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Preface 

Airways disease encompasses a broad range of pathologies including bronchial asth
ma, rhinitis, chronic obstructive pulmonary disease, bronchitis, acute bronchiolitis, 
emphysema and fibrosing alveolitis. A characteristic feature of these diseases is the 
recruitment and activation of inflammatory cells and resident cells. The general con
sensus is that alterations in the function of these cells contribute to airways disease. 
A greater understanding of the mechanisms which lead to altered cell responsiveness 
in disease will hopefully enhance the development of new anti-inflammatory modal
ities for the treatment of airways disease. 

In the first chapter, an exhaustive review of the composition and integrity of pul
monary cells in various pathophysiological conditions is given and is accompanied 
by an excellent selection of electron photomicrographs of various cell types thought 
to be important in the disease process. This is followed by individual chapters devot
ed to an in-depth analysis of the contribution of various cell types to airways inflam
mation and focus on the cellular structure, mechanism of activation, biological 
activity and pharmacological modulation of the major cells that can contribute to 
airways disease. It is evident that no single cell type can explain airways disease, but 
rather, cell to cell communication at various levels is a characteristic feature of these 
diseases and highlights the complex and chaotic nature that underlies the inflam
matory process. 

The last chapter is devoted to summarizing the state of play with regard to the 
current anti-inflammatory drugs that are available to clinicians, including providing 
an up to date review of emerging therapies. 

We thank Katrin Serries, Janine Kern and Hans Detlef Kliiber of Birkhiiuser Ver
lag AG for their extreme patience and expert assistance in the preparation of this 
volume. We are also deeply indebted to the authors who have helped contribute to 
this volume which we believe will provide an important compendium for those 
interested in airways disease. 

February 2000 Katharine H. Banner 
Domenico Spina 

Clive Page 



Pathological spectrum of airway inflammation 

Peter K. Jeffery 

Lung Pathology Unit, Histopathology, Royal Brompton Hospital: National Heart and Lung 
Institute, Imperial College, London, SW3 6NP, UK 

Introduction 

In man and other mammalian species, the upper (nasal passages) and lower airways 
are lined by a continuous moist mucosal layer. The mucosa forms the border 
between the external environment and host tissue where irritants, infection and 
allergens are first deposited. It is the site at which immune responses are initiated by 
immuno-competent cells in association with resident antigen presenting cells (APC). 
In humans, subsequent exposure to the relevant allergen initiates immune reactions, 
which may become chronic. These reactions are designed as defence mechanisms 
that normally protect the body; however, when they are inappropriate or misdirect
ed they may injure host tissue. At rest, approximately 10,000 to 15,000 L of air, 
containing pollutants and allergens, moves daily over the human nasal and tracheo
bronchial airway mucosa. In the nasal passages and proximal conducting airways 
of the lung the air is sampled, conditioned, and rendered free of irritants and aller
gens before it reaches the respiratory portion of the lung. The cleansing function of 
the conducting airways depends upon its branching pattern and the dynamic inter
actions of structural cells, immuno-competent cells, and neural elements. Changes 
in the composition and integrity of airway-wall structural components may alter its 
effectiveness and predispose the respiratory portion of the lung to injury. 

A prerequisite to understanding the pathogenesis of allergic inflammatory disor
ders is an appreciation of normal airway structure and function. The present chap
ter first outlines briefly the normal structure of the airways and the lining mucosa, 
considers the role and salient features of inflammation and then focuses on the 
structural changes and inflammatory events of several selected inflammatory condi
tions including rhinitis, bronchial asthma, acute bronchitis and bronchiolitis (par
ticularly that due to respiratory infections), chronic bronchitis and chronic obstruc
tive pulmonary disease (henceforth referred to as COPD) and briefly fibrosing alve
olitis. 

Cellular Mechanisms in Airways Inflammation, edited by Clive P. Page, Katharine H. Banner and 
Domenico Spina 
© 2000 Birkhauser Verlag Basel/Switzerland 



Peter K. Jeffery 

Normal micro-structure 

Airway divisions 

The larynx is conventionally considered to mark the boundary between upper and 
lower respiratory tracts (henceforth referred to as URT and LRT): the upper extends 
from the external nares to the larynx, and the lower from the larynx to the visceral 
pleura. The upper respiratory tract consists of the nose and the pharynx; the former 
is divided into two nostrils by a median septum. The superior part of the nose is sur
rounded entirely by bone, and posteriorly it opens into the nasopharynx which con
tinues into the oro- and laryngopharynx. Each nasal cavity is wider anteriorly than 
posteriorly. On each lateral wall there are three turbinates. A system of air sinuses 
also drains into the upper respiratory tract. Lymphoid tissue in the upper respirato
ry tract comprises the nasopharyngeal and palatine tonsils. The former, termed ade
noids, are a diffuse aggregate of lymphoid cells in the mucosa lining of the 
nasopharynx, covered by folds of predominantly pseudostratified epithelium. Two 
palatine tonsils are situated in the lateral walls of the oropharynx, covered by a 
stratified, squamous, non-keratinizing epithelium invaginated to form deep crypts. 
Posterior to the pharynx are the larynx, the organ of speech, and the glottis, through 
which air enters into the lower respiratory tract and its tree of successively branch
ing airways. 

The larynx opens into the trachea, which enters the thorax and divides to form 
two main bronchi, one leading to each lung. The right and left lungs are lobed, occu
py most of the thorax, are enclosed within the rib cage, and are enveloped by pleur
al membranes. Medially the lungs abut the mediastinum (which includes the peri
cardium) and posteriorly they rest on the diaphragm. Airways and vessels meet at 
the hilum of the lung at a point where it connects to the mediastinum. The pattern 
of airway branching is described as one of asymmetrical dichotomy, and from tra
chea to alveolus there are between 8-23 generations of airways, depending on the 
distance from the hilum to the pleural surface. 

The summed cross-sectional area for each generation of airways increases loga
rithmically; thus, at the periphery, the resistance to air flow is negligible [1]. With 
inspiration, the velocity of air entering the lungs falls rapidly due to the marked 
increase in total cross-sectional area of the more peripheral airways. The surface of 
the alveolar walls available to gas transfer is about 60-70 m [2], i.e., about half the 
area of a singles tennis court. The respiratory zone is kept free of allergens, pollu
tants, and infection by airway defence mechanisms that include nervous reflexes 
leading to bronchoconstriction and/or cough, ciliary activity, secretion of mucus, 
lysozyme, lactoferrin, and secretory immunoglobulin A (IgA), and cellular immune 
response and reactions. 

2 



Pathological spectrum of airway inflammation 

Mucosal structure 

The airway wall is comprised of a surface epithelium supported by a reticular base
ment membrane (Fig. 1) and a poorly defined subepithelial zone consisting of 
bronchial vessels, connective tissue (Fig. 2), and lymphatics that merges with a sub
mucosal zone of mucus-secreting glands, cartilage, and/or bronchial smooth muscle; 
external to this there is a thin adventitial coat (Fig 3). Tracheo-bronchial airways, 
by definition, have cartilage support whereas bronchioli do not. Mucus-secreting 
glands occur in the cartilagenous airways. 

Surface epithelium 

Upper respiratory tract epithelium is comprised mainly of ciliated, pseudostratified, 
columnar cells, interspersed with mucus-secreting cells. However, the anterior nares 
are lined by stratified keratinizing squamous epithelium. Areas of non-keratinizing 
squamous epithelium are found in the pharynx, whereas in the larynx, epithelium 
of this type is present on the epiglottis and the vocal chords. The stratified squamous 
epithelium covering the vocal chords gives way to one that is ciliated, pseudostrati
fied, and columnar when the trachea is reached. The term "pseudostratified" refers 
to the appearance of more than one layer of cells and implies that all cells rest on 
the basement membrane but not all reach the airway lumen (see Figs. 1 and 2) . 
However, basal cells also playa role in attachment of superficial cells to the basal 
lamina by acting as a bridge between columnar cells and the epithelial basement 
membrane. In humans, the appearance to the epithelium persists throughout the 
major bronchi, thereafter becoming simple cuboidal distally. Mucus-secreting cells 
are found regularly in the tracheo-bronchial tree in humans but are normally sparse 
in bronchioli less than 1 mm in diameter [2]. 

A variety of cell types are recognized in airway surface epithelium [3, 4]. There 
are at least eight morphologically distinct epithelial-cell types in the surface epithe
lium, determined by transmission electron microscopy (TEM): many of these have 
overlapping functions. The functions are many and are now known to include 
expression of cell surface adhesion molecules [5, 6] and synthesis and release of 
cytokines [7] which together may induce the selective recruitment of inflammatory 
cells from bronchial vessels and their tissue retention and accummulation. The ter
minal processes of nerve fibres whose cell bodies are present external to the epithe
lium also cross the epithelial reticular basement membrane to lie between and be 
enclosed by epithelial cells. Here they are thought to initiate airway reflexes such as 
bronchoconstriction and cough and also may initiate neurogenic inflammation [8, 
9]. 
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Pathological spectrum of airway inflammation 

Figure 2 

Transmission electron micrograph (TEM) of human bronchial mucosa in a biopsy demon

strating ciliated (0, mucous (M) and basal (B) cells which are the main cells of the surface 

epithelium. The subepithelial zone consists of a fibrillary layer referred to as the reticular 

basement membrane (R) beneath which there are fibroblasts (F), mast cells, Iym

phomononudear cells (L) and a bronchial (systemic) capillary. Scale bar = 10 pm. 

Inflammation 

Inflammation is "the response of vascularized tissue to injury" and its purpose is to 
repair, restore and, if necessary, remodel the injured tissue. The key signs of acute 

5 
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MUCOSA 

SUBMUCOSA 

ADVENTITIA 

Figure 3 

LAMINA 
-PROPRIA 

GLAND 

---CARTILAGE 

Diagrammatic representation of the airway wall showing surface epithelium supported by a 
subepithelial zone referred to as the lamina propria. The epithelium and lamina propria 

make up the mucosa. The underlying zone made up mainly of mucus-secreting glands, mus

cle and cartilage is often referred to as the submucosa. External to this there is an ill-defined 

adventitia. 

inflammation, recognized by Celsus (30 BC-20 AD) are redness, swelling, heat and 
pain and loss or altered function, the last described by Galen (130-200 AD). In 
addition, Lord Florey recognized that acute inflammation at moist mucosal sur
faces, such as the gut and airways, included injury (and sloughing) of surface epithe
lium and hypersecretion of mucus. 

Apart from the reddening and swelling which may be observed macroscopically 
the microscopic changes of inflammation include changes in vascular calibre and 
blood flow, of tissue oedema (as a result of alterations of vascular permeability) and 
leukocyte emigration, referred to as "white cell events". If acute, there is oedema, 
the inflammatory cell infiltrate is predominantly of polymorphonuclear cells (main
ly neutrophils) and the response to injury, infection or allergen is of short duration 
leading to resolution, healing and repair as in, for example, bacterial pneumonitis 
and viral induced bronchiolitis in children (Figs. 4 and 5). However, if the injury is 
repeated (low grade) or severe then there may be a switch to persistent or chronic 

6 



Pathological spectrum of airway inflammation 

Figure 4 

Haematoxylin and eosin (H&E) stained sedion through human lung of a patient with bron

chopneumonia showing pulmonary artery (A) adiacent to a conduding airway whose lumen 

is filled with pus (neutrophils). The surrounding alveolar lumena show a similar copious neu

trophilic exudation. Scale bar = 500 J.1ITI. 
(reproduced with kind permission of Prof. B. Corrin) 

inflammation which may lead to an abnormal tissue remodelling (i.e., enlargement 
or destruction) such that there is altered function or failure to function normally as 
in bronchiolitis obliterans (Fig. 6), pulmonary fibrosis or emphysema (see below). 
The reasons and mechanism(s) involved in the switch to chronicity are, as yet, 
unclear: an understanding of this process is critical to the future effective treat
ment/prevention of several persistent inflammation conditions of the conducting air
ways and lung. 

To examine and characterize the structural and inflammatory changes at distinct 
anatomical sites, nasal, bronchial, trans bronchial and open lung biopsies provide a 
way of directly sampling the tissues in vivo: biopsy is a powerful technique, and it 
provides information which is distinct and complementary to that obtained by bron
choalveolar lavage and other indirect methods of assessment of lung inflammation 
(e.g., exhaled NO) [10]. In addition, studies of airway tissues obtained post mortem 
are invaluable but interpretation may be difficult due to the effects on tissues of less 

7 
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Figure 5 

H&E stained section of a small airway (bronchiole) showing the changes of acute bronchi

olitis: i.e. partial necrosis of the lining epithelium, airway lumen and wall extensively infil
trated by neutrophils. Scale bar = 100 1lf11. 
(reproduced with kind permission of Prof. B. Corrin) 

specific changes associated with end-stage disease such as terminal infection, vascu
lar events and post mortem artefact. With these caveats in mind, examination of tis
sues obtained post mortem, during flexible fibre-optic bronchoscopy or at open lung 
biopsy, is the basis for the descriptions which follow. 

Common inflammatory conditions of the airways 

Rhinitis 

The upper (URT) and lower respiratory tracts (LRT) share similar cellular and 
humoral defence mechanisms and it is common to find that diseases of the nose and 
paranasal sinuses (e.g. rhinosinusitis), pharynx, larynx and LRT occur in associa
tion. For example, there is some evidence that active allergic rhinitis may induce in 
an unexplained way a remodelling process (i.e. thickening of the reticular basement 

8 



Pathological spectrum of airway inflammation 

Figure 6 

H&E of the remains of a small airway showing the alterations of bronchiolitis obliterans: pale 

staining granulation tissue severely compromises the airway lumen (arrow). Scale bar = 

1000 JUn. 
(reproduced with kind permission of Prof. B. Corrin) 

membrane) in the lower airways in subjects who are otherwise non-asthmatic [11]. 
The hallmark of allergic rhinitis is sneezing and underlying this there is an inflam
matory process in which there is oedema, production of mucus and increased vas
cular permeability. 

Infections of the URT may induce acute or chronic inflammation and seasonal, 
perennial or occupational allergy may contribute to allergic inflammation involving 
similar mechanisms as these which occur in the LRT. In addition, intrinsic rhinitis 
(also referred to as vasomotor rhinitis) may be present in the absence of infection or 
allergy. The common cold is probably the most frequent viral infection and as with 
the LRT a variety of viruses and serotypes may cause it. At the earliest stage of infec
tion there is transient vasoconstriction, this is then followed by vasodilation, oede
ma and an increase of sero-mucous secretions. Leucocytic (lympho-mononuclear) 
infiltration of the nasal mucosa is accompanied by swelling and desquamation of 
surface epithelial cells. The secretions, at first clear, watery and sterile, later become 
coloured and viscid as bacteria invade and neutrophils are recruited to the tissues 
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and lumen. Complications may include nasopharyngitis, pharyngitis, sinusitis, ton
sillitis and on occasion, bronchitis and/or pneumonia. Importantly, such infections 
may also precipitate attacks of asthma or result in exacerbations of bronchitis in 
patients already compromised by chronic obstructive pulmonary disease (COPD). 

There are many similarities between allergic rhinitis and asthma and there are 
important differences. Rhinitis, like asthma, has an increasing prevalence [12]. It 
occurs in 75% of patients with allergic asthma whereas the prevalence of asthma in 
those with rhinitis is only 20% [13]. The allergic manifestations and inflammation 
of allergic rhinitis and asthma are similar (both are IgE-mediated conditions of 
hypersensitivity) but the resultant effect of the allergic reaction may be altered by 
the differing anatomy and histology of the upper and lower airways. Accordingly, 
as in asthma, during seasonal exposure there is local accumulation of CD4 positive 
T lymphocytes, mast cells, eosinophils, basophils and neutrophils [14, 15] (Fig. 7). 
The inflammation is also present in chronic (perennial) rhinitis [16]. There are also 
increases in the numbers of circulating mast cells/basophil progenitors and seasonal 
epithelial mast cell migration [17]. The tissue eosinophilia associated particularly 
with the "late" nasal response is regulated by the presence of activated (CD25+) T 
helper lymphocytes and the production of Th2-like cytokines, particularly inter
leukin (lL)-4 and IL-5 [18]: the majority are produced by T lymphocytes but mast 
cells and even eosinophils per se may participate. 

Whilst the pattern of allergic inflammation is similar in allergic rhinitis and 
atopic asthma the thickening of the reticular basement seen in the bronchi in asth
ma is not as prominent in rhinitis and the increase in smooth muscle mass is a par
ticular feature of asthma and is restricted to the lower airways by its airway distri
bution. In addition, the anatomic features of the URT prohibit the closure of nasal 
passage due to constriction but blockage instead depends on swelling of the nasal 
mucosa due to smooth muscle vascular changes and oedema. 

There is mast cell and eosinophil accummulation and "activation" in both sea
sonal and perennial rhinitis and in the former there may be increases of antigen pre
senting cells (cells of Langerhan) also. The recruitment of these cells to the mucosa 
in rhinitis is as the result of increased expression of endothelial cell surface adhesion 
molecules and IL-4 following natural exposure to allergen or increased gene expres
sion of IL-4, IL-5, GM-CSF and tumour necrosis factor a (TNFa) after experimen
tal allergen challenge [19]. Of the many pro-inflammatory mediators produced dur
ing the allergic reactions of airways in both upper and lower respiratory tracts, 
products of eosinophil degranulation appear to be the most injurious to the mucosa. 
Gleich and colleagues have developed methods to study this using nasal epithelia 
[20]. They have demonstrated that the combined addition of eosinophil peroxidase 
(EPO), glucose/glucose oxidase (but neither acting alone) and bromide produce 
marked target cell lysis: the effect is time and EPO dose-dependent. Longer incuba
tion periods of nasal mucosal with human eosinophil major basic protein also cause 
time and dose-dependent epithelial cell lysis. 
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Figure 7 

An immunostained (by the APAAP technique) section of the nasal mucosa of a patient with 

allergic rhinitis using an antibody directed against major basic protein, a characteristic con

stituent of eosinophils. The stained eosinophils (arrows) have accumulated beneath the pale 

staining reticular basement membrane and there is a single eosinophil within the surface 

epithelium. Scale bar = 25 J1In. 
(Reproduced with kind permission of Drs. M. Jacobson and S. Durham) 
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The role and importance of chemoattractant molecules (chemokines) in the selec
tive recruitment of eosinophils and other inflammatory cells to the airway mucosa 
following allergen challenge to the nose and lower airways has recently been demon
strated in man and experimentally in the guinea pig [21, 22]. In this regard eo tax
in, a selective chemoattractant for eosinophils was shown to be expressed by nasal 
epithelium and in man and guinea pigs in both large (proximal) and small (distal) 
airway surface epithelial cells, bronchial smooth muscle and airway and alveolar 
macrophages (Fig. 8). RANTES and MIP-1a are chemoattractants for lymphocytes, 
monocytes and eosinophils whereas MCP-1 is chemoattractant for monocytes, lym
phocytes and basophils and these are also increased in both nasal and bronchial 
secretions/washes in response to allergen [22-25]. 

Acute inhalation of toxic chemicals (irritants) can also elicit an inflammation 
which may become chronic, referred to as "reactive airways dysfunction syndrome" 
[26]: the mechanisms involved in this interesting condition are, as yet, unclear. 

Bronchial asthma 

To date the pathologist recognizes only one form of asthma yet clinically the condi
tion is clearly heterogeneous. 

Appearances post mortem 
Examination, post-mortem, of cases of fatal asthma has shown that the lungs are 
hyperinflated and remain so on opening the pleural cavities due to the widespread 
presence of markedly tenacious plugs in intrapulmonary bronchi. On intra
bronchial inflation with fixative even a 1.5 m head fails to move these airway 
plugs [27, 28]. Histologically the airway plugs in asthma are a mixture of inflam
matory exudate and mucus in which lie desquamated surface epithelial cells, lym
phocytes and eosinophils. The arrangement of the cellular elements of the plug 
often takes the form of several concentric lamella suggesting that several episodes 
of inflammation have led to their formation rather than a single (terminal) event. 
The non-mucinous, proteinaceous contribution is the result of increased vascular 
permeability and includes a fibrinous component. Interaction of constituents of 
serum and mucin is likely to lead to increased viscosity of the airway plug [29]. 
The combination of tissue, blood and BALIsputum eosinophilia is strongly associ
ated with asthma but there may also be marked heterogeneity in the numbers of 
tissue eosinophils identified in fatal asthma [30]. This may be due, in part, to 
eosinophil degranulation, which makes cell identification difficult, or to the 
reported variation in the numbers and relative proportions of neutrophils and 
eosinophils with progressive duration of the terminal episode [31, 32]. Unlike 
chronic obstructive pulmonary disease (COPD) there is little evidence of destruc-
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Peter K. Jeffery 

Figure 9a 

H&E sections of human intrapulmonary bronchial mucosa: 

A road traffic accident death showing intact ciliated surface epithelium (arrows) with indis

tinct underlying reticular basement membrane, few inflammatory cells, small amounts of 

bronchial smooth muscle (M). Scale bar = 120 J1I11. 

tive emphysema in fatal asthma and right ventricular hypertrophy is uncommon 
when the diagnosis of asthma is uncomplicated by COPD. 

Loss of surface epithelium 
Histologically, shedding and damage of airway surface epithelium is prominent in 
asthma, both in fatal asthma (Fig. 9a and b) and in biopsy specimens of patients 
with mild disease [33-35]. Loss of epithelium is followed by areas of mitotic activ
ity (see [36]), secretion of fibronectin [37, 38] and epithelial regeneration which first 
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Figure 9b 

By comparison, in the airway of a patient who died in status asthmaticus there is sloughing 

of the surface epithelium with cells and exudate in the lumen. The reticular basement mem

brane (arrowheads) is now prominent due to homogeneous thickening. There is increased 

infiltration of the mucosa by affording an increased mass of bronchial smooth muscle (M) 

and dilatation and congestion of mucosal vessels (V). Scale bar = 120 J.UTI. 
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appears in the form of simple or stratified squamous epithelium [27] prior to its dif
ferentiation and maturation to form new ciliated and mucous (goblet) cells. In 
symptomatic asthma, there may be platelet aggregation and the role of platelets in 
the asthmatic process has been understudied. There may also be fibrin, at sites of 
damage and such deposits of fibrin are also seen during the late phase following 
allergen challenge (own unpublished results). Again, the involvement of fibrinogen 
and fibrin in the inflammation of asthma requires further study. The greater the loss 
of surface epithelium in biopsy specimens the greater appears to be the degree of air
ways hyperresponsiveness (AHR) [33]. It is recognised that there is an inevitable 
artefactualloss of surface epithelium during the taking and processing of these small 
(2 mm diameter) biopsy pieces, even in normal, healthy subjects, which makes inter
pretation of the extent of epithelial sloughing controversial [39]. The suggested 
fragility of the epithelium in asthma in vivo is supported by the frequent reports of 
Creola bodies in the sputa [40] and the reported association between the numbers 
of bronchial epithelial cells recovered by bronchoalveolar lavage (BAL) and the 
degree of AHR in asthmatics with mild disease [34]. 

The fragility of the surface may involve alteration of cell-cell adhesive molecules, 
such as cadherin, and disruption of tight junctions [41,42] which act as a selective 
epithelial barrier to the passage of ions, molecules and water between cells: this dis
ruption may enhance stimulation of intraepithelial nerves leading to axonal reflex
es, stimulation of secretion by mucous glands, vasodilatation and oedema through 
the release of sensory neuropeptides, the last referred to as neurogenic inflammation 
[9, 43]. Experimentally there is also evidence that the sensitivity of bronchial 
smooth muscle to substances placed in the airway lumen correlates strongly with the 
integrity of the surface epithelium [44]. Loss or damage of surface epithelium would 
thus lead to a reduction in the concentration of factors normally relaxant to 
bronchial smooth muscle with resultant increased sensitivity and "reactivity" [45, 
46]. 

Thickening of the epithelial "basement membrane" 
Observed by light microscopy, thickening of the reticular basement membrane (i.e. 
lamina reticularis), has long been recognised as a consistent change in all forms of 
asthma [27, 33, 47-51] (see Fig. 9b). Whilst there may also be focal and variable 
thickening in COPD, and other inflammatory chronic diseases of the lung such as 
bronchiectasis and tuberculosis [51], the lesion, when homogenous and particular
ly when it is hyaline in appearance, is highly characteristic and present in both fatal 
and mild asthma and in patients with a long history of asthma but who have not 
died of their asthma. The thickening of the reticular layer which is immuno-positive 
for collagen types III and V together with fibronectin but not laminin has been 
referred to as "subepithelial fibrosis" [48]. However, its thickening is distinct from 
the fibrosis associated with scar formation as ultrastructurally it does not resemble 
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the underlying interstitial collagen or a scar. The reticular layer is comprised of thin
ner fibres of reticulin linked to a matrix rich in sugars together with entrapped 
exogenous molecules such as tenascin, heparin sulphate and serum-derived compo
nents. In the author's opinion, swelling of this layer may also contribute to its thick
ening and it is curious that its thickening is maximal early on in the course of the 
disease and it does not appear to thicken further as the condition worsens or 
becomes fatal. In contrast, the "true" epithelial basement membrane (i.e. the basal 
lamina) which consists mainly of type IV collagen, glycosaminoglycans and laminin 
is not thickened, either in mild or severe disease. 

Adjacent subepithelial fibroblasts may, of course, contribute to the thickening 
of the reticular layer (Fig. 10). In this regard, an association between the numbers 
of myofibroblasts underlying the reticular layer and thickening of the reticular 
layer has been demonstrated in asthma [52]. Gizycki and colleagues [53] have 
also observed that myofibroblast-like cells appear in substantial numbers during 
the late phase reaction following allergen challenge: these may contribute, via 
secretion of additional reticulin, to the thickening of the reticular basement mem
brane. 

Increased numbers of mucus-secreting cells 
Bronchial goblet cell hyperplasia and submucosal gland enlargement have been 
reported as the histological hallmarks and the correlate of hypersecretion of mucus 
in chronic bronchitis [54]. There is also significant submucosal gland enlargement 
seen in fatal asthma [28] and this may contribute to excessive production of mucus 
which thickens as it mixes with plasma-derived molecules and induces the plugging 
of airways usually associated with a fatal attack [55]. Dilatation of gland ducts, 
referred to as bronchial gland ectasia is also described [56]. 

Enlargement of bronchial smooth muscle mass 
The percentage of bronchial wall occupied by bronchial smooth muscle shows a 
marked increase in fatal asthma [28] (Fig. 11). Importantly, the increase in muscle 
mass is reported to be in larger rather than in smaller intrapulmonary bronchi of 
lungs obtained following a fatal attack as compared with those of asthmatic subjects 
dying of other causes [57]: it is likely a major contributor to the thickening of the 
airway wall and hence to the increased resistance to airflow [58-61]. 

Whether the increase in muscle mass is due to muscle fibre hyperplasia [62] or 
hypertrophy is at present unclear. Interestingly, recent observations of the late 
phase response to allergen have demonstrated the increased presence of cell forms 
which share ultrastructural features of fibroblast, myofibroblast and bronchial 
smooth muscle [53]. In particular they contain bundles of filaments with electron
dense condensations identical to those found in the contractile apparatus of 
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Figure 10 

Transmission electron micrograph (TEM) of a biopsy of a subject with mild atopic (allergic) 

asthma showing a fibroblast (F) with long extensions beneath the reticular basement mem

brane to which are attached epithelial basal cells (B). An eosinophil (E) is in the process of 

"cytolytic" degranulation and there is a Iymphomononuclear cell (L) nearby. 

Scale bar = 5 JllTI. 

bronchial smooth muscle (Fig. 12). These cells may represent the precursors of the 
additional blocks of bronchial smooth muscle reported in fatal asthma. Such 
remodelling in asthma [63] shows much similarity to that seen in vascular disease 
(i.e. atheroma) [64]. These new discoveries in the mucosal responsive to allergen 
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Figure 12 

TEM of a myofibroblast from a bronchial biopsy of a subject with allergic asthma, taken dur

ing the late response 24 h after allergen challenge. In contrast to the fibroblast shown in Fig

ure 10, this cell, referred to as a myofibroblast or "synthetic smooth muscle cell" is about 

twice the size, has an irregular outline, contains much dilated rough endoplasmic reticulum 

(arrowheads) and elongate bundles of myofilaments (arrows) with electron-dense conden

sations identical to those of smooth muscle. The cell has made contact with a Iym

phomononuclear cell (L). Scale bar = 5.0 J.UT1. 

are exciting and indicate that myofibroblastlmyocyte differentiation and their role 
in bronchial smooth muscle mass enlargement may become a novel target for anti
asthma treatment in the future [63, 65]. 

Bronchial vasculature, congestion and oedema 
The increase in thickness of the bronchial wall in asthma is unlikely accounted for 
by the increase in bronchial smooth muscle and mucous gland mass alone. Dilata
tion of the mucosal bronchial vasculature, congestion of its vessels, new vessel 
growth and wall oedema are also features of fatal asthma (see Fig. 11). Subepithe
lial oedema has been suggested to be responsible for lifting and sloughing of the sur
face epithelium [27]. The onset of vasodilatation, congestion and mucosal oedema 
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in response to a variety of mediators of inflammation [66] and perhaps that which 
occurs in response to exercise can be rapid and, equally, should be relatively rapid
ly reversed by appropriate treatment. 

James and colleagues have shown that airway wall thickening (due to one or 
more of the above changes) need only be relatively minor to have dramatic conse
quences on airflow limitation [58]. The association of structure and function is an 
interesting and important area requiring much further study. 

Recruitment of inflammatory cells 
In fatal asthma there is a marked inflammatory cell infiltrate throughout the airway 
wall (see Fig. 9b) and also in the occluding plug: lymphocytes are abundant [27, 31, 
67], eosinophils are characteristic and neutrophils are usually absent or retained 
within vessels. The inflammation may spread to surrounding alveolar septae and 
affect adjacent arteries [67]. There is an association of tissue eosinophilia and the 
airways hyperresponsiveness of asthma: the extent of tissue eosinophilia varies with 
each case and, interestingly, with the duration of the terminal episode [30-32]. The 
longer the terminal episode the higher the concentration of eosinophils [31]; these 
are particularly abundant in the large (central) airways [68]. In contrast acute sud
den death in asthma is associated with high numbers of neutrophils and plugging of 
the airways [32, 69]. 

As with allergic rhinitis, atopic asthma is now recognized as an inflammatory 
condition of the airways in which there is tissue eosinophilia and a predominance 
of T lymphocytes of the CD4 (T helper) subset [70]. The activation of the T helper 
(Th) cells results in the release of cytokines, particularly IL-4, -5 and -10 which char
acterize an "allergic" profile of inflammation (Fig. 13). Release of these pro-inflam
matory cytokines together with chemokines specific for eosinophils (see Figs. 8 and 
14) [71] leads to the recruitment of eosinophils (not neutrophils) from bronchial 
vessels (Fig. 15) their activation and the release of a range of highly charged mole
cules which damages mucosal tissue. Extensive eosinophil degranulation (Fig. 16) 
and cytolysis with the release of clusters of free eosinophil granules (cfegs) may 
make cell identification difficult [72, 73] (see Fig. 10). Whilst there are increased 
numbers of T cells in fatal asthma this is not unique to asthma as it occurs also and 
to a similar extent in cystic fibrosis [31]. 

Studies of biopsies obtained by flexible fibreoptic bronchoscopy or at open lung 
biopsy in asthma demonstrate the very early involvement of inflammatory cells [74] 
and this includes the presence and an interaction between (T) lymphocytes, 
eosinophils and plasma cells (Fig. 16) [33-35, 75]. The increase in leucocytes, 
including lymphocytes and eosinophils, occurs similarly in relatively mild atopic, 
occupational and intrinsic asthma and it is associated with an increase in "activa
tion" markers for both lymphocytes (CD25+ cells) and eosinophils (EG2+ cells) [33, 
70, 75-77]. EG2 is a marker for the cleaved ("secreted") form of eosinophil cation-
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Figure 13 

An autoradiogram of a section through a bronchial biopsy of an (intubated) patient with 

severe asthma. The section has been hybridised with a radiolabelled (355) probe for IL5 
mRNA (a TH2 cytokine) which is strongly and frequently expressed in the sub-epithelial 

zone (demonstrated by intense and frequent labelling of cells). Scale bar = 30 f.llT1. 

ic protein which can be found both within eosinophils and diffusely in the wall, 
often in association with the reticular layer beneath the epithelium [70] (see also Fig. 
10). Eosinophil-derived products such as major basic protein [78] together with 
toxic oxygen radicals and proteases probably all contribute to epithelial fragility: 
release of granules and of pro-fibrotic cytokines such as IL-4 and tumour grwoth 
factor ~ (TGF~) may also stimulate nearby fibroblasts to produce additional retic
ulin and thicken the reticular basement membrane. Studies of bronchoalveolar 
lavage show increased numbers of eosinophils and T helper cells with evidence of 
mast cell and eosinophil degranulation [79-81]. Macrophages may also increase in 
number, particularly in the more severe intrinsic form of asthma [77]. Mast cells ini
tiate the immediate response to allergen exposure. Mast cells may also be an impor
tant source of IL-4 and other pro-inflammatory cytokines whose secretion may act 
as a trigger to the induction of subsequent persistent production of IL-4 and IL-S by 
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Figure 14 

In situ hybridisation using a digoxigenin-Iabelled ribo-probe for the C-C chemokine MCP-4 

in a biopsy from a patient with atopic asthma. Mononuclear cells beneath the surface 

epithelium are heavily labelled for this eosinophil chemoattradant. Scale bar = 100 JUTI. 
(Produced by Dr. D. U) 

lymphocytes [16, 82]. Little is known of the role of basophils in asthma albeit there 
is evidence for increased recruitment of basophils and their precursors to sites of 
allergic reaction in atopic patients [83]. 

Airway wall nerves 
The topic of airway wall innervation and its relationship with asthma is a large one 
[9, 43]. There are data showing that in fatal asthma there is an absence of (relax
ant) vasoactive intestinal polypeptide-containing nerve fibres and an increase in the 
numbers of substance P-containing fibres (stimulatory to bronchial smooth muscle) 
contrasting markedly with the innervation of the control lungs taken at resection 
from chronic smokers [84, 85]. The reduction has not, however, been confirmed in 
examination of bronchial biopsies in mild asthma [86]. Whilst Sharma and col-
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Figure 15 
TEM of a biopsy showing a bronchial vessel in which there is both an eosinophil (E) and Iym
phomononuclear (L) ceIJ. In this case of atopic asthma the eosinophil has adhered to the 
endothelial surface and is in the process of migrating between two endothelial ceIJs to enter 
the interstitium. The eosinophil granules are intad and contain an eledron-dense core. Scale 

bar = 2.0 JUTI. 

leagues have described a reduction of airway VIP and ~-adrenoreceptors in cystic 
fibrosis, the densities of both VIP receptors and ~-adrenoreceptors are reported to 
be similar in asthma to those of grossly normal tissue of lungs resected for carcino
ma [87, 88]. 

24 



Pathological spectrum of airway inflammation 

Figure 16 

TEM of a bronchial biopsy in atopic asthma showing "piecemeal eosinophil degranulation ". 

The granules within the cell have lost their maior basic protein-rich and electron-dense core 

(arrows). This molecule is thought to damage airway tissues in asthma. Clusters of free 

eosinophil granules (C fegs) are also seen (arrowheads) as the result of eosinophil "cytoly

sis" (see Fig. 10). Scale bar = 2.5 f1ITI. 
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Bronchitis 

Acute bronchitis (or tracheobronchitis) and bronchiolitis 
Acute inflammation of the conducting airways of the lower respiratory tract is com
mon, (especially in young children and the elderly) varying much from year to year 
dependent upon the interactions of cold weather, atmospheric pollutants and the 
prevalence of infections such as influenza and measles. Gases including ammonia, 
sulphur dioxide, ozone, particularly those which are highly water soluble, induce 
inflammation in the larger conducting airways whereas those which are less soluble, 
such as oxides of nitrogen, high concentrations of oxygen and metal fumes affect 
the small airways and alveoli. Hydrocarbon combustion products and self-pollution 
by tobacco smoke also induce inflammation but these are usually associated with 
more chronic inflammation and its sequelae. 

Viruses, including the influenza virus, parainfluenza viruses, respiratory syncy
tial virus (RSV), adenoviruses and herpes may induce acute airway inflammation at 
characteristic sites in the airway tree: e.g., RSV and adenovirus are especially prone 
to cause bronchiolitis in young children (see Fig. 5). The consequent pathology is to 
some extent dependent upon the type of virus involved but in general they either 
have a cytopathic effect on, usually, epithelial cells or induce their mitotic prolifer
ation. In necrotizing bronchiolitis the bronchiolar epithelium is destroyed whereas 
in viral pneumonia it is the alveolar epithelium with consequent formation of hya
line membranes. During viral invasion, there is swelling and vascuolation of cell 
cytoplasm and nuclear degeneration and much or most of the surface epithelium is 
destroyed. There is oedema and hyperaemia of deeper tissues and moderate to 
marked infiltration by lymphocytes. Neutrophils are usually less common unless 
there is (as is often) the complication of secondary bacterial infection when neu
trophils become the dominant inflammatory cell. 

Acute bacterial infections of the lungs are still one of the commonest causes of 
death, especially in the young and elderly. Like viruses, bacteria may also be site spe
cific as in, e.g., diphtheria which is generally limited to the pharynx. In complicat
ing viral infections Streptococcus pneumoniae and Staphylococcus aureus are com
monly involved whereas in chronic bronchitis it is commonly Streptococcus pneu
moniae or HaemophiLus in(luenzae. These bacteria and adhesive molecules on their 
cell walls have a great avidity for the mucus in the airway lumen and thrive on it 
(Fig. 17a). Providing the mucus is wafted by the cilia to the throat and swallowed 
or expectorated as sputum, the mucocilary system ensures the surface of the epithe
lium remains relatively free of bacteria. But if ciliary beating is compromised by 
viruses, bacterial exotoxins or atmospheric pollutants then the mucus stagnates, 
bacteria multiply and the exotoxins (e.g. pyocyanin) produced by them may induce 
sloughing of surface epithelial cells to which bacteria may then attach in large num
bers (Fig. 17b) In lobar pneumonia there is congestion (lasting less than 24 h), dila
tion of alveolar capillaries and flooding of alveolar lumena (i.e., alveolar oedema) 
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with fibronogen-rich fluid (and or erythrocytes) which clots to form interlacing 
strands of fibrin (referred to as red hepatisation). After 2-3 days, large numbers of 
neutrophils and then macrophages are recruited into the fibrinous matrix and there 
is reduction of capillary congestion (referred to as grey hepatisation). After the 8th 
or 9th day of illness, there then follows a spontaneous phase of resolution, lasting 
several weeks, which can be accelerated with treatment, during which there is liq
uefaction of the previously solid fibrinous constituent by enzymes thought to be 
released from neutrophils. 

In bronchopneumonia there are patchy areas of inflammation which begin as 
widely dispersed bronchitis or bronchiolitis and are thus focused initially on the cen
tres of the respiratory acinus. However, as the lesions spread, the bacteria induce an 
acute alveolar inflammation characterized by a copious exudation of fluid and neu
trophil recruitment to alveolar walls and spaces. In these cases, healing by fibrosis, 
bronchiolar obliteration or emphysema rather than resolution is common. Similar 
inflammatory changes can be induced experimentally by the intratracheal instilla
tion of lipopolysaccharide [89, 90]. 

Chronic (smokers) bronchitis 

Chronic bronchitis (mucous hypersecretion) is defined by the presence of chronic 
cough and recurrent increases in bronchial secretions sufficient to cause expectora
tion. The secretions are present on most days for a minimum of 3 months a year, for 
at least two successive years, and cannot be attributed to other pulmonary or car
diac causes [91-93]. Chronic airways hypersecretion can occur in the absence of air
flow limitation. Analysis of sputum in smokers chronic bronchitis shows a pattern 
of inflammation in which macro phages predominate and eosinophils and metachro
matic (mast) cells are scarce [94]. Electron microscopic and immunohistochemical 
techniques are only just beginning to be applied to examine the nature of the inflam
matory infiltrate in chronic bronchitis. There is evidence of inflammation in 
bronchial biopsies of subjects with stable disease and in exacerbations of bronchitis 
(Fig. 18) [95-99]. Bronchial mononuclear cells appear to form a predominant cell 
type with few neutrophils and in contrast to asthma there are relatively few 
eosinophils (in the absence of an exacerbation of infection). The mononuclear com
ponent comprises lymphocytes, plasma cells and macro phages [97, 100]. Significant 
increases are reported in the numbers of CD45 (totalleucocytes), CD3 (T lympho
cytes), CD25 activated and VLA-l (late activation) positive cells and of 
macrophages [97]. There is a moderate increase in the number of tissue eosinophils 
compared to that found in normal healthy controls and it has been suggested that, 
in contrast to asthma, the tissue eosinophils found in chronic bronchitis do not 
degranulate [95]. However, Saetta and co-workers find that the numbers of tissue 
eosinophils are only increased when there are exacerbations of bronchitis [99, 101]. 
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Figure 18 

Histological section of a mucosal biopsy obtained from a patient with smokers bronchitis 

during an exacerbation. There are large numbers of CD8 positive cells infiltrating the 

mucosa. Scale bar = 1'50 pm. 
(lmmunostained by Dr. D. Li using the APAAP technique to stain CD8+ cells red; biopsy spec

imen kindly obtained by Dr. M. Sa etta, Padua) 

The same group of workers together with another report increases in the cell sur
face adhesion molecules associated with such inflammation [98, 99]. 

The increase in sputum production may be initiated by the inflammatory 
process [102]. Cough and sputum production are the symptoms most frequently 
experienced by the 15-20% of smokers who succumb to respiratory disease: both 
mechanisms are effective in clearing large proximal airways (down to about the 
sixth generation of branching), acting to protect the more distal respiratory por
tion of the lung from damage. Sputum and respiratory tract secretions are a mix
ture of constituents including glycoproteins, glycosaminoglycans, lipids and tran
sudate. Normally, respiratory tract secretions probably amount to less than 10 
mVday [103] and has been suggested to consist primarily of glycosaminoglycans 
[104, 105]. Chronic irritation by pollutants including cigarette smoke causes alter
ations in the number and activity of secretory cells in the mucosa, i.e. an enlarge-
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ment of submucosal glands (by an increase in both the number and size of their 
cells) and an increase in the number of secretory cells in the surface epithelium. 
Mucous gland enlargement and hyperplasia of secretory cells are the histological 
hallmarks of chronic bronchitis and the tissue correlate of sputum production 
[106] . Epithelial changes may include atrophy [107], focal squamous metapla
sia108 and decreases of both ciliated cell number and mean ciliary length 
[109-111]. Ultrastructural changes in cilia such as the development of compound 
cilia have been attributed directly to the effects of cigarette smoke [112] but in the 
author's opinion these changes are non-specific or more likely consequences of 
complicating exacerbations of infection and due to the bacterial exotoxins known 
to be ciliotoxic [113]. The presence of a gel-like mucus is essential to mucocilary 
clearance - normally the mucus is present as discrete flakes but in bronchitis it is 
thought to be present as a continuous sheet or blanket. Whilst bronchial goblet cell 
hyperplasia and submucosal gland enlargement are reported in chronic bronchitis 
[54], in emphysema (see above), gland enlargement is very much less marked and 
shows extensive overlap with the normal range [28]. Disproportionate reduction 
of serous acini of the submucosal glands which contain lysozyme, lactoferrin anti
bacterial agents and a small molecular weight anti-protease, tends to favour bac
terial colonisation and also proteolytic damage to airways. Whilst bronchial gob
let cell hyperplasia may be a feature of both asthma and bronchitis, the appearance 
of goblet cells in bronchioli where goblet cells are normally absent or sparse 
(referred to as mucous metaplasia) and their increase in number, and consequent 
hypersecretion of mucus in airways of less than 2 mm diameter is a key alteration 
contributing to small airways disease and the airflow obstruction which is the fea
ture of COPD [114, 115]. 

Chronic obstructive pulmonary disease (COPD) 

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and 
mortality. In Europe, COPD and asthma, together with pneumonia, are the third 
most common cause of death. In North America, COPD is the fourth leading cause 
of death, and mortality rates and prevalence are increasing. The incidence and mor
bidity from COPD are rising. The main risk factors are cigarette smoking and occu
pational exposure. 

The definition of COPD is much debated and the clinical definitions are still 
imprecise (see ERS guidelines [116]). The difficulties of definition are compounded 
by the recognition that both COPD and asthma are not disease entities but rather 
each is a complex of conditions which contribute to airflow limitation (obstruction). 
Unlike asthma, in COPD the limitation, particularly to expiratory airflow, is usual
ly, but not always, persistent and typically shows a more rapid progressive deterio
ration with age than is normal. Accordingly the most recent and generally accepted 
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definition in Europe is: "Chronic obstructive pulmonary disease (COPD) is a disor
der characterized by reduced maximum expiratory flow and slow forced emptying 
of the lungs; features which do not change markedly over several months" [116]. 
Three conditions may contribute to airflow limitation to varying degree in each 
patient: (i) chronic bronchitis defined clinically (see above), (ii) adult chronic bron
chiolitis (small or peripheral airways disease) which is difficult to define clinically 
but which may be recognized by sophisticated tests of small airway function (i.e. air
ways of 2 mm diameter or less), and (iii) emphysema which is defined anatomical
ly by permanent, destructive enlargement of airspaces distal to the terminal bron
chioli without obvious fibrosis [117]. Those changes which contribute most to the 
progressive and accelerated decline in lung function are chronic bronchiolitis and 
emphysema. 

Inflammation associated with airflow limitation (large airways) 
Biopsy studies of 2-3 order bronchi demonstrate few neutrophils and eosinophils 
in bronchial biopsies of stable bronchitic smokers with or without chronic bron
chitis pulmonary disease (COPD). However as airflow limitation progressively 
worsens (measured by assessment of the forced expiratory volume in one second), 
T lymphocytes and neutrophils increase in the surface epithelium as do T lympho
cytes and macrophages in the subepithelium. We have reported that it is the 
CD8+ve lymphocyte subset which increases in number and proportion in COPD 
and have shown that the increase of CD8+ cells is significantly associated with 
decline in lung function [100]. Importantly this contrasts with the predominance 
and activation of the CD4+ T cell subset which is characteristicly increased in mild 
atopic asthma. Increasing pigmentation of sputum-derived macrophages and 
increased numbers of neutrophils are also associated with poor lung function 
[118]. Broncho-alveolar lavage fluid (BALF) from subjects with chronic bronchitis 
also demonstrates high numbers of neutrophils [95, 119]. The total number of 
inflammatory cells recovered by lavage is lower in COPD than in chronic bronchi
tis without airflow obstruction, however increased glutathione (GSH), myeloper
oxidase (MPO, a marker of neutrophils) and eosinophil cationic protein (ECP) are 
associated with reduced FEV 1 [120]. Increased GSH may represent an airway 
epithelial response to persistent oxidant attack by both cigarette smoke and the 
highly toxic oxygen species released by inflammatory cells recruited from the vas
culature, which migrate through tissues to the airway lumen. Interestingly the high 
numbers of neutrophils and MPO found in lavage fluid from subjects with COPD 
is not reflected in their numbers in the bronchial mucosa, at least in the subepithe
lial zone (often referred to as the lamina propria) of biopsies obtained from the 
same subjects [95, 100, 121]. This may represent the inability of bronchoscopy to 
sample distal portions of the lung to which neutrophils may be preferentially 
recruited in COPD or it might be due to the relatively rapid migration of neu-
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trophils across the airway wall of the more proximal airways, sampled by bron
choscopy. Alternatively, the location of the histological section in which the inflam
matory cells are counted may not be that in which neutrophils accumulate. It is our 
(unpublished) experience that whilst neutrophil counts in the subepithelium may be 
low, they preferentially accumulate within the surface epithelium during their pre
sumed passage to the airway lumen: this is a biopsy site often not included in 
counts of inflammatory cells [122]. 

Adult chronic bronchiolitis (small airways disease) 

Airflow limitation, as determined by FEV h usually occurs late in the course of cig
arette smoke-related events, whereas inflammation in small airways (i.e. bronchioli 
< 2-3 mm diameter) occurs relatively early and may be detected physiologically 
well before the age of 30 years [123, 124]. The small airway defect is characterised 
by persistent airflow limitation which may show progressive deterioration in the 
absence of emphysema. Whilst the site of the lesion and diagnosis is, as yet, diffi
cult to pinpoint by lung function, experimental physiologists (inter alia [125, 126]) 
have indicated that the dominant site lies in bronchioli of less than 3 mm diameter. 
Histologically one of the most consistently observed early effects of cigarette smoke 
is a marked increase in the number of macrophages and neutrophils, both in man 
and experimentally in animal studies. The increase is seen within both the lung 
interstitium and alveolar air space and can be detected in bronchoalveolar lavage 
fluid (BAL) [127]. Early smoking-related inflammatory changes occurring in small 
airways have been described in studies comparing lungs of young smokers and con
trols of similar age from a group who had experienced sudden non-hospital deaths 
[114, 128, 129]. It is suggested that the primary lesion is progressive inflammation 
leading to peri bronchiolar fibrosis. Evidence of destructive emphysema and right 
ventricular hypertrophy is common in COPD; in contrast, both are uncommon 
findings in asthma. The resultant narrowing of small bronchioli has been well 
demonstrated in bronchiolar casts of patients with COPD by Bignon and col
leagues [130]. The peri bronchiolar inflammation consisting of lymphocytes and 
fibrosis may also predispose to the development of centrilobular emphysema and 
may be responsible for the subtle abnormalities detected by lung function (Fig. 19). 
The T cell functional phenotype and cytokine profile of bronchiolar inflammation 
in smokers is yet to be characterized. Associated loss of alveolar attachments to the 
airway perimeter contribute to loss of elastic recoil and favour increased tortuosi
ty and early closure of bronchioli (which lack cartilagenous support) during expi
ration [131-133]. Cosio and colleagues [114] have described lesions in smokers 
dying suddenly: inflammation in bronchioles and a respiratory bronchiolitis con
sisting of pigmented macro phages associated with mucous metaplasia, smooth 
muscle hypertrophy, mural oedema, peribronchiolar fibrosis and an excess of air-
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Figure 19a 

H&E stained section of the centriacinar region of a case of COPD in which there is a small 

airway with marked peribronchiolitis surrounded by abnormally large alveolar spaces. Scale 

bar = 1000 f..llT1. 

ways < 400 11m diameter were the main lesions in these smokers [114, 128, 134]. 
Associated stenotic narrowing of bronchioli have been demonstrated and inflam
matory changes to small airways appear to be related to clinical airflow obstruc
tion in COPD. 

In bronchioli, secretory and ciliated cells are the main cell types [135, 136] and, 
of them, the Clara cell is the major secretory and progenitor cell. It has been sug
gested that the Clara cell normally produces both a hypophase component of bron
chiolar surfactant [137] and a low molecular weight protease inhibitor (syn. 
antileukoprotease or bronchial mucosal protease inhibitor [138]). The latter is the 
main anti-elastase screen in sputum and normally prevents autolysis of airway tis
sues [139]. In smokers, Clara cells are replaced by mucous cells [115] and mucus 
appears in peripheral airways and its secretion is abnormally increased therein 
[140]. The increase in mucus at this distal site is difficult to clear by cough and dra
matically increases surface tension favouring early closure of airways during expi
ration [141]. 
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! 

Figure 19b 

H&E stained section through emphysematous lung in which there is destruction of alveolar 

attachments to the bronchiolar wall, resulting in a tortuous appearance and probably early 

collapse during expiration. Scale bar = 2000 J1IT1. 

Emphysema 

Laennec gave us the first clear anatomic descriptions of emphysema in 1826. He 
also recognized that cough, expectoration of mucus, air-flow obstruction, and short
ness of breath on effort were the clinical correlates in life of the finding of emphy
sema at autopsy. 

The early changes leading to emphysema have been thought to include subtle dis
ruption to elastic fibres with accompanying loss of elastic recoil, bronchiolar and 
alveolar distortion and the appearance of fenestrae which enlarge [142] eventually 
leading to loss of interalveolar septa. In smokers with emphysema there is loss of 
alveolar wall tissue even in regions removed from those with obvious macroscopic 
lesions: recent data have shown that this is accompanied by a net increase in the 
mass of collagen. This suggests that, contrary to the current internationally accept
ed definition (see above) that there is active alveolar wall fibrosis in the tissues 
which remain in otherwise emphysematous lungs [143]. 
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Figure 20 
Gross appearance of the cut surface of a lung resected from a smoker showing severe eentri

acinar emphysema with destruction predominantly present in the upper aspects of each 

lobe. Scale bar = 5 em. (Courtesy of Prof. B. Heard) 
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Two main forms of emphysema are described. They are distinguished by the part 
of the acinus affected. Centriacinar emphysema is characterised by focal destruction 
restricted to respiratory bronchioli and the central portions of the acinus, each focus 
surrounded by areas of grossly normal lung parenchyma. This form of emphysema 
is usually more severe in the upper lobes of the lung (Fig. 20). Panacinar emphyse
ma involves some degree of destruction of the walls in a fairly uniform manner of 
all the air spaces beyond the terminal bronchiolus. This form of emphysema is char
acteristic of patients who develop smoking-related emphysema relatively early in life 
and, in contrast to the centriacinar form, has a tendency to involve the lower lobes 
more than the upper. In the familial form of panacinar emphysema it is usually asso
ciated with urantitrypsin deficiency [144]. 

Epidemiological studies have demonstrated a significant relationship between 
cigarette smoking and severity of emphysema [145] but the mechanism(s) by which 
cigarette smoke causes such damage is still the subject of much research. One cur
rent working hypothesis is that emphysema is the result of an imbalance between 
proteolytic enzymes and protease inhibitors in the lung, favouring an excess of 
enzyme and in particular elastases. In addition, the imbalance between oxidants and 
antioxidants contributes also by allowing an excessive oxidant burden to degrade 
the normal protease inhibitor screen [146, 147]. The proposed mechanism involves 
interactions between cigarette smoke, alveolar macrophages, chemoattractants, neu
trophils, elastases, endogenous and exogenous oxidants, protease inhibitors, anti
oxidants and lung connective tissue, primarily elastin, which undergoes repeated 
destruction, synthesis and degradation [148]. The in vitro effects of cigarette smoke 
on pulmonary connective tissue are consistent with the protease/antiprotease and 
oxidant/antioxidant hypotheses. In spite of this, experimental animal models of cig
arette smoke-induced emphysema have proved difficult to develop. The destruction 
of the respiratory zone in emphysema is also considered to be the result of an 
inflammatory reaction, much of this centred on respiratory bronchioli and largely 
initiated by products of inhaled tobacco smoke [147, 149]. As with the more prox
imal airways T lymphocytes (recently suggested to be of the CD8 phenotype) and 
macrophages appear to playa role in the lung parenchyma also [150, 151]. Factors 
chemotactic for neutrophils, and which will induce their emigration from the micro
circulation are released by smokers' alveolar macrophages [152] and the alveolar 
neutrophil population may increase from 1 % to 5% of inflammatory cells. Ciga
rette smoke may, itself, contains substances chemoattractant for neutrophils [153], 
a possibility that is supported by the associated peripheral blood leukocytosis which 
is widely reported [154]. Cigarette smoke or factors released from cigarette smoke
exposed macrophages induce the release elastases from neutrophils which degrade 
lung elastin even in the presence of antiprotease [155-157]. The approximation of 
neutrophils with interstitial connective tissue is a close one even when they are 
retained in the pulmonary circulation (Fig. 21). The average diameter of circulating 
neutrophils is 7.0 ~m which necessitates their deformation as they squeeze through 
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capillary segments of 5 flm diameter. Neutrophil traffic through the capillaries of the 
lung is normally slower (i.e. there is a higher transit time) than that of red blood 
cells as they are 700 times less deformable than RBCs [158]. Recent studies with 
radioactively labelled neutrophils have demonstrated that the normal delay in neu
trophil transit is further exaggerated, transiently, even in healthy subjects during 
smoking [159]. Exposure of neutrophils to cigarette smoke in vitro and in vivo 
results in decreased deformability associated with polymerisation of actin microfil
aments [158, 160]. This is the likely mechanism of the observed cigarette smoke
induced increase in transit time. 

Elastin fragments created by the elastase activity of both neutrophil and 
macrophages attract monocytes from the circulating pool of blood leukocytes from 
which alveolar macrophages mature [161]. When activated, alveolar macrophages 
release a variety of oxidants which damage tissues [154, 162]. Cigarette smoke itself 
also contributes significantly to the exogenous oxidant burden and may reduce 
anti protease activity of the lungs anti-elastase screen. It is estimated that each puff 
contains 1014 free radicals in each of the soluble and particulate phases and that 
many of these are relatively long-lived [163]. Cigarette smoke-derived oxidants may 
damage directly host tissue or act by inhibiting (Xl-antitrypsin. 

Whilst the major pathological changes are thought to occur in the small airways 
and parenchyma, in patients with more advanced COPD, changes also occur to the 
pulmonary circulation, the right heart, and respiratory muscles. With alveolar 
hypoxia, the medial vascular smooth muscle of pulmonary arterioles extends distal
ly to vessels that normally lack muscle and there is intimal thickening. In addition, 
loss of the vascular bed occurs as a consequence of emphysema. Right ventricular 
enlargement due to dilatation and/or hypertrophy is not uncommon and atrophy of 
the diaphragm occurs in some cases. In contrast, these changes are not features of 
asthma. 

Lastly, but importantly, many life-long smokers do not succumb to the develop
ment of emphysema and constitutional factors are likely to predispose individuals 
and make them especially susceptible to the effects of tobacco smoke. Genetic defi
ciency of (Xrantitrypsin is a well documented extreme example and smoking in this 
group clearly advances the onset of emphysema and accelerates its subsequent pro
gression. Other genetic factors such as variation in cellular response to cytotoxicity, 
phagocytosis and enzyme release may also be important determinants of an indi
vidual's susceptibility to cigarette smoke [164]. O'Shaughnessy and colleagues [100] 
suggest that susceptibility to the effects of cigarette smoke will be greater in those 
individuals who already have a genetically determined low CD4/CD8+ cell ratio in 
their peripheral blood [165]. This is a novel explanation as to why only a relative
ly small proportion of smokers succumb to its deleterious effects: the hypothesis 
requires, however, testing and epidemiological proof. Long-term studies (soon to be 
reported) of inhaled corticosteroids in COPD are currently in progress to test the 
hypothesis that airways inflammation bears a relationship with rate of decline in 
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FEV 1: if the relationship is a direct one then there should be a slowing of the rate of 
decline following attenuation of the inflammatory reaction. 

Table 1 summarizes the main distinctions between COPD and asthma. There is 
evidence of inflammation in both but there are marked differences in terms of the 
predominant inflammatory cell phenotype and the site and functional consequence 
of such inflammation. The distinctions are however not absolute and the two con
ditions may co-exist in anyone patient. 

Fibrosing alveolitis 

Finally fibrosing alveolitis (FA) represents scar formation of the lung and fibrous 
thickening of the alveolar walls. The fibrosis may be intra-luminal or interstitial. In 
the former case it may represent organization of eosinophilic or bacterial pneumo
nia or its aetiology may be unknown (i.e., cryptogenic). In its interstitial form it may 
include (i) the organization of exudates, hyaline membranes or of a chronic inter
stitial oedema (such as that which may follow diffuse alveolar damage caused by 
toxic fumes, irradiation, virus or regurgitated gastric acid or (ii) the granulomatous 
conditions (including sarcoidosis, extrinsic allergic alveolitis and eosinophilic gran
uloma). Cryptogenic fibrosing alveolitis (CFA; also referred to as idiopathic pul
monary fibrosis) and that associated with the collagen-vascular disease, systemic 
sclerosis (FASSc), are also inflammatory conditions of the lung which result in col
lagenous thickening of the alveolar wall rather than its emphysematous destruction. 
An understanding of the reasons for the very different outcomes of the inflammato
ry processes of emphysema and FA is required. We know that activated T lympho
cytes (i.e. CD25 and CD45Ro positive cells) are also present in increased numbers 
in FA. Gene expression for IL-4 and IL-5, whilst characteristic, is not unique to asth
ma and this Th2 pattern occurs in CFA also [166]. By contrast the inflammation of 
FASSc is associated with gene expression for IL-4, -5 and interferon y (IFNy) (i.e. a 
mixed Th2fTh1 phenotype). Interestingly both fibrotic conditions are associated 
with increases of IL-8 gene expression [167]. 

Conclusion 

In conclusion the severity and nature of the inflammation and its consequences (be 
they obstructive or restrictive) depend much on the type, dose and persistence of the 
insult and the predominant site in the lung at which it occurs. By comparing and 
understanding the subtleties of the inflammatory and molecular processes of these 
pathologically distinct conditions and the contributions made by different inflam
matory, and also structural cells, we will be able to understand better their interac
tion with the genetic factors which predispose an individual to the development of 
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these inflammatory conditions of the airways and lung and know better how to 
design more effective and incisive treatment. 

Acknowledgements 
I thank many colleagues who have worked with me and with whom I have shared 
interesting discussion. I am particularly grateful to Miss Leone Oscar for her help in 
typing the manuscript and for her careful attention to detail and Mr Andrew Rogers 
for his care in preparing the illustrations. 

