area, it is reasonable to assume the existence of an intrinsic relation-
ship between p1(x, y) and p2(x, y). In this hypothesis, labelled samples available for I1 are
used for obtaining an initial raw decision boundary for the classification problem at time t2.
Then, unlabelled samples of I2 are iteratively considered in the learning process for adapting
the discriminant function to the new image. In order to improve the robustness and to better
control the behaviour of the classifier, we defined an adaptive weighting strategy based on a
temporal criterion for the regularization parameters of both original training samples avail-
able at time t1 and semi-labelled samples (i.e., originally unlabelled samples associated with
estimated labels during the learning process) drawn from I2. This allows one to obtain very
good classification performances and to reduce the risk of converging towards an improper
solution at time t2.

The presented circular validation strategy let us bridge the lack of procedures for assessing
the reliability of the classification results when labelled samples for the new image to classify
are not available. Given the relationship existing between p1(x, y) and p2(x, y), we assume
that it is anyhow possible to infer about the correctness of the updated land-cover map at
time t2 by exploiting the training samples for the reference image at time t1. In particular, a
solution for I2 obtained with a domain adaptation learning algorithm is identified as consistent
if the solution obtained by applying the same algorithm in the reverse sense (i.e., using the
estimated classification labels in place of missing true labels for the new image and considering
the training patterns of the reference image as unlabelled) is acceptable for I1 (this can be
evaluated thanks to the availability of true labels at time t1).

Several experiments carried out on a dataset made up of two multi-spectral images acquired
by the TM sensor of the Landsat-5 satellite confirmed the robustness and the effectiveness of
both the proposed methods. The presented DASVM technique exhibited very good classifica-
tion performances and proved capable of outperforming standard supervised SVMs resulting
in high and satisfactory classification accuracies. Furthermore, the circular validation strategy
was able to reject all the solutions that were not acceptable for the new image I2 (thus satis-
fying the most critical requirement for an operational employment) and correctly identified a
significant set of solutions consistent at time t2.

Note that if the initial decision boundary results in a poor discrimination capability for I2,
most of the semi-labelled samples selected by the DASVM algorithm can be misclassified.
In such cases, it becomes difficult for the proposed system to recover a reliable land-cover
map. Thus, the convergence towards a consistent solution depends on the similarity between
p1(x, y) and p2(x, y) (i.e., it can be effectively estimated by proper statistical distance mea-
sures). Therefore, when the two distributions are considerably different, it is not possible to
guarantee that a solution acceptable for the investigated classification problem can be obtained.
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Nevertheless, note that the proposed circular validation strategy is able to identify these critical
situations and to reject all the non-consistent solutions automatically.

As a future development of this work, in order to reduce the computational load and to
further speed up the learning process, we are studying an adaptive version of the proposed
DASVM technique. In particular, similarly to what it is commonly done in the active learning
framework, we are considering the possibility of iteratively taking into account only the semi-
labelled samples selected at the current iteration and the patterns of the current training set
identified as support vectors.
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This chapter presents a semi-supervised support vector machine (SVM) classifier based on the
combination of the expectation-maximization (EM) algorithm for Gaussian mixture models
(GMM) and the mean map kernel. The proposed method improves classification accuracy
by reinforcing samples in the same cluster belonging to the same class through the use of
composite kernels learned from the testing image. These sample and cluster similarities are
included in the standard SVM by means of a linear combination of kernels. The cluster
similarity is directly computed in the kernel space with a dedicated kernel that is based on the
means of the feature vectors in this space. Moreover, only the most reliable samples in terms of
likelihood values are used to compute a kernel function that accurately reflects the similarity
between clusters in the feature space. Results show that the proposed approach is especially
suited for situations where the available labelled information does not properly describe the
classes in the test image.
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10.1 Introduction

In many remote sensing image classification problems, it is difficult to collect a sufficient
number of statistically significant ground-truth samples to define a complete training set for
developing robust supervised classifiers. In this setting, extrapolating a trained classifier to
unseen scenes is a challenging problem when no training samples in the test image are available.
In such situations, labelled data extracted from other images modelling similar problems can
be used. However, the resulting problem is not well posed since training samples might not
adequately describe the test data. This is known as the sample selection bias problem. In this
kind of problem, unlabelled samples from the test image can be jointly used with the available
training samples for increasing the reliability and accuracy of the learning machine.

On the one hand, applying unsupervised clustering methods to the whole image allows us
to take advantage of the wealth of information and the high amount of spatial and spectral cor-
relation of the image pixels. On the other hand, supervised kernel-based classification methods,
such as supervised support vector machines (SVMs) excel in using the labelled information
(Camps-Valls and Bruzzone 2005; Shawe-Taylor and Cristianini 2004) for image classifica-
tion. These methods, nevertheless, obviate the potentially useful wealth of unlabelled data, and
need to be reformulated to exploit it properly. Semi-supervised learning (SSL) is concerned
with such situations (Chapelle et al. 2006; Zhu 2005), and several approaches have been carried
out in the context of remotely sensed image classification (Bruzzone et al. 2006; Camps-Valls
et al. 2007; Chi and Bruzzone 2007; Gómez-Chova et al. 2008b). However, when selecting
or developing an SSL method, one has to verify that the imposed model assumptions fit the
problem data structure. Before presenting the methods, some key issues must be considered:

Data structure

The main assumptions made about data structure in SSL are that data are organized into a
number of groups (or clusters) according to a given distance measure in some representation
space (cluster assumption) or that data hold a manifold forming a nonlinear complex global
structure (manifold assumption) (Bachmann et al. 2005, 2006). In the case of most natural
land covers, distribution of multi-spectral remote sensing data is smooth and the spectra of
pixels of the same land cover are similar, making the cluster assumption suitable to model each
class. For this reason, the proposed method assumes that data are organized into a number of
groups (or clusters) according to a given distance measure in some representation space. If
the correspondence between sample and cluster is known for some training samples, one can
reinforce samples in the same cluster to belong to the same class by taking into account the
similarity between clusters.

SSL model

In general, SSL methods aim to retrieve information from unlabelled data by estimating their
conditional distribution, and one can distinguish between generative models and discriminative
models. In multi-spectral image processing, the assumption that the data distribution can be
approximated as a mixture of normally distributed samples is commonly accepted (Jackson
and Landgrebe 2001; Shahshahani and Landgrebe 1994). Hence, generative models, which
estimate the conditional distribution by modelling the class-conditional distributions explicitly,
may provide a good performance and approximately meet the cluster assumption.
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Training set representativeness

As mentioned above, in some applications, few labelled samples (with respect to the size of
the input feature space) are available to train classifiers. In this setting, two main different
conditions are usually considered: (1) few training samples are available for characterizing
the image to be classified; and (2) no training samples are available for the test image to be
classified. In the latter case, one-class classifiers can be used (Muñoz-Marı́ et al. 2007; Muñoz-
Marí et al. 2008). We adopt a similar strategy by which training data extracted from other
images modelling similar problems can be exploited. In both situations, unlabelled samples of
test image can be jointly used with the available training samples for increasing the reliability
and accuracy of the classifier.

All these issues are addressed in this chapter. Our aim is to take advantage of the benefits
shown by both supervised and unsupervised methods. This chapter proposes a semi-supervised
kernel-based classification method that takes into account the particularities and problems
found in practical remote sensing applications. First, some recommendations about how to
use clustering methods to extract information from unlabelled samples of the test image are
given. The concept of mean kernel is then introduced to compute cluster similarities and it
is then extended under the framework of composite kernels. Finally, the proposed solution
is presented. For illustration purposes, we show results in the complex problem of detecting
clouds from multi-spectral satellite images.

The chapter is organized as follows. Section 10.2 presents the proposed kernel method that
combines both clustering and the mean map kernel. Section 10.3.1 describes the experimental
setup and model development. Sections 10.3.2 and 10.3.3 are devoted to analysing the results
of the proposed method in synthetic and real situations where the model assumptions are
verified or broken. Section 10.4 concludes the chapter.

10.2 Semi-supervised classification with mean kernels

The proposed semi-supervised kernel method is based on three assumptions: (1) data is or-
ganized into a number of groups (or clusters) according to a distance measure in some rep-
resentation space; (2) classes in the test image(s) present features inducing compact clusters;
and (3) unlabelled data can help model these clusters. The key point is the definition of a
kernel function that accurately reflects the similarity between samples and similarity between
clusters in the kernel space (Gómez-Chova et al. 2008a), while performing the classification at
pixel level (Gómez-Chova 2008). The method combines the expectation-maximization (EM)
algorithm for fitting Gaussian mixture models (GMM) (Dempster et al. 1977), which has
been extensively used in remote sensing image classification (Bruzzone and Fernández Prieto
2001; Gómez-Chova et al. 2007; Shahshahani and Landgrebe 1994), and the mean map kernel,
which computes the similarity between clusters in the kernel space. This alleviates the sample
selection bias problem and produces improved classification accuracy by reinforcing samples
in the same cluster belonging to the same class.

10.2.1 Learning from labelled samples

In supervised classification problems, we are given a set of � labelled (training) samples
{xi, yi}�i=1, where xi ∈ Rd represents the d-bands pixel defined in an input space X , and
yi ∈ N belongs to the observation (output) space of land cover classes. SVMs attempt to
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separate samples belonging to different classes by tracing a maximum margin hyperplane in a
high dimension (possibly infinite) space H where samples are mapped to through a nonlinear
mapping function � (Schölkopf and Smola 2001; Shawe-Taylor and Cristianini 2004) (see
also Chapters 1 and 3 of the present book). One can work in this feature space without even
knowing the explicit form of the mapping �, but only the kernel function formed by the dot
product among them:

K(xi, xj) = 〈
�(xi),�(xj)

〉
. (10.1)

In any kernel method, a proper definition of the structural form ofK reflecting signal relations
is the crucial step to attaining good results.

10.2.2 Image clustering

Instead of working with individual samples in a supervised manner, we also include the data
structure (characterized by the clusters of the analysed image) into the training process. In
order to get cluster information, we first apply a clustering algorithm, which provides for each
sample xi a crisp or soft association, hik , to each cluster ωk , k = 1, . . . , c. In particular, the
input image is considered as a mixture of normal distributions so the EM algorithm can be
used to obtain the maximum likelihood estimation of the probability density function (pdf) of
the Gaussian mixture. The EM algorithm estimates the mixture coefficient �k, the mean �k,
and the covariance matrix�k for each component of the mixture. Then, the algorithm assigns
each sample to the cluster with the maximum a posteriori probability (MAP); and the cluster
membership hik represents the estimates of the posterior probabilities; that is, membership or
probability value between [0, 1], and sum-to-one cluster memberships,

∑
k hik = 1. Hence,

the optimal cluster label for each sample is found as hi = argmaxk {hik}, i.e. hi = k if the
sample xi is assigned to the cluster ωk. The ease of use and fast classification performance
justifies the selection of this algorithm, even though other clustering algorithms and additional
input data (e.g. spatial information) might be equally used in our method. The analysis of the
available clustering algorithms, the clustering initialization, and the selection of the number
of clusters is beyond the scope of this chapter (see Chapter 1 of the present book for further
information) but, in order to make suitable the cluster assumption, the number of clusters
should be high enough and the clusters should fairly approximate the class distribution. Once
a clustering is done, one should compute cluster similarity.

10.2.3 Cluster similarity and the mean map

One of the basic ideas when working with kernel methods is that the mapping �(x) into the
kernel-defined feature space H does not need to be explicitly known. Although we do not have
access to the representation of samples in this space, it is possible to perform some elementary
calculations in the kernel space implicitly, such as computing sums, products, means and
distances (see Chapter 2 of the present book for some examples).

Given a finite subset of training samples S = {x1, . . . , xn} laying in an input space X and
a kernelK(xi, xj) = 〈

�(xi),�(xj)
〉
, let�(S) = {�(x1), . . . ,�(xn)} be the representation of S

under the map �. Hence�(S) is a subset of the inner product space H. In particular, the centre
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of mass of the set S in the kernel space is the vector:

��(S) = 1

n

n∑
i=1

�(xi), (10.2)

where ��(·) denotes the mean map. We should stress that, in principle, there is not an explicit
vector representation of the centre of mass, since, in this case, there may also not exist a point
in the input space X whose image under � is ��(S). In other words, we are now considering
points that potentially lie outside �(X ), that is, the image of the input space X under the
mapping �. However, computing the mean in a high dimensional feature space can report
additional advantages.

Let us now consider two subsets of samples S1 = {a1, . . . , am} and S2 = {b1, . . . ,bn} be-
longing to two different clustersω1 andω2, respectively. We are interested in defining a cluster
similarity function that estimates the proximity between them in a sufficiently rich feature
space. A straightforward kernel function reflecting the similarity between clusters is obtained
by evaluating the kernel function between the means of the clusters in the input space X :

KX
� (S1, S2) ≡ 〈�(�1),�(�2)〉 = K(�1,�2), (10.3)

but then we loose the advantage of directly working in the feature space H.
The centre of mass of the sets S1 and S2 in the kernel space are the vectors

��(S1) = 1
m

∑m
i=1 �(ai) and ��(S2) = 1

n

∑n
i=1 �(bi). Despite the apparent inaccessibility of

the points ��(S1) and ��(S2) in the kernel space H, we can compute the cluster similarity in
H using only evaluations of the sample similarity contained in the kernel matrix:

KH
� (S1, S2) ≡ 〈

��(S1),��(S2)
〉

=
〈

1

m

m∑
i=1

�(ai),
1

n

n∑
j=1

�(bj)

〉
(10.4)

= 1

mn

m∑
i=1

n∑
j=1

K(ai, bj).

Note how significant information about the cluster similarities can be obtained by using only
the inner product information contained in the kernel matrix, Kij = K(xi, xj), of kernel eval-
uations between all pairs of elements in S1 and S2:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(a1, a1) · · · K(a1, am) K(a1, b1) · · · K(a1, bn)
...

. . .
...

...
. . .

...

K(am, a1) · · · K(am, am) K(am, b1) · · · K(am, bn)

K(b1, a1) · · · K(b1, am) K(b1, b1) · · · K(b1, bn)
...

. . .
...

...
. . .

...

K(bn, a1) · · · K(bn, am) K(bn, b1) · · · K(bn, bn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.5)
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which is reduced to K� by applying (10.4):

KH
� =

⎡
⎣KH

� (S1, S1) KH
� (S1, S2)

KH
� (S2, S1) KH

� (S2, S2)

⎤
⎦ (10.6)

The concept of the mean map kernel has recently been extended to compare data distributions
in the kernel space (Gretton et al. 2007).

10.2.4 Composite sample-cluster kernels

The concept of computing similarities between sets of vectors in the kernel space has been
previously explored in several application fields. For example, in Gärtner et al. (2002), a
kernel on sets is proposed to solve multi-instance problems, where individuals are represented
by structured sets. In Kondor and Jebara (2003), the Bhattacharya’s measure is computed
in the Hilbert space between the Gaussians obtained after mapping the set of vectors into
H. In Jebara et al. (2004), kernel machines are combined with generative modelling using a
kernel between distributions called Probability Product Kernel (PPK). In Zhou and Chellappa
(2006), expressions for the most common probabilistic distance measures in the reproducing
kernel Hilbert space are presented. Finally, in Li et al. (2007), the PPK is used to develop a
Support Cluster Machine for large-scale classification problems, where the labelled samples
are clustered and the obtained labelled clusters are used to train the model instead of using
the training samples. However, all these works consider the sets of samples or distributions as
a single entity with a given label and no information is provided for each individual sample.
In our approach, classifying clusters is not the goal since we seek a detailed classification at
a pixel level. This approach thus falls in the field of cluster kernels, which are focused on
changing the representation given to a classifier by taking into account the structure described
by the unlabelled data (Chapelle et al. 2003; Szummer and Jaakkola 2002; Weston et al. 2005;
Zhu and Ghahramani 2002). Let us remember that the bottleneck for any kernel method is the
definition of a suitable kernel function that accurately reflects the similarity between samples.
Hence, the proposed algorithm should compute and combine both similarity between samples
and similarity between clusters in the kernel space.

SSL methods assume that one has access to a set of unlabelled (test) samples and learn
from both labelled and unlabelled samples. To fix notation, we are given a set of � labelled
samples, {xi, yi}�i=1, where xi ∈ Rd and yi ∈ {−1,+1}, and a set of u unlabelled samples
{xi}�+ui=�+1. In the proposed semi-supervised method, the u unlabelled training samples coming
from the test image are used to describe the clusters and to compute the similarity between
clusters, which is used to weight the similarity between the � labelled training samples that
define the classes. The similarity between clusters is included through the use of a composite
kernel (Camps-Valls et al. 2006) that balances both similarity distances

Kω(xi, xj) = �K(xi, xj) + (1 − �)K�(Shi , Shj ) ∀i, j = 1, . . . , �, (10.7)

where � is a positive real-valued free parameter (0 � � � 1), which is tuned in the training
process and constitutes a trade-off between the sample and corresponding cluster information.
It is worth noting that: (1) the number of training samples is (�+ u), because unlabelled
samples are used to compute the cluster similarities by summing elements of the kernel matrix;
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Figure 10.1 Illustrative example of the three involved kernel matrices (�× �): sample simi-
larity accounted by the kernel of the training samples K (� = 1); cluster similarity accounted
by the mean map kernel of the clusters K� (� = 0); and the composite kernel Kω obtained
by combining the sample and the cluster similarities for each sample (0 < � < 1). Note that
samples are sorted by class yi and by cluster ωi for a proper interpretation.

and (2) the number of clusters is c, thus one will obtain only c× c cluster similarities using
K�. However, the size of the final kernel matrix Kω used to train the standard SVM is �× �

(the first � samples are labelled). Summarizing, each position (i, j) of matrix Kω contains
the similarity between all possible pairs of the � labelled training samples (xi and xj) and
their corresponding clusters (defined by hi and hj), which are measured with suitable kernel
functions K and K� fulfilling Mercer’s conditions (see Chapters 2 and 6 of the present book
to find Mercer’s kernels properties).

Figure 10.1 shows an illustrative example of the three kernel matrices (�× �) involved in
the proposed method: sample similarity accounted by the kernel of the training samples K;
cluster similarity accounted by the mean map kernel of the clusters K�; and the composite
kernel Kω obtained by combining the sample and the cluster similarities for each sample. It is
worth noting that the proposed composite kernel Kω maintains the sample similarity at pixel
level while making pixels in the same cluster more similar, thus reinforcing them to belong to
the same class. It may be interpreted as a smoothing of K attending to the cluster structure in
K�.

10.2.5 Sample selection bias and the soft mean map

So far we have assumed that training and test data are independently and identically distributed
(i.i.d.) drawn from the same pdf, but actually training and test set distributions could not
match, which is known in the literature as sample selection bias (Bickel et al. 2007; Heckman
1979; Huang et al. 2007) or covariate shift (Shimodaira 2000; Sugiyama and Müller 2005;
Sugiyama et al. 2007, 2008). Obviously, if the training and the test data have nothing in
common there is no chance of learning anything. Thus, we assume that both follow a similar
conditional distribution p(y|x) and the input distributions p(x) differ, yet not completely (see
Figure 10.2). In remote sensing, this is a likely situation since usually no training samples
are available for the image to be classified and labelled data is extracted from other images
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Figure 10.2 Illustrative example of the sample selection bias produced when the distributions
on training and test sets do not match.

modelling similar problems. In these situations, not all training samples are equally reliable.
In the literature, the training samples are weighted in different ways in order to avoid the
sample selection problem: by deriving the conditional density to maximize the log-likelihood
function (Shimodaira 2000); by changing the criterion to be maximized for learning, such as
the nonparametric kernel mean matching method presented in Huang et al. (2007) that tries
to match the first momentum of training and test sets in the kernel space; or by modifying the
model selection criteria to obtain unbiased results (Sugiyama et al. 2007).

In the proposed method, the most reliable samples in terms of maximum likelihood in
the input space are used to compute a kernel function that accurately reflects the similarity
between clusters in the kernel space. Therefore, the relative reliability of training samples is
trimmed by weighting the contribution of each sample xi to the definition of the centre of
mass of each cluster in the kernel space H with the EM estimated posterior probabilities hik,
that is:

��s (Sk) =
∑
i hik�(xi)∑
i hik

, (10.8)

which we call the soft mean map. The corresponding soft mean map kernel can be easily
computed as:

KH
�s

(Sk, Sl) = 〈
��s (Sk),��s (Sl)

〉
=

〈∑
i hik�(xi)∑
i hik

,

∑
j hjl�(xj)∑

j hjl

〉
(10.9)

=
∑
i

∑
j hikhjlK(xi, xj)∑
i hik

∑
j hjl

,

and now, when computing cluster similarities, all samples contribute to all clusters but with
different relative weights according to their a posteriori probability. The main advantage of
the proposed method is that weights for the training samples are directly computed by taking
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advantage of the full statistical information of the test data distribution without modifying the
classification problem to be solved, i.e. the same quadratic programming (QP) optimization
problem of the SVM is solved with the available standard optimization tools. We should stress
that, with this approach, the EM algorithm is applied to the entire image in order to properly
characterize the test data distribution and compute the sample weights, but the number of
unlabelled samples used to describe the clusters in the soft mean map can be selected by the
user to reduce the size of the kernel matrix and thus control the computational effort.

Note that the mean map kernel in (10.4) is a particular case of the proposed soft mean
map kernel in (10.9) when the training samples are associated only with one cluster (crisp
association), i.e. whenhik = 1 if xi belongs to clusterωk andhik = 0 otherwise. The expression
of the soft mean map kernel in (10.9) can be rewritten in matrix notation as follows:

KH
� = DH�KHD, (10.10)

where K is the (�+ u) × (�+ u) kernel matrix of both labelled and unlabelled training sam-
ples; H is a (�+ u) × cmatrix containing the membership value hik of each training sample to
each cluster of the analysed image; and D is a c× c diagonal matrix with normalization factors
for each cluster Dkk = 1/

∑
i hik . Note that the computational effort is directly controlled by

the number of unlabelled samples u included in K to describe the clusters.
The size of the matrix containing the similarity between clusters K� is c× c. Thus, it has

to be expanded to match the number of labelled samples, in order to obtain the final �× �

kernel matrix Kω in (10.7) used to train the classifier:

Kω = � JKJ� + (1 − �) WK�W�, (10.11)

where J = [I 0] is an �× (�+ u) matrix with I as the �× � identity matrix (the first � samples
are labelled); and W is a �× c sparse matrix that stores the cluster of each labelled sample hi,
i.e. Wik = 1 if sample xi belongs to cluster ωk and Wik = 0 otherwise.

10.2.6 Summary of composite mean kernel methods

The proposed method brings together the ideas of unsupervised clustering, mean map kernel,
composite kernel, and SVM in a simple and natural way. Essentially, the method tries: (1)
to reinforce both the local and global consistencies, and (2) to mitigate the sample selection
bias problem. The method combines the expectation-maximization (EM) algorithm for fitting
Gaussian mixture models (GMM) and the mean map kernel. The final classification model
is obtained by solving a standard SVM (a convex optimization problem) but the kernel of
the labelled training samples (local consistency) is previously deformed to take into account
the similarities between clusters (global consistency), which are easily computed from the
unlabelled samples of the analysed image.

Table 10.1 shows several particular cases of the proposed method (denoted by �-SVM)
depending on: (1) the balance between the sample similarity and the cluster similarity (free
parameter �), (2) in which space the cluster similarities are computed (input or kernel space),
and (3) how the unlabelled training samples contribute to each cluster (crisp or soft association).
In this table we indicate the kernel function used in the SVM, the mapping function whose
dot product generates the corresponding composite kernel, and the value of � that constitutes
a trade-off between the sample (� = 1) and the cluster information (� = 0).
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Table 10.1 Particular cases of the proposed method depending on: (1) the sample-cluster
similarity balance (free parameter �), (2) in which space the cluster similarities are computed
(input or kernel space), and (3) how the unlabelled training samples contribute to each cluster
(crisp or soft association)

10.3 Experimental results

10.3.1 Model development

The proposed �-SVM classifiers are benchmarked against: (1) the standard SVM applied
to the image pixels (denoted by ‘SVM on xi’), which is used as a reference for supervised
methods; and (2) the standard SVM applied to each cluster centre in order to obtain its class
label that is propagated to all the samples belonging to this cluster (denoted by ‘SVM on �k’),
which is the standard approach in unsupervised classification problems.

We used for all the experiments the radial basis function (RBF) kernel, K(xi, xj) =
exp

(−‖xi − xj‖2/2�2
)
, where � ∈ R+ is the kernel width, which can be different for K and

K�. Kernel width � was tuned in the range {10−3, . . . , 10}. SVM regularization parameter C
was varied in the range {10−1, . . . , 102}. Weight � was tuned in the range {0.01, . . . , 0.99}
for composite kernels. The selection of the best subset of free parameters was done through
ten-fold cross-validation in the training set.

For both synthetic and real experiments, we generated training sets consisting of � labelled
samples (equal number of samples per class), and added u unlabelled (randomly selected)
samples from the analysed test data for the training of the SSL methods. We varied the rate
of labelled samples, i.e. {2, 4, 7, 14, 27, 52, 100}% of the labelled samples of the training
set were used to train the models in each experiment. By decreasing the number of labelled
training samples �, one can analyse how the SSL methods efficiently exploit the information
contained in the available unlabelled samples compared with the labelled samples. In order to
avoid skewed conclusions, for each value of �, the experiments were run for ten realizations
using randomly selected training samples. Once classifiers are trained and adjusted, they
are compared using the overall accuracy OA[%] and the kappa statistic � (estimated in the
classification of 5000 independent samples) as a measure of robustness in the classification
over the validation set and the test image.

10.3.2 Results on synthetic data

This section illustrates with a synthetic example how the proposed method efficiently exploits
the information contained in the available unlabelled samples to characterize the marginal
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distribution of data by means of the cluster structure. In order to demonstrate the robustness
of the method in the sample selection bias problem, we used a two-dimenssional nonlinear
classification problem where training and test data are generated by two slightly different
mixture models composed of six Gaussian components (Figures 10.3(a)–(c)). Three different
models are obtained in order to illustrate the trade-off between the sample (� = 1) and the
cluster information (� = 0) provided by the proposed method (Figures 10.3(d)–(f)). In par-
ticular, we have depicted results of the pixel-based approach (� = 1) equivalent to a standard
SVM trained with K; the cluster-based approach (� = 0) of the �s-SVM trained with KH

�s
;

and the composite pixel-cluster approach (0 < � < 1) of the �s-SVM trained with KH
ωs

.
Selected models are compared with the classification boundary of the maximum likeli-

hood classifier (MLC) built with the true mixture models (upper-bound of the classification
performance) of both the training distribution and the test distribution, respectively. In the
three plots at the bottom part of the figure, we can observe from the sample-similarity based
approach to the cluster-similarity based approach, how the classification boundary changes.
On the one hand, Figure 10.3(d) corresponds to the standard SVM looking for a maximum
margin classifier of the training samples. In this case, the classification boundary matches the
MLC boundary of the training set (gold line). On the other hand, Figure 10.3(e) corresponds
to the cluster-based approach that trains a SVM using as kernel matrix the cluster similarity
KH
�s

of the associated clusters. In this case, classification boundary is dominated by the cluster
distribution of the unlabelled samples from the test set, and thus it matches the MLC boundary
of the test set (blue line). It is worth noting that in the case where both sample and cluster
similarities are combined (Figure 10.3(f)) we obtain an intermediate solution, that is: (1) in
regions densely populated by labelled training samples, the�s-SVM follows the optimal MLC
boundary of the training data (middle-left part of the plot); and (2) in regions without labelled
training samples forcing the output class, �s-SVM follows the optimal MLC boundary of the
test data (bottom-right corner of the plot). The value of � can be tuned by the user in the training
process or selected through cross-validation in the training set, as is commonly done with the
other free parameters of SVMs, such as C and �. However, we should note that the model
selection in semi-supervised methods applied to problems affected by sample selection bias is
still unsolved since, if the training and test distributions are significantly different, the selected
model will be biased towards the training samples when performing cross-validation in the
training set. Recently, some efforts have been made to alleviate this problem (Marconcini and
Bruzzone 2007; Sugiyama et al. 2007).

10.3.3 Results on real data

This section presents the experimental results on real remote sensing images. For illustration
purposes, we focus on the challenging sample selection biased scenario of cloud identification
from multi-spectral images.

Cloud screening constitutes a clear candidate for the proposed SSL method, since very
few labelled cloud pixels are typically available, and cloud features change to a great extent
depending on the cloud type, thickness, transparency, height or background. We used data
from the MEdium Resolution Imaging Spectrometer (MERIS) instrument on board the ESA
ENVIronmental SATellite (ENVISAT) (Rast et al. 1999). We used as inputs six physically-
inspired features extracted from the 15 MERIS multi-spectral bands (Gómez-Chova et al.
2007).
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Figure 10.3 Illustrative example of the use of composite mean kernel in a two-dimensional
two-classes problem where training and test data are generated by two slightly different mixture
models composed of six Gaussian components. Plots (a) and (b) show the samples (circles)
and the distribution (coloured areas) of each Gaussian component of the the training (6 × 25
samples) and test (6 × 1000 samples) sets, respectively. Plot (c) shows test samples with the
true class labels (red and black points) and the distribution (shaded areas) of the found clusters
by the EM algorithm. Plots (d)–(f) show the classification results of the proposed composite
kernel using the soft mean map for three different situations: (d) pixel-based approach (� =1)
equivalent to a standard SVM trained withK; (e) cluster-based approach (� =0) of the�s-SVM
trained withKH

�s
; and (f) composite pixel-cluster approach (0 < � < 1) of the�s-SVM trained

with KH
ωs

. In these plots, red and black points represent the training samples; blue circles
indicate the samples used as support vectors in each model; golden line and shaded areas
indicate the classification boundary of the maximum likelihood classifier (MLC) built with the
true mixture model of the training data (upper-bound of the classification performance); blue
line indicates the classification boundary of the MLC built with the true mixture model of the
test data; and black line shows the classification boundary of the trained models. (See plate 3)
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Figure 10.4 MERIS images acquired over Spain (BR-2003-07-14 and BR-2004-07-14),
Tunisia (TU-2004-07-15), Finland (FI-2005-02-26), and France (FR-2005-03-19). The bot-
tom part of the figure shows the image-fold case followed in the experiments that induce the
sample selection bias in the training process.

Experiments were carried out using five MERIS images acquired over Spain (two images),
Tunisia, Finland and France (Figure 10.4). In order to test the robustness of the algorithm to
differences in the training and test distributions (sample selection bias), the proposed kernel
methods (Table 10.1) are benchmarked in two different conditions: (1) few labelled training
samples are available for characterizing the image to be classified; and (2) no labelled training
samples are available for the test image to be classified. The first case is called the single-image
case, since labelled and unlabelled training samples belong to the image to be classified. Note
that, in this case, both the training and test data come from the same marginal distribution, and
thus the classifiers are not affected by the sample selection bias problem. In the second case,
results are obtained following an image-fold cross-validation strategy1, that is, each test image
was classified with a model built with labelled samples from the other images and unlabelled
samples coming from the same test image (Figure 10.4). In this case, the available training
set might not be representative enough for the test (sample selection bias problem) and the
unlabelled samples from the image to be classified should help to improve the classification
accuracy.

Single-image case results

First, we are going to analyse the classification results in the single-image case, i.e. each test
image is classified with a model built with labelled and unlabelled samples coming from the
same test image. This procedure is aimed at comparing the different algorithms in an ideal
situation where both training and test data come from the same distribution. Hence, one can

1Classifiers are trained using both labelled samples from theN − 1 out ofN available images and unlabelled samples
from the image to be classified. A different classifier is trained for each image and, finally, classification results on
test are averaged for the N images to evaluate the robustness of the classifiers to the sample selection bias.
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assess which method learns best from the labelled samples, and how the semi-supervised
methods take advantage of the available unlabelled samples. In the following paragraphs, we
will discuss results obtained for the single-image case. Average results over ten realizations
are shown in Figure 10.5. Several conclusions are obtained from these plots.

Figure 10.5(a) shows the � statistic versus the number of labelled samples obtained with
the standard SVM for the five images. This plot provides us with a reference on how difficult is
the classification problem or the cloud screening problem in each MERIS image (Figure 10.4).
From the results one can conclude that the classification complexity of the images increases
in the following order: Barrax (BR-2003-07-14) that presents a bright and thick cloud in the
centre of the image; Barrax (BR-2004-07-14) that presents small clouds over land and sea in
the right part of the image; Tunisia (TU-2004-07-15) that presents clouds and bright dessert
areas; France (FR-2005-03-19) that presents opaque clouds at south and north France, but also
snowy mountains at various altitudes; and, finally, Finland (FI-2005-02-26), which presents
cirrus clouds over the sea and the icy coast of Finland. Therefore, we are including in the
experiments both easy cloud screening problems, where few labelled samples are enough to
obtain accurate classifications, and extremely complex cloud screening scenarios, where a
relatively high number of labelled samples is required to correctly detect clouds when using
a standard supervised classifier. In the remaining plots of Figure 10.5, the results obtained for
these five scenes are averaged in order to discover which method performs best in most of the
scenarios.

Figure 10.5(b) shows the average CPU time consumed by each method during the training
phase. All experiments were carried out in a 64-bit dual-core Intel r© XeonTM CPU 2.80
GHz processor under Linux, and all methods are based on MATLAB implementations with
a QP/SMO algorithm programmed in C++ (Chang and Lin 2001). In this plot, two groups
of methods are easily distinguished. First, the best performance in terms of CPU time is
obtained by the standard SVM and the �-SVM in X , which only require one to compute
the kernel matrix for the labelled samples K�×�. In fact, the KX

� method is slightly faster
than the SVM since it only computes the kernel matrix over the cluster centres �k in the
input space (KX

� = 〈�(�1),�(�2)〉) and the number of clusters c in the image is usually much

lower than the number of labelled samples �. On the other hand, KX
ω = �K + (1 − �)KX

�

is slightly slower than these methods since the weighting parameter � is also tuned during
the training phase. Secondly, the proposed �s-SVM classifiers in H provide an acceptable
performance but are slower than previous methods since, in order to compute the similarity
between clusters in the kernel space KX

� , they have to compute the kernel matrix for the
labelled and unlabelled samples K(�+u)×(�+u). However, this difference is reduced when the
number of labelled samples � approaches the number of unlabelled samples u = 5000. Again,
the weighted versions of the �-SVM (‘+’ markers) are slower than the versions based on
clusters exclusively (‘◦’ markers) because of the tuning of �.

Figures 10.5(c) and 10.5(d) show the average � and OA for all the methods. The first
conclusion extracted from the curves is that the proposed �-SVM method clearly improves
the results of the other methods. The mean kernel classifiers produce better classification
results than the reference provided by the supervised SVM in all cases (note that SVM is a
particular case of the�-SVM for � = 1). These results are a consequence of taking into account
the distribution of image data to define the clusters. In consequence, �-SVM classifiers can
be considered as a good trade-off between computational cost and classification accuracy.
In addition, �-SVM classifiers working in the kernel space provide slightly better results,
supporting the idea that we can find a richer space H for separating classes. In ill-posed
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Figure 10.5 (a) Standard SVM classification results for the five MERIS images. (b)–(f) Aver-
age classification results over the five images training the models with labelled and unlabelled
(800) samples from the image to be classified (single-image case): (b) CPU time [s], (c) �,
(d) OA, (e) SVs [%], and (f) weight � of the sample-similarity kernel of labelled samples K.
(See plate 4)
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situations, with a low number of labelled samples, the performance of�-SVM inH is reversed
and�-SVM in X provide better results. This fact can be explained since, when working with a
low number of labelled samples, v-fold cross-correlation techniques are less efficient at tuning
the kernel width �, which actually defines the mapping to H. Therefore, the cluster similarity
KH
� , computed only from the unlabelled samples in H, is less meaningful thanKX

� , computed
by using the cluster centres �k obtained when applying the EM algorithm to the whole image.
We can also observe that the proposed method is not equivalent to a simple segmentation of
the image by classifying the centres of the clusters (red dash-doted line), that is, classifying
�k is not a good option but it is still better than purely supervised SVM (red dotted line). This
indicates that the EM clustering of the image provides a good image segmentation, which is
mainly due to the physically-inspired extracted features.

Figure 10.5(e) shows the average percentage of support vectors (SVs) for each method,
i.e. the number of labelled training samples used as SVs in the selected models. In these
experiments, all SVM methods produce sparse models with a low number of support vectors.
The trend of all methods is coherent, since as the number of labelled samples in the training
set increases, the rate of samples (SVs) required to classify correctly decreases. The only
significant difference between methods is that, in ill-posed situations with a low number of
labelled samples, the classifiers based on cluster similarity require fewer SVs since the class
distribution is approximated by the cluster distribution. However, when increasing the number
of labelled samples, simple spaces (such as that of SVM) increase sparsity, but also worsen
models in terms of kappa.

Finally, Figure 10.5(f) shows the relative weight � of the sample-similarity kernel of
labelled samples K with respect to the cluster-similarity kernel of the unlabelled samples
in the selected KX

ω , KH
ω and KH

ωs
models. The value of � can be tuned by the user in the

training process, but we have selected it through cross-validation in the training set. In these
experiments, the sum of Hilbert spaces (i.e. different mapping and kernel functions) leads
approximately to an average weighting as the optimal solution (� ∼ 0.5). Intuitively, this
means that both the labelled information and the cluster information show similar importance
in the classification. Hence, taking into account the excellent classification accuracy obtained
in the experiments, we can conclude that both the labelled samples included in the training
set and the clusters from unlabelled samples properly describe the class distribution in the test
image. This situation is coherent in the context of the single-image case followed to obtain
the results presented in Figure 10.5.

Image-fold case results

Now, we analyse the classification results in the image-fold case, i.e. each test image is classi-
fied according to a model built with labelled samples from the other four images and unlabelled
samples coming from the same test image. This procedure is aimed at testing the robustness
of the algorithm to differences between the training and test distributions.

Figure 10.6(a) shows the � statistic for the five images obtained with the standard SVM.
This plot provides us with a reference of how difficult the classification problem is in each
MERIS image, but now it also depends on how well the labelled samples from the other
images in the training set represent the classes in the test image. Now, the order of the images
depending on their classification complexity is very similar: Barrax (BR-2003-07-14), Barrax
(BR-2004-07-14), Tunisia (TU-2004-07-15), France (FR-2005-03-19) and Finland (FI-2005-
02-26). Also, as expected, poorer classification accuracy is obtained in all images. However,
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Figure 10.6 (a) Standard SVM classification results for the five MERIS images. (b)–(f) Aver-
age classification results over the five images with labelled samples from the other four images
and 800 unlabelled samples from the image to be classified (image-fold case): (b) CPU time
[s], (c) �, (d) OA, (e) SVs[%], and (f) weight � of the sample-similarity kernel (K). (See
plate 5)
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it remains almost independent of the number of labelled samples, which indicates that, from
the very beginning, labelled samples from other images roughly describe the type of clouds
in the test image, and these situations are not improved by adding more labelled samples with
the same information. Therefore, we can conclude that, following the proposed image-fold
case, the experiments for the five images are affected by the sample selection bias problem.
In the remaining plots of Figure 10.6, the results obtained for these five scenes are averaged
in order to discover which method performs better in most of the scenarios.

Figure 10.6(b) shows the average CPU time consumed by each method during the training
phase. The results in this plot are almost identical to the results in Figure 10.5, since the
computational burden mainly depends on the amount and type of data, and the experiments
were carried out on the same computer.

Figures 10.6(c) and 10.6(d) show the average � and OA for all the methods respectively.
The situation now is completely different from the previous experiments at the single-image
case. Almost all the methods provide moderate classification accuracy, and all of them pro-
vide poor results in ill-posed situations. However, a large difference can be observed between
the �-SVM classifiers based on clusters exclusively (‘◦’ markers) and the rest. Several con-
clusions can be obtained from these curves. The standard SVM is affected by the sample
selection bias and this cannot be solved since it relies on the training labelled samples ex-
clusively. When using the standard SVM to directly classify the centres of the clusters from
the EM algorithm, classification results improve since cluster prototypes have a higher prob-
ability of being correctly classified by SVM than test samples. Again, the main impediment
is the SVM classifier used to label the cluster centres. The �-SVM classifiers based exclu-
sively on cluster-based approachesKX

� ,KH
� andKH

�s
provide excellent results when there are

enough labelled samples to describe the class conditional distribution of the clusters (with
few labelled samples a whole cluster can be misclassified). Of these three classifiers, KH

�

produce worse results. This can be explained since the selection of the mapping function to
H, i.e. the selection of kernel free parameters, depends on the classification accuracy in the
training set. Therefore, an inappropriate training set produces an inappropriate mapping (in
terms of class separability in the test). As a consequence, KH

� is more affected by the sample
selection bias since all the unlabelled samples in the training set are used to compute the clus-
ter similarity in an inappropriate kernel space. On the other hand, KX

� is more robust to the
sample selection bias because it approximates the cluster similarity to the similarities of the
cluster centres �k already defined in the input space, and thus it is less dependent on how
the unlabelled samples that represent the clusters are mapped into H. In this context, KH

�s
provides the best results and is also more robust to the sample selection bias because it uses
the soft mean map to compute the cluster similarity in the kernel space. The soft mean map
weights the contribution of each sample to the definition of the centre of mass of each cluster
in the kernel space H with the EM estimated posterior probabilities. This is equivalent to
eliminating the samples that do not properly represent the cluster in the input space, and thus
the estimation of the cluster centre in H is less affected by the selection of an inappropriate
mapping. Finally, the �-SVM classifiers based on composite mean kernels KX

ω , KH
ω and KH

ωs
(black ‘+’ lines) produce significantly worse results than the cluster-based approaches K�.
These approaches combine both sample and cluster similarities and, intuitively, should pro-
duce better classification results than standard SVM (K) and K�, which are a particular case
of Kω for � = 1 and � = 0, respectively. Therefore, the divergence in the results should be
explained by the tuning of �, and we have also to analyse the selected � value for the different
experiments.
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Figure 10.6(f) shows the relative weight � of the sample-similarity kernel of labelled sam-
ples K with respect to the cluster-similarity kernel K�. In this plot, we can observe that for
a low number of labelled samples (� � 30) the sample-similarity and cluster-similarity have
the same weight (� = 0.5), and then the weight of the sample-similarity kernel of labelled
samples K increases exponentially with the number of labelled samples. As the number of
labelled samples increases, K becomes more important than the cluster information (the ex-
ponential value of labelled samples in supervised classifiers is analysed in detail by Castelli
and Cover (1995)). However, the opposite behaviour is observed in the classification accuracy
(Figures 10.6(c) and 10.6(d)) that starts to decrease when � increases. As mentioned above,
the labelled samples in the training set used to compute K come from different images and
are affected by the sample selection bias. For this reason, high values of � (greater weight of
K) produce worse values. The key point is to understand the reason for which high values
of � are selected during the training. The reason is that � has been selected through v-fold
cross-validation on the labelled training samples, thus the selected model (�, � and C) will
be biased towards the training samples, which produces worse results on the test set if the
training and test distributions are significantly different. It should be noted that the model
selection in semi-supervised methods applied to problems affected by sample selection bias
is not well-solved yet. One solution would be to select the best model by cross-validation in a
labelled validation set coming from the image to be classified, but this is an unrealistic situation
since, in this case, these data can be used in the training. The results suggest that a simple and
reasonable trade-off is to equally weight the sample and cluster similarity (� = 0.5), which
provides good results in standard semi-supervised scenarios (Figure 10.5) and it is not biased
towards the training set when dealing with sample selection biased problems (Figure 10.6).

