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Preface

Machine learning experienced a great advance in the 1980s and 1990s due to the active re-
search in artificial neural networks, adaptive schemes and fuzzy systems. These methodologies
demonstrated good results in many real applications, especially for classification and regres-
sion tasks, since neither a priori knowledge about the model of the distribution of the available
data nor the relationships among the independent variables should be necessarily assumed.
These desirable properties are at the basis of the success of these methods in the field of the
analysis of remote sensing images, where a wide literature refers to the definition of classifiers
and estimation algorithms based on neural networks and fuzzy systems.

In the 1990s, Kernel methods emerged as innovative techniques in the framework of
machine learning. Kernel methods can be simply viewed as a two-fold methodology. The
first step consists of mapping the data from the original input space into a kernel feature
space of higher dimensionality through a nonlinear function. The second step solves a linear
problem in the transformed kernel space. These methods allow us to design and interpret
learning algorithms geometrically in the kernel space (which is nonlinearly related to the
input space), thus combining statistics and geometry in an effective way, and all of this while
obtaining solutions with that desirable property that is uniqueness. A few sets of free parameters
are commonly needed to make the algorithms work properly. In addition, the inclusion of
regularization in the function to be optimized becomes a natural and theoretically well-founded
task. This theoretical elegance is also matched by their practical performance. Interestingly,
this framework allows us to create non-linear methods from linear well-established ones.

The recent application of machine learning and pattern recognition approaches based on
kernel methods (KMs) to the field of remote sensing data analysis provided excellent results in
many different application domains. Kernel methods proved effective in the analysis of images
of the Earth acquired from airborne and satellite sensors, by improving the results offered
by traditional statistical and neural networks methods in real-life applications (e.g. natural
resource control, detection and monitoring of antrophic infrastructures (e.g. urban areas),
agriculture inventorying, disaster prevention and damage assessment, anomaly and target
detection, biophysical parameter estimation, etc.). Nowadays, KMs are standard techniques
for many remote sensing applications.

The book Kernel Methods for Remote Sensing Data Analysis presents research related to
remote sensing based on the recent advances in kernel methods. The book is organized into five
parts. The first part of the book presents two background chapters on the key aspects of machine
learning for remote sensing, and the theoretical and practical foundations of kernel methods.
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The remaining four parts address the most recent research in developing kernel methods in
remote sensing for supervised classification, semi-supervised classification, regression, and
feature extraction.

The four main parts of the book are preceded with introductory chapters. Chapter 1, written
by Waske, Fauvel, Benediktsson and Chanussot, reviews the main concepts of machine learn-
ing in the context of remote sensing, and focuses on the supervised classification case. Written
by Gehler and Scholkopf, Chapter 2 provides the reader with an exhaustive introduction to the
framework of kernel methods. The authors address the main concepts and theoretical deriva-
tions, discuss theoretical and practical issues, and give pointers to useful references. These
introductory chapters can be useful both for the non-expert reader in remote sensing and
kernel methods, and for practitioners interested in the theoretical and practical issues of kernel
machines. Then, three parts are devoted to the application and development of kernel methods
in different learning paradigms, i.e., in supervised classification, semi-supervised classifica-
tion, function approximation and regression, and feature extraction. The fourteen chapters
of these blocks include a literature review of the specific application, a critical discussion of
the needs and demands of each one, novel research contributions, and experimental results to
demonstrate method capabilities. Chapters are written by leading experts in their respective
fields. A brief description on the specific contribution of each of the chapters follows.

The first block of chapters is devoted to supervised image classification. This is the most
active research area for kernel methods in remote sensing due to the special characteristics of
the problems and the advantages offered by kernel machines. In Chapter 3, Gualtieri reviews
the formulation and foundations of the classical support vector machine (SVM), and shows re-
sults in hyperspectral image classification. Also, special attention is paid to the parallelization
of the algorithm. In all cases, theory is supported with experimental results. In Chapter 4,
Foody analyses in detail the design of training and testing stages for image classification
with SVM. Next, in Chapter 5, Dundar and Fung analyse another kernel method, the Kernel
Fisher’s Discriminant. After reviewing the formulation, a novel version with heterogeneous
kernels is presented, and results in multi and hyperspectral image classification are presented.
Chapter 6 by Mufioz-Mari, Gémez-Chova, Martinez-Ramon, Rojo—Alvarez, Calpe-Maravilla
and Camps-Valls presents a general framework based on composite kernels for dealing with
multitemporal and multisource image classification and change detection. Two kernel classi-
fiers are used to illustrate the properties of the framework: the standard SVM and the one-class
SVM. The latter is useful for target detection and anomaly detection problems. Related to this,
in Chapter 7, Nasrabadi provides a performance comparison of various linear and nonlinear
anomaly detection techniques based on kernels. In particular, subspace anomaly detectors are
reviewed and their kernel versions discussed. Also, the kernel Reed—Xiaoli (RX) anomaly de-
tector is presented and benchmarked. This book part is concluded with Chapter 8 by Banerjee,
Burlina and Diehl, in which one-class SVMs for hyperspectral anomaly detection is pro-
posed as an alternative to the RX method. Performance is illustrated in airborne mine and
hyperspectral imagery detection.

The third part of the book is devoted to the emerging field of semi-supervised image
classification. In particular, depending on whether training and test data are drawn from the
same remote-sensing image or not, one should work under a domain adaptation problem or
under a sample selection bias problem. The first case is treated in Chapter 9 by Marconcini
and Bruzzone, where a novel domain adaptation SVM technique that extends SVMs to the
domain adaptation framework is presented, and a novel validation strategy for domain adapta-
tion is proposed. The second case is treated in Chapter 10, by Gémez-Chova, Calpe-Maravilla,
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Bruzzone, Camps-Valls, which presents a semi-supervised SVM classifier based on the combi-
nation of the expectation-maximization (EM) algorithm for Gaussian mixture models (GMM)
and the mean map kernel.

The fourth part of this book is devoted to the field of regression and model inversion. Several
interesting applications are included. First, in Chapter 11, written by Broadwater, Banerjee, and
Burlina, the concept of a kernel unmixing algorithm for hyperspectral imagery is introduced.
This new model generalizes the linear mixing model allowing for both linear and nonlinear
mixture estimation. Then, in Chapter 12 by Wang, Yang and Li, the theory and methods
for quantitative remote sensing inverse problems with kernel-based operator equations is
developed. The authors focus on the important bidirectional reflectance distribution function
(BRDF) model inverse problem and the distribution function of atmospheric aerosols. Finally,
in Chapter 13, written by Moser and Serpico, land and sea surface temperature estimation
with support vector regression is treated in detail, and the span bound is proposed for free
parameter tuning.

Finally, the book finishes with a part dealing with kernel-based feature extraction. Three
chapters are included. Chapter 14 by Arenas-Garcia and Brandt Petersen reviews the principles
of several multivariate analysis methods and their kernel extensions. Application to contextual
multispectral image classification and pixel-based hyperspectral classification are illustrated.
Then, in Chapter 15, by Gu, kernel PCA is revised in detail for target and anomaly detec-
tion. An improved selective KPCA is proposed in hyperspectral images. The book ends with
Chapter 16, by Kuo, Yang and Li which deals with the kernel nonparametric weighted feature
extraction (KNWFE). The experimental results show that KNWFE outperforms KPCA and
GDA remote sensing image classification.

Gustavo Camps-Valls and Lorenzo Bruzzone
Valéncia and Trento, 2009
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Machine learning techniques
in remote sensing data analysis

Bjorn Waske', Mathieu Fauvel?, Jon Atli Benediktsson'
and Jocelyn Chanussot’

" Faculty Electrical and Computer Engineering, Univ. of Iceland, Iceland
*Signal & Image Department, Grenoble Institute of Technology, France

Several applications have been developed in the field of remote sensing image analysis during
the last decades. Besides well-known statistical approaches, many recent methods are based
on techniques taken from the field of machine learning. A major aim of machine learning
algorithms in remote sensing is supervised classification, which is perhaps the most widely
used image classification approach. In this chapter a brief introduction to machine learning and
the different paradigms in remote sensing is given. Moreover this chapter briefly discusses the
use of recent developments in supervised classification techniques such as neural networks,
support vector machines and multiple classifier systems.

1.1 Introduction

1.1.1 Challenges in remote sensing

Owing to the recent development of different Earth observation platforms with increased
spatial and spectral resolution as well as higher revisit times, remote sensing provides more
detailed information on land cover and the environmental state than ever before. Moreover,
different Earth-observation systems, such as multi-spectral and SAR systems operate in dif-
ferent wavelengths, ranging from visible to microwave. The data sets consequently provide
different, but complementary information. The classification of such data might be considered

Kernel Methods for Remote Sensing Data Analysis  Edited by Gustavo Camps-Valls and Lorenzo Bruzzone
© 2009 John Wiley & Sons, Ltd
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complex on the one hand, but with regard to recent and upcoming missions, remote sensing
applications become even more attractive, on the other.

Many early techniques have been taken directly from signal processing and these methods
are often based on simple data models and approaches. However, when dealing with recent
data sets these well-known classifiers can be limited (Richards 2005). In addition, increased
performance requirements such as speed (e.g., for operational monitoring systems and near-
real time applications) and accuracy, further demand the development of more sophisticated
analysis concepts (Jain et al. 2000). Thus, the development of adequate methods for various
data sets is an important ongoing research topic in the field of remote sensing. This chapter
is organized as follows. In Section 1.1.2 a general introduction to machine learning is given,
followed by a discussion on different paradigms in remote sensing. In Section 1.2 various
supervised classifiers are introduced. A conclusion is given in Section 1.3.

1.1.2 General concepts of machine learning

Machine Learning is an area of artificial intelligence and generally refers to the development of
methods that optimize their performance iteratively by learning from the data. Such methods
can be predictive (e.g., a regression model) and make a prediction of a specific phenomenon
or descriptive (e.g., a classification model) and distinguish for example between different
classes of patterns. In the field of remote sensing, descriptive machine learning algorithms
often focus on land cover classifications, and thus provide important input information in
several environmental monitoring systems, as for instance in the area of flood forecast, urban
sprawl and land degradation. In this context, we are dealing with the differentiation between
several land cover classes, and the algorithm learns to differentiate between different types of
patterns (i.e. land cover classes).

Let us assume the detection of a specific land cover class, e.g., buildings, to be a general
machine learning problem. The corresponding machine learning formulation will be:

Find f : x— y = f(x), (1.1)

where x is a feature vector from the image and y is a scalar that indicates the presence
(y = 1) or the absence (y = 0) of a building x. Note that the values chosen for y are arbitrary.
Machine learning theory aims at estimating the functional f from some prior data. Several
techniques have been introduced to achieve this goal. They can be separated into several
categories, e.g., depending on the type of the training data, the form of function f(x) and
potential assumptions on the underlying density function (Figure 1.1). Two main categories,
unsupervised and supervised, based on whether they include a priori knowledge during the
decision process by using labelled training samples or not. In contrast to this, semi-supervised
concepts are a special type that rely on both labelled and unlabelled samples.

1. Supervised algorithms: These correspond to the situation where a set of labelled sam-
ples, {(x;, y,-)}f=1 , our training data, is available and the objective is to predict the value
y corresponding to a new sample X, i.e. determining the class-memberhsip of x.

2. Unsupervised algorithms: These correspond to the situation where only the data, i.e.,
(x j)§=1’ are known and the objective is to describe how the data are organized or
clustered.
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Figure 1.1 Overview of different classifier categories (after Jain et al. 2000).

3. Semi-supervised algorithms: In this case, the two previous approaches are combined.
The learning is based not only on the available set of labelled samples {(x;, yi)}le, but

also on some additional data (x j)““

j=t41 for which no prior knowledge y; is available.

In a supervised setting, (1.1) can be reformulated as
using (x;, y)i_y, find f: X > y = f(x). (1.2)

In order to find the best functional f, and consequently to optimize the detection performances,
an additional constraint needs to be included in the formulation of the problem. Denoting E[ f]
as a measure of error, i.e. the prediction f(x) differs from the truth y, (1.2) should be rewritten
as:

Using (x;, y,-)le, find f : x — y = f(x) for which E[ f] is minimal. (1.3)
Depending on f(x) the machine learning algorithms can be further differentiated into two
subgroups:

1. Linear algorithms: The variables x and the output y are assumed to be linearly related
and f is an affine function f(x) = (w, x) + b.

2. Nonlinear algorithms: The relation between x and the output y is nonlinear and f can
be any function. On example is the quadratic function f(x) = x'Ax+b'x + c.

When using nonlinear algorithms, the user hence needs to choose the set of functions that will
be considered. Depending on the application and on the level of the user’s knowledge, this
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choice may be difficult. For instance, if it is assumed that grey-level of building pixels follow
a Gaussian distribution N1(x, X1) and background pixels follow N2(i,, X2), where X and
1 denote the variance—covariance matrix and mean vector, respectively. Following a Bayesian
framework (see Section 1.2.1), the decision function can be derived as follows (Duda et al.
2001):

. 1 1 =
f(x)z{11f—2(x—lt1)T):1(x—u1)+2(x—ﬂ2T)zz(X_lL2)_ln (|ZL|> ~ o

0 otherwise.

The training samples are used to estimate the different parameters (u1, X1, #, and X5). Such
approaches, which assume that p(x|y) follows a specific distribution, are called parametric
approaches. In many remote sensing applications it is assumed that the distributions follow the
form of a multivariate normal Gaussian model. In addition, many processes can be described
by this model assumption and it is computationally relatively simple because the model is only
described by the mean and the covariance matrix. However, when dealing with multisensor
and multi-temporal data sets, the class distributions can often not be modelled by adequate
multivariate statistical models. Recall our general machine learning application, i.e. the de-
tection of buildings in a remote sensing data set. What if the background pixels do not follow
a Gaussian distribution or we would like to include additional information, such as texture or
shape descriptors? In these cases a new model p(x|y) should be defined.

Non-parametric approaches seem particularly interesting in this context because they
are not constrained to prior assumptions on the distribution of input data. Kernel methods,
for example, enable the definition of general functions that can be tuned directly during the
training step. These functions typically have the following form:

4
)= aiK(xi,X)+b, (1.4)

i=1

where k is a kernel function and ((ai)le, b) are the parameters of the decision function.

1.1.3 Paradigms in remote sensing

Machine learning in remote sensing comprises several different paradigms such as classifica-
tion, regression, clustering, feature extraction, dimensionality reduction and density estima-
tion. These aspects are often interdependent, e.g., before performing a classification one might
extract some additional texture features and also reduce the dimensionality of the data set with
feature selection techniques (Figure 1.2). Perhaps the most commonly undertaken applications
in remote sensing are feature reduction, clustering and classification. In the following, a brief
formal description of these machine learning concepts is given.

Feature extraction and selection

Terms such as feature extraction and feature selection are closely related to dimensionality re-
duction, which refers to the mapping of the data from the original feature space into a space of
a lower dimension, without discarding any meaningful information. Furthermore, meaningful
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Figure 1.2 Overview on a computational remote sensing application. Bold lettering indicates
where machine learning approaches are most effective.

information is defined according to the final application. Hyperspectral imaging, for example,
is characterized by high spectral resolution with up to hundreds of data channels with nar-
row bands, ranging from the visible to the short-wave infrared region of the electromagnetic
spectrum. Although such data provide detailed spectral information, theoretical and practical
problems arise with increasing dimensionality of the data in the spectral domain. The idea of
the dimension is intuitive, driven by experiments in one-, two- or three-dimensional space, and
geometric concepts that are self-evident in these spaces do not necessarily apply in higher-
dimensional space (Kendall 1961; Landgrebe 2003). For example, normally-distributed data
have a tendency to concentrate in the tails, which seems to contradict its bell-shaped density
function. For the purpose of classification, these problems are related to the curse of dimen-
sionality. In particular, Hughes showed that with a limited training set, beyond a certain limit,
the classification accuracy decreases as the number of features increases (Hughes 1968). This
is paradoxical, since with a higher spectral resolution one can discriminate more classes and
have a finer description of each class, but the data complexity leads to poorer classification.

To mitigate this phenomenon, a dimensionality reduction is performed by feature selection
and feature extraction. A feature reduction algorithms can be supervised or unsupervised. The
objective is to find f:

f:R" > R?

X~ X (1.5)

with d < n.

Feature selection refers to a selection of a subset of relevant features, whereas feature
extraction combines and transforms the original features—both in order to obtain a relevant
representation of the data in a lower-dimensional space. Such strategies were initially designed
in accordance with both the specific characteristics of the remote sensors and the objectives
(e.g., crop monitoring). Well-known extraction methods are vegetation indices and transfor-
mations such as the Tasseled Cap Transformation (Kauth and Thomas 1976). The Tassled
Cap was proposed to underline significant spectral characteristics in crop development in a
multi-spectral Landsat image, to improve the differentiation between crops and other vege-
tation types. However, such transformations are sensor-dependent and the physical analysis
associated with each transformation can be intractable for hyperspectral data.

Transformations based on statistical analysis have already proved to be useful for
classification, detection, identification or visualization of remote sensing data (Chang 2003;
Keshava 2004; Richards and Jia 1999; Unsalan and Boyer 2004). Two main approaches can
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be defined. (1) Supervised transformation is in general well suited to pre-processing for the
task of classification, since the transformation improves class separation. However, its effec-
tiveness is correlated with how well the training set represents the whole data set. Moreover,
this transformation can be extremely time-consuming. Unsupervised methods do not focus
on class discrimination, but aim for another representation of the data in a lower-dimensional
space, satisfying some given criterion. For Principal Component Analysis (PCA), the data are
projected into a subspace that minimizes the reconstruction error in the mean square sense.
Note that both the unsupervised and supervised cases can be also divided into linear and
nonlinear algorithms.

PCA plays an important role in the processing of remote sensing images. Even though its
theoretical limitations for hyperspectral data analysis have been pointed out (Landgrebe 2003;
Lennon 2002), in a practical situation the results obtained using the PCA are still competitive
for the purpose of classification (Journaux et al. 2006; Lennon et al. 2001). The advantages
of the PCA are its low complexity and the absence of parameters. However, the PCA only
considers the second-order statistic, which can limit the effectiveness of this method. Part IV
of this book presents a nonlinear version of the PCA, namely Kernel Principal Component
Analysis (KPCA), which considers higher-order statistics.

Clustering algorithms

In contrast to supervised approaches, which construct the decision boundaries from training
data, clustering algorithms are based on a set of unlabelled data. In general, cluster algorithms
aim to indentify data (unknown) structure, such as natural groups or clusters within the multi-
dimensional feature space by measuring similarities between different pixels. The pixels within
a cluster or group are more similar to each other than those pixels belonging to other clusters
(Jain et al. 2000).

As for classification, the goal is to learn a function f

f:R" > N
X — ¢, (1.6)

where no labelled data are available and the training relies only on the observations X.
Thanks to kernel functions, the similarity can be computed easily (Hofmann ez al. 2008).
Moreover, it can be adapted to the data by using an appropriate kernel. Nevertheless, the most
common similarity measurement is the Euclidean distance. However, when dealing with data
that contains clusters of different shapes and sizes the definition of clusters and the selection of
an adequate similarity measure are critical and thus the clustering process can be difficult (Jain
et al. 2000). After measuring the similarity, the cluster algorithm merges the individual pixels
into groups. Of course, the same data set can result in several potential combinations of clusters
and some kind of accuracy assessment is required to evaluate the quality of the generated
clusters. A common quality measurement is the squared error measure that is also used as
the cluster criterion. Clustering techniques are also used for unsupervised classifications.
After generating groups of pixels with similar properties, the user usually assign a class label
to each cluster. Clustering approaches, such as ISODATA and k-means are well known in
remote sensing. They usually assign each pixel to only one cluster (hard techniques), whereas
fuzzy approaches as the fuzzy c-mean results in a degree of membership for all clusters.
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Probably the widest used is the ISODATA (iterative self-organizing data analysis). In contrast
to the k-means clustering, the approach enables an optimization of the individual clusters (e.g.,
splitting and merging) during the clustering process. The basic algorithm might be described
as follows.

1. Initialization: The number of clusters is defined (by the user) or estimated. For each
cluster a pixel is (often randomly) selected as cluster centre.

2. Clustering process: Each pixel is assigned the nearest cluster, using the distance
measurement (e.g. Euclidean distance) between the pixel and the cluster centre.

3. Test: Compute the new cluster centres and compare them with the previous centres. If
a centre has changed return to step 2, otherwise the procedure is terminated.

4. Optimization: Optimize clusters (at the end and any suitable processing step) by merging
clusters that are close together or contain only a few pixels and splitting incompact
clusters.

Other approaches as the agglomerative hierarchical clustering techniques do not rely on spe-
cific cluster centres. In the beginning each pixel is handled as a separate cluster. During the
process neighbouring pixels (or clusters) are sequentially merged, depending on a distance
measurement. The process of clustering can be represented in a tree diagram or so-called
dendogram. This figure shows how the pixels are grouped and at what distance measure-
ment individual pixels and clusters are merged. In addition to agglomerative algorithms that
sequentially reduce the number of clusters, by merging similar groups (bottom-up approach),
divisive techniques procedures start with all the pixels belonging to one cluster and split it
iteratively into smaller clusters (bottom-down approach). An alternative clustering approach
is based on mixture models. This approach is based on the assumption that each natural group
is described by a different probability distribution. Whereas the form of the distribution is
similar for all groups, the parameter values are different. In addition, a mixture can contain
different models and more complex density functions can be modelled (Jain et al. 2000).

Supervised classification algorithms

The major part of machine learning algortihms for remote sensing image analysis is aiming
perhaps for a supervised classification of the data. The machine learning problem is to learn the
function f, from a set of labelled examples, i.e. our training samples whose class membership
is known:

f:R" - N

X — C, (1.7)

which assigns each sample to a particular class ¢. In general such learning problems are
ill-posed and it is necessary to restrict the space of possible functions f. Using a Bayesian
framework, this is done by choosing an appropriate prior density function. In Section 1.2
different supervised classifiers are introduced.

In machine learning, a trade-off is made between how well the function fits the data
and how complicated the function is. Several measures can be used to assess the complex-
ity of a function. One that has played an important role in the last decades is the so-called
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VC-dimension (Vapnik 1998). The trade-off leads to solving the following general minimiza-
tion problem:

¢
o1
min D V& )+ AlLFIR (1.8)
i=1
where the norm || - || is a measure of complexity (low norm corresponding to a simple function)

and V is a loss function. For instance, V( f(x;), ¢;) = max(0, 1 — f(x;)c;) for the SVM. Note
that the resolution of (1.8) can involve supervised or semi-supervised algorithms. Different
supervised classifiers are introduced in Section 1.2, semi-supervised kernel algorithms are
discussed in Chapters 9 and 10.

Regression problem are very similar to classification problem. The only change occurs for
the outputs of the function that is now defined on R. Actually, many classification algorithms
can be turned to regression ones by a simple change in the loss function: for the SVM, the
loss function is changed to the e-insensitive function (Vapnik 1998). As for classification, the
regression may be supervised or semi-supervised. In Chapter 13 the use of support vector
machines for regression is discussed.

1.2 Supervised classification: algorithms and applications

1.2.1 Bayesian classification strategy

Classification approaches that rely on the Bayesian framework are one of the basic concepts
in (statistical) pattern recognition. The (Gaussian) maximum likelihood classifier, which is
derived from the Bayes rule when classes have equal priors, is doubtlessly the most common
supervised classification technique in the field of remote sensing. In contrast to geometrical
and discriminant analysis-based approaches, Bayesian concepts are density based and assume
specific density functions for each information class.

Following the Bayesian decision strategy a pixel x is classified to class y; if p(y;|x) >
p(yjIx), for all i # j, where p(y;|x) is called the a-posteriori probabilities and refers to the
probability that x belongs to class p(y;|x). In this context it is assumed that our feature vector
x have a specific probability density, that is dependent on the observed information class.
The pixel x belonging to class y; is understood as an observation drawn randomly from the
class-conditional probability density function p(xX|y;). Following Bayes’ theorem, the required
a-posteriori probabilities can be computed by the class-conditional probability density function
or likelihoods and the a-priori probabilities, which describe the probability that a specific class
occurs in the data set.

Generally, the Bayesian decision rule is aiming at minimizing the conditional risk and
expected loss, respectively, that is associated with each potential classification. A so-called
loss function enables a weighting of the different classifications, which can be important if
the costs of misclassification vary with different types of classes. However, often a so-called
0/1 loss function is used, which weights all misclassifications equally.

Thus, the final decision rule is based only on the a-posteriori probabilities. This classifica-
tion rule is also referred to as the maximum a posteriori rule (MAP). However, the conditional
probability density function p(x|y;) are generally not known and must be estimated from the
training data. Often (particularly in remote sensing) it is assumed that the data follow the form
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of a multivariate normal (Gaussian) model, which is an adequate assumption for many remote
sensing data sets. Moreover the normal model is defined by only two parameters, the mean
and the covariance matrix, which are derived from the training data. However, the use of a
Bayesian classifier might be critical if an adequate multivariate statistical model is not avail-
able and the number of training samples is limited (with respect to the dimensionality of our
data set). In such cases, the performance of the classifier can be affected, resulting in a lower
classification accuracy. However, if the form of the density function is unknown, it is possi-
ble to operate in a non-parametric mode: Approaches such as histogram methods, k-nearest
neighbour and kernels methods enable an estimation of the class-conditional densities and,
thus, a classification in the context of the Bayesian framework.

1.2.2 Neural networks

In the past there has been great research focus on neural networks (NN) in the context of
pattern recognition and remote sensing (Atkinson and Tatnall 1997; Benediktsson et al. 1990).
In several studies the performance of NN was compared with widely-used statistical methods,
as for the classification of multi-spectral (Bischof et al. 1992; Paola and Schowengerdt 1995),
SAR (Bruzzone et al. 2004; Del Frate et al. 2003), hyperspectral (Benediktsson et al. 1995)
and multi-source data sets (Benediktsson ef al. 1990). The results in several of these studies
demonstrate that NN approaches perform better or at least equally as well as conventional
approaches. In the context of remote sensing image analysis, several different NN models have
been proposed (Benediktsson et al. 1997, 1990; Serpico et al. 1996). A general introduction
to neural networks in the context of pattern recognition is given for example in Bishop (1995),
an overview on remote sensing applications can be found in Atkinson and Tatnall (1997).
Like other machine learning techniques, neural networks have an advantage over traditional
statistical methods in that they are distribution-free, i.e. they do not rely on any underlying
statistical distribution of the data. In the context of classification, a neural network can be
considered as a black box model that receives a set of input vectors and produces responses
from its output neurons, where the number of neurons depends on the number of information
classes (i.e. land cover classes). A neural network is an interconnection of neurons, where a
neuron receives input signals that represent the activity at the input or the momentary frequency
of neural impulses delivered by another neuron to this input. The output value or the frequency
of the neuron is often represented by a function, which is controlled, among others factors, by
the so-called synaptic efficacies or weights. The weights are modified by an adaptive training
process in which a set of training samples is presented at the input. The network gives an output
response for each sample. The actual output response is compared with the desired response
for the sample and the error difference between the desired output and the actual output is
used to modify the weights in the neural network. The training process ends when the error
is reduced to a pre-specified threshold or cannot be minimized any further (i.e, the network
structure is stabilized and the weights do not change or are less that a specific threshold).
Neural network approaches enable the determination of the weights for each data source
during the classification procedure, which makes them particularly valuable for multi-source
applications (e.g., multi-temporal and multisensor land cover classifications). In this context an
adequate multivariate statistical model is often not known, and traditional statistical approaches
can be limited. However, the NN approach can be computationally complex and requires a
large number of training samples. Moreover, compared with statistical methods, the approach
has more problems, classifying unknown pixels that are not identical to training samples.
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Figure 1.3 Schematic diagram of a fully connected feed forward neural network.

Consequently the performance of a neural network strongly depends on representative training
samples, whereas statistical models require an appropriate model for each class (Benediktsson
et al. 1990). Whereas the performance of networks with a single layer of adaptive weights is
limited, the use of several layers enables a more general application. It has been shown that
with two hidden layers a neural network can approximate any function in the mean square
sense. However, in remote sensing applications, one hidden layer is most often sufficient. A
schematic overview of a fully connected feed forward neural network is given in Figure 1.3.

Several different neural network algorithms have been proposed. A widely used approach,
for instance, is a multilayer perceptron network (MLP) with an error backpropagation algo-
rithm. It is a multilayer feedforward algorithm that can be used to discriminate data that are
not linearly separable. During the training process, the error from the outputs of the network
is propagated backwards and the weights are changed in order to reduce this error. However
this method has some limitations, e.g., the slow convergence of the error backpropagation, the
potential convergence to a local minimum, and the incapacity to detect that an input sample
has fallen in a region of the feature space without training data (Bruzzone et al. 2004; Serpico
et al. 1996). This is a serious weakness, especially when the dimensionality of the data is very
high. Therefore, neural networks require an efficient feature extraction method when dealing
with very high dimensional data sets.

A radial basis function (RBF) network can solve some of the problems mentioned above
and the training can be much faster (Bishop 1995; Bruzzone and Prieto 1999). The RBF
approach is based only on a single hidden layer and is considered as a design for a curve-fitting
problem in a high-dimensional space. In regard to this, learning is comparable to defining a
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surface in a multi-dimensional space that provides a best fit to the training samples, with the
criterion for best fit being measured in some statistical sense. In the RBF neural network, the
hidden units provide a set of functions that constitute an arbitrary basis for the input patterns
when they are expanded into the hidden unit space (radial basis functions). The transformation
from the input space to the hidden-unit space is nonlinear, whereas the transformation from
the hidden-unit space to the output space is linear.

Another development is the family of ART (Adaptive Resonance Theory) and ARTMAP
networks, proposed by Carpenter and Grossberg (Carpenter et al. 1997, 1991, 1992), which
is different from other networks, such as the backpropagation algorithms. The original ART
framework is an unsupervised approach that groups pixels into stable clusters. The number of
clusters depends on the so-called vigilance parameter. Using a distance metric vigilance defines
how outspread individual groups might be distributed in the feature space. The ARTMAP
approach, an supervised extension of ART, is iteratively modifying the vigilance parameter in
case of a misclassification (Muchoney and Williamson 2001).

The last decade has seen the emergence of more efficient supervised machine learning
algorithms: Regularization networks (RN) and support vector machines (SVM) (Girosi et al.
1995; Vapnik 1998). While classical neural networks and radial basis classifiers learn the
classification problem by minimizing the Empirical Risk (i.e. the number of errors made on
the training set), the RN and the SVM implement Structuring Risk Minimization (SRM): the
optimal solution is found by selecting the function that minimizes both the Empirical Risk
and a measure of the complexity of the function.

The RN and SVM can be described using the framework of VC theory (Evgeniou et al.
1999): for instance the use of kernel functions in Reproducing Kernel Hilbert Space (RKHS)
as regularizer and SRM principle. However, SVM and RN do not provide equal solution since
they do not use the same loss functions to compute the training errors (Evgeniou et al. 1999).
Classically, the RN uses the square errors while SVM uses the hinge loss (Chapelle 2007). It
implies that SVM finds solutions that emphasize the separating surface and provide very good
results in real world problem.

SVM have been intensively studied in remote sensing. The following section reviews some
remote sensing applications of SVM.

1.2.3 Support Vector Machines (SVM)

Support Vector Machines (SVM) were introduced to context pattern recognition and machine
learning and are a relatively recent development in the context of remote sensing and still ex-
hibit further improvement and modification, e.g., in the context of semi-supervised approaches
(Bruzzone and Carlin 2006; Chi and Bruzzone 2007) and the introduction of new kernel con-
cepts (Camps-Valls et al. 2008, 2006). SVM were originally introduced as binary classifiers.
The concept is based on an optimal linear separating hyperplane that is fitted to the training
patterns of two classes within a multi-dimensional feature space. The optimization problem
that has to be solved relies on structural risk minimization and is aiming at a maximization
of the margins between the hyperplane and the closest training samples. For linearly not sep-
arable samples the input data are mapped into a high dimensional space. In doing so a linear
hyperplane can be fitted, which is nonlinear in the original input space. The computation-
ally extensive mapping process is handled by using a positive definite kernel function. This
kernel-trick enables us to work within the newly transformed feature space, without explicitly
knowing the map but only the kernel function.
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In the context of remote sensing, binary classification problems generally do not exist,
thus the binary nature of SVM requires a method to solve multi-class problems. The most
frequently used approaches are the one-against-one rule, which separates each pair-wise class-
combination, and the one-against-all, which is based on the separation of each class from the
rest. For a detailed introduction to SVM the reader is referred to the following chapters.

