Object-Oriented
Software

Construction

SECOND EDITION

Bertrand Meyer

ISE Inc.

Santa Barbara(California)

Author’s address:

Bertrand Meyer

Interactive Software Engineering Inc. (ISE)
270 Storke Road, Suite 7

Santa Barbara, CA 93117

USA

805-685-1006, fax 805-685-6869
<meyer@toolicon>, http://www.tools.com

Preface

Born in the ice-blue waters of the festooned Norwegian coast; amplified (by an
aberration of world currents, for which marine geographers have yet to find a suitabls
explanation) along the much grayer range of the Californian Pacific; viewed by some as
typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave
hitting the shores of the computing world.

“Object-oriented” is the latest term, complementing and in many cases replacing
“structured” as the high-tech version of “good”. As is inevitable in such a case, the tern
is used by different people with different meanings; just as inevitable is the well-known
three-step sequence of reactions that meets the introduction of a new methodologic
principle: (1) “it's trivial”; (2) “it cannot work”; (3) “that’s how I did it all along anyway”.
(The order may vary.)

Let us have this clear right away, lest the reader think the author takes a half-hearte
approach to his topic: | do not see the object-oriented method as a mere fad; | think it
not trivial (although | shall strive to make it as limpid as | can); | know it works; and |
believe it is not only different from but even, to a certain extent, incompatible with the
techniques that most people still use today — including some of the principles taught i
many software engineering textbooks. | further believe that object technology holds th
potential for fundamental changes in the software industry, and that it is here to sta
Finally, | hope that as the reader progresses through these pages, he will share some of
excitement about this promising avenue to software analysis, design and implementatiot

“Avenue to software analysis, design and implementation”. To present the object
oriented method, this books resolutely takes the viewpoint of software engineering — o
the methods, tools and technigues for developing quality software in production
environments. This is not the only possible perspective, as there has also been interesit
applying object-oriented principles to such areas as exploratory programming an
artificial intelligence. Although the presentation does not exclude these applications, the
are not its main emphasis. Our principal goal in this discussion is to study how practicin
software developers, in industrial as well as academic environments, can use obje
technology to improve (in some cases dramatically) the quality of the software they
produce.

Vi PREFACE

Structure, reliability, epistemology and classification

Object technology is at its core the combination of four ideas: a structuring method, a
reliability discipline, an epistemological principle and a classification technique.

The structuring metho applies to software decomposition and reuse. Software
systems perform certain actions on objects of certain types; to obtain flexible and reusable
systems, it is better to base their structure on the object types than on the actions. The
resulting concept is a remarkably powerful and versatile mechanism calleclass2
which in object-oriented software construction serves as the basis for both the modular
structure and the type system.

Thereliability discipline is a radical approach to the problem of building software
that does what it is supposed to do. The idea is to treat any system as a collection of
components which collaborate the way successful businesses do: by adhcontracts
defining explicitly the obligations and benefits incumbent on each party.

Theepistemological principl addresses the question of how we should describeAbstract data types

classes. In object technology, the objects described by a class are only defined by ware discussed in
. . . chapter6, which

can do with them: operations (also knownfeature:) and formal properties of these_ . . iiresses some
operations (the contracts). This idea is formally expressed by the theabstract data ofthe related episte-
types, covered in detail in a chapter of this book. It has far-reaching implications, smological issues.
going beyond software, and explains why we must not stop at the naive conce
“object” borrowed from the ordinary meaning of that word. The tradition of information
systems modeling usually assumes an “external reality” that predates any program using
it; for the object-oriented developer, such a notion is meaningless, as the reality does not
exist independently of what you want to do with it. (More precisely whether it exists or
not is an irrelevant question, as we only know what we can use, and what we know of
something is defined entirely by how we can use it.)

The classification techniquefollows from the observation that systematic
intellectual work in general and scientific reasoning in particular require devising
taxonomies for the domains being studied. Software is no exception, and the object-
oriented method relies heavily on a classification discipline knovinheritance.

Simple but powerful

The four concepts of class, contract, abstract data type and inheritance immediately raise
a number of questions. How do we find and describe classes? How should our programs
manipulate classes and the corresponding objectsinstance of these classes)? What

are the possible relations between classes? How can we capitalize on the commonalities
that may exist between various classes? How do these ideas relate to such key software
engineering concerns as extendibility, ease of use and efficiency?

Answers to these questions rely on a small but powerful array of techniques for
producing reusable, extendible and reliable software: polymorphism and dynamic
binding; a new view of types and type checking; genericity, constrained and

PREFACE

vii

Chapterslto2.

Chapters3to 6.

Chapters7 to 18.

Chaptersl¢to29.

Chapters3C to 32.

unconstrained; information hiding; assertions; safe exception handling; automatic garb:
collection. Efficient implementation techniques have been developed which pern
applying these ideas successfully to both small and large projects under the ti
constraints of commercial software development. Object-oriented techniques have &
had a considerable impact on user interfaces and development environments, makir
possible to produce much better interactive systems than was possible before. All th
important ideas will be studied in detail, so as to equip the reader with tools that «
immediately applicable to a wide range of problems.

Organization of the text

In the pages that follow we will review the methods and techniques of object-orient
software construction. The presentation has been divided into six parts.

PartA is an introduction and overview. It starts by exploring the fundamental issu
of software quality and continues with a brief survey of the method’s main technic
characteristics. This part is almost a little book by itself, providing a first view of thi
object-oriented approach for hurried readers.

PartB is not hurried. Entitled “The road to object orientation”, it takes the time tc
describe the methodological concerns that lead to the central O-O concepts. Its focus i
modularity: what it takes to devise satisfactory structures for “in-the-large” systel
construction. It ends with a presentation of abstract data types, the mathematical basis
object technology. The mathematics involved is elementary, and less mathematice
inclined readers may content themselves with the basic ideas, but the presenta
provides the theoretical background that you will need for a full understanding of O-
principles and issues.

PartC is the technical core of the book. It presents, one by one, the central techni
components of the method: classes; objects and the associated run-time model; men
management issues; genericity and typing; design by contract, assertions, excepti
inheritance, the associated concepts of polymorphism and dynamic binding, and tt
many exciting applications.

Part D discusses methodology, with special emphasis on analysis and desi
Through several in-depth case studies, it presents some fundadesign patterr, and
covers such central questions as how to find the classes, how to use inheritance prop
and how to design reusable libraries. It starts with a meta-level discussion of t
intellectual requirements on methodologists and other advice-givers; it concludes witl
review of the software process (the lifecycle model) for O-O development and
discussion of how best to teach the method in both industry and universities.

Part E explores advanced topics: concurrency, distribution, client-serve
development and the Internet; persistence, schema evolution and object-orien
databases; the design of interactive systems with modern (“GUI”) graphical interfaces

viii PREFACE

PartF is a review of how the ideas can be implemented, or in some cases eMUChapters33 to 3.
in various languages and environments. This includes in particular a discussion of
object-oriented languages, focusing on Simula, Smalltalk, Objective-C, C++, Ada 95 and
Java, and an assessment of how to obtain some of the benefits of object orientation in such
non-0-0 languages as Fortran, Cobol, Pascal, C and Ada.

PartG (doing it righf) describes an environment which goes beyond these solutchapterss.
and provides an integrated set of tools to support the ideas of the book.

As complementary reference material, an appendix shows some important retappendixa.
library classes discussed in the text, providing a model for the design of reusable soft

A Book-Wide Web

It can be amusing to see authors taking pains to describe recommended paths through their
books, sometimes with the help of sophisticated traversal charts — as if readers ever paid
any attention, and were not smart enough to map their own course. An author is permitted,
however, to say in what spirit he has scheduled the different chapters, and what path he
had in mind for what Umberto Eco calls the Model Reader — not to be confused with the
real reader, also known as “you”, made of flesh, blood and tastes.

The answer here is the simplest possible one. This book tells a story, and assumes
that the Model Reader will follow that story from beginning to end, being however invited
to avoid the more specialized sections marked as “skippable on first reading” and, if not
mathematically inclined, to ignore a few mathematical developments also labeled
explicitly. The real reader, of course, may want to discover in advance some of the plot's
later developments, or to confine his attention to just a few subplots; every chapter has for
that reason been made as self-contained as possible, so that you should be able to intake
the material at the exact dosage which suits you best.

Because the story presents a coherent view of software development, its successive
topics are tightly intertwined. The margin notes offer a subtext of cross references, a
Book-Wide Web linking the various sections back and forth. My advice to the Model
Reader is to ignore them on first reading, except as a reassurance that questions which at
some stage are left partially open will be fully closed later on. The real reader, who may
not want any advice, might use the cross references as unofficial guides when he feels like
cheating on the prearranged order of topics.

Both the Model Reader and the real reader should find the cross references mostly
useful in subsequent readings, to make sure that they have mastered a certain object-
oriented concept in depth, and understood its connections with the method’s other
components. Like the hyperlinks of a WWW document, the cross references should make
it possible to follow such associations quickly and effectively.

The CD-ROM that accompanies this book and contains all of its text providsee:about the
convenient way to follow cross references: just click on them. All the cross refereaccompanying CD-
have been preserved. ROM?”, page xi\.

PREFACE

The notation

In software perhaps even more than elsewhere, thought and language are clo
connected. As we progress through these pages, we will carefully develop a notation
expressing object-oriented concepts at all levels: modeling, analysis, desic
implementation, maintenance.

Here and everywhere else in this book, the pronoun “we” does not mean “il
author”: as in ordinary language, “we” means you and | — the reader and the author.
other words | would like you to expect that, as we develop the notation, you will k
involved in the process.

This assumption is not really true, of course, since the notation existed before y
started reading these pages. But it is not completely preposterous either, because 1 |
that as we explore the object-oriented method and carefully examine its implications
supporting notation will dawn on you with a kind of inevitability, so that you will indeed
feel that you helped design it.

This explains why although the notation has been around for more than ten years:
is in fact supported by several commercial implementations, including one from n
company (ISE), | have downplayed it as a language. (Its name does appear in one pla
the text, and several times in the bibliography.) This book is about the object-orient
method for reusing, analyzing, designing, implementing and maintaining software; tl
language is an important and | hope natural consequence of that method, notan aiminit:

In addition, the language is straightforward and includes very little else than dire
support for the method. First-year students using it have commented that it was *
language at all’ — meaning that the notation is in one-to-one correspondence with
method: to learn one is to learn the other, and there is scant extra linguistic decoratior
top of the concepts. The notation indeed shows few of the peculiarities (often stemm
from historical circumstances, machine constraints or the requirement to be compati
with older formalisms) that characterize most of today’'s programming languages. |
course you may disagree with the choice of keywords (dc rather thanbegir or
perhapsfaire?), or would like to add semicolon terminators after each instruction. (Th
syntax has been designed so as to make semicolons optional.) But these are side is
What counts is the simplicity of the notation and how directly it maps to the concepts.
you understand object technology, you almost know it already.

Most software books take the language for granted, whether it is a programmi
language or a notation for analysis or design. Here the approach is different; involving
reader in the design means that one must not only explain the language but also justi
and discuss the alternatives. Most of the chapters of part C include a “discussion” sec
explaining the issues encountered during the design of the notation, and how they w
resolved. | often wished, when reading descriptions of well-known languages, that t
designers had told me not only what solutions they chose, but why they chose them,
what alternatives they rejected. The candid discussions included in this book shoule
hope, provide you with insights not only about language design but also about softw
construction, as the two tasks are so strikingly similar.

