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Preface

Reinsurance is a fascinating field. Several of the challenges of classical insurance are
amplified for reinsurance, particularly when it comes to dealing with extreme situations
like large claims and rare events. This poses particular challenges for the modelling of
claims and their occurrence, which often needs to be based on only few data points.
In addition, in terms of better diversification of usual-scale risk on the local and global
level as well as in terms of the development of innovative and sustainable techniques to
deal with risks of an unusual kind, reinsurers play a crucial role in the insurance process.

This also reflects on practitioners and researchers involved in such topics, as they have
to rethink classical models in order to cope successfully with the respective challenges.
Over the years, there has been enormous research activity on problems connected to
reinsurance. Close to % of the references in our literature list have appeared over
the last  years, with a steep upward gradient over the last – years. While there
exist some excellent classical textbooks on reinsurance either from the academic or
the practitioner’s side, our impression was that there was no modern reference book
available that gave an overview of the academic research landscape in this field and also
puts it in perspective with the practical viewpoint. The main reason for writing this
book was to try to address this gap, at least for actuarial and statistical matters. As all
the authors are from academia, there naturally remains a bias towards the academic
angle. However, numerous and enlightening discussions with insurance and reinsurance
practitioners over the last few years have motivated us to produce the current account,
hoping and trying to further bridge the two worlds. The focus of the book is on
modelling together with the statistical challenges that go along with it. We illustrate
the discussed statistical approaches alongside six case studies of insurance loss data
sets, ranging from MTPL over fire to storm and flood loss data. Some of the presented
material also contains new results that have not yet been published in the research
literature. We hope that the material presented can trigger new research questions and
foster the communication between (re)insurance practitioners and academics working
in these fields. One of our main goals was to give an up-to-date overview of the relevant
research literature and to frame it to questions that matter in reinsurance practice. Since
this a vast topic, we naturally had to take various compromises and we apologize for
possible omissions on either side.

The book is written for researchers with an interest in reinsurance problems, for
graduate students with a basic knowledge of probability and statistics as well as for
practitioners in the field.



x Preface

We start with a general introduction to the field in Chapter , presenting some basic
facts and motivations for reinsurance activities. We also introduce the six real-life case
studies that will accompany the considerations throughout the book. In Chapter ,
we discuss the most common reinsurance forms and their properties, together with
some practical aspects of their implementation. Chapter  is dedicated to motivating
and developing models for claim size distributions that are commonly used. Here we
emphasize those aspects from actuarial mathematics that are relevant for reinsurance.
Reinsurance is often invoked in the presence of large claims, therefore we need a
thorough discussion of models capable of catching the essentials of what actuaries
would call large. Chapter  contains detailed guidelines on how to proceed in the
model choice when actually facing data. Throughout the text, we illustrate the presented
procedures for our case studies. Chapter  proceeds with models for claim numbers,
both from a conceptual and a practical viewpoint. We also provide guidelines for a
statistical analysis of data sets in this context. The two ingredients (claim numbers and
claim sizes) are then used in Chapter  for the aggregation of the claims. Emphasis
is put on the aggregation of independent risks, and we describe both numerical and
asymptotic methods in detail. The case of dependence in the aggregation process is
also discussed briefly, although not in detail, as the results typically are very sensitive
to the particular dependence structure used in the modeling process, and often the
number of data points does not allow one such model to be decisively favored over
another. It is beyond the scope of this book to discuss all such approaches. Chapter
 treats important actuarial aspects of reinsurance pricing, once a distribution for the
individual (or aggregate) risk is available (or, rather, decided upon). In Chapter  we
discuss some guidelines on possible criteria for the choice of reinsurance forms and
the respective consequences on the optimal choice of contracts. The identification
of optimal reinsurance forms has been a very active research field recently and it is
impossible to reflect all these contributions in one book chapter in an exhaustive way.
We instead provide an overview of some of the main approaches and contributions
alongside a structure in terms of decision criteria, with an emphasis on the intuition
behind the results. Since stochastic simulation is an essential tool in many models
relevant in reinsurance, we cover this topic in Chapter  and discuss some variance
reduction techniques that can help to considerably speed up calculations. Chapter 
then examines some further topics. We first provide more information on large claim
analysis, and continue with an overview of alternative risk transfer products, which can
serve as a complement to traditional reinsurance. We also highlight the role of finance
in reinsurance and finish with a section on catastrophe insurance. Within the chapters
and in particular at the end of the chapters we provide links for further reading.

Many of the topics dealt with in the book apply to both non-life and life insurance.
Even when there is a clear emphasis on non-life insurance throughout, we hope that
some of our attempts may help to also be of service to life insurance. As the title
suggests, this book is about (traditional) actuarial as well as statistical aspects arising
in reinsurance. As is outlined in Chapter , reinsurance also serves financial and
management purposes in practice. Correspondingly, the role of capital is nowadays an
important ingredient in managing and steering reinsurance companies, and financial
pricing techniques for reinsurance contracts as well as general capital management
tools eventually have to complement the actuarial approach. While we do consider
such aspects when discussing the pricing and the possible choice of contracts in
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Chapters ,  and , it is beyond the scope of this book to treat and reflect the merging
of actuarial and financial principles in the amount of detail this may deserve from a
general perspective.

The idea for writing this book was born in the legendary and productive environment
of EURANDOM, Eindhoven. We would like to thank this institution for its continuing
support over the years as well as the University of Lausanne and KU Leuven for generous
support for extended research visits that enabled the book to progress. We also thank
Sophie Ladoucette, MunichRe, and the Versicherungsverband Österreich for providing
data for our case studies.

We would like to thank all the people with whom we had interesting discussions about
the topic over the recent years, including the participants of the Summer School of the
Swiss Actuarial Association in Lausanne in , as well as short course participants in
Paris, Johannesburg, Lisbon, Lyon, Luminy, Yerevan, Warsaw, and Hong Kong.