Finally, Figure 10.6(e) shows the average percentage of support vectors (SVs) for each
method. Again, most of the methods produce sparse models with a low number of support
vectors. The only exception are the three cluster-based methods that require more SVs to
correctly weight the cluster similarities. Here we can clearly observe the trade-off between
sparsity and accuracy, with the over-sparse solutions that provide low classification accuracy
and the moderately sparse (80% over 400 samples) models that provide better classification
accuracy. The high number of SVs in cluster-based methods can be explained since in this
image-fold experiment the information (similarities) in K and K� are contradictory because
the class distribution in training and the cluster distribution in test do not match. Hence, a
higher number of samples is needed to find a maximum-margin hyperplane in the kernel
space.

Classification maps

Finally, the developed models are applied to all the pixels of the test images in order to obtain
the classification maps. Results shown in the previous section have been obtained by using the
validation set (5000 labelled samples from the test image used to compare the performance
of the classifiers). In this section, a quantitative and a visual analysis of the corresponding
classification maps of the test images are carried out.

Figure 10.7 shows the comparison of the �s-SVM methods (both composite KH
ωs

and
cluster-based KH

�s
classifiers) against the cloud screening reference. The images selected to

illustrate the results are one image over Barrax (BR-2003-07-14) and the France image (FR-
2005-03-19), which present different cloud screening problems and are differently affected
by the sample selection bias problem. In the case of the unprojected MERIS FR images,
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Figure 10.7 Comparison of the cloud mask of the proposed kernel methods against the
ground truth for the MERIS images over Barrax (BR-2003-07-14) and France (FR-2005-03-
19). Discrepancies are shown in red when proposed kernel methods detect cloud and in yellow
when pixels are classified as cloud-free. (See plate 6)

the quarter scenes have 1153×1153 pixels (e.g. BR-2003-07-14) and the full scenes have
2241×2241 pixels (e.g. FR-2005-03-19). The selected images are classified using the best
models (realization with best validation results) trained with 400 labelled samples for both the
single-image case and the image-fold case (last point in Figures 10.5 and 10.6, respectively).
Pixels where the algorithms and the ground truth agree are depicted in white for the cloudy
pixels and in blue for the cloud free pixels; discrepancies are shown in yellow and red. The
agreement between both maps is expressed in terms of the overall accuracy (OA) and kappa
statistic (�) for the whole image.

Classification accuracies above 90% are obtained for most cases, but the lower values of �
for some cases reflect that classification results are unbalanced due to the misclassification of a
significant number of pixels of one class. Note that the overall accuracy is directly interpretable
as the ratio of pixels being classified correctly, while the kappa coefficient allows for a statistical
test of the significance of the divergence between two algorithms (Congalton and Green 1999).
The best kappa result (>0.9) for each experiment is bold faced. Let us analyse the Barrax image
(BR-2003-07-14), which represents an easy cloud screening problem. When comparing the
two kernel methods with the reference, the cluster-based classifier KH

�s
provides good results

even in the image-fold case, which means that training samples from the other images are
useful to classify correctly the clusters found in the test image. However, the composite kernel
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classifierKH
ωs

works properly in the single-image case, while results are worse for the image-
fold case, which means that the model is biased towards the labelled samples of the other
images instead of to the cluster structure (see explanation of Figure 10.6(e)).

Let us now consider the second image, which is the ‘France image’, that presents opaque
clouds at the south and north and also snow in the Alps, the Pyrenees and the Massif Central.
Attending to the image-fold experiments, �s-SVM methods agree with the cloud mask. In the
image-fold case, neither the cluster-based classifier KH

�s
nor the composite kernel classifier

KH
ωs

produce an accurate cloud screening. This can be explained since, in this case, no training
samples from the other images model the difference between clouds and snowy mountains,
thus the classifier cannot learn this difference.

10.4 Conclusions

A semi-supervised SVM classification method based on both sample and cluster similarity
was presented in this chapter. It assumes that some supervised information is available and
it is used together with the unlabelled samples of the analysed image to develop a classifier
that provides the class of each pixel taking also into account the image data distribution. The
information from unlabelled samples of the test dataset is included in the standard SVM by
means of a linear combination of kernels, and the cluster similarity is directly computed in the
kernel space with a dedicated kernel, which is based on the means of the feature vectors in this
space. From a methodological point of view, it has two main advantages: (1) the complexity
of the problem is not increased (similar computational complexity) and the objective function
is still convex; and (2) the mixture of kernels is much more flexible than an objective function
and parameters are easier to tune.

In some real applications training samples are available, while in others they are not
available for the image to be classified, and thus, labelled data extracted from other images
modelling similar problems can be useful in improving the classification accuracy. In this
scenario, not all the training samples are equally reliable and hence the presented soft mean
map constitutes a suitable approach to facing the sample selection bias.

Good results have been obtained in different synthetic and real situations. The good results
obtained for the cloud screening application suggest that, when a proper data assumption is
made, the proposed semi-supervised method outperforms the standard supervised algorithm.
Since the distribution of remote sensing data over natural land covers is usually smooth (spectra
of pixels from the same land cover are similar), the cluster assumption imposed in the model
is reasonable, and the EM algorithm with GMM efficiently implements it. However, although
the proposed semi-supervised methods benefit from the inclusion of unlabelled samples by
estimating the marginal data distribution, results have shown that these methods are limited by
the quality of the available labelled information and cannot alleviate situations with a dramatic
sample selection bias problem. This suggests that further developments might be focused on
new validation methods for these situations, and on performing extensive experiments in other
applications.
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Kernel methods for unmixing
hyperspectral imagery

Joshua Broadwater, Amit Banerjee and Philippe Burlina
Applied Physics Laboratory, The Johns Hopkins University, USA

This chapter introduces the concept of kernel unmixing algorithms for hyperspectral imagery.
The physics of linear and nonlinear mixtures are explored and shown to be suited for kernel
approximations. Based on this evidence, a fully automatic kernel unmixing algorithm is
developed for endmember extraction and abundance estimation. This kernel unmixing frame-
work has the flexibility to account for both linear and nonlinear behavior by using different
kernel functions. Additionally to support nonlinear mixtures, a new physics-based kernel is
proposed based on the physics of intimate mixtures. Experimental results on both in-lab and
real-world hyperspectral data show both qualitative and quantitative improvements when using
the proposed kernel unmixing approach.

11.1 Introduction

Hyperspectral sensors provide unique data for remote sensing applications. These imaging
spectrometers collect not only spatial information (pixels), but also a spectral response at each
pixel (spectra). Imaging spectroscopy is a direct descendent of reflectance spectroscopy, which
began in the 1920s (Wendtland and Hecht 1966) and radiative transfer theory which began in
the 1940s (Chandrasekhar 1960). From these sciences, researchers learned how to measure a
material’s chemical property from the way light interacted with it. Perhaps more importantly,
researchers learned how to identify different chemicals within the same sample by ‘unmixing’
the sample back into its constituent parts. These developments led to multi-spectral imagers
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such as Landsat (Landgrebe 1997) that ultimately led to the hyperspectral sensors in use today
(Keshava and Mustard 2002).

Hyperspectral sensors provide data that allow researchers to spectrally unmix an entire
scene into its different materials based on imaging spectroscopy. Besides obtaining estimates
of the materials in a scene, spectroscopy also allows the measurement of the amount of each
material both spatially across the entire image and also spectrally within each individual pixel.
This unmixing of spectral signatures allows hyperspectral imagery to be used for applications
varying from subpixel detection (Manolakis and Shaw 2002) to mineral mapping (Mustard
and Pieters 1989).

Two types of models exist that describe how materials mix within a pixel. The first model is
called the areal mixing model. It describes the cases where the materials are non-overlapping
(Keshava and Mustard 2002) and can be mathematically expressed as a linear combination
where the weights are the amounts of each material (Hapke 1993). The other model is the
intimate mixture model and it is described by nonlinear functions. This nonlinear mixing
model has been difficult to model, but can show up to 30% improvement in measurements
over the linear mixing model when intimate mixtures are present (Herzog and Mustard 1996).
The difficulty is how to model these nonlinearities when much of the necessary information
is not available.

Kernel functions were introduced as a way to generalize linear algorithms to nonlinear
data. In the case of detection and classification applications, kernel functions can induce high
dimensional feature spaces. In these spaces, previously non-separable classes can be made
linearly separable. Thus, linear methods can be applied in this new feature space that provides
nonlinear boundaries back in the original data space. Another example is the kernel PCA
method (Scholkopf et al. 1998), which can be found in Chapters 2, 7, 14 and 15. In this
case, the kernel is not used to induce a high dimensional space, but is used to better match
the data structure through nonlinear mappings. It is in this mode that kernels can be used to
produce nonlinear mixing results while essentially using a linear mixture model. What is more
appealing is that the physics suggest that such a method is ideal if one can model the kernel
correctly.

Therefore, this chapter introduces the concept of a kernel unmixing algorithm for hy-
perspectral imagery. The chapter describes the proposed method by first describing the two
mixing models for linear and nonlinear mixtures in Section 11.2. Section 11.3 describes the
proposed kernel unmixing algorithm based on the SVDD method presented in Chapter 8 and a
kernel fully constrained least squares abundance estimate. Section 11.4 presents results of the
proposed unmixing algorithms on both in-lab and real-world hyperspectral data. Section 11.5
describes our initial work on a physics-based kernel that provides improved performance over
a standard RBF kernel as shown in Section 11.6. Section 11.7 concludes with a summary of
the results.

11.2 Mixing models

To develop algorithms for unmixing hyperspectral imagery, the physics of spectroscopy has to
be understood first. Based on the work of early researchers in spectroscopy, Clark and Roush
(1984) and Hapke (1993) have studied how spectral mixtures affect imaging spectrometers.
The result is two well studied mixing models: areal mixtures and intimate mixtures. The next
two sections describe the physics behind each mixing type.
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11.2.1 Areal mixtures

Areal mixtures are the simplest of the two models and hence the most used in practice.
The model is a simple linear combination of endmembers and abundances. Endmembers are
the spectra representing the unique materials in an image such as water, soil or vegetation.
Abundances are the percentage of each endmember within a pixel. At the physical level,
the model assumes that the materials are arranged within a pixel such that they are non-
overlapping (Hapke 1993). Assuming that multiple scattering effects between materials are
negligible (Keshava and Mustard 2002), the photons interact with each material individually.
Therefore, a linear model can be used to identify the materials and their amounts in this
scenario.

This linear mixing model can be expressed mathematically as

x =
Q∑
q=1

aqmq, aq ≥ 0,
Q∑
q=1

aq = 1, (11.1)

where x is an L×1 vector that represents the spectral signature of the current pixel, Q is
the number of endmembers within the image, mq is an L×1 vector that represents the qth
endmember, and aq is the qth abundance value. Note that the linear mixing model includes
two constraints on the abundance values: non-negativity and sum-to-one. These constraints
are necessary to match the physics of the problem that define the abundances as the percentage
of the pixel occupied by the different materials. Since they are percentages, the two constraints
must hold.

11.2.2 Intimate mixtures

Intimate mixtures are much more difficult to model and require significant knowledge of
the material properties and Sun–ground–sensor geometry. In this model, the materials are
interspersed with one another at a particulate level. An example of such an intimate mixture
is the mapping of materials on the lunar surface where impacts from meteors have pulverized
the materials into particulate matter and mixed them (Mustard et al. 1998). Another example
is the interspersion of different types of vegetation in tree canopies that can lead to nonlinear
mixtures (Roberts et al. 1993).

In intimate mixtures, the photons are interacting with all the materials simultaneously.
In areal mixtures, the assumption was that the photons scattered off one material at a time.
Since intimate mixtures have multiple different materials in close relation to one another, the
photons can bounce from one particle to another causing different absorption and reflection
effects. The result is mixing that cannot be well captured by simple linear models. In Herzog
and Mustard (1996), the researchers found that by not accounting for nonlinear mixing, the
linear estimates could be substantially different from truth by as much as 30%.

It is well-known that reflectance is ‘the ratio of reflected radiance to incident irradiance’
(Schott 1996); however, how this ratio is measured leads to different types of reflectance
measurements (Hapke 1993). For example, reflectance can be measured as bidirectional
reflectance, hemispherical reflectance, hemispherical directional reflectance, spherical re-
flectance, or diffusive reflectance. For the remainder of this work, the hemispherical directional
reflectance will be used since we are assuming Lambertian scattering.
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This Lambertian reflectance (or simply reflectance as we will refer to it from now on) is
a function of the material’s ability to scatter and absorb light such that

�(�) = w(�)

4(�+ �0)

(
(1 + B(g))P(g) +H(�,�)H(�,�0) − 1

)
, (11.2)

where � is the reflectance in terms of wavelength �,w is the average Single-Scattering Albedo
(SSA), � is the cosine of the angle of emergence, �0 is the cosine of the angle of incidence,
g is the phase angle, B(g) is the backscatter function P(g) is the average single particle phase
function, and H is Chandrasekhar’s function for isotropic scattering (Mustard and Pieters
1989). The average SSA is mathematically modelled as

w(�) =
∑
j (Mjwj(�))

/
(�jdj)∑

j (Mj)
/

(�jdj)
, (11.3)

where Mj is the mass fraction for material j, dj is the diameter of the particles of material j,
�j is the solid density of the particles of material j, and wj is the SSA of material j. The SSA
is ‘the ratio of the total amount of power scattered to the total power removed from the wave’
(Hapke 1993).

Therefore, intimate mixtures are actually a linear mixture of single-scattering albedos in
(11.3) nonlinearly mapped to reflectance using (11.2). Their abundances or mass fractions can
be estimated from the relative geometric cross-section Fj where

Fj = (Mj)
/

(�jdj)∑
j (Mj)

/
(�jdj)

. (11.4)

Thus, in cases where we do not know the particle densities or sizes, the best estimate that can
be obtained is the relative geometric cross-sections of the materials. If the particle density and
sizes are known or can be inferred, then a direct measure of the abundance or mass fraction
can be found. Note that, in either case, the measures must be non-negative and sum to one
similar to the abundances in the linear mixing model.

11.3 Proposed kernel unmixing algorithm

A number of algorithms have been developed over the years for unmixing hyperspectral im-
ages. Unmixing algorithms generally require two steps: endmember extraction and abundance
estimation. Previous algorithms for endmember extraction can suffer from several issues. One,
they impose assumptions on the data that are often faulty and can lead to suboptimal perfor-
mance. Many algorithms assume that the distribution of the spectra is Gaussian or can be
modelled by a simplex. There is little theoretical or empirical physical evidence to support
these assumptions. Second, they need to know the number of endmembers a priori. Finally,
many algorithms provide non-physical endmembers, which can cause their corresponding
abundances to be either negative or greater than one.

One class of such algorithms is based upon the statistical properties of the image cube.
Examples include the Principal Components Analysis (PCA) and Minimum Noise Fraction
(MNF) algorithms (Green et al. 1988). While useful for dimensionality reduction, they do not
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provide physical endmembers, since they consider only the statistical properties of the data.
Therefore, they often generate endmembers with abundances that violate the non-negativity
and sum-to-one constraints.

To determine physical endmembers, several algorithms have been developed, such as
N-FINDR (Winter 1999), the pixel purity index (PPI) (Boardman et al. 1995), and the convex
cone analysis (CCA) (Ifarraguerri and Chang 1999). For an image cube withL spectral bands,
these algorithms attempt to find the endmembers as spectral convexities in an L-dimensional
space. However, these methods: (1) require prior knowledge of the number of endmembers;
(2) often make limiting assumptions about the spectral distribution; (3) may require user
supervision, and (4) may be computationally complex.

The linear mixing model states that the spectra lie in a simplex. However, since hyperspec-
tral imagery often contains nonlinear mixtures, the spectra may not lie in a simplex. Therefore,
another method is needed to describe the boundary containing the data. The method should
have the flexibility to generalize the simplex and fit the spectral distribution with greater
accuracy.

Thus, a support vector approach for endmember selection is proposed. Specifically, we
use the Support Vector Data Description (SVDD), developed by Tax and Duin (1999) for
one-class classification. It is a novel approach that is motivated by the success of support
vector algorithms for pixel classification (Gualtieri and Cromp 1998) and anomaly detection
(Banerjee et al. 2006). Given a set of spectra from an image, the SVDD is able to determine
the boundary of its region of support without making prior assumptions about its shape. The
benefits of using the SVDD include:

• non-parametric modelling of the distribution of the spectra. The SVDD finds the convex
boundary of the pixels using kernels without assuming the size or shape of the convex
boundaries;

• readily selecting the spectra that lie on the convex boundary as the endmembers. The
SVDD directly provides a set of support vectors that by definition are located along
the edge of the distribution;

• automatically and quickly selecting the endmembers without any dimensionality
reduction.

The problem of estimating the number of endmembers is addressed by using ideas from
the field of data compression and rate-distortion. Since the spectra in the image are linear
combinations of the endmembers in either the original input space or the kernel space, an
automatic method to determine the number of endmembers using rate-distortion theory is
proposed.

The SVDD algorithm generates endmembers that do not necessarily form a convex bound-
ary in the original input space. This is a desirable property because the endmembers are allowed
to model the data without imposing any assumptions about its underlying distribution. Current
algorithms from researchers such as Boardman (1990), Settle and Drake (1993), Ashton and
Schaum (1998), and Heinz and Chang (2001) cannot be used in this case as they will ignore
those endmembers not on the convex boundary.

To overcome this problem and estimate abundance estimates in the correct feature space,
we propose a kernel fully constrained least squares (KFCLS) algorithm. This algorithm gener-
alizes previous abundance algorithms by using a kernel function. If we choose a linear kernel
function (i.e., an inner product), the KFCLS algorithm is simply the FCLS algorithm (Heinz



254 FUNCTION APPROXIMATION AND REGRESSION

and Chang 2001). However, if we choose a more complex kernel like a radial basis function,
the KFCLS algorithm can calculate abundances for those endmembers that form a non-convex
boundary.

This section is organized as follows. After introducing the SVDD endmember extraction
method in Section 11.3.1, a rate-distortion approach for estimating the number of endmembers
is described in Section 11.3.2. Section 11.3.3 introduces the KFCLS algorithm. Finally, Section
11.3.4 provides an outline of the fully automatic kernel unmixing algorithm.

11.3.1 Support vector data description for endmember extraction

This section provides a brief derivation of the SVDD algorithm. Given a set of L-dimensional
spectra, the linear version of the SVDD seeks the smallest hypersphere to model the region
of support in the L-dimensional space. The nonlinear version of the SVDD uses kernels to
construct non-spherical support regions (Tax and Duin 1999).

The SVDD is derived by considering the following geometric problem: find the smallest
L-dimensional sphere with radius R centred at a, S = {

x : ||x − a||2 < R2
}

enclosing the
entire set of training exemplars T = {

xi ∈ RL, i = 1, ..,M
}

. This constrained optimization
problem is solved by defining and minimizing a Lagrangian. It can be shown that, for the
optimal solution, the following statements hold (Tax and Duin 1999).

• Only a small fraction of the Lagrangian multipliers, ˛i, are non-zero.

• The sample vectors corresponding to non-zero ˛i called support vectors, lie at the
sphere’s boundary and form a sparse representation of the training data.

• The Lagrange multipliers sum to one:
∑
i ˛i = 1.

• The centre of the sphere is the centre of mass of the support vectors: a = ∑
i ˛ixi.

The functional form of the optimal sphere is given by the SVDD function:

SVDD(x) = (x, x) − 2
∑
i

˛i (x, xi) +
∑
i,j

˛i˛j
(
xj, xi

)
. (11.5)

The SVDD method is generalized to allow for non-spherical support regions by using the well-
known ‘kernel-trick’ (Tax and Duin 1999), where the SVDD function is now expressed as

SVDD(x) = K (x, x) − 2
∑
i

˛iK (x, xi) +
∑
i,j

˛i˛jK
(
xj, xi

)
. (11.6)

In this work, we use the popular Gaussian radial basis function (RBF) as the kernel function,
as is common practice. Since K (y, y) = 1, the SVDD function simplifies to

SVDD(x) = 1 − 2
∑
i

˛iK (x, xi) +
∑
i,j

˛i˛jK
(
xj, xi

)
,

SVDD(x) = C − 2
∑
i

˛iK (x, xi) , (11.7)

where C collects all of the constant terms.
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Figure 11.1 Detecting the endmembers via SVDD. The SVDD boundaries for a 2 band scatter
plot using decreasing sigma to achieve 4, 10 and 13 endmembers respectively. The black line
represents the SVDD boundary and the large grey circles represent the endmembers.

Finally, the RBF scale parameter �2 controls how tightly the SVDD models the support
boundaries (Tax and Duin 1999). This allows the SVDD to model non-Gaussian, multi-modal
data (Vapnik 1998). For the problem of endmember extraction, it determines the number of
detected endmembers (support vectors). This is exemplified in Figure 11.1. Given a set of
5000 spectra, two bands are arbitrarily selected and their scatter plots are shown. The SVDD
function, denoted by the solid line, defines the support region for the spectra for different
values of sigma. As sigma is decreased, the SVDD determines a tighter fit to the data and finds
additional support vectors (endmembers). Note that the SVDD defines a convex hull in the
feature space (the optimal hypersphere), it can correspond to a non-convex hull in the input
space.

11.3.2 Rate-distortion theory

Next, we consider the problem of automatically computing the number of endmembers in
the scene. From simple observations of the linear mixture model, an algorithm to estimate
the number of endmembers based on rate-distortion theory is developed (Cover and Thomas
2006). It is fully automatic and borrows from basic ideas in the field of data compression.

The linear mixture model states that the spectrum of every pixel is a linear combination of
the endmembers. These endmembers form a set of basis functions that span the space of the
spectra in the datacube. Since the spectra generally lie in a small subspace of the L-dimensional
space, a relatively small number of endmembers is needed to span the subspace, and they can
be used to approximate all of the spectra in the datacube according to the mixing model.

In general, it can also be shown that increasing the number of endmembers provides a bet-
ter approximation to the spectra. In fact, if all of the pixels are considered as endmembers, the
approximation is perfect. Of course, it is extremely unlikely that each of the pixels is a unique
and pure material. Therefore, the goal is to find a compact set of endmembers that provides
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the desired approximation for the hyperspectral datacube. This problem is analogous to the
rate-distortion optimization problem often encountered in data compression. For compression
algorithms, the Rate-Distortion (R-D) function describes how the distortion between the orig-
inal and reconstructed data varies as a function of rate (i.e bits/second, bits/pixel, number of
vector quantizers, etc.). The function is often used to find an optimal quantizer, allocate the
number of bits, or compare different compression algorithms.

The rate-distortion function can similarly be used to find the number of endmembers in
a hyperspectral image. Since the datacube is approximated by a linear combination of the
endmembers, the rate is defined as the number of endmembers, and the distortion is the mean-
square error between the original datacube and its estimate:

D(Q) =
N∑
i=1

‖xi − Eai‖2 , (11.8)

where Q is the number of endmembers (no. of columns of E), D is the distortion, and N
is the number of pixels. Note that the distortion is a function of Q since changing the num-
ber of endmembers changes the difference between the original spectra of the ith pixel xi
and its estimate Eai. In general, the distortion decreases with increasing number of end-
members.

An optimal choice for the rate Q can be found via the following Lagrangian formulation:

Q̂ = min
Q
J(Q) = D+ �Q. (11.9)

The cost function seeks to minimize the distortion subject to a constraint on the rate. The
optimal Q is found as

∂J

∂Q
= ∂D

∂Q
+ � = 0 ⇒ � = − ∂D

∂Q
,

J∗(Q) = D(Q) − ∂D

∂Q
Q. (11.10)

Note that ∂D/∂Q is simply the slope of the R-D curve and can be computed using finite
differences for any R-D function. Since D is in general a decreasing function of Q, the
optimal � is positive and will find the minimum of the cost function J∗. Thus, using the
rate-distortion criterion, the optimal estimate for the number of endmembers is the Q that
minimizes J∗.

11.3.3 Kernel fully constrained least squares abundance estimates

To estimate the abundances, a standard quadratic programming package can be used and
easily kernelized in most cases. We use the FCLS algorithm as the base quadratic programming
solution (Heinz and Chang 2001) because it is an efficient algorithm that reduces computational
complexity and thus provides quick processing times.
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The KFCLS derivation begins with the non-negativity constraints. Similar to other algo-
rithms, we begin by minimizing the Least Squares Error (LSE) to estimate the non-negative
abundance values. Mathematically this is expressed as

min
a

{(x − Ea)�(x − Ea)} s.t. ai ≥ 0 ∀i, (11.11)

where E is a matrix of Q background endmembers. Knowing that the abundances have to be
non-negative, we write a Lagrangian function L such that

L = 1

2

(
x�x − 2

∑
i

aix�ei +
∑
i,j

aiajei�ej

)
+

∑
i

�i(ai − ci), (11.12)

where ei is the ith column from E, ai = ci, and each ci is non-negative to enforce the non-
negativity constraint. By replacing the inner products with their kernel counterparts, the new
Lagrangian is

L = 1

2

(
K (x, x) − 2

∑
i

aiK (x, ei) +
∑
i,j

aiajK
(
ei, ej

) )
+

∑
i

�i(ai − ci). (11.13)

To calculate the estimate of a, we take the partial derivative of L with respect to each ai to
obtain

∂L

∂ai
= −K (x, ei) +

∑
j

ajK
(
ei, ej

) + �i. (11.14)

The equation above contains a number of unknowns for each ai and each �i. We can solve for
each of these unknowns to produce the following equations:

�i = −
∑
j

ajK
(
ei, ej

) +K
(
x, ej

)
, (11.15)

ai = K (xi, xi)−1
( ∑
i /= j

−ajK
(
ei, ej

) +K
(
x, ej

) − �i

)
. (11.16)

To solve for the non-negative abundances, we set all the Lagrange multipliers to zero and
calculate the abundance using (11.16). From this solution, we identify those abundance values
that are greater than zero and place them in the passive set P. The remaining non-positive
abundance values are placed in the active set R. Equations (11.15) and (11.16) are iterated
until all Lagrange multipliers in the passive set are zero and all Lagrange multipliers in the
active set are either zero or negative. At this point, the Kuhn–Tucker conditions have been met
and an optimal solution for the non-negative abundance values has been found.

To handle the sum-to-one constraints, an easy modification of the aforementioned algo-
rithm was developed to retain the optimality guaranteed under the Kuhn–Tucker conditions
for numerical optimization on a finite computing machine (Haskell and Hansen 1981). After
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performing some simple algebra, it can be shown that each kernel function should be replaced
with

Kı(x,y) = ı2K(x,y) + 1, (11.17)

where ı is a small number (typically 10−5). The ı variable controls how tightly the so-
lution will sum to one so that smaller values provide a better solution, but may need
longer convergence time. The new kernel matrix in (11.17) is then used in (11.15) and
(11.16) to obtain an abundance solution that meets both the non-negativity and sum-to-one
constraints.

The original purpose for creating the KFCLS algorithm was to guarantee that the abundance
estimates are being calculated in the same feature space as the endmembers. This is a necessary
condition because different kernel functions and even different kernel parameters generate
different feature spaces. Therefore, the endmembers and abundances should be calculated
in the same feature space to minimize errors in computation. Also, the SVDD creates a
convex hull in the feature space where the abundance constraints hold. Because of these
reasons, the KFCLS algorithm uses the same kernel and kernel parameters as the SVDD
algorithm.

11.3.4 Outline of full algorithm

The SVDD, KFCLS and the rate-distortion estimate for the number of endmembers can be
combined for a fully-automatic hyperspectral kernel unmixing algorithm. The steps are:

1. Choose an initial value for the RBF parameter sigma.

2. Given the set of spectra from the image, compute the SVDD function and select the
support vectors.

3. Using the support vectors as the endmembers, compute their abundances using KFCLS
at every pixel and reconstruct the datacube.

4. Measure the distortion for the current set of endmembers as the mean-square error
between the original and reconstructed datacubes.

5. Using the values for the distortion and rate, compute the value for cost function J∗(Q).

6. If sigma is less than threshold, then stop. Else, decrease sigma and go to step 2.

The value ofQ that minimizes J∗(Q) is the optimal estimate for the number of endmembers.
Furthermore, the value for sigma corresponding to this R is also used as the estimate for the
RBF kernel function.

11.4 Experimental results of the kernel unmixing algorithm

This section provides a quantitative and qualitative analysis of kernel unmixing algorithm
performance. The first set of data was measured in a controlled laboratory environment so the
number of endmembers, type of endmembers, and abundance of each endmember in a data
sample could be precisely known. For this data, quantitative assessments could be made to
compare algorithm performance.
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The second set of data was taken in a real-world scenario using AVIRIS. For this data, the
basic type and number of endmembers is well known, but there does not exist any absolute
ground truth for abundance estimates. Therefore, the AVIRIS imagery is used to qualitatively
show that kernel methods can identify physically meaningful endmembers and produce rea-
sonable abundance planes in real-world hyperspectral data.

11.4.1 RELAB data results

The first set of data was acquired by Professor Carle Pieters and Professor John Mustard at the
NASA Reflectance Experiment Laboratory (RELAB) at Brown University. The data includes
binary and ternary nonlinearly mixed mineral samples with known endmembers and abun-
dances. The data ware originally collected to measure the effectiveness of the physics models
such as those presented in Section 11.2 (Mustard and Pieters 1989). Other researchers have
used it to measure the effectiveness of their nonlinear abundance estimation algorithms against
known samples, such as Guilfoyle et al. (2001) and Plaza et al. (2004). Thus, the RELAB data
provides a good way to measure the effectiveness of the kernel unmixing algorithm for both
endmember extraction and abundance estimation.

The sensor used to collect this data is the RELAB spectrometer. This is a bidirectional re-
flectance spectrometer that allows for different incident and emergence angles to be measured.
The data was collected with at a resolution of 10 nm from 400 nm to 2500 nm (VNIR/SWIR).
To calculate the reflectance of the material, the measurements were compared to pressed
halon which is uniformly bright (>96%) throughout the wavelengths of interest. More infor-
mation can be found in (Mustard and Pieters 1989) on the sensor and its calibration as well
as the creation of the various samples. The final measurements thus contain 211 wavelength
measurements per sample.

From the RELAB database, we chose three sets of intimate mixtures. Each set of mixtures
was formed into a small image. Each image contained the pure endmembers and their inti-
mate mixtures. Thus, these images could be used to test not only the ability of an algorithm
to estimate mass fractions, but also whether the unmixing algorithm can identify the true
endmembers in the scene.

Before describing the three mixture sets, one last note needs to be mentioned. For all
of these experiments, the particle densities and particle sizes of the various materials are
approximately the same. In this case, the relative geometric cross-section and mass fraction
estimates are roughly equivalent. Therefore, algorithms like FCLS and KFCLS that measure
the relative geometric cross-section are also directly measuring the mass fraction estimates
for these experiments; hence, we will refer to these estimates from now on as mass fractions
for this chapter.

The first mixture set comprises the minerals enstatite and olivine. The corresponding test
image was given to the kernel unmixing algorithm. The algorithm successfully found the two
true endmembers of enstatite and olivine. For example in Figure 11.2, the distortion curve
monotonically decreased as expected but levels whenQ = 2. Therefore, when calculating the
Lagrange cost function from the distortion, the Lagrange cost function forms a minimum at
Q = 2, which correctly identifies that two endmembers are in the scene. In fact, the kernel
unmixing algorithm found the correct type and number of endmembers in all three mixture sets.

As for the mass fraction estimates for the first set of mixtures, Table 11.1 provides the true
mass fraction estimates, mass fraction estimates from using the standard FCLS algorithm,
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Figure 11.2 Distortion and Lagrangian curves for enstatite/olivine mixture.

and mass fraction estimates using the KFCLS algorithm. As can be seen in the table, this
mixture is slightly nonlinear and thus the FCLS algorithm provides estimates that are near
the true abundances with an RMSE of 0.0348. The KFCLS results show improvement over
FCLS with an RMSE of 0.0280. While this is not a large improvement over FCLS, the KFCLS
was able to model some nonlinear mixing effects to improve the overall estimate of the mass
fractions.

The second set of mixtures comprises the endmembers magnetite and olivine. While the
kernel unmixing algorithm was able to identify the two endmembers in the data correctly, the
abundances were more difficult to model with either the FCLS or KFCLS algorithms. This
set of mixtures has a high degree of nonlinearity, which results in an RMSE of 0.2100 for
FCLS and 0.1770 for KFCLS. Again, KFCLS was able to outperform its linear counterpart
because it could model some of the nonlinear behaviour; however, it still was on average 17.7
percentage points from the true abundance. Table 11.2 provides the abundance estimates for
each algorithm.

The final set of mixtures is the most difficult and comprises the endmembers anorthite,
enstatite and olivine. Again, the proposed unmixing algorithm identified the correct type and
number of endmembers in the scene. Again, the abundance estimates for both FCLS and
KFCLS were far from the truth. FCLS has a RMSE of 0.1266 and KFCLS has a RMSE of
0.1383. This is the only case where the FCLS estimates were slightly better than KFCLS. As

Table 11.1 Comparison of estimated mass fractions of enstatite/olivine mixtures

Truth
Enstatite 0.1000 0.2500 0.5000 0.7500 0.9000
Olivine 0.9000 0.7500 0.5000 0.2500 0.1000

FCLS
Enstatite 0.1174 0.2249 0.4446 0.7061 0.8894
Olivine 0.8826 0.7751 0.5554 0.2939 0.1106

RBF
Enstatite 0.1167 0.2076 0.4695 0.7617 0.9281
Olivine 0.8833 0.7924 0.5305 0.2383 0.0719
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Table 11.2 Comparison of estimated mass fractions of magnetite/olivine mixtures

Truth
Magnetite 0.0500 0.1000 0.2500 0.5000 0.7500
Olivine 0.9500 0.9000 0.7500 0.5000 0.2500

FCLS
Magnetite 0.1570 0.3026 0.5437 0.7445 0.8982
Olivine 0.8430 0.6974 0.4563 0.2555 0.1018

RBF
Magnetite 0.0916 0.2516 0.4818 0.7454 0.8838
Olivine 0.9084 0.7484 0.5182 0.2546 0.1162

shown in Table 11.3, both algorithms tended to underestimate the true amount of enstatite
present in the samples.

From these quantitative results, the kernel unmixing algorithm can successfully identify
the true endmembers in a scene, but as the mixtures become more nonlinear, the mass fraction
estimates tend to stray away from truth. The reason for this mismatch when it comes to
abundance estimates is due to the choice of kernel. The RBF kernel is a general purpose
kernel that can provide some degree of nonlinearity; however, it does not guarantee that the
nonlinearity it introduces is going to match the nonlinear behaviour of an intimate mixture as
detailed in Section 11.2. To match that type of nonlinear behaviour, a new kernel function is
derived from the physics of intimate mixtures in Section 11.5.

11.4.2 AVIRIS data results

The second set of data was collected using the AVIRIS sensor developed at the California
Institute of Technology Jet Propulsion Laboratory (JPL) (Vane et al. 1993). The AVIRIS sensor
is a hyperspectral sensor that collects 224 contiguous spectral bands from 400 to 2500 nm.
The ground sampling distance is typically 17 m per side. Imagery collected by AVIRIS can be
received in the original raw radiance units or corrected reflectance units. In this analysis, we
chose the reflectance units so we could compare the endmembers and abundances calculated
with known laboratory spectra.

The AVIRIS image we used for our analyses is the well documented Cuprite, Nevada
image set. This imagery has been studied in previous papers and has documented ground

Table 11.3 Comparison of estimated mass fractions of ternary mixtures

Truth
Anorthite 0.1616 0.1605 0.4192 0.3361 0.1613 0.4183 0.6781
Enstatite 0.1624 0.4183 0.1611 0.3303 0.6785 0.4177 0.1599
Olivine 0.6760 0.4212 0.4197 0.3336 0.1602 0.1640 0.1620

FCLS
Anorthite 0.2318 0.2474 0.5182 0.4536 0.2890 0.5761 0.7670
Enstatite 0.0476 0.2214 0.0190 0.1415 0.4528 0.2074 0.0403
Olivine 0.7206 0.5312 0.4628 0.4049 0.2582 0.2164 0.1927

RBF
Anorthite 0.1974 0.1810 0.5018 0.4007 0.1805 0.5090 0.7640
Enstatite 0.0332 0.2200 0.0000 0.1178 0.4784 0.1771 0.0149
Olivine 0.7694 0.5990 0.4982 0.4814 0.3411 0.3139 0.2211
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Figure 11.3 Broadband SWIR image of Cuprite, Nevada.

truth information. The Cuprite image is broken into five parts for easier processing. We
chose the fourth image of the set which is used by most other researchers. As was done
in Swayze et al. (1992) and Winter (1999), we also limited the spectrum to the short-wave
infrared bands from 2.0 to 2.5 �m. This gave us a final image size of 512 × 614 × 57 cover-
ing approximately a 10 km2 area. While this imagery is not ideal for abundance estimation,
it does provide a real-world hyperspectral image for which the type and number of end-
members are well documented. Therefore, this experiment is designed to show that kernel
methods can produce physically meaningful endmembers with reasonable abundance planes
on real-world hyperspectral imagery. Figure 11.3 shows the broadband SWIR Cuprite AVIRIS
image.

For this experiment, the SVDD algorithm found 24 endmembers using the RBF kernel.
Figure 11.4 shows the Lagrange cost function curve showing a clear minimum at 24. This
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Figure 11.4 Rate distortion function and Lagrange function to estimate the number of end-
members for AVIRIS imagery.
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Figure 11.5 Comparison of estimated endmember with lab measured spectrum of alunite
and kaolinite.

result agrees well with results reported in Ifarraguerri and Chang (1999) and Winter (1999),
where PPI and N-FINDR found 22 endmembers for the Cuprite imagery.

In Figure 11.5, we compare several of the detected endmembers with the spectra of minerals
known to be in the image. The laboratory reflectance spectra of the known minerals are publicly
available at the USGS Spectroscopy Website (http://speclab.cr.usgs.gov/). We chose the two
cases in Figure 11.5 because they are well studied and have been mapped in previous research
by Resmini et al. (1997), Swayze et al. (1992) and Winter (1999). As hypothesized, the
estimated endmembers show a high correlation with the known materials in the imagery.
The differences are most likely due to artefacts from inverting the image from radiance to
reflectance and from slight material variations.

From these endmembers, we calculated 24 abundance maps using the KFCLS algorithm.
Abundance maps are images of the abundance values shown across all pixels in the image.
The images are mapped such that dark pixels represent abundances of zero and white pixels
represent abundances of one. Note that in this case we are using the words abundance and
mass fraction interchangeably.

Four abundance maps are shown in Figure 11.6. The top row provides the abundance maps
for alunite and kaolinite using the FCLS algorithm. The bottom row provides the abundance
maps for alunite and kaolinite using the KFCLS algorithm. For alunite, the maps are similar
and correspond well to the abundance maps of Swayze et al. (1992). The only difference is that
the KFCLS abundance map does not suffer from the granularity seen in the FCLS map. For
kaolinite, the FCLS and KFCLS maps are completely different, but the KFCLS map is the one
that is most similar to the abundance maps in Swayze et al. (1992). This phenomenon is likely
due to the ability of SVDD/KFCLS to model the nonlinear mixtures in the imagery that cannot
be captured by NFINDR/FCLS. Also interesting is the fact that the endmembers found with
SVDD and KFCLS produce more meaningful abundance maps than NFINDR with FCLS. In a
number of cases, NFINDR finds ‘noise’ endmembers that produce speckle abundance images.
No such abundance images can be found when using the proposed algorithm. In all cases, the
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Figure 11.6 Abundance images for alunite (left) and kaolinite (right). Top row is using FCLS
and bottom row is using KFCLS.

kernel unmixing algorithm produces abundance maps that follow the natural variation in the
image.

11.4.3 Processing times

Despite the complexity of these methods, the processing times are short. An implementation
of the kernel unmixing algorithm was created in C++ and integrated into ENVI. The C++
code was partially optimized to reduce computational complexity and checked against slower
Matlab development code to validate the results. The result is that the C++ code can process
the entire 512 × 614 × 57 Cuprite image in less than two minutes. This estimate is for the
fully automated kernel unmixing algorithm outlined in Section 11.3.4 that unmixes the image
for many values of sigma. Therefore, while this method may seem time-consuming due to the
quadratic optimization in both the SVDD and KFCLS algorithms, both of these algorithms
were chosen because they are computationally efficient and thus have short processing times
even when dealing with large hyperspectral images. For a computational analysis of SVDD,
the interested reader is referred to Chapter 8.
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11.5 Development of physics-based kernels for unmixing

Section 11.3 focused on developing a set of kernel algorithms to unmix hyperspectral imagery;
however, no focus was placed on the kernel itself. While RBF kernels typically provide good
performance in general, they may not be the best fit for unmixing intimate mixtures as shown
in 11.5.1. Instead, we can use the physics shown in Section 11.2 to design a kernel more suited
for unmixing purposes. The rest of this section is as follows. Section 11.5.1 simplifies the
albedo to reflectance transform for ease of calculation. Section 11.5.2 develops a kernel from
the simplified transform that can be used with the algorithm developed in Section 11.3.

11.5.1 Simplification of the albedo to reflectance transform

Mustard and Pieters recommend that a simplified model of albedo to reflectance would be good
for remote sensing applications such as AVIRIS (Mustard and Pieters 1989). Following their
work, (11.2) can be simplified by making some reasonable assumptions. First, they assume
the average single particle phase function P(g) is constant for all materials. While this may not
be true in general, they shown in their paper that it provides a good fit nevertheless. Second,
they assume that g = 30 ◦ which makes P(30) = 1. Third, they assume that the backscatter
function is negligible and setB(g) = 0. These simplifications result in a new nonlinear mapping
between reflectance and single-scattering albedo such that

�(�) = w(�)

4(�+ �0)

(
H(�,�)H(�,�0)

)
. (11.18)

Chandrasekhar’s function can be approximated by Hapke (1981) such that

H(�,�) = 1 + 2�

1 + 2�
√

1 − w(�)
. (11.19)

Substituting (11.19) into (11.18) provides
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) (
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)
, (11.20)

which is the function used in Guilfoyle et al. (2001) for their nonlinear estimation algorithms.
Mustard and Pieters show this method can calculate reasonable abundances (mass fractions) for
nonlinear mixtures within 7% of truth, but a method that better models the phase function and
Chandrasekhar’s function obviously provides improved results (Mustard and Pieters 1989).
Despite the loss of accuracy, (11.20) is far more computationally efficient than calculating the
full integral of Chandrasekhar’s function.