X PREFACE

Analysis, design and implementation

It is always risky to use a notation that externally looks like a programming language, as
this may suggest that it only covers the implementation phase. This impression, however
wrong, is hard to correct, so frequently have managers and developers been told that a gap
of metaphysical proportions exists between the ether of analysis-design and the
underworld of implementation.

Well-understood object technology reduces the gap considerably by empha«“SEAMLESSNESS
the essential unity of software development over the inevitable differences between AND REVERSIBIL-
of abstraction. Thisseamles approach to software construction is one of the import"TY"' 28.6, page 939
contributions of the method and is reflected by the language of this book, which is meant
for analysis and design as well as for implementation.

Unfortunately some of the recent evolution of the field goes against these principles,
through two equally regrettable phenomena:

* Object-oriented implementation languages which are unfit for analysis, for design and
in general for high-level reasoning.

» Object-oriented analysis or design methods which do not cover implementation (and
are advertized as “language-independent” as if this were a badge of honor rather than
an admission of failure).

Such approaches threaten to cancel much of the potential benefit of the approach. In
contrast, both the method and the notation developed in this book are meant to be
applicable throughout the software construction process. A number of chapters cover
high-level design issues; one is devoted to analysis; others explore implementation
techniques and the method’s implications on performance.

The environment

Software construction relies on a basic tetralogy: method, language, tools, libraries. The
method is at the center of this book; the language question has just been mentioned. Once
in a while we will need to see what support they may require from tools and libraries. For
obvious reasons of convenience, such discussions will occasionally refer to ISE’s object-
oriented environment, with its set of tools and associated libraries.

The environment is used only as an example of what can be done to makThe last chapter3€,
concepts practically usable by software developers. Be sure to note that there aresummarizes the
other object-oriented environments available, both for the notation of this book an®nvironment.
other O-O analysis, design and implementation methods and notations; and that the
descriptions given refer to the state of the environment at the time of writing, subject, as
anything else in our industry, to change quickly — for the better. Other environments, O-

O and non O-0, are also cited throughout the text.

PREFACE

xi

A few notes in the
margin or in chap-
ter-end biblio-
graphicsectionsgive
credit for some spe-
cific ideas, often
unpublished.

Acknowledgments (quasi-absence thereof)

The first edition of this book contained an already long list of thanks. For a while | ke
writing down the names of people who contributed comments or suggestions, and the
some stage | lost track. The roster of colleagues from whom | have had help or borrov
ideas has now grown so long that it would run over many pages, and would inevitably ol
some important people. Better then offend everyone a little than offend a few very mut

So these acknowledgments will for the most part remain collective, which does n
make my gratitude less deep. My colleagues at ISE and SOL have for years been a ¢
source of invaluable help. The users of our tools have generously provided us with tf
advice. The readers of the first edition provided thousands of suggestions f
improvement. In the preparation of this new edition (I should really say of this new boo
| have sent hundreds of e-mail messages asking for help of many different kinds:
clarification of a fine point, a bibliographical reference, a permission to quote, the deta
of an attribution, the origin of an idea, the specifics of a notation, the official address o
Web page; the answers have invariably been positive. As draft chapters were becon
ready they were circulated through various means, prompting many constructi
comments (and here | must cite by name the referees commissioned by Prentice Hall, |
Dubois, James McKim and Richard Wiener, who provided invaluable advice ar
corrections). In the past few years | have given countless seminars, lectures and cou
about the topics of this book, and in every case | learned something from the audienc
enjoyed the wit of fellow panelists at conferences and benefited from their wisdom. Shi
sabbaticals at the University of Technology, Sydney and the Universita degli Studi
Milano provided me with a influx of new ideas — and in the first case with three hundre
first-year students on whom to validate some of my ideas about how software engineel
should be taught.

The large bibliography shows clearly enough how the ideas and realizations
others have contributed to this book. Among the most important conscious influences
the Algol line of languages, with its emphasis on syntactic and semantic elegance;
seminal work on structured programming, in the serious (Dijkstra-Hoare-Parnas-Wirt
Mills-Gries) sense of the term, and systematic program construction; formal specificati
techniques, in particular the inexhaustible lessons of Jean-Raymond Abrial’s original (I
nineteen-seventies) version of the Z specification language, his more recent design o
and Cliff Jones’s work on VDM,; the languages of the modular generation (in particul:
Ichbiah’s Ada, Liskov’s CLU, Shaw’s Alphard, Bert's LPG and Wirth’'s Modula); and
Simula 67, which introduced most of the concepts many years ago and had most of tt
right, bringing to mind Tony Hoare’s comment about Algol 60: that it was such a
improvement over most of its successors.

Foreword to the second edition

M any events have happened in the object-oriented world since the first edition o
OO0S((as the book came to be known) was published in 1988. The explosion of interes
alluded to in the Preface to the first edition, reproduced in the preceding pages in a slight
expanded form, was nothing then as compared to what we have seen since. Many journ
and conferences now cover object technology; Prentice Hall has an entire book seri
devoted to the subject; breakthroughs have occurred in such areas as user interfac
concurrency and databases; entire new topics have emerged, such as O-O analysis :
formal specification; distributed computing, once a specialized topic, is becoming
relevant to more and more developments, thanks in part to the growth of the Internet; ar
the Web is affecting everyone’s daily work.

This is not the only exciting news. It is gratifying to see how much progress is
occurring in the software field — thanks in part to the incomplete but undeniable spreas
of object technology. Too many books and articles on software engineering still start witt
the obligatory lament about the “software crisis” and the pitiful state of our industry as
compared tdrue engineering disciplines (which, as we all know, never mess things up).
There is no reason for such doom. Oh, we still have a long, long way to go, as anyone wi
uses software products knows all too well. But given the challenges that we face we hay
no reason to be ashamed of ourselves as a profession; and we are getting better all the ti
Itis the ambition of this book, as it was of its predecessor, to help in this process.

This second edition is not an update but the result of a thorough reworking. Not ¢
paragraph of the original version has been left untouched. (Hardly a single line, actually
Countless new topics have been added, including a whole chapter on concurrenc
distribution, client-server computing and Internet programming; another on persistenci
and databases; one on user interfaces; one on the software lifecycle; many design patte
and implementation techniques; an in-depth exploration of a methodological issue o
which little is available in the literature, how to use inheritance well and avoid misusing
it; discussions of many other topics of object-oriented methodology; an extensive
presentation of the theory of abstract data types — the mathematical basis for our subje
indispensable to a complete understanding of object technology yet seldom covered
detail by textbooks and tutorials; a presentation of O-O analysis; hundreds of nev
bibliographic and Web site references; the description of a complete object-oriente
development environment (also included on the accompanying CD-ROM for the reader’
enjoyment) and of the underlying concepts; and scores of new ideas, principles, cavea
explanations, figures, examples, comparisons, citations, classes, routines.

The reactions tOOS(-1 have been so rewarding that | know readers have high
expectations. | hope they will firOOS(-2 challenging, useful, and up to their standards.

Santa Barbara B.M.
January 1997

Xiv

PREFACE

About the accompanying CD-ROM

The CD-ROM that comes with this book containsentire hyperlinked text in Adobe
Acrobat format. It also includes Adobe’s Acrobat Reader software, enabling you t
that format; the versions provided cover major industry platforms. If you do not al
have Acrobat Reader on your computer, you can install it by following the instrug
The author and the publisher make no representations as to any property of Acrg
associated tools; the Acrobat Reader is simply provided as a service to readers
book, and any Acrobat questions should be directed to Adobe. You may also che

Adobe about any versions of the Reader that may have appeared after the book.

To get started with the CD-ROM, open the Acrobat README.pdiin the OOSC-2
directory, which will direct you to the table of contents and the index. You can
open that file under Acrobat Reader; if the Reader has not been installed o
computer, examine instead the plain-text version in thereadme.tx in the top-level
directory.

The presence of an electronic version will be particularly useful to readers who v
take advantage of the thousands of cross-references present in this b¢‘A Book-
Wide Web”, page vi). Although for a first sequential reading you will probably pre
to follow the paper version, having the electronic form available on a computer 1
the book alllows you to follow a link once in a while without having to turn pages
and forth. The electronic form is particularly convenient for a later reading during
you may wish to explore links more systematically.

All links (cross-references) appear blue in the Acrobat form, as illustrated twi
above (but not visible in the printed version). To follow a link, just click on the blue
If the reference is to another chapter, the chapter will appear in a new windoy
Acrobat Reader command to come back to the previous position is normally C
minus-sign (that is, typ— while holding down the CONTROL key). Consult the on-I
Acrobat Reader documentation for other useful navigational commands.

Bibliographical references also appear as links, suKnuth 1968, in the Acrobat
form, so that you can click on any of them to see the corresponding entry
bibliography of appendiE.
The CD-ROM also contains:

e Library components providing extensive material for AppelA.ix

*A chapter from the manual for a graphical application builder, provi
mathematical complements to the material of che32.:2r

In addition, the CD-ROM includes a time-limited version of an advarobject-
oriented development environmenfor Windows 95 or Windows NT, as described
chaptei3€, providing an excellent hands-on opportunity to try out the ideas deve|
throughout the book. The “Readme” file directs you to the installation instruction
system requirements.

o read
ready
tions.
bat and
5 of this
ck with

only
n your

ant to

fer

ext to
back
which

Le
part.
v. The
bntrol-
ne

in the

ding

in
oped
s and

Acknowledgmen: The preparation of the hyperlinked text was made possible by the help of several people
at Adobe Inc., in particular Sandra Knox, Sarah Rosenbaum and the FrameMaker Customer Support Group.

PREFACE

XVii

The bibliography
starts on page
120¢%.

On the bibliography, Internet sources and
exercises

This book relies on earlier contributions by many authors. To facilitate reading, tt
discussion of sources appears in most cases not in the course of the discussion, but i
“Bibliographical notes” sections at chapter end. Make sure you read these sections, s
to understand the origin of many ideas and results and find out where to learn more.

References are of the foifName¢ 19xx], whereName is the name of the first author,
and refer to the bibliography in appenE. This convention is for readability only and is
not intended to underrate the role of authors other than the first. The letter M in lieu o
Namedenotes publications by the author of this book, listed separately in the second
of the bibliography.

Aside from the bibliography proper, some references appear in the margin, next
the paragraphs which cite them. The reason for this separate treatment is to make
bibliography usable by itself, as a collection of important references on object technolo
and related topics. Appearance as a margin reference rather than in the bibliography c
not imply any unfavorable judgment of value; the division is simply a pragmati
assessment of what belongs in a core list of object-oriented references.

k%

Although electronic references will undoubtedly be considered a matter of course a f
years from now, this must be one of the first technical books (other than books devote
Internet-related topics) to make extensive use of references to World-Wide-Web pag
Usenet newsgroups and other Internet resources.

Electronic addresses are notoriously volatile. | have tried to obtain from the authc
of the quoted sources some reassurance that the addresses given would remain vali
several years. Neither they nor I, of course, can provide an absolute guarantee. In cas
difficulty, note that on the Net more things move than disappear: keyword-based sea
tools can help.