Particular thanks for stimulating discussions or advice in earlier and later stages of
the book writing go to Jose Carlos Araujo Acuna, Katrien Antonio, Peiman Asadi,
Alexandru Asimit, Anastasios Bardoutsos, Arian Cani, Michel Dacorogna, Dalit Daily-
Amir, Michel Denuit, François Dufresne, John Einmahl, Karl-Theodor Eisele, Michael
Fackler, Damir Filipović, Hans U. Gerber, Alois Gisler, William Guevara-Alarcon, Jürgen
Hartinger, Christian Hipp, Frans Koning, Yuriy Krvavych, Sandra Kurmann, Sophie
Ladoucette, Stéphane Loisel, Franz Prettenthaler, Christian Y. Robert, Robert Schall,
Matthias Scherer, Thorsten Schmidt, Wim Schoutens, Johan Segers, Wim Senden,
Stefan Thonhauser, Joël Wagner, Roel Verbelen, Robert Verlaak, Leonard Vincent,
Jean-François Walhin, Gord Willmot, and Mario Wüthrich. Special thanks go to Tom
Reynkens for his tremendous effort writing an R package with this book and producing
the plots linked with the statistical procedures. Further thanks go to William Guevara-
Alarcon and Dominik Kortschak for help with the R codes underlying the illustrations
in Chapter , and to Roel Verbelen and Tom Reynkens for their significant contribution
to the splicing methods. We will maintain a webpage connected to the book at

http://www.hec.unil.ch/halbrech_files/reinsurance.html

where we also intend to keep a list of misprints and remarks. We are grateful to receive
relevant material sent to us by email. The R package ReIns can be found at the CRAN
page

cran.r-project.org/package=ReIns

Hansjörg Albrecher, Jan Beirlant, and Jozef L. Teugels
Lausanne and Leuven,

December 



309

References

1 Aas, K., Czado, C., Frigessi, A., and Bakken, H. () Pair-copula constructions of
multiple dependence. Insurance Math. Econom.,  (), –.

2 Aase, K. () Dynamic equilibrium and the structure premium in a reinsurance
market. Geneva Papers on Risk and Insurance Theory, , –.

3 Aase, K. () An equilibrium model of catastrophe insurance futures and spreads.
Geneva Papers on Risk and Insurance Theory, , –.

4 Aase, K.K. () Perspectives of risk sharing. Scand. Actuar. J., pp. –.
5 Aase, K.K. () The Nash bargaining solution vs. equilibrium in a reinsurance

syndicate. Scand. Actuar. J., pp. –.
6 Aban, I.B., Meerschaert, M.M., and Panorska, A.K. () Parameter estimation for

the truncated Pareto distribution. J. Am. Stat. Assoc.,  (), –.
7 Acciaio, B. () Optimal risk sharing with non-monotone monetary functionals.

Finance and Stochastics,  (), –.
8 Acerbi, C. and Tasche, D. () On the coherence of expected shortfall. J. Banking &

Finance,  (), –.
9 Aebi, M., Embrechts, P., and Mikosch, T. () A large claim index. Mitt. Ver.

Schweiz. Versich. Math., pp. –.
10 Ajne, B. and Wide, H. () On the definition of catastrophe claims and the

calculation of their expected cost for the purpose of long range planning and profit
centre control. Astin Bull., , –.

11 Akritas, M. and Van Keilegom, I. () Estimation of bivariate and marginal
distributions with censored data. J. R. Stat. Soc. Ser. B Stat. Methodol.,  (), –.

12 Albers, W. () Stop-loss premiums under dependence. Insurance Math. Econom.,
, –.

13 Albrecher, H. () Reinsurance, in Encyclopedia of Quantitative Finance, Wiley,
Chichester, pp. –.

14 Albrecher, H. and Asmussen, S. () Ruin probabilities and aggregate claims
distributions for shot-noise Cox processes. Scand. Actuar. J., pp. –.

15 Albrecher, H., Asmussen, S., and Kortschak, D. () Tail asymptotics for the sum of
two heavy-tailed dependent risks. Extremes, , –.

16 Albrecher, H. and Boxma, O. () On the discounted penalty function in a
Markov-dependent risk model. Insurance Math. Econom.,  (), –.

17 Albrecher, H. and Cani, A. () On randomized reinsurance contracts, Preprint,
University of Lausanne.

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.



310 References

18 Albrecher, H., Constantinescu, C., and Loisel, S. () Explicit ruin formulas for
models with dependence among risks. Insurance Math. Econom.,  (), –.

19 Albrecher, H., Eisele, K., Steffensen, M., and Wuethrich, M. () A Framework for
Cost-of-Capital Rate Analysis in Insurance, Preprint, University of Lausanne.

20 Albrecher, H. and Haas, S. () The Joint Perspective of Cedent and Reinsurer on the
Optimality of Reinsurance Contracts, Preprint, University of Lausanne.

21 Albrecher, H., Hartinger, J., and Tichy, R. () Multivariate approximation methods
for the pricing of catastrophe-linked bonds. Internat. Ser. Numer. Math., , –.

22 Albrecher, H., Hartinger, J., and Tichy, R. () Quasi-Monte Carlo techniques for
CAT bond pricing. Monte Carlo Methods & Appl., , –.

23 Albrecher, H., Hipp, C., and Kortschak, D. () Higher-order expansions for
compound distributions and ruin probabilities with subexponential claims. Scand.
Actuar. J., pp. –.

24 Albrecher, H. and Kainhofer, R. () Risk theory with a non-linear dividend barrier.
Computing, , –.

25 Albrecher, H., Ladoucette, S.A., and Teugels, J.L. () Asymptotics of the sample
coefficient of variation and the sample dispersion. J. Statist. Plann. Inference,  (),
–.

26 Albrecher, H., Robert, C., and Teugels, J.L. () Joint asymptotic distributions of
smallest and largest insurance claims. Risks, , –.

27 Albrecher, H. and Teugels, J. () Asymptotic analysis of a measure of variation.
Theory of Probability and Mathematical Statistics, , –.

28 Albrecher, H. and Teugels, J. () Exponential behavior in the presence of
dependence in risk theory. J. Appl. Probability,  (), –.

29 Albrecher, H. and Teugels, J.L. () On excess-of-loss reinsurance. Teor. Ĭmovı̄r.
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Introduction

1.1 What is Reinsurance?

A reinsurance contract is an agreement in which one party (the reinsurer) agrees to
indemnify another party (the reinsured, the first-line insurer or also the ceding company,
cedent) for specified parts of its underwritten insurance risk. In turn, the cedent pays to
the reinsurer a reinsurance premium for this service. That is, in reinsurance the principle
of insurance is lifted up one level, so an insurance company seeks itself the possibility of
replacing parts of its future loss by a fixed premium payment (much like a policyholder
does when entering an insurance contract). There are many reasons why such a risk
transfer from the insurer to the reinsurer can be desirable for both parties, as well as for
the economy in general, and we will outline a number of them in Section ..