11.5.2 Kernel approximation of intimate mixtures

In Section 11.2.2, nonlinear mixing was shown to be a nonlinear mapping of a linear mixture of
single-scattering albedos. This is a perfect match for kernel functions. As noted in Chapter 2,
kernel functions can apply a nonlinear transform to a linear method. For the physics of nonlinear
mixtures, the nonlinear transform is (11.2) applied to the linear combination in (11.1).
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To see this relation clearly, (11.1) is rewritten such that

w =
Q∑
q=1

Fqwq, Fq ≥ 0,
Q∑
q=1

Fq = 1. (11.21)

Equation (11.21) is equivalent to (11.1) except that the combination is now based on single-
scattering albedos and not pure endmember reflectances. Therefore, the reflectance of a non-
linear mixture is nothing more than a nonlinear function of (11.21) such that

�(�) = �

⎛
⎝ Q∑
q=1

Fqwq(�)

⎞
⎠ , (11.22)

which shows that nonlinear mixing can be approximated by a nonlinear function � operating
on a linear function. This is an excellent match for kernel functions: to take previously linear
functions and make them nonlinear through a kernel function such that our new physics-based
kernel is

K(x, y) =
〈
�

⎛
⎝ Q∑
q=1

Fqxq

⎞
⎠ ,�

⎛
⎝ Q∑
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⎞
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〉
. (11.23)

The interesting twist to nonlinear mixing using kernels is that the function � is known via the
full model in (11.2) or its simplified counterpart in (11.20). Kernels can be useful though for
two reasons. First, as demonstrated in Section 11.4.3, algorithms based on kernel functions
can be computationally efficient leading to small processing times. Second, kernels provide
a framework to calculate either linear or nonlinear mixtures. By choosing a simple inner
product, the kernel method will calculate a linear mixing model. By choosing (11.23), the
kernel can be used to approximate nonlinear mixing effects. In this way, kernels generalize
the mathematical model for both linear and nonlinear mixtures. For example, the core KFCLS
algorithm can calculate linear mixtures if the kernel is an inner product and nonlinear mixtures
if the kernel is (11.23) without changing the fundamental KFCLS algorithm. Currently, which
kernels provide the best approximation to the nonlinear mixing model remains an open research
question; however, the work presented in this section shows that kernels can be an efficient
way both computationally and algorithmically to introduce physical models into hyperspectral
unmixing.

11.6 Physics-based kernel results

For this set of experiments, we use the RELAB data described in Section 11.4.1. Instead of
using an RBF kernel, we use the kernel in (11.23). Since the RELAB data were taken under
conditions where theP(g) = 1 andB(g) = 0, the proposed kernel in (11.23) should match well
with the ground truth. Additionally, we again mention that the RELAB data were created such
that the particle densities and particle sizes were roughly equivalent; therefore, the KFCLS
algorithm with physics-based kernel is providing an estimate of the mass fraction in this
case.
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Table 11.4 Augmented mass fractions estimates of enstatite/olivine mixtures

Truth
Enstatite 0.1000 0.2500 0.5000 0.7500 0.9000
Olivine 0.9000 0.7500 0.5000 0.2500 0.1000

FCLS
Enstatite 0.1174 0.2249 0.4446 0.7061 0.8894
Olivine 0.8826 0.7751 0.5554 0.2939 0.1106

RBF
Enstatite 0.1167 0.2076 0.4695 0.7617 0.9281
Olivine 0.8833 0.7924 0.5305 0.2383 0.0719

Physics
Enstatite 0.1358 0.2569 0.5187 0.7712 0.9207
Olivine 0.8642 0.7404 0.4813 0.2288 0.0793

Table 11.5 Augmented mass fractions estimates of magnetite/olivine mixtures

Truth
Magnetite 0.0500 0.1000 0.2500 0.5000 0.7500
Olivine 0.9500 0.9000 0.7500 0.5000 0.2500

FCLS
Magnetite 0.1570 0.3026 0.5437 0.7445 0.8982
Olivine 0.8430 0.6974 0.4563 0.2555 0.1018

RBF
Magnetite 0.0916 0.2516 0.4818 0.7454 0.8838
Olivine 0.9084 0.7484 0.5182 0.2546 0.1162

Physics
Magnetite 0.0285 0.0733 0.2001 0.4070 0.6915
Olivine 0.9715 0.9267 0.7999 0.5930 0.3085

Table 11.6 Augmented mass fractions estimates of ternary mixtures

Truth
Anorthite 0.1616 0.1605 0.4192 0.3361 0.1613 0.4183 0.6781
Enstatite 0.1624 0.4183 0.1611 0.3303 0.6785 0.4177 0.1599
Olivine 0.6760 0.4212 0.4197 0.3336 0.1602 0.1640 0.1620

FCLS
Anorthite 0.2318 0.2474 0.5182 0.4536 0.2890 0.5761 0.7670
Enstatite 0.0476 0.2214 0.0190 0.1415 0.4528 0.2074 0.0403
Olivine 0.7206 0.5312 0.4628 0.4049 0.2582 0.2164 0.1927

RBF
Anorthite 0.1974 0.1810 0.5018 0.4007 0.1805 0.5090 0.7640
Enstatite 0.0332 0.2200 0.0000 0.1178 0.4784 0.1771 0.0149
Olivine 0.7694 0.5990 0.4982 0.4814 0.3411 0.3139 0.2211

Physics
Anorthite 0.1649 0.1574 0.4193 0.3238 0.1490 0.4009 0.6710
Enstatite 0.1838 0.4534 0.1802 0.3679 0.7078 0.4498 0.1788
Olivine 0.6513 0.3892 0.4005 0.3093 0.1432 0.1493 0.1502

Tables 11.4–11.6 provide all of the different mass fraction estimates for the RELAB data.
The last two rows show the mass fraction estimates when using the physics-based kernel. In
all cases, the physics-based kernel outperforms either of the other methods as expected. What
was not expected was the significant decrease in RMSE by up to an order of magnitude. The
respective RMSE values for the three mixtures are 0.0228, 0.0561 and 0.0214. This experiment
shows the ability of the physics-based kernel in (11.23) to model intimate mixtures accurately
and estimate their mass fractions.
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11.7 Summary

This chapter introduced the concept of kernel unmixing algorithms for hyperspectral imagery.
The physics of linear and nonlinear mixtures are explored and shown to be suited for kernel
approximations. Based on this evidence, a fully automatic kernel unmixing algorithm is de-
veloped for endmember extraction (SVDD) and abundance estimation (KFCLS). This kernel
framework has the flexibility to account for both linear and nonlinear behaviour by using dif-
ferent kernel functions. Specifically, we have derived a kernel based on the physics of intimate
mixtures.

The experimental results show both qualitative and quantitative improvements when using
the kernel approach. On the AVIRIS data, physically meaningful endmembers were identified
against known ground truth without any noise endmembers. Using the RELAB data, we pro-
vided quantitative comparisons of several algorithms. They demonstrate an order of magnitude
improvement when using the proposed method with the physics-based kernel.
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To estimate structural parameters and spectral component signatures of Earth surface cover
type, quantitative remote sensing seems to be an appropriate way of dealing with these prob-
lems. Since the real physical system that couples the atmosphere and the land surface is very
complicated and should be continuous, sometimes it requires a comprehensive set of param-
eters to describe the system, so any practical physical model can only be approximated by a
model that includes only a limited number of the most important parameters that capture the
major variation of the real system.

The pivotal problem for quantitative remote sensing is the inversion. Inverse problems are
typically ill-posed. The ill-posed nature is characterized by: (C1) the solution may not exist;
(C2) the dimension of the solution space may be infinity; (C3) the solution is not continuous
with the variation of the observed signals. These issues exist for all quantitative remote sensing
inverse problems. For example, when sampling is poor, i.e., there are too few observations, or
directions are poorly located, the inversion process would be underdetermined, which leads to
the large condition number of the normalized system and significant noise propagation. Hence
(C2) and (C3) would be the highlighted difficulties for quantitative remote sensing inversion.

This chapter will address the theory and methods from the viewpoint that the quantitative
remote sensing inverse problems can be represented by kernel-based operator equations.

Kernel Methods for Remote Sensing Data Analysis Edited by Gustavo Camps-Valls and Lorenzo Bruzzone
© 2009 John Wiley & Sons, Ltd
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12.1 Introduction

Both modelling and model-based inversion are important for quantitative remote sensing. Here,
modelling mainly refers to data modelling, which is a method used to define and analyse data
requirements; model-based inversion mainly refers to using physical or empirically physical
models to infer unknown but interesting parameters. Hundreds of models related to vegeta-
tion and radiation have been established during past decades. The model-based inversion in
atmospheric science has been well understood. However, the model-based inverse problems
for land surface has only recently received much attention from scientists. Compared with
modelling, model-based inversion is still at an exploration stage. This is because intrinsic dif-
ficulties exist in the application of a priori information, inverse strategy and inverse algorithms.
The appearance of hyperspectral and multiangular remote sensors enhanced the means of ex-
ploration and have provided us with more spectral and spatial dimensional information than
before. However, how to utilize this information to solve the problems faced in quantitative
remote sensing to make remote sensing really enter the time of quantification is still an ar-
duous and urgent task for remote sensing scientists. Remote sensing inversion for different
scientific problems in different branches has attracted increasing attention in recent years.
In a series of international study projections, such as the International Geosphere-Biosphere
Programme (IGBP), the World Climate Research Programme (WCRP) and NASA’s Earth
Observing System (EOS), remote sensing inversion has become a focal point of study.

Remote sensing inversions are usually optimization problems with different constraints.
Therefore, a way of incorporating the method developed in the operational research field into
the remote sensing inversion field is very much needed. In quantitative remote sensing, since the
real physical system that couples the atmosphere and the land surface is very complicated and
should be continuous, sometimes it requires a comprehensive set of parameters to describe the
system, so any practical physical model can only be approximated by a model that includes only
a limited number of the most important parameters that capture the major variations of the real
system. Generally speaking, a discrete forward model to describe such a system is in the form

y = h(x, S), (12.1)

where y is single measurement, x is a vector of controllable measurement conditions such as
the wave band, viewing direction, time, Sun position, polarization, etc., S is a vector of the
state parameters of the system approximation, and h is a function that relates x to S, which
is generally nonlinear and continuous.

With the ability of satellite sensors to acquire multiple bands, multiple viewing directions,
etc., while keeping S essentially the same, we obtain the following nonhomogeneous equations

y = h(x, S) + n, (12.2)

where y is a vector in RM , which is an M dimensional measurement space with M values
corresponding to M different measurement conditions and n ∈ RM is the vector of random
noise with same vector lengthM. Assume that there are m undetermined parameters needing
to be recovered. Clearly, if M = m, (12.2) is a determined system, so it is not difficult to
develop some suitable algorithms to solve it. If more observations can be collected than the
existing parameters in the model (Verstraete et al. 1996), i.e., M > m, the system (12.2) is
over-determined. In this situation, the traditional solution does not exist. We must define its
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solution by some other meaning, for example, the least squares error (LSE) solution. However
as Li in Li et al. (1998) pointed out, ‘for physical models with about ten parameters (single
band), it is questionable whether remote sensing inversion can be an over-determined one in
the foreseeable future.’ Therefore, the inversion problems in geosciences seem to be always
underdetermined in some sense. Nevertheless the underdetermined system, in some cases, can
always be converted to an overdetermined one by utilizing multiangular remote sensing data
or by accumulating some a priori knowledge (Li et al. 2001).

Developed methods in literature for quantitative remote sensing inversion are mainly sta-
tistical methods with different variations from Bayesian inference. In this chapter, using kernel
expression, we analyse from the algebraic point of view, the solution theory and methods for
quantitative remote sensing inverse problems. The kernels mentioned in this chapter mainly
refer to integral kernel operators (characterized by integral kernel functions) or discrete linear
operators (characterized by finite rank matrices). It is closely related with the kernels of linear
functional analysis, Hilbert space theory and spectral theory. The kernels are different from
those in the support vector machine learning for data mining, where kernels must satisfy the
Mercer theorem (see Chapter 2, Vapnik (1995) and Wang (2007) for details). But in essence, for
support vector machine learning problems, they also require are to solve ill-posed problems.
In particular, we present regularizing retrieval of parameters with a posteriori choice of reg-
ularization parameters, several cases of choosing scale/weighting matrices to the unknowns,
numerically truncated singular value decomposition, and sparse inversion in l1 space. These
methods, as far as we know, are novel to literature.

The outline of this chapter is as follows: in Section 12.2, we list two typical kernel-based
remote sensing inverse problems. One is aerosol size distributions from optical transmission or
scattering measurements, which is a long existing problem and still an important topic today;
the other is the linear kernel-based bidirectional reflectance distribution function (BRDF)
model inverse problem, which is of great importance for land surface parameter retrieval. In
Section 12.3 the conception of well-posed problems and ill-posed problems are introduced.
In Section 12.4 the regularization theory and solution techniques for ill-posed quantitative
remote sensing inverse problems are described. In Section 12.4.4 the regularization scheme
formulated in the Bayesian statistical inference is introduced. In Section 12.5 optimization
theory and solution methods are discussed for finding an optimized solution of a minimization
model. In Section 12.6 the detailed regularizing solution methods for retrieval of ill-posed
land surface parameters are discussed. In Section 12.7 the regularization and optimization
methods for recovering aerosol particle size distribution functions are presented. Finally, in
Section 12.8, some concluding remarks are given.

Throughout this chapter, we use the following notations: ‘:=’ denotes ‘defined as’;
‘arg min’ denotes ‘minimization for an argument’; ‘max’ and ‘min’ denote ‘maximizing’
and ‘minimizing’ some functional respectively; x and x denote the vector and the continuous
function respectively, as do other functions and their corresponding vectors; ‘A∗’ denotes the
adjoint of an operator A, ‘A�’ denotes the transpose of a matrix A, ‘s.t.’ denotes ‘subject to’,
and ‘diag(·)’ denotes a diagonal matrix.

12.2 Typical kernel-based remote sensing inverse problems

The kernel methods can increase the accuracy of remote sensing data processing, includ-
ing specific land-cover identification, biophysical parameter estimation and feature extraction
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(Camps-Valls 2008). Here we include two typical kernel-based remote sensing inverse prob-
lems. One is the problem of indirect detection of the distribution of the number of size distri-
bution functions of atmospheric aerosols, which has long existed; the other is the kernel-based
land surface parameter retrieval problem.

12.2.1 Aerosol inverse problems

It is well-known that the characteristics of the aerosol particle size, which can be represented
as a size distribution function in a mathematical formalism, say n(r), plays an important role
in climate modelling due to its uncertainty (Houghton et al. 1966). So, the determination of
the particle size distribution function becomes a basic task in aerosol research (Bockmann
2001; Bockmann and Kirsche 2006; Bohren and Huffman 1983; Davies 1974; Mccartney
1976; Twomey 1977). Since the relationship between the size of atmospheric aerosol particles
and the wavelength dependence of the extinction coefficient was first suggested by Angström
(Ångström 1929), the size distribution has begun to be retrieved by extinction measurements.

For the sun-photometer, the attenuation of the aerosols can be written as the integral
equation of the first kind

�aero(�) =
∫ ∞

0
�r2Qext(r, �, �)n(r)dr + �(�), (12.3)

where r is the particle radius; n(r) is the columnar aerosol size distribution (i.e. the number of
particles per unit area per unit radius interval in a vertical column through the atmosphere);
� is the complex refractive index of the aerosol particles; � is the wavelength; �(�) is the
error/noise; andQext(r, �, �) is the extinction efficiency factor from Mie theory. Since aerosol
optical thickness (AOT) can be obtained from the measurements of the solar flux density with
sun-photometers, one can retrieve the size distribution by the inversion of AOT measurements
through the above equation. This type of method is called extinction spectrometry, which is
not only the earliest method to apply remote sensing to determine atmospheric aerosol size
characteristics, but also the most mature method thus far.

A common feature for all particle size distribution measurement systems is that the relation
between noiseless observations and the size distribution function can be expressed as a first
kind Fredholm integral equation, e.g., see Nguyen and Cox (1989), Voutilainenand and Kaipio
(2000), Wang (2007), Wang and Yang (2008) and Wang (2008). For the aerosol attenuation
problem (12.3), let us rewrite (12.3) in the form of the abstract operator equation

K : X −→ Y,

(Kn)(�) + �(�) =
∫ ∞

0
k(r, �, �)n(r)dr + �(�) = o(�) + �(�) = d(�),

(12.4)

where k(r, �, �) = �r2Qext(r, �, �);X denotes the function space of aerosol size distributions;
and Y denotes the observation space. Both X and Y are considered to be the separable Hilbert
space. Note that �aero in Equation (12.3) is the measured term, it inevitably induces noise/errors.
Hence, d(�) is actually a perturbed right-hand side. Keeping in mind the operator symbol,
Equation (12.4) can be written as

Kn+ � = o+ � = d. (12.5)



KERNEL-BASED QUANTITATIVE REMOTE SENSING INVERSION 275

12.2.2 Land surface parameter retrieval problem

As is well-known, the anisotropy of the land surface can be best described by the Bidirec-
tional Reflectance Distribution Function (BRDF). With the progress of the multiangular remote
sensing, it seems that the BRDF models can be inverted to estimate structural parameters and
spectral component signatures of Earth surface cover type (see Strahler et al. (1994) and
Roujean et al. (1992)). The state-of-the-art of BRDF is the use of the linear kernel-driven
models, mathematically described as the linear combination of the isotropic kernel, volume
scattering kernel and geometric optics kernel. The information extraction on the terrestrial bio-
sphere and other problems for retrieval of land surface albedos from satellite remote sensing
have been considered by many authors in recent years, see for instance the survey papers on
the kernel-based bidirectional reflectance distribution function (BRDF) models by Pokrovsky
and Roujean (2002, 2003) and Pokrovsky et al. (2003) and references therein. The computa-
tional stability is characterized by the algebraic operator spectrum of the kernel-matrix and
the observation errors. Therefore, the retrieval of the model coefficients is of great impor-
tance for computation of the land surface albedos. Other than observation errors, a limited or
insufficient number of observations is one of the most severe obstacles to the estimation of
BRDF. Therefore, it is very desirable to develop new techniques for the robust estimation of
the BRDF model parameters because of the scarcity of the number of observations.

The linear kernel-based BRDF model can be described as follows (Roujean et al. 1992):

fiso + kvol(ti, tv, �)fvol + kgeo(ti, tv, �)fgeo = r(ti, tv, �), (12.6)

where r is the bidirectional reflectance; the kernels kvol and kgeo are so-called kernels, that is,
known functions of illumination and of viewing geometry that describe volume and geometric
scattering respectively; ti and tv are the zenith angle of the solar direction and the zenith angle
of the view direction respectively; � is the relative azimuth of the Sun and view direction;
and fiso, fvol and fgeo are three unknown parameters to be adjusted to fit the observations.
Theoretically, fiso, fvol and fgeo are closely related to the biomass such as leaf area index
(LAI), Lambertian reflectance, sunlit crown reflectance, and viewing and solar angles. The
vital task then is to retrieve appropriate values of the three parameters.

Generally speaking, the BRDF model includes kernels of many types. However, it was
demonstrated that the combination of RossThick (kvol) and LiSparse (kgeo) kernels had the
best overall ability to fit BRDF measurements and to extrapolate BRDF and albedo (Hu et al.
1997; Li et al. 1999; Privette et al. 1997; Wanner et al. 1995). A suitable expression for the
RossThick kernel kvol was derived by Roujean et al. (1992). It is reported that the LiTransit
kernel kTransit, instead of the kernel kgeo, is more robust and stable than the LiSparse non-
reciprocal kernel and the reciprocal LiSparse kernel ksparse (LiSparseR) where the LiTransit
kernel and the LiSparse kernel are related by

kTransit =
{
ksparse, B ≤ 2,
2
Bksparse, B > 2,

and B is given by B := B(ti, tv, �) = −O(ti, tv, �) + sec t′i + sec t′v in Li et al. (2000). More
detailed explanation about O and t′ in the definition of kTransit can be found in Wanner et al.
(1995).



276 FUNCTION APPROXIMATION AND REGRESSION

In order to use the combined linear kernel model, a key issue is to solve the inverse model
numerically in a stable way. However, it is difficult to do so in practical applications due to the
ill-posed nature of the inverse problem. So far, statistical methods have been developed for
solving the inverse problem, which is based on expression of a priori knowledge of a model
parameter such as a joint probability density ps(s1, s2, · · · , sk); and the expression for a priori
knowledge of the model accuracy and measurement noise should be a conditional joint proba-
bility density pD(dobs, S): pD(dobs, S) = pD(dobs|S)ps(S), where dobs refers to the observed
data. From the Bayesian inference formula, we have p(S|dobs) = pD(dobs|S)ps(S)/pD(dobs),
where pD(dobs) = ∫

S pD(dobs|S)ps(S)dVs and dVs is the volume differential elements in the
parameter space. The pD(dobs|S) can be interpreted as the prior knowledge of the model pre-
diction of dobs giving parameters in parameter space, ps(S) as the prior knowledge of the
parameters, and pD(dobs) as prior knowledge of the marginal density of observation. In Li
et al. (2001), the authors applied a least squares fitting method for recovering the interesting
parameters. In Pokrovsky and Roujean (2002, 2003), the authors utilized the algebraic QR
decomposition technique and also suggested using the singular value decomposition for the in-
version of the BRDF model. An optimal design scheme for the angular sampling is addressed.
Later in Pokrovsky et al. (2003), they compared several inversion techniques and uncertainty
in albedo estimates from the SEVIRI/MSG observing system by using POLDER BRDF mea-
surements. Though the solution method is algebraic, their description of the problem is still
quite statistical.

12.3 Well-posedness and ill-posedness

From this section to the end of the chapter, unless specified, we will denote the operator
equation as

K(x) = y, (12.7)

which is an appropriate expression for an observing system, with K the response function
(linear or nonlinear), x the unknown input and y the observed data. In particular, ifK is linear
mapping, we will denote the response system as

Kx = y, (12.8)

which is clearly a special case of (12.7). We will also sometimes useK as an operator in infinite
spaces and sometimes as a matrix. We assume that the readers can readily recognize them.

The Problem (12.7) is said to be properly posed or well-posed in the sense that it has the
following three properties.

(C1) There exists a solution of the problem, i.e., existence.

(C2) There is at most one solution of the problem, i.e., uniqueness.

(C3) The solution depends continuously on the variations of the right hand side (data),
i.e., stability.

The condition (C1) can be easily fulfilled if we enlarge the solution space of the problem
(12.7). The condition (C2) is seldom satisfied for many indirectly measurement problems.
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This means that more than one solution may be found for problem (12.7) and the informa-
tion about the model is missing. In this case, a priori knowledge about the solution must be
incorporated and built into the model. The requirement of stability is the most important one.
If problem (12.7) lacks the property of stability, then the computed solution has nothing to
do with the true solution since the practically computed solution is contaminated by unavail-
able errors. Therefore, there is no way to overcome this difficulty unless additional informa-
tion about the solution is available. Again, a priori knowledge about the solution should be
involved.

The precise mathematical definition of a well-posed problems is as follows:

Definition 12.3.1 Let K : X → Y be a linear or nonlinear mapping, X and Y are two
normed spaces. The operator equation (12.7) is said to be well-posed provided that the fol-
lowing holds.

(1) For each y ∈ Y there exists (at least one) x ∈ X , called a solution, for which (12.7)
holds.

(2) For each y ∈ Y there exists at most one x ∈ X such that (12.7) holds.

(3) The solution is stable with respect to perturbations in y, i.e., for each sequence {xn} ⊂
X with yn = Kxn → y = Kx as n → ∞, it follows that xn → x as n → ∞.

Equations for which at least one of the three properties is violated are called improperly posed
or ill-posed.

If Equation (12.7) is well-posed, thenK has a well-defined, continuous inverse operatorK−1.
In particular,K−1(K(x)) = x for any x ∈ X and Range(K) = Y . In this case both the algebraic
nature of the spaces and the topologies of the spaces are ready to be employed.

The particle size distribution model (12.5) is a linear model in infinite spaces. The ill-
posedness is self-evident because at least one of the three requirements for well-posed problems
is violated. Note that (12.6) is a linear model in finite spaces, therefore it is easy to rewrite it
in a finite rank operator equation

Kx = y, (12.9)

by setting x = [fiso, fvol, fgeo]� and y = [yj] with the entries yj = rj(ti, tv, �), where y is
the measurement data. The inverse problem is how to recover the model parameters x given
the measurement data y. The discrete ill-posedness arises because the linear kernel driven
BRDF model is usually underdetermined if there are too few looks or poor directional range,
or the observations are highly linearly dependent and noisy. For example, a single angular
observation may lead to an under-determined system whose solutions are infinite (the null
space of the kernel contains non-zero vectors) or the system has no solution (the rank of the
coefficient matrix is not equal to the augmented matrix). In practice, random uncertainty in
the reflectances sampled translates into uncertainty in the BRDF and albedo. We note that
noise inflation depends on the sampling geometry alone. For example, for MODIS and MISR
sampling, they vary with latitude and time of year; but for kernel-based models, they do
not depend on wavelength or the type of BRDF viewed. Therefore, the random noise in the
observation (BRDF) and the small singular values of K control the error propagation.
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12.4 Regularization

12.4.1 Imposing a priori constraints on the solution

For effective inversion of the ill-posed kernel driven model, we have to impose an a priori
constraint to the interested parameters. This leads to solving a constrained least squares error
problem

min J(x), s.t. Kx = y, �1 ≤ c(x) ≤ �2, (12.10)

where J(x) denotes an object functional, which is a function of x, c(x) is the constraint
to the solution x, �1 and �2 are two constants that specify the bounds of c(x). Usually,
J(x) is chosen as the norm of x with a different scale. If the parameter x comes from a
smooth function, then J(x) can be chosen as a smooth function, otherwise, J(x) can be non-
smooth.

The constraint c(x) can be smooth or non-smooth. A generically used constraint is the
smoothness. It assumes that physical properties in a neighbourhood of space or in an in-
terval of time present some coherence and generally do not change abruptly. In practice,
we can always find regularities of a physical phenomenon with respect to certain properties
over a short period of time, say problems in image vision (Horn and Schunck 1981). The
smoothness a priori has been one of the most popular a priori assumptions in applications.
The general framework is the so-called regularization, which will be explained in the next
section.

12.4.2 Tikhonov variational regularization

Most inverse problems in the real environment are generally ill-posed. Regularization methods
are widely-used to solve such ill-posed problems. The complete theory for regularization was
developed by Tikhonov and his colleagues (Tikhonov and Arsenin 1977). For the discrete
model (12.9), we suppose that y is the true right-hand side, and denote yn as the measurements
with noise that represents the bidirectional reflectance. The Tikhonov regularization method
is to solve a regularized minimization problem

J˛(x) := ‖Kx − yn‖2
2 + ˛‖D1/2x‖2

2 −→ min (12.11)

instead of solving

J(x) = ‖Kx − yn‖2
2 −→ min . (12.12)

In (12.11), ˛ is the regularization parameter andD is a positively (semi-)definite operator. By
a variational process, the minimizer of (12.11) satisfies

K�Kx + ˛Dx = K�yn. (12.13)

The operator D is a scale matrix that imposes a smoothness constraint to the solution x. The
scale operator D and the regularization parameter ˛ can be considered to be some kind of a
priori information, which will be discussed next.
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Choices of the scale operator D

To regularize the ill-posed problem discussed in the previous subsection, the choice of the scale
operator D has great impact on the performance of the regularization. Note that the matrix
D plays the role of imposing a smoothness constraint on the parameters and in improving
the condition of the spectrum of the adjoint operator K�K. Therefore, it should be positively
definite or at least positively semi-definite. One may readily see that there may be a choice in
the identity. However this choice does not fully employ the assumption about the continuity
of the parameters.

In Wang et al. (2007a), we assume that the operator equation (12.9) is the discretized
version of a continuous physical model

K(x(�)) = y(�) (12.14)

withK the linear/nonlinear operator, x(�) the complete parameters describing the land surfaces
and y the observation. Most of the kernel model methods reported in the literature may have
the above formulation. Hence instead of establishing regularization for the operator equation
(12.9) in the Euclidean space, it is more convenient to perform the regularization to the op-
erator equation (16.8) on an abstract space. So from a priori considerations we suppose that
the parameters x is a smooth function, in the sense that x is continuous on [a, b], is diffe-
rentiable almost everywhere and its derivative is square-integrable on [a, b]. By Sobolev’s
imbedding theorem (see, e.g., Tikhonov and Arsenin (1977) and Xiao et al. (2003)), the
continuous differentiable function x in W1,2 space embeds into integrable continuous func-
tion space L2 automatically. Here, the L2 space is defined as the set of functions that are
square-integrable, i.e.,L2(	) := {x(t) :

∫
	 |x(t)|2dt < ∞}; the SobolevW1,2 space is defined

as the set of functions that are continuous and differentiable with the bounded norms of itself
and its generalized derivatives inL2, i.e.,W1,2(	) := {x(t) : x(t) ∈ C(	), x(t) ∈ L2(	), dx

dt
∈

L2(	),
∫
	(x2 + ∑n

i=1( dxdti )
2)dt1dt2 · · · dtn < ∞}, where C(	) denotes the space of the con-

tinuous functions on 	. The inner product of two functions x(�) and y(�) in W1,2 space is
defined by

(x(�), y(�))W1,2 :=
∫
	

(
x(�)y(�) +

n∑
i=1

∂x

∂�i

∂y

∂�j

)
d�1d�2 · · · d�n, (12.15)

where 	 is the assigned interval of the definition.
Now we construct a regularizing algorithm that has an approximate solution x˛ ∈

W1,2[a, b] that converges, as the error level approaches zero, to the actual parameters in
the norm of space W1,2[a, b]; precisely we construct the functional

J˛(x) = �F [Kx, y] + ˛L(x), (12.16)

where �F [Kx, y] = 1
2‖Kx− y‖2

L2
, L(x) = 1

2‖x‖2
W1,2 .

Assume that the variation of x(�) is flat near the boundary of the integral interval [a, b].
In this case, the derivatives of x are zeros at the boundary of [a, b]. Let hr be the step size of
the grids in [a, b], which could be equidistant or adaptive. Then after discretization of L(x),
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D is a tridiagonal matrix of the form

D := D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 1
h2
r

− 1
h2
r

0 · · · 0

− 1
h2
r

1 + 2
h2
r

− 1
h2
r

· · · 0

...
. . .

. . .
. . .

...

0 · · · − 1
h2
r

1 + 2
h2
r

− 1
h2
r

0 · · · 0 − 1
h2
r

1 + 1
h2
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the linear model (12.6), after the kernel normalization, we may consider [a, b] = [−1, 1].
Thus, D has the above form with hr = 2/(N − 1).

There are many kinds of techniques for choosing the scale matrix D appropriately. In
Phillips–Twomey’s formulation of regularization (see, e.g., Wang et al. (2006a)), the matrix
D is created by the norm of the second differences,

∑N−1
i=2 (xi−1 − 2xi + xi+1)2, which leads

to the following form of matrix D

D := D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 · · · 0 0 0 0

−2 5 −4 1 0 0 · · · 0 0 0 0

1 −4 6 −4 1 0 · · · 0 0 0 0

0 1 −4 6 −4 1 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 · · · 0 1 −4 6 −4 1 0

0 0 0 · · · 0 0 1 −4 6 −4 1

0 0 0 · · · 0 0 0 1 −4 5 −2

0 0 0 · · · 0 0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

However, the matrix D is badly conditioned and thus the solution to minimize the functional
J˛[x] with D as the smooth constraint is observed to have some oscillations (Wang et al.
2006a). Another option is the negative Laplacian (see, e.g., (Wang and Yuan 2003; Wang
2007)): Lx := − ∑n

i=1
∂2x

∂�2
i

, for which the scale matrixD for the discrete form of the negative
Laplacian Lx is

D := D3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0

−1 2 −1 · · · 0 0
...

...
... · · · ...

...

0 0 0 −1 2 −1

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

where we assume that the discretization step length is 1. The scale matrixD3 is positive semi-
definite but not positive definite and hence the minimization problem may not work efficiently
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for severely ill-posed inverse problems. Another option of the scale matrix D is the identity,
i.e.,D := D4 = diag(e), where e is the components of all the ones, however this scale matrix
is too conservative and may lead to over-regularization.

Regularization parameter selection methods

As noted above, the choice of the regularization parameter ˛ is important to tackle the ill-
posedness. A priori choice of the parameter ˛ allows 0 < ˛ < 1. However the a priori choice
of the parameter does not reflect the degree of approximation that may lead to either over-
estimate or under-estimate of the regularizer.

We will use the widely-used discrepancy principle (see Tikhonov and Arsenin (1977),
Tikhonov et al. (1995) and Xiao et al. (2003)) to find an optimal regularization parameter. In
fact, the optimal parameter ˛∗ is a root of the nonlinear function

�(˛) = ‖Kx˛ − yn‖2 − ı2, (12.17)

where ı is the error level to specify the approximate degree of the observation to the true
noiseless data, x˛ denotes the solution of the problem in Equation (12.13) corresponding to
the value ˛ of the related parameter. Noting that �(˛) is differentiable, fast algorithms for
solving the optimal parameter ˛∗ can be implemented. In this paper we will use the cubic
convergent algorithm developed in Wang and Xiao (2001):

˛k+1 = ˛k − 2�(˛k)

�′(˛k) + (�′(˛k)2 − 2�(˛k)�′′(˛k))
1
2

. (12.18)

In the above cubic convergent algorithm, the functions �′(˛) and �′′(˛) have the following
explicit expressions:

�′(˛) = −˛ˇ′(˛),

�′′(˛) = −ˇ′(˛) − 2˛

[∥∥∥dx˛
d˛

∥∥∥2 +
(

x˛,
d2x˛
d˛2

)]
,

where ˇ(˛) = ‖x˛‖2, ˇ′(˛) = 2(dx˛/d˛, x˛), and x˛, dx˛/d˛ and d2x˛/d˛2 can be obtained
by solving the following equations:

(K�K + ˛D)x˛ = K�yn, (12.19)

(K�K + ˛D)
dx˛
d˛

= −Dx˛, (12.20)

(K�K + ˛D)
d2x˛
d˛2 = −2D

dx˛
d˛

. (12.21)

To solve the linear matrix–vector Equations (12.19)–(12.21), we use the Cholesky (square
root) decomposition method. A remarkable characteristic of the solution of (12.19)–(12.21) is
that the Cholesky decomposition of the coefficient matrixK�K + ˛Dneeds only be performed
once, then the three vectors x˛, dx˛/d˛, d2x˛/d˛2 can be obtained cheaply.
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12.4.3 Direct regularization

Instead of Tikhonov regularization, our goal in this subsection is to solve an equality con-
strained l2 problem

‖x‖2 −→ min, s.t. K̃x + n = yn, (12.22)

where K̃ ∈ RM×N is a perturbation of K (i.e., if we regard K as an accurate operator, then K̃
is an approximation to K which may contain error or noise), x ∈ RN , n, yn ∈ RM .

In Pokrovsky and Roujean (2002), the authors suggested using the singular value decom-
position for solving an ill-conditioned linear system Ax = b, but no strict interpretation is
given in their paper. As mentioned above, the ill-posedness is largely due to the small singular
values of the linear operator. Let us denote the singular value decomposition of K̃ as

K̃ = UM×N
N×NV�
N×N =

N∑
i=1

�iuiv
�
i ,

where both U = [ui] and V = [vi] are orthonormal matrices, that is, the products of U with
its transpose and V with its transpose are both identity matrices;
 is a diagonal matrix whose
non-zero entries consist of the singular values of K̃. The traditional least-squares error (LSE)
solution xlse of the constrained optimization system (12.22) can be expressed by the singular
values and singular vectors in the form

x
lse

=
N∑
i=1

1

�i
(u�
i yn)vi. (12.23)

If the rank of K̃ is p ≤ min{M,N}, then the above solution form inevitably encounters numer-
ical difficulties, since the denominator contains numerically infinitesimal values. Therefore,
to solve the problem by the SVD, we must impose a priori information. As we have noted,
Tikhonov regularization solves a variation problem by incorporating a priori information into
the solution. In this subsection, we consider another way of incorporating a priori informa-
tion to the solution. The idea is quite simple: instead of filtering the small singular values by
replacing the small singular values with small positive numbers, we just make a truncation
of the summation, that is, the terms containing small singular values are replaced by zeroes.
In this way, we obtain a regularized solution of the least squares problem (12.22) of minimal
norm

xtrunc
lse

=
p∑
i=1

1

�i
(u�
i yn)vi, (12.24)

and

min
x

∥∥∥K̃x − yn

∥∥∥2

2
=

∑
i=p+1,···

∣∣u�
i yn

∣∣2
. (12.25)



KERNEL-BASED QUANTITATIVE REMOTE SENSING INVERSION 283

We wish to examine the truncated singular value decomposition more. Note that, in practice,
K̃ may not be exactly rank deficient, but may instead be numerically rank deficient, that is, it
has one or more small but non-zero singular values such that pı < rank(K̃). Here, pı refers
to the numerical ı-rank of a matrix, see, e.g., Wang et al. (2006b) for details. It is clear from
Equation (12.24) that the small singular values inevitably give rise to difficulties. The regular-
ization technique for SVD means that some of the small singular values are truncated when
in computation, and is hence called the numerically truncated singular value decomposition
(NTSVD). Now assume that K is corrupted by the error matrix Bı. Then, we replace K by a
matrix Kp̃ that is close toK and mathematically rank deficient. Our choice ofKp̃ is obtained
by replacing the small non-zero singular values �p̃+1, �p̃+2, . . . with exact zeros, that is,

Kp̃ =
p̃∑
i=1

�iuiv
�
i , (12.26)

where p̃ is usually chosen as pı. We call (12.26) the numerically truncated singular value
decomposition of K. Now, we use (12.26) as the linear kernel to compute the least squares
solutions. Actually, we solve the problem minx ‖Kp̃x − yn‖2, and obtain the approximate
solution xappr

lse
of the minimal-norm

xappr
lse

= K
†
p̃yn =

p̃∑
i=1

1

�i
(u�
i yn)vi, (12.27)

where K†
p̃ denotes the Moore–Penrose generalized inverse.

Let us explain in more details the NTSVD for the underdetermined linear system. In this
case, the number of independent variables is more than the number of observations, that is,
M < N. Assume that the ı-rank of K̃ is p̃ ≤ min{M,N}. It is easy to augment K̃ to be an
N ×N square matrix K̃aug by padding zeros underneath its M non-zero rows. Similarly, we
can augment the right-hand side vector yn with zeros. The singular decomposition of K̃ can
be rewritten as

K̃aug = U
V�

with

U = [u1 u2 · · · uN ]N×N, V = [v1 v2 · · · , vN ]N×N,


 = diag(�1, �2, · · · , �p̃, 0, · · · , 0).

From this decomposition, we find that there are N − p̃ theoretical zero singular values of the
diagonal matrix 
. These N − p̃ zero singular values will inevitably induce high numerical
instability.
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12.4.4 Statistical regularization

Bayesian statistics provides a conceptually simple process for updating uncertainty in the
light of evidence. Initial beliefs about some unknown quantity are represented by a priori
distribution. Information in the data is expressed by the likelihood function L(x|y). The a
priori distributionp(x) and the likelihood function are then combined to obtain the a posteriori
distribution for the quantity of interest. The a posteriori distribution expresses our revised
uncertainty in the light of the data, in other words, an organized appraisal in the consideration
of previous experience.

The role of Bayesian statistics is very similar to the role of regularization. Now, we establish
the relationship between the Bayesian estimation and the regularization. A continuous random
vector f is said to have a Gaussian distribution if its joint probability distribution function has
the form

px(x;�,C) = 1√
(2�)Ndet(C)

exp

(
− 1

2
(x − �)�C−1(x − �)

)
, (12.28)

where x, � ∈ RN , C is an n-by-n symmetric positive definite matrix, and det(·) denotes the
matrix determinant. The mean is given byE(x) = � and the covariance matrix is cov(x) = C.

Suppose y = Kx + n is a Gaussian distribution with mean Kx and covariance Cn, where
Cn is the noise covariance of the observation noise and model inaccuracy. Then by (12.28) we
obtain

p(y|x) = 1√
(2�)Mdet(Cn)

exp

(
− 1

2
(y −Kx)�C−1

n (y −Kx)

)
. (12.29)

From (12.28), the prior probability distribution is given by p(x) = exp(− 1
2 x�C−1

x x)/√
(2�)Ndet(Cx). By Bayesian statistical inference and the above two equations, we obtain

an a posteriori log likelihood function

L(x|y) = logp(x|y) = −1

2
(y −Kx)�C−1

n (y −Kx) − 1

2
x�C−1

x x + �, (12.30)

where � is constant with respect to x. The maximum a posteriori estimation is obtained by
maximizing (12.30) with respect to x,

x = (K�C−1
n K + C−1

x )−1K�C−1
n y. (12.31)

The easiest way of choosingCn andCx is by lettingCn = �2
nIM, Cx = �2

xIN , and then (12.31)
becomes

x = (K�K + �IM)−1K�y, (12.32)

where � = �2
n/�

2
x , which is the noise-to-signal ratio. It is clear that the solution obtained

by maximum a posteriori estimation has the same form as the solution of the Tikhonov
regularization.
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12.5 Optimization techniques

12.5.1 Sparse inversion in l1 space

It deserves attention that the ill-posedness is the intrinsic feature of the inverse problems. Unless
some additional information/knowledge such as monotonicity, smoothness, boundedness or
the error bound of the raw data are imposed, the difficulty is hardly to be solved. Generally
speaking, the kernel-driven BRDF model is semiempirical, the retrieved parameters x are
mostly considered as a kind of weight function though it is a function of Leaf Area Index (LAI),
Lambertian reflectance, sunlit crown reflectance, and viewing and solar angles. Therefore, x
is not necessarily positive. However, since it is a weight function, an appropriate arrangement
of the components of x can yield the same results. That is to say, x can be ‘made’ to be non-
negative. The problem remaining is to develop some proper methods to solve the ‘artificial’
problem. Our new meaning to the solution f∗ is related to the l1 norm problem

min
x

‖x‖1, s.t. Kx = y, x ≥ 0, (12.33)

which automatically imposes a priori information by considering the solution in l1 space. Be-
cause of the limitations of the observation system, one may readily see that the recovered land
surface parameters are discrete and sparse. Therefore, if an inversion algorithm is not robust,
the outliers far from the true solution may occur. In this situation, the a priori constrained
l1 minimization may work better than the conventional regularization techniques. The model
(12.33) can be reduced to a linear programming problem (Wang et al. 2005; Ye 1997; Yuan
2001), hence linear programming methods can be used for solving the inverse problem.

The l1 norm solution method is looking for a feasible solution within the feasible set
S = {x : Kx = y, x ≥ 0}. So it is actually searching for an interior point within the feasible
set S, hence it is called the interior point method. The dual standard form of (12.33) is in the
form

max y�g, s.t. s = e −K�g ≥ 0, (12.34)

where e is a vector with all components equaling 1. Therefore, the optimality conditions for
(x, g, s) to be a primal-dual solution triplet are that

Kx = y, K�g + s = e, S̃F̃e = 0, x ≥ 0, s ≥ 0, (12.35)

where S̃ = diag(s1, s2, · · · , sN ), F̃ = diag(x1, x2, · · · , xN ) and si, xi are components of
vectors s and x respectively. The notation diag(·) denotes the diagonal matrix whose only
non-zero components are the main diagonal line.

The interior point method generates iterates {xk, gk, sk} such that xk > 0 and sk > 0. As
the iteration index k approaches infinity, the equality-constraint violations ‖y −Kx‖ and
‖K�gk + sk − e‖ and the duality gap x�

k sk are driven to zero, yielding a limiting point that
solves the primal and dual linear problems. For the implementation procedures and examples
about using the algorithm, please refer to Wang et al. (2007b, 2009) for details.
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12.5.2 Optimization methods for l2 minimization model

The conventional Tikhonov regularization method is equivalent to the constrained l2 mini-
mization problem

min
x

‖x‖2, s.t. Kx = y. (12.36)

This reduces to solve an unconstrained optimization problem

x = argminxJ
˛(x), J˛(x) = 1

2

∥∥∥Kx − y
∥∥∥2

2
+ ˛

2

∥∥∥x∥∥∥2

2
. (12.37)

There are different solution methods developed in optimization research fields for solving
a minimization problem. Because our model is already in a regularization form, different
optimization methods can be employed. Here we give a review of several particular useful
methods that may be used by users.