*kk

Most chapters include exercises of various degrees of difficulty. |1 have refrained fro
providing solutions, although many exercises do contain fairly precise hints. Some reac
may regret the absence of full solutions; | hope, however, that they will appreciate t
three reasons that led to this decision: the fear of spoiling the reader’s enjoyment;
realization that many exercises are design problems, for which there is more than one g
answer; and the desire to provide a source of ready-made problems to instructors using
book as a text.

*k*k

XViii PREFACE

For brevity and simplicity, the text follows the imperfect but long-established tradition of
using words such as “he” and “his”, in reference to unspecified persons, as shortcuts for
“he or she” and “his or her”, with no intended connotation of gender.

A modest soul is shocked by objects of such kind

And all the nasty thoughts that they bring to one's mind.

Moliere, Tartuffe, Act Ill.

CD-ROM INSTRUCTIONS

CD-ROM contents

The CD-ROM contains eeadme.txt file (with the text of the present page) and three directories:

*« O0OSC-2 The complete hyperlinked version of the book "Object-Oriented Software Construction
second edition", plus supplementary material, in Adobe Acrobat format,

« Envir: A time-limited version of principal components of the object-oriented environment
described in chapter 36 of the book.

« Acrobat: the Acrobat Reader installation for many platforms, from Adobe Inc.
Using the CD-ROM version of the book

To work with the hyperlinked version of the book you may start from any of the following Adobe Acroba
files, all in the directoryDOSC-2

 The short table of contents (chapters only): ®@ SC-SHO.pdf

 The full table of contents (chapters only): ilEOSC-TAB.pdf.

» The index: fileOOSC-IND.pdf.
(From the fleREADME.PDF, click the chosen file name above to open it under Acrobat Reader.)

Installing the Adobe Acrobat Reader

To read the files you will need to have the Adobe Acrobat Reader. If you do not already have the Reade!
your computer, you may install it from the CD-ROM:

» Go to the directorcrobat, which contains the versions for different platforms (from Adobe Inc.).
* Read the filePlatform to find the instructions and files for your platform.

 Perform the installation instructions as indicated.

» Make sure to read the fildcense.pdfwhich states the license terms.

Installing and using the object-oriented development environment

To install the object-oriented development environment for Windows NT or Windows 95:

« Go to the director§nvir.
» Double-click onsetup.exe(from the Windows Explorer) to start the installation process.

Memory and system requirements
» For Adobe Acrobat: see the Adobe Acrobat documentation. On Windows 95 the executable takes
about3 MB, but more may be needed during installation.
« For the hyperlinked version of the book: ab8ttMB; Adobe Acrobat Reader installed.

 For the object-oriented environment: the recommended installation, including the WEL graphic:
library and the Base libraries of fundamental data structures and algorithms, takes ufOald&ut
A minimal default installation with no precompiled libraries (you can precompile libraries later
yourself) takes abo®0 MB. You need a 386 or higher Intel-compatible model, 16 MB memory (32
MB recommended).

The following page reproduces the text of the book’s back cover.

Bertrand Meyer’s

Object-Oriented Software Construction
SECOND EDITION

The definitive reference on the most important new technology in software

FROM THE REVIEWS OF THE FIRST EDITION:

“Tour de Force... Meyer succeeds admirably in leading the patient re... through a presentation of the
fundamental software development issues that is independent of any programming system, languag
application are... Well organized and highly reada... Meyer’s high standards for precision of expression
do not interfere with a literate style or preclude the occasional injection of humor.”

Ron Levin inSoftwart (IEEE)
“The author believes in OOP, has the experience to know that it works, and is willing and able to show us
and hov... The clear choictfor software people who want to dive straight into object-oriented programming
Walter Zintz inUnix World
“The book presents the concepts in an orderly manner and explains them very well. It is even more attra
because it presents a technigue of object-oriedesigr.”
Pierre America irScience of Computer Programming
A whole generation was introduced to object technology through the first edition of Bertrand NOOS(s
This long-awaited new edition retains the qualities of clarity, practicality and scholarship that made the first

instant best-seller. It has been thoroughly revised and considerably expanded. No other book on the m
provides such a breadth and depth of coverage on the most important technology in software development.

SOME OF THE NEW TOPICS COVERED IN DEPTH BY THIS SECOND EDITION:
» Concurrency, distribution, client-server and the Internet.
» Object-orientecdatabase, persistence, schema evolution.
» Design by contrac: how to build software that works the first time around.
* A study of fundamentedesign patterns.
* How to iind the classe and many others topics object-oriented methodology.
» How to use inheritance well and detect misuses.
« Abstract data types: the theory behind object technology.
» Typing: role, issues and solutions.

* More than 400reference: to books, articles, Web pages, newsgrouglossary of object
technology.

« And many new developments on the topics of the first edition: reusability, modularity, softwar
guality, O-O languages, inheritance techniques, genericity, memory management, etc.

About the author

Bertrand Meyer is one of the pioneers of modern software engineering, whose experience spans both industry and pcade!
He has led the development of successful O-O products and libraries totaling thousands of classes. His Prentice Hall bo
include Object Succe: (an introduction to object technology for managelntroduction to the Theory of Programming
Language, Eiffel: The Languag, Object-Oriented Applicatior, andReusable Softwa. He is a frequent keynote speaker
at international conferences and consultant for Fortune 500 companies, editor of the Object-Oriented Series, jassoci
member of the applications section of the French Academy of Sciences, chairman of the TOOLS conference segries, ¢
editor of the Object Technology departmen|EEE Compute.r

SHORT TABLE

OF CONTENTS

(The full table of contents starts on page xvii.)

Preface v | 23 Principles of class design 747
Foreword to the second edition xiifi 24 Using inheritance well 809
On the bibliography, Internet sources and exerciseg§ xv25 Useful techniques 871
Contents Xvii | 26 A sense of style 875
Part A: The issues 11 27 Object-oriented analysis 903
1 Software quality 3| 28 The software construction process 923
2 Criteria of object orientation 21 29 Teaching the method 935
Part B: The road to object orientation Jpart E: Advanced topics 949
3 Modularity 39 | 30 Concurrency, distribution, client-server
4 Approaches to reusability 61 and the Internet 951
5 Towards object technology 101 31 Object persistence and databases 1037
6 Abstract data types 121 32 Some O-O techniques for graphical
))) interactive applications 1063
Part C: Object-oriented techniques 1643
7 The static structure: classes 1¢®art F: Applying the method in various
8 The run-time structure: objects 21y7 languages ar.1d environments o7
9 Memory management 279 33 O-0 programming and Ada 1079
10 Genericity 317| 34 Emulating object technology in non-O-O
environments 1099
11 Design by Contract: building reliable software 381 .)
]) 35 Simula to Java and beyond: major O-O
12 When the contract is broken: exception languages and environments 1113
handling 411
13 Supporting mechanisms 43pPart G: Doing it right 1141
14 Introduction to inheritance 459 36 An object-oriented environment 1143
15 Multiple inheritance 519| Epilogue, In Full Frankness Exposing the
16 Inheritance techniques 56p Language 1161
17 Typing 611 | part H: Appendices 1163
18 Global objects and constants 643 A Extracts from the Base library 1165
Part D: Object-oriented methodology: applying B Genericity versus inheritance 1167
the method well 661
19 On methodology 663 C Principles, rules, precepts and definitions 1189
20 Design pattern: multi-panel interactive systems 679 A glossary of object technology 1193
21 Inheritance case study: “undo” in an .
interactive system 695 E Bibliography 1203
22 How to find the classes 719Index 1225

Contents

Preface

Foreword to the second edition

About the accompanying CD-ROM

On the bibliography, Internet sources and exercises
Contents

PART A: THE ISSUES

Chapter 1: Software quality
1.1 EXTERNAL AND INTERNAL FACTORS
1.2 AREVIEW OF EXTERNAL FACTORS
1.3 ABOUT SOFTWARE MAINTENANCE
1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
1.5 BIBLIOGRAPHICAL NOTES

Chapter 2: Criteria of object orientation
2.1 ON THE CRITERIA
2.2 METHOD AND LANGUAGE
2.3 IMPLEMENTATION AND ENVIRONMENT
2.4 LIBRARIES
2.5 FOR MORE SNEAK PREVIEW
2.6 BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

PART B: THE ROAD TO OBJECT ORIENTATION

Chapter 3: Modularity
3.1 FIVE CRITERIA
3.2 FIVE RULES
3.3 FIVE PRINCIPLES
3.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
3.5 BIBLIOGRAPHICAL NOTES
EXERCISES

Xiii
Xiv
XV
XVii

AW W

17

19

21
21
22
31
33
34
34

37

39
40
46

53
64

64

65

XViii

CONTENTS

Chapter 4: Approaches to reusability
4.1 THE GOALS OF REUSABILITY
4.2 WHAT SHOULD WE REUSE?
4.3 REPETITION IN SOFTWARE DEVELOPMENT
4.4 NON-TECHNICAL OBSTACLES
4.5 THE TECHNICAL PROBLEM
4.6 FIVE REQUIREMENTS ON MODULE STRUCTURES
4.7 TRADITIONAL MODULAR STRUCTURES
4.8 OVERLOADING AND GENERICITY
4.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
4.10 BIBLIOGRAPHICAL NOTES

Chapter 5: Towards object technology
5.1 THE INGREDIENTS OF COMPUTATION
5.2 FUNCTIONAL DECOMPOSITION
5.3 OBJECT-BASED DECOMPOSITION
5.4 OBJECT-ORIENTED SOFTWARE CONSTRUCTION
5.5 ISSUES
5.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
5.7 BIBLIOGRAPHICAL NOTES

Chapter 6: Abstract data types
6.1 CRITERIA
6.2 IMPLEMENTATION VARIATIONS
6.3 TOWARDS AN ABSTRACT VIEW OF OBJECTS
6.4 FORMALIZING THE SPECIFICATION
6.5 FROM ABSTRACT DATA TYPES TO CLASSES
6.6 BEYOND SOFTWARE
6.7 SUPPLEMENTARY TOPICS
6.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
6.9 BIBLIOGRAPHICAL NOTES
EXERCISES

PART C: OBJECT-ORIENTED TECHNIQUES

Chapter 7: The static structure: classes
7.1 OBJECTS ARE NOT THE SUBJECT
7.2 AVOIDING THE STANDARD CONFUSION
7.3 THE ROLE OF CLASSES
7.4 A UNIFORM TYPE SYSTEM
7.5 A SIMPLE CLASS
7.6 BASIC CONVENTIONS

67
68
70
74
74
81
83
89
93
98
99

101
101
103
114
116
117
119
119

121
122
122
126
129
142
147
148
159
160
161

163

165
165
166
169
171
172
177

CONTENTS

XiX

7.7 THE OBJECT-ORIENTED STYLE OF COMPUTATION
7.8 SELECTIVE EXPORTS AND INFORMATION HIDING

7.9 PUTTING EVERYTHING TOGETHER

7.10 DISCUSSION

7.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
7.12 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 8: The run-time structure: objects