While reinsurance can be seen as a particular form of insurance, and naturally
shares various common features with it, reinsurance is also quite distinct from primary
insurance in a number of aspects. These include the type and magnitude of risks
under consideration, the type of data available for the risk analysis, the diversification
possibilities, demand/supply peculiarities of contracts quite different from the primary
insurance market, and also the fact that reinsurance is a form of risk sharing among two
“professional” insurance entities, so that the necessary guidelines for regulation can be
quite different.

(Non-life) reinsurance contracts are typically written for one year, and one distin-
guishes between obligatory treaties, where a binding agreement is specified that applies
to all risks of a specified risk class, and facultative arrangements, which are negotiated
on each individual risk. A facultative treaty is then a contract where the cedent has
the option to cede and the reinsurer has the option to decline or accept classified
risks of a particular business line. In practice many contracts actually involve several
reinsurers (e.g., the contract is negotiated with a primary reinsurer, and other reinsurers
then participate proportionally in the reinsurance coverage, or a second reinsurance
contract with another reinsurer is written for parts of the remaining risk of the cedent
after a first contract). The relationship between insurer and reinsurer is often of a long-
term nature, which also has an effect on the way reinsurance premiums are negotiated.
Finally, there is no relation between a reinsurer and the individual policyholders of the
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Table 1.1 Global premium volume 2015 (in US$ billions).

Primary insurance Reinsurance

Life and health  
Non-life  

Source: SwissRe.

underlying risks. A reinsurer may itself enter a reinsurance contract with another
insurance company on parts of the reinsured risk, and such a procedure is called
retrocession.

Table . gives a feeling for the size of the global reinsurance market in comparison to
the primary insurance market. One sees that in terms of premium volume, reinsurance
is only employed for a small fraction of the primary insurance risk. However, typically
the reinsured risk is the one that is complicated to assess and handle (this is one of the
main reasons why it is reinsured!), which makes this type of risk particularly challenging
for actuaries, statisticians, and other risk professionals. Worldwide, there are about 
reinsurance companies today, and many of these are also acting as primary insurers in
the market.

1.2 Why Reinsurance?

Let us look at why an insurance company is interested in buying reinsurance. The main
function of insurance companies is to take risk. This is similar to the business model
of other financial organizations, and both types leverage the capital provided by share-
holders through raising debt. However, insurers raise debt by selling policies to insureds,
which makes the debt very risky (due to uncertainty around the timing and severity
of claims), whereas financial debt would typically rather have pre-determined expiry
and face value (severity). This leveraging activity is a competitive advantage, but also
makes the companies vulnerable to distress and insolvency, creating the demand for
risk management. Among the available risk management tools, risk transfer through
reinsurance then plays an important role in improving the company’s overall risk profile.
Let us look at some of the main motivations for the insurer to buy reinsurance as a means
of risk transfer (several of which are not independent of each other):
● Reducing the probability to suffer losses that are hard to digest

This is a rather general statement and many of the items below are in fact refinements
of this criterion. It should be kept in mind that for an insurance company buying
reinsurance means passing on some of its insurance business (i.e., its core activity),
and hence typically the goal is to keep the reinsured part small. However, reduction
of risk exposure can be desirable or necessary for the reasons outlined below.

● Stabilizing business results
Entering a reinsurance contract reduces the volatility of the cedent’s financial result,
as random losses are replaced by a (typically deterministic) premium payment. That is,
reinsurance can be a means to steer the volatility of an insurance company towards a
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desired level, and the latter can have particular advantages (e.g., with respect to taxes,
capital requirements and market expectations).

● Reducing required capital
Reducing the aggregate risk will reduce the required capital to bear such risks, and
in view of capital costs this may be desirable. Concretely, if the reinsurance premium
(together with the administration costs) is smaller than the gain resulting from the
corresponding reduction of capital, the reinsurance contract is desirable. In fact,
due to the ongoing shift towards risk-based regulation, the notion of capital and its
management becomes a central issue for insurance companies, and reinsurance then
should be understood as a tool in this context. This corresponds to an important
finance function of reinsurance as a substitute for capital, freeing up capacity.

● Increasing underwriting capacity
In the presence of a reinsurance contract, only a certain part of the risk is assumed
by the insurer, and hence under otherwise identical conditions an insurance company
can afford to underwrite more and larger policies (see Chapter  for details), which
may be desirable for various reasons, including market share targets, testing and
entering of new markets, gaining (data) experience in certain business lines or regions
etc. It also can lead to enhanced liquidity.

● Accessing benefits from larger diversification pools
Often the primary insurers’ business model is restricted to a local area, in which case
attempts to look on their own for diversification possibilities outside of that market for
the more dangerous part of the risks would be very costly and inefficient. Reinsurers,
on the other hand, typically act on an international level and therefore have more
possibilities for diversifying such risks. Consequently the amount of capital needed
to safeguard these risks in the portfolio can be considerably lower for a reinsurer
and so the risk transfer produces economic gain through attractive reinsurance
premiums.

We mention a few further motivations:
● Reducing tax payments

Equalization reserves (i.e., reserves for volatility of claims and their arrivals over
longer time periods, which is, for instance, particularly important for catastrophe
risks) of insurance companies are taxed in most legislations. If such reserves are paid
to a reinsurance company in the form of a reinsurance premium (or, alternatively, into
a respectively created captive structure, cf. Section .), then the taxation pattern
becomes more favorable, as for reinsurers and captives (often located in tax-favorable
countries) different tax rules may apply.

● Other legal issues
Reinsurance can be a helpful tool to resolve legal constraints such as regulatory
compliance. For instance, if an insurance company does not have a formal license to
write business in a certain country, a solution can be to find a local insurer with such
a license and act as a reinsurer for this local company.

● Financial solutions
The reinsurer can serve as a facilitator for financial solutions. Examples include reduc-
ing (expected) financial distress costs by providing run-off solutions (cf. Section .)
and portfolio transfers to other companies or the capital markets as well as setting up
securitization transactions like issuing bonds.
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● Protection against model risk
Insurance activities are designed on the basis of stochastic models for the underlying
risks. For the aggregate performance, both the understanding of the marginal risks as
well as of the dependence between them is important. However, every model is an
imperfect description of reality, and the less experience and data one has, the higher
the uncertainty about whether the model underlying the business plan is appropriate.
Reinsurance is a way to mitigate model inadequacy (e.g., concerning the tails of the
risks or their dependence).