SVMs have been used successfully in several remote sensing studies (Foody and Mathur
2004; Huang et al. 2002; Pal and Mather 2005). In many studies they performed more accu-
rately than other classifiers or performed at least equally well. Because the approach considers
only samples close to the class boundary, it works well with small training sets, even when
high dimensional data sets are classified (Melgani and Bruzzone 2004; Pal and Mather 2006).
In van der Linden et al. (2007) the use of SVM on segmenting HyMap data urban areas was
discussed. SVM achieved high overall accuracies using a purely pixel-based classification,
underlining the high efficiency of SVM to describe complex class distributions. The approach
differentiated broad thematic classes without a preliminary definition of spectrally homoge-
neous sub-classes or separate treatment of dark areas. In another study a framework for the
classification of multi-spectral and hyperspectral data was presented (Farag et al. 2005), which
is based on the maximum a posteriori (MAP) concept. The MAP approach aims on maximiz-
ing the posterior probabilities that are represented as the product of the class prior probability
and the class conditional probability (CCP). In the proposed approach, SVM were used to
estimate the required CCP.

In other experiments, spectral and spatial image information were combined to improve the
classification accuracy (Camps-Valls ef al. 2006; Fauvel et al. 2006). An alternative approach
for classifying very high resolution urban imagery is based on the use of different segmentation
results at various scales (Bruzzone and Carlin 2006). The result demonstrates that different
levels provide different types of information, which seems particularly interesting regarding
high- resolution images.

Although SVM achieved promising results in several studies, SVM was rarely applied to
multi-source classification problems. Whereas some of these application are based on the use
of the original SVM and common kernel functions (Koetz et al. 2008; Song et al. 2005), in
other experiments the SVM approach was extended and modified for classifying multi-source
data sets. In Halldorsson et al. (2003) a common kernel function was extended for classifying a
multi-source data set containing Landsat MSS data and topographical information. In Camps-
Valls et al. (2006) so-called composite kernels were introduced, for combing contextual and
spectral information from hyperspectral imagery.

Another approach for combining spatial and spectral information was proposed by Fauvel
etal. (2008). Itis based on the use of both the spatial and spectral information for classification.
The spatial information is modelled by the spatial response to morphological filters while the
spectral information is the spectral components themselves. The approach was successfully
applied on very high spatial resolution hyperspectral images.

In another study, SVM were used for combining a set of multi-temporal SAR data and
multi-spectral imagery (Waske and Benediktsson 2007). The overall accuracy was further
improved by training individual SVM classifiers on the two data sources and fusing the pre-
liminary outputs (i.e. distances to the hyperplane) by a third SVM. This concept was further
extended by a multilevel component (Waske and van der Linden 2008). In doing so they
include different segmentation scales from each source, i.e. the SAR data and multi-spectral
imagery. The main reason for the success of these strategies could be the different nature of
the used data types, i.e. the multi-spectral imagery and the SAR data. The multi-temporal
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SAR data and the multi-spectral images provide different information and may not be equally
reliable. Furthermore, different aggregation levels contribute unequally to the classification of
the various classes and hence the sources do not appear equally reliable. The application of a
single SVM for the whole heterogeneous data sets requires the definition of one single kernel
function. However, it seems more adequate to define the kernel functions for each data source
separately and fuse the derived outputs

In the context of multi-temporal and multi-source classification by SVM, new kernel
functions were proposed in (Camps-Valls et al. 2008). In that study a general framework
based on composite kernels for remote sensing data was presented that combines spectral,
spatial, multi-temporal and multisensor information. The classification results underline the
good performance of these concepts, which outperform a traditional stacked-vector approach
in terms of accuracy. Other developments in the context of SVM and remote sensing are the
introduction of semi-supervised techniques (Bovolo et al. 2008; Bruzzone et al. 2006; Chi
and Bruzzone 2007).

Toy classification example: kernel method versus parametric method

To illustrate the ability of kernel approaches to deal with hyperspectral remote sensing data,
a toy classification example is presented. We compare three techniques: one parametric, the
quadratic Bayesian classifier and two machine learning algorithms, one naive, the minimum
distance to the mean classifier and the most powerful SVM. The decision rule are:

1. Minimum distance to the mean classifier: Samples are assigned to whichever class has
the smallest Euclidean distance to its mean. The decision boundary is

{x2xT(u_ = p+ @ln, - wTpo)=0}. (19

2. The linear SVM classifier: We use the soft margin formulation, where the decision
boundary is
{X

3. The quadratic Bayesian classifier: Under the Gaussian assumption and with the same
covariance matrix, the decision boundary is

4
Za,-y,-(xi,x>+b=o}. (1.10)

i=1

1
{x| (s =) =) x = Sz ny — w270 ) = 0} RGN

To test the behaviour of SVM in the ‘high dimensional space / small training set’ situation,
a typical setting in remote sensing, two Multivariate Gaussian clusters were generated with
increasing dimension, and classification was performed using the three classifiers, but with
a fixed training set of 40 samples per class. For each dimension, 100 experiments with 1000
test samples per class were performed and the mean results are plotted in Figure 1.4. The
minimum distance classifier performs the worst and, as in the previous experiment, the SVM
and Gaussian classifiers perform equally well for low and moderate dimensions. But, above
a certain dimension (& 28), classification accuracy decreases for the Gaussian classifier. The
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Figure 1.4 Toy example: two Gaussian clusters in high-dimensional space. The line shows
the mean classification accuracy and the bar is the standard deviation over 100 experiments.

problem is related to the estimated covariance matrix, which becomes badly conditioned and
hence noninvertible. Unlike the other classifiers, SVM does not suffer from the dimensionality
and performs perfect classification.

These experiments reveal some properties of SVM that render it suitable for remote-
sensing applications. However, it is well known that classes of interest in remote sensing are
partially overlapped (Richards and Jia 1999). Hence the choice of a linear function may not be
optimal. Hopefully, the use of kernel methods will make it possible fo have both the effective
linear training model and the powerful discriminant ability of a nonlinear model.

To illustrate the effectiveness of nonlinear SVM, we performed another experiment. We
generated data with two clusters: one Gaussian cluster with zero mean and one cluster with
ring distribution with zero mean, see Figure 1.5. Linear classifiers cannot handle this sort of
data set. For the experiments, we use a polynomial kernel with p = 2 and g = 0 with the
SVM. The minimum distance classifier can also be kernelized, since it can be expressed in
terms of inner product. For the Bayesian classifier, we made the assumption of two Gaussian
clusters, with identical means but different covariance. This leads to the following decision
rules:

1. Minimum distance to the mean classifier:

2 2 &2 2 ¢
X D X9 = 23 X)) Ty x? =00 (112)
m=1

ik=1 ji=1
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2. The SVM

classifier:

4
{X|Zaiyi(xi,x)2+b=0}. (1.13)

i=1

3. The quadratic Bayesian classifier:

{x|xT (2;1 - 2:1) x + log <3§gj> - 0} . (1.14)

The decision functions are plotted in Figure 1.5. The Bayesian classifier is unable to classify
the data correctly. In this situation, the Gaussian assumption is not verified and thus the
classification is not optimal. The SVM classifier fits the ellipsoidal geometry of the data well,
which is not true for the minimum distance classifier. It is important to note that if the SVM
performs better than the Bayesian classifier, it is because the Gaussian assumption does not
hold and the data are linearly separable in the feature space induced by the polynomial kernel.

1.2.4 Use of

Classifier ensem!

multiple classifiers

bles, also known as multiple classifier systems, have been used successfully

in recent years and are particularly interesting for multi-source and high-dimensional data
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sets. Several applications in the context of remote sensing and pattern recognition have shown
that the classification accuracy can be increased by combining different independent classifiers
(e.g. Briem et al. 2002; Gislason et al. 2006; Ham et al. 2005; Waske and van der Linden 2008).
These concepts rely on the combination of different classifier methods or the combination of
variants of the same classifier. In the latter approach, a set of independent classifier is generated
by training the base-classifier on modified input data (e.g., a subset of training samples or
input features). The final results are most often determined by a voting scheme, and often
a simple majority vote is used. Because the individual classifiers are using only a fraction
of the input data, each single classifier performs worst in context of classification accuracy
(i.e. also known as weak classifiers). However, the concept is based on the assumption that
independent classifiers produce individual errors that are not produced by the majority of the
other classifiers. Consequently, the errors are eliminated by combining the outputs. Although
classifier ensembles can be generated with different classifier algorithms, e.g., neural networks
(Hansen and Salamon 1990) and SVM (Kim et al. 2003) often tree-like classifiers are used.
Numerous concepts for generating classifier ensembles have been introduced, whereas bagging
and boosting are the main approaches, which are discusssed below.

Boosting, bagging and variants

Boosting is a concept to improve the performance of any classifier. The AdaBoost.M1 approach
widely used the boosting concept in remote sensing (Freund and Schapire 1996). In the be-
ginning of the iterative boosting procedure, all training samples are equally weighted and the
classifier Cp is the same base classifier. The weights of the training samples are modified after
each step and the next classifier within the ensemble uses the newly distributed reweighted sam-
ples. Whereas misclassified samples are assigned a stronger weight, the weights of correctly
classified samples go down. Thus the classifier is concentrating on the difficult samples and the
overall accuracy is generally improved. AdaBoost is appropriate for classification problems
that include training samples that are not equally difficult to classify. It tends to exhibit virtu-
ally no overfitting when the data is noiseless. Moreover boosting can reduce both the variance
and the bias of the classification. Nevertheless, in contrast to other ensemble techniques that
can be performed simultaneously (e.g., bagging), boosting is based on a sequentially process.
Consequently, the computation time is relatively long. The sensitivity to noisy training data is
another disadvantage of boosting (Bauer and Kohavi 1999). The AdaBoost.M1 approach can
be described as follows:

14

Input: A training set 7' = {(x;, y;)};_,, base classifier Cz and number of classi-

fiers 1.

1. T1 = S and weight(x;) = 1for j=1...l(x € §1)
2. FORi=1to I{

3. Ci =Cg(S)

4, calculate error rate ¢;

5. if ¢; > 0.5, terminate procedure
6. calculate weight 8; = €; /(1 — €;)
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7. for each x; € T;{ if Ci(x;) # y; then
weight(x ;) = weight(x;) - 8;}.

8. normalize weights that the total sum of weights is 1}.
9. END
10. C*(x) = arg max Z log (1/8:)
Ci(x)=y

A new framework on boosting was discussed in Ritsch et al. (2002), introducing a boosting
like one class classifier algorithm. In this study it was shown that the SVM approach can be
theoretically transferred into an equivalent boosting like algorithm and vice versa. Although
the general similarities between the two concepts have already been discussed in different
papers, the authors in Rétsch er al. (2002) have recalled these statements to make it clearer.
The boosting like approach was derived by using equivalence between the boosting and SVM
on the mathematical concepts underlying these algorithms. The authors finally concluded that
the presented concept shows new research prospects for boosting: unsupervised learning.

Bagging is the abbreviation of bootstrap aggregating and was originally introduced by
Breiman (1996). It is based on combining independent classifier outputs, which were gener-
ated by training the base classifier using different training sample sets (also known as boot-
strapped aggregates or bags). Although both bagging and boosting rely on the generation of
various classifiers and their combination by a vote, the two approaches are dissimilar: Bagging
always uses resampling instead of reweighting, thus it does not change the distribution of the
samples and all classes are equally weighted. In general a random and uniform selection is
performed, selecting £ samples from a training set of same size £. This process is performed
with replacement, i.e. a training sample can be selected several times in the same sample set
and perhaps another sample is not considered in this particularly bag. Each individual training
set is used to generate a separate classifier, resulting in various independent outputs. The final
classification map is created by combining the individual outputs, and often a simple majority
vote is performed. The approach can be described as follows:

12

A training set T={(x}, y;)} the base classifier Cp and number of randomly

j=1
generated training sets /.
l. FORi = 1to I{
2. T; = bootstrapped bag from S
3. Gi=CT))
4. END

5. the class with the maximum number of votes is chosen

If the base classifier is unstable, i.e., a small change in training samples can result in a large
change in classification accuracy, then bagging can improve the classification accuracy sig-
nificantly. On the other hand, the use of a stable base classifier, such as, for example, a
k-NN classifier, results in reduced classification accuracy, because each classifier receives less
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information (Briem et al. 2002). In contrast to the aforementioned modification of the training
patterns by bagging and boosting, other concepts are based on resampling of input features
(Bryll et al. 2003; Ho 1998), also referred to as random feature selection. For each classifier a
subset of features is created. These techniques can outperform other concepts in terms of accu-
racy (Bryll et al. 2003; Ho 1998) and also seems adequate for classifying remote sensing data
(Waske et al. 2006). Breiman (2001) introduced random forests (RF), a tree-based ensemble,
which was applied in several remote sensing studies (Gislason et al. 2006; Ham et al. 2005;
Waske and van der Linden 2008). RF further improves the classification performances and
overcome the shortcomings of the previous approaches of bagging and boosting. It combines
the conventional bootstrap aggregating and a random feature selection method: in training,
the algorithm creates multiple decision trees, each trained on a bootstrapped sample of the
original training data. Moreover the decision rule at each split node is determined using only a
randomly selected feature subset of the input data. A simple majority vote is used to create the
final classification result. By reducing the number of features at each split, the computationally
complexity of the individual DT classifier is simplified, resulting in a computationally lighter
method than bagging and boosting. This enables an RF to handle high-dimensional data sets.
In addition the correlation between the classifiers is decreased, which generally improves the
performance of the ensemble.

Combination of different classifiers

In contrast to the methods above, which are based on the same classifier algorithm, other
approaches combine different classifiers (Benediktsson and Kanellopoulos 1999; Fauvel et al.
2006; Steele 2000; Waske and van der Linden 2008). Consequently the advantages of different
methods can be combined. Perhaps each classifier was developed in a diverse context and
enables a different description of the same classification problem. Furthermore, each method
may have its own region in the feature space where it outperforms other classifiers in terms of
accuracy (Jain et al. 2000).

In many remote sensing studies the different outputs were combined by decision fusion.
Decision fusion can be described as combining information from different data sources, after
each individual data set has been classified previously. It has often been based on the consensus
theory, which employs single probability functions to summarize estimates from various data
sources using consensus rules (Benediktsson and Swain 1992). However, these techniques are
relatively costly and computationally less demanding voting concepts like majority voting and
complete agreement have been proposed (Benediktsson and Kanellopoulos 1999).

1.3 Conclusion

In recent years, machine learning algorithms have been designed to address various applica-
tions in remote sensing. Besides the development in the field of (supervised) classification ma-
chine learning concepts provide a significant contribution to other related fields in the context
of remote sensing, such as feature extraction and the retrieval of surface parameters by regres-
sion models. Nevertheless, most of the machine learning applications deal with supervised
classification and this chapter briefly discussed the use of different algorithms such as SVM,
neural networks and ensemble techniques. All these algorithms provide very promising results
in the context of different data sets. Regarding the recent developments of Earth observation
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platforms with increased spatial resolutions and higher revisit times as well as the availability
of multisensory data sets, future trends will rise from the following subjects: (1) integration of
time-series, which seems particularly interesting over regions that are characterized by typical
temporal variability, e.g., agricultural regions. The research might focus on the handling of the
temporal variability within the image time series on the one hand and the determination of ade-
quate acquisition dates on the other. (2) Spatial high resolution data sets are often integrated into
urban applications. In this context the combination of spectral and spatial features as well as the
extraction of multiple features is particularly interesting. For instance, the spectral reflectance,
which characterizes the physical nature of different surface materials, is complementary to
the spatial information (describing the shape and geometry of the different natural objects,
such as buildings, trees etc.). Thus the development of advanced feature extraction methods
is useful to derive spatial information. Moreover, adequate classifier concepts are needed to
take advantage of these complementary sources. (3) The combination of different data sets
and classifiers, e.g. by decision fusion, will be the important focus for multisensor imagery. In
this context the reliability of each source is a critical issue when generating a fusion strategy,
requiring adequate methods to assess the reliability of different data sources and individual
classifiers. (4) Finally, land cover classifications provide an important input to several environ-
mental monitoring and decision support systems. In the context of operational applications,
user interaction is often minimized in these applications. Consequently, future developments
in will aim towards automatic or semiautomatic land cover classification methods.
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An introduction to kernel
learning algorithms

Peter V. Gehler and Bernhard Scholkopf
Max Planck Institute for Biological Cybernetics

Kernel learning algorithms are currently becoming a standard tool in the area of machine
learning and pattern recognition. In this chapter we review the fundamental theory of kernel
learning. As the basic building block we introduce the kernel function, which provides an
elegant and general way to compare possibly very complex objects. We then review the
concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we
give an overview of the most prominent algorithms, which are support vector classification and
regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning
and structured output prediction we also introduce some more recent advancements in the
field.

2.1 Introduction

Algorithms making use of positive definite kernels have considerably influenced the field of
machine learning, pattern recognition and related fields over the last decade. For example
the prominent Support Vector Machine has been applied with much success to a variety of
tasks and belongs nowadays to the standard toolbox of every practitioner. In addition to their
empirical success kernel methods have a solid theoretical foundation and have also been
studied in the mathematics and statistics communities. In this chapter we will review the
basic mathematical concepts of kernel learning and introduce some prominent algorithms. In
contrast to the majority of work on Support Vector Learning we will avoid using duality theory
but rather use the regularized risk formulation as the underlying basis for the derivation.
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© 2009 John Wiley & Sons, Ltd
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Image processing and in particular remote sensing applications are very challenging
because they confront us with a variety of different problems. To begin with, image data,
and representations thereof, are typically of very high dimension while, on the other hand,
one has access to only very few labelled examples. Algorithms have to account for noise in
the observations in a robust way. In particular the acquisition of hyperspectral image data is
prone to different noise sources such as instrumental and observational noise. Furthermore,
image data may stem from different sources demanding ways of combining information.
Kernel algorithms are suited to tackle such problems. With the design of a kernel function it is
possible to combine different feature entities, different feature dimensionalities and account
for high dimensional data. With the framework of regularized risk minimization, kernel
methods are efficient even with little training data and offer ways to incorporate unlabelled
examples through semi-supervised models. Such algorithms have already proven to be a
valuable tool for image processing applications such as image coding, image de-noising,
image segmentation and image classification (Camps-Valls ef al. 2007; Kim et al. 2005). In
particular for classification of hyperspectral images, kernel classifiers have found to yield
state-of-the-art results, as also reported in Part 2 of this book.

The selection of topics for this chapter is by no means comprehensive and aims to obtain a
self-contained exposition of the basic concepts of kernel learning and the most used algorithms.
For a more detailed introduction to the field we refer to the articles by Hofmann et al. (2008),
Shawe-Taylor and Cristianini (2004) and Scholkopf and Smola (2002), who also cover the
statistical background of kernel algorithms.

This chapter is divided into three sections. We start in Section 2.2 with a basic introduction
to the notion of kernels and introduce the reproducing kernel Hilbert space. In Section 2.3
we state the representer theorem, which serves as the foundation of all the algorithms that are
presented in Section 2.4.

2.2 Kernels

2.2.1 Measuring similarity with kernels

Suppose that we are given empirical data

(leyl)v"'v(xl’liyn)e‘){Xy-

We will call x; the inputs that are taken from the nonempty set X and y; € ) the targets. The
problem of learning is to use this data in order to make statements about previously unseen
elements x € X. For example in binary classification where the training data stems from two
classes with labels ) = {—1, +1} one aims to construct a function f : X — ) that assigns to
each element of X’ a class label. The function one is interested in should not be arbitrary but
one that generalizes well, that is, loosely speaking, making few errors on unseen data from
the same problem. In the classification example this corresponds to making as few mistakes as
possible when inferring the class labels. In order to enable generalization we need to exploit the
structure of the training examples and in order to impose a structure we will define a similarity
between pairs of data points. The most general setting would be to define such a similarity
between pairs of inputs (X, y) including the targets. For now we will restrict ourselves and
define similarities only between inputs x € X" and refer to Section 2.4.5 for a generalization.
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There was no other assumption about X’ other than it being a set and, in particular, nothing
has been said about inputs being similar to each other. Therefore we will first map the data
into a space where we have a notion of similarity, namely a dot product space H, using the

mapping
¢: X > H, x> ¢x).

The similarity between the elements in H can now be measured using its associated dot
product (-, -)%. For convenience we introduce the following function that does exactly that

K: XxX—->R, xx)~ KxX),
which we require to satisfy for all x, x' € X

K(x,X) = ($(x), ¢(x)) 3. 2.1

This function is called a kernel. The mapping ¢ is referred to as its feature map and the space
'H as its feature space.

Although this construction seems a bit inconspicuous we will see that it has far reaching
consequences. Sometimes we will drop the subscript specifying the origin of the dot product
in those cases where it should be clear from the context.

2.2.2 Positive definite kernels

The construction of the similarity measure as the dot product in some space H is rather
general. Different measures of similarity can be obtained by simply varying the feature
map ¢. A particular simple case is when X’ is itself a dot product space in which case one may
choose ¢ to be the identity. We will now show that the class of kernels that can be written
in the form of (2.1) coincides with the class of positive definite kernels. This yields a very
comfortable situation due to the following observation. Algorithms that operate on the data
only in terms of dot product can be used with any positive definite kernel by simply replac-
ing (p(x), p(x'))x with kernel evaluations K(x, x’), a technique also known as the kernel
trick (Scholkopf et al. 1998). Another direct consequence is that for a positive definite kernel
one does not need to know the explicit form of the feature map since it is implicitly defined
through the kernel. We will even encounter examples where H is infinite dimensional and thus
the replacement of the dot product is crucial in order to evaluate the dot product at all.

We need some definitions before we can state the equivalence between K(x,Xx')

and (¢(x), p(x)) .

Definition 2.2.1 (Gram matrix) Given a kernel K: X x X — R and inputsxy, ..., X, €
X. We call the n x n matrix K with entries

Kl'j = K(X,’, Xj) (2.2)

the Gram matrix or the kernel matrix of K with respect to X1, . . ., X;.
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Definition 2.2.2 (Positive definite matrix) A real symmetric n x n matrix K is called
positive definite if forall ¢y, ...,c, € R

n
Z cicjKij > 0. (2.3)
i, j=1

If equality in (2.3) occurs only for c; = ... = ¢, = 0 then the matrix is called strictly positive
definite.

A positive definite kernel is one that always produces a positive definite Gram matrix for
elements in X’. More precisely:

Definition 2.2.3 (Positive definite kernel) If foralln € Nandforallxy, ...,Xx, € X the
Gram matrix K;; = K(x;, X;) is positive definite we call the kernel a positive definite kernel.
If furthermore for all n € N and distinct Xy, ..., X, € X the kernel K gives rise to a strictly
positive definite Gram matrix we will call it a strictly positive definite kernel.

Now we are ready to state one of the most important observations for kernel methods. To
this end we need the concept of a Hilbert space. Recall that a Hilbert space H is a real (or
complex valued) inner product space that is complete by the inner product (-, -),. Some simple
examples of Hilbert spaces are R? and C¥.

Proposition 2.2.4 A function K : X x X — R is a positive definite kernel if and only if
there exists a Hilbert space H and a feature map ¢ : X — H such that for all x,x' € X we
have K(x, x') = ($(x), p(x)) .

Proof: ‘<=’ Assume the kernel can be written in the form (2.1). It being positive definite is a
simple consequence of the bilinearity of the dot product (-, -)x

2
> 0.
H

n

> cig(x)

i=1

n n n
> cicjlgxi), p(x))n = <Z cip(xi), Y cjp(x ,)> =
i,j=1 i=1 j=1 H

‘=’ In the next section (2.2.3) we will present how to construct, given a positive definite kernel,
a Hilbert space along with a feature map ¢ with the desired properties. This will conclude the
proof. 0

Owing to this equivalence we will sometimes refer to a positive definite kernel simply as a
kernel. Although kernels compute dot products in some space H, they should not be mistaken
to be themselves dot products in the input space. For example they are in general not bilinear.
However they share important properties such as the Cauchy—Schwarz inequality.

Proposition 2.2.5 (Cauchy-Schwarz) If K is a positive definite kernel, and x|,x; € X,
then

K(x1,%2)* < K(x1, x1)K(X2, X2).
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Proof: Since K is positive definite, so is the 2 x 2 Gram matrix K;; = K(x;, Xj). Therefore
the eigenvalues of K are non-negative and so is its determinant. Writing out the determinant
completes the proof

0 < det(K) = K(x1, x1)K(x2, X2) — K(X1, X2)*.

2.2.3 Constructing the reproducing kernel Hilbert space

Using the positive definite kernels as building blocks we will now go one step further and
consider functions that can be expressed as linear combinations of kernels. This leads us to
the concept of a reproducing kernel Hilbert space (RKHS) . In the following we will present
a construction scheme for a fixed kernel K, which will also conclude the proof of Proposition
2.2.4. The main idea is to construct a Hilbert space whose elements are functions. For a given
kernel K we define the following set

F = {f(-):Za;K(~,xi); neN o eR,x; GX} QRX,

i=1

where the element K (-, x): X — R denotes a function. Obviously K(-, x) itself is an element
in F. It is easy to see that this set can be turned into a vector space if we endow it with the
two operations addition (f + g)(x) = f(x) + g(x) and multiplication by a scalar (Af)(x) =
Af(x), A € R. Now we define an inner product between two elements of this space

n n’
fO =) @K(.x) and g()=) B;K(.X)
i=1 j=1
withn,n" € N, oy, Bj € R, x;, x; € X, simply as
n n
(fe)r=Y_ aifjKxi,x)).
i=1 j=1

This is a well defined construction and does not depend on the choice of the expansion
coefficients of f or g. To see this note that we can also write

DB =(falr =) aigx),
j=1 i=1

where the left term does not depend on the expansion of f and the right term does not depend
on the expansion of g. This also shows that (-, -) r is bilinear. Furthermore it is symmetric
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and positive definite, which follows directly from the positive definiteness of the kernel K,
since

(ffir =) aie;K(xi,xj) >0

ij=1

implies that for any functions fi, ..., f, € F and any coefficients cy, ..., ¢, € R we have

p p p
> cicilfi fidr = <Zc,-ﬁ-, Zc,-f,-> > 0.
Jj=1 F

i, j=1 i=1

From the last equation we see that (-, -) r is a positive definite kernel defined on a vector space
of functions.
If we choose g(-) = K(-, x) it follows directly from the definition of the inner product that

(RGP =Y aiK(xi,x) = f(x), (2.4)

i=1
and in particular
(K(, %), K(-, X)) F = K(x,X)).

This property is known as the reproducing property of the kernel. A function f can thus be
represented as a linear function defined by an inner product in the vector space F'.

We still need to show definiteness of the inner product. Applying (2.4) and the Cauchy—
Schwarz inequality we obtain

IFX)1? = HKC, %), fIFI* < K& X) - (£ f)F,

which proves that (f, f)F =0 < f = 0. The space we constructed can be completed by
adding all limit points of sequences that are convergent in the norm || f||r = +/{f f), which
yields the Hilbert space H, see e.g. Aronszajn (1950) for details.

Owing to the property (2.4) this space is called a reproducing kernel Hilbert space (RKHS)
for K. The RKHS uniquely determines K and vice versa. This is the statement of the following
theorem.

Theorem 2.2.6 (Moore-Aronszajn, see Aronszajn (1950)) 7o every positive definite

kernel K there exists a unique reproducing kernel Hilbert space H whose kernel is K and vice
versa.

Proof: It remains to show uniqueness. Let H' be another Hilbert space for which K is the
reproducing kernel. Then for all x,x' € H

(KC.x), KXy = K(x, X)) = (K(, %), K(, X))y
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Owing to the linearity of the dot product and the uniqueness of the completion it must hold
H = H'. Now assume K, K' € H, K #+ K’ are two different reproducing kernels of H. Then
there exists a x € X for which

0< ||K(, X) - K/('v X)”%—[ = <K(’ X) - K’('v X)’ K(a X) - K/(" X)>'H
= <K(a X)’ K(7 X) - K/('v X))H - <K/('7 X)7 K(a X) - K/(" X))H = 0’

which is a contradiction. O

We have constructed a Hilbert space that can act as the feature space for our kernel. The
corresponding feature map for this space is the so-called Aronszajn map

¢:X—>RX,xr—> K(,x).

For this ¢ it is easy to see that the kernel K is indeed of the form (2.1). We want to point out
that although there exists a unique RKHS to each kernel K, it might well be that the kernel
computes the inner product of different spaces as well. If the two feature maps ¢, ¢, map
into the feature spaces H 1, resp. Hy then it might be the case that

K(x,x") = (1(%), )13, = ($2(%), $2(X)) 115,

for all x, x" € X, but that does not necessarily imply that ¢; = ¢. For our purposes however
we can consider the two spaces identical since we are only interested in the kernel evaluation
as the dot product and this remains identical.

We will see examples of kernels for which the corresponding RKHS is infinite dimensional.
To prevent complications we generally assume that the RKHS are separable, i.e. there exists a
countable complete orthonormal system. For this special case we have the following theorem,
which states that there in fact is only one such space.

Theorem 2.2.7 All separable infinite dimensional Hilbert spaces are isometrically
isomorphic.

2.2.4 Operations in RKHS

We will turn our attention to some basic operations in the reproducing kernel Hilbert space and
show how they can be computed in terms of kernel function evaluations. Although the space
'H can be very high dimensional or even infinite dimensional, in some cases basic operations
can still be computed. Essentially this is the case whenever we can express its elements in
terms of kernel evaluations.

Translation

A translation in feature space can be written as the modified feature map ¢(x) = ¢(x) + I’
with I € H. We expand the dot product for ($(x), ¢(x')) to write

(#(x) + T, ¢(x) + T') = (¢(x), p(x)) + (¢(x), I') + (T, p(x)) + ([, T).
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In general only the first term can be evaluated via the kernel function. But if we restrict I
to lie in the span of the functions ¢(x1), ..., ¢(x,) € H we can calculate the translated dot
product

(B0, PN = Kx, X) + Y i K, x0) + i K&, xi) + > oot K(xi, X)) (2.5)
i=1 i=1 i, j=1

Centring

The translation operations allows us to centre data X1, ...,X, € X in the feature space.
The mean of the data is ¢, = %Z;’:l ¢(x;) and thus fulfills the requirements for the
translation element I". Applying (2.5) with I' = —¢,, thus yields a feature map for which

0= 13 pxi).

Computing distances

With the kernel corresponding to a dot product in a Hilbert Space H and thus inducing a norm
it is natural to ask if one can also compute the distances of the images of elements in X'. Such
a distance can be evaluated entirely in terms of kernel evaluations as is evident from

d(x1,x2) = lg(x1) — ¢p(x2)ll3 = /K (x1, X1) + K(X2, X2) — 2K (X1, X2)

for x1, X, € X and ¢ being the feature map for K. This is a very elegant way to measure the
similarity between arbitrary objects, for example between two graphs or two sentences.
Subspace projections

For two points W, I" in the RKHS the projection of W onto the subspace spanned by I is

’_ (I', W)n
IT|13,

We immediately see that if we have a kernel expansion of the points W, I" we can compute the
projection ¥’ and express it also in terms of kernel evaluations.

2.2.5 Kernel construction
The following proposition states some operations that preserve the positive definiteness of
kernels. These can be used to create new, possibly complicated, kernels from existing ones.
Proposition 2.2.8 Let K1, K», ... be arbitrary positive definite kernels on X x X, where
X is a nonempty set. Then

(i) a1 K1 4+ ax K> is positive definite for a1, ap > 0.

(ii) If K(x,X'):= lim,_, o K, (X, X') exists for all X, X/, then K is positive definite.

(iii) The pointwise product K1 K> is positive definite.
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(iv) Assumefori = 1,2, K; is a positive definite kernel on X; x X;, where X; is nonempty.
The tensor product K| ® K7 and the direct sum K| @ K are positive definite kernels
on (X) x Xp) x (X| x X»).

(v) The function K(x,x'):= f(X)f(X") is a positive definite kernel for any function
f: X =R

Proof: For proofs see Berg et al. (1984). O

The first two statements of the last proposition state that the set of positive definite kernels is
aclosed convex cone. Loosely speaking the operations of (i)—(iv) are the only simple operations
that preserve positive definiteness. Without stating the result we mention that it is possible to
fully characterize the class of functions that preserve positive definiteness (FitzGerald et al.
1995; Hofmann et al. 2008).

2.2.6 Examples of kernels

With the closure properties of the last result we finally turn our view to some concrete examples
of kernel functions. We concentrate on the most prominent ones and also introduce two kernels
that have been used for several image processing tasks. For a more general overview including
examples for other data structures such as graphs, trees, strings, etc. we refer to Bakir et al.
(2007), Hofmann et al. (2008), Shawe-Taylor and Cristianini (2004) and Scholkopf and
Smola (2002). We will first present three simple kernels that which operate on real vector
spaces. The later kernels are more suited for the task of image processing, that is whenever
the elements that need to be compared are themselves images.