8.1 OBJECTS

8.2 OBJECTS AS A MODELING TOOL

8.3 MANIPULATING OBJECTS AND REFERENCES
8.4 CREATION PROCEDURES

8.5 MORE ON REFERENCES

8.6 OPERATIONS ON REFERENCES

8.7 COMPOSITE OBJECTS AND EXPANDED TYPES

8.8 ATTACHMENT: REFERENCE AND VALUE SEMANTICS
8.9 DEALING WITH REFERENCES: BENEFITS AND DANGERS

8.10 DISCUSSION

8.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
8.12 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 9: Memory management

9.1 WHAT HAPPENS TO OBJECTS

9.2 THE CASUAL APPROACH

9.3 RECLAIMING MEMORY: THE ISSUES

9.4 PROGRAMMER-CONTROLLED DEALLOCATION
9.5 THE COMPONENT-LEVEL APPROACH

9.6 AUTOMATIC MEMORY MANAGEMENT

9.7 REFERENCE COUNTING

9.8 GARBAGE COLLECTION

9.9 PRACTICAL ISSUES OF GARBAGE COLLECTION
9.10 AN ENVIRONMENT WITH MEMORY MANAGEMENT
9.11 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
9.12 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 10: Genericity
10.1 HORIZONTAL AND VERTICAL TYPE GENERALIZATION

10.2 THE NEED FOR TYPE PARAMETERIZATION
10.3 GENERIC CLASSES

181
191
194
203
213
215
216

217
218
228
231
236
240
242
254
261
265
270
276
277
277

279
279
291
293
294
297
301
302
304
309
312
315
315
316

317

317
318
320

XX

CONTENTS

10.4 ARRAYS

10.5 THE COST OF GENERICITY

10.6 DISCUSSION: NOT DONE YET

10.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
10.8 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 11: Design by Contract: building reliable software
11.1 BASIC RELIABILITY MECHANISMS
11.2 ABOUT SOFTWARE CORRECTNESS
11.3 EXPRESSING A SPECIFICATION
11.4 INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS
11.5 PRECONDITIONS AND POSTCONDITIONS
11.6 CONTRACTING FOR SOFTWARE RELIABILITY
11.7 WORKING WITH ASSERTIONS
11.8 CLASS INVARIANTS
11.9 WHEN IS A CLASS CORRECT?
11.10 THE ADT CONNECTION
11.11 AN ASSERTION INSTRUCTION
11.12 LOOP INVARIANTS AND VARIANTS
11.13 USING ASSERTIONS
11.14 DISCUSSION
11.15 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
11.16 BIBLIOGRAPHICAL NOTES

EXERCISES
POSTSCRIPT: THE ARIANE 5 FAILURE

325
328
329
329
330
330

331
332
333
334
337
338
341
348
363
369
373
378
380
389
398
406
407

408
410

Chapter 12: When the contract is broken: exception handling 411

12.1 BASIC CONCEPTS OF EXCEPTION HANDLING
12.2 HANDLING EXCEPTIONS

12.3 AN EXCEPTION MECHANISM

12.4 EXCEPTION HANDLING EXAMPLES

12.5 THE TASK OF A RESCUE CLAUSE

12.6 ADVANCED EXCEPTION HANDLING

12.7 DISCUSSION

12.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
12.9 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 13: Supporting mechanisms
13.1 INTERFACING WITH NON-O-O SOFTWARE
13.2 ARGUMENT PASSING

411
414
419
422
427
431
435
437
438
438

439

439
444

CONTENTS

XXi

13.3 INSTRUCTIONS

13.4 EXPRESSIONS

13.5 STRINGS

13.6 INPUT AND OUTPUT

13.7 LEXICAL CONVENTIONS

13.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
EXERCISES

Chapter 14: Introduction to inheritance

14.1 POLYGONS AND RECTANGLES

14.2 POLYMORPHISM

14.3 TYPING FOR INHERITANCE

14.4 DYNAMIC BINDING

145 DEFERRED FEATURES AND CLASSES
14.6 REDECLARATION TECHNIQUES

14.7 THE MEANING OF INHERITANCE

14.8 THE ROLE OF DEFERRED CLASSES
14.9 DISCUSSION

14.10 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
14.11 BIBLIOGRAPHICAL NOTES
EXERCISES

Chapter 15: Multiple inheritance

15.1 EXAMPLES OF MULTIPLE INHERITANCE

15.2 FEATURE RENAMING

15.3 FLATTENING THE STRUCTURE

15.4 REPEATED INHERITANCE

15.5 DISCUSSION

15.6 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
15.7 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 16: Inheritance techniques

16.1 INHERITANCE AND ASSERTIONS

16.2 THE GLOBAL INHERITANCE STRUCTURE

16.3 FROZEN FEATURES

16.4 CONSTRAINED GENERICITY

16.5 ASSIGNMENT ATTEMPT

16.6 TYPING AND REDECLARATION

16.7 ANCHORED DECLARATION

16.8 INHERITANCE AND INFORMATION HIDING

16.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

447
452
456
457
457
458
458

459
460
467
472
480
482
491
494
500
507
516
517
517

519
519
535
541
543
563
566
567
567

569
569
580
583
585
591
595
598
605
609

XXii

CONTENTS

16.10 BIBLIOGRAPHICAL NOTE
EXERCISES

Chapter 17: Typing
17.1 THE TYPING PROBLEM
17.2 STATIC TYPING: WHY AND HOW
17.3 COVARIANCE AND DESCENDANT HIDING
17.4 FIRST APPROACHES TO SYSTEM VALIDITY
17.5 RELYING ON ANCHORED TYPES
17.6 GLOBAL ANALYSIS
17.7 BEWARE OF POLYMORPHIC CATCALLS!
17.8 AN ASSESSMENT
17.9 THE PERFECT FIT
17.10 KEY CONCEPTS STUDIED IN THIS CHAPTER
17.11 BIBLIOGRAPHICAL NOTES

Chapter 18: Global objects and constants
18.1 CONSTANTS OF BASIC TYPES
18.2 USE OF CONSTANTS
18.3 CONSTANTS OF CLASS TYPES
18.4 APPLICATIONS OF ONCE ROUTINES
18.5 CONSTANTS OF STRING TYPE
18.6 UNIQUE VALUES
18.7 DISCUSSION
18.8 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
18.9 BIBLIOGRAPHICAL NOTES
EXERCISES

PART D: OBJECT-ORIENTED METHODOLOGY::
APPLYING THE METHOD WELL

Chapter 19: On methodology
19.1 SOFTWARE METHODOLOGY: WHY AND WHAT
19.2 DEVISING GOOD RULES: ADVICE TO THE ADVISORS
19.3 ON USING METAPHORS
19.4 THE IMPORTANCE OF BEING HUMBLE
19.5 BIBLIOGRAPHICAL NOTES
EXERCISES

Chapter 20: Design pattern: multi-panel interactive systems
20.1 MULTI-PANEL SYSTEMS
20.2 A SIMPLE-MINDED ATTEMPT

610
610

611
611
615
621
628
630
633
636
639
640
641
641

643
643
645
646
648
653
654
656
659
660
660

661

663
663
664
671
673
674
674

675
675
677

CONTENTS

XXiii

20.3 A FUNCTIONAL, TOP-DOWN SOLUTION
20.4 A CRITIQUE OF THE SOLUTION

20.5 AN OBJECT-ORIENTED ARCHITECTURE
20.6 DISCUSSION

20.7 BIBLIOGRAPHICAL NOTE

Chapter 21: Inheritance case study: “undo” in an interactive
system

21.1 PERSEVERARE DIABOLICUM

21.2 FINDING THE ABSTRACTIONS

21.3 MULTI-LEVEL UNDO-REDO

21.4 IMPLEMENTATION ASPECTS

21.5 AUSER INTERFACE FOR UNDOING AND REDOING
21.6 DISCUSSION

21.7 BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 22: How to find the classes
22.1 STUDYING A REQUIREMENTS DOCUMENT
22.2 DANGER SIGNALS
22.3 GENERAL HEURISTICS FOR FINDING CLASSES
22.4 OTHER SOURCES OF CLASSES
22.5 REUSE
22.6 THE METHOD FOR OBTAINING CLASSES
22.7 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
22.8 BIBLIOGRAPHICAL NOTES

Chapter 23: Principles of class design
23.1 SIDE EFFECTS IN FUNCTIONS
23.2 HOW MANY ARGUMENTS FOR A FEATURE?
23.3 CLASS SIZE: THE SHOPPING LIST APPROACH
23.4 ACTIVE DATA STRUCTURES
23.5 SELECTIVE EXPORTS
23.6 DEALING WITH ABNORMAL CASES
23.7 CLASS EVOLUTION: THE OBSOLETE CLAUSE
23.8 DOCUMENTING A CLASS AND A SYSTEM
23.9 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
23.10 BIBLIOGRAPHICAL NOTES
EXERCISES

678
682
684
693
694

695
695
699
704
707
711
712
715
715

719
720
726
731
735
740
741
743
744

747
748
764
770
774
796
797
802
803
806
806
807

XXiV

CONTENTS

Chapter 24: Using inheritance well

241
24.2
243
24.4
24.5
24.6
24.7
24.8
249

HOW NOT TO USE INHERITANCE

WOULD YOU RATHER BUY OR INHERIT?

AN APPLICATION: THE HANDLE TECHNIQUE
TAXOMANIA

USING INHERITANCE: A TAXONOMY OF TAXONOMY
ONE MECHANISM, OR MORE?

SUBTYPE INHERITANCE AND DESCENDANT HIDING
IMPLEMENTATION INHERITANCE

FACILITY INHERITANCE

24.10 MULTIPLE CRITERIA AND VIEW INHERITANCE
2411 HOW TO DEVELOP INHERITANCE STRUCTURES
24.12 A SUMMARY VIEW: USING INHERITANCE WELL
24.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
24.14 BIBLIOGRAPHICAL NOTES

24.15 APPENDIX: A HISTORY OF TAXONOMY
EXERCISES

Chapter 25: Useful techniques

25.1
25.2
253

DESIGN PHILOSOPHY
CLASSES
INHERITANCE TECHNIQUES

Chapter 26: A sense of style

26.1
26.2
26.3
26.4
26.5
26.6
26.7

COSMETICS MATTERS!