● Support in risk assessment, pricing, and management
In certain situations an insurance company does not have enough data points or
manpower available to analyze the risks (in particular their tails), and passing on
those risks to an entity with respective experience is a natural procedure, which is
often much cheaper than dealing with such risks by other means. This also includes
business expansions to new regions or business lines, in which the reinsurer may
already have experience from earlier activities. In fact, reinsurance contracts often
have a certain consultancy component, as the reinsurer may share its expertise and
data on the respective risks with the cedent.

On the society level, reinsurance allows insurers to write more business, which makes
insurance more broadly available and affordable. This can foster economic growth and
increase stability at large. Reinsurance enables risks to be insured that otherwise would
not be insurable, and assigning premiums to (i.e., quantifying) risks can also provide
incentives for more risk-adequate behavior and possibly risk prevention.

For all these reasons, reinsurance serves as a tool to increase the efficiency of the
marketplace. When designing reinsurance contracts, all these aspects will play some
role. The goal of this book is to focus on the actuarial elements involved in the process
as well as the statistical challenges that appear in this context.

1.3 Reinsurance Data

As for primary insurance, in the reinsurance business one will be interested in the
statistical analysis of claim information for different types of business lines (such as
car liability insurance or fire insurance), where one can obtain claim information on the
individual claim level. Due to the nature of the reinsurance contract, there are, however,
additional challenges with respect to the type of claim data.

Consider, for instance, the case of non-proportional reinsurance where the reinsurer
will pay (parts of ) the excesses over some threshold, say M. The ceding company
then does not need to provide all claim information to the reinsurer. For example,
information may be provided on those events only for which the incurred claim amount
I (i.e., the estimate of the amount of outstanding liabilities) is larger than a certain
percentage of M. Then, as long as I stays below that reporting threshold during the
development process, the claim will not be known to the reinsurer and hence the

 Here, dependence can be causal (e.g., the occurrence of a claim triggers another claim) or due to common
risk drivers. An appropriate modelling of dependence can be a considerable challenge, particularly when
only few data points are available and the number of dependent risks is high.
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Figure 1.1 Claim development scheme.

incurred value is left truncated in such a case. For some lines of business, development
times can be quite large (up to several decades) so that, at the time of evaluation, the
cumulative payments are still a lower bound for the ultimate claim amount. The data
then are censored. In practice, companies use claim development methods to forecast
the ultimate claim amounts. Of course these also yield uncertain information, which
hampers the statistical analysis. Hence, in reinsurance we face incomplete information,
due to incurred but not reported (IBNR) and reported but not settled (RBNS) claims
(the latter are also frequently called open case estimates). This is illustrated in Figure ..
The development of claims progresses with calendar time, and when the notification
does not arrive before the present evaluation time (e.g., because the incurred value is
too low), the data are left truncated (IBNR). If the claim is notified to the reinsurer but
not completely settled before the evaluation time, the information is censored (RBNS).
Throughout the development of the book we will make use of the real data exam-
ples described in the following sections to illustrate the practical statistical side of
implementing reinsurance treaties.

1.3.1 Case Study I: Motor Liability Data

We here present a data set on motor third-party liability (MTPL) data, gathering
information about two direct insurance companies operating in the EU, named A and B
hereafter. The data come from an observation period between  and , with
evaluation date at January , . All amounts are corrected in order to reflect costs
in calendar year , with inflation and super-inflation taken into account. For every
claim, the payments in a given year were aggregated in a single observation. For Com-
pany A  years and for Company B  years of data are available. In the subsequent
chapters we will analyze the two data sets separately: the statistical analysis of the
losses will show different characteristics for these companies. For Company A, the exact
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Figure 1.2 Indexed reporting thresholds of Companies A and B.

occurrence dates of the claims are also available, so the analysis of the counting process
can be performed more accurately for that claim data set.

Per development year and per claim the aggregate payment and incurred loss are
given. The incurred loss at a given moment in time is the sum of the already paid amount
and a reserve for further payments, proposed by company experts at that moment.
A claim enters the database from the moment the incurred value exceeds the reporting
threshold as given in Figure .. Once a claim has been reported, it stays in the data
set even if the associated incurred loss falls below the reporting threshold at some
point later. When estimating the loss experienced by the reinsurer, one needs to model
the reporting delay between the accident time and the year where the claim was first
reported to the reinsurer, that is, when the incurred loss I first exceeds the reporting
threshold. Indeed, claims that have occurred close to the evaluation time at the end
of  can still be IBNR to the reinsurer. In Figure . the histogram of the reporting
delays is given. Given that the accident dates were only reported for Company A, we
restrict the plot to this data set. The delay time is then obtained from the difference
between the reporting year and accident date, rounded off in years, using the reporting
threshold of the particular accident year (see Figure .).

For Company A one has  claims of which  are completely developed, while
the sample size for Company B is  of which  are fully developed. In Figure . we
show the development of four selected claims. The cumulative payments (aggregated on
a yearly basis) are indicated by a full line, while the incurred values are given by dashed
lines. When payments and incurred meet, the claim is closed. The characteristics of the
four depicted claims are given in Table ..

Note that the information concerning the loss values and development periods is
right censored since for the claims which are not fully developed at the end of ,
the loss as well as the development time at the end of  are only lower bounds for
their final value. In Table . the observed numbers of claims per accident year and per
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Figure 1.4 MTPL data: development pattern of four particular claims.

development time up to  (in years, DY) are given for Company A. Clearly the
amount of censoring increases with increasing accident year.

In Figures . and ., time plots of the incurred loss data of Company A and
Company B, respectively, are given as a function of accident year.
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Table 1.2 Company A: characteristics of the claims from Figure 1.4

Claim Reporting year Closing year Development time (years)

Top left   
Top right  - ≥ 
Bottom left   
Bottom right  - ≥ 

Table 1.3 Company A: observed number of claims per accident year and per number of development
years in 2010 (DY)

DY Nr. Prop.
                censored Total non-censored

                   .
                  .
                 .
                .
               .
              .
             .
            .
           .
          .
         .
        .
       .
      .
     .
    .