Linear kernel

The most simple kernel is arguably the ordinary dot product in R¢. Functions that are build
upon this kernel are of the form

J(x)= Zaz X, Xj) = Zalxl = (2.6)

where we definedw = ", ;X;. Thus the RKHS of a linear kernel consists of all hyperplanes
in RY.

Polynomial kernel

The homogeneous polynomial kernel K(x,x') = (x, x')? is positive definite for all p € N
and x,x' € R as a direct consequence of Proposition 2.2.8(iii). This again is an example
where the input space X is itself a dot-product space. One can write down the corresponding
feature space; it is of finite dimension and consists of all monomials of degree p in the input
coordinates. Another prominent polynomial kernel is the inhomogeneous polynomial kernel

that computes the inner product of all monomials up ro degree p: K(x,x') = ((x, x') + c)p .
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Gaussian kernel

From the Taylor series expansion of the exponential function e? = Y2, l-ljzi and Proposition
2.2.8(ii) we see that

K(x,x) = e’ *X)

is a positive definite kernel for all x, X’ € R4, y € R. It follows immediately that the Gaussian
function

oV IXX Py (xx) 2y (xx) =y (X X)) 2.7)

is a valid positive definite kernel. Furthermore we observe from the Taylor series expansion
that it is a polynomial kernel with infinite degree. The corresponding Hilbert space is infinite
dimensional, in fact it corresponds to a mapping into C*° the space of smooth functions.

Set kernels

So far we have presented kernels for rather simple input spaces only but the power of kernel
methods also stems from the fact that we can measure similarity between possibly complex
objects. Assume an input space to be the power set of some other set, e.g. X = 2% for some
finite dictionary /C. A similarity on this space could for example be defined by just counting
the number of equal elements in the sets. The corresponding kernel for X, X’ € X reads

KX X)=Y" b

xeX x'eX

where we used upper case letters for the elements of X' to make explicit that those elements
are in fact sets. This kernel is widely used in text classification and is also referred to as the
sparse vector kernel, see for example Joachims (1998). Consider a text document as being
represented as an unordered collection of words, the so-called bag-of-words representation.
This kernel is measuring the similarity between two texts by just counting the number of
common words.

A more general kernel can be defined on the same input set with the use of a base kernel
K. It sums up the similarities between all elements in the two sets

KX, X)=>" > Koxx).

xeX x'eX

In Haussler (1999) it was shown that this is a kernel if and only if Ky itself is a kernel.

Histogram kernels

Suppose an image is represented as a collection of image features f;, e.g. small image patches
or some detected keypoints. Two images that are to be compared might have a different number
of such features. Quantization into a histogram is a convenient way to transform such data
into a feature vector of fixed length.
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In order to obtain a histogram one needs a codebook of finite size /C; this is usually
obtained by clustering in the feature space, e.g. k-means. Using this codebook the features
are quantized to yield a histogram h € N, Each histogram bin h ; € N stores the number of
features f; which were quantized to the jth codebook entry. In the context of image data the
elements of such a codebook are also referred to as ‘visual words’ and the representation itself
as a ‘bag-of-visual-words’. Similar to the bag-of-words representation for text data, all spatial
structure of the features is disregarded.

This pipeline of transforming features into histograms is of course very general and appli-
cable to many tasks. Normalized histograms h; / Z?: 1 h;j can also be thought of as probability
distributions and the following two histogram kernels are in fact special cases of the larger class
of kernels between probability distributions (Hein and Bousquet 2005). For two histograms
h, h' we define the histogram intersection kernel as

d
K(h,h') = "min (h;, h).
i=1

It can be understood as computing the overlap between the two histograms. Another prominent
choice is the the x? kernel for histograms

h/
K(h,h’>=exp( VZ b b )

where we used the convention 0/0:= 0.

Spatial kernels

A spatial kernel for image processing is an instructive example of how special structure in
the data can be incorporated into the kernel function. The idea is very simple and dates back
to the local receptive fields of neural networks. A kernel value is computed using not all
features of an image but only those that fall into some subwindow, e.g. only those of the upper
half of the image. This kernel was first used in Scholkopf (1997) for an application to digit
classification. Recently it gained some attention in the field of visual object classification. The
spatial pyramid match kernel was proposed in Lazebnik et al. (2006) as the spatial variant of
the so called pyramid match kernel (Grauman and Darrell 2005).

Different spatial layouts are conceivable but we will only present the pyramidal represen-
tation that turned out to give good performance for visual object classification. The image is
subdivided intoa gridof 1 x 1,2 x 2, ... equally spaced subwindows. Each such subdivision
is referred to as a level of the pyramid. Starting with level O as the entire image, the /th level
has 4! non-overlapping subwindows. For each level [ an histogram h; is computed by concate-
nating the histograms of all subwindows within the level. Two images x, x" are compared by
combining the similarity of the individual levels

L—-1

K(x,X)=>"dK(h,h),
=0
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where d; € R, is an extra weighting parameter for each level. In both Grauman and Darrell
(2005) and Lazebnik ez al. (2006) it is proposed to set d; = 2~ in order to give more weight
to a finer griding of the image, but in general these parameters can also be optimized over
(cf. Section 2.4.4). There are several choices for the kernel K, using the X2 kernel described
above good results on visual object classification datasets have been achieved (Bosch et al.
2007).

2.3 The representer theorem

In the last chapter we saw that a kernel centred at a point x € X is an element in an RKHS ‘H
associated with the kernel K. Other functions f € H can be represented as linear combina-
tions of kernel expansions but have a possibly infinite number of expansion coefficients. The
representer theorem (Cox and O’Sullivan 1990; Kimeldorf and Wahba 1971) states that the
solutions of a large class of optimization problems are expressible by only a finite number of
kernel functions. We present a slightly more general version of the theorem from Scholkopf
et al. (2001).

Theorem 2.3.1 (Representer theorem) Ler Q2 :[0,00) — R be a strictly monotonic
increasing function and V : (X X Rz)n — R U {oo} be an arbitrary loss function. Further-
more let H be a RKHS with reproducing kernel K. Each minimizer f € H of the regularized
functional

V()1 31 SO0 s Goas s ) + 2 (111 2.:8)

admits a representation of the form
n
Jfx) = Z o K(x, x;), (2.9)
i=1

with o; € R.

Proof: We decompose an element f € H into the part f\ that is inside the span of kernel
functions K(-,X1), ..., K(-, X,) and its orthogonal complement f L and show that the latter
is always zero. We write

0 =fle0+ A= aiKx,x) + f(x)

i=1

with a; € R and (f*+, K(-,x;))» = 0,Vi € {1, ..., n). Using the reproducing property of H
we can write

fO = (fKCXm =Y K& x)+ (f5 K00 =Y eiK(X, ).

i=1 i=1
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We thus see that the term [~ is irrelevant for the value of c in (2.8). Making use of the fact
that Q2 is monotonically decreasing we get the following inequality

n 2 n 2
o (1713) =2 | S akex| +1r 53| = | [ akex)
i=1 H i=1 H
Thus for any fixed ; € R the function Q in (2.8) is minimized for f*+ = 0. [l

This theorem has far reaching consequences. It tells us that whenever we can formulate an
objective function in the form of (2.8) we can rest assured that the solution can be expressed
in terms of finitely many kernel evaluations. Even if the function space is infinite dimensional,
we only need to search for the n expansion coefficients.

Monotonicity of €2 does not ensure a unique minimizer of (2.8), we have to require con-
vexity to prevent the possibility of several solutions and indeed many algorithms make use of
convex loss functions. The strictness of the monotonicity of €2 can be discarded but then there
might be minimizers of (2.8) that do not admit the form (2.9); it still follows that there is at
least one other solution that is as good and that does admit the expansion form.

The minimizer of the regularized risk formulation should on the one hand minimize the
training error, as measured by the cost term ¢ and, on the other hand, have a low norm. Since
the function spaces are usually extremely rich, for most problems there will be functions that
incur no cost at all, for example by just memorizing the examples. However such solutions
will be arbitrarily complex and therefore will not generalize well. The regularizer 2 can
be understood as resolving this issue. Loosely speaking it can be seen as favouring smooth
functions, where smoothness measured by the RKHS norm || - || (see Scholkopf and Smola
(2002) for a detailed review of its regularization properties).

2.4 Learning with kernels

With the ingredients of the last two sections we can now introduce some kernel based
algorithms. Given a training set of observations (X1, y1), ..., (Xn, ¥n) € X x ) we aim to find
a function f: X — ) that minimizes the empirical risk on this dataset. For binary classifica-
tion problems where ) = {—1, 4-1}, this can be posed as the search of a function f : ¥ — R
that maximizes the agreement between sgn f(x) and the label of the pattern y(x). The space of
functions we are searching over is implicitly defined by the kernel that is used as a similarity
measure between the data points. From the representer theorem we know which parame-
ters we have to search over, namely the coefficients of the kernel expansion. Note that one
can think of the functions as being linear functions in a high, or even infinite dimensional,
space. The functions can thus also be written as f(x) = (W, ¢(x)) or an affine function
fxX) = (W, ¢(X)) + b, withw € Hand b € R.

Minimizing the empirical risk with respect to the parameters (w, b) confronts us with
several problems. To begin with, the minimization is a NP hard problem already shown
by Minsky and Papert (1969). Even approximately minimizing the empirical risk is NP
hard not only for linear functions but also for other simple geometrical objects such as
spheres (Ben-David et al. 2000). Furthermore the true target function, the indicator function
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d f(x) + y is discontinuous and small changes in f may lead to large changes in both empirical
and expected risk.

In order to overcome the difficulties arising from the exact minimization of the empirical
risk we will use upper bounds and minimize those instead. This is not only computationally
effective but has also the benefit of yielding consistent estimators (Hofmann et al. 2008).

2.4.1 Support vector classification

Consider binary classification with input data {(x1, y,), ..., Xn, yn)} C X x {—1, +1}. We
seek a function assigning to each point x € X its label sign. The search for f : X — R over
the function space H is implemented as the following regularized risk functional (Cortes and
Vapnik 1995; Vapnik 1995)

1 -
min 5||f||% +C ; V(yi, f(X0). (2.10)

Typical choices for the loss function are V(y,t) = max{0, 1 — yt}? with p =1,2. For
p = 1 the loss is usually referred to as the Hinge loss, for p = 2 as the quadratic loss. Both
choices are upper bounds on the indicator function §y+ f(x) and both functions are convex in
the second argument. It is due to this convexity that the minimizer of (2.10) is unique. We
have also introduced the regularization parameter C € R U oo to the optimization problem
to control the trade-off between the smoothness of the function measured by || f||% and the
ability of the function to explain the data correctly. We may as well set C = oo in which case
we enforce the solution f to incur no loss at all (Vapnik and Lerner 1963). For this choice
it might be possible that the problem becomes infeasible because the function class H may
not contain a function perfectly separating the data. The regularization constant C is usually
selected using a cross-validation scheme as it is done for selecting the appropriate kernel for
the problem at hand.

The representer theorem states that the solution of (2.10) can be written in terms of kernel
expansions around the training points. This fact can also be seen from taking the derivative of
(2.10) with respect to f, assuming a differentiable loss. At the optimal solution f* the gradient
vanishes

n 8V
4O SO S DK x) =0,
i=1

where we made use of the reproducing property of the kernel and denote by 9V /0t the partial
derivative of V w.r.t. its second argument. This allows us to reformulate the optimization
problem and obtain the equivalent problem to (2.10)

n n n
min i K(X;, X C \% iy iKx;,x) | . 2.11
aeRniJX_flazaj (xi. X)) + ; " ;a, (1. %)) @.11)

The SVM formulation (2.10) is a quadratic program and can thus be solved efficiently (Boyd
and Vandenberghe 2004). Several algorithmic strategies have been proposed for this particular
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problem, see for example the SMO algorithm (Platt 1999). But of course for a differentiable
loss it is conceptually easier to resort to simple gradient descent techniques. A detailed analysis
of a Newton optimization scheme can be found in Chapelle (2007).

2.4.2 Support vector regression

As the next example of a kernel based learning algorithm we consider the task of regression
with target space ) C R. Again we use a regularized risk functional and write

. 1 n
min §||f||${ + ci; V(yi, f(x).

Several loss functions can be used, for example the e-insensitive loss V(y, t) = max{0, |y — ¢|
— €} as proposed in Drucker ef al. (1997), Vapnik (1995) and Vapnik et al. (1997) or the
simple quadratic loss V(y, ) = (y — 1) yielding penalized least squares regression (Hoerl
and Kennard 1970; Morozov 1984; Tikhonov 1963; Wahba 1990). The representer theorem
always ensures a finite representation of the optimal function. Plugging this into the problem
and using the quadratic loss we obtain the following closed form solution for the optimal
parameters «*, where we assume C > 0

1
o = arg min —o ' Ko 4 C||Ka — y|?
aeRn 2

1 71
=K+ —I ,
< +2€) Y

withy = (yq, ..., y,,)T. Due to the structure of the solution this is also referred to as kernel
ridge regression, the ‘ridge’ 1/2C added to the kernel matrix is a consequence of the regularizer.
Using the shorthand Kx(-) = (K(-, x1), ..., K(-, Xn))T the prediction function becomes

_ T LA
fx) = Kx(x) <K+2CI) y.

2.4.3 Gaussian processes

Another way of looking at the regression problem is from the viewpoint of Gaussian Processes
(GPs). Gaussian processes provide a probabilistic approach for kernel learning and are not
limited to regression. For a more general overview of the GP framework we refer to the work
of MacKay (1998) and Rasmussen and Williams (2006).

A GP defines a distribution over functions f : X — R and is fully described by a mean
m : X — R and covariance function K : X x X — R

m(x) = E[f(®)], Kx,x) = E[(f(x) — mx)(f(x) — mx))].

For notational simplicity we will set m to be the zero function. Given a finite collection of
data xp, ..., X, we first compute its covariance matrix Kyx in the same way that we did for
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the Gram matrix (2.2). The covariance matrix defines a distribution over the vector of output

values fy = (f(x1), ..., f(x))"
fX ~ N(Os KXX)? (212)

which is a multivariate Gaussian distribution. Therefore the specification of the covariance
function implies the form of the distribution over the functions. The role of the covariance for
GPs is the same as the role of kernels we used so far, both specify the notion of similarity.
This is also the reason why we choose K to denote both quantities.

Let us consider again the task of real-valued regression. Given training data pairs of inputs
(X1, Y1), - - - » (X4, yn) the goal is to predict the output value y* for a new test data point x*.
We will assume that the output values we have access to are only noisy observations of
the true underlying function y = f(x) + €. Furthermore we assume the noise to be additive
independently identically Gaussian distributed with zero mean and variance o. For notational
convenience we define the following vectors, using bold symbols for vectorial variables:
the stacked output values y = (yy, ..., yn)T, the covariance terms of the test point K, =
(K(x*,x1), ..., K(x*,x,))" as well as Ky, = K(x*, x*). From the model assumption (2.12)
we know that the output values are distributed according to

(K +o°T) K,
~ ./\/ 0, T .
K* K**
The predictive equations for the Gaussian process we are interested in are then obtained by
computing the conditional distribution

y
&)

SOOI, (51, %) X5~ N (KK 402Dy, Ko — KT (K + 02D 'K, ).

Comparing this with (2.4.2) we observe that the GP mean predictor is exactly the same solution
that we have obtained for Kernel Ridge Regression. The noise variance term o appeared as a
regularization constant in the kernel ridge regression case. Also note that we have witnessed yet
another manifestation of the representer theorem, which we not used explicitly. The difference
from Kernel Ridge Regression is that not only a mean prediction is defined but we obtained a
full distribution over the output values including an uncertainty of the prediction.

2.4.4 Multiple kernel learning

A new development in the field of kernel learning that goes in the direction of automatically
selecting an appropriate kernel for a given task is the framework of Multiple Kernel Learning
(Bach et al. 2004; Lanckriet et al. 2004; Rakotomamonjy et al. 2008; Sonnenburg et al. 2006).
Instead of using only one kernel K, or equivalently only one feature map ¢ one uses a set
of M different kernels K1, ..., Kj and optimizes for a linear combination of those. This
corresponds to the search of a function f(x) = ZZIII fm(x) where each function f,, € Hy,
is an element of the RKHS H,,, of the kernel K,,. The associated optimization problem can be
formulated as a joint convex problem in all parameters. We use the convention that 0/0:= 0
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and x/0 = oo, x # 0 to write the MKL formulation as

w3 Z ”fm”Hm +CZV <y,, > fuxi) ) (2.13)
Jm m->“m l l o 1

M
subject to dezl’dm >0 m=1,....,.M

m=1

Skipping some details we directly mention that the final kernel will be of the form

M
K(X, X/) = Z dm Km(X, X/)

m=1

with dy, ..., dy € [0, 1] and thus the final function can be written as

fx) = Zalde (X, X;).

i=1  m=1

The same formulation can also be applied with an infinite number of kernels K1, K», ..., e.g.
all Gaussian kernels with positive definite covariance matrix. The optimum is still expressible,
that is there is only a finite number of nonzero weights d,, > 0 (Argyriou et al. 2006; Gehler
and Nowozin 2008; Ozogiir-Akyiiz and Weber 2008).

Comparing this with the SVM optimization problem (2.11) we see that the only difference
is the new parameters d,,, which are also minimized over and that the final kernel is now
a convex combination of kernels. The weight d,,, controls the influence of the norm of the
function f;,, on the overall objective value. Whenever d,, = 0 the corresponding function f;,
must be the zero function in order to yield a finite objective value. The simplex constraint
of the d,, ensures that the resulting kernel is always positive definite. One could in principle
allow for negative weights, in which case it is not assured that the resulting kernel is positive
definite. This would have to be enforced as a constraint, turning the problem into a semi-
definite programming problem (SDP) for which the best known algorithm scales O(n°) for an
n X n constraint matrix (Lanckriet et al. 2004).

With the new parameters dj, . .., dys one has the additional freedom to search also over
a suitable feature space from which the final function is taken. Therefore the optimization
problem (2.13) is over both the feature space and a function therein. Disregarding some details,
for a fixed choice of the parameters d,, the associated feature space is the vector product of
all participating feature spaces Hi, ..., Hpy for which d,,, > 0. A detailed derivation can be
found in Rakotomamonjy et al. (2008).

Several different algorithms have been proposed to solve this problem, e.g.
Rakotomamonyjy et al. (2007) and Sonnenburg et al. (2006). For example, Chapelle et al. (2002)
and Rakotomamonjy et al. (2007) derive a simple gradient descent algorithm that alternates
between updating the parameters d,, and the SVM parameters. For fixed weights d,, one can
compute the joint Gram matrix and optimize over the SVM parameter using any standard
SVM algorithm.
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With MKL one can optimize over a linear combination of kernels instead of selecting
between them via cross-validation. One has to bear in mind that the latter might be a better
estimator for the empirical risk, which is what we are ultimately interested in. In visual object
classification MKL has been used with much success to combine different image representa-
tions (Bosch ez al. 2007). For example, one kernel could be defined solely on colour information
while another is defined on shape or appearance information. For the spatial kernel one can
select between different spatial layouts associating to each subwindow a different kernel and
learning the combination via MKL. Sonnenburg ef al. (2006) have used the feature selec-
tion correspondence of MKL to build interpretable SVMs for splice data from computational
biology.

2.4.5 Structured prediction using kernels

So far we have considered only very simple target spaces ), for example J = {—1, 41} and
Y = R. This however is a very limited scenario as in many tasks the objects of interest are
more complex than being only binary class membership. For example ranking a set of web
pages according to their relevance for a given query is a task that is not easily expressible in
the previously used framework. Making predictions about graph layouts, entire image patches
or multi-label problems are a few more of examples that call for a more general framework.

We want to apply kernel methods to all these kinds of problems and the following simple
modification of the kernel function allows us to reuse the results we have obtained so far
(Altun et al. 2004; Cai and Hofmann 2004; Tsochantaridis et al. 2005). We extend the class
of functions to be of the form

1 AXxY >R, &y~ f(x),

i.e. they depend on elements of both input and target space. Since the predictions we are
interested in live in the space ) we will use the following prediction rule

y*(x) = argmax f(X, y). (2.14)
yey

Note that besides this new prediction function little has changed from the setup we have
developed so far. We just extended the input space and restricted the output space to always
be R. The feature map is of the form ¢ : X x V) — H, the corresponding kernel is the dot
product in the RKHS H

K(x, y.x',y) = (¢(x, y), p(X', Y))n

and the representer theorem ensures us that the solutions of regularized risk functionals can
be expressed in terms of expansions around training data points. The dependency of f on the
target space opens up the possibility of taking into account its structure.

The loss function can also encode the structure in the target set. In binary classification
there is no such structure beyond two elements being equal (belonging to the same class) or
different (belonging to separate classes). Now consider the task of retrieving a ranked list of
websites given some text query. Missing the most relevant website should incur a higher cost
than missing the tenth most relevant website. This is encoded using a loss function of the
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type A : Y x Y — R,. We will think of A(y, y’) as the cost of predicting y’ where it should
have been y and therefore set A(y, y) = 0 Vy € Y. If the maximum of (2.14) is taken at the
correct labelling no cost is produced. Predicting a different y incurs a cost which, however,
depends on the similarity of the true and the predicted output. This gives rise to the following
regularized risk formulation (Tsochantaridis et al. 2005)

1 n
ﬁggmm+c§ﬁm{a%§mmmrwﬂmwwfmmm}

i=1

This is a convex problem and can be efficiently solved whenever the inner maximization, that

is (2.14), can be solved efficiently. Usually this is not the case and one can only hope for

approximate solutions. A standard way of solving the problem is by dualizing the problem

and using column-generation techniques (Bennett et al. 2000; Hettich and Kortanek 1993).
For the regularized risk formulation above the optimal function is of the form

n

FE=D00 " K-, (%, y),

i=1 ye)y

We will outline only a few applications of this model and refer to (Bakir ef al. 2007) for a
more detailed overview.

e The classical binary setup is recovered by simply setting ¢(x, y) = yp(x) and
Ay, y) = 8y—y . The inner maximum reduces to 1 — 2y; Z?:l a;y;iK(x;, X;), which
(ignoring some offsets) yields exactly the SVM optimization problem (2.10) with the
hinge loss.

e Multiclass classification (Allwein et al. 2000; Collins 2002; Crammer and Singer 2000;
Riitsch er al. 2003) can be cast in this framework. Let N denote the number of classes.

Then y € {1, ..., N} and the loss function is a multicategory version of the 0 — 1
loss, namely A(y, y") =1 —§,, . Corresponding kernels are typically chosen to be
8y, K(x, x).

e In the case of multilabel estimation one is interested in predicting a set of labels y €
211} for each input point. This is described in Elisseeff and Weston (2001), where
a ranking scheme is devised such that f(x, i) > f(x, j)if the labeli € ybut j & y.

2.4.6 Kernel principal component analysis

Principal Component Analysis (PCA) is a widely used algorithm with many applications
such as feature extraction, dimensionality reduction and data visualization. Its benefits are
that it is easy to compute and easy to interpret. Given some data xy, ..., X, the PCA is an
orthogonal projection of these points onto their principal axis, which are those which minimize
the average projection cost measured as the squared distance between the points and their
projections. The PCA algorithm boils down to an eigenvalue decomposition of the empirical
covariance matrix of the data C.,,, = E.,,[(X — E,,,,(x))(x — Ecmp(x))T], i.e. solving the system
of equations C,,,Vk = AxVi. For d-dimensional data x; this problem can be solved in o)
time.
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In Scholkopf et al. (1998) this problem is posed in the feature space by simply replacing
x with ¢(x). Since the empirical covariance lies in the span of {¢(x1), ..., ¢(X,)} we can
compute it in terms of kernel evaluations at the data points. For notational convenience we
assume that we already centred the data in the feature space such that ;| ¢(x;) = 0. Then
we can write out the eigenvalue problem as

1 n
Cag¥i = =~ > $ODG)" Vie = Vi (2.15)
i=1

and thus see that the eigenvectors are of the form vy = Z?:l akiP(X;). Resubstituting this into
(2.15) we find that the coefficients « are easily computed by the Eigenvalue problem

Ko =

with K being the kernel matrix of the data. Having solved this eigenvalue problem we
can compute the projection of any point x onto the kth principal component of the data
as (v, p(x)) = 31 o K(x, x;).

Kernel PCA can be used as a preprocessing step for algorithms which are not ‘kernelizable’,
that is algorithms not based entirely on dot products.

2.4.7 Applications of support vector algorithms

Probably much of the success of kernel based algorithms and the SVM and SVR formulation
in particular is due to the empirical success on diverse practical problems. Just to name a
few we mention that SVMs were used to achieve the best classification scores on the MNIST
benchmark dataset for handwritten recognition (DeCoste and Scholkopf 2002) and visual ob-
jectrecognition (Blanz et al. 1996; Bosch et al. 2007; Chapelle et al. 1999). Other applications
include Object Detection (Romdhani et al. 2004), microarray processing tasks (Brown et al.
2000), text categorization (Dumais 1998), ranking (Herbrich et al. 2000), novelty detection
(Hayton et al. 2001) and many more. More recently interdependent label problems have been
attacked using SVMs (McCallum et al. 2005; Tsochantaridis ef al. 2005).

Several authors applied kernel learning algorithms to image processing applications. While
this book provides an overview of the special area of remote sensing we refer the reader to
Camps-Valls et al. (2007) for applications on the classical problems of image processing,
namely image coding, image de-noising and image segmentation. In Kim et al. (2005) image
models based on Kernel PCA are proposed and it is shown that they perform well on image
de-noising and super-resolution tasks.

2.4.8 Available software

There are several software packages using kernel algorithms available. For example for SVM
and SVR optimization the most prominent to date are LibSVM (Chang and Lin 2001), SVM-
Struct (Tsochantaridis et al. 2005), SVMlight (Joachims 1999) but also plain stochastic gra-
dient descent (Bottou 2008). The website www.mloss.org, accompanied by a special track
in the Journal of Machine Learning Research on open source software, makes an effort to
support the dissemination of machine learning software. It provides a good source to obtain
implementations for many kernel learning algorithms including those reviewed in this chapter.
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2.5 Conclusion

In this chapter we introduced the most basic concepts of positive definite kernels and presented
some algorithms that build on those. The main idea is that positive definite kernels provide a
measure of similarity between possibly complex objects. With the regularized risk framework
one can implement the search over rich classes of functions and still obtain functions that can
be expressed in finitely many terms of kernel evaluations. Another benefit is that this search
can be made convex and thus yield problems that can be solved efficiently but on the other
hand guarantee global optimality.
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The Support Vector Machine
(SVM) algorithm for supervised
classification of hyperspectral
remote sensing data

J. Anthony Gualtieri
NASA/GSFC, CISTO & Global Science and Technology

The Support Vector Machine (SVM) algorithm provides an effective way to perform supervised
classification of hyperspectral remote sensing data. The problem is to learn from a training
set of examples — hyperspectral data with class labels attached — and then generalize to find
the class labels of hyperspectral data outside the training set. The high dimensionality of
hyperspectral data, due to the many spectral channels a sensor simultaneously measures, causes
problems for other supervised classification algorithms, both parametric and nonparametric.
A key feature of the nonparametric SVM supervised classification algorithm is its ability to
use high-dimensional data without the usual recourse to a feature selection step to reduce the
dimensionality of the data, as is required by many other algorithms in order for them to work.
Additionally, SVM can utilize the Kernel method of projecting the data into a different space
to improve performance. We give an introduction to hyperspectral data and its acquisition and
for most of the sequel focus on using only the spectral information available in the data for
performing the classification. We then present an overview of the mathematical foundations
of statistical learning theory, show how the large margin SVM, appropriate to supervised

This chapter has been adapted from Recent Advances in Hyperspectral Signal and Image Processing, pp. 351-397. Edited by Chein-I
Chang, Transworld Research Network, 2006.

Kernel Methods for Remote Sensing Data Analysis  Edited by Gustavo Camps-Valls and Lorenzo Bruzzone
© 2009 John Wiley & Sons, Ltd



52 SUPERVISED IMAGE CLASSIFICATION

classification, can be derived in the context of these very general results, show its realization as
a quadratic optimization problem, and indicate the Kernel method, which extends the efficacy
of the SVM by using nonlinear transformation of the training data. These results are then
applied to several benchmark hyperspectral data sets, and the SVM results are compared with
other supervised classification methods. Then we indicate how using the spatial content of
the data can further improve the classification results. Finally we close with an exploration of
the reasons why the SVM offers improved performance over other algorithms and summarize
with a brief conclusion.

3.1 Introduction

Remote sensing with imaging spectrometers that provide hundreds of channels over contiguous
wavelength bands, possibly with some gaps, has immense promise as a tool to provide data
for scientific and commercial applications. Some diverse examples include environmental
monitoring for the U.S. Environmental Protection Agency remediation of old mine tailings
(Swayze et al. 1997), mapping of invasive species (Ustin et al. 2005), disaster management in
New York City after the Sept. 11,2001 attack (Clark et al. 2001), precision farming (Garegnani
et al. 2000; Goel et al. 2003), archeology (Bianchi ef al. 1997) and depth measurement and
shallow water benthic mapping of coral (Goodman and Ustin 2002; Gualtieri and Howard
2003; Lee et al. 2001). A valuable collection of work concerning development of hyperspectral
remote sensing and many applications can be found at the NASA/JPL AVIRIS website, where
workshop publications dating from 1987-2004 are available online (Green 2004), and where
a large hyperspectral data archive can also be found. AVIRIS is an acronym for the NASA
Airborne Visible InfraRed Imaging Spectrometer and is a premier instrument in the realm
of Earth remote sensing from aircraft platforms. The AVIRIS programme has fostered the
development and application of instrumentation, algorithms, and applications demonstrating
the unique capabilities of hyperspectral remote sensing for geoscience.

To put the promise and challenge of hyperspectral remote sensing into context, at a recent
AVIRIS workshop Joe Boardman of Analytical Imaging and Geophysics (Boardman 2005) put
it thus: ‘Our algorithms and processing systems must grow exponentially in capability to match
the information content in the current and future (we’re really just getting started, still).” In this
chapter we will address an important hyperspectral remote sensing application, performing
supervised classification on hyperspectral data, which has provided a new approach to address-
ing Boardman’s challenge. The approach, introduced in the machine learning community in
1992, is the Support Vector Machine (SVM). The term Machine in Support Vector Machine
is only a name and does not imply a hardware device. The SVM algorithm was first applied to
hyperspectral data in 1998 (Gualtieri and Cromp 1998; Gualtieri et al. 1999), and has produced
a quantitative improvement in classification accuracy of hyperspectral data, and provided a
new set of tools for geoscientists to render hyperspectral data into Earth science products.

In the sequel we will summarize some aspects of hyperspectral data acquisition so that
algorithm practitioners are aware of what has been done to the data that they will use in their
algorithms. We will introduce the Support Vector Machine and place it in the context of the
more general problem of supervised classification. We will discuss an earlier expectation that
the large number of measurements associated with a pixel should have improved previous
supervised classification algorithm accuracies, but have in fact led to reduced accuracies
(Hughes 1968). This led to pre-processing techniques such as hand selecting channels to use,
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or more principled approaches, such as Principle Components Analysis (PCA), (Duda et al.
2001, p. 115). However, we will show for the SVM this ‘curse of dimensionality’ (Bellman
1961) is, in principle and in practice, not a limitation, thereby making SVM a valuable tool
for supervised classification for hyperspectral data. In what follows we will relate some very
general results from statistical learning theory, and from them lay out in a principled manner
how this leads to a SVM called the large margin SVM. We go on to indicate a quadratic
version that implements this idea. Then we describe its implementation in software, and
show its application to a toy problem to give insight into how SVM works. We go on to
apply SVM to a small, but well known benchmark data set, describe the dependencies of
the classification accuracy on adjustable parameters in the algorithm, and give comparative
results for its classification accuracy versus other supervised techniques. Following this we
will describe some more recent developments that further improve the classification accuracy,
and give some answers as to why SVMs perform so well in comparison with other methods.

3.2 Aspects of hyperspectral data and its acquisition

In hyperspectral remote sensing the data are derived from a sensor, an imaging spectrometer
on an aircraft or satellite, that measures the at-sensor upwelling radiance from the ground at
many contiguous spectral wavelengths. The basic data object is a hyperspectral cube, which
can be thought of as a registered stack of spectral images of a scene on the ground. Thus a
data element is a spectral measurement of the upwelling at sensor radiance in an instantaneous
field of view from a region (pixel) on the ground in a narrow wavelength channel centred at a
particular spectral wavelength A. The cube is indexed by two ground spatial coordinates, and
a spectral wavelength. More details of the actual acquisition and production that creates the
cube will be described below.