CHOOSING THE RIGHT NAMES

USING CONSTANTS

HEADER COMMENTS AND INDEXING CLAUSES
TEXT LAYOUT AND PRESENTATION

FONTS

BIBLIOGRAPHICAL NOTES

EXERCISES

Chapter 27: Object-oriented analysis

27.1
27.2
27.3
274
27.5
27.6
27.7
27.8

THE GOALS OF ANALYSIS

THE CHANGING NATURE OF ANALYSIS

THE CONTRIBUTION OF OBJECT TECHNOLOGY
PROGRAMMING A TV STATION

EXPRESSING THE ANALYSIS: MULTIPLE VIEWS
ANALYSIS METHODS

THE BUSINESS OBJECT NOTATION
BIBLIOGRAPHY

809
809
812
817
820
822
833
835
844
847
851
858
862
863
863
864
869

871
871
872
873

875
875
879
884
886
891
900
901
902

903
903
906
907
907
914
917
919
922

CONTENTS

XXV

Chapter 28: The software construction process

28.1
28.2
28.3
284
28.5
28.6
28.7
28.8
28.9

CLUSTERS

CONCURRENT ENGINEERING

STEPS AND TASKS

THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE
GENERALIZATION

SEAMLESSNESS AND REVERSIBILITY

WITH US, EVERYTHING IS THE FACE

KEY CONCEPTS COVERED IN THIS CHAPTER
BIBLIOGRAPHICAL NOTES

Chapter 29: Teaching the method

29.1
29.2
29.3
294
29.5
29.6
29.7

INDUSTRIAL TRAINING

INTRODUCTORY COURSES

OTHER COURSES

TOWARDS A NEW SOFTWARE PEDAGOGY
AN OBJECT-ORIENTED PLAN

KEY CONCEPTS STUDIED IN THIS CHAPTER
BIBLIOGRAPHICAL NOTES

PART E: ADVANCED TOPICS

Chapter 30: Concurrency, distribution, client-server and

30.1
30.2
30.3
304
30.5
30.6
30.7
30.8
30.9

the Internet
A SNEAK PREVIEW
THE RISE OF CONCURRENCY
FROM PROCESSES TO OBJECTS
INTRODUCING CONCURRENT EXECUTION
SYNCHRONIZATION ISSUES
ACCESSING SEPARATE OBJECTS
WAIT CONDITIONS
REQUESTING SPECIAL SERVICE
EXAMPLES

30.10 TOWARDS A PROOF RULE

30.11 A SUMMARY OF THE MECHANISM

30.12 DISCUSSION

30.13 KEY CONCEPTS INTRODUCED IN THIS CHAPTER
30.14 BIBLIOGRAPHICAL NOTES

EXERCISES

923
923
924
926
926
928
930
933
934
934

935
935
937
941
942
946
948
948

949

951
951
953
956
964
977
982
990
998
1003
1022
1025
1028
1032
1033
1035

XXVi

CONTENTS

Chapter 31: Object persistence and databases

31.1
31.2
31.3
31.4
315
31.6
31.7
31.8
31.9

PERSISTENCE FROM THE LANGUAGE

BEYOND PERSISTENCE CLOSURE

SCHEMA EVOLUTION

FROM PERSISTENCE TO DATABASES
OBJECT-RELATIONAL INTEROPERABILITY
OBJECT-ORIENTED DATABASE FUNDAMENTALS
O-O DATABASE SYSTEMS: EXAMPLES
DISCUSSION: BEYOND O-O DATABASES

KEY CONCEPTS STUDIED IN THIS CHAPTER

31.10 BIBLIOGRAPHICAL NOTES
EXERCISES

Chapter 32: Some O-O techniques for graphical interactive

32.1
32.2
32.3
324
325
32.6
32.7

applications
NEEDED TOOLS
PORTABILITY AND PLATFORM ADAPTATION
GRAPHICAL ABSTRACTIONS
INTERACTION MECHANISMS
HANDLING THE EVENTS
A MATHEMATICAL MODEL
BIBLIOGRAPHICAL NOTES

PART F: APPLYING THE METHOD IN VARIOUS

LANGUAGES AND ENVIRONMENTS

Chapter 33: O-O programming and Ada

33.1
33.2
33.3
334
335
33.6
33.7
33.8
33.9

A BIT OF CONTEXT

PACKAGES

A STACK IMPLEMENTATION

HIDING THE REPRESENTATION: THE PRIVATE STORY
EXCEPTIONS

TASKS

FROM ADA TO ADA 95

KEY CONCEPTS INTRODUCED IN THIS CHAPTER
BIBLIOGRAPHICAL NOTES

EXERCISES

1037
1037
1039
1041
1047
1048
1050
1055
1058
1060
1061
1062

1063
1064
1066
1068
1071
1072
1076
1076

1077

1079
1079
1081
1081
1085
1088
1091
1092
1097
1097
1098

CONTENTS

XXVii

Chapter 34: Emulatina object technology in non-O-O
environments

34.1 LEVELS OF LANGUAGE SUPPORT

34.2 OBJECT-ORIENTED PROGRAMMING IN PASCAL?
34.3 FORTRAN

34.4 OBJECT-ORIENTED PROGRAMMING AND C

34.5 BIBLIOGRAPHICAL NOTES

EXERCISES

1099
1099
1100
1102
1106
1112
1112

Chapter 35: Simula to Java and beyond: major O-O languages

and environments
35.1 SIMULA
35.2 SMALLTALK
35.3 LISP EXTENSIONS
35.4 C EXTENSIONS
35.5 JAVA
35.6 OTHER O-O LANGUAGES
35.7 BIBLIOGRAPHICAL NOTES
EXERCISES

PART G: DOING IT RIGHT

Chapter 36: An object-oriented environment
36.1 COMPONENTS
36.2 THE LANGUAGE
36.3 THE COMPILATION TECHNOLOGY
36.4 TOOLS
36.5 LIBRARIES
36.6 INTERFACE MECHANISMS
36.7 BIBLIOGRAPHICAL NOTES

Epilogue, In Full Frankness Exposing the Language

1113
1113
1126
1130
1131
1136
1137
1138
1139

1141

1143
1143
1144
1144
1148
1150
1152
1160

1161

PART H: APPENDICES 1163

Appendix A: Extracts from the Base libraries 1165
Appendix B: Genericity versus inheritance 1167
B.1 GENERICITY 1168
B.2 INHERITANCE 1173
B.3 EMULATING INHERITANCE WITH GENERICITY 1175
B.4 EMULATING GENERICITY WITH INHERITANCE 1176
B.5 COMBINING GENERICITY AND INHERITANCE 1184
B.6 KEY CONCEPTS INTRODUCED IN THIS APPENDIX 1187
B.7 BIBLIOGRAPHICAL NOTES 1188
EXERCISES 1188
Appendix C: Principles, rules, precepts and definitions 1189
Appendix D: A glossary of object technology 1193
Appendix E: Bibliography 1203
E.1 WORKS BY OTHER AUTHORS 1203
E.2 WORKS BY THE AUTHOR OF THE PRESENT BOOK 1221

Index 1225

Part A:

The Issues

Part A will define the goals of our search by taking a close look at the notion of software
quality, and, for readers who do not fear a spoiler, provide a capsule preview of the
highlights of object technology.

1

Software gquality

Engineering seeks quality; software engineering is the production of quality software
This book introduces a set of techniques which hold the potential for remarkable
improvements in the quality of software products.

Before studying these techniques, we must clarify their goals. Software quality is
best described as a combination of several factors. This chapter analyzes some of the
factors, shows where improvements are most sorely needed, and points to the directio
where we shall be looking for solutions in the rest of our journey.

1.1 EXTERNAL AND INTERNAL FACTORS

We all want our software systems to be fast, reliable, easy to use, readable, modulz
structured and so on. But these adjectives describe two different sorts of qualities.

On one side, we are considering such qualities as speed or ease of use, whc
presence or absence in a software product may be detected by its users. These propel
may be calleé@xternal quality factors.

Under “users” we should include not only the people who actually interact with the final
products, like an airline agent using a flight reservation system, but also those who
purchase the software or contract out its development, like an airline executive in charge
of acquiring or commissioning flight reservation systems. So a property such as the ease
with which the software may be adapted to changes of specifications — defined later in
this discussion asxtendibility —falls into the category of external factors even though

it may not be of immediate interest to such “end users” as the reservations agent.

Other qualities applicable to a software product, such as being modular, or readabl
areinternal factors, perceptible only to computer professionals who have access to thi
actual software text.

In the end, only external factors matter. If | use a Web browser or live near &
computer-controlled nuclear plant, little do | care whether the source program is readabl
or modular if graphics take ages to load, or if a wrong input blows up the plant. But the
key to achieving these external factors is in the internal ones: for the users to enjoy tt
visible qualities, the designers and implementers must have applied internal technique
that will ensure the hidden qualities.

4 SOFTWARE QUALITY 81.2

The following chapters present of a set of modern techniques for obtaining internal
quality. We should not, however, lose track of the global picture; the internal techniques
are not an end in themselves, but a means to reach external software qualities. So we must
start by looking at external factors. The rest of this chapter examines them.

1.2 A REVIEW OF EXTERNAL FACTORS

Here are the most important external quality factors, whose pursuit is the central task of
object-oriented software construction.

Correctness

Definition: correctness

Correctness is the ability of software products to perform their exact tasks,
as defined by their specification.

Correctness is the prime quality. If a system does not do what it is supposed to do,
everything else about it — whether it is fast, has a nice user int...l— matters little.

But this is easier said than done. Even the first step to correctness is already difficult:
we must be able to specify the system requirements in a precise form, by itself quite a
challenging task.

Methods for ensuring correctness will usuallyconditional. A serious software
system, even a small one by today’s standards, touches on so many areas that it would be
impossible to guarantee its correctness by dealing with all components and properties on
a single level. Instead, a layered approach is necessary, each layer relying on lower ones:

Layers in
software

Compilel
C development

Operating System

In the conditional approach to correctness, we only worry about guaranteeing that
each layer is correwon the assumptiothat the lower levels are correct. This is the only
realistic technique, as it achieves separation of concerns and lets us concentrate at each
stage on a limited set of problems. You cannot usefully check that a program in a high-
level language X is correct unless you are able to assume that the compiler on hand
implements X correctly. This does not necessarily mean that you trust the compiler blindly,
simply that you separate the two components of the problem: compiler correctness, and
correctness of your program relative to the language’s semantics.

In the method described in this book, even more layers intervene: software
development will rely on libraries of reusable components, which may be used in many
different applications.

8§1.2 A REVIEW OF EXTERNAL FACTORS 5

Layersin a
development
process that
includes reuse

Robustness
Versus
correctness

[

Application library
" ... More libraries.... |

Base library
Kernel library

Compiler
Operating System

The conditional approach will also apply here: we should ensure that the libraries
correct and, separately, that the application is correct assuming the libraries are.

Many practitioners, when presented with the issue of software correctness, thi
about testing and debugging. We can be more ambitious: in later chapters we will expl
a number of techniques, in particular typing and assertions, meant to help build softw
that is correct from the start — rather than debugging it into correctness. Debugging @
testing remain indispensable, of course, as a means of double-checking the result.

It is possible to go further and take a completely formal approach to softwa
construction. This book falls short of such a goal, as suggested by the somewhat ti
terms “check”, “guarantee” and “ensure” used above in preference to the word “prove
Yet many of the techniques described in later chapters come directly from the work
mathematical techniques for formal program specification and verification, and go a lo
way towards ensuring the correctnideal.

Robustness

Definition: robustness

Robustness is the ability of software systems to react appropriately to
abnormal conditions.

Robustness complements correctness. Correctness addresses the behavior of a syst
cases covered by its specification; robustness characterizes what happens outsid
that specification.

SPECIFICATION
Correctness

Robustness

6 SOFTWARE QUALITY 81.2

As reflected by the wording of its definition, robustness is by nature a more fuzzy
notion than correctness. Since we are concerned here with cases not covered by the
specification, it is not possible to say, as with correctness, that the system should “perform
its tasks” in such a case; were these tasks known, the abnormal case would become part
of the specification and we would be back in the province of correctness.

This definition of “abnormal case” will be useful again when we study exception On exception
handling. Itimplies that the notions of normal and abnormal case are always relative to ahandling see
certain specification; an abnormal case is simply a case that is not covered by thechapterl2.
specification. If you widen the specification, cases that used to be abnormal become

normal — even if they correspond to events such as erroneous user input that you woulc

prefer not to happen. “Normal” in this sense does not mean “desirable”, but simply

“planned for in the design of the software”. Although it may seem paradoxical at first that

erroneous input should be called a normal case, any other approach would have to rely on

subjective criteria, and so would be useless.