References 

1 Horsfield K (1974) The relation between structure and function in the airways of the 

lung. Br J Dis Chest 68: 145-160 
2 Lumsden AB, McLean A, Lamb D (1984) Goblet and Clara cells of human distal air

ways: evidence for smoking-induced changes in numbers. Thorax 39: 844-853 
3 Jeffery PK (1983) Morphology of airway surface epithelial cells and glands. Am Rev 

Respir Dis 128: S14-S20 
4 Jeffery PK (1995) Structural, immunologic, and neural elements of the normal human 

airway wall. In: WW Busse, ST Holgate (eds): Asthma and rhinitis. Blackwell Scientific 
Publications, Oxford, 80-106 

5 Staunton D, Merluzzi V, Rothlein R, Barton R, Marlin S, Springer T (1989) A cell adhe
sion molecule, ICAM-l, is the makor surface receptor for rhinoviruses. Cell 56: 849-53 

6 Papi A, Wilson S, Johnston S (1996) Rhinoviruses increase production of cell adhe
sion molecules (CAM) and NF-alpha B. Am J Resp Crit Care Med 153: A866 
(abstract) 

7 Devalia JL, Davies RJ (1993) Airway epithelial cells and mediators of inflammation. 
Resp Med 87: 405-408 

8 Jeffery PK (1994) Innervation of the airway mucosa: Structure, function and changes in 
airway disease. In: RG Goldie (ed): Immunopharmacology of epithelial barriers. Acad
emic Press, London, 85-118 

9 Barnes PJ (1986) State of art: neural control of human airways in health and disease. 
Am Rev Respir Dis 134: 1289-1314 

10 Bousquet J, Jeffery PK (1998) Methods for assessment of airways inflammation. Eur 
Respir J 11 (suppl 26): Is-58s 

11 Chakir J, Laviolette M, Boutet M, Laliberte R, Dube J, Boulet LP (1996) Lower airways 
remodeling in nonasthmatic subjects with allergic rhinitis. Lab Invest 75: 735-744 

12 Mygind N, Winther B (1979) Light- and scanning electron-microscopy of the nasal 
mucosa. Acta Otorhinolaryngol (Belg) 33 (4): 591-602 

13 Smith 1M (1983) Epidemiology and natural history of asthma, allergic rhinitis and aller
gic dermatitis (eczema). In: E Middleton, CE Reed, EF Ellis (eds): Allergy: Principles and 

Practice, 2nd ed. CV Mosby Company, St. Louis, 771-804 

42 



Pathological spectrum of airway inflammation 

14 Varney VA, jacobson MR, Sudderick RM et al (1992) Immuno-histology of the nasal 

mucosa following allergen-induced rhinitis: identification of activated T lymphocytes, 
eosinophils and neutrophils. Am Rev Respir Dis 146: 170 

15 Bentley AM, jacobson MR, Cumberworth V et al (1992) Immunohistology of the nasal 
mucosa in seasonal allergic rhinitis: increases in activated eosinophils and epithelial mast 
cells. ] Allergy Clin Immunol 89: 821-829 

16 Bradding P, Feather IH, Wilson S et al (1993) Immunolocalization of cytokines in the 
nasal mucosa of normal and perennial rhinitic subjects. ] Immunol151: 3853-3865 

17 Gomez E, Clague jE, Gatland D, Davies Rj (1988) Effect of topical corticosteroids on 
seasonally induced increases in nasal mast cells. BMJ 296: 1572-1573 

18 Durham SR (1997) Mechanisms and treatment of allergic rhinitis. In: IS Mackay, TR 
Bull (eds): Rhinology, 6th ed. Butterworth-Heinemann, Oxford, 4/6/1-4/6/16 

19 Howarth PH (1995) The cellular basis for allergic rhinitis. Allergy 50: 6-10 
20 Ayars GH, Altman LC, McManus MM et al (1989) Injurious effect of the eosinophil 

peroxide-hydrogen peroxide-halide system and major basic protein on human nasal 
epithelium in vitro. Am Rev Respir Dis 140 (1): 125-131 

21 Minshall EM, Cameron L, Lavigne F et al (1997) Eotaxin mRNA and protein expres

sion in chronic sinusitis and allergen-induced nasal responses in seasonal allergic rhini
tis. Am] Respir Cell Mol Bioi 17: 683-690 

22 Holgate ST, Bodey KS, janezic A, Frew Aj, Kaplan AP, Teran LM (1997) Release of 
RANTES, MIP-1 alpha, and MCP-1 into asthmatic airways following endobronchial 
allergen challenge. Am] Respir Crit Care Med 156: 1377-1383 

23 Sim TC, Reece LM, Hilsmeier KA, Grant jA, Alam R (1995) Secretion of chemokines 
and other cytokines in allergen-induced nasal responses: inhibition by topical steroid 
treatment. Am] Respir Crit Care Med 152: 927-933 

24 Kuna P, Lazarovich M, Kaplan AP (1996) Chemokines in seasonal allergic rhinitis. ] 
Allergy Clin Immunol97: 104-112 

25 Sur S, Hirohito K, Gleich Gj, Chenier TC, Hunt LW (1990) Eosinophil recruitment is 
associated with IL-5, but not with RANTES, twenty-four hours after allergen challenge. 
] Allergy Clin Immunol97: 1272-1278 

26 Meggs Wj, Elsheik T, Metzger Wj, Albernaz M, Bloch RM (1996) Nasal pathology and 
ultrastructure in patients with chronic airway inflammation (RADS and RUDS) follow
ing an irritant exposure. ] Toxicol Clin Toxicol 34 (4): 383-396 

27 Dunnill MS (1960) The pathology of asthma, with special reference to changes in the 
bronchial mucosa. ] Clin Pathol13: 27-33 

28 Dunnill MS, Massarella GR, Anderson jA (1969) A comparison of the quantitative 
anatomy of the bronchi in normal subjects, in status asthmatic us, in chronic bronchitis, 
and in emphysema. Thorax 24: 176-179 

29 List Sj, Findlay BP, Forstner GG, Forstner jF (1978) Enhancement of the viscosity of 
mucin by serum albumin. Biochem ] 175: 565-571 

30 Gleich Gj, Motojima S, Frigas E, Kephart GM, Fujisawa T, Kravis LP (1980) The 

43 



Peter K. Jeffery 

eosinophilic leucocyte and the pathology of fatal bronchial asthma: evidence for patho

logic heterogeneity. J Allergy C/in Immuno/ 80: 412-415 

31 Azzawi M, Johnston PW, Majumdar S, Kay AB, Jeffery PK (1992) T-Iymphocytes and 

activated eosinophils in asthma and cystic fibrosis. Am Rev Respir Dis 145: 1477-1482 

32 Sur S, Crotty TB, Kephart GM et al (1993) Sudden onset fatal asthma: a distinct entity 
with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev 

Respir Dis 148: 713-719 

33 Jeffery PK, Wardlaw A, Nelson FC, Collins JV, Kay AB (1989) Bronchial biopsies in 

asthma: an ultrastructural quantification study and correlation with hyperreactivity. Am 

Rev Respir Dis 140: 1745-1753 
34 Beasley R, Roche W, Roberts JA, Holgate ST (1989) Cellular events in the bronchi in 

mild asthma and after bronchial provocation. Am Rev Respir Dis 139: 806-817 
35 Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T (1985) Damage of the airway 

epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131: 
599-606 

36 Ayers M, Jeffery PK (1988) Proliferation and differentiation in adult mammalian airway 
epithelium: a review. Eur Respir J 1: 58-80 

37 Erjefalt JS, Erjefalt I, Sundler F, Persson CGA (1994) Airway microcirculation-derived 
factors in epithelial repair. Microvasc Res 48: 161-178 

38 Shoji S, Ertl RF, Linder J, Romberger DJ, Rennard SI (1990) Bronchial epithelial cells 
produce chemotactic activity for bronchial epithelial cells: Possible role for fibronectin 
in airway repair. Am Rev Respir Dis 141: 218-225 

39 Soderberg M, Hellstrom S, Sandstrom T, Lungren R, Bergh A (1990) Structural charac
terization of bronchial mucosal biopsies from healthy volunteers: a light and electron 
microscopical study. Eur Respir J 3: 261-266 

40 Naylor B (1962) The shedding of the mucosa of the bronchial tree in asthma. Thorax 

17: 69-72 
41 Elia C, Bucca C, Rolla G, Scappaticci E, Cantino D (1988) A freeze-fracture study of 

tight junctions in human bronchial epithelium in normal, bronchitic and asthmatic sub
jects. J Submic Cytol Pathol 20: 509-517 

42 Godfrey RWA, Severs NJ, Jeffery PK (1992) Freeze-fracture morphology and quantifi

cation of human bronchial epithelial tight junctions. Am J Respir Cell Molec BioI 6: 

453-458 
43 Jeffery PK (1994) Innervation of the airway mucosa: Structure, function and changes in 

airway disease. In: R Goldie et al (eds): Immunopharmacology of epithelial barriers. 

Handbook of immunopharmacology, vol. 8 (series ed. C Page). Academic Press, Lon

don, 85-118 

44 Sparrow MP, Mitchell HW (1991) The epithelium acts as a barrier modulating the 
extent of bronchial narrowing produced by substances perfused through the lumen. Br 

J Pharmacol103: 1160-1164 
45 HoggJC, Eggleston PA (1984) Is asthma an epithelial disease? Am Rev Respir Dis 129: 

207-208 

44 



Pathological spectrum of airway inflammation 

46 VanHoutte PM (1989) Eithelium-derived relaxing factor(s) and bronchial reactivity. ] 

Allergy Clin lmmunol 83: 855-861 
47 Callerame MD, Condemi MD, Bohrod MD, VaughanJH (1971) Immunologic reactions 

of bronchial tissues in asthma. N Engl ] Med 284: 459-464 
48 Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the 

bronchi of asthmatics. Lancet i: 520-523 

49 Nowak J (1969) Anatomopathologic changes in the bronchial walls in chronic inflam

mation, with special reference to the basement membrane, in the course of bronchial 
asthma. Acta Med Polona 2: 151-172 

50 Sobonya RE (1984) Quantitative structural alterations in long-standing allergic asthma. 
Am Rev Respir Dis 130: 289-292 

51 Crepe a SB, Harman JW (1955) The pathology of bronchial asthma. I. The significance 
of membrane changes in asthmatic and non-allergic pulmonary disease. ] Allergy 26: 

453-460 
52 Brewster CEP, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR (1990) 

Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am ] Respir Cell Mol 

Bioi 3: 507-511 

53 Gizycki MJ, Adelroth E, Rogers AV, Q'Byrne PM, Jeffery PK (1997) Myofibroblast 
involvement in the allergen-induced late response in mild atopic asthma. Am ] Respir 

Cell Mol Bioi 16: 664-673 

54 Reid L (1954) Pathology of chronic bronchitis. Lancet i: 275-279 
55 Wanner A (1988) Airway mucus and the mucociliary system. In: E Middleton, CE Reed, 

EF Ellis, NF Adkinson, JW Uunginer (eds): Allergy: Principles and practice. c.v. Mosby, 
St. Louis, Washington DC, Toronto, 541-548 

56 Cluroe A, Holloway L, Thomson K, Purdie G, Beasley R (1989) Bronchial gland duct 
ectasia in fatal bronchial asthma: association with interstitial emphysema. ] Clin Pathol 

42: 1026-1031 
57 Carroll N, Elliot A, Morton A, James A (1993) The structure of large and small airways 

in nonfatal and fatal asthma. Am Rev Respir Dis 147: 405-410 
58 James AL, Pare PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am 

Rev Respir Dis 139: 242-246 
59 Moreno RH, Hogg JC, Pare PD (1986) Mechanisms of airway narrowing. Am Rev 

Respir Dis 133: 1171-1180 
60 Wiggs BR, Moreno R, Hogg JC, Hilliam C, Pare PD (1990) A model of the mechanics 

of airway narrowing. ] Appl Physiol 69: 849-860 

61 Wiggs BR, Bosken C, Pare PD, James A, Hogg JC (1992) A model of airway narrowing 

in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 145: 

1215-1218 

62 Heard BE, Hossain S (1983) Hyperplasia of bronchial muscle in asthma. ] Patho/110: 

319-331 

63 Bousquet J, Chanez P, Lacoste JY et al (1992) Asthma: a disease remodeling the airways 
(review). Allergy 47 (1): 3-11 

45 



Peter K. Jeffery 

64 Jeffery PK (1994) Structural changes in asthma. In: C Page, J Black (eds): Airways and 

vascular remodelling in asthma and cardiovascular disease. Academic Press, London, 
3-19 

65 Stewart AG, Tomlinson PR, WilsonJ (1993) Airway wall remodelling in asthma: a novel 

target for the development of anti-asthmatic drugs. TiPS 14: 275-279 

66 Widdicombe J (1993) New perspectives on basic mechanisms in lung disease: Why are 
the airways so vascular? Thorax 48: 290-295 

67 Saetta M, Di Stefano A, Rosina C, Thiene G, Fabbri LM (1991) Quantitative structur

al analysis of peripheral airways and arteries in sudden fatal asthma. Am Rev Respir Dis 

143: 138-143 

68 Synek M, Beasley R, Frew AJ et al (1996) Cellular infiltration of the airways in asthma 
of varying severity. Am J Resp Crit Care Med 154: 224-230 

69 Carroll N, Carello S, Cooke C, James A (1996) Airway structure and inflammatory cells 

in fatal attacks of asthma. Eur Respir J 9: 709-715 

70 Azzawi M, Bradley B, Jeffery PK et al (1990) Identification of activated T-lymphocytes 
and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis 142: 

1407-1413 

71 Li D, Wang D, Griffiths-Johnson DA et al (1997) Eotaxin protein gene expression in 

guinea-pigs: constitutive expression and upregulation after allergen challenge. Eur 

Respir J 10: 1946-1954 
72 Persson CGA, Erjefalt JS (1997) Eosinophil lysis and free granules: an in vivo paradigm 

for cell activation and drug development. TiPS 18: 117-123 

73 Erjefalt JS, Sundler F, Persson CGA (1996) Eosinophils, neutrophils and venular gaps in 
the airway mucosa at epithelial removal-resitution. Am J Respir Crit Care Med 153: 
1666-1674 

74 Laitinen LA, Laitinen A, Haahtela T (1993) Airway mucosal inflammation even in 
patients with newly diagnosed asthma. Am Rev Respir Dis 147: 697-704 

75 Jeffery PK, Godfrey RWA, Adelroth E, Nelson F, Rogers A, Johansson S-A (1992) 
Effects of treatment on airway inflammation and thickening of reticular collagen in asth
ma: a quantitative light and electron microscopic study. Am Rev Respir Dis 145: 890-
899 

76 Bentley AM, Maestrelli P, Saetta M et al (1992) Activated T-lymphocytes and 

eosinophils in the bronchial mucosa in isocyanate-induced asthma. J Allergy Clin 

Immunol 89: 821-829 

77 Bentley AM, Menz G, Storz Chr et al (1992) Identification of T-lymphocytes, 

macrophages and activated eosinophils in the bronchial mucosa in intrinsic asthma: 

Relationship to symptoms and bronchial responsiveness. Am Rev Respir Dis 146: 

500-506 

78 Filley WV, Holley KE, Kephart GM, Gleich GJ (1982) Identification by immunofluo
rescence of eosinophil granule major basic protein in lung tissue of patients with 
bronchial asthma. Lancet 1: 11-16 

79 Gerblich AA, Campbell AE, Schuyler MR (1984) Changes in T-lymphocyte subpopula-

46 



Pathological spectrum of airway inflammation 

tions after antigenic bronchial provocation ill asthmatics. N Engl J Med 310: 

1349-1352 
80 Wardlaw AJ, Dunnett S, Gleich GJ, Collins JV, Kay AB (1988) Eosinophils and mast 

cells in bronchoalveolar lavage in mild asthma: relationship to bronchial hyperreactivi
ty. Am Rev Respir Dis 137: 62-69 

81 Adelroth E, Rosenhall L, Johansson S-A, Linden M, Venge P (1990) Inflammatory cells 
and eosinophilic activity in asthmatics investigated by bronchoalveolar lavage: the 
effects of anti-asthmatic treatment with budesonide or terbutaline. Am Rev Respir Dis 

142: 91-99 
82 Bradding P, Feather IH, Howarth PH et al (1992) Interleukin 4 is localized to and 

released by human mast cells. J Exp Med 176: 1381-1386 
83 Denburg JA, Telizyn S, Belda A, Dolovich J, Bienenstock J (1985) Increased numbers of 

circulating basophil progenitors in atopic patients. J Allergy Clin Immunol76: 466-472 
84 Ollerenshaw SL, Woolcock AJ (1993) Quantification and location of vasoactive intesti

nal peptide immunoreactive nerves in bronchial biopsies from subjects with mild asth

ma. Am Rev Respir Dis 147: A285 
85 Ollerenshaw SL, Jarvis D, Sullivan CE, Woolcock AJ (1991) Substance P immunoreac

tive nerves in airways from asthmatics and non-asthmatics. Eur Respir J 4: 673-682 
86 Howarth PH, Springall DR, Redington AE, Djukanovic R, Holgate ST, PolakJM (1995) 

Neuropeptide-containing nerves in endobronchial biopsies from asthmatic and non

asthmatic subjects. Am J Respir Cell Mol Bioi 13: 288-296 
87 Sharma R, Jeffery PK (1990) Airway B-adrenoceptor number in cystic fibrosis and asth

ma. Clin Sci 78: 409-417 
88 Sharma RK, Jeffery PK (1990) Airway V.I.P. receptor number is reduced in cystic fibro

sis but not asthma. Am Rev Respir Dis 141: A726 
89 Li D, Jeffery PK (1996) Experimental induction of goblet cell hyperplasia in vivo. In: DF 

Rogers (ed): Airway mucus: basic mechanisms and clinical perspectives. Birkhauser Ver
lag, Basel 

90 Harkema JR, Hotchkiss J (1992) In vivo effects of endotoxin on intraepithelial muco
substances in rat pulmonary airways. Am J Patho/141: 307-317 

91 Medical Research Council (1965) Definition and classification of chronic bronchitis for 
clinical and epidemiological purposes. A report to the Medical Research Council by 
their Committee on the etiology of chronic bronchitis. Lancet i: 775-780 

92 Thurlbeck WM (1977) Aspects of chronic airflow obstruction. Chest 72: 341-349 

93 Fletcher CM, Pride MB (1984) Definition of emphysema, chronic bronchitis, asthma 

and airflow obstruction: twenty-five years on from the CIBRA symposium. Thorax 39: 

81-85 
94 Gibson PG, Girgis-Gabardo A, Morris MM et al (1989) Cellular characteristics of spu

tum from patients with asthma and chronic bronchitis. Thorax 44: 693-699 

95 Lacoste JY, Bousquet J, Chanez P et al (1993) Eosinophilic and neutrophilic inflamma

tion in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Allerg 

Clin Immunol 92: 537-548 

47 



Peter K. Jeffery 

96 Ollerenshaw SL, Woolcock A] (1992) Characteristics of the inflammation in biopsies 
from large airways of subjects with asthma and subjects with chronic airflow limitation. 
Am Rev Respir Dis 145: 922-927 

97 Saetta M, Di Stefano A, Maestrelli P et al (1993) Activated T-lymphocytes and 
macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir 

Dis 147: 301-306 
98 Vignola AM, Campbell AM, Chanez P et al (1993) HLA-DR and ICAM-1 expression 

on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 148: 
689-694 

99 Di Stefano A, Maestrelli P, Roggeri A et al (1994) Upregulation of adhesion molecules 
in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir 

Crit Care Med 149: 803-810 
100 O'Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK (1997) Inflammation in 

bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T
lymphocytes with FEVl. Am J Respir Crit Care Med 155: 852-857 

101 Saetta M, Di Stefano A, Maestrelli Pet al (1994) Airway eosinophilia in chronic bron
chitis during exacerbations. Am J Respir Crit Care Med 150: 1646-1652 

102 Mullen ]BM, Wright ]L, Wiggs BR, Pare PD, Hogg]C (1987) Structure of central air
ways in current smokers and ex-smokers with and without mucus hypersecretion. Tho

rax 42: 843-846 
103 Toremalm NH (1960) The daily amount of tracheobronchial secretions in man: a 

method for continuous tracheal aspiration in largyngectomized and tracheostimized 
patients. Acta Otolarynology 158: 43-53 

104 Lopez-Vidriero MT, Reid L (1985) Bronchial mucus in asthma. In: EB Weiss, MS Segal, 
M Stein (eds): Bronchial asthma: Mechanisms and therapeutics. Little, Brown & Com
pany, Boston, 218-235 

105 Coles S], Bhaskar KR, O'Sullivan BD, Neill KH, Reid LM (1984) Airway mucus: com
position and regulation of its secretion by neuropeptides in vitro. In: ] Nugent, M 
O'Connor (eds): Mucus and mucosa. Ciba Foundation Symposium 109. Pitman Med
ical, London, 40-60 

106 Reid L (1954) Pathology of chronic bronchitis. Lancet 1: 275-279 
107 Wright RR, Stuart CM (1965) Chronic bronchitis with emphysema: a pathological 

study of the bronchi. Medicina Thoracalis 22: 210 
108 Klienerman], Boren HG (1974) Morphologic basis of chronic obstructive lung disease. 

In: GL Baum (ed): Textbook of pulmonary disease. Little Brown Company, Boston, 571 
109 Chang SC (1957) Microscopic properties of whole mounts and sections of human 

bronchial epithelium of smokers and non-smokers. Cancer (Phila) 10: 1246-1262 
110 Wanner A (1977) Clinical aspects of muco-ciliary transport. Am Rev Respir Dis 116: 

73-125 
111 Misokovitch G, Appel ], Szule ] (1974) Ultrastructural changes of ciliated columnar 

epithelium and goblet cells in chronic bronchitis biopsy material. Acta Morphol Acad 

Sci Hung 22: 91-103 

48 



Pathological spectrum of airway inflammation 

112 Ailsby RL, Ghadially FN (1973) Atypical cilia in human bronchial mucosa. J Pathol 

109:75-77 
113 Wilson R, Pitt T, Taylor G et al (1987) Pyocyanin and 1-hydroxyphenazine produced by 

Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin 
Invest 79: 221-229 

114 Cosio MG, Hale KA, Niewoehner DE (1980) Morphologic and morphometric effects of 
prolonged cigarette smoking on the small airways. Am Rev Respir Dis 122: 265-271 

115 Ebert RV, Terracio MJ (1975) The bronchiolar epithelium in cigarette smokers: obser
vations with the scanning electron microscope. Am Rev Respir Dis 111: 4-11 

116 Siafakas NM, Vermeire P, Pride NB et al (1995) Optimal assessment and management 
of chronic obstructive pulmonary disease (COPD). Eur Respir J 8: 1398-1420 

117 Snider GL, Kleinerman J, Thurlbeck WM (1985) The definition of emphysema. Report 
of a National Heart and Blood Institute, division of lung diseases, Workshop. Am Rev 

Respir Dis 132: 182-185 
118 Swan GE, Roby TJ, Hodgkin JE, Mittman C, Peters JA, Jacobo N (1994) Relationship 

of cytomorphology to spirometric findings in cigarette smokers. Acta Cytologica 38: 

547-553 
119 Thompson AB, Daughton D, Robbins RA, Ghafouri MA, Oehlerking M, Rennard SI 

(1989) Intraluminal airway inflammation in chronic bronchitis. Characterization and 
correlation with clinical parameters. Am Rev Respir Dis 140: 1527-1537 

120 Linden M, Rasmussen JB, Piitulainen E et al (1993) Airway inflammation in smokers 
with nonobstructive and obstructive chronic bronchitis. Am Rev Respir Dis 148: 1226-
1232 

121 Lacoste J-Y, Bousquet J, Chanez P et al (1993) Eosinophilic and neutrophilic inflamma
tion in asthma, chronic bronchitis, and chronic obstructive pulmonary disease. J Aller
gy Clin Immunol 92: 537-548 

122 O'Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK (1996) Inflammatory cells in the 
airway surface epithelium of smokers with and without bronchitic airflow obstruction. 
Eur Respir J 9 (suppI23): 14s 

123 Buist S, Ghezzo H, Anthonisen NR et al (1979) Relationship between the single breath 
N2 test and age, sex and smoking habits in three North American cities. Am Rev Respir 
Dis 120: 305-318 

124 Nemery B, Moavero NE, Brasseur L, Stanescu DC (1981) Significance of small airways 
test in middle-aged smokers. Am Rev Respir Dis 124: 232-238 

125 Hogg JC, Macklem PT, Thurlbeck WM (1968) Site and nature of airway obstruction in 
chronic obstructive lung disease. N Engl J Med 278: 1355-1360 

126 Verbeken EK, Cauberghs M, Mertens I, Lauweryns JM, van de Woestijne KP (1992) Tis
sue and airway impedance of excised normal, senile, and emphysematous lungs. Am 

Phys Soc 2343-2353 

127 Reynolds HY (1987) Bronchoalveolar lavage. Am Rev Respir Dis 135: 250-263 
128 Niewoehner DE, Klienerman J, Rice D (1974) Pathologic changes in the peripheral air

ways of young cigarette smokers. N Engl J Med 291: 755-758 

49 



Peter K. Jeffery 

129 Mitchell RS, Stanford RE, Johnson JM, Silvers GW, Dart G, George MS (1976) The 
morphologic features of the bronchi, bronchioles and alveoli in chronic airway obstruc
tion: a clinicopathologic study. Am Rev Respir Dis 114: 137-145 

130 Bignon J, Khoury F, Evan P, Andre J, Brouet G (1969) Morphometric study in chronic 
obstructive broncho-pulmonary disease. Am Rev Respir Dis 99: 669-695 

131 Saetta M, Ghezzo H, Wong Dong Kim et al (1985) Loss of alveolar attachments in 
smokers. A morphometric correlate of lung function impairment. Am Rev Respir Dis 

132: 894-900 

132 Linhartova A, Anderson AE Jr, Foraker AG (1977) Further observations on lumenal 
deformity and stenosis of non respiratory bronchioles in pulmonary emphysema. Tho

rax 32: 50-53 
133 Anderson AE, Foraker AG (1962) Relative dimensions of bronchioles and parenchymal 

spaces in lungs from normal subjects and emphysematous patients. Am J Med 32: 
218-226 

134 Wright JL, Hobson JE, Wiggs B, Pare PD, Hogg JC (1988) Airway inflammation and 
peribronchiolar attachments in the lungs of nonsmokers, current and ex-smokers. Lung 

166: 277-286 

135 Jeffery PK, Reid L (1975) New observations of rat airway epithelium: a quantitative 
electron microscopic study. J Anat 120: 295-320 

136 Jeffery PK, Corrin B (1984) Structural analysis of the respiratory tract. In: J Bienenstock 
(ed): Immunology of the lung. McGraw-Hill, New York, 1-27 

137 Gil J, Weibel E (1971) Extracellular lining of bronchioles after perfusion-fixation of rat 

lungs for electron microscopy. Anat Rec 169: 185-200 
138 Mooren HWD, Kramps JA, Franken C, Meijer ClLM, Dijkman JA (1983) Localisation 

of a low-molecular weight bronchial protease inhibitor in the peripheral human lung. 
Thorax 38: 180-183 

139 Kramps JA, Franken C, Dijkman JH (1984) ELISA for quantitative measurement of 
low-molecular-weight bronchial protease inhibitor in human sputum. Am Rev Respir 

Dis 129: 959-963 
140 Ebert RV, Hanks PB (1981) Mucus secretion by the epithelium of the bronchioles of cig

arette smokers. Br J Dis Chest 75: 277-282 

141 Macklem PT, Proctor DF, Hogg JC (1970) The stability of peripheral airways. Resp 

Physiol 8: 191-203 

142 Gillooly M, Lamb D (1993) Microscopic emphysema in relation to age and smoking 
habit. Thorax 48: 491-495 

143 Lang MR, Fiaux GW, Gilooly M, Stewart JA, Hulmes DJS, Lamb D (1994) Collagen 

content of alveolar wall tissue in emphysematous and non-emphysematous lungs. Tho

rax 49: 319-326 
144 Eriksson S (1964) Pulmonary emphysema and alpha i-antitrypsin deficiency. Acta Med 

Scand 175: 197-205 
145 Auerbach 0, Hammond EC, Garfinkel L, Benante C (1972) Relation of smoking and 

age to emphysema. N Engl J Med 286: 853-858 

50 



Pathological spectrum of airway inflammation 

146 Gadek jE, Fells GA, Crystal RG (1979) Cigarette smoking induces functional antipro
tease deficiency in the lower respiratory tract of humans. Science 206: 1315-1316 

147 Cantin A, Crystal RG (1985) Oxidants, antioxidants and the pathogenesis of emphyse
ma. Eur J Respir Dis 66 (suppl139): 7-17 

148 Kimbel P (1985) Proteolytic damage and emphysema pathogenesis. In: TL Petty (ed): 
Chronic obstructive pulmonary disease, vol 28. Dekker, New York, 105-128 

149 jeffery PK (1990) Tobacco smoke-induced lung disease. In: RD Cohen, B Lewis, KGMM 
Alberti, AM Denman (eds): The metabolic and molecular basis of acquired disease. Bal
liere Tindall, London, 466-495 

150 Finkelstein R, Fraser RS, Ghezzo H, Cosio MG (1995) Alveolar inflammation and its 
relation to emphysema in smokers. Am J Respir Crit Care Med 152: 1666-1672 

151 Majo j, Ghezzo H, Hogg j, Cosio MG (1996) Alveolar wall inflammation in lungs of 
smokers. Am J Respir Crit Care Med 153 (4): A821 

152 Hunninghake GW, Crystal RG (1983) Cigarette smoking and lung destruction: accu
mulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 128: 

833-838 
153 Kilburn KH, McKenzie W (1975) Leucocyte recruitment to airways by cigarette smoke 

and particle phase in contrast to cytotoxicity of vapour. Science 189: 634-636 
154 Ludwig WP, Hoidal jR (1982) Alterations in leucocyte oxidative metabolism in cigarette 

smokers. Am Rev Respir Dis 126: 977-980 
155 Eliraz A, Kimbell P, Weinbaum G (1977) Canine alveolar macrophage and neutrophil 

exposure to cigarette smoke: regulation of elastase secretion. Chest 72: 239 
156 Cohen AB, james HL (1982) Reduction of the elastase inhibitory capacity of alpha 1-

antitrypsin by peroxides in cigarette smoke: an analysis of brands and filters. Am Rev 
Respir Dis 126: 25-30 

157 Sandhaus RA (1983) Migration-induced elastolysis: directed migration of human neu

trophils causes connective tissue proteolysis in the absence of alpha 1-protease inhibitor. 
Am Rev Respir Dis 127: 2815 

158 MacNee W, Selby C (1993) New perspectives on basic mechanisms in lung disease: 2. 
Neutrophil traffic in the lungs: role of haemodynamics, cell adhesion and deformabili
ty. Thorax 48: 79-88 

159 MacNee W, Wiggs B, Belzberg AS, Hogg jC (1989) The effect of cigarette smoking on 
neutrophil kinetics in human lungs. N Engl J Med 321: 924-928 

160 Drost EM, Selby C, Lannan S, Lowe GDO, MacNee W (1992) Changes in neutrophil 
deformability following in vitro smoke exposure: mechanisms and protection. Am J 
Resp Cell Mol Bioi 6: 287-295 

161 Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin derived pep
tides. J CLin Invest 66: 859-863 

162 Ward PA (1982) The chemotaxis system. In: RS Cohan, N Kaufmann (eds): Current top

ics in inflammation and infection. Williams & Wilkins, Baltimore, 54-61 
163 Pryor WA (1977) The role of free radical reactions in biological systems. In: WA Pryor 

(ed): Free radicals in biology, voll. Academic Press, New York, 1-22 

51 



Peter K. Jeffery 

164 Hopkin JM, Tomlinson CS, Jenkins RM (1981) Variations in response to cytotoxicity of 

cigarette smoke. Br MedJ 283: 1209-1211 
165 Amadori A, Zamarchi R, De Silvestro Get al (1995) Genetic control of the CD4/CD8 

T-cell ratio in humans. Nature Med 1: 1279-1283 
166 Jeffery PK, Hamid Q, Majumdar S et al (1993) Antigen-primed T cells and expression 

of cytokine mRNA for IL4, ILS and INF-gamma in fibrosing alveolitis associated with 
systemic sclerosis. ] Pathol170: 380A (abstract) 

167 Southcott AM, Jones KP, Li D et al (1995) Interleukin-8 differential expression in lone 
fibrosing alveolitis and systemic sclerosis. Am] Respir Crit Care Med 151: 1604-1612 

52 



Role of basophils in airways inflammation 

Gianni Marone, Massimo Triggiani, Giuseppe Spadaro, Anna Maria Onorati and 

Arturo Genovese 

Division of Clinical Immunology and Allergy, University of Naples Federico II, 

Via S. Pansini 5, 80131 Napoli, Italy 

Introduction 

Human basophils were first identified by Paul Ehrlich (1878) thanks to the 
metachromatic staining properties of their cytoplasmic granules [1, 2] . In all mam
malian species analysed so far, basophils and mast cells are the only cells that syn
thesize histamine and express plasma membrane receptors that bind with high affin
ity the Fce portion of IgE (FceRI) [3]. Human basophils derive from precursors that 
originate in the bone marrow and in foetal liver and that circulate in peripheral 
blood. Under normal conditions, basophils are never found in human healthy tis
sues. Basophils differentiate and mature in the bone marrow and circulate in the 
blood with a prevalence of == 0.5% of total leukocytes [4]. Under certain circum
stances, basophils can be recruited into the inflamed tissue during specific IgE
dependent reactions and in association with a variety of pathologic conditions 
[5-8]. Increasing evidence suggests that basophils and their mediators are involved 
in delayed-type hypersensitivity reactions in the human skin and in the lung [5, 6, 
8, 9]. 

Identification of basophils in the airways of asthmatics 

Basophils have been identified in human bronchoalveolar lavage fluid in late phase 
responses [8] . Basophils have also been found post mortem in the airway's lumen, 
in the bronchial epithelium and in the submucosa of fatal asthma patients [7]. Inter
estingly, basophils in sputum of asthmatics increase just before an asthmatic attack 
and after allergen-induced asthmatic responses [5]. Finally, annual changes in 
basophils in peripheral blood have been correlated to airways responsiveness [9]. 
These anatomical observations suggest that basophils and their mediators play a 
role in various aspects of allergic inflammation. It is important to note that degran
ulated basophil leukocytes can no longer be recognized by routine light microscopy. 
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Table 1 - Effects of IL-3 on human basophils 

Growth factor 
Increases survival 
Increases basophil releasability 
Activates basophils to release histamine 
Potentiates the release of histamine and LTC4 

Potentiates the immunologic release of IL-4 
Induces chemotaxis 
Stimulates adherence to vascular endothelium 

Growth factor for human basophils 

The principal growth and differentiation factor for human basophils appears to be 
IL-3 [10, 11]. IL-3 exerts multiple effects on human basophils (Tab. 1). IL-3 increas
es the survival of basophils in vitro, and is also a chemotactic and activating factor 
for human basophils [10-13]. In addition, preincubation of human basophils with 
IL-3 significantly potentiates the release of histamine, cysteinyl leukotriene C4 

(LTC4 ) and IL-4 from human basophils immunologically challenged with anti-IgE 
or anti-FcERI [12, 13] (Fig. 1). 

Basophil adhesion molecules 

Although the human basophil is predominantly a circulating cell, they have also 
been identified in skin at sites of contact hypersensitivity, erythema multiforme, bul
lous pemphigoid, and cutaneous basophil hypersensitivity reactions and in the air
ways of subjects with allergic rhinitis and asthma [5-8]. In addition, an influx of 
basophils accompanies the allergic late phase response that occurs after antigen 
challenge of the skin and airways [5, 6]. Thus, basophils, like other granulocytes, 
can migrate from the intravascular compartment into specific tissues. The observa
tion that basophils accumulate at certain inflammatory sites suggests that they are 
activated and recruited to these locations. This process implies that basophils inter
act with endothelial cells and extracellular matrix proteins as they undergo mar
gination and transendothelial migration, and enter the tissue space. This process 
involves the interaction of basophil cell surface adhesion molecules with specific 
adhesion molecule counter-receptors [14]. Two publications provide excellent over
views of basophil adhesion molecule biology [4, 15]. 
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Figure 1 

Effects of priming of basophils with rhlL-3 on anti-lgE-induced release of histamine, LTC4 

and IL -4. 8asophils were treated or not with IL-3 (10 ng/ml for 2 h at 3JOC) before the addi

tion of anti-/gE (0.3 jig/mI). After 4 h, the cell-free supernatants were harvested for hista

mine, LTC4 and /L-4 measurements. The results are presented as the mean ± SEM of four 

preparations of basophils. 

With respect to the expression of cell adhesion molecules, basophils have on 
their surface several molecules belonging to the integrin, selectin, and immunoglob
ulin gene superfamilies, as well as carbohydrate molecules that are ligands for 
selectins (Tab. 2). These molecules are primarily constitutively expressed and their 
expression is not usually altered by cell activation. However, a major exception to 
this is the finding that activation by certain secretagogues, cytokines, or chemoat
tractans results in a rapid increase in the cell surface expression of ~2 integrins (e.g., 
COllb but not COlla) and C035 (CRl) . Associated with these changes is a more 
gradual decline in surface expression of L-selectin [16, 17]. Identical phenotypic 
changes in the expression of COllb and L-selectin appear to have occurred in 
basophils that have been recruited into the lower airways after segmental allergen 
challenge in vivo [18]. 

Human basophils express sialyl LewisX, a counter-receptor for selectins that 
mediates rolling of leukocytes on vascular cell surfaces before adhesion and trans-
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Role of basophils in airways inflammation 

migration. Endothelial cell receptors expressed on human basophils include the ~1 
integrin very late activation antigen-4 (VLA-4) and the ~2 integrin leukocyte func
tion antigen-1 (LFA-1) [4, 15]. These integrins are composed of an a and ~ chain. 
Human basophils express the common ~ chain of ~1 integrins (CD29) and ~2 inte
grins (CD18), as well as VLA-4a (CD49d) and LFA-1a chain (CDlla). VLA-4 is a 
receptor for vascular cell adhesion molecule-1 (VCAM-1) expressed on activated 
endothelial cells and LFA -1 is a receptor for intercellular adhesion molecule-1 
(ICAM-1). Binding of basophils to activated endothelium is primarily mediated via 
VCAM-1, E-selectin and ICAM-1 interactions [4]. Basophils also express the 
laminin receptor VLA-S, but lack CD49f, CDSlICD61 (VNR), and the ~4 integrin. 
Human mast cells express VLA-4, VLA-S, and the vitronectin receptor a and ~ 
chain, but lack LFA-1 (CDllaI18) and CD104 [19]. 

Another adhesion receptor on basophils is the Pgp-1 homing receptor (CD44) . 
The ICAM-1 antigen (CDS4) is expressed on basophils. Basophils and mast cells 
also express ICAM-2 (CD102), ICAM-3 (CDSO), and the LFA-3 antigen (CDS8) on 
their surface, but not LFA-2 (CD2) [4]. In addition, basophils bear PECAM-1 
(CD31) and L-selectin (CD62L). The x-hapten Lewis X, (CD1S) is located on the 
basophil surface but is masked by sialic acid. Thus, basophils express CD1S when 
exposed to neuraminidase or to sialidase-producing viruses. Table 2 provides a sum
mary of many of the adhesion receptors expressed on human basophils. 

Immunologic and non-immunologic stimuli activating human basophils 

Human basophils purified from peripheral blood can be activated by a large num
ber of immunologic stimuli. Antigen challenge of human Fc€RI+ cells results in the 
release of preformed mediators stored in the cytoplasmic granules (e.g., histamine) 
and in the de novo synthesis and release of lipid mediators such as LTC4 and 
platelet-activating factor (PAF). Antibodies raised against human Fc€ (anti-IgE) or 
against an epitope of the a subunit of Fc€RI also induce a secretory process in 
human basophils called "reverse anaphylaxis", similar but not identical to direct 
anaphylaxis [20-22]. 

The latter process might be important in vivo because there is increasing evi
dence that autoantibodies anti-IgE and anti-Fc€RI are present in some patients with 
chronic urticaria and atopic syndromes [23-27] . IgG anti-IgE purified by affinity 
chromatography from serum of some atopic patients can induce mediator release 
from human basophils and mast cells [25]. 

Activation of basophils can also be induced by a growing list of immunological 
stimuli including anaphylatoxins (C3a and CSa), cytokines (IL-3, etc.), chemokines 
and naturally occurring (pepstatin A) or synthetic peptides (f-Met-Leu-Phe: FMLP), 
all of which interact with specific membrane receptors independent of the IgE recep
tor [28-33] (Tab. 3). Interestingly, most of the immunologic stimuli that activate 
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Table 3 - Immunological activators of human basophils and mast cells isolated from lung 
parenchyma (HLMC) and bronchoalveolar lavage (BAL-MC) 

Activators Basophils HLMC BAL-MC 

Antigen + + + 
Anti-lgE + + + 
Anti-FceRI + + + 
C3a,C5a + 
rhSCF + + 
MCP-1, MCP-2 + 
MCP-3, MCP-4 + 
RANTES + 
Eotaxin + 
MCAF + 
Concanavalin A + 
rhlL-3 + 
rhlL-8 ± 

Protein L from P. magnus + + + 
Protein A from S. aureus + 
Protein Fv + + + 
PAF + 

human basophils do not induce mediator release from mast cells isolated from lung 
parenchyma (HLMC) and bronchoalveolar lavage (BAL-MC). 

Several cytokines activate human FCERI+ cells by interacting with specific mem
brane receptors. Human basophils, but not mast cells, from 30% of normal and 
atopic donors can be activated by IL-3 [34-36]. IL-3 not only induces basophil 
degranulation per se but enhances mediator release in response to immunological 
and non-immunological stimuli [37-39]. In addition, IL-3 primes basophils to syn
thesize LTC4 in response to stimuli such as CSa, which by themselves are unable to 
trigger the release of de novo synthesized mediators [38]. Interestingly, human 
basophils primed by IL-3 produce IL-4 in response to IgE receptor stimulation [40]. 

Chemotactic cytokines of the CC subfamily (CC chemokines) are major media
tors of allergic inflammation. Several chemokines activate human basophils by 
interacting with at least three specific CCR receptors [41]. Basophils can be activat
ed by the monocyte chemotactic protein (MCP) 1, MCP-2, MCP-3, MCP-4, 
RANTES and eotaxins to release histamine [41-47]. In particular, CCR3 receptors 
appear important for basophils chemotaxis, and CCR2 for mediator release from 
basophils [41]. Basophils can also be activated by such lipid mediators as PAF [48]. 
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Table 4 - Basophil and mast cell mediator-releasing cytokines 

Cytokine 

rhlL-1a 

rhlL-1 ~ 

rhlL-2 

rhlL-3 

rhlL-4 

rhlL-5 

rhlL-6 

rhlL-7 

rhlL-8 

rhlL-9 

rh1L-10 

rhGM-CSF 

rhSCF 

NGF 

TNFa 

IFNy 

Human basophils 
Trigger Modulator 

+ 

± 

+ 

+ 

++ 

+ 

+ 
+ 
+ 

Human lung mast cells 
Trigger Modulator 

+ + 

The fact that a wide range of stimuli other than antigens and anti-IgE can induce 
mast cell and basophil activation suggests that these cells might be critical effectors 
not only in IgE-dependent immediate hypersensitivity disorders (allergic rhinitis, 
bronchial asthma and atopic dermatitis), but in a variety of diseases not involving 
IgE. 

Besides IL-3, other cytokines, such as IL-1ex and IL-1~, GM-CSF, IL-5 and NGF 
modulate the release of mediators from basophils [34, 37, 49] (Tab. 4). Interesting
ly, these cytokines do to induce or modulate mediator release from HLMC and 
BAL-Me. Stem cell factor (SCF) or c-kit receptor ligand (KL), a potent stimulator 
of human bone marrow progenitor cell proliferation, particularly in synergy with 
other growth factors (IL-6) [50], is the only cytokine so far identified that induces 
mediator release fron human skin, lung, heart and synovial mast cells and enhances 
histamine secretion induced by anti-IgE [32, 51, 52]. 

The results listed in Tables 3, 4 and 5 indicate that many of the activators of 
human basophils do not activate mast cells isolated from human tissues. For exam
ple, basophils can be activated by naturally occurring (pepstatin A) or synthetic pep
tides (FMLP), phorbol esters and bryostatins [53], and ana phyla toxins C3a and C5a 
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Table 5 - Non-immunologic adivators of human basophils and mast cells isolated from lung 

parenchyma (HLMC) and bronchoalveolar lavage (BAL-MC) 

Activators Basophils HLMC BAL-MC 

Ca2+ ionophores (A23187 and ionomycin) + + + 
Mitotoxin + + + 
Compound 48/80 

Deuterium oxide + 
Eosinophil major basic protein + 
FMLP and Pepstatin A + 
General anesthetics 

. 
+ + 

Hyperosmolality + ± + 
Morphine 

Muscle relaxants" + N.D. 

PAF + 
Phorbol esters and bryostatins + 
Substance P N.D. 

N.D., not demonstrated; " ketamine and propofol; ", atracurium and vecuronium 

[28] or by bioactive lipids such as PAF [48], which do not induce the release of medi
ators from lung mast cells. Conversely, anaesthetic drugs selectively induce hista
mine release from lung and skin mast cells, but not from basophils [54-56] . These 
results highlight some of the biochemical and immunological differences between 
human basophils and mast cells. 

Preformed mediators of human basophils 

Histamine is the only biogenic amine detected so far in human mast cells and 
basophils. Each basophil contains, on average, 1 pg of histamine, whereas human 
mast cells contain approximately 3 pg of histamine/cell [21, 22] (Tab. 6). Mast cells 
recovered from BAL from normal donors and asthmatics contain less histamine 
than parenchymal lung mast cells [21]. Mast cell granules contain high concentra
tions of proteases such as tryptase and chymase [22, 57, 58]. Negligible amounts of 
tryptase are found in human basophils, making this enzyme a specific mast cell 
marker. 

Staining of FCERI+ cells with basic dyes and the expression of metachromasia are 
due to the highly sulphated proteoglycans contained in the secretory granules. Two 
classes of proteoglycans, heparin and chondroitin sulphate, have been described. 
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Table 6 - Chemical mediators synthesized by human basophils and mast cells isolated from 

lung parenchyma (HLMC) 

Mediators 

Preformed 
Histamine (pg/cell) 

Tryptase (pg/cell) 
Chymase (pg/cell) 

Heparin 
Chondroitin sulphate A 

Chondroitin sulphate E 

De novo synthesized 
LTC4 (ng/106 cells) * 

PGD2 (ng/106 cells) * 

TxA2 (ng/106 cells)* 
PAF (ng/106 cells) * 

AAGPC (ng/106 cells)* 

Basophils 

- 1 
< 0.04 
< 0 .04 

+ 

- 60 
< 0.006 

'" 0 .005 
- 0.2** 
- 0.3** 

HLMC 

-3 
- 10 

± 

+ 

+ 

- 60 
- 60 

-5 
- 1 
-3 

N.D., not demonstrated; *, amount released upon IgE-mediated challenge; **, as measured 
by the incorporation of radiolabelled acetate. 

Heparin is the major proteoglycan in human lung and skin mast cell granules, 
whereas different chondroitin sulphates are prevalent in the granules of basophils 
and of intestinal mast cells [59-61]. 

Lipid metabolism in human basophils 

Large quantities of arachidonic acid are stored in membrane glycerolipids of human 
basophils. Upon cell activation, arachidonic acid is mobilized from the storage pools 
by various phospholipases and is converted to leukotrienes by 5-LO and to 
prostanoids by cydooxygenases (COX) [62]. The profile of eicosanoids generated 
by activated human basophils and mast cells has been extensively studied [62-64]. 

Lung and skin mast cells synthesize approximately 60 ng of PGD21106 cells when 
challenged with IgE-mediated stimuli [55, 65]. In contrast, basophils do not produce 
PGD2 or any other known cydo-oxygenase metabolite. Arachidonic acid can also 
be metabolized by 5-lipoxygenase (5-LO) to the unstable metabolite leukotriene A4 
(LTA4) [64] . The enzyme, normally located in the cytosol, is translocated to the 
membrane upon cell activation to form a stable complex with other components of 
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the leukotriene synthetic pathway and with a membrane protein named" 5-lipoxy
genase activating protein" (FLAP). Formation of the FLAP-5-LO complex is essen
tial to regulate the interaction of 5-LO with its substrate, arachidonic acid. Once 
formed, LTA4 can be converted either to leukotriene B4, a potent chemotactic factor 
for polymorphonuclear leukocytes, by LTA4 hydrolase [66], or to LTC4 by conjuga
tion with reduced glutathione, catalyzed by the specific enzyme LTC4 synthase [67]. 
Once secreted, LTC4 is metabolized sequentially to the two metabolites leukotrienes 
D4 (LTD4), by removal of glutamine, and E4 (LTE4), by removal of glycine. Cys
teinyl-Ieukotrienes C4, D4, and E4 make up the biological mixture that used to be 
referred to as the "slow-reacting substance of anaphylaxis" (SRS-A) [68]. 

Immunologically activated human basophils and lung mast cells generate 
approximately 60 ng of LTC41106 cells on average [69], whereas skin mast cells 
challenged with IgE- and non-IgE-mediated stimuli generate little or none [70]. 

Cysteinyl-Ieukotrienes C4, D4 and E4 have been implicated in the pathogenesis of 
allergic rhinitis and bronchial asthma. Upon inhalation, they reduce airway con
ductance in asthmatics [71]. Levels of cysteinyl-Ieukotrienes are elevated in biolog
ical fluids from asthmatics. Moreover, LTD4 receptor antagonists [72, 73] or 
inibitors of 5-LO activity [74, 75] have an appreciable effect on bronchial and nasal 
antigen challenge. 

The biochemical basis of the different profiles of eicosanoids released by 
basophils and mast cells isolated from different anatomical sites is not known. How
ever, our knowledge of the mechanisms of eicosanoid synthesis in basophils and 
mast cells took a step forward with the identification of novel enzymes and regula
tory molecules involved in arachidonic acid metabolism [65, 76]. At least two major 
phospholipases A2 (PLA2) are involved in arachidonate mobilization in mast cells: a 
high molecular weight cytosolic PLA2 (cPLA2) and a low molecular weight secreto
ry PLA2 (sPLA2) [77, 78]. cPLA2 is an arachidonate-selective PLA2 activated by 
micromolar Ca2+ concentrations [79]. Upon translocation to the nuclear membrane, 
cPLA2 generates free arachidonate that is mostly converted to leukotrienes. There 
are two mechanisms of upregulation of cPLA2 in mast cells activated by IgE-depen
dent stimuli: a rapid mechanism occurring within minutes after cell activation based 
on phosphorylation mediated by MAP kinase, and a delayed mechanism based on 
transcription and expression of new enzyme molecules [80]. The latter mechanism 
requires several hours to be effective and is strongly modulated by cytokines [81]. 

sPLA2 is stored within cytoplasmic granules of quiescent mast cells [82] and is 
rapidly released when the cells are activated by immunological stimuli or by such 
cytokines as SCE sPLA2 is a non arachidonate-selective enzyme and requires for its 
activation millimolar concentrations of Ca2+, such as those found in the extracellu
lar milieu. sPLA2 can be considered for many aspects a mediator of inflammation 
because: (1) it is released in discrete amounts in the extracellular environment after 
immunological activation of mast cells [82]; (2) it can be measured in vivo in such 
inflammatory fluids as the bronchoalveolar lavage of asthmatic patients [83] and 
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the synovial fluid of patients with rheumatoid arthritis [84] and (3) its administra
tion reproduces signs and symptoms of inflammation [85]. Once released, sPLA2 

can hydrolyze phospholipids on the outer layer of the cytoplasmic membrane of 
mast cells thereby generating arachidonate that is mostly converted to prostanoids 
such as PGD2• In addition, recent evidence suggests the presence of a specific mem
brane receptor for sPLA2 on murine mast cells [86]. Activation of this receptor, 
which is blocked by heparin, induces the release of both preformed (histamine and 
proteases) and de novo synthesized mediators (eicosanoids). The existence of an 
sPLA2 receptor on human mast cells has not yet been demonstrated. 

PAF, originally discovered as a factor synthesized by immunologically activated 
rabbit basophils [87], an ether-linked phospholipid (1-alkyl-2-acetyl-sn-glycero-3-
phosphocholine: AGEPC) [88], can be synthesized by human lung mast cells chal
lenged with anti-IgE (-1 ng/106 cells) [89]. Human basophils produce much small
er amounts of PAF than do mast cells [90]. Besides PAF, the 1-acyl analog of PAF 
(1-acyl-2-acetyl-sn-glycero-3-phosphocoline: AAGPC) is synthesized by human lung 
mast cells, and basophils in amounts two to four times greater than PAF [90]. These 
results introduced the concept of "2-acetylated phospholipids", i.e., molecules hav
ing the common feature of an acetyl group at the sn-2 position of the glycerol back
bone. 

Cytokine and chemokine expression in human basophils 

Several groups of investigators have demonstrated the generation and secretion of 
IL-4 by human basophils after IgE-dependent activation. Brunner et al. presented 
the first evidence for the release of IL-4 from normal basophils purified by combin
ing countercurrent elutriation and negative selection techniques [40]. IL-4 protein 
levels increased substantially, as did leukotriene C4 (LTC4) generation, if basophil 
cultures were pretreated with IL-3 for 18 h before stimulation. Arock et al. using 
human leukemic and bone marrow-derived basophils, found that IL-3 was essential 
for the development of cells expressing IL-4 message and secreting protein [91]. Sus
tained pretreatment with IL-3 before stimulation with anti-IgE antibody was not an 
absolute requirement for the secretion of IL-4 from pure (88% to 99%) basophils 
[92]. However, preincubation with IL-3 markedly potentiated the immunologic 
release of IL-4 from purified basophils. 

The kinetics of IL-4 secretion from basophils suggest that this cytokine is gener
ated de novo on immunologic activation and is not stored and released on degran
ulation, as has been suggested for some mast cell-derived cytokines. Unlike the 
release of histamine that occurs within minutes after IgE cross linking, approxi
mately 2 h are needed before IL-4 protein is first detected in basophil cultures, with 
levels peaking at 4 to 5 h. The ability of cycloheximide to ablate the secretion of IL-
4 indicates that protein synthesis is necessary for the generation of this cytokine in 
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basophils. However, the kinetics of IL-4 release from basophils is considerably less 
than the 12 to 16 h required for IL-4 production by antigen-stimulated T lympho
cytes. Resting basophils constitutively express IL-4 mRNA, as shown by Northern 
blot and reverse transcriptase polymerase chain reaction analysis. In addition, IL-4 
mRNA accumulates in response to stimulation. Experiments investigating the dose
response relationship of anti-IgE stimulation showed that IL-4 secretion is optimal 
at lower concentrations than those necessary for optimal histamine release. Inter
estingly, highly purified preparations of basophil suspensions generated less IL-4 in 
response to IgE-mediated stimulation. These observations suggest that basophils 
subjected to the stress occurring during purification produce less IL-4 protein in 
response to IgE-dependent stimulation than do those in freshly isolated enriched cul
tures, and that IL-3 pretreatment may function to restore cytokine releasability after 
purification. 

There is compelling evidence that immunologically activated human basophils 
also release IL-13 [93,94]. Expression of IL-4 and other cytokines typically associ
ated with a Th2 phenotype (IL-3, IL-5, IL-13, and GM-CSF) has been so far docu
mented in mast cells from different human tissues [95-99]. Immunohistochemical 
data indicate that human mast cells contain IL-4, IL-5, IL-6 and TNFa. [95, 96]. We 
have recently demonstrated by immunogold staining the presence of SCF, the prin
cipal growth differentiating, chemotactic and activating factor of human mast cells, 
in secretory granules of human mast cells [100, 101]. 

Basophils purified from peripheral blood express immunoreactive MIP-la. upon 
stimulation with anti-IgE [102]. Preincubation with IL-3 (15 min to 18 h) aug
mented anti-IgE-induced MIP-la. production from basophils. MIP-la. has potent 
proinflammatory and histamine-releasing activities and, therefore, its production by 
basophils suggests the existence of a positive feedback for allergic inflammation. 

Several studies have focused on IL-4 gene transcription in transformed mouse 
mast cell lines. However, few studies have been conducted to date to analyze the 
mechanisms of gene expression in basophils. Human basophils express mRNA for 
nuclear proteins GATA-2 and GATA-3, suggesting a role of these proteins in gene 
regulation in these cells [103]. The role of nuclear factor of activated T cells (NFAT)-
1 and related proteins has been investigated in cytokine expression in Fc£RI+ cells. 
NFAT-l has been involved in the transcription of most cytokine genes expressed in 
mast cells and basophils, among which IL-3, IL-4 IL-5, GM-CSF, TNFa., and, per
haps, IL-13 [103, 104]. An NFAT-l-immunoreactive protein has been recently 
detected by immunofluorescence staining of human basophils (V. Casolaro, person
al communication). Like NFAT-l, this protein is constitutively expressed in the cyto
plasm, while IgE- or Ca2+ -mediated stimulation induces its translocation to the 
nucleus. This phenomenon occurs rapidly (within 5 min) and is typically blocked by 
cyclosporin A or FK-506. Taken together, these findings raise the possibility that 
unique transcription factors contribute to basophil- or mast cell-restricted cytokine 
gene expressIOn. 
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The observation that several cytokines can be synthesized by human basophils 
and mast cells indicates that these cells playa complex role in chronic inflammation 
of the upper and lower airways in man. 

8asophils and mast cells as effector cells of allergic inflammation 

Histological, biochemical, and pharmacological findings supports the involvement 
of basophils and mast cells and their mediators in the pathogenesis of allergic dis
orders of the upper and lower respiratory tract. Airway inflammation has long been 
recognized as a prominent feature of fatal asthma attacks [7, 105, 106]. Recently, 
inflammatory findings have been reported in bronchial biopsies of even mild asth
matics [107]. There is now evidence that inflammation of the airways is a critical 
feature presumably leading to bronchial hyper-responsiveness [108], which is a typ
ical feature of asthma. These changes are very likely produced by the proinflamma
tory mediators, cytokines and chemokines released from inflammatory cells residing 
in the airways. 

Kimura et al. reported an increase in the number of basophils in the sputum from 
asthmatic patients before the onset of an asthmatic attack, and the number of 
basophils was related to the severity of the relapse [109]. Basophils have been 
observed in nasal secretions of allergic patients challenged with antigens, and their 
presence has been closely related to mediator release and clinical symptoms [110, 
111]. A higher percentage of mast cells is recovered from the BAL of asthmatics 
than controls [112] and the histamine and PGD2 concentrations in the BAL are also 
higher in these patients [21]. 

The release of chemical mediators from FCERI+ cells is influenced both by surface 
density of IgE molecules, and by a biochemical process, defined "releasability" 
[113-115]. Basophil and mast cell releasability are independently controlled [21] 
and the former appears to be under genetic control [114, 116]. An increase in IgE
and non-IgE-mediated basophil releasability has been detected in patients with aller
gic rhinitis and bronchial asthma [21]. Interestingly, basophil reactivity to anti-IgE 
was significantly higher in asthmatics than in patients with allergic rhinitis [21]. The 
IgE-mediated releasability of BAL mast cells from mild asthmatics is also greater 
than in normal age-matched donors [21]. Thus, basophil and mast cell releasability 
in response to IgE-mediated stimuli is increased in respiratory allergy, and more so 
in bronchial asthma. Infiltrating basophils contribute with eosinophils and other 
cells to the chronic inflammatory events of allergic disease. The growing evidence 
that IgE cross-linking initiates synthesis and secretion of several cytokines and 
chemokines by human basophils [91-94, 102] and mast cells [95-99, 101] supports 
the hypothesis that these cells play not only a proinflammatory but an immunomod
ulatory role in allergic disorders. 
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The role of mast cells and basophils in the pathogenesis of allergic disorders is 
indirectly supported by pharmacological evidence. Drugs active in the prevention or 
treatment of these disorders such as methylxanthines [117], corticosteroids [118], 
p-adrenergic agents [29, 30], cyclosporin A [119-121], and FK-S06 [122-124] 
inhibit the release of histamine and other mediators from FCERI+ cells in vivo and 
in vitro. 

Role of basophils in bacterial and viral infections 

There is compelling evidence that viral respiratory tract infections are a major cause 
of wheezing in infants and adults with asthma. Viruses can exacerbate bronchial 
inflammation and provoke asthma through different immunologic mechanisms 
[125]. There is also the possibility that bacterial infections playa role in some aller
gic disorders [126, 127]. 

Although human basophils possess surface receptor for formyl-containing bac
terial peptides [128], no evidence existed as to the in vivo significance of these cells 
in bacterial infections. Several reports have demonstrated that mast cells, which are 
selectively located at the portals of bacterial entry, are important for host defence 
[129, 130]. Mast cell-deficient mice (W/WV ) are significantly less efficient than nor
mal +1+ littermates in clearing enterobacteria and this phenomenon is, at least in 
part, due to decreased TNFa production [129, 130]. Moreover, leukotriene-defi
cient mice manifest enhanced lethality from Klebsiella pneumoniae [131]. These 
results revealed a previously unrecognised role of mast cells in bacterial infections. 

It is important to note that such bacterial factors as pepstatin A [128, 132], type 
1 fimbriae of Escherichia coli [133], protein A of Staphylococcus aureus [29], and 
protein L of Peptostreptococcus magnus [32] can activate human basophils and/or 
mast cells through different immunologic mechanisms. Interestingly, such viral 
products as gp 120 of HIV-1 and protein Fv, in vivo induced during viral hepatitis, 
can also activate human basophils and mast cells to release proinflammatory medi
ators and immunoregulatory cytokines [33, 33a]. In collaboration with Jean-Pierre 
Bouvet, we have found that protein Fv, which is an endogenous superantigen 
released in vivo in patients suffering from viral hepatitis [134], stimulated not only 
the release of histamine from purified peripheral blood basophils, but also the de 
novo synthesis of IL-4 [100, 100a]. Taken together, these observations suggest that 
basophils can playa role during viral and bacterial infections. 

Immunopharmacology of human basophils and mast cells 

Numerous studies have focused on the in vitro and in vivo effects of drugs that mod
ulate the release of preformed and de novo synthesized mediators from human 
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basophils and mast cells isolated from different tissues [29, 117-124]. Significant 
differences have been documented: (a) between mast cells and basophils as regards 
the pharmacological agents and the mediators they produce; (b) between mast cells 
isolated from different anatomical sites; and (c) between compounds of the same 
pharmacologic class. In addition, this approach has significantly contributed to clar
ifying the biochemical mechanisms by which these cells release mediators ill 

response to immunologic and non-immunologic stimuli [29,117-124]. 

Closing remarks 

Basophils, which are absent from healthy human tissues, are found at sites of aller
gen challenge in the nose, and in the upper and lower airways [5, 7-9]. In particu
lar, the density of basophils at sites of allergen-induced inflammation is relatively 
large compared with their limited numbers in the circulation. Activated basophils 
have been detected in the airways of post-mortem cases of fatal asthma [7]. 

These in vivo observations suggest that basophils, like other granulocytes, can 
emigrate from the intravascular compartment into specific tissues. Tremendous 
effort has been put into trying to understand the molecular mechanisms mediating 
the adhesion of basophils to endothelial cells and their recruitment to allergic and 
other inflammatory lesions [15]. The availability of large panels of monoclonal anti
bodies has prompted extensive phenotypic analyses of human basophils [4, 15-18]. 

Basophils express a unique of pattern of cell surface adhesion molecules and the 
expression of some of these molecules, such as ~2 integrins and L-selectin, is altered 
during cell activation [17]. Interestingly, similar phenotypic changes occur in 
basophils recruited into the upper and lower airways after allergen challenge in vivo 
[18]. Parallel studies have identified two types of stimuli that are responsible for the 
preferential recruitment of basophils at sites of allergic inflammation. Several 
chemotactic factors (CSa, FMLP and PAF), cytokines (lL-3) and IgE-dependent 
stimuli (allergen and anti-IgE) can stimulate basophil adhesion to endothelial cells 
in vitro. In addition, several C-C chemokines (RANTES, MIP-la, MCP-l, MCP-2, 
MCP-3 and MCP-4) can promote basophil chemotaxis and/or activation [41-43]. 
Taken together, these findings account, at least in part, for the selective basophil 
recruitment and activation during late-phase allergic reactions of the upper and 
lower respiratory tract [5, 8, 18]. 

Another interesting feature of human basophils, distinct from mast cells, is their 
susceptibility to activation and priming by several cytokines. Besides IL-3, which is 
the most effective cytokine in terms of basophil activation and priming, other such 
cytokines as IL-la and IL-l~, GM-CSF, IL-5 and NGF can modulate the release of 
pro-inflammatory mediators (histamine and cysteinyl leukotriene C4) and indeed 
cytokines themselves, i.e., IL-4 [34,37-40,49]. These observations imply that once 
basophils are recruited at sites of allergic inflammation and exposed to high levels 
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of local cytokines, they become hyper-responsive to a variety of immunologic stim
uli. 

The clinical relevance of the basophils/cytokine inter-relationship clearly emerges 
from the demonstration that immunologically activated basophils synthetise and 
release cytokines, i.e., IL-4 and IL-13 [40,92,93] and the MIP-la chemokine [102]. 

Finally, it is now evident that human basophils playa major and dual role in the 
immediate and late phases of allergic inflammation of the upper and lower airways. 
First through the release of pro-inflammatory and fibrogenetic mediators (hista
mine, leukotrienes etc.), and second through the production of immunoregulatory 
cytokines and chemokines. These observations provide the rationale for the concept 
that basophils and their mediators represent critical targets for an immunopharma
cological approach to allergic disorders of the airways. 
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Introduction 

With the increasing knowledge of the role that platelets play in the pathogenesis of 
ischemic cardiovascular disorders [1, 2] a great deal of attention has been focussed 
on these blood elements. This large research effort has lead to a series of significant 
advances in the understanding of the physiology of platelets and on their participa
tion not only to haemostasis and thrombosis but also to non-haemostatic process
es. 

Important new achievements have been gained from the application of new 
methodologies, such as cytofluorimetry, molecular biology and gene manipulation, 
to the study of platelets or their precursors and the picture emerging is more and 
more that of the platelet as a multifunctional blood element. The aim of this chap
ter is to summarize the state of the art on platelet structure, physiology and patho
physiology with special emphasis on those aspects that appear of particular rele
vance for the potential involvement of these blood elements in airways inflamma
tion. 

Cellular structure 

In circulating blood, platelets have a discoid shape with a diameter of about 2-4 Ilm 
[3]. From a morphologic point of view, several zones can be identified in the cellu
lar structure of platelets [4]. 

(1) Peripheral zone 
The peripheral zone represents the surface of the platelet and consists of the plasma 
membrane and associated structures. The most external part of the peripheral zone 
is called glycocalix and it is particularly rich in glycoproteins (see later); the middle 
layer is a typical plasma membrane, rich in phospholipids and it is particularly 
important for the interaction with coagulation factors; the inner layer is formed by 
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short actin filaments, making up the membrane cytoskeleton. Longer actin filaments 
form the cytoplasmic cytoskeleton [4]. 

(2) Sol-gel zone 
The sol-gel zone represents the platelet cytoplasm and its detergent-resistant ele
ments referred as cytoskeleton. Different systems of fibers are present in the platelet 
matrix and, in particular, submembrane filaments, microtubules and microfila
ments. Microtubules are formed by polymerized tubulin and are involved in main
taining the platelet in a discoidal shape. Microtubules allow the normal platelet con
traction, although they are not contractile elements. Microfilaments are formed by 
actin, which is the most abundant platelet protein. Although actin is polymerized to 
some extent even in resting platelets, its polymerization state increases upon platelet 
activation; the organization of actin filaments in parallel bundles is important for 
platelet spreading and pseudopod formation [4]. 

(3) Organelles zone 
The organelles zone consists of alpha granules, delta (or dense) granules, perox
ysomes, lysosomes and mitochondria, that are dispersed in the cytoplasm. 
Organelles are involved in metabolic processes and store non-metabolic adenine 
nucleotides, enzymes, serotonin, calcium, and a variety of proteins. 

(4) Membrane system 
The open canalicular system consists of invaginations of the plasma membrane and, 
thus, it is surface connected. Canaliculi of the open canalicular system greatly 
increase the total surface area of the platelet exposed to plasma and to the chemi
cals present in it. In addition, these canaliculi represent conduits for substances 
extruded by platelets during the release reaction. The dense tubular system origi
nates from the endoplasmic reticulum of megakaryocytes. Together with the dense 
granules, the dense tubular system is a site for calcium storage in platelets. Another 
important feature of the dense tubular system is that the enzyme cyclooxygenase is 
located on the membrane of these tubules. Although two cyclooxygenase isozymes 
have been identified and cloned [5], platelets only possess cyclooxygenase 1, the 
constitutive isoform of the enzyme [6, 7]. In fact, since cyclooxygenase 2 is an 
inducible enzyme, i.e. its expression requires protein synthesis, it is not present in 
the anucleated platelet. 