The gradient is and Hessian of J˛(x) are given by

gradx[J˛(x)] = (K�K + ˛I)−1x −K�y and Hessx[J˛(x)] = K�K + ˛I,

respectively. Hence at the kth iterative step, the gradient and Hessian ofJ˛(xk) can be expressed
as gradk[J

˛] and Hessk[J˛], which are evaluated by gradxk [J˛(xk)] and Hessxk [J˛(xk)]
respectively.

Newton-type methods

Newton-type methods are based on the Gauss–Newton method and its various variations.
We only supply the algorithm for the Gauss–Newton method in this subsection. The Gauss–
Newton method is an extension of Newton method in one-dimensional space to higher dimen-
sional space. The iteration formula reads as

xk+1 = xk − �k(Hessk[J
˛])−1gradk[J

˛], (12.38)

where �k, a damping parameter, that can be solved by a line search technique, is used to control
the direction (Hessk[J˛])−1gradk[J

˛]. One may also apply a more popular technique, called
the trust region technique, to control the direction (Hessk[J˛])−1gradk[J

˛] within a reliable
generalized ball in every iteration (Wang and Yuan 2005; Wang 2007). We recall that the
inverse of Hessk[J˛] should be avoided for saving the amount of computation. Instead, linear
algebraic decomposition methods can be applied to solve (Hessk[J˛])−1gradk[J

˛].
There are different variations of the Gauss–Newton method, which are based on the ap-

proximation of the explicit Hessian matrix Hessx[J˛]. For these extensions to well-posed and
ill-posed problems, please refer to Dennis and Schnable (1983), Kelley (1999), Nocedal
(1980), Wang and Yuan (2005), Wang (2007) and Yuan (1994, 1993) for details.
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Gradient-type methods

Let us consider the linear operator equation

Kx = y, (12.39)

where K, x and y have the same meaning as before. The functional J(x) to be minimized is
given by

J(x) = 1

2

∥∥∥Kx − y
∥∥∥2

2
. (12.40)

The gradient of J(x) is given by gradx[J(x)] = (K�K)−1x −K�y. At the kth iterative step,
the gradient of J(xk) can be expressed as gradk[J], which is evaluated by gradxk [J(xk)]. Note
that for ill-posed inversion, the direct inverse ofK�K should be avoided, otherwise, significant
perturbation of error will occur (Wang et al. 2007a).

Unlike Newton-type methods, the gradient method does not need the Hessian information.
We first recall the well-known fixed point iteration method in the standard mathematical
textbook: the fixed point iteration formula for solving (12.39) is

xk+1 = xk + �(y −Kxk), (12.41)

where � ∈ (0, 2/‖K‖) and K is linear, bounded and non-negative. The method can be
considered as a special case of the gradient method. One may readily see that this method is
very similar to the method of successive-approximations, where a very simple way to intro-
duce the method is as follows. Consider the operator T (x) = x + �(y −Kx), where � is the
so-called relaxation parameter. Any solution of (12.39) is equivalent to finding a fixed point
of the operator T , i.e., solve for x from x = T (x). Assuming that T is a contraction mapping,
then by the method of successive approximations, we obtain the following iterative scheme
xk+1 = T (xk), i.e., iterative formula (12.41). The method converges if and only ifKx = y has
a solution.

Now we introduce a very simple gradient method, the steepest descent method, the iteration
formula reads as

xk+1 = xk + �k ·K�(y −Kxk), (12.42)

where �k is obtained by line search, i.e., �k = argmin�>0J(xk − �gradk[J]). If we restrict
stepsize �k to be fixed in (0, 2/‖K�K‖), then the steepest descent method reduces to the
famous Landweber–Fridman iteration method. More extensions include the non-monotone
gradient method and different applications in applied science and can be found in, e.g., Barzilai
and Borwein (1988), Brakhage (1987), Fletcher (2005), Wang (2007) and Wang and Ma
(2007).

Finally we want to mention that for underdetermined ill-posed problems, regularization
constraints or a priori constraints should be incorporated into the minimization model (12.40)
first, e.g., J(x) in (12.40) should be replaced by J˛(x) in (12.37), then we may apply the
aforementioned gradient methods. Application examples on aerosol particle size distribution
function retrieval problems and non-monotone gradient method are include in Wang (2008).
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12.6 Kernel-based BRDF model inversion

12.6.1 Inversion by NTSVD

Consider the linear combination of three kernels kgeo, kvol and the isotropic kernel

f̂iso + f̂geokgeo(ti, tv, �) + f̂volkvol(ti, tv, �) = r̂

for each observation. Considering the smoothing technique technique in l2 space, we solve
the following constrained optimization problem

min ‖[f̂iso, f̂geo, f̂vol]
�‖2, s.t. f̂iso + f̂geokgeo + f̂volkvol = r̂. (12.43)

Let us just consider an extreme example for the kernel-based BRDF model: that is, if only a
single observation is available at one time, then it is clear that the above equation has infinitely
many solutions. If we denote

K = [1 kgeo(ti, tv, �) kvol(ti, tv, �)]1×3,

then the singular decomposition of the zero augmented matrix Kaug leads to Kaug =
U3×3 
3×3 V

�
3×3 with U = [u1 u2 u3], 
 = diag(�1, �2, �3), V = [v1 v2 v3], where each

ui, vi, i = 1, 2, 3, are the 3-by-1 columns. Our a priori information is based on search-
ing for a minimal norm solution within the infinite set of solutions, that is, the solution
f ∗ = [f̂ ∗

iso, f̂
∗
geo, f̂

∗
vol]

� satisfies f̂ ∗
iso + f̂ ∗

geokgeo(ti, tv, �) + f̂ ∗
volkvol(ti, tv, �) = r̂ and at the

same time ‖f ∗‖ −→ minimum.

12.6.2 Tikhonov regularized solution

Denote by M the number of measurements in the kernel-based models. Then the operator
Equation (12.9) can be rewritten in the following matrix–vector form

Kx = y, (12.44)

where

K =

⎡
⎢⎢⎢⎢⎣

1 kgeo(1) kvol(1)

1 kgeo(2) kvol(2)
...

...
...

1 kgeo(M) kvol(M)

⎤
⎥⎥⎥⎥⎦ , x =

⎡
⎢⎣
fiso

fgeo

fvol

⎤
⎥⎦ , y =

⎡
⎢⎢⎢⎢⎣
r1

r2

...

rM

⎤
⎥⎥⎥⎥⎦ .

In which, kgeo(k) and kvol(k) represent the values of kernel functions kgeo(ti, tv, �) and
kvol(ti, tv, �) corresponding to the kth measurement for k = 1, 2, · · · ; rk represents the kth
observation for k = 1, 2, · · · .
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By Tikhonov Regularization, we solve for a regularized solution x˛ by minimizing the
functional

J(x, ˛) = 1

2
‖Kx − y‖2 + 1

2
˛‖Dx‖2. (12.45)

Choices of the parameter ˛ and the scale operator D are discussed in Section 12.4.2.

12.6.3 Land surface parameter retrieval results

We use the combination of the RossThick kernel and LiTransit kernel in the numerical tests.
In practice, the coefficient matrixK cannot be determined accurately, and a perturbed version
K̃ is obtained instead. Also instead of the true measurement y, the observed measurement
yn = y + n is the addition of the true measurement y and the noise n, which for simplicity
is assumed to be additive Gaussian random noise. Therefore it suffices to solve the following
operator equation with perturbation

K̃x = yn,

where K̃ := K + ıB for some perturbation matrix B and ı denotes the noise level (upper
bound) of n in (0,1). In our numerical simulation, we assume that B is a Gaussian random
matrix, and also that

‖yn − y‖ ≤ ı < ‖yn‖. (12.46)

The above assumption about the noise can be interpreted as that the Signal-to-Noise Ratio
(SNR) should be greater than 1. We make such an assumption as we believe that observations
(BRDF) are not trustworthy otherwise. It is clear that (12.44) is an underdetermined system
if M ≤ 2 and an overdetermined system if M > 3. Note that for satellite remote sensing,
because of the restrictions in view and illumination geometries, K̃�K̃ needs not have a bounded
inverse (Gao et al. 1998; Li et al. 2001; Verstraete et al. 1996). We believe that the proposed
regularization method that can be employed to find an approximate solution x†˛ satisfies

‖K̃x†˛ − yn‖ −→ min .

We choose the widely used 73 data sets referred in Li et al. (2001). Of the 73 sets of BRDF
measurements, only 18 sets of field-measured BRDF data with detailed information about the
experiments are known, including biophysical and instrumental information (Deering et al.
1992, 1994, 1995; Eck et al. 1992; Hu et al. 1997; Kimes et al. 1985, 1986). These data
sets cover a large variety of vegetative cover types, and are fairly well representative of the
natural and cultivated vegetation. Table 12.1 summarizes the basic properties of the data sets
used in this chapter. For those selected field data, the observations are sufficient. If the kernel
matrix K̃ is well-conditioned, the problem is well-posed, and the regularization is unnecessary,
which can also be considered a regularization procedure with zero regularization parameter.
Even for sufficient observations, most of the kernel matrix K̃ could be ill-conditioned, and
hence the problem is discrete ill-posed. In that situation, one has to resort to regularization or
preconditioning to make the proposed algorithm workable.
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Table 12.1 Data sets used in the simulation

Data Cover type LAI

ranson soy.827 Soy 2.9
kimes.orchgrass Orchard grass 1
Parabola.1994.asp-ifc2 Aspen 5.5

We choose one or two observations as a limited number of observations and compare
the retrieval results by different regularization methods (Wang et al. 2007a, 2008). Com-
parison results are given in Tables 12.2 and 12.3. In the two tables, these methods are de-
noted by: NTSVD, Tikh(a) (˛ = ı2); Tikh(b) (D is in the form of D1 and ˛ is chosen by
a posteriori method addressed in Section 12.4.2); Tikh(c) (D is in the form D2 and ˛ is
chosen by a posteriori method addressed in Section 12.4.2); Tikh(d) (D is in the form D3
and ˛ is chosen by a posteriori method addressed in Section 12.4.2) and Tikh(e) (D is in
the form D4 and ˛ is chosen by a posteriori method addressed in Section 12.4.2). The true
White Sky Albedo (WSA) is calculated from well-posed situations using AMBRALS, i.e.,
full observation data. It deserves pointing out that the standard operational algorithm used in

Table 12.2 Comparison of computational values of the WSAs from data sets in Table 12.1
for single observation and for two observations with the true WSAs values (multiangular
observations) for VisRed band. Reproduced by permission of American Geophysical Union;
©2008 AGU

Methods Single observation Two observations True WSAs

NTSVD 0.0449047 0.0442712
Tikh(a) 0.0638937 0.0386419

ranson soy.827
Tikh(b) 0.0401528 0.0560726

0.0405936
Tikh(c) 0.0633967 0.0590594
Tikh(d) −0.0009147 0.0539707
Tikh(e) 0.0476311 0.0583683
NTSVD 0.1082957 0.1058740
Tikh(a) 0.0397185 0.0860485

kimes.orchgrass
Tikh(b) 0.0753925 0.1214918

0.0783379
Tikh(c) 0.26211583 0.4365220
Tikh(d) −0.0018020 0.0383555
Tikh(e) 0.1137684 0.1707774
NTSVD 0.0364620 0.0389198
Tikh(a) 0.0447834 −0.0040831

Parabola.1994.asp-ifc2
Tikh(b) 0.0262501 0.0102457

0.0227972
Tikh(c) 0.0798633 −0.0874783
Tikh(d) −0.0006110 −0.0401510
Tikh(e) 0.0375009 0.0547068
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Table 12.3 Comparison of computational values of the WSAs from the data sets in
Table 12.1 for single observation and for two observations with the true WSAs values (mul-
tiangular observations) for Nir band. Reproduced by permission of American Geophysical
Union; ©2008 AGU

Methods Single observation Two observations True WSAs

NTSVD 0.4469763 0.4348320
Tikh(a) 0.6359822 0.4195730

ranson soy.827
Tikh(b) 0.3996775 0.5439493

0.3653728
Tikh(c) 0.6310461 0.9247240
Tikh(d) −0.0091045 −0.0098136
Tikh(e) 0.4741162 0.6277249
NTSVD 0.3890207 0.37216767
Tikh(a) 0.2048903 0.2945934

kimes.orchgrass
Tikh(b) 0.2708260 0.4458619

0.2963261
Tikh(c) 0.9415755 1.8140732
Tikh(d) −0.0064732 0.1927318
Tikh(e) 0.4086801 0.6015300
NTSVD 0.5517209 0.5741842
Tikh(a) 0.6776356 −0.0617838

Parabola.1994.asp-ifc2
Tikh(b) 0.3972022 0.2398577

0.4240376
Tikh(c) 1.2084479 −0.8953630
Tikh(d) −0.0092437 −0.4071125
Tikh(e) 0.5674424 0.8185223

AMBRALS does not work for such severely ill-posed situations. If we regard WSA > 1 or
WSA < 0 as failed inversion, it is clear that our proposed method works for all of the cases.
It follows from the experiments that our method (Tikh(b)) (proposed in Wang et al. (2008))
works, for a single observation, and performs better than the NTSVD (proposed in Wang et al.
(2007a)) and the standard Tikhonov regularization with a priori choice of the regularization
parameter (Tikh(a)).

In the next, we use an atmospherically corrected moderate resolution imaging spectrora-
diometer (MODIS) 1B product acquired on a single day as an example of a single observation
BRDF at certain viewing direction. Each pixel has a different view zenith angle and relative
azimuth angle. The data MOD021KM.A2001135-150 with horizontal tile number (26) and
vertical tile number (4) covers Shunyi county of Beijing, China. The three parameters are
retrieved by using this 1B product. Figure 12.1 plots the reflectance for band 1 of a certain
day DOY = 137. In the MODIS AMBRALS algorithm, when insufficient reflectances or a
poorly representative sampling of high quality reflectances are available for a full inversion,
a database of archetypal BRDF parameters is used to supplement the data and a magnitude
inversion is performed (Strahler et al. 1999; Verstraete et al. 1996). We note that the standard
MODIS AMBRALS algorithm cannot work for such an extreme case, even for MODIS mag-
nitude inversion, since it is hard to obtain seasonal data associated with a dynamic land cover in
a particular site. But our method still works for such an extreme case because that smoothness
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Figure 12.1 Reflectance for band 1 of MOD021KM.A2001137 (left), and the white-
sky albedo retrieved by proposed Tikhonov regularization method (right). Reproduced by
permission of American Geophysical Union; ©2008 AGU.

constraint is already implanted into the model. We plot the white-sky albedo (WSA) retrieved
by Tikh(b) for band 1 of one observation (DOY=137) in Figure 12.1(right). We see that the
albedo retrieved from insufficient observations can generate the general profile. We observe
that most of the details are preserved, though the results are not perfect. The results are similar
to that from the NTSVD method developed in Wang et al. (2007a). Hence, we conclude that
both methods can be considered useful methods for the retrieval of land surface parameters and
for computing land surface albedos. Thus both algorithms can be considered as supplement
algorithms for the robust estimation of the land surface BRDF/albedos.

We also test our algorithms to the Landsat Thematic Mapper (TM) data measured in
Shunyi county of Beijing, China. The TM sensor is an advanced, multi-spectral scanning, Earth
resources instrument designed to achieve higher image resolution, sharper spectral separation,
improved geometric fidelity, and greater radiometric accuracy and resolution. Figure 12.2 plots
the reflectance for band 5 on May 17 2001. The spatial resolution for the TM sensor on band 5
is 30 metres. The white-sky albedo (WSA) retrieved by Tikh(b) for band 5 of one observation
on May 17 2001 is plotted in Figure 12.2(right) The retrieved results show that our algorithms
work for satellite data with high spatial resolutions.

We want to emphasize that our method can generate smoothing data to help the retrieval
of parameters once sufficient observations are unavailable. As we have pointed out in Wang
et al. (2007a, 2008), we do not suggest discarding the useful history information (e.g., data that
is not too old) and the multiangular data. Instead, we should fully employ such information
if it is available. The key to why our algorithm outperforms previous algorithms is that our
algorithm is adaptive, accurate and very stable, which solves the kernel-based BRDF model
of any order, which may be a supplement for the BRDF/albedo retrieval product.

For the remote sensor MODIS, which can generate a product by using 16 days different
observations data, this is not a strict restriction for MODIS, since it aims at global exploration.
For other sensors, the period for their detection of the same area will be longer than 20 days or
more. Therefore, for vegetation in the growing season, the reflectance and albedos will change
significantly. Hence robust algorithms to estimate BRDF and albedos in such cases are highly
desired. Our algorithm is a proper choice, since it can generate retrieval results which quite
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Figure 12.2 Reflectance for band 5 of Landsat Thematic Mapper Data (TM) on May 17 2001
(left) and the white-sky albedo retrieved by proposed Tikhonov regularization method (right).
Reproduced by permission of American Geophysical Union; ©2008 AGU.

approximate the true values of different vegetation type of land surfaces by capturing just one
time of observation.

Moreover, for some sensors with high spatial resolution, the quasi multiangular data are
impossible to obtain. This is why there are not high resolution albedo products. But with our
algorithm, we can achieve the results. This is urgently needed in real applications.

12.7 Aerosol particle size distribution function retrieval

We consider retrieving the aerosol particle size distribution function n(r) from the attenuation
equation (12.3). But it is an infinite dimensional problem with only a finite set of obser-
vations, so it is improbable to implement such a system by computer to get a continuous
expression of the size distribution n(r). Numerically, we solve the discrete problem of op-
erator equation (12.5). Using collocation (Wang et al. 2006a), the infinite problem can be
written in a finite dimensional form by sampling some grids {rj}Nj=1 in the interval of interests
[a, b].

Denoting by K = (Kij)N×N , n, � and d the corresponding vectors, we have

Kn + � = d. (12.47)

This discrete form can be used for computer simulations.
Phillips–Twomey’s regularization is based on solving the problem

min
n

Q(n), s.t. ‖Kn − d‖ = �, (12.48)

where Q(n) = (Dn, n), where D is a pre-assigned scale matrix.
In Phillips–Twomey’s formulation of regularization, the choice of the scale matrix

is vital. They chose the form of the matrix D by the norm of the second differences,
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i=2 (ni−1 − 2ni + ni+1)2, which corresponds to the following form of matrix D = D2.

However, the matrixD is badly conditioned. For example, withN = 200, the largest singular
value is 15.998012. The smallest singular value is 6.495571 × 10−17. This indicates that the
condition number of the matrix D defined by the ratio of the largest singular value to the
smallest singular value equals 2.462911 × 1017, which is worse. Hence, for small singular
values of the discrete kernel matrixK, the scale matrixD cannot have them filtered even with a
large Lagrangian multiplier �. This numerical difficulty encourages us to study a more robust
scale matrix D, which is formulated in the next section.

We consider the Tikhonov regularization in Sobolev W1,2 space as mentioned in Sec-
tion 13.4.2. By the variational process, we solve a regularized linear system of equations

K�Kn + ˛Hn −K�d = 0, (12.49)

where H is a triangular matrix in the form of D1. For choice of the regularization parameter,
We consider the a posteriori approach mentioned in Section 12.4.2. Suppose we are interested
in the particle size in the interval [0.1, 4] �m, the step size is hr = 3.9/(N − 1). Now choos-
ing the discrete nodesN = 200, the largest singular value ofH is 1.041482176501067 × 104

by double machine precision, and the smallest singular value of H is 0.99999999999953 by
double machine precision. Compared with the scale matrix D of Phillips–Twomey’s regular-
ization, the condition number of H is 1.041482176501554 × 104, which is better than D in
filtering small singular values of the discrete kernel K.

To perform the numerical computations, we apply the technique developed in King et al.
(1978), that is, we assume that the actual aerosol particle size distribution function consists
of the multiplication of two functions h(r) and f (r): n(r) = h(r)f (r), where h(r) is a rapidly
varying function of r, while f (r) is more slowly varying. In this way we have

�aero(�) =
∫ b

a

[k(r, �, �)h(r)]f (r)dr, (12.50)

where k(r, �, �) = �r2Qex(r, �, �) and we denote k(r, �, �)h(r) as the new kernel function
which corresponding to a new operator �:

(�f )(r) = �aero(�). (12.51)

For simplicity of notation, the discretization of � is again denoted by the matrix A.
The size distribution function ntrue(r) = 10.5r−3.5 exp(−10−12r−2) is used to generate

synthetic data. The particle size radius interval of interest is [0.1, 2] �m. This aerosol particle
size distribution function can be written as ntrue(r) = h(r)f (r), where h(r) is a rapidly varying
function of r, while f (r) is more slowly varying. Since most measurements of the continental
aerosol particle size distribution reveal that these functions follow a Junge distribution (Junge
1955), h(r) = r−(�∗+1), where �∗ is a shaping constant with typical values in the range 2.0–
4.0, therefore it is reasonable to use an h(r) of Junge type as the weighting factor to f (r).
In this work, we choose �∗ = 3 and f (r) = 10.5r1/2 exp(−10−12r−2). The form of this size
distribution function is similar to the one given by Twomey (1975), where a rapidly changing
function h(r) = Cr−3 can be identified, but it is more similar to a Junge distribution for
r ≥ 0.1 �m. One can also generate other particle number size distributions and compare the
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Figure 12.3 Left: Input and retrieved results with our inversion method in the case of error
level ı = 0.05 and different complex refractive indices. Right: iterative computational values
of regularization parameters when the error level ı = 0.05.

reconstruction with the input. In the first place, the complex refractive index � is assumed to
be 1.45 − 0.00i and 1.50 − 0.00i, respectively. Then we invert the same data, supposing that
� has an imaginary part. The complex refractive index � is assumed to be 1.45 − 0.03i and
1.50 − 0.02i, respectively. The precision of the approximation is characterized by the Root
Mean-Square Error (RMSE)

RMSE =
√√√√ 1

m

m∑
i=1

(�comp(�i) − �meas(�i))2

(�comp(�i))2 , (12.52)

which describes the average relative deviation of the retrieved signals from the true signals.
In which, �comp refers to the retrieved signals, �meas refers to the measured signals. Numerical
illustrations are plotted in Figure 12.3 with noise level ı = 0.05 for different refractive indices.
The behavior of the regularization parameter is plotted in Figure 12.3(right). The RMSEs for
each case are shown in Table 12.4.

Table 12.4 The root mean-square errors for different noise levels

Noise levels � = 1.45 − 0.00i � = 1.45 − 0.03i � = 1.50 − 0.02i

ı = 0.005 1.6443 × 10−5 1.2587 × 10−5 2.2773 × 10−5

ı = 0.01 1.6493 × 10−5 1.2720 × 10−5 2.2847 × 10−5

ı = 0.05 1.6996 × 10−5 1.3938 × 10−5 2.3504 × 10−5
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12.8 Conclusion

In this chapter, we investigate the regularization and optimization methods for the solution of
the kernel-based remotely sensed inverse problems. We reformulate the problem in functional
space by introducing the first kind operator equations, then the solution methods in l1 and l2
spaces are considered. The regularization strategy and optimization solution techniques are
fully described. The equivalence between the Tikhonov regularization and Baysian statistical
inference is established. We want to emphasize that there are different ways that can be
developed to impose a priori information (Wang 2007). For example, (P1) the unknowns
x can be bounded. This method requires a good a priori upper bound for x; (P2) applying
different weights to the components of x, then solve the kernel model under the constraint of the
weights; (P3) imposing historical information on x provided that such historical information
exists; (P4) simplifying the physical model by solving a lp norm problem, which means the
unknowns x can be obtained under the lp scale (Wang et al. 2009).
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Land and sea surface temperatures are important quantities for many hydrological and meteo-
rological models and satellite infrared remote sensing represents an effective way to map them
on global and regional scales. A supervised approach, based on support vector regression, has
recently been developed to estimate surface temperature from satellite images. Such a strategy
requires the user to set several internal parameters. Moreover, in order to integrate the resulting
estimates into hydrological or meteorological data-assimilation schemes, a further important
input is the statistics of the regression error affecting each pixel. In this chapter, we propose
a method to automatically set the input parameters and two techniques to model the statistics
of pixelwise regression error. Parameter optimization is achieved by numerically minimizing
a generalization-error bound that can be computed by using only the training set, and error
modelling is performed by integrating a Bayesian support vector regression approach with
maximum-likelihood or confidence-interval supervised parameter estimators.
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13.1 Introduction

Land surface temperature (LST) and sea surface temperature (SST) play crucial roles in many
environmental models, such as the energy and mass exchange between the atmosphere and
surface, vegetation and soil moisture, numerical weather prediction, climatic variability and
global ocean circulation (Dash et al. 2002). Measurements made by satellite sensors are a fea-
sible way to systematically retrieve several Earth-surface parameters, including LST and SST,
from surface-leaving radiation on both a regional and global scale, because satellites capture
a repetitive and consistent view of the Earth’s surface at different observation scales. Many
algorithms have been proposed for retrieving LST and SST from space radiometry (Haines
et al. 2007; Jiménez-Muñoz and Sobrino 2007; Mao et al. 2008; Peres and DaCamara 2004a).
Most of these are derived from radiative transfer theory (Tsang et al. 2001) and require prior
information about the state of the atmosphere (e.g., temperature and water vapour profiles) and
surface (e.g., emissivity); without this information, accurate surface temperature estimation
becomes more difficult (Barton 1992; Chan and Gao 2005; Peres and DaCamara 2004b, 2005;
Pinheiro et al. 2004; Rodger et al. 2005; Sun and Pinker 2004). Estimating these surface and
atmospheric parameters is often a difficult task in itself and this problem is expected to be
solved prior to (or jointly with) surface temperature estimation (Mao et al. 2008; Peres and
DaCamara 2004b; Sun and Pinker 2004).

Using a different perspective, oriented to pattern-recognition and machine-learning and
not to radiative transfer, an alternative approach to LST and SST estimation has recently been
proposed in Zortea et al. (2006) and Moser and Serpico (2007); this approach is based on sup-
port vector regression (SVR). Support vector machines (SVMs) represent a family of powerful
supervised learning techniques, and their application to the temperature estimation problem
allows for computing a nonparametric approximation of the relationship between satellite
data and matching in-situ measurements. This supervised regression strategy is theoretically
proven to exhibit very good generalization and robustness (see Vapnik (1998) and Chapter 2).
It has also been experimentally demonstrated that such a strategy can generate more accurate
estimates, as compared with traditional techniques, but at the expense of increased complex-
ity and computational time (Zortea 2007; Zortea et al. 2006). Unlike traditional methods, this
SVR approach is supervised and requires in-situ temperature measurements for training pur-
poses. However, it does not involve an explicit characterization of surface and/or atmospheric
parameters. From this viewpoint, such an approach is complementary to traditional methods.
Radiometric and/or subsurface ground temperature measurements are regularly acquired by
several networks of micrometeorological stations, often for flood prevention and environmen-
tal monitoring purposes. Sea temperature measurements are acquired on a regular basis by
moored and drifting buoys. In the context of remote sensing, SVR has also recently been used
for estimating several other geo/biophysical parameters (Bazi and Melgani 2007; Bruzzone
and Melgani 2005; Camps-Valls et al. 2006a,b; Durbha et al. 2007; Yang et al. 2006).

In this chapter, we will not address the applicative aspects related to LST and SST retrieval
from satellite data, but we will focus on two methodological problems regarding the use of
SVR to map these geophysical variables (a more application-oriented analysis can be found
in Zortea (2007) and in Zortea et al. (2006). First, note that the SVR technique in Zortea
et al. (2006) involves tuning several internal parameters whose values affect the resulting
approximation function and must be initially set by the user – typically via ‘trial-and-error’
grid searches for the lowest regression error (e.g., cross-validation or leave-one-out error).
This process is often time consuming because of the need to repeat the training for each node
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in the grid, and it is also sensitive to the (usually empirical) choice of the related ranges and
discretization steps of the parameters. In particular, the time requirement for grid searches
can become critical when large in-situ data sets are available for training purposes. This may
occur, for instance, when in-situ stations continuously provide temperature measurements over
a long time period.

In the present chapter, a method is presented that automatically sets the SVR input pa-
rameters in order to minimize estimation errors. It is applied in the context of using the SVR
approach for LST and SST retrieval and it is based on minimizing an analytical upper bound
for the leave-one-out regression error (namely, the so-called ‘span bound’), which is known to
be strongly correlated with regression errors on test data and can be computed by using only
the training set (Chang and Lin 2005). Powell’s method is the algorithm chosen to address
the minimization problem because it is applicable to non-differentiable functions (Press et al.
2002), such as the considered span bound. This removes the need to introduce regularized
versions of the functional, which may also involve manually setting more parameters.

Furthermore, in order to integrate temperature estimates effectively into data-assimilation
schemes for hydrological or meteorological modelling (e.g., flood-prevention applications),
another critical piece of information that needs to be input is often the statistics of the temper-
ature regression error. Estimates of the root mean square error (RMSE) or the variance of the
regression error are required input data for both variational (Caparrini and Castelli 2003) and
filtering-based (e.g., Kalman-like (Zhou et al. 2006)) assimilation techniques. However, clas-
sical error-assessment procedures, such as cross-validation or leave-one-out sampling, provide
only global information; they characterize each map of LST/SST estimates by a single nu-
merical error index (e.g., an RMSE value) without providing a pointwise characterization of
the error in each pixel (Lin and Weng 2004; Vapnik 1998).

Here, two methods are introduced to optimize statistical modelling of the SVR error for
each sample. The key idea of these techniques is to generalize the Bayesian method in (Gao
et al. 2002) by integrating more accurate approaches to model the statistics of the error con-
tribution related to intrinsic data variability, such as noise. The two algorithms introduced in
this framework are based on: (1) a confidence-interval approach and (2) a case-specific for-
mulation of the maximum likelihood (ML) technique, tailored to the non-stationary pixelwise
distribution of the SVR error.

The chapter is organized as follows. Previous work on LST and SST estimation and on
the two considered methodological problems is summarized in Section 13.2. The methods
developed to address these problems are described in Section 13.3. Experimental results on
MSG-SEVIRI and AVHRR data are presented in Section 13.4, and conclusions are drawn in
Section 13.5.

13.2 Previous work

13.2.1 LST and SST estimation from satellite data

LST and SST are intuitively meant to represent the skin-temperature values measured at the
surface–atmosphere interface (Dash et al. 2002). However, these quantities can rapidly vary
with spatial position on the Earth’s surface and are, in general, inhomogeneous inside the
instantaneous field of view (IFOV) of a given satellite sensor (especially in the case of a low-
resolution sensor). Therefore, from a remote-sensing perspective, LST and SST more precisely
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represent the surface radiometric temperatures corresponding to the IFOV of the sensor and
resulting from the integrated effect of the ensemble of (possibly thermally inhomogeneous)
bodies within the IFOV (Dash et al. 2002; Merchant and Borgne 2004). Their estimation
from satellite remote sensing is based on both the impact on thermal infrared (TIR) passive
measurements of the temperature of the observed surface according to Planck’s law of black-
body radiation, and the behavior of radiation in the atmosphere as predicted by the radiative
transfer theory (Tsang et al. 2001). Furthermore, given the measured top-of-the-atmosphere
(TOA) spectral radiance, a direct inversion of Planck’s law yields only the so-called brightness
temperature that is not, by itself, a correct LST or SST estimate since it does not take into
account the effects of surface emissivity and of the transmittance along the atmospheric path
between the surface and the satellite. In the infrared range commonly used for temperature
retrieval (8–13 �m), this atmospheric effect is mainly due to the water-vapour and temperature
vertical profiles (Dash et al. 2002). Traditional LST estimation methods assume the surface
emissivity as an input datum derived from prior knowledge about the land cover (Pozo Vázquez
et al. 1997) or estimated on the basis of satellite maps of the vegetation properties (e.g., through
vegetation indices (Peres and DaCamara 2005)).

Single-channel approaches to LST or SST estimation are based on a single TIR channel
whose brightness temperature is corrected for the atmospheric effect to compute an estimate
of the desired surface temperature (Dash et al. 2002). An advantage of these approaches is that
they are feasible for sensors endowed with just one TIR channel. On the other hand, they have
quite strict requirements in terms of the accuracy of the input atmospheric temperature and
the water-vapour vertical profiles. These profiles can be obtained by vertical sounding satellite
instruments (e.g., TIROS) or from radiosondes, but the application of a single-channel LST
estimation method to a TIR image may be critical when synchronous and co-located vertical
profiles are not available or are affected by large uncertainties.

The split-window techniques (SWTs) are based on observations in multiple TIR chan-
nels and exploit the differential absorption between such channels in order to compensate
for atmospheric effects. Basic SWT formulations express the estimate as a linear combina-
tion of the brightness temperatures in the TIR channels (Dash et al. 2002). More advanced
SWTs also incorporate emissivity and water-vapour content estimates as further input data
in quadratic formulations (Pozo Vázquez et al. 1997; Sun and Pinker 2004; Yu et al. 2008).
The parameters of SWTs are typically calibrated (once and for all) for a given sensor (e.g.,
NOAA-AVHRR, MODIS and MSG-SEVIRI) by applying a least-squares fitting to predefined
sets of values of surface and atmospheric data and the resulting simulated TOA brightness
temperatures (Jiménez-Muñoz and Sobrino 2007; Li et al. 2001; Sun and Pinker 2004; Yu et al.
2008). These methods can then be applied to a satellite image in an unsupervised way because
there is no need for training in-situ temperature data despite the fact that the above-mentioned
surface and atmospheric data for the related geographical area are still required.

Further approaches that have been proposed for LST retrieval are the multiangle methods,
which jointly exploit TIR measurements collected with different viewing angles (Dash et al.
2002), the two-temperature methods, which use TIR observations at different times to separate
the impacts of emissivity and LST on the TOA radiance (Peres and DaCamara 2004a,b), or the
combination of radiative transfer modelling and neural networks to jointly estimate LST and
emissivity (Mao et al. 2008). In the case of SST, compositing methods have been proposed
that combine SST estimates obtained from multiple swaths in order to increase the spatial
coverage and to reduce the impact of possible cloud cover (Haines et al. 2007; Li et al. 2001)
and multivariate regression have been used in Tandeo et al. (2009) to compensate for the effect
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of the solar zenith angle (and of other possible variables, such as wind speed or aerosol optical
depth) on the SST estimation accuracy.

Thorough reviews of LST and SST estimation problems from satellite data can be found
in Dash et al. (2002), Merchant and Borgne (2004) and Yu et al. (2008).

13.2.2 Parameter optimization and error modelling for SVR

Focusing first on automating parameter optimization for support vector techniques, we remark
that this problem has been mainly addressed in the context of support vector classification
(SVC) and formalized as the numerical minimization of upper bounds on the generalization
error of the classifier (Chapelle et al. 2002). In Chapelle et al. (2002), several bounds (e.g.,
the ‘radius-margin bound’, RMB, and the ‘span bound’, SB), are introduced or revised, focus-
ing on a SVC using a quadratic penalty on the slack variables (Vapnik 1998). Gradient-like
minimization procedures are also developed for such bounds, provided that they are differ-
entiable. This approach is extended in (Chung et al. 2003) to SVC using a linear penalty
on the slack variables (Vapnik 1998) by combining a heuristic generalization of RMB and a
quasi-Newton minimization algorithm. In Duan et al. (2003) several error bounds (i.e., the
‘�˛ bound’ (Joachims 2000), the ‘generalized approximate cross-validation’ (Wahba et al.
1999), the ‘approximate span bound’ (Vapnik and Chapelle 1999) the ‘Vapnik–Chervonenkis
bound’ (Burges 1998) and the above mentioned RMB) are revised and experimentally com-
pared in the context of SVC with both linear and quadratic penalties on the slack variables.
In Bartlett and Mendelson (2002) quantitative bounds on the error probability of general fam-
ilies of discriminant functions are formulated in terms of classification errors on the training
samples and an analytical measure of the complexity of the classifier (i.e., the Rademacher
complexity).

With regard to SVR, semiheuristic approaches to parameter setting have been proposed
in Cherkassky and Ma (2003) and Kwok and Tsang (2003) that relate the parameters to the noise
and input data statistics. Bayesian approaches to parameter estimation have been proposed
in Chu et al. (2004) and Gao et al. (2002, 2003a,b), even though they focus on case-specific
(e.g., non-�-insensitive) SVR architectures. In Chang and Lin (2005), an approach based on
gradient-like minimization of error bounds is extended to SVR: two parameter-optimization
methods are developed by generalizing the above mentioned RMB and SB to regression and
combining them with quasi-Newton procedures while employing SVR with quadratic penalty
on the slack variables. In this approach, the RMB regression formulation exhibits a low cor-
relation with actual regression errors on test samples, and the SB expression for regression
is a non-differentiable function of the unknown parameters. To overcome the latter issue, a
modified differentiable version of SB is used, even though this requires the introduction of an-
other manually set smoothing parameter (Chang and Lin 2005). The Rademacher complexity
bound holds in the case of regression as well, and a closed-form analytical formulation of the
bound is available for a kernel-based functional approximator (such as those given by SVR),
even though it does not have a bias term (Bartlett and Mendelson 2002; Shawe-Taylor et al.
2005).

We note that modelling the statistics of pointwise SVR error has been explored only re-
cently in the literature. This may be related to the fact that pointwise estimates of regression
uncertainty or confidence intervals are almost natural by-products of Bayesian approaches to
regression, but SVR is an intrinsically nonbayesian technique. However, it has been proven
in Gao et al. (2002) and Law and Kwok (2001) that SVR can be reformulated as a Bayesian
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‘maximum-a-posteriori’ (MAP) regression with respect to suitably defined conditional likeli-
hood and prior distributions. According to this formulation, the regression error on each sample
can be expressed as the sum of two independent stochastic processes related to the SVR func-
tional approximator and to the intrinsic uncertainty in the input data, respectively (Gao et al.
2002). A critical drawback of this method is that the statistics of the latter contribution are
modelled only as a function of the SVR input parameters (Gao et al. 2002) whose values are
optimized in order to generate accurate estimates and may not, in general, effectively char-
acterize the input data distribution. Bayesian SVR has also been combined with an ad hoc
(non-�-insensitive) loss function (Chu et al. 2004) and mean-field-theoretic (Gao et al. 2003a)
and variational (Gao et al. 2003b) formulations. The criticality remarked for (Gao et al. 2002)
also holds for such methods.

13.3 Methodology

13.3.1 SVR for LST and SST estimation

Assuming the existence of a possibly complicated or unknown relationship between the sur-
face temperature of a land or sea geographical area and the spectral radiance measured by a
satellite sensor over this area, evaluating the surface temperature would require the inversion
of this relation. From a learning-oriented perspective, this suggests using regression methods.
Accordingly, a supervised estimation scheme based on SVR has been adopted and applied to
passive sensor data in (Zortea et al. 2006) and (Moser and Serpico 2007).

Let x (x ∈ Rd) be a d-dimensional feature vector extracted from the acquired sensor
data for a given pixel, y (y ∈ R) be the corresponding Earth-surface physical quantity to be
estimated (either LST or SST), and f : Rd → R be the unknown function relating the features
with this physical quantity. SVR computes an estimate f̂ by minimizing an upper bound on
the probability that the regression error may be above a given threshold (Vapnik 1998). More
precisely, given a setD = {(x1, y1), (x2, y2), . . . , (x�, y�)}of � training samples, where xi is the
feature vector for the ith training sample and yi is the corresponding in-situ measurement (i =
1, 2, . . . , �), the resulting approximation is expressed as a linear combination of appropriate
kernel functions centred on a subset of training samples (Vapnik 1998):

f̂ (x) =
∑
i∈S

ˇ∗
i K(xi, x|�) + b∗, (13.1)

where ˇ∗
1, ˇ

∗
2, . . . , ˇ

∗
� are the weight coefficients of the linear combination,K(·, ·|�) is a kernel

function that is generally parameterized by a vector � of parameters (� ∈ Rr), b∗ is a bias
term, and S = {i : ˇ∗

i /= 0} (Vapnik 1998). If i ∈ S (i.e., ˇ∗
i /= 0) the training sample (xi, yi) is

a support vector (SV). We assume that the vector � of the internal parameters of the kernel is
defined so that it can take on values in the whole spaceRr . The vector ˇ∗ = [ˇ∗

1, ˇ
∗
2, . . . , ˇ

∗
� ]T

of the coefficients characterizing the kernel expansion in Equation (13.1) is obtained by solving
the following quadratic programming (QP) problem (Vapnik 1998):

⎧⎪⎨
⎪⎩

min
ˇ∈R�

[
1

2
ˇTK(�,D)ˇ − y(D)Tˇ + �‖ˇ‖1

]

1Tˇ = 0, ‖ˇ‖∞ ≤ C,

(13.2)
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where C and � are SVR parameters, K(�,D) is the �× � matrix whose (i, j)th entry is given
byK(xi, xj|�) (i, j = 1, 2, . . . , �), y(D) = [y1, y2, . . . , y�]T is the vector of the � in-situ mea-
surements, and 1 is a vector with unitary components. Note that, unlike Chang and Lin (2005),
we use SVR with linear penalty on the slack variables, since this usually ensures that the re-
sulting functional approximator is more sparse, limiting the risk of overfitting and reducing
the time required to generate maps of LST and SST estimates compared with using a quadratic
penalty (Vapnik 1998).

The method’s input parameters areC, � and � . The parameterC (C > 0) tunes the trade-off
between the generalization capability of the functional approximator and the accuracy of the
fitting on the training set: a large value ofC allows a high regression accuracy on the training set
but may encourage overfitting, thus causing high sensitivity to both noise and possible errors
in the training data. A small value of C aims at optimizing the smoothness and generalization
of the approximator, but it may result in a poorly fitted training set, causing a reduced accuracy
of the approximation of the estimated function. If 0 < |ˇ∗

i | < C, the SV (xi, yi) is called an
‘unbounded support vector’ (USV) or ‘free support vector’ (i = 1, 2, . . . , �); U = {i : 0 <
|ˇ∗
i | < C} identifies the set of USVs. On the other hand, � (� > 0) represents the largest

(absolute) error that is considered acceptable and not penalized by SVR (Vapnik 1998). The
vector containing the SVR input parameters can be defined as � = (logC, log �, �) ∈ Rm,
wherem = r + 2 is the number of parameters, and the logarithm is applied toC and � in order
to let � take on values in the whole space Rm, without an explicit positivity constraint.

Given the training set D and the parameter vector �, the training consists of solving the QP
problem in Equation (13.2). We stress the dependence on D and � by denoting as ˇ∗(�,D),
S(�,D), U(�,D) and f̂ (·|�,D) the resulting weight vector of the linear combination, the
related index sets of SVs and USVs, and the SVR functional approximator, respectively.