Censored                 
Total                  .

The classical statistical procedure to estimate the distribution of right censored
random variables is given by the Kaplan–Meier estimator of the distribution function.
This estimator is discussed in more detail in Chapter . Note from these plots that about
half of the claims are expected to demand a development period of at least  years.
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Figure 1.5 Company A: incurred losses (top); Kaplan–Meier estimator for the distribution function of
the number of development years (bottom).

Alongside the aggregate payment and the incurred loss, when analysing the risk many
companies compute ultimate loss amounts for claims that are still under development.
These ultimates are statistical estimates of the final loss. The ultimate value of course
equals the final aggregate payment in case the claim is closed during the period of study.
In practice, the ultimate estimates for non-closed claims are often primarily based on
chain ladder development factors based on paid and incurred loss triangles (e.g., see
Wüthrich and Merz [] and Radtke et al. []), but then applied on the individual
loss data, see also Drieskens et al. []. In Figure . scatterplots of the ultimate against
the incurred losses for the data of the two companies are given. Note that the regression
fits on these scatterplots for the claims that are still open at the end of the observation
period indicate a linear relation between ultimate and incurred values with a negligible
intercept: ultimate = a × incurred, for some a > .

Finally, in Figure . we plot the daily cluster sizes for the claims of Company A. Up
to three claims per day were observed.
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the number of development years (bottom).

1.3.2 Case Study II: Dutch Fire Insurance Data

We will use claim data from the Dutch fire insurance market between  and ,
provided by a reinsurance company. The date for every fire is known, together with
the type of building and regional information. Here the development times are short.
Figure . depicts the logarithm of the claim sizes as a function of time as well as the
daily cluster sizes (one sees up to five claims per day). The loss data are indexed to .
The reporting threshold equals a value equivalent to  million Dutch guilders up to
, after which  million Euros is used.

1.3.3 Case Study III: Austrian Storm Claim Data

Sometimes individual claim data are not available, and instead claims aggregated over
time or regions have to be used. As an illustration, we will use data from historical storm
losses of residential buildings in Austria in the period –, aggregated over two-
digit postcode regions. This data set contains  storm events and was provided by the
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Figure 1.7 Ultimate versus incurred losses with least squares regression fit for the open claims of
Company A (top) and Company B (bottom).

Austrian Association of Insurance Companies (VVÖ). The data are indexed according
to the building value index and normalized with respect to the overall building stock
value in the respective year. Using actual wind fields of each storm on a fine grid,
Prettenthaler et al. [] formulated a building-stock-value-weighted wind index W for
each region and storm, and then developed a stochastic model relating wind speed and
actual losses (expressed per million of the building stock value). Figure . depicts the
losses of the  storms in the data set as a function of this wind index W for Vienna
and the province of Upper Austria. Here one studies the distribution of the loss data as
a function of W in a regression setting.

1.3.4 Case Study IV: European Flood Risk Data

Floods rank amongst the most wide-reaching natural hazards. Losses from floods show
an increasing trend which (to a considerable extent) is attributable to socio-economic
factors, including population growth, economic development and construction
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Figure 1.8 Company A: observed cluster sizes of the claim number process.

activities in vulnerable areas. In Prettenthaler et al. [] (indexed) flood loss data
across Europe (provided by Munich Re NatCatSERVICE, ) were transformed into
losses expressed as a percentage of building stock value, and then used to determine
loss quantiles as required for flood risk management. Figure . depicts the respective
aggregate annual losses for the period – for Germany and the UK.

1.3.5 Case Study V: Groningen Earthquakes

Next to loss amount data, reinsurers also need to analyze the physical phenomena
causing damage. A classical example is earthquake risk. We discuss the Groningen
earthquakes caused by gas extraction. The Groningen field is the largest gas field of
Western Europe, with  billion cubic metres available and  billion cubic metres
left. The pressure inside the gas layers decreases due to the extraction, and the layers
on top collapse. This collapse does not happen homogeneously, which causes the
earthquakes. Hundreds of earthquakes have been detected since  with magnitudes
between  and  on the Richter scale, and  larger than  (Figure .). The damage
to houses and public buildings was substantial, with many buildings needing reinforce-
ments. The largest observed magnitude was . (Huizinge, August ). In this context,
the estimation of the maximum possible magnitude is the main goal. Depending on
the research team, maximum magnitudes between . and  were predicted, see for
instance Bourne et al. [].

1.3.6 Case Study VI: Danish Fire Insurance Data

It is quite common to combine reinsurance forms across various lines of business
(LoB), so modelling the dependence of the different LoB is important. To illustrate the
appropriate multivariate models and statistical methodology, we will use the Danish
fire insurance data set containing information on  fire losses over the period
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Figure 1.9 Dutch fire insurance claims: log-claims as a function of time for Dutch fire insurance (top);
observed cluster sizes of the claim number process (bottom).

–. The data have been adjusted for inflation to reflect  values and are
expressed in millions of Danish kroner. The total loss amount Xi of the ith claim is
subdivided into damage to building (Xi,), damage to content (Xi,) (e.g., furniture and
personal property) and loss of profits (Xi,). A claim is only registered if the total loss
exceeds  million kroner, that is, Xi, + Xi, + Xi, ≥ . This data set was collected
at the Copenhagen Reinsurance Company and can nowadays be seen as a folklore
example as it has been studied extensively over the years in the academic literature
(e.g., see Embrechts et al. []). In Figure . a scatterplot matrix is given for the log-
transformed data. On the diagonal, histograms of the logarithm of the marginal losses
are given. Note that several claims exhibit losses in only one or two of the components
(for only  claims there is a loss in each of the three components).
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Figure 1.10 Normalized loss data against wind index W for Vienna (top) and Upper Austria (bottom); original scale (left) and log-scale (right).
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Figure 1.12 Induced (dark points) earthquakes in the northern part of the Netherlands with
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Figure 1.13 Danish fire insurance data: scatterplot matrix on the log-scale.

The occurrence dates are also given and hence simultaneous occurrences of claims
for the three components can be observed. Figure . illustrates the occurrences and
the cluster sizes when all portfolio components were affected.