Typical sensors are constructed with one or more CCD arrays (depending on the desired
wavelength coverage), and image at each time step a single cross-track of ground pixels that are
then dispersed across the two-dimensional CCD surface to provide an array of measurements
with spectral wavelength in one direction and cross-track spatial location in the other direction.
The forward motion of the sensor over time then creates the perpendicular along-track other
spatial dimension. This approach is called push broom imaging. For push broom sensors, the
wavelength ranges, depending on CCD technology, can cover 400-900 nm, with of the order
of a hundred or more contiguous channels with 3—10 nm widths, or can cover from the visible
out to the the near infrared with bands each of 10 nm width using multiple CCDs.

By comparison, NASA’s AVIRIS sensor is unique in that it uses four spectrometers, each
covering a part of the full range of 400-2500 nm, in 224 contiguous channels, with each
acquiring only a single pixel at a time. A mirror sweeps perpendicular to the forward direction
of the aircraft to create the cross-track. This approach is called whisk boom imaging. This has
the advantage that no correction for variation in the individual regions of the CCD is required.
However AVIRIS is mechanically more complex and expensive to build.

The set of radiances measured at one pixel can be thought of as spectra and described
as a vector. The collection of these spectra comprising a scene is then assembled into a
three-dimensional array indexed by the two spatial coordinate of the pixel and one spectral
wavelength index, and is called a hyperspectral cube.

Typically this at-sensor radiance is post-processed to geo-register and geo-rectify the data.
Geo-registration means registering the data in the scene with an Earth based coordinate system
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such as latitude longitude coordinates. This can be accomplished using either known control
points on the ground, or data derived from on-board global positioning data to obtain platform
spatial coordinates and inertial measurement data to obtain platform angular coordinates of
orientation. From these measurements, geometrical computation yields the ground coordinates
for each pixel. Geo-rectifiying the data means converting the position and size data of pixels
taken in the frame of reference of the sensor platform, to a ground based reference system of the
scene, and restructuring them so that the pixels form a rectangular grid. Owing to the motion of
the sensor platform, especially on low flying aircraft, which are subject to turbulence and other
motion in addition to forward translation, this implies resampling and possible interpolation
will occur during geo-rectification. Thus while the data before geo-rectification is a rectangular
structure, its coverage of the ground after geo-rectification may be a substantially distorted
rectangle due to the effects of the platform movement. Geo-registration can be performed
on the data before or after geo-rectification. That these processing steps can have dramatic
consequences is seen in Figure 3.1, (Boardman 1999), which shows the dramatic distortions
and corrections that can occur.

Practitioners have pointed out that it would be better to perform classification on scenes
before geo-rectification, thereby removing errors and biases due to the re-sampling and
interpolation, and then subsequently apply geo-rectification. These biases and interpolations
mean that classification after geo-rectification is performed on changed spectral data, due to
combining spectral information from nearby pixels in the resampling process. By comparison
satellite platforms are extremely stable, and this distortion is not present, though off-nadir
pixels will suffer some distortion due to the imaging geometry.

Figure 3.1 From raw AVIRIS image to geo-corrected AVIRIS image. The left figure shows an
image constructed from a few bands in a hyperspectral cube acquired at low altitude. The data
are rectangular, but the ground image is dramatically distorted due to aircraft motion as the
sensor acquires cross-tracks sequentially from top to bottom along the flight path. The middle
image shows how the cross-track actually registers to ground coordinates, The AVIRIS whisk
broom acquisition is shown in the left to right lines on the diagonals. The right image shows
the corrected image. Now the shapes on the ground are as expected, but the image borders
are far from straight. Images courtesy NASA/JPL-Caltech.
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Often the data have also been post-processed to perform atmospheric correction. This
transforms the measured at-sensor based upwelling spectral radiance to a ground based spectral
reflectance, a projected intrinsic property of the surface being imaged. Spectral reflectance is
a dimensionless quantity with values in the range [0 1], derived from the ratio of upwelling
radiance scattered from the pixel to the solar down welling radiance illuminating the pixel
at a given wavelength in a small wavelength range. Atmospheric correction, (Gao and Davis
1997; Gao et al. 1993; Montes et al. 2001; Tanré et al. 1983, 1979), is used to remove the
effects of the intervening atmosphere between the sensor and the ground on the hyperspectral
data. These effects include absorption and scattering by atmospheric gases, and scattering by
aerosols in the path that the radiation travels between the Sun and the ground and back to the
sensor. Water vapour can vary rapidly in position and time, and thus atmospheric correction
is best done on a pixel by pixel basis. Modern software packages such as ENVI, produced by
ITT, provide a range of tools to handle these prepossessing steps, as well as many tools to
process hyperspectral cubes into products.

We note there are other potential corrections that could be applied, such as topographic
correction that recognizes that the surface scattering the light may lie at some orientation
relative to level surface, or that the surface elevation has an effect on the atmospheric correction,
due to varying optical path lengths from the Sun to the surface and back to the sensor.

At this point the data has been rendered by processing into a hyperspectral cube, where each
element of the cube contains either a measurement of the upwelling radiance or a reflectance
from a small patch of surface area described by two spatial coordinates and centred at a
particular spectral wavelength covering a small spectral range. We take as our stating point —
the basic data element — a vector of spectral radiances or spectral reflectances and call it a
feature vector associated to a spatial pixel. It is conventional to call the number of channels the
dimensionality of the data, though for hyperspectral data this is not the number of independent
coordinates that the feature vector possesses. The use of dimension to describe the number
of channels in hyperspectral data does not imply that the spectral radiances in the various
channels are all independent of each other. Indeed, depending on the complexity of the scene
and the Signal-to-Noise Ratio (SNR) of the sensor, one can estimate the number of independent
pieces of information available in a scene. Various definitions of the SNR for hyperspectral
sensors are possible. A simple scene dependent definition is the ratio of the mean power in the
signal of an image at a given wavelength to the root mean square of the signal in the image at
that wavelength. The SNR is wavelength dependent. A study across 510 scenes measured by
the AVIRIS sensor taken in 1999 over varied terrain including open water, deserts, vegetation,
and cities showed that there were at least 60 independent dimension in AVIRIS’s 224 channels
that were significantly above the noise floor of the sensor (Boardman and Green 2000).

Our problem in supervised classification is then, given a training set of feature vectors,
each with a class label that attaches meaning to that vector, to use them to train a learning
machine, a SVM, to provide class labels to the feature vectors without labels, called the testing
set. For hyperspectral data the training set labels are based on ground truth that can be obtained
by field work where ground locations are typically found by using a global positioning device
or by using data from other sensors or maps. Labels can be found simply by the observation of
what is on the ground, to hyperspectral measurements made with portable devices that directly
measure a spectrum at a single location. At best, the ground truth is gathered coincident in time
with the overflight of the sensor. However the gathering of ground truth is expensive in term of
peoples’ time, and typically only covers a small fraction of the scene being studied. The training
set is often taken from the hyperspectral cube at hand, but can come from another source.
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In summary, we wish to use these labelled examples to construct an algorithm that will
subsequently classify feature vectors from the pixels in the hyperspectral cube without class
labels, called the test set, according to the list of labels from the training set.

3.3 Hyperspectral remote sensing and supervised
classification

In order to understand more fully why the SVM provides good classification accuracy as a
supervised classifier on high dimensional data, we present an overview of some foundations.
To set the stage, we quote from Burges’s helpful tutorial on Support Vector Machines (Burges
1998):

The problem which drove the initial development of SVM’s occurs in several
guises—the bias variance trade off (Geman et al. 1992), capacity control (Guyon
et al. 1992), over fitting (Montgomery and Peck 1992), complexity regularization
trade-off (Girosi et al. 1995)-but the basic idea is the same. Roughly speaking,
for a given learning task, with a given finite amount of training data, the best
generalization classification accuracy will be achieved if the right balance is struck
between the accuracy attained on that particular training set, and the capacity of
the machine, that is, the ability of the machine to learn any training set without
error. A machine with too much capacity is like a botanist with a photographic
memory who, when presented with a new tree, concludes that it is not a tree
because it has a different number of leaves from anything she has seen before; a
machine with too little capacity is like the botanist’s lazy brother, who declares
that if it is green, it is a tree. Neither can generalize well. The exploration and
formalization of these concepts has resulted in one of the shining peaks of the
theory of statistical learning (Vapnik 1998).

We also wish to give understanding to the issue of dimensionality of the data. Traditionally,
many supervised classifiers use the training set data to build models of the underlying den-
sity in the feature space of the data for each of the various classes in the training set. Thus
each class can be thought of as a distribution of points in a space of the dimension of the
feature space, the number of spectral channels. Thus we can imagine a local density of such
points in the feature space, and thereby model training data by local densities in the feature
space.

We then seek a set of separating surfaces which partition the feature space so that each
cluster of points described by its local density is separated from the other clusters. However
this density estimation in high-dimensional spaces suffers from the Hughes effect (Hughes
1968; Landgrebe 1999): for a fixed amount of training data, the classification accuracy as a
function of the dimension of the data (the number of hyperspectral bands) reaches a maximum
and then declines with increasing dimension, because there is a limited amount of training
data to estimate the larger and larger number of parameters needed to describe the model of
the densities of each class. To deal with this, usually a feature selection step is first performed
on the high-dimensional data to reduce its dimensionality.

In fact, first doing density estimation as a step toward supervised classification is unnec-
essary. As pointed out by Vapnik (1995, pp. 28, 169):
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When solving a given problem, try to avoid solving a more general problem as an
intermediate step.

This cuts to the heart of the supervised classification problem. We should seek to directly find
the separating surface, which by definition is characterized by the dimension of the feature
space and not by the dimensions of the structures that describe the density distributions.
Those structures, if thought of as skewed ellipsoids, can have of the order of the square of
the dimension of the feature space number of parameters to describe them. This is part of
the explanation of the Hughes effect in which the classification accuracy first increases with
the dimensionality of the data, but then goes down as the dimensionality increases further.
Other approaches make assumptions of the distributions of the data in the training set, called
parametric supervised classification, but this introduces biases.

In what follows we will restrict our attention to using only the spectral information asso-
ciated to each pixel (carrying the spatial information along as ancillary information). We will
not utilize the spatial information available from the spatial correlation among neighbouring
pixels to help perform classification. Indeed the results we obtain would be the same were
we to randomly permute the pixel location in the image. However later, in Section 3.8, we
will allude to how spatial information can be integrated into classification methods. This is an
active area of research.

The task at hand is how to perform supervised classification on such data using all the
available channels — that is, how to attach class labels to pixels that describe objects with
similar characteristics.

3.4 Mathematical foundations of supervised classification

To formalize the problem of supervised classification, we adopt the following abstraction and
notation. For classification, a known set of examples is given, called the training set, taken from
a world of examples, where each example consists of a class label and a feature vector. You
desire to find a classifier function that gives correct answers on these examples, and has low
generalization error, meaning it gives good results for the class labels when applied to feature
vector inputs that it has not seen before, called the test set. For the moment we will allow for
only two class labels. The case of more than two classes will be taken up later. Thus we are
given [ training pairs, {(y;, X;) i = 1, ...[}, each consisting of a class label, y; € {1, —1}, and
an N-dimensional feature vectors, x; = (x;1, ..., xjy) € RV.

We wish to find a function, f(-;«) : X — y, that represents the classifier y = f(Xx; @),
where o € A, represents the parameters of a particular classifier, and A is the space of all
possible parameters values for that classifier. Figure 3.2 shows a block diagram of the process
associated with the abstract classifier model. We introduce this model as it will illustrate the
notions involved in classification. For a given problem there are data vectors characterized by
a cumulative probability distribution, p(x), describing the world of examples that is unknown.
A supervisor obtains samples, x of the world, such as a hyperspectral measurement from a
sensor, and ascertains a label y for that measurement from ground truth with a conditional
probability p(y|x).

The classifier generates an output y* when applied to x. We wish to examine the error the
classifier makes called the Expected Risk, R(«),

R(a) =/dp(y, X)0(y, f(x, ),
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Figure 3.2 Abstract model of a learning machine being trained by a supervisor.

where

*

_JO0 y=y
Q(y,f(x,w))—{1 vyt

is an indicator function for counting correct answers, the case where y* = y.

The best classifier will be the one that minimizes the expected risk. However, in general we
can not obtain the Expected Risk, R(), since p(x) is unknown, and thus we cannot perform
the minimization. But we can measure the error on the training set, called the Empirical Risk,

Remp(ay), given by
1 1
Remp(er) = 5 ; QWyi, f(xi, o).

3.4.1 Empirical risk minimization

A standard way to find the best classifier is to use Empirical Risk Minimization (ERM), that
is, to search the space of classifiers « € A to find the particular classifier, ¢, that minimizes
Remp(a):

l
G=min 3" 00 S )

o €A i=1

The hope is then that this classifier will also work well on unlabelled data, that is, the classifier
will be able to generalize. This was the more restrictive view of classification before the
developments of Statistical Learning Theory.

3.4.2 General bounds for a new risk minimization principle

Here we will report theoretical results on mathematical bounds found by Vapnik and coworkers
that form the underpinning of the specific implementation of the SVM we will use, and show
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that a nonparametric supervised classifier can be constructed in which the dimensionality of
the data does not appear. Though the bounds found are mathematically precise, they provide
only a guide as to how to obtain good classification results. But, we need to do more than
finding the ¢;. To go beyond ERM we must also show that the classifier has good generalization
capability. Thus we seek an approach that provides for consistency—conditions under which the
expected risk and empirical risk converge to the same limit as lim;_, o, and to characterize that
rate of convergence. It is here that Vapnik (1982, 1995, 1998) and Vapnik and Chervonenkis
(1971, 1974a, 1991) laid the groundwork for a general answer to this problem. They developed
a set of bounds independent of the unknown underlying probability distribution of the data
p(x). A paper by Vapnik summarizes succinctly this theory (Vapnik 1999).

Vapnik and Chervonenkis showed for the pattern recognition problem that, independent of
the distribution function, p(x), the empirical risk, R.,(c) and the actual risk, R(o), converge
in probability, to the same value as as the training set grows, and does so exponentially fast.
And, that there are general ways to characterize the difference between the expected risk and
the empirical risk. This characterization is given in terms of a quantity, called the growth
function, G”\(I), to be defined below, and this is the quantity that describes the capacity of the
learning machine to learn in terms of the number of training vectors (Vapnik and Chervonenkis
1991; Vapmk 1995, p. 54; Vapnik 1998, pp. 117-120). Convergence in probability of value
R(oy) —> R(cp) means that for any ¢ > 0 and for any n > 0, there exists a number [y =
lo(e, n) such that for any/ > [y with probability atleast 1 — 1, R(c;) — R(op) < ¢.Inequations
(Vapnik 1995, p. 71, Equation 3.10, Equation 3.11; p.72, Equation 3.15, p. 73, Equation 3.16;
Vapnik 1998, p. 148, Equation 4.46, Equation 4.47, Equation 4.48):

IF lim G ()/1=0

[ — o0

THEN P { zuepA |R(a) — Reml,(a)| > 8} <4 exp { (w — 82) l} ,
P{ Sup (R(@) — Remp(@))//R@)) > s} <4 exp { (% . 82/4) 1} ,
a €A
G.1)

where ¢ > 0. An alternative form of the first bound above!, assuming lim G”(1)/I = 0), is
[ — o0

A _ n
P R(a)—Remp(mS\/w > 1, (32)

where 1 > n > 0. Here P{u(l) > ¢} in Equation (3.1) means the probability of u being larger
than ¢ is bounded by exp(—ce?l) (c is a positive constant), and means exponentially rapid
convergence. The term that bounds the difference of the expected risk and the empirical risk

G @2h—In(F
"To see this define n = 4 exp { (GA(Z[) 2/4) l} and solve for ¢ in terms of 1 to get & = 7( (D) Now

because total probability over all events adds to 1, P{supaeA\R(a) Remp(a)| < e} =1- P{supaeAlR(oz)—
Remp(a)| > a} > 1 — n. From the second bound we see R(ct) > Rep(@) and this is always less than the sup bound,
thus we may remove the sup,.,| | and substituting for e gives the result.
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is called the risk bound or the confidence term. What this means is that if the Growth function
grows with / slower than linearly, then the worst case difference between the actual risk and
the empirical risk converges exponentially fast to 0 as the number of examples goes to infinity,
for all possible classifiers and for any underlying probability distribution of data vectors. And
the the actual risk is always larger then the empirical risk. In the past it was assumed that the
empirical risk as lim;_, o would always converge to the actual risk. Vapnik and Chervonenkis
showed under what conditions this would be true for any distribution for the pattern recognition
problem, and where it would not be true.

The growth function, G”(I), characterizes the capacity of the learning machine to learn
(generalize), and how that generalization scales with the number of training examples, . To
explain the growth function, think of the / training examples as points in an N-dimensional
space and then define N”*(/) as the largest number of ways that any arrangement of those
points can be divided into two classes. This is a characterization of the capacity of the learning
machine to learn. In particular G*({) is defined by

G () =In (Sup N(xq, .. .,xl)) ,

where supy, ... x, means find the largest value of N™(x1, ..., x;) over all possible arrangements
of points (X1, . .., X1). If the classifier can always separate any arrangement of / points for any
[ into two classes then A7\(/) = 2! and G”(I) = [In 2, which in the theorem above means we
cannot make any claims of fast convergence of the empirical risk to the actual risk as the
risk bound (the square root quantity in Equation (3.2)) does not go to 0 as / — co. But what
Vapnik and Chervonenkis were able to show is that any growth function either satisfies the
equality

G()=1In2

or is bounded by the inequality
A /
G"(D) < h(In T D,

where £ is an integer called the VC-dimension, such that when ! = h

G"™(h) = h(In2)
G "h+1) <+ 1In2.

Figure 3.3 shows two possible growth functions, and a growth function that cannot occur: for
the lower curve the actual risk and the empirical risk converge to each other; for the upper
curve they do not converge, and that the middle curve is not possible.

We can then see that if a finite VC dimension exists, then the risk bound will go to 0
exponentially fast as lim;_, ».



THE SUPPORT VECTOR MACHINE (SVM) ALGORITHM 61

Lin(2) ‘f"—

/2 h(in(im)- 1)

G"(h)

h

Figure 3.3 The two forms of the growth function are shown in solid lines. A growth function
scaling as /1 (dotted line) cannot occur according to the theorem proved by Vapnik and
Chervonenkis.

To gain some intuition as to the value of the VC dimension consider a linear classifier for
data in a space R?. Here the classifier is represented by a straight line in the plane separating
the two classes. A line can always separate any arrangement of three points into any of the
23 = 8 arrangements of two classes, but a line cannot always separate four points into all
possible arrangements 2* = 16. In fact it can be shown that a hyperplane in N dimensions can
separate at most N + 1 points into two classes (Burges 1998, p. 160).

The VC-dimension is then a dimensionless number that characterizes the capacity of the
classifier through its role in the growth function as the scaling exponent of the number of
examples that can be separated. For a set of indicator functions Q(y, f(X, «)), @ € A, the VC
dimension, 4, is equal to the largest number of vectors X1, ...X; that can be separated into
two different classes in all the 2" possible ways using this set of functions. For points in R?,
h =3.

Inserting the bound for the growth function G*(/) < h(In % + 1) into Equation (3.2) gives

B +1) =)

P ¢ R(a) < Remp(a) + I

>1—. (3.3)

We can use this bound in a constructive way to formulate a new minimization principle for
finding the best classifier, with the caveat that we are only using Equation (3.3) as a guide,
because this gives (with some chosen probability) an upper bound on the actual risk. This does
not prevent a particular machine with the same value for empirical risk, and whose function
set has higher VC dimension, from having better classification accuracy.

3.4.3 Structural risk minimization

Now for minimization, we must minimize over both the empirical risk and the term describing
the capacity of the machine. This is called Structural Risk Minimization (SRM). For a fixed
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number of training vectors, /, the two terms inside {} to the right of the < in Equation (3.3),
represent the complexity regularization trade-off. As the class of functions parametrized by o
gets larger (more complex) R..,,(cr) will get smaller as there is more flexibility in f(x, «) to fit
the data, but the VC dimension will get larger. Conversely if the class of functions parametrized
by o gets smaller (less complex), then R,,,,(c) will get larger, but the VC dimension will
get smaller and accordingly the second term will get smaller. This gives the intuition that
the uniform deviation between expected risk and empirical risk decreases with number of
data points /, but increases with the VC-dimension, and therefore with the complexity of the
classifier functions f(x, «), as shown in Figure 3.4.

Thus we are now minimizing the empirical risk and the risk bound. Now the risk bound is
defined for a class of functions, so in order to minimize this term we must impose a structure
on the class of all functions. Following Vapnik we do this using nested subsets:

A CAyC...CA
for which the VC-dimension for the classes of functions satisfy
ha, Shp, < ... Z hy.
With this in place, the principle of Structural Risk Minimization can be cast as: Minimize

R(a) over « in each subset class of functions, A;, and over the sequence of nested subsets of
classes of functions A; € A in Equation (3.3) for a fixed 7.

ha (ln 2Ly 1) —In(})
/

& = argmin | Repp(a) +
ox € A;
A C A
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3.5 From structural risk minimization to a support
vector machine algorithm

Here we summarize the steps from SRM to an algorithm we can solve for supervised classi-
fication (Niyogi et al. 1999).

3.5.1 SRM for hyperplane binary classifiers

We begin with supervised binary classification and later generalize to multiple class classifica-
tion, which can be handled by aggregating results from binary classification. A simple binary
classifier functions is defined by a hyperplane that attempts to separate the data into classes.
Thus define a parametrization of the classifier function A from SRM to be

A={a: RN > {—1,1} | f(x,a)=sgn(w-x+b)}, o=(W,b),

where w is a vector perpendicular to the hyperplane and b is the closest distance of the
hyperplane to the origin, and x € RY. Now we can extend the ordering relationship imposed
by increasing values of the VC dimension, %, for SRM by finding a relationship between 4 and
the classifier parameters o = (w, b). For this we use theorem of (Vapnik 1995, Theorem 5.1,
p. 128; Vapnik 1998, Theorem 10.3, p. 413; Burges 1998, Theorem 6, p. 30) that bounds the
VC dimension for a subset of canonical hyperplanes by a bound on the hyperplane properties.
Canonical means a particular normalization that defines a length scale in the problem. Given
the space in which the training vectors lie is x; € RY, then

IF By.x={xeRY | |x—a| <D, aeRY, |x;—all<D, i=1,...1
is the smallest ball, with radius D, centred at a, containing the training set, and
Ap={a={w,b} | f(X,a)=sgn(wW-Xx+Db), [W] < A}
is a subclass of hyperplanes in canonical form,
THEN & < min([D*A%],1) + 1. (3.4)
Thus the natural structure for SRM on hyperplanes classifiers is the monotonic dependence

of / on the parameter A, which for a fixed set of training data are an upper bound on the norm
of w. We write the ordering relationship of the SRM as

hAlthzf-HShA
Al <Ay <...<A
Aay CAp, CL..C Ay

and the SRM principle becomes

A= argmin  (Repp(W, b) +yw-w) or (W, 13) = arg miny p(Repmp(W, b) + yw - W),
a € Ay
Ay €A, (3.5
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where y is a parameter that trades off the fit to the training data, R;;,,(W, b) with a measure of
the model complexity or capacity of the classifier to learn, w - w. Note this is a related result
to that given in Chapters 1 and 2 for the case of quadratic loss.

Though we have parametrized the classifier, there is no recourse to a parametrization of
the distribution of the training data. Also no consideration of the dimensionality of the data has
been made. Thus at least at this point the issue of the curse of dimensionality is not explicit.
There is continuing work to refine these bounds, and derive new theoretical results for a variety
of cases, and we point the interested reader to the following papers: Ikeda (2003), Malzahn
and Opper (2005), Mukherjee et al. (2006), Schaback and Werner (2006), Zhou (2003),
Zhou and Jetter (2006).

3.5.2 SVM algorithm

To proceed further, consider the two cases for training a hyperplane binary classifier: either
the training data can or cannot be separated by a hyperplane. Figure 3.5 shows these two
case for two dimensional data. For separable training data R.,,(W, b) is zero. The condition
of separability is that all training vectors of class +1 lie on one side of the hyperplane and
all training vectors of class —1 lie on the other side. The positive distance d; of any training
vector from the hyperplane is given by d; = y; (Wi";"'{ T"b) > (0, where multiplying by y; (recall
y; = =) assures all such distance are positive. Because an arbitrary change in scale of w —
cw, b — ac, d; — cd;, where c is a constant, does not affect the minimization equations, we
will remove this arbitrariness by choosing the length scale in the problem to be the minimum

Figure 3.5  Left: Schematic of separable data in R%. The circles are feature vectors in class
+1 and the squares are feature vectors in class — 1. The placement of the hyperplane shown is
optimal. The dotted lines are the margin boundaries. Right: Schematic of non-separable data
in R2. The circles are feature vectors in class +1 and the squares are feature vectors in class
— 1. There is one feature vector that is not separable.
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of the distances d;. This will make the distance from the separating hyperplane to the nearest
training vectors 1/|w/|. This is called the canonical form. With this scaling we then have

yi(w-Xi +b) > 1, (3.6)
and the statement of our minimization problem for finding the separable hyperplane is

minw  5llw]? a7
yiWw-Xi+b)—1>0 i=1,...,1L )
By minimizing %||w||2, we are making 1/||w]|| the largest, and from the discussion above,
that is maximizing the distance of the hyperplane from the nearest training vectors of the two
classes. That distance is called the margin and lends the name maximum margin SVM to this
type of classifier. The boundaries beyond which all the training vectors of each class lie are
called the margin boundaries. One can see that to solve the minimization problem we are
solving a quadratic optimization problem that is always guaranteed to have a unique solution.
The optimum solution giving the best hyperplane is where the hyperplane is placed so that
the distance of the closest feature vectors in the two classes are the furthest they can be from
the hyperplane. Thus the optimization problem will find those closest vectors and locate the
hyperplane to lie between them so that perpendicular distance from the hyperplane to the those
feature vectors are 1/||w||. Clearly the more distant feature vectors from the hyperplane do
not affect the solution. These special closest feature vectors are called the support vectors, and
they then determine the position and orientation of the separating hyperplane. Because of the
linearity of the problem we can write the hyperplane parameters w, b as linear combinations
of the training vectors. Write

I
w= Z)\iyixia (3.8)
i—1

where the linear coefficients A; are the indicator values for the support vectors when A; > 0,
and where we have explicitly included y; so that A; > 0. Using any one of the constraint
equations from above we can also express the other hyperplane parameter, b, as

[
b=1-— Zkiyixi - Xj. (3.9)
i=1
Thus the outcome of the minimization is to find the A;. Note that the dimensionality of the
feature vector does not explicitly enter our minimization optimization problem.
The standard method used to actually solve the minimization’s equations is to recast this
problem into a simpler form by using Lagrange undetermined multipliers — the A; we have

introduced above — in order to transform the problem into the dual representation, (Gualtieri
and Cromp 1998),

Y I
MaXy, oy | = 3 Soimt 2ojet MV XY iA + Yy b
Ai=0 i=1,...,1

Sicy Aivi = 0.

(3.10)
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For the non-separable problem, Figure 3.5 (right), Ry, is no longer 0. We can construct a
version of R, for this case by introducing a variable &;, associated with each training vector,
which measures the distance of that training vector beyond the margin boundary if it is a non-
separable, and &; = 0 if it is a separable training vector. Then we write Repp = C Zi’:l &,
where C is a constant, to be set, that measures the strength of the non-separable contribution
relative to the capacity of the classifier to learn in the term %||w||2. We also must change
Equation (3.6) so as to relax the requirement that all training vectors of the same class lie on
the same side of the hyperplane. We now have

yilw-x; +b) > 1 —§;

& =>0. (3.11)

This can also be cast in a dual form using Lagrange undetermined multipliers, (Gualtieri and
Cromp 1998), and gives

max, | 3 i lezl Aiyi(Xi - X))y + S i
C>xrx2>0 i=1,...,1
S ayi=0 i=1,....1L

(3.12)

Note, the only difference from the dual of the separable case, Equation (3.10), is that the A; are
bounded above by C, reflecting the fact that the original inequality constraint, Equation (3.6),
holds only while & = 0 and then becomes soft when &; > 0. Knowing the solutions A;, we
can again find w and b for the hyperplane.

3.5.3 Kernel method

Up to this point we have dealt only with classification as a linear function of the training
data — the decision surface is a hyperplane defined by linear equations on the training data.
However, it can be the case that no hyperplane exists to separate the data. The non-separable
method provides one way to deal with this. As an alternative we would like a way to build a
nonlinear decision surface. An extremely useful generalization that can give nonlinear decision
surfaces and improved separation of the training data are possible using the following idea, first
introduced by Aizerman, Braverman and Rozoner (Aizerman et al. 1964), and incorporated
into machine learning as part of the Support Vector Machine by Boser, Guyon, and Vapnik
(Boser et al. 1992). We refer the reader to Chapter 2 for details of this method, where the SVM
optimization problem Equation (2.10) is transformed by means of a Kernel transformation,
K, to Equation (2.11).

For our purposes we give a short synopsis of how to make a nonlinear transformation that
projects the input space to a a higher dimensional Euclidean space, by means of a nonlinear
vector function: ¢ : RY > 7, and in this space pose the problem of finding a hyperplane
that best separates the projected training vector data. Then we may again pose the optimal
margin problem in the space H by replacing x; - X, by ¢(x;) - ¢(x;). Then, as before, solve the
optimization problem for the A;. This finds the support vectors among the transformed vectors,
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¢(x;), by association with the A; > 0. We then use these to build the classifier function:

l
FOG AL, ..o A) = sgn (Z A yid(x;) - p(x) + b) : (3.13)

i=1

The Kernel method is to note that there are classes of functions ¢ that satisfy the special
property of a Kernel function K where

K(xi, X)) = ¢(xi) - p(x). (3.14)

Then everywhere that x; - X; occurs, we replace it with K(x;, x;). A Kernel function is a
function defined on two variables, u € R¥ and y € R*, such that K : R¥ x R¥ — R, where
the form of K is given by K(u, v) = ¢(u) - ¢(v), and where ¢() is a vector valued function on
a vector argument.

We need not explicitly compute ¢(x), which could be computationally expensive, but only
need compute the Kernel functions. In fact we need not have an explicit representation of ¢ at
all, but only K. The restrictions on what functions can qualify as Kernel functions is that they
must satisfy Mercer’s condition, which is the case for Kernels of positive integral powers of the
dot product, such as, K(x;, X;) = ((x; - X;) + 1)”. See Burges (Burges 1998, Section 4.1) for
further discussion and Chapter 2. What is gained is that we have moved the data into a larger
space where the training data may be spread further apart and a larger margin may be found
for the optimal hyperplane. In the cases where we can explicitly find ¢, then we can use the
inverse of ¢ to construct the nonlinear separator in the original space. Clearly there is a lot of
freedom in choosing the Kernel function and work has gone into the study of this idea both for
SVM and for other problems (Smola et al. 1998). In addition, due to Mercer’s conditions on
Kernels, unlike in other machine learning techniques based on Neural Networks, the positive
semi-definite Kernel ensures that the objective function is convex and hence there are no local
minima, only a global minimum.

With respect to the curse of dimensionality, we never explicitly work in the higher
dimensional space, so we are never confronted with computing the large number of vec-
tor components in that space. And there is no significant computational burden of working in
the high dimensional space since the dot products are formed in the original space, and that
dot product scalar is all that is transformed to the higher dimensional space.

Two popular Kernel transformations are the polynomial Kernel and the radial basis function
Kernel. The polynomial Kernel function is given by

K(x,y)=(x-y+ 1, (3.15)

and the radial basis function Kernel (RBF) is given by

)
K(x,y) =exp (—”Xy”) . (3.16)

o2

Further work on Kernel functions can be found in (Scholkopf et al. 1998, pp. 89-102) and in
Chapter 2 of this book.
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3.5.4 Hyperparameters

In the basic SRM equation, Equation (3.5), the parameters to be found that characterize the
classifier are w, b. In addition there are the parameters, called hyperparameters, that are used to
handle the case of non-separable data, C, and with the introduction of the Kernel method there
are the choices of what particular Kernel function is to be used. Thus for the polynomial Kernel
function, there is d, the dimensionality of the polynomial, while for the radial basis function
Kernel there is o. The usual approach once having chosen a Kernel function is to do k fold
validation. The training data are splitinto k parts of size // k. A discrete range of possible values
of the hyperparameter is chosen and for each hyperparameter value a SVM classifier is trained
using k — 1 parts and tested on the remaining 1 part from which a classification accuracy is
measured since we know the labels of the data. This is repeated one by one through all k such
splits of the training data into k — 1 folds for training with testing on the remaining fold, and
an average classification accuracy is obtained. This is repeated for each of the hyperparameter
values and the value with the highest classification accuracy is chosen. If k = [ — 1, then this
approach, also called leave one out, will give an unbiased estimate of the hyperparameter.
Clearly even for a moderate value of k this can be an expensive computation. Work has been
done to find computationally inexpensive ways to estimate or bound the hyperparameters
(Duan et al. 2003).