13.3.2 Automatic parameter optimization for SVR

The method presented here for automatically optimizing SVR parameters is based on searching
for a parameter vector that minimizes an upper bound on the regression error. Specifically, one
can prove under mild assumptions that the average ‘leave-one-out’ SVR error can be upper
bounded by the following ‘span-bound’ (SB) functional (Chang and Lin 2005):

B(�|D) = �+ 1

�

∑
i∈S(�,D)

|ˇ∗
i (�,D)|s2i (�,D)+

+y(D)Tˇ∗(�,D) − �‖ˇ∗(�,D)‖1 − ˇ∗(�,D)TK(�,D)ˇ∗(�,D)

C�
. (13.3)

Here, si(�,D), named the ‘span’ of the SV (xi, yi), is a real coefficient computed by solving
the following QP problem (i ∈ S(�,D)):

s2i (�,D) = min
{
�TKu(�,D)�− 2Kux(xi|�,D)T�+K(xi, xi|�) : 1T� = 1

}
, (13.4)

where, denoting by �u(�,D) the number of USVs, Ku(�,D) is the �u(�,D) × �u(�,D) matrix
whose (j, h)th entry is given byK(xj, xh|�) (j, h ∈ U(�,D)) and Kux(x|�,D) (x ∈ Rd) is the
�u(�,D)-dimensional vector whose generic element is K(x, xj|�) (j ∈ U(�,D)).
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Hence, given D and �, the corresponding value B(�|D) can be analytically computed by
first solving the QP problem in Equation (13.2) – which yields the coefficients ˇ∗

i (�,D) (i =
1, 2, . . . , �) and identifies SVs and USVs – and then solving the QP problem in Equation (13.4)
for each SV. Even though SB can be computed with only the training samples, it is known to be a
very tight bound and it is strongly correlated with the regression error on test samples provided
that the test and training samples are drawn from the same probability distribution (Chang
and Lin 2005). A parameter vector �∗ ∈ Rm that minimizes B(�|D) is searched for in Rm.
However, in general, B(·|D) is a nondifferentiable function; this prevents the use of gradient-
based minimization algorithms and requires methods that need only evaluate the objective
function. Powell’s method is adopted here, which is an iterative unconstrained minimization
technique that does not require possible derivatives of the objective function.

The key idea of Powell’s method is to emulate, without using gradient and Hessian in-
formation, the behavior of the conjugate gradient technique (which, by itself, is applicable to
twice continuously differentiable functions) by identifying a set ofm vectors inRm that are al-
most conjugate. The minimum of the functional is computed by sequentially performing a line
search1 at each iteration for each ‘pseudo-conjugate’ direction (Powell 1964). Specifically, let
�t be the parameter vector computed at the tth iteration of the method, ui,t be the ith pseudo-
conjugate direction computed at the tth iteration, and �̄i,t be the parameter vector computed
after the ith sequential line search of the tth iteration (t = 0, 1, 2, . . . ; i = 1, 2, . . . , m). The
method is initialized with a given parameter vector �0 and with the assumption that the initial
directions u1,0, u2,0, . . . ,um,0 are the canonical basis vectors in Rm (i.e., ui,0 has a unitary
ith component, while all the other components are zero; i = 1, 2, . . . , m). Then, for the tth
iteration, the following operations are performed (t = 0, 1, 2, . . .) (Powell 1964; Press et al.
2002):

1. set �̄0,t = �t;

2. for each ith pseudo-conjugate direction ui,t , start from the current point �̄i−1,t and
minimize B(�|D) by a line search in the direction ui,t , by computing the scalar:

�i,t = arg min
�∈R

B(�̄
i−1,t + �ui,t |D); (13.5)

then move to the resulting minimum point �̄
i,t = �̄

i−1,t + �i,tui,t (i = 1, 2, . . . , m);

3. update the parameter vector as the last point reached in the parameter space by the
sequence of m line searches performed in step 2, i.e., set �t+1 = �̄

m,t ;

4. update the search directions by dropping the first direction u1,t and introducing a new
direction (�t+1 − �t), i.e., set ui,t+1 = ui+1,t for i = 1, 2, . . . , m− 1 and um,t+1 =
�t+1 − �t .

The method is iterated until the relative decrease in the functional between successive iterations
falls below a given threshold, which is very close to the machine precision. This method is
analytically proven to quadratically converge, under mild assumptions, at least to a local min-
imum (Powell 1964; Press et al. 2002). One drawback is that the pseudo-conjugate directions

1By ‘line search’ we mean the search for the minimum of a given function of m variables along a straight line in the
related m-dimensional space.
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may become linearly dependent during the iterations, thereby implicitly restricting the search
space to a lower-dimensional subspace (Brent 1973). A simple strategy for resolving this
problem while keeping quadratic convergence consists of reinitializing the pseudo-conjugate
directions to the canonical basis ofRm after each cycle of (m+ 1) successive iterations (Press
et al. 2002). Alternate solutions to this problem, either keeping or giving up the quadratic
convergence property, are discussed in (Brent 1973) and (Press et al. 2002).

A technique that does not involve derivatives also has to be used for the line search in step 2.
To achieve this end, Brent’s method is chosen, which is based on the iterative combination of
the ‘inverse parabolic interpolation’ and ‘golden-section’ approaches and is applicable to the
minimization of single-variable, continuous (and possibly nondifferentiable) functions (Brent
1973). Given such a function, the golden-section method iteratively computes a sequence of
bracketing triplets2 that converges to a local minimum of the function (Press et al. 2002).
The inverse parabolic interpolation method iteratively minimizes a parabolic interpolation of
the input (single-variable) function computed according to the evaluations of the function at
three distinct points. If the function is monomodal, this method is proven to converge to the
desired local minimum point. Moreover, it typically converges faster than the golden-section
approach. However, if the monomodality assumption fails, it may not converge (Press et al.
2002). Brent’s method is based on the idea of iteratively exploiting the inverse parabolic
interpolation approach when close to a monomodal valley of the function being minimized,
while using the golden-section technique otherwise. Basically, during each iteration a parabolic
interpolation step is attempted and a series of tests is performed to discriminate if the resulting
solution is acceptable or if a golden-section step is required. More details about the resulting
numerical procedure, which is not straightforward, can be found in Brent (1973) and in Press
et al. (2002). The described automatic parameter-setting method will henceforth be referred
to as the ‘Powell-span bound’ (PSB) technique.

13.3.3 Pointwise statistical modelling the SVR error

The problem of estimating the pixelwise probability distribution of the SVR error is addressed
by extending the Bayesian approach by Gao, Gunn, and Harris (GGH for short) (Gao et al.
2002). Let the parameter vector � be fixed to a given value, for instance, by applying PSB. The
GGH framework reformulates SVR in terms of a Bayesian MAP regression. Specifically, f (x)
(x ∈ Rd) is formalized as a d-dimensional zero-mean Gaussian process and the relationship
between the data sample x and the corresponding variable y is modelled by the process f (x)
up to a zero-mean additive noise-like stationary component n(x), independent of f (x) (Gao
et al. 2002):

y = f (x) + n(x). (13.6)

As a consequence, the SVR error �(x) = y − f̂ (x|�,D) in the generic sample (x, y) ∈ Rd+1

is decomposed as the sum of two independent stochastic processes:

�(x) = s(x) + n(x), (13.7)

2Recall that given a continuous function g : R→ R, a ‘bracketing triplet’ is a triplet (a, b, c) ∈ R3 such that a < b < c

and g(b) ≤ min{g(a), g(c)}. Thanks to the continuity of g, this condition ensures that a local minimum point of g
exists in (a, c).
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where s(x) = f (x) − f̂ (x|�,D) is a non-stationary process formalizing the error contribution
due to the SVR functional approximation and n(x) represents the error contribution related to
intrinsic data variability (e.g., noise) (Gao et al. 2002). When conditioned to the training set
D, s(x) is shown to be approximately zero-mean Gaussian N [0, �2

s (x|�,D)] with a variance:

�2
s (x|�,D) = K(x, x|�) − Kux(x|�,D)TKu(�,D)−1Kux(x|�,D). (13.8)

On the other hand, n(x) is a zero-mean process, independent of D, with variance:

�2
n(�) = �2

[
2

(�C)2 + �C + 3

3(�C + 1)

]
. (13.9)

Thus, given D, the regression error �(x) is zero-mean with variance equal to:

�2
�(x|�,D) = �2

s (x|�,D) + �2
n(�). (13.10)

Note that this model was developed in Gao et al. (2002) by assuming that f (x) is a zero-
mean process and by focusing on SVR without the bias term b∗ in Equation (13.1). These
restrictions can be partially removed by assuming that f (x) has a constant mean independent
of x – but not necessarily zero – and by assuming that b∗ is equal to this mean value. Under
these working hypotheses (which we assume hold in order to ensure the analytical tractability
of the problem), it is straightforward to replicate the arguments given in Gao et al. (2002) to
prove Equations (13.7)–(13.9).

Thanks to Equations (13.8)–(13.10), GGH provides a closed-form expression for the point-
wise SVR error variance as a function of (C, �) and of the set of USVs. Since the USVs are
selected by the training process, this approach allows SVR to analytically compute an esti-
mate of the standard deviation of the regression error occurring in each sample. However, a
drawback is that the stationary contribution �n is expressed as an algebraic function of C and
�, whose values are usually optimized in order to minimize a global measure of the regression
error (see Sections 13.2 and 13.3.2). The resulting optimal values forC and � are not chosen to
model the data variability accurately. This may yield large errors in the estimated standard de-
viation values. This criticality is also emphasized by the fact that �n is an unbounded function
of (C, �) and diverges when the product (�C) vanishes (see Equation (13.9)).

The methods presented here aim to remove this drawback and extend GGH by integrating
it with more accurate estimators of the variance contribution that depends on data uncertainty.
The key idea is to keep the decomposition of the regression error in Equation (13.7), while
modelling n(x) as a generic N (0, �2

n) stationary process and estimating �n by a supervised
approach. A Gaussian assumption for n(x) is usually accepted for the data noise in the case
of passive sensors. Two estimation methods are introduced in this framework.

The first technique is a formulation of the ML approach for the non-stationary error dis-
tribution of the training samples. Thanks to the Gaussian assumption for n(x), the distribution
of the error �i = yi − f̂ (xi|�,D) on each ith training sample, when conditioned to D, is
Gaussian N [0, �2

s (xi|�,D) + �2
n] (i = 1, 2, . . . , �). Assuming �1, �2, . . . , �� are independent

(which is a simplifying assumption usually accepted in non-contextual image analysis), the
log-likelihood of the vector � = [�1, �2, . . . , ��]T of the errors in the training samples is (up
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to additive or multiplicative constants):

L(�n|�,D) = −
�∑
i=1

{
�2
i

�2
s (xi|�,D) + �2

n

+ log
[
�2
s (xi|�,D) + �2

n

]}
. (13.11)

The numerical maximization of this log-likelihood function yields the estimate �̂n of �n com-
puted by the first method. Since L(·|�,D) is twice continuously differentiable, the Newton–
Raphson algorithm is applied to this maximization task (Press et al. 2002). The resulting
technique is called ‘Maximum-Likelihood Generalized GGH’ (ML-GGGH).

The second method computes a value of �n that yields an optimal fit between the model-
based probability that the regression error lies within given confidence intervals and the em-
pirical percentages of the training-set errors in the same intervals. Specifically, for a generic
value of �n, for any p ∈ [0, 1], and for the ith training sample, the non-negative number
˛i(p, �n|�,D) given by:

P {|�i| ≤ ˛i(p, �n|�,D)|�,D} = p (13.12)

can be computed analytically according to the modelled Gaussian distribution
N [0, �2

s (xi|�,D) + �2
n] of �i, conditioned to D (i = 1, 2, . . . , �). Then, ˛i(p, �n|�,D) is the

unique solution of the equation:

erf

[
˛i(p, �n|�,D)√

2�2
s (xi|�,D) + 2�2

n

]
= p, (13.13)

where erf(·) is the well-known error function (Press et al. 2002). For the model N [0, �2
s

(xi|�,D) + �2
n] to accurately fit the observed error distribution of the training-set, it is desired

that, for any p ∈ [0, 1] the fraction r(p, �n|�,D) of training samples (xi, yi) such that |�i| ≤
˛i(p, �n|�,D), is close top. The second technique aims at ensuring this property by computing
the value �̂n of �n that minimizes the following average distance between p and r(p, �n|�,D):

J (�n|�,D) =
∫ 1

0
|r(p, �n|�,D) − p| dp. (13.14)

Since r(·, ·|�,D) is, in general, a discontinuous function, the Brent’s algorithm is chosen
again to address the numerical minimization of J (·|�,D). The resulting method is called
‘confidence-interval generalized GGH’ (CI-GGGH).

13.4 Experimental results

13.4.1 Data sets and experimental set-up

The methods described in Section 13.3 were experimentally validated for both LST and SST
retrieval from satellite data. The LST data sets are composed of images acquired over Italy
between 7:00 a.m. and 6:00 p.m. local time by the SEVIRI instrument on board Meteosat
Second Generation (MSG) between August 12 2005, and September 19 2005. These data were
received by the station at the Interuniversity Research Centre in Environmental Monitoring
(CIMA) in Savona (Italy). The corresponding in-situ data are radiometric ground temperature
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measurements acquired by thirteen micrometeorological stations from the ARSIA (‘Agenzia
regionale per lo sviluppo e l’innovazione nel settore agricolo e forestale’) network in the
Italian Tuscany region. The samples acquired by seven of the thirteen stations were used for
training purposes; the samples acquired by the other six stations were employed for testing.
The resulting training and test sets were spatially disjoint. Samples affected by cloud cover
were removed from the data set.

The experiments were separately performed during four different time slots (7–8 a.m.,
9–12 a.m., 1–4 p.m. and 5–6 p.m.) in order to take into account the different relationships
between LST and satellite observations at different times of the day. Accordingly, four LST
data sets were established (one per time slot). To apply SVR, three features were considered
for each sample: the measured brightness temperatures of the 10.82 �m SEVIRI channel; the
difference between the brightness temperatures in the 10.82 �m and 12 �m channels; and the
‘normalized difference vegetation index’ (NDVI). One of the two brightness temperatures and
the difference between them were used instead of two brightness temperatures because the
difference feature is known to be important for temperature estimation purposes, thanks to its
correlation with atmospheric effects on sensor radiance (Sobrino et al. 2004).

For the SST case, a data set was constructed from the publicly available multi-year multi-
satellite ‘AVHRR Pathfinder Matchup Database’ of approximately co-temporal and co-located
in-situ SSTs (acquired from both moored and drifting buoys) and AVHRR images. Details
on this database can be found in Evans and Podestá (1998). Samples collected on two days
(January 1 and 2, 1999) from globally distributed buoys, were used in the experiments. As
in Evans and Podestá (1998) and Li et al. (2001), four features were considered for each sam-
ple: the secant of the satellite zenith angle, the measured brightness temperatures of AVHRR
channels 4 and 3B, and the difference between the brightness temperatures of channels 4 and
5. The mid-wave infrared channel-3B brightness temperature was used for its correlation with
night-time SST (Li et al. 2001) and because the samples in this data set were collected during
two entire days, including both day-time and night-time acquisitions. In the day-time, channel
3B is also affected by solar radiance. Thus, from the viewpoint of SST estimation, this feature
is expected to be noisier for samples collected during day-time than night-time. However, this
effect will not be critical because of the high correlation coefficient with SST in-situ measure-
ments (around 89%, irrespective of acquisition time) and of the robustness of SVR to noise.

For all of the data sets the features of the training and test samples and the temperature
values were normalized to the interval [0, 1] and SVR was applied with a Gaussian radial
basis function kernel, i.e. (x, x̄ ∈ Rd):

K(x, x̄|ı) = exp

(
−‖x − x̄‖2

2ı2

)
, (13.15)

which is parameterized by the standard deviation ı (ı > 0).3 This kernel has been em-
ployed frequently in remote-sensing applications, and the experimental analysis described in
Zortea et al. (2006) confirms that it generates accurate temperature estimates. The resulting
parameter vector is defined as � = (logC, log �, log ı), so that all three components of � can
belong anywhere in an entire real line.

3The symbol ı is used instead of the more customary symbol � in order to avoid confusion with the standard-deviation
variables introduced for GGH, ML-GGGH and CI-GGGH.



LAND AND SEA SURFACE TEMPERATURE ESTIMATION 313

13.4.2 Parameter-optimization results

PSB was initialized withC0 = 1, �0 = 0.01 and ı0 = 0.5 and applied to each data set. At most,
seven iterations were sufficient for PSB to converge. The results were compared with those
obtained by a hold-out grid-search: for each node in a predefined grid, SVR was trained on the
training set; then the parameter vector yielding the smallest mean absolute error (MAE) for the
test set was located in the grid. This represents an ideal case in which the true in-situ tempera-
tures are assumed to be known on the test samples; this is not a realistic parameter-optimization
strategy, but it represents a benchmark result. The grid was defined by the following sets of
values:C ∈ {10−3, 10−2, . . . , 104}, � ∈ {10−4, 10−3, . . . , 10−1} and ı ∈ {0.01, 0.02, . . . , 1}.

The accuracies obtained for the test set by using SVR with the parameter configurations
computed by PSB and the grid search are presented in Table 13.1. Both parameter-optimization
strategies generated quite accurate temperature estimates. Specifically, MAE � 0.5K was
obtained for SST, while the LST-estimation accuracy depended on the time slot, with MAE �
1.4–1.5K for the 7–8 a.m. and 5–6 p.m. slots, and MAE � 2.7–3.1K for 9–12 a.m. and 1–4
p.m.. This is consistent with the usual behavior of LST estimates from satellite data, which are
typically more accurate in the first and last hours of day time and less accurate in the central
hours (Ulivieri et al. 1994; Zortea 2007). This behavior is explained by a lower correlation
of the satellite infrared observations with the in-situ measurements during the central hours

Table 13.1 MAE and RMSE for the test set and computation times of the training phases
for functional approximators obtained by the PSB and hold-out grid-search, when applied to
all considered data sets. The related parameter values and the training and test sample sizes
(� and �test , respectively) are also reported (partly reproduced by permission of IEEE; the
‘LST 7–8 a.m.’ and ‘SST’ subtables are © 2008 IEEE

LST 7–8 a.m. LST 9–12 a.m. LST 1–4 p.m.
PSB Hold-out PSB Hold-out PSB Hold-out

MAE [K] 1.51 1.40 2.72 2.16 3.11 2.80
RMSE [K] 1.93 1.86 3.41 2.86 3.86 3.52
time 47s 1h 55m 30s 1m 32s 5h 13m 1s 19s 56m 14s
� 149 263 120
�test 104 209 86
C 4.976 0.1 2.666 0.1 1.733 0.1
� 0.002 0.001 0.002 0.001 0.008 0.0001
ı 0.491 0.42 0.500 0.49 0.507 0.5

LST 5–6 p.m. SST
PSB Hold-out PSB Hold-out

MAE [K] 1.44 1.43 0.54 0.46
RMSE [K] 1.79 1.81 0.73 0.67
time 18s 1h 21m 4s 2m 16s 4m 21s
� 121 109
�test 104 106
C 1.739 0.100 3.457 10
� 0.0003 0.001 0.002 0.01
ı 0.656 0.31 0.500 1



314 FUNCTION APPROXIMATION AND REGRESSION

than the correlations during the first and last hours of day time. For instance, the correlation
coefficients of the in-situ temperatures with the SEVIRI brightness temperature channels were
about 76%, 70%, 62% and 85% for the 7–8 a.m., 9–12 a.m., 1–4 p.m. and 5–6 p.m. data sets,
respectively (irrespective of training and test subdivision). For the SST data set, which gave
smaller errors, this correlation coefficient was around 95%.

The optimal parameter vectors identified by PSB and by the hold-out grid search were
quite different from each other. However, a very similar performance was exhibited by the two
approaches, with slightly smaller regression errors for the hold-out grid search. This result
is expected as this approach also exploits the true in-situ temperatures of the test samples.
However, the differences between the MAE values for the two approaches were just 0.07K
for the SST data set, and 0.11, 0.5, 0.3 and 0.01K for the LST data sets from the 7–8 a.m.,
9–12 a.m., 1–4 p.m. and 5–6 p.m. time slots, respectively. The similarity in the regression
performances can be explained by the strong correlation between MAE (on test set) and SB
(computed on the training set) (Chang and Lin 2005). Figures 13.1 and 13.2 show the maps
of LST estimates obtained by applying the functional approximators trained on the LST data

Figure 13.1 Maps of LST estimates generated by SVR when applied with parameter values
optimized by PSB and the hold-out grid-search to MSG-SEVIRI images acquired over Italy
on September 15 1999, at 7:00 a.m. and 11:00 a.m. local time. Cloud-covered and sea areas
are masked in black (partly reproduced by permission of IEEE). (See plate 7)
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Figure 13.2 Maps of LST estimates generated by SVR when applied with parameter values
optimized by PSB and the hold-out grid-search to MSG-SEVIRI images acquired over Italy
on September 15 1999, at 3:00 p.m. and 5:00 p.m. local time. Cloud-covered and sea areas
are masked in black (partly reproduced by permission of IEEE). (See plate 8)

sets (with the parameter vectors computed by PSB and by the hold-out grid search) to MSG
images acquired over Italy on September 15 1999, at 7:00 a.m., 11:00 a.m., 3:00 p.m. and 5:00
p.m.. A visual comparison further confirms the similarity between the PSB and grid-search
results.

On the other hand, there are dramatic differences between the computation times of PSB
and of the hold-out grid-search for LST estimation (all times in Table 13.1 refer to the same
hardware configuration, i.e., a 3.4 GHz CPU with 1 GB RAM). The grid search required a few
hours to identify optimal parameter vectors and train the related SVR approximators – due
to the need to repeat the QP solution process at each node in the grid – whereas PSB always
took less than 2 minutes. This is explained by the fact that the grid search performs a complete
exploration of the parameter space (up to the adopted search ranges and quantization steps),
whereas PSB performs a sequence of moves (in the parameter space) that approaches a locally
optimum solution. From this viewpoint, PSB is a suboptimal approach, even though it still
identifies parameter configurations affected by regression errors very close to those incurred
by the grid search. The difference in computation time is less significant for the SST data set
because the number of available training samples is smaller than for the LST data sets, and the
time required by each QP numerical solution is correspondingly much shorter (Vapnik 1998).
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Table 13.2 Experiments on the LST 7–8 a.m. and SST data sets: MAE and RMSE on the
test set, computation times and optimal parameter values for the CV grid search; means and
standard deviations (stdev) of the MAE and RMSE values obtained by PSB on the test sets,
when varying the initial parameter vector in a predefined grid of 250 points; square roots of the
integrated bias, variance and MSE computed on the test set of each of the considered data sets,
according to the LST/SST estimators obtained by running PSB over 100 randomly selected
training subsets (reproduced by permission of IEEE: © 2008 IEEE)

LST 7–8 a.m. SST

MAE [K] 1.53 0.46
RMSE [K] 1.96 0.67

Cross validation time 2h 22m 33s 4m 21s
grid search C 10 10

� 0.001 0.01
ı 0.46 1

MAE [K] mean 1.53 0.57
Initialization stdev 0.09 0.09
analysis RMSE [K] mean 1.97 0.80

stdev 0.14 0.16

Bias-variance Root integrated bias [K] 1.92 0.72
analysis Root integrated variance [K] 0.76 0.55

Root integrated MSE [K] 2.07 0.91

In order to thoroughly investigate the properties of PSB, three more specific experiments
were carried out on the SST and 7–8 a.m. LST data sets. First, an experimental comparison
was performed with the results given by the grid search for the parameter vector yielding
the smallest cross-validation (CV) MAE computed on the training samples. Unlike the above
mentioned hold-out approach, this is a feasible and popular parameter optimization technique.
We used three-fold CV with a random subdivision of the training set into three disjoint almost
equal-sized subsets and the same grid as in the hold-out case. Then, in order to assess the
sensitivity of PSB to initialization conditions, we varied the initial parameter values in the
ranges of C0 ∈ [0.1; 10], �0 ∈ [0.001; 0.1] and ı0 ∈ [0.1; 1] by defining a grid of 250 points
over these ranges and by initializing PSB to each node in this grid. Finally a bias-variance
analysis was performed in order to investigate possible overfitting issues. The results of these
specific experiments are summarized in Table 13.2.

The difference between the regression errors from PSB and the CV grid search were even
smaller than those for the hold-out case: slightly smaller MAE and RMSE values were obtained
by CV and PSB when applied to the SST and LST data sets, respectively. On the other hand,
the computation time for CV was even longer than that for the hold-out search; this result is
expected due to the three-fold approach.

As the PSB initial parameter values were varied in the above ranges the method converged,
as expected, to different local minima of the SB functional. However, we note a remarkable
stability of the resulting test-set errors. For both data sets, the MAE and RMSE standard
deviations were much smaller than the corresponding average values, which were very close
to the values reported in Table 13.1 for the specific case C0 = 1, �0 = 0.01 and ı0 = 0.5. The
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average times taken by PSB for the 250 runs were 1 m 17 s and 3 m 38 s for the LST and
SST data sets, respectively. Such times were shorter than the corresponding times required by
CV or hold-out grid searches (see Tables 13.1 and 13.2). However, the choice of the initial
parameter vector affected the time required by PSB to converge to a local minimum for each
run. With regard to the LST data set, the computation times for all PSB runs were much
shorter than those for the grid searches. On the other hand, for the SST data set, PSB took a
longer time than CV in 57 out of 250 runs. In fact, due to the small training-sample size of this
data set, CV required a short time. Such results reconfirm that PSB, as compared with grid
searches, yields a relevant reduction in the computational burden when many training samples
are available, whereas this advantage may not be significant in small-sample size cases, where
the execution time for grid searches is already non-critical.

In regard to the bias-variance analysis, we recall that given the regression problem formal-
ized in Section 13.3.1, the MSE on an unknown test sample x (x ∈ Rd) can be decomposed
into the sum of three contributions (Geman et al. 1992):

MSE(x, �) = E{[y − f̂ (x|�,D)]2|x} = Var{y|x}+
+ [
E{f̂ (x|�,D)|x} − E{y|x}]2 + Var{f̂ (x|�,D)|x}. (13.16)

The first term does not depend on the adopted estimator and is related to the intrinsic data
variability of the target variable y. The second contribution represents a measure of the average
bias of the adopted estimator f̂ (x|�,D) with respect to the conditional mean E{y|x} – the
optimal estimator in the MSE sense (Papoulis and Pillai 2002), which is usually unknown.
The third contribution is a measure of the variance of the estimator f̂ (x|�,D) as a function
of the random training samples in D. There is often a trade-off (namely, the so-called ‘bias-
variance dilemma’) between the bias and variance terms (Geman et al. 1992). For instance,
sharply reducing the bias may cause overfitting, which is likely to yield an increase in the
variance.

For both considered data sets, 100 subsets each composed of around 50 samples were
randomly sampled from the available training set. PSB was initialized withC0 = 1, �0 = 0.01
and ı0 = 0.5 and run until convergence over each training subset, yielding a distinct trained
functional approximator. Then, the integrated bias, integrated variance, and integrated MSE
were computed for the test set (see Table 13.2), which represent estimates of the average bias,
variance and MSE values. This relies on the assumption that the MSE contribution related
to intrinsic data variability in Equation (13.16) is negligible when compared with the other
two terms. In particular, the resulting integrated MSE is equal to the average of the 100 MSE
values obtained from the test set by the functional approximators trained on the 100 subsets.
Further details about such estimates can be found in Geman et al. (1992). The root integrated
MSE values in Table 13.2 were slightly higher than the RMSE values in Table 13.1. This is
probably due to the much smaller size of the training subsets involved in this experiment as
compared with the original training-sample sizes. For both data sets (especially the LST data),
the integrated biases were significantly larger than the corresponding integrated variances.
The integrated bias was equal to 86% and 63% of the corresponding integrated MSE for the
LST and SST data sets, respectively. This suggests that the test-set errors can be ascribed
to the overall difference between the functional approximator generated by PSB and the
unknown conditional mean of the target LST/SST given the feature values – not because of
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large fluctuations in the approximator as the training samples are varied. This behavior is
expected to limit the risks of overfitting.

13.4.3 Results on the estimation of regression-error variance

CI-GGGH and ML-GGGH were applied to all of the data sets and experimentally compared
with GGH and with a noiseless estimator that presents only the non-stationary error component.
In all of these experiments, the input SVR parameters were set to the values identified by
PSB. The results were quantitatively assessed for each method and test sample (x̄i, ȳi) by
computing the error-variance estimate and analytically deriving the interval [− ¯̨pi, ¯̨pi] such
that the probability that the regression error on (x̄i, ȳi) belongs to [− ¯̨pi, ¯̨pi] (conditioned to
D) equals a given value p ∈ [0, 1] (i = 1, 2, . . . , �test); the derivation is based on modelled
Gaussian error and is the same as in Equation (13.13)). Table 13.3 shows the percentages of

Table 13.3 Experimental results of the ML-GGGH (ML), CI-GGGH (CI), GGH and noise-
less estimators: estimates �̂n and percentages of test samples (x̄i, ȳi) whose regression errors
belong to the ranges [− ¯̨pi, ¯̨pi] (i = 1, 2, . . . , �test) corresponding to several probability
levels p (partly reproduced by permission of IEEE)

LST 7–8 a.m. (© 2009 IEEE) LST 9–12 a.m.
p noiseless GGH ML CI p noiseless GGH ML CI

50% 8% 100% 57% 50% 50% 11% 100% 47% 50%
60% 10% 100% 65% 57% 60% 14% 100% 58% 60%
70% 13% 100% 70% 66% 70% 18% 100% 69% 71%
80% 15% 100% 78% 70% 80% 22% 100% 78% 80%
90% 20% 100% 85% 79% 90% 26% 100% 88% 91%

�̂n [K] 0 11.4 1.8 1.5 �̂n [K] 0 21.2 3.2 3.2

LST 1–4 p.m. LST 5–6 p.m.
p noiseless GGH ML CI p noiseless GGH ML CI

50% 5% 100% 22% 31% 50% 9% 100% 50% 47%
60% 10% 100% 30% 38% 60% 15% 100% 63% 61%
70% 12% 100% 35% 58% 70% 20% 100% 70% 67%
80% 15% 100% 49% 64% 80% 24% 100% 78% 77%
90% 22% 100% 67% 77% 90% 31% 100% 88% 84%

�̂n [K] 0 32.6 2.8 2.4 �̂n [K] 0 32.5 1.7 1.6

SST (© 2009 IEEE)
p noiseless GGH ML CI

50% 68% 100% 69% 68%
60% 74% 100% 74% 74%
70% 77% 100% 77% 77%
80% 83% 100% 83% 83%
90% 90% 100% 91% 90%

�̂n [K] 0 12.3 0.1 0.0
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test samples (x̄i, ȳi) whose actual errors (computed according to the true temperature values
and to the SVR estimates) belong to the resulting ranges [− ¯̨pi, ¯̨pi] for several probability
levels p ∈ [0, 1]. We note that the Gaussian shape of the SVR error is assumed to hold in ML-
GGGH and CI-GGGH. For GGH n(x) has a zero-mean symmetric monomodal non-gaussian
distribution (Gao et al. 2002). Here, we compute the intervals [− ¯̨pi, ¯̨pi] according to a
Gaussian density for GGH as a simplifying approximation.

Focusing first on the LST data sets, the noiseless model underestimated the true probability
levels due to a related underestimation of �n. This confirms the importance of the stationary
error contribution and of an accurate estimation of its variance. On the other hand, GGH
sharply overestimated �n computing �̂n = 10–30K. Such results were not consistent with the
observed test-set errors. For instance, for the 7–8 a.m. time slot the errors on the test samples
belonged to the range [−3.47; 5.10] K; this makes the GGH estimate �̂n = 11.4K unrealistic –
since the stationary and non-stationary components of the error variance are non-negative, the
overall estimated error variance predicted by GGH on each pixel was always larger than �̂2

n .
Similar comments hold for the other time slots as well.

By contrast, the estimates �̂n given by ML-GGGH and CI-GGGH (which were quite
close to each other) were below 2K and correspond to percentages of test samples that well
approximated the related probability levels, especially for the 7–8 a.m., 9–12 a.m. and 5–6
p.m. time slots; slightly more accurate results were given by ML-GGGH than by CI-GGGH.
For the 1–4 p.m. time slot, ML-GGGH and CI-GGGH slightly underestimated the SVR error
variance. Again this can be interpreted as a consequence of the lower correlation between
satellite observations and in-situ measurements during the central hours of day time, which
affects the accuracy of the two supervised estimation algorithms.

Figure 13.3 shows, as examples, maps of estimates of the standard deviation of the SVR
error computed by CI-GGGH for the MSG acquisitions described in Section 13.4.2; the maps
given by ML-GGGH are similar. The standard deviation estimates in the Italian territory
are around 1.25K during the 7–8 a.m. and 5–6 p.m. time slots, while larger values (around
2–4K) are obtained during the other two time slots. This is consistent with the overall test-
set errors of the LST estimates generated by SVR (see Table 13.1). Note that such standard
deviation maps were generated by processing only training data with no need for further test
or validation samples. This is an important property of ML-GGGH and CI-GGGH, since
they endow the SVR approach to LST and SST estimation with the capability to provide
an intrinsic evaluation of the accuracy of the temperature estimates without requiring addi-
tional labelled data. For instance, larger standard deviations are found for the North Africa
area included in the image; this suggests that less reliable LST estimates were computed by
SVR in the corresponding image region, probably due to a lack of training samples in the
area.

When applied to the SST data set, the noiseless estimator yields quite a good fit between the
modelled and empirical distributions of the test-set errors, which may be interpreted as a limited
presence of noise in this data set, with a slight overestimation of the probability levels. ML-
GGGH and CI-GGGH correctly identified this situation by automatically computing almost
negligible values for �̂n, thus exhibiting an estimation performance almost identical to that
of the noiseless estimator. However, since the stationary variance contribution is always non-
negative, the slight overestimation introduced by the noiseless estimator could not be corrected
by ML-GGGH and CI-GGGH. As in the LST experiments, GGH strongly overestimated �n,
again producing an unrealistic error variance estimate as compared with test-set errors, which
were in the range [−2.63; 2.11]K.
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Figure 13.3 Maps of estimates of the standard deviations �� of the SVR error generated by
the application of CI-GGGH to the same satellite acquisitions as in Figures 13.1 and 13.2.
Cloud-covered and sea areas are masked in black (partly reproduced by permission of IEEE).
(See plate 9)

13.5 Conclusions

This chapter presented methods in the SVR framework to automate the parameter-optimization
processes and estimate pointwise regression error variance. These methods have been validated
in the contexts of LST and SST retrieval from satellite infrared data.

In regard to the PSB technique for automatic parameter optimization, experimental results
for both LST and SST data sets turned out to be very similar to those obtained by classical grid
searches. On the other hand, the computation time for PSB applied to LST data sets turned
out to be much shorter than the execution times of the grid searches. In the SST experiments,
this difference in computation time was lower, due to the smaller number of training samples.
This demonstrates the capability of PSB to exhibit accuracies very close to those achieved by
grid searches with a much smaller computational burden. Note that the training sets employed
here for LST experiments were made of a few hundred samples. Even in such cases, the grid
searches required several hours to complete the training process; this makes them critical from
a computational viewpoint when applied to much larger training sets. In addition, a grid search
preliminary requires the user to manually predefine a search range and quantization step for
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each parameter. From this perspective, PSB is a feasible tool for fully automatic and fast train-
ing with essentially equivalent accuracies and no need for user interaction. This is important
for using the SVR approach to estimate LST/SST; it speeds up updates of the functional ap-
proximator, which is regularly used to generate maps of surface temperature estimates. Thus,
it is worth investigating the integration of PSB with incremental learning (Wang 2005).

The initial parameter configuration for PSB turned out not to be critical. It influenced the
specific local minimum to which the algorithm converged without significantly affecting the
test-set errors. The initial parameter vector had a stronger impact on the time taken to reach
convergence. Regardless, in the LST experiments, this time was always significantly shorter
than that required by grid searches. In the SST experiments, the time for the cross-validation
grid search and the average time of PSB were comparable, because of the above-mentioned
smaller training-sample size in this data set. Further analysis of the behavior of PSB from the
viewpoint of the bias-variance dilemma was also performed by iteratively running PSB on
randomly selected training subsets and then estimating the integrated biases and variances of
the resulting estimators. The experimental results suggest that the integrated bias contributions
were dominant with respect to the integrated variances for the three data sets, showing a limited
sensitivity to the specific choice of the training samples – provided that they are drawn from
the same probability distribution.

With regard to the problem of modelling space-variant statistics of the regression error,
two fully automatic methods have been presented within the framework of the Bayesian re-
formulation of SVR. The experiments suggest that the two techniques accurately model the
pixelwise probability distribution of the SVR errors on test samples by combining the ca-
pabilities to take into account both the stationary error component (by supervised parameter
estimation) and the non-stationary error contribution (by Bayesian SVR). Slightly more ac-
curate results were obtained for the ML estimation method than for the confidence-interval
approach. In particular, both techniques significantly outperformed a previous Bayesian SVR
technique that models the stationary contribution only as a function of the input SVR pa-
rameters; this technique gave quite poor results, even generating unrealistic error-variance
estimates.

In particular, the standard deviation values computed by the two methods for the LST
experiments were remarkably consistent with the temporal behavior of the overall regression
accuracy during the day time. Similar to traditional methods (e.g., split-window techniques),
SVR provides more accurate LST estimates when applied to images acquired in the first and
last hours of day time than in the middle hours of the day time. The temporal behavior of the
standard deviation estimates highlights these different situations: larger deviation values were
obtained for the middle hours of the day than in the first and last hours. This further shows the
ability of these methods to automatically provide a user/operator with an intrinsic evaluation
of the expected regression accuracy.

The experiments also showed that, when the variance of the non-stationary error component
is already overestimated by Bayesian SVR, the two techniques we presented do not amplify this
overestimation, as they automatically compute negligible values for the stationary contribution.
However, one drawback is that they cannot correct this overestimation, since the stationary
and non-stationary variance terms are additive and non-negative. This possible overestimation
issue did not turn out to be critical, at least, for the considered data sets. A future extension of
this work could be a modification of the Bayesian approach adopted to compute the variance
of the non-stationary term, aiming at tuning this component according to the values of the
regression errors for the training samples. Future studies could also involve the integration
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of non-gaussian estimators allowing higher order modelling (e.g., skewness, kurtosis) of the
error distribution.

Even though all of the methods described above have been tested in the context of surface-
temperature retrieval, they are not application specific. Both the generalization-error bound
concepts used by PSB and the Bayesian and parameter-estimation approaches for pixelwise
error modelling are general. Experiments for different regression problems (e.g., estimation of
other bio/geophysical parameters of the Earth’s surface) are required to appreciate the effec-
tiveness of these methods in other fields. It might also be worth integrating these algorithms
with hydrological or meteorological data-assimilation techniques (e.g., for flood prevention
and monitoring) (Boni et al. 2001; Caparrini and Castelli 2003).
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Feature extraction has become an important topic in remote sensing due to the usually very
high dimensionality of data, as well as the high redundancy among spectral bands. This
chapter reviews different multivariate analysis techniques for feature extraction, providing
a uniform treatment of Principal Component Analysis (PCA), Partial Least Squares (PLS),
Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS). Nonlinear exten-
sions are derived by means of kernel methods. Special attention is paid to a sparse version
of Kernel OPLS, which can significantly reduce the computational burden both in training
and operational phases. The discriminative power of these MVA methods has been studied
on a classification scenario, showing the superiority of kernel over linear versions, and the
convenience of using the target data for training the feature extractors.

14.1 Introduction

Most data analysis methods are able to deal efficiently with data in one or a few dimensions,
but real world applications often involve patterns of much larger dimension than that. In Guyon
and Elisseff (2003), for example, the listed benchmark data sets are of dimensions between
104 and 105. In remote sensing image processing, stacking spatial, spectral, temporal and
multiangular information may lead to a high dimensionality too. In addition, new superreso-
lution sensors are producing a high number of spectral channels. For that reason, areas like

Kernel Methods for Remote Sensing Data Analysis Edited by Gustavo Camps-Valls and Lorenzo Bruzzone
© 2009 John Wiley & Sons, Ltd



330 KERNEL-BASED FEATURE EXTRACTION

feature extraction and dimensionality reduction have become highly important independent
subtopics of signal processing and data analysis, and the challenges have motivated the de-
velopment of both completely new methods and nonlinear versions of well-known methods.
A family of methods that has been successful in several scientific areas, and has recently
gathered increasing interest in the remote sensing community, consists of the kernel exten-
sions of multivariate techniques such as principal component analysis (PCA) and partial least
squares (PLS).

Principal component analysis, also known as the Hotelling transform or the Karhunen–
Loeve transform, is not only a very old multivariate technique (Pearson 1901), but also an
extremely widespread method for dimensionality reduction. It consists of projecting the input
data set onto the directions of largest input variance. Thus, PCA only considers the input data
and does not take into account any target data set.

On the other hand, Partial Least Squares (PLS) is, in its most general form, a family of
techniques for analysing relations between data sets by latent variables. It is a basic assumption
that the information is over-represented in the data sets, and that these therefore can be reduced
in dimensionality by the latent variables. How these latent variables are exactly found, and how
the data are projected, vary within the approach, but they are often maximizing the covariance
of two projected expressions. Some of the appealing properties of PLS that have made it
popular are that it can handle data sets with more dimensions than samples and with massive
collinearity between the variables.

The basic PLS algorithm considers two data sets X and Y, where samples are arranged in
rows, and consists of finding latent variables, which accounts for the covariance X�Y between
the data sets. This is done either as an iterative procedure or as an eigenvalue problem. Given
the latent variables, the data sets X and Y are then transformed in a process that subtracts
the information contained in the latent variables. This process, which is often referred to as
deflation, can be done in a number of ways and these different approaches define the many
variants of PLS described in more detail below.

The PLS method is closely related to other multivariate analysis (MVA) techniques, such
as Canonical Correlation Analysis (CCA) and Principal Component Analysis (PCA) . In CCA,
the aim is to find linear projections of the data sets X and Y to maximize correlation between
the projected data sets. Thus, in contrast to PLS, CCA accounts for correlation rather than
covariance, and this makes CCA a special case of PLS with its own characteristic properties
(see Wegelin (2000) for further details). Principal component analysis, on the other hand, finds
the linear projections for the data set X that maximize the covariance X�X of these data. Thus,
PCA is, in contrast to PLS, not considering the second data set Y at all, and is therefore not
concerned about the relation between the data sets X and Y. To the extent the data set Y can
be regarded as target or output data, this property makes PCA an unsupervised approach and,
in that sense, clearly different from PLS.

Since canonical correlation analysis is a special case of the general PLS algorithm, some
may argue that the earliest trace of the ideas behind PLS is the paper introducing CCA from
the mid-1930s by Hotelling (Hotelling 1936), a period in which linear multivariate analysis
was founded. It is more accurate and in line with tradition, however, to accredit the early
nonlinear iterative partial least squares (NIPALS) from 1966 presented in Wold (1966a,b) by
Herman Wold as the historical starting point of PLS. In those papers, PLS was introduced as a
general framework within the statistical community but have since then had success in applied
scientific areas such as psychology, econometrics and chemometrics; see Geladi (1988) for a
discussion of the early history of PLS.
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The different needs, applications, and lines of development of PLS, have spanned a number
of different PLS variants. In one variant of PLS, sometimes referred to as the ‘canonical PLS’
variant or ‘PLS Mode A’, the data sets X and Y are treated entirely equal (Wold 1975) and the
deflation done by projecting the data into the space orthogonal to the latent variables. Because
of the symmetry between X and Y, this approach favours an interpretation of PLS in the line
of modelling data rather than regression from one data set to the other. The variant of PLS that
has become particularly popular, however, is the algorithm presented in Wold et al. (1984) and
studied in further details in Hoskuldsson (1988). The algorithm described in these, will in this
paper be referred to as PLS2, and is based on the following two assumptions: first that the latent
variables of X are good predictors of Y, and second that there is a linear relation between the
latent variables of X and of Y. This linear relation implies a certain deflation scheme, where
the latent variable of X is used to deflate also the Y data set. Several other variants of PLS exists
such as Orthonormalized PLS (Worsley et al. 1998) and PLS-SB (Sampson et al. 1989); see
Wegelin (2000) for a technical description, and Rosipal and Kramer (2006) for a well-written
contemporary overview.