1.4 Notes and Bibliography

There are a number of classical textbooks available which provide a general introduc-
tion to reinsurance, for example Carter [], Gerathewohl [], Grossmann [],
Strain [], Gastel [], Schwepcke [], and Walhin []. A number of articles
in Teugels and Sundt [] also deal with the topic. For the role of reinsurance in
risk management, see D’Outreville []. More recent and shorter overviews can
be found in Liebwein [], Albrecher [], Outreville [], Bernard [], and
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Figure 1.14 Danish fire insurance data: cluster arrivals, selecting the claim dates where each
component is addressed.

Deelstra et al. []. Furthermore, a number of basic textbooks on risk theory contain
sections on reinsurance. Examples include (in alphabetic order) Beard et al. [],
Beekman [], Borch [], Bowers et al. [], Bühlmann [], Cramér [], Daykin
et al. [], De Vylder [], Gerber [], Goovaerts et al. [], Heilmann [],
Kaas et al. [], Klugman et al. [], Lundberg [], Mack [], Rolski et al. [],
Schmidt [], Seal [], Straub [], and Sundt []. For a discussion on the
challenges and opportunities of reinsurance as an international business, see Göbel
[]. A recent overview from a practical perspective can be found in Swiss Re
[]. The increasing role of the notion of capital and capital management in running
insurance and reinsurance companies, which can be seen as an ongoing change of
paradigm in the insurance industry, is highlighted in Dacorogna [], see also []
and Krvavych [, ].

The number of  reinsurance companies can be compared with the more than
, primary insurance companies in the market today (using economic arguments,
Powers and Shubik [] in fact claim that the “optimal” number of reinsurers in the
market is connected to the number of primary insurers by a square-root rule).

Historically, the first documented reinsurance contract dates back to , when the
cargo of a ship sailing from Genoa to Sluis (near Bruges in Flanders) was reinsured by
the direct insurer for the more dangerous part of the journey from Cadiz to Sluis (inter-
estingly, the contract did not state the premium, which most likely was done to avoid
usury discussions). The first reinsurance company was founded much later, in , in
Cologne after the big fire of Hamburg in , and the first retrocession contract seems
to date back to , involving Le Globe Compagnie d’Assurance contre L’incendie.
Soon the (nowadays) major European reinsurance companies were founded, and the
American Life Reinsurers followed in the early th century. For a detailed account of
the history of reinsurance, see Kopf [], Holland [], and Borscheid et al. [].
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2

Reinsurance Forms and their Properties

Let {Xi; i ∈ N} be random variables denoting the claim sizes that the first-line insurer
experiences and let {N(t); t ≥ } be a counting process, where N(t) represents the
number of claims up to time t >  (measured in years). Then the total or aggregate
claim amount at time t for the first-line insurer is given by

S(t) =
{∑N(t)

i= Xi if N(t) > ,
 if N(t) = .

Recall that most (non-life) contracts are written for the duration of one year, so the static
random variable S() will be of prime interest in many applications.

In a reinsurance contract, this aggregate claim size is now sub-divided into

S(t) = D(t) + R(t),

where D(t) is the deductible (retained) amount that stays with the first-line insurer
after reinsurance and R(t) is the amount paid by the reinsurer. For many reinsurance
contracts the splitting will be defined on the individual risks Xi, and in this case we write
Xi = Di + Ri (or just X = D + R for short, in case they all follow the same distribution).

We will now discuss the most common obligatory reinsurance forms and their
properties. We start with proportional (also called pro-rata) treaties.

2.1 Quota-share Reinsurance

The simplest possible reinsurance form is quota-share (QS) reinsurance, which is a fully
proportional sharing of the risk, that is,

R = a ⋅ X and R(t) = a ⋅ S(t)

for a proportionality factor  < a < .
This form of reinsurance is popular in almost all insurance branches, particularly due

to its conceptual and administrative simplicity. In general the first-line insurer will also

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.



20 Reinsurance: Actuarial and Statistical Aspects

cede to the reinsurer a similarly determined proportion of the premiums (see Chapter 
for details). If the distribution of X is available, one immediately has

P(R ≤ x) = FX

(x
a

)
, P(D ≤ x) = FX

( x
 − a

)
expressed in terms of the cumulative distribution function (c.d.f.) FX(x) = P(X ≤ x).
For the aggregate risk, correspondingly

P(R(t) ≤ x) = P(S(t) ≤ x∕a), P(D(t) ≤ x) = P(S(t) ≤ x∕( − a))

and for the moment-generating function

E(esR(t)) = E(e(as)S(t)), E(esD(t)) = E(e((−a)s)S(t)), (..)

so one only needs to evaluate the moment-generating function of S(t) at a different
argument. As a result, the rth moments (r ∈ N) are given by

E(Rr) = ar
E(Xr), E(Dr) = ( − a)r

E(Xr).

Note that both the coefficient of variation and the skewness coefficient 𝜈 do not change
under a QS treaty:

CoV(R(t)) =
√

Var (R(t))
E(R(t))

= CoV(D(t)) = CoV(S(t)),

𝜈R(t) = E

(
R(t) − E(R(t))√

Var (R(t))

)

= 𝜈D(t) = 𝜈S(t).

2.1.1 Some Practical Considerations

QS reinsurance can be understood as (virtually) increasing the available solvency
capital. To see that in a simple example, consider the probability

P(v + P(t) − S(t) > )

that at some time t >  the capital v together with the received premiums P(t) suffices
to cover the claims S(t). Then, after entering a QS treaty and assuming that premiums
are shared with the same proportion, this probability changes to

P(v + ( − a)P(t) − ( − a)S(t) > ) = P

( v
 − a

+ P(t) − S(t) > 
)
.

In practice, a further positive effect of QS reinsurance is to improve the premium-
to-surplus ratio: according to statutory accounting principles implied by the regulator,
an insurer typically has to immediately include in the balance sheet all the expenses
connected to issuing a policy, but the respective premium can only be entered gradually
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over the duration of the policy; the correspondingly needed unearned premium reserve
considerably reduces the surplus and a QS arrangement will improve this situation,
as it reduces that reserve and the expenses simultaneously (see, for example, []).
QS contracts are often used at the initiation of smaller companies to broaden their
chances for underwriting policies and to gain experience in a new market with a limited
amount of risk. For reinsurers, in turn, a QS arrangement can also have the advantage of
gaining claim experience in that particular market, which may be useful in other related
portfolios.