3.5.5 A toy example

As an illustration of the Kernel Method, consider its application in N = 2. Using the package
LIBSVM (Chang and Lin 2001), we show for two dimensions in Figure 3.6, the shape of
the separating surface for several values of d. Note that only when d = 7 is reached does a
separating surface exist that completely separates the two classes.

3.5.6 Multi-class classifiers

When we have K > 2 classes, labelled 1, 2, ... K, we choose to create all the possible pair
classifiers, K(K — 1)/2 in number, which are trained using training set data from class, 1 vs.
2, 1vs.3, .., 1vs. K,2vs. 3, .. K-1vs. K. To decide a class label in the testing phase,
apply the K(K — 1)/2 pair classifiers to the test vector and record which label each of the
pair classifiers gives. From each such pair classifier place a vote into one of K bins labelled
1,2, ..., K, and when all of the pair classifiers have voted, record the bin with the most votes,
as the classification label for that test vector. For ties randomly select one of the competing bins.

We have chosen this approach, called in the literature one-against-one (OAO) over creating
K classifiers that are trained from training setsof 1 vs. {234 .. K },2vs. {13 .. K}, ... K
vs. {12 ... K-1} called one-against-all (OAA), because it appear to be more accurate (Hsu
and Lin 2002). We note that for training the time complexity is less for OAO vs. OAA. This
can be seen in Table 3.1, which gives the time complexities O(K 2m?2), O(K3m?) for OAO
and OAA respectively. Here we assume that the training sets are each of size m /2 and that
the time complexity of a single pair classifier training on m total training vectors is O(m?),
because we are solving a quadratic optimization problem for training. Other work (Melgani
and Bruzzone 2004) comparing OAO, OAA, and two hierarchical methods indicate that OAO
and OAA have similar classification accuracy and are superior to hierarchical methods, but
that OAO is faster for training and slower for testing than OAA.
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Figure 3.6  The white dots and the grey squares in each of the six panels represent the same
training data, while the light grey and black backgrounds show the division of the space into
two contiguous regions with various separating curves between them. The polynomial Kernel
function K(x,y) = (x -y + 1)? is used with SVM for d = 1, 2, 3, 4, 5, 7 (left to right top to
bottom), with C = 1000. For d = 7 the separating curve completely separates the two classes

of points. The software package LIBSVM (Chang and Lin 2001) was used to produce this
example.

3.5.7 Data centring

An important preprocessing step for all applications of SVM is to mean centre and scale the
data according to

X(r. 1) = x;(r, 1) — erxi(r, N/

where x(r, 1) is the original feature vector (spectra) at pixel position r and at band A and S is a
constant scale factor. The reason for doing this is that hyperspectral data are always all positive

Table 3.1 Time complexity on a single processor for performing
SVM training for a classifier of K classes, each class containing
m /2 exemplars

Pairwise classification One-versus-the-rest

O(szz) O(K3m2)
K(K — 1)/2% O(m?) K% O((K — )2 +2))
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in value and thus the original data lies only in the positive ‘quadrant’ occupying 1/2% of the
available space of R", whereas the mean centred data fills the entire space of RY, thereby
dramatically spreading out the data, which improves the SVM classification accuracy.

3.6 Benchmark hyperspectral data sets

A particular hyperspectral data set that has become something of a benchmark for testing
hyperspectral supervised classification algorithms is the AVIRIS 1992 Indian Pines data set
AVIRIS, first used by David Landgrebe and hist students (Jackson and Landgrebe 2001;
Jiménez and Landgrebe 1996; Kuo, and Landgrebe 2001; Tadjudin and Landgrebe 1998a).
These data were acquired on June 12, 1992 in the northern part of the state of Indiana, in
the U.S. The data set and ground truth are available at the website (Landgrebe 1992). The
data consists of 145 x 145 pixels (each pixel is 18 m x 18 m in size) by 220 bands in band
interleaved format (BIL) format of at-sensor spectral radiance data as 2 byte unsigned integers
digital numbers (DN) that have been scaled and offset from the at-sensor spectral radiance,
Rad, in units W [cm2 nm sr], to give digital numbers (DN) according to DN = 500 * em Rad +
1000. No atmospheric correction has been performed. However. because of atmospheric water
absorption the bands [104 : 108, 150 : 163] are not meaningful, as the sensor only reports noise
in these bands. Thus they are removed as they will only serve to decrease the accuracy of the
SVM classifier. Also band 220 is very noisy. Thus for analysis these bands should be removed
leaving a 200 band data set. Ground truth gathered by Landgrebe and students is also available
and delineates 16 classes. The scene consists of about two-thirds agriculture, and one-third
forest or other natural perennial vegetation. There are two major dual lane highways, a rail
line, as well as some low density housing, other built structures, and smaller roads. Since the
scene is taken in June some of the crops present, corn, soybeans, are in early stages of growth
with less than 5% coverage. The ground truth available is designated into sixteen classes and
is not all mutually exclusive. This data set has been used as the 16 class full scene, as the 9
class full scene, and in a 4 class subset scene.

3.6.1 The 4 class subset scene

The subset scene consists of pixels [27 — 94] x [31 — 116] for a size of 68 x 86. (Upper left
in the original scene is at (1, 1).) There is ground truth for over 75% of this scene and it
comprises the three row crops, Corn-notill, Soybean-notill, Soybean-mintill, and Grass-Trees,
where notill and mintill describe tillage practices when planting these crop types. Table 3.2

Table 3.2 Data description of the Indian Pines 4 class subset scene

Class Number of ground Number of Number of
name truth vectors training vectors  test vectors
Corn-notil 1008 201 807
Soybean-notill 727 145 582
Soybean-mintill 1926 385 1541

Grass-Trees 732 146 586
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Table 3.3 Data description of the 16 class Indian Pines Full scene

Class Number of ground Number of Number of
name truth vectors training vectors  test vectors
Alfalfa 54 10 44
Corn-notil 1434 286 1148
Corn-min 834 166 668
Corn 234 46 188
Grass-Pasture 497 99 398
Grass-Trees 747 149 598
Grass-Pasture-mowed 26 5 21
Hay-windrowed 489 97 392
Oats 20 4 16
Soybean-notill 968 193 775
Soybean-mintill 2468 493 1975
Soybean-clean 614 122 492
Wheat 212 42 170
Woods 1294 258 1036
Bldgs-Grass-Trees-Drives 380 76 304
Stone-steel-towers 95 19 76

gives further details. We choose a random selection of pixels with ground truth to yield a
training/testing split of 20%/80%.

3.6.2 The 16 class scene

For the full 16 class scene we also used a random selection of 20% of the ground truth data
and tested on the remaining 80%. Table 3.3 describes this data.

A difference with the data and results reported by (Tadjudin and Landgrebe 1998a,b) is
that they studied the scene using 17 classes whereas we only used 16. The difference being that
they further resolved the class Soybeans-notill into two subclasses of Soybeans-notill based
on fields that were in different locations in the full scene.

3.6.3 The 9 class scene

Papers by Camps-Valls and Bruzzone (2005) and Melgani and Bruzzone (2004) have studied
the same Indian Pines 1992 data set using SVM, Kernel Fisher Discriminants, AdaBoost
and Regularized RBF neural networks. From the 16 different land-cover classes available in
the original ground truth, 7 were discarded as these authors deemed there were insufficient
number of training samples available. The remaining nine classes were used to generate a
set of 4757 training samples (for the learning phase of the classifiers) and 4588 test samples
(for validating their classification accuracy). See Table 3.4 (Camps-Valls and Bruzzone 2005,
Table II, p. 1357), which summarizes their use of the data. Their training data were about 2.5
times larger than the 16 class data set above, indicating they were training on roughly 50% of
the available data as compared with our 20%.
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Table 3.4 Indian Pines 9 class scene. Number of Training and Test
Samples used in the the experiments of Camps-Valls and Bruzzone

Class Training Test
C1 Corn-notil 742 692
C2 Corn-mintil 442 392
C3 Grass/Pasture 260 237
C4 Grass/Trees 380 358
CS5 Hay-windrow 236 253
C6 Soybean-notil 487 481
C7 Soybean-mintil 1245 1223
C8 Soybean-cleantil 305 309
C9 Woods 651 643
Total 4757 4588

3.7 Results
3.7.1 SVM implementation

SVM has been implemented using two open source codes: SVM/ 8" by T. Joachim (Joachims
1998a) together with quadratic optimization code written by A. Smola (Smola 1998) and
LIBSVM (Chang and Lin 2001). These codes consist of a learning module that finds the
support vectors, given two sets of training vectors, and a specification of the non-separable
parameter C, and the Kernel function (in this work a polynomial with parameter d), and a
classification module that classifies any test vector into one of the pair of classes. To handle
multiple classes we have embedded theses code in calling routines that implement the OAO
classifier built on K(K — 1)/2 pair classifiers 2. Central to the learning module is the quadratic
optimization as formulated above in Equations (3.12). Direct application of quadratic opti-
mization to large numbers of training vectors can be computationally slow. For SVM/¢"
Joachim (Joachims 1998b) has shown a way to reformulate the problem as a series of smaller
optimization problems. The solution of these smaller optimizations is accomplished using a
quadratic optimization code written by A. Smola (Smola 1998). For LIBSVM the optimization
builds on Platt’s Sequential Minimal Optimization (Platt 1999).

3.7.2 Effect of hyperparameter d

To test the effect of changing the hyperparameter parameter d in the kernel function, Equa-
tion (3.15), in the 4 class subset scene, five different random choices of training testing vectors
were used to obtain classification accuracy ford = 1,2, ..., 15 and C = 1000. The results
are shown in Figure 3.7. A significant increase in classification accuracy occurs by going to
a nonlinear classifier with d > 2. The five lines are for each of the different random choices
of training vectors respectively. Also note that the classification accuracies of the five differ-
ent cases all lie within a 1% envelope, suggesting that differences in classification results
greater than 1% is significant. We did not vary the parameter C. Later work to be reported

2LIBSVM has options built in for multiclass classification, but it was not suitable for our application.
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Figure 3.7  Effect on classifier classification accuracy by varying the kernel parameter d, in
K(x,y) = (x -y + D). The five lines are the results for each of the different random choices
of training vectors respectively. In all cases the parameter C = 1000.

below investigated the effect of varying this hyperparameter for the case of the radial basis
function kernel (RBF).

3.7.3 Measure of accuracy of results

To gain a measure of the accuracy of the classification results five different trials for the 4 class
subset scent were conducted with different random selection of the 20%/80% training testing
splits withd = 7 and C = 1000. For a trial, the overall classification accuracy is the sum of the
number of samples correctly labelled for each class in the test set divided by the total number
of samples in the test set. Table 3.5 summarizes these results and shows that the results are
consistent within one percent and the average classification accuracy was 96%.

Table 3.5 Summary of trials on SVM classifier for the 4 class subset scene

Trial Overall Class correct(%)

Correct(%)  Corn-notill  Grass-Trees  Soybean-notill ~ Soybean-mintill

1 96.3 94.3 100.0 96.1 95.7
2 95.8 92.8 99.8 95.7 96.0
3 96.1 95.2 99.8 95.7 94.7
4 95.5 94.7 100.0 95.1 93.5
5 95.6 95.7 99.8 94.8 93.3

Average 95.9 94.5 99.9 95.5 94.6
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Table 3.6 A comparison of results for the Indian Pines 4 class subset
scene (68 x 86 pixels) and the 16 class full scene (145 x 145 pixels).
The results labelled bLOOC+DAFE+ECHO and Euclidean are taken
from their works (Tadjudin and Landgrebe 1998a, 1999), and represent
the best classifier results reported for this scene in that work. All training
is based on 20% of the ground truth and testing on the remaining 80%

Method Performance

4 class subset scene 16 class full scene

Support Vector Machine 95.9% 87.3%
bLOOC+DAFE[+ECHO] 93.5% 82.9%
Euclidean 66.7% 48.2%

3.7.4 Classifier results for the 4 class subset scene
and the 16 class full scene

SVM Results for the 4 class subset scene and the 16 class full scene are given in Table 3.6
and compared with the results of the earlier work and was first studied by D. Landgrebe and
students (Tadjudin and Landgrebe 1998a, 1999) who developed results for the Indian Pines
4 class subset scene with a classifier called bLOOC+DAFE, and for the 16 class scene, with
a classifier called bLOOC+DAFE+ECHO. Here bLOOC stands for Bayesian Leave One Out
Covariance Estimator (Tadjudin and Landgrebe 1999), DAFE stands for Discriminant Analysis
Feature Extraction (Fukunaga 1990), and ECHO stands for Extraction and Classification of
Homogeneous Objects (Kettig and Landgrebe 1976). Additionally they reported results for a
Euclidean classifier, which we include below. The Euclidean classifier is not expected to give
good accuracy for hyperspectral data, as it simply finds the mean spectral feature vectors of
each of the training classes, and then classifies testing data by using a Euclidean distance of
those means to the test spectra, selecting as the class of that spectra the one with the smallest
such distance.

Results for the full scene were produced with a polynomial kernel with hyperparameters
d =7 and C = 1000. No preprocessing of the data was used, besides mean centering of the
data.

For both the 4 class subset scene and the 16 class full scene, we see that the SVM outper-
forms bLOOC+DAFE+ECHO by values outside the variation due to random selection of the
training/testing split, and both outperform the Euclidean classifier as expected.

3.7.5 Results for the 9 class scene and comparison of SVM
with other classifiers

Camps-Valls and Bruzzone (2005) give SVM results for the Gaussian kernel (RBF) and the
polynomial kernel. The hyperparameters to be found for the RBF SVM are the Gaussian width

o, and the regularization parameter C. They tuned over the ranges o = (1, ..., 50) (same
for all RBFs) and C = {1072, ..., 10°}. For the polynomial kernel they tuned d, and the the
regularization parameter C with valuesintheranged = {1, ..., 15}andC = {1072, ..., 10°}.

Also in their results they adopted the OA A approach for handling classification with more than
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two classes. In Melgani and Bruzzone (2004) they report training/testing times (in seconds)
for OAA 2361 s/341 s on a single processor machine, and for OAO 212 s. /554 s giving rough
agreement with Table 3.1.

Now consider Table 3.7, which shows a classification accuracy comparison of the linear
discriminant analysis (LDA), regularized RBF neural network (Reg-RBFNN), SVMs with
RBF kernel (SVM-RBF) and with polynomial kernel (SVM-Poly), kernel Fisher discriminant
(KFD) analysis (with RBF kernel) and regularized AdaBoost (Reg-AB), for the 200 band data
in the upper part of the table and for the 220 band (noisier due to inclusion of noisy channels)
data set. In both cases, SVM-Poly has the best classification accuracy, closely by followed by
SVM-RBF and then Reg-AB. In a later section we offer some insight as to the nature of these
results.

3.7.6 Effect of training set size

Also in Camps-Valls and Bruzzone (2005) was an investigation of the effect of training set
size as shown in Figure 3.8. Here SVMs and Reg-AB have a clear advantage of 3% to 8 %
over KFD and Reg-RBFNN. Note that LDA show a threshold.

3.7.7 Effect of simulated noisy data

Camps-Valls and Bruzzone (2005) also studied the effect of adding random Gaussian and
uniform distributed noise and impulsive noise spikes only to the the test set, but using the
classifiers trained as above using training sets without additive noise. What was found is that
the SVM classifiers, both polynomial kernel and RBF kernel are more robust with respect to
Gaussian and uniform distributed noise than linear discriminant analysis (LDA), regularized

- LDA
@ Reg-RBFNN
-e~ SVM-ABF
A~ SVM-Poly
—— KFD
80 | -¢ Reg-AB

90

70¢

607

Overall accuracy [%)]

507

Rate of training samples [%]

Figure 3.8 The effect of size of the training set on classifier accuracy. Taken with permission
from Camps-Valls and Bruzzone (2005, Fig. 6). ©2005 IEEE.
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RBF neural network (Reg-RBFNN), kernel Fisher discriminant (KFD) analysis (with RBF
kernel) and regularized AdaBoost (Reg-AB).

3.8 Using spatial coherence

Clearly there is useful information in the local spatial coherence of the spectral data. By
this we mean that we expect the spectral shape in nearby pixels to be correlated, and vary
slowly except near edges between classes. In Section 3.3 we noted that we would restrict our
attention to only using the spectral information associated with each pixel (carrying the spatial
information along as ancillary information). Approaches have been developed in unsupervised
classification (Gualtieri and Tilton 2002; Plaza et al. 2002) that demonstrate methods that use
both the spectral and spatial information of hyperspectral data without dimension reduction,
however with substantial computational cost. These results could subsequently be used with
supervised classification to yield improved results.

Here we mention results of how the spatial data can be incorporated into the SVM approach
to improve subsequent classification. Mercier et al. (2002) use a preprocessing step that rear-
ranges the spectral data by using the Minimum Noise Fraction transform, Green et al. (1988)
and Lee er al. (1990) followed by vector anisotropic diffusion (Lennon et al. 2002). The idea is
that since the spatial correlation of the signal is strong (except across edges between classes),
as compared with the spatial correlation of the noise, then a noise covariance matrix can be
estimated for each band by computing the mean of the spatial differences (in the x and y
direction). With this estimate of the noise covariance matrix, the hyperspectral image cube
is then transformed in the wavelength regime to yield a new image cube where the strength
of the signal-to-noise ratio (SNR) is ordered by increasing band number in the transformed
cube. This image cube is then subjected to anisotropic diffusion, a nonlinear sequential fil-
tering operation that smooths regions with spectral similarity (regions of the same class) and
sharpens the differences where there are rapid changes in spectral similarity (the boundary
edges between classes). Because the MNF transform is reversible the nonlinearly processed
cube is back transformed to the original wavelength domain, where now the image cube has
noise removed, and regions that are spectrally similar are more uniform and the boundaries
between classes are sharpened.

When a supervised classification method is applied to this transformed image using 10, and
then 20 training vectors for each of ten classes, the overall classification accuracy of SVM using
the OAO approach for multiple classes with a polynomial kernel transformation, as compared
with classical techniques such as Spectral Angle Mapper (SAM), and Gaussian Maximum
Likelihood (GML), the classification accuracy improves by 5% and 8% respectively. But
when the data were preprocessed with the MNF/anisotropic diffusion, the SVM saw a 12%
and 10-14% improvement in classification accuracy over SAM and GML results for 10 and
20 training vectors respectively. Compared with SVM on non-preprocessed data, SVM with
preprocessed data for both 10 and 20 training sample data classification accuracy was improved
by 10% to 82% and 92% respectively. Thus SVM can provide superior results when used in
concert with another method for very small training samples for multiple class problems.

In another development of incorporating spatial information with spectral information
Camps-Valls et al. (2005) first create from neighbourhood textural spatial information indices
associated with each pixel for each wavelength. Then they created kernel transformations for
spatial and spectral information separately and formed both direct products of the two kernels
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as well as cross information kernels. When compared with the earlier results found above for
the two Indian Pines scenes, subset and full, in Table 3.6, Camps-Valls et al. demonstrated
2-3% improvement and 8-9% improvement for overall classification accuracy respectively,
depending on the particulars of the spatial-spectral kernel used.

3.9 Why do SVMs perform better than other methods?

We have already mentioned in Section 3.3 Vapnik’s dictum about solving the appropriate
problem, and the problem of the Hughes effect and why density estimation as a first step in
solving for the separating surface for supervised classification is inappropriate. For supervised
classification with two classes, we only need to find a separating single surface. The Support
Vector Machine directly seeks that separating surface by finding the exemplars that form the
boundaries of the classes, the support vectors. This is significant because it is usually the case
that there are a small subset of all the training data that are involved in defining the separating
surface, i.e., those training vectors that are closest to the separating surface. However, we
quickly see that in the original space finding such linear separating surface will not in general
work as shown in Figure 3.5(right). However, adding a penalty term for finding training vectors
that lie on the wrong side of the separating surface, and using the Kernel transformation we
can generalize the kinds of separating surfaces that can effectively be used. The nonlinear
transform of the data to a higher dimensional space effectively spreads the data out making
a linear separation more feasible, and reduces the need for the penalty term. For cases of
the Kernel transformation where the high-dimensional linear separating surface can be back
transformed to the original space, this yields nonlinear separating surfaces as seen in the toy
example of Figure 3.6. Thus the limited training data are being used to find a small number
of high-dimensional objects, the support vectors, and this computation is not directly affected
by the data dimensionality, as it is for the density estimation approach. This aspect of SVM is
described by saying that it uses a sparse representation, meaning with a few objects, each with
substantial complexity, the SVM is capable of modelling the object sought — the separating
surface.

To further examine why SVMs work better than feed forward neural networks we consider
an observation from Vapnik (Vapnik 1995, Section 5.64) which elucidates a comparison of
SVMs and neural networks. If the Kernel function for the SVM is chosen as K(x, x') = S(x -
x'), where S(u) = tanh(au + b) (a, b are constants) is the sigmoid function, then for arestricted
set of values of a, b that satisfy the Mercer condition for valid Kernels, the architecture of
the SVM is that of a two layer neural network where the number of support vectors are the
number of hidden layer nodes, and the weight vectors for neural network are the coefficients
Ai, the Lagrange multipliers. Thus the SVM automatically optimally computes the number of
hidden layer nodes and their strengths. However while the quantity that a Neural Network is
minimizing is the empirical risk,

> i = fxi @) (3.17)

the quantity that the SVM version of a NN above is minimizing is the upper bound of the
generalization error as derived from the Structural Minimization Principle, which we have
argued in Section 3.4.3 is more robust and has its derivation based on general principles
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applicable to these types of problems. Camps-Valls and Bruzzone (2005) also elucidate the
effectiveness of SVMs in comparison with regularized RBF neural networks (Reg-RBFNN)
and Kernel Fisher Discriminant (KFD). SVMs working from the Structural minimization
Principle (SRM) minimize both the Empirical Risk and the Risk Bound, which is a measure
of the classifier model’s complexity or learning capacity, whereas KFD and Reg-RBFNN
minimize only the Empirical Risk. Since empirical risk is defined for KFD and Reg-RBFNN
is defined by a sum of squared deviations, Equation (3.17), where (y;, X;) are the training data,
and f(x;, @) is the desired classifier function, all the data are included equally, whereas the
SVM approach explicitly finds the most important training data (those nearest the separating
surface) and only uses those in the object to be minimized.

3.10 Conclusions

We have described an approach to building a supervised learning machine called the Support
Vector Machine and applied it to classify hyperspectral remote sensing data. We have given
some insight into the issues of how hyperspectral data are acquired and processed before any
classification is performed to alert users to issues in the data.

The inherent high dimensionality of this data is challenging for traditional classifiers due
to the Hughes effect and the curse of dimensionality. We have indicated some of the theoretical
foundations of SVMs that point to why the dimensionality of the data is not a handicap as it has
been for traditional classifiers, and how the SVMs give improved results, and thus are suitable
for use with hyperspectral data. The results we have obtained show SVMs to be competitive
with other classifiers for hyperspectral data for hyperspectral scenes with as many as 16 classes.
And more recent developments show how to incorporate local spatial information and show
further improvement is possible.
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On training and evaluation
of SVM for remote sensing
applications
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The design of the training and testing stages of a supervised classification is, to differing
degrees, classifier-dependent. This chapter provides an overview of the some of the key issues
in the design of training and testing stages for image classification, with particular regard to
classification by SVM. A key issue stressed is that only effective support vectors are required
in training an SVM. This feature enables SVM to derive accurate classifications from small
training sets. The accuracy of an SVM may be assessed using a variety of approaches but
some may not be practical for all types of SVM classification.

4.1 Introduction

Remote sensing has been used in a wide variety of application areas. In particular, satellite re-
mote sensing has been widely used as a source of thematic information such as land cover. This
is valuable for many reasons, not least because land cover and land cover change are major com-
ponents of global environmental change. Indeed, land cover and its dynamics greatly impact
on issues of environmental, social and economic significance and are recognized as grand
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challenges for research (Aspinall, 2008). As a result of the importance of land cover as
an environmental variable, accurate and up-to-date land-cover maps are required for many
applications.

Remote sensing can be an efficient tool for the provision of up-datable information on
land cover information at frequent intervals and for large regions. Despite remote sensing’s
considerable potential as a source of land cover information many problems are encountered.
In particular, the accuracy of land cover maps derived from remote sensing has often be
viewed as being insufficient by many in the user community (Wilkinson 1996; Foody 2002,
2008; Gallego 2004). A wide range of factors may be responsible for this situation including
the nature of the classes being studied, the properties of sensing system used to acquire the
imagery and the techniques used to extract thematic information from the imagery (Foody
2002; Pal and Mather 2003). Although aspects of accuracy assessment in remote sensing
are pessimistically biased (Foody 2008) it appears, therefore, that many challenges have to
be addressed in mapping land cover accurately from remotely sensed data. Attention in this
chapter is focused on some of the issues connected with the extraction of land cover information
via a SVM-based classification.

4.2 Classification for thematic mapping

Information on land cover and land cover change is commonly derived from remotely sensed
data with the aid of a supervised image classification analysis. A variety of classification
approaches are available and these can differ greatly in detail. Some analyses may, for example,
use only the remotely sensed data on a per-pixel basis while others may make use of ancillary
data and be undertaken on a per-parcel basis. The basic nature of the classification process is,
however, the same for most scenarios. For simplicity, this chapter will assume that a per-pixel
based classification using only spectral information (e.g. reflectance) is used but the discussion
could be generalized for other approaches.

Assuming that the remotely sensed data have been fully and rigorously pre-processed,
a supervised classification analysis may be considered to comprise three stages: training,
allocation and testing (Figure 4.1). In the first, training, stage, regions of known ground identity
(class membership) are typically identified on the image. The spectral response of these training
sites or areas may be used to generate descriptive statistics for the land cover classes to inform
the second, class allocation, stage of the classification analysis. The class allocation stage
essentially acts to convert the remotely sensed data set into a thematic map depicting the
spatial distribution of the classes of interest in the region represented by the image. In the
third, testing, stage, the accuracy of the derived thematic map is evaluated. This evaluation is
typically based on the class allocations made for the cases in the testing set, a sample of pixels
that ideally were not used in training the classifier. The assessment of classification accuracy
is typically based on a confusion matrix, which is a cross-tabulation of the actual and classifier
predicted class labels for the cases contained in the testing set. The accuracy statement derived
in the testing stage is an important summary of the quality of the classification and its suitability
for use. The end product of the supervised classification analysis is, therefore, a thematic map
of known accuracy.

For many applications, the value of the thematic map derived with a supervised classifica-
tion analysis is a function of its accuracy. The latter is a function of many variables, including
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Figure 4.1 Overview of thematic mapping from remotely sensed data with a supervised
classification. Note one popular pre-processing analysis is feature reduction, in which the
original data set of dimensionality Ny is reduced to a smaller size, N, without substantial
loss of information. The end of the process is a thematic map or classification of known
accuracy (the latter typically estimated from a confusion matrix).
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a suite of issues connected with the initial two stages of the classification analysis over which
the analyst has considerable influence. Since classification accuracies have often been viewed
negatively, much research effort has focused on the training and class allocation stages with
an overall aim of increasing the accuracy of classification. Considerable work has addressed
the potential of a variety of different classifiers with much recent interest focused on kernel
based techniques such as the SVM. The SVM has become popular as it has often been ob-
served in many studies to classify data sets with an accuracy equivalent to or higher than that
derived from the application of a range of alternative classifiers (Huang et al. 2002; Foody
and Mathur 2004a; Melgani and Bruzzone 2004; Dixon and Candade 2008; Oommen et al.
2008). In addition, there is scope to increase the accuracy of SVM classification further, as,
for example, is evident in studies such as those directed at including prior knowledge into the
analysis (e.g. Lauer and Bloch 2008).

This chapter focuses on the first (training) and third (testing) stages of supervised clas-
sification by SVM; details on the nature of SVM-based classifiers is given elsewhere in this
book (see especially Chapters 2—4). For completeness and to ensure that this discussion is
self-contained, however, a very brief overview of some of the salient features of classification
by SVM is given before addressing the issues connected with training a SVM classification
and evaluating its accuracy. The discussion relating to both the training and testing stages
will be placed within the context of the general approaches used in remote sensing before
considering concerns connected more specifically with SVM-based classifiers. A key focus in
this discussion of the testing stage will be on issues connected with the comparison of classifi-
cation accuracy statements as this is often the basis for evaluations of the relative performance
of image classifiers in remote sensing.

4.3 Overview of classification by a SVM

Research aimed at increasing the accuracy with which thematic maps may be derived from
remote sensing has witnessed the evaluation of many classifiers. Recent history has seen a
progression from conventional statistical classifiers such as the maximum likelihood classifier
through artificial neural networks to kernel based classifiers. The discussion here is focused
mainly on issues connected with one particularly widely used kernel-based approach, the
SVM. SVM were originally designed for binary classification problems. Although binary
applications are sometimes encountered (e.g. Sanchez-Hernandez et al. 2007) most stud-
ies involve multiple classes. Fortunately, the basic binary SVM approach to classification
can be extended for the common multi-class classification problem. Frequently, this type
of classification is based on a series of multiple binary analyses following either the one-
against-all or one-against-one strategies (Huang et al. 2002; Gualtieri and Cromp 1998).
With these strategies, a multi-class problem is sub-divided into to a set of binary problems,
allowing the basic binary approach of SVM to be utilized to yield a multi-class classifica-
tion. These approaches can involve considerable time in training all of the component clas-
sifiers, especially if there are many classes or if the data set is large. Various approaches
may be used to speed up the analysis including methods that aim to reduce the size of the
input data (e.g. Cervantes et al. 2008) or reduce the number of binary analyses required
through the exclusion of redundant sub-classifiers (Ye and Teng 2007). An alternative and
computationally efficient strategy for multi-class classification is the adoption of a one-shot
multi-class SVM classifier (Hsu and Lin 2002). Irrespective of the precise method used, the
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fundamental feature of classification by a SVM is the nature in which the optimal separat-
ing hyperplane (OSH) is fitted between classes. The OSH is oriented in space such that it is
placed at maximum distance between the classes, maximizing the margin between them. This
latter property should allow a SVM to generalize more accurately on unseen cases as com-
pared with classifiers such as the multilayer perceptron neural network that aim to minimize
the training error.

A detailed mathematical explanation of SVM can be found in Vapnik (1995) with examples
in aremote sensing context including the discussions provided by Huang et al. (2002), Melgani
and Bruzzone (2004), Pal and Mather (2005) and Watanachaturaporu et al. (2008), as well as
in other chapters in this book. Here, only some of the main features are discussed to aid the
discussion on the training stage below. The key feature is to note that the OSH is formulated
from some of the training samples that lie at the edge of the class distribution in feature space
(Figure 4.2). This, often small, sub-set of a standard training set are the support vectors that
are fundamental to classification by a SVM. The classification decision function may often be
considered to be

1
) =" aiyiK(x, i), (4.1)

where, for each of the / training cases, a vector, X;, represents the spectral response of the case
together with a definition of class membership, y;, «;, i = 1, ..., [ are Lagrange multipliers
and K(x,x;) is a kernel function. The magnitude of «; is determined by the parameter C
and lies on a scale of 0—C (Belousov et al. 2002). More detailed discussions are provided in
Chapters 3 and 4.