No matter how refined the various early developments of MVA become, they are still linear
projections. Therefore, in those cases where the variables of the input and output spaces are
not linearly related, the challenge of the data is still poorly handled. To counter this, different
nonlinear versions of these methods have been developed and these can be categorized into
two fundamentally different approaches: (1) The modified variants in which the linear relation
between the latent variables are substituted by a nonlinear relation; and (2) the kernel variants
in which MVA methods are reformulated to fit a kernel approach. In the second approach,
the input data are mapped by a nonlinear function into a high-dimensional space in which
ordinary linear MVA is performed on the transformed data. A central property of this kernel
approach is the exploitation of the so-called kernel trick, i.e., that only the inner products in the
transformed space are necessary and not the explicit nonlinear mapping; see Schöelkopf and
Smola (2002) and Shawe-Taylor and Cristianini (2004) for excellent introductions to kernel
techniques. The kernel approach can be regarded as a generalization of a linear property
and many well-known linear methods for feature extraction have been kernelized, meaning
reformulated in a kernel framework, e.g., Principal Component Analysis (Schölkopf et al.
1998), Fisher discriminants (Mika et al. 1999), Linear Discriminant Analysis (Baudat and
Anouar 2000), and Canonical Correlation Analysis (Lai and Fyfe 2000). Among them, in this
paper we will focus on kernel versions of MVA algorithms, which can be applied to both
classification and regression problems.

The first paper to apply kernel methods on PLS was Rannar et al. (1994), but in this paper
the authors applied a linear kernel framework to reduce the computational complexity in the
input space rather than assuming a nonlinear mapping for flexibility and expressive power.
Instead, it was Rosipal and Trejo who in 2001 first presented a nonlinear kernel variant of
PLS (Rosipal and Trejo 2001). In that paper, the kernel matrix and the Y matrix are deflated
in the same way, and the PLS variant is thus more in line with the PLS2 variant than with the
traditional algorithm from 1975 (PLS Mode A). In this chapter the nonlinear kernel PLS by
Rosipal and Trejo is referred to simply as KPLS2, although many details could advocate a
more detailed nomenclature.

The appealing property of kernel algorithms in general is that one can obtain the flex-
ibility of nonlinear expressions while still solving only linear equations. For this reason,
kernel methods have been applied in a wide variety of fields, including remote sensing data
analysis (see, among others, Arenas-Garcı́a and Camps-Valls (2008), Banerjee et al. (2008),
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Camps-Valls and Bruzzone (2005) and Muñoz-Marı́ et al. (2007)). The downside is that, for
a data set of l samples, the kernel matrices to be handled are l× l, which for even a moderate
number of samples, quickly becomes a problem with respect to both memory and computing
time. This problem is present not only in the training phase, but also when predicting the
output given some large training data set: evaluating thousands of kernels for every new input
vector is, in most applications, not acceptable. Furthermore, there is, for these so-called dense
solutions in multivariate analysis, also the problem of overfitting. To counter the impractical
dense solutions in kernel PLS, a few solutions have been proposed: In Hoegaerts et al. (2004),
the feature mapping is approximated directly following the Nyström method and in Momma
and Bennett (2003) the underlying cost function is modified to impose sparsity.

In this chapter we provide an overview of some of the most commonly used multivariate
analysis methods, namely PCA, PLS and CCA, as well as a fourth method not so frequently
used in the literature: the Orthonormalized PLS (OPLS). After reviewing the equations that
define both the linear and kernel versions of these methods, we will also introduce a re-
cently proposed variant of the kernel OPLS method (Arenas-Garcı́a et al. 2007), which can
efficiently handle feature extraction in large data sets with many dimensions, such as those
that are typically encountered in remote sensing applications. The so-called Reduced Kernel
OPLS (rKOPLS) algorithm consists of two parts: an orthonormalized variant of kernel PLS
called KOPLS, and a sparse approximation for large scale data sets. Compared with related
approaches like Rosipal et al. (2003), the KOPLS transforms only the input data, and keeps
them orthonormal at two stages: the images in feature space and the projections in feature
space. The sparse approximation is along the lines of Lee and Mangasarian (2001), that is,
we are representing the reduced kernel matrix as an outer product of a reduced and a full
feature mapping, and thus keeping more information than changing the cost function or doing
simple subsampling.

The chapter is structured as follows. In the next section we review the principles of several
multivariate analysis methods: PCA, PLS, CCA and OPLS. After describing their nonlinear
extensions into the kernel framework in Section 14.3, the rKOPLS method is presented in
Section 14.4, explaining some of its more relevant advantages. Section 14.5 presents experi-
mental results in remote sensing data feature extraction for classification tasks, illustrating the
properties of the different methods.

14.2 Multivariate analysis methods

Multivariate Analysis (MVA) refers to a family of methods for feature extraction that extract
highly correlated projections of data representations in input and output spaces. Before pro-
viding a description of the most characteristic MVA methods, we start by giving the motivation
for these feature extraction methods, and by introducing some of the notation that will be used
throughout the chapter.

Consider we are given a set of data pairs {xi, yi}li=1, with xi ∈ Rd , and yi ∈ Rm, or, using
matrix notation, X = [x1, . . . , xl]� and Y = [y1, . . . , yl]�, where superscript � denotes
matrix or vector transposition. Although not strictly necessary for the derivation of MVA
algorithms, it is customary to centre the data (see, e.g., Shawe-Taylor and Cristianini (2004)
p. 147). We will denote by X̃ and Ỹ the centred versions of the data matrices, so that
Cxx = 1

l
X̃�X̃ and Cyy = 1

l
Ỹ�Ỹ are the sample estimations of the covariance matrices of
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the input and output data, respectively, and Cxy = 1
l
X̃�Ỹ represents the covariance between the

input and output data.
The objective of a standard linear multiregression problem is to adjust a linear model for

predicting the output variables from the input features, ˆ̃y = W�x̃. Normally, the mean square
error is accepted as the objective criterion. It is well known that the solution to this problem
can be easily obtained as:

W = X̃†Ỹ, (14.1)

where X̃† is the Moore–Penrose pseudoinverse of X̃, X̃† = (X̃�X̃)−1X̃�. However, this prob-
lem is not well-posed if linear dependencies exist among the components of the input vec-
tors, since in that case X�X becomes rank-deficient (and thus, non-invertible). This problem
can easily arise in remote sensing applications when working with hyperspectral images
because of the high collinearity between adjacent spatial features. The same problem is en-
countered in the small-sample-size problem (i.e., when l < d). Note that this is often the case
when using Kernel Methods, since then input data lies in a space of very high (even infinite)
dimensionality.

The solution suggested by MVA to the above singularity problem consists in projecting
the input data into a subspace that preserves the most relevant information for the regression
problem, using a projection matrix of size d × np, U = [u1, u2, · · · , unp ], where ui is the
ith projection vector and np the dimension of the projection space. Effectively, if we denote
by X̃′ = X̃U a matrix containing the np extracted features of the original input data, the new
solution to the regression problem is given by

W = X̃′†Ỹ = (X̃′�X̃′)−1X̃′�Ỹ. (14.2)

Note that now it is necessary only to invert annp × npmatrix (normallynp � d). Furthermore,
if U is properly designed, X̃′�X̃′ will be full rank, making the solution unique.

In certain cases, feature extraction should also be considered for the objective (dependent)
data, e.g. when output variables are heterogeneous and/or redundant or, in classification prob-
lems, when the number of classes is large. In these cases, output feature extraction can be
expressed in similar terms as the process of projecting Ỹ using the m× np matrix projection
operator V = [v1, v2, · · · , vnp ], i.e., Ỹ′ = ỸV.

The different MVA methods differ in how the projection matrices U and V are obtained,
their common goal being computing informative projections, in the sense that the projected
input and output data are maximally aligned. In the rest of the section we will review the
particularities of several such methods: PCA, PLS, CCA and OPLS.

14.2.1 Principal component analysis (PCA)

One of the most simple schemes to reduce the dimensionality of data is Principal Component
Analysis (PCA) (Jollife 1986), which only pays attention to the representation of the data in
the original space. It is in this sense that we refer to PCA as a unsupervised feature extraction
method.

By exploiting the covariance between the different variables (i.e., the columns of X̃), PCA
extracts the directions of the input space that maximize the variance of the projected data.
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Traditionally, PCA is stated as the solution to an eigenvalue equation of the input covariance
matrix

Cxxui = �iui,

where the eigenvalues {�i}npi=1, with �i ≥ �i+1, are the np largest eigenvalues of Cxx, and
{ui}npi=1 their corresponding eigenvectors, which define the projection vectors. This can also
be expressed more compactly as:

PCA: U = arg max
U

Tr{U�CxxU}

subject to: U�U = I,
(14.3)

where I is the identity matrix of size np.
Using Lagrange multipliers, it can be shown that the solution to (14.3) is obtained when the

columns of the projection matrix U are the eigenvectors of the symmetric matrix Cxx associated
with its np largest eigenvectors, or by a different set of vectors that form an orthonormal basis
of the same space.

Typically, the PCA algorithm is implemented by extracting the projection vectors one by
one, using a sequential method consisting of the following two phases.

1. The leading vector of the covariance matrix, and its corresponding eigenvalue, {�i, ui},
are extracted. Different methods can be used to extract the largest eigenvector of a
symmetric matrix. For instance, in Table 14.1 we provide the pseudocode of the well-
known power method.

2. The covariance matrix is deflated to remove the eigenvector obtained in the first step:

Cxx ← Cxx − �iuiu�
i .

This deflation process amounts to projecting the data matrix onto the orthogonal com-
plement of the direction given by ui, and can also be expressed as

X̃ ← X̃[I − uiu�
i ].

Table 14.1 Iterative power method for extracting the largest eigenvector of Cxx

1 - Initialize u.∗
2 - Iterate until convergence

u ← Cxxu
u ← u/‖u‖2

3 - u is the leading eigenvector, and � = ‖Cxxu‖2
‖u‖2

its associated eigenvalue

∗ To make sure that u does not lie in the null space of Cxx, we can initialize it as any of the columns of
the matrix.
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By following this two-step process, we are not only guaranteeing that matrix U is a solution
to (14.3), but also that the solution achieved at each iteration is optimal (according to PCA
criterion) for the current number of projections.

An important property of the projections given by the PCA method is that they can provide
the best approximation of the original data in the mean square error sense. In other words, and
noting that that the expression of the projected data in the original space is given by X̃UU�,
the PCA problem can alternatively be reformulated as

PCA(2): U = arg min
U

‖X̃ − X̃UU�‖2
F , (14.4)

where ‖ · ‖F is the Frobenius norm of a matrix. Indeed, this optimality criterion is the main
motivation underlying the PCA method. However, when the extracted projections are to be
used in a supervised learning task (either classification or regression), it is clear that the most
useful projections will be those that are highly aligned with the objective data, and these are
not necessarily those containing the highest variance in input space. For this reason, a better
performance can be expected from supervised MVA methods that make use of the output data
for the optimization of the projection matrix.

14.2.2 Partial least squares

Partial Least Squares (PLS), developed by Herman Wold in 1966 (Wold et al. 1984), is
probably one of the simplest methods for supervised MVA. Among its many advantages is its
ability to deal with highly correlated data, which has justified its very extensive use in many
different fields, such as chemometrics or remote sensing. In these applications, data of interest
are usually obtained from the exploration of a range of spectral frequencies, and the variables
obtained in such a way frequently suffer from massive collinearity.

The underlying assumption of a PLS model is that the system of interest is driven by a few
latent variables (also called factors or components), that are linear combinations of observed
explanatory variables (i.e., spectral channels or bands). The central idea of PLS is to find a
few eigenvectors of spectral matrices that will produce score values that both summarize the
variance of spectral reflectance well and highly correlate with response variables (i.e. material
class or corresponding biophysical parameter).

In order to do so, PLS looks for the projection vectors that maximize the covariance
between the projected input and output data:

PLS: u, v = arg max
u,v

u�Cxyv
u�u v�v

, (14.5)

which can also be expressed in terms of the complete projection matrices as

PLS(2): U,V = arg max
U,V

Tr{U�CxyV}

subject to: U�U = V�V = I.
(14.6)
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The solution to such a problem is given by the singular value decomposition (SVD) of Cxy.
As with PCA, practical implementations are usually based on a sequential two-steps scheme,
in which projection vectors ui and vi are first obtained as the singular vectors associated with
the largest singular value of Cxy. The power method can also be used here, by noting that ui is
the first eigenvector of CxyC�

xy and vi is proportional to C�
xyui. After obtaining the projection

vectors, the cross-covariance matrix has to be deflated, and different PLS variants are described
in the literature, which basically differ on how this deflation step is carried out.

For instance, PLS-SB (Sampson et al. 1989) proceeds in a PCA-like way, projecting data
matrices X̃ and Ỹ into the orthogonal complements of the directions given by ui and vi,
respectively:

X̃ ← X̃[I − uiu�
i ]

Ỹ ← Ỹ[I − viv�
i ].

(14.7)

This process is equivalent to the deflation of the cross-covariance matrix according to

Cxy ← Cxy − �iuiv�
i ,

where �i is the singular value associated with the pair {ui, vi}. By proceeding in such a way, it
can be seen that PLS-SB achieves the same projection vectors that would be obtained from a
block solution based on the SVD of the original covariance matrix Cxy, and that the maximum
number of projections that can be extracted is given by the rank of such a matrix.

A PLS method that is especially well-suited for regression is the algorithm presented in
Wold et al. (1984), which we will refer to here as PLS2, in accordance with Wegelin (2000).
Since the values that are going to be used for the regression of the output data are given at each
iteration by X̃ui, PLS2 introduces a deflation scheme consisting in projecting the columns of
X̃ and Ỹ into the orthogonal complement of X̃ui:

X̃ ←
(

I − X̃uiu�
i X̃�

‖X̃ui‖2
2

)
X̃ (14.8)

Ỹ ←
(

I − X̃uiu�
i X̃�

‖X̃ui‖2
2

)
Ỹ. (14.9)

It can be shown that the deflation of Ỹ at each step is not necessary, and does not affect the
projection vectors extracted by PLS2.

Since this deflation process does not decrease the rank of Ỹ, PLS2 can in general extract
as many projections as the original dimensionality of the input data, in contrast to a maximum
of rank(Cxy) projections for PLS-SB. Another difference between the two algorithms is that
in PLS2 the columns of the projected input data matrix, {X̃ui}npi=1, are orthogonal, while for
PLS-SB they are not. Regarding the projection vectors, it can be shown (Shawe-Taylor and
Cristianini 2004, Subsection 6.7.1) that {ui}npi=1 constitutes a set of orthonormal vectors for
both schemes, while the output projection vectors {vi}npi=1 are orthogonal only for PLS-SB.
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14.2.3 Canonical correlation analysis

Canonical Correlation Analysis (CCA) was first proposed by H. Hotelling in 1936 (Hotelling
1936). In contrast to the maximization of covariance pursued by PLS, CCA searches for the
directions of maximum correlation between input and output data. In this way, CCA can
more conveniently deal with directions of the input (output) space that present very high
variance, and that would therefore be over-emphasized by PLS, no matter whether they are
very correlated with the output (input) space representation or not.

The maximization of correlation carried out by CCA allows one to state this method as
the following maximization problem:

CCA: u, v = arg max
u,v

(u�Cxyv)2

u�Cxxu v�Cyyv
. (14.10)

Now, noting that the above quotient is invariant to a scaling of the projection vectors u and v,
this problem can be alternatively rewritten as

CCA(2): u, v = arg max
u,v

u�Cxyv

subject to: u�Cxxu = v�Cyyv = 1,
(14.11)

where the removal of the square constrains the solution to pairs {u, v} resulting in a positive
value of u�Cxxv. Note that this is not a critical constraint since we are just interested in the
directions defined by the projection vectors. Another important property of CCA is that the
projection vectors are not affected by a scaling of the original data, as it can easily be seen
from the maximization problem (14.10).

We can also express the CCA problem in terms of the complete projection matrices U and
V as

CCA(3): U,V = arg max
U,V

Tr{U�CxyV}

subject to: U�CxxU = V�CyyV = I.
(14.12)

Introducing Lagrange multipliers, and after some simple algebraic manipulations, it can be
shown that CCA projection vectors are defined by the solutions of the following generalized
eigenvalue problem:

(
0 Cxy

C�
xy 0

) (
u

v

)
= �

(
Cxx 0

0 Cyy

) (
u

v

)
, (14.13)

where 0 represents a matrix of zeros of appropriate dimensions. The above equation can be
reformulated as a standard eigenvalue problem, as explained in Hardoon et al. (2003).
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Another interesting aspect of CCA is its equivalency to the minimization of the following
least squares cost function:

CCA(4): U,V = arg min
U,V

‖ỸV − X̃U‖2
F

subject to: U�CxxU = V�CyyV = I.
(14.14)

In other words, (14.14) shows that CCA searches for projections of the input and output data
matrices such that each column of Ỹ′ can be reconstructed from the corresponding column of
X̃′ with minimum square loss. Note, however, that in general we will be more interested in
approximating the original label matrix, Ỹ, rather than a certain projection of it, and it is in
this sense that OPLS becomes optimal.

14.2.4 Orthonormalized partial least squares

In this subsection we review Orthonormalized Partial Least Squares (OPLS) (Worsley et al.
1998), which is defined by the following maximization problem:

OPLS: U = arg max
U

Tr{U�CxyC�
xyU}

subject to: U�CxxU = I.
(14.15)

Note that, unlike PLS and CCA, OPLS only performs dimensionality reduction in the input
space. According to our discussion at the beginning of the section, when tackling a linear
multiregression problem, as in many other supervised learning situations, we are primarily
concerned with the extraction of good features in the input space.

As with CCA, the solution to the OPLS optimization problem leads to a generalized
eigenvalue problem

CxyC�
xyu = �Cxxu. (14.16)

The above equation can be rewritten as a standard eigenvalue problem by premultiplying both
sides of the equality by C−1

xx . A more convenient formulation can be obtained if we define

w = C1/2
xx u. After premultiplying (14.16) by C−1/2

xx , we get

C−1/2
xx CxyC�

xyC
−1/2
xx w = �w, (14.17)

so that now vectors w are obtained as the eigenvectors of a symmetric matrix. Finally, OPLS
projection vectors can be recovered from w as u = C−1/2

xx w.
It is important to note that (14.17) is only a valid expression when Cxx is a full rank matrix.

When this is not the case, we could proceed by first removing the directions of the input space
where the data do not present any variance (i.e. by projecting the input data into the subspace
spanned by the eigenvectors of Cxx with non-zero eigenvalues).

The main argument in favour of OPLS with respect to other MVA methods is its optimality,
in the mean square error sense, for performing linear multiregression of Ỹ on the projected
input data (Arenas-Garcı́a and Camps-Valls 2008; Roweis and Brody 1999). In other words,
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Table 14.2 Some relevant properties of the linear MVA methods reviewed in Section 14.2

PCA PLS-SB PLS2 CCA OPLS

Max. problem u�Cxxu u�Cxyv u�Cxyv u�Cxyv u�CxyC�
xyu

Constraints u�u = 1
u�u = 1
v�v = 1

u�u = 1
v�v = 1

u�Cxxu = 1
v�Cyyv = 1

u�Cxxu = 1

Max. np r(X̃) r(Cxy) r(X̃) r(Cxy) r(Cxy)

{X̃ui}
Orthogonal?

No No Yes Yes Yes

r(·) denotes the rank of the matrix inside the parentheses.

while CCA and PLS are optimal in the sense of maximizing correlation and covariance,
respectively, OPLS becomes optimal with respect to the following problem:

OPLS(2): U = arg min
U

‖Ỹ − X̃UW‖2
F , (14.18)

where W = X̃′†Ỹ is the optimal regression matrix. Note that, if one is interested in extracting
features of the input data for a subsequent approximation of the label matrix, this is a much
more sensible criterion than either (14.4) or (14.14).

As a summary, in Table 14.2 we review some of the most relevant properties of the linear
MVA methods that we have analysed in this section.

14.3 Kernel multivariate analysis

All the algorithms reviewed in Section 14.2 can be used to extract linear projections of the
input and output data. However, the quality of the extracted features will seriously degrade
when the input and output spaces are not linearly related. To increase the expressiveness of
MVA projections, several authors have proposed nonlinear extensions of these algorithms.
In particular, the kernel framework has been applied to obtain nonlinear versions of all four
algorithms reviewed in the previous section: Kernel PCA (Schölkopf et al. 1998), Kernel PLS
(Rosipal and Trejo 2001), Kernel CCA (Lai and Fyfe 2000) and Kernel OPLS (Arenas-Garcı́a
et al. 2007).

As explained in previous chapters, Kernel Methods work by first projecting the input
data into a high (possibly infinite) dimensional Reproducing Kernel Hilbert Space, where a
standard linear algorithm is applied. This results in a nonlinear method under the perspective
of the input space.

To introduce Kernel MVA (KMVA) algorithms, we will first consider a mapping func-
tion �(·) : Rd → F that projects input data into feature space. In this way, the new train-
ing data set is {�(xi), yi}li=1, where �(xi) ∈ F and yi ∈ Rm, or, using matrix notation,
� = [�(x1), · · · ,�(xl)]�, Y = [y1, · · · , yl]�. As before, we will consider centred versions
of these matrices, and denote them by �̃ and Ỹ.

To obtain the kernel version of a given linear algorithm, we have to replace the original
input data matrix by �̃. By doing so, the projections of the input and output data will be
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given by �̃
′ = �̃U and Ỹ′ = ỸV, respectively, where the projection matrix U is now of size

dim(F) × np. However, the direct application of this idea suffers from some serious practical
limitations when the dimension ofF is very large (which is usually the case). Note, for instance,
that the input covariance matrix, C�� = 1

l �̃
�
�̃, which is usually needed by the different MVA

methods, becomes of size dim(F) × dim(F) under this approach.
To implement realizable kernel MVA algorithms we will have to rewrite the equations

presented in Section 14.2 in terms of inner products in F only. Therefore, we will rely during
our derivations on the availability of a kernel matrix Kx = �̃�̃

�
of dimensions l× l, which

contains the inner products of any two training points [Kx]ij = K̃(xi, xj) = 〈�̃(xi), �̃(xj)〉.
In the following subsections, we will see how the application of the Representer’s Theorem

(Schöelkopf and Smola 2002) (see also Chapter 2) can also be used here to rewrite linear
MVA algorithms in terms of inner products only, thus allowing their extension to the kernel
framework.

14.3.1 Kernel PCA

As in the linear case, the goal of KPCA is to find the projections that maximize the variance
of the input data in the feature space. By simply replacing X̃ by �̃ in (14.3), KPCA can be
analytically formulated in the following way:

KPCA: U = arg max
U

Tr{U��̃�
�̃U}

subject to: U�U = I.
(14.19)

To rewrite the above equations in terms of inner products only, we can make use of the
Representer’s Theorem (Schöelkopf and Smola 2002), which states that the projection vectors
can be expressed as a linear combination of the training data in F. Using matrix notation, this
can be expressed as U = �̃

�A, where A = [˛1, · · · ,˛np ]�, with vectors ˛i containing the
coefficients corresponding to the ith projection vector. Now, KPCA can be reformulated as
follows:

KPCA(2): A = arg max
A

Tr{A�KxKxA}

subject to: A�KxA = I.
(14.20)

Therefore, the solution will now be given in terms of the l× np matrix A, which defines the

projection operator via U = �̃
�A.

As with the linear MVA methods, it is relatively straightforward to obtain the generalized
eigenvalue problem that is satisfied by the solution of (14.20):

KxKx˛ = �Kx˛.

It is also possible to show (Schölkopf et al. 1998) that all the solutions of interest of the
problem above also satisfy the following standard eigenvalue problem:

Kx˛ = �˛,
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so that vectors {˛i} are given by the eigenvectors associated with the largest eigenvalues of
the kernel matrix, and their extraction can be implemented in very much the same way as the
two-step sequential method that was described for linear PCA:

1. Extract the leading eigenvector of Kx, and its corresponding eigenvalue: {�i,˛i}.
2. Deflate the kernel matrix according to Kx ← Kx − �i˛i˛

�
i .

Additionally, although the above procedure determines the projection directions of KPCA,
(14.19) requires all projection vectors ui to be of unitary norm. This can be implemented by
a simple rescaling of the optimal coefficients:

˛i ← ˛i√
˛�
i Kx˛i

.

Regarding the optimality of KPCA in the least squares error sense, it is clear that property (14.4)
will still hold for KPCA in feature space. In other words, KPCA will extract the features that
allow for the best approximation (in the least squares error sense) of the input data in feature
space, �̃.

Finally, it is important to mention that in many cases the projection matrix U cannot be
explicitly calculated. However, note that we are actually not interested on this matrix itself, but
on the projections of input data along the directions determined by the columns of U. When
we want to extract the features corresponding to a new pattern z, we can do so using

�̃
′
(z) = �̃(z)U = �̃(z)�̃

�A =

⎛
⎜⎜⎝
K̃(x1, z)

...

K̃(xl, z)

⎞
⎟⎟⎠ A,

which again requires only the computation of inner products (kernels) in F.

14.3.2 Kernel PLS

Some recent developments based on kernel methods have lead to nonlinear PLS algorithms
(Rosipal and Trejo 2001), which are based on maximizing the variance between the input data
in F and the objective data matrix Ỹ:

KPLS: U,V = arg max
U,V

Tr{U��̃�ỸV}

subject to: U�U = V�V = I.

(14.21)

When �̃ cannot be explicitly computed, it is necessary to rewrite the maximization problem
in terms of inner products. To do so, we will again rely on the Representer’s Theorem that
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states that U = �̃
�A, so that KPLS can be reformulated as

KPLS(2): A,V = arg max
A,V

Tr{A�KxỸV}

subject to: A�KxA = V�V = I.
(14.22)

Again, the solutions to this problem can be obtained from the singular value decomposition
of KxỸ.

As in the linear case, it is possible to implement the sequential extraction of KPLS pro-
jections, with different deflation schemes leading to different KPLS versions. For instance, to
derive the deflation scheme associated with KPLS-SB we will simply have to replace X̃ and
ui in (14.7) by �̃ and �̃

�
˛i, respectively, arriving at

�̃ ← �̃[I − �̃
�
˛i˛

�
i �̃] = �̃− Kx˛i˛

�
i �̃

Ỹ ← Ỹ[I − viv�
i ].

(14.23)

Note that implementing the deflation of �̃ could be unfeasible for certain selections of the
mapping function �(x). Nevertheless, the eigenvalue problem to be solved involves only Kx,
which can still be deflated in those cases according to

Kx ← [�̃− Kx˛i˛
�
i �̃][�̃

� − �̃
�
˛i˛

�
i Kx] = Kx − Kx˛i˛

�
i Kx. (14.24)

We can proceed in a similar way to obtain the deflation equations for KPLS2. A direct kernel
extension of (14.8) results in

�̃ ←
(

I − Kx˛˛
�Kx

‖Kx˛‖2
2

)
�̃,

so that the kernel matrix can be deflated using

Kx ←
[

I − Kx˛i˛
�
i Kx

‖Kx˛‖2
2

]
Kx

[
I − Kx˛i˛

�
i Kx

‖Kx˛‖2
2

]
, (14.25)

which again does not require the explicit calculation of the input data in F. For a more detailed
description of KPLS2, as well as implementation details of this kernel MVA method, the reader
is referred to Shawe-Taylor and Cristianini (2004).

14.3.3 Kernel CCA

In this subsection we consider a kernel extension of CCA. Unlike some previous works (Lai
and Fyfe 2000), and in order to provide a similar treatment of all KMVA methods, we will
consider that only the input data are mapped into a feature space. Furthermore, it has also been
found that applying nonlinear projections to both input and output data can result in serious
overfitting problems (Hardoon et al. 2003; Shawe-Taylor and Cristianini 2004).
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Replacing X̃ by �̃ in (14.12), and by virtue of the Representer’s Theorem U = �̃
�A, one

can formulate Kernel CCA (KCCA) as

KCCA: A,V = arg max
A,V

Tr{A�KxỸV}

subject to: A�K2
xA = V�CyyV = I.

(14.26)

Now, we can proceed in a very similar way to the linear case to derive the following generalized
eigenvalue problem which characterizes KCCA:

(
0 KxỸ

Ỹ�Kx 0

) (
˛

v

)
= �

(
K2
x 0

0 Cyy

) (
˛

v

)
, (14.27)

where 0 represents a matrix of zeros of appropriate dimensions.
When using KCCA we are selecting the directions in feature space that have a maxi-

mum correlation with a certain projection of the target data (i.e., the kernel extension of the
previously presented result (14.14)).

14.3.4 Kernel OPLS

As occuring with linear OPLS, and in comparison with other Kernel MVA methods, Kernel
OPLS (KOPLS) presents the advantage of extracting the directions in feature space F that
minimize the residuals of a multiregression scheme that approximates the label matrix (see
(14.18)).

To obtain the maximization problem that defines KOPLS we will proceed as usual. Re-
placing X̃ by �̃ in (14.15) and using the Representer’s Theorem to rewrite the projection
operator as U = �̃

�A, we get

KOPLS: A = arg max
A

Tr{A�KxKyKxA}

subject to: A�K2
xA = I.

(14.28)

Applying Lagrange multipliers, it can be shown that the columns of A are given by the solutions
to the following generalized eigenvalue problem:

KxKyKx˛ = �KxKx˛. (14.29)

To solve this problem, we can also use an iterative procedure consisting of calculating the
leading pair {�i,˛i}, and deflating the matrices. The deflation equation for KOPLS is:

KxKyKx ← KxKyKx − �iKxKx˛i˛
�
i KxKx.

To understand such a deflation procedure, note that it is equivalent to

Ỹ ← Ỹ −
√
�iKx˛i,
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Table 14.3 Properties of Kernel MVA methods.

KPCA KPLS-SB KPLS2 KCCA KOPLS

Max. problem ˛�KxKx˛ ˛�KxỸv ˛�KxỸv ˛�KxỸv ˛�KxKyKx˛

Constraints ˛�Kx˛ = 1
˛�Kx˛ = 1

v�v = 1
˛�Kx˛ = 1

v�v = 1
˛�K2

x˛ = 1
v�Cyyv = 1

˛�K2
x˛ = 1

Max. np r(Kx) r(KxỸ) r(Kx) r(KxỸ) r(KxỸ)

r(·) denotes the rank of the matrix inside the parentheses. Note that r(KxỸ) ≤ min{r(Kx), r(Ỹ)}, and
r(Kx) ≤ l.
To compute projections for new data, all methods require l kernel computations per pattern.

i.e., at each step we are removing from the label matrix the best approximation based on the
newly extracted projections of the input data: Kx˛i.

Since deflation of the label matrix decreases by 1 the rank of Ỹ, the rank of KxKyKx

also decreases by 1. Accordingly, the maximum number of features that can be extracted with
KOPLS is rank(KxỸ), which for most mapping functions will be min{l, m}.

14.3.5 Some considerations about Kernel MVA methods

In this section we have introduced the formulation of some of the most frequently used Kernel
MVA algorithms. All these methods require the computation of the kernel matrix of the input
data, Kx, and this is precisely their main limitation when dealing with large data sets, since both
computation time and storage requirements grow with the square of the number of samples in
the training set. Another limitation of Kernel MVA is that matrix A will in general be dense,
making the extraction of features for new data a computationally demanding task, requiring
l kernel computations per pattern. In the next section, we will present a recent extension of
KOPLS that both obtains sparse solutions and significantly decreases the required computation
for the extraction of the projection vectors.

As a summary of this section, Table 14.3 compares some of the most important properties
of the methods described.

14.4 Sparse Kernel OPLS

To obtain a more practical scheme, a simple approach is to impose sparsity in the projection
vectors representation. Rather than expressing each projection vector as a combination of
all training data in feature space, we can use the approximation U = ��

RB, where �R is a
subset of the training data containing onlyR patterns (R < l) and B = [ˇ1, · · · ,ˇnp] contains
the coefficients of the compact model. When doing so, projection of new data is now given
by �̃

′
(z) = �̃(z)��

RB, so that only R kernels per pattern are needed. Note, however, that this
approach is not equivalent to simple subsampling of the training data, since all training patterns
will still be used in the maximization problem that defines the optimal matrix B.

Regarding the selection of the data points to be included in �R, several strategies can be
adopted to obtain a reduced data set that is as rich as possible. Nevertheless, for not too small
R, good results are obtained by a random selection, very much in line with sparse greedy
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approximation for SVM (Lee and Mangasarian 2001). Therefore, in the following we will
rely on this very simple selection strategy.

Next, we explain how this approximation can be exploited to derive a recently proposed
method for efficient Kernel OPLS feature extraction (rKOPLS) (Arenas-Garcı́a et al. 2007).
Replacing X̃ and U in (14.15) by �̃ and U = ��

RB, respectively, leads to

rKOPLS: B = arg max
B

Tr{B�KRKyK�
RB}

subject to: B�KRK�
RB = I,

(14.30)

where we have defined the reduced kernel matrix KR = �R�̃
�

of size R× l.
Similarly to the standard KOPLS algorithm, the solution of rKOPLS is obtained by solving

KRKyK�
Rˇ = �KRK�

Rˇ. (14.31)

A procedure for the sequential extraction of rKOPLS projections can be given by the iterative
application of the two following steps.

1. Obtain the largest eigenvalue of the generalized eigenvalue problem, �i, and its corre-
sponding eigenvector, ˇi. Normalize ˇi to satisfy the constraints in rKOPLS:

ˇi ← ˇi√
ˇ�
i KRK�

Rˇi

.

2. Deflate the following matrix

KRKyK�
R ← KRKyK�

R − �iKRK�
Rˇiˇ

�
i KRK�

R .

which, as for standard KOPLS, accounts for removing from Ỹ the best approximation
based on the current projections.

Table 14.4 compares the main properties of standard KOPLS and rKOPLS, and illustrates the
main advantages that are obtained from using the sparsity constraint for U. These advantages
can be summarized as follows:

• rKOPLS only requires the computation of R× l kernels for the training phase (with
R � l normally) in contrast to l2 kernel evaluations for standard kernel MVA methods;

• only R kernel evaluations per pattern are required to extract projections for new data,
while l kernel evaluations per pattern are needed for standard kernel MVA methods;

• in spite of KR being of size R× l, rKOPLS only requires the explicit calculation of two
smaller matrices, KRKYK�

R and KRK�
R , both of size R× R;

• parameter R acts as a sort of regularizer, so that matrix KRK�
R is better conditioned than

the equivalent K2
x for standard KOPLS.
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Table 14.4 Comparison of standard KOPLS and
rKOPLS algorithms.

KOPLS rKOPLS

Max. problem ˛�KxKyKx˛ ˇ�KRKyK�
Rˇ

Constraints ˛�K2
x˛ = 1 ˇ�KRK�

Rˇ = 1
Kernel
matrix size l× l R× l

Storage O(l2) O(R2)
No. of nodes l R

Max. np r(KxỸ) r(KRỸ)

r(·) denotes the rank of the matrix inside the parentheses. Note
that r(KRỸ) ≤ min{r(KR), r(Ỹ)}, and r(KR) ≤ R.

Finally, we would like to mention that imposing sparsity in the same way that we have consid-
ered for rKOPLS is also a valid approach for most MVA methods. As an important exception,
algorithm KPLS2 cannot benefit from this possibility, given that the deflation scheme would
still require the evaluation of the complete kernel matrix.

14.5 Experiments: pixel-based hyperspectral
image classification

14.5.1 Data set description and experimental setup

In this section, we analyse the performance of different linear and nonlinear MVA methods
for feature extraction in remote sensing classification tasks, paying a special attention to the
rKOPLS algorithm that we have just described. In particular, we focus on a typical case of
high dimensional image classification in remote sensing: pixel-based hyperspectral image
classification. In such a case, the input space is normally redundant because of the collinearity
introduced by the (locally stationary) spatial features.

For our experiments, we have used the standard AVIRIS image taken over NW Indiana’s
Indian Pine test site in June 1992. We removed 20 noisy bands covering the region of water ab-
sorption, and finally worked with 200 spectral bands. The high number of narrow spectral bands
induce a high collinearity between them. Discriminating among the major crops in the area can
be very difficult (in particular, given the moderate spatial resolution of 20 metres), which has
made the scene a challenging benchmark to validate classification accuracy of hyperspectral
imaging algorithms. The calibrated data is available online (along with detailed ground-truth
information) from http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec. In all our experiments we
used the whole scene, consisting of the full 145 × 145 pixels, which contains 16 classes, rang-
ing in size from 20 to 2468 pixels, and thus constituting a very difficult situation. Among the
10 366 pixels for which labels are available, 20% of the data is used for training the feature ex-
tractors, keeping the remaining 80% to test the discriminative power of the extracted features.

The suitability of MVA methods in general, and of the rKOPLS method in particular, to
classification setups is guaranteed if an appropriate labelling scheme (e.g. 1-of-C encoding)
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is used to encode class membership into the label matrix. When doing so, features revealed to
be useful to approximate Y can also be expected to provide useful information for predicting
the data class. See, e.g., Rifkin and Klautau (2004) for a discussion about the application of
square loss to classification problems.

To keep things simple, the discriminative power of all (linear and nonlinear) extracted
features was tested using a simple classifier consisting of a linear least squares model followed
by a ‘winner-takes-all’ activation function (Bishop 1996). To be more specific, we first obtain
the optimal regression matrix for the least squares problem, i.e., W = X̃′†Ỹ and W = �̃

′†Ỹ
for the linear and kernel methods, respectively, with Y being the target matrix using 1-of-C
encoding scheme. After obtaining W with the training data, the estimated class of new patterns
is estimated as ŷ = w.t.a.[W�x̃] for the linearly extracted features and ŷ = w.t.a.[W��̃(x)]
for the kernel methods.

14.5.2 Results description

Figure 14.1 shows the overall classification accuracy and kappa statistic when using the fea-
tures extracted using the linear MVA methods, for a varying number of features np. First,
note that the overall accuracy and kappa statistic curves exhibit very similar behaviors, which
suggests that the obtained models are not unbiased in terms of accuracy. Note also how OPLS
outperforms all other methods for any number of extracted features, confirming the superior
discriminative power of the projections extracted using this method. The only other method
that somehow gets close in behavior to OPLS is CCA. However, note that OPLS projections are
easier to compute, since CCA comes as the solution to a more complex generalized eigenvalue
problem. When the maximum number of projections are used, all methods except PLS-SB
achieve the same error, but PCA and PLS2 require 200 features (i.e., the dimensionality of the
input space), while 15 projections suffice for CCA and OPLS.

Figure 14.2 displays the classification maps using the features extracted with linear PCA
(for np = 10 and np = 100), linear OPLS (for np = 10), and its kernel version rKOPLS.
At first glance, it may appear that using PCA with 100 projections provides somehow more
noisy results than when using only the ten first features extracted by PCA. Studying the

Figure 14.1 Average classification accuracy (%) (left) and kappa statistic (right) as a func-
tion of the number of projections extracted by the linear MVA methods.
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Figure 14.2 RGB composition and ground truth, along with the classification maps for
Indiana’s Indian Pine image, using the first np features extracted by different MVA methods:
linear PCA, linear OPLS and rKOPLS.
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images in more detail and comparing them with the true label information, it is evident that
PCA with np = 10 lacks expressive power, and leads to incorrect classification in many of
the crops that constitute the image. OPLS with np = 10 obtains similar results than PCA
with np = 100, which illustrates that OPLS features are able to better summarize the most
discriminative information contained in the input variables. The images also suggest that it
would be beneficial to exploit spatial context in order to further improve the accuracy of the
classifier, for instance by adding a postprocessing stage where such spatial information is
taken into account.

For the nonlinear case, we have considered KPCA, KPLS2 and KOPLS with Gaussian
kernel k(xi, xj) = exp(−‖xi − xj‖2

2/2�
2), using a ten-fold cross-validation procedure on the

training set to select �. Figure 14.3 displays the classification accuracy for the three methods.
The sparse rKOPLS method (with R = 1000) was used instead of the more complex standard
KOPLS. The same conclusions obtained for the linear case also apply to MVA methods in
feature space. Therefore, we see that rKOPLS achieves a better performance than the other
two methods, which require a much larger number of projections to achieve comparable
performance. KPLS2 also outperforms KPCA, confirming the convenience of using the target
matrix when feature extraction is considered for supervised learning. In the limit of np, we
should stress that the behavior of the three methods would be very similar. However, we can
obtain much better results from rKOPLS with a lower computational and memory burden.

When comparing Figures 14.1 and 14.3, we can also see that nonlinear methods obtain
much higher recognition rates than linear MVA techniques (72 % vs. 85 %, approximately),
demonstrating the superior expressive power of the kernel extensions. The superiority of
nonlinear techniques is also clear when comparing in Figure 14.2 the class predictions of
OPLS and rKOPLS for the different pixels in the image.

To finish the section, we have also studied the influence of parameterR on rKOPLS perfor-
mance. Figure 14.4 shows rKOPLS recognition rates for np = 15 and for varying R. For this
case, we have considered that rKOPLS features were used as the inputs of two different classi-
fiers: (1) a simple linear model trained with the pseudoinverse of the projections (as illustrated
before); and (2) a linear SVM with parameter C selected using ten-fold cross-validation. The
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Figure 14.4 Overall accuracy of two different linear classification models using rKOPLS
features as input variables. Performance is shown as a function of parameterR. The accuracy
of an RBF-SVM classifier is also indicated for reference purposes.

accuracy of an RBF-SVM is also displayed in the figure as a reference for comparison. It can
be seen that the offered (linear) solution rapidly approximates the state-of-the-art (nonlinear)
SVM classifier as R is increased. The RBF-SVM solution needed 1295 support vectors to
reach these results. We would like to emphasize that rKOPLS imposes sparsity in a much
more effective way than a simple subsampling, since matrix KR still retains information about
all training points.

14.6 Conclusions

In this chapter we have reviewed several MVA techniques for feature extraction, providing
a uniform treatment of PCA, PLS, CCA and OPLS. All these methods can be formulated
as the solution to generalized eigenvalue or singular value decomposition problems, and can
therefore be solved with standard techniques for matrix analysis and decomposition. In spite
of its popularity, PCA presents the limitation of not using the target data, thus performing
suboptimally in supervised problems. Several results and optimality conditions have been
presented concerning all four methods. In particular, OPLS enjoys the important property of
minimizing the approximation error when performing multiregression of the label matrix.

The main drawback of the previous algorithms is that they are constrained to linear projec-
tions. However, their expressivity can easily be extended by applying kernel methods. After
reviewing KPCA, KPLS, KCCA and KOPLS, we have described a sparse version of KOPLS,
rKOPLS, which provides good approximations of the original solution, while significantly
reducing the computational burden of the training phase, and providing more compact ma-
chines.

The discriminative power of these MVA methods has been studied on a classification setup,
where the better expressive power of the linear methods over the nonlinear ones was shown,
as well as the convenience of using the target data for training the projection vectors. This
suggests that (K)PLS, and especially (K)CCA and (K)OPLS, should be preferred to (K)PCA
in supervised problems.
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Target detection and anomaly detection are two important applications of hyperspectral im-
agery. High dimensionality and complex (nonlinear) correlation between spectral bands make
difficult target/anomaly detection in hyperspectral imagery. In addition, changing imaging
conditions also make the same materials have potentially different spectral observations. Ker-
nel methods (KM) provide powerful approaches to solve these problems. In this chapter we
will introduce important applications of KM to target/anomaly detection, in order to construct
effective algorithms for feature extraction. By means of these algorithms, the target detection
and anomaly detection performance is greatly improved.