There will always be cases that the specification does not explicitly address. The role
of the robustness requirement is to make sure that if such cases do arise, the system does
not cause catastrophic events; it should produce appropriate error messages, terminate its
execution cleanly, or enter a so-called “graceful degradation” mode.

Extendibility

Definition: extendibility

Extendibility is the ease of adapting software products to changes of
specification.

Software is supposed to Isofi, and indeed is in principle; nothing can be easier than to
change a program if you have access to its source code. Just use your favorite text editor.

The problem of extendibility is one of scale. For small programs change is usually
not a difficult issue; but as software grows bigger, it becomes harder and harder to adapt.
A large software system often looks to its maintainers as a giant house of cards in which
pulling out any one element might cause the whole edifice to collapse.

We need extendibility &cause at the basis of all software lies some human
phenomenon and hence fickleness. The obvious case of business software (“Management
Information Systems”), where passage of a law or a company’s acquisition may suddenly
invalidate the assumptions on which a system rested, is not special; even in scientific
computation, where we may expect the laws of physics to stay in place from one month to
the next, our way of understanding and modeling physical systems will change.

Traditional approaches to software engineering did not take enough account of
change, relying instead on an ideal view of the software lifecycle where an initial analysis
stage freezes the requirements, the rest of the process being devoted to designing and
building a solution. This is understandable: the first task in the progress of the discipline
was to develop sound techniques for stating and solving fixed problems, before we could
worry about what to do if the problem changes while someone is busy solving it. But now

8§1.2 A REVIEW OF EXTERNAL FACTORS 7

Chapter4.

with the basic software engineering techniques in place it has become essentia
recognize and address this central issue. Change is pervasive in software developn
change of requirements, of our understanding of the requirements, of algorithms, of d
representation, of implementation techniques. Support for change is a basic goal of ob
technology and a running theme through this book.

Although many of the techniques that improve extendibility may be introduced o
small examples or in introductory courses, their relevance only becomes clear for lar
projects. Two principles are essential for improving extendibility:

» Design simplicit: a simple architecture will always be easier to adapt to change
than a complex one.

e Decentralizatior. the more autonomous the modules, the higher the likelihood the
a simple change will affect just one module, or a small number of modules, ratt
than triggering off a chain reaction of changes over the whole system.

The object-oriented method is, before anything else, a system architecture mett
which helps designers produce systems whose structure remains both simple (ever
large systems) and decentralized. Simplicity and decentralizatibmewecurring themes
in the discussions leading to object-oriented principles in the following chapters.

Reusability

Definition: reusability

Reusability is the ability of software elements to serve for the construction
of many different applications.

The need for reusability comes from the observation that software systems often foll
similar patterns; it should be possible to exploit this commonality and avoid reinventir
solutions to problems that have been encountered before. By capturing such a patter
reusable software element will be applicable to many different developments.

Reusability has an influence on all other aspects of software quality, for solving tl
reusability problem essentially means that less software must be written, and hence
more effort may be devoted (for the same total cost) to improving the other factors, st
as correctness and robustness.

Here again is an issue that the traditional view of the software lifecycle had n
properly recognized, and for the same historical reason: you must find ways to solve ¢
problem before you worry about applying the solution to other problems. But with tt
growth of software and its attempts to become a true industry the need for reusability |
become a pressing concern.

Reusability will play a central role in the discussions of the following chapters, on
of which is in fact devoted entirely to an in-depth examination of this quality factor, it
concrete benefits, and the issues it raises.

8 SOFTWARE QUALITY 81.2

Compatibility

Definition: compatibility

Compatibility is the ease of combining software elements with others.

Compatibility is important because we do not develop software elements in a vacuum:

they need to interact with each other. But they too often have trouble interacting because
they make conflicting assumptions about the rest of the world. An example is the wide

variety of incompatible file formats supported by many operating systems. A program can

directly use another’s result as input only if the file formats are compatible.

Lack of compatibility can yield disaster. Here is an extreme case:

DALLAS — Last we, AMR, the parent company of American Airli,, Inc., said it fell San Jos(Calif.)
on its sword trying to develop a state-of-the, industry-wide system that could also Mercury New, July
handle car and hotel reservatic.ns 20,1992, Quoted in

AMR cut off development of its new Confirm reservation system only weeks after it Wasthe comp risks
Usenet newsgrot, 3

supposed to start taking care of transactions for partners Budget Rent, Hilton 13.67, July 199:
Hotels Cor}. and Marriott Cory. Suspension of the $125 mill, 4-year-old project Sli.ght,ly abridg(;i

translated into a $165 million pre-tax charge against AMR’s earnings and fractured the
company'’s reputation as a pacesetter in travel technc [...]

As far back as Janug, the leaders of Confirm discovered that the labors of more than
200 programmel, systems analysts and engineers had apparently been for . Theht
main pieces of the massive project — requirin,000 pages to describe — had been
developed separate, by different metho. When put togeth, they did not work with
each othe. When the developers attempted to plug the parts tog, they could nct
Different “modules” could not pull the information needed from the other side of the
bridge.

AMR Information Services fired eight senior project men, including the team leader.
[...] In late Jun, Budget and Hilton said they were dropping.out

The key to compatibility lies in homogeneity of design, and in agreeing on
standardized conventions for inter-program communication. Approaches include:

» Standardized file formats, as in the Unix system, where every text file is simply a
sequence of characters.

» Standardized data structures, as in Lisp systems, where all data, and programs as
well, are represented by binary trees (called lists in Lisp).

» Standardized user interfaces, as on various versions of Windows, OS/2 and MacOS,
where all tools rely on a single paradigm for communication with the user, based on
standard components such as windows, icons, menus etc.

More general solutions are obtained by defining standardized access protocolsOn abstract data
important entities manipulated by the software. This is the idea behind abstract datatypes see chapt®.

and the object-oriented approach, as well as so-cmiddlewareprotocols such as
CORBA and Microsoft's OLE-COM (ActiveX).

8§1.2 A REVIEW OF EXTERNAL FACTORS 9

Efficiency

Definition: efficiency

Efficiency is the ability of a software system to place as few demangds as
possible on hardware resources, such as processor time, space occupied in
internal and external memories, bandwidth used in communication devjces.

Almost synonymous with efficiency is the word “performance”. The software communit
shows two typical attitudes towards efficiency:

* Some developers have an obsession with performance issues, leading them to de
a lot of efforts to presumed optimizations.

e But a general tendency also exists to downplay efficiency concerns, as evidencec
such industry lore as “make it right before you make it fast” and “next year’
computer model is going to be 50% faster anyway”.

Itis not uncommon to see the same person displaying these two attitudes at differ
times, as in a software case of split personality (Dr. Abstract and Mr. Microsecond).

Where is the truth? Clearly, developers have often shown an exaggerated concerr
micro-optimization. As already noted, efficiency does not matter much if the software
not correct (suggesting a new dicturdo not worry how fast it is unless it is also ri",1t
close to the previous one but not quite the same). More generally, the concern
efficiency must be balanced with other goals such as extendibility and reusability; extre
optimizations may make the software so specialized as to be unfit for change and ret
Furthermore, the ever growing power of computer hardware does allow us to have am
relaxed attitude about gaining the last byte or microsecond.

All this, however, does not diminish the importance of efficiency. No one likes t
wait for the responses of an interactive system, or to have to purchase more memory to
a program. So offhand attitudes to performance include much posturing; if the final syst
is so slow or bulky as to impede usage, those who used to declare that “speed is not
important” will not be the last to complain.

This issue reflects what | believe to be a major characteristic of software engineeri
not likely to move away soon: software construction is difficult precisely because
requires taking into account many different requirements, some of which, such
correctness, are abstract and conceptual, whereas others, such as efficiency, are cor
and bound to the properties of computer hardware.

For some scientists, software development is a branch of mathematics; for so
engineers, it is a branch of applied technology. In reality, it is both. The software develoj
must reconcile the abstract concepts with their concrete implementations, the matheme
of correct computation with the time and space constraints deriving from physical la
and from limitations of current hardware technology. This need to please the angels
well as the beasts may be the central challenge of software engineering.

10 SOFTWARE QUALITY 81.2

The constant improvement in computer power, impressive as it is, is not an excuse
for overlooking efficiency, for at least three reasons:

* Someone who purchases a bigger and faster computer wants to see some actual
benefit from the extra power — to handle new problems, process previous problems
faster, or process bigger versions of the previous problems in the same amount of
time. Using the new computer to process the previous problems in the same amount
of time will not do!

« One of the most visible effects of advances in computer power is actuincrease
the lead of good algorithms over bad ones. Assume that a new machine is twice as
fastas the previous one. In be the size of the problem to solve, iN the maximum
n that can be handled by a certain algorithm in a given time. Then if the algorithm is
in O (n), that is to say, runs in a time proportionan, the new machine will enable
you to handle problem sizes of ab2 [N for largeN. For an algorithm in Or¢) the
new machine will only yield a 41% increaseN. An algorithm in O 2"), similar to
certain combinatorial, exhaustive-search algorithms, would just add (N — not
much of an improvement for your money.

* In some cases efficiency may affect correctness. A specification may state that the
computer response to a certain event must occur no later than a specified time; for
example, an in-flight computer must be prepared to detect and process a message
from the throttle sensor fast enough to take corrective action. This connection
between efficiency and correctness is not restricted to applications commonly
thought of as “real time”; few people are interested in a weather forecasting model
that takes twenty-four hours to predict the next day’s weather.

Another example, although perhaps less critical, has been of frequent annoyance to me:
a window management system that | used for a while was sometimes too slow to detect
that the mouse cursor had moved from a window to another, so that characters typed at
the keyboard, meant for a certain window, would occasionally end up in another.

In this case a performance limitation causes a violation of the specification, that is to say
of correctness, which even in seemingly innocuous everyday applications can cause nasty
consequences: think of what can happen if the two windows are used to send electronic
mail messages to two different correspondents. For less than this marriages have been
broken, even wars started.

Because this book is focused on the concepts of object-oriented software engineering,
not on implementation issues, only a few sections deal explicitly with the associated
performance costs. But the concern for efficiency will be there throughout. Whenever the
discussion presents an object-oriented solution to some problem, it will make sure that the
solution is not just elegant but also efficient; whenever it introduces some new O-O
mechanism, be it garbage collection (and other approaches to memory management for
object-oriented computation), dynamic binding, genericity or repeated inheritance, it will do
so based on the knowledge that the mechanism may be implemented at a reasonable cost in
time and in space; and whenever appropriate it will mention the performance consequences
of the techniques studied.

8§1.2 A REVIEW OF EXTERNAL FACTORS 11

Efficiency is only one of the factors of quality; we should not (like some in the
profession) let it rule our engineering lives. But it is a factor, and must be taken in
consideration, whether in the construction of a software system or in the design o
programming language. If you dismiss performance, performance will dismiss you.

Portability

Definition: portability

Portability is the ease of transferring software products to various hargdware
and software environments.