The glycocalix 

The glycocalix is the most external layer of the platelet membrane. It is rich in gly
cop rote ins (GP) which function as receptors for a wide variety of stimuli and can be 
classified into five families [8]. 
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(1) Integrins are heterodimeric proteins that mediate interactions between different 
cells or between cells and adhesive molecules. 

(2) Leucine-rich glycoproteins (LRG) form the GPIbNIIX complex, important as a 
receptor for von Willebrand factor (vWf) and thrombin. 

(3) Selectins mediate the interaction of platelets and endothelial cells with leuco
cytes. 

(4) Immunoglobulins, among which PECAM-l, which are present on the surface of 
platelets and in the gaps between endothelial cells. 

(5) Quadraspanins, proteins of unknown function that span the membrane four 
times. Members of this family are p24/CD9 and the a granule protein ME491. 

Another platelet glycoprotein that can not be classified as a member of the above 
described families, due to the low structural homology, is GPIV (or CD36) that 
functions as a collagen receptor. 

The majority of the platelet glycoproteins belong to the integrin family. Integrins 
bind adhesive proteins and they are expressed, besides platelets, on endothelial cells, 
smooth muscle cells, leucocytes and fibroblasts. The name integrins implies that 
they integrate the ligands on the outside of the cell with the cytoskeleton apparatus 
in the inside of the cell [9]. 

Integrins are heterodimers formed by an a and a ~ subunit linked by non cova
lent bonds. Several a and one ~ subunits have been identified; the different het
erodimers that can be formed are grouped into families with a common ~ subunit 
(~1, ~2, ~3 families) [8,9]. The ~1 family consists of 6 members formed by ~1 that 
dimerizes with al, a2, a3, a4, as and a6. Not all the members of this family are 
expressed in platelets (Tab. 1). The three members of the ~2 family (aM~2 or Mac-
1; aL~2 or LFA-l and a150~2 or p150/95) are not expressed in platelets, but in leu
cocytes and mediate the adhesion of the latter cells to other leucocytes and to 
endothelial cells. Members of the ~3 family present in platelets are aIIb~3 (GPIIbl 
IlIa) and aV~3 (Tab. 1). 

GPIIblIIla 
The most abundant integrin in platelets is a member of the ~3 family (aIIb~3) also 
called GPIIbIIIIa: it is the receptor for fibrinogen and it is essential not only for 
platelet adhesion, but also for aggregation. Indeed, patients with Glanzmann's 
thrombasthenia, characterized by defective or abnormal GPIIbIIIIa, have a dramat
ically impaired platelet aggregation and haemorrhagic diathesis [8]. A minority of 
patients possesses nearly normal amounts of GPIIblIIIa but still fail to bind fibrino
gen: point mutations in the eDNA for this receptor give dysfunctional proteins [10]. 

GPIIblIIIa is present at approximately 50,000-100,000 copies per platelet [8] 
and is expressed only in cells of megakaryocytic lineage. 80% of the platelet 
GPIIblIIIa is randomly exposed on the surface; the remaining 20% is located on the 
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Table 1 - A summary of the integrin families on platelets and their counterligands 

Integrin 

{31 family 

a2~1 (VLA-2, GPla/lla, ECMR-II) 

a5~1 (VLA-5, GPlc/lla) 

a6~1 (VLA-6, GPlc/lia region) 

{32 family 

None 

{33 family 

allb~3 (GPllb/llla) 

Ligand 

Collagen, laminin 

Fibronectin 

Laminin, fibronectin 

Fibrinogen, vWf, fibronectin, vitronectin, 

thrombospondin 

Vitronectin, thrombospondin, vWF, fibronectin, 

fibrinogen 

surface of the open canalicular system and in the inner membrane of the n granules 
[11] . 

The nIIb subunit consists of a heavy (GPIIba; 125 kDa) and a light (GPIIbb; 
25 kDa) chain linked by a disulphide bond. The allb and ~3 chains interact through 
their N-terminal (extracellular) portions and bivalent cations are necessary for this 
interaction [12] . The nIIb and ~3 subunits have long extracellular domains while 
only 26 aminoacids of the light chain of nIIb and 45 aminoacids of ~3 form the 
intracellular domains. The intracellular tails interact with the actin cytoskeleton 
through a series of linking proteins, among which talin and vinculin [10]. 

The N-terminal portion of GPIIblIIIa contains the ligand binding site for several 
adhesive molecules usually containing a RGD sequence, such as fibrinogen, von 
Wille brand factor (vWf), vitronectin, fibronectin and thrombospondin [12]. In rest
ing platelets, however, GPIIblIIIa is unable to bind plasma fibrinogen or matrix
bound vWf with high affinity, preventing adhesion or aggregation in circulating 
blood. In addition, GPIIblIIIa binding to vWf requires initial interaction of vWf with 
another integrin receptor, GPIbNIIX (see later). Platelet activation by a wide vari
ety of agonists leads to a conformational change of GPIIblIIIa and to its activation; 
activated GPIIblIIIa can bind fibrinogen or vWf with high affinity. Although the spe
cific pathways leading to GPIIblIIIa activation following platelet stimulation (inside
out signaling) are still not completely unravelled, protein kinase C (PKC) seems to 
playa role and phosphorylation of the integrin correlates with its activation [13]. 
Also other kinases, such as the phosphoinositide 3-kinase (PI 3-kinase), and the 
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small GTP binding protein rhoA seem to be involved in GPIIblIIIa activation, 
although the mechanism is not clear. Several lines of evidence demonstrate that the 
portion of the GPIIblIIIa molecule important for activation mediated by intracellu
lar signaling is the cytoplasmic domain [11,12]. This region is also important in 
mediating other events that follow GPIIblIIIa activation and that are indicated as 
outside-in signaling. Indeed, once activated, GPIIblIIIa induces reorganization of the 
cytoskeleton, elevation of intracellular calcium and pH, phosphoinositide metabo
lism, activation of serinelthreonine and tyrosine kinases. Among the tyrosine phos
phorylated proteins, the tyrosine kinase pp12SFAK (focal adhesion kinase) has been 
described [11]. 

GPIalIIa 
Another integrin of the platelet glycocalix is the GPlalIIa or a2pl that represents 
one collagen receptor and it is important in mediating platelet adhesion to the col
lagen fibers (but not collagen monomers) of the subendothelium. The a2 subunit 
has only one polypeptide chain with a short intracellular domain and a longer extra
cellular domain. The N-terminus of a2 presents a I domain that is important for col
lagen binding, however it is not known if a2pl changes its conformation and 
becomes active when platelets react with collagen fibers or other agents, or if the 
activation of a2pl is required for adhesion and aggregation of platelets to collagen 
[14]. 

Other collagen receptors on platelets are the glycoproteins GPVI and GPIV (or 
GPIIIb or CD36) [14]. While patients with abnormalities in GPla have a marked 
bleeding tendency, abnormalities in GPVI cause only a mild bleeding disorder; GPIV 
defect is not responsible for any clinical disorder, indicating that GPIV is probably 
not an essential factor for the interaction of platelets with collagen, although it 
might have some stimulatory effect in this reaction. It is important to note that in 
experimental conditions of flow, closely resembling a physiological situation under 
which thrombus occurs, platelets interact with vWf molecules bound to collagen; 
after this initial step, adherent platelets react with collagen through their collagen 
receptors, resulting in activation and aggregation [14] . 

Although the activation pathways initiated by platelet binding to collagen have 
not been fully elucidated, activation of phospholipase C (PLC) has been reported 
[15]. More recently, it has been found that stimulation of platelets by collagen leads 
to the phosphorylation of several proteins [16]. In particular, the non-receptor tyro
sine kinase Syk, and PLCy2 are phosphorylated and activated following platelet 
stimulation with collagen. The phosphorylation of Syk and PLCy2 is dependent of 
a2pl, although this integrin is not sufficient to induce these phosphorylation events, 
suggesting that a2pl functions in a co-stimulatory way with other collagen recep
tors [17]. Phosphorylation of the Fc receptor FcyRII by collagen has also been 
described [17] (see later). 
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CPIblVlIX complex 
While receptors for fibrinogen, vitronectin, laminin and the GPIalIIa for collagen 
belong to the integrin family, other glycoproteins of the glycocalix are classified as 
leucine-rich glycoproteins (LRG) because they contain one or more sequences of 24 
aminoacids rich in leucine. LRG proteins form the GPIbNIIX complex, or CD42 
[18], which is one of the major adhesion receptors on the platelet surface. 

GPIb is formed by two subunits, a and ~, covalently linked by a disulphide bond; 
GPIX is non covalently bound to GPIb in a 1:1 ratio, while GPV is only weakly 
associated to GPIblIX in a 1:2 ratio [18, 19]. GPIb is the most important compo
nent of the complex in terms of mass and functional sites: it contains binding sites 
for vWf and thrombin in the N-terminal region and for 14-3-3s protein in the cyto
plasmic tail. The association of GPIba with the 14-3-3~ protein may serve to trans
duce platelet activation signals initiated by adhesion of the cells to vWf [20]. 

In resting platelets, GPIb does not bind plasma vWf, but binding can occur in con
ditions of high shear associated with constricted vessels in advanced atherosclerosis. 

Soluble vWf can bind to collagen and other molecules of the subendothelium, 
thus being immobilized onto complex extracellular matrices. Immobilized vWf plays 
important roles in platelet adhesion under high shear rates. The first step of this 
process is mediated by the binding of vWf to GPIba through the Al domain present 
in the vWf molecule. The interaction of vWf with GPIba is rapid but has a fast dis
sociation rate: since this interaction is not stable, it can not provide bonds support
ing irreversible adhesion, although it can slow down platelet velocity. This phenom
enon is called rolling and new bonds between GPIba and immobilized vWf are 
formed as different regions of the membrane of rolling platelets come in closer con
tact with the subendothelium. The platelet rolling continues until GPIIblIIIa becomes 
activated and binds to vWf through the Asp-Gly-Arg-Ser (RGDS) sequence in the C
terminal domain of the vWf molecule. The bonds between vWf and GPIIblIIIa have 
a low dissociation rate and, thus, they mediate irreversible adhesion [21]. 

Although binding of vWf to GPIb was thought to be a passive phenomenon 
(called agglutination), there are evidences that the stress caused by this binding caus
es further activation of platelets and GPIIblIIIa activation [18]. One of the early 
events associated with vWf binding to platelets is the tyrosine phosphorylation of 
several proteins, including tyrosine kinases themselves. 

GPIb also binds thrombin and, in particular, it represents the high affinity bind
ing site for thrombin, while the G protein coupled receptor binds thrombin with a 
moderate affinity (see later). Little is known about the signal transduction events 
linked to thrombin binding to GPIb [19]. 

P selectin 
Another glycoprotein of the platelet glycocalix is a member of the selectin family 
and is called P selectin or granule membrane protein 140 (GMP-140) or PADGEM. 
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Other selectins (E selectin and L selectin) are expressed in endothelial cells and leu
cocytes, but not in platelets. 

P selectin is stored in platelet a granules and becomes expressed on the surface 
following platelet activation with, for example, thrombin, histamine, complement 
fragments, oxygen-derived free radicals and cytokines. The ligand for P selectin has 
not been identified, and also its functions are not well understood [8]. It has been 
hypothesized that P selectin expression on the platelet surface could lead to the for
mation of platelet-neutrophils intravascular aggregates through the combination of 
P select in domains on platelets with specific ligands on neutrophils. P selectin can 
also participate in the attachment of platelets to the endothelium [22] and thus pos
sibly in the diapedesis of platelets through the junctions between endothelial cells, 
explaining the platelet infiltrates which characterize some inflammatory tissue 
responses [23]. 

The cytoskeleton 

The platelet cytoskeleton is formed by a network of cytoplasmic actin, a peripher
al microtubule coil and the membrane skeleton that coats the internal face of the 
plasma membrane. The membrane skeleton by lining the plasma membrane regu
lates its contours and contributes to its stabilization, preventing it from fragmenta
tion. Membrane skeleton is attached to glycoproteins and it may regulate their lat
eral distribution; GPIbIIX, for example, is present over the entire surface of the 
membrane in resting platelets, but it clusters when the membrane skeleton is dis
rupted [24]. 

Mainly formed by actin, the cytoskeleton also contains other proteins, such as 
actin-binding protein (ABP), a-actinin, tropomyosin, talin, vinculin and cortactin. 
In resting platelets, 30-40% of the total actin is in a polymerized form; upon acti
vation, this figure rises up to 70-80%. The new filaments of polymerized actin form 
in at least two locations: a network is localized at the periphery of the cell, and bun
dles of filaments form in developing filopodia. Several mechanisms are involved in 
preventing actin polymerization in resting cells and, in particular, thymosin ~4 
seems to play an important role in sequestering monomeric actin in resting platelets, 
thus avoiding its massive polymerization. The release of actin monomers from thy
mosin ~4, in addition to other mechanisms, allows actin polymerization following 
activation. Also other proteins, such as profilin and gels olin, keep actin in a depoly
merized state [3]. 

When platelets are activated, a reorganization of the cytoskeleton occurs, both 
in an aggregation-independent manner and in aggregating platelets. Within seconds 
of stimulation the cytoskeleton undergoes a reorganization which is observed even 
in non stirred platelets that, lacking cell-cell contacts, do not aggregate. This aggre
gation-independent reorganization consists of a redistribution of the cytoskeletal 
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proteins: tropomyosin, distributed diffusely in resting platelets, is concentrated in 
filopodia in activated cells; also actin-binding protein becomes concentrated in the 
filopodia while a-actinin becomes concentrated in filopodia and in a submembrane 
location. Polymerized actin in the cytoplasm (and not that in the filopodia) can bind 
to phosphorylated myosin; this leads to platelet contraction and organelles central
ization. 

During platelet aggregation, other changes in the platelet cytoskeleton occur, fol
lowing fibrinogen binding to GPIIbIIIIa. GPIIblIIIa molecules cluster and the mem
brane skeleton associates with the underlying actin filaments leading to a more com
plex cytoskeleton reorganization. In addition to GPIIblIIIa other proteins can be 
recovered in the organized cytoskeleton of aggregated platelets and, among these, 
protein kinase C, phosphoinositide 3-kinase, pp60c-src (the major tyrosine kinase 
present in platelets), pp62c-yes, pp59fyn, ppI25FAK, p2Fas, the small GTP-binding 
protein raplb, phospholipase C, diacylglycerol kinase, the glycoprotein PECAM-l 
[11, 12, 24-26]. 

Main receptors 

In addition to glycoproteins, that are principally receptors for adhesive proteins, 
other receptors for a wide variety of platelet agonists are present on platelets. These 
receptors are located in the plasma membrane and most of them belong to the fam
ily of the G protein-coupled receptors (GPCR), since they activate effector systems 
through an interaction with G proteins. GPCR are formed by a single polypeptide 
chain with an extracellular N-terminus, an intracellular C-terminus and seven 
hydrophobic transmembrane domains that are separated by three extracellular and 
three intracellular loops. Receptors for thromboxane A2 (TxA2) and other prostan
oids (prostaglandin (PG) E2, PGD2, PGI2), for thrombin, epinephrine, platelet acti
vating factor (PAF), vasopressin, serotonin, all belong to the GPCR family. Less is 
known about the ADP receptors, although data exist that indicate that also one of 
the possible ADP receptors is a GPCR. 

In this section, we will briefly review the characteristics of the main platelet 
receptors. It is noteworthy that some platelet stimuli, such as serotonin, TxA2 and 
other prostanoids, in particular PGE2, and thrombin, are also immunologicaV 
inflammatory stimuli. 

TxA2 
TxA2 is synthesized by activated platelets upon metabolism of the arachidonic acid 
liberated from the plasma membrane. Arachidonic acid is cleaved from phospho
lipids by phospholipase A2 (PLA2) and, in platelets, it is transformed by cyclooxy
genase 1 in the prostaglandin endoperoxides PGG2 and PGH2. These reactions are 
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accompanied by free radical generation that contributes to the participation of 
platelets to inflammatory reactions [27]. 

Different enzymes, among which thromboxane synthase, transform PGH2 into 
different prostanoids (TxA2' PGE2, PGD2 and, in endothelial cells, PGI2) [28]. Once 
formed, TxA2 can diffuse across the plasma membrane and, being a powerful aggre
gating agent, it amplifies the initial platelet response to stimulation [29]. TxA2 is 
also a powerful vasoconstrictor and a bronchoconstrictor [29, 30]. 

Prostanoid receptors specific for TxA2' PGE2, PGD2, PGI2 and PGF2a are named 
TP, EP, DP, IP and FP, respectively [31]. 

Two TxA2 receptors have been cloned to date [32, 33] and called TPa the first 
cloned isoform, and TP~ the second. TPa and TP~ are splice variants of the same 
gene product and they differ at the level of the carboxy terminal tail: the 15 
aminoacids sequence in the COOH terminus of TPa are replaced by a 79 
aminoacids sequence in TP~. TPa has been cloned from a placental library and also 
from megakaryocytic cell lines [32, 34] while TP~ has been cloned from an endothe
liallibrary [33]. 

Recently, using RT-PCR techniques, it has been demonstrated that platelets 
express both TPa and TP~ although it seems that they do not correspond to the two 
classes of TxA2 binding sites described previously in platelets that have been exten
sively studied using ligand binding and biochemical approaches [35]. 

Although TPa and TP~ are differently coupled to adenyl ate cyclase, they both 
activate PLC in an overexpression system [35]. In platelets, stimulation with TxA2 
or its analogues causes activation of PLC (in particular the PLC~ isoform) with con
sequent diacylglycerol (DG) and inositol 1,4,5 triphosphate (IP3) formation and cal
cium mobilization, activation of PKC, phosphorylation of pleckstrin and of myosin 
light chain, activation of GPIIbIIIIa. Platelets express at least PLC~ and PLCy, 
although only PLC~ seems to be activated by G proteins. PLC~1 and PLC~3 
respond predominantly to the a subunit of G proteins, while PLC~2 may respond 
better to the ~y subunits. Thromboxane receptors are apparently coupled to PLC~1 
through Ga subunits [36]. In platelets, TxA2 also activates PLA2 [35]. 

Several G proteins have been demonstrated to couple to the TxA2 receptor, in 
platelets or in overexpression systems. Among these, Gq [37, 38], G12 and G13 
[39], G16 and its murine counterpart, G15 [40]; contrasting data exist about the 
coupling with Gi [37,41,42], while recent studies suggest a coupling of the throm
boxane receptor with a newly described G protein called Gh [43]. 

Other prostanoids 
PGH2 can be substrate not only for thromboxane synthase, but also for other 
enzymes that, in platelets, form small amounts of PGE2, PGD2 and PGF2a• In 
endothelial cells PGI2 (and in the microvasculature PGE2) is the major product of 
arachidonic acid metabolism [28]. 
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PGD2 and PGI2 act on platelets as antiaggregatory substances through DP and 
IP receptors, respectively, while PGE2 exerts a proaggregatory effect when used in 
combination with other stimuli [44]. PGF2a appears to be inactive in platelets, so 
the characteristics of its receptor will not be discussed in this chapter. 

All the prostanoid receptors belong to the GPCR family and they have some con
served regions, in particular in the seventh transmembrane domain, second intra
cellular loop and third transmembrane domain. The overall homology is quite low 
(20-30%) but higher homology is observed when comparing receptors for the same 
ligand from different species, such as human and mouse [45]. While only one DP 
and only one IP receptor have been described, several EP receptors exist and they 
are called EP1, EP2, EP3 and EP4. The EP3 receptor exists in different splice vari
ants. Six different splice variants of EP3 receptor have been cloned from human 
uterus and called EP3a, EP3b, EP3c, EP3d, EP3e, EP3f [46], while bovine EP3 
receptors are called EP3A, EP3B, EP3C and EP3D. Alternative splicing has been 
demonstrated also in the mouse and rabbit EP3 receptor [45]. 

An EP3 receptor has been cloned from human erythroleukemia cells (HEL), a 
megakaryocytic cell line and, when expressed in COS-l cells, found to be coupled 
to inhibition of adenylate cyclase [47]. It should be noted that in mock transfected 
cells, PGE2 increased cAMP indicating that COS-l cells have, per se, an EP receptor 
that stimulates adenylate cyclase [47]. This circumstance can confuse the picture; in 
addition, a sole inhibition of adenylate cyclase can not fully explain the proaggre
gatory activity of PGE2 observed in platelets [44]. For these reasons, it is not yet 
clear which EP receptor subtype is present in platelets; it is possible that only one 
receptor, coupled to different signal transduction mechanisms, exists or that more 
than one EP receptor, still to be identified, is expressed in human platelets. 

While several details on the signal transduction mechanism(s) linked to the acti
vation of the EP receptor(s) in human platelets await clarification, it is well known 
that the IP receptor is linked to Gs and, thus, it causes an increase of intra platelet 
cAMP. The physiologic role of PGI2 and its receptor in limiting platelet activation 
in vivo is highlighted by the recent report that mice lacking the prostacyclin recep
tor (IP receptor knock-out) present an enhanced susceptibility to arterial thrombo
sis [48]. Although less potent, also PGD2 causes a cAMP increase through Gs [45], 
resulting in inhibition of platelet functions [49]. Consistent with the fact that PGF2a 

does not play relevant roles in platelet functions, FP-deficient mice do not seem to 
have platelet abnormalities [50]. 

Thrombin 
Thrombin is a serine/threonine protease generated by the sequential activation of 
the enzymes of the coagulation cascade. Since phospholipids of the activated 
platelets accelerate the blood clotting cascade, platelets promote thrombin genera
tion. Thrombin, in turn, activates platelets. In addition to high affinity thrombin 
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receptors represented by GPIb (see above), platelets have a GPCR with moderate 
affinity (roughly 1,800 copies/platelet) also referred as PAR-1 [51]. Another pro
tease receptor has been described and cloned and called PAR-2, but this receptor is 
not present in human platelets [52]. 

PAR-1 in its N-terminus contains a site for cleavage by thrombin, located 
between Arg41 and Ser42. The region immediately C-terminal to the cleavage site 
is a tethered ligand able to activate the receptor, apparently interacting with sites 
located in the second extracellular loop and in the N-terminus near the first trans
membrane domain [51, 53]. 

Not only thrombin, but also other proteases can cleave the thrombin receptor, 
although at sites different from that cleaved by thrombin. In particular, following 
tissue injury or inflammation, proteases such as cathepsin G, granzyme and tryptase 
can be secreted locally by leucocytes and mast cells. Cathepsin G and other pro
teases (chymotrypsin and plasmin) cleave the thrombin receptor at sites different 
from that of thrombin, thus disabling the receptor. Cathepsin G can cleave the 
thrombin receptor also at the same site where thrombin cleaves, thus explaining 
why cathepsin G can activate platelets. If the platelet activation induced by cathep
sin G is due to a preferential cleavage at the Arg41-Ser42 site (instead of at Phe55-
Trp56), or if it is due to the presence, in platelets, of additional receptors, remains 
to be determined [51]. 

Activation of platelets with thrombin causes activation of phospholipases such 
as PLC, PLA2 (with consequent TxA2 synthesis) and PLD, of kinases such as PKC 
and mitogen activated protein kinase (MAPK), calcium mobilization, protein phos
phorylation and decrease of cAMP. Thrombin is thought to activate PLC~, in par
ticular the isoform PLC~2, through the ~'Y subunits released by activated Gi, while 
the a subunit of this G protein inhibits adenylate cyclase. Thrombin can also acti
vate PLCj3 isoforms through the a subunit of Gq, although in platelets the Gi route 
seems to be predominant; indeed, thrombin-induced phosphoinositide hydrolysis in 
platelets can be inhibited by pertussis toxin, that inhibits Gi [36, 51]. Also the 
thrombin receptor, as the thromboxane receptor, can couple with G16 and its 
murine counterpart GlS [40] and G12 and G13 [39, 54]. Using membranes of 
infected Sf9 cells, it has been recently demonstrated that thrombin also activates 
Gz, a G protein only expressed in platelets and in some neural tissues. Similar 
experiments did not show, as expected, coupling of the thrombin receptor with Gs 
[54]. 

ADP 
ADP is an aggregating agent released by damaged endothelial or red blood cells. 
Platelets store ADP in their dense granules, and release it upon stimulation with 
other agonists, thus reinforcing aggregation. Platelet stimulation with ADP causes 
shape change, calcium influx, activation of GPIIbllIIa and reversible aggregation if 
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physiological concentrations of calcium are present in the medium (see below). Irre
versible aggregation occurs following synthesis of TxA2 from the activated 
platelets. ADP is, at most, only a weak activator of platelet PLC; ADP inhibits stim
ulated adenylate cyclase although this effect can not explain ADP-induced aggre
gation. 

The nature of the platelet ADP receptor is still not yet completely elucidated, 
although recent studies have contributed to our understanding on this issue. The 
platelet ADP receptor has been initially called P2T purinoreceptor [56] but recent 
studies indicate that platelets have at least two ADP receptors thus the P2T recep
tor must be considered a pharmacological concept more than a molecular entity. 

Inhibition of adenylate cyclase probably occurs after binding of ADP to a GPCR, 
possibly coupled to Gi2 [55]. Although cloning of the platelet ADP receptor has 
been to date unsuccessful, it has been demonstrated that platelets, as well as 
megakaryocytic cell lines, have the mRNA for the P2Y 1 receptor; this finding sug
gests that the P2Y l receptor is the platelet ADP receptor coupled to G protein(s) and 
responsible for aggregation and inhibition of adenylate cyclase. 

ADP also induces a rapid influx of calcium from the extracellular medium and 
this effect seems to be mediated by a P2X l receptor. This receptor may be linked to 
a calcium channel and this early calcium influx could be responsible for ADP
induced shape change. The involvement of P2X l ionotropic receptors in shape 
change needs, however, to be confirmed: indeed, an ATP derivative able to induce 
calcium influx does not cause shape change [55]. 

Epinephrine 
Epinephrine is a circulating hormone synthesized by adrenal medulla; it is also 
stored by platelets in the dense granules and it can be released during the release 
reaction [57]. Epinephrine is a peculiar platelet agonist: it induces aggregation 
and fibrinogen binding to GPIIblIIIa without causing shape change. Recent inves
tigations suggest that epinephrine is not a platelet agonist per se and that it only 
potentiates aggregation induced by other inducers, such as ADP, collagen, arachi
donic acid, thrombin, serotonin, vasopressin, PAF [57, 58]. Epinephrine does not 
induce PLC activation per se: the PLC activation induced by epinephrine is due 
to TxA2 synthesis by activated platelets. Epinephrine activates the H+/Na+ anti
porter, causing alkalinization of the cytoplasm, and it inhibits adenylate cyclase 
[36, 57]. 

Platelet adrenergic receptors belong to the a2A subtype, coupled to inhibition of 
adenylate cyclase through Gi2 [59]. Although much less abundant, platelets also 
have ~2 adrenoreceptors that, contrary to a2A receptors, induce increase of cyclic 
AMP. Some authors hypothesize that the epinephrine effects in platelets are the 
result of activation of both a2A and ~2 receptors, but since a2A receptors are in 
abundance, the overall effect is a stimulation of platelet aggregation [57]. 
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Platelet activating factor (PAF) 
PAF is a phospholipid-like substance derived from phosphatidylcholine; it is 
released from neutrophils and from platelets following activation by thrombin or 
collagen and is itself a potent aggregating stimulus. PAF is an extremely potent 
inflammatory agent and it has been implicated as a mediator of inflammation and 
asthma [30]. The platelet PAF receptor belongs to the family of the GPCR and it is 
linked, through an unknown G protein, to PLC [60]. 

Serotonin 
Serotonin, or 5-hydroxytryptamine (SHT), is stored in platelet dense granules and 
it is released upon activation by a variety of stimuli. 5HT is both a platelet agonist 
and a vasoconstrictor. Platelets have a very efficient uptake system for 5HT, so that 
the plasma concentrations of this amine are usually very low: concentrations of 5HT 
capable of activating platelets are reached only after platelets have undergone the 
release reaction [61]. 

Serotonin is a weak platelet agonist and it only induces shape change and small 
reversible aggregation with human platelets. Irreversible aggregation can occur 
when serotonin is used in combination with subthreshold doses of other agonists, 
such as ADP or TxA2 analogues [62]. The platelet serotonin receptor is a GPCR 
member of the 5HT2 family. Platelets possess another binding site for 5HT that is 
used for the uptake process but this can not be considered a receptor in a function
al way [61, 63]. Serotonin is also an inflammatory substance: besides inducing vaso
constriction it increases vascular permeability. 

Vasopressin 
Vasopressin is stored, together with adenine nucleotides, calcium ions and sero
tonin, in the platelet dense granules [57]. Vi receptors for vasopressin are present 
on platelets, but the concentration of the ligand required to activate platelets is sev
eral orders of magnitude higher than that normally achieved in the circulation [61] 
and the mechanism for vasopressin-induced platelet aggregation is not well eluci
dated. It has been shown that vasopressin inhibits adenyl ate cyclase, but only in iso
lated platelet membranes and not in whole cells [64]. 

Adenosine 
Adenosine is an antiaggregatory and vasodilatory agent. Platelet adenosine recep
tors are represented by the GPCR A2A- A2A receptors are coupled to adenylate 
cyclase through Gs, thus causing cyclic AMP increase and inhibition of platelet acti
vation [65, 66]. The physiologic role of adenosine in reducing platelet reactivity in 
vivo is highlighted by the recent description of mice with disrupted gene encoding 
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for the A2aR (A2aR-knockout). Platelets from these animals are hyperresponsive to 
ADP [67]. It is worth noting that adenosine may playa role in bronchoconstriction 
[30]. 

Immunoglobulins (Ig) 
Platelets also possess receptors for immunoglobulins, in particular of the IgE and 
IgG class. Receptors for IgE belong to the FCERII type and have a lower affinity and 
are present in a lower number of copies as compared to those present in mast cells 
and basophils [27]. The cross-linking of an antigen with platelet-bound IgE causes 
release of inflammatory mediators. IgE receptors have also been implicated in cyto
toxic response against parasites: activation of the IgE receptor by exposure of sen
sitized platelets to an appropriate antigen results in the production of oxygen radi
cals in concentrations sufficient to kill parasites [30]. The presence of IgE receptors 
suggests a potential role of platelets in allergic reactions. 

Receptors for IgG belong to the family of the FcyRII receptor and are activated 
by aggregated IgG and IgG immune complex while monomeric IgG (that are nor
mally present in large quantities in blood) do not activate this receptor. The physi
ological role of the FcyRII receptor is not well known, while it is more clear that this 
receptor can playa role in certain disease, such as auto-immune thrombocytopenia, 
thrombocytopenia associated with HIV infection and with sepsis. Some anti platelet 
antibodies can activate platelets through the clustering of the FcyRII receptor; this 
causes platelet aggregation and, thus, an accelerated clearance of platelets and 
thrombocytopenia [68]. 

Interestingly, FCyRII can be phosphorylated following platelet stimulation with 
collagen through a a2~1-independent pathway suggesting that this phosphorylation 
is mediated by binding of collagen to a receptor different from a2~1, such as GPIV 
[17]. The exact role of FcyRII in collagen signaling remains, to date, unclear. As for 
collagen, stimulation of platelets through FcyRII causes PLCy2 phosphorylation 
[69]. 

Platelet organelles 

Several types of organelles can be detected in the platelet cytoplasm [4]. 

(1) Mitochondria are similar to those found in other cells and have a characteristic 
plication of their internal membrane; they provide ATP for the cytoplasmic meta
bolic pool. 

(2) Peroxysomes are granules that resemble the peroxysomes found in other cells. 
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(3) Lysosomes (or A granules) contain acid hydro lases such as ~-hexosaminidase, ~
glucoronidase, ~-galactosidase and small concentrations of other glycosidases. 
The secretion of the lysosomal enzymes requires higher levels of intracellular cal
cium than the secretion of a and dense granules and it is not complete: only 
30-60% of the hydrolases are secreted from lysosomes, in contrast to nearly 
100% of the substances stored in the other granules [61, 70]. 

(4) a granules store a variety of proteins such as albumin, which is the protein pre
sent at the highest concentration, fibrinogen, vWf and other adhesive molecules 
(fibronectin, vitronectin, thrombospondin, P selectin), coagulation factors (fac
tor V, factor XI, high molecular weight kininogen, C1 inhibitor, plasminogen 
activator inhibitor-1, protein S) and growth modulators, such as ~ throm
boglobulin (~TG), platelet factor 4 (PF4), thrombospondin, platelet derived 
growth factor (PDGF), transforming growth factor ~ [61, 71]. PF4, transform
ing growth factor ~, PDGF, as well as arachidonic acid metabolites of the lipoxy
genase pathway have chemoattractive properties [23] and PF4 stimulates 
basophils to release histamine [30]. 
PDGF causes mitogenesis and proliferation of vascular smooth muscle, migra
tion of fibroblasts, migration and proliferaton of monocytes, and superoxide 
anion generation from eosinophils [23]. PDGF has also been reported to be a 
mitogen for airway smooth muscle cells in vitro [30]. Also platelet themselves 
respond to PDGF, through an a type PDGF receptor, that causes a feed-back 
inhibition of aggregation [72]. 

(5) Dense (or 8) granules. When platelets are observed by electron microscopy, dense 
granules appear to have a very opaque content. They store non metabolic pools 
of adenine nucleotides (ATP, ADP), serotonin, vasopressin, pirophosphate and 
calcium. These granules are absent in patients with storage pool disease that 
have haemorragic symptoms due to a defective release reaction [4]. 

Platelet activation 

A schematic representation of some of the events that take place during platelet acti
vation is given in Figure 1. 

Platelet adhesion 

Adhesive interactions between cells are essential for maintaining the structural and 
functional integrity of the vascular system. Adhesion of platelets to the suben
dothelial matrix is the first event that takes place in physiological conditions to 
arrest the blood extravasation from a wounded vessel. Adhesion is mediated by 
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Platelets 

receptors for adhesive molecules which are present in plasma or in the suben
dothelium. As discussed above, platelet receptors for adhesive molecules are glyco
proteins. 

When the endothelium is stripped from the vessel, platelets adhere to the denud
ed extracellular matrix; in particular, platelets adhere to collagen fibers, and fibro
nectin and vWf are implicated in adhesion to collagen [73]. The initial contact of 
platelets to subendothelium is mediated by GPlbIIX; in Bernard-Soulier syndrome, 
because of a GPlblIX deficiency, platelets do not adhere effectively to the matrix 
structures in the area of vascular injury [74]. After the initial contact with the suben
dothelium, platelets spread. Spreading is associated with the change of platelets 
from a discoidal to a spherical shape (spiny spheres). 

Platelet shape change 

After the initial adhesion of platelets to the subendothelial matrix, spreading and 
shape change occur. Resting platelets have a diameter of 2-4 /lm and are about 
0.5/lm thick; during the shape change phase, platelets become spherical and form 
many thin philopodia and pseudopodia that can be more than one platelet diame
ter long. While the platelet volume, during the shape change, remains constant, the 
platelet surface increases by at least 50% [3]. It has been postulated that the con
traction of the actin filaments of the platelet in the early stage of activation causes 
a relaxation in the membranes that allows the cells to round up. Platelet shape 
change is associated with myosin phosphorylation: the interaction actin-phosphory-

Figure 1 

Schematic representation of platelet structure and activation. The binding of collagen and of 

soluble platelet agonists to cell surface receptors (close circles) initiates a series of signal 

transduction events that lead to platelet aggregation and secretion. Most of the platelet 

receptors are coupled to G proteins that activate, directly or indirectly, PLC and PLA2, with 

subsequent activation of PKC, mobilization of calcium (Ca2+), synthesis of TxA2 and other 

arachidonic acid metabolites (PGE2, PGD2, 12HPETE) that exit from the platelet and act on 

surrounding cells. Activation of signal transduction mechanisms leads to secretion of the 

content of a and dense (8) granules, Iysosomes (lys), peroxisomes (per) and to secretion of 

histamine or IL -1 from the platelet cytoplasm. During platelet activation, GPllblllla activa

tion occurs (inside-out signaling), with consequent binding of fibrinogen (Fg) and vWf. Acti

vated GPllblll/a, in turn, triggers outside-in events, such as elevation of cytoplasmic calci

um, protein phosphorylation (protein-P), reorganization of the cytoskeleton (CSK reorg). 

Platelets contribute to coagulation, by providing a surface for assembly of activated coagu

lation factors (Va and VII/a) that, ultimately, lead to generation of thrombin. vWf and throm

bin also bind to GPlblVIIX complex. For additional abbreviations and details, see text. 

95 



Paolo Gresele and Roberta Vezza 

lated myosin leads to cellular contraction, organelles centralization and shape 
change [3]. 

Platelet aggregation 

A number of physiological agonists can induce platelet aggregation (Tab. 2). 
Platelets can also be activated, in vitro, by non-physiological substances, in particu
lar calcium ionophores (e.g. A23187), PKC activators (e.g. phorbol myristate 
acetate) and non specific G-protein activators (e.g. AIF4-). 

The interaction of physiologic agonists with their specific surface receptors trig
gers a series of signal transduction events that ultimately leads to the activation of 
the GPIIblIIIa complex on the platelet surface. As a consequence, in the presence of 
millimolar concentrations of calcium in the external medium, fibrinogen binds to 
platelets [58]. Each fibrinogen molecule has two binding sites for GPIIb/IIIa, thus 
forming bridges between platelet and platelet and allowing aggregation [53]. 

Receptor-induced GPIIblIIIa activation is very rapid, and the cell is able to bind 
fibrinogen within seconds after its initial encounter with the appropriate agonist. 
The initial fibrinogen binding is reversible, for instance by removal of calcium with 
chelators, such as EDTA. Following reversible fibrinogen binding, the platelet
platelet interaction undergoes a time-dependent stabilization, that is usually com
plete in 3-4 min; the irreversible binding of fibrinogen correlates with irreversible 
platelet aggregation. Once irreversible aggregation has started, removal of calcium 
or of the agonist is no longer effective in dissociating the aggregates [71]. 

In certain circumstances, such as under the high shear rates encountered in 
stenosed atherosclerotic vessels, vWf may substitute for fibrinogen, thus playing a 
dominant role not only in adhesion, but also in platelet aggregation [75]. 

Platelet aggregation can be studied in vitro in a suspension of platelets in plasma 
(platelet rich plasma, PRP) or in whole blood. For particular purposes, platelets can 
be resuspended in buffers at physiological pH and calcium concentrations. In these 
cases, fibrinogen can be added to the platelet suspension to facilitate aggregation; 
this is not always necessary, in particular when strong agonists (such as thrombin or 
TxA2 analogues) are used because the fibrinogen secreted from activated platelets is 
sufficient to support aggregation [71]. 

The most common way of studying platelet aggregation is that of measuring the 
changes in light transmission through a platelet suspension. At a concentration of 
1-3 x 108/ml platelet suspensions are opalescent. After addition of an agonist, when 
platelets are stirred at a high-speed, shape change and aggregation occur. In the 
aggregometer, the shape change phase is recordered as a slight decrease of light 
transmittance. Although in most cases aggregation is preceded by shape change, this 
is not always true; for example, epinephrine induces aggregation without shape 
change. Aggregation is recordered by the aggregometer as an increase in light trans-
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Table 2 - A summary of physiological platelet agonists 

Agonist 

Thrombin 

Collagen 
ADP 

TxA2 
Serotonin 

PAF 
epinephrine 

Comment 

formed by activation of the coagulation cascade 
present in the subendothelial matrix 
released from platelet dense granules, stressed red blood cells 

synthesized by activated platelets 

released from platelet dense granules; may sensitize platelets 
to other stimuli 

synthesized by platelets and other cells 
may modulate platelet response to other stimuli 

Platelets 

mittance because the more platelets aggregate and the more light will pass through 
the suspension. With some agonists (e.g. epinephrine or ADP) a first and a second 
wave of aggregation can be observed [58]. The first wave of aggregation occurs 
when fibrinogen is bound in a reversible way; if the agonist concentration is high 
enough, this first wave is followed by a second wave corresponding to an irre
versible platelet aggregation. If the agonist is used at maximal concentrations, the 
first wave of aggregation is not detectable, and only one wave will be observed. 

It should be noted that ADP and epinephrine are able to induce irreversible 
aggregation, in vitro, only if low calcium concentrations are present (such as in cit
rated PRP); thus, it is unlikely that these substances induce secondary aggregation 
in vivo [58]. 

Release reaction 

Irreversible platelet aggregation is triggered and accompanied by secretion of the 
content of ex and dense granules and by the production of mediators, in particular 
TxA2' that potentiates aggregation. As discussed above, ex and dense granules con
tain substances that can activate surrounding platelets thus reinforcing the aggrega
tion process. The dense granules contain substances that are rapidly secreted and are 
listed in Table 3. 

The ex granules contain especially proteins and peptides that have roles in mod
ulating the growth and gene expression of the cells of the vessel wall. Among these 
substances there is PDGF (see above) that acts on smooth muscle cells and fibrob
lasts, and PF4, involved in inflammation. ex granules also release coagulation fac
tors, such as factor V and XI, that are taken up by the megakaryocytes and stored 
in the granules during thrombopoiesis. Factor V is also synthesized by megakary-
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Table 3 - A summary of substances released from dense granules 

Substance 

ADP 
AlP 
Serotonin 

Calcium 

Comment 

is an agonist for platelets 
may act as an agonist for other blood cells 
influences vascular tone and can weakly activate other platelets; 
contributes to inflammation through vasoconstriction and capacity 
to increase vascular permeability 
the physiological role of the secreted calcium is not clear; it can 
ensure adequate calcium levels for calcium-dependent enzymes 
of the coagulation cascade 

ocytes, since the concentration of this protein is higher than can be accounted for 
by an uptake from plasma [71]. ~TG and PF4 are platelet-specific proteins and their 
concentration in plasma or in the supernatant of activated platelets is used as a mea
sure of platelet secretion [58]. 

While platelet dense bodies are released by exocytosis, the mechanism of release 
of ex granules is more complex. Indeed, during secretion, these granules are central
ized in the cytoplasm, as a consequence of cytoskeleton reorganization and platelet 
contraction (see above). Two hypotheses have been proposed for exocytosis when 
granules are centralized [71]. 

(1) ex granules secrete their content in the open canalicular system, i.e. in the invagi
nations of the plasma membrane that goes deep into the center of the platelet. 

(2) ex granules fuse with each other or with another cellular compartment to form a 
compound granule morphologically distinct from the ex granule. This compound 
granule moves toward the plasma membrane and undergoes exocytosis. 

Secretion of the granules is a feature that platelets share with inflammatory cells, such 
as mast cells and granulocytes, and with neurons. In contrast to neurons, platelet 
granules do not seem to be pre-docked, and there is a significant lag between activa
tion of the cell and secretion. It has been recently proposed that the key regulatory 
step in platelet exocytosis is not at the membrane fusion step, as it is in the rapid 
secretion process of the neuron, but it is at the granule docking step [76]. In addition 
to transport proteins that mediate the secretory event, low pH within secretory gran
ules, which results from the action of proton pumps and a common characteristic of 
secretory granules in other cells, may be important in the exocytic event [60]. 

The molecular mechanisms that regulate platelet secretion can be briefly 
described as follow. When a stimulatory platelet agonist interacts with its specific 
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receptor, PLC is activated via G proteins. PLC cleaves phosphatidylinositol 4,5, 
biphosphate with the formation of membrane-bound DG and cytosolic IP3. IP3 

induces Ca2+ release from intracellular stores, such as the dense tubular system. In 
addition to Ca2+ release, agonist-receptor interaction also causes a rapid influx of 
Ca2+ from the extracellular medium, through receptor operated Ca2+ channels or 
through cytosolic alkalinization. The Ca2+ increase causes activation of myosin light 
chain kinase and, in turn, phosphorylation of myosin light chain (MLC). This 
process seems to be involved in platelet shape change, and not in secretion. DG stim
ulates PKC which phosphorylates pleckstrin (p47). Since the time-course of pleck
strin phosphorylation is the same as that of dense granule secretion and PKC 
inhibitors inhibit platelet secretion, PKC activation and pleckstrin phosphorylation 
are considered to be necessary steps in the signal transduction pathways that con
trol secretion [61]. On the other hand, increase in intracellular cyclic AMP inhibits 
secretion by reducing cytosolic Ca2+ levels, although the mechanism for this reduc
tion is unclear [61]. 

Another substance released from activated platelets is histamine. It is now well 
established that human, pig or rabbit platelets contain histamine in concentrations 
similar to those of serotonin. Platelets can both synthesize histamine or sequester it 
from plasma by an active process. Although it is not clear if histamine is stored in 
platelet organelles, it can be released following activation of the cells with inflam
matory stimuli. In particular, platelets from atopic donors aggregate and release his
tamine when directly stimulated with anti-IgE antibodies, suggesting that platelets, 
in this regard, can behave as basophils and mast cells [77]. Released histamine 
enhances platelet aggregation induced by other agonists (ADP, collagen, arachidon
ic acid, thrombin and immunological stimuli) through the action on HI receptors 
that, in turn, modulate intracellular calcium levels and activate PLA2 in rabbit 
platelets [78]. Histamine also induces bronchoconstriction [30]. 

Platelet migration, paraSite killing, particle scavenging 

Platelets exert a number of functional activities which appear to be independent and 
regulated by mechanisms that are different from their well recognized haemostatic 
function. Platelets can migrate into tissues and have been detected in inflammed tis
sues or in the bronchoalveolar lavage fluid of asthmatic patients in the absence of 
red blood cells, thus excluding haemorrage [23, 30, 79]. Several in vitro studies have 
shown that normal platelets migrate in response to non aggregating stimuli such as 
carbachol, PGE1 or PGEb or to collagen [80-82]. More recently it has been report
ed that blood platelets from allergic asthmatics migrate upon stimulation with the 
specific sensitizing allergen in vitro [83]. 

Platelets exert a central role in the defense against parasite invasion, by display
ing a cytocidal action on parasite larvae through the production of oxygen radicals 
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(for review see [27]) and may also ingest microparticles, a property that contributes 
to the scavenging of foreign materials penetrated into the circulation. 

Biochemical mechanisms of platelet activation 

The functional reactions above described are regulated by a complex series of intra
cellular events. Indeed, physiologic stimuli do not penetrate the membranes and thus 
the agonist/receptor interaction evokes a series of signal transduction mechanisms 
leading to the generation of intracellular messengers that are responsible for the 
effects of the agonist inside the cell [60]. 

PLC and PLA2 are phospholipases activated following platelet stimulation. 
TxA2 (formed following PLA2 activation) and some of the substances released from 
platelet granules are themselves platelet agonists: they reinforce the activation 
process by an additional supply of agonist, resulting in the generation of a more 
sustained signal [36]. In addition to stimulatory pathways triggered by platelet ago
nists, other signal transduction events take place when receptors for antiaggrega
tory substances are activated. PGI2 and PGD2, in particular, activate adenylate 
cyclase with consequent increase of intracellular cyclic AMP (cAMP). While an 
increase of cAMP inhibits platelet activation, the converse is not true: inhibition of 
adenyl ate cyclase is not sufficient to promote fibrinogen binding and platelet aggre
gation [60]. 

Signal transduction 
An activated receptor, belonging to the class of the GPCR, activates an effector (usu
ally an enzyme or an ion channel) through the activation of GTP-binding proteins, 
also called G proteins. The effector then synthesizes second messengers that are 
responsible for the cellular response. Although probably not all the intracellular sys
tems regulated by G-proteins have yet been identified, enzymes that are certainly 
regulated by G proteins are PLC, PLA2, adenylate cyclase. 

The G proteins involved in the activation of these enzymes are heterotrimeric G 
proteins, formed by three subunits, a, ~ and 'Y. In the resting state, the a subunit 
binds GDP. Agonists whose receptors interact with G proteins promote the release 
of GDP, which is replaced by the GTP present in the cytosol. This event leads to a 
conformational change of Ga, that dissociates from the ~'Y complex and activates 
an effector system. Many evidences exist that demonstrate that not only the a sub
unit but also the free ~'Y complex can activate effector proteins [84]. After a vari
able length of time, Ga hydrolyzes GTP to GDP, goes back to an inactive confor
mation and reassociates with the ~'Y complex, until the next cycle of receptor-medi
ated activation starts. Several G proteins have been identified in platelets [36, 39, 
43, 85] (Tab. 4). The functions of some G proteins in platelets, such as G16 and 
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Table 4 - G proteins a subunits identified in human platelets 

G protein family Effector Function Phosphorylated 
(a subunits) 

Gi 
Gai2»Gai3>Gai1 Adenylate cyclase jJ cAMP No 

PLC 1l' IP3, DG 
Gaz ? ? Yes 

Gs 
GasS, GasL Adenylate cyclase 1l'cAMP No 

Gq 
Gaq PLC 1l' IP3, DG No 
Ga16 PLC? 1l' IP3, DG? No 

G12 
Ga12, Ga13 ? ? Yes 

Gh 
Gah PLC? 1l' IP3, DG? ? 

Gh, have not been investigated, although an increase of inositol phosphate upon 
activation of these G proteins has been observed in overexpression systems [43, 
86]. 

It is interesting to note that phosphorylation of Gza, G12a and G13a has been 
observed following platelet activation and shown to be protein kinase C (PKC)
mediated, although the biological effects of this phosphorylation are not well under
stood [87, 88]. Recently, mice deficient in Gi2 [89], G13 [90] and Gq [91] have been 
generated. While no platelet defects are described in the Gi2 and G13 knock-outs, 
major platelet abnormalities are present in the Gq-deficient animals. Indeed, 
platelets from these mice fail to aggregate and to undergo release reaction induced 
by several agonists (thrombin, ADP, collagen, thromboxane analogues and arachi
donic acid). These abnormalities are accompanied by a defective activation of PLC 
and thus suggest that stimulation of PLC in platelets occurs mainly through Gq. 
Platelets from Gq-deficient mice undergo, on the other hand, normal shape change, 
indicating that other G proteins, such as Gi, G12 or G13, are involved in induction 
of shape change. Recently, a patient with decreased levels of Gq in platelets and a 
bleeding diathesis has been described for the first time [92]. 
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PLC~l and PLC~3 are activated predominantly by the members of the Gq fam
ily (Gq, Gll, G16 and its murine counterpart GIS), while PLC~2 seems to be acti
vated predominantly by the ~y complex released by Gi, although different hierar
chies have been reported depending on the system used [36, 93]. The activation of 
PLC leads to the hydrolysis of membrane inositol phospholipids (in particular phos
phatidyl inositol4,S biphosphate) with consequent synthesis of IPJ and DG. IPJ , act
ing on specific receptors, mobilizes calcium from the dense tubular system, thus pro
moting an increase of intracellular calcium. Calcium is necessary for activation of 
other enzymes, such as PLA2, PKC, myosin light chain kinase. DG activates PKC, 
in synergism with calcium [94], which in turn phosphorylates some proteins, such 
as pleckstrin (p47) and myosin light chain (MLC, p20) that ultimately lead to secre
tion and shape change, respectively [60]. MLC can be phosphorylated by both PKC 
and myosin light chain kinase which is a calcium-calmodulin dependent enzyme 
[9S]. As discussed above, myosin phosphorylation is directly involved in shape 
change, contraction and granule centralization. In addition to members of the PLC~ 
family, PLCyl has been detected in platelets, and a complex mechanism for its acti
vation, not related to heterotrimeric G proteins but to small G proteins, has been 
proposed [96]. 

Phospholipase A2 is another key enzyme activated following platelet stimulation, 
and it will be discussed later (see below). Another enzyme involved in platelet acti
vation, although its roles are not yet fully elucidated, is phospholipase D (PLD). 
PLD cleaves the terminal phospho diester bond of membrane phospholipids, in par
ticular phosphatidylcholine, causing the release of phosphatidic acid (PA) and a free 
base. PLD is activated, in platelets, by thrombin [97, 98], collagen [98] and, to a 
lesser extent, by other agonists [99]. The PLD-derived PA accounts for only 10-20% 
of the total PA formed in thrombin-stimulated platelets while the majority of the PA 
pool is formed as a consequence of PLC activation, following the phosphorylation 
of DG by the enzyme DG kinase [97]. It must be noted that not only DG can be 
metabolized into PA, but that also PA can be degraded into DG, through the enzyme 
phosphatidate phosphohydrolase. Recent data, obtained in endothelial cells, show 
that the PA formed through the activation of PLC and PLD have a different fatty 
acid composition [100] rising the possibility that PLD-derived PA and PLC-derived 
PA play distinct roles in signal transduction. It needs to be elucidated if these dif
ferences in signaling pathways also occur in platelets. 

Adenylate cyclase is activated when platelets encounter antiaggregatory sub
stances, such as PGD2, PGI2 and adenosine. Agents that activate adenylate cyclase 
do so by turning-on Gs and this results in an increase of intraplate let cAMP that, in 
turn, activates protein kinase A (PKA). cAMP causes inhibition of both PLC and 
PLA2, although a direct PKA-mediated phosphorylation of these enzymes has not 
been demonstrated [96]. cAMP also alters the binding of fibrinogen to platelets [60] 
and it can also decrease the binding of certain platelet agonists to their receptor 
[101]. Little is known about the isoforms of adenyl ate cyclase present in platelets, 
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but it is known that the type I enzyme is absent; in HEL cells, which share many 
characteristic with platelets, type III and IV adenylate cyclase have been detected by 
polymerase chain reaction (PCR) [36] . 

Adenylate cyclase is also under the control of an inhibitory G protein, Gi. The 
activation of Gi by several GPCR leads to the inhibition of adenylate cyclase and to 
a decrease of raised intracellular cAMP. 

Arachidonic acid metabolism and PLA2 
As briefly discussed above, TxA2, an arachidonic acid metabolite, represents a medi
ator potentially important for both the haemostatic and non haemostatic functions 
of platelets. Arachidonic acid is cleaved from the 2 position of several membrane 
phospholipids by PLA2 although minor amounts can also be released by other 
routes, such as the release from DG by diacylglycerol lipase [60]. Several PLA2 
enzymes exist and the present knowledge on this topic has recently been reviewed 
[102]. Platelets have at least two PLA2 isoforms. One is secretable PLA2 (sPLA2), 
it has a low molecular weight (13-15 kDa) and, to be active, requires high, supra
physiological, concentrations of calcium (in the millimolar range) [102]. In many 
cell types sPLA2 is found in secretable granules, in addition to snake and bee ven
oms, synovial fluid and pancreatic secretions [103] but the exact location of sPLA2 
in platelets in not known. Also the functions of platelet sPLA2 are not fully eluci
dated; secreted sPLA2 does not seem to significantly contribute to the biosynthesis 
of TxA2 in stimulated platelets [104]. 

Platelet cytosolic PLA2 (cPLA2) has been studied more extensively and its role 
and regulation are better understood. cPLA2 is responsible for the bulk of arachi
donic acid release after platelet activation. cPLA2 is active at physiologic calcium 
concentrations (- 0.05 IlM) and has a molecular weight of - 85-100 kDa [102, 
103]. cPLA2 is specific for the 2 position of phospholipids; arachidonic acid is the 
preferred fatty acid in this position, but other polyunsaturated fatty acids can be 
released as well [103]. The preferred substrate for cPLA2 is phosphatidylcholine, but 
also phosphatidylethanolamine and phosphatidylserine can be hydrolyzed, while 
phosphatidylinositol is a poor substrate for this enzyme [103, 105]. Studies in cells 
different from platelets have demonstrated that cPLA2 binds to the cytoplasmic sur
face of the endoplasmic reticulum and is associated topologically with cyclooxyge
nase 1, which is located on the luminal surface [7]; accordingly, in platelets the 
release of arachidonic acid is thought to occur primarily at the membrane of the 
dense tubular system [36]. 

The regulation of cPLA2 in platelets has not been fully elucidated. It has been 
demonstrated that activation of cPLA2 is associated, at least in thrombin-stimulat
ed platelets, with its phosphorylation [104] and that thrombin also activates a mem
ber of MAPK family, called p38 [106]. Although p38 phosphorylates cPLA2, this 
phosphorylation is not required for cPLA2 catalytic activity: indeed, cPLA2 activity 
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is not attenuated when p38 MAPK-mediated phosphorylation is abrogated [107]. 
The regulation of cPLA2 by PKC and more in general by phosphorylation/dephos
phorylation reactions is complex and probably differently modulated depending on 
the stimulus leading to the activation of the enzyme [103, 108]. Another issue that 
is not clear concerning cPLA2 regulation, is if cPLA2 is directly activated by G pro
teins [103]. Although it has been demonstrated that fluoro-aluminate, an aspecific 
G proteins activator, is able to induce arachidonic acid release from intact human 
platelets [109] and many other studies have been performed with platelet mem
branes, it is not yet known which is the GPCR and the G protein(s) involved in 
cPLA2 activation and whether the a or the py subunits are important [103]. 

Once released from membrane phospholipids arachidonic acid is metabolized by 
cyclooxygenase. This enzyme has a cyclooxygenase activity, which catalyzes PGG2 
formation from arachidonic acid, and a hydroperoxydase activity, that catalyzes the 
reduction of a hydroperoxy group of PGG2, resulting in PGH2 synthesis [28] . PGH2 
is further metabolized by different enzymes, that give TxA2' PGD2 and PGE2 in 
platelets. Other metabolites, such as PGI2 and PGF2a, can be formed in other cells. 
While PGD2, PGE2 and PGF2a are rather stable, TxA2 and PGI2 are very rapidly 
degraded into TxB2 and 6-keto PGF1a, respectively, that are stable but biologically 
inactive. 

In addition to cyclooxygenase, arachidonic acid in platelets can be metabolized 
by one of the enzymes of the lipoxygenase family, 12-lipoxygenase. 12-lipoxygenase 
catalyzes the formation of 12HPETE, which is then converted to 12HETE by a per
oxidase. 12HETE can not be further metabolized by platelets, but it can be taken 
up by neutrophils. Neutrophils possess 5-lipoxygenase that, in activated cells, can 
convert 12HETE into 5,12 diHETE [28]. 

Production of oxygen radicals 
Oxygen free radicals are reactive chemical species. Among these, superoxide anion 
(02-), hydrogen peroxide (H20 2), peroxyl radicals (ROO'), hydroxyl radicals (OH') 
and peroxynitrites (ONOO-) are produced in the vascular system, in particular dur
ing ischemia followed by reperfusion of the myocardium. In fact, the reoxygenation 
that occurs during reperfusion generates oxygen free radicals that react with sever
al cellular targets, resulting in injury of the tissue [110]. 

It is well established that polymorphonuclear neutrophils release cytotoxic oxy
gen free radicals [111]. Similarly, platelets can produce oxygen radicals and do so 
after stimulation with agonists, and following the activation that takes place during 
ischemia and reperfusion [112]. In particular, reoxygenated anoxic platelets produce 
O2- and OH' and these reactive species are able to induce platelet aggregation. The 
aggregatory activity of O2- and OH' is largely mediated by cyclooxygenase, through 
the metabolism of arachidonic acid and the synthesis of TxA2 that, in turn, can 
cause activation of PLe and PLA2 [112]. OH' can exit the cell and form H20 2 in 
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the external medium. H20 2 can react with O2- and generate the highly reactive 
hydroxyl radical OH·. Also superoxide dismutase, presumably by its ability to pro
duce H20 2, can activate platelets [110]. 

Oxygen free radicals have cytotoxic activity because they cause oxidation of 
membrane phospholipids, disrupting the membrane integrity and fluidity and per
haps also interfering with the functions of receptors on the cell surface [110] . A 
platelet agonist whose activity may be enhanced by oxygen free radicals is PAE PAF 
is inactivated by PAF-acetylhydrolase that can be inhibited irreversibly by oxygen 
radicals. This phenomenon leads to a more sustained effect of PAF not only on 
platelets, but also on sites of inflammation, thus worsening the inflammatory effects 
of this mediator [110]. 

Oxygen radicals also inhibit other enzymes important for platelet function. In 
particular, hydroperoxides, such as 15(S)-hydroperoxyeicosatetranoic acid 
(15(S)HPETE), inhibit cyclooxygenase and thromboxane synthase. In the case of 
cyclooxygenase, 15(S)HPETE-induced inhibition involves both a modification of 
the heme group and a modification of the protein itself and both the cyclooxygenase 
and the peroxidase activity of the enzyme are lost [113]. 

Cyclooxygenase and thromboxane synthase can also be inhibited by their own 
substrates, which are PGG2 and PGH2, respectively. This particular kind of inacti
vation is called "suicide" inactivation and, since it occurs during catalysis, can pro
vide an important mechanism to limit prostanoid biosynthesis. The mechanism of 
inactivation of cyclooxygenase and thromboxane synthase by their substrates is 
somewhat different from the inactivation caused by other hydroperoxydes. In par
ticular, while 15(S)HPETE or other hydroperoxydes inhibit both the cyclooxygenase 
and the peroxydase activity of the enzyme cyclooxygenase, during "suicide" inacti
vation only the cyclooxygenase activity is inhibited. It has been proposed that, dur
ing "suicide" inactivation, an activated and unstable cyclooxygenase protein inter
mediate is formed, that then rearranges irreversibly into an inactive cyclooxygenase, 
without concomitant loss of peroxidase activity [113]. 

In the case of thromboxane synthase, "suicide" inactivation is accompanied by 
a modification of the prostetic heme group and it differs from the inactivation due 
to hydroperoxydes that seems to result from apoenzyme modification [114]. 

Role of platelets in inflammation 

Functional activities relevant to inflammation 

It is now widely accepted that platelets can behave, in particular conditions, as 
inflammatory cells [23, 30, 115-118]. Historically, the first clues to the inflamma
tory role of platelets came from the observations that platelets are recovered at 
inflammatory sites or in inflammatory exudates [119-123]. More recently, with the 
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increasing interest in the participation of platelets to respiratory allergy, several 
reports have shown the presence of platelets or of abnormal megakaryocytes in 
lungs or alveolar space of patients with asthma [79, 124, 125]. 

It is interesting to observe that platelets themselves can elicit inflammatory reac
tions as shown by the swelling, redness and tenderness lasting several hours report
ed after the subcutaneous injection of platelet extracts in normal humans, a reaction 
more evident and more prolonged than that observed after the injection of leuko
cyte extracts [126]. 

Platelets display a number of functional activities that are quite typical of inflam
matory cells. Indeed, similarly to white blood cells, platelets show rolling and 
attachment on altered endothelium [22], diapedesis through endothelial cells [125], 
chemokinesis and chemotaxis [83]. 

Biochemical properties of platelets relevant to inflammation 

Platelets present a number of biochemical properties which may be relevant to 
inflammation. Indeed, they can release a series of mediators, either stored in their 
granules or cytoplasm or synthetized upon activation, that may participate in elicit
ing and maintaining the inflammatory reaction. The series of substances potentially 
important include [23, 117]: 

8-granules; serotonin is vasoactive, vasopermeabilizing and stimulates fibrob
lasts and as such acts as an inflammatory mediator [127]; 

a-granules; PGDF and TGF~ are growth factors which display vasoactive and 
chemotactic properties [128]; PF4, which stimulates basophils to release histamine 
and is chemotactic for eosinophils [129, 130]; RANTES, a powerful chemoattrac
tant for eosinophils but also a modulator of chemokine secretion by monocytes, 
released by activated human blood platelets [131, 132]; MIP-1a, a chemokine able 
to induce histamine release from basophils and is chemotactic for T lymphocytes 
[133]; P-selectin, an adhesion molecule expressed on the surface of activated 
platelets as well as on endothelial cells, which regulates the interactions between 
platelets and leukocytes as well as the initial attachment and rolling of leukocytes to 
endothelium. Monoclonal antibodies directed against P-selectin [134] or gene dis
ruption of the P-selectin gene [135], reduces allergic airway responses; 

Cytoplasm or anyway in an undefined location within platelets, histamine, a 
notorious inflammatory mediator which can be released in relevant concentrations 
from platelets, at least in some species, after stimulation with aggregating agonists 
or immunologic stimuli [77]; interleukin-1 (IL-1), an important cytokine modulat
ing the interactions between leukocytes and endothelial cells which take place dur
ing the inflammation reaction [136]. IL-1 can be released by activated platelets and 
can lead to the liberation of several cytokines from endothelial and vascular smooth 
muscle cells [137]; 
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Lysosomes, several acid hydrolases and cathepsins which can be released in vivo 
upon platelet activation [138] and that may participate in inflammation through 
their cytotoxic and tissue-degrading activities [70]; 

Substances produced upon metabolic activation, such as TxA2' several 
prostanoids (PGE2, PGD2), products of the lipoxygenases cascade (12HPETE, 
LTB4 ), PAF and hydrogen peroxide, which may all contribute to the vasomotor, 
chemotactic and vasopermeabilizing phenomena of inflammation [23, 30]. 