QS arrangements are easy to combine, that is, an insurer can have simultaneous QS
contracts on the same portfolio with different reinsurers. Also, due to the proportional
share that is left with the insurer, the risk of some forms of moral hazard (like sloppy
claim settlement procedures) is avoided.

One of the main shortcomings of QS reinsurance is that, due to its form, all claims
are partly reinsured, not just the largest of them. This is often not ideal, as claims from
small policies could have easily been borne by the insurer alone (and passing on those
parts of the portfolio is a non-attractive loss of insurance business).

2.2 Surplus Reinsurance

A reinsurance form that improves on the disadvantages of QS treaties, but keeps its
main advantages, is surplus reinsurance, which is a proportional reinsurance form for
which the proportionality factor depends on the coverage limit in the underlying policy
(sum insured). Let Qi be the sum insured (policy limit) of claim Xi. For a fixed retention
line M the reinsured amount is then given by

Ri =
(

 − M
Qi

)
Xi ⋅ {Qi>M}, Di = Xi {Qi≤M} + M

Xi
Qi

{Qi>M}, (..)

where {A} denotes the indicator function of event A. Altogether,

R(t) =
N(t)∑
i=

Ri, D(t) =
N(t)∑
i=

Di.

The ratio Vi ∶= Xi∕Qi is called the loss degree of claim Xi. With a surplus reinsurance
each claim with an insured sum below M is fully kept by the insurer, and otherwise
the relative participation of the reinsurer in the claim payment is larger the larger the
underlying sum insured is (see Figure .). Consequently, this reinsurance form retains
the advantages of the proportionality for each claim payment, but only reinsures claims
from larger policies. Due to the proportionality feature, the determination of premiums
is again rather simple. In some cases Qi is alternatively the probable maximum loss
(PML) of claim Xi (see Chapter ). From the definition, it becomes clear that the
maximum retained size of each claim is M (“the line”). The surplus reinsurance contract
homogenizes the portfolio of the first-line insurer, as illustrated in the following simple
example.
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M

1

Qi

Qi

 M  1– 1{Qi>M}

Figure 2.1 Proportionality factor of the reinsurer as a function of insured sum.

Example . Assume there are  independent policies in an insurance portfolio.
For each policy, a claim occurs with probability . within the next year. For 
policies, the claim size is Q and for  policies the claim size is Q > Q, given a
claim occurs (i.e., for simplicity here the claim size is always equal to the policy limit).
Then the insurer expects one claim during this year and an aggregate claim payment
of E(S()) = .Q + .Q. If the insurer charges this amount as the overall premium,
this will be sufficient to cover this one expected claim if it is one with insured sum Q,
but not if it comes from a policy with insured sum Q. However, if the insurer buys
surplus reinsurance with M = Q for a pure premium of E(R()) = .(Q − Q), then
the remaining amount E(D()) = Q is sufficient to cover the retained amount of that
expected claim, no matter from which type of policy it comes.

In order to determine the distributional properties of the retained and reinsured amount
under surplus reinsurance, it is helpful to consider the insured amount of a claim as a
random variable with (c.d.f ) FQ (based on frequencies of the sums insured specified
in the policies of the portfolio and the respective claim occurrence probabilities, for
example in Example . Q would have a two-point distribution with P(Q = Q) =  −
P(Q = Q) = .). The distributions of the quantities R and D are then given by

P(D ≤ x) =
∫

∞


P
(
X ≤ xmax{, y∕M}|Q = y

)
dFQ(y), (..)

P(R ≤ x) =
∫

∞

M
P

⎛⎜⎜⎝X ≤
x

 − M
y

|||Q = y
⎞⎟⎟⎠ dFQ(y) . (..)

 Such an approach is akin to the philosophy of the collective risk model, where a heterogeneous portfolio
is treated as a homogeneous one, but equipped with a mixture distribution for the claim size to take into
account the heterogeneity.
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For the moments of D, we have

E(Dr) =
∫

∞


E(Dr|Q = y) dFQ(y)

=
∫

M


E(Xr|Q = y) dFQ(y) +

∫

∞

M
Mr

E

((
X
Q

)r |Q = y
)

dFQ(y)

=
∫

∞


min{yr

,Mr}E(V r|Q = y) dFQ(y). (..)

In practice it may often be reasonable to assume that the loss degree is independent of
the sum insured (particularly if the sums insured do not vary too much across policies).
In that case, (..) simplifies to

E(Dr) = E(V r)
∫

∞


min{yr

,Mr} dFQ(y).

For the reinsured amount, the respective expression is slightly more involved, but for
the first moment one easily gets

E(R) =
∫

∞


max{y − M, }E(V |Q = y) dFQ(y)

and under independence of V and Q

E(R) = E(V )
∫

∞


max{y − M, } dFQ(y).

Surplus reinsurance is very popular, particularly in fire insurance, as well as prop-
erty, accident, engineering and marine insurance. Typically, there is an upper limit
Qi ≤ (k + )M (“k lines”) in the treaty, that is, the ceded share is capped by

Ri = min
{

 − M
Qi

,  − 
k + 

}
Xi ⋅ {Qi>M},

and the remaining part for the policies with larger sums insured is then negotiated on a
facultative basis. Also, for certain policies the insurer may decide to retain several, say
m < k, lines and only reinsure the remaining k − m lines (e.g., see []). In general,
it is not uncommon to apply a table of lines, that is, different retention lines to various
groups of similar risks. The retention line is then often chosen in a way to aim for the
same maximum loss (method of inverse claim probability) or average loss (method of
inverse rate) for each policy (cf. []).
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2.3 Excess-of-loss Reinsurance

We now move on to non-proportional reinsurance forms. The simplest case is the
(per risk) excess-of-loss (XL) reinsurance defined by

R(t) =
N(t)∑
i=

(Xi − M)+, D(t) =
N(t)∑
i=

min(Xi,M), (..)

for some pre-defined retention M, that is, the reinsurer agrees to pay for each claim
the excess over the retention M. Typically, this will only be agreed upon up to a certain
limit L, leading to

R(t) =
N(t)∑
i=

min{(Xi − M)+, L},

D(t) =
N(t)∑
i=

(
min{Xi,M}{Xi≤M+L} + (Xi − L){Xi>M+L}

)
,

and one refers to such a treaty as L xs M, characterized by the layer [M,M + L] (layer
size L). Note that (X − u)+ ∶= max{X − u, }. The ratio (M + L)∕M is referred to as the
relative layer length.