Portability addresses variations not just of the physical hardware but more generally of
hardware-software machine, the one that we really program, which includes the
operating system, the window system if applicable, and other fundamental tools. In 1
rest of this book the word “platform” will be used to denote a type of hardware-softwa
machine; an example of platform is “Intel X86 with Windows NT” (known as “Wintel”).

Many of the existing platform incompatibilities are unjustified, and to a naive
observer the only explanation sometimes seems to be a conspiracy to victimize huma
in general and programmers in particular. Whatever its causes, however, this diver:
makes portability a major concern for both developers and users of software.

Ease of use

Definition: ease of use

Ease of use is the ease with which people of various backgrounds and
gualifications can learn to use software products and apply them to|solve
problems. It also covers the ease of installation, operation and monitoring.

The definition insists on the various levels of expertise of potential users. This requirem
poses one of the major challenges to software designers preoccupied with ease of use:
to provide detailed guidance and explanations to novice users, without bothering exy
users who just want to get right down to business.

As with many of the other qualities discussed in this chapter, one of the keys to e:
of use is structural simplicity. A well-designed system, built according to a clear, we
thought-out structure, will tend to be easier to learn and use than a messy one.
condition is not sufficient, of course (what is simple and clear to the designer may
difficult and obscure to users, especially if explained in designer’s rather than use
terms), but it helps considerably.

This is one of the areas where the object-oriented method is particularly productiy
many O-O techniques, which appear at first to address design and implementation,
yield powerful new interface ideas that help the end users. Later chapters will introdu
several examples.

12 SOFTWARE QUALITY 81.2

Software designers preoccupied with ease of use will also be well-adviseSee Wilfred .|
consider with some mistrust the precept most frequently quoted in the user inteHanser, “User
literature, from an early article by Hans&know the use. The argument is that a gooxElgg'?grel':]’t‘grzcrm‘Z'
designer must make an effort to understand the system’s intended user com munitygystems' Proceed-
view ignores one of the features of successful systems: they always outgrow their ings of FICC 3;!
audience. (Two old and famous examples are Fortran, conceived as a tool to SOIAFIPS Pres,;
problem of the small community of engineers and scientists programming the 1BM Montvale(N.),
and Unix, meant for internal use at Bell Laboratories.) A system designed for a splgn’ PP 523-53.

group will rely on assumptions that simply do not hold for a larger audience.

Good user interface designers follow a more prudent policy. They make as limited
assumptions about their users as they can. When you design an interactive system, you
may expect that users are members of the human race and that they can read, move a
mouse, click a button, and type (slowly); not much more. If the software addresses a
specialized application area, you may perhaps assume that your users are familiar with its
basic concepts. But even that is risky. To reverse-paraphrase Hansen’s advice:

User Interface Design principle

Do not pretend you know the user; you don't.

Functionality

Definition: functionality
Functionality is the extent of possibilities provided by a system.

One of the most difficult problems facing a project leader is to know how much
functionality is enough. The pressure for more facilities, known in industry parlance as
featurism(often “creeping featurisi’), is constantly there. Its consequences are bad for
internal projects, where the pressure comes from users within the same company, and
worse for commercial products, as the most prominent part of a journalist’'s comparative
review is often the table listing side by side the features offered by competing products.

Featurism is actually the combination of two problems, one more difficult than the
other. The easier problem is the loss of consistency that may result from the addition of
new features, affecting its ease of use. Users are indeed known to complain that all the
“bells and whistles” of a product’s new version make it horrendously complex. Such
comments should be taken with a grain of salt, however, since the new features do not
come out of nowhere: most of the time they have been requested by uother users.

What to me looks like a superfluous trinket may be an indispensable facility to you.

The solution here is to work again and again on the consistency of the overall
product, trying to make everything fit into a general mold. A good software product is
based on a small number of powerful ideas; even if it has many specialized features, they
should all be explainable as consequences of these basic concepts. The “grand plan” must
be visible, and everything should have its place in it.

8§1.2 A REVIEW OF EXTERNAL FACTORS 13

Osmond’s
curves; afte
[Osmond 1995]

The more difficult problem is to avoid being so focused on features as to forget t
other qualities. Projects commonly make such a mistake, a situation vividly pictured |
Roger Osmond in the form of two possible pathsproject’s completion:

Other qualities

Desirable

\Debugging

N
Envisaged
early
releases

Functionality

The bottom curve (black) is all too common: in the hectic race to add more featur:
the development loses track of the overall quality. The final phase, intended to get thir
right at last, can be long and stressful. If, under users’ or competitors’ pressure, you
forced to release the product early — at stages marked by black squares in the figure
the outcome may be damaging to your reputation.

What Osmond suggests (the color curve) is, aided by the quality-enhancii
techniques of O-O development, to maintain the quality level constant throughout t
project for all aspects but functionality. You just do not compromise on reliability
extendibility and the like: you refuse to proceed with new features until you are happy wi
the features you have.

This method is tougher to enforce on a day-to-day basis because of the press
mentioned, but yields a more effective software process and often a better product in
end. Even if the final result is the same, as assumed in the figure, it should be reac
sooner (although the figure does not show time). Following the suggested path also me
that the decision to release an early version — at one of the points marked by colo
squares in the figure — becomes, if not easier, at least simpler: it will be based on y
assessment of whether what you have so far covers a large enough share of the full fe:
set to attract prospective customers rather than drive them away. The question “is it g
enough?” (as in “will it not crash?”) should not be a factor.

As any reader who has led a software project will know, it is easier to approve su
advice than to apply it. But every project should strive to follow the approach represent
by the better one of the two Osmond curves. It goes well witcluster modeintroduced
in a later chapter as the general scheme for disciplined object-oriented development.

14 SOFTWARE QUALITY 81.2

Timeliness

Definition: timeliness

Timeliness is the ability of a software system to be released when or before
its users want it.

Timeliness is one of the great frustrations of our industry. A great software product that
appears too late might miss its target altogether. This is true in other industries too, but few
evolve as quickly as software.

Timeliness is still, for large projects, an uncommon phenomenon. When Micr¢NT 4.0 Beats
announced that the latest release of its principal operating system, several yearsClock’, Computer-
making, would be delivered one month early, the event was newsworthy enough to\é\(’)ogj 3’&; 31%'920'
(at the top of an article recalling the lengthy delays that affected earlier projects) the '
page headline cComputerWorl.

Other qualities

Other qualities beside the ones discussed so far affect users of software systems and the
people who purchase these systems or commission their development. In particular:

* Verifiability is the ease of preparing acceptance procedures, especially test data, and
procedures for detecting failures and tracing them to errors during the validation and
operation phases.

* Integrity is the ability of software systems to protect their various components
(programs, data) against unauthorized access and modification.

* Repairability is the ability to facilitate the repair of defects.

» Economy, the companion of timeliness, is the ability of a system to be completed on
or below its assigned budget.

About documentation

In a list of software quality factors, one might expect to find the presence of good
documentation as one of the requirements. But this is not a separate quality factor; instead,
the need for documentation is a consequence of the other quality factors seen above. We
may distinguish between three kinds of documentation:

* The need foexternaldocumentation, which enables users to understand the power
of a system and use it conveniently, is a consequence of the definition of ease of use.

e The need forinternal documentation, which enables software developers to
understand the structure and implementation of a system, is a consequence of the
extendibility requirement.

* The need formodule interfacedocumentation, enabling software developers to
understand the functions provided by a module without having to understand its
implementation, is a consequence of the reusability requirement. It also follows from
extendibility, as module interface documentation makes it possible to determine
whether a certain change need affect a certain module.

8§1.2 A REVIEW OF EXTERNAL FACTORS 15

Rather than treating documentation as a product separate from the software pro
it is preferable to make the software as self-documenting as possible. This applies tc
three kinds of documentation:

* By including on-line “help” facilities and adhering to clear and consistent use
interface conventions, you alleviate the task of the authors of user manuals and of
forms of external documentation.

« A good implementation language will remove much of the need for interne
documentation if it favors clarity and structure. This will be one of the majol
requirements on the object-oriented notation developed throughout this book.

e The notation will support information hiding and other techniques (such a
assertions) for separating the interface of modules from their implementation. It
then possible to use tools to produce module interface documentation automatice
from module texts. This too is one of the topics studied in detail in later chapters.

All these techniques lessen the role of traditional documentation, although of cour
we cannot expect them to remove it completely.

Tradeoffs

In this review of external software quality factors, we have encountered requirements t
may conflict with one another.

How can one geintegrity without introducing protections of various kinds, which
will inevitably hamperease of us? Economyoften seems to fight witlfunctionality.
Optimalefficiency would require perfect adaptation to a particular hardware and softwal
environment, which is the oppositeportability, and perfect adaptation to a specification,
wherereusability pushes towards solving problems more general than the one initial
given. Timelinesspressures might tempt us to use “Rapid Application Development
techniques whose results may not enjoy mextendibility.

Although it is in many cases possible to find a solution that reconciles apparen
conflicting factors, you will sometimes need to make tradeoffs. Too often, develope
make these tradeoffs implicitly, without taking the time to examine the issues involve
and the various choices available; efficiency tends to be the dominating factor in st
silent decisions. A true software engineering approach implies an effort to state the crite
clearly and make the choices consciously.

Necessary as tradeoffs between quality factors may be, one factor stands out fi
the rest: correctness. There is never any justification for compromising correctness for
sake of other concerns such as efficiency. If the software does not perform its function,
rest is useless.

Key concerns

All the qualities discussed above are important. But in the current state of the softw:
industry, four stand out:

16 SOFTWARE QUALITY 81.2

« Correctnes androbustnes: it is still too difficult to produce software without defects
(bugs), and too hard to correct the defects once they are there. Techniques for
improving correctness and robustness are of the same general flavors: more systematic
approaches to software construction; more formal specifications; built-in checks
throughout the software construction process (not just after-the-fact testing and
debugging); better language mechanisms such as static typing, assertions, automatic
memory management and disciplined exception handling, enabling developers to state
correctness and robustness requirements, and enabling tools to detect inconsistencies
before they lead to defects. Because of this closeness of correctness and robustness
issues, it is convenient to use a more general freliability , to cover both factors.

» Extendibility and reusability: software should be easier to change; the software
elements we produce should be more generally applicable, and there should exist a
larger inventory of general-purpose components that we can reuse when developing
a new system. Here again, similar ideas are useful for improving both qualities: any
idea that helps produce more decentralized architectures, in which the components
are self-contained and only communicate through restricted and clearly defined
channels, will help. The termodularity will cover reusability and extendibility.

As studied in detail in subsequent chapters, the object-oriented method can
significantly improve these four quality factors — which is why it is so attractive. It also
has significant contributions to make on other aspects, in particular:

* Compatibility: the method promotes a common design style and standardized
module and system interfaces, which help produce systems that will work together.

» Portability: with its emphasis on abstraction and information hiding, object
technology encourages designers to distinguish between specification and
implementation properties, facilitating porting efforts. The techniques of
polymorphism and dynamic binding will even make it possible to write systems that
automatically adapt to various components of the hardware-software machine, for
example different window systems or different database management systems.

* Ease of us: the contribution of O-O tools to modern interactive systems and
especially their user interfaces is well known, to the point that it sometimes obscures
other aspects (ad copy writers are not the only people who call “object-oriented” any
system that uses icons, windows and mouse-driven input).