Platelets and the airways 

Functional and biochemical activities relevant to allergic airway responses 

Interestingly, FCyRII can be phosphorylated following platelet stimulation with col
lagen through a a2p1-independent pathway suggesting that this phosphorylation is 
mediated by binding of collagen to a receptor different from a2p 1, such as GPIV 
[17]. The exact role of FcyRII in collagen signaling remains, to date, unclear. As for 
collagen, stimulation of platelets through FcyRII causes PLCy2 phosphorylation 
[69]. 

A number of functional activities and biochemical properties of platelets above 
described for inflammation may be of special relevance to the dynamic and anatom
ic changes which take place during airway allergic responses. 

Platelets can roll on altered endothelium, the first step for margination and sub
sequent diapedesis [22]. Platelets express IgE receptors which have an affinity simi
lar to the receptors present on macrophages and eosinophils and which are impli
cated in the cytotoxic response against parasites [30]. Interestingly, while only 
approximately 25% of platelets from normal subjects bind IgE, more than 35% of 
platelets of patients with allergic asthma do [27]. Moreover, the cross-linking of sur
face-bound IgE, with anti-IgE monoclonal antibodies or with the specific sensitizing 
allergen, induces platelet chemotaxis in vitro (Gresele et ai., unpublished observa
tions). 

Once migrated into the airways [125] platelets may release spasmogenic sub
stances (serotonin, TxA2' histamine), cytotoxic mediators (H20 2, lysosomal con
tent), agents able to induce remodelling (e.g. PDGF or TNFP, etc.) and, most impor
tantly, a series of powerful chemotactic substances able to recruit eosinophils and 
other inflammatory cells (PF4, 12HPETE, RANTES, MIP-1a, IL-1, etc.). 

Experimental models on the participation of platelets to airway inflammation 

The first experimental observations on the potential participation of platelets to 
bronchoconstiction came from studies showing that the intravenous injection of 
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platelet agonists in animals induces thrombocytopenia associated with severe bron
chospasm [139, 140]. Conversely, the challenge of sensitized rodents with allergen 
induces bronchospasm associated with thrombocytopenia and platelet depletion of 
the animals prevents allergen-induced bronchospasm [141, 142]. During these reac
tions platelets accumulate in lungs, as shown by the use of radiolabelled platelets 
[30] and by the analysis of the broncho-alveolar lavage fluid [79]. Simultaneously, 
platelet-released products (e.g. PF4) are detected in the bloodstream, as observed in 
sensitized rabbits challenged with allergen or after stimulation with PAF [143]. His
tologic studies show that platelets undergo diapedesis and localize in proximity to 
bronchial smooth muscle cells and, interestingly, colocalize in lung tissue with 
eosinophils [144]. It appears that eosinophil recruitment is in some way modulated 
by platelets as platelet depletion of the animals reduces antigen-induced eosinophil 
infiltration in lungs [145]. 

Eosinophils play a central role in the histopathologic changes accompanying 
asthma (see chapter by Coyle and Gutierrez-Ramos, this volume). We have already 
mentioned some substances released by platelets and that have been shown to exert 
strong chemoattractant properties on eosinophils. The converse is also true: 
eosinophils may release platelet activating substances [166] and it is suggestive that 
some conditions of hypereosinophilia in humans have been reported to be associat
ed with thrombotic phenomena [147, 148]. 

One link between platelets and eosinophils may be represented by PAF, as this 
lipidic mediator induces eosinophil infiltration in lungs which is prevented by 
platelet depletion [145] and, on the other hand, eosinophils from allergic asthmat
ics produce large amounts of PAF [149]. Interestingly, PAF antagonists inhibit air
way hyperresponsiveness induced by antigen challenge in allergic rabbits [30]. 

The exact sequence of events leading to platelet and eosinophil localization in 
lung tissue is presently unknown. It is tempting to speculate that the allergen inter
acts with IgEs localized on the IgE-receptor of platelets of sensitized subjects pro
voking platelet diapedesis in lungs and that, subsequently, PAF locally produced by 
inflammatory cells (macrophages?) induces platelets to release chemotactic sub
stances which recruit eosinophils in lungs. Eosinophils in turn may release cytoto
toxic, chemotactic and platelet activating substances giving rise to a vicious circle 
leading to airway hyperreactivity and tissue remodelling. 

Observations in humans on the participation of platelets to airway 
inflammation 

Several studies have assessed the involvement of blood platelets in bronchial asthma 
in humans. These have been previously extensively reviewed [23, 30, 150]. Most of 
the studies have evaluated platelet aggregation or other parameters related to 
platelet activation in vitro and, more recently, parameters related to in vivo platelet 
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activation. Several investigations have shown some degreee of platelet function 
abnormality in vitro, with hypoaggregability to ADP, adrenaline or collagen and 
reduced release of a- and o-granule content [23, 30]. Platelet refractoriness has been 
reported to be particularly evident for PAF [151-153] and this has been considered 
as an indicator of PAF-release in vivo as platelets develop refractoriness to this ago
nist after exposure. Indeed, the number of freely accessible PAF-receptors on 
platelets of allergic asthmatics undergoing allergen challenge is significantly 
reduced, indicating that part of them are occupied by PAF secreted in the circulation 
[154]. 

Reduced in vitro platelet activation upon stimulation with PAF has been more 
recently demonstrated by the impaired expression of surface platelet activation anti
gens, such as CD62P and CD63, by cytofluorimetry in asthmatics [155]. Platelet 
hypoaggregability in vitro is compatible with a partial refractoriness developed as a 
result of previous in vivo platelet activation, and other altered platelet function 
parameters have been reported in asthmatics, such as increased resting levels of 
cytoplasmic Ca2+, or increased IP3 [151, 156] which may also reflect previous in 
vivo platelet stimulation. Many attempts have been made to demonstrate an in vivo 
activation of platelets in asthmatic patients, especially by measuring platelet-release 
markers in plasma (~TG and PF4) or urinary metabolites of TxA2. Although con
trasting results with ~TG and/or PF4 have been reported [23], the prevailing view is 
that, at least in some patients with allergic asthma, allergen challenge induces the 
release of a-granules markers in the circulation [23, 30, 131, 157-159]. In one 
study, plasma levels of PAF were also measured and found to correlate with ~TG or 
PF4, suggesting a relationship between PAF release and platelet activation [159]. 

The use of plasma levels of ~TG/PF4 has been criticized because of possible arti
facts or lack of sensitivity [160, 161]. However, in vivo platelet activation during 
asthmatic attacks has been detected with other methods which are less prone to 
methodologic problems, such as the measurement of urinary metabolites of TxA2 or 
the expression of surface activation antigens on circulating platelets by cytofluo
rimetry [162-164]. 

The main limitations of the studies summarized above are represented by the 
measurement of in vivo platelet activation parameters only during the acute reaction 
that follows an allergen provocation test and by the use of techniques which mea
sure parameters of platelet activation which are usually adopted for the assessment 
of in vivo thrombus formation. From animal studies and the basic knowledge on 
platelet biochemistry, it is more likely that platelets may be involved in the genesis 
of the inflammatory reactions that accompany bronchial asthma and, in addition, it 
has been shown that several of the non-haemostatic functions of platelets follow 
mechanisms which are different from those involved in haemostasis and thrombo
sis [23, 27]. 

More recent studies have adopted a new approach to the evaluation of platelet 
activation in asthma. It has been shown that platelets undergo functional changes 
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during exacerbations of nocturnal asthma, a condition which corresponds to airway 
hyperresponsiveness and is strictly dependent on airway inflammatory changes 
[152]. In addition, using subsegmental antigen challenge in asthmatics it was shown 
that ~TG and PF4 increase strikingly in bronchoalveolar lavage fluid not immedi
ately but 19 h after allergen challenge and correlates with levels of eosinopil-derived 
proteins [165] indicating that platelets participate in the late asthmatic response in 
a way that is strictly linked to eosinophil infiltration. Indeed, RANTES, a powerful 
chemoattractant, has been found to be increased in patients with asthma during 
spontaneous attacks in a way that correlates with the rise in plasma ~TG, thus sug
gesting a platelet origin of the chemokine [131]. Platelets from atopic individuals 
stimulated through their IgE receptors release large amounts of RANTES [166] and 
histamine [77]. Interestingly, platelets from allergic asthmatics migrate in vitro in 
response to the sensitizing allergen but also to monoclonal antibodies anti human 
IgE, thus involving platelet sensitization through the IgE receptor in the platelet 
recruitment in lungs ([83] and Gresele et ai., unpublished observations). Indeed, sev
eral reports have shown platelets in lung tissue in patients with asthma [79, 124, 
167] and platelet migrated through the endothelium have been observed on electron 
microscopy of the lung tissue [125]. 

Once penetrated in lung tissue, an increased production of oxygen radicals as a 
consequence of defective GSH-peroxidase may contribute to tissue damage [168]. 

Pharmacologic modulation of platelet function: possible relevance to 
airways inflammation 

If platelets are involved in the pathogenesis of allergic bronchocostriction then it is 
tempting to speculate that platelet-inhibitory drugs might be useful in this clinical 
condition. Thus, a few studies have tested antiplatelet agents in animal models or in 
patients with allergic asthma for their effects on bronchoconstriction. 

Aspirin and sulphinpyrazone have not been able to inhibit bronchoconstriction 
or to blunt the in vivo platelet activation which follow allergen challenge in humans 
or PAF administration in animals [169, 170]. Even prostacyclin, a powerful platelet 
inhibitor and a vasodilator, was unable to affect the bronchoconstriction induced by 
PAF inhalation, despite inhibition of platelet aggregation [171]. Similarly, 
indomethacin, at doses suppressing the increase of urinary TxA2-metabolites 
induced by allergen challenge, was not able to influence pulmonary function [172]. 
PAF antagonists too have been administered to asthmatic patients with disappoint
ing results on pulmonary function despite inhibition of ex vivo PAF-induced 
platelet-aggregation [30]. 

These data may indicate that platelets are not really important for the patho
genesis of allergic bronchoconstriction or else that the mechanisms involved in the 
expression of platelet proinflammatory properties are insensitive to inhibitors of the 
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platelet prothrombotic activities. The latter hypothesis seems to be supported by a 
number of observations on the effects of some antiallergic agents on non-haemo
static platelet functions. 

Nedocromil sodium, an inhibitor of IgE-mediated-histamine-release from mast 
cells, reduces the IgE-stimulated parasitocidal and hydrogen peroxide-producing 
activity of human platelets [173, 174]. Nedocromil sodium was also able to inhibit 
platelet activation induced by PAF, but not by the calcium ionophore A23187, in 
vitro [175]. Other antiallergic drugs which have shown an action on platelets in 
vitro are: cortisol, cromolyn and albuterol, which were shown to normalize the 
decreased platelet sodium-potassium adenosine triphosphatase activity of allergic 
subjects [176] and disodium cromoglycate, that was found to reduce the inhibitory 
effect exerted by IgE on monoamine uptake in normal platelets [177]. 

A few studies have also assessed the effect of some antiallergic agents on platelet 
function ex vivo or in vivo in allergic subjects: glucocorticoids and ketotifen [178] 
as well as disodium cromoglycate (40 mg daily for 4 weeks) increased significantly 
the shortened platelet survival time in patients with stable allergic asthma [177]; 
terbutaline was reported to reduce the platelet hype reactivity, assessed by platelet 
clumping on smear or by platelet adhesiveness, observed during acute asthma [179]. 

These data, although rather preliminary and probably not yet centered on the 
platelet functions most relevant to airway hypereactivity, suggest that therapeutic 
interventions aimed at suppressing platelet pro-inflammatory activities may be use
ful for the treatment of allergic asthma. 

Conclusions 

This review has tried to give an account of the latest knowledge on platelet physi
ology and on the mechanisms that regulate the participation of platelets to 
haemostasis and thrombosis and to non-haemostatic processes. The picture that 
emerges is that of the platelet as a multifunctional cell, with different pathways reg
ulating on one side platelet haemostatic activities and on the other platelet proin
flammatory actions. 

While a very large research effort has been spent in understanding the partici
pation of platelets in the pathophysiology of thrombosis, much less attention has 
been given to the role of platelets in inflammation. A major limitation in the 
research on the role of platelets in inflammation derives from the application of 
methodologies used to study platelet haemostatic function, which may be inappro
priate in the study of platelets in the context of inflammation. The application of 
unconventional methodologies to the study of platelets is giving new impetus to the 
efforts to better understand the mechanisms regulating platelet inflammatory activ
ities. 
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The identification of the molecular mechanisms regulating platelet inflammato
ry activities, and in particular of the mechanisms involved in platelet diapedesis in 
the inflammed tissue, may allow the development of new antinflammatory and anti
asthmatic therapeutic strategies. 
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Introduction 

Neutrophils are the rapid response cells of acute inflammation and a major compo
nent of host defence. Their ability to ingest bacteria and other microbes was recog
nised by Elie Metchnikoff in the 19th century, but in recent years the double-edged 
nature of the inflammatory response has been recognised. Despite their beneficial 
role in host defence, neutrophils and their pro-inflammatory products are increas
ingly implicated in the pathogenesis of acute and chronic inflammatory diseases. In 
the lung these include chronic bronchitis and emphysema, asthma, respiratory dis
tress syndrome, bronchiectasis and a number of interstitial lung diseases. Thus, 
understanding the pro-inflammatory host defence functions of the neutrophil, and 
the mechanisms by which these are terminated, may yield insights into the patho
genesis of diseases which are a major cause of morbidity and mortality in the devel
oped world. 

Cell structure and origin 

In numerical terms the neutrophil polymorphonuclear leucocyte is the predominant 
effector cell of the immune response; 60% of all bone marrow cells belong to the 
neutrophil lineage. Estimated production is 1-3 x 1010 neutrophils per day, rising 
several fold in serious infections [1]. Neutrophils have a total lifespan of 12-14 days 
from stem cell to removal in tissues, but a circulating half-life of less than 8 h [2]. 
Circulating neutrophils are believed to be in dynamic equilibrium with a so-called 
"marginating" pool of cells. The size of this pool is debated, but the presence of this 
marginated pool within the lung has been proposed as a rapid-release reservoir of 
neutrophils for mobilisation in response to injury or stress [3]. The physiological 
fate of the short-lived neutrophil has recently been an area of considerable interest. 
Studies with radiolabelled neutrophils suggest they normally meet their fate in the 
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liver, spleen and bone marrow, where they are presumed to undergo apoptosis (pro
grammed cell death), leading to their recognition and clearance by specific 
macrophage populations within these organs. Apoptosis also appears to regulate the 
removal of neutrophils which have left the circulation and migrated into the tissues 
(see below). 

On electron microscopy, neutrophils have a diameter of about 7 11m and con
tain a large number of cytoplasmic granules, which are separated on the basis of 
peroxidase staining into primary or "azurophilic" granules (peroxidase positive) 
and secondary or "specific" granules (peroxidase negative). A further type of gran
ule, the tertiary or "storage" granule, is also now recognised. Azurophilic granules 
contain anti-microbial agents, such as proteases (elastase, cathepsins, metallopro
teinases), glycosidases and acid hydrolases, lactoferrin (which chelates iron and 
participates in hydroxyl radical formation) and defensins (cationic amphipathic 
proteins which kill pathogens by damage to cytoplasmic membranes) [4]. Seques
tration of these agents within the membrane bound granules permits their con
trolled delivery to the target microbe within the phagolysosome. Although "specif
ic" granules do contain some anti-microbial enzymes (lysozyme, collagenase), their 
major role is to provide an intracellular reserve of important membrane compo
nents, including chemotaxin receptors, adhesion molecules and components of the 
NADPH (nicotinamide adenine dinucleotide phosphate) oxidase [5] (Tab. 1). Such 
an arrangement may provide a mechanism for increasing the number of chemotax
in and adhesion receptors at the leading front of a migrating cell [6]. Other cellu
lar organelles, e.g. mitochondria and Golgi apparatus, are relatively scarce, but 
neutrophils do contain substantial amounts of endoplasmic reticulum (ER). The 
plasma membrane is of great importance in these highly responsive cells, since it 
contains receptors which bind pro-inflammatory mediators and transduce these sig
nals into cellular responses. Finally, the complex cytoskeletal network, which links 
intracellular granule storage pools with the cell membrane and is responsible for 
cell motility, is composed of both actin and myosin filaments and resides in the sub
membrane region [7]. 

The ability to produce large numbers of neutrophils rapidly and with a very 
short lifespan permits the presence of enormous numbers of these highly effective 
bacterial killers at a site of infection, but also the subsequent rapid resolution of the 
inflammatory response; desirable for minimal "bystander" damage to normal tis
sues. The neutrophil is, however, more than an end-stage cell, programmed to kill 
bacteria and then disintegrate. Neutrophils generate a limited but important range 
of cytokines and chemokines, controlling the influx of more neutrophils but also 
the migration of monocytes which will mature into inflammatory macro phages [8]. 
Neutrophils' behaviour in the inflammatory response, their migration, subsequent 
activation and ultimate removal are under tight controls, regulated by signalling 
pathways whose molecular basis is increasingly understood and which represent 
powerful therapeutic targets for the modulation of inflammation. 
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Table 1 - Neutrophil granule contents 

Constituent Azurophilic granules 

Microbicidal enzymes Myeloperoxidase 

Lysozyme 

Neutral proteases 

Metalloproteinases 
Acid hydrolases 

Others 

Elastase 
Cathepsin G 

N-acetyl-glucuronidase 
Cathepsin B 
Cathepsin D 
Glucuronidase 
Glycerophosphatase 
Mannosidase 
Bactericidal permeability 
factor (BPI) 

Defensins 
Antibacterial cationic 

protein 
Kinin-generating enzyme 
C5a-inactivating factor 

Mechanisms of neutrophil activation 

Neutrophil receptors 

Specific granules 

Lysozyme 

Collagenase 

Lactoferrin 

Vitamin B12 binding 

protein 
Cytochrome b 
Histaminase 

Neutrophils 

Tertiary granules 

Gelatinase 

C3bi receptors 
Cytochrome b558 

Alkaline phos

phatase 
Laminin receptors 

Complement activator 
Monocyte-chemoattractant 
Plasminogen 
PKC inhibitor 
fMLP receptors 
C3bi receptors 

The neutrophil surface reveals a number of different groups of receptors: for 
opsonised particles, destined to be phagocytosed; for chemotactic factors, for 
cytokines and growth factors and for adhesion molecules (Tab. 2). Structurally, 
these can be viewed as belonging to four different groups: 

(1) G-protein-coupled seven-transmembrane-domain receptors 
e.g. for PAF, IL-8, C5a and Substance P 
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Table 2 - Neutrophil surface receptors 

Function Receptor Ligand(s} 

Chemotaxis fMLP f-met peptides 

LTB4 LTB4 
C5a C5a, C5a des-arg 

PAF PAF 

IL-8 Interleukin-8 

Opsonins C3bi C3b, C3bi 

Phagocytosis CD32 (FcyRll) 

CD16 (FcyRlllb) IgG1 and IgG3 

Cytokines IL-1 Interleukin-1 

IFNy Interferon-y 

CD95 (Fasl APO-1) CD95L (FasL) 

TNFa (p55 + p75) Tumour necrosis factor-a 

Colony-stimulating factors GM-CSF Granulocyte-macrophage-CSF 
(CSFs) G-CSF Granulocyte-CSF 

Adhesion CD11 b/CD18 (Mac-1) C3bi and ICAM-1 

CD11a/CD18 (LFA-1) ICAM-1 + 2 

CD66b Selectins 

Others Adenosine 
132-adrenergic 

(2) Cytokine receptors with a single transmembrane-domain 
e.g. for GM-CSF, TNFa 

(3) Receptors for adhesion molecules and complement 
e.g. for Fe, integrins, CD14 

(4) Intracellular receptors 
e.g. for steroid hormones 

Intracellular events following the binding of a mediator to its receptor on the neu
trophil surface have been most extensively studied using the synthetic bacterial pep
tide, fMLP, which binds to a seven-transmembrane-domain, rhodopsin-like recep
tor. Seven-transmembrane-domain receptors may be coupled either to effector sys
tems (e.g. actin polymerisation) or to second-messenger generating systems (e.g. 
phospholipases) within the cell. Receptor occupancy can determine the functional 
response elicited - maximal superoxide response occurs at maximal receptor occu
pancy, whereas shape change can occur with only 10% receptor occupancy [9]. 
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Post-receptor mechanisms of neutrophil activation 

G-proteins 
Guanine nucleotide-binding proteins playa central role in the transduction of recep
tor signals into effector responses of cells. Adenylate cyclase was the first enzyme 
shown to be stimulated in a GTP-dependent manner. Chemoattractant receptors, 
e.g. fMLP, are also G-protein coupled. Gi2 and Gi3 are believed to be the predomi
nant G proteins present in the neutrophil. G-protein activation leads to dissociation 
of the a-~y subunits, the a subunit being the predominant effector molecule. 

Lipid-derived second messengers 
G-protein activation results in recruitment of lipid-derived second messengers such 
as phospholipase C (PLC) to the cell membrane, where it has access to its mem
brane-lipid substrate [10]. The seven-transmembrane-domain receptors all activate 
PLC, resulting in the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to 
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. Other neutrophil receptors 
have been shown to recruit PLCy2 to the cell membrane via activation of an intrin
sic SH2 binding domain (with Src tyrosine kinase homology). This is the proposed 
mechanism whereby cross-linking of the FcyRI and FcyRII receptors leads to phos
phorylation and activation of PLCy2. Phosphatidylinositol 3-kinase (PI 3-kinase) 
generates phosphatidylinositol 3,4,5 trisphosphate (PIP3) from PIP2, PIP3 playing a 
key role both in cytoskeletal functions and in initiation of superoxide generation 
[11]. Phospholipase D cleaves membrane phosphatidylcholine to generate phospha
tidic acid, which has been implicated as an effector both of exocytosis and of the 
NADPH oxidase [12]. Another important lipid-derived second messenger system is 
initiated by phospholipase Armediated cleavage of arachidonic acid, generating 
eicosanoids (prostaglandins, leukotrienes and lipoxins). 

Protein phosphorylation 
The neutrophil contains two major groups of serine-threonine kinases: protein 
kinase C (PKC), which is broadly stimulatory of neutrophil functions and the cAMP 
and cGMP-dependent protein kinases (PKA and PKG), which largely inhibit neu
trophil responses. The neutrophil contains multiple isoforms of PKC, with complex 
functional effects such as stimulation of NADPH oxidase activity but inhibition of 
chemotaxis. The functional specificities of the various isoforms and their phospho
rylation targets are at present mostly unknown. Elevation of cAMP in neutrophils 
may occur via receptor-mediated (e.g. ~2 adrenoreceptor, adenosine receptors) acti
vation of adenylate cyclase or by inhibition of phosphodiesterase activity, PDE4 
being the predominant phosphodiesterase isoform in neutrophils. cAMP has been 
shown to inhibit a wide variety of neutrophil responses [13]. The role of cGMP in 
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neutrophils is less clear, but exogenous nitric oxide (NO), which leads to elevation 
of cGMP, down-regulates a range of neutrophil functions including degranulation 
and superoxide generation [14]. Neutrophils can also generate NO and predomi
nantly contain the NOS1 isoform of nitric oxide synthase, at least in unstimulated 
cells [15]. 

A number of neutrophil receptors, such as the receptor for the growth factor 
GM-CSF, have intrinsic tyrosine kinase activity whereas other receptors, e.g. for 
CSa and Substance P, interact with a family of small cytosolic tyrosine kinases (Lyn, 
Fyn, Syk). This results in phosphorylation of a number of protein substrates includ
ing p12SFAK and mitogen-activated protein kinase (MAPK). Tyrosine phosphory
lation has also been implicated in neutrophil priming, possibly via phosphorylation 
of MAPK or of a protein component of the NADPH oxidase [16]. 

Recent data has provided a link between PKC and tyrosine phosphorylation 
branches of neutrophil signal transduction: PKC has been shown to phosphorylate 
and thus inhibit tyrosine phosphatase-1 (SHP-1) thus facilitating accumulation of 
tyrosine phosphorylated proteins following neutrophil activation [17]. 

Cytosolic calcium 
Levels of cytosolic calcium in the neutrophil appear to be determined largely by 
influx, via multiple pathways, but also by release from intracellular stores: the ER 
and possibly other poorly-defined cytoplasmic organelles, sometimes described as 
calciosomes. Elevation of [Ca2+]i in the neutrophil stimulates functions such as de
granulation and superoxide generation [18] and may also playa role in regulating 
the lifespan of neutrophils via the inhibition of apoptosis (programmed cell death) 
[19]. 

The NADPH oxidase 

The NADPH oxidase describes a metabolic path, dormant in resting cells, which 
underlies all oxygen-dependent killing by phagocytes (Fig. 1). Activation of the oxi
dase involves translocation of a cytosolic protein complex to the plasma membrane 
- physical separation of oxidase components in the resting cell may prevent inap
propriate activation of the oxidase. The NADPH oxidase is triggered by receptor
mediated binding of soluble agents (fMLP, CSa, etc.) or binding of opsonised organ
isms to neutrophil Fey and C3bi receptors, which can trigger oxidase activity at 
localised sites of microbial contact. In essence, the NADPH oxidase forms an elec
tron transfer chain, using NADPH as the electron donor to reduce molecular oxy
gen to superoxide anion [20, 21]. Superoxide (02-) is in turn dismuted to hydrogen 
peroxide and thereafter metabolised to hydroxyl free radicals and hypochlorous 
acid. The enzyme complex consists of a unique f1avo-cytochrome (cytochrome 
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Figure 1 

The NADPH oxidase of neutrophils. 

b558), a GTP-binding protein (Rap-1A) and two cytosolic proteins (p47phox and 
p67phox) that bind to b558 following activation or priming of the cell. Finally, the 
GTP-binding protein Rac-1 must translocate from cytosol, where it is com pIe xed 
with Rho, to integrate into the oxidase complex. Stimulation of the NADPH oxi
dase is in part mediated by elevation of cytosolic calcium, but also by PI 3-kinase 
activation and protein tyrosine phosphorylation [16, 22]. Much of the characteri
sation of the NADPH oxidase has been achieved using the neutrophils of patients 
with chronic granulomatous disease (CGD), who have been shown to have defects 
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in b55S (X-linked disease, the commonest form) or of the cytosolic components p47 
and p67 (autosomal recessive disease). These patients, as a result of their impaired 
microbicidal function, develop severe, recurrent infections [20]. 

Neutrophil priming 

Neutrophils are remarkable for their ability to move from a resting state to a state 
of "priming" or readiness for activation. Priming has been most closely studied in 
terms of NADPH oxidase function but also affects other cellular functions such as 
degranulation and phagocytosis. A given mediator, which does not induce a func
tional response in itself, alters the reactivity of the neutrophil to subsequent stim
uli. Thus, in the unprimed state, the neutrophil displays little or no secretory 
response when incubated with an agent such as fMLP, whereas such a challenge in 
a fully primed cell would result in a massive increase in respiratory burst activity. 
This priming-activation axis is believed to be a major determinant of neutrophil 
behaviour in vivo [23]. Priming may be achieved by cytokines (TNFa, IL-S), lipid 
mediators (LTB4) or bacterial products (lipopolysaccharide, fMLP). Mechanisms 
of priming are poorly understood but occur at a post-receptor level and may 
involve elevations of cytosolic calcium levels [24] and modulation of protein kinas
es such as PK-C and tyrosine kinases [16, 25]. Some agents, e.g. LPS, GM-CSF, 
show protracted and possibly irreversible priming but it has recently been shown 
that priming, e.g. induced by PAF, may also be a transient and reversible phenom
enon [26]. 

Neutrophil migration and function 

Migration of neutrophils from the circulation into tissue occurs in response to the 
generation, by resident tissue cells, of neutrophil chemotaxins (e.g. IL-S, LTB4). 
Other pro-inflammatory mediators may indirectly stimulate chemotaxin release 
from other cell types or may act upon the endothelium to upregulate adhesion mol
ecules required for transmigration (e.g. IL-1~, TNFa). Neutrophil chemotaxins 
include bacterial peptides (fMLP), complement cleavage products (C5a), LTB4 and 
the CXC family of chemokines, notably IL-S. IL-S can be produced in large quanti
ties in the human lung, and levels correlate with the extent of neutrophilia, e.g. in 
idiopathic pulmonary fibrosis [27]. In addition to its production by macrophages, 
fibroblasts and bronchial epithelial cells, neutrophils themselves are a source of 
IL-S, promoting further neutrophil emigration [2S]. 

Prior to their transmigration, neutrophils must be "sequestered" within blood 
vessels, typically in the pulmonary capillaries. Neutrophil stiffening or reduction in 
deformability is believed to be an important early sequestrative event and can be 

132 



Neutrophils 

Direction of flow 

Ro lling Adhesion Migration 

Figure 2 

Neutrophil adhesion and migration. 

induced by chemotaxins [29]. Ligation of neutrophil surface receptors to counter
receptors on the endothelial cells then occurs, employing similar but not identical 
receptors to those employed in systemic vascular beds (Fig. 2). Selectins mediate the 
"rolling" or transient adhesion phase which precedes firm adhesion, which in turn 
depends upon integrin activation. Neutrophils constitutively express L-selectin, 
whereas activated but not resting endothelial cells express both E- and P-selectins. 
Neutrophil L-selectin interacting with endothelial E-selectin is an early adhesive 
event and may permit integrin activation [30]. Leukocytes express the ~2 subfamily 
of integrins (LFA-l, Mac-l and p150,95 or CD11a/CDI8, CD11b/CDI8 and 
CD 11 C/CD 18 respectively). These integrins bind to I CAM 1-3 receptors on the 
endothelium [31] but also, in the case of Mac-I, to activated complement (C3bi), 
implying a role in the phagocytosis of opsonised particles. ICAM -1 is constitutively 
expressed on the endothelial surface, is strongly upregulated by pro-inflammatory 
mediators and is believed to be important both in firm adhesion and in subsequent 
transmigration [32]. CD18 is generally required for neutrophil emigration but inhi
bition of neutrophil accumulation by anti-CDl8 is stimulus and site specific [33] . 
Mechanisms by which neutrophils then traverse the sub-endothelial basement mem
brane are unclear, as are mechanisms of their adhesion to and migration past pul-
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monary epithelial cells. Epithelial cell ICAM-l is involved in neutrophil adhesion, 
but with a different cytokine profile of induction of ICAM-l expression [34]. 

Neutrophil-mediated tissue injury 

The prime function of neutrophils which have emigrated into tissues is the phago
cytosis and killing of pathogens, especially bacteria such as Pneumococcus. Phago
cytosis requires the recognition and subsequent internalisation of the pathogen 
through invagination of the plasma membrane to form a "phagosome". The phago
some subsequently fuses with both primary and secondary granules to form the 
phagolysosome. Intracellular killing of the micro-organism requires both activation 
of the NADPH oxidase and the actions of granule proteases. Interaction of granule 
contents and NADPH oxidase products within the phagolysosome potentiates their 
microbicidal effects, e.g. "azurophilic" granules provide myeloperoxidase for the 
catalysis of hypochlorous acid production from hydrogen peroxide. Granule con
tents may also be released to the outside of the cell, known as "degranulation", pos
sibly to achieve release of proteases such as elastase leading to basement membrane 
degradation and thus facilitation of the movement of neutrophils into the tissues. 
The release of microbicidal products is coupled to specific receptor-mediated events 
and largely confined to protected intracellular compartments - degradative enzymes 
are sequestered, predominantly in "azurophilic" granules, until phagocytosis trig
gers degranulation. Nonetheless, the toxic anti-microbial molecules produced by 
neutrophils have great potential for damage to normal tissues [35]. 

The presence of neutrophils in tissue is not per se sufficient to cause tissue injury. 
Neutrophils have been shown to migrate into the lung without causing significant 
tissue injury in a number of animal models and a recent study of patients with pneu
monia and bronchiectasis using positron emission tomography showed large differ
ences in the degree of neutrophil activation between the disease groups, with acti
vation (assessed by uptake of 18PDG) being much greater in patients with pneumo
nia [36]. Dysregulation of the processes of neutrophil adhesion, transmigration and 
activation would be predicted to lead to endothelial or epithelial injury as occurs in 
many forms of inflammatory lung disease. 

Tissue clearance of neutrophils: the role of apoptosis 

Until recently, neutrophils which had migrated into tissue were assumed to undergo 
necrosis and disintegrate at the site of inflammation, which would lead to uncon
trolled release of toxic neutrophil products. However, a major mechanism for neu
trophil clearance may, in fact, be programmed cell death or apoptosis, resulting in 
the removal of the intact cell, predominantly by ingestion by local macro phages [37, 
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38]. There is clear evidence that neutrophils undergo apoptosis in the airways in the 
context of inflammatory lung diseases [39] and in animal models of inflammation 
[40]. Evidence that apoptosis limits the potential for tissue injury includes the down
regulation of pro-inflammatory functions such as degranulation and superoxide 
generation with onset of apoptosis [41], clearance of the intact cell, retaining its 
cytoplasmic granules, by macrophages [38] and the lack of a pro-inflammatory 
response from the macrophage upon ingestion of apoptotic cells, as opposed to 
other particulate stimuli [42]. Moreoever, modulation of the rate of apoptosis may 
be a key determinant of neutrophil survival in tissues. Neutrophil lifespan can be 
extended in vitro by culture with a range of pro-inflammatory mediators such as 
GM-CSF, C5a and LPS and this is associated with "functional longevity" as evi
denced by their ability to undergo chemotaxis and degranulation [43]. Such stimuli 
may thus have dual pro-inflammatory effects upon the neutrophil, inducing both 
functional activation and extension of lifespan. Signalling mechanisms which mod
ulate this inhibition of apoptosis and extension of neutrophil lifespan are poorly 
understood but may include elevation of cytosolic calcium [19] and of cyclic AMP 
[44]. Induction of neutrophil apoptosis as a therapeutic manoeuvre has the poten
tial to modulate neutrophil survival and thus the "tissue load" of neutrophils in 
inflammation. 

Contribution of the neutrophil to airway inflammation 

The role of the neutrophil in the pathogenesis of COPD (chronic obstructive pul
monary disease) is now clearly established [45] . COPD is characterised by airway 
inflammation, with increased neutrophil numbers in BAL (bronchoalveolar lavage) 
[46] and in induced sputum [47], together with elevation of neutrophil chemotaxins, 
including IL-8 and LTB4 [47, 48]. There is growing support for the concept of pro
tease/anti-protease imbalance as a key pathogenetic mechanism in COPD [45]. 
Release of proteases results in uncontrolled degradation of elastin and other connec
tive tissue proteins and loss of the alveolar matrix. Key neutrophil proteases impli
cated in the digestion of elastin and other matrix proteins have been identified, 
together with a range of endogenous anti-proteases that normally counteract this 
process. Neutrophil elastase is a major constituent of elastolytic activity, together 
with cathepsins and matrix metalloproteinases (MMPs) such as collagenase and 
gelatinase B. The association of emphysema with deficiency of al anti-protease 
implies an important role as an endogenous inhibitor of neutrophil elastase. In addi
tion, a number of tissue inhibitors of MMPs have been identified, together with a ser
pin SLPI (secretory leukoprotease inhibitor), which is secreted by airway epithelial 
cells and may be an important inhibitor of elastase activity in the human lung [49]. 

The contribution of the neutrophil to the pathogenesis of asthma is more con
troversial [50]. While the eosinophil granulocyte is likely to be the key effector of 
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tissue injury, of bronchial epithelium in particular [51], there have been a number 
of reports suggesting an additional role for the neutrophil. Recruitment of neu
trophils to the asthmatic airway has been demonstrated in BAL studies [52] and in 
endobronchial biopsies from human subjects 6 h following allergen challenge [53], 
timings which may imply a role in late asthmatic responses. Neutrophil markers 
have also been identified in induced sputum from asthmatics [47]. More interest
ingly, neutrophilic inflammation has been identified in cases of fatal asthma [54] 
and in acute presentation of status asthmaticus [55]. These findings may suggest the 
neutrophil is of significance particularly in acute severe asthma. The rapidity of neu
trophil influx and potentially short lifespan of these cells may mean that sampling 
will demonstrate the presence of neutrophils only at very early time points. The role 
of neutrophils in some forms of occupational asthma, e.g. toluene diisocyanate, is 
clearer [56] and demonstrates the ability of neutrophil pro-inflammatory functions 
to induce the clinical syndrome of asthma. 

Neutrophils are the primary injurious cells in both adult [57] and neonatal [58] 
respiratory distress syndromes, with evidence for release of neutrophil elastase being 
an early event in the development of lung injury [59]. Much of the tissue injury in 
cystic fibrosis and other forms of bronchiectasis is also attributable to neutrophils 
and their enzymic products [60]. 

Pharmacological modulation of neutrophil function 

From the above, it is clear that strategies to prevent neutrophil emigration or acti
vation, to prevent release of toxic products or to neutralise their effects may be 
attractive therapeutic options for the treatment of both acute and chronic neu
trophil-mediated pulmonary inflammation. However, concomitant reduction of 
host defence function may lead to infective complications. Thus anti-neutrophil 
strategies will need to be applied only during "windows" of opportunity when the 
injurious consequences outweigh the beneficial effects of neutrophil function. Speci
ficity may be engendered by targetting inhibition of neutrophil emigration only to 
the lung or by clearance of inflammatory cells direct from the inflamed lung. Fur
ther difficulties are posed by the redundancy of mediator pathways, e.g. many sig
nal transduction pathways lead to activation of the NADPH oxidase and to degran
ulation. 

The major current approaches to the limitation of neutrophilic inflammation are 
summarised in Table 3 and discussed below. Major targets include the chemokines 
and cytokines which initiate the process of neutrophil migration into the tissues, the 
adhesion molecules on the neutrophil required for transmigration or their counter
receptors upon the endothelium or epithelium or, once activated neutrophils are pre
sent within the lung, pharmacological inhibition of degranulation and NADPH oxi
dase activity or specific inactivation of potentially deleterious enzymes or reactive 
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Table 3 - Modulation of neutrophil function 

Antagonists to pro-inflammatory receptors and their ligands 

IL-8 inhibitors 

Gro-a inhibitors 

TNF inhibitors 

LTB4 antagonists 

PAF antagonists 

Antagonists to adhesion molecules and their receptors 

Modulation of signal transduction pathways 

phosphodiesterase inhibitors 

MAP kinase cascade inhibitors 

PI 3-kinase inhibitors 

PGE2 analogues 

corticosteriods 

Anti-oxidants 

Anti-proteases 

protease inhibitors ( e.g. of elastin, cathepsin, MMPs) 

endogenous antiproteases (e.g. a1AP, SLPI, Elafin) 

Modulation of apoptosis 

Neutrophils 

oxygen species. Finally, a "whole cell" approach could be taken, with induction of 
apoptosis or, at least, inhibition of the prolongation of neutrophil lifespan that may 
occur in inflammation. 

Antagonists to pro-inflammatory receptors and their ligands 

IL-8 is the predominant neutrophil chemokine in the lung. Anti-IL-8 antibodies have 
been shown to inhibit neutrophilic inflammation in animal models such as IgG
immune-complex mediated lung injury in the rat [61] and more recently in LPS
induced ARDS in mice [62]. Gro-a, a related CXC chemokine, has also been impli
cated in studies of human BAL, and blocking antibodies to Gro-a shown to impair 
neutrophil chemotactic activity [63]. Anti-TNF antibodies have proved effective in 
other chronic inflammatory diseases with a neutrophilic component, such as 
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rheumatoid arthritis [64]. Studies thus far have employed antibody approaches but 
these receptors are potential targets for small molecule antagonists. 

A leukotriene (LTB4) antagonist, LY 293 111, has been shown to inhibit neu
trophil recruitment in the airways during the late asthmatic response [65]. Both 
leukotriene receptor antagonists and inhibitors of 5' lipoxygenase, the enzyme syn
thesising LTB4, are now available clinically for the treatment of asthma. Intrinsic 
5'LO activity appears to be required for neutrophil adherence and chemotaxis, and 
5'LO inhibitors were found to attenuate lung injury in a rat model of IL-8 mediat
ed injury [66]. PAF antagonists may also playa role in the amelioration of acute 
lung injury. PAF is primarily involved in the early adhesion of neutrophils to 
endothelium and thus in sequestration of neutrophils in the pulmonary vasculature 
[67]. 

Adhesion molecule inhibitors 

The development of lung injury, at least in rat models, has been shown to require 
COlla, COllb, ICAM-l, L-selectin and P-selectin. Studies have employed mono
clonal antibodies to confirm the effects of ~2 integrins and selectin function has 
been confirmed using soluble selectin-Ig chimeras to compete for ligand or by use of 
a penta saccharide as a "false substrate" , mimicking oligosaccharide binding sites on 
counter-receptors for selectins [68]. Two models of neutrophil-mediated tissue 
injury (cobra-venom factor and IgG immune-complex mediated) have confirmed the 
importance of L-selectin expression on the neutrophil surface for early adhesive 
events [69]. Concern about adhesion molecule inhibitors arises from the possibility 
of enhancing susceptibility to infection, as evidenced by the leukocyte adhesion defi
ciency syndrome (absence of ~2 integrins) which is characterised by severe sep
ticemia. However, recent studies examining P-selectinlICAM-l double knock-out 
mice [70] and the C018-dependence of neutrophilic influx into the lung and skin 
[33], suggest differences between different sites (and possibly different initiating 
stimuli) in the adhesion molecule dependency of neutrophil emigration. Further 
studies may thus identify combination strategies, or even novel alternative adhesion 
pathways, which will permit pulmonary-specific inhibition of neutrophil influx. 

Modulation of neutrophil signal transduction pathways 

The predominant phosphodiesterase isoenzyme in human neutrophils is POE4 [71]. 
Inhibition of phosphodiesterase activity leads to increased cAMP levels in neu
trophils, and thus to inhibition of pro-inflammatory functions, such as superoxide 
generation and activation of phospholipase A2 [13], and also adhesion to bronchial 
epithelial cells [72]. Selective POE4 antagonists are being developed [71]; rolipram 
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inhibits TNF-mediated priming of neutrophil superoxide generation, with a 1000-
fold greater potency than the non-specific inhibitor pentoxyfylline [73]. Non
specific phosphodiesterase inhibitors in clinical usage include aminophylline, which 
has been shown to impair neutrophil chemotaxis in vitro [74]. 

Following exposure of neutrophils to the agonist fMLP, the MAP kinase sig
nalling cascade is rapidly activated. Recent studies with a selective inhibitor 
(PD098059) to a component of the cascade known as MEK (MAP kinase kinase), 
demonstrated inhibition of fMLP-induced activation of MEK-l and MEK-2, the iso
forms expressed by neutrophils, and also substantial inhibition of superoxide gen
eration and phagocytosis; degranulation and chemotaxis were unaffected [75]. 

A PI 3-kinase inhibitor, wortmannin, inhibits neutrophil chemotaxis in vitro [76] 
and may also modulate respiratory burst function and, at higher concentrations, 
granule secretion [77]. 

Prostaglandins, notably PGE2> are potent inhibitors of neutrophil superoxide 
anion generation, an effect that appears to be mediated via the EP2 receptor, with 
activation of adenylate cyclase leading to elevation of cAMP [78]. However, other 
PGE2 effects, such as inhibition of chemotaxis, appear to be independent of cAMP 
levels [79] . 

Whether corticosteroids, as a component of their powerful anti-inflammatory 
functions, specifically modulate neutrophilic inflammation is an area of debate. 
There is evidence that corticosteroids, probably acting via the down-regulation of 
neutrophil adhesion molecules, prevent the migration of neutrophils from the circu
lation. Recent evidence suggests that dexamethasone, while not altering expression 
of Mac-l or L-selectin on resting neutrophils, may inhibit the up-regulation of 
CD18 and down-regulation of L-selectin that follows neutrophil priming with PAF 
[80]. Dexamethasone may also inhibit neutrophil chemotaxis [81]. However, corti
costeroids appear to inhibit neutrophil apoptosis, effectively a pro-inflammatory 
effect of prolongation of inflammatory cell lifespan, in direct contrast to their effects 
upon eosinophil apoptosis which is markedly accelerated [82]. 

Anti-oxidants 

There is considerable evidence that reactive oxygen species contribute to lung injury, 
for example in COPD and ARDS. The major source is the neutrophil, although both 
macrophages and eosinophils also have NADPH oxidase activity [35]. Oxidants 
may cause tissue injury in a number of ways - by potentiation of elastase activity 
and activation of matrix metalloproteinases [83], by damage to endogenous anti
proteases [84] and also by activation of NFKB-induced transcription of pro-inflam
matory genes such as IL-8 and iNOS [85] . Anti-oxidants such as N-acetyl cysteine 
have been used in clinical studies [86] and newer anti-oxidants, e.g. spin trap anti
oxidants, have proved effective in animal models of oxidative stress [87]. 

139 



Moira Whyte 

Anti-protease strategies 

The concept of protease/anti-protease imbalance leading to loss of alveolar matrix 
proteins in emphysema suggests that protease inhibitors or strategies to increase 
levels of certain anti-proteases may be beneficial. Neutrophils are a major source of 
proteases within the lung. In addition to their direct elastolytic effects, serine pro
teases have a number of other modulatory effects: elastase can enhance bronchial 
epithelial cell mucus production [88] and also the production of the pro-inflamma
tory chemokine IL-8 [89], while cathepsin G has been shown to be a powerful 
chemoattractant for both monocytes and neutrophils [90]. 

Neutrophil elastase, a neutral serine protease, is a major component of neu
trophil primary granules. Peptide elastase inhibitors inhibit elastase induced lung 
injury in animal models [91]. Nebulised human 0.1 anti-protease reduces elastase 
activity in patients with cystic fibrosis [92]. Recently, suramin has been shown to be 
a potent inhibitor of a number of neutrophil serine proteases, including elastase, 
cathepsin G and proteinase-3 [93]. 

Matrix metalloproteinases (MMPs) comprise a group of endopeptidases which 
can, in combination, degrade all extracellular matrix components of the lung. 
Although MMPs are expressed by other myeloid cells, macrophges and eosinophils, 
and also by bronchial epithelium, neutrophils are a major source in vivo, particu
larly of collagenase (MMP-1) and gelatinase-B (MMP-9). Endogenous tissue 
inhibitors of MMPs (TIMPs) exist and enhancement of TIMP secretion or the devel
opment of specific MMP inhibitors are possible therapeutic approaches. 

A number of serum protease inhibitors (serpins) have been described in addition 
to 0.1 anti-protease. These include elafin, an elastase-specific inhibitor, and SLPI 
(secretory leukoprotease inhibitor), which appears to be a major inhibitor of elas
tase in the airway and, at least in vitro, is more effective in inhibiting neutrophil
mediated proteolysis than 0.1 anti-protease [94]. Strategies to increase levels of these 
protective molecules include the use of recombinant proteins, such as rSLPI [95], or 
perhaps a gene augmentation approach [96]. 
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Introduction 

Bronchial hyperresponsiveness (BHR) to both specific and nonspecific stimuli is a 
characteristic feature of bronchial asthma. While the mechanisms underlying this 
exaggerated responsiveness are still unclear, there is a considerable body of evidence 
to suggest that mucosal inflammation of the airways is of central importance. Per
haps the most common pathological finding is that of an increased number of 
eosinophils in the lung mucosa. It is currently believed that the secretion of 
eosinophil derived highly toxic cationic proteins such as major basic protein (MBP) 
mediates damage to the epithelium. In addition, following the appreciation that 
eosinophils can secrete a number of cytokines, there is mounting evidence to suggest 
that eosinophil recruitment and activation may be involved in not only the acute 
manifestations of the disease, eosinophilic inflammation may contribute to remod
eling events in the airways, characterized by subepithelial deposition of collagen 
types III and V and fibronectin. This review discusses the mechanisms by which the 
cells are recruited to the airways and discusses the evidence for and against that 
eosinophilic inflammation is critical to the pathogenesis of asthma. 

Eosinophil structure and contents 

Our understanding of the structure of the eosinophil dates to 1966 when Palade and 
colleagues published a detailed report of the granular contents of human peripher
al blood eosinophils. Both blood and tissue eosinophils contain crystalloid granules, 
which develop from immature granules during the promyelocyte stage. The crystal
loid granules contain large amounts of peroxidase and p-glucouronidase. These 
granules have much in common with basophil granules in that when eosinophil 
granules first form in the marrow they are basophilic in nature, but lose this prop
erty as they mature. In addition, both eosinophils and basophils contain large 
amounts of lysophospholipase or Charcot-Leyden crystals (CLC), which accounts 
for the characteristic bipyramidal crystals observed at inflammatory lesions. While 
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CLC protein makes up to 10% of the total protein in eosinophils, its function is 
unknown, although it has been speculated that CLC may protect eosinophils from 
the toxic effects of lysophospholipids. However, the most distinguishing feature of 
the eosinophils is its high content of highly charged cationic proteins, Major basic 
Protein (MBP) eosinophil cationic protein (ECP) and eosinophil derived neurotaxin 
(EDN). These proteins together with eosinophil peroxidase have been implicated as 
final effector molecules in eosinophil mediated tissue damage. MBP is the predomi
nant protein in the eosinophil and comprises the crystalloid core of the eosinophil 
granule. MBP is a 117 amino acid protein, rich in arginine and is translated as a 
slightly acidic preproprotein with an acidic prodomain, which has been reported to 
inhibit the effects of mature MBP [1]. MBP was initially reported to be highly toxic 
to schistosomula of S. Mansoni, as well as amstigotes and epimastigotes of Try
panosoma cruzi. Subsequently, MBP has been shown to be highly toxic to tracheal 
epithelia at concentrations of 10-5 to 10-7 M [2]. At lower concentrations, MBP 
directly inhibits tracheal ciliary axonems [3] and alters fluid dynamics in canine tra
chea [4]. Unlike MBP, both ECP and EDN exhibit ribonuclease activity. Compari
son of the relative toxicity of ECP and MBP for schistosomula death revealed on a 
molar basis that ECP is ten times more toxic than MBP. However, as levels of secret
ed MBP are considerably greater than ECP, the relative contribution of the proteins 
to tissue destruction remains to be determined. EDN has marked homology to ECP, 
and exhibits 50-100 fold greater ribonuclease activity than ECP, although it has 
rather weak toxicity against parasitic larvae. EPO is localized to the matrix of the 
eosinophil crystalloid granule and has the ability to catalyze the formation of HBrO
ions and H 20 2• It is currently believed that this mechanism provides an efficient 
mechanism for killing parasites, bacteria, and some tumour cells [5]. 

Eosinophil derived cationic proteins and asthma 

Elevated levels of MBP have been detected in the sputum of individuals with aller
gic airway disease, the amount of which correlated with the degree of epithelial 
denudation and severity of airway hyperresponsiveness [6]. Furthermore, MBP has 
been shown to be localized to damaged epithelial surfaces and in mucus plugs in the 
airways of individuals who have died from status asthmaticus [7]. MBP leads to 
enhanced contractile responsiveness of isolated trachealis [8], and in vivo, instilla
tion of MBP and EPO results in a transient bronchoconstriction [9]. The mechanism 
underlying this effect remains unclear, but appears to be independent of the cation
ic charge as ECP failed to induce these changes. MBP, but not ECP has been demon
strated to induce histamine release from basophils suggesting that MBP may induce 
bronchoconstriction at least in part by activating resident airway cells [10]. More 
recently, a highly divergent MBP homologue has been identified [11], although its 
function remains to be clarified. 
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MBP however is the only major eosinophil protein that can induce airway hyper
responsiveness in vivo in non-human primates [10]. This effect appears to be a 
charge dependent effect as preproMBP is ineffective. Furthermore, the effect of MBP 
is neutralized by anionic agents such as heparin sulphate and can be mimicked by 
other highly charged proteins such as poly-L- arginine [12]. MBP instillation results 
in activation of the kinin system inducing an increase in both kallikrein like activity 
(measuring both tissue and plasma kallikein) and immunoreactive kinins (bradykinin 
and lyslbradykinin) [13]. MBP induced kinin system activation can also be inhibited 
by heparin suggesting a charge dependent mechanism is involved [13]. Cationic pro
teins also result in the activation of sensory C-fibres in the airways resulting in the 
release of substance P and CGRP from isolated rat trachea [14]. In addition, cation
ic proteins also induce an increase in plasma protein extravasation, which can be 
inhibited by a selective NK-l receptor antagonist [14]. As bradykinin is able to stim
ulate sensory C-fibers [15], it remains to be determined whether MBP and other 
cationic proteins induce tachykinin release dependent on the generation of kinins in 
the airways. Nevertheless, in situations where eosinophil degranulation occurs, MBP 
could stimulate sensory nerve endings resulting in activation of a local axonal reflex 
and may play an important role in the pathogenesis of airway hyperresponsiveness. 

In addition to these mechanisms a series of elegant data has been reported by 
Jacoby and colleagues suggesting MBP may act as an allosteric modulator of the 
muscarnic (M2) autoreceptor [16]. MBP interacts with the inhibitory feedback 
mechanism of acetylcholine release from parasympathetic nerve terminals, resulting 
in an augmented bronchoconstrictor response. It is fascinating to hypothesize that 
MBP may function as a connection between the two hypotheses in asthma: namely, 
neural and cellular basis for airway hyperresponsiveness. 

Recent work from Lefort and colleagues have further supported a key role for 
MBP in experimental allergen induced airway hyperresponsiveness [17]. Adminis
tration of a neutralizing MBP antibody inhibited airway hyperresponsiveness 
induced by aeroallergen provocation in sensitized guinea pigs. It remains to be deter
mined how these findings extrapolate to the finding in human disease. 

Eosinophil derived cytokines 

While there is a considerable body of evidence to suggest that eosinophils are final 
effector cells in the pathogenesis of allergic disease and bronchial asthma, mediated 
largely through the secretion of cationic proteins, these cells also have the capacity 
to synthesize and release a wide array of cytokines that may perpetuate a cycle of 
inflammatory events. Human eosinophils can store IL-5 in the granular matrix, 
which is secreted by either IgA, IgG or IgE dependent mechanisms [18]. Likewise, 
eosinophils can also produce IL-3 and GM-CSF, and as such, eosinophil activation 
may provide, in an autocrine fashion, its own survival factors. Stimulation of human 
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eosinophils with calcium ionophore also leads to the production of IL-S [19], as well 
as macrophage inhibitory factor (MIF) [20]. Likewise human eosinophils synthesize 
and secrete IL-6 [21], which is able to facilitate IL-4 dependent IgE production, and 
can synergize with IL-3 and GM-CSF for the maturation of multipotential granulo
cyte progenitors. Interestingly, IL-6 can also promote the secretion of IgA in mucos
al tissue, which may subsequently "arm" eosinophils to secrete their granular con
tents following activation. Eosinophils also secrete TGF~ [22] and this may under
lie the possible contribution of the eosinophil to the development of fibrosis in the 
airways. More recently, eosinophils have been demonstrated to produce IL-4 [23] 
and could theoretically contribute to local IgE production and perhaps more impor
tantly, to facilitate the commitment of antigen specific cells to the Th2 effector phe
notype. In this respect, recent work from Pierce and colleagues has shown that 
eosinophils can provide the first source of IL-4 to prime T cells for subsequent IL-5 
production after S. Mansoni infection [24]. 

Eosinophils as immune competent cells 

An interesting area of research over the past 5 years has been the possibility that 
eosinophils may also function as immune competent cells. Eosinophils express CD40 
ligand [25] and may facilitate B-cell proliferation. This together with the ability of 
eosinophils to secrete IL-4 and IL-13, raises the possibility that eosinophils in the air
way may contribute to local IgE production. Interestingly, eosinophils also express 
the high affinity receptor for IgE (FceRII) [26]. More recently, eosinophils have been 
reported to express the costimulatory signals B7-1 and B7-2 [27]. It is interesting to 
speculate that as a consequence of eosinophil mediated B7 dependent costimulation 
of antigen specific CD4+ T cells in the lungs, T cells are less resistant to apoptosis, 
less susceptible to being tolerated and would have an increased capacity to secrete 
cytokines. Eosinophils also express a number of receptors that may be important for 
the role of the eosinophil in immune responses including TNFa receptors I and II 
[2S] and both the a and ~ chains of the IFNy receptor [29]. More recently, GM-CSF 
treated eosinophils have been shown to bind rhinovirus via ICAM-1 which in turn 
activate virus specific T cells [30]. Finally, eosinophils can express the IL-2 receptor 
[31]. The functional significance of this observation remains to be determined. 

IL-5 and eosinophil accumulation 

Over 20 years ago, the development of eosinophilia in nematode infected rodents was 
demonstrated to be lymphocyte dependent. Subsequently it was shown that the solu
ble factor from T cells was identical to B cell growth factor 2 (now designated as IL-
5). In vivo, administration of exogenous IL-5 induces eosinophil recruitment and IL-
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5 transgenic mice overexpressing the IL-5 gene under a variety of different tissue spe
cific promoters (CD3£, metalloprotein), develop peripheral blood, bone marrow and 
tissue eosinophilia, although overexpression itself failed to result in any overt disease 
[32, 33]. These data contrast to more recent work where IL-5 was overexpressed on 
a CC10 promoter resulting in high levels of IL-5 in the BAL fluid, and these trans
genic mice exhibited evidence of airway remodeling (subepithelial fibrosis), the for
mation of BALT and the induction of airway hyperresponsiveness [34]. Administra
tion of neutralizing anti-IL-5 mAbs has been demonstrated to inhibit eosinophilia 
induced by nematodes or antigen exposure in sensitized animals [35, 36]. Taken 
together these data initially lead to the widespread belief that IL-5 was the eosinophil 
chemoattractant. However, there were a number of discrepancies which failed to sup
port this hypothesis. IL-5 itself is a rather poor eosinophil chemoattractant compared 
to, for example, PAE In addition, while it is clear that the number of eosinophils in 
inflammatory lesions is dramatically reduced in the absence of IL-5, this now appears 
to be due to a failure to generate mature eosinophils in the marrow, thus the 
eosinophil number in the blood is greatly reduced, as is the number of eosinophils at 
inflammatory sites. Implicit in this argument is that while IL-5 secretion is essential 
for eosinophil mobilization, other factors must be required to attract these cells into 
specific inflammatory lesions. Nevertheless, if IL-5 itself does not directly contribute 
to the accumulation of eosinophils, it is likely that once these cells accumulate in the 
airways, IL-5 is required for the survival of the cells and the prevention of apoptosis. 

Th2 cytokines and eosinophil recruitment 

While clearly IL-5 has an important role to play in eosinophil recruitment, other 
Th2 cytokines have also been implicated and merit discussion. Data obtained from 
genetic studies have implicated IL-9 as an important gene in asthma. To further 
address this issue, IL-9 transgenic mice have been generated, with IL-9 under the 
control of a lung epithelial cell specific prompter. These mice develop eosinophilic 
inflammation, mucus cell hyperplasia and airway hyperresponsiveness [37]. Like
wise, IL-11 transgenic mice exhibit similar alterations in airway inflammation. 
However, while there was no evidence of airway hyperresponsiveness, mice exhibit
ed increased basal airway resistance [38]. It remains however to be determined 
whether these effects are secondary to IL-5, chemokine generation or the upregula
tion of adhesion molecules. 

Transcriptional factor regulation of lung eosinophilic inflammation 

The role of various transcriptional events required for the recruitment of 
eosinophils has recently been investigated by several groups. Mice deficient in 
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NKKB exhibit attenuated eosinophilic lung inflammation and markedly reduced 
levels of IL-5 as well as the chemokines eotaxin, MIP-1a and MIP-1~ [39]. Similar 
STAT-6 deficient mice have greatly diminished eosinophil number and attenuated 
airway hyperresponsiveness [40]. However, while these data lead to useful infor
mation concerning transcriptional events underlying changes in airway eosinophilic 
inflammation, due to the complexity and multiple mechanisms involved, in vitro 
studies of gene regulation are also required. In this respect, GATA-3 [41,42] and c
Maf [43] have been shown to be overexpressed in Th2 cells, and their activity 
required for activation of the IL-4 promoter. Further studies are required to deter
mine the contribution of these transcriptional events, however, it is interesting to 
note that GATA-3 mRNA is increased in the lungs of atopic asthmatics and local
ized to primarily CD4 + T cells, although mast cells and eosinophils also expressed 
GATA-3 mRNA [44]. 

Chemokines and eosinophil accumulation 

There is now increasing data to suggest that members of the chemokine superfami
ly family play an important role in eosinophil accumulation. These proteins range 
in size from 68-120 amino acids and are classified into four families namely C, C
C and C-X-C, C-X-X-X-C on the basis of the variations in a shared cysteine motif, 
which can in general be associated with distinct biological activities. For example C
X-C chemokines of which IL-8 is a member, are in general neutrophil chemoattrac
tants, whereas C-C chemokines of which RANTES, eotaxin and MIP-la are mem
bers, exert their biological activities on eosinophils (and also lymphocytes and 
monocytes). Recently, several groups have addressed the profile of expression of 
chemokines in vivo during the induction of an allergic response both in animal mod
els [45, 46] and in clinical studies [47]. Nevertheless, the importance of different 
chemokines in mediating eosinophil recruitment in vivo is however at present con
tradictory, with reports suggesting that either MCP-l [46], eotaxin [45,48], MCP-
5 [46], RANTES and/or MIP-1a [49] are important. However, it is important to 
note that in each of these studies, the degree of inhibition of eosinophilic inflam
mation was only partial implying a significant redundancy and that multiple 
chemokines are involved in this process. Conversely, it is possible that chemokines 
play a distinct non-redundant function, acting as discrete steps in orchestrating 
inflammatory response [46]. Nevertheless, it is likely that targeting more than one 
chemokine or inhibiting more than a single chemokine receptor would have more 
potent effects in inhibiting inflammatory responses. The effects of C-C chemokines 
are mediated by a family of seven transmembrane G-protein coupled receptors of 
which nine human receptors and six murine receptors have been cloned and func
tionally characterized. Eosinophils express CCR3 and to a lesser extent CCR 1. 
Eosinophils migrate to eotaxin via CCR3 and to MIP-1a, RANTES via CCR1, it 
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remains to be determined if these are the only chemokine receptors on the 
eosinophil or whether other chemokine receptors are also expressed and are func
tionally important in eosinophil migration. There is also some question as to the 
role of chemokine/eosinophil axis in the development of BHR. In this context, neu
tralizing mAbs to RANTES and MIP-la have been reported to suppress eosinophil 
recruitment into the lungs, but not airway hyperresponsiveness. In contrast, while 
anti-MCP-l mAbs failed to suppress eosinophilic inflammation, airway hyperre
sponsiveness was abrogated [49]. Taken together, the possibility remains that 
chemokines themselves exert a direct action on airway smooth muscle to modify air
way responsiveness, although this warrants further study. 

Eosinophils as effectors of bronchial hyperresponsiveness 

Despite the enormous literature on the relationship between eosinophilic inflamma
tion and bronchial hyperresponsiveness, this may be the most controversial area in 
asthma research today. While few would argue with the clinical observations that 
asthma is almost always associated with the presence of eosinophils in the airways, 
the reverse is not necessary true. 

These observations have lead various groups to question the eosinophil dogma 
is asthma. However, it is important to note that it is not the presence of eosinophils, 
but rather their activation status which may govern whether the eosinophil accu
mulation results in alterations in airway hyperresponsivenesss. In addition, given the 
possibility that different stimuli result in distinct patterns of activation of the 
eosinophil, it is possible that in diseases such as idiopathic eosinophilic fibrosis, the 
eosinophil is activated - but not to the phenotype that can result in airway hyper
responsiveness. 

To address these issues extensive studies have been performed in animal models 
in a number of species. These studies have in general supported the relationship 
between eosinophils and bronchial hyperresponsiveness; there are a number of 
examples that are in conflict with this data. These studies have traditionally been 
performed in guinea pigs, which while demonstrating a robust bronchoconstrictor 
response to inhaled or intravenous agonists, lack the immunological tools to be able 
to selectively target eosinophils to dissect the mechanisms involved in bronchial 
hperresponsiveness. The advent of murine immunology and the application to aller
gic lung disease heralded a new excitement and confidence in this area and it was 
anticipated that an answer to this question was finally in sight. This, like many other 
instances in asthma research, has proven to be a naive concept and demonstrated 
how the mechanisms underlying this complex disease still evade us. In this respect, 
murine eosinophils in vivo do not appear to undergo degranulation [50] following 
antigenic challenge, which has led some groups to question the use of these models 
in asthma for predicting the contribution of the eosinophil [51]. 
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The first report of IL-5 deficient mice was published by Foster and colleagues in 
1996 [52]. They demonstrated in IL-5 gene targeted mice that in the virtual absence 
of eosinophils in the lungs, airway hyperresponsiveness was completely abolished, 
confirming at last the link between eosinophilic inflammation and BHR. This excite
ment was short lived, as it was subsequently demonstrated that administration of 
anti-IL-5 mAbs - which resulted in a complete inhibition of eosinophilic inflamma
tion, did not affect the induction of BHR [53]. In contrast, anti-IL-4 mAbs, which 
fail to attenuate the eosinophilic inflammation of the airways, reduced the BHR 
[53] . These differences can now be explained in terms of the generic background of 
the mice used - thus IL-5 deletion on a C57/B6 background results in an 
eosinophilic dependent BHR, whereas the same deletion on Balb/C background 
results in an eosinophil independent BHR. In addition, the nature of the stimuli also 
plays an important role. Infection of C571B6 mice with Nippostrongylus Brazilien
sis results in an eosinophil dependent tissue damage characterized by edema, hem
orrhage and destruction of the septal walls. However, despite the lack of widespread 
damage observed in IL-5 deficient mice, airway hyperresponsiveness was not affect
ed [54] . Taken together, these results suggest that under some circumstances 
eosinophil activation plays an important role in airway pathology in animal mod
els, although their contribution is greatly influenced by genetic factors and the 
nature of the allergen. 