Figure 4.2 The fitting of the OSH between 2 classes (open and closed circles).
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The accuracy of an SVM classification varies as a function of the magnitude of the param-
eters C and y. For example, if y and/or C are set at large values then there is a tendency for the
SVM to over-fit to the training data, which can negatively impact on the ability to generalize
and accurately label previously unseen pixels. Since a high degree of generalizability is typi-
cally desirable in thematic mapping from remotely sensed data, the values for the parameters C
and y must be determined carefully for the specific task in hand. A variety of approaches may
be used for this application. For example, the training data set could be sub-divided into two
independent sets: training and validation. A variety of parameter value scenarios could then
be used with those that provide the most accurate classification of the validation set adopted.
This approach, the hold out method, may not be attractive if training data are scarce or difficult
to acquire (Bishop 1995). A popular alternative is to adopt a cross-validation analysis. With
this approach, the training set is typically broken down into S independent subsets. An SVM
may then be trained with § — 1 subsets and its accuracy evaluated on the remaining subset.
By repeating this process S times, ensuring that each subset is used only once for validation
purposes, and calculating the average validation accuracy an overall measure of the general-
izability, a particular SVM classifier, is obtained that may be used to help select parameter
settings. This approach does allow the use of a large fraction of training data for the purpose of
training, as opposed to validation, but does require the training process to be repeated S times
(Bishop 1995). A related alternative is to adopt bootstrapping, which is based on subsamples
rather than subsets of the training data set. From the various methods available to evaluate the
generalizability of a SVM the use of a cross-validation analysis is particularly popular (e.g.
Belousov et al. 2002).

The key issue to note in this chapter is that the SVM classification is based on just the
training samples that lie at the edge of the class distributions, the support vectors. The latter
are the training samples for which o; > 0. All of the other training cases (¢; = 0) do not
contribute to the formulation of the classifier (Equation (4.1)) and, are, therefore, irrelevant
and unnecessary. Such training cases may be removed from a training set without negative
impact on the accuracy of the classification. Perhaps more constructively, effort and resources
need not be spent in the acquisition of such training cases as they are not used in fitting the
OSH. With the classification dependent on just the support vectors, it is possible to derive an
accurate classification from a SVM trained with only a small training set (Foody and Mathur
2004b; Foody et al. 2006). A similar situation occurs for related classifiers such as the one-
class SVDD (Muiioz-Mari et al. 2007; Sanchez-Hernandez et al. 2007) and RVM, which is a
probabilistic counterpart to the SVM (Bowd et al. 2005); although the relevance vectors for a
RVM are generally of a more anti-boundary nature than the support vectors of a SVM analysis
(Tipping 2001).

Having provided a brief overview of the nature of class allocation by a SVM, attention
now turns to the two other stages of the supervised classification. Again it is worth stressing
that the discussion is based around the use of a conventional per-pixel based classification
but should provide general material of relevance to a wide variety of other classification
scenarios.

4.4 Training stage

The basic aim of the training stage is, essentially, to provide descriptive statistics for each class
in the image that may be used to inform the class labelling process undertaken by the classifier.
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Unless using a resource such as a spectral library, the typical approach adopted involves the
acquisition of a sample of pixels of known class membership from the image to characterize
the classes spectrally. These selected pixels represent the training set that describes the classes
upon which the remainder of the supervised classification analysis is based.

Typically, the descriptive statistics derived from the training pixels are used to characterize
the classes statistically and ultimately convey the information needed to partition feature space
so that class membership may be determined for all image pixels in the allocation stage of the
classification. In the latter, each pixel of unknown class membership is allocated to the class
with which it appears to have the greatest spectral similarity. Obtaining an accurate description
of each class is therefore often seen as fundamental to the derivation of an accurate classification
(Kuo and Landgrebe 2002; Mather 2004).

Since the training stage provides the class descriptors upon which all allocations are
based the quality of the training data set used is of fundamental importance to a supervised
classification and a major determinant of classification accuracy. Many studies have shown that
the accuracy of a classification varies as a function of a range of training set properties (Zhuang
et al. 1994; Foody et al. 1995; Foody and Arora 1997; Staufer and Fischer 1997; Fardanesh
and Ersoy 1998; Foody 1999; Tsai and Philpot 2002). Indeed the nature of the training stage
can have a larger impact on classification accuracy than the type of classifier used (Campbell
2002). This situation has prompted research on the design of the training stage. The latter has
addressed issues such as those connected with the sampling design used to select training sites
(Campbell 2002; Chen and Stow 2002), size of the training set (Congalton 1991; Foody and
Arora 1997; Foody and Mathur 2004a), composition of the training set (Foody et al. 1995) as
well as issues such as the spacing of training samples, the time of sampling with respect to that
of image acquisition and the potential to automate aspects of the process (Huang et al. 2008).
However, most attention has focused on the size of training set, the number of training cases
acquired. This issue has frequently attracted attention because of the costs, especially in terms
of time and finance, involved in the acquisition of a training set (Buchheim and Lillesand
1989; Jackson and Landgrebe 2001) and its known importance for many classifiers including
SVM (see Chapter 3).

4.4.1 General recommendations on sample size

The remote sensing literature contains a range of recommendations on the size of the training
set required for a supervised classification. Much of this literature is based on a classical
statistical view of the classification process and an assumption that a complete description of
each class in feature space is required. One common recommendation in the literature is that the
size of the training set be defined as a function of the number of discriminatory variables used.
For the common situation of a classification using only the data acquired in a set of spectral
wavebands, it is often suggested that a sample comprises at least 10-30/N,, cases, where N,
defines the number of spectral wavebands used (Piper 1992; Mather 2004; van Niel ez al. 2005).
The sample size estimated by this method can be large, especially if a hyperspectral data set
is to be classified. Alternatively, as the derivation of an accurate and unbiased description of
each class is often seen as an aim in the training stage, conventional statistical theory may be
used to define the required sample size. To derive the representative and unbiased description
of the classes that is commonly perceived as a requirement of training, basic sampling theory
suggests the use of some variant of random sampling to define the location of training sites.
With simple random sampling, the sample size required to characterize the spectral response
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of a class, assuming it follows a normal distribution, could be estimated using

0'222

n= W 4.2)
where W is a specified half-width of the confidence interval, o the planning or estimated value
for the population standard deviation and z is the value of the z score at a specified level of
confidence.

Equation (4.2) provides an estimate of the sample size required to estimate the mean value
of a distribution with a specified degree of precision. The theoretical basis of this equation can
also used to determine the sample size required in a testing set for accuracy assessment, where
the aim is typically to determine the sample size required to estimate a proportion. Equation
(4.2), like the 10-30N}, heuristic, defines the minimum sample required and a ‘bigger is better’
attitude is often held by researchers. Note for example that from Equation (4.2) it is evident
that the precision of the estimate is linked to sample size; the more precise the estimate of the
mean needed, and so the smaller W, the larger the sample size that is required.

Conventional guidance is, therefore, to collect as large a sample of training cases as pos-
sible. This can have advantages in helping to control for unspecified variables that may have
an effect on the analysis. The acquisition of a large sample by random sampling will, for
example, help to accommodate for geographical variation in spectral response (e.g. variations
in crop reflectance arising as a consequence of regional variations in variables such as soil
background reflectance and growth stage or condition). Consequently, analysts are encour-
aged to embark on an expensive programme of training data acquisition driven by a desire
to have a large number of training samples from locations spread over the entire image area
capture and represent the full spectral variability of the classes. Although this can be costly
in time and resources the literature does, however, show that, for a variety of classifiers and
environments, classification accuracy is positively related to training set size (Pal and Mather
2003; Zhuang et al. 1994; Foody et al. 1995; Arora and Foody 1997; Foody and Mathur
2004a) and so that the effort expended in aquiring the training data set would seem to be
worthwhile. It should be noted, however, that the standard recommendations on training set
size estimation are of a very general nature and are often made without any regard to the
specific study area, the complexity of the classes to be mapped (e.g. the Anderson level)
or the classifier to be used and the aim of the analysis (Foody et al. 2006). The adoption
of a standard approach to training will require the acquisition of a large training set, which
may be undesirable as training data acquisition is often expensive (Chi and Bruzzone 2005;
Mantero et al. 2005) and may be unnecessary as some of the training data may be of little
or no value. The latter, as discussed below, is important in the context of classification by an
SVM.

The size of training set is not the only variable to consider in the design of the training stage.
The acquisition of and post-processing of training data often includes actions that may have
an important impact on the training data and so ultimately the classification and its accuracy.
For example, it is desirable that only pixels that actually represent an area of the class being
described are used in its description. Thus, the pixels selected for training purposes should
ideally be pure members of the relevant classes. To achieve this researchers often deliberately
mask out or exclude boundary regions where the mixing of class spectral responses may occur
(e.g. Arikan 2004). Additionally, some analysts apply post-acquisition refinement operations
to the training data that remove outliers or down-weight the contribution of cases perceived
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to be atypical of the class being characterized (Buttner ef al. 1989; Aria 1992; Ediriwickrema
and Khorram 1997; Mather 2004). Alternatively, some researchers use seed functions in the
acquisition of training data (e.g. Sun et al. 2003), which do not allow the inclusion of pixels with
values greatly different from the seed. The use of such post-acquisition refinement operations
and seed functions will generally act to shift focus towards the purest exemplars of the classes.
This situation may be useful if interest is focused on the characterization of the class centroid
but, as discussed below, may be unsuitable if using a SVM.

In summary, therefore, the aim of the training stage has conventionally been to acquire a
large sample of pure pixels to describe the classes. Some approaches for training set definition
or refinement adopted may, however, act to bias the description by placing emphasis on cases
typical of the class centroid. This may be suitable for some classification analyses but need
not be generally desirable. Indeed, the basis of the conventional approach to training set
design may not actually be focused on the provision of the critical information needed for an
accurate image classification. It may be preferable instead to tailor the approach to training
data acquisition to the particular problem in hand (Foody et al. 2006; Sanchez-Herndndez
et al. 2007), with particular regard to the selected classifier.

Classifiers may differ greatly in how they use the training data in order to partition feature
space for class allocation. It is, therefore, unsurprising that different classifiers applied to an
image often produce dissimilar allocations even if using the same training set (Huang et al.
2002; Foody and Mathur 2004a). As classifiers differ in the way they partition feature space
into classes, the value of individual training cases and the nature of an ideal training set
may vary considerably from one application to another. For example, the training data for a
parallelepiped classification should ideally describe accurately the extremities of the classes
in feature space, while it is more important to estimate accurately the class centroids for a
minimum distance to means classifier. Classifiers also differ in how the training data set is used.
The popular maximum likelihood classifier, for instance, uses parameters such as the mean
and covariance matrix that summarize the spectral response of each class while a feedforward
neural network such as the multi-layer perceptron uses each training case directly. Classifiers
can, therefore, be expected to differ greatly in terms of the required training information for an
accurate classification and individual training cases may vary greatly in value. It is possible that
a training set which could be used to derive a highly accurate classification from one classifier
may yield a considerably lower accuracy if used with another classifier (Foody 1999). For
classification by a multi-layer perceptron neural network or a SVM, the training cases that lie
both at the border of class distributions and between class centroids in data space are the most
important in terms of helping to derive an accurate classifier (Foody 1999; Foody and Mathur
2004b). These training data would, however, poorly describe the typical spectral response
of the classes and so be expected to be inappropriate for use with, for instance, a minimum
distance to means classifier.

As individual training cases vary in their value to a classifier and training sets vary in
suitability for use with different classification algorithms, the nature of the classifier selected for
a particular application should inform the design of a training data collection programme. The
typically classifier-independent design recommendations in the literature should be viewed
critically but may still be used to inform the development of a design that is suited to the
classifier selected. Critically, for a SVM, the variation in the value of the individual training
samples may be used constructively as it points to a potential to limit total training set size and
cost of training through a focus on the informative training cases. Indeed the way that some
classifiers operates makes it possible to tailor the training stage in a way that could require



94 SUPERVISED IMAGE CLASSIFICATION

a relatively small training sample (Foody and Mathur 2004b; Foody et al. 2006). This is
the case for the SVM where the potential for accurate classification from small training sets
stems from the fundamentals of SVM-based classification, namely that only the training cases
that are support vectors are needed for accurate discrimination with all others being redundant.
In recognition of the variation in the importance of the individual training cases some studies
have sought to identify and use only the most important training samples (Foody and Mathur
2004b) or to weight training cases by importance (Yang et al. 2007). Some of the major issues
are discussed in the following section.

4.4.2 Training a SVM

The training cases in a SVM-based classification vary greatly in importance, with those
lying near the hyperplanes being most informative (Foody and Mathur 2004b). Thus with
a SVM, the desire need not be to obtain as large a training sample as possible but one
that contains the most useful training cases. These are the training samples that lie at the
edge of the class distributions but between the class centroids in feature space (the sup-
port vectors) and only these are needed in the establishment of the decision surface; the
other training cases can effectively be discarded without impacting negatively on the ac-
curacy of the classification as they do not contribute to the fitting of the OSH (Brown
et al. 2000; Belousov et al. 2002; Wang et al. 2005). Thus, the accuracy of a SVM clas-
sification depends not so much on the size of the training set but more on the location of
training data cases in the feature space. Moreover, since the computation of the decision
surface is not dependent on the dimensionality of the data, SVM can accurately classify
data in high dimensional space with a limited number of training data. SVM may, there-
fore, possibly overcome, or at least be less sensitive to, the curse of dimensionality or the
Hughes phenomenon which may negatively impact on other classifiers (Pal and Mather 2004;
Oommen et al. 2008). Consequently, it may also sometimes be unnecessary to undertake
pre-processing operations such as feature-reduction analysis (Melgani and Bruzzone 2004),
although this can sometimes remain a useful part of a classification project (Neumann
et al. 2005).

The potential to use small training sets that contain appropriate support vectors for the
derivation of an accurate classification could allow considerable savings in training data acqui-
sition to be achieved relative to the use of conventional practices. However, the realization of
this potential requires and ability to identify the most useful training cases (Foody and Mathur
2004b). A variety of approaches have been suggested for the identification of informative
training sites. For example, one approach to identify potential support vectors is to identify
the extremities of the class distributions in feature space with the aid of knowledge on the
variables controlling the spectral response of the classes. The principles of this knowledge-
based or intelligent approach to training have been identified (Foody and Mathur 2004b) and
may be illustrated by a simple hypothetical example.

The basis of the intelligent training approach is to use knowledge of the factors that influ-
ence the spectral response of the classes to help identify informative training sites. Consider
a project that aims to derive a thematic map of a stereotypical tropical island. Aside from the
large sandy beaches that ring the island, the island is covered in forest. This simple scenario
involves three classes: vegetation, beach and water. Each class has a distinctive interaction
with the electromagnetic radiation used commonly in remote sensing but there is a degree
of intra-class variation which is summarized in Figure 4.3. As a result of the intra-class
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Figure 4.3 The spectral properties of the three classes in the hypothetical example. (a)
Classes in feature space defined by the infrared and red wavebands, circles highlight the
possible location of candidate support vectors. (b) The spectral response curves of the classes,
the solid line in each class indicates the response of a candidate location highlighted in (a).

variation, the spectral response observed from a location of a particular class may lie within
an envelope of possible responses for the class (Figure 4.3(b)). Furthermore, the intra-class
variation may be evident in the area of feature space that the classes occupy (Figure 4.3(a)).
The training of a supervised classifier requires descriptive information on the location of the
classes in feature space. Rather than characterize the spectral response of each class fully, a
SVM only needs some of the relatively extreme cases of each class to be used in training.
Potential candidate training cases are highlighted in feature space by circles in Figure 4.3(a).
The spectral response associated with each location is then highlighted as a line plotted within
the spectral response envelope for each class in Figure 4.3(b). To make the intelligent training
approach operational there is, therefore, a need to be able to locate training sites that may
have the spectral response similar to the highlighted cases. Fortunately, this is often possible.
For example, the most informative training sites for the water class have a relatively high
reflectance in each of the wavebands defining the feature space. Basic knowledge of the inter-
actions of radiation with water bodies (e.g. Curran 1985) should allow the analyst to deduce
that regions of deep clear water would be inappropriate training sites as they are typically
associated with low reflectance but regions of shallow water overlying a bright toned substrate
or of turbid water would be expected to have a high reflectance. Again, a simple deduction
is that candidate locations for useful training sites for water would lie close to the shoreline,
where the water is shallow and likely to have relatively high turbidity. Similarly, for the beach
class it is known that a major determinant of the reflectance of bare sand its moisture content
(Curran 1985). Dry sand sites would be expected to have a relatively high reflectance and so
be expected to be relatively poor candidate locations for training site acquisition. However,
wet sand would be expected to have a low reflectance and so training sites acquired from
such a region would be expected to have spectral properties near the highlighted part of the
spectral response in Figure 4.3(a). Note also that these would be expected to lie near the shore-
line and so close to where the training sites for the water class would be located, providing
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a basis for an efficient fieldwork programme to collect the ground data set. Finally, in this
example, with the vegetation class, the aim would be to locate vegetated regions that had a
relatively low infra-red reflectance and high red reflectance. From knowledge of the impacts
of variables such as vegetation amount (e.g. leaf area index) and its condition (e.g. chloro-
phyll content) on the remotely sensed response (Curran 1985) the analyst might deduce that
locations likely to make suitable candidate sites for training a SVM are regions of relatively
low vegetation amount, while locations of more luxuriant coverage should be avoided. Thus
to map the land covers of the region, quite basic knowledge may be used to locate sites that
may be expected to be of particular informative value to a SVM classification. Clearly the
example used is very basic and simplified (e.g. impacts of variable such as shadow or surface
roughness have been ignored for simplicity) but its potential has been illustrated in practice.
For example, Mathur and Foody (2008a) used easy to acquire information on variables such
as crop maturity status, proximity to water bodies and soil type to direct fieldwork to define
informative training sites for a SVM classification. The use of this approach yielded a classifi-
cation of comparable accuracy to that obtained when a larger training set, acquired following
conventional practice, was used and reduced costs by approximately a quarter (Mathur and
Foody 2008a). It is also worth noting that a focus on extreme training cases has been found
to be valuable in related analyses such as support vector regression analysis (Guo and Zhang
2007).

An alternative approach to defining useful training data is to focus on areas of spectral
mixing. This is because the most useful training cases are those that lie close to where the
hyperplane is to be fitted and this lies between the classes and so in the region in which mixtures
of the class spectral responses occur. Consequently, mixed spectral responses and mixed pixels
may sometimes represent useful and informative training cases for a classification (Foody and
Mathur 2006). Such locations are normally deliberately avoided in contemporary approaches
to the training stage that focus on homogeneous regions (pure pixels). This approach would
not, however, be expected to work well if the spectral response observed from a mixture of
two classes resembled that of another class in the image.

The nature of the thematic mapping programme may also be amenable to use of a very
small training set. This is particularly apparent when attention is focused on one or just a
small sub-set of the classes present in the area imaged. This is the case in a wide range of
applications including studies focused on mapping alien species, particular crops or specific
habitats for conservation (e.g. Foody et al. 2006; Goodwin et al. 2005;. Ramsey et al. 2002;
Underwood et al. 2003; Laba et al. 2005; Hill et al. 1980; Pinter et al. 2003; Boyd et al.
2006). While conventional approaches to image classification require a large training sample
as the set of classes must be exhaustively defined and each class characterized fully, the use
of SVM-based classifiers offers the potential to derive the desired information from a small
training set in which effort has been focused on the class(es) of interest rather than what
may be considered as background. Here, the binary nature of the SVM is attractive as it may
allow the analyst to focus on separating the class of interest from all others (Boyd et al.
2006). Furthermore, when attention is focused entirely on a single class, mis-classification
amongst the classes that are not of interest is completely unimportant and can be ignored in
the testing stage of the classification. Finally, alternative scenarios for classification by SVM
exist. Of particular relevance to this section of the book is the potential for semi-supervised
classification, which makes use of unlabelled cases in training (Bruzzone et al. 2006; Camps-
Valls et al. 2007).
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4.4.3 Summary on training

Conventional recommendations on the design of the training stage appear to be focused on
describing the classes. This approach can also be biased towards the purest cases (and to
the class centroid), which is far from ideal for SVM classification as the most informative
training cases, which make good support vectors, are located towards the edge of the class
distribution in feature space and not the centre. Thus, the standard approach to training may
not actually be based on meeting the fundamental aim of training. The latter is not to describe
the classes accurately but to provide information on the classes that will aid the fitting of
classification decision boundaries or hyperplanes to separate them accurately. Approaches to
training should therefore be viewed as being classifier-dependent. This is especially important
for a SVM as the targetting of extreme cases could be seen as running directly in opposition to
the conventional guidance, especially as a small, intelligently selected training sample drawn
deliberately from sites that could be viewed as relatively atypical, even impure members, of
the classes is stressed as useful for a SVM classification. This may be a successful approach
because only the support vectors are needed and hence the highly unrepresentative sample
of cases acquired with a judgemental sample design may provide the required information.
A variety of approaches may be used depending on the specific nature of the mapping task
in-hand (Foody et al. 2006). Critically, it is possible to suggest the spectral properties of
candidate support vectors and so target training data acquisition activities to locations likely
to have the desired spectral characteristics. This presents opportunities for substantial savings
in time and effort. For example, Mathur and Foody (2008a) report ~26% reduction in cost
of ground data collection activities without any significant loss in the ability to discriminate
classes through the use of the intelligent approach to training site selection.

Although the general basis of SVM operation applies to the various strategies of multi-
class classification there are some important differences that are worthy of discussion. Note,
for example, that the size of the training set needed may vary with different strategies to SVM
classification. For example, a one shot multi-class based SVM, which requires the solution
to a single optimization problem, may require fewer support vectors than either of the two
widely used strategies for multi-class classification based on a series of binary analyses, the
one-against-one and one-against-all approaches (Mathur and Foody 2008b). Even smaller
training sets may be used in some situations. For example, if interest is focused on a single
class using a one-class classifier such as the SVDD, which is based on the principles of the
SVM, a very small training set may provide all the necessary information for an accurate
classification (Tax and Duin 2004; Sanchez-Herndndez et al. 2007). In all situations, the key
feature is that the training data are not required to describe the classes precisely but to enable
them to be separated and with a SVM this only requires effective support vectors.

4.5 Testing stage

The main aim of the testing stage of a supervised classification analysis is to convey information
on the quality of the class allocations made by the classifier. The quality of a classification may
be expressed and measured in various ways but attention is most commonly focused on the
accuracy of the class allocations. Accuracy is a measure of bias (or more strictly unbias) and
precision (Atkinson and Foody 2002). In terms of a standard image classification analysis, an
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allocation is correct if the label predicted by the classifier matches that contained in the ground
reference data set. Classification accuracy may be evaluated from various perspectives, with
particular attention focused on measures of overall accuracy (i.e. that of the entire multi-class
classification as a whole) as well as per-class accuracy (e.g. when interest is focused on just
one of the classes). Measures of classification accuracy provide a basis on which potential
users of the classification may evaluate its fitness for a proposed application.

Although the provision of a classification accuracy statement to describe the quality of
a classification is a major aim it is not the sole issue to consider in the testing stage of a
supervised classification. Classification accuracy assessment is, for example, central to stud-
ies that have sought to evaluate different classifiers with the superiority of one classifier over
another commonly based on observed differences in classification accuracy. In the design
of the testing stage this comparative aspect may need explicit consideration as it can have
important implications, not least on the required size of the testing set (Foody 2009a). Indeed,
while classification accuracy assessment and accuracy comparison may seem relatively simple
issues there are many challenges to be faced in their undertaking (Foody 2002, 2004, 2008,
2009a). With many challenges to address, the subject is one still open for research and devel-
opment. Here, the discussion is focused on some fundamental issues in accuracy assessment
and comparison with particular regard to SVM-based classification.

4.5.1 General issues in testing

Classification accuracy assessment has developed considerably in recent years and many
methods may be used to estimate and convey accuracy information (e.g. Congalton 1991,
1994; Congalton and Green 1999; Pontius 2000, 2002; Foody 2002; Pontius and Cheuk 2006;
Lu and Weng 2007; Liu et al. 2007). Most commonly, classification accuracy is assessed
through the use of site-specific techniques based on the analysis of the entries in a confusion
or error matrix (Congalton and Green 1999; Foody 2002). This matrix is a simple cross-
tabulation of the predicted and actual class labels observed for the sample of cases contained
in the testing set (Figure 4.4). A properly constructed confusion matrix should provide a
simple summary of classification accuracy and highlight the two types of misclassification
error that may occur: omission (cases of a class incorrectly allocated to another class, and so
omitted from the class of interest) and commission (cases of another class incorrectly allocated
to the class of interest, and so commissioned by the class of interest). There are, of course,
many problems associated with the derivation of a confusion matrix and measures of accuracy
from it. This includes, amongst other things, issues connected with the sample design used
to acquire the testing set and the quality of the ground data (Foody 2002, 2009b). Thus some
of the issues encountered in the training stage, such as determination of required sample size,
also feature in the testing stage. For simplicity, it will be assumed that the analyst has been
able to generate a confusion matrix following a simple random sampling design. Discussion
on other sample designs and their implications as well as general background to the testing
stage is given in the literature (e.g. Stehman 1999, 2000; Wickham et al. 2004). Attention will
also focus only on the standard situation in which a raw or unprocessed confusion matrix is
used as some, albeit popular, approaches such as matrix normalisation are often inappropriate,
especially if interest is focused on an individual class (Stehman 2004; Liu et al. 2007).

The confusion matrix may be used to derive a variety of measures to express the accuracy
of a classification (Trodd 1995; Stehman 1997; Liu ef al. 2007). The two most widely used
measures of overall classification accuracy are the proportion of correctly allocated cases and
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H Case Actual Predicted
i 1 Forest Forest
2 Urban Water
3 Water Urban
4 Grass Urban
5 Grass Urban
Thematic map/classified image 6 Grass Grass
X Testing site
n
Predit:ted¢
(b) Forest Urban Grass Water TOTAL
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Figure 4.4 The assessment of image classification accuracy. (a) The actual and classifier
predicted class label of each of the n testing cases is defined. (b) The cross-tabulation of
the actual and predicted labels yields a confusion matrix from which various measures of
accuracy may be derived. The total in each row or column defines the matrix marginal values.
Note there is no accepted style of matrix presentation and so the row and column labels can
be swapped but their meaning must be remembered when producing per-class estimates of
accuracy.

the kappa coefficient of agreement (Trodd 1995). The proportion of correctly allocated cases
is simply the sum of cases contained in the main diagonal of the confusion matrix divided
by the total number of cases used to define the confusion matrix. This value is often mul-
tiplied by 100 to yield the percentage of correctly allocated cases, which provides a basic
measure of the overall accuracy of a classification. If interest is focused on the accuracy with
which a specific class has been classified rather than on the overall classification accuracy,
the key concern is the proportion of cases of that class that have been correctly classified. In
this situation, the measure of per-class accuracy is based on the ratio of cases contained in
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the relevant element of the matrix’s main diagonal to the relevant marginal value. Note that
the latter may be derived from two perspectives depending on whether the matrix is viewed
along the rows or columns. As there is no accepted standard way of presenting the matrix,
with rows, for example, sometimes used for the ground data and at other times for the
predictions of the classifier it may be appropriate to consider the two perspectives in terms
of the mis-classification errors to which they relate. If attention is focused on omission
errors, accuracy may be expressed by what is commonly referred to as producer’s accu-
racy. The latter is the number of correctly allocated cases of the class divided by the total
number of cases of that class; the latter would be represented by the row marginal of the
matrix depicted in Figure 4.4(b). Conversely, if attention was focused on commission error,
accuracy could be expressed by what is commonly referred to as the user’s accuracy. User’s
accuracy is the number of correctly allocated cases of the class divided by the total number
of cases predicted to belong to that class (i.e. the column marginal of the matrix depicted in
Figure 4.4(b).

The kappa coefficient of agreement has been widely used in remote sensing as a measure
of classification quality. The kappa coefficient is a re-scaled measure of the proportion of
correctly allocated cases that accounts for the effects of chance agreement (Congalton et al.
1983; Congalton and Green 1999; Smits et al. 1999; Wilkinson 2005) and the general formula
for its calculation is

;’ 4.3)

where m,, is the proportion of cases in agreement (i.e., the proportion of correctly allocated
cases in the testing set) and m is the proportion of agreement that is expected by chance. The
resulting value provides a measure of overall classification quality. A per-class based measure,
conditional kappa, may also be derived if interest is focused on the accuracy with which a
particular class has been classified (Congalton and Green 1999).

The kappa coefficient has often been promoted on the basis that its calculation includes
a correction for chance agreement and that a variance term can be calculated for it which
facilitates statistical comparisons (e.g. Congalton et al. 1983; Monserud and Leemans 1992;
Janssen and van der Wel 1994; Smits er al. 1999; Wheeler and Alan 2002). The latter issue
is especially important as there is often a desire to compare classifications in order to aid the
evaluation of two or more classifiers. For example, one might wish to determine if a SVM
provided a more accurate classification than some other classifier. The variance term is critical
here as the classification accuracy statements derived typically are estimates of accuracy and
so the simple summary measures of accuracy derived from a confusion matrix should not be
compared directly without regard to their estimated variances. Instead a statistically rigorous
approach that compares the derived summary measures with regard to the variances should
be followed to determine the statistical significance of the differences.

The kappa coefficient has been widely promoted in the remote sensing literature as a mea-
sure for accuracy assessment because of the ability to compare kappa coefficients rigorously
(Congalton and Mead 1983; Congalton et al. 1983; Janssen and van der Wel 1994; Smits et al.
1999). From a classification accuracy comparison perspective, the aim is to determine if the
difference in the derived estimates can be inferred to indicate a difference in the associated
population parameters of map accuracy. The statistical significance of the difference in accu-
racy between two classifications with independent kappa coefficients, represented by &1 and
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k7, may be evaluated with the normal curve deviate,

K1 — ko

=2 (4.4)

)
/A2 _ A2
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where 6,%1 and 6,%2 represent the estimated variances of the derived coefficients.

The significance of the difference between the two kappa coefficients and so, by inference,
the difference in classifier performance may assessed by comparing the value of z calculated
from Equation (4.4) against tabulated values. At the widely used 0.05 significance level, a
value of z > 1.96 indicates that two coefficients are significantly different (Congalton et al.
1983; Congalton and Green 1999). Although this approach has been widely used in classifier
comparisons its use may often be inappropriate. This is because the kappa coefficient itself
is of debatable value as an index of classification accuracy and the assumptions underlying
the comparison of coefficients are often invalid in remote sensing applications. Indeed the
meaning and value of the kappa coefficient in classification accuracy assessment has often
been questioned (Stehman 1997; Turk 2002; Jung 2003; Foody 2008) with each of the com-
monly argued reasons for using the kappa coefficient as a measure of map accuracy open to
criticism (Foody 2008). In relation to comparative studies, a key issue is that the approach
outlined assumes that the samples used to estimate the kappa coefficients are different and
independent. This is often not the case in remote sensing studies. In the latter, it is common
to use the same testing set of cases in the evaluation of each classification. The samples are,
therefore, related and this feature needs to be recognized in the comparison (McKenzie et al.
1996; Donner et al. 2000). Methods to compare related kappa coefficients could be used in-
stead, which account for the covariance between kappa statistics due to the use of a related
sample (e.g. Donner et al. 2000), but the limitations of kappa coefficients as a measure of
classification accuracy remain. Fortunately, however, there are other approaches that could be
used to measure classification accuracy and to compare accuracies. One simple approach is to
use the proportion of correctly allocated cases as a measure of accuracy. A variance term can
be derived for this, and other measures of accuracy, which also facilitates accuracy comparison
(Foody 2004). For example, the statistical significance of differences in the proportion of cor-
rectly allocated cases observed from two classifications, m| and m;, may be estimated instead
from

my —mz

= )
V= mlk +

4.5)

where m = (01 + 02)/(n1 + n2), in which o1 and o, are the number of correctly allocated
cases in two independent samples of size n; and ny respectively. Equation (4.5) may be
viewed as the alternative to (4.4) for independent samples. If the samples are related the
statistical significance of the difference between two proportions may be evaluated us-
ing McNemar’s test. The latter is based focused on the discordant cases, those that were
correctly classified by one classifier but mis-classified by the other. This test has been
used in the comparison of classifications derived from remotely sensed data (Foody 2004;
Ouyang et al. 2006; De Leeuw et al. 2006) and is based on a matrix of the type shown in
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Case  Classifier 1 Classifier 2 Classifier 1

1 Correct Incorrect Correct Incorrect
2, Correct Incorrect 5

3 Incorrect Incorrect o~ E 41 N2

4 Incorrect Correct %

5 Correct Correct § Etg

6 Correct Correct E Na1 N2z

7 Correct Correct -

n

Figure 4.5 The basis of the McNemar test for comparing classifiers. Each of the n cases is
allocated to the relevant element of the 2 x 2 matrix. For example, cases land 2 would be
contributors to the subset of cases that form ny1 while case 3 would contribute to nys. The test
focuses on the discordant subset of cases (contained in ny> and nop).