« Efficiency: as noted above, although the extra power or object-oriented technigues at
first appears to carry a price, relying on professional-quality reusable components
can often yield considerable performance improvements.

* Timelines, econom andfunctionality;: O-O techniques enable those who master
them to produce software faster and at less cost; they facilitate addition of functions,
and may even of themselves suggest new functions to add.

In spite of all these advances, we should keep in mind that the object-oriented method
is not a panacea, and that many of the habitual issues of software engineering remain.
Helping to address a problem is not the same as solvirproblem.

§1.3 ABOUT SOFTWARE MAINTENANCE 17

Breakdown of
maintenance
cost:. Source:
[Lientz 1980]

1.3 ABOUT SOFTWARE MAINTENANCE

The list of factors did not include a frequently quoted quality: maintainability. Tc
understand why, we must take a closer look at the underlying notion, maintenance.

Maintenance is what happens after a software product has been deliver
Discussions of software methodology tend to focus on the development phase; so
introductory programming courses. But it is widely estimated that 70% of the cost |
software is devoted to maintenance. No study of software quality can be satisfactory i
neglects this aspect.

What does “maintenance” mean for software? A minute’s reflection shows this ter
to be a misnomer: a software product does not wear out from repeated usage, and thus
not be “maintained” the way a car or a TV set does. In fact, the word is used by softw;
people to describe some noble and some not so noble activities. The noble par
modification: as the specifications of computer systems change, reflecting changes in
external world, so must the systems themselves. The less noble part is late debugc
removing errors that should never have been there in the first place.

— - ~

_—

The above chart, drawn from a milestone study by Lientz and Swanson, sheds sc
light on what the catch-all term of maintenance really covers. The study surveyed 4
installations developing software of all kinds; although it is a bit old, more recer
publications confirm the same general results. It shows the percentage of maintena
costs going into each of a number of maintenance activities identified by the authors.

More than two-fifths of the cost is devoted to user-requested extensions a
modifications. This is what was called above the noble part of maintenance, which is a
the inevitable part. The unanswered question is how much of the overall effort the indus
could spare if it built its software from the start with more concern for extendibility. We ma
legitimately expect object technology to help.

18 SOFTWARE QUALITY 81.3

The second item in decreasing order of percentage cost is particularly intereFor another
effect of changes in data formats. When the physical structure of files and other dataexampl, see*How
change, programs must be adapted. For example, when the US Postal Service, a fe!0nd is amiddie .
ago, introduced the “5+4” postal code for large companies (using nine digits instegf‘ﬂ? - page 12+
five), numerous programs that dealt with addresses and “knew” that a postal code was
exactly five digits long had to be rewritten, an effort which press accounts estimated in the

hundreds of millions of dollars.

Many readers will have received the beautiful brochures for a set of conferences — not a
single event, but a sequence of sessions in many cities — devoted to the “millennium
problem” how to go about upgrading the myriads of date-sensitive programs whose

authors never for a moment thought that a date could exist beyond the twentieth century.
The zip code adaptation effort pales in comparison. Jorge Luis Borges would have liked
the idea: since presumably few people care about what will happen on 1 January 3000,
this must be the tiniest topic to which a conference series, or for that matter a conference,
has been or will ever be devoted in the history of humaa single decimal dig.it

The issue is not that some part of the program knows the physical structure of data:
this is inevitable since the data must eventually be accessed for internal handling. But with
traditional design techniques this knowledge is spread out over too many parts of the
system, causing unjustifiably large program changes if some of the physical structure
changes — as it inevitably will. In other words, if postal codes go from five to nine digits,
or dates require one more digit, it is reasonable to expect that a program manipulating the
codes or the dates will need to be adapted; what is not acceptable is to have the knowledge
of the exact length of the data plastered all across the program, so that changing thatlength
will cause program changes of a magnitude out of proportion with the conceptual size of
the specification change.

The theory of abstract data types will provide the key to this problem, by allovChapter6 covers
programs to access data by external properties rather than physical im plementatiorébztff\c_‘t data types
In aetal.
Another significant item in the distribution of activities is the low percentage (5.5%)
of documentation costs. Remember that these are costs of tasks done at maintenance time.
The observation here — at least the speculation, in the absence of more specific data — is
that a project will either take care of its documentation as part of development or not do it
at all. We will learn to use a design style in which much of the documentation is actually
embedded in the software, with special tools available to extract it.

The next items in Lientz and Swanson’s list are also interesting, if less directly
relevant to the topics of this book. Emergency bug fixes (done in haste when a user reports
that the program is not producing the expected results or behaves in some catastrophic
way) cost more than routine, scheduled corrections. This is not only because they must be
performed under heavy pressure, but also because they disrupt the orderly process of
delivering new releases, and may introduce new errors. The last two activities account for
small percentages:

§1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER 19

* One is efficiency improvements; this seems to suggest that once a system wol
project managers and programmers are often reluctant to disrupt it in the hope
performance improvements, and prefer to leave good enough alone. (Wh
considering the “first make it right, then make it fast” precept, many projects al
probably happy enough to stop at the first of these steps.)

» Also accounting for a small percentage is “transfer to new environments”. A possik
interpretation (again a conjecture in the absence of more detailed data) is that th
are two kinds of program with respect to portability, with little in-between: somge
programs are designed with portability in mind, and cost relatively little to port
others are so closely tied to their original platform, and would be so difficult to por
that developers do not even try.

1.4 KEY CONCEPTS INTRODUCED IN THIS CHAPTER

* The purpose of software engineering is to find ways of building quality software.

* Rather than a single factor, quality in software is best viewed as a tradeoff betwe
a set of different goals.

« External factors, perceptible to users and clients, should be distinguished frc
internal factors, perceptible to designers and implementors.

* What matters is the external factors, but they can only be achieved through 1
internal factors.

» A list of basic external quality factors was presented. Those for which currel
software is most badly in need of better methods, and which the object-orient
method directly addresses, are the safety-related factors correctness and robustt
together known as reliability, and the factors requiring more decentralized softwa
architectures: reusability and extendibility, together known as modularity.

« Software maintenance, which consumes a large portion of software costs,
penalized by the difficulty of implementing changes in software products, and by t
over-dependence of programs on the physical structure of the data they manipule

1.5 BIBLIOGRAPHICAL NOTES

Several authors have proposed definitions of software quality. Among the first articles
subject, two in particular remain valuable tod[Hoare 1972, a guest editorial, and
[Boehm 197§, the result of one of the first systematic studies, by a group at TRW.

The distinction between external and internal factors was introduced in a 19
General Electric study commissioned by the US Air F(McCall 1977. McCall uses
the terms “factors” and “criteria” for what this chapter has called external factors ar
internal factors. Many (although not all) of the factors introduced in this chapte
correspond to some of McCall’'s; one of his factors, maintainability, was droppe:
because, as explained, it is adequately covered by extendibility and verifiability. McCall
study discusses not only external factors but also a number of internal factors (“criteris

20 SOFTWARE QUALITY 81.5

as well asmetrics, or quantitative techniques for assessing satisfaction of the internal
factors. With object technology, however, many of that study’s internal factors and
metrics, too closely linked with older software practices, are obsolete. Carrying over this
part of McCall's work to the techniques developed in this book would be a useful project;
see the hibliography and exercises to cha3.ter

The argument about the relative effect of machine improvements depending on the
complexity of the algorithms is derived frc[Aho 1974.

On ease of use, a standard referencgShneiderman 198, expanding on
[Shneiderman 198, which was devoted to the broader topic of software psychology. The
Web page of Shneiderman’s labhttp://www.cs.umd.edu/projects/h: contains many
bibliographic references on these topics.

The Osmond curves come from a tutorial given by Roger Osmond at TOOLS USA
[Osmond 199E. Note that the form given in this chapter does not show time, enabling a
more direct view of the tradeoff between functionality and other qualities in the two
alternative curves, but not reflecting the black curve’s potential for delaying a project.
Osmond’s original curves are plotted against time rather than functionality.

The chart of maintenance costs is derived from a study by Lientz and Swanson,
based on a maintenance questionnaire sent to 487 organiz[Lientz 1980. See also
[Boehm 197¢. Although some of their input data may be considered too specialized and
by now obsolete (the study was based on batch-type MIS applications of an average size
of 23,000 instructions, large then but not by today’s standards), the results generally seem
still applicable. The Software Management Association performs a yearly survey of
maintenance; se[Dekleva 1992 for a report about one of these surveys.

The expressionprogramming-in-the-largeand programming-in-the-smalwere
introduced by[DeRemer 197¢.]

For a general discussion of software engineering issues, see the textbook by Ghezzi,
Jazayeri and Mandrio[Ghezzi 1991. A text on programming languages by some of the
same author{Ghezzi 1997, provides complementary background for some of the issues
discussed in the present book.

2

Criteria of object orientation

In the previous chapter we explored the goals of the object-oriented method. As
preparation for part® andC, in which we will discover the technical details of the
method, it is useful to take a quick but wide glance at the key aspects of object-oriente
development. Such is the aim of this chapter.

One of the benefits will be to obtain a concise memento of what makes a syster
object-oriented. This expression has nowadays become so indiscriminately used that v
need a list of precise properties under which we can assess any method, language or t
that its proponents claim to be O-O.

This chapter limits its explanations to a bare minimum, so if this is your first reading
you cannot expect to understand in detail all the criteria listed; explaining them is the tas
of the rest of the book. Consider this discussion a preview — not the real movie, just a traile

Warning Actually a warning is in order because unlike any good trailer this chapter is alsc

SPOILER what film buffs call espoiler— it gives away some of the plot early. As such it breaks the
step-by-step progression of this book, especially part B, which patiently builds the cas
for object technology by looking at issue after issue before deducing and justifying the
solutions. If you like the idea of reading a broad overview before getting into more depth
this chapter is for you. But if you prefaptto spoil the pleasure of seeing the problems
unfold and of discovering the solutions one by one, then you should simply skip it. You
will not need to have read it to understand subsequent chapters.

2.1 ON THE CRITERIA

Let us first examine the choice of criteria for assessing objectness.

How dogmatic do we need to be?

The list presented below includes all the facilities which | believe to be essential for the
production of quality software using the object-oriented method. It is ambitious and may
appear uncompromising or even dogmatic. What conclusion does this imply for ar
environment which satisfies some but not all of these conditions? Should one just reje
such a half-hearted O-O environment as totally inadequate?

22 CRITERIA FOR OBJECT ORIENTATIONS2.2

Only you, the reader, can answer this question relative to your own context. Several
reasons suggest that some compromises may be necessary:

* “Object-oriented” is not a boolean condition: environment A, although not 100%
0-0, may be “more” O-0O than environment B; so if external constraints limit your
choice to A and B you will have to pick A as the least bad object-oriented choice.

* Not everyone will need all of the properties all the time.

< Object orientation may be just one of the factors guiding your search for a software
solution, so you may have to balance the criteria given here with other considerations.

All this does not change the obvious: to make informed choices, even if practical
constraints impose less-than-perfect solutions, you need to know the complete picture, as
provided by the list below.

Categories

The set of criteria which follows has been divided into three parts:

* Method and languac these two almost indistinguishable aspects cover the thought
processes and the notations used to analyze and produce software. Be sure to note
that (especially in object technology) the term “language” covers not just the
programming language in a str