Conclusions 

Despite the intense research and huge financial investment by many pharmaceutical 
companies in trying to inhibit the accumulation of eosinophils, the role of the 
eosinophil to the development of asthma still remains unknown. Certainly thera
peutics agents such as steroids improve asthmatic exacerbations and also reduce 
eosinophilic inflammation. However, not until the advent of highly selective 
inhibitors of eosinophil accumulation chemokine receptor antagonists or IL-5 
antagonists will the eosinophil hypothesis be finally settled and we will know 
whether the association of eosinophils with asthma is some epiphenomena or if cru
cial cells playa central role as final effectors in this life threatening disease. 
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Introduction 

In this chapter we will briefly review the structure of the normal airway and the 
extracellular matrix components from which it is composed. The role of the fibrob
lastlmyofibroblast in maintaining this structure will be discussed, together with the 
evidence for their role in remodelling the airway wall in asthma and COPD. Final
ly we discuss the potential for pharmacological modulation of fibroblast function as 
a potential means of reversing the changes in airway structure in these diseases. 

Structure of the normal airway 

The trachea divides into two main bronchi, which further subdivide into segmental 
bronchi that enter the left and right lungs. The trachea and bronchi are supported 
by surrounding cartilage, however, as the bronchi subdivide further into bronchioles 
the cartilage is lost. The terminal bronchioles give rise to respiratory bronchioles 
and finally the alveoli. As bronchioles normally control airflow in the lung we focus 
on their structure in the next section. 

Structure of the bronchiole and its connective tissue components 

The bronchiole wall consists of a mucosal lining (epithelium), a basement mem
brane, sub-epithelial connective tissue (lamina reticularis), a sub-mucosal layer 
(smooth muscle) and adventitia (Fig. la). The epithelium is mainly of pseudo-strat
ified, ciliated, columnar epithelial cells, clara cells, goblet (mucus), serous and basal 
cells. The structure and function of these cells within the mucosal layer are discussed 
in an accompanying chapter in this book (see Devalia et al.). In this chapter we focus 
on the extracellular matrix components within the basement membrane, lamina 
reticularis, sub-mucosal and adventitial layers (Fig. lb). 
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Fibroblasts and myofibroblasts 

The basement membrane is separated into two regions - lamina rara and lami
na densa (Fig. lc) which contain matrix molecules, including collagen types IV, VII 
and XV, the glycoproteins, laminin, nidogen (entactin), fibronectin, SPARC (BM-
40) and proteoglycans. These structures provide a scaffold for attachment of cells 
and regulate their surrounding milieu by controlling the flux of small and large mol
ecules [1]. It is the distribution and density of these molecules which gives rise to the 
characteristic features of the lamina rara and lamina densa. 

Collagen IV is the most abundant protein in the basement membrane. This mol
ecule is composed of triple helical domains, interrupted by short non-helical regions, 
providing flexibility. It forms an open-meshed, three-dimensional network (Fig. 2) 
in close association with laminin, nidogen and the heparan sulphate-linked proteo
glycan, perlecan. Collagen type IV in basement membrane is probably produced by 
epithelial cells [2, 3], although type IV collagen mRNA expression has also been 
reported in mesenchymal cells [4]. Type V collagen is also found in small amounts 
within the basement membrane [5]. 

Collagen XV has recently been demonstrated in basement membrane and it has 
been suggested this molecule is responsible for the attachment of the basement mem
brane to the underlying interstitium (Fig. lc) [6]. Similar roles have been postulated 
for collagen types V and VII [7, 8]. 

Laminins are the most abundant non-collagenous protein within the basement 
membrane. They have a cross-like structure (Fig. 2) and have been reported to medi
ate cellular attachment to extracellular matrix [9], cell migration, growth and dif
ferentiation [10]. A recent study has shown that laminin subtype expression changes 
during the development of the lung, suggesting that these molecules may playa role 
in the regulation of airway morphogenesis [11]. 

The normal basement membrane also contains nidogen, a single polypeptide, 
composed of three globular domains connected by a flexible link (Fig. 2). It binds 
to both collagen IV and laminin, via one of the globular regions, possibly linking 
these two molecules [12]. It also binds to cell surface integrins, via an Arg-Gly-Asp 
(RGD) domain [13]. 

Fibronectin is a high molecular weight glycoprotein present in basement mem
brane and on cell surfaces. It exists as a disulphide-linked dimer (Fig. 2) which forms 

Figure 1 

A schematic diagram of the normal bronchiole. (a) shows the overall structure of the bron

chiole with the epithelium lining the airway lumen, surrounded by the sub mucosal layer and 

finally the adventitia extending to the alveolar attachments. (b) shows, in greater detail, the 

mucosa, lamina reticularis (also called lamina propria), sub mucosa and adventitia with the 

extensive matrix molecule connections between the cells and the structural components 

within the bronchiole wall. (c) highlights the matrix molecule connections between the 

fibroblasts in the lamina reticularis and the basement membrane. 
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high molecular weight insoluble polymers. It contains a variety of binding sites for 
other extracellular matrix molecules including collagen, heparinlheparan sulphate, 
hyaluronan and integrins. It has been implicated in a number of processes including 
cell attachment, migration, proliferation, opsonisation and wound healing (for 
extensive reviews see [14, 15]). 

Another basement membrane component, SPARe (secreted protein, acidic and 
rich in cysteine) (Fig. 2) is able to bind cell surfaces, collagen types I, II and V and 
the glycoprotein, thrombospondin. Its exact role is unknown but is associated with 
morphogenesis, tissue remodelling and inhibits the spreading of a variety of cells, 
including fibroblasts [16-19]. 

Heparan sulphate-linked proteoglycans are ubiquitous components of basement 
membranes [20]. One such proteoglycan is perlecan which has a core protein with 
5-7 globular domains and two or three heparan sulphate side chains attached to one 
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end (Fig. 2). It has been associated with cell attachment [21], immobilisation of 
growth factors, such as FGF-2 [22] and serine proteases [23]. Therefore, in addition 
to its structural role it may also act as a reservoir for growth factors and metabolic 
enzymes. 

Syndecan is a proteoglycan containing both heparan sulphate and chondroitin 
sulphate glycosaminoglycan side chains. It is able to bind to extracellular matrix 
molecules as well as the intracellular actin cytoskeleton. It is mainly associated with 
epithelial cells and is proposed to regulate their shape and organisation. It is 
localised to the basolateral surface of epithelial cells, binding these structures to the 
basement membrane. 

In summary, extracellular matrix components of the basement membrane pro
vide a supporting structure for epithelial and basal cells within the airway wall, links 
to the lamina reticularis and acts as a selective molecular sieve. These components 
are continuously synthesised and degraded by epithelial and mesenchymal cells. 
They also influence the behaviour of cells by binding to integrins on cell surfaces, 
regulating their migration, proliferation and metabolism. 

The main components of the lamina reticularis are collagen types I and III, 
elastin, proteoglycans and glycoproteins, which contribute to the structural and 
mechanical properties of the airways. The structure and function of these are 
described below. 

Collagens 

There are at least 19 different collagens, of which, 11 have been shown to be pre
sent in the lung. These collagens are classified into three groups - the fibril-forming 
types (I, II, III, V, XI), the non-fibril-forming types (IV, VI, VII, VIII) and the FACIT 
(fibril-associated collagens with interrupted triple helices, XII, XIV). Table 1 shows 
the collagen types known to be associated with the airways. 

Collagen types I and III are produced by fibroblasts [24, 25]. It has been pro
posed that type I collagen provides the tensile strength to all flexible surfaces of the 
lung, whilst type III contributes to the tissue compliance [26]. They also provide a 
structural scaffold to which resident cells attach via specific integrins. The a-chains 
of these collagens have a single triple helical domain which forms 95% of the mol
ecule (Fig. 2). Once secreted into the interstitial space, they form long, thin, cable
like structures covalently bonded to homologous regions of neighbouring fibrils. 
These fibrils exist as copolymers with common associations between collagens I-V, 
I-VI, III-VI and III-VII (for review see [27,28]. 

Type VI collagen consists of alternating filamentous and beaded regions [29]. 
The al (VI) and a2 (VI) chains contain a number of collagen binding sites and RGD 
sequences suggesting that collagen type VI participates in matrix-matrix interactions 
and cell-matrix interactions [29]. 
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Table 1 Collagens known to be present in the airway 

Type Supramolecular Function Distribution in the 
structure airway wall 

Fibril Structural component, Lamina reticularis, 
tensile strength sub-mucosa, adventitia 

II Fibril Structural component, Bronchial and tracheal 
tensile strength cartilage 

III Fibril Structural component, Lamina reticularis, 
compliance sub-mucosa, adventitia 

IV Non-fibrillar 3-dimen- Molecular sieving, cell support Basement membrane 
sional network 

V Fibril Regulation of type I collagen Basement membrane, 
fibrillogenesis lamina reticularis 

VI Beaded filament Cell adhesion to matrix Associated with type I and 
III collagen, interstitium 

VII Fibril Anchors basement membrane Basement membrane, 
to matrix lamina reticularis 

VIII Filamentous lattice Mechanical strength Basement membrane 
<short chain) 

IX FACIT Regulation of type II collagen Cartilage, associated with 
fibrillogenesis type II collagen 

XI Fibril Regulation of type II collagen Cartilage, associated with 
fibrillogenesis type II collagen 

XV Multiplexin Anchors basement membrane Basement membrane, 
to matrix lamina reticularis 

FAClT, fibril-associated collagens with interrupted triple helix; Multiplexin, multiple triple

helix domains and interruptions 

Elastin 

Mature elastin is composed of two chemically and morphometrically distinct compo
nents - amorphous elastin and a highly structured microfibrillar component. Elastin 
is formed by the cross-linking of lysine residues in secreted tropoelastin by Iysyl oxi
dase, followed by spontaneous formation of desmosines and isodesmosines, the sta
ble elastin cross-links. The microfibril component acts as a scaffold or template for 
the development of amorphous elastin which consists of fibrillin, microfibril associ
ated glycoprotein and associated microfibril protein (for a full review see [30]). 

Elastin is the second most abundant matrix molecule in the airway representing 
about 5% of the total protein content [31]. It is produced by fibroblasts [32-34] 
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forming parallel and longitudinal fibres localised to the lamina reticularis and sub
mucosa [35-37]. 

During both the inflation and deflation cycles of the lung, airway patency is 
maintained by the radial tension induced by elastin within the wall restricting exces
sive smooth muscle contraction or relaxation [38]. 

Proteoglycans and glycoproteins 

The core proteins of eighteen different proteoglycan molecules have been reported. 
Figure 2 shows the structure of four proteoglycan molecules found in airway tissue, 
perlecan, syndecan, decor in and versican. Each core protein is linked to a variety of 
glycosaminoglycan side chains which consist of alternating galactosamine and glu
curonicliduronic acid units (chondroitinldermatan sulphate), alternating glu
cosamine and glucuronicliduronic acid units (heparin and heparan sulphate) or 
alternating glucosamine and galactose units (keratan sulphate). Their functions 
include matrix hydration, modulation of collagen fibre formation, cell-matrix and 
cell-cell interactions and the binding of growth factors [39]. 

Proteoglycans are synthesised by a variety of cell types including fibroblasts [40], 
type II epithelial cells [41] and pulmonary arterial endothelial cells [42]. Platelet
derived growth factor (PDGF) and transforming growth factor ~ (TGF~) are capa
ble of stimulating proteoglycan production by fibroblasts [43,44]. 

Decorin and biglycan are two small chondroitinldermatan sulphated proteogly
cans, which are found associated with type I and type VI collagens, the lamina retic
ularis and smooth muscle bundles of the sub-mucosa within airways [45-47]. These 
molecules can bind polypeptide growth factors e.g. TGF~ [48] protecting them from 
denaturation and proteolytic degradation [49, 50]. It has therefore been suggested 
that these proteoglycans can act as a reservoir for growth factors, storing them until 
their release by proteases during tissue remodelling. 

Versican, a large aggregating chondroitin sulphate proteoglycan is localised 
around the smooth muscle bundles in the sub-mucosa of the airway wall, in associ
ation with hyaluronan [51]. It is thought to change the mechanical properties of the 
airways in a similar manner to aggrecan in cartilage, by regulating the fluid (osmot
ic) balance within the airway tissue (see [46]). 

Glypican, a glycosyl phosphotidylinositol linked heparan sulphate proteogly
can is expressed on the surface of human lung fibroblasts and bronchiolar epithe
lial cells. It binds fibronectin, collagen type I and anti-thrombin III via the heparan 
sulphate side chains. The function of glypican is not known, but its binding char
acteristics suggests a role in cell attachment and control of coagulation. A second 
heparan sulphate-linked proteoglycan is perlecan. This molecule is found in all 
basement membranes and gives the structure a fixed negative charge, which is 
important for the filtration properties of the membrane. It is also able to bind to 
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other extracellular matrix molecules such as laminin and collagen type IV, and is 
an attachment substrate for cells. 

Tenascin 

Tenascin is a large disulphide-linked glycoprotein of six identical subunits. In the 
normal lung it has been localised to both basement membrane and lamina reticu
laris of proximal airways [52, 53]. It inhibits cell adhesion, migration and causes cell 
shape changes [54]. Its distribution suggests involvement with tissue morphogenesis 
and wound healing. These functions and evidence that inflammatory cytokines can 
increase the secretion of this molecule from cultured epithelial cells [55], suggest a 
potential role for tenascin in airway remodelling. 

Fibroblasts in the normal airways 

Fibroblast which possess the greatest capacity to produce extracellular matrix mol
ecules (see [56]), appear flattened and have a stellate appearance, with an average 
diameter of 28 )lm and a thickness of 0.55 )lm [57]. They are localised to the lami
na reticularis, forming a sheath around the airways (Fig. 1b) [57]. The cells contain 
prominent rough endoplasmic reticulum, ribosomes and Golgi apparatus, reflecting 
their high metabolic activity. 

A cell of similar phenotype to fibroblasts, but morphologically larger and con
taining a larger proportion of cytoplasm, is the myofibroblast [58-60]. These cells 
have been identified within the lamina reticularis of normal airways [61, 62] and 
can be distinguished from fibroblasts by the prominent amounts of contractile fila
ments containing a-smooth muscle actin [61, 63]. They are found in multicellular 
strands and in close apposition with other cells [64]. Myofibroblasts appear in 
increased numbers subsequent to tissue injury [65, 66]. 

The source of myofibroblasts at sites of tissue injury is uncertain, both differen
tiation from fibroblasts and smooth muscle cells have been proposed [67, 68]. TGF~ 
can induce smooth muscle-actin expression in fibroblasts, thus giving the cell a 
myofibroblast-like phenotype [69]. Myofibroblasts cultured from granulating 
wounds are capable of reverting back to a fibroblast phenotype [70]. 

The role of fibroblasts and myofibroblasts in airway morphogenesis 
and homeostasis 

The fibroblast has been postulated to play an important role in airway morphogen
esis and development. The co-culture of human epithelial cells with human foetal 
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lung fibroblasts in collagen gels causes epithelial cell invasion of extracellular matrix, 
which then develop into groups of cells that resemble primordial sub-mucosal 
glands, forming tubular structures, which undergo dichotomous branching [71]. 

The development of the airways occurs during the pseudoglandular phase of 
lung development, between weeks 5-17 of gestation (for review see [72, 73]. The 
pattern of airway branching is dependent on the interactions between the develop
ing mesenchyme, epithelial cells, cellular adhesion molecules and the extracellular 
matrix, in particular, proteoglycans and glycosaminoglycans [74]. In the developing 
lungs of rats, the differentiation of mesenchymal stem cells into fibroblasts-like and 
myofibroblast-like cells is associated with the production and deposition of extra
cellular matrix molecules [75]. The deposition of collagen, syndecan, laminin and 
fibronectin from these cells is essential for airway morphogenesis, in particular 
tubule formation and terminal branching [65, 73, 76]. 

In the mouse, syndecan expression also influences the development of alveolar 
sacs during the canalicular stages of lung development [77]. The formation of the 
alveoli is also associated with the synthesis and secretion of elastin, and possibly 
other extracellular matrix molecules by myofibroblasts at the leading edge of new 
alveolar buds [33]. Three growth factors produced by mesenchymal and epithelial 
cells, EGF, IGF-l and TGF~l' also have a role in airway branching and alveolar 
development [73, 74]. 

The fibroblastlmyofibroblast plays a key role in the maintenance of the airway 
extracellular matrix. Collagens are continually synthesised and degraded in the nor
mal lung, with average turnover rates estimated to be 10% per day in lungs of 
young adult rats and rabbits [78-80]. These rates decrease with age, but proceed at 
relatively rapid rates throughout life [81]. Furthermore, the balance of intracellular 
and extracellular breakdown pathways also change with age. In young animals 
about 30% of newly synthesised collagen is degraded intracellularly within minutes 
of its synthesis [79, 82] but this proportion increases with age to about 80% [81]. 
In addition, the rates of these processes change when the lung is injured. For exam
ple, in experimental models of pulmonary fibrosis the proportion of newly synthe
sised collagen degraded intercellularly decreases, contributing to the increased col
lagen deposition in the injured lung [82]. The modulation of these processes could 
also play an important role in airway remodelling. 

The rate of extracellular degradation is thought to depend on the degree of cross
linking and in older animals the mature collagen fibrils may be protected from 
degradation. Nevertheless, extracellular collagens are susceptible to breakdown and 
are degraded rapidly both in growing and diseased tissue. This is accomplished by 
a family of metalloproteinases, which are produced by both resident cells (fibrob
lasts, epithelial and endothelial cells) and inflammatory cells (activated macro
phages and neutrophils) [83]. 

There are at least fifteen zinc- and calcium-dependent metalloproteinases which 
have the capacity to breakdown a wide range of extracellular matrix proteins [84-
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86]. They are important in embryonic tissue development, cell migration, inflam
mation and wound healing. The actions of the metalloproteinases is tightly regulat
ed by a diverse group of anti-proteinases including the tissue inhibitors of metallo
proteinases (TIMPs), which are synthesised and secreted by activated mesenchymal 
cells, and circulating anti-proteinases such as armacroglobulin, arantitrypsin, ar 
anti plasmin and secretory leukocyte protease inhibitor. The recent development of 
synthetic metalloproteinase inhibitors is enabling the characterisation of the role of 
metalloproteinases in human disease [86]. 

In summary, fibroblasts and myofibroblast are involved in the morphogenesis 
and development of the airways. They respond to cytokines and growth factors pro
ducing a variety of extracellular matrix molecules, the degradation of which is tight
ly regulated by both intracellular and extracellular proteinases and their inhibitors. 
When this tight regulation breaks down, as seen in the collagen diseases (e.g. 
osteogenous imperfecta) or in inflammatory diseases (e.g. rheumatoid arthritis, 
asthma, COPD or lung fibrosis) compromised tissue function ensues. 

Regulation of fibroblast and myofibroblast extracellular matrix production 
in normal and diseased airways 

As mentioned in the previous section there are several mediators able to influence 
extracellular matrix production by fibroblasts and myofibroblasts during develop
ment, in particular, IGF-1, TGFPl and PDGF. However, mediators regulating extra
cellular matrix turnover during development or maintenance of the airway wall has 
not been extensively studied. A variety of cytokines, polypeptide growth factors, 
lipid mediators and coagulation cascade products are known to activate mesenchy
mal cells [28, 87]. Many of these mediators are released by both resident and 
inflammatory cells in the lungs of asthmatics (for review see [88, 89]. We will focus 
on the effects of the mediators that are currently known to be increased in this group 
of patients and which have been shown to modulate fibroblast function (Tab. 2). 

Cytokines and growth factors 

A large number of cytokines and polypeptide mediators released in the inflamed air
way can cause fibroblast chemotaxis, proliferation and induce extracellular matrix 
molecule production (Tab. 2). TGFp increases procollagen [90-92], fibronectin [91] 
and proteoglycan [44] production. It is able to regulate procollagen production by 
direct and indirect mechanisms. In fibroblasts, it increases the synthesis of procolla
gen, decreases its degradation intracellularly and extracellularly by down-regulation 
of metalloproteinases and up-regulation of tissue inhibitors of metalloproteinases, 
thus maximising its effect on collagen deposition [93]. 
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Table 2 - Mediators reported to be increased in asthma which have been shown to promote 

fibroblast migration, proliferation and matrix produdion. 

Mediator Likely Increased directed Enhanced Increased matrix Ref. 
source migration proliferation production 

IL-1 M~, TC, BC, MC I I 94,95 

Fb, Ep, En, Neut 

IL-4 TC,MC I I I 96-99 

IL-6 Mo, M~, MC, Fb, I I 100,101 

Ep, En 

GM-CSF M~, TC MC, I 102 

Fb, Ep, Eos 

TNFa M~, MC, Eos I I I 103-106 

IGF-1 M~, Fb, Ep, I I 107-109 

TGFp Mo, M~, Fb, I I I 44,90,92 

MC, Ep, Eos 110-116 

FGF-2 Fb, En, SMC I I 117,118 

ECP Eos I I 119-122 

Leukotrienes Mo, M~, Bo, MC I I I 123-125 

Eos, Neut 

ET-1 M~, Fb, Ep, En I I I 126-128 

Tryptase MC I I I 129-132 

Thrombin plasma I I I 133-136 

Fibrinogen & plasma I 134 

fibrinopeptides 

Neuropeptides Sensory nerves I I 137 

Histamine Bo, MC I I I 138,139 

Mo, monocyte; Met>, macrophage; TC, T cell; BC, B cell; Bo, basophil; MC, mast cell; Fb, 

fibroblast; Ep, epithelial cell; En, endothelial cell; Eos, eosinophil; Neut, neutrophil; SMC, 

smooth muscle cell; IL, interleukin; GM-CSF, granulocyte-macrophage colony-stimulating 

fador; IGF-1, insulin-like growth fador 1; TGFf3, transforming growth fador f3; TNFa, 

tumour necrosis fador a," ECp, eosinophil cationic protein, ET-1, endothelin-1, FGF-2, 

fibroblast growth fador 2, I increased fundion 

TGF~ has been detected in the sputum of patients with asthma [140], in 
eosinophils infiltrating the epithelium of asthmatic airway [141], in nasal polyps 
[142] and in eosinophils, macrophages and fibroblasts within the lamina reticularis 
of airways from asthmatic patients [143, 144]. The latter finding is associated with 
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an increase in the sub-epithelial thickness within the airway and disease severity 
[143, 144]. In addition, TGF~ has been shown to cause a change in the phenotype 
of fibroblasts to myofibroblasts [69] and may therefore contribute to the increased 
numbers of myofibroblasts in asthmatic airways [61, 145]. These data, coupled 
with the known activity of TGF~ as a potent promoter of procollagen production, 
suggest that it may have a pivotal role in tissue remodelling within the diseased air
way. 

Granulocyte macrophage-colony stimulating factor (GM-CSF) secreted by 
inflammatory cells including lymphocytes, macrophages and fibroblasts [146, 147] 
prolongs the survival and activation of eosinophils potentiating the deleterious 
effects of these cells in the airways of asthmatics [146, 148]. Consistent with this, 
recent studies have demonstrated that transient over-expression of the GM-CSF 
gene leads to peri-bronchial accumulation of eosinophils, an increased number of 
macrophages in the lung parenchyma, increases in the levels of TGF~ and irre
versible fibrotic lesions [149, 150]. GM-CSF is chemotactic for myofibroblasts 
[102], suggesting another mechanism by which these cells could accumulate in the 
lamina reticularis of asthmatic airways [61, 145] with subsequent activation by 
TGF~. 

Fibroblasts are able to produce inflammatory cytokines such as IL-l, IL-6, 
chemokines and GM-CSF in response to activation by the acute phase proteins IL
l and TNFa [56]. These mediators have paracrine effects leading to enhanced 
inflammatory cell accumulation (Fig. 3). In this way the fibroblast may both acti
vate and prolong the inflammatory response. 

A close apposition of eosinophils and fibroblasts was noted by Glynn and 
Michaels [151] in the airways of asthmatics. Furthermore, activated eosinophils 
de granulate and release mediators, which include TGF~, and granule products, 
eosinophil cationic proteins (ECP) and major basic protein (MBP), into the sur
rounding tissue or airway lumen. ECP stimulates the proliferation of fibroblasts and 
increases the synthesis of collagen and proteoglycans [119, 120, 122, 152]. Where
as, MBP, acts synergistically with TGF~ and IL-l to enhance IL-6 production by 
fibroblasts, which stimulates fibroblast proliferation and extracellular matrix pro
tein production by both autocrine and paracrine mechanisms [100, 101, 153]. 

The mast cell has been shown to playa pivotal role in asthma, both in the tran
sient bronc hoc on stricti on and the chronic inflammatory phase of the disease [154]. 
As shown in Table 2 many of the mediators released by mast cells are able to mod
ulate fibroblast function. 

One such mediator is tryptase, a trypsin-like serine protease [155] which is ele
vated in bronchoalveolar lavage fluid from patients with allergic inflammation 
[156] and asthma [157]. Tryptase is chemotactic and mitogenic for fibroblasts 
[129-132, 158], stimulates type I collagen production in human lung fibroblasts 
[132] and increases procollagen mRNA levels in dermal fibroblasts [129]. With the 
established role of mast cells and their mediators in allergy and asthma, it is likely 
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that they also play an important role in the activation of fibroblasts and myofi
broblasts in the diseased airway. 

Other peptides present in the airways of asthmatic patients also have the capac
ity to activate fibroblasts. Endothelin-1 is found in high concentrations within the 
airways of asthmatic patients [159-161] and has been demonstrated to be a 
chemoattractant and mitogen for fibroblasts and also stimulates collagen synthesis 
[126-128]. 

Neuropeptide-containing sensory nerves have been localised in human airways 
and apposed to fibroblasts (Fig. 1b) [162, 163]. The activation of these sensory 
nerves, with the subsequent release of the neuropeptides, substance P and neu
rokinin A, in the asthmatic airways may lead to bronchoconstriction and neurogenic 
inflammation [164]. In addition to these recognised roles both substance P and neu
rokinin A are capable of stimulating fibroblast proliferation and chemotaxis [137]. 

Coagulation cascade products 

Fibrin has been shown to be deposited within the airway wall [165, 166] demon
strating the activation of the blood coagulation cascade. Several products of this cas
cade are known to have pro-fibrotic effects. 

Thrombin is mitogenic and chemotactic for lung fibroblasts [133, 134] and 
increases collagen synthesis by these cells at least partly by protease-activated recep
tor-1 [136]. Thrombin may also activate fibroblasts indirectly by the release of 
mediators from resident cells, platelets and the extracellular matrix. In addition, 
recent studies from our laboratory demonstrate Factor Xa stimulation of fibroblast 
proliferation and collagen synthesis [167]. 

The generation of fibrin by the actions of thrombin on fibrinogen generates fib
rinogen-cleavage products, fibrinopeptides A and B which are mitogenic for fibrob
lasts [134]. Also, the isolated Au and BP chains from the fibrinogen molecule pos
sess mitogenic activity [168]. Thus products of the coagulation cascade derived from 
plasma protein exudation observed in the inflamed airway can activate fibroblasts 
and have the potential to contribute to airway remodelling. 

Mechanical load 

Mechanical load is now recognised as an important regulator of cell function. The 
cyclic mechanical stretch of fibroblasts has been shown to cause an increase in cell 
proliferation [169] and procollagen production [170]. A clinical feature of asthma 
is repeated, transient bronchoconstriction. This raises the possibility that changes in 
contractile properties of the airways may influence the activation of the mesenchy
mal cells to proliferate and secrete increased amounts of matrix proteins. 
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Hypoxia 

Hypoxemia occurs in asthmatic patients which is associated with the degree of air
way obstruction [171]. As the bronchioles receive their blood supply via the 
bronchial artery, which is derived from the aorta, this suggests that the airways may 
be exposed to transient hypoxia. Hypoxia is known to have marked effects on 
fibroblast function increasing both proliferation and collagen synthesis in-vitro 
[172], which is mediated, in part, by TGF~ [173]. In addition hypoxic endothelial 
and epithelial cells release increased amounts of pro fibrotic cytokines such as PDGF 
and endothelin-l [174]. 

In summary a number of cytokines and structurally diverse polypeptide and lipid 
mediators are able to cause fibroblast chemotaxis, proliferation and stimulation of 
extracellular matrix protein production. In addition mechanical load and hypoxia 
also capable of activating fibroblasts. Current research implicates several cytokines 
such as TGF~ and endothelin-l as important agents promoting matrix deposition 
but many other mediators could be important (see Tab. 2) including proteases gen
erated by the coagulation cascade and released by activated mast cells. 

Fibroblasts as antigen presenting and effector cells in the immune response 

It has been suggested that fibroblasts can act as antigen presenting cells based on the 
expression of thymocyte-l (Thy-l) antigen on their cell surface (Fig. 3) [175-177]. 
Murine lung fibroblasts not expressing the Thy-1 antigen up-regulate the expression 
of MHC class II antigen and therefore have the ability to present antigen to T cells 
(Fig. 3). In contrast, human lung fibroblasts expressing Thy-l were able to up-reg
ulate MHC class II antigen, but only after stimulation with IFNy. A subset of these 
cells demonstrated the ability to cause T-cell proliferation [177]. 

Fibroblasts could therefore act as accessory antigen presenting cells, in conjunc
tion with dendritic cells and macrophages, to enhance the local immune and inflam
matory response (Fig. 3). More studies are needed to establish the extent to which 
fibroblasts contribute to the overall immune response. 

Recent observations have also shown that a soluble mediator secreted by fibrob
lasts can prevent lymphocyte apoptosis by maintaining or increasing the expression 
of the Bcl-XL gene [178, 179]. Thus, there would be a persistence of lymphocytes 
adding to the chronicity of the inflammatory response. 

Extracellular matrix molecule deposition within the lamina reticularis 

A change in the structure of airways from patients who had died from asthma was 
first noted by Huber and Koessler [180]. These findings were confirmed in mor-
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Figure 3 
Fibroblasts as antigen presenting and inflammatory cells. Antigen presentation by fibroblasts 
leads to an enhancement of the immune response, and stimulation of cytokine and extra
cellular matrix production. The cytokines produced by the fibroblast enhance the inflamma
tory response by both autocrine and paracrine mechanisms. 

phological studies in which the airway wall was found to be significantly thicker in 
asthmatic compared with non-asthmatic patients [181]. Carroll and colleagues 
[182] demonstrated increased wall thickness in both the large and small airways in 
fatal asthma, but only in the small airways in non-fatal asthma. 

This increase has also been noted in other airways diseases such as chronic 
obstructive pulmonary disease [183-185], bronchiectasis, bronchitis, and tubercu
losis [183]. The thickening results from increase in the thickness of the mucosa [181, 
186], lamina reticular is [5, 166, 187, 188] and sub-mucosal layers of the airway 
[180, 181, 187, 189, 190]. Changes in the sub-mucosa are likely to involve both 
smooth muscle hyperplasia [191] and hypertrophy [192] . 

It was initially thought that the changes in the lamina reticular is were a conse
quence of the thickening of the epithelial basement membrane, due to increased col
lagen deposition [151, 180, 189, 193]. However, using ultrastructural techniques, 
the thickening was localised to the lamina reticularis, with the lamina rara and the 
lamina densa of the basement membrane remaining unchanged [5, 166, 187]. These 
changes appear to be an early event in the pathology of asthma, as increases in the 
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sub-epithelial layer are seen in children with asthma [190] and in patients with mild 
disease [166]. 

It was postulated that the increased thickness of the lamina reticularis was due 
to the activation of the epithelial cells [166], which have been shown to secrete col
lagen in vitro [194, 195]. However, the composition of this layer was shown to con
sist predominantly of collagen types I, III and V, fibronectin [5, 196] and elastin 
[145], molecules that are generally thought to be produced by fibroblasts, rather 
than epithelial cells. Also, no laminin was identified within the lamina reticularis, 
but was found within the "true" basement membrane, again, suggesting that the 
matrix deposition in the sub-epithelial layer was not associated with epithelium [5]. 

The increased thickness of the lamina reticularis has been correlated with 
increased numbers of fibroblasts/myofibroblasts [61, 145, 151]. Furthermore, in a 
recent study, increased numbers of myofibroblasts were observed in the lamina retic
ularis of mild asthmatic patients after antigen challenge [62]. From these studies it 
was suggested that myofibroblasts were responsible for deposition of the increased 
extracellular matrix. However, other cell types within the airway wall are capable 
of producing extracellular matrix molecules and are likely to be involved in remod
elling. For example, smooth muscle cells are capable of producing similar amounts 
of procollagen to fibroblasts [197]. 

In addition to the increase in collagen, amounts of fibronectin, elastin and other 
extracellular matrix components have been shown to be increased within the lami
na reticularis of asthmatic airways. Hyaluronan, versican, biglycan and decorin 
were increased in the airways of patients with severe asthma [46] . Due to the 
hydrophilic nature of these molecules, it can be speculated that the airway wall may 
be further thickened by an increased fluid content within the sub-mucosa. Increased 
proteoglycans production has been shown from bronchial fibroblast cell lines cul
tured from asthmatic patients [198] and, increased levels have been demonstrated in 
the sputum from asthmatic subjects [199]. Currently no data is available for the 
content of these matrix molecules in bronchial biopsies from mild asthmatics. 
Fibroblasts may also be involved in the regulation of fluid content of tissues via inte
grin mediated cell-matrix interaction [200-202]. 

Functional effects of a thickened airway wall 

Both the airways and the parenchyma contribute to the elastic recoil of lung tissue. 
Mead hypothesised that the parenchyma is able to stabilise the alveoli and terminal 
bronchioles, by generating a recoil force (interdependence), thus preventing airway 
collapse (Fig. 4a) [203]. A decrease in elastic recoil may have profound effects on 
the airway contractility. This hypothesis was extended to suggest that the adventi
tial tissue around the airway is an important determinant of the magnitude of bron
choconstriction (Fig. 4a and b) [204-206]. Several groups have hypothesised that 
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the load exerted by the lung parenchyma in the normal airways must be overcome 
by the smooth muscle to enable the airway to contract (Fig. 4c) [205-207] . Exces
sive extracellular matrix deposition outside the smooth muscle layer (peri-bronchial 
fibrosis) would uncouple these opposing forces allowing the smooth muscle to con
tract more easily (Fig. 4d) [208]. 

The increase in the deposition of extracellular matrix within the mucosal layer 
and lamina reticularis would also have consequences for airway constriction. A 
thickened mucosal layer, compared to normal, causes an increase in the narrowing 
of the lumen for any given degree of smooth muscle contraction (Fig. 4c) [209]. An 
important normal physiological response to smooth muscle contraction is the fold
ing of the mucosa which restricts lumenal narrowing. However, in the inflamed air
way, the deposition of the extracellular matrix within the lamina reticularis would 
limit the number of folds generated, thus allowing a further reduction in lumenal 
diameter (Fig. 4b and d) [210]. 

In early stages of disease, the initial deposition of extracellular matrix proteins 
by fibroblasts and other mesenchymal cells may be beneficial. Extending the 
hypothesis of Mead and others, the initial deposition of extracellular matrix around 
the airways, within the lamina reticularis, adventitia and the alveolar connections, 
may increase the parenchymal load on the airways, increasing interdependence, thus 
restricting the degree of airway closure. 

However, as the disease progresses, excessive deposition of extracellular matrix, 
along with the thickening of the airway wall due to increased smooth muscle, oede
ma and epithelial cell hyperplasia, becomes detrimental to airway function. There is 
now anecdotal evidence that there is a reduction in the number of alveolar connec
tions to the airways of asthmatics, which would reduce interdependence and 
increase the degree of basal airway tone. Also this reduction in interdependence will 
allow an increase in airways contractility (airway hyperresponsiveness) to inciting 
agents (e.g. antigen, cold air, exercise, stress). 

In addition to the increase in extracellular matrix deposition, a reduction in the 
amount of elastin is seen in some patients, while disorganisation of the elastin fib
rils is seen in others [35, 211]. This data would support the theory of interdepen
dence, as the force required to overcome the elastic nature of the parenchymal tis
sue would be less thus increasing the magnitude of the bronchoconstriction. The 
change in elastin content and structure may partly explain the reduction in lung 
elasticity seen in asthmatic patients [212, 213]. In contrast, no change in the elastin 
content of the airways was found by Godfrey and colleagues [214]. Thus no con
sensus of opinion has been reached regarding the effects on elastin metabolism in 
the airways during chronic inflammation. However, this is an important feature of 
remodelling in the inflamed airway and needs further investigation. 

A limited number of studies have been performed specifically to examine the 
interaction of sub-epithelial thickening and airway function. Roche and colleagues 
found no correlation between sub-epithelial thickness and disease severity or air-
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A schematic diagram showing the effed of strudural changes on the airway lumen. In the 

normal airway. constridion and relaxation within this airway is a reversible process. 

(a) shows the forces exerted on the normal dilated and constrided airway wall which keeps 

the lumen open (interdependence). During bronchoconstridion smooth muscle contradion 

must over come the external forces before the airway is able to constrid. At this point the 

epithelium folds to compensate for the redudion of the airway lumen, however the exter

nal forces restrid the degree of constridion. On smooth muscle relaxation the external elas

tic forces will allow the airway to relax back to its resting state. 

(b) In the inflamed airway constridion is greatly enhanced. The increase in wall thickness 

due to a thicker epithelium and smooth muscle hypertrophy and hyperplasia, reduces the 

resting lumen diameter, thus, in the inflamed airway a similar degree of airway constridion 

to that seen in the normal airways, would result in a greatly reduced lumen diameter. Thus 

having profound effects of airway fundion. 

(c) In addition to the wall thickening, the increase in matrix deposition within the lamina 

reticularis reduces the ability of the mucosa to fold. Therefore, in combination with the 

increased extracellular matrix within the peri-bronchial adventitia, which reduces the load 

exerted by the parenchyma on the airway wall, this would allow the airway to constrid to a 
greater extent than in either a) or b). Subsequently. the combination of the thickened airway 

wall and extracellular matrix deposition also restricts the degree to which the airway can 

return to its normal resting diameter, potentially leading to a chronic redudion in airflow. 
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ways hyperresponsiveness [5]. However, the thickness of the sub-epithelial layer or 
bronchial wall has been correlated to airway hyperresponsiveness by others [166, 
215, 216] and in a recent study, Minshall and colleagues were able to demonstrate 
a correlation between sub-epithelial thickness and lung function (FEV 1) in mild, 
moderate and severe asthmatic patients [144]. 

In summary, changes in the structure of the airways in inflammatory diseases, 
due to changes in key extracellular matrix components such as elastin, collagen and 
proteoglycans, will have marked effects on the mechanical properties of the lung. 
This suggests pharmacological agents directed at controlling extracellular matrix 
deposition may have a place in the treatment of asthma. A reduction of the fibrotic 
lesions, may lead to the re-establishment of the interdependence between the airway 
wall and the lung parenchyma, thus returning lung function towards normal. The 
effects of selected agents on collagen production and degradation will be reviewed 
in the next section. 

Pharmacological modulation of the fibroblast 

The current treatment for asthma involves the combination of symptomatic relief 
with bronchodilators (~-adrenoceptor agonist, theophylline, ipratropium bromide) 
and anti-inflammatory agents (beclomethasone, budesonide, fluticasone propi
onate). The steroids are currently the most effective treatment for inflammation in 
asthma [217]. However, there is a group of patients who are refractive to these 
agents. 

Steroids may inhibit fibroblast function, in vitro, either by inhibiting procollagen 
gene expression [218] or by inhibiting the release of pro-fibrotic cytokines from 
inflammatory cells. In vivo studies are more controversial but there is evidence that 
steroids can inhibit collagen production and block fibrosis [219]. The effects of 
inhaled budesonide on extracellular matrix deposition in a number of studies in 
asthmatic patients, have been unable to show a reduction in the thickening of the 
sub-epithelial layer [188, 220, 221] or a reduction in the levels of extracellular 
matrix molecules within this layer [222]. In contrast, in two studies of short-term 
treatment with either beclomethasone or fluticasone propionate a reduction in sub
epithelial thickening was noted [223, 224]. A similar decrease in sub-epithelial 
thickening was seen after the removal of inciting agents in occupational asthma 
[225, 226] suggesting that it is possible to reduce extracellular matrix deposition in 
chronically inflamed tissue. 

The conflicting results obtained with these steroids may be due to the type and 
dose of steroid used, patient compliance or even a reflection of disease severity. Alter
natively, these discrepancies could be accounted for by differing techniques associat
ed with sampling, cutting and analysis of the bronchial biopsies. Further studies are 
required to determine the effects of steroids on extracellular matrix deposition. 
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Table 3 - Agents which modulate collagen metabolism 

Likely mechanisms of action Agent Evaluation Ref. 

Transcription 

Reduction in procollagen Tranilast Clinical 230 
mRNA levels Minoxidil; pirfenidone 231,232 
Decrease transcription or Glucocorticoids Animal models 233-241 
procollagen mRNA stability INFy; PGE1; PGE2 Clinical 

Translation 

Incorporated to form un- Proline analogues In vitro 242-250 
stable collagen chains Animal models 

Feedback inhibition Procollagen peptides 

Blocks chain elongation Thiaproline; D-a-methyl- 251 
proline 

Hydroxylation 

Removal of cofactors for Bivalent cations, e.g. In vitro; animal 252-259 
hydroxylation Zn2+; ascorbate analogues models, clinical 

Inhibition of prolyl 4- Proline analogues; 

hydroxylase Safironil 

Inhibition of Iysyl hydroxylase Minoxidil 

Microtubular systems/Secretion 

Disruption of microtubules, Colchicine; Cytochalasin B; In vitro 260-262 
Golgi and endoplasmic Taxol; Nocodazole; Animal models 

reticulum system Vincristine; Vinblastine; Clinical 

Brefeldin A 

Cleavage of procollagen pep tides 

Inhibition of procollagen Amino acids and In vitro 263 
proteinases polyamines 

Polymerisation 

Prevention of cross-linking D-Penicillamine; In vitro; animal 264-266 
Inhibition of Iysyl oxidase ~-Aminopropionitrile studies; clinical 

Extracellular degradation 

Increases production of Colchicine; Relaxin; In vitro; animal 267-269 
collagenase Pentoxifylline models; clinical 
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Table 4 - Agents which modulate fibroblast adivation and proliferation mechanisms 

Likely mechanisms of action Agent Evaluation Ref. 

Growth fador mediators 

Inhibition of mediator release Tranilast (MK341) Clinical 230 

Inhibition of TGFp, PDGF, FGF Pirfenidone In vitro 270-274 

Animal studies 

Binds and inactivates TGFp Decorin 

Growth fador receptors 

Inhibition of TGFp activation Mannose-6-phosphate 

Inactivation of growth factors TGFp antisense; TGFp Animal models 275-278 

and TNFa antibodies 

Inhibition of both proliferation Receptor antagonists, In vitro 279-281 

and procollagen synthesis e.g. endothelin; Animal models 

angiotensin II 

Fibroblast proliferation 

Inhibition of proliferation and Retinoids In vitro 282,283 

matrix synthesis Animal models 

Inhibits fibroblast proliferation 5-fluorouracil ; mitomycin-C, Clinical 261,262 

Decrease in matrix production Minoxidil; Taxol 

As steroids have a number of side effects [227] alternative approaches have been 
investigated, including inhibition of procollagen DNA transcription, mRNA trans
lation or post-translational packaging of the procollagen molecules [87, 228, 229]. 
These, and other strategies for inhibiting collagen deposition and fibroblast prolif
eration are shown in Tables 3 and 4 along with other agents which are currently 
under investigation for a number of fibrotic conditions, including lung fibrosis. 
These new compounds are now beginning to be evaluated in experimental models 
and man. 

Summary 

There is now strong evidence that fibroblasts and myofibroblasts play key roles in 
airway morphogenesis, maintenance of airway inflammation and tissue repair. They 
are metabolically active cells, continuously producing extracellular matrix compo-
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nents and are responsible for the maintenance of the structural framework of the 
airway. Through cell-matrix interactions they can also regulate the three-dimen
sional structure and mechanical properties of the airways. In asthmatic airways the 
number of fibroblasts/myofibroblasts and the amount of extracellular matrix 
increases profoundly affecting airway mechanics and cell function. The mechanisms 
for this increase in extracellular matrix deposition are uncertain. We propose that 
structurally diverse mediators from resident cells, inflammatory cells and blood 
derived proteins modulate the function of fibroblasts and myofibroblasts, increas
ing mesenchymal cell numbers locally within the airway tissue and enhancing extra
cellular matrix protein deposition. In addition, with the recently ascribed role of 
fibroblasts in antigen presentation, the production of pro-inflammatory cytokines 
and enhancement of inflammatory cell survival, suggests that these cells could also 
enhance and perpetuate the inflammatory response in the airway. A better under
standing of the mechanisms by which fibroblast and myofibroblast functions are 
modulated, will identify new targets for the development of therapeutic agents for 
use in diseases associated with inflammation and airway remodelling such as asth
ma, chronic obstructive pulmonary disease (COPD) and bronchitis. 
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Introduction 

This chapter concentrates on mediator release from, and interaction with macro
phages, and factors that influence antigen presenting activity of the dendritic cell 
(DC). 

Within the monocytic-type cell lineages present in the airways, alveolar 
macrophages (AM) have received disproportionately more attention due to their 
accessibility in human and animal studies compared to interstitial macrophages 
(1M) and DCs. Despite the accessibility of alveolar macrophages (AM), much phar
macological investigation has been conducted using peripheral blood monocytes as 
a model of effects on airway macrophages. Immunologists in parallel have charted 
many aspects of the DC, which has the emerging status of the professional antigen 
presenting cell. At a relatively early stage, however, certain groups also recognised 
the existence and importance of DCs as related, but distinct from macrophages in 
the airway [1]. They also demonstrated a fundamental clinically relevant pharma
cological event, that corticosteroids reduce the number of DCs in the airways of 
asthmatics [2, 3]. 

Undifferentiated monocytes can be observed in the airway, but their function 
apart from replenishing the more differentiated cell types, dendrites and 
macrophages, is not known. Monocytic cells produce a range of cytokines and 
mediators, and could therefore become involved in defence on arrival at tissues and 
following diapedesis. 

Cells within the macrophage and dendritic types can be derived from the bone 
marrow-drived monocytic lineage arising from the CD34+ myeloid stem cell in bone 
marrow [4, 5]. Circulating MHC II negative (Ia-) precursors can also be made to 
differentiate into DCs. DCs form < 2 % of circulating mononuclear cells and com
prise subsets differing in phenotype and function [6]. 

The chameleon nature of cells of the monocytic lineage is demonstrated by the 
capacity of blood-derived monocytic cells to form cells with fibroblastic, dendritic 
and macrophage characteristics, all with a range of differentiation states. Airway 
lumen, mucosal and submucosal regions contain several types of bone marrow-
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derived cells of monocytic lineage at various stages of maturation, differentiation 
and in relatively discrete groupings in relation to surface marker phenotypic char
acteristics. Macrophages comprise approximately 80-90% of airway lumen leuko
cytes under normal conditions and provide a large phagocytic capacity. DCs occu
py less than 1 % of airway lumen cells [7]. DCs are present throughout the peri
bronchial connective tissue and bronchus-associated lymphoid tissue (BALT) 
housing T cells. A network of DCs exists within and below the epithelium, with a 
higher cell concentration in upper airways. The DC network provides antigen pre
sentation as opposed to phagocytosis and is responsible for transfer of antigenic sig
nals to lymphoid regions for activation of naive T cells. 

The differences between monocyte, macrophage and DC behaviour suggest that 
the relatively extensive pharmacological analysis of monocytes may not be automat
ically extrapolated to airway macrophages or DCs. At this stage it is more valuable 
to assimilate the consolidated findings concerning mediator release from AMs and 
DCs, and the consistent, but limited pharmacological findings relating to those cells. 

Airway macrophages 

It is clear that while bone-marrow-derived monocytes are recruited during escala
tion of an inflammatory response [8] and then divide and differentiate into macro
phages [9, 10], there is a resident population of macrophages that provide a scav
enging role in detecting pathogens, apoptotic cells and cell debris. 

AMs influence airway immunology and inflammation through mediator release, 
including reactive oxygen intermediates, lipid-derived mediators, cytokines and pro
teases. Interstitial macrophages below the epithelium also provide an immunomod
ulatory role in facilitation of DC behaviour and are possibly the cells with the pro
fessional responsibility for removal of apoptotic cells in this region. 

Pharmacological agents have been used to examine the biochemistry of 
macrophages en route to understanding cytokine expression. The high profile that 
the alveolar macrophage has sustained as a potential target in immunomodulatory 
drug development has lead to examination of the potential for current therapeutic 
agents used in treatment of asthma to influence macrophage activity. In this context, 
blood-derived monocytes have been examined extensively for investigation of the 
role of phosphodiesterases 4 (PDE4) as potential drug targets in the context of 
development of immunomodulatory PDE4 inhibitors. 

Cells of the monocytic lineage exhibit considerable size range between cell types. 
Circulating monocytes do not differ greatly from other circulating leukocytes in size, 
but on differentiating to macrophages can increase in volume by one to two orders 
of magnitude. Macrophages cultured for prolonged periods can eventually form 
multinucleated giant cells resulting from cytokine-induced fusion of macrophages 
[11, 12]. 
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Turnover rates 
Airway AM and DC turnover rates differ markedly and reflect their roles in main
tenance of airway defence. AM turnover has been reported to be 16-18 days [13]; 
longer turnover times for pulmonary macrophages have been recorded at approx
imately 80 days in humans. Airway mucosal epithelial DC turnover has been 
demonstrated to be in the region of 2 days [14]. It is noteworthy in this context 
that the turnover rate of tissue DCs in the iris, airway and intestine have similar 
rapid turnover rates that are much higher than that of macrophages in the same 
tissues. Clearly, in view of the rapid DC population turnover and continuity of the 
DC network in the epithelial region, a constant supply of afferent information 
from the mucosal surface to lymphoid tissue (BALT) can be sustained by DCs 
migrating between these sites. Macrophages also have the capacity for migration 
to lymphoid tissue [15], but lack the potency of DCs in initiating primary immune 
responses at lymphoid tissue. Their slow turnover in relation to that of DCs could 
reflect the redundancy of this function. Their established role together with epithe
lia as effectors in secondary immune responses is discussed below (reviewed in 
[5]). 

Attraction of macrophages into the airway 
T-cell derived cytokines and chemokines can recruit monocytic cells to the airway. 
CD4 cells are the primary instigators of monocyte macrophage recruitment demon
strated by the greater impact of removal of CD-4 cells on macrophage number [16]. 
Thus, the CC chemokines macrophage inflammatory protein-1a (MIP-1a) and 
RANTES [17, 18] are potent monocyte chemoattractants. In addition T cell-derived 
interferon y (IFNy), tumour necrosis factor a (TNFa), IL-4 and GM-CSF all are 
potent inducers of chemokine and adhesion molecule expression to assist in recruit
ment. 

Macrophage activation 
Several cell types are engaged in activation of macrophages following initiation of 
inflammatory responses. These include lymphocytes [19-21], neutrophils [22, 23], 
eosinophil [24-26] and mast cells [24, 27]. This brings into context the presence of 
binding sites involved in adhesion with other leukocytes and the consequences of 
close proximity in mediation of complex autocrine/paracrine interactions. 

Intracellular messenger pathways involved with activation 
CD14 is a binding site for LPS in monocytes and macrophages [28], but not in 
DCs, where the lack of expression assists in identity of DCs. CD14 is phos
phatidylinositol-linked indicating second messenger pathways involved in trans-
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duction of LPS-CDI4 interaction signals involved in activation of monocyte 
macrophages by LPS. This reflects the ubiquitous cell activation pathways provid
ed by phosphatidyl inositol hydrolysis, Ca2+ mobilisation and activation of protein 
kinases. The events relating to control of cytokine expression that are triggered by 
exposure to major stimulants such as LPS are of relevance to inhibitory effects of 
corticosteroids. LPS in nanogram/ml concentrations can activate nuclear factor lCB 
(NFlCB) [29] and thus induce TNFa production in addition to a host of other medi
ators. The activation of NFlCB by LPS is dependent upon production of reactive 
oxygen intermediates, especially OH- [30]. Reactive oxygen intermediates also 
appear to be a requirement for activation of cycloxygenase-2 (COX2) in 
macrophages [31]. Macrophages will respond to lower than nanogram/mllevels of 
LPS by priming of subsequent stimuli, in the absence of an apparent release 
response to the primary exposure to LPS. Many of the inhibitory effects of corti
costeroids on macro phages [32] could be achieved through the inhibitory effects of 
corticosteroids on NFKB. 

Interleukin-1 (IL-1) and TNFa 
IL-l and TNFa are cytokines released from macrophages during primary inflam
matory responses and are termed early response cytokines [33]. In common with 
TNFa, IL-l stimulates the lymphocyte responses and upregulates the expression of 
adhesion molecules in endothelial cells to mediate cell recruitment [34]. There is a 
significant correlation between circulating 11-1 and TNFa and mortality in sep
tisemia and acute lung injury [35]. This is endorsed by the prevention of septic 
shock by administration of antibodies to TNFa during bacteremia [36]. Following 
initial rises, LPS-induced TNFa levels in vitro and in vivo in humans fall following 
following low level endotoxin administration [37]. This reflects the tight regulation 
of TNFa production that could involve autocrine/paracrine regulation by factors 
including prostaglandin E2 (PGE2) and interleukin-l0 (IL-I0) [38]. PGE2 released 
from macrophages also inhibits T cell IFNy production in addition to proliferation. 
PGE2 does have a significant influence over the nature of DC antigen presentation 
as described below. 

Interferons 
IFNy is a major macrophage priming cytokine facilitating TNFa, IL-l P and inter
leukin-6 (IL-6) release in addition to enhancing antimicrobial activity [39]. IFNycan 
enhance monocyte TNFa responses to LPS [40]. 

Transforming growth factor ~ (TGF~) and IL-10 
TGFp and IL-I0 are released from macrophages and inhibit macrophage activity 
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[41], thereby restricting lung damage from excessive macrophage activity once the 
response to pathogen is complete. An example is the protection by IL-10 and IL-4 
against immune complex induced lung injury [42] . IL-10 is also potent at blocking 
antigen presentation by DCs and could contribute to the now recognised inhibito
ry effects of macrophages on DC-mediated antigen presentation observed in vivo. 

IL-4IIL-13 
These cytokines have also been observed to inhibit macrophage activity [41] and 
promote a macrophage in which mannose receptor mediated endocytosis predomi
nates with elevated MHC II expression for mediation of humoral immunity [43]. 

Granulocyte-macrophage colony stimulating factor (GM-eSF) 
Granulocyte-macrophage colony stimulating factor (GM-CSF) is non activating, but 
essential for survival of macrophages and promotes growth and differentiation of 
both macro phages and DCs, discussed in section II. GM-CSF can also enhance 
responses to IFNy [44]. 

The range of mediators, cytokines, enzymes and growth factors released from 
macro phages suggest the potential for significant influence on airway disease asso
ciated inflammation and remodelling [45]. The pro-inflammatory cytokines and 
other release products have the capacity to contribute to the airway hyperrespon
siveness associated with asthma involving persistent macrophage activation in 
their aetiology. Much of the evidence for this has been gained in the context of 
asthma [46]. In the context of COPD on the other hand, persistent production of 
neutrophil chemoattractants IL-8 [47] and LTB4 [48] would facilitate the neu
trophilia and associated edema and elastase-mediated remodelling associated with 
this condition [49] . The macrophage-derived growth factors TGF~ and platelet
derived growth factor (PDGF) also present the possibility that macrophages con
tribute to remodelling through growth factor coupled with metalloproteinase 
activity [50]. 

Macrophage recruitment 
A range of adhesion molecules are already known to contribute to their migration. 
The macrophage adhesion molecule profile classified so far includes the following 
CR3, VLA (1, 2, 4-6), CD31, CD44, CD36, L-selectin, LFA-1, p150,95. Mononu
clear cell recruitment is facilitated in response to the CC chemokines, monocyte 
chemoattractant protein-1 (MCP-1), -2 (MCP-2) and -3 (MCP-3), RANTES, MIP-
1a and MIP-1~, 1-309 and eotaxin. The CXC chemokines (predominantly attract
ing neutrophils) include IL-8, ENA-78, IP-10, MIP-2, PF-4, NAP-2, MGSNgro-a, 
and gro-~/y. 
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MCP-1 can be produced ubiquitously in all tissues and a range of cell types in 
the airway. MCP-1 also upregulates phagocytic activity [51] and MCP-1 exhibits 
higher expression in the airways of asthmatics [52] and patients with idiopathic pul
monary fibrosis [53] . RANTES production by airway epithelial cells is promoted by 
cytokines IL-1 and TNFa [54], LPS exposure [55], and viral infection. MIP-1a is 
predominantly released from leukocytes and release from macrophage type cells is 
stimulated by LPS exposure. As with MCP-1 , MIP-1a levels are elevated in the air
ways of patients with IPF and asthma [56]. 

Macrophages produce the CXC chemokine interleukin-8 (IL-8) demonstrating a 
potentially major role in recruitment of neutrophils; particularly in view of the sig
nificant macrophage leukotriene B4 (LTB4) release on activation, which would fur
ther facilitate neutrophil chemotaxis. 

Lipid products 
Leukotrienes are released from macrophages and activate them [24]. The mole per
centage of arachidonic acid (AA) in macrophage membranes is of the order of 
20-25% whereas in most cells it is approximately 3%. AMs metabolise AA through 
the 5-LO pathway preferentially as opposed to the cyclooxygenase (COX) pathways 
[57] and have a large capacity for release of leukotriene products. This is under
pinned by the greater quantity of 5-LO and FLAP in AM compared to PBM [58]. 
Activation of leukotriene production in alveolar macrophages is however 5-10-fold 
less sensitive to stimulation with Ca2+ ionophore compared to neutrophils [59], pos
sibly reflecting a down regulation of responses to external stimuli to prevent exces
sive activation. Macrophages produce a range of leukotrienes (LTB4' LTC4, LTD4, 
LTE4) in addition to platelet activating factor (PAF). LTB4 is the predominant 
leukotriene produced by human and rat AMs. The potential excessive production of 
leukotrienes could assist the development of disease aspects mediated by 
leukotrienes and opposed by prostaglandins. These could include acute bron
choconstriction and mesenchymal cell hyperplasia leading to increased smooth mus
cle mass or fibroplasia. One of the more obvious actions of LTB4 is in chemoat
traction of other leukocytes. Chemoattraction by LTB4 is one of the intended targets 
in current development of LTB4 antagonists in treatment of COPD and asthma. 
LTB4 antagonists have been shown to inhibit allergen-induced neutropenia in aller
gic asthma tics [60]. 

The cysteinylleukotrienes (LTC4 and 0 4) stimulate vasodilation, increased vas
cular permeability, bronchoconstriction and mucous secretion. These actions 
undoubtedly provide targets for the cysteinyl leukotriene receptor antagonists cur
rently marketed for treatment of asthma. PAF also mediates vasodilation, increased 
vascular permeability and bronchoconstriction. 

Therefore, in addition to the priming role of macrophages in initiation of 
immune responses through release of cytokines including TNFa and IL-1, 
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macrophages can also contribute to the generation of acute inflammation. In this 
context the interstitial as opposed to alveolar (lumenal) macrophages could be of 
greater significance due to their proximity to respiratory vasculature and dia
pede sing cells. 

COX-2 is induced by inflammatory stimuli including LPS, PAF, IL-l and mito
gens and downregulated by the immunosuppressive cytokines IL-4 and IL-IO. 
Macrophages thus produce significant amounts of PGE2 on activation, which pro
vides an inhibitory autocrine signal for macrophages and paracrine signal for inhi
bition of lymphocyte proliferation. 

Enzymes 
Macrophages release neutral proteinases (e.g. elastase, collagenase, plasminogen 
activator) although neutrophil elastase associated with macro phages could be pre
sent as a result of uptake from neutrophils. They also release alphal-antiproteinase, 
which is targeted for inhibition by bacteria and plays a role in defending the lungs 
against catabolism. 

Reactive oxygen intermediates 
Macrophages produce several reactive intermediates including the following: hydro
gen peroxide (H20 2), singlet oxygen (0:), hydroxyl radicals (OH-) and super oxide 
(SO-). Oxygen intermediates in reaction with nitric oxide (NO) from inflamed air
way epithelium can form peroxynitrites, which are more reactive. Although rodent 
macrophages demonstrate up regulation of inducible NO synthase (iNOS), iNOS 
induction in human macrophages is difficult to obtain compared to macrophages 
from rodents and iNOS production in airway inflammation is far more obvious in 
the epithelium than in the alveolar macrophages. 

There are other groups of macrophage activators in addition to inflammatory/ 
immune cytokines. The plasma proteins include Hageman-Factor-related systems 
including kinins, clotting, fibrinolysis and complement [61]. 

Phagocytosis 
Ligation of macrophage Fc receptors is involved in immunoglobulin-signalled 
phagocytosis. Macrophages express Fc receptors for IgA [62], the low affinity IgE 
receptor (CD23) [63] and IgG classes I, II and III [64]. Thus binding sites involved 
in phagocytosis include the following: FcR (IgG, IgE), CR3, Clqr, mannose recep
tors. Macrophage mannose receptors together with CD36 and vitronectin receptors 
are also involved in uptake of apoptotic cells [65]. 

A major question hangs over the concept of inhibiting macrophage function 
in general. This could result in reduced uptake of apoptotic cells. A consequence 
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of diminution of this valuable macrophage function could be the promotion of 
necrotic focii where accumulated apoptotic cells are left to advance into necro
sis. Endocytosis could be susceptible to interference from agents interacting 
with certain G-protein coupled processes, since the recycling of membrane 
material between intracellular and plasma membrane involves G-protein activi
ty [66]. 

Macrophage influence over T-cell development 
Macrophage products can direct T-cell development in either Th1 or -2 type direc
tions. Thus Th1 promoters include IL-12 [67], TGF~ [68], IL-1~ [68]. Th1 supres
sors include IL-10, PGE2 [69], TGF~ [70]. TGF~ appears to be able to promote Th1 
or Th2 responses depending upon conditions. When AMs encounter a foreign anti
gen a Th1 response is normally elicited. In asthma however, there appears to be a 
predominance of Th2 activity. Whether this is influenced by macrophage-derived 
mediators or those of other cells at the point of initial antigen detection such as the 
DC or epithelium is not established. Alternatively, the DC could be a major direc
tor of T-cell differentiation independently of the macrophage within the lymph node 
and therefore in the absence of cells at the mucosal surface. Activated T cells already 
present at the mucosal surface may be further stimulated by MHC II-bearing cells 
not expressing the required co-stimulatory molecules for activation of naive cells in 
lymph nodes by DC. Thus macrophages and epithelial cells could be involved in sus
taining either Th-1 or -2 type responses at the mucosal surface in secondary immune 
responses [71]. 

Macrophage inhibition of antigen presentation by dendritic cells 
Depletion of AM by intratracheal administration of liposomes containing diphos
phonate toxic for macro phages results in marked upregulation of antibody produc
tion in regional lymph nodes following intrapulmonary administration of antigen 
[72]. Macrophage inhibition of T-cell activation could be mediated by a range of 
inhibitory factors including IL-1 receptor antagonist [73], soluble TNFa receptor 
[74], H20 2, PGE2, IL-10 [75] and reduced IL-1 and B7 co-stimulatory molecule 
expression [76]. IL-1 receptor antagonist, while exhibiting anti-inflammatory activ
ity has not demonstrated inhibition of APC-mediated T-cell activation [73]. Simi
larly the concentrations of TNFa receptor required to inhibit APC-mediated T-cell 
activation are several orders of magnitude higher than those required to inhibit 
TNFa induced inflammatory reactions, which are of the order of five times the 
active TNFa concentrations. 

The concept of macrophages as modulators of antigen presentation raises the 
possibility that certain macrophage activities may be of some benefit under condi
tions of excessive inflammation. 
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Effects of drugs 

Corticosteroids 
Corticosteroids reduce the transcription of the early response gene JE, expression of 
TNFa [77], MCP-1 [32], MIP-1a [78], production of IL-8 [79] and metallopro
teinases [80]. Pretreatment of AM with corticosteroids also inhibits AA release and 
consequent production of leukotrienes and prostaglandins [81]. Corticosteroids also 
inhibit RANTES production from the epithelium, which reflects the capacity of cor
ticosteroids to indirectly influence macrophage recruitment and activity. 