Figure 4.5. Using the notation defined in Figure 4.5, the McNemar test is typically based on

7= ni2 —nzi1 (4.6)

V/n12 +nop

Irrespective of whether the samples are independent or related, the size of the testing set needs
to be large enough to detect a meaningful difference in accuracy (Foody 2009a). Determining
the required sample size requires specification of a minimum important difference in accuracy
(effectsize) together with the desired significance level and power (Foody 2009a). For example,
the sample size required for a typical remote sensing scenario using the McNemar test may
be estimated from

1/2 _ 2317212
ne |zg W/~ + Zgg\ll 84)1/4| , @7
where z,, and zg are appropriate values of z for the selected significance level (o) and power
(1 — B) of analysis respectively, W is the proportion of mismatched cases and § the effect size
or minimum detectable difference (Connor 1987). Further details in a remote sensing context
are given in Foody (2009a).

Although popular, hypothesis testing based approaches to accuracy comparison, such
as those outlined above, are not problem-free. One major limitation is that the hypothesis
text based approach only gives a basic dichotomous outcome, in which the hypothesis (e.g.
that a difference in accuracy exists) is ‘accepted’ or rejected but conveys no information
on the magnitude of the difference. An alternative to hypothesis test based approaches for
classifier comparison is to base evaluations of differences on the confidence interval fitted to
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derived estimates (Di Stefano 2004). The latter can provide a richer basis on which to evaluate
differences in accuracy. In addition, the approach may also be easily used for a range of
scenarios commonly encountered in remote sensing studies, including testing for a difference,
equivalence or non-inferiority. A discussion of this approach for these three scenarios is given
in Foody (2009c).

4.5.2 Specific issues for SVM classification

Although classification accuracy assessment is often thought to be independent of the classifier
this is not strictly the case. In particular, with a SVM one problem is that it may sometimes
be impossible to generate a full confusion matrix to summarize the class allocations made.
This is evident with multi-class classification following the one-against-all strategy. With this
approach it is possible for a case to be of uncertain class membership (Mathur and Foody
2008b) and so make it impossible to calculate measures such as the kappa coefficient. While
this is not a major problem given the limitations of the kappa coefficient as a measure of accu-
racy it can still be undesirable for some applications. For example, some users may wish to use
the confusion matrix for post-classification analyses such as rescaling estimates of class areal
extent on the basis of the pattern of misclassification depicted in the matrix (e.g. Prisley and
Smith 1987). The inability to define the matrix fully means that the full nature of misclassifica-
tion is unknown and this may limit some post-classification activities. Thus, the classifier to be
used in a study should be considered as a variable impacting on the design of the testing stage.

4.6 Conclusion

The training and testing stages of a supervised image classification require careful planning
and design in order to optimize a classification analysis. Both stages are, to differing degrees,
classifier-dependent. For classification by a SVM, the nature of the SVM operation can have
important implications in both the training and testing stages.

In training the classifier, the dependence of the SVM on only the training cases that lie at
the edge of the class distributions between class centroids (the support vectors) provides an
opportunity to derive an accurate classification from a small training set. The realization of
this potential requires a means of predicting the most useful training areas and fortunately this
may sometimes be possible. Knowledge of the variables that influence the spectral response of
the classes to be mapped may, for example, allow the nature of the most informative training
cases to be defined and this information used to steer the training data acquisition programme.
By focusing attention upon only these training cases it is possible to derive a classification
that is as accurate as one derived from a much larger training set derived following standard
procedures. Critically, rather than acquire a large and representative sample to describe the
classes it may be more appropriate with a SVM to acquire a small, unrepresentative sample
from deliberately selected locations. This enables the use of a small, potentially inexpensive,
training set for the derivation of an accurate image classification; the accuracy should be
comparable to that derived from a classification based on a much larger training set acquired
following conventional practices.

Although the testing stage is less classifier-dependent than the training stage there are some
critical issues of relevance to studies based on SVM. First, it must be stressed that with the
one-against-all strategy to multi-class classification it may not always be possible to formulate
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a complete confusion matrix. Although the partial matrix derived may be perfectly adequate
for the derivation of some accuracy measures such as the proportion of correctly allocated
cases it may not, for example, be possible to calculate some measures of overall (e.g. the
kappa coefficient) or some per-class indices of accuracy. Second, in relative comparisons of
classification accuracy comparing SVM against other classifiers it is common to use the same
test set. The statistical significance in the difference between two classifications of the same
test set may be evaluated with the use of a test such as the McNemar test or through comparison
of confidence intervals fitted to the derived estimates of accuracy. In comparative analyses,
however, it is important to consider issues of sample size, significance level and power if the
analysis is to have the potential to yield useful results.
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In this chapter we first present a framework suitable for obtaining a nonlinear version of the
Fisher’s Discriminant (KFD). Then we propose an iterative classification algorithm for KFD
using heterogeneous kernel models (AKFD). In contrast with the standard KFD that requires
the user to predefine a kernel function, we incorporate the task of choosing an appropriate
kernel into the optimization problem to be solved. The choice of kernel is defined as a linear
combination of kernels belonging to a potentially large family of different positive semi-
definite kernels. Experiments on a Hymap dataset demonstrate that the AKFD algorithm
outperforms the linear version of the Fisher’s discriminant and also significantly reduces the
time required to train the KFD algorithm while maintaining similar performance.

5.1 Introduction

In hyperspectral data analysis, materials of practical interest, such as agricultural crops, forest
plantations, natural vegetation, minerals, and fields of interest in urban areas exist in a variety
of states and are usually observed in a number of conditions of illumination. That is, most
land-cover types do not have a single spectral response. For example a crop type will show
different spectral characteristics at different times of the day and year. Similarly, roof tops
are usually made of a variety of different materials including concrete, tile, bricks, glass, etc.
all of which have different spectral responses. The number of such examples can easily be
augmented.
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One possible way to deal with this problem is to model each class distribution data using
Finite Mixture models (McLachlan and Peel 2004). Finite Mixture Models usually leads to
competitive performance when there is enough labelled data to reveal the underlying structure
of the class distributions. However, in most real world settings, this may not be the case. The
price one must pay for labelled data is usually prohibitively expensive, as acquiring labelled
data requires a tedious and time-consuming process of human labelling.

Another alternative for modelling multi-modal class distributions is kernel machines.
Kernel machines was first introduced with Support Vector Machines (Vapnik 2000) but later
adapted to several other classification algorithms including Fisher’s Discriminant (Mika et al.
1999). Kernel concept provides the flexibility required to model complex data structures that
originate from a wide range of class conditional distributions. Earlier studies show that Fisher’s
discriminant when implemented with kernel machines yields favourable results for the analy-
sis of hyperspectral data with multimodal class distributions and limited training data (Dundar
and Landgrebe 2004a, 2004b).

In the KFD algorithm the type of the kernel function and its parameters are usually
estimated from a designated set of kernel models by cross-validation. With this approach
the tuning procedure becomes quite computational for training set sizes larger than a few
hundred samples. We propose an iterative classification algorithm for Kernel Fisher’s dis-
criminant (KFD) using heterogeneous kernel models. In contrast to the standard KFD that
requires the user to predefine a kernel function, we incorporate the task of choosing an appro-
priate kernel into the optimization problem to be solved. The choice of kernel is defined as a
linear combination of kernels belonging to a potentially large family of different kernels.

Preliminary results with some benchmark datasets have been presented earlier (Fung et al.
2004). In this study additional experimental results on a hyperspectral dataset are presented to
further validate the effectiveness of the proposed algorithm in learning the optimal combination
of kernel functions. The results demonstrate that the prediction accuracy of the proposed
algorithm is not significantly different from that achieved by the standard KFD in which the
kernel parameters have been tuned using cross-validation, yet the training with the proposed
algorithm is multiple folds faster than that of standard KFD.

This chapter is organized as follows. In the next section we will briefly review the Linear
Fisher’s Discriminant (LFD). Then we will present a mathematical formulation of the Fisher’s
Discriminant algorithm that will form the basis for the Kernel Fisher’s Discriminant (KFD).
Next, we will discuss the implementation of KFD with heterogeneous kernel models and
present an iterative algorithm for automatically selecting the kernels. Finally we will present
results to validate the applicability of the proposed approach on a real-world problem with a
hyperspectral dataset.

5.2 Linear Fisher’s Discriminant

It is well known that in supervised classification problems the probability of error due to a
Bayes classifier is the best that can be achieved. The Bayes classifier compares the a-posteriori
probabilities of all classes, and assigns the sample to the class with the highest probability.
However for most classes of distributions, designing an optimum Bayes classifier is very
difficult if not impractical. The primary problem stems from the finite size of the training
set, leading to an imperfect estimate of the class probability density functions. The most
common way to mitigate this problem is to assume normal distributions for all classes. Under
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this hypothesis standard classifiers using quadratic and linear discriminant functions can be
designed.

The well-known Linear Fisher’s Discriminant (LFD) (Fukunaga 1990) arises in the special
case when the considered information classes have a common covariance matrix. LFD is a
classification method that projects the high dimensional data onto a line and performs classifi-
cation in this one-dimensional space. This projection is chosen such that the ratio of the scatter
matrices (between and within classes) or the so-called Rayleigh quotient is maximized. Even
though LFD is mainly designed for binary classification problems its extension to multiclass
classification problems is also possible. For multiclass problems the ratio of between and
within class scatter matrices can be maximized by solving a generalized eigenvalue problem.
This leads to a projection matrix with K — 1 eigenvectors where K is the number of classes
in the dataset (Fukunaga 1990).

In the rest of this chapter we will limit our discussion to binary classification problems.
More specifically, we are given a training dataset {(x;, y;)}/_,, where X; € R¢ are input vari-
ables and y; € {—1, 1} are class labels. Let X € R?*" be a matrix containing all the training
samples and let X € X € R?*"* be a matrix containing the n;, training samples for class wy,
k € {£}. Then, the LFD is the projection w, which maximizes

T
w' Sgw
JW)= ————, 5.1
== (5.1)
where
Sp=(uy — p) (g —p)’ (5.2)
and
1 T T\ "
Sw = Z — (Xk - Mkenk) (Xk - Mkenk) (5.3)
ke{£)
are the between and within class scatter matrices respectively and
1
ik = — Xien, (5.4

nk

is the mean of class wy and e,, is an n; dimensional vector of ones.

The above problem can be reformulated as follows. First notice that if w is a solution to
(5.1), then so is any scalar multiple of it. Therefore, to avoid multiplicity of solutions, we
impose an arbitrary constraint on w' Spw = 4, which is equivalent to w' Uy — ) =2.
Then the optimization problem of (5.1) becomes

min,,gd wl Sww 5.5)
st ow! (g —p_)=2.

A closed-form solution w* for (5.5) can be obtained by optimizing the Lagrange function
associated with the above problem. This gives w* = )»Sl;,l (4 — n—), where A is the Lagrange
multiplier obtained as A = 1/(s4 — pu_)" S‘;,l (w4 — p—). For d > n, i.e. the number of
dimensionality is greater than the number of samples, Sw can be singular and thus the inverse
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does not exist. To avoid such ill-conditioned settings it is a common practice to replace Sy
by Sw, = Sw + vi. Here v acts as a regularizer over the classifier.

When classes are normally distributed with equal covariance, w* is in the same direction
as the discriminant in the corresponding Bayes classifier. Hence, for this special case LFD
is equivalent to the Bayes optimal classifier. Although LFD relies heavily on assumptions
that are not true in most real world problems, it has proved to be very powerful. In particular
when the distributions are unimodal and separated by the scatter of means, LFD becomes very
effective. One reason why LFD may be preferred over more complex classifiers is that as a
linear classifier it is less prone to overfitting.

For most real world data, a linear discriminant is clearly not complex enough. Classical
techniques tackle these problems by using more sophisticated distributions in modelling the
optimal Bayes classifier; however, these often sacrifice the closed form solution and are com-
putationally more expensive. A relatively new approach in this domain is the kernel version of
Fisher’s Discriminant (Mika et al. 1999), which is known in the literature as Kernel Fisher’s
Discriminant (KFD). The main characteristic of this approach is the kernel concept, which was
originally applied in Support Vector Machines and allows the efficient computation of Fisher’s
Discriminant in the kernel space. The linear discriminant in the kernel space corresponds to
a powerful nonlinear decision function in the input space. Furthermore, different kernels can
be used to accommodate the wide-range of nonlinearities that may occur in the data set. In
the next section we derive the kernel version of the Fisher’s Discriminant.

5.3 Kernel Fisher Discriminant

5.3.1 Mathematical programming formulation

The formulation in (5.5) is a parametric formulation of Fisher’s Discriminant. The dis-
criminative approach to the same problem can be obtained as follows. First, we define
= wl(x; — Ui), Vi € wg, k € {£} and impose WTpL+ = l,wTu_ = —1.Let Ek be a vector
containing all the &; for class wy and y be the vector of class labels. Then the problem in (5.5)
becomes

. > 1 gkTgk 4 1,T
(Wy%él)Iglg”*dH 2 Zke{i} nkvé: &+ Fww
S.t. &= XTw— y (5.6)
ey £ =0k e {£}.
The Lagrangian of (5.6) is given by
1
Lov. 600 = SETDE+w ) + 1[G =X wan+2]BTe 5

where D is an n x n diagonal matrix with the first n, entries equal to 1/(n4v) and the
remaining n_ ones equal to 1/(n_v), B is an n x 2 indicator matrix with the first n entries
in the first column and the last n_ entries in the second column set to one with all others being
zero. Here A1 € R” and A, € R? are the Lagrange multipliers corresponding to & = X 'w — y
and eIkEk = 0, respectively. Solving for the gradient of (5.7) equal to zero, we obtain the
Karush—Kuhn-Tucker (KKT) necessary and sufficient optimality conditions (Mangasarian
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1994) for the FLLD problem with equality constraints given by

w— XA =0
DE+ A+ Bry =0
BTe o 5.8)

XTw—y—& =0.

The first two Equations of (5.8) give the following expressions for the original problem vari-
ables (w, &) in terms of the Lagrange multipliers A| and Aj:

w= XA, £=—D"'(A + Bi). (5.9)

Substituting these in the last two equalities of (5.8) gives us an explicit expression for A; and
X2 in terms of X and y as follows:
Al
Ao -
*

A
Solving the linear system of Equations (5.10) gives us the solution N i , which in turn yields
2
w* = XA7 from (5.9). Here * denotes optimal solutions. In the rest of this chapter we drop
the subscript from A for notational simplicity.
The ‘kernelized’ version of the Fisher’s Discriminant can be obtained in this framework
by replacing the primal variable w by its dual equivalent w = XX in (5.6) to obtain:

X"x+ D! DB
B"D"! BTp-1RBT

y

BTy_BTXTX|" (5.10)

. 1 U gkTek | 15T
o 02 Dkett) mad & F oA
s.t. E=XTXr—y (.11)

er E5 =0k e{£},

where the objective function has also been modified to minimize weighted 2-norm sums of
the dual variables. If we now replace the X ' X by a nonlinear kernel K(X ', X), we obtain
a formulation that is equivalent to the Kernel Fisher Discriminant described in (Mika et al.
2000):

. 1 1 skTek | 15T
im0 2 Dketz) mad & F oA

st E=KXT,X)h—y (.12)
ey £ =0k € {£}.

Recent SVM formulations with least squares loss (Suykens and Vandewalle 1999) are much
the same in spirit as the problem in (5.6). Using a similar duality analysis to the one presented
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here, and then ‘kernelizing’, the authors obtain the objective function
1 1
v lEI7 4+ S AT KX, X)h. (5.13)

The regularization term AT K(X T, X)A determines that the model complexity is regularized
in a reproducing kernel Hilbert space (RKHS) associated with the specific kernel K where
the kernel function K has to satisfy Mercer’s conditions and K(X T X ) has to be positive
semi-definite.

By comparing the objective function (5.13) with problem (5.12), we can see that problem
(5.12) does not regularize in terms of RKHS. Instead, the columns in a kernel matrix are
simply regarded as new features K(X ", X) of the classification task in addition to the original
features X. We can then construct classifiers based on the features introduced by a kernel in
the same way we build classifiers using original features X.

5.4 Kernel Fisher’s Discriminant with heterogeneous
kernels

The kernelized version of the Fisher’s Discriminant (KFD) gives us the flexibility required
to model complex data structures that originate from a wide range of class conditional
distributions. Like its linear space counterpart, the statistics estimation is performed at full
dimensionality (no feature extraction is needed) allowing us to exploit all the separability
that the data provides without having to deal with severe numerical issues.

Like most other kernel-based approaches KFD also suffers from the computational com-
plexity of working with kernel functions to a greater extent. The computational complexity
of the algorithm is on the order of O(n3), making its use impractical for large datasets. A
common way around this problem is to expand the kernel matrix in terms of a random subset
of the training samples. However, the problem of selecting the best kernel function type and
parameters still remains. Usually, cross-validation is used to optimize the algorithm over a
large number of kernel parameters and the parameter set that maximizes the cross-validation
performance is chosen as the optimum set.

Cross-validation is a method for estimating predictive error of the classifier with the training
data. It splits the training dataset into k equal-sized pieces called folds. At each stage one fold
is left out as testing data and the classifier is trained with the remaining k — 1 folds. This
process is repeated until all k folds are tested and the aggregate test error is recorded as the
k-fold cross-validation performance.

In this section we propose a methodology for selecting the optimum kernel function as a
weighted summation of several other kernel functions where the weights of the kernel functions
are learned automatically through an alternating optimization technique. To be more specific,
let us suppose that instead of the kernel K being defined by a single kernel mapping (i.e.,
Gaussian, polynomial, etc.), the kernel K is composed of a linear combination of kernel
functions K;, j =1, ..., k, as below

k
KXT.X)=> a;K;j(X", X), (5.14)
j=1

where a; > 0.
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As pointed out in Lanckriet ef al. (2003), the set {K{(A, A"), ..., Ke(XT, X)} can be seen
as a predefined set of initial ‘guesses’ of the kernel matrix and it could contain very dif-
ferent kernel matrix models, (e.g., linear, Gaussian, polynomial) with different parameter
values. In this formulation parameters specific to each kernel are fixed a priori. Instead of
fine tuning the kernel parameters for a predetermined kernel via cross-validation, we can op-
timize the set of values a; > 0 in order to obtain a positive semi-definite linear combination
KXT,X)= Z];':] a;K;(XT, X) suitable for the specific classification problem. Substitut-
ing Equation (5.14) into Equation (5.11), we obtain the KFD formulation with heterogeneous
linear combinations of kernels as follows

. 1 L ogkTek o 14T
a2 Skets) s & T2
k
S.t. &= Zj:l ajKjr—y (5.15)
ey £ =0,k € {£)
a;>0,je(l,... .k},

where K; = K (X T, X). When considering linear combinations of kernels, the hypothesis
space may become larger, making the issue of capacity control an important one. It is known
that if two classifiers have similar training error, a smaller capacity may lead to better general-
ization on future unseen data (Cherkassky and Mulier 1998; Vapnik 2000). In order to reduce
the size of the hypothesis and model space and to gain strong convexity in all variables, an
additional regularization term %a/ a is added to the objective function of problem (5.15). The
problem then becomes

. 1 gk Tgk 4 14T 1T
etin T Dket) wyé & A A+ ala

k
- §=2jc1ajKjh—y (5.16)
en £=0,k e (£}
aj>0,je{l,... kb

A new sample x is then classified by the following classifier:

k
LY (@K j(x, X)) =

=1

(5.17)

> b, x € wg,
<b,xcew_,

where b is a predefined threshold that adjusts the trade-off between incorrectly classifying a
positive sample as negative, i.e. false negative, and incorrectly classifying a negative sample
as positive, i.e., false positive.

Even though the objective function in (5.16) is strictly convex in terms of the problem
variables &, A and a, the problem itself is not convex due to the nonconvex equality constraint
&= ZI;':1 a;K ) — y. However, the problem in (5.16) can be treated as a biconvex program-
ming problem first by fixing a = a* and solving (5.16) for & and A* and then fixing > = A*
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and solving for & and a*. More specifically when we fix a = a* we obtain the following
subproblem
. 1 1 ogkTgk 4 14T
(A,E)Hglgwd 2 Lkelt) mpd & A
s.t. £ = Zl;zlaj'Kj)“_y (5.18)
ey £ =0,k € {£}

and similarly when we fix A = A* we obtain the subproblem

o1 Aok Tgk o 1T
(Ear)I;IJR?ﬁJfk 2 D ket) ot & Taaa

k
s.t. &= Zj:l a;jKi *—y (5.19)
ey 65 =0k e (£}
aj >0,je{l,... .k}

Note that both problems in (5.18) and (5.19) are strongly convex with a unique optimizer,
which implies that the original objective function is guaranteed to improve at each iteration.
We are now ready to describe our proposed algorithm.

5.5 Automatic kernel selection KFD algorithm

Algorithm 5.5.1 Automatic kernel selection KFD Algorithm (AKFD)

Given n data points in R? represented by the d x n matrix X and vector y of 1 labels
denoting the class of each data point (i.e., each column of X), the parameter v and an initial
a® € R¥, we generate the nonlinear classifier (5.17) as follows:

(0) Calculate K1, ..., Ky , the k kernels on the kernel family, where for each j, K; =
Ki(XT, X).
For each iteration i do:

(i) Given a=V calculate the linear combination K = 21;21 ag-i_l)Kj.

(ii) Solve subproblem (5.18) to obtain 1.
(iii) Calculate K0 \) for j=1,... k.
(iv) Solve subproblem (5.19) to obtain d'.

Stop when a predefined maximum number of iterations is reached or when the change in value
of the objective function (5.16) evaluated in successive iterations is less than e.

The most common cases arise when k < n (i.e., the number of kernel functions considered
on the kernel family is much smaller than the number of data points). In such situations, the
complexity of the AKFD algorithm 5.5.1 is approximately O(n*).

Since each of the two optimization problems ((5.18) and (5.19)) that are required to be
solved by the AKFD algorithm are strongly convex and thus each of them have a unique
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saddle point

Figure 5.1 A saddle point for the function z = x* — y*. It behaves like a local minimizer
when projected along the x-axis.

minimizer, the AKFD algorithm can also be interpreted as an Alternate Optimization (AO)
problem (Bezdek and Hathaway 2003). Alternate Optimization divides the entire variable
space into a predefined number of subspaces and optimizes one group of variables at a time
while the remaining variables are fixed. Classical instances of AO problems include fuzzy
regression c-models and fuzzy c-means clustering.

The AKFD algorithm then, inherits the convergence properties and characteristics of AO
problems. As stated in Bezdek and Hathaway (2002), the set of points for which Algorithm
5.5.1 can converge may include certain types of saddle points (i.e. points behaving like local
minimizers only when projected along a subset of the variables, see Figure 5.1). However,
it is also stated that it is extremely difficult to find examples where convergence occurs to a
saddle point rather than to a local minimizer. If the initial estimate is chosen sufficiently near a
solution, AO is shown to converge linearly to a local minimizer (Bezdek and Hathaway 2002).
In practice, we found that Algorithm 5.5.1 typically converges in 3 or 4 iterations to a local
solution of problem (5.16).

5.6 Numerical results

5.6.1 Dataset used: Purdue Campus data

This data set is a flightline over the Purdue University West Lafayette Campus. The hyper-
spectral data used was collected on September 30, 1999 with the airborne HYMAP system
(Kruse et al. 2000), providing image data in 126 spectral bands in the visible and IR regions
(0.4-2.41). The system was flown at an altitude such that the pixel size is about 5 metres.
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Table 5.1 Number of labelled samples available for
each class identified in the Purdue Campus Dataset

Classes Number of samples
Roof tops 10182
Streets 4571
Grass 1539
Trees 1743
Paths 907
Shadow 434
Cars 934
Fields 608
Total 20918

The data set contains 358 scan lines with 390 pixels in each scan line. The list of classes and
number of labelled samples for each class is given in Table 5.1. The image of the scene and
the corresponding ground-truth regions of interest are shown in Figure 5.2.

5.6.2 Classifier design

We designed three different versions of Fisher’s discriminant. As a baseline classifier Linear
Fisher’s Discriminant (LFD) is considered. To find out if the kernel version of the Fisher’s
Discriminant improves our baseline, we implemented the Kernel Fisher’s Discriminant (KFD).
Finally we design the automatic kernel selection algorithm for the Fisher’s discriminant
(AKFD) to see how much we save from the training time and if this is achieved while
maintaining the similar performance levels achieved by KFD.

The classifier parameters namely the regularization parameter, v, and the type of the ker-
nel function and the corresponding parameter are optimized using a 10-fold cross-validation

Trees

Paths
Fields
Shadow
Roads
Grass

Roof Tops

Figure 5.2 Gray-level image and Ground Truth Fields for the Purdue Campus Dataset.
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Table 5.2 Percentage overall classification accuracies averaged over ten runs. Numbers in
parenthesis are standard deviations

Classifiers n =209 n=418 n =627 n = 836

LFD 81.0 84.1 84.2 84.6
(5.2) (1.0) 0.4) (0.8)

KFD 82.5 86.5 89.3 89.9
(3.2) 2.9 (1.9 (1.5)

AKFD 80.6 85.8 87.9 90.1
2.9) (1.6) (1.4) 0.9)

approach. For the regularization parameter a discrete set of 10 values are considered,
ie.v=1[10719108,10"5,1075,107%,1073,5 x 1072, 1072, 5 x 1071, 1071, 1]. For the
kernel function we considered linear and radial basis function (RBF Gaussian Functions)
kernels. For the width of the RBF we considered o = [10_2, 1071, 1, 10]. The data is normal-
ized such that each feature is between —1 and 1. One-against-all multi-class strategy is used
throughout the experiments (Hsu and Lin 2002).

To be more specific for the KFD algorithm a single RBF Gaussian kernel is used. The width
o of this kernel is chosen from one of the four different values considered via cross-validation.
However, for the AKFD algorithm a linear combination of five kernel functions (i.e., a linear
and 4 RBF Gaussian functions one for each of the o considered) is used.

The AKFD algorithm is initialized with a set to all ones (i.e., initially all kernels are
assumed to contribute equally). The algorithm is terminated when the improvement in the
objective function at any iteration over the previous iteration is less than 0.1% or a maximum
number of 20 iterations is reached. We ran our experiments for four different sizes of training
sets, i.e. ¥ = 0.01 (n = 209), r = 0.02 (n = 418), r = 0.03 (n = 627), r = 0.04 (n = 836),
where r denotes the ratio of the training to labelled samples. Training samples are selected
randomly and each experiment is repeated ten times. The size of the expansion set S for the
kernel matrices is limited to 250 randomly selected samples, i.e. kernel matrices are computed
using K(X T, §) instead of K(X ", X) where S C X and size of § is 250. The labelled samples
that are not used for training are used for testing.

5.6.3 Analysis of the results

Table 5.2 and Table 5.3 show the percentage average classification accuracies averaged over
ten runs achieved and the total time taken by each algorithm respectively. The following

Table 5.3 Total computational time (in seconds) for ten iterations of each algorithm

Classifiers r=0.01 r=0.02 r=0.03 r=0.04
LFD 99 114 147 176
KFD 3967 26276 35667 74773

AKFD 2125 5902 11834 26133
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Figure 5.3  Classification maps obtained for LFD, KFD and AKFDR for r = 0.04, with test
accuracies of 86.5%, 90.5% and 90.6%, respectively. (See plate 1)

conclusions can be drawn from these results. When the training size is small the linear version
performs as well as the kernel version. As the training size increases, the linear version is no
longer competent yet the prediction accuracy for the kernel version increases with increasing
r. The proposed AKFD algorithm generates results comparable to the KFD algorithm yet it is
multiple folds faster than the KFD algorithm. For r = 0.04 (roughly 800 samples) the entire
training plus testing took roughly 21 hours of running time. The same task is completed in
7 hours by the AKFD algorithm. The computer used for these experiments was equipped with
intel core 2 duo CPU with a 1.8 GHz clock speed.

The classification maps obtained for » = 0.04 (for one of the iterations) are dis-
played in Figure 5.3 for LFD, KFD and AKFD. As the classification maps corresponding
to KFD and AKFD suggest, the difference between the predictive accuracies of KFD and
AKFD is quite negligible, (i.e., test accuracy for AKFD is 90.6% and for KFD is 90.5%). The
areas of the image where LFD performs poorly are annotated by the gray rectangles.

The optimized values of the kernel weights, a, obtained by the AKFD algorithm and the
value of the kernel parameter, o, selected by cross-validation for KFD are shown in Table 5.4
for each one-against-all classification task. The results suggest that AKFD favours a linear
combination with mostly non-zero weights for the individual kernel functions as opposed to
KFD, which uses only one kernel function selected from several others available. Despite
seemingly different kernel models being used by the two algorithms, we observe almost
identical predictive accuracies for the two classifiers.

Table 5.4 The optimized values of the kernel weights, a obtained by the AKFD algorithm.
The last column shows the value of the o selected by cross-validation for the KFD algorithm

Model, o Linear RBF, 0.01 RBF, 0.1 RBF, 1 RBF, 10

Roof tops 1.3 0.3 0.2 0.3 0.3 o =0.01
Roads 0 0.8 0 1.1 1.2 o=0.1
Grass 0 0.7 0 0.5 0.9 o =0.01
Trees 0 0.3 0 0.1 0.5 o =0.01
Paths 0 1.1 0 0.8 1.0 o =0.01
Shadow 09 1.0 1.2 0.9 1.0 o=0.1
Cars 1.2 1.1 0 0.6 0.9 o=0.1

Fields 1.3 0.5 0.4 0.9 1.1 o=0.1
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5.7 Conclusion

In this chapter we first reviewed the basics of Fisher’s Discriminant, then presented a mathemat-
ical programming approach for kernelizing the algorithm so as to obtain nonlinear classifiers
and finally proposed an alternating optimization algorithm for automatically learning the ker-
nel function. Unlike LFD, KFD has the potential to deal with data of complex structures such
as multimodal data. However, this comes at the cost of increased computational time. The
computational time for training increases, at the order of O(n?) for KFD. Moreover, to opti-
mize the algorithm for different kernel functions and parameters, a cross-validation scheme is
required. More specifically, if one is considering p different parameters for the kernel function
and using a k-fold cross-validation approach, the algorithm needs to run p x k times to find
the optimum kernel parameter. The proposed AKFD algorithm on the other hand eliminates
the need for the cross-validation by automatically learning the weights of the different ker-
nel functions considered. Let the number of iterations before convergence be N; then, for
N < p x k the computational gain could be significant.

In our experimental setting the AKFD algorithm usually converged in less than five it-
erations. We considered five different values for the kernel width and adopted a ten-fold
cross-validation framework. So instead of running the KFD algorithm 5 x 10 = 50 times to
select the optimum kernel parameter, we just run the AKFD algorithm once. Each iteration
of the AKFD algorithm takes roughly the same amount of time as KFD. Thus in the AKFD
algorithm the optimum kernel is selected in around five iterations whereas in KFD this task
takes fifty iterations. As for the online testing, the AKFD algorithm is slower because all of the
kernel matrices needs to be computed during testing, which takes more time than computing
just one kernel matrix as in KFD. As the numbers in Table 5.3 suggest, even when the testing
times are included, the overall computational times clearly favours AKFD over KFD.

As the experimental results suggest, the predictive accuracy of the proposed algorithm is
not significantly different from that obtained by the KFD algorithm. That is, the computational
gain is achieved while maintaining similar predictive performance.

The results in Table 5.4 indicate that the kernel functions obtained by KFD and AKFD
could be significantly different, yet both algorithms yield similar predictive performance. We
believe further research is required to investigate how the kernel selected by the KFD algorithm
correlates with that obtained by AKFD. Another area that needs attention is the initialization
of the weights, a in Section 5.5. In this study we assumed that all kernel models are a priori
likely and thus assigned equal weights for each of them. However it is worthwhile to analyse
the impact of initialization on the final weights optimized and how this in turn affects the
predictive performance of the algorithm.
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In generic problems of multi-temporal classification of remote sensing images, different
sources of information such as temporal, contextual or multi-sensor, are commonly avail-
able. The combination of these heterogenous sources of information is still an active research
area. In this chapter, we present a classification framework based on kernel methods for multi-
temporal classification of remote sensing images. The proposed kernel classifiers not only
process multi-temporal images simultaneously, and with different levels of sophistication, but
also allow one to properly combine different data sources, such as contextual information
and multi-sensor images. In this chapter, we also present two nonlinear kernel classifiers for
well-known change detection methods formulating them in an adequate high dimensional
kernel-induced feature space. The developed kernels are used in two core classification
machines: the binary Support Vector Machine classifier (SVM), and the one-class Support
Vector Domain Description (SVDD) classifier.
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6.1 Introduction

The problems of classifying and detecting changes in images from the same scene taken at
different instants of time are highly relevant in many application domains, including video
surveillance (Collins et al. 2000), medical diagnosis and treatment (Bosc ez al. 2003; Lemieux
etal. 1998), driver assistance (Fang et al. 2003), and remote sensing (Bruzzone and Cossu 2002;
Bruzzone and Serpico 1997; Collins and Woodcock 1996), among others (Radke ez al. 2005). In
Earth observation, the formal definition of change detection involves the use of multi-temporal
data to discriminate areas of the land cover that changed between dates (Lillesand et al. 2004).
Therefore, multi-temporal classification can be seen as a more general task, and it includes
the change detection problem as a particular case. Multi-temporal classification and change
detection techniques have become more useful in the last decade with the increasing multi-
temporal and multi-source data available from remote sensing platforms. Excellent surveys
of the remote sensing change detection literature can be found in Coppin and Bauer (1996)
and Singh (2003), and the MultiTemp workshop (http://www.ing.unitn.it/~multi/) gathers the
related researchers and disciplines periodically. As shown in these works, efficient exploitation
and fusion of this unprecedented wealth of data is a critical issue and, consequently, many
automatic methods have been proposed in the literature for this purpose. The procedure of
identifying changed pixels in an image is of special relevance in updating digital remote-
sensing databases, follow multi-seasonal crop covers phenology, or for the automatic detection
of growing urbanization (Coppin and Bauer 1996; Singh 2003).