15.1 Introduction

Recently, hyperspectral images have been widely applied in many civilian and military
fields, such as resource surveys, prospecting, environment inspection, object detection, etc.
Accordingly, more and more researchers are attracted into research into hyperspectral image
processing and applications that include dimensionality reduction, feature extraction and se-
lection, classification and detection. Target detection and anomaly detection are two important
applications of hyperspectral imagery. The main objective of target detection is to search the
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pixels in the hypercube for the presence of a specific material (a ‘target’). Unlike target detec-
tion, anomaly detection attempts to locate anything that looks different spatially or spectrally
from its surroundings. In spectral anomaly detectors, no prior knowledge of the target spectral
signature is utilized or assumed.

High dimensionality and high (possibly nonlinear) correlation between spectral bands
make target detection and anomaly detection difficult in hyperspectral imagery. In addition,
changing image conditions can also make the same materials potentially have different spectral
observations. Thus, feature extraction and dimensionality reduction become key procedures
before detection or in the detection process itself. Kernel Methods (KM) currently provide
powerful approaches to solving these problems.

In this chapter, we introduce important applications of KM to target detection and anomaly
detection in hyperspectral imagery, and focus on constructing effective kernel algorithms for
feature extraction and dimensionality reduction for the real tasks of target and anomaly detec-
tion. After using these algorithms for feature extraction, the performance of target detection
and anomaly detection is greatly improved.

The remainder of this chapter is organized as follows. In Section 15.2, the motivation
for introducing KM into hyperspectral target/anomaly detection is given. In Sections 15.3–
15.5, three important aspects of hyperspectral images processing are described, including
feature extraction for dimensionality reduction, target detection and anomaly detection. In
these sections, we describe concrete applications of KM in hyperspectral images, and provide
kernel-based algorithms for feature extraction, target detection and anomaly detection. Finally,
conclusions are drawn.

15.2 Motivation

15.2.1 Feature extraction of hyperspectral images

In most cases, hyperspectral sensors oversample the spectral signal to ensure that any narrow
features are adequately represented. In some cases, sensors may also oversample the spatial
signal. An important function of hyperspectral signal processing is to eliminate redundancy
in the spectral and spatial sample data while preserving the high-quality features required
by detection, discrimination and classification. This dimensionality reduction is implemented
in a scene-dependent (adaptive) manner and may be implemented as a distinct step in the
processing or as an integral part of the overall algorithm. Regardless of how it is imple-
mented, the dimensionality reduction algorithm must be designed to preserve the information
of interest to downstream detection, classification, or spectral unmixing algorithms. Since
dimensionality reduction with a small loss of information is always possible, the reduction
can be achieved without significantly degrading detection performance or decreasing the sep-
arability between the different classes (classification performance). Dimensionality reduction
leads to significant reductions in computational complexity and also reduces the number of
pixels required to obtain statistical estimates of a given accuracy. Remember that the number
of samples (pixels) required to obtain a statistical estimate with a given accuracy increases
drastically with the dimensionality of the data. The most widely used algorithm for dimen-
sionality reduction is principal component analysis (PCA) or, equivalently, Karhünen–Loéve
transformation (Landgrebe 2002; Shaw 2002; Stein 2002; Manolakis 2002; Keshava 2002).
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15.2.2 Introducing KM for hyperspectral image processing

Now let us observe correlation characteristics among spectral bands of hyperspectral images.
Let I be the b-dimensional data space of hyperspectral images. We construct band vectors by
using all pixels in the hyperspectral image of a band. For example, the band vector Vi, Vi =
[Vi1, Vi2, . . . , Vim], wherem = l× p is the total number of pixels resident in the hyperspectral
image) consists of all pixels of the hyperspectral image, and Vik, k = 1, 2, . . . , m represents
the kth pixel. The correlation coefficient rij between the band vector Vi and the band vector
Vj is defined as follows:

rij =
m∑
k=1

(Vik − V̄i)(Vjk − V̄j)

/√√√√ m∑
k=1

(Vik − V̄i)2
m∑
k=1

(Vjk − V̄j)2, (15.1)

where V̄i and V̄j are the mean vectors of Vi and Vj, respectively.
According to Equation (15.1), we can calculate the correlation matrix of all bands of

hyperspectral data, which consists of b× b elements in rij . The correlation matrix of a real
hyperspectral image is illustrated in Figure 15.1. Here, the standard Indian Pine Test Site scene,
Northwestern Indiana June 1992, is used; it contains a mixed agriculture/forestry landscape.
The blocky aspect of the correlation matrix is evident.

The content mentioned above just concerns correlation characteristics between spectral
bands. It combines two physical characteristics of hyperspectral data: hyperspectral data
contain a lot of redundant information, and the correlation of neighbouring bands is higher
than those of bands that are far from each other. In addition, the local correlation of neigh-
bouring bands has approximate continuity and transmissibility. The complicated correlation
characteristics between spectral bands make dimensionality reduction, feature extraction and

Figure 15.1 Correlation matrix of the hyperspectral Indian Pine Test Site scene, Northwest-
ern Indiana showing an evident blocky characteristic.
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downstream detection lead to a huge challenge. In particular, for the task of target detection
and anomaly detection, important information about target or anomaly pixels is hidden or
mixed in background clutters generally. Most linear methods, typically used in pattern analy-
sis, however, cannot effective concentrate and extract useful features from high-dimensional
data including a lot of redundant information, due to the nonlinearity nature of hyperspectral
images. In contrast to linear algorithms, KM have shown huge potential in aspects of process-
ing nonlinear problems. This is the motivation that we need to introduce KM into hyperspectral
image processing.

15.2.3 Hyperspectral images for numerical experiments

In order to test the effectiveness of the corresponding kernel-based hyperspectral image pro-
cessing methods, numerical experiments are performed on real AVIRIS data. After those bands
that are corresponding to the water absorption regions are removed, low SNR and bad bands,
126 available bands remained in the 0.4–1.8�m wavelength range. A scene of 400 × 400
pixels in size was selected for our experiments, in which there are mainly nine classes of
ground cover, most of which are very different in terms of their spectral characteristics. The
ground truth map is available. The ground sampling distance of the hyperspectral images is
3.5 m. The sixth band of the hyperspectral images that includes the testing scenes is shown
in Figure 15.2. From this scene, we select two regions one for target detection and one for
anomaly detection. Figure 15.3 illustrates real hyperspectral images and the corresponding
distribution of target/anomaly pixels from the hyperspectral images scenes for target detection
and anomaly detection, respectively.

Figure 15.2 The 10th band from real hyperspectral images used in numerical experiments.
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Figure 15.3 Real scene and truth distribution of panels for (top) target detection, (bottom)
anomaly detection.

15.3 Kernel-based feature extraction
in hyperspectral images

15.3.1 Principal component analysis

Dimensionality reduction of hyperspectral data usually starts with a correlation between hy-
perspectral bands. The conventional approach to deal with such a problem of information
redundancy is principal component analysis (PCA), which is an orthogonal linear transfor-
mation. PCA has been applied to multi-spectral images for optimal band selection (Jia and
Richards 1999). But the results from PCA are optimal only in the sense of minimum squared
error (MSE) but definitely non-optimal in terms of class discrimination and separability. In
addition, PCA in full hyperspectral data space has large computational loads (Gu et al. 2002).

Given a set of samples zi, i = 1, 2, . . . , N, with zi ∈ Rd , it is necessary to first calculate
the mean �z and the covariance matrix �z before performing PCA. The PCA transform can
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be written as follows

zp = T�
p (z − �z), (15.2)

where zp is the transformed data, and Tp is the transform matrix. Tp is composed of the
eigenvectors obtained by performing the eigenvalue decomposition on �z, namely,

��z = �v, (15.3)

where v = [v1, v2, . . . , vN ], vi = [vi1, vi2, . . . , vid]� is the ith eigenvector of �z that corre-
sponds to the ith eigenvalue �i of �z.

15.3.2 Kernel mapping

In most cases, original hyperspectral image data have nonlinear characteristics. In order to
better extract nonlinear features from hyperspectral data, KM can be effectively used. In this
section, we introduce a method for construction of Mercer kernel in Reproducing Kernel
Hilbert Space (RKHS).

According to statistical learning theory, in order to construct the optimal hyperplane in
high dimensional space, only the dot product of support vectors in feature space is required,
and one does not need to know the specific form of mapping �, which maps samples from
input space into feature space.

Now we consider an expression for the dot product in Hilbert space:

〈�(x),�(y)〉 = K(x, y). (15.4)

According to the Hilbert–Schmidt’s theorem, K(x, y) is any symmetric function that satisfies
Mercer’s condition.

15.3.3 Kernel Principal Component Analysis (KPCA)

Given a set of centred samples yk , k = 1, 2, . . . , N, yk ∈ Rd ,
∑l
k=1 yk = 0, and d is the

dimensionality of the samples. First, the sample set {yk} is mapped into a feature space RX

by � : Rd → R
X and the covariance matrix �� is computed in the feature space RX,

�� = 1

N

N∑
k=1

�(yk)�(yk)�, (15.5)

where �(yk) is a centred sample in the feature space.
Let v /= 0 be an eigenvector of �� that corresponds to a positive eigenvalue � of ��.

So the eigenvector is in the space spanned by the mapped samples, i.e. v ∈ span{�(y1),
�(y2), . . ., �(yN )}. This can be described as

v =
N∑
k=1

ˇk�(yk), (15.6)
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where ˇk is the weighting coefficient of �(yk). Thus, eigenvalue decomposition can be written
as

�v = ��v. (15.7)

Furthermore, we multiply both sides of Equation (15.7) by �(y) and obtain the following
equation:

�(�(y)v) = (�(y)��v). (15.8)

For all d eigenvectors, Equation (15.13) can be also written as

�i(�(y)vi) = (�(y)��vi), (15.9)

where i = 1, 2, . . . , d, vi =
N∑
k=1

ˇik�(yk). According to the construction of the kernel function,

define an d × d dimensionality of kernel matrix K in feature space as

(K)i,j = (�(yi) · �(yj)) = k(yi, yj) (15.10)

and consider an eigenvalue decomposition for the expansion coefficients ˇi = [ˇi1, ˇi2, . . . ,
ˇid]� by using kernel matrix K as

�iˇ
i = Kˇi. (15.11)

The solution obtained (�i,ˇi) has to be normalized by imposing �i(ˇiˇi) = 1 and to be centred
by substituting centred Kc for the K. Matrix Kc is given by

Kc = K − 1p · K − K · 1p + 1p · K · 1p, (15.12)

where 1p is a p× pmatrix with all elements equal to 1
/
p. To obtain the principal components

in feature space, the procedure, which projects the mapped sample �(y) on to vector vi, is
necessary, namely,

〈vi,�(y〉 =
N∑
k=1

ˇik〈�(yk),�(y)〉 =
N∑
k=1

ˇikk(yk, y). (15.13)

The content given above is the basic theory of KPCA. The method has excellent ability to
process nonlinear data (Schölkopf et al. 1998; Müller et al. 2001; Ruiz and Lopez-de-Teruel
2001). Figure 15.4 shows the excellent nonlinear performance of feature extraction of KPCA
compared with PCA. Here, notice that the original hyperspectral images are represented by
data cubes and hence the data have to be first converted into two-dimensional form before
they are transformed. Each band of the HSI is viewed as a sample vector, and the number
of total samples to be transformed is equal to the number of the original bands. Thus, after
these samples are centred and normalized, KPCA is performed on them (Schölkopf et al.
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Figure 15.4 The 1st linear and the 1st nonlinear features extracted by (a) PCA and (b)
KPCA.

1998, 1999, 2000; Müller et al. 2001; Ruiz and Lopez-de-Teruel 2001). See also Chapters 2
and 14.

In practical applications, such as the subsequent target/anomaly detection, the selection
of the kernel function is a key step for the full mining potential of KM in the application
of hyperspectral images. In the proposed kernel-based feature extraction methods for target/
anomaly detection in hyperspectral images, the Gaussian Radial Basis Function (RBF) as
(K)ij = K(yi, yj) = exp(−‖yi − yj‖2) is adopted. Kwon et al. (2005) enumerates two main
reasons why the Gaussian RBF kernel is chosen. The first reason is that this kernel is translation-
invariant, and the second is that the Fourier transform of this kernel is also Gaussian. The
hyperspectral target/anomaly detector is generally obtained under the Gaussian assumption,
so the Gaussian RBF kernel is very suitable for the application of target/anomaly detection.
The choice of the parameter is very critical. It should be carefully chosen so that the overall
data variations can be fully exploited by the Gaussian RBF kernel. It is noticeable that the
test hyperspectral images are first normalized by a constant before KPCA is performed in
the subsequent target/anomaly detection. Generally, the constant is set to the maximum value
obtained from all the spectral components of the spectral vectors in the corresponding test
images. So the entries of the normalized pixel vectors fit into the interval of spectral values
between zero and one. The rescaling of pixel vectors was mainly performed to utilize the
dynamic range of the Gaussian RBF kernel effectively (Kwon 2005).

15.4 Kernel-based target detection in hyperspectral images

The process of detecting and identifying a target in hyperspectral imagery can be considered
as consisting of two stages. The first stage is an anomaly detector that identifies spectral
anomalies or a localized spectral difference. The second stage identifies whether or not the
anomaly is a target or natural clutter. This stage can be achieved if the spectral signature of
the target is known; this can be obtained from a spectral library or a spectral matched filter
designed from a set of training data.
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15.4.1 The concept of target detection

In target detection applications, the main objective is to search the pixels of an HSI data cube
for the presence of a specific material (target). Conceptually, at least at a theoretical level, target
detection can be viewed as a binary hypothesis testing problem, where each pixel is assigned
a target or non-target label. However, there are some fundamental practical differences that
have a great impact upon the development and evaluation of practical algorithms for detection
versus classification applications. In surveillance applications, the size of the objects (targets)
we are searching for constitutes a very small fraction of the total search area. Therefore, the
target class will either be empty or sparsely populated. On the other hand, the general no-target
class includes almost all pixels in the cube and is the union of the different specific background
classes. We shall use the term background to refer to all non-target pixels of a scene. Usually,
targets are man-made objects with spectra that differ from the spectra of natural background
pixels (Healey and Slater 1999; Manolakis, et al. 2001; Thai and Healey 2002). More related
content can be found in Chapters 7 and 8.

15.4.2 Invariant subpixel material detector

In hyperspectral target detection, the main task is to detect, discriminate and identify materials.
The concrete processing includes two basic approaches: region-by-region and pixel-by-pixel.
The pixel-by-pixel processing is necessary when the spatial resolution of images is low and
mixed pixels exist in the hyperspectral images. Thus, identifying a target pixel by pixel is a
dependable approach in most cases, and the detection algorithm tries to estimate whether a
pixel is the target or it includes the target.

In the linear spectral mixture model (LSMM), the spectrum of a mixed pixel is represented
as a linear combination of component spectra (endmembers). The weight of each endmember
spectrum (abundance) is proportial to the fraction of the pixel area covered by the endmember
(Manolakis 2000; Keshava 2002). Consider a hyperspectral image with N bands. Each pixel
can be thus represented by an N-dimensional vector. Each pixel includes background and
noise and possibly includes target. Thus, the linear spectral mixing of the pixel can be
expressed by

y = ˛T + ˇB + n, (15.14)

where T and B represent the target and the background respectively, ˛, ˇ represent the abun-
dance of target and background respectively, and the n is noise fraction.

Using the linear mixture model, Bea Thai et al. proposed an invariant subpixel material
detection (ISMD) algorithm (Thai 2002). In the ISMD algorithm, the target subspace and
background subspace are obtained by performing singular value decomposition (SVD) on the
matrix of training samples. ISMD provides a concrete expression of the generalized likelihood
ratio as follows

L̃(y) = y�(I − BB�)y

y�(I − AA†)y
, (15.15)

where A = [B T], A† is the pseudo-inverse of A, and I is the identity matrix. The detailed
derivation of the Equation (15.15) can be found in the literature (Thai 2002).
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The obtained subspace is, however, described by a group of linear basis vectors. Therefore,
using KPCA to construct target and background subspaces is a better choice. In this way, we
can obtain the kernel invariant subpixel detection algorithm (KISD) (Zhang and Gu 2004).

15.4.3 Kernel invariant subpixel detection

Figure 15.5 illustrates the processing chain of the KISD algorithm. Using the linear mixture
model and substituting the kernel subspace of target and background for the original subspace,
the hyperspectral target detection can be described as the following hypothesis test:

H0 : y = ˇkBk + n (target absent) (15.16)

H1 : y = ˛kTk + ˇkBk + n (target present), (15.17)

where Tk and Bk represent the kernel subspace of the target and the background respectively,
˛k, ˇk represent the abundance of target and background respectively, n is Gaussian white
noise fraction. Tk and Bk are obtained by performing KPCA on training samples of targets
and background clutters, respectively. The dimensionality of the Tk and Bk are the numbers of

Hyperspectral data

Known sample
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Construct kernel
subspace of target

Construct kernel
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background

Uniformly select
background data
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Non-targetDecision

Target
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<

Figure 15.5 The processing flowchart of the KISD algorithm.
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nonlinear kernel principal components remaining and it can be determined, based on energy
ratio between the sum of the eigenvalues remaining and all eigenvalues by setting a desired
threshold.

Thus the likelihood ratio is given by

L(y) = p1(y|H1)

p0(y|H0)
, (15.18)

where p0(y|H0) and p1(y|H1) are the value of the conditional probability density function
of the observation y under two hypothesis tests H1 and H0, respectively. The corresponding
formula of KISD is as follows:

L̃(y) = y�(I − BkB�
k )y

y�(I − AkA
†
k)y

, (15.19)

where Ak = [Bk Tk], Bk and Tk are kernel subspace of background samples and target samples
constructed by KPCA respectively; A†

k is the pseudo-inverse of Ak .
Using the Gram–Schmidt process, one can extract matrix Qk from Ak, of which orthonor-

mal columns span the same subspace as the columns of Ak . Thus expression (15.23) can be
modified as follows:

L̃(y) = y�(I − BkB�
k )y

y�(I − QkQ�
k )y

. (15.20)

The expression (15.24) can be used as a discriminant to detect a hyperspectral subpixel target
pixel by pixel. If the likelihood ratio in expression (15.24) exceeds the detection threshold in
terms of a pixel, it can be concluded that the pixel includes the target. Otherwise, it can be
considered that there is no target in the pixel. So the kernel-based invariant subspace detection
(KISD) for hyperspectral target detection is performed.

In the experiments, in order to test the ability of the KISD algorithm in terms of spectral
variability, three classes of different ground cover are randomly selected as the training samples
of the background (non-target), and the training samples of target and background are obtained
from a spectral library. Figure 15.6 provides the spectrum of these two target samples that are
randomly selected from the target training set. By comparing the spectrum of two targets, it
is clear that the spectral difference is significant. In order to test the ability of the proposed
algorithm to process the sparsity of the target, the number of selected target samples is only
one ninth of the background samples. In order to prove the effectiveness of the algorithm,
ISMD, matched filtering detector (MFD) (Manolakis et al. 2001) and orthogonal subspace
projection (OSP) (Harsanyi et al. 1994; Chang 2005) are realized in the experiment to be
compared with the method. In the proposed kernel-based methods, the RBF kernel function
is used, in which � is set to 70 experimentally.

The detection results of the four algorithms are shown in Figure 15.7. The dimensionality
of the target subspace in four algorithms is one and the dimensionality of the background
subspace is selected as 1, 5 and 10 in each algorithm respectively. From the corresponding
detection result, it can be noticed that the separability between targets and background of the
proposed algorithm and ISMD is better than those from MFD and OSP. This indicates that the
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Figure 15.6 Spectral variability of targets from two different pixels.

detection ratios of the proposed algorithm and ISMD are higher than those from MFD and OSP.
In addition, it can also be found that the detection result obtained by the proposed algorithm
under different numbers of the background subspace is almost identical. This indicates that
the construction of the background subspace in the proposed algorithm is more effective than
the other algorithms.

To validate the effectiveness of the proposed algorithm, we evaluate the detection perfor-
mance of the four methods by means of the receiver operating characteristics (ROC). The ROC
represents the varying relationship of detection probabilityPd and false alarm ratePf , and can
provide a quantitative comparison of the detection performance. Based on the ground truth,
the coordinate ranges of those panels in the image scene was obtained. Anomalous targets
and false alarms were identified by determining whether anomalous-like targets fell into the
coordinate ranges of the panels or not. The identifications of targets and false alarms were
performed on the scene, while each pixel is considered as a unit of the identifications. Pd and
Pf are defined respectively as Pd = Nd/NT and Pf = Nf/NA, where Nd is the number of
the detected pixels,NT is the total number of truth target pixels in the scene,Nf is the number
of the false alarms, and NA is the total number of image pixels.

Figure 15.8 shows the performance of these four methods for target detection in terms of
the ROC. From this figure, it can be found that the proposed method outperforms the other
three methods.

15.5 Kernel-based anomaly detection in hyperspectral
images

15.5.1 The concept of anomaly detection

Anomaly detectors are pattern recognition schemes that are used to detect objects that might
be of military and other field interest. Almost all anomaly detectors attempt to locate anything
that looks different spatially or spectrally from its surroundings. In spectral anomaly detection
algorithms, pixels (materials) that have a significantly different spectral signature from their
neighbouring background clutter pixels are identified as spectral anomalies. Spectral anomaly
detection algorithms can also use spectral signatures to detect anomalies embedded within
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Figure 15.7 The detection result by using four algorithms. The dimensionality of the back-
ground subspace is 1, 5 and 10 respectively.
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Figure 15.8 The ROC comparison of four methods for target detection.

background clutter with a very low signal-to-noise ratio (SNR). In spectral anomaly detectors,
no prior knowledge of the target spectral signature is utilized or assumed (Stein et al. 2002;
Chang and Chiang 2002; Kwon et al. 2005; Gu et al. 2006, 2008).

15.5.2 RX detector

A spectral anomaly detection algorithm was developed to detect targets with unknown spectral
distribution against a background with unknown covariance (Reed and Yu 1990). The algo-
rithm is now commonly referred to as the RX the detector, and it has been successfully applied
to many multi-spectral/hyperspectral detection applications. The RX algorithm assumes that
hyperspectral data follow the multivariate Gaussian distribution. Under this assumption, a
generalized likelihood ratio test (GLRT) is constructed to test the hypotheses for estimating
the existence of targets in each pixel of the scene.

Let each input spectral signal containing Nb spectral bands be denoted by x(n) = [x1(n),
x2(n), . . . , xNb (n)]�, n = 1, 2, . . . , Nb. Define xB to be anNb ×mmatrix of them reference
background clutter pixels. Namely, m = n1 × n2, n1 × n2 is the size of the sliding window
for detection. The observed spectrum of each pixel is represented as a column vector in the
sample matrix xB, xB = [x(1), x(2), . . . , x(m)]. The two competing hypotheses that the RX
algorithm must distinguish are given by

H0 : x = n (Target absent) (15.21)

H1 : x = as + n (Target present), (15.22)

where a > 0, n is a vector that represents the process of the background clutters and noise,
and s is the spectral signature of the anomalous target given by s = [s1, s2, . . . , sNb ]

�. The
signature s of the target and covariance�B of background clutters are assumed to be unknown.
Thus, the model assumes that the data come from two normal probability density functions
with the same covariance matrix but different means. Under H0, the data (background clutters)
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are modelled as N(0,�B), and under H1 the data are modelled as N (s,�B). Based on the
description given above, expression for the conventional RX detector is given by

RX(x) = (x − �̂B)��̂−1
B (x − �̂B), (15.23)

where �̂B is the covariance matrix estimated from the reference data of the background
clutters, and �̂B is the estimated sample mean of the background clutters. Let � be a threshold,
if RX(x) ≥ �, then the assumption that a target present is adopted, otherwise the assumption
is that the target is absent.

15.5.3 Selective KPCA Feature Extraction for Anomaly Detection

In this section, a selective kernel principal component analysis (SKPCA) (Gu et al. 2006,
2008) algorithm based on high-order statistics is introduced for anomaly detection in hyper-
spectral imagery. First, KPCA is performed on original hyperspectral data to mine fully a
high-order correlation between spectral bands. Then average local singularity is defined based
on high-order statistic in a local sliding window, which is used as a measure for selecting the
most informative nonlinear components for anomaly detection. By selective KPCA the infor-
mation of anomalous targets is extracted to a maximum extent and background clutters are
well suppressed in the component selected. Finally, the selected component with maximum
average local singularity is used as the input for anomaly detectors. Numerical experiments
are conducted on real hyperspectral images collected by AVIRIS. The results strongly prove
the effectiveness of the proposed algorithm.

After KPCA, research is focused on how to evaluate the information about anomaly targets
present in nonlinear principal components based on the Gaussian assumption. The most ef-
fective component for anomaly detection is selected based on its amount of information about
anomalies, which is equivalent to deciding whether its histogram was close to a Gaussian
shape or not. As widely known, high-order statistics can measure how far a distribution is
from Gaussian. Therefore, based on third- and fourth-order moments, i.e. skewness and kur-
tosis, local singularity (LS) is defined as a measure for selecting the most effective component
for detection.

Given a random variable t let m̂ and �̂ be the mean and variance estimations based on N
observations ti, i = 1, 2, . . . , N, respectively. The skewness is defined as

�3 = E{[t − E(t)]3}
/

(E{[t − E(t)]2})3/2, (15.24)

where E is the expectation operator. An estimator of the skewness can be written as

�̂3 =
N∑
i=1

(ti − m̂)3
/

(N − 1)�̂3. (15.25)

The kurtosis is defined as

�4 = −3 + E{[t − E(t)]4}
/

(E{[t − E(t)]2})2 (15.26)
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and its estimation is written as

�̂4 = −3 +
N∑
i=1

(ti − m̂)4
/

(N − 1)�̂4. (15.27)

Generally, the skewness is used to measure the symmetry of the data distribution, and the
kurtosis is used to measure trailing (Zhao et al. 1995). In anomaly detection, if data in the
local windows follow a Gaussian distribution, then corresponding skewness and kurtosis both
equal zero. If there are anomalies in the local windows, the Gaussian distribution is broken and
the absolute values of the skewness and the kurtosis become large. When skewness and kurtosis
are used to check Gaussian distribution of a region, we define two thresholds corresponding
to skewness and kurtosis respectively as

Ts = �s	s (15.28)

Tk = �k	k, (15.29)

where 	s and 	k are positive constants and 	s 	 1, 	k 	 1, �s and �k are equal to
√

6/(n1n2) and√
24/(n1n2) respectively, n1n2 is the size of the local window. Apparently, when skewness

and kurtosis are used to describe singularity in a local window for effective detection, the
window size of the LS should be the same as the detection window in the RX detector, which
depends on the size of the targets. If the absolute values of the skewness and the kurtosis are
larger than the thresholds Ts andTk respectively, then this means that the data distribution in
the local window is not Gaussian.

To measure properly the singularity of each component transformed, the LS should be
calculated in the local regions and the LS of the whole component should be an average
value. The average LS of the whole component is denoted by the symbol N̄ALS. The detailed
calculation of N̄ALS corresponding to one component is as follows.

1. Construct a local sliding window with size n1 × n2, let the moving interval be equal to
the half width of the window and let C be the total sliding time.

2. Let N̄ALS = 0 and j = 1.

3. Calculate the absolute values Ajs and Ajk of the skewness and the kurtosis in the jth
local window

4. Compare Ajs and Ajk with two thresholds Ts and Tk respectively; if both Ajs and Ajk are
larger than Ts and Tk respectively, then N̄ALS = N̄ALS + 1; else hold N̄ALS invariant.

5. If j = C, then the calculation is over and record the value of N̄ALS; else let j = j + 1
and return to (3).

After the above process is performed on each component, the nonlinear principal component
with maximum N̄ALS is selected as the input of the conventional RX detector.
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The detailed process of the selective KPCA algorithm is as follows.

1. Convert the original hyperspectral data y from 3D-form to 2D-form, namely, orderly
arrange all rows of the jth 2D-image into a 1D row vector yj , j = 1, 2, . . . ,M, and
obtain 2D data Y, where y = [y1, y2, . . . , yM]�.

2. Centre Y , consider yk(k = 1, 2, . . . ,M) as a set of centred random samples, designate
a kernel function and calculate kernel matrix K according to Equation (15.11).

3. Calculate the centred kernel matrix Kc according to Equation (15.13).

4. Perform singular value decomposition on Kc and obtain those eigenvectors ˇk, k =
1, 2, . . . , q corresponding to non-zero eigenvalues in high-dimensional feature space.

5. Project y onto ˇk , k = 1, 2, . . . , q, obtain transformed nonlinear principal components.

6. Select the component X with the maximum average LS according to the procedure
mentioned above.

7. Make a sliding local window on X, and calculate local mean and variance.

8. Realize an anomaly detection on the local window by using the RX detector in Equation
(15.23).

9. Slide the window and repeat step (7) until the entire scene is covered.

10. Output detection result.

By the selective KPCA, information of anomalous targets is maximally extracted and back-
ground clutters are well suppressed in the selected component. Such feature extraction will
be useful for improving performance of the conventional RX algorithm. Generally, all pixel
vectors in the HSI are first normalized by a constant, which is the maximum value obtained
from all the spectral components of spectral vectors in the corresponding test image before
performing KPCA. In this chapter, the value of the Gaussian kernel width � was determined
experimentally and was set to 70. The first ten nonlinear principal components transformed on
the original hyperspectral data by KPCA are shown in Figure 15.9. From those components, it
is found that useful information is sufficiently extracted and well concentrated, and complete
anomaly information is concentrated into the 4th component.

According to the defined average local singularity, the average local singularity of each
component was calculated for selecting the maximum one. In both the calculation of the
average local singularity and the subsequent anomaly detection, the size of the local window
was set to 11×11, and both 	s and 	k are set to 11 experimentally. Figure 15.10 presents the
curve of the average local singularity as a function of the nonlinear principal components.
From the curve, it is easy to discover that the 4th component has the maximum average
local singularity. From Figure 15.9, it is found that the 4th component includes almost all
information about anomalous targets and is more effective for anomaly detection than the
other components, so it is the chosen one for detection. This fact proves that the LS rule
defined performs well.

To validate the effectiveness of the proposed algorithm, a comparison was made between
the proposed algorithm and the feature extraction method based on KPCA with the energy rule.
When the variance of noise is normalized to one, the energy rule becomes the SNR rule. The
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Figure 15.9 The first ten components transformed by KPCA from the first scene.

conventional RX algorithm is also carried out in this comparison. In addition, a comparison
between KPCA with the most effective component and KPCA with multiple components was
also conducted. In the method with multiple components, the first ten components with large
eigenvalues were used. Figure 15.11 shows the detection results in the form of the ROC.
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Figure 15.10 The curve of average local singularity accompanied by the sequence number
of different nonlinear principal components.

From Figure 15.11(a), it can be seen that the detection performance of KPCA with the
proposed LS rule is better than KPCA with the energy rule. Furthermore, the proposed se-
lective KPCA algorithm greatly modifies the performance of the conventional RX detector.
From Figure 15.11(b), it can be seen that the detection performance of the method using the
chosen component with the most singular information is better than the method using multiple
components with concentrated energy. Related content can be also found in Chapter 8.

Figure 15.11 The comparison of ROCs in two cases: (a) between KPCA with LS rule, KPCA
with energy rule, and the conventional RX detector; (b) between detection with the most
singular component transformed (i.e. single) and with the first-ten components transformed
(i.e. multiple).
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15.6 Conclusions

In this chapter we first introduced the motivation for using kernel methods for target and
anomaly detection in hyperspectral images. Then, dividing the importance of this chapter into
three aspects concerning hyperspectral image processing, we described kernel-based feature
extraction and its application for target and anomaly detection in hyperspectral images in de-
tail. In these applications, we constructed effective methods for feature extraction using KM
and greatly improved the performance of the existing algorithms for target and anomaly detec-
tion, respectively. The numerical experiments demonstrated the effectiveness of the proposed
kernel-based methods. In summary, kernel methods have been demonstrated to be a powerful
tool for detection applications in hyperspectral images.
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In recent years, many studies have shown that kernel methods are computationally efficient,
robust, and stable for pattern analysis. Many kernel-based classifiers have been designed and
applied to classify remote-sensed data and some results show that kernel-based classifiers
give satisfactory performances. Much research into hyperspectral image classification also
shows that Nonparametric Weighted Feature Extraction (NWFE) is a powerful tool for ex-
tracting hyperspectral image features. But NWFE is still based on linear transformation. In
this chapter, the kernel method is applied to extend NWFE to Kernel-based NWFE (KNWFE).
The new KNWFE possesses the advantages of both linear and nonlinear transformation.
In addition, Fuzzy Linear Feature Extraction (FLFE) and its Kernel-based version (KFFE)
are introduced. The experimental results show that KNWFE and KFFE outperform KPCA
and GDA.
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16.1 Introduction

Remote sensing data such as hyperspectral data generally have hundreds of measured bands,
which potentially provide more accurate and detailed information for classification. However,
collecting the ground-truth of a hyperspectral image can be very difficult and expensive. Hence,
the classifiers often suffer from the Hughes phenomenon (Hughes 1968), also known as the
curse of dimensionality. Feature extraction and selection are powerful methods of alleviating
the problem. The feature selection method is defined as the process of selecting a subset from
a set of original features. The most important issue for feature selection is to find an efficient
search strategy for obtaining a suitable feature subset for classification, particularly for high-
dimensional data. Feature extraction uses all the features to construct a transformation that
maps the original data to a low-dimensional subspace. An illustration is shown in Figure 16.1.
The two distributions projected on any of the original axes overlap. However, after feature
extraction, they can be separated completely on the transformed axis.

In recent years, many studies (Schölkopf et al. 1998; Shawe-Taylor and Cristianini 2004)
show that kernel methods are computationally efficient, robust, and stable for pattern analysis.
Many kernel-based classifiers have been designed and applied to classify remote sensing data
and results show that kernel-based classifiers give sound performances (Camps-Valls and
Bruzzone 2005; Camps-Valls et al. 2008; Melgani and Bruzzone 2004). The main idea of
kernel methods is to map the input data from the original space to a so-called feature space
by a nonlinear mapping. A learning algorithm designed to discover linear patterns in the
feature space and the algorithms can be implemented in terms of inner products in feature
space, and the inner products can be calculated directly from the original data by employing
a kernel function. Importantly, a linear relationship can be found in the feature space, which
is equivalent to seeking the nonlinear relationship in the original space.

Some studies (Benediktsson et al. 2005; Dundar and Landgrebe 2004; Hsieh et al. 2006;
Landgrebe 2005; Richards, 2005; Song et al. 2005) have also shown that nonparametric
feature extractions (NFEs) are powerful in reducing the dimensionality of hyperspectral im-
age data. However, most of the NFEs are still based on the linear transformation, which
may fail in handling nonlinear problems. Thus, nonlinear feature extraction methods are
necessary.

Figure 16.1 The feature extraction method can obtain complete separation on the trans-
formed axis.
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In this chapter, two kernel-based nonparametric feature extractions are introduced and
applied to hyperspectral data classification in a supervised sense. One is called Kernel-based
Nonparametric Weighted Feature Extraction (KNWFE) and the other is Kernel-based Fuzzy
Feature Extraction (KFFE), along with experiments to compare performances on hyperspec-
tral image classification. This chapter is organized as follows. The reviews of linear discrimi-
nant analysis (LDA), the kernel-based version of LDA, i.e., generalized discriminant analysis
(GDA), NWFE, and fuzzy linear feature extraction (FLFE) are introduced in Section 16.2.
Section 16.3 contains the main ideas and theoretical development of KNWFE and KFFE.
Theoretical development is discussed from three aspects: the definition of scatter matrices,
the regularization method, and the eigen-decomposition technique. The details of the last two
aspects are discussed in Section 16.4. The performances of Kernel-based Principal Compo-
nent Analysis (KPCA), GDA, KNWFE and KFFE are compared in Section 16.5 based on real
hyperspectral images. Section 16.6 contains comments and conclusions.

16.2 Related feature extractions

In this section, four feature extraction methods, Fisher’s Linear Discriminant Analysis (LDA)
(Fukunaga 1990), the kernel version of LDA (Baudat and Anouar 2000), Nonparametric
Weighted Feature Extraction (NWFE) (Kuo and Landgrebe 2004) and Fuzzy Linear Feature
Extraction (FLFE) (Yang et al. 2006) are introduced. The following are some notations for
this chapter worth noting.

Suppose a multiclass problem

{x1, . . . , xn} =
{

x(1)
1 , . . . , x(1)

n1
, . . . , x(L)

1 , . . . , x(L)
nL

}
⊂ RNb,

where {x(i)
1 , . . . , x(i)

ni } are the samples in class i, i = 1, . . . , L, and n = n1 + · · · + nL. Let

XTi = [�(x(i)
1 ), . . . ,�(x(i)

ni )], and XT = [XT1 , . . . , X
T
L], then the kernel matrix K = K(xi, xj)

for 1 ≤ i, j ≤ n on samples is XXT , i.e., K = XXT .

16.2.1 Linear discriminant analysis

Linear Discriminant Analysis (LDA) is often used for dimension reduction in classification
problems. It is also called the parametric feature extraction method (Fukunaga 1990), since
LDA uses the mean vector and covariance matrix of each class. Usually within-class, between-
class, and mixture scatter matrices are used to formulate the criterion of class separability. The
goal of LDA is to find a transformation matrixA to maximize the tranformed class separability
that is composed of between-class and within-class scatter matrices. A within-class scatter
matrix for L classes is expressed by

SLDAw =
L∑
i=1

ni∑
j=1

1

n

(
x(i)
j − mi

)(
x(i)
j − mi

)T
,
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where mi is the class mean. A between-class scatter matrix is expressed as

SLDAb =
L∑
i=1

ni

n
(mi − m0)(mi − m0)T ,

where m0 represents the expected vector of the mixture distribution and is given by

m0 =
L∑
i=1

ni

n
mi.

The optimal features are determined by maximizing the Fisher criterion given by

A = arg max
A

tr

((
ATSLDAw A

)−1
ATSLDAb A

)
.

To find A is equivalent to solving the following generalized eigenvalue problem

SLDAb vh = �hS
LDA
w vh, h = 1, . . . , p, p ≤ L− 1,

where p denotes the dimensionality of the reduced subspace, (�h, vh) represent the eigen-pair
of (SLDAw )−1SLDAb and�1 ≥ �2 ≥ · · · ≥ �p. Thus, the transformation matrix A = [v1, . . . , vp]
can be obtained.

16.2.2 Generalized discriminant analysis

A kernel-based LDA was proposed by Baudat and Anouar (2000) and called generalized
discriminant analysis (GDA). The scatter matrices, SGDAb , SGDAw and SGDAt of GDA in the
feature space H are defined as

SGDAb =
L∑
i=1

ni

n
(Mi − M0)(Mi − M0)T ,

SGDAw =
L∑
i=1

ni∑
j=1

1

n

(
�
(

x(i)
j

)
− Mi

)(
�
(

x(i)
j

)
− Mi

)T
,

and

SGDAt = SGDAb + SGDAw ,
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where

Mi = 1

ni

ni∑
j=1

�
(

x(i)
j

)
and M0 =

L∑
i=1

ni∑
j=1

1

n
�
(

x(i)
j

)
.

Similar to the LDA, the transformation matrix of GDA can be obtained by maximizing the
Fisher criterion:

A = arg max
A

{
tr

((
ATSGDAt A

)−1
ATSGDAb A

)}
.

This maximization is equivalent to the following generalized eigenvalue resolution: to find
eigenvalues � and eigenvectors v of

SGDAb v = �SGDAt v,

where v is a vector in the feature space H.
Suppose the generalized eigenvector v is a linear combination of training samples in the

feature space, i.e., there exists ˛(i)
j ∈ R such that

v =
L∑
i=1

ni∑
j=1

˛
(i)
j �
(

x(i)
j

)
= XT˛,˛ =

[
˛

(1)
1 , . . . , ˛(1)

n1
, . . . , ˛

(L)
1 , . . . , ˛(L)

nL

]T
.

This means that v can be solved for some suitable ˛(i)
j . By some block matrix computations,

˛
(i)
j can be found by solving the following generalized eigenvalue problem:

KWGDAK˛ = �KK˛,

where

WGDA =

⎡
⎢⎢⎢⎢⎢⎣

WGDA
1

WGDA
2

0

0
. . .

WGDA
L

⎤
⎥⎥⎥⎥⎥⎦ and WGDA

i =

⎡
⎢⎢⎣

1
ni

· · · 1
ni

...
. . .

...
1
ni

· · · 1
ni

⎤
⎥⎥⎦ ,

where i = 1, . . . , L.
Next, the eigen-decomposition of kernel matrix K is employed for stabilizing and im-

proving the resolution in GDA. Let K = P�PT be the eigen-decomposition of K, where P is
a matrix with orthonormal columns and � is a diagonal matrix of nonzero eigenvalues with
decreasing order. Assume that ˇ = �PT˛. Then the generalized eigenvalue problem can be
converted to

PTWGDAPˇ = �ˇ.
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After ˇ is obtained, the ˛ can be computed by ˛ = P�−1ˇ and divided by
√
˛TK˛ to get

normalized vectors ¯̨ , i.e.,

¯̨ =
[

¯̨ (1)
1 , . . . , ¯̨ (1)

n1
, . . . , ¯̨ (L)

1 , . . . , ¯̨ (L)
nL

]T = ˛√
˛TK˛

.

Finally, the projection component of an unknown mapped sample �(z) can be expressed as

�(z)T v =
L∑
i=1

ni∑
j=1

¯̨ (i)
j K

(
z, x(i)

j

)
.

Note that the rank of the between-scatter matrix of GDA is the same with LDA. Thus, only
L− 1 features can be extracted at most by GDA.

16.2.3 Nonparametric weighted feature extraction

There are three major disadvantages of LDA. One is that it works well only if the distributions
of classes are normal-like distributions. When the distributions of classes are non-normal-like
or multi-modal mixture distributions, the performance of LDA is unsatisfactory. The second
disadvantage of LDA is that the rank of the between-scatter matrix is less than or equal toL− 1.
So onlyL− 1 features can be extracted at most by using LDA. The third limitation is that if the
within-class covariance is singular, which often occurs in high dimensional problems, LDA
will have a poor performance on classification, Nonparametric Weighted Feature Extraction
(NWFE) was proposed by Kuo and Landgrebe (2004) to impove these problems.

The main idea of NWFE is to put different weights on every sample to compute the
‘weighted means’ and defining a new separability critrion with new nonparametric between-
class and within-class scatter matrices. The between-class scatter matrix SNWb and the within-
class scatter matrix SNWw are defined as

SNWb =
L∑
i=1

Pi

L∑
j=1
j /= i

ni∑
�=1

�
(i,j)
�

ni

(
x(i)
� −Mj

(
x(i)
�

))(
x(i)
� −Mj

(
x(i)
�

))T

and

SNWw =
L∑
i=1

Pi

ni∑
�=1

�
(i,i)
�

ni

(
x(i)
� −Mi

(
x(i)
�

))(
x(i)
� −Mi

(
x(i)
�

))T
,

where the scatter matrix weight �(i,j)
� is defined by

�
(i,j)
� = ‖x(i)

� −Mj(x
(i)
� )‖−1∑ni

t=1 ‖x(i)
t −Mj(x

(i)
t )‖−1
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Figure 16.2 The relationship between sample points and their local means in NWFE.

and the

Mj(x
(i)
� ) =

nj∑
k=1

w
(i,j)
�k x(j)

k , w
(i,j)
�k = ‖x(i)

� − x(j)
k ‖−1∑nj

t=1 ‖x(i)
� − x(j)

t ‖−1

denotes the weighted mean with respect to x(i)
� in class j.