The damping of excessive macrophage immune/inflammatory product release by 
corticosteroids may also impinge upon the macrophage capacity for endocytosis of 
apoptotic cells. This could conceivably promote accumulation of necrotic cells as 
described above. This concept has not been adequately explored. 

Elevation of cyclic AMP 
Macrophages possess beta-adrenoceptors that function in terms of stimulation of 
production of cyclic adenosine monophosphate (cyclic AMP), but beta-adrenoceptor 
stimulation with the full agonist isoprenaline has not been found to inhibit alveolar 
macrophage superoxide production or release of thromboxane B2 [82]. Forskolin, a 
direct activator of adenylate cyclase and cyclic AMP production did in the same 
study inhibit macrophage activation. In addition AM ~-receptor stimulation had no 
effect on oxidative metabolism or phagocytic activity [83]. The disparity in actions 
of forskolin and ~-adrenoceptor agonists could be attributable to their relative effi
cacy in elevation of cyclic AMP; forskolin being far more efficacious than ~-agonists. 
There is also the possibility that differential cell responsiveness to forskolin and ~
receptor-stimulated cyclic AMP levels could involve differences in capacity of 
macrophage PDEs to remove cyclic AMP generated in response to these agents. 

Phosphodiesterase inhibition 
The potential for elevation of cyclic AMP to provide a means of inhibition of 
inflammatory cell activity or immunomodulation has lead to an extensive search for 
compounds that will inhibit the predominant PDE type 4 present in inflammatory 
cells responsible for hydrolysis of cyclic AMP. PDE4 is the predominant cell type 
present in monocytes and its inhibition results in marked inhibition of LPS-stimu
lated monocyte TNFa production. The relevance of this observation to macrophage 
activity and the enormous amount of data generated in finding a PDE4 inhibitor for 
treatment of inflammatory diseases may be reduced by our observation and others 
[84] that PDE4 inhibition alone does not influence LPS-stimulated macrophage 
TNFa production (Fig. 1) or stimulated macrophage TXB2 or LTB4 production. 
The explanation for the disparity between the response of monocytes and 
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macrophages to PDE4 inhibition is probably due to the large amount of PDEI pre
sent in monocyte-derived macrophages and alveolar macrophages in addition to 
many of the other PDE types [85]. The large PDEI type activity is far in excess of 
that of PDE4 in macro phages and will possibly provide sufficient cyclic AMP 
hydrolysis in the presence of full PDE4 inhibition. Combined PDE3 and 4 inhibi
tion, however, has inhibited macrophage TNFa production [84], suggesting that 
PDE3 in addition to PDEI and 4 is important. 

Dendritic cells 

The requirement for contact interaction between DCs and lymphocytes in initiation 
of primary responses underscores the significance of cell surface adhesion molecule 
and co-stimulatory molecules expression in these cells. This assists identity and stag
ing in maturation of DCs and there is far more information concerning this aspect 
of DC behaviour than the production and release of cytokines. 

DCs in vitro and in vivo display dendriform "veil"-like projections (lamellipo
dial. In vivo, DCs interdigitate with the airway epithelia at a density of 500-800 
cells/mm2 in the larger human bronchioles [86]. The dendritic network at the base 
of the airway epithelium provides an essentially continuous barrier, more so in the 
upper airways, ensuring detection of foreign material traversing the epithelium. 

Antigen processing 
Primary responses to antigen involve uptake and processing of antigen prior to pre
sentation of antigen peptide fragments to T lymphocytes in lymphoid tissue via 
MHC II (Fig. 2). The morphology and activity in the immature DC indicate con
siderable energy expenditure in sampling and processing foreign material for pre
sentation. Coupled with the potency of DCs in antigen presentation leading to lym
phocyte activation, the DC exhibits the characteristics of a professional antigen pre
senting cell. Antigen uptake is mediated by relatively specific and nonspecific routes. 
A nonspecific route involves macropinocytosis using the lamellipodia to form vesi
cles and recycle extracellular fluid at a rate of one cell volume per hour [87]. Spe
cific uptake of antigen is mediated by two identified multilectin-type receptors 
found on DCs with 8 or 10 carbohydrate recognition domains. The macrophage 
mannose receptor with 8 lectin binding domains recognises mannosylated proteins. 
The second receptor carrying 10 lectin domains (DEC-lOS) has not been associated 
with any particular ligand so far. 

Therefore, while macro phages are phagocytic for removal of pathogens and 
debris, DCs are not phagocytic, but internalise antigen for the purpose of process
ing involving coupling to MHC II molecules for presentation to T cells at the cell 
surface upon maturation. 
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Figure 1 

Effect of PDE4 inhibition on monocyte and macrophage TNFa production. Human peripher

al blood monocytes and macrophages matured from the same monocyte population were 

exposed to LPS (100 ng/ml) in the presence and absence of PDE4 inhibitors rolipram (1 JiM) 
and RO 201724 (1 JiM). TNFa accumulation was measured after 18 h by ELISA. 

Isolated DCs lacking the maturity for antigen presentation possess adequate anti
gen processing capacity [88]. The processing capacity diminishes as DCs mature in 
readiness for antigen presentation. This process is visible through changes in cell 
surface marker expression including upregulation of adhesion and co-stimulatory 
molecules [89, 90]. 

Cell surface markers and accessory molecules 
The emergence of the DC as the professional antigen presenting cell raises the 
importance of the nature of cell surface protein interactions that are possible 
between the DC and lymphocyte. Many of these cell surface markers which vary 
depending upon the maturational status of the DC are involved in co-stimulation as 
accessory molecules (Fig. 2). The restrictive markers currently recognised are DEC-
205 (murine), OX62 (rat) and CD83 and p55 (human). 

In primary immune responses GM-CSF and IL-4 induced DC maturation upreg
ulate the expression of the primary accessory molecule-derived stimulation through 
B7-1 (CD80) or B7-2 (CD86) and CD-28. Blocking studies have shown that CD28 
and CD86 are equally necessary in promoting the Th2 bias observed in allergic 
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immune states. In secondary immune responses, however, activated T cells (IL-2 
producing) can be further activated by interaction with other MHC II expressing 
cells in conjunction with minimal co-stimulation; through ICAM-1 for example. 
This has relevance not only to secondary immune responses, but the maintenance of 
immune abnormalities in chronic diseases such as asthma. 

Cytokine influence 
The difficulty in isolating DCs contributes to the relatively small amount of infor
mation concerning DC release products compared with macrophages. The mecha
nisms utilised by DCs to transmit signals concerning antigen presentation that 
directs lymphocyte development toward either Th1 or Th2 pathways are now being 
explored. IL-12 , PGE2 and IL-10 appear to play significant roles. IL-12 is released 
from DCs and facilitates T-cell IFNy production [91]. Thus, IL-12, as observed in 
other tissues, promotes a Th1 bias, while PGE2 and IL-10 promote Th2 bias. PGE2 

can also promote antigen presentation and lymphocyte responses, while IL-10 is 
inhibitory against presentation and lymphocyte response. 
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IL-l in conjunction with GM-CSF enhances DC immunostimulatory capacity 
[92]. IL-2 and IFNyare strong stimuli for increasing DC content in the airways. The 
actions of IL-2 and IFNy suggest that Thl responses facilitate recruitment of DC. 

GM-CSF, TNFa and IL-4 appear to be the most effective promoters of DC dif
ferentiation from immature cells leading to a DC population exhibiting potent lym
phocyte activation [93]. Blockade of TNFa activity markedly reduces antigen pre
sentation-induced T-cell activation mediated by DCs or exposure to anti-CD3 anti
bodies [94]. TNFa enhances maturation of DCs and facilitates their antigen 
presenting activity. It is conceivable that activation of mast cells and consequent 
release of TNFa is involved in the priming of DC antigen presenting activity. 

Macrophage depletion upregulates DC antigen presenting activity. Macrophages 
appear therefore to provide both autocrine and paracrine inhibition of macrophage 
and DC activation. IL-I0 is a possible candidate for involvement in inhibition of DC 
activity by macrophages. IL-I0 inhibits the expression of surface antigens on APCs 
including B7 and MHC II [95] and the release ofTNFa [75], IL-I0 may also reduce 
DC densities by facilitating apoptosis [96]. 

Immunoglobulins 
Immunoglobulin receptors on DCs mediate enhancement of their antigen presenting 
activity by IgE and IgG. In this context the facilitiation of antigen presenting activ
ity by IL-4 can occur through two routes. Firstly, IL-4 and GM-CSF are the prima
ry stimuli for dendritic cell maturation [93]. Secondly, IL-4 promotes B-cell IgE pro
duction, an action that would sustain the atopic reactions through IgE facilitation 
of DC antigen presentation. 

Chemoattraction 
DCs are also stimulated to migrate by C5a, N-formyl-met-Ieu-phe (FMLP) and the 
CC chemokines monocyte chemoattractant protein (MCP-3), MIP-laJLD78 and 
RANTES. IL-8 is not chemoattractant for DC and together these findings suggest a 
distinct pattern of chemoattractant stimuli for DCs and neutrophils. The migration 
of DCs, in other tissues (intestine, heart and kidneys) or analogous dermal "Langer
hans cell" (LC) is promoted by TNFa; a process that is sensitive to blockade by 
MoAb to TNFa [97]. 

DC maturation 
The contribution of groups engaged in airway immunology has been considerable 
in the context of knowledge gained concerning DC antigen presentation, but there 
is at present a relative deficit in the knowledge concerning the functional relation
ship between the DC and others in the airway, with the exception of the T cell. 
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Antigen challenge can induce a rapid (within hours) increase in the airway DC 
population. This implies that there is a resident population of dendritic precursors in 
readiness to mobilise immune responses. This is also implied by experiments involv
ing irradiation [98]. Following local irradiation, the antigen-induced increase in 
monocytic cells within the airway is delayed to approximately 3 days, implying that 
a local source of cells contributes to the turnover. CD14+ circulating monocytes can 
differentiate to DC, but it is not yet established that these cells provide the sole 
source of DC within the airway, or whether a bone marrow derived precursor is an 
alternative source. 

DCs exist in a range of maturational states leading toward DC cell types with 
the capacity for antigen presentation at lymph nodes. The level of DC maturity is 
influenced by a range of local environmental factors including antigen exposure, 
cell-cell contact and local cytokine mileu. There are DCs within the airway that do 
not express MHC II and are possibly restricted from doing so by local factors until 
the DCs migrate from the epithelial region toward lymph node areas where matu
ration is completed in a lymphocytic environment. Mature dendritic cells express in 
the region of 106 MHC II molecules [99]. Although GM-CSF is an effective vector 
in driving DCs toward maturation for antigen presentation, exposure to GM-CSF 
alone is insufficient and the condition of precursor cells and local tissue environment 
are also important [100]. The conditioning of airway DCs is further complicated in 
the presence of chronic inflammation. Under such conditions GM-CSF, normally 
encountered at BALT and lymphocyte-derived, can be supplied by other cells in the 
mucosa including epithelia. Thus DC maturation for antigen presentation can be 
attained in the region of antigen entry under conditions of established inflammation 
and suggests the role of DCs in secondary immune responses at the epithelia. Under 
these circumstances activated interstitial macrophages could facilitate DC-mediated 
presentation. Furthermore, activated lymphocytes, particularly those in activation 
states, producing IL-2, have a reduced requirement for specific co-stimulatory mol
ecule interaction. Under such conditions, many cells expressing MHC-II can facili
tate antigen presentation provided they have certain surface molecules that have co
stimulatory function. This may include epithelial cells [71]. 

Effect of topical exposure to bacteria, virus and allergen on expansion of 
MHC II bearing DCs 
McWilliams and colleagues [101] have investigated the effects of topical adminis
tration of bacteria, virus and allergen on airway MHC II bearing DC populations. 
Inhalation of bacteria (dead or live Moxarella catarrhalis) results in rapid upregula
tion of the MHC II bearing DCs and is maximal within 1 h of acute exposure (30-
60 min). The morphology of the cells suggested an influx of immature Ia+ DCs that 
underwent maturation over the following hours. Exposure to allergen in sensitised 
animals results in an increase in MHC II bearing DCs with a similar time-course to 
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that following exposure to bacteria. Exposure to virus, however, while evoking an 
expansion of MHCII expressing DCs, exhibits a time course incorporating a lag 
phase of several days consistent with other immune/inflammatory responses to viral 
exposure. 

Allergy and sensitised states 
The DC population expands under conditions of sensitisation to allergen [102], 
allergic rhinitis [103] and asthma [104]. The sustained higher level of DCs in the air
way of asthmatics may not represent a reduction of migration of cells to the lymph 
nodes, but a functional higher steady-state of equilibrium between recruitment and 
migration to lymph nodes. Thus elevated signalling for recruitment could ensure an 
accelerated supply of antigen, while the increased capacity for detection at the 
mucusoal surface is matched by increased volume of trafficking for signalling at the 
afferent lymphoid tissue. 

The significant influence of GM-CSF in driving the differentiation toward DC 
has important implications in the maintenance of antigen presentation and its 
amplification in conditions such as asthma. GM-CSF is released from a range of 
cells in the airway, some of which are present in high concentration such the epithe
lium, mast cell and lymphocytes expressing predominantly Th2 in allergic states. 
The generation and enhancement of antigen presenting cell (APC) activity by GM
CSF is facilitated by interleukin-4 (IL-4), another cytokine released by the Th2-type 
phenotype and other cells in the airway including mast cells. These cytokines could 
therefore be involved in promoting DC activity in sensitised states under conditions 
of epithelial, mast cell and Th2 cell activation and elevated release of these cytokines 
from these cells. 

Effects of drugs 

Corticosteroids 
Nelson and colleagues have demonstrated that inhaled commercially available cor
ticosteroids including fluticasone, beclomethasone and budesonide significantly 
reduce rat airway DC density [105]. Systemic administration of high doses of dex
amethasone were also accompanied by loss of DCs. The kinetics of the corticos
teroid-mediated dendritic loss indicated that most of the effect is established within 
24 h through either route of administration and recovery is achieved on removal of 
corticosteroid within 2 days. The recovery probably reflects the rapid turnover of 
DC in the airways, which appears to be more rapid than in the periphery. 

The reduction in proportion of Ia+ cells by corticosteroids was greater than the 
reduction in total DC density, but nevertheless demonstrates ablation of the APC 
section of the DC population. This group also demonstrated the inhibition by cor-
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ticosteroids of increasing Ia+ expression among DCs during weaning and DC expan
sion following irradiation and subsequent bone marrow administration. The latter 
finding indicates an interruption of the entry of DC to the airways, although 
whether this involves an inhibition of adhesion or subsequent diapedesis has not 
been established. 

Nelson and colleagues also demonstrated the capacity of inhaled corticosteroids 
to undermine the bacteria-induced upregulation of MHC II cells [105]. Again it is 
not certain to what extent this inhibition measured at 24 h following exposure to 
bacteria involves interruption of upregulation of MHC II expression or the shift to 
a steady-state of cell concentration involving a greater DC content through cell 
influx in conjunction with upregulation of MHC II expression. 

Moller and colleagues demonstrated elevated density in atopic asthmatics treat
ed with bronchodilators alone compared with those treated with corticosteroids 
[106]. The level of DCs present in those treated with corticosteroid approached lev
els observed in nonasthmatic subjects. 

N europeptides 
DCs residing in the airway epithelium are in close proximity to neuronal cells. 

Interaction with neurotransmitters is therefore unavoidable. In this context sub
stance P, a non adrenergic noncholinergic (NANC) neuropeptide rerleased at this 
site promotes DC motility in vitro and DC accumulation in vivo can be blocked by 
capsaicin, which depletes substance P [107]. Calcitonin gene related peptide 
(CGRP) is a major neuropeptide and produced by airway epithelial cells [108] and 
suppresses B7-2 expression by DCs and peritoneal macrophages and antigen pre
sentation by Langerhans cells [109]. This is interesting in the context of cyclic 
AMP, which usually provides a route for the damping of immune inflammatory 
responses. CGRP elevates cyclic AMP levels and this action in DC coupled with a 
reduction in B7-2 expression could be an indication that DCs respond to cyclic 
AMP in a manner consistent with other mononuclear cells. This does not, howev
er, appear to be a universal finding of agents that stimulate cyclic AMP production 
as discussed below. 

Modulation of Thl and Th2 bias in lymphocytes by cyclic AMP 
PGE2 works in opposition to IL-12 in regulation of T-cell differentation. Thus, 
PGE2, which is a stimulus of cyclic AMP production directs T-cell development 
toward Th2 type and assists in maturation [110]. IL-12 is a consistent promoter of 
the Thl type and the direction of Th development appears to be under the influence 
of PGE2:IL-12 ratio. Despite the significant effects of PGE2 on T-cell responses to 
DC presentation, the range of possible effects of cyclic AMP elevating agents on DC 
function in terms of T-cell differentiation has not been fully explored. 
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Conclusions 

A system of airway immunity is emerging in which macrophages and dendritic cells 
provide distinct roles. Macrophages provide efficient phagocytic activity, while den
dritic cells are the professional antigen presenting cell. The activity of macrophages 
and dendritic cells is influenced by cytokines through paracrine and autocrine path
ways. It is prudent to consider the influence of other cell types in close proximity in 
the execution of the roles of these cell types. For dendritic cells in the airway the 
influence of the epithelium appears to be unavoidable. The effects of application of 
exogenous agents on these cell types in the context of pharmacology have received 
relatively little attention compared to their roles in maintenance of immune and 
inflammatory activity. 
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Introduction 

The single layer of endothelial cells that lines the micro vessels of the bronchial cir
culation plays a key role in orchestrating airway inflammation. As a result of their 
strategic position at the blood-tissue interface, endothelial cells can interact with 
inflammatory cells and mediators at their luminal and abluminal surface. The 
response of endothelial cells to an inflammatory stimuli can be broadly divided into 
vascular and cellular events and this is summarized in Figure 1. The vascular 
changes include an increase in endothelial permeability of post-capillary venules and 
vasodilation of arterioles, as a result of the release of, amongst others, endothelial
derived vasodilators. Increased expression of endothelial adhesion molecules and 
the production of leukocyte chemoattractants from endothelial cells triggers the cel
lular changes. Together, the vascular and cellular changes culminate in an increase 
in plasma leakage and leukocyte emigration through the endothelium into the 
underlying tissue at the site of inflammation. 

This chapter aims to (i) outline the generalized structure of endothelial cells, 
highlighting specialized features of endothelium in the bronchial circulation; (ii) 
provide an overview of endothelial cell activation, relevant to airway inflammation; 
(iii) describe the contribution of endothelial adhesion molecules, release of chern oat
tractants, increase in endothelial permeability and release of endothelial-derived 
vasodilators to the inflammatory response in the airways; and finally (iv) describe 
how modulating these endothelial functions may provide useful therapeutic tools 
for reducing airways inflammation. 

Cellular structure 

Endothelial cells from different organs display remarkable heterogeneity in structure 
and function and even within the same organ, large and small vessels may vary sig
nificantly [1]. Despite this heterogeneity there are characteristics common to all 
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endothelial cells and those that, in particular, contribute to the role of endothelial 
cells in airway inflammation will be discussed_ 

Each endothelial cell is between 25 to 50 Jlm long and 10 to 15 Jlm wide. The 
thickness varies from less than 0.1 Jlm at the edges of vein or capillary endothelial 
cells, up to 3-5 Jlm at the nucleus. Endothelial cells lie with their long axis in the 
direction of blood flow [2]. The luminal surface is in direct contact with the blood 
and the abluminal surface next to the basal lamina. In arterioles of the upper and 
lower airways, the basal lamina separates endothelial cells from one or two layers 
of smooth muscle cells that lie in a radial position underneath the endothelium [3]. 
This spatial arrangement allows an endothelial cell to contact many smooth muscle 
cells and this facilitates the rapid transfer of information between these cells result
ing in, for example, smooth muscle relaxation in response to endothelial-derived 
vasodilators. In contrast, the basal lamina of capillaries that are situated under the 
epithelium and near submucosal glands separates the endothelial layer from only a 
few pericytes, rather than a smooth muscle layer [3]. In post capillary venules that 
arise from the subepithelial capillary network, the basal lamina separates the 
endothelium from a discontinuous layer of pericytes, in small vessels, or a continu
ous layer, in vessels of a diameter of 30-50 Jlm [3]. 
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The luminal and abluminal surfaces of endothelial cells have a carbohydrate-rich 
glycocalyx [4] which is thought to playa role in controlling plasma movement 
across the endothelium. Endothelial surfaces also have a negative charge [2] which, 
in the case of the luminal surface, may act to repel circulating blood cells with a sim
ilar negative charge. Another feature of endothelial cells is the presence of plas
malemmal vesicles [2]. These are numerous, small, vesicular invaginations about 
500-700 A in diameter which are more abundant in capillary than in arteriolar 
endothelial cells [3]. These vesicles may fuse to form transendothelial channels and 
are thought to be one way in which fluid and plasma proteins can pass through the 
capillary wall. 

Endothelial cells in microvessels of the airways form either a continuous 
endothelial layer, as seen in post-capillary venules [5], or a fenestrated endothelial 
layer usually found in the subepithelial capillaries of the nose, or upper airways [3]. 
Fenestrae are circular structures of 50-60 nm that appear as gaps or openings in the 
endothelium [6]. Fenestrated and continuous endothelium have a similar perme
ability to plasma proteins but fenestrated endothelium show considerably higher 
permeability to water, ions and small molecules [6]. In the lower airways of most 
species, including healthy humans, fenestrations are only seen near the glands, 
neuro-epithelial bodies and bronchus-associated lymphoid tissue. In contrast, in 
asthmatic patients fenestrations have been shown to develop in the tracheobronchial 
subepithelial capillaries [7]. It is unclear whether these fenestrations develop as a 
marker of injury or whether they provide a functional advantage. 

The inter-endothelial junctions also vary in different microvessels. Arterioles 
have a well developed network of tight junctions whereas capillaries have a less well 
organised system [3]. Endothelial cells of the post-capillary venules have the appear
ance of being loosely connected and their inter-cellular junctions are the least well 
organised, which may aid the separation of endothelial cells during inflammation [3, 
5]. Many inflammatory mediators act at the endothelial junction allowing plasma 
and plasma proteins to pass, via a paracellular pathway, from the blood to the 
underlying tissue [3]. Emigration of leukocytes from the blood is also thought to 
occur at the endothelial junctions [3]. Disruption of endothelial junctions and 
increased permeability may be secondary to changes in the endothelial cytoskeleton 
as actin-binding proteins provide a direct link between junctional proteins and actin 
micro filaments. 

Finally, an organelle characteristic of endothelial cells, which also contributes to 
the inflammatory role of the endothelium, is the Weibel-Palade body. In response to 
inflammatory stimuli, such as histamine, thrombin or C5a, Weibel-Palade bodies 
rapidly fuse with the plasma membrane and release von Wille brand factor (vWF, 
also known as Factor VIII) and express P-selectin on the endothelial surface [4, 8]. 
P-selectin plays a key role in the initial phase of leukocyte rolling on the endotheli
um [8] and will be described in detail in the section on biological activity. Factor VIII 
has always been regarded as a marker for endothelial cells because it is present only 
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in endothelial cells, megakaryocytes and platelets [1]. It is now clear, however, that 
Factor VIII is not uniformly expressed by all endothelial cells and is absent in a vari
ety of microvascular endothelium. In contrast, platelet endothelial cell adhesion 
molecule-l (PECAM-l or CD31), expressed at endothelial junctions, is expressed by 
all endothelial cells and is often used as an endothelial marker [1]. 

Mechanisms of activation 

Early studies of endothelial cells identified certain proinflammatory substances, 
such as cytokines and bacterial products, as important stimuli of many endothelial 
functions [9]. Endothelial cells are also constantly exposed to a range of hemody
namic forces generated by pulsatile blood flow. There is increasing evidence that 
these biomechanical stimuli can directly influence endothelial function [10]. Also, it 
has recently become apparent that leukocyte binding to endothelial cells, via adhe
sion molecules, may directly trigger changes in endothelial cell function independent 
of soluble mediator release [11]. Figure 2 summarizes these mechanisms of endothe
lial activation. 

In this section we will (i) give details of endothelial-activating cytokines which 
are increased in airway inflammatory diseases, to illustrate soluble mediator activa
tion. We will also describe activation by bacterial products; other soluble activators 
of endothelial function will be referred to in the biological activity section of this 
chapter. Finally, we will describe (ii) biomechanical activation and (iii) adhesion
dependent activation of endothelial function relevant to airway inflammation. 

Cytokine activation 

Many cytokines have been implicated in the pathophysiology of airway inflamma
tion. Those that may, in part, contribute to an inflammatory response by altering 
endothelial function include tumor necrosis factor a (TNFa), interleukin (lL)-l, -4, 
-13 and -6. The actual cytokine profile depends on the inflammatory disease; for 
example, increased expression of all the above are detected in asthmatic airways 
[12, 13], whereas in chronic bronchitis only TNFa and IL-4 are increased [14]. 

IL-l is secreted predominantly from monocytes and macrophages but may also 
be produced by other cell types including endothelial cells [9, 15]. The two forms of 
IL-l, IL-la and IL-l~, are two distinct gene products. Despite limited amino acid 
sequence homology, IL-la and ~ have similar effects on endothelial cells [9, 15]. 
There are also two known forms of the IL-l receptor and IL-l is thought to activate 
endothelial cells via the type I receptor as the type II, or decoy, receptor is not 
expressed on endothelial cells [15]. IL-l activation of endothelial cells increases 
adhesion molecule expression and the release of chemoattractant and vasoactive 
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Mechanisms of endothelial activation 

CAM, cell adhesion molecule. 

mediators. TNFa, produced by many cells including macro phages, mast cells and 
epithelial cells, mimics every known action of IL-1 on cultured endothelial cells [9, 
15]. The effects of TNFa and IL-1 are often additive. There are also two known 
forms of the TNF receptor, p55 and p75, expressed on endothelial cells [15]. TNFa 
activates endothelial cells predominantly via p55 which is expressed, overall, at 
higher levels than p75. At the cell membrane, however, p75 is expressed at higher 
levels and is thought to present TNFa to p55. This effect is seen at low ligand con
centrations and is known as "ligand passing" [15]. 

IL-4, a 20 kDa glycoprotein secreted by activated T lymphocytes and mast cells 
[16] induces vascular cell adhesion molecule-1 (VCAM-1) expression on endothelial 
cells derived from several vascular sites including human lung microvascular 
endothelial cells (HLMVEC) [17]. Unlike IL-1 or TNFa, IL-4 does not increase 
intercellular adhesion molecule-1 (ICAM-1) or E-selectin expression [17] although 
it may decrease expression of these adhesion molecules induced by other cytokines 
[18]. In contrast, IL-4 enhances LPS, IL-1 or TNFa-induced VCAM-1 expression 
[17,18]. The presence ofIL-4 may thus result in selective VCAM-1 expression. The 
leukocyte ligand for VCAM-1, VLA-4, is expressed on eosinophils or monocytes, 
but not neutrophils. Raised levels of IL-4 may therefore trigger the recruitment to 
the airways of eosinophils and mononuclear cells seen in certain airway inflamma
tory diseases such as asthma. 

Effects of IL-4 on chemokine production may further fine-tune the leukocyte sub
type recruited in the airways. RANTES is a CC chemokine that activates eosinophils 
and mononuclear cells and IL-4 can inhibit TNFalIFNy-induced production of 
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RANTES from endothelial cells [19]. In contrast, IL-4 increases the production, 
from fibroblasts, of eotaxin [20] a CC chemokine active on eosinophils but not 
mononuclear cells. IL-13 has similar activities to IL-4 on endothelial cells because 
both cytokines bind to the IL-4 receptor a chain (IL-4Ra) expressed on endothelial 
cells [21]. We have shown that HLMVEC express IL-4Ra and that TNFa increases 
its expression [17]. Endothelial IL-4Ra expression is also significantly increased in 
bronchial mucosa biopsies from asthmatics compared with normal controls [22], 
although the mediators responsible for this have not been identified. 

IL-6 is produced in copious amounts by endothelial cells but until recently this 
cytokine was not thought to affect inflammatory endothelial functions. This is 
because endothelial cells do not express the cytokine-binding alpha subunit of the 
IL-6 receptor (IL-6Ra) although they do express the signal-transducing gp130 chain 
known to be associated with IL-6Ra in leukocytes [23]. Soluble IL-6Ra together 
with constitutively produced endothelial IL-6 is sufficient to induce expression of 
ICAM-1, VCAM-1 and E-selectin and also production ofIL-8 [24]. Activated neu
trophils are known to shed significant amounts of IL-6Ra which could be utilized 
by endothelial cells to further increase leukocyte recruitment [24]. IL-6 may there
fore playa previously unsuspected role in amplifying leukocyte recruitment. 

Gram-negative and gram-positive bacterial products also activate endothelial 
cells and these may playa role in exacerbating airway inflammation. Lipopolysac
charide (LPS), a major component of the cell wall of gram-negative bacteria, trig
gers a profile of endothelial activation, for example adhesion molecule expression, 
similar to that seen with TNFa and IL-1 [17]. Levels of LPS binding protein and sol
uble CD14, molecules involved in LPS activation of endothelial cells, are increased 
in post antigen challenge BALF of asthmatics [25]. Moreover, asthma severity in 
patients exposed to house dust mite has been shown to be related to LPS, rather 
than allergen, concentration in house dust [26]. Gram-positive bacteria are more 
heterogenous than gram-negative bacteria and it is more difficult to pin-point one 
agent (such as lipopolysaccharide for gram-negative bacteria) that might exacerbate 
airway inflammation. Cell wall products, peptidoglycans and teichoic acid and/ or 
exotoxins released from gram-positive bacteria, may be involved. We have shown 
that lipotechoic acid from Staphylococcal aureus (S. aureus) increases ICAM-1 and 
E-selectin expression on HLMVEC [27]. Exotoxin from S. aureus also increases P
selectin expression [28]. S. aureus is found in the early stages of airway inflamma
tion associated with cystic fibrosis and exotoxin and/or lipotechoic acid activation 
of endothelial cells may contribute to this inflammation [29]. 

Biomechanical activation 

There is increasing evidence that hemodynamic forces generated by blood flow in 
vessels can directly influence endothelial function and may thus constitute a novel 
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paradigm of endothelial activation [10]. Flow-dependent changes in endothelial 
function have been described for large vessel endothelial cells and implicated in the 
development of atherosclerotic lesions [10]. In contrast, although it is known that 
inflamed micro vessels are subjected to acute increases in blood flow, little is known 
about the direct consequences of these changes on endothelial function. 

The hemodynamic forces generated in the blood vessel include (i) hydrostatic 
pressure that acts at right angles to the vessel wall and causes compressive stress 
within the cells; (ii) cyclic strain or stretch that results from the elongation to which 
cells are subjected following blood vessel distention; (iii) shear stress, which is the 
frictional force that acts parallel to the endothelial cell as blood flows across it 
(Fig. 2) [10]. Of these, the effects of shear stress on endothelial function have been 
best characaterised. Considerable progress has been made in defining positive and 
negative shear stress responsive elements (SSRE) in the promoters of biomechani
cally active genes and also the transcription factors that regulate their activation 
[30]. A positive SSRE has been identified in the promoter of the ICAM-1, but not 
E-selectin or VCAM-1, gene. This may account for why subjecting cultured endo
thelial cells to laminar shear stress (LSS; 2.5-46 dyn/cm2) induces a time-dependent 
increase in ICAM-1, but not VCAM-1 or E-selectin expression [30]. Biomechanical 
stimuli may therefore act as differential regulators of adhesion molecule expression 
and may also enhance or inhibit effects of soluble mediators. 

The release of endothelial-derived vasodilators, nitric oxide (NO) and pro stacy
clin (PGI2), is also increased when endothelial cells are subjected to biomechanical 
stimuli [30]. LSS induces expression of endothelial NO synthase (eNOS) and 
cyclooxygenase-2 (COX-2), the enzymes involved in the synthesis of NO and PGI2, 

respectively [30]. NO and PGI2 cause smooth muscle relaxation and arteriolar 
vasodilation characteristic of inflammation. MCP-1, a CC-chemokine that increas
es endothelial transmigration of mononuclear cells, is also induced by LSS [30]. To 
date, it is unknown whether changes in blood flow alter production of other 
chemokines. 

Adhesion-dependent activation 

Leukocyte adhesion, via interactions of CD 11/CD 18 integrins with endothelial 
ICAM-1, also activates endothelial cells [11]. Adhesion molecule interactions were 
thought to simply facilitate close contact between endothelial cells and leukocytes 
and to allow the release of toxic leukocyte products into a microenviroment close 
to the endothelium. Recent evidence suggests, however, that adhesion molecule acti
vation directly trigger changes in endothelial function. For example, ICAM-1-
CD111CD18 interactions in endothelial-monocyte co-cultures trigger E-selectin 
induction and chemokine generation, independent of soluble mediators [11, 31]. 
The mechanisms by which direct changes in endothelial function are triggered have 
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yet to be determined, but may involve the cytoskeleton transducing signals from 
adhesion molecules into functional responses in endothelial cells. Another endothe
lial adhesion molecule that also provides a signalling function is PECAM-1. Engage
ment of endothelial PECAM-l with anti-PECAM-l monoclonal mAb induces a 
slow but sustained release in intracellular calcium and a time-dependent increase in 
PGI2 release [32]. These changes may facilitate leukocyte migration and enhance the 
vasodilator response of the blood vessel during inflammation. 

Biological activity 

The principle endothelial functions that contribute to the pathophysiology associat
ed with airway inflammation are (i) adhesion molecule expression; (ii) chemokine 
production; (iii) alteration of endothelial permeability; (iv) production of vasoactive 
mediators. These are summarized in Figures 3-5. In this section we will consider 
each of these and give specific examples of their involvement in airway inflamma
tion. Increases in adhesion molecule expression and chemokine production are 
thought to represent cellular changes of inflammation and increased permeability 
and release of vasoactive mediators, the vascular changes. Vascular and cellular 
changes are not, however, mutually exclusive; for example, leukocyte adhesion is 
known to increase endothelial permeability [33] and the endothelial-derived vasoac
tive mediator, NO, alters adhesion molecule expression [34]. 

Adhesion molecule expression 

Endothelial adhesion molecules playa key role in the three distinct phases of leuko
cyte recruitment described as rolling! tethering, firm adhesion and transmigration 
(Fig. 3) [8, 35]. We will briefly describe each phase with specific emphasis on the 
role, in each, of endothelial adhesion molecules. 

Leukocyte rolling only occurs under flow conditions and is normally associated 
with post capillary venules rather than arterioles [35] . Small changes in blood flow, 
and/or release of inflammatory mediators, induce expression of endothelial P- and 
E-selectin and this triggers rolling. The selectins are a family of three closely related 
cell surface molecules: E-selectin, expressed exclusively on endothelial cells; P
selectin, on endothelial cells and platelets; and L-selectin, expressed on most leuko
cytes but not endothelial cells [36]. The selectins have a unique and characteristic 
extracellular region made up of an amino-terminal calcium-dependent lectin 
domain, an epidermal growth factor (EGF)-like domain and a varying number of 
short consensus repeats (SCR) similar to those found in complement regulatory pro
teins [36]. Although these domains are found in numerous other proteins, the 
selectins are the only known example in which the three domains are found in 
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Involvement of endothelial adhesion molecules in the three stages of leukocyte recruitment; 

rolling/tethering, firm adhesion and migration. 

immediate juxtaposition. This suggests that the spatial arrangement is important for 
receptor function [36]. 

The lectin domain plays an essential role in selectin-mediated adhesion because 
it binds to specific carbohydrate sugar residues, such as sialic acid and fucose, 
known to be essential components of selectin ligands [36]. The EGF-like domain is 
thought to contribute structural information required for the correct presentation of 
the lectin domain [36]. The SCR domain extends the ligand binding domain away 
from the cell surface and thus may facilitate contact with selectin ligands presented 
on moving leukocytes [36]. As suggested above the selectin ligands are, at least in 
part, carbohydrate. The prototype ligand for selectins is sialyl Lewis X, a tetrasac
charide containing a fucose and sialic acid residue [36]. Select in adhesion is uni
formly dependent on sialic acid and there is strong evidence that all three selectins 
require fucose. It is now also apparent that L- and P-selectin, but not E-selectin, 
requires a sulphate group, expressed on one of the sugar residues, for adhesion [36]. 
Several glycoprotein ligands for E-selectin have been identified including E-selectin 
ligand-l (ESL-l). P-selectin glycoprotein-l (PSGL-l) is a counter receptor for P
select in and also for E-selectin which it binds with a lower affinity [36]. 

P-selectin is thought to mediate the very earliest leukocyte rolling since this stage 
is absent in P-selectin knock-out mice [36]. This early rolling is probably triggered 
following the release of histamine from tissue mast cells because histamine is known 
to rapidly mobilize P-selectin from the Weibel-Palade bodies to the cell surface [8]. 
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Thrombin, complement fragments, free radicals and cytokines can also cause a 
rapid (peaks at 10 min), but transient (return to basal levels at 20-30 min), increase 
in P-selectin [8]. In addition to the rapid expression of P-selectin at the cell surface, 
LPS and cytokines increased in airway inflammation, such as TNFa, can up-regu
late P-selectin at a transcriptional level [8]. 

E-selectin also supports leukocyte rolling at sites of inflammation, however, 
because of the requirement of de novo gene transcription for E-selectin expression, 
it does not contribute to rolling at the earliest phase of leukocyte recruitment. E
selectin is detected following stimulation with inflammatory cytokines or bacterial 
products (see previous section). E-selectin expression peaks at 4-6 h on cultured 
endothelial cells, for example HLMVEC, and returns to basal levels within about 
24 h [17]. E-selectin expression is also increased in bronchial biopsy tissue from 
patients with rhinitis compared with control patients which may indicate a role for 
E-selectin in this airway inflammatory disease [37] . Also, monoclonal antibodies 
against E-selectin block neutrophil influx and late phase bronchoconstriction, after 
a single inhalation challenge, in a primate model of asthma [37]. 

When selectin-mediated rolling has slowed down the leukocytes sufficiently, firm 
adhesion can occur. Firm adhesion requires the interaction of endothelial 
immunoglobulin (Ig)-like adhesion molecules, ICAM-1, ICAM-2 and VCAM-1, 
with their respective leukocyte integrin counter-ligands [8, 38]. ICAM-1 binds the 
leukocyte ~rintegrin ligand aL~2 (COlla/C018) and aM~2 (COllb/C018) [8]. In 
contrast, ICAM-2 which has 2 Ig domains partly homologous with the first two 
domains of ICAM-1, binds only COlla/C018 [8]. VCAM-1, binds the ~rintegrin, 
a4~1 (VLA-4), and this will be discussed below. Unlike E-selectin, ICAM-l is 
expressed under non-inflammatory basal conditions and on leukocytes, epithelial 
cells and smooth muscle cells, in addition to endothelial cells. It is possible that the 
selective basal expression of ICAM-l may result from the LSS effects of blood flow 
through a vessel, described in the previous section. TNFa, IL-l, LPS, thrombin and 
exposure to oxygen radicals, upregulate ICAM-1 expression [8]. In general, expres
sion is detectable at 2-4 h, maximal at 24 h and may be sustained up to 72 h; this 
has also been demonstrated for HLMVEC [17]. In contrast to ICAM-1, inflamma
tory stimuli do not up-regulate expression of ICAM-2. Compelling evidence show
ing that ICAM-1 is up-regulated, 5-6 h post antigen challenge in human asthma 
[37] and that ICAM-1 mAb inhibits airway eosinophilia and hyperresponsiveness in 
a primate model of asthma [39], suggests an involvement of ICAM-1 in airway 
inflammation. 

A third member of the Ig family, expressed on endothelial cells, involved in firm 
adhesion is VCAM-1 [8]. There are two known forms of VCAM-1; one, with six Ig 
domains, is an alternatively spliced variant of the predominant seven domain form 
[8]. VCAM-l, like ICAM-l, is expressed on other cell types in addition to endothe
lial cells but like E-selectin, VCAM-l is not normally constitutively expressed. The 
cytokines that induce VCAM-1 expression include, IL-l, 4, 13 and TNFa [17, 40]. 
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LPS also induces VCAM-l expression [17]. Increased expression can usually be 
detected within 2 h of stimulation and this up regulation may last for 72 h, although 
this is dependent on the induction stimulus. For example, LPS induces maximal 
expression on HLMVEC at 6 hand TNFex at 24 h, whereas no effect is detected 
with IL-4 alone until 72 h [17]. Evidence for the involvement of VCAM-l in airway 
inflammation comes from studies showing that VCAM -1 expression is increased in 
nasal biopsies from patients with rhinitis [37]. Also increased VCAM-l expression 
and subsequent eosinophil and T lymphocyte accumulation are found after 
bronchial allergen challenge in asthmatics [37]. 

Finally, following firm adhesion of leukocytes to the endothelium, leukocytes 
undergo dramatic shape change that allows them to pass through the inter-endothe
lial junction of the vessel wall and migrate into the surrounding tissue. For trans
migration to occur a chemotactic gradient is usually essential but this does not 
negate the need for adhesion molecules. In addition to facilitating firm adhesion, 
ICAM-l and VCAM-l are also thought to aid transmigration. Another member of 
the Ig family that is not involved in firm adhesion but plays a key role in transmi
gration is PECAM-l [8]. PECAM-l has six Ig-like domains and homotypic ally 
binds PECAM-l expressed on leukocytes [8], and the integrin CXy~3. PECAM-l is 
expressed in large amounts on resting endothelium, but is specifically located at the 
endothelial junctions. This localization is thought to facilitate its role in migration 
and it may act to guide leukocytes through the inter-endothelial junction. It has 
recently been shown that TNFaJIFNy decreases PECAM-l expression [41], 
although the significance of this is unclear. 

Chemokine production 

A second aspect of endothelial function, namely the ability of endothelial cells to 
produce leukocyte chemoattractants, also contributes towards the cellular changes 
associated with airway inflammation. Endothelial cells are a rich source of PAF and 
they may also metabolize LTB4, from neutrophil-derived LTA4 [42] . Endothelial 
cells can also produce, given the appropriate stimulus, several members of a recent
ly described family of chemoattractant proteins called chemokines [43,44]. Unlike 
classical chemoattractants, chemokines are specific, to a varying degree, for leuko
cyte subsets and may therefore contribute to the recruitment of different leukocyte 
subsets during airway inflammation [44]. In this section we will describe the role in 
leukocyte recruitment of IL-8, RANTES, and eotaxin which can be produced by 
endothelial cells and are increased during airways inflammation [44]. 

Chemokines are 8-10 kd proteins with 20 to 70 % homology in amino acid 
sequences that have been subdivided into families on the basis of the relative posi
tion of their cysteine residues [43, 44]. There are two main chemokine families, 
CXC (ex) and CC (~) [43,44]. In the CXC chemokine family, one amino acid sepa-
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rates the first two cysteine residues, whereas in the CC family the first two cysteine 
residues are adjacent to each other [43,44]. The CXC chemokines can be further 
subdivided functionally into those that are chemotactic for neutrophils for example 
IL-8, and those that act on lymphocytes, such as IP-10 [44]. The CC chemokines, in 
general, do not act on neutrophils but attract monocytes, eosinophils, basophils and 
lymphocytes, with variable selectivity [44]. 

IL-8 is the most prominent neutrophil chemoattractant of the CXC chemokines. 
The involvement of IL-8 in neutrophil recruitment is three-fold (Fig. 4). First, IL-8 
causes L-selectin shedding and up regulates CD11b/CD18 expression and affinity for 
its ICAM-1ligand [43]. Together these actions disengage leukocyte rolling and trig
ger firm adhesion. Second, IL-8 provides a chemotactic gradient to facilitate neu
trophil emigration into the tissue [43]. Third, IL-8 activates neutrophil function, for 
example release of degradative enzymes and respiratory burst [43]. Uncontrolled 
neutrophil activation may contribute to the tissue damage associated with airway 
inflammation. Cultured endothelial cells, activated with TNFa., IL-1 or LPS, release 
soluble IL-8 (first detected at 4 h), but also present IL-8 on the endothelial surface 
[45]. Presentation of IL-8, in this way, may facilitate L-selectin shedding and 
CDllb/CD18 up-regulation on leukocytes, because blood flow is less likely to 
remove or dilute it. The kinetics of IL-8 production are similar to E-selectin expres
sion and it is thought that simultaneous expression of an adhesion molecule 
involved in leukocyte rolling and a chemokine that activates leukocyte integrins, is 
instrumental in converting rolling to firm adhesion [35]. Increased levels of IL-8 are 
detected in BALF fluid of cystic fibrosis patients [46] and asthmatics [12] and may 
correlate with the influx of neutrophils into the airways in these diseases. 

Many CC chemokines have been detected in the airways of patients with asth
ma, including RANTES and this chemokine is thought to contribute to the accu
mulation of and! or activation of eosinophils, T cells, monocytes and basophils [44]. 
Modulation of RANTES production from endothelial cells by cytokines was dis
cussed in the previous section. In addition, the amount of RANTES released from 
TNFa.lIFNy-stimulated human nasal mucosal microvascular endothelial cell 
obtained from patients with nasal allergy is higher than from patients without aller
gy [47]. As described for IL-8, there is evidence for the involvement of RANTES at 
most steps of leukocyte recruitment. In vitro studies have shown effects on chern oat
traction, transendothelial migration, release of eosinophil cationic protein (ECP) 
and induction of production of reactive oxygen species; there is some disagreement 
however, as to whether RANTES increase the expression of CDllb/CD18 [43]. In 
contrast to RANTES, eotaxin is thought to activate eosinophils but not mononu
clear cells because the CCR3 receptor, the only known eotaxin receptor, is not 
expressed on mononuclear cells [44]. Murine endothelial cells produce eotaxin fol
lowing cytokine stimulation [48]. Eotaxin can increase CDllb/CD18 expression on 
eosinophils, increase eosinophil adhesion and chemotaxis and also trigger 
eosinophil oxidative burst [49-51]. 
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Involvement of endothelial-derived chemokines in leukocyte activation and migration. 

ROJ, reactive oxygen intermediates; ECp, eosinophil actionic protein. 

Finally, a recently identified chemokine that does not fit into the CC or CXC 
chemokine families is fracktalkine [44]. To date, this is the only known member of 
the CXXXC chemokine family and is a membrane-bound glycoprotein in which the 
first two cysteine residues are separated by three amino acids and the chemokine 
domain sits on a mucin-like stalk. Fractalkine is induced on cultured human 
endothelial cells and promotes adhesion of monocytes and activated T cells in vitro 
[44]. The presentation of a chemokine on the cell surface puts it in an ideal position 
to stimulate circulating leukocytes without being removed by blood flow or cleared 
by DARC, a promiscuous chemokine receptor on the surface of erythrocytes. To 
date, it is not clear whether the unique structure of fractalkine allows this 
chemokine to directly mediate adhesion in addition to activating adhesion mole
cules. 

Permeability 

One of the most prominent homeostatic activities of the endothelium is the regula
tion of exchanges between the blood and the underlying tissue. Changes in endothe
lial permeability of bronchial post-capillary venules lead to plasma exudation and 
tissue oedema characteristic of airway inflammation. Oedema formation causes 
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mucosal thickening which may contribute to the bronchoconstriction associated 
with airway inflammatory diseases such as asthma. Whether or not the venular 
endothelial junctions of these microvessels are abnormally leaky in patients with 
such diseases is unknown. What is known, however, is that many of the inflamma
tory mediators implicated in the pathogenesis of airway inflammation increase 
endothelial permeability (Fig. 5). In this section, we will give examples of two medi
ators, histamine and PAF, that are thought to directly alter endothelial permeabili
ty. 

Histamine, a biogenic amine stored in cytoplasmic granules of mast cells, is one 
of the first inflammatory mediators released in response to an inflammatory trigger 
during airway inflammation. When mast cells degranulate the released histamine 
activates local target cells including the endothelium [52]. Histamine increases 
transendothelial permeability of cultured endothelial cells to albumin [52]. This is 
associated with reorganisation of the F-actin fibres of the cytoskeleton and increas
es in [Ca2+1i and phosphoinositide turnover [52]. Local installation of histamine 
onto human nasal mucosa leads to increased recovery of albumin in the nasal lavage 
fluid, suggesting transient increases in epithelial and endothelial permeabilities [53]. 

PAF is a lipid mediator which is newly synthesised and released during airway 
inflammation, mainly from mucosal mast cells but smaller quantities are also pro
duced by endothelial cells. PAF like histamine, causes the contraction of human 
endothelial cells and increase permeability of endothelial cells in culture [52]. PAF 
is also known to be one of the most potent inducers of microvascular leakage 
throughout the guinea-pig airway, when administered intravenously [53]. It is 
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approximately 10,OOO-fold more potent than histamine, although its duration of 
action is shorter. It has been suggested that oedema resulting from increased airway 
microvascular permeability may be responsible for airway narrowing in human sub
jects after the inhalation of PAF since PAF does not contract airway smooth muscle 
in vitro [53]. 

In response to inflammatory stimuli, macromolecules and plasma move from the 
blood to the surrounding tissue either via paracellular pathways, at the intercellular 
junctions, or transcellular pathways across the cell membrane [6]. It is thought that 
many inflammatory mediators, including PAF and histamine act directly at the 
endothelial junctions [52]. It has been known for some time that actin filament reor
ganization is involved in endothelial permeability changes [52]. In general, stabi
lization of actin cytoskeleton reduces endothelial permeability and inhibition of 
actin microfilament assembly increases it. Until recently, however, little was known 
about the molecular targets at the cell junctions [54]; whether permeability increas
ing agents can alter the distribution or function of these molecules remains to be 
seen. 

Production of vasoactive mediators 

Endothelial cells are a rich source of vasodilators including NO, prostaglandins 
(PG) E2 and PGI2 and also vasoconstrictors such as endothelin and angiotensin II 
[9]. These mediators have direct effects on vascular smooth muscle (Fig. 5), but may 
also have more wide-reaching effects on airway smooth muscle. These "long dis
tance" effects may occur because of the close anatomic relationship between 
microvascular endothelial cells and airway tissue. In this section, however we will 
only discuss the effects of vasodilators on vascular smooth muscle relaxation. 

NO, a highly reactive gas with a half-life of seconds in biological systems, is 
formed when NO synthase (NOS) enzymes convert L-arginine to L-citrulline [55]. 
It has now become clear that there are at least three different NOS isoforms: (i) neu
ronal (nNOS), (ii) macrophage or inducible (iNOS) and (iii) endothelial (eNOS) 
[56]. Despite the terminology, NOS expression is not restricted to these cells. NO 
plays a key role in the regulation of cellular processes in the cardiovascular, nervous 
and immune systems but the complexity of its role in the airways and its involve
ment in airway inflammation is still being unravelled. Increased levels of NO are 
detected in the BALF of asthmatics and it is thought that this may be an important 
marker of inflammation in the airway [57]. There is controversy, however, as to the 
main cell source of NO in airways disease but certainly endothelial cells in the nasal 
mucosa of rhinitic patients stain strongly for eNOS and to a lesser extent, iNOS 
[58]. 

NO increases blood flow in the bronchial circulation and this may contribute, in 
part, to the increase in plasma exudation and oedema formation associated with air-
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way inflammation [57]. NOS inhibitors, applied to the surface of guinea-pig air
ways, have however, also been shown to increase plasma exudation into the airway 
lumen [57]. It is possible that the latter effect of NOS inhibitors may be at the level 
of the epithelium. In support of this we have shown that NOS inhibitors increase 
cytokine-induced damage of lung epithelial cells in culture [59]. These results sug
gest that NO may have pro and anti-inflammatory effects in airway inflammation. 
The site of NO production, the target cells on which it acts and! or the amount of 
NO produced may combine to determine the predominant effect. 

There are also two isoforms to the COX enzyme involved in the synthesis of 
prostaglandins. These are COX-I, thought to be responsible for the production of 
prostaglandins during acute inflammation and COX-2 which is thought to be the 
predominant isoform present during chronic inflammation [60]. PGI2 and PGE2 are 
the vasodilators produced by most arteries and high yields of PGI2 are especially 
characteristic of endothelial cells. Microvascular endothelial cells, however, pro
duce predominantly PGE2 and PGF2a although the profile of prostaglandins pro
duced by endothelial cells from the bronchial microcirculation circulation, has not 
been specifically addressed. As described for NO, PGs will act directly on the vas
cular smooth muscle of arterioles to cause vasodilation which contributes to the 
associated plasma exudation. PGE2 and PGI2 have been shown to synergise with 
mediators such as histamine that act directly on the endothelium of the post capil
lary venules, to increase permeability and greatly potentiate oedema formation [60]. 
This synergism is probably the result of increased blood flow through the capillary 
bed with the delivery of more plasma to venules downstream. The resulting increase 
in hydrostatic pressure in the venules also contribute to enhanced plasma protein 
leakage. 

Pharmacological modulation in vitro 

In this last section, we will describe ways in which endothelial function can be mod
ulated in vitro. In particular, we will emphasise the endothelial modulatory effects 
of anti-inflammatory agents that are routinely used in the treatment of airway 
inflammation, such as glucocorticoids and ~-agonists. Other ways in which 
endothelial function may be inhibited in vitro will not be covered in detail but 
include tyrosine kinase inhibition and antisense. Tyrosine kinase inhibitors suppress 
endothelial functions, including adhesion molecule expression [61] and the induc
tion of COX-2 [60]. Identification of specific tyrosine kinases involved with indi
vidual endothelial functions might lead to the development of specific inhibitors of 
these functions. Another approach that might result in selective inhibition of the 
inflammatory response is the use of anti-sense oligonucleotides to inhibit the expres
sion of mRNA for adhesion molecules [62]. These targeted approaches may provide 
useful therapeutic tools for reducing airway inflammation, in the future. 
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Glucocorticoids, used in the treatment of asthma and rhinitis, have potent and 
wide ranging anti-inflammatory effects including inhibition of leukocyte influx into 
the airways, inhibiton of inflammatory mediator release and reduction of microvas
cular leakage. The relative contribution to these effects of endothelial function inhi
bition is hard to assess in vivo. In vitro studies, however, provide strong evidence 
that glucocorticoids inhibit, to a varying degree, the endothelial functions discussed 
in the biological activity section of this chapter. Glucocorticoids, such as dexam
ethasone, inhibit, in part, ICAM-l and E-selectin expression on human endothelial 
cells, in culture [63, 64], and also abolish cytokine-induced increases in endothelial 
monolayer permeability [65]. Glucocorticoids also block chemokine release from 
endothelial cells [66]. Finally, inhibition of induction of the inducible isoenzymes 
iNOS and COX-2 may also contribute significantly to the anti-inflammatory effects 
of glucocorticoids [60, 67]. 

Steroids have, however, many harmful side-effects when used chronically and 
thus the development of drugs with an effective anti-inflammatory profile but with 
fewer side-effects would be highly desirable. A strategy that has received much 
attention recently, especially in the context of asthma, concerns increasing intracel
lullar cAMP levels in cells involved in the inflammatory process [68]. Activation of 
adenylate cyclase or inhibition of phosphodiesterases, the enzymes involved in the 
synthesis and breakdown of cAMP respectively, elevate intracellular cAMP. Inhaled 
~-agonists, used to treat bronchoconstriction associated with airway disease, cause 
relaxation of the airway smooth muscle as a result of adenylate cyclase activation 
and subsequent cAMP elevation in these cells. Elevation of intracellular cAMP in 
endothelial cells may also contribute, in part, to the anti-inflammatory potential of 
cAMP elevating agents used to treat airway inflammation. 

Endothelial cells express POE3 and 4 as the major cAMP hydrolysing enzymes. 
We have shown that inhibition of POE4, with appropriate activation of adenylate 
cyclase, is sufficient to inhibit TNFa-induced E-selectin expression and neutrophil 
adhesion, whereas combined inhibition of POE3 and 4 is required for inhibition of 
VCAM-l and eosinophil adhesion [69] . In contrast, neither condition inhibited 
ICAM-l expression. Selective inhibition of adhesion molecule expression may have 
therapeutic implications for the treatment of leukocyte recruitment associated with 
airway inflammation. Activation of adenylate cyclase with simultaneous POE3 and 
4 inhibition, also blocks thrombin-induced endothelial permeability increases [70]. 
These studies provide clear evidence that increasing intracellular cAMP within 
endothelial cells may have important anti-inflammatory effects. 

In summary, we have outlined the generalized structure of endothelial cells high
lighting specialized features of endothelium of the bronchial circulation; provided 
an overview of endothelial cell activation relevant to airway inflammation; 
described the role of endothelial adhesion molecules and chemokines in orchestrat
ing leukocyte recruitment and the implications for airway inflammation of increased 
endothelial permeability and release of endothelial-derived vasodilators. Finally, we 
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have described how these endothelial functions may be modulated in vitro. In con
clusion, the single layer of endothelial cells that line the microvessels of the 
bronchial circulation playa pivotal role in orchestrating airway inflammation. Inhi
bition of endothelial function may therefore provide a useful therapeutic strategy for 
reducing airways inflammation. 
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Introduction 

The epithelial lining of the airways forms the first line of defence against toxic and 
infectious agents in the inspired air. Although airway epithelial cells have tradition
ally been seen to playa vital role in providing an impermeable barrier and clearing 
the airways of noxious inhaled agents, through efficient mucociliary clearance, there 
is now increasing evidence to suggest that airway epithelial cells playa more impor
tant physico-chemical role. Several studies have demonstrated that epithelial cells 
are capable of synthesising and releasing several biologically active mediators which 
directly or indirectly influence the activity of inflammatory cells important in aller
gic airway diseases, including allergic rhinitis and asthma [1]. 

The airway epithelium as a physical barrier 

The airway epithelium is a membrane-like barrier, comprised of several epithelial 
cell types (Fig. 1), and provides an interface between the respiratory system and the 
external environment. Whilst the anterior third of the nasal cavity is covered by a 
squamous epithelium, the posterior two-thirds is covered by a pseudo-stratified cil
iated columnar epithelium. Although the distribution and characteristics of the cells 
in the upper epithelial lining are consistent with those of the lower airways [2, 3], 
the basal cells gradually decrease in number distally in the lower airways, until there 
are none in the terminal and respiratory bronchioles, and the pseudo stratified 
columnar epithelium is replaced by a single cuboidal epithelium. 

Basal cells 

The basal cells, which appear polygonal to ovoid in section, form a single cell layer 
along the airway basement membrane and are thought to playa major role in both 
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Figure 1 

Schematic diagram of the maior epithelial cell types in the airway epithelium. 

the generation of columnar and goblet cells [4] and the attachment of columnar cells 
to airway basement membrane [5]. 

Ciliated columnar epithelial cells 

The columnar cells constitute the superficial luminal borders of the epithelium and 
are composed of both ciliated and non-ciliated cells. The terminally differentiated 
ciliated cells form an upper cell layer at the apical surface of the airway epithelium 
and playa central role in mucociliary clearance, which is an integral component of 
defence against infectious agents and inhaled toxic materials in the respiratory sys
tem [2]. Electron microscopic studies of the airways have demonstrated that the cil
iated cells are each covered with 50-100 hair-like mobile structures (cilia), each 4-
6 11m in length and 0.33 11m in diameter in thickness, and are joined to each other 
at the luminal surface by tight junctions, which serve in maintaining a permeability 
barrier [2, 6] and preserving the integrity of the epithelium [7]. The cilia beat in syn
chrony to transport mucus efficiently and it has been suggested that the ciliary activ
ity of the epithelial cells may be under the influence of the autonomic nervous sys
tem, since both adrenergic and cholinergic agents can stimulate the ciliary beat fre
quency of these cells [8]. 

In addition to cilia, the columnar cells are also covered by 300-400 microvilli, 
which are small finger-like projections from the cell surface: these are up to a max-
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imum of 211m in length, approximately 0.1 11m in diameter, and unlike the cilia are 
immobile [9]. The microvilli prevent drying of the surface of the nasal mucosa and 
may also help in the transport of fluid and electrolytes between the cells and nasal 
fluid. The microvilli are not thought to be the precursors for cilia. 

Non-ciliated columnar epithelial cells 

The non-ciliated cells (also referred to as mucus cells) comprise goblet, serous, Clara 
and pre-secretory cell types, and are involved primarily in the production of airway 
secretions. These cells are also thought to be progenitor cells for terminally differ
entiated ciliated cells [10]. Goblet cells are unicellular mucous glands, with basally 
situated nuclei, and produce abundant droplets of mucus in the more superficial 
part of the cells before releasing them directly onto the surface of the ciliated epithe
lium [11]. Goblet cells are widely distributed throughout the surface of the respira
tory epithelium and thought to be under the control of capsaicin-sensitive sensory 
nerves, since they can be induced to secrete mucus by neuropeptides released from 
capsaicin-sensitive sensory nerve endings [11]. 

The airway epithelium as a biochemically active barrier 

Airway epithelium and hyperresponsiveness 

Although increased airway responsiveness is a cardinal feature of bronchial asthma, 
this phenomenon is also associated with several other disease states, where airway 
inflammation and damage to the airway mucosa is well established. Consequently, 
it has been suggested that airway hyperresponsiveness may be related to the disrup
tion of airway epithelium and airway inflammation. It is, however, not clear 
whether the loss of epithelial integrity in bronchial asthma contributes to the 
increased bronchial responsiveness or whether it is itself a result of airway inflam
mation and the consequential hyperreactivity. Nevertheless, there are several possi
ble mechanisms through which epithelial abnormalities could lead to increased air
way reactivity, including (i) increased permeability to allergen [12, 13]; (ii) changes 
in osmolarity of the airway surface lining fluid [13]; (iii) exposure of sensory nerve 
fibres to irritants and potentiation of local axon reflexes [12]; (iv) increased pro
duction of inflammatory mediators [1] and reduction of putative "protective" (both 
anti-inflammatory and relaxing) mediators [14, 15]; and (v) modulation of the 
immune system [16]. Of these mechanisms, the latter two have been the most wide
ly studied and suggest that airway epithelial cells may play an important role in the 
modulation of airway function (under both normal and abnormal conditions) by 
influencing the expression, synthesis, release and degradation of substances such as 
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nitric oxide, endothelin, metabolites of arachidonic acid, specific pro-inflammatory 
cytokines, "protective" substances, cell adhesion molecules and major histocompat
ibility complex (MHC) class II antigens. For the purpose of this chapter, some of 
these studies will be discussed in greater detail. 

Culture of human airway epithelial cells in vitro 

In spite of the increasing evidence for an important physico-chemical role of airway 
epithelium in vivo, it has, however, not proved easy to assign a specific pathogenic 
role to the airway epithelium, due to the presence of other cell types and underlying 
tissues. Consequently, a large number of mechanistic studies have employed human 
airway epithelial cell cultures as an ideal in vitro model system for investigating the 
association between airway epithelial cells, inflammation and hyperresponsiveness 
in airway disease. Although nasal and bronchial epithelial cells have been cultured 
in vitro by several groups, a major difficulty experienced by many of workers in the 
field has been to consistently grow these cells to confluence and to the terminally 
differentiated ciliated cell type. We have addressed these difficulties and have 
demonstrated that both nasal and bronchial ciliated epithelial cells can indeed grow 
to confluence to the fully differentiated ciliated cell types [17], and can be used in 
further investigations. 

Airway epithelial cell-derived mediators 

Nitric oxide 
Studies have demonstrated that nitric oxide (NO) is a highly reactive multi-func
tional chemical produced by many diverse cell types, including epithelial cells, from 
L-arginine by the action of the enzyme nitric oxide synthase (NOS) [18, 19]. NOS 
is present as three isoforms, of which two are expressed constitutively and one is 
inducible. The constitutive isoforms (cNOS) are activated by calcium influx in 
response to physiological stimuli, to synthesise endogenous NO at picomolar con
centrations required for the maintenance of physiological homeostasis [18-21]. In 
contrast, the inducible isoform (iNOS) is calcium-independent and transcribed in 
response to endotoxin and cytokines such as interferon y (IFNy), interleukin (IL)-lP 
and tumour necrosis factor a (TNFa) [18, 19,22]. It is thought that the nanomolar 
concentrations of NO synthesised by the action of iNOS may lead to generation of 
peroxynitrites and hydroxyl radicals, which subsequently damage tissue [21]. 

Indeed, Guo and colleagues have demonstrated that in normal human airways 
iNOS mRNA is expressed abundantly and predominantly in airway epithelial cells, 
and that NO synthesis was due to continuous expression of the iNOS isoform in air
way epithelial cells [23]. Other studies have suggested that bronchial epithelial cells 
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of asthmatics may express increased levels of iNOS, compared with cells of non
asthmatic individuals, and consequently may contribute to increased epithelial dam
age and shedding observed in these individuals [21, 24]. 

Endothelin 
The endothelins (ETs) are a family of three isopeptides, ET-1, ET-2 and ET-3 syn
thesised and released from both bronchial and nasal epithelial cells [25, 26] and 
mediating a number of effects including vasoconstriction, a slow but prolonged 
bronchocontraction and mucus secretion. Wu and colleagues have shown that ET-1 
can also stimulate the synthesis of the eicosanoids, prostaglandin (PG) E2, PGF2cx' 

PGD2, thromboxane B2, and 15-hydroxyeicosatetraenoic acid (15-HETE) in human 
nasal explant cultures [27]. 