Two main approaches to the change detection problem are made in the literature: (1)
post-classification comparison, and (2) multi-temporal classification, also known as pre-
classification enhancement (Lillesand et al. 2004; Singh 2003). In post-classification appli-
cations, images from different dates are independently classified and co-registered, and an
algorithm is used to identify those pixels whose labels change between dates. In multi-temporal
classification applications, a single classification is performed on the combined image dataset
for the two dates. As pointed out in Lillesand et al. (2004), the post-classification approach
can fail as it relies on the accuracy of each classifier, while the multi-temporal approach could
produce poor results if the classifier is sensitive to high input dimensionality, low number of
labelled training samples, or colinearity. Therefore, in any of these approaches, we need the
classifiers not only to be accurate, but also to be robust to high dimension input spaces and low
number of labelled samples. Also, these algorithms should be able to combine the temporal
information efficiently.

6.1.1 Multi-temporal classification methods

Given two (or more) images at times ¢; and #, (1] < 1), the problem of multi-temporal clas-
sification consists in classifying pixels at time #, by learning the changing mapping between
t1 and f,. If the images are labelled, meaning that we know the class of some of the pixels
in the images (usually by a previous manual classification), supervised or semi-supervised
methods can be used to build an automatic classifier, which will not only classify the image
with an improved performance compared with unsupervised methods, but it will also give a
deeper insight into the problem by further inspection of the classifier decision function. Other
advantages over the unsupervised approach are the capability to explicitly detect land cover
transitions, robustness to different atmospheric and light conditions at the two acquisition
times, and their demonstrated ability to process multi-sensor/multi-source images (Bruzzone
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and Serpico 1997). To this end, many supervised methods have been developed during the
last years, such as evidence reasoning (Wang 1993), generalized least squares (Morisette and
Khorram 1997), neural networks (Civco 1993; Gopal and Woodcock 1996; Kushardono et al.
1995) and SVMs (Li and Narayanan 2003; Liu et al. 2005). In spite of being an excellent
classification framework, many of the presented supervised methods suffer from high false
alarm detection rates when the contextual information of the change is not considered. This is
an important issue in multi-temporal image classification and change detection, as in practice
the user is ultimately interested in detecting very precisely both the position and the spatial
extent of the class of interest (change). Moreover, classifiers are often sensitive to the high
dimensionality of the input space generated by putting together multi-sensor features at differ-
ent time instants, increasing the well-known curse of dimensionality (Hughes 1968). Finally,
most methods do not consider the (potentially nonlinear) cross-information between pixels at
different time instants. Several strategies have been presented to tackle these problems. Multi-
temporal and multi-band synthetic aperture radar (SAR) classification of urban areas using
spatial analysis has been addressed with both statistical and neural approaches (Pellizzeri et al.
2003). A dynamic approach to link Gaussian Markov Random Fields (GMRF) at different
dates was used in Melgani and Serpico (2003). In Melgani (2004), the scene classification is
attained using a fuzzy fusion of the spatial, spectral, and temporal information, whereas tempo-
ral information is handled using transition probabilities. In Gamba et al. (2006), feature-based
and pixel-based information from multiple SAR images was successfully used. Finally, it is
worth noting that in most cases the examples are limited to change detection between only
two dates, and thus the performance of the algorithms in long-term operational studies is un-
clear. In Boucher et al. (2006), a methodology that encompasses the use of both temporal and
contextual information is presented for the classification of long time series of satellite data.
The method is based on krigging-integrated variograms and Gaussian Maximum Likelihood
(GML) classification, and shows very good results. It should be remarked that working with
a low number of possibly high dimensional training pixels is a very challenging problem for
classical methods such as GML or neural networks, something that can be alleviated using
kernel methods.

6.1.2 Change detection methods

Changes in images have been analysed using unsupervised techniques such as multi-date
principal component analysis, temporal image substraction or ratioing, change vector analy-
sis, clustering and cross-correlation analysis (Lillesand et al. 2004). These techniques aim to
visualize, analyse or compute the differences between sample distribution for the two dates
in a low-dimensional subspace (such as two principal components or several bands). The na-
ture of changes detected in a representative-enough space can be analysed by inspecting the
spectral signatures involved in it. These techniques are unsupervised as they do not require a
labelled image at time #; from which to learn, and then extrapolate to the subsequent image at
time #,, as supervised or semi-supervised methods do. Early approaches, considering simple
threshold-based image differencing or ratioing operators were soon proved to be inefficient,
whereas researchers have paid more attention to suitable thresholds using Bayesian crite-
ria (Bruzzone and Cossu 2002; Bruzzone and Serpico 1997). Other representative examples
are the Kittler-Illingworth thresholding algorithm for unsupervised SAR change detection
(Moser and Serpico 2006), the fuzzy hidden Markov chains model (combined with the ratio
approach) (Carincotte et al. 2006), the full methodology for change detection based on the
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analysis of the difference vectors in the polar domain (Bovolo and Bruzzone 2006), and the
study of local statistics evolution with Kullback—Leibler (KL) divergence (Inglada and Mercier
2007). Nonlinear kernel-based methods have been recently pointed out as being suitable for
change detection, since they allow large-margin classifications, and they intrinsically match
the well-known nonlinear nature of the change (Carlotto 1997). A semi-supervised oil-slick
detection is proposed in Mercier and Girard-Ardhuin (2006), using a SVDD in the wavelet
decomposition of SAR images, and a SVM for abrupt change detection was presented in
Potin et al. (2006) for detecting buried landmines from ground-penetrating radar data.
Nevertheless, none of these preceding proposals has been specially designed either to consider
cross-relations between time instants, or to include contextual and multi-source data in the
classifier.

Summarizing, in multi-temporal image classification, one tries to classify pixels of an
image at the observation time by using all available (instantaneous and/or previous) informa-
tion whereas the aim in change detection is to identify only those pixels that have changed,
according to a pre-specified criterion. They are very similar problems, but the second one will
usually require less effort and information (Radke ez al. 2005). As we have seen, unsupervised
or partially supervised approaches can be used for both approaches (Bruzzone and Cossu
2002; Bruzzone and Fernandez-Prieto 2002; Bruzzone and Serpico 1997). In this chapter,
however, we focus on supervised approaches in the sense that at least a few labelled pixels
from the observation time are available.

6.1.3 The proposed kernel-based framework

Taking into account all these needs of real remote sensing applications, we present a family
of powerful nonlinear classification methods for multi-temporal, contextual, and multi-source
classification and change detection. These methods are developed under the kernel methods
framework (Scholkopf and Smola 2002; Shawe-Taylor and Cristianini 2004). The conven-
tional kernel methodology has demonstrated good results in remote sensing image classifi-
cation due to their ability to work with few labelled training samples and (potentially) high
dimensional spaces (Camps-Valls et al. 2004; Camps-Valls and Bruzzone 2005). Certainly,
these are important characteriztics of kernel methods due to the intrinsically high dimension
of hyperspectral pixels, which can be increased when multi-temporal features are stacked.
The good classification performance shown by kernel methods using the spectral signature as
input features has been recently improved by including contextual (or textural) information
in the classifier by means of composite kernels (Camps-Valls et al. 2006b). In this chapter,
we explicitly formulate a full family of kernel-based classifiers that can simultaneously take
into account spectral, spatial, and local cross-information in remote sensing data for multi-
temporal classification. We also give specific formulations for the peculiarities of the change
detection problem, and then we propose two novel kernel developments on the basis of both
the difference and the ratioing of images in the kernel space, thus constituting nonlinear dif-
ference and ratio change detection new methods. This methodology also allows efficiently
integrating different information sources, such as optical and SAR data. Several scenarios are
considered where labelled information at the prediction time may or may not be available.
The developed methods are then tested using different kernel-based classification methods:
(1) binary Support Vector Machine classifiers (SVM) (Scholkopf and Smola 2002), and (2)
one-class Support Vector Domain Description (SVDD) classifiers (Tax and Duin 1999), in
which only samples of a class of interest are used for training.
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The next sections are organized as follows. In Section 6.2 we develop a full family of
kernel classifiers for multi-temporal classification and change detection that considers the
temporal relations between pixels. Section 6.3 further develops the methodology to integrate
the contextual, textural and multi-source information in the kernel matrix. Section 6.4 shows
experimental results. Finally, Section 6.5 draws some concluding remarks and provides some
guidelines for future applications.

6.2 Multi-temporal classification and change detection
with kernels

This section first introduces a set of formulations for the problem of multi-temporal classi-
fication. The methodology exploits some principles of functional analysis and linear algebra
to construct a family of kernels of growing sophistication, in which static or dynamic multi-
temporal classification is performed. Then, we formulate kernel versions of the well-known
difference and ratio methods for change detection.

All the presented formulations are valid for any kernel method, including both for binary
SVM and the one-class SVDD. The former builds the kernel among samples belonging to all
labelled classes €2, whereas the later only considers samples belonging to the class of interest.
A multi-class strategy can be subsequently used, such as one-against-one, one-against-all, or
error correcting codes. Finally, note that not only is the quadratic programming problem the
same size as in the conventional algorithm for all the proposed composite kernels, but also the
collinearity between features, and the dimensionality increase of the training samples due to
stacking features, are alleviated by constructing dedicated kernels to process each information
source.

6.2.1 Problem statement and notation

In multi-temporal classification, one tries to classify pixels of an image at the observation
time t7 by using all available (instantaneous and/or previous) information, ¢ < fr, whereas
the aim in change detection is to identify only those pixels that have changed, according to a
pre-specified criterion. We follow a cascade strategy for classification, which means that only
the previously acquired information is used to classify a given image. Another possibility is
to use the information from all acquired images, as presented in Bruzzone and Cossu (2002)
and Bruzzone and Serpico (1997).

We present a family of kernels to address the more general problem of supervised multi-
temporal classification by using kernels, but we will also show that the problem of change
detection is a special case of multi-temporal classification under the composite kernels frame-
work. Two situations can take place in the supervised learning framework, according to the
availability of previous information (see Figure 6.1):

1. Labelled information is available only for t < t7, which is the most usual scenario.
This situation discourages the use of pure supervised classifiers (as SVM) trained on
the available samples, ¢t < t7, in order to classify samples at # = t7, as far as poor results
are usually obtained. These classifiers are trained and tested with data from different
distributions, due to differences in the atmospheric and light conditions at the image
acquisition dates, sensor drifts, and others.
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Figure 6.1 Scheme for multi-temporal classification and change detection. The first problem
consists of classifying a given pixel j at time tr, x;-T using information from t < tr, whereas
the second one aims to detect those pixels whose class label has changed.

2. Labelled information is available for t < t. This represents a softer problem, which
enables the use of supervised classifiers, such as binary and one-class schemes.

In both scenarios, we will compare the performance of SVM and SVDD classifiers according
to the availability of full information on the class labels or only of the class(es) of interest,
respectively.

Notationally, let {x!} € RY be a multi-temporal set of labelled training samples
(pixels) at time 7, and {y!} € N be their corresponding output labels, where i = 1,...,n,
andt=1,...,tr —lort=1,...,tr,depending on the available data. In the following, we
will assume that images at subsequent dates are co-registered. This implies (from a machine
learning point of view) that pixels {x}} are different (temporal) samples of the same object or
pixel entity x;. Also, we will assume that the spatial distribution of such classes changes, but
their number does not, and hence, Q = {wy, ..., wpy,} is the set of N¢ classes that character-
ize the geographical area at any time. This can be assumed in standard situations because the
number of classes of interest is usually prespecified by the user.

6.2.2 Mercer’s kernels properties

Before starting, let us review some Mercer’s kernel properties that are relevant for this work.
More details are provided in Chapter 2. Let K and K, be Mercer’s kernels over X x X with
x,z € X C RV Letusdefine A asa symmetric positive semi-definite n x n matrix,and p > 0.
Then, the following are valid Mercer’s kernels:

K(x,z) = Ki(x,z) + Ka2(x, z) (6.1)
K(x,z) = K1(x,2) - K2(X,2) (6.2)
K(x,z) = nKi(x,z) (6.3)
K(x,z) = x| Az. (6.4)

These properties allow one to easily combine positive definite kernel matrices.
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6.2.3 Composite kernels for multi-temporal classification
The stacked input vectors kernel

The most used approach to exploit the multi-temporal information is to stack vectors at different
time instants in order to predict the label of sample at ¢7, such that the new input vector has
N - T elements, x; = {x} , xiz, el xfT }, and then build a generic mapping ¢(-) with these new

samples, which induces a kernel matrix whose terms are defined as:
K(x;, x;) = (9p(x), 9(x)). (6.5)

This straightforward approach to data merging can yield a good performance compared with
previously proposed methods. However, it does not consider explicit cross-relations between
samples at different time instants.

The direct summation kernel

A simple composite kernel combining the static available information can be obtained by
concatenating nonlinear transformations for each x;. Let us assume a nonlinear transforma-
tion ¢(-) into corresponding Hilbert spaces H, and A, linear transformations from H; to H,
respectively. Then, the following mapping to H can be used:

o x)={Aig (x!) A2p (<) ... Are (x) } (6.6)
and the corresponding dot product can be easily computed as follows:

K(xi, Xj) = (p(x;), d(x;))
= {Altp (xll) .., Are (XfT)} , {A](p (X}) ..., Aro (XI/T)}>

T
=S 0 () AT A (x,) 6.7)

where, in the last step, we have exploited property (6.4) of Mercer’s kernels (see Section 6.2.2).
This composite kernel is simply a sum of the individual sample’s similarities at each time
instant and, again, no temporal correlation between pixels in different images is taken into
account by the classifier. However, the main advantage of using a summation approach comes
from the fact that individual kernels are computed with lower dimensional vectors, thus
alleviating overfitting problems.
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The weighted summation kernel

By exploiting Property (6.3), a composite kernel that takes into account the temporal content
in (6.7) can be made:

K(xi, X)) = Zme( x., ,) (6.8)

where p, gives different weights to each time-dependent kernel. This temporal weight can
be either estimated from the data or fixed by the user and, in practice, a good choice is an
exponential decay, u; = A~779, X € (0, 1].

The cross-information kernel

The preceding kernel classifiers can be conveniently modified to account for the cross rela-
tionship between subsequent time instants by including an additional linear transform in the
definition of the mapping function. A; and B are linear transformations from the corresponding
Hilbert space to H:

b (x;) = {Aup( ) A2<p( ) . A7 (x7).B (<p (x}) +-~-+¢(x§f))}. 6.9)
Then, the corresponding dot product can be easily computed:
K (xi,x;) = (6 (x). ¢ (x;))

<{A1<p( ) ... Are (xT),B ((p (xll) +'-'+¢(X?))}’
{a

( ) AT<.0( )B<‘p(x})+"'+(p(x7))}>
=320 ()T (ATAHBTB) o (x) + 32370 () BB (x))

T

_ XT: K, (x x;.) + sz S K (xf-, xj) . (6.10)

This is a complex composite kernel, given that it contains the cross-information between all
possible kernel matrices computed at different time instants. This general equation can be
easily simplified when considering only correlation for time instants ¢ and ¢ 4+ 1, and then the
composite kernel is

T—

Xz,X] Z |:Kt ( X, ]) + K11 ( l‘+1, ;Jrl) + Ki 141 (X17X;+1>:|7 (6.11)

where we forced subsequent time relationships just by replacing B with (§; »B) in (6.10), being
8,y = 1ift' =t + 1 and zero otherwise.

It is also worth stressing here that each kernel in the summation must not necessarily have
the same structural form (for instance, RBF or polynomial).
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6.2.4 Composite kernels for change detection

Two kernel-based formulations are next presented. They allow us to address the change de-
tection problem, inspired in the traditional difference and ratioing operations. Defining these
operations in a high dimensional feature space allows us to deal with nonlinear relationships
between samples, and more, the (few) free parameters per feature and combination can be
readily learned from the data.

Image difference in feature spaces

In change detection, changes in the scene are to be detected, and hence this is just a particular
case of multi-temporal classification. The traditional procedure in remote sensing followed to
identify changes consists in substracting the subsequent images and then applying a threshold,
this last being tuned either heuristically or with some adequate criterion (Bovolo and Bruzzone
2006; Bruzzone and Cossu 2002; Bruzzone and Serpico 1997; Moser and Serpico 2006). This
criterion can easily be formulated in the kernel feature spaces by defining a convenient kernel
mapping function. Let us define the difference in the same sample in two subsequent images
as follows:

¢ (x) = Ao (x7) = Ao (x17'). 6.12)

T

The corresponding dot product (¢(x§7), P(x J )) can be computed as:

. ) — 1T JIT tr—1 _tr—1
K (xl,x]) =Ky, (xi . X ) + Kip—1 (xi X )

~Kipr—1 (XX ) = Ko (x0T (6.13)

This difference kernel can only be used if supervised information at time ¢7 is available,
which makes it a particular case of the cross-information kernel defined in (6.10). Note that
this kernel is the nonlinear extension of simple difference in input spaces, which is a common
approach in unsupervised change detection. Difference-based methods are typically applied to
optical multi-spectral data change detection problems since the noise model can be reasonably
assumed as additive.

Image ratioing in feature spaces

Another classical change detection method is the ratioing between images at two different
dates, which accommodates change factors such as the Sun angle or the shadows. Defining
the mapping:

Lo ) (a0 ()L

(o () Ao ()

and computing the dot product, we obtain the ratioing operation in the kernel feature space:
=1 _rr—1
K- (xiT , ij )

Ir JIr
K, (xi X )

$(xi) = (6.14)

K (xi,xj) =yl + , (6.15)
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where regularization parameter y makes the kernel matrix positive semidefinite, which ensures
that this is a valid Mercer’s kernel. Note that this kernel is the nonlinear extension of a simple
ratio between time images in input spaces, which is typically applied to SAR data, as the noise
model can be reasonably assumed to be multiplicative.

6.3 Contextual and multi-source data fusion with kernels

In this section we briefly review the formulation of this family of composite kernels that
incorporates the contextual or textural information in the kernel, and also we extend it in order
to deal with multi-source data.

6.3.1 Composite kernels for integrating contextual information

Let the spectral content of a pixel at time 77 be denoted as w? € RNo, with N,, the number
of its spectral bands, and let some (local or global) spatial feature extraction on the image
yielding vector be sﬁT € RNs, with N, the spatial (contextual or textural) features. A kernel-
based classifier that accounts for both the spectral and the spatial features consists of stacking
both vectors, x; = {wET, sz} and using them with a standard classifier. However, the previous
composite tricks allow us to define several kernel classifiers (Camps-Valls et al. 2006b), as
follows:

o The stacked input vectors approach: K(X;, X;) = (§(x;), §(x;)).

o The direct summation kernel: K(x;,X;) = Kj (s?, s;-T) +K, (w?, w'f)

i j
Ko s;T, wth + Ko a)?, stiT , where s;” and w[/T must have the same dimension
(N, = Nj) for this formulation to be valid. A possibility to enable its use is to extract
a spatial feature per spectral band.

. . t t 5 15
o The cross—tnSormatton kernel: K(Xi,Xj = K,(sT sz + K, wiT,wT> +

6.3.2 Composite kernels for dealing with multi-source data

Multi-sensor information can also be integrated in the kernel itself in a very elegant way. If
we have optical and radar information available for the same co-registered pixel at time t7, we
can define the optical feature vector (ofT), the radar feature vector (rfT), and its concatenation

x; = {ofT rl’ 1. Several combinations of dedicated kernels can be made:

[ ]
o The stacked features approach: K(x;, X;) = (§(X;), ¢(X;))
o The direct summation kernel: K(x;,X;) = KO(OET, 07) + Kr(rl{T, r;T)

o The cross-information kernel: K(x;, X;) = Ko(o?, 03~T)+ Kr(r?, r;-T)—f— KW(O?, rle)—i—
Km(r?, 07), where 0§T and r;-T must have the same dimension (N, = N,) for this

formulation to be valid.

6.3.3 Remarks

According to the previously presented ideas, the general problem of multi-temporal classifica-
tion consists of many constituents (temporal, spectral, spatial, source, and maybe others) that
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can be mapped into different feature spaces, and combined there by using composite Mercer’s
kernels. Some of the advantages of this approach are that we are working with dedicated
kernels for each information source, we are combining them linearly, and we are alleviat-
ing the problem of the curse of dimensionality, as long as stacking features are no longer
necessary.

6.4 Multi-temporal/-source urban monitoring

In this section, extensive comparisons are conducted for all scenarios (partial or complete
labelled information at the prediction time), for multi-temporal classification and change
detection, multi-source information fusion, and for many composite kernels combinations.
We illustrate the performance of the classification framework in a problem of multi-temporal
and multi-source image classification and change detection with two real test sites.

6.4.1 Model development and free parameter selection

We used the linear and the RBF kernel in our experiments. The linear kernel is tested to
show the performance of standard linear techniques, though it represents a more sophisticated
model than the usual approaches in the literature (maximum margin learned from the data).
The linear kernel classifiers yield a fair comparison to the nonlinear RBF kernel by following
the same composite kernels framework for including temporal, contextual, and multi-source
information. Since the number of potentially useful combinations of spatial, spectral, temporal
and multi-source composite kernels is very high, we will present results for those combinations
showing the best performances (Camps-Valls et al. 2006a,b; Camps-Valls et al. 2007).

For the linear kernel classifiers, only C had to be tuned. For the nonlinear RBF kernel
classifiers, and depending on the composite kernel used, a different o parameter was addition-
ally tuned for each kernel component. The kernel sum was normalized in the feature spaces,
this is

N . . K . .
R(x;, Xj) _ < o(x;) ’ ¢(XJ) > _ (X, X]) ' (6.16)
léx)ll lldx)ll VK&, x)K(x;, X))
Free parameters were tuned in the ranges o = {10_3, A 103} and C = {10_1, e, 103}, and
rejection fraction v for the SVDD was in v = {1073, ..., 10°}. For multi-temporal weighted

summation kernel, u was in the range [0,1]. A non-exhaustive iterative search strategy
(T iterations) was used. At each iteration, a sequential search of the minimum v-fold
cross-validation estimated kappa statistic on each parameter domain was performed (pa-
rameter range split in L points). In our experiments, T =3 and L = 20 exhibited good
performance. A one-against-one multi-classification scheme and the multi-class scheme
presented in Mufioz Mari et al. (2007) were adopted for SVM and for one-class SVDD,
respectively.

6.4.2 Data collection and feature extraction

We used images collected in the Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP
project (Castracane et al. 2003). Results from the UrbEx project were used for analysing
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Figure 6.2 Images of the test areas of Rome (left) and Naples (right) at 1999. Both are
an RGB composite from L3, L2 and L1 bands (top row) and SAR log-intensities (bottom
row).

the selected test site and for validation (for further details see http://dup.esrin.esa.int/
ionia/projects/summaryp30.asp). Images from ERS2 SAR and Landsat TM sensors (acquired
in 1995 and 1999) of Rome and Naples (Italy) were used as test sites (see Figure 6.2). Only two
time instants are available here, and the classifier complexity significantly reduces (r7 = 2).

An external Digital Elevation Model and a reference land cover map (Italian Institute
of Statistics) were also available. The ERS2 SAR 35-day interferometric pairs were used
and, in order to obtain the interferometric coherence from each complex SAR image pair,
perpendicular baselines between 20 m and 150 m were selected. The available features were
initially labelled as L1-L7 for Landsat bands, as In1-In2 for the SAR backscattering intensities
(0-35 days), and as Co for coherence.

Given that features were acquired by different sensors, a specific processing and condi-
tioning of optical and SAR data was previously required, and all images were co-registered.
The seven bands of Landsat TM were co-registered with the ISTAT classification data, and
resampled to 30 x 30 m (nearest-neighbour). The registration for multi-source images was at
sub-pixel level, with root-mean-squared error of about 10 m, potentially enabling good urban
classification ability (Gémez-Chova et al. 2004). For optical images, the seven Landsat TM
spectral bands (containing three VIS, one Near IR, two Short-Wave IR, and one Thermal IR
bands) were directly used, o; = {L1, ..., L7}. For SAR images, intensity and coherence were
computed (Fanelli et al. 2000). Since speckle noise disturbs image interpretation, a multi-stage
spatial filtering approach over coherence images was followed to increase the urban areas dis-
crimination (Gémez-Chova et al. 2006), hence yielding the fourth radar input feature, Co’.
Therefore, we defined in this case r; = {Inl, In2, Co, Co’};.

Once features were extracted from optical and SAR images, we analysed their potential
use for urban change detection. For that purpose, we represented scatter plots between fea-
tures in the different dates (1995 and 1999), see Figure 6.3. As can be observed, the high
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L1 L2 L3 L4

Landsat

SAR

Figure 6.3 Scatter plots of the different considered features (both from Landsat and SAR
data sources) for the Rome image; 1995 data is represented versus 1999 data. Big gray dots
represent ‘class change’ and small black dots represent both ‘no-change’ or ‘unknown class’
in the image. These representations are very usual in the literature since one can promptly
identify changes due to natural variability (ellipse-shaped distribution), atmospheric haze or
sensor drift (skew of the ellipsoid), or the appearance of brighter/darker pixels (isolated areas
in the plot).

degree of overlapping of change and no-change pixels, along with the wide spread out of
the plot, indicate an extremely difficult change detection problem and suggests that nonlinear
methods should be deployed. One can also observe that the extracted feature Co’ can help in
discriminating between changed and unchanged pixels. We also computed spatial and textural
features from these optical and SAR features. Specifically, the spatial features for the optical
images were the average of all pixels in the surrounding 7 x 7 window, and the textural fea-
tures for the SAR data were Gabor-filtered (Clausi and Yue 2004) versions of r; at different
scales (¢ = 1, ..., 4) and orientations ({0°, 45°, 90°, 135°}) thus yielding the textural radar
features.

In the following experiments, subset images from Rome and Naples scenes containing
200 x 200 pixels in areas with substantial urban changes were selected. For the Rome scene,
1392, 780 and 2978 pixels changed to ‘non-urban’, to ‘urban’, and to the ‘unknown’ status,
respectively, in this 4-year period. For the case of the Naples scene, 1826, 215 and 1973 pixels
changed to ‘urban’, to ‘non-urban’, and to ‘unknown’, respectively. Pixels in the unknown
class were not considered, hence becoming a classical binary problem of change vs. no-change
identification. In both cases, we randomly selected 25% of changed pixels for training, and
five-fold cross-validation was used for free parameter tuning. The built classifier was finally
tested on the whole image.
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6.4.3 Multi-temporal image classification

Table 6.1 shows the results for supervised classifiers. In particular, we compared SVM and
SVDD under multi-temporal classification (left) and change detection (right) using different
temporal, spatio-spectral and multi-source composite kernels for the scenes of Rome and
Naples. The best overall accuracy (OA)[%] and estimated « values are provided. We also
analysed class-by-class accuracies for selected cases, and statistical differences between
classifiers are assessed with Wilcoxon’s rank sum test at 95% confidence interval.

The following conclusions can be obtained from Table 6.1. In all cases and scenes, the
use of the RBF kernel provides much better results than the linear kernel. In turn, the linear
kernel is an upper bound of model’s performance for (change detection) thresholding methods.
For the Rome scene (Table 6.1[top]), and with unlabelled information of the prediction date
image (1999), i.e. t < t7, only labelled samples in 1995 can be used to train a classifier and
predict in 1999. In this complex situation, a purely supervised approach like SVM yields poor
solutions (OA[%]< 70% and x < 0.6), since there is no information on the change. However,
SVDD still offers good results in this situation, since rather than building a separating hyper-
plane ‘urban’/‘non-urban’, the method tries to model the ‘urban’ class . In all cases, the best
composite kernel for integrating the spatial and the different data sources was the summa-
tion kernel, i.e. dedicating different kernels for the Landsat bands, SAR features, contextual
Landsat features, and textural Gabor-filtered SAR features. This best method yielded a maxi-
mum accuracy of 84.2%, but with biased classifications, i.e., x = 0.51, which was confirmed
by looking at the individual class accuracies (90.3% for urban and 53.4% for non-urban,
respectively). Note also that solutions are much sparser for the SVDD (average of 22% of
SVs) than for the SVM (average of 59% of SVs). For the Naples scene, similar results are
obtained (Table 6.1[bottom]). Again, when no information is available at time ¢7, the SVDD
is a better approximation, either with RBF or with linear kernel embedding. Differences were
statistically significant (see star symbols in Table 6.1, p < 0.05).

In the case with available labelled information for ¢7, several composite kernels dramat-
ically improved the results in both scenes, because of the use of labelled samples from the
t7 image. In these cases, SVM classifiers exhibit the best results, but SVDD classifiers also
yield stable and robust outcomes, which confirms its suitability to application scenarios in
which incomplete or partially complete information is available. Similar results have been
observed in Mufioz Mari et al. (2007). The same behaviour can be also seen for the neural
network, which provides lower accuracies than the nonlinear SVM and SVDD classifiers (both
numerical and statistical). The best overall results were obtained by using simple summation
kernels for integrating the spatio-spectral information and, in some cases, more complex cross-
information kernels to process the temporal information. This classifier yielded a maximum
OA = 94.3%, statistically compensated model (x = 0.78), and good individual classification
accuracies (97.1% for urban and 82.5% for non-urban, respectively) in the Rome image, and
a maximum OA = 96.8% (x = 0.64), and individual classification accuracies of 98.3% for
urban and 83.3% for non-urban in the Naples image.

6.4.4 Change detection

Table 6.1 (right) shows the results for the difference and ratio kernels in the change detection
problem. Labelled information for #7 is now provided in the form of ‘change’ vs. ‘no-change’
for the 1999 image and, hence, it can be seen as a supervised learning strategy. In general, a
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(both numerical and statistical) significant difference is given by RBF-based kernel classifiers
(e.g. accuracy is about 12% higher). SVMs yield very good results in terms of accuracy
(OA > 90%, k > 0.7), but SVDD provides better kappa values (but no significant statistical
differences), which indicates well-balanced classifications with reduced false detections. For
the best SVM (SVDD) classifier, individual accuracies were 97% (98%) for the change class
and 69% (74%) for the unchange class in the Rome image dataset. For the Naples dataset,
results between SVM and SVDD did not differ significantly (98% vs. 97% for the change
class, and 75% vs. 74% for the unchange class), probably because this constitutes an easier
problem and no particular guiding to learn a specific class is included in the methods. Note,
however, that this is a different (and much easier) experimental setup than the multi-temporal
approach, as the classifier only has to detect whether the pixel labels changed or not, rather
than to estimate the class label.

6.4.5 Classification maps

Figure 6.4 represents the classification maps from the best methods (bold type in Table 6.1),
for Rome (top) and Naples (bottom). The previously discussed numerical results are in general
confirmed by visual inspection. For instance, results obtained by the SVDD method for ¢ < t7
are much better than the SVM (more homogenous areas and lower number of false detec-
tions), also observed in the case of using the difference or ratio kernels for change detection,
even though (slightly) better accuracies are obtained using the SVM. In the case of t < 77,
SVDD does not outperform SVM, mainly because it poorly integrates the spatial/textural
information, e.g. southern parts of the Rome scene or Naples middle east, where evident
changes occur. Also, the neural network gives noisier classification maps, specially in change
detection.

6.5 Conclusions

In this chapter we have introduced a general framework based on composite kernel methods for
multi-temporal classification of remote sensing images that simultaneously take into account
spectral, spatial and multi-sensor information. We also introduced composite kernel versions
for the well-known difference and ratioing methods for change detection. All methods used,
as core learners, classifiers based on statistical learning theory: the binary SVM and the one-