Figure 16.2 shows the ideas of NWFE. The scatter matrix weight �(i,j)
� will be closed to 1 if

the distance between x(i)
� andMj(x

(i)
� ) is small. Otherwise, �(i,j)

� will be closed to 0. Similarly,

the weight w(i,j)
�k for computing weighted means will be closed to 1 if the distance between x(i)

�

and x(j)
k is small. Otherwise, w(i,j)

�k will be closed to 0. NWFE proposes the ‘weighted mean’
and using weighted between- and within-class vector. The separability of classes in a data set
can be measured by SNWb and SNWw .

The goal of NWFE is to find a linear transformation A ∈ Rd×p, p ≤ d, that maximizes
the between-class scatter and minimizes the within-class scatter. The columns of A are the
optimal features by optimizing the Fisher criteria, i.e.,

A = arg max
A

tr
((

AT SNWw A
)−1 (

AT SNWb A
))
.

This maximization is equivalent to find eigenvalues � and eigenvectors v for the generalized
eigenvalue problem

SNWb v = �SNWw v.
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To reduce the effect of the cross-products of within-class distances and prevent the singularity,
some regularized techniques (Kuo et al. 2003), can be applied to within-class scatter matrix.
In NWFE, within-class scatter matrix is regularized by

SNWw = 0.5SNWw + 0.5diag
(
SNWw

)
,

where diag(SNWw ) means diagonal matrix of SNWw .

16.2.4 Fuzzy linear feature extraction

The main idea of Fuzzy Linear Feature Extraction (FLFE) (Yang et al. 2006) originates from
the non-parametric discriminant analysis (NDA) (Fukunaga, 1990), which exhibits an essential
observation that the training samples approaching the class boundary should be emphasized
and given larger weights. Unlike NDA and NWFE, which defined the separability by using
Euclidean distance directly, we discover the fuzzification procedure of the fuzzy k-nearest
neighbours algorithm (Keller et al. 1985) that can be employed to find the samples near the
class boundary more intuitively than NDA and NWFE.

The fuzzification procedure of the fuzzy kNN algorithm is

�j(x
(i)
� ) =

{
0.51 + 0.49 × sj/k if j = i

0.49 × sj/k if j /= i
,

where x(i)
� is the �th training sample in class i, k is a constant, which can be regarded as an

index for collecting local information surrounding each training sample, and sj is the number
of these k samples that belongs to class j. If we look closer into the membership values of each
sample calculated in light of �j(x

(i)
� ), the nonzero membership values reveal the classes that

the sample is close to, and vice versa. An example of two classes is illustrated in Figure 16.3,
where the parameter k is set to 3. The membership values of some samples are marked and
those circled samples can be regarded as samples near the class boundary.

Figure 16.3 Illustration of finding the boundary samples based on the fuzzification scheme
of the fuzzy kNN algorithm.
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The fuzzy within-class scatter matrix SFLw and fuzzy between-class scatter matrix SFLb of
FLFE are defined as follows.

SFLw =
L∑
i=1

Pi

ni∑
�=1

a
(i,i)
�

(
x(i)
� − mi

)(
x(i)
� − mi

)T
,

SFLb =
L∑
i=1

Pi

L∑
j=1
j /= i

ni∑
�=1

b
(i,j)
�

(
x(i)
� − mj

)(
x(i)
� − mj

)T
,

where Pi and mi are the prior probability and the mean of class i, respectively. In addition,
a

(i,i)
� and b(i,j)

� are the weighting factors of sample x� for within-class and between-class scatter
matrices, respectively. They are defined as follows

a
(i,i)
� = 1 −

�i

(
x(i)
�

)r1
∑ni
�=1 �i

(
x(i)
�

)r1 and b(i,j)
� =

�j

(
x(i)
�

)r2
∑ni
�=1 �j

(
x(i)
�

)r2 ,

where r1 and r2 are weighting exponents. The designs of a(i,i)
� and b(i,j)

� enable samples near
the class boundary to gain more weights. Unlike LDA, FLFE is nonparametric and is capable
of extracting more than L− 1 features that are utilized for real data classification.

16.3 Kernel-based NWFE and FLFE

In this section, two kernel-based feature extraction methods are introduced. The first is the
kernel-based NWFE and the other is kernel-based FLFE.

16.3.1 Kernel-based NWFE

The kernel-based NWFE was proposed by Kuo et al., (2008). The between-class scatter
matrix SKNWb and the within-class scatter matrix SKNWw of KNWFE in the feature space H are
defined as

SKNWb =
L∑
i=1

Pi

L∑
j=1
j /= i

ni∑
�=1

�
(i,j)
�

ni

(
�
(

x(i)
�

)
−Mj

(
�
(

x(i)
�

)))(
�
(

x(i)
�

)
−Mj

(
�
(

x(i)
�

)))T

and

SKNWw =
L∑
i=1

Pi

ni∑
�=1

�
(i,i)
�

ni

(
�
(

x(i)
�

)
−Mi

(
�
(

x(i)
�

)))(
�
(

x(i)
�

)
−Mi

(
�
(

x(i)
�

)))T
,
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where the scatter matrix weight �(i,j)
� is defined by

�
(i,j)
� =

∥∥∥� (x(i)
�

)
−Mj

(
�
(

x(i)
�

))∥∥∥−1

∑ni
t=1

∥∥∥� (x(i)
t

)
−Mj

(
�
(

x(i)
t

))∥∥∥−1 ,

Mj(�(x(i)
� )) =∑nj

k=1 w
(i,j)
�k �(x(j)

k ) denotes the weighted mean with respect to �(x(i)
� ) in class j

and

w
(i,j)
�k =

∥∥∥� (x(i)
�

)
− �

(
x(j)
k

)∥∥∥−1

∑nj
t=1

∥∥∥� (x(i)
�

)
− �

(
x(j)
t

)∥∥∥−1 .

The following lemmas and theorems show that every part in SKNWb and SKNWw can be evaluated
by the elements in the kernel matrix K or the kernel function K. Owing to the length of this
chapter, the proofs of the following lemmas, theorems and corollary will be omitted. One can
find these proofs in Kuo et al. ( 2008).

Lemma 16.3.1 The weighted mean in class j with respect to �(x(i)
� ) is

Mj(�(x(i)
� )) = XTj

⎡
⎢⎢⎢⎣
w

(i,j)
�1
...

w
(i,j)
�nj

⎤
⎥⎥⎥⎦ .

Lemma 16.3.2 Let K(i,j) = XiX
T
j , the (i, j) block of the kernel matrix K, and

W (i,j) =

⎡
⎢⎢⎢⎣
w

(i,j)
11 · · · w

(i,j)
1nj

...
. . .

...

w
(i,j)
ni1 · · · w

(i,j)
ninj

⎤
⎥⎥⎥⎦ .

The scatter matrix weight �(i,j)
� is

�
(i,j)
� =

[
K(i,i)
�� + (W (i,j)K(j,j)(W (i,j))T )�� − 2(K(i,j)(W (i,j))T )��

]−1/2

∑ni
t=1

[
K(i,i)
tt + (W (i,j)K(j,j)(W (i,j))T )tt − 2(K(i,j)(W (i,j))T )tt

]−1/2 .

The following theorem shows that SKNWb and SKNWw can be evaluated by matrix multipli-
cations.
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Theorem 16.3.3 Let

�(i,j) = diag

{
�

(i,j)
1

ni
, . . . ,

�
(i,j)
ni

ni

}
and W (i,j) =

⎡
⎢⎢⎢⎣
w

(i,j)
11 · · · w

(i,j)
1nj

...
. . .

...

w
(i,j)
ni1 · · · w

(i,j)
ninj

⎤
⎥⎥⎥⎦ .

The within-class scatter matrix SKNWw becomes

SKNWw = XTWKNWX,

where WKNW = W1 −W2 −WT
2 +W3, and

W1 = diag
{
P1�

(1,1), . . . , PL�
(L,L)

}
,

W2 = diag
{
P1�

(1,1)W (1,1), . . . , PL�
(L,L)W (L,L)

}
, and

W3 = diag
{
P1(W (1,1))T�(1,1)W (1,1), . . . , PL(W (L,L))T�(L,L)W (L,L)

}
.

The between-class scatter matrix SKNWb becomes

SKNWb = XT (BKNW − WKNW)X,

where BKNW = B1 − B2 − BT2 + B3, and

B1 = diag

⎧⎨
⎩P1

L∑
j=1

�(1,j), . . . , PL

L∑
j=1

�(L,j)

⎫⎬
⎭ ,

B2 =

⎡
⎢⎢⎣
P1�

(1,1)W (1,1) · · · P1�
(1,L)W (1,L)

...
. . .

...

PL�
(L,1)W (L,1) · · · PL�

(L,L)W (L,L)

⎤
⎥⎥⎦ and

B3 =
L∑
i=1

Pidiag
{

(W (i,1))T�(i,1)W (i,1), . . . , (W (i,L))T�(i,L)W (i,L)
}
.

From the above theorem the linear transformation A (hasp columns) of KNWFE in the feature
space H can be obtained by solving the following problem:

A = arg max
A

tr

((
ATXTWKNWXA

)−1 (
ATXT

(
BKNW − WKNW

)
XA
))

.

From the above theorem, we obtain the following corollary.
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Corollary 16.3.4 If the rank of XT is Nb, then the Fisher criterion with respect to KNWFE
with linear kernel is the same as NWFE.

16.3.2 Kernel-based FLFE

Some key components must be taken into consideration before constructing the kernel-based
fuzzy feature extraction (KFFE). The first is about the distance measure in feature space H
because the membership values have to be calculated through

�j

(
�
(
x

(i)
�

))
=
{

0.51 + 0.49 × sj
k if j = i

0.49 × sj
k if j /= i.

(16.1)

The second is how the features are extracted by KFFE via the kernel trick. Finally, we have to
exhibit the projection of an unknown sample in feature space H. In the following, we primarily
reformulate the fuzzy within-class and between-class scatter matrices in feature space H.

The fuzzy within-class scatter matrix SKFw in feature space H is defined as

SKFw =
L∑
i=1

Pi

ni∑
�=1

a
(i,i)
� (�(x(i)

� ) − Mi)(�(x(i)
� ) − Mi)

T ,

where Mi =∑ni
�=1 �(x(i)

� )/ni is the mean of class i in feature space H and

a
(i,i)
� = 1 −

(
�i

(
�
(

x(i)
�

))r1 / ni∑
�=1

�i

(
�
(

x(i)
�

))r1)
.

The fuzzy between-class scatter matrix SKFb in feature space H is given by

SKFb =
L∑
i=1

Pi

L∑
j=1
j /= i

ni∑
�=1

b
(i,j)
� (�(x(i)

� ) − Mj)(�(x(i)
� ) − Mj)

T ,

where b(i,j)
� = �j(�(x(i)

� ))r2/
∑ni
�=1 �j(�(x(i)

� ))r2 and Mj =∑nj
�=1 �(x(j)

� )/nj .
In the following lemmas and theorems, we demonstrate how the scatter matrices SKFb and

SKFw can be computed by the entries in the kernel matrix K or the kernel function K. The
proofs of these lemmas and theorems are similar to those in KNWFE.

Lemma 16.3.5 The mean of class j, Mj , in feature space H is defined by

Mj = 1

nj

nj∑
�=1

�(x(j)
� ) = XTj 1nj ,

where 1nj = [ 1
nj
, . . . , 1

nj
] is an 1 × nj constant matrix.
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Theorem 16.3.6 Let

�(i,i)
w = diag(a(i,i)

1 , . . . , a(i,i)
ni

).

The within-class scatter matrix can be expressed as

SKFw = XTWKFX,

where WKF = W̄1 − W̄2 − W̄T
2 + W̄3 with

W̄1 = diag(P1�
(1,1)
w , . . . , PL�

(L,L)
w ),

W̄2 = diag(P1�
(1,1)
w 1n1 , . . . , PL�

(L,L)
w 1nL ), and

W̄3 = diag(P11Tn1
�(1,1)
w 1n1 , . . . , PL1TnL�

(L,L)
w 1nL).

Theorem 16.3.7 Let

�
(i,j)
b = diag(b(i,j)

1 , . . . , b(i,j)
ni

).

The between-class scatter matrix can be expressed as

SKFb = XT (BKF − WKF
b )X,

where BKF = B̄1 − B̄2 − B̄T2 + B̄3 and WKF
b = W̄b1 − W̄b2 − W̄T

b2 + W̄b3 with

B̄1 = diag(P1

L∑
j=1

�
(1,j)
b , . . . , PL

L∑
j=1

�
(L,j)
b ),

B̄2 =

⎡
⎢⎢⎣
P1�

(1,1)
b 1n1n1 . . . P1�

(1,L)
b 1n1nL

...
. . .

...

PL�
(L,1)
b 1nLn1 . . . PL�

(L,L)
b 1nLnL

⎤
⎥⎥⎦ ,

B̄3 =
L∑
i=1

Pidiag(1Tnin1
�

(i,1)
b 1nin1 , . . . , 1TninL�

(i,L)
b 1ninL),

1ninj =

⎡
⎢⎢⎣

1
ni

· · · 1
ni

...
. . .

...
1
ni

· · · 1
ni

⎤
⎥⎥⎦
ni×nj

,

W̄b1 = diag(P1�
(1,1)
b , . . . , PL�

(L,L)
b ),

W̄b2 = diag(P1�
(1,1)
b 1n1 , . . . , PL�

(L,L)
b 1nL ), and

W̄b3 = diag(P11Tn1
�

(1,1)
b 1n1 , . . . , PL1TnL�

(L,L)
b 1nL).
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16.4 Eigenvalue resolution with regularization

There are two types of feature extractions, one applies scatter matrices Sw and Sb in original
spaceRNb and the other uses these scatter matrices in the feature space H. The transformation
matrix A cannot be computed explicitly in the feature space because only the inner products
in feature space can be obtained by the kernel function and the corresponding feature mapping
is implicit. Fortunately, the concept of dual form can solve this problem. The eigenvalue
decomposition method in the feature space will be introduced in this section.

Recall that the scatter matrices of KNWFE are

SKNWw = XTWKNWX and SKNWb = XT (BKNW − WKNW)X,

and the scatter matrices of KFFE are

SKFw = XTWKFX and SKFb = XT (BKF − WKF
b )X.

These two methods have the same forms

Sw = XTWX and Sb = XT (B − Wb)X, (16.2)

i.e., W = Wb = WKNW, B = BKNW in KNWFE and Wb = WKF
b , W = WKF, B = BKF in

KFFE.
Our goal is to find the transformation matrix A that maximizes the criterion

A = arg max
A

tr((AT SwA)−1(AT SbA)). (16.3)

The maximization process is equivalent to solving the generalized eigenvalue resolution

Sbvh = �hSwvh,

where (�h, vh) is the eigen-pair of (Sw)−1Sb in the feature space H with �1 ≥ �2 ≥ · · · ≥ �p.
Note thatp is the dimension of the transformed space. Consequently, the transformation matrix
A can be expressed as

A = [v1, . . . , vp].

Assume that the eigenvector vh lies in the span of all training samples in feature space H, i.e.,
it can be expressed as the dual form

vh = XT˛h.

Thus, the transformation matrix A can be represented as

A = [v1, . . . , vp] = XT [˛1, . . . ,˛p] = XT Ã, (16.4)

where Ã = [˛1, . . . ,˛p].
Therefore, from (16.2) to (16.4), to find A is equivalent to finding Ã by

Ã = arg max
Ã

{tr((ÃKWKÃ)−1(ÃT (K(B − Wb)KÃ))}.
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Then ˛h can be solved through the generalized eigenvalue problem

K(B − Wb)K˛h = �KWK˛h. (16.5)

From (16.5), we achieve the second goal: that the feature ˛h can be solved via the kernel trick.
In the following, the same eigen-decomposition of the kernel matrix is employed as in

GDA. Again, let K = P�PT andˇh = �PT˛h, thenˇh can be derived by solving the following
generalized eigenvalue problem

PT (B − Wb)Pˇh = �(PTWP)ˇh. (16.6)

Then ˇh is the eigenvector of (PTWP)−1PT (B − Wb)P. However, the estimation of
(PTWP)−1 may be singular or nearly singular. Hence, the following regularization is taken to
circumvent the singularity problem

PTWP = (1 − t) · (PTWP) + t · diag(PTWP), (16.7)

where t is a regularization parameter.
After ˇh is found, the ˛h can be computed by ˛h = P�−1ˇh and divided by

√
˛ThK˛h

to get normalized vectors ¯̨ h, i.e.,

¯̨ h = [ ¯̨ (1)
h1
, . . . , ¯̨ (1)

hn1
, . . . , ¯̨ (L)

h1
, . . . , ¯̨ (L)

hnL
]T = ˛h√

˛ThK˛h
.

We then obtain the transformation matrix A.
Finally, the projected components of an unknown mapped sample �(z) in H can be cal-

culated from

�(z)T vh =
L∑
i=1

ni∑
�=1

¯̨ (i)
h�
K(x(i)

� , z), for h = 1, . . . , p. (16.8)

Note that the projected components of an unknown sample are also computed by virtue of the
kernel trick. The summaries of KNWFE and KFFE are described in Tables 16.1 and 16.2.

16.5 Experiments

16.5.1 Data sets

In this study, for investigating the influences of training sample sizes to the dimension, three dis-
tinct cases, ni = 20 < n < Nb (case 1), ni = 150 < Nb < n (case 2) andNb < ni = 300 < n

(case 3) will be discussed. Owing to these sample size constraints, some of the classes
in selected hyperspectral images for the experiment are used. The MultiSpec© (Landgrebe
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Table 16.1 KNWFE algorithm

(1) Compute the distances between each pair of sample points in the feature space and form
the distance matrix.

(2) Compute w(i,j)
ks using the distance matrix and get the matrix W (i,j).

(3) Compute the scatter matrix weights �(i,j)
� and get the matrix �(i,j).

(4) By Theorem 17.3.3, compute BKNW, WKNW and, hence,
SKNWb = XT (BKNW − WKNW)X and SKNWw = XTWKNWX.

(5) Do eigen-decomposition for K, i.e., K = P�PT .

(6) Evaluate PTWKNWP by (16.7), where t is set by 0.5, and then compute ˇh by (16.6),
finally compute ˛h and vh .

(7) Calculate the projection components of each sample from (16.8).

Table 16.2 KFFE algorithm

(1) Calculate the membership values of each training sample of each class in feature space H
from (16.1).

(2) Compute �(i,i)
w and �(i,j)

b .

(3) Compute matrices BKF,WKF
b ,WKF and kernel matrix K .

(4) Decompose K using eigenvectors decomposition, i.e., K = P�PT .

(5) Do eigen-decomposition for K, i.e., K = P�PT .

(6) Estimate PTWKFP from (16.7) and compute ˇh from (16.6), and ˛h and vh.

(7) Calculate the projection components of each sample from (16.8).

2003) was used to select training and test samples (100 test samples per class) in our exper-
iments which uses the same method in (Benediktsson et al. 2005; Serpico and Moser 2007;
Landgrebe 2003).

In our experiments, three real data sets are applied to compare the performances of
KNWFE, KFFE and other kernel-based famous feature extraction methods. They are the Indian
Pines: a mixed forest/agricultural site in Indiana (Landgrebe, 2003), the Kennedy Space
Centre (KSC), Florida (Ham et al. 2005), and the Washington DC Mall hyperspectral image
(Landgrebe, 2003) as an urban site. The first two of these data sets were gathered by a sen-
sor known as the Airborne Visible/Infrared Imaging Spectrometer. The Indian Pines image,
mounted from an aircraft flown at 65 000 ft altitude and operated by the NASA/Jet Propulsion
Laboratory, with the size of 145 × 145 pixels has 220 spectral bands measuring approximately
20 m across on the ground. The simulated greyscale IR image and the ground truth map are
shown in Figure 16.4(top), respectively. Since the size of the samples in some classes are too
small to retain enough disjoint samples for training and testing, only eight classes, Corn-min,
Corn-notill, Soybean-clean, Grass/Pasture, Soybeans-min, Hay-windrowed, Soybeans-notill,
and Woods, were selected for the experiments.

The KSC data set was acquired over the KSC by the NASA AVIRIS instrument on March
23, 1996. AVIRIS acquires data in 224 bands of 10 nm width with centre wavelengths from
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Figure 16.4 (a) Simulated greyscale IR image of the Indian Pines Site dataset. (b) Ground
truth of the area with eight classes. (c) Classification map by KPCA-poly1 with ML classifier
(ni = 300, p = 13), (d) GDA-poly2 with SVM-poly1 classifier (ni = 300, p = 7), (e) KNWFE-
poly1 with ML classifier (ni = 300, p = 11), and (f) KFFE-poly1 with 1NN classifier (ni =
300, p = 13). (See plate 10)
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400 to 2500 nm. The KSC data, acquired from an altitude of approximately 20 km, have a
spatial resolution of 18 m. After removing water absorption and low SNR bands, 176 bands
were used for the analysis (Ham et al. 2005). Owing to the sample size constraints, seven
classes, Scrub, Graminoid marsh, Spartina marsh, Cattail marsh, Salt marsh, Mud flats, and
Water, are selected.

The third data set, Washington DC Mall from an urban area, is a Hyperspectral Digital
Imagery Collection Experiment (HYDICE) airborne hyperspectral data flightline over the
Washington, DC Mall. Two hundred and ten bands were collected in the 0.4–2.4 �m region
of the visible and infrared spectrum. Some water absorption channels are discarded, resulting
in 191 channels. The dataset is available in the student CD-ROM of Landgrebe (2003). There
are seven information classes in the Washington, DC data: roofs, roads, trails, grass, trees,
water and shadows.

16.5.2 Experiment design

The purpose of this experiment is to compare the multiclass classification performances using
ML, 1NN and soft-margin SVM classifiers with KPCA, GDA, KNWFE and KFFE features.
These kernel-based feature extractions are applied with two types of kernels, polynomial
kernels of degree d (d = 1 and 2) and the RBF kernel (width �). In this study, classifiers
ML and 1NN were implemented in PRTools (Duin et al. 2007) and soft-margin SVM in
LIBSVM (Chang and Lin 2001). The multiclass SVM classification in LIBSVM is performed
by one-against-one decomposition strategy (Hsu and Lin 2002). The other two kernel feature
methods, KPCA and GDA, were implemented in STPRTool (Schlesinger et al. 2007). The
free parameters used in KFLFE and SVM classifier are learned by grid-search on them by
using five-fold cross-validation strategy. For example, in the soft-margin SVM with RBF kernel
classifier, there are two parametersC and �, which are used to control the trade-off between the
margin and the size of the slack variables, and the flexibility of the kernel, respectively. Then,
we use five-fold cross validation to find the best C within the given set {2−5, 2−3, . . . , 215}
suggested by Chang and Lin, (2001) and � within {25, 26, . . . , 220}.

16.5.3 Experiment results

Tables 16.3–16.5 display the classification accuracies of testing data in cases 1, 2 and 3,
respectively. In these tables, ‘poly-d’ indicates the polynomial kernel with degree d is
used, and ‘RBF’ means that the RBF kernel is applied. Note that the best accuracy of
each data set (in column) is highlighted in bold type. From Tables 16.3–16.5, we can
find that

1. In the small sample size situation (case 1, ni = 20 < n < Nb), the highest accura-
cies of all methods are 0.834 (KFFE-poly2 with ML classifier and KFFE-RBF with
1NN classifier), 0.943 (KFFE-RBF with 1NN and SVM-poly1 classifiers) and 0.840
(KNWFE-RBF with 1NN classifier) in Indian Pines, KSC and DC datasets, respectively.

2. In case 2 (ni = 150 < Nb < n), the highest accuracies of all methods are 0.903
(KNWFE-poly1 with ML classifier and KFFE-poly2 with SVM-poly1 classifier), 0.976
(KFFE-RBF with 1NN classifier) and 0.851 (KNWFE-RBF with SVM-poly1 and SVM-
RBF classifiers) in Indian Pines, KSC and DC datasets, respectively.
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Table 16.3 The highest accuracies with respect to the dimensionality of the reduced subspace
(in parentheses) for the three datasets in case 1 (ni = 20). Partly reproduced from (Kuo et al.
2008) ©2008 IEEE

Feature extraction Classifier Indian Pines KSC DC

KPCA-poly1 ML 0.750(14) 0.914(8) 0.700(4)
1NN 0.681(15) 0.853(11) 0.700(4)

SVM-poly1 0.744(15) 0.797(7) 0.713(9)
SVM-poly2 0.715(11) 0.799(7) 0.762(12)
SVM-RBF 0.736(15) 0.894(14) 0.735(6)

KPCA-poly2 ML 0.766(14) 0.854(9) 0.709(12)
1NN 0.663(14) 0.840(14) 0.757(12)

SVM-poly1 0.783(15) 0.639(11) 0.681(11)
SVM-poly2 0.759(12) 0.631(13) 0.734(11)
SVM-RBF 0.775(9) 0.539(6) 0.704(12)

KPCA-RBF ML 0.684(7) 0.920(12) 0.700(4)
1NN 0.681(15) 0.840(13) 0.777(11)

SVM-poly1 0.644(15) 0.793(12) 0.715(10)
SVM-poly2 0.678(15) 0.804(14) 0.741(10)
SVM-RBF 0.771(15) 0.903(12) 0.730(8)

GDA-poly1 ML 0.664(7) 0.931(5) 0.143(1)
1NN 0.689(7) 0.933(6) 0.659(6)

SVM-poly1 0.665(7) 0.893(6) 0.434(5)
SVM-poly2 0.495(6) 0.911(6) 0.367(5)
SVM-RBF 0.660(6) 0.904(6) 0.434(5)

GDA-poly2 ML 0.654(6) 0.524(5) 0.142(1)
1NN 0.744(7) 0.884(6) 0.801(6)

SVM-poly1 0.734(7) 0.866(6) 0.748(6)
SVM-poly2 0.673(6) 0.841(5) 0.462(4)
SVM-RBF 0.738(7) 0.880(6) 0.748(6)

GDA-RBF ML 0.547(4) 0.664(6) 0.700(8)
1NN 0.647(7) 0.930(6) 0.777(11)

SVM-poly1 0.546(7) 0.840(6) 0.712(9)
SVM-poly2 0.494(7) 0.926(6) 0.741(9)
SVM-RBF 0.666(7) 0.840(6) 0.730(7)

KNWFE-poly1 ML 0.654(7) 0.920(5) 0.544(1)
1NN 0.761(9) 0.937(15) 0.703(6)

SVM-poly1 0.586(9) 0.903(14) 0.596(7)
SVM-poly2 0.615(10) 0.844(7) 0.434(7)
SVM-RBF 0.658(8) 0.763(7) 0.617(7)

KNWFE-poly2 ML 0.743(6) 0.843(11) 0.760(4)
1NN 0.764(6) 0.894(12) 0.831(9)

SVM-poly1 0.608(8) 0.917(12) 0.796(9)
SVM-poly2 0.579(12) 0.823(15) 0.734(9)
SVM-RBF 0.783(11) 0.724(12) 0.809(8)

(Continued)
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Table 16.3 (Continued)

Feature extraction Classifier Indian Pines KSC DC

KNWFE-RBF ML 0.695(6) 0.917(5) 0.689(5)
1NN 0.778(10) 0.937(15) 0.840(12)

SVM-poly1 0.649(14) 0.854(15) 0.833(8)
SVM-poly2 0.735(10) 0.881(6) 0.831(9)
SVM-RBF 0.800(12) 0.899(5) 0.731(14)

KFFE-poly1 ML 0.810(9) 0.924(7) 0.791(6)
1NN 0.804(11) 0.933(6) 0.810(7)

SVM-poly1 0.733(14) 0.924(9) 0.666(8)
SVM-poly2 0.660(10) 0.927(15) 0.547(6)
SVM-RBF 0.698(7) 0.923(5) 0.720(5)

KFFE-poly2 ML 0.834(6) 0.917(6) 0.807(6)
1NN 0.831(14) 0.930(6) 0.806(3)

SVM-poly1 0.814(14) 0.906(14) 0.823(6)
SVM-poly2 0.708(14) 0.917(13) 0.776(8)
SVM-RBF 0.783(11) 0.850(5) 0.814(4)

KFFE-RBF ML 0.816(7) 0.941(5) 0.793(5)
1NN 0.834(14) 0.943(13) 0.836(11)

SVM-poly1 0.763(15) 0.943(7) 0.839(10)
SVM-poly2 0.718(15) 0.923(15) 0.790(10)
SVM-RBF 0.755(11) 0.896(5) 0.770(5)

Table 16.4 The highest accuracies with respect to the dimensionality of the reduced subspace
(in parentheses) for the three datasets in case 2 (ni = 150). Partly reproduced from (Kuo et al.
2008) ©2008 IEEE

Feature extraction Classifier Indian Pines KSC DC

KPCA-poly1 ML 0.879(7) 0.839(15) 0.770(13)
1NN 0.750(15) 0.924(15) 0.768(13)

SVM-poly1 0.759(15) 0.763(14) 0.720(12)
SVM-poly2 0.823(13) 0.776(15) 0.788(11)
SVM-RBF 0.754(14) 0.587(11) 0.727(10)

KPCA-poly2 ML 0.878(15) 0.527(14) 0.760(15)
1NN 0.746(14) 0.787(15) 0.753(14)

SVM-poly1 0.749(15) 0.564(15) 0.774(9)
SVM-poly2 0.788(15) 0.609(15) 0.768(13)
SVM-RBF 0.750(15) 0.467(15) 0.777(9)

KPCA-RBF ML 0.816(15) 0.879(7) 0.770(13)
1NN 0.734(15) 0.750(15) 0.775(12)

SVM-poly1 0.746(15) 0.593(13) 0.702(11)
SVM-poly2 0.774(15) 0.620(15) 0.721(8)
SVM-RBF 0.835(14) 0.799(15) 0.788(12)
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Table 16.4 (Continued)

Feature extraction Classifier Indian Pines KSC DC

GDA-poly1 ML 0.865(7) 0.964(6) 0.832(6)
1NN 0.860(7) 0.967(6) 0.837(6)

SVM-poly1 0.836(6) 0.936(6) 0.717(2)
SVM-poly2 0.825(6) 0.939(6) 0.477(4)
SVM-RBF 0.826(7) 0.944(6) 0.715(2)

GDA-poly2 ML 0.883(7) 0.943(6) 0.142(1)
1NN 0.880(7) 0.960(6) 0.841(5)

SVM-poly1 0.856(7) 0.954(6) 0.817(6)
SVM-poly2 0.839(7) 0.956(6) 0.827(6)
SVM-RBF 0.840(7) 0.954(6) 0.838(6)

GDA-RBF ML 0.891(7) 0.946(6) 0.841(6)
1NN 0.891(7) 0.953(6) 0.837(6)

SVM-poly1 0.855(6) 0.851(6) 0.797(6)
SVM-poly2 0.796(7) 0.881(6) 0.802(6)
SVM-RBF 0.870(7) 0.924(6) 0.680(4)

KNWFE-poly1 ML 0.903(15) 0.846(6) 0.840(13)
1NN 0.886(12) 0.954(15) 0.839(10)

SVM-poly1 0.721(12) 0.881(15) 0.751(14)
SVM-poly2 0.773(11) 0.833(15) 0.840(9)
SVM-RBF 0.866(8) 0.947(15) 0.829(13)

KNWFE-poly2 ML 0.894(10) 0.614(15) 0.789(6)
1NN 0.878(15) 0.881(15) 0.839(8)

SVM-poly1 0.701(13) 0.789(15) 0.836(15)
SVM-poly2 0.630(12) 0.524(14) 0.831(6)
SVM-RBF 0.893(10) 0.841(11) 0.826(8)

KNWFE-RBF ML 0.886(13) 0.960(9) 0.847(9)
1NN 0.885(14) 0.971(15) 0.827(5)

SVM-poly1 0.834(11) 0.931(6) 0.851(6)
SVM-poly2 0.769(8) 0.934(6) 0.849(7)
SVM-RBF 0.871(15) 0.961(8) 0.851(12)

KFFE-poly1 ML 0.883(7) 0.973(12) 0.821(3)
1NN 0.871(9) 0.970(9) 0.834(5)

SVM-poly1 0.840(15) 0.969(15) 0.843(13)
SVM-poly2 0.775(8) 0.971(8) 0.841(11)
SVM-RBF 0.841(13) 0.884(6) 0.819(13)

KFFE-poly2 ML 0.881(7) 0.941(6) 0.800(7)
1NN 0.865(9) 0.973(15) 0.820(12)

SVM-poly1 0.903(13) 0.930(6) 0.753(7)
SVM-poly2 0.859(12) 0.939(6) 0.817(11)
SVM-RBF 0.828(15) 0.921(13) 0.770(7)

KFFE-RBF ML 0.876(9) 0.970(4) 0.824(4)
1NN 0.860(11) 0.976(10) 0.830(11)

SVM-poly1 0.849(11) 0.964(12) 0.847(14)
SVM-poly2 0.861(7) 0.957(6) 0.844(12)
SVM-RBF 0.826(11) 0.960(7) 0.797(11)



396 KERNEL-BASED FEATURE EXTRACTION

Table 16.5 The highest accuracies with respect to the dimensionality of the reduced subspace
(in parentheses) for the three datasets in case 3 (ni = 300). Partly reproduced from (Kuo et
al. 2008) ©2008 IEEE

Feature extraction Classifier Indian Pines KSC DC

KPCA-poly1 ML 0.900(13) 0.530(8) 0.700(4)
1NN 0.838(6) 0.814(15) 0.777(11)

SVM-poly1 0.756(15) 0.703(14) 0.712(9)
SVM-poly2 0.792(15) 0.726(14) 0.762(11)
SVM-RBF 0.786(15) 0.634(14) 0.734(5)

KPCA-poly2 ML 0.900(15) 0.520(11) 0.708(12)
1NN 0.837(15) 0.687(15) 0.757(12)

SVM-poly1 0.772(14) 0.454(3) 0.684(12)
SVM-poly2 0.801(15) 0.354(5) 0.734(9)
SVM-RBF 0.799(14) 0.391(6) 0.704(12)

KPCA-RBF ML 0.899(15) 0.886(10) 0.848(14)
1NN 0.823(9) 0.929(14) 0.854(15)

SVM-poly1 0.774(11) 0.773(14) 0.731(15)
SVM-poly2 0.648(15) 0.769(6) 0.764(15)
SVM-RBF 0.640(3) 0.943(15) 0.837(14)

GDA-poly1 ML 0.899(15) 0.886(10) 0.848(14)
1NN 0.823(9) 0.929(14) 0.854(15)

SVM-poly1 0.888(7) 0.973(6) 0.434(5)
SVM-poly2 0.885(7) 0.971(6) 0.367(5)
SVM-RBF 0.896(7) 0.980(6) 0.434(5)

GDA-poly2 ML 0.926(7) 0.956(6) 0.142(1)
1NN 0.926(7) 0.966(6) 0.801(6)

SVM-poly1 0.933(7) 0.949(6) 0.748(6)
SVM-poly2 0.931(7) 0.947(6) 0.581(5)
SVM-RBF 0.926(7) 0.957(6) 0.748(6)

GDA-RBF ML 0.918(7) 0.974(6) 0.940(5)
1NN 0.886(7) 0.973(6) 0.938(6)

SVM-poly1 0.918(7) 0.937(6) 0.901(6)
SVM-poly2 0.924(7) 0.976(6) 0.864(4)
SVM-RBF 0.894(7) 0.930(6) 0.854(5)

KNWFE-poly1 ML 0.954(11) 0.800(14) 0.959(15)
1NN 0.936(10) 0.970(9) 0.953(14)

SVM-poly1 0.949(13) 0.897(9) 0.884(15)
SVM-poly2 0.931(12) 0.877(15) 0.723(13)
SVM-RBF 0.905(12) 0.941(15) 0.930(14)

KNWFE-poly2 ML 0.941(11) 0.550(11) 0.916(7)
1NN 0.934(11) 0.861(15) 0.946(6)

SVM-poly1 0.894(14) 0.707(11) 0.911(7)
SVM-poly2 0.776(12) 0.593(15) 0.899(6)
SVM-RBF 0.939(14) 0.884(15) 0.926(15)
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Table 16.5 (Continued)

Feature extraction Classifier Indian Pines KSC DC

KNWFE-RBF ML 0.944(11) 0.980(7) 0.951(15)
1NN 0.941(14) 0.987(11) 0.947(15)

SVM-poly1 0.916(15) 0.967(7) 0.923(9)
SVM-poly2 0.891(8) 0.960(9) 0.916(8)
SVM-RBF 0.929(14) 0.979(15) 0.923(9)

KFFE-poly1 ML 0.919(9) 0.984(12) 0.926(7)
1NN 0.906(7) 0.980(7) 0.924(10)

SVM-poly1 0.900(13) 0.980(13) 0.916(14)
SVM-poly2 0.889(14) 0.976(10) 0.923(13)
SVM-RBF 0.900(14) 0.986(10) 0.920(5)

KFFE-poly2 ML 0.936(7) 0.963(7) 0.911(5)
1NN 0.955(13) 0.983(7) 0.920(9)

SVM-poly1 0.923(15) 0.927(8) 0.933(8)
SVM-poly2 0.911(11) 0.931(8) 0.924(9)
SVM-RBF 0.921(7) 0.977(10) 0.941(14)

KFFE-RBF ML 0.938(8) 0.991(6) 0.926(6)
1NN 0.954(14) 0.991(9) 0.951(6)

SVM-poly1 0.938(15) 0.981(7) 0.953(8)
SVM-poly2 0.910(14) 0.979(8) 0.943(10)
SVM-RBF 0.929(7) 0.990(8) 0.927(7)

3. In case 3 (Nb < ni = 300 < n), the highest accuracies of all methods are 0.955 (KFFE-
poly2 with 1NN classifier), 0.991 (KFFE-RBF with ML and 1NN classifiers) and 0.959
(KNWFE-poly1 with ML classifier) in Indian Pines, KSC and DC datasets, respectively.

4. We can observe that the best accuracies in each column all occur when applying KNWFE
or KFFE. Therefore, KNWFE and KFFE, outperform other feature extraction under the
best condition of all feature extractions.

5. For KSC dataset, KFFE-RBF with 1NN classifier is the best choice in the three cases.
But for other two datasets, the best combination of feature extraction and classifier is
not consistent.

Owing to the length restriction of this chapter, we choose the well-known Indian Pines
Site image as an example and only some classified images are shown for comparison. The best
classification mechanisms in case 3 (ni = 300) and four feature extraction conditions (KPCA,
GDA, KNWFE, and KFFE) are selected to generate the classified images.

Figure 16.4(top) shows the simulated Indian Pines Site image and the ground truth.
Figure 16.4 also shows the classification maps resulting after applying KPCA with ML
classifier, GDA with SVM classifier, KNWFE with ML classifier, and KFFE with 1NN clas-
sifier, which are the combinations with the highest classification accuracy. Here p is the
number of features extracted by these methods with the highest accuracies in the correspond-
ing methods. For instance, KNWFE-poly1 with ML classifier has the highest accuracy of
all the combinations of KNWFE and classifiers and Figure 16.4(e) is the classification result
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of this combination. As indicated from Figures 16.4(c)–16.4(f), we can find that KNWFE
and KFFE outperform the other feature extraction methods in ‘Corn-min’, ‘Corn-notill’, and
‘Soybeans-notill’ parts. In particular, KFFE has the best result in the ‘Soybeans-min’ part.

16.6 Comments and conclusions

In this chapter, two kernel-based nonparametric feature extraction methods, KNWFE and
KFFE, were introduced and we have analysed and compared them and other kernel-based
methods both theoretically and experimentally. From a theoretical point of view, NWFE and
FLFE are special cases of KNWFE and KFFE with linear kernel, respectively. The experi-
mental results of three hyperspectral images show that KNWFE and KFFE outperform KPCA
and GDA under three training sample size conditions.

Finally, the performance of kernel-based methods largely depends on the choice of kernel
functions. How to choose or create a kernel function that has the largest separability determined
by KNWFE or KFFE is the next direction for research.
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Plate 3 Illustrative example of the use of composite mean kernel in a two-dimensional two-
classes problem where training and test data are generated by two slightly different mixture
models composed of six Gaussian components. Plots (a) and (b) show the samples (circles)
and the distribution (coloured areas) of each Gaussian component of the the training (6 × 25
samples) and test (6 × 1000 samples) sets, respectively. Plot (c) shows test samples with the
true class labels (red and black points) and the distribution (shaded areas) of the found clusters
by the EM algorithm. Plots (d)–(f) show the classification results of the proposed composite
kernel using the soft mean map for three different situations: (d) pixel-based approach (� = 1)
equivalent to a standard SVM trained with K; (e) cluster-based approach (� = 0) of the �s-
SVM trained with KH

�s
; and (f) composite pixel-cluster approach (0 < � < 1) of the �s-SVM

trained withKH
ωs

. In these plots, red and black points represent the training samples; blue cir-
cles indicate the samples used as support vectors in each model; golden line and shaded areas
indicate the classification boundary of the maximum likelihood classifier (MLC) built with the
true mixture model of the training data (upper-bound of the classification performance); blue
line indicates the classification boundary of the MLC built with the true mixture model of the
test data; and black line shows the classification boundary of the trained models. (See page
234.)
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Plate 4 (a) Standard SVM classification results for the five MERIS images. (b)–(f) Average
classification results over the five images training the models with labelled and unlabelled
(800) samples from the image to be classified (single-image case): (b) CPU time [s], (c) �, (d)
OA, (e) SVs [%], and (f) weight � of the sample-similarity kernel of labelled samples K. (See
page 237.)
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Plate 5 (a) Standard SVM classification results for the five MERIS images. (b)–(f) Average
classification results over the five images with labelled samples from the other four images
and 800 unlabelled samples from the image to be classified (image-fold case): (b) CPU time
[s], (c) �, (d) OA, (e) SVs[%], and (f) weight � of the sample-similarity kernel (K). (See page
239.)



Plate 6 Comparison of the cloud mask of the proposed kernel methods against the ground
truth for the MERIS images over Barrax (BR-2003-07-14) and France (FR-2005-03-19).
Discrepancies are shown in red when proposed kernel methods detect cloud and in yellow
when pixels are classified as cloud-free. (See page 242.)

Plate 7 Maps of LST estimates generated by SVR when applied with parameter values
optimized by PSB and the hold-out grid-search to MSG-SEVIRI images acquired over Italy
on September 15 1999, at 7:00 a.m. and 11:00 a.m. local time. Cloud-covered and sea areas
are masked in black (partly reproduced by permission of IEEE). (See page 314.)



Plate 8 Maps of LST estimates generated by SVR when applied with parameter values
optimized by PSB and the hold-out grid-search to MSG-SEVIRI images acquired over Italy
on September 15 1999, at 3:00 p.m. and 5:00 p.m. local time. Cloud-covered and sea areas
are masked in black (partly reproduced by permission of IEEE) (See page 315.)

Plate 9 Maps of estimates of the standard deviations �� of the SVR error generated by the
application of CI-GGGH to the same satellite acquisitions as in Plates 7 and 8. Cloud-covered
and sea areas are masked in black (partly reproduced by permission of IEEE). (See page 320.)



Plate 10 (a) Simulated greyscale IR image of the Indian Pine Site dataset. (b) Ground truth of
the area with eight classes. (c) Classification map by KPCA-poly1 with ML classifier (ni = 300,
p = 13), (d) GDA-poly2 with SVM-poly1 classifier (ni = 300, p = 7), (e) KNWFE-poly1 with
ML classifier (ni = 300, p = 11), and (f) KFFE-poly1 with 1NN classifier (ni = 300, p = 13).
(See page 391.)
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