Several studies have demonstrated that bronchial epithelial cells express ETs and 
that mediators such as IL-1, TNFa, histamine and endotoxin can up regulate the 
expression of epithelial ET [28, 29] . These studies suggest that epithelial-derived ET 
playa role in the aetiology and pathogenesis of airway disease, particularly asthma. 
Indeed, several studies have demonstrated that the concentration of ET is raised in 
airways of asthmatics. 

Studies investigating bronchoalveolar lavage (BAL) samples collected from asth
matics have demonstrated that ET-1 and ET-3 are raised in symptomatic individu
als [30, 31]. Similarly, bronchial biopsy studies have also demonstrated that ET
immunoreactive material is present in increased concentration in airway epithelium 
of asthmatic individuals [32, 33]. Vittori and colleagues have investigated bronchial 
epithelial cells isolated from bronchial biopsies of patients with symptomatic asth
ma, patients with chronic obstructive pulmonary disease (COPD) and healthy non
smoking volunteers, and demonstrated that epithelial cells of asthmatics and COPD 
patients, but not cells of healthy non-smokers, expressed and released increased 
amounts of immunoreactive ET-1, in vitro [34]. 

Arachidonic acid metabolites 
We and others have shown that cultured human tracheal and bronchial epithelial 
cells can metabolise arachidonic acid to PGE2, PGF2cx' leukotriene (LT) B4, LTC4 and 
additionally 12-HETE and 15-HETE [35-38] . Although there is evidence that many 
arachidonic acid metabolites may act as potent bronchial constrictors as well as cell 
activators and chemoattractants, the generation of these mediators and their rele
vance in airway inflammation and the initiation of hyperreactivity in asthma 
remains unclear. However, LTC4 and its metabolites LTD4 and LTE4- have signifi
cant bronchoconstrictor activities. LTC4 and LTD4 can also increase membrane per
meability and cause microvascular leakage and/or airway oedema. LTB4 and LTE4 
have been shown to be potent chemoattractants for eosinophils and may further 
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activate either eosinophils or the vascular endothelium to increase the migration of 
these cells [39, 40]. Similarly, PGD2 and PGF2a. have potent "bronchoconstrictive" 
effects [41]. 

Inflammatory cytokines 
Recent studies have demonstrated that human airway epithelial cells can generate a 
wide variety of cytokines, which either directly or in conjunction with one another 
influence the growth, differentiation, activation, migration, and survival of other 
inflammatory cells and therefore feature prominently in the allergic inflammatory 
response [42-45]. The epithelial cytokines can be divided into four groups accord
ing to their functions: (1) chemotactic factors, (2) colony stimulating factors, (3) 
growth factors and (4) pro-inflammatory multifunctional cytokines; and include IL-
1~, IL-3, IL-6, IL-S, granulocyte macrophage colony stimulating factor (GM-CSF), 
granulocyte colony stimulating factor (G-CSF), TNFa and regulated on activation, 
normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-
1 (MCP-1). 

However, recent studies have demonstrated that there are differences in the abil
ity of epithelial cells of atopic and non-atopic individuals to synthesise different 
amounts and/or profiles of pro-inflammatory cytokines, and suggest that genetic 
predisposition and manifestation of the symptoms of allergic airway disease in the 
atopic individuals may, at least in part, account for these differences. 

Studies of epithelial cells cultured from nasal tissue of non-atopic non-rhinitic 
subjects, patients with allergic rhinitis and patients with nasal polyps have demon
strated that epithelial cells from rhinitics and individuals with nasal polyps synthe
sise significantly greater quantities of GM-CSF and IL-S, than cells of healthy non
atopic non-rhinitic individuals [46,47]. Studies from our laboratory have demon
strated that epithelial cells cultured from nasal biopsies of atopic non-rhinitic and 
atopic rhinitic patients, release significantly greater amounts of IL-S, GM-CSF and 
TNFa, than non-atopic non-rhinitic healthy volunteers [4S]. Additionally, our stud
ies have demonstrated that epithelial cells from atopic rhinitics release significantly 
greater amounts of IL-1, TNFa, GM-CSF and RANTES during the pollen season 
[4S]. Furthermore, epithelial cells of atopic rhinitics are more sensitive to stimulants, 
and exposure to ambient concentrations of ozone (03 10 ppb) exacerbates the 
release of RANTES only from the cells of atopic rhinitics during the pollen season 
(Fig. 2). 

Similarly, studies of bronchial epithelial cells have demonstrated that asthmatics 
synthesise greater quantities of IL-1~, IL-16, GM-CSF and MCP-1 than non-asth
matic subjects in vivo [49-51] and the expression of IL-16 correlates well with the 
numbers of CD4+ cells [51]. Preliminary studies of epithelial cells cultured from 
bronchial biopsies of well characterised groups of asthmatic and non-asthmatic sub
jects in our laboratory have also demonstrated that bronchial epithelial cells of 
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nasal epithelial cells of non-atopic non-rhinitic subjects (NANRc), atopic non-rhinitic sub

jects (ANRc) and atopic rhinitic patients outside of the pollen season (ARc-out) and during 

the pollen season (ARc-in). Results are expressed as median (n = 9 for each set of experi

ments; *p < 0.05 vs air). 

atopic asthmatics release significantly greater amounts of constitutive IL-8, GM
CSF, RANTES and soluble intercellular adhesion molecule-l (sICAM-l) than non
atopic non-asthmatics [52] (Fig. 3). Similar to our findings for nasal epithelial cells 
of atopic rhinitic and non-atopic non-rhinitic individuals, epithelial cells of atopic 
asthmatics are also more susceptible after exposure to pollutants such as N02 and 
0 3 (Fig. 4), compared with non-atopiclnon-asthmatics. 
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Figure 3 

Constitutive release of pro-inflammatory mediators by bronchial epithelial cells cultured 

from non-atopic non-asthmatic subjects (NA) and atopic asthmatic patients (A). Results are 

expressed as median and interquartile values (n = 8 for each set of experiments; *p < 0.05 

and **p < 0.001 for NA vs A; ND, not detected). 

Collectively, these studies suggest that genetic pre-disposition and manifestation 
of symptoms of allergic airway disease in atopic individuals may, at least in part, be 
a consequence of increased expression, synthesis and release of specific pro-inflam
matory mediators from airway epithelial cells, both constitutively and following 
exposure to external factors such as allergens and pollutants. 

"Protective" mediators 
In contrast to the bronchoconstrictive and inflammatory mediators expressed and 
synthesised by human airway epithelial cells, several studies have demonstrated that 
these cells are also capable of expressing naturally occurring protective mediators. 
PGE2 is synthesised by human airway epithelium and is a potent inhibitor of both 
early and late phase asthmatic responses when given prior to allergen [53]. Other 
studies have shown that PGE2 also has inhibitory effects on a variety of cytokines, 
leukotrienes and histamine [54, 55]. 
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Figure 4 

Effect of exposure to ozone (Oy on the electrical resistance of confluent bronchial epithe

lial cell cultures of non-atopic non-asthmatic sub;ects and atopic asthmatic patients (n = 8 
for each set of experiments; *p < 0.05 vs air; **p < 0.001 vs air at each time-point). 
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Some studies have suggested that airway epithelial cells may playa protective 
role against the adverse effects of neuropeptides such as substance P and bradykinin, 
by expressing and modulating the activity of a specific group of enzymes, including 
neutral endopeptidase (NEP), angiotensin-converting enzyme (ACE) and car
boxypeptidase N (CPN) [56]. Ohkubo and co-workers have investigated the local
ization of these three enzymes in human nasal mucosa by immunohistochemical 
techniques and demonstrated that both NEP and ACE-immunoreactivity were 
strongly prominent in nasal epithelium [56, 57]. In contrast, immunoreactivity for 
CPN was most prominent in the superficial lamina propria [57]. More recently, in 
collaboration with others, we have investigated the distribution of NEP gene expres
sion in human bronchial mucosa and also demonstrated that NEP-immunoreactive 
material and NEP mRNA were present in bronchial epithelium [58]. 

Similarly, animal studies have demonstrated that mechanical removal of airway 
epithelium leads to increased sensitivity of underlying airway smooth muscle to 
spasmogens, suggesting that this effect is a consequence of the removal or reduction 
of a naturally occurring epithelium derived smooth muscle relaxing factor [59, 60]. 

Consequently, it is possible that airway epithelial cell damage, as seen in asthma 
for example, could lead to changes in the concentrations of the naturally occurring 
"protective" substances, subsequently leading to airway inflammation and hyperre
sponSlveness. 

Cell adhesion molecules 
Cell adhesion molecules are specific cell surface receptors which mediate adhesion 
of cells to one another and to extracellular matrix [61, 62]. They playa crucial role 
in embryonic development, maintenance of tissue architecture, tumour metastasis, 
wound healing and inflammatory response [61-63] . The cell adhesion molecules are 
divided broadly into four main classes: (i) integrins, (ii) immunoglobulin superfam
ily, (iii) selectins and (iv) cadherins, of which members of the former two groups 
have been greatly studied. 

Several studies have demonstrated that the a-integrin family, and more specifical
ly members of the ~1 integrin subfamily, are expressed on human bronchial and nasal 
epithelial cells. The members of the ~1 integrin subfamily function as cell surface 
receptors which bind extracellular matrix components collagen, fibronectin, vit
ronectin and laminin [63-65], and influence (i) adherence of epithelial cells to base
ment membrane and underlying connective tissue, (ii) migration of leucocytes through 
endothelium and (iii) localisation of leucocytes at sites of inflammation in the epithe
lium. Our studies with cultured cells have shown that both nasal [66] and bronchial 
[67] epithelial cells are capable of expressing the ~la2-6 integrins, in vitro. In contrast, 
marked expression of only ~1 a2, 3 & 6 integrins is seen in the nasal and bronchial 
epithelium in vivo, with no difference in the expression between non-allergic subjects 
and patients with perennial rhinitis/seasonal allergic rhinitis/asthma [66-68]. 
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Studies of the immunoglobulin superfamily have demonstrated that this is a large 
group of molecules with multiple immunoglobulin-like domains. This group 
includes the adhesion molecules ICAM-1, ICAM-2, ICAM-3 and VCAM-1, which 
play an important role in interactions involving leucocytes [69, 70]. ICAM-1 is per
haps the most widely studied of this group of molecules which is expressed consti
tutively at low levels by several cell types, including airway epithelial cells, and is 
markedly unregulated by inflammatory stimuli such as endotoxin, IL-1~, TNFa and 
IFNy [66-73]. 

Functional studies have suggested that ICAM-1 may playa role in respiratory 
tract viral infections since this is thought to be the surface receptor for the major 
group of rhinoviruses which can cause airway epithelial cell damage [74]. More 
importantly, other studies have suggested that ICAM-1 influences the inter-tissue 
trafficking of neutrophils, eosinophils and lymphocytes [70, 75], and therefore may 
playa more ubiquitous role in the pathogenesis of airway disease. 

Studies in animals have demonstrated that ICAM-1 expression is upregulated in 
inflammed airway epithelium in vivo, and may play an important role in airway 
eosinophilia and hyperresponsiveness, since antibodies against ICAM -1 can attenu
ate both the eosinophilia and hyperresponsiveness in these animals [76,77]. Simi
larly, studies in humans have demonstrated that the expression of airway epithelial 
cell adhesion molecules is enhanced in allergic conditions such as asthma and rhini
tis. Manolitsas and co-workers have demonstrated that expression ICAM -1 is 
upregulated on bronchial tissue of patients with bronchial asthma [68]. Similarly, 
Montefort and colleagues have demonstrated that expression of ICAM-1 is signifi
cantly increased on nasal mucosa in perennial allergic rhinitis patients, compared to 
non-rhinitic individuals [78]. Furthermore, several studies have demonstrated that 
levels of serum sICAM-1 are also raised in stable atopic asthmatic patients, com
pared with healthy non-asthmatic subjects, and are elevated further during exacer
bations of asthma [79-82]. 

HLA class II antigens 
Several studies have demonstrated that type II alveolar epithelial cells and ciliated 
bronchial epithelial cells are capable of expressing class II major histocompatibility 
complex antigens (MHC II, HLA-DR) and that cytokines can increase the expres
sion of these cell surface molecules [83-85]. The findings from these studies suggest 
that airway epithelial cells may additionally have a potentially important role in 
antigen processing/presentation and subsequent initiation and propagation of 
immune-mediated airway inflammation. 

The putative mechanisms and consequences of the interaction between antigen 
presenting cells (APCs) and T lymphocytes have been reviewed recently [16]. It has 
been suggested that preferential binding of specific allergenic peptides to the HLA
class II antigens may lead to recognition by activation and proliferation of specific 
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T cell clones (either Thl or Th2), which pre-dispose the individual to the develop
ment of certain diseases [86, 87]. 

Poston and colleagues have demonstrated that expression of HLA class II anti
gen is significantly upregulated in basal epithelial cells of asthmatic bronchial 
epithelium [88]. Similarly, Stoop and colleagues have investigated biopsy specimens 
of turbinates from both healthy subjects and patients with nasal polyps, by immuno
histochemical staining, and demonstrated that there was a significant increase in the 
number of HLA-DR positive cells (including epithelial cells) in the nasal mucosa of 
patients with nasal polyps, compared to healthy subjects [89]. Further, these authors 
demonstrated that there was a concomitant increase in the number of CD4+ and 
CD8+ cells, suggesting a likely interaction between the HLA-DR positive cells and T 
lymphocytes. More recently, Nag and colleagues have demonstrated that complex
es formed between soluble major histocompatibility (sMHC) class II molecules and 
antigenic peptides, which can be recognised by T cell receptors (TCRs) on CD4+ T 
cell clones and render these cells non-responsive, also induces antigen-specific apop
tosis in murine T cell clones, independently of non-responsiveness [90]. Thus, 
manipulation of T cell activity may offer novel therapeutic strategies for the man
agement of T cell-associated diseases. 

Summary 

In view of the multi-functional role of the airway epithelium, and particularly the 
different types of epithelial cells which predominate in the epithelium, it is not dif
ficult to envisage how perturbation of this barrier may bring about adverse changes 
in and around the surrounding tissues and possibly help to explain the pathogene
sis of allergic airway diseases. It is tempting to hypothesise that in allergic airway 
diseases dysfunction of the airway epithelium, resulting from either acute exposure 
to airborne irritants such as air pollutants, allergen, viruses, bacteria, etc, or as a 
consequence of genetic pre-disposition to a specific allergen, itself results in the ini
tiation, maintenance and potentiation of inflammation at the site/s of exposure. This 
may be expressed either in the form of generation of pro-inflammatory mediators, 
which interact with mediators derived from other inflammatory cells such as mast 
cells and T lymphocytes, and act as potent eosinophil and neutrophil chemoattrac
tants and activators or up-regulate cell adhesion molecules involved in the inter-tis
sue trafficking of these and other "inflammatory" cell types. Alternatively, depletion 
of any naturally occurring anti-inflammatory mediators and smooth muscle relax
ing agents, which help to maintain the integrity of the airways and the surrounding 
tissues, may ensue and also lead to adverse reactions in the airways. 

Consequently, it is likely that agents which influence the generation, bioavail
ability and/or biological activity of both pro- and anti-inflammatory cytokines will 
play an important therapeutic role in the management of airway disease. 
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Introduction 

Airway smooth muscle (ASM) cell complexity is becoming increasingly apparent. 
Initially considered to be merely a contractile element, it is now known that smooth 
muscle cells actively regulate their function and microenvironment by producing a 
range of cytokines and low molecular weight products in addition to extracellular 
matrix. Growth and proliferation of smooth muscle cells within the airway is also 
recognised as a component of airway pathology, especially in asthma. This chapter 
is intended to provide an overview of smooth muscle function and to highlight 
recent advances in areas of active research. 

Structural and functional characteristics 

Ultrastructure 

ASM cells are elongated and spindle shaped, and contain a thin elongated central oval 
nucleus with a prominent nucleolus and dense cytoplasm. They measure up to 600 
Ilm in length and are oriented such that the thick middle portion of the cells lie against 
the thin tapered end of adjacent cells. In transverse section, light and dark cells can 
be identified which appear to correspond to differing contents of myofilaments (Fig. 
1a). At the ultrastructural level, the perinuclear sarcoplasm is devoid of fibrils and 
contains the majority of organelles including rough endoplasmic reticulum, Golgi 
apparatus, mitochondria, dilated cisternae, ribosomes and vesicles (Fig. 1b). The sar
coplasmic membrane contains numerous invaginations known as caveoli. The 
remainder of the cell body is occupied predominantly by myofibrils (mostly actin) 
(Fig. 1c). Individual muscle fibres are surrounded by an extracellular matrix (ECM) 
comprising a continuous basement membrane of reticular fibres and collagenous bun
dles embedded in a protein polysaccharide ground substance (Fig. 1c). 
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Airway smooth muscle cells 

Smooth muscle cells cultured from large airways become flattened and spindle 
shaped and contain a central oval shaped nucleus [1]. Two nuclear sizes, 9 ~m and 
15 ~m across the shortest diameter, can be identified and these contain 2-7 or 1-2 
prominent nucleoli, respectively. The smaller of the two cell types predominates. At 
the ultrastuctural level, the perinuclear sarcoplasm contains an abundance of syn
thetic organelles including rough endoplasmic reticulum, Golgi apparatus, mito
chondria, dilated cisternae, ribosomes and vesicles (Fig. 2a). Unlike smooth muscle 
cells in the tracheal is in situ, cultured smooth muscle cell processes also contain 
organelles consisting of mitochondria and free ribosomes as well as homogeneous 
scattered myofibrils. There is a dense band of longitudinally oriented myofibrils just 
below the sarcolemma which is continuous along the whole length of the cell 
(Fig.2b). 

Contractile mechanisms 

The contractile apparatus of smooth muscle enables slow, sustained contractions 
which overcome resting loads to shorten. These loads comprise viscous and elastic 
structural elements in the airway wall and surrounding tissue, cartilage in large air
ways and transmural pressures [2]. The circumferential orientation of the shorten
ing smooth muscle cells reduces the calibre of the airway, thereby increasing airway 
resistance [2]. The central airways control resistance and airflow distribution, while 
the peripheral airways contribute to the regulation of regional ventilation to perfu
sion ratio (V/Q) [3]. 

Smooth muscle contraction 
Smooth muscle cells are connected via cell junctions, enabling co-ordinated con
traction of the whole muscle sheet. Adherens junctions and their constitutive dense 
bands provide insertion points for the myofilaments of the contractile apparatus and 
the cytoskeleton. Activation of the contractile apparatus results in an inward pull on 
the sarcolemma through the attachments of the contractile elements to the basal 
lamina of the cell [4]. The contractile apparatus itself, shortens by the energy-de pen-

Figure 1 
Transmission electron micrographs (TEM) of normal human bronchial smooth muscle cells in 
situ; sarcoplasm (5), sarcolemma (s), nucleus (N), and nucleolus (n); showing (1a) light (L) 

and dark (D) cells containing myofilaments (m) surrounded by dense extracellular matrix (E) 

(1 b), organelles including rough endoplasmic reticulum (R), Golgi apparatus (G), mitochon

dria (M), and dilated cisternae (D) in the perinuclear sarcoplasm, and (1c) myofilaments (m) 

in the peripheral sarcoplasm, caveoli (c), basement membrane (b) and extracellular matrix 

(E). Bar = 1 ).Un 
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dent sliding of actin and myosin filaments, whereas force maintenance occurs 
through complex and poorly understood mechanisms. 

There remains considerable variation in the methods used to evaluate contractile 
processes in vitro [5, 6]. The commonly used methods involve measuring isometric 
force development, isotonic shortening and more recently pressure changes in per
fused bronchial segments. In cultured ASM, cell stiffness has been measured mag
netically [7] and contraction may be measured directly by microscopic determina
tion of cell length. These methods simulate the behaviour of ASM in situ to a vari
able extent. The perfused bronchial segment appears to approximate the in vivo 
condition most closely, but lung volume-dependent parenchymal loading is not a 
feature of this method. 

The mechanical properties of smooth muscle contraction have been analysed by 
generation of length-tension curves in canine ASM [8]. Length-tension curves of iso
lated ASM give an indication of the elasticity of the muscle (without the influence 
of resistance from surrounding tissue). The change in muscle tension, divided by 
cross-sectional area, over the corresponding change in muscle length (divided by 
optimal muscle length) is an index of the muscle stiffness. Measurement of stiffness 
is of particular use for the comparison of the mechanical properties of muscles [8]. 
However, stiffness and active tension curves represent equilibrium responses and do 
not provide information about the rate of shortening which may be more significant 
for smooth muscle regulation of airways resistance. Importantly, ASM shortening 
occurs in a dynamic environment with cyclically varying loads [9]. Shortening 
occurs at a velocity which is load-dependent: the greater the load, the slower the 
force activation. 

Regulation of smooth muscle contraction 
Smooth muscle contraction is regulated biochemically by phosphorylation and 
dephosphorylation of myosin and actin filaments in response to changes in the 
cytosolic calcium concentration [10]. Calcium bound to calmodulin (at 11M intra
cellular calcium concentrations) activates myosin light-chain kinase (MLCK) and 
hence the activity of the actomyosin ATPase. MLCK phosphorylates the 20 kDa 
light chain subunit (LC20) of myosin, facilitating the interaction between the myosin 
head and actin filaments, increasing actomyosin ATPase activity, thereby enabling 
cross-bridge cycling and contraction (Fig. 3). The calcium-calmodulin complex may 

Figure 2 
TEM of cultured normal human bronchial smooth muscle cells; sarcoplasm (5), sarcolemma 
(s), nucleus (N), nucleolus (n); showing perinuclear (2a) and peripheral (2b) sarcoplasm, 
rough endoplasmic reticulum (R), ribosomes (r), mitochondria (M), dilated cisternae (D) and 
myofilaments (m). Bar = 1 f1n7 
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also inactivate myosin light chain phosphatase thereby increasing the amount of 
phosphorylated LC2o• 

Normal cycling cross-bridges are primarily active for the first 2-3 s of the con
traction by which time 75% of the total smooth muscle shortening occurs, followed 
by slowing of cross-bridge cycling to about one-fourth of the initial rate [8]. The 
greater the load, the longer the contraction time. When the contraction time exceeds 
3 s, there is a higher reliance on latch bridges than on cross bridge cycling for gen
eration of force [8]. 

The calcium-calmodulin complex activates MLCK by binding to a sequence of 
the MLCK (pseudosubstrate inhibitory region, PSI) which, in the non-activated 
state, occludes the LC20 binding domain on the MLCK [11]. The PSI region shares 
sequence homology with the site of the LC20 that is dephosphorylated by LC20 phos
phatase. The unfolded PSI region also indirectly inhibits LC20 phosphatase by pro
viding a decoy binding site [10]. A reduction in the concentration of calcium to nM 
levels leads to the dissociation of the calcium-calmodulin complex from MLCK, a 
loss of kinase activity and smooth muscle relaxation as a result of the dephospho
rylation of LC20 by myosin light chain phosphatases and the termination of ATP 
hydrolysis [10]. 

Sensitised canine tracheal and bronchial smooth muscle have an increased max
imum shortening capacity, an elevated early maximum shortening velocity and the 
increased levels of actomyosin ATPase have been attributed to increased levels of 
MLCK activity and content [12]. 

Mechanisms sustaining contraction 
During prolonged contraction there is a slowing of cross-bridge cycling concomitant 
with decreases in myosin phosphorylation, calcium concentration and energy con
sumption. A second regulatory mechanism has been invoked to explain the mainte
nance of force in carotid arterial smooth muscle, despite dephosphorylation of LC2o. 
This second contractile process occurs through the formation of attachments 
between dephosphorylated actomyosin cross-bridges [13] or possibly by the slowing 
of normally cycling cross-bridges [8]. The mechanisms responsible for maintaining 
the latch bridge state are not clearly defined. However, several proteins, including 
leiotonin, caldesmon and calponin may have a role in latch bridge formation [10]. 

Contractile regulatory proteins 
Caldesmon and calponin are candidate molecules for the maintenance of force in the 
absence of an elevated calcium concentration or LC20 phosphorylation by tethering 
actin to myosin [14, 15]. Caldesmon, which inserts between the grooves between the 
actin double helix, inhibits actomyosin ATPase activity at resting calcium concentra
tions, but in the presence of calcium/calmodulin dissociates from actomyosin fila-
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ments, activating actomyosin ATPase [16]. Calponin, a 33 kDa protein present in 
most forms of smooth muscle, also inhibits actomyosin ATPase activity. The inhibito
ry activity of calponin or caldesmon may be reversed by phosphorylation [17]. 

Heterogeneity 

Smooth muscle cells in normal airway, blood vessels and in the viscera can exist in 
different phenotypes characterised by variable expression of contractile proteins. 
Studies of cultured vascular smooth muscle revealed modulation to a synthetic phe
notype upon exposure to mitogens such as fetal calf serum which resembled the phe
notype in the neointimal smooth muscle cells of atherosclerotic lesions [18]. More 
recently, phenotypic heterogeneity has been recognised in the absence of disease. 
Digestion of canine trachea lis muscle and flow cytometric analyses of size and con
tractile protein expression indicate the existence of at least two phenotypes: a pre
dominant (75%) population of smaller cells with reduced actin and myosin content 
and a minor population of larger cells with higher levels of contractile protein 
expression. These distinct phenotypes also show different contractile and calcium
handling properties [19-21]. There appears to be a bidirectional regulation between 
ECM and smooth muscle phenotype [22] : high levels of collagen type IV and 
fibronectin greatly enhance proliferative responses [23]; and synthetic state, prolif
erative smooth muscle makes large amounts of ECM. 

Transpulmonary pressures are often increased in asthma in order to facilitate 
adequate ventilation. ASM cells are therefore subject to increased physical stress, 
which can increase the contractile enzyme activity of the muscle [24,25]. In canine 
ASM cells subjected to strain there was increased calcium-dependent MLCK activi
ty and myosin heavy chain levels accompanied by increases in LC20 phosphorylation 
and actomyosin ATPase activity, and decreased LC20 phosphatase activity [24]. 
Moreover, cyclic deformational strain increases amounts of total cellular protein, 
myosin and MLCK suggesting that strain is a stimulus for the contractile phenotype 
of ASM cells in culture [25]. 

The prevalence of contractile and synthetic phenotypes at different levels in the 
bronchial airways and their expression in different airways diseases has yet to be 
explored. Modulation of ASM to diminish the contractile phenotype represents a 
potential alternative therapeutic approach to treatment of bronchospasm in 
obstructive airways disease. 

Signal transduction mechanisms 

The signal transduction mechanisms controlling ASM function have received 
much attention as targetting these processes may lead to identification of novel 
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agents to treat the bronchospastic component of obstructive airways diseases. Sig
nalling mechanisms for contraction [26] and relaxation [27] have been reviewed 
in detail. The following section highlights important and well established regula
tory mechanisms; signal transduction of ASM proliferation is covered in a later 
section. 

Intracellular calcium 

Intracellular free calcium concentrations (Ca2+J are the primary determinant of the 
level of tone in ASM. There are four main regulatory mechanisms for Ca2\: release 
from internal stores; influx through receptor- and voltage-operated membrane chan
nels; and transmembrane transport, which is either directly or indirectly energy
dependent. Activation of the contractile process by agonists such as carbachol and 
histamine is associated with increases in production of inositol 1,4,5-trisphosphate 
(IP3) as a consequence of phospholipase C activation [28]. Depolarization-induced 
activation of calcium influx into human ASM has also been described [29], but these 
voltage-operated channels are not considered to be important for responses to con
tractile agonists [30]. Thus, inhibitors of these channels such as verapamil have only 
modest inhibitory effects on agonist-induced contraction of ASM [31]. Receptor
operated calcium channel activity has been directly demonstrated in voltage-clamp 
experiments in histamine-stimulated human ASM [32]. These channels are believed 
to mediate the slow and persistent contractions associated with protein kinase C 
activation [33] and may playa role in the maintenance of the contractile response 
to histamine. 

Cyclic nucleotides 

Many ASM relaxants, including ~2-adrenoceptor agonists, vasoactive intestinal pep
tide (VIP) and prostaglandin E2 (PGE2) activate receptors coupled via Gs proteins to 
adenylate cyclase. Elevation of cyclic AMP and activation of protein kinase A leads 
to phosphorylation of several proteins which regulate Ca2\. The net result of these 
phosphorylations is a decrease in Ca2\ and thereby a relaxation of ASM tone [27]. 
Inhibition of phospholipase C activation, as evidenced by suppression of IP3 forma
tion is likely to be quantitatively important in cAMP-mediated relaxant responses 
[34]. Additional mechanisms include increased calcium re-uptake and extrusion via 
plasma membrane transport systems. 

Nitric oxide relaxes ASM via activation of soluble guanylate cyclase. Cyclic 
GMP elevation decreases Ca2\ elevated by either receptor-operated stimuli such as 
acetylcholine or by depolarisation [35]. 

271 



Alastair G. Stewart et al. 

Phosphodiesterases 

Non-selective inhibitors of phosphodiesterase (PDE) relax both spontaneous and 
induced ASM tone. Identification of multiple subtypes of PDE with distinct cellu
lar distribution has renewed interest in development of selective inhibitors as use
ful anti-inflammatory and smooth muscle relaxant agents [36]. The predominant 
types of PDE in human ASM are III and IV and the latter is also present in inflam
matory cell types. PKA-dependent phosphorylation of PDE III activates this iso
form resulting in a negative feedback on PKA activation, whereas expression of the 
type IV isoform is increased by cAMP. Dual inhibitors of types III and IV PDE in 
combination with ~-agonists may produce a more efficacious treatment regimen for 
bronchospasm with additional anti-inflammatory effects to those of ~-agonists 
alone. 

Protein kinases 

Protein kinase C represents a large family of related kinases exhibiting differences 
in activation properties. Isoforms detected in bovine and canine ASM include a, ~1, 
~2, 8, £, /.." )l and e [37]. Activation of protein kinase C in ASM activates calcium 
influx, stimulates Na/K ATPase activity [38], increases the calcium sensitivity of 
LC20 phosphorylation [39], inhibits LC20 phosphatases [40], and has been impli
cated in the maintenance of contraction. 

Mitogen-activated protein kinase (MAPK), also known as extracellular regulat
ed kinase (ERK), is best characterised as the central signalling enzyme for the pro
liferative response of cultured ASM, but has recently been shown to phosphorylate 
caldesmon and increase the calcium sensitivity of the contractile apparatus in native 
ASM [41]. MAPK is activated by a wide range of bronchoconstrictor mediators. 

Potassium channels 

Potassium channels, of which there are many subtypes showing distinct activation 
and functional characteristics, playa key role in determining the membrane poten
tial [42]. The two most important channel types in ASM appear to be the ATP-sen
sitive potassium channel (K+ATP) and the large conductance, calcium-activated 
potassium channel (BK+Ca) [43], although the delayed rectifier channel may also be 
expressed and be functionally important [44]. 

Potassium channel opening drugs (KCO), which activate K + ATP channels, sup
press the spontaneous and agonist-induced tone of human isolated bronchial 
smooth muscle and counteract bronchoconstriction in anaesthetised guinea-pigs 
[45]. The KCO, SDZ PCO 400 has been shown to inhibit hyperreactivity induced 
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by a variety of stimuli in guinea-pigs in vivo [46], but the importance of smooth 
muscle as a target for this effect is not clear. 

Activation of BK+ Ca has been implicated in ~2-adrenoceptor agonist-induced 
relaxation through both cAMP-dependent and independent mechanisms [47]. How
ever, the involvement of K + efflux in the relaxant actions depends on the efficacy of 
the ~-agonists and does not appear to be of any importance for low efficacy ago
nists such as salmeterol [48]. Moreover, KeO have shown only modest broncho
dilator activity in asthmatics, suggesting that hyperpolarisation is not an efficacious 
relaxant mechanism. 

Neural regulation 

Parasympathetic innervation 

Airways smooth muscle has a basal level of tone supplied by parasympathetic nerve 
activity [49], which releases acetylcholine to evoke contraction of airways smooth 
muscle by activating muscarinic cholinoceptors of the Mrsubtype (Fig. 4). Acetyl
choline release from parasympathetic nerves is under autoinhibitory feedback con
trol by prejunctional muscarinic cholinoceptors of the Mrsubtype [50]. 

In virus-infected humans, the increased responsiveness to histamine or cold air 
challenge, can be inhibited by muscarinic cholinoceptor antagonists such as 
atropine. This vagally-mediated, reflex bronchoconstriction results from dysfunc
tion of auto inhibitory Mrcholinoceptors [51]. Neuraminidase from parainfluenza 
virus inactivates Mrcholinoceptors by cleaving sialic residues from glycoproteins 
and glycolipids, whereas inflammation following either antigen-challenge or ozone 
exposure results in eosinophil recruitment and release of cationic proteins, such as 
major basic protein, that allosterically antagonise the M2-cholinoceptor [51]. Viral 
infection may also act indirectly by inducing epithelial damage, since epithelium 
exerts an inhibitory influence on the release of acetylcholine from parasympathetic 
nerves of guinea-pig trachea, possibly through the liberation of an epithelium
derived inhibitory substance [52]. 

Neuropeptides act as co-transmitters of classical autonomic nerves in the air
ways, limiting or prolonging the effect of the primary neurotransmitter [53]. How
ever, in human airways in vitro, the neuropeptide tachykinins, VIP and neuropep
tide Y (NPY) have no effect on cholinergic transmission. Nitric oxide (NO), released 
by electrical field stimulation inhibits cholinergic neurotransmission and functional
ly antagonises the contractile response to acetylcholine [54]. 

Pro-inflammatory cytokines, which play an important role in perpetuating the 
airway inflammatory response in asthma, including interleukin-l~ (IL-l~) and 
tumour necrosis factor-a (TNFa) have been detected in bronchoalveolar lavage 
fluid from asthmatic patients [55]. Inhaled TNFa induces hyperresponsiveness and 
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Neural influences on airway smooth muscle. f3rAdrenoceptors mediate relaxation in 

response to circulating adrenaline. Sympathetic nerves may influence cholinergic fundion 

rather than diredly relax airway smooth muscle and are sparse in human airways. MT 

cholinoceptors mediate contradion in response to acetylcholine (ACh) released from 

parasympathetic nerves which also release an inhibitory non-adrenergic, non-cholinergic 

(iNANC), neurotransmitter, most likely to be nitric oxide (NO). Autoinhibitory feedback of 

ACh release through adivation of prejundional Mrcholinoceptors may be disrupted by viral 

infedion, ozone exposure or antigen inhalation, resulting in excessive reflex cholinergic 

bronchomotor responses. The excitatory NANC (eNANC) pathway involves anti-dromic adi

vation of afferent sensory C fibres which release neurokinin to elicit contradile responses 

following exposure to irritant stimuli. 

acts prejunctionally to enhance cholinergic transmission in electrically field-stimu
lated human isolated bronchus [56]. Many other agents enhance cholinergic trans
mission in human airways including products of activated eosinophils [57] and 
endothelin-l (ET-l) [58]. 
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Sympathetic innervation 

The extent and importance of sympathetic innervation of airways smooth muscle is 
species-dependent and appears to be sparse and inconsequential in humans [59]. 
~-Adrenoceptors are widely distributed throughout the airways, whereas a-adreno
ceptors are not considered to play an important role in ASM [60]. ~-Blocking drugs 
increase airways resistance in healthy subjects suggesting that circulating levels of 
adrenaline activate ~radrenoceptors to produce a dilator influence. Noradrenergic 
and cholinergic nerves have been found in close association in airways of guinea
pigs, canines and humans. Thus, noradrenaline may exert an indirect influence on 
ASM tone by modulating cholinergic neurotransmission [61]. 

Non-adrenergic, non-cholinergic innervation 

Electrical field stimulation of isolated airway smooth muscle preparations elicits 
complex responses. The components of these responses which are not blocked by 
antagonists of classical autonomic neurotransmitters, designated non-adrenergic 
non-cholinergic (NANC) , were originally ascribed to separate neural pathways 
coursing in the vagal nerve bundle. However, it is now established that the inhibito
ry NANC (iNANC) dilator tone is due to the release of co-transmitters from 
parasympathetic nerves, and the excitatory NANC (eNANC) system is associated 
with anti-dromic excitation in vagal afferent c-fibres [62]. 

iNANe mechanisms 
Because of the sparsity of the sympathetic innervation of ASM, the iNANC system 
in humans is the primary neural bronchodilator pathway. There remains some 
uncertainty as to the identity of the neurotransmitter(s) subserving iNANC neuro
transmission. The candidates include VIP and NO, although recent evidence argues 
against an important role for VIP. In human tracheal and bronchial smooth muscle, 
relaxations evoked by VIP are abolished by a-chymotrypsin, but iNANC responses 
are unaffected [63]. In vivo, inhaled VIP is a bronchodilator and attenuates hista
mine-induced bronchoconstriction in animals. However, in humans inhaled VIP has 
no detectable bronchodilator effect and provides little protection against histamine
induced bronchoconstriction [64] . These observations suggest that VIP is not the 
iNANC transmitter in human airways, but do not exclude the possibility that VIP 
has an important regulatory influence on other airway wall cell types or on other 
smooth muscle responses, such as proliferation [65]. 

Emerging evidence implicating NO as the neurotransmitter of iNANC nerves is 
best developed in guinea-pig airways. In human tracheal smooth muscle, the NOS 
inhibitor L-NAME produces a concentration-dependent inhibition of the iNANC 
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response. Thus, NO may act as a brake on cholinergic bronchoconstriction [54,66], 
but the failure of NOS inhibitors to affect airways resistance in humans suggests 
that the iNANC system may be of limited importance [67], perhaps because it is less 
evident in intraparenchymal airways. 

eNANC mechanisms 
Lundberg and colleagues identified an ASM contractile response, particularly evi
dent at high frequencies of excitation, which was mediated by activation of senso
ry nerves releasing tachykinins (substance P and neurokinin A) to act on neu
rokinin (NK) NK1 and NK2 receptors on ASM [68]. These sensory fibres may be 
activated anti-dromically by irritant stimuli such as cigarette smoke [69], 
leukotrienes and histamine [70,71]. The sensory C-fibres also contain calcitonin 
gene-related peptide (CGRP) which acts primarily to increase bronchial blood flow 
(69). Barnes and colleagues suggested that these sensory C-fibres function similar
ly to those in the skin which mediate the triple response via activation of mast cells 
by tachykinins. The term "neurogenic inflammation" was coined to describe the 
constellation of effects upon activation of this neuronal pathway, which include 
ASM constriction, increased bronchial blood flow and plasma exudation [72]. The 
importance of these neurogenic inflammatory responses is likely to be elucidated 
within the next few years as antagonists of neurokinin receptors are being evalu
ated for efficacy in asthma and other airway diseases. 

Mediators 

Phospholipid-derived mediators 

Mediators derived from the hydrolysis of cell membrane phospholipid-esterified 
arachidonic acid, such as the prostaglandins (PGs) and the leukotrienes (LTs), have 
important pro-inflammatory actions in a variety of respiratory diseases including 
asthma, but have no clearly identified physiological functions in normal ASM. 
There are numerous cellular sources of eicosanoids in the airways. In asthmatics, 
release of eicosanoids from activated mast cells predominates in the early response 
to allergen-challenge [73]. The late phase response, which is associated with airways 
hyperresponsiveness that can last several days, is also accompanied by production 
of eicosanoids from cells infiltrating the airways [74]. 

Cyclo-oxygenase products 
The levels of several cyclo-oxygenase products, including PGD2, PGE2, PGF2u, PGI2, 
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and thromboxane A2 (TxA2) are increased in broncho-alveolar lavage (BAL) fluid 
after antigen-challenge of asthmatics [75]. TxA2' PGF2a> and PGD2 are the pre
dominant mast-cell derived bronchoconstrictors in asthma, activating smooth mus
cle constriction via the TP receptor [76, 77]. Subthreshold concentrations of a TxAr 
mimetic cause airway hyperresponsiveness to inhaled methacholine in asthmatics 
[78]. Prostacyclin and PGE2 relax ASM by activating distinct receptors to elevate 
cAMP concentrations, but vasodilator and neural activities may limit the bron
choprotective actions of these eicosanoids. 

Lipoxygenase products 
The LTs are derived from arachidonic acid by the sequential actions of 5-lipoxyge
nase and glutathione transferase in eosinophils, mast cells and macrophages. Ele
vated levels of LTs are detected in BAL cells and fluids from asthmatic patients com
pared with normal subjects [79]. LTC4 and LTD4 are potent bronchoconstrictors 
(lOOO-fold greater than histamine) in both normal and asthmatic subjects activating 
CysLT 1 receptors to cause ASM contraction [80]. The persistence of the bron
chomotor actions of LTs has been ascribed to the long-lived signalling mechanisms 
that these mediators activate and also to the presence of significant bronchocon
strictor activity of metabolites including LTE4. 

Platelet-activating factor 
Platelet-activating factor (PAF) is synthesised by the action of phospholipase A2 on 
alkyl-ether phosphatidylcholine followed by acetylation of the 2-position and is pro
duced by inflammatory cells infiltrating the asthmatic airway including eosinophils 
[81]. Bronchoconstriction induced by PAF is likely to be largely indirectly mediated, 
although PAF produces a modest contractile response on human ASM [82]. The role 
of PAF as a mediator of airway hyperresponsiveness is well established in guinea
pigs, but remains controversial in human asthma [83]. 

Low molecular weight mediators 

Nitric oxide 
Increased NO concentrations have been detected in allergic airways disease due to 
induction of nitric oxide synthase (iNOS) in airway epithelial cells [84]. The large 
amounts of NO produced by epithelial cell iNOS as compared with endothelial NO 
production may result in a net pro-inflammatory action of NO in allergic airways 
disease, despite its relaxant actions on ASM [85]. In high concentrations, NO 
reacts with superoxide anions to generate toxic peroxynitrite and hydroxyl radi
cals, stimulates mucous secretion, amplifies T lymphocyte-driven inflammatory 
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effects and stimulates plasma exudation by increasing pulmonary blood flow [86]. 
The potential anti-inflammatory actions of NO synthase inhibitors in asthma have 
not been been fully explored. Aminoguanidine, a selective inhibitor of iNOS, 
decreased NO production in asthmatics more effectively than the non-selective 
NOS inhibitor, L-NAME [67]. Importantly, however, no change in airway resis
tance was observed following a single bolus dose of these NOS inhibitors. Since L
NAME should block NO generation in response to iNANC activity, it appears that 
neither the latter system nor iNOS-derived NO exerts a dominant influence on 
bronchomotor tone. 

Histamine 
Histamine is released from degranulating mast cells during immediate hypersensi
tivity reactions. Histamine HI-receptors, which mediate bronchoconstriction, pre
dominate in the airway [87]. Activation of histamine H2-receptors mediates bron
chodilatation via an epithelial cell-derived relaxing factor, but this mechanism is rel
atively weak in humans [88]. Histamine receptor populations do not appear to be 
altered in asthmatic patients [89]. 

Adenosine 
Adenosine, which is found in elevated concentrations in BAL fluid of asthmatics, 
causes airways obstruction in asthmatics and smokers, but not in healthy individu
als [90]. A combination of histamine and leukotriene receptor antagonism com
pletely inhibits the constrictor effects of adenosine in isolated human airways, sug
gesting that adenosine acts indirectly, possibly via stimulating mast cell degranula
tion [91]. However, recent studies suggest that activation of the Arreceptor elicits 
bronchoconstriction in the absence of mast cells, possibly via an effect on NANC 
nerves or a direct constrictor action on smooth muscle [92]. 

Peptides 

Endothelin 
ET-1levels are increased in inflamed airways in many respiratory diseases [93,94]. 
ET-1 is a potent bronchoconstrictor in humans [95], and may elicit increased 
chronic ASM responsiveness by actions on smooth muscle ETA-and ET B-recep
tors [96], although the ET B-receptor is desensitised by increased levels of airway 
ET-1 [97]. ET-1 does not appear to be involved in the early phase response to 
allergen exposure in asthmatics [94], and therefore might only be important for 
late-phase bronchoconstriction or the development of chronic hyperresponsive
ness. 
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Tachykinins 
The tachykinins are released from sub-epithelial sensory nerves in close proximity 
to the subjacent ASM indicating a potential role as constrictor mediators. Immuno
reactive substance P levels are increased in BAL fluid obtained from asthmatic 
patients [98, 99]. Substance P and neurokinin A activate specific tachykinin recep
tors, NKl and NK2, respectively, on ASM to cause contraction of human isolated 
airways [100], but the NK2 receptor is more important for constriction, while the 
NKl receptor mediates neurogenic inflammation via actions on the microcircula
tion and the mucosa. NK2 receptor levels are increased four-fold in asthmatics rel
ative to non-smoking controls, whereas there are no detectable changes to NKl 
receptor levels [101]. In experimental animals, depletion of neuropeptides with the 
neurotoxin capsaicin protects against airways hyperresponsiveness which accompa
nies repeated antigen-challenge [102], virus infection [103], or delayed-type hyper
sensitivity reactions [104], consistent with a contribution of tachykinins to the 
development of airways hyperresponsiveness. 

Cytokines and airway smooth muscle function 

Pro-inflammatory cytokines act directly on ASM to modulate both contractile and 
relaxant responses. Incubation of guinea-pig [105] or rabbit [106] airways with IL-
1~ and TNFa reduces isoprenaline-induced relaxation of cholinoceptor-mediated 
contractile responses [105, 106]. IL-l~ and TNFa, synergistically attenuate ~

adrenoceptor-mediated airway relaxation, possibly as a result of enhanced mus
carinic M2-receptorlG j protein coupling [106]. Intra-tracheal instillation of IL-l~ in 
rats impaired relaxation of tracheal smooth muscle to isoprenaline in vitro associ
ated with uncoupling of ~-adrenoceptors from adenylate cyclase, a reduction in the 
number of ~-adrenoceptors and a reduction in adenylate cyclase activity. IL-l~ and 
TNFa significantly attenuated the decrease in cell stiffness induced by isoprenaline 
measured using magnetic twisting cytometry [7]. These observations suggest that 
the defect in ~-adrenoceptor function established in asthma [107] may result from 
the release of pro inflammatory cytokines. The glucocorticoid-sensitivity of these 
cytokine actions has not been established, nor has the possible relationship to PGE2, 
a known regulator of ~2-adrenoceptors, been explored. 

Epithelium 

There appears to be a correlation between the degree of epithelial damage and airway 
hyperresponsiveness in asthmatics [108]. Removal of the epithelium in a variety of 
animal and human isolated airway preparations increases the responsiveness of the 
underlying ASM to histamine, serotonin and acetylcholine, and reduces the respon-
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siveness to relaxant agonists such as isoprenaline [109]. Thus, the epithelium is 
thought to release a relaxant factor(s) which normally modulates the reactivity of the 
smooth muscle to both contractile and relaxant agents. The coaxial bioassay tech
nique, in which open rings of precontracted, rat anococcygeus muscle or endothelial
denuded rabbit or rat aorta are inserted into the lumen of epithelium-intact guinea
pig trachea, has provided direct evidence for the release of an epithelium-derived 
relaxant factor(s) induced by muscarinic cholinoceptor agonists [110]. In addition, the 
superfusate from cylindrical preparations of acetylcholine-stimulated dog bronchus 
with intact epithelium relaxes both airway and vascular smooth muscle [111]. In 
tubular perfused bronchial segments, contractile agonist-sensitivity was the same after 
epithelium removal as that obtained when agonists were added to the serosal side of 
epithelium intact preparations [112]. Thus, the effect of epithelium removal on con
tractile agonists may also be a consequence of the loss of the physical barrier to dif
fusion thereby enhancing agonist access to the underlying smooth muscle. 

Clinical pharmacology 

Receptor antagonists/enzyme inhibitors 

The bronchodilator PGE2 is produced mainly by epithelial cells and may contribute 
to the general anti-inflammatory actions of the epithelium in asthma [112]. The lack 
of therapeutic benefit of cyclo-oxygenase inhibitors in asthma has been partly attrib
uted to a reduction in bronchodilator prostanoids such as PGE2 and PGI2. Further
more, the loss of bronchoprotective PGE2 may contribute to the phenomenon of 
aspirin-sensitive asthma [113]. Although little success has been achieved using 
inhibitors of thromboxane synthesis such as OKY-046, and thromboxane receptor 
antagonists such as GR 32191B or BAY u3405 in the treatment of asthma [114], the 
advent of selective cyclo-oxygenase-2 inhibitors may shed new light on the contri
bution of prostanoids to the pathophysiology of airways disease. 

LTC4, LTD4 and LTE4 enhance bronchomotor responses to unrelated inhaled 
bronchactive agents and may therefore contribute to airway hyperresponsiveness 
[115, 116]. The development of antagonists to CysLT receptors has led to the emer
gence of a novel anti-asthma drug class [117]. In clinical studies of asthma, the 
CysLT receptor antagonists pranlukast, zafirlukast, and MK-679, reduce symptom 
scores, P2-agonist usage, and improve spirometry measures associated with a 
reduced eosinophilia, mucous secretion, vascular permeability, and decreased 
release of tachykinins from sensory nerves [117]. In addition, long-term (12-24 
weeks) treatment with LT receptor antagonists increases forced expired volume in 
1 s (FEV 1) and decreases airway hyperresponsiveness to histamine [118]. 

HrHistamine receptor antagonists decrease the magnitude of the early phase 
of bronchoconstriction following allergen inhalation in asthmatic patients [119], 
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but those antagonists without effects on mediator release are of no benefit clini
cally in asthma [120]. Despite initial enthusiasm based on extensive studies of 
allergic bronchoconstriction in experimental animals, results of trials of antago
nists of PAF receptors have shown disappointing results in clinical asthma [121, 
122]. 

The dual NKl and NK2 tachykinin receptor antagonist, FK-224, provides pro
tection against bradykinin-induced bronchoconstriction in asthmatic patients [123]. 
The advent of subtype-selective tachykinin receptor antagonists will provide a more 
definitive approach to understanding the role of tachykinins in asthma [124]. A 
NKl selective antagonist inhibits exercise-induced airway narrowing in asthma 
[125] . However, NKl and NK2 receptor antagonist studies do not support an 
important role for tachykinins in airways hyperresponsiveness in humans [126, 
127]. 

~2-Adrenoceptor agonists and phosphodiesterase inhibitors 

There is an enormous amount of literature on the pharmacology of ~ragonists in 
asthma which remain the drug of choice for the relief of acute bronchospasm (see 
[107] for a review). Although concerns have been raised about the safety of these 
agents, especially with regular usage, it appears that long-acting ~ragonists do not 
exhibit any deleterious effects on the underlying asthmatic condition [128]. The 
original association between adverse outcome and short-acting ~2-agonists may 
have been the result of excessive usage and, in any case, remains controversial [129]. 
Tachyphylaxis to the bronchodilator effects of ~2-agonists develops with chronic use 
but the clinical impact may not be significant. 

Theophylline is commonly used in the treatment of asthma at concentrations 
below those considered to have marked effects on POE, as higher doses have limit
ing side-effects such as nausea. It remains to be established whether the advent of 
isoform-selective POE inhibitors will circumvent these problems. 

Glucocorticoids 

The inhibitory effects of glucocorticoids on cytokine and inflammatory mediator 
release and the infiltration of inflammatory cells within the airway are well docu
mented [130]. Glucocorticoids have largely indirect effects on ASM tone and hyper
responsiveness, reducing the levels of bronchoconstrictors and pro-inflammatory 
mediators available to the smooth muscle cells. However, glucocorticoids influence 
many contractile agonist receptor populations and signal transduction pathways in 
ASM, inhibit signal tranduction of smooth muscle cell proliferation [131], and reg
ulate production of ASM-derived inflammatory mediators [132]. 
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Glucocorticoids increase ~2-adrenoceptor gene transcription in the human lung 
in vitro [133], but the clinical relevance of this observation remains to be elucidat
ed. Preincubation of ASM preparations with glucocorticoids reduces the contractile 
responses to acetylcholine and morphine, as well as reducing expression of mus
carinic receptors [134, 135]. Glucocorticoids also negatively regulate histamine H1-

receptor coupling in human cultured ASM cells [136]. 

Non-contractile functions 

Mediator production 

Smooth muscle cells themselves produce mediators which contribute to the 
inflammatory response [132]. ASM generates increased levels of secretory phos
pholipase A2 after cytokine challenge [137]. In addition, cytokines such as IL-1~, 
TNFa, and IFNy increase the expression of inducible cyclo-oxygenase (COX-2) in 
human ASM in vitro, and elevate the cellular release of PGE2 and PGF2a 
[137-140] . Since bronchodilator PGE2 is the main prostanoid produced by ASM, 
it could be argued that glucocorticoids are inhibiting bronchoprotective processes 
[138], such as ASM relaxation and inhibition of proliferation [141]. Nevertheless, 
immunohistochemical studies in bronchial mucosa of asthmatics demonstrate rel
atively small amounts of COX-2 or COX-1 in ASM compared with epithelial 
cells, suggesting that the influence of prostanoids generated by smooth muscle in 
vivo may be minor [142]. ASM not only responds to, but also produces a number 
of cytokines, including transforming growth factor ~ (TGF~) [143], RANTES 
[144] and GM-CSF [145]. Glucocorticoids inhibit the production of GM-CSF 
[145] and the chemokine RANTES [144], but not TGF~ [143] from human ASM 
cells in culture. 

Extracellular matrix 

Cultured synthetic state smooth muscle cells produce and are able to modify their 
ECM. Release of proteases, including matrix metalloproteinase (MMP) may alter 
the collagen network in the cell microenvironment and be permissive for ASM pro
liferation [146] . TGF~, which elicits complex growth patterns in many cell types 
including ASM [143, 147], also stimulates ASM production of hyaluronan which 
may lead to fibrosis and airway wall thickening due to water retention [143]. 
Growth factors such as thrombin, bFGF and TGF~ are sequestered in the ECM and 
may be mobilised upon its degradation by inflammatory cell-derived enzymes, 
resulting in ASM proliferation. Studies in vascular smooth muscle indicate that the 
synthetic state of ASM may be promoted by fibronectin, thrombospondin and type 
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I collagen and reinforced by smooth muscle production of these ECM components. 
Conversely, basement membrane collagen type IV and heparin promote the con
tractile phenotype and inhibit proliferation [22]. 

Airways hyperresponsiveness 

Asthmatics have a characteristic increased sensitivity and reactivity to a wide range 
of of bronchoconstrictor stimuli, known as airway hyperresponsiveness (AHR). 
However, AHR has also been identified in other conditions, including chronic 
obstructive pulmonary disease (COPD), cystic fibrosis, heart failure, bronchopul
monary dysplasia, respiratory infections following exposure to environmental pol
lutants and even in some healthy individuals [148]. The contribution of ASM to 
airway hyperresponsiveness is still the subject of intense interest and diverse opin
ion [9]. In particular, the notion that there is no fundamental abnormality in asth
matic ASM, based on force measurements of isolated ASM preparations, is now 
being challenged by data suggesting that the velocity of asthmatic ASM contrac
tion may be increased in association with larger amounts and activity of MLCK 
[9]. 

Measurements of airways hyperresponsiveness 

Methacholine and histamine, which directly activate smooth muscle, are common
ly used in assessment of airway responsiveness. Directly acting challenges elicit 
responses in healthy subjects, while challenges that act indirectly via neurones 
(bradykinin) or inflammatory cells (adenosine) only elicit bronchomotor responses 
in subjects with inflamed airways. Quantitative assessments of AHR have proved 
useful in investigations of the clinical status and pathophysiology of asthma. Many 
factors other than the underlying levels of AHR may influence the results of airway 
challenge including acute respiratory infections, recent allergen exposure, exposure 
to certain pollutants, current use of bronchodilators or anti-inflammatory medica
tions [149]. Bradykinin, adenosine, LTs, ultrasonic nebulized distilled water 
(UNDW), exercise and cold-air hyperventilation may also be used to assess AHR 
[149]. Most of these challenges act indirectly on smooth muscle, and in some 
instances may better mimic naturally occurring asthma [150]. 

In healthy subjects, large airways make the major contribution to airways resis
tance, whereas in asthmatics, both large and small airway contributions are evident 
[151]. The sites of bronchomotor responses in humans can be determined by heli
um-oxygen flow-volume curves or by use of an anterograde catheter tip micro
manometer [151]. High-resolution computed tomography (HRCT) is an emerging 
approach to the study of airway narrowing. 
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Airway wall remodelling in airways disease 

The airways of asthmatic subjects are two to three times thicker than those of sub
jects with chronic obstructive pulmonary disease (COPD) and age and weight
matched controls with normal airway function [152]. Importantly, these studies also 
established that thickening of the airway wall is not merely the result of pre-termi
nal disease, since airways from mild to moderate asthmatics dying from unrelated 
causes also showed significant remodelling. Although these initial observations have 
been confirmed using sophisticated stereo logical techniques which identified both 
hyperplasia and hypertrophy of smooth muscle [153] transverse sectioning failed to 
identify a difference in ASM quantity between asthmatics and control subjects 
[154]. Nevertheless, the controls in the latter study had a history of tobacco smok
ing and several had COPD, which itself is associated with airway wall remodelling 
[155, 156]. 

Impact of remodelling on airways resistance increases induced by 
smooth muscle shortening 
Normal smooth muscle shortening in an airway wall thickened by tissue remodel
ling may account for the reversible airway obstruction that characterises asthma 
[157]. The increase in smooth muscle mass contributes to the airway hyperrespon
siveness by increasing the effect of minimal muscle shortening on the total increase 
in airway resistance [158]. Morphological and physiological studies have been 
designed to determine how increases in smooth muscle volume and changes in the 
contractile components of smooth muscle impact on smooth muscle shortening and 
total airway resistance (Fig. 5). Models of circumferential ASM contraction predict 
significantly greater narrowing of the airway lumen for a given percentage of ASM 
shortening in asthmatic compared with healthy airways [2, 159]. The relatively 
small changes in airway wall thickness have little effect on baseline resistance in air
flow, but were predicted to decrease the diameter of airways sufficiently to occlude 
the airway lumen upon normal amounts of ASM shortening [157]. 

Airway narrowing responses are limited in non-asthmatic subjects which show a 
plateau in the dose-response curve for inhaled bronchoconstrictors, whereas asth
matic subjects inhaling safe concentrations of provocative stimuli do not reach a 
plateau response [160]. In vivo smooth muscle shortening is normally limited by the 
preload associated with attachment via connective tissue to parenchyma, whereas 
there is no preload on the smooth muscle in vitro allowing it to shorten by up to 
80% of its resting length. Excessive shortening has been suggested to occur in vivo 
in asthmatics as a result of airway wall remodelling-induced unloading of smooth 
muscle. Intra-parenchymal airways are tethered to alveolar structures via the adven
titial connnective tissue. Increases in the surface area of adventitia will decrease the 
strain against which smooth muscle shortens. This unloading may be significant 
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The relationship between airway wall remodelling and hyperresponsiveness may involve a 
combination of unloading of airway smooth muscle enhancing the capacity of muscle to 
shorten to lengths at which airway closure occurs, and airway wall thickening which increas
es airways resistance for a given amount of airway smooth muscle shortening. 

enough to allow airway closure at physiological levels of smooth muscle shortening 
and could explain the absence of a plateau in the increase in airway resistance in 
response to inhalational challenge in asthmatic individuals [161]. Recent inhala
tiona 1 challenge studies performed at low lung volumes, at which the loading of 
smooth muscle is minimised have mimicked the hyperresponsive state in healthy 
subjects inhaling methacholine [162]. 

Animal models of airway wall remodelling 
In vivo models of ASM growth have been developed in antigen-sensitised and 
chronically-challenged rats [163] and cats [164]. Reversible ASM volume increases 
have also been reported in hyperoxia-induced airway hyperresponsiveness [165]. In 
antigen-challenged Brown Norway rats, the area of smooth muscle in intra
parenchymal airways was increased by 50-100% [166] . Leukotriene receptor ant
agonists protect against antigen-challenge induced airway wall remodelling and 
increases in airway responsiveness in these models [167]. In addition, strain differ
ences between Fisher and Lewis rats in airway responsiveness have been linked to 
the volume of airway smooth muscle [168]. In vitro studies on proliferation of cul-
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tured ASM indicated that the Fisher strain, which is more responsive to bron
choconstrictors and has more ASM, is more sensitive to the mitogenic actions of 
PDGF AB than the Lewis strain [169]. This observation raises the possibility of a 
genetically determined link between airway hyperresponsiveness and ASM growth 
[169]. 

Growth responses of cultured airways smooth muscle 

Over the last 8 years an increasing amount of attention has been directed towards 
identification of potential growth factors for ASM, the signal transduction mecha
nisms and the modulation of these growth responses by anti-asthma drugs [170]. 

Mediators regulating growth responses 
Several bronchoconstrictors have been shown to elicit growth responses of cultured 
ASM. ET-l alone weakly stimulates ASM DNA synthesis [171-173] and acts in syn
ergy with other mitogens [174]. In a rat model of airway wall thickening, ET-l had 
no effect on ASM proliferation in vivo [169]. However, the ETA-receptor antagonist, 
BQ-610, inhibited rat airway wall mitogenesis stimulated by cigarette smoke [175]. 
Histamine stimulates proliferation of canine [176] and human cultured ASM cells 
[65], but its effects on chronic airway wall remodelling in vivo have yet to be inves
tigated. Substance P and neurokinin A elicit growth of rabbit tracheal muscle via an 
NKI receptor [177], but appear to be inactive on human airway muscle (Stewart, 
unpublished observations). LTs are relatively weak direct stimulants of human ASM 
proliferation, but act in synergy with powerful peptide growth factors [178]. In rab
bit ASM, LT-induced proliferation is dependent on increases in insulin-like growth 
factor (IGF) availability [179]. TxA2 mimetics have also been shown to stimulate 
DNA synthesis [141, 180] possibly through the secondary production of LTs [180]. 
Simulation of cyclical strain in cultured ASM stimulates both DNA synthesis and 
hypertrophy [181], the latter responses ocurring only when cells reach confluence 
[25] . Thus, the propensity of bronchoconstrictors to induce cell proliferation may 
be underestimated in cell culture studies, in which substrate attachment prevents the 
development of increased strain and there is no cyclical variation due to tidal 
breathing. 

Established growth factors such as platelet-derived growth factor (PDGF) [176, 
182], epidermal growth factor and basic fibroblast growth factor [141] are consid
erably more active and more potent than bronchoconstrictors in eliciting growth 
responses. The actions of serine proteases such as thrombin [141, 183] and mast 
cell-derived tryptase [184] are of increasing interest as knowledge of the protease
activated receptors (PARS) expands. The newly identified cleavage-dependent gen
eration of a nascent amino terminus that acts as a tethered ligand for the PARS 
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receptor, raises the possibility that transient exposure to these activated proteases 
could lead to sustained growth responses. The insulin-like growth factor (IGF) axis 
has been implicated in ASM mitogenesis: IGFs are secreted by ASM and stimulate 
proliferation when the concentration exceeds the binding capacity of IGF binding 
protein (IGF-BP) [185]. Matrix metalloproteinases (MMPs) metabolism of IGF-BP 
is stimulated by LT04 which is mitogenic in rabbit ASM [146, 179]. Interestingly, 
thrombin is known to stimulate the release of MMP2 from endothelial cells, raising 
the possibility of IGF involvement in thrombin-induced proliferative responses. 
Lysosomal hydrolases derived from inflammatory cells such as p-hexosaminidase 
have also been identified as ASM mitogens [186] acting via stimulation of a man
nose receptor [187]. 

The growth-promoting actions of several cytokines have been evaluated. IL-1 P 
elicits both proliferation and hypertrophy secondary to the release of POGF [188, 
189]. TNFa both stimulates [190, 191] and inhibits growth responses depending on 
the concentration and duration of incubation - short incubation periods at high 
concentrations result in inhibition of ONA synthesis [190]. In addition, our recent 
studies have shown that combinations of IL-1P and TNFa in human cultured ASM 
increase PGE2 production to levels which have profound inhibitory effects on bFGF
stimulated ONA synthesis (Vlahos and Stewart, unpublished observations). T lym
phocyte binding via integrins to cytokine-activated ASM induces proliferation by 
mechanisms which remain to be elucidated [192], but may involve signal through 
the MAPK pathway [193]. 

Mitogen signalling pathways 
Signal transduction of proliferation is complex and incompletely understood 
(Fig. 6). The proximal signals activated by growth factors include phospholipase C 
[183,194], elevation of Ca2\, phosphoinositol-3-kinase, protein kinase C and tyro
sine kinases [171, 195]. The elevation of Ca2\ has been dissociated from the prolif
erative response by the use of G protein inhibitors [183] and separation of the con
centration-response curves for growth responses and increases in Ca2\ [171]. How
ever, none of the growth factors yet investigated fails to activate MAPK (ERK), 
which is believed to play an obligatory role in the signalling cascade that leads to 
passage of cells through the restriction point of the cell cycle. In bovine tracheal 
muscle, persistent MAPK activation appears to be required for ONA synthesis [196] 
and similar observations have been made for human ASM. Specifically, inhibition of 
MAPK by P098059, which prevents activation of the upstream kinase MEK1 and 
proliferation induced by thrombin, POGF [197] and ET-1 [198], decreases levels of 
cyclin 01 (Ravenhall, Harris and Stewart, unpublished observations) which is 
required for passage through the restriction point of the cell cycle [199]. Cyclin 01 
partners cyclin-dependent kinase 4 (cdk4) which phosphorylates the restriction pro
tein, retinoblastoma (pRb) [200]. Upon phosphorylation pRb dissociates from and 
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Figure 6 

Identified elements of the signal transduction pathway for airway smooth muscle prolifera

tion. Both G protein-coupled, seven transmembrane spanning region receptors (7TM) and 

growth factor receptor tyrosine kinases are linked through multiple pathways to the activa

tion of the RaslRaf pathway, upstream of mitogen-activated protein kinase (MAPK). The 

precise mechanisms regulating the expression of cyclin 01 in airway smooth muscle have not 

been established, but both MAPK subtrates and the AP-1 complex comprising Jun and Fos 

are candidate trancription factors. eyclin 01 partners the eyclin-dependent kinase 4 (cdk4) 

which phosphorylates a number of essential S-phase genes including dihydrofolate reduc

tase (OHFR), thymidine kinase (TK), thymidine synthetase (TS), the transcription factor c
myc and DNA polymerase a (ONApola). 

disinhibits the transcription factor complex E2F allowing the synthesis of genes 
essential for DNA synthesis and further cell cycle progression. Other obligatory sig
nals for cell cycle progression are likely to be identified. 

Influence of anti-asthma drugs on smooth muscle mitogenesis 
Glucocorticoids inhibit proliferation of ASM in vitro in a mitogen-independent 
manner in human [131], rabbit [201], and bovine [202] species. The mechanism 
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appears to involve suppression of cyclin Dl mRNA levels. There are no studies of 
the effects of glucocorticoids on ASM volumetric increases in animal models of 
chronic allergic responses. 

Agents that elevated cAMP including ~-adrenoceptor agonists [141, 201, 202], 
PGE2 [141,203,204] and VIP [65] also inhibit ASM proliferation. The mechanism 
has yet to be fully elucidated, but does not appear to be related to regulation of Ca2\ 

[205] or K+ channels [206] and can occur late in Gl phase of the cell cycle indicat
ing that regulation of passage through the restriction point may be the target [207]. 
Thus, salbutamol reduces the levels of cyclin Dl [208] and the phosphorylation of 
pRb without affecting cyclin Dl mRNA levels. Combinations of ~-agonists and glu
cocorticoids have synergistic actions [201] as could be expected by their actions on 
distinct components of the mitogen signalling pathways. In vivo data is restricted to 
a study in guinea-pigs which suggested that the volume of ASM was increased by 
repeated exposure to fenoterol, but this was not associated with detectable increas
es in DNA synthesis and may therefore have resulted from hypertrophy [209]. 

Other endogenous anti-mitogens include TGF~, which alone has small stimula
tory effects on DNA synthesis, but with prolonged incubation (48 h) is mitogenic 
[143,147]. Heparin inhibits DNA synthesis induced by FCS, but not by PDGF [204, 
210] indicating that it acts on a proximal and mitogen-specific signalling mecha
nism, probably upstream of the common MAPK pathway. 
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Introduction 

It is clear from the preceding chapters that a number of inflammatory cells have the 
potential to contribute towards the pathology associated with asthma. The recogni
tion that asthma is a chronic inflammatory disease of the airways has prompted 
recent guidelines being issued on the treatment of asthma, all of which have high
lighted the need for earlier intervention with anti-inflammatory drugs. This chapter 
reviews the evidence that glucocorticosteroids, disodium cromoglycate (DSCG), 
nedocromil sodium and theophylline have anti-inflammatory activity in asthmatics 
and also considers new drugs which are under development as potential anti-inflam
matory agents for the treatment of bronchial asthma. 

Established anti-inflammatory drugs 

Glucocorticosteroids 

Adrenal extracts were first used to treat asthmatics in 1900 [1] with the active 
ingredient later identified as cortisone [2]. In an attempt to potentiate the anti
inflammatory effects and reduce the unwanted mineralocorticosteroid effects, 
orally active glucocorticosteroids were developed and proven to have therapeutic 
efficacy in asthma [3]. It soon became apparent that orally active glucocorticos
teroids had a number of serious side-effects and thus attempts were made to 
develop drugs which could be delivered locally to the airways to achieve a high
er local concentration with a lower dosage than would be required for systemic 
administration. The first inhaled glucocorticosteroids to be developed were 
beclomethasone diproprionate [4] and betamethasone valerate [5] . Inhaled glu
cocorticosteroid therapy for asthma has enabled the well known toxicity of sys-
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temic side-effects to be reduced. Oral and inhaled glucocorticosteroids taken 
acutely, have no effect on the early asthmatic response [6, 7], although when 
taken prophylactically over longer periods, it is possible to demonstrate an 
inhibitory effect of glucocorticosteroids on the early asthmatic response [8, 9]. 
Acute treatment with glucocorticosteroids can inhibit the development of the late 
asthmatic response following inhalation of antigen [6, 7, 10] and have variable 
effects on the increase in airways responsiveness to spasmogens [10, 11]. How
ever, prolonged treatment with glucocorticosteroids has been shown to reduce 
increased airways responsiveness to carbachol during the pollen season in aller
gic asthmatics [12] and following 12-week treatment in stable asthmatics [13]. 
Furthermore, glucocorticosteroids also reduce the level of the maximal response 
to carbachol following 4 weeks treatment with budesonide in mild asthmatics 
[14] and following 12 weeks treatment with budesonide in asthmatics who did 
not achieve a maximum response to carbachol prior to treatment [13]. The ben
eficial effect of glucocorticosteroids upon the slope and maximum response to 
inhaled spasmogen is thought to reflect suppression of the inflammatory 
response. 

Glucocorticosteroids suppress almost every step of the inflammatory process in 
asthma. They are thought to achieve this by a variety of mechanisms including 
inhibiting the transcription of genes for a wide range of cytokines [15]; inhibiting 
enzymes involved in the formation of lipid mediators (e.g. PLA2 and COX) [16, 17]; 
inhibiting the expression of adhesion molecules (e.g. ICAM-1 and E selectin) [18]; 
inhibiting inducible nitric oxide synthetase [19], increasing the transcription of ~2 
receptors [20], lipocortin [21] and neutral endopeptidases [22]; suppressing eosino
phil colony formation and chemotaxis [23], macrophage activation and mediator 
release [24] and inhibiting lymphocyte proliferation and lymphokine release [25]. 
The precise molecular mechanism(s) to which glucocorticosteroids owe their thera
peutic efficacy in asthma remains unclear, but recent studies have shown that the 
glucocorticosteroid/glucocorticosteroid receptor complex may bind to AP-1 tran
scription factor, thereby inhibiting the expression of pro-inflammatory genes [26] 
and/or reduce the expression of transcription factors AP-1 and NFKB [27] which 
would lead to a reduction in the transcription of pro-inflammatory genes and syn
thesis of pro-inflammatory enzymes and mediators. 

Inhaled glucocorticosteroids are currently the most effective anti-inflammatory 
agents available to alleviate the symptoms of chronic asthma. However, despite the 
efficacy and improved safety of inhaled compared to oral glucocorticosteroids, there 
is still concern about safety of inhaled glucocorticosteroids in paediatric asthmatics. 
Furthermore, compliance with inhaled drugs is less than for oral drugs [28] and a 
number of patients still have poorly controlled asthma and a poor quality of life 
despite regular treatment with glucocorticosteroids. These limitations have prompt
ed the search for more orally effective anti-inflammatory agents for the treatment of 
asthma. 
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Disodium cromoglycate and nedocromil sodium 

Disodium cromoglycate (DSCG) was developed as a result of investigations into the 
properties of khellin, an isolate from the seeds of a Mediterranean herb which pos
sesses prophylactic properties [29]. Nedocromil sodium is chemically unrelated to 
DSCG and exhibits similar properties, and is at least two orders of magnitude more 
potent than DSCG [30]. 

DSCG attenuates the early and late asthmatic response following inhalation of 
antigen [6, 10, 31]. Prophylactic 28-day treatment of allergic asthmatics with 
DSCG reduced eosinophil numbers in bronchoalveolar lavage (BAL) fluid [32] 
consistent with the effect of this drug on the late asthmatic response. Exacerba
tions of bronchial hyperresponsiveness following antigen challenge are also abro
gated by DSCG [10, 31] and DSCG suppressed bronchial hyperresponsiveness to 
histamine during [33], but not outside [34], of the pollen season in atopic asth
matics, suggesting that DSCG is beneficial against acute exacerbations of 
bronchial hyperresponsiveness. This is consistent with clinical studies demonstrat
ing the ability of DSCG to suppress bronchoconstriction induced by non-allergic 
stimuli including exercise, sulphur dioxide, distilled water, cold air and adenosine 
(reviewed in [35]). 

Nedocromil sodium inhibits the early and late asthmatic response [36] and the 
subsequent increase in airway responsiveness to inhaled spasmogens [36, 37] when 
administered prior to antigen challenge. Similarly, prophylactic treatment with 
nedocromil sodium reduced exacerbation of airways responsiveness to histamine 
during the pollen season in atopic asthmatics [38]. Nedocromil sodium also afford
ed protection against bronchoconstriction induced by cold air, exercise, sulphur 
dioxide, distilled water, adenosine and neurokinin A, and in many cases nedocromil 
sodium was more potent than DSCG (reviewed in [35]). 

The mechanism of action of DSCG and nedocromil sodium has long been 
thought of as a consequence of mast cell stabilisation. However DSCG is a relative
ly weak inhibitor of histamine release from human lung mast cells following 
immunological challenge [39] and it is clear that DSCG inhibits the activation of a 
number of other inflammatory cells related to the pathogenesis of asthma including 
macrophages, eosinophils, platelets and neutrophils [40]. In addition, inhalation of 
DSCG in asthmatics inhibited neutrophil and monocyte activation [41] and reduced 
the number of eosinophils and epithelial ICAM -1 expression in bronchial biopsies 
[42]. Nedocromil sodium has also been shown to have other effects unrelated to 
mast cell stabilization including inhibiting the release of 15-hydroxyeicosatetraenoic 
acid [43], IL-8 [44,45] and chemotactic factors [46] from human bronchial epithe
lial cells. Nedocromil sodium has also been reported to inhibit eosinophil activity in 
vitro [47], although conflicting results have been observed concerning reduction in 
eosinophil number in bronchial biopsies following 12-16 week treatment of asth
matics with nedocromil sodium [48,49]. 

305 



Katharine H. Banner et al. 

The precise molecular mechanisms responsible for the action of DSCG and 
nedocromil sodium remain to be established but may be due to inhibition of calci
um influx into cells [50]. Alternatively there is evidence to suggest that these drugs 
can reduce the sensitivity of nerve endings in the airways thus abolishing local 
reflexes which can stimulate inflammation [51], an effect which may be attributable 
to their ability to block the activity of a chloride channel on the mucosal surface of 
airway epithelial cells as well as intermediate conductance chloride channels in cul
tured mucosal mast cells [52]. 

Theophylline 

In 1886, Henry Hyde Salter described the efficacious use of strong coffee taken on 
an empty stomach as a treatment for asthma [53] and the principle agent in coffee 
which produced bronchodilation is known to be caffeine. Theophylline has a simi
lar chemical structure to caffeine and was first used in the treatment of asthma as 
early as 1922, when theophylline was found to be effective in the treatment of three 
asthmatics and has been used since the turn of the century for the treatment of dis
eases of the airways [54]. Theophylline is well known for its bronchodilator activi
ty, although, it is becoming increasingly apparent that this drug also possesses anti
inflammatory and immunomodulatory activity. 

The intravenous administration of theophylline and enprophylline prior to aller
gen challenge inhibited the development of the late asthmatic response [55, 56] 
without any effect on the acute bronchoconstrictor response and associated 
bronchial hyperresponsiveness to methacholine [57]. Thus, neither functional antag
onism of airway smooth muscle shortening nor mast cell degranulation accounted 
for the attenuated late asthmatic response by theophylline and enprofylline, 
although, in allergic rhinitis, 1-week treatment with theophylline reduced histamine 
release during pollen exposure [58] which indicated that theophylline inhibited mast 
cell and basophil degranulation in this disorder. 

Individuals exposed for long periods of time to certain industrial chemicals 
develop asthma-like symptoms that can be duplicated in the clinical laboratory fol
lowing aerosol challenge with the inciting agent. Thus, susceptible individuals 
demonstrate acute bronchospasm, late asthmatic responses and bronchial hyperre
sponsiveness following inhalation of toluene di-isocyanate (TOI) [59]. The inflam
matory nature of this response has been confirmed by its sensitivity to inhibition by 
the glucocorticosteroid, beclomethasone. Theophylline partially modified the acute 
response and attenuated the late asthmatic response induced by TOI but was inef
fective against bronchial hyperresponsiveness [59, 60]. This latter finding is consis
tent with the inability of theophylline to modulate allergen-induced bronchial 
hyperresponsiveness in asthmatics [57, 61]. The inhibitory effect of theophylline 
against the late asthmatic response in asthma may be a consequence of a restoration 
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of T-suppressor cell function since it has long been recognised that theophylline can 
increase T-suppressor cell function [62-65] and impair graft rejection in vitro [65] 
and in vivo [66]. Individuals who do not develop a late asthmatic response have 
been shown to recruit a greater proportion of CD8+ (suppressor) than CD4+ (helper) 
T lymphocytes in BAL fluid [67]. 

Recent clinical studies have confirmed the anti-inflammatory properties of theo
phylline. In two randomised, placebo controlled studies [61, 68], the effect of theo
phylline or placebo was investigated on various inflammatory indices following 
once and twice daily treatment for 1 and 5 weeks, respectively. The late asthmatic 
response was reduced in those subjects treated with theophylline after 5 weeks [61] 
despite a mean plasma concentration of only 7.8 flg/ml. The lack of effect of theo
phylline on the acute response is presumably due to the low plasma levels in these 
subjects. Inhibition of the late asthmatic response therefore, was unlikely to be due 
to functional antagonism of airway smooth muscle shortening or inhibition of mast 
cell degranulation [61]. Analysis of bronchial biopsies taken from mild asthmatics 
treated with low dose theophylline over 6 weeks revealed a significant reduction in 
EG2+ staining cells (activated eosinophils) and total number of eosinophils [69], 
which may be a consequence of the ability of theophylline to induce apoptosis of 
human eosinophils [70]. Similarly, a reduction in CD3+ T lymphocytes and expres
sion of various activation markers on CD4+ T lymphocytes including HLA-DR and 
VLA-1 was observed in BAL fluid [71]. Furthermore, a reduction in CD4+, CD8+ T 
lymphocytes and IL-4 and IL-5 containing cells was observed in bronchial biopsies 
from asthmatics who were taking theophylline over a 6-week period [72]. In other 
studies, withdrawing theophylline from asthmatics who were taking glucocorticos
teroids resulted in a significant deterioration of their disease [73, 74], together with 
a concomitant rise in the number of CD4+, and CD8+ T lymphocytes in bronchial 
biopsies [74]. 

Together, these studies document the ability of theophylline to impair lympho
cyte trafficking in the airways at sub-bronchodilator doses. Furthermore, 10-day 
treatment with theophylline also reduced neutrophil and monocyte chemotaxis ex 
vivo [75]. In another study alveolar macrophages were shown to generate less super
oxide ex vivo after in vivo oral theophylline treatment [76]. In this study a reduc
tion in alveolar macrophage intracellular, bactericidal killing and H20 2 release was 
also found which correlated well with BAL theophylline concentrations. 

Recently, two studies have demonstrated that in asthmatics who were poorly 
controlled on existing glucocorticosteroid therapy, a significant improvement in a 
number of clinical outcomes including, peak expiratory flow, FEVl> symptom scores 
and reduced rescue medication was observed when patients were taking theo
phylline together with low dose glucocorticosteroid compared with high glucocorti
costeroid treatment [77, 78]. In both studies, the plasma levels of theophylline mea
sured were unlikely to be sufficient to induce bronchodilation (median 7.8 flg/ml 
[77] and mean 10.1 flg/ml [78]). 
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The mechanism by which theophylline suppresses inflammation is the subject of 
much controversy and detailed hypotheses are beyond the scope of this article. Suf
fice to say that a number of mechanisms have been proposed which include adeno
sine A2b receptor antagonism [79], alteration of intracellular calcium mobilisation 
[80], stimulation of endogenous catecholamine release [81], prostaglandin antago
nism [82] and phosphodiesterase inhibition (POE) [83]. However, inhibition of POE 
remains a popular theory to explain much of the clinical effects of theophylline, 
although, a recent study has shown that the ability of theophylline to promote apop
tosis of human eosinophils may be unrelated to POE inhibition [70]. The possibili
ty that the anti-inflammatory activity of theophylline may be attributable to inhibi
tion of POE has led to many pharmaceutical companies pursuing selective POE 
inhibitors for the treatment of asthma. 

Novel anti-inflammatory drugs 

Selective phosphodiesterase inhibitors 

A variety of pharmacological, biochemical and molecular biological studies have 
revealed the existence of eleven diverse POE families which are comprised of at least 
15 gene products with further diversity occurring as a consequence of differential 
splicing and post-translational processing [84, 85]. Of particular interest is the role 
of POE4 in regulating the function of a variety of cells thought to participate in the 
inflammatory process and there is considerable interest in the development of POE4 
inhibitors for the treatment of inflammatory diseases such as asthma. 

The POE4 inhibitors rolipram [86-88], R0201724 [86], RP73401 [87, 88] and 
COP840 [88] were all effective at inhibiting pulmonary eosinophilia induced by 
allergen challenge in the guinea-pig. This effect is not a feature peculiar to the 
guinea-pig since rolipram and COP840 can also attenuate the allergen-induced 
eosinophilia in allergic rabbits [89, 90], whilst rolipram [91-93] and RP73401 [87] 
can inhibit allergen-induced pulmonary eosinophilia in allergic rats and primates. In 
allergic mice, the mixed POE3IPOE4 inhibitor, benzafentrine and the POE4 
inhibitor, rolipram attenuated macrophage and eosinophil accumulation in BAL 
fluid [94]. Moreover, in addition to the ability of rolipram, R0201724 and COP840 
[86,88,95] to inhibit pulmonary recruitment of eosinophils following allergen chal
lenge, there is some evidence to suggest that these inhibitors as well as the POE4 
selective inhibitor, CP80633 [96] can attenuate the activation of eosinophils recruit
ed to the lung, as assessed by measurements of eosinophil peroxidase (EPO) con
tained in and/or secreted by the eosinophil. 

The POE3 inhibitor, siguazodan has been shown to attenuate ovalbumin-induced 
pulmonary eosinophilia in guinea-pigs [97], although in other studies, the POE3 
inhibitors, siguazodan [86, 95] and milrinone [95, 98] were ineffective. These dis-
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crepancies could be attributed to differences in the degree of sensitisation and/or 
dose of allergen employed to challenge the animals. Interestingly, the PDE3 inhibitor 
milrinone also inhibited pulmonary eosinophilia in allergic rats [93]. The PDE5 
inhibitor zaprinast appeared to have no effect on allergen-induced eosinophilia in 
the rat [93] or the guinea-pig [86, 98]. The mixed PDE3/4 inhibitors zardaverine 
[95,97,99] and ORG20421 [92] inhibited pulmonary eosinophilia in the guinea
pig and neutrophilia in the rat, respectively. Furthermore, pulmonary neutrophilia 
and the attendant increase in elastase and TNFa in BAL fluid following exposure to 
LPS in the rat was significantly reduced by zardaverine [100]. 

The ability of PDE inhibitors to impair the development of bronchial hyperre
sponsiveness following allergen exposure in sensitised animals has also been inves
tigated. For example, the mixed PDE3/4 inhibitor, ORG20241 [101] and the PDE4 
inhibitor, rolipram [98, 101] attenuated bronchial hyperresponsiveness to spasmo
gens following allergen challenge in guinea-pigs. Similarly, inhalation of pollutants 
such as ozone caused an 8-10-fold increase in airway sensitivity to histamine that 
was significantly attenuated by CDP840 [102]. Similarly, rolipram [90] and 
CDP840 [89] significantly inhibited bronchial hyperresponsiveness induced by 
Alternaria tenuis in the rabbit. The mixed PDE3/4 inhibitor zardaverine attenuated 
the LPS-induced bronchial hyperresponsiveness to serotonin in the rat [100]. Simi
larly, rolipram inhibited bronchial hyperresponsiveness following repeated antigen 
challenge of atopic cynomolgus monkeys [91]. 

PDE inhibitors are currently being developed for the treatment of asthma although 
side-effects including nausea and vomiting have halted the development of some 
examples of this class of drug into the clinic. To date, there are a limited number of 
clinical studies investigating the efficacy of PDE inhibitors in the treatment of asthma. 

Inhalation of zardaverine was shown to produce a modest bronchodilator effect 
in patients with asthma, although unacceptable side-effects of nausea and emesis 
were reported in a significant number of patients [103], while oral administration 
of cilostazol (PDE3 inhibitor) caused bronchodilation and bronchoprotection 
against methacholine challenge in healthy subjects at the expense of mild to severe 
headache [104]. AH-2132 (benzafentrine) has also been reported to have significant 
bronchodilator activity in normal volunteers [105]; ibudilast significantly improved 
baseline airways responsiveness to spasmogen by two-fold after 6 months treatment 
[106] and MKS492 (PDE3 inhibitor) attenuated the early and late asthmatic 
response in atopic asthmatics [107]. 

Recently, the PDE4 selective inhibitor, CDP840 has been demonstrated to mod
estly attenuate the development of the late asthmatic response in mild asthmatics 
whilst having no effect on the acute response and no side-effects were reported 
[108]. The ability of CDP840 to inhibit the late asthmatic response was not associ
ated with bronchodilation, suggesting other actions than smooth muscle relaxation. 
In contrast, another PDE4 inhibitor RP73401, had no significant effect on allergen
induced bronchoconstriction in allergic asthmatics [109]. 
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Drugs affecting leukotriene synthesis and action 

Cysteinyl leukotrienes (LT) including LTC4, D4 and E4 are endogenous bioactive 
lipid mediators which are known to posses potent pro-inflammatory actions includ
ing vascular permeability, mucus secretion, bronchial hyperresponsiveness as well as 
activation and recruitment of inflammatory cells, in addition to being very potent 
spasmogens of human airway smooth muscle. Leukotrienes are derived from the 5-
lipoxygenase (5-LO) pathway of arachidonic acid metabolism and two approaches 
have been explored to inhibit the pharmacological activity of leukotrienes; inhibi
tion of the 5-LO enzyme and leukotriene receptor antagonism. 

The 5-lipoxygenase inhibitor zileuton was effective against bronchoconstriction 
induced by exercise [110], cold air [111] and reduced airways responsiveness to dis
tilled water and histamine [112], but was ineffective against bronchoconstriction 
following antigen challenge [113] in asthmatics. Furthermore, in a small study, 
zileuton attenuated both airways and blood eosinophilia in nocturnal asthmatics 
[114]. Similarly, the FLAP inhibitors, MK-0591 [115] and MK-886 [116] attenuat
ed the early and late asthmatic response following antigen challenge but not the 
attendant increase in airway responsiveness to spasmogen. 

The leukotriene antagonists zafirlukast (ICI 204,219), montelukast (MK-0476) 
and pranlukast (SB 205312, ONO 1078) have also been assessed clinically. Zafir
lukast potently inhibited bronchoconstriction to inhaled LTD4 challenge, attenuat
ed early and late phase bronchoconstriction to inhaled allergen [117, 118] and 
following exercise [119] and attenuated bronchoconstriction to inhaled sulphur
dioxide [120] . Similarly, pranlukast a potent antagonist of LTD4 induced broncho
constriction [121], attenuated aspirin induced asthma [122], antigen-induced acute 
bronchoconstriction [123] and had a modest effect against airways responsiveness 
to methacholine following 1 week of treatment [124]. Montelukast [125, 126] and 
pranlukast [127, 128] improve pulmonary function and clinical symptoms are well 
tolerated and appear to be safe. 

Thromboxane A2 receptor antagonists and synthetase inhibitors 

Thromboxane (TX)A2 is a potent bronchoconstrictor agent which is released in 
asthma [129] and has been implicated as a potential mediator in this disease [130]. 

The TXA2 antagonist BAY u3405 produced a modest decrease in airways 
responsiveness to methacholine following 2-week treatment in asthmatics [131] but 
was ineffective against bradykinin induced bronchoprovocation following a single 
oral administration [132]. Similarly, the TXA2 antagonist, GR32191 was ineffective 
against methacholine responsiveness in adult asthmatics following 3-week treatment 
[133]. These studies suggest that TXA2 antagonists are unlikely to suppress baseline 
airways hyperresponsiveness in asthmatics. 
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The TXA2 synthetase inhibitor ozagrel (OKY-046) reduced cough sensitivity to 
capsaicin [104], and bronchoconstriction to acetaldehyde [134] in asthmatics, indi
cating a possible role for TXA2 in sensitisation of afferent nerves. In contrast, air
ways responsiveness to methacholine was not significantly altered following 1-week 
treatment with UK-38,485 [135]. Similarly, whilst acute treatment with CGS 13080 
attenuated the acute bronchoconstrictor response to antigen, the late asthmatic 
response and attendant bronchial hyperresponsiveness was not inhibited [136]. In a 
phase III study, ozagrel was reported to have a significantly greater effect in ame
liorating asthma symptoms than azelastine hydrochloride and reduced the dose of 
concomitant steroid therapy [137]. It is clear that TXA2 antagonists and TXA2 syn
thetase inhibitors may have a greater beneficial effect against acute exacerbations of 
asthma induced by stimulants of afferent nerves. 

Monoclonal antibodies 

One of the hallmark features of atopic disease is the presence of IgE which has been 
suggested to playa pivotal role in the pathogenesis of the atopic state [138]. 
Crosslinking of antigen to high affinity IgE receptors (FcERI) on various inflamma
tory cells including mast cells and basophils is a critical step in mediating many of 
the acute symptoms of asthma. The development of novel peptides which can inhib
it the binding of IgE to FCERI may therefore have beneficial effects in the treatment 
of atopic diseases [139]. Recently, asthmatics were treated with the monoclonal 
antibody, rhuMAb-25, which binds to the FCERI binding domain of IgE. A reduc
tion in serum IgE levels, early and late asthmatic response to inhaled antigen, 
reduced sputum eosinophil numbers and reduced airways hyperresponsiveness to 
antigen and methacholine was observed following 9-week treatment with rhuMAb-
25 [140, 141]. 

The low affinity IgE receptor FCERII (C023) is thought to mediate a number of 
effects including inhibition of IgE synthesis, antigen presentation; proliferation and 
differentiation of B cells; and activation of monocytes, effects which can be ascribed 
to the membrane and soluble conformers of C023 [138]. A recent study has shown 
that antibodies directed against C023 attenuated eosinophil recruitment to the air
ways following antigen challenge in a murine model of inflammation [142]. The 
development of peptides and other drugs which target this receptor may also pro
vide a novel therapeutic approach to the treatment of asthma. 

The cytokine interleukin (IL)-5 is important in the differentiation, migration and 
activation of eosinophils. Monoclonal antibodies directed against IL-5 including 
TRFK-5, attenuated eosinophil recruitment and bronchial hyperresponsiveness in 
allergic mice [143-146], guinea-pigs [147] and primates [148]. In the primate study, 
the ameliorating effect of TRFK-5 on antigen induced eosinophilia and hyperre
sponsiveness was evident 3 months after treatment [148]. Recently, inhalation of 
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human recombinant IL-5 in asthmatics was associated with a three-fold increase in 
airways sensitivity to methacholine, a six-fold increase in sputum eosinophil num
ber and a three-fold increase in sputum ECP levels, 24 h following antigen challenge 
[149]. The effect of antibodies to IL-5 in asthma are currently under investigation. 

Eotaxin receptor blockers 

Chemokines are a group of small molecular weight peptides (8-10 kDa) which have 
a number of biological effects including chemotaxis, immunoregulation, and cell 
growth and are classified into CXC, CC and C families [150]. Of particular interest 
is the role of the CC chemokine, eotaxin, a potent chemoattractant for eosinophils 
[151-153] and basophils [154] mediated via selective activation of the G protein 
coupled CC chemokine receptor (CCR) 3 [152, 155]. In a murine model of tissue 
eosinophilia, targeted disruption of the eotaxin gene resulted in an attenuation of 
the early (18 h) but not late (48 h) phase recruitment of eosinophils to the lung fol
lowing antigen challenge [156], suggesting that substances additional to eotaxin are 
involved in the recruitment of eosinophils to the airways. Furthermore, antibodies 
directed against eotaxin suppressed constitutive and allergen-induced chemoattrac
tant activity in BAL fluid [157]. Treatment of skin sites with antisera to eotaxin, or 
following desensitisation of CCR3 with eotaxin and blockade of the receptor with 
RANTES, inhibited the accumulation of radio labelled eosinophils following antigen 
challenge [158]. More recently, a monoclonal antibody (7Bll) directed against 
CCR3 inhibited binding, chemotaxis and calcium influx of eosinophils induced by 
eotaxin, RANTES, monocyte chemotactic protein (MCP)-2, MCP-3 and MCP-4 
[159] and suggests the possibility of developing receptor antagonists for the CCR3 
receptor. 

Drugs affecting cell trafficking 

Proteog/ycans 
There is now considerable evidence that proteoglycans such as heparin have a wide 
range of biological properties beyond their well known activities as anti-coagulants. 
Proteoglycans are a family of structurally distinct, polyanionic complex carbohy
drates compose of repeating disaccharide units. Naturally occurring proteoglycans 
include heparin, heparan sulphate, chondroitin 6-sulphate and dermatan sulphate. 
Heparin is found exclusively in mast cell granules where it binds various mediators 
including histamine and can influence the activities of a number of mast cell derived 
enzymes such as tryptase [160]. Heparan sulphate has a much wider distribution in 
the body, being associated with stromal matrices, basement membrane and many 
cell surfaces, including endothelial cells. 
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There is now substantial evidence showing that heparin and related proteoglycans 
can inhibit the various phases of leukocyte adherence to the vascular endothelium 
and the subsequent trafficking of these cells into tissues, including the lung [160]. As 
such proteoglycans may serve as useful molecules to interfere with the inflammatory 
process, and indeed have recently been shown to be of benefit in a number of inflam
matory conditions clinically, including rheumatoid arthritis [161], ulcerative colitis 
[162, 163] and interstitial cystitis [164]. Given the importance of inflammatory cells 
in the pathogenesis of asthma, and the important role played by adhesion molecules 
in the migration of inflammatory cells into the airways (see above), it is of consider
able interest that heparin can bind to both L- and P-selectin [165] and that heparan 
sulphate derived from pulmonary artery endothelial cells will interact with a chimera 
of L-selectin [166]. A number of proteoglycans, including heparin and heparan, have 
been shown to inhibit the rolling and adhesion of neutrophils to vascular endothelial 
cells, and to inhibit the migration of neutrophils [167] and eosinophils into tissues, 
including the lung [168, 169]. An interesting recent development in this area is the 
identification of non-anticoagulant proteoglycans such as O-desulphated heparin 
that retain anti-inflammatory activities [170], including the ability to inhibit 
eosinophil infiltration into the airways [171]. This raises the real possibility of devel
oping novel anti-inflammatory drugs based on proteoglycans that do not have 
unwanted side-effects related to other actions of proteoglycans. 

Another interesting effect of heparin of relevance to the trafficking of inflamma
tory cells is the inhibition of the enzyme heparinase, an enzyme secret by a number 
of inflammatory cells that can degrade heparan sulphate on the endothelial cell sur
face [172]. Increased levels of heparinases have been reported in the sputum from 
subjects with asthma [173] and loss of GAGs on the surface of endothelium has 
been reported to be an important mechanism contributing to inflammatory changes 
in other clinical conditions [174]. Heparan and chronically modified heparin have 
been reported to inhibit the degradation of hepar an sulphate by inflammatory cells 
[175] and to inhibit T cell trafficking by an action on heparinases [176]. The clini
cal potential of the actions of proteoglycans are not yet fully understood, but it has 
now been shown clinically that heparin can inhibit allergen [177] and exercise
induced asthma [178, 179], as well as allergen-induced eosinophil infiltration into 
the nose of allergic subjects [180], suggesting that indeed proteoglycans may well 
provide anti-inflammatory activities in the treatment of respiratory disease in man. 

Anti-adhesion therapy 
A number of studies have used antibodies directed against selected adhesion mole
cules including ICAM-1 [181], LFA-1 [182, 183], VLA-4 [182, 184] and shown that 
bronchial hyperresponsiveness and attendant pulmonary eosinophilia following 
antigen challenge is abrogated in a variety of species including, primates, guinea-pig 
and mice. 
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A number of studies have shown that treatment with antibodies directed against 
leukocyte integrin CD18 [185] or ICAM-l [186] did not reduce the recruitment of 
eosinophils into the airways yet bronchial hyperresponsiveness was reduced. In con
trast, inhibition of the late response, eosinophil recruitment to the lung and 
bronchial hyperresponsiveness was reduced in an allergic rabbit model [187]. Simi
larly, an antibody directed against VLA-4 reduced the number of eosinophils recov
ered in BAL and reduced eosinophil peroxidase levels, however, bronchial hyperre
sponsiveness following antigen challenge was not affected [188]. The discrepancies 
in the results might be a consequence of the selectivity of the antibodies since anti
bodies directed against the P2 integrin CD18 abolished the accumulation of neu
trophils in the skin but not the lung [189]. 

Tryptase inhibitors 

Tryptase is a mast cell serine protease released following IgE stimulation of mast 
cells [190]. The physiological role for tryptase is unclear but it is known to affect 
fibroblast proliferation, degrade fibrinogen, generate C3a [191], stimulate mucus 
secretion [192] and degrade sensory neuropeptides [193, 194]. Thus, mast cell 
tryptase could playa role in regulation of haemostasis, mucus secretion and vascu
lar permeability. 

Elevated tryptase levels are evident in asthma, even in the absence of deliberate 
antigen challenge [195, 196], which may contribute toward bronchial hyperrespon
siveness since incubation of tracheal smooth muscle with canine tryptase augments 
smooth muscle contractility in vitro [197] as well as airways responsiveness to car
bachol in sheep following aerosolization of tryptase [198]. 

The mast cell tryptase inhibitor, APC-366 inhibited antigen induced late phase 
response and bronchial hyperresponsiveness to carbachol in sheep [199] and 
bronchial hyperresponsiveness to aerosolised tryptase [198]. Similarly, lactoferrin, 
which disrupts the quaternary structure of tryptase, also attenuated antigen-induced 
late response and bronchial hyperresponsiveness in allergic sheep [200]. 

H1 receptor antagonists and anti-allergic drugs 

HI receptor antagonists 
Anti-histamines are widely used in the treatment of allergic diseases where the 
release of histamine is thought to play an important role in the symptoms associat
ed with hayfever, urticaria, and mild asthma [201]. 

However, it is clear that a number of Hl receptor antagonists including cetirizine, 
terfenadine, ebastine, oxatimide, loratidine and ketotifen demonstrate anti-inflam
matory activity unrelated to Hl receptor blockade. For example, cetirizine inhibits 
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FMLP- and PAF-induced chemotaxis of [202-204], and super oxide generation by 
eosinophils [204]; inhibits FMLP-, LTB4-induced chemotaxis of lymphocytes and 
monocytes [205] and inhibited eosinophil survival in vitro [206]. Similarly, oxa
timide inhibited antigen induced degranulation of human lung mast cells and 
basophils in vitro [207]. The mechanism by which these drugs inhibit inflammato
ry cell function is unclear but may relate to stabilisation of cell membranes and 
interference with intracellular calcium mobilisation. 

A number of clinical studies have reported that cetirizine can attenuate the 
wheal and flare response following antigen, whilst having no effect on the late cuta
neous response nor the attendant eosinophilia and deposition of ECP [208, 209]. 
Similarly, 3-week treatment with cetirizine failed to attenuate early and late phase 
response but caused conflicting effects on bronchial hyperresponsiveness following 
antigen challenge [210, 211] . Nonetheless, expression of ICAM-l and eosinophil 
number in scrapings from nasal mucosa was significantly reduced following IS-day 
treatment of children sensitive to house dust mite with cetirizine [212]. Following 
26 weeks treatment, cetirizine has also been shown to reduce a number of clinical 
symptoms in patients with perennial asthma [213]. Thus, while acute studies have 
reported a lack of beneficial effect of cetirizine on a number of inflammatory 
indices, it is clear that cetirizine may be useful when taken prophylactically in some 
asthmatics. 

Ketotifen 
Ketotifen is an orally active drug used mainly as a prophylactic against asthma 
attacks particularly in the treatment of paediatric asthmatics [214, 215]. Ketotifen 
is a potent HI receptor antagonist, but has a number of other pharmacological 
actions of relevance to its efficacy in asthma, including the ability to stabilise mast 
cells, upregulate ~radrenoceptors [216] and to inhibit eosinophil recruitment in 
vivo [217]. This latter action of ketotifen is untelated to its action as a Hrreceptor 
antagonist, as its action against eosinophil recruitment is not shared by other HI-
receptor antagonists except cetirizine. The anti-eosinophilic action of ketotifen may 
be central to its ability to alter allergic asthma and contribute to its efficacy in other 
allergic diseases. 

Suplatast 
Suplatast tosilate (IPD-1151 T) is a dimethylsulfonium substance which displays a 
number of anti-allergic properties. For example, suplatast inhibits IgE production 
from B-cell clones from a patient allergic to Japanese cedar pollen [218]; expression 
of IL-4 in mononuclear cells [218]; IL-4 and IL-5 production from murine T lym
phocytes [219]; and differentiation of mast cells from murine splenocytes and pro
liferation of mast cell progenitor cells [220]. 
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In animal studies, suplatast inhibited airway hyperresponsiveness and infiltration 
of eosinophils, macrophages and CD4+ T lymphocytes following antigen challenge 
in sensitised guinea-pigs [221]. In one clinical study, a significant increase in peak 
expiratory flow and improvement in bronchial hyperresponsiveness was observed in 
mild asthmatics following 6 weeks of treatment with suplatast. Furthermore, a sig
nificant reduction in the number of eosinophils and EG2+ staining cells was 
observed in bronchial biopsies from these patients [222]. 

Cell activation inhibitor (CI-949) 

The benzothiophene compound, CI-959 inhibits the activation of a number of 
inflammatory cells including eosinophils, neutrophils and lung mast cells. For exam
ple, the respiratory burst from human eosinophils [223] and neutrophils [224]; 
enzyme release from human macrophages and neutrophils [223]; and release of 
leukotrienes, histamine and thromboxane from human lung [224, 225] are inhibit
ed by CI-959. Similarly, CI-959 has been shown to inhibit IL-2 production from 
human lymphocytes as well as proliferation stimulated by conconavalin A but not 
phytohaemagluttinin. CI-959 had minimal effect on IL-1 and TNFa. release from 
human monocytes [226], suggesting that this drug has little action on monocytes. 
Whilst the mechanism of action of CI-959 remains to be established, it appears to 
be more effective at inhibiting respiratory burst in neutrophils via receptor coupled 
mechanisms as opposed to mechanisms which involve calcium entry or activation of 
protein kinase C suggesting that CI-959 may inhibit calcium-regulated signalling 
mechanisms [227]. 

Conclusion 

Asthma remains a major burden to healthcare systems world-wide. While signifi
cant improvements have been made in asthma therapy over the last decade, the 
prevalence and severity of asthma continues to rise in many Western countries, 
despite more prescriptions being written. Compliance remains a major problem 
with many existing anti-asthma drugs as they have to be administered by inhalation. 
There is a therefore a real need for the introduction of a novel orally acting anti
inflammatory drug for the treatment of asthma. 
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Introduction 

Because of the requirement for efficient gas exchange, the respiratory tract is par
ticularly vulnerable to opportunistic infection. The immune system, therefore, plays 
a particularly vital role in protecting the respiratory mucosa from infection. The 
cells that orchestrate this response are immune T cells. The respiratory mucosa con
tains large numbers of T cells and a network of dendritic cells that present antigen 
to them. For many years it was thought that IgE-mediated inflammation was the 
only precipitating factor in asthma. Mast cells sensitised with IgE antibodies were 
triggered following contact with aeroallergens which caused immediate and subse
quent late phase inflammatory events leading to airway narrowing and subsequent
ly to asthma. However, studies by Kay and colleagues have shown that T cells are 
also directly important in asthma [1-4] as they are in the allergen-induced late phase 
response in the skin [5]. The airways of asthmatic patients are rich in T cells. In 
experimental animals, adoptive transfer of antigen-specific Th2 T cells and subse
quent aerosol challenge are sufficient to induce inflammation and increase bronchial 
hyper responsiveness [6, 7]. The cytokines produced by immune T cells and their 
contribution to allergic inflammation and asthma is the subject of this chapter. 

CD4 and CDS T cells 

Immune T cells provide defence against intra and extracellular pathogens. CD8 T 
cells are MHC class-I restricted while CD4 T cells respond to antigenic peptides pre
sented in the MHC class II cleft. The MHC I pathway collects antigen such as viral 
or self proteins present in the cytosol of the cell that have been broken down into 
small peptides by an organelle called the proteosome. It is now known that there are 
two types of proteosome. The first is termed the proteosome, and degrades a wide 
range of proteins. The second, called the immunoproteosome, is restricted to the 
breakdown of a narrower range of proteins [8]. The small peptides produced by the 

Cellular Mechanisms in Airways Inflammation, edited by Clive P. Page, Katharine H. Banner and 
Domenico Spina 
© 2000 Birkhauser Verlag Basel/Switzerland 333 



David M. Kemeny and Brian J. O'Connor 

Soluble 

Proteosome 

MacropinocytosiS I 
o 

membrane 

Figure 1 

MHC class I and /I antigen processing pathways. Most soluble antigen enters via the endo

somal compartment. Some enters by phagocytosis or macropinocytosis. Viruses are able to 

infect antigen-presenting cells via coated pits. MHC molecules are synthesized in the endo

plasmic reticulum (ER). Small (7-8 amino acid) peptides are derived from the proteosome 

and are assembled into the MHC I complex of a chain and f32 microglobulin. MHC /I mole

cules are also synthesised in the ER. To prevent them from binding pep tides destined for 

MHC I they have an extra chain (invariant chain) that binds to the a and f3 chains of the 

MHC /I complex. Part of this molecule obscures the peptide-binding cleft (clip peptide). 

Once in the endosome the invariant chain is degraded by enzymes revealing the MHC /I pep

tide binding groove which picks up 15-17 amino acid peptides and migrates to the cellsur

face where they are presented to T cells. 

proteosome are inserted in the peptide-binding groove between the first and second 
domains of the MHC class I (l chain. A specialized molecule called the transporter 
of peptide (TAP) [9-13] facilitates this. Soluble protein antigens normally enter the 
MHC class II pathway via endosomes that contain proteases that degrade the anti
gen into peptides (Fig. 1). MHC class II molecules are prevented from binding to pep
tides in the endoplasmic reticulum (ER) by a molecule called invariant chain which 
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Figure 2 

Proliferation of COB vf35.2 TcR transgenic T cells following culture with adherent splenic 

antigen presenting cells pulsed with OVA peptide or whole ovalbumin. 

blocks the peptide binding groove and is cleaved in the endosomes. However these 
two pathways are not completely exclusive and when antigen presenting cells, such 
as macrophages are activated, for example by binding to plastic, their ability to 
process soluble antigen via the MHC I pathway is greatly enhanced (Fig. 2). 

In addition to CD4 T cells, CD8 T cells are also involved in lung immunity. CD8 
T cells recognise antigen presented by MHC class 1 as stated above. As above, 
whole proteins can get into the MHC class I pathway once inside the cell. They are 
broken down by some but not all proteosomes. The immunoproteosome does not 
process soluble antigen that enters the cell as well as the proteosome and is present 
in a higher proportion in B cells. This may explain why these cells are poor targets 
for CD8 T cells [8]. The immunoproteosome is also present in DCs and this may 
explain why peptide is more readily processed into class I than whole protein [25, 
26]. 

Th1 and Th2 CD4 T-cell subsets 

Until 1986 it was unclear how the different effector functions of CD4 T cells were 
mediated [14]. In 1986 Mosmann and colleagues published a seminal study in 
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Table 1 - The cytokine profile of mouse CD4 and human COB T-cell subsets 

Subset IL-2 IFNy TNF~ IL-4 IL-5 IL-6 IL-10 IL-13 

Th1/Tc1 +++ +++ +++ 

ThO/TcO +++ +++ +++ +++ +++ +++ +++ +++ 

Th2/Tc2 +++ +++ +++ +++ +++ 

which well-established mouse CD4 T-cell clones were classified according to the 
cytokines they produced (Tab. 1). They observed that the clones were polarized into 
those that secreted IFNy, IL-2 and TNF~ but not IL-4, IL-S, IL-6, IL-I0 or p600 (IL-
13), which they termed T-helper 1 (Thl), and those that made IL-4, IL-S, IL-6, IL-
10 or p600 (IL-13), but not IFNy, IL-2 or TNF~, which they called T-helper 2 (Th2). 
Some cytokines, interleukin-3 (lL-3), tumour necrosis factor u (TNFu) and granu
locyte-macrophage colony stimulating factor (GM-CSF) are secreted in similar 
amounts by both subsets. It soon became evident that Thl cells were associated with 
immunity to bacterial and viral pathogens while Th2 responses were associated with 
nematode and other parasitic infections and with allergy as discussed below. A third 
category termed ThO, which made all cytokines, was later described [15]. 

Th1/Th2 T-cell surface markers 

In addition to cytokines, cell surface ligands may distinguish different types of T 
cell. Putative Thl cell markers include the signaling lymphocytic activation molecule 
(SLAM), a 70-kDa costimulatory molecule belonging to the immunoglobulin super
family. SLAM mediates CD28-independent proliferation of human T cells and IFNy 
production by human Th 1 and Th2 clones. SLAM is expressed on primary mouse 
T and B cells. Following Thl and Th2 differentiation, its expression is restricted to 
mouse Thl but not Th2 CD4 T cells [16]. Another molecule termed LAG-3 is also 
reported to be associated with Thl cells [17, 18]. 

There are also a number of potential Th2 cell makers. ST2L (also known as Tl, 
DER4, or Fit) is expressed on Th2 but not Thl cells [19]. CD30 is expressed at a 
higher level on Th2 cells, and reflects their ability to respond to IL-4 [20]. Indeed 
signaling via CD30 promotes Th2-cell formation [21]. For CD8 T-cell subsets, 
established Tel cells (6-8 weeks into culture) fail to induce CD30, CD40L follow
ing activation [22]. Tel cells constitutively express lower levels of CD28 than Tc2 
cells. After activation, CD28 levels on Tel CD8 T cells fall while CD28 on T c2 cells 
does not. Thl cells do not express the ~ chain of the IFNy receptor [23]. Mice in 
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whom the IFNyR2 gene has been inactivated have defective Thl differentiation, are 
defective in contact hypersensitivity and are highly susceptible to infection by Liste
ria monocytogenes [24]. 

Regulatory T-cell subsets 

For many years in vitro and in vivo studies of T cells have shown that these cells can 
inhibit as well as enhance specific immune function. However attempts to define sup
pressor factors have been elusive. A number of processes have now been defined. As 
is shown below, the cytokines made by Thl cells (specifically IFNy) inhibit Th2 cells 
and cytokines made by Th2 cells (especially IL-4) inhibit Thl cells. Thus the balance 
of the developing Thlffh2 immune response can be directed down one or other of 
these pathways. This process has been termed immune deviation [27,28]. At mucos
al surfaces another immune regulatory process has been described as immunological 
tolerance in which immune T cells are inhibited rather than redirected. The cells that 
mediate these effects have been termed regulatory T cells. The first to be reported 
were Th3 cells. These cells predominantly secrete TGF~ [29-32] (Fig. 3b). A second 
regulatory subset termed Trl that mainly makes IL-I0 has since been described [33]. 
Trl cells inhibit Thl cells [34] and prevent Thl inflammatory disorders such as col
itis [33, 35, 36]. They have two possible phenotypes: CD45RBhigh [35-38] and 
CD45RBlow/CD38+ [39]. Th3 cells are found following induction of oral tolerance 
[30-32, 40]. There may be further subsets [41] that have yet to be defined. IL-I0 
induces Trl cells [33]; it is not known what specific signals induce Th3 cells. 

Available evidence indicates that the cytokine profile of human T-cell clones 
resembles that seen in the mouse although there are some notable exceptions. T-cell 
clones prepared from atopic donors are Th2like [42-47] while the majority, derived 
from non-atopic individuals, were closer to Th1. Some human Thl clones, however, 
make appreciable amounts of IL-6 [48] and both Thl and Th2 human CD4 T-cell 
clones can make IL-I0. 

Th1 and Th2 differentiation and growth 

A number of factors control the differentiation and subsequent growth of Thl and 
Th2 cells including the cytokines present and the type of stimulus delivered. As so 
often in immunology, the effects of cytokines can be both autocrine and paracrine. 
IL-4, for example, promotes the generation of IL-4 producing Th2 cells. As these 
cells make IL-4 this, in turn, promotes differentiation into additional Th2 cells [49-
51]. IL-4 also inhibits differentiation into Thl cells and reduces Thl cell growth 
[52]. Cytokines can also act synergistically - for example a combination of IL-4 and 
IL-I0 inhibits cell-mediated immunity [53, 54]. 
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The contribution of cytokines and TcR delivered signals to C04 T cell differentiation. 

(a) Following T cell receptor (TcR) engagement naiVe C04 T cells (Thp) make fL-2. TGFf3 

maintains cells in this state. Subsequent engagement of co-stimulatory molecules, such as 

C028, induces cytokine gene expression via an intermediate (Thi) that makes both IFNyand 

IL -4 into Th1, Th2 or ThO effector cells. The formation of these different cells is regulated by 

the presence of key cytokines. IL -12 promotes Th1 cells and IL -4 Th2 cells. It is unclear what 

causes ThO cell formation. In addition to these cytokine delivered signals the balance of TcR 

delivered signals that activate the calcium (Ca2+) and protein kinase c (PKC) pathways are 

capable of overriding the effects of cytokines. 

(b) In addition to the above T cell subsets are regulatory T cells (Tr1) that are induced by IL-

10 and make IL-10 and Th3 cells that mainly make TGFf3. 

Following T-cell receptor (TcR) engagement, naive CD4 T cells (Thp) make IL-
2. TGF~ maintains cells in this state [53], which may be important for clonal expan
sion (Fig. 3a). Subsequent engagement of co-stimulatory molecules, such as CD28, 
induces cytokine gene expression, via an intermediate (Thi) that makes both IFNy 
and IL-4 [55], into Th1, Th2 or ThO effector cells. The formation of these different 
cells is regulated by the presence of key cytokines. IL-12 promotes formation of Th1 
cells [56] and IL-4 is required for Th2 cells [49]. It is unclear what causes ThO cell 
formation or what is their function (see below). 
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As well as cytokines, different stimuli delivered via the T-cell receptor influence 
Th1 and Th2 cell formation. O'Garra and colleagues have shown that both strong 
and weak stimuli favour mouse Th2 formation in vitro [57]. In vivo we have found 
that the optimum dose of antigen for IgE responses in the mouse today is 1 mg/ml. 
This contrasts with previous studies showing microgram [58-60] and even 
nanogram [61] quantities worked best. What appears to have happened is that as 
animal colonies have become free of certain pathogens, such as the pin worm 
syphacea, they have lost the ability to respond to low antigen dose but still respond 
to high doses. 

By contrast, Bottomly has shown that increased interaction (valency) between T 
cell and antigen presenting cell favors Th1 over Th2. Transgenic CD4 T cells pro
duced IFNy when exposed to high antigen doses, while low doses of the same pep
tide induced Th2-like cells that produced IL-4 [62]. Priming by altered peptide lig
ands (APLs) for both IL-4 production and IFNy production does not require two 
different types of APCs [63]. Indeed the nature of the signals sent by the T cell recep
tor (T cR) can influence the type of T cell with high affinity antigen peptides favor
ing Th1 and low affinity peptides favoring Th2 [64-66]. High affinity TcR deliv
ered signals activate the calcium (Ca2+) pathway [67] while low affinity TcR signals 
favor the protein kinase c (PKC) pathway [66]. Such T cR delivered signals are able 
to override the effects of cytokines such as IL-4 and IL-12. 

Tc1 and Tc2 CD8 T cells 

CD8 T cells are regulated by the same cytokines but it is generally more difficult to 
make Tc2 CD8 T cells as compared with Th2 CD4 T cells [50, 68-70]. In common 
with CD4 T cells, IL-4 enhances differentiation into T c2 cells and inhibits T c1 cell 
formation while IL-12 promotes differentiation into T c1 cells [71] and inhibits T c2 
cell formation. As for CD4 T cells, growth of T c1 but not T c2 cells is inhibited by 
IL-4 while IL-12 enhances T c1 but not T c2 cell proliferation [22] . In vivo, polar
ized T cell subsets persist. Transgenic CD8 T cells, polarised into Th1 or Th2-like 
subsets in vitro, then adoptively transferred into wild type mice revert to a naive 
(resting), CD45RBhigh phenotype. When re-challenged with antigen 13 weeks later 
the transgenic cells produced the same pattern of cytokines [72]. It is not known, 
but is expected, that similarly polarised CD4 T-cell subsets too retain the same pat
tern of cytokine secretion. 

IgE regulation 

Shortly after IgE was discovered it became clear that IgE production by B cells was 
regulated by T cells. Tada showed that rat IgE responses could be inhibited by Lyt2 
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(CD8u) bearing T cells [73-75]. Katz and others showed that CD4 T-cell help was 
also required [76, 77]. For many years different theories were advanced and specific 
immunoregulatory molecules proposed. In 1986 the speculation ended when Coffman 
and Carty [78] using BCSF-l and in 1987 Snapper and Paul using its new name, IL-
4 [79] showed that this molecule regulated B-cell IgE class switching. Subsequently 
p600 (lL-13) was shown to posses the same IgE promoting properties as IL-4 [80]. 

During antibody synthesis, the genes encoding the variable part of the IgE mol
ecule (VDJ) are rearranged to yield different affinity antibodies. B cells making the 
highest affinity antibody are selected by rescue from apoptosis. The heavy chain of 
the immunoglobulin gene is spliced onto the VD J complex that encodes the com
bining site. In the case of IgE, a sterile transcript that does not contain the full length 
sequences produced first. This regulates expression of the full-length sequence. The 
combining site is joined to the heavy chain by looping out intervening DNA. This 
produces a circle of DNA containing the intervening heavy chain genes analysis of 
these switch circles has shown that switching can occur in stages, in a single jump, 
up and down the gene. This process is regulated by an obligatory signal delivered 
by CD40L on the CD4 helper T cell and specific cytokines. 

The process of class switching can be followed through a series of distinct steps 
shown in Figure 4. In step 1, IgM antibody bearing B cells take up antigen via their 
surface antibody. This antigen is then processed and presented via MHC class II 
molecules in step 2 to CD4 T helper T cells. Ligation of the T-cell receptor in this 
way upregulates expression of CD40L (CDI54) (Step 3) which binds to CD40 on 
the surface of the B cell which is constitutively expressed. Ligation of CD40 stimu
lates the B cell which the expresses CD80 (B7.t) in step 4. CD80 binds to CD28, 
which is constitutively expressed on some CD4 T cells, and in step 5 together with 
the T-cell receptor-MHC interaction stimulates IL-4I1L-13 synthesis and secretion. 
These cytokines bind in turn to receptors on B cells (Step 6) and initiate class switch
ing to IgE, which is secreted in step 7. 

Th1 vs Th2 pathology 

Following exposure to antigen CD4 Th2 cells infiltrate the lung of asthmatic 
patients. These cells can readily be found in the late phase response both in the lung 
[81, 82] and following intradermal injection of antigen into the skin [5] of allergic 
patients. The cytokines secreted by these cells have direct pro inflammatory effects. 
IL-4 and IL-5, for example, promote the recruitment and survival of eosinophils 
[83] and mast cells. Eosinophilia, airway hyperreactivity, and lung damage failed to 
occur in ovalbumin aerosol sensitised, IL-5 knockout mice [84]. Human IL-6, when 
over-expressed in mouse lung epithelial cells causes a T-cell infiltrate but reduces 
lung hyperresponsiveness [85]. IL-ll similarly over expressed can cause airway 
remodeling with subepithelial airway fibrosis [86]. IL-13, when targeted to the lung, 
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T-B ce ll interactions in IgE class switching 

B cell T cell 

0 1gM 

Antigen. 

IgE 

Figure 4 

Regulation of immunoglobulin class switching to IgE. Step: 1 Antigen is taken up by B cells 

which express IgM (primary immune response) or IgE, IgA or IgG (secondary immune 

response) on their surface. Step 2: The antigen is processed as shown in Figure 1 which 

results in increased expression of MHC class II-peptide on the surface of the B cell. Increased 

MHC class II-peptide expression recruits C04 T cells whose T-cell receptors (TcRs) recognise 

the specific peptide and signals to the T cell, step 3, to express C040L. Step 4: Engagement 

of C040 by C040L induced the B cell to express C080 or C086 which engages C028 on the 

C04 T cell. Step 5: A combination of C028 and TcR engagement stimulates Th2 C04 T cells 

to produce IL -4 and IL -13. Step 6: IL -4 or IL -13 signal to the B cell to make IgE. Step 7: The 

B cell secretes IgE. 

produces an inflammatory response around small and large airways containing 
eosinophils and macrophages, Charcot-leyden-like crystals, and subepithelial air
way fibrosis [87]. Other cytokines made by both Th1 and Th2 cells, such as GM
CSF, contribute to lung inflammation by promoting monocyte activation and sur
vival [88-90]. 

Th1 cells are associated with certain autoimmune disorders such as diabetes 
[91], rheumatoid arthritis [92, 93] and multiple sclerosis [94]. Th1 cells induce 
macrophage infiltration and granuloma formation. In the lung Th1 responses are 
associated with infection with pathogenic organisms such as Mycobacterium 
tuberculosis [95,96]. An over active Th1 response leads to destruction of the lung 
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architecture and extensive granuloma formation in patients with Sarcoidosis, a 
disease of unknown etiology [97] . 

Can T cells alone cause asthma 

In most atopic asthmatic patients allergen specific Th2 cells will coexist with IgE 
antibodies to the same allergens. CD4 Th2 cells are required for IgE production. It 
is, therefore, very difficult to separate the relative contribution of T cell and IgE 
mediated mechanisms to allergic inflammation. One way of doing so is to use an 
animal model. Passive transfer of allergen-specific IgE and IgG1 followed by inhala
tion of nebulised ovalbumin causes immediate hypersensitivity and airway hyperre
sponsiveness in mice [98]. Mice and rats sensitized with ovalbumin have increased 
airway responses to acetylcholine following ovalbumin aerosol challenge [99-102]. 
Airway bronchial hyperresponsiveness (BHR) is associated with increased Th2 
cytokines and reduced Th1 cytokines [103]. BHR can be induced by passive trans
fer of antigen-primed CD4 T cells [104]. The degree of hyperresponsiveness depends 
on the strength of the Th2 response. Umetsu and colleagues too showed that Th2 
cells alone can cause airway inflammation and BHR [105]. It will require further 
research to evaluate the contribution that IgE makes to this process but IL-4 and 
CD40 knockout mice (no IgE or IgG) still exhibit eosinophilia and increased airway 
hyperresponsiveness [106]. 

The role of CDS T cells in the lung 

For a number of years it was felt that the Th1!Th2 paradigm did not apply to CD8 
T cells. Most CD8 T-cell clones had a Th1 cytokine profile and these cells rarely 
seemed to produce IL-4. Indeed the most common phenotype for CD8 T cells in 
humans, mice and rats is the IFNysecreting Tel type [22, 50,107]. CD8 T cells are 
negatively associated with the late phase asthmatic response [108]. It is not clear 
what the cytokine profile of such protective CD8 T cells was. In our experimental 
animal model Tel CD8 and Th1 CD4 T cells can inhibit Th2 cell mediated 
bronchial hyperresponsiveness (BHR) (Fig. 3). Both Tel and Tc2 CD8 T cells can 
stimulate IL-12 and so promote Th 1 cells and inhibit Th2 cells. 

It is also possible that T c2 CD8 T cells can cause disease (Fig. 6). Seder and col
leagues showed that mouse CD8 T cells cultured with IL-2 and IL-4 made signifi
cant amounts of IL-4 [109]. In Leprosy patients, Salgame et al. [110] showed that 
CD8 T cells that made IL-4 were associated with the more severe lepromatous form 
of the disease and could inhibit M. leprae specific cytotoxic CD4 T cells. Our own 
studies of rat T cells showed that CD8 T cells from naIve animals could make more 
IL-4 than CD4 T cells when stimulated with PMA and ionomycin [50]. Indeed in 
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Figure 5 
As well as killing virus infected cells, Tc2 COB T cells have reduced killing capacity as com
pared with Tc1 cells and secrete molecules like IL -5 and eotaxin that recruit eosinophils. 

thymectomised and CDS-depleted mice, IgE responses were normal but: (i) there 
was a failure to produce IL-S from lymph node T cells, (ii) there was no eosinophil 
infiltration of the lung parenchyma and (iii) they were unable to develop BHR 
[111]. Furthermore, in mice making a strong Th2 response, the subsequent CDS T 
cell response to viral infection can result in an increase in virus-specific CDS T cells 
that make IL-S and subsequent viral infection can cause lung eosinophilia [112]. 
There is evidence for such a phenomenon in allergic asthmatics where viral infec
tions may contribute to asthma. 

Regulation of T-cell function in the lung 

In the lung it is clear that T-cell subsets have the potential to co-regulate each other's 
function. Early on, small numbers of ThlfTc1 or Th2fTc2 cells can deviate the 
inflammatory response in one direction or another. Once a pattern is established, 
ThlfTc1 or Th2fTc2 responses are very hard to alter because groups of polarised 
cells keep each other in line. Thl cells make IFNy, which inhibits the growth and 
function of Th2 cells; Th2 cells make IL-4 that similarly inhibits Thl cells. IL-4 and 
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Figure 6 

Th1 cells make IFNy. which inhibits the growth and function of Th2 cells, Th2 cells make IL-

4 that similarly inhibits Th1 cells. Thus these cells will grow in small exclusive groups, mak

ing it possible for the same individual to have both Th1 and Th2 immune responses simul

taneously. When the wrong cell (shown in white) arrives at the wrong cluster it will be inhib

ited. ThO cells have the option of surviving in both Th1 and Th2 environments. 

IFNyexert similar effects on the expansion of Thl and Th2 human T-cell clones 
[113, 114]. Thus these cells will grow in small exclusive groups making it possible 
for the same individual to make both Thl and Th2 immune responses simultane
ously. When the wrong cell (shown in white) arrives at the wrong cluster it will be 
inhibited. ThO cells have the option of surviving in both Thl and Th2 environments. 
Th2 not Thl cells cause asthma [115]. New arrivals will find it very difficult to 
change the behaviour of established cells (Fig. 7). There are two potential avenues 
to altering established lung Th2ff c2 responses. Inhalation of peptides can anergise 
CD4 T cells in vivo [116]. IFNy blocks eosinophilia and mucus production [117]. 
IL-12 targeted to the lung can inhibit BHR [118]. 
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Figure 7 
In the lung Th2 CD4 T cells secrete IL-4 and 5 that promote the recruitment and survival of 
eosinophils that secrete inflammatory molecules. The effects of Th2 cells are antagonized by 
Th1 CD4 T cells. 

T-cell targeted drug therapy 

A number of drugs that inhibit T cell function have been effective in treating asth
ma. In immunotherapy IFNy goes up [119]. IFNy reduces airway inflammation and 
improves lung function [120] but is expensive and may have other side-effects. 
Cyclosporin A and FK506 have both been shown to reduce Th2 cells in the lung and 
improve lung function in asthmatic patients [121]. However, the drug of choice is 
corticosteroid. At the low doses given to asthmatic patients using inhalers it is well 
tolerated. Interestingly it has comparable effects on Thl and Th2 cells. In asthmat
ic patients it reduces Th2 cytokine production [122] while in Sarcoid patients it 
reduces Thl cytokine levels and increases IgE and IL-4 concentrations in the BAL 
[97]. More selective Th2 and Thl antagonists may yet prove more effective but the 
long-term safety of corticosteroids and their broad spectrum of anti-inflammatory 
action make it likely that they will remain the drugs of choice in asthma for many 
years to come. In mice inhalation of peptide can induce tolerance [116]. Therapy 
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with Allervax Cat (cat peptide) improves tolerance to cats and improves pulmonary 
function in cat allergic patients with reduced FEVl [123]. 
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