This reinsurance form is very popular in casualty and fire insurance, as it reduces the
exposure of the ceding company in an effective way and has an intuitive and simple form.
The premium calculation is, however, considerably more involved than for proportional
reinsurance forms (see Chapter ). Figure . schematically depicts the reinsured claim
amounts under a QS, surplus and XL treaty.
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Figure 2.2 Comparison of reinsured claim amounts for some combinations of claim sizes Xi and
corresponding insured sums Qi for QS reinsurance with a = . (left), surplus reinsurance (middle),
and L xs M reinsurance (right).

 Depending on the region, the terms deductible, priority (continental Europe) and attachment point (US)
are also used for M.
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2.3.1 Moment Calculations

Consider the random variable

X̃ ∶= min{(X − u)+, v} = min{X,u + v} − min{X,u} (..)

for any u, v ≥ . If u = M, X̃ refers to the reinsured amount R of a single risk in a v xs
M treaty. On the other hand, for u =  and v = M, X̃ refers to D = min(X,M) in an ∞
xs M contract. That is, studying distributional properties of X̃ will be relevant for both
parties involved in the XL contract.

If FX denotes the distribution function of X, then one gets

FX̃(z) ∶= P(X̃ ≤ z) =
{

FX(u + z) if  ≤ z < v,
 if v ≤ z.

and for the Laplace transform of X̃

F̂X̃(s) ∶= E(e−sX̃) = F(u) +
∫

u+v−

u+
e−s(z−u) dFX(z) + e−s v( − FX(u + v)).

For the kth moment we get

�̃�k ∶= E(X̃k) = k
∫

∞


( − FX̃(z)) zk− dz = k

∫

v


( − FX(u + z)) zk− dz. (..)

From this expression one can read off the first moments

E(D) =
∫

M


( − FX(z)) dz, E(R) =

∫

∞

M
( − FX(z)) dz (..)

for the retained and reinsured single claim amount in an ∞ xs M treaty, which has the
appealing optical interpretation of sub-dividing the area between FX(z) and the constant
line  (see Figure .).

E(D)

E(R)

FX(z)

M

1

z

Figure 2.3 Graphical interpretation for the splitting of the expected claim size between insurer and
reinsurer.
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For the case L xs M one analogously obtains

E(R) =
∫

M+L

M
( − FX(z)) dz. (..)

These simple expressions will play a crucial role in the pricing of XL treaties in
Chapter . From (..) one also gets the inequalities

( − FX(u + v))vk
≤ �̃�k ≤ ( − FX(u))vk

.

On the other hand, E(X̃k) ≤ v E(X̃k−) so that

�̃�k ≤ v �̃�k−. (..)

For the variance, one has

Var(X̃) = 
∫

v


( − FX(u + z))z dz −

(
∫

v


( − FX(u + z)) dz

)

.

Since the partial derivative with respect to v is ( − FX(u + v)) ∫ v
 FX(u + z) dz ≥ , the

variance is non-decreasing in v and we get the bound

Var(X̃) ≤ 
∫

∞

u
(z − u)( − FX(z)) dz −

(
∫

∞

u
( − FX(z)) dz

)

.

The quantity on the right is non-increasing in u and therefore smaller than the same
expression where we put u = , but the latter then refers to the variance of the original
risk X, so that we get for any u, v ≥ 

Var(X̃) ≤ Var(X).

The coefficient of variation can be written as

CoV(X̃) =

(
�̃�

�̃�


− 

)∕

and hence depends monotonically on the ratio under the square root. By (..) the
derivative of that ratio is

𝜕

𝜕v
�̃�

�̃�


= 

�̃�



(
𝜕

𝜕v
�̃� −

�̃�
�̃�

𝜕

𝜕v
�̃�

)
≥


�̃�




(
𝜕

𝜕v
�̃� − v 𝜕

𝜕v
�̃�

)
= .

If we write CoV(u, v) ∶= CoV(X̃) for any u, v, then it follows that

CoV(u, v) ≤ CoV(u,∞).
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The dependence on u is more intricate. Let us introduce the retention distribution

Gu,v(x) ∶=

{
FX (u+x)−FX (u)
FX (u+v)−FX (u)

if  ≤ x ≤ v,
 if x ≥ v,

(..)

with moments 𝜈k ∶= k ∫ ∞
 ( − Gu,v(x)) xk−dx. If we abbreviate r ∶= FX(u + v) − FX(u)

then it is easy to show that

r𝜈k = �̃�k − vk( − FX(u + v)). (..)

The latter relation is handy in rewriting the partial derivative of CoV(u, v) with respect
to u. Indeed, it easily follows that

𝜕

𝜕u
�̃� = −r and 𝜕

𝜕u
�̃� = −r𝜈,

but then

�̃�


𝜕

𝜕u
�̃�

�̃�


=
(
�̃�

𝜕

𝜕u
�̃� − �̃�

𝜕

𝜕u
�̃�

)
= −�̃�r𝜈 + �̃�r = r

(
�̃� − �̃� 𝜈

)
.

Replacing in the last expression the moments �̃�k by their analogues 𝜈k from (..),
we get

�̃�


𝜕

𝜕u
�̃�

�̃�


= r (

𝜈 − 𝜈


)
+ rv (v − 𝜈)( − FX(u + v)),

which is positive. Indeed, the quantity 𝜈 − 𝜈

 is the variance of the distribution Gu,v

while by definition 𝜈 ≤ v. This then shows that the requested partial derivative is non-
negative and hence that CoV(u, v) is also increasing in u. In particular,

CoV(, v) ≤ CoV(u, v) ≤ CoV(u,∞)

comparing the risk of the different layers. Applying the left inequality for v = ∞ and the
right one for u =  we also get

CoV(, v) ≤ CoV(,∞) = CoV(X) ≤ CoV(u,∞),

where the quantity in the middle is the coefficient of variation for the original claim size.
For moment calculations for the aggregate claims of each party under an XL treaty see
Chapter .

2.3.2 Reinstatements

Many L xs M contracts in practice have in addition an (annual) aggregate deductible
(AAD) and an (annual) aggregate limit (global layer) (AAL) (often a multiple of L),
so that
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R(t) = min

{(N(t)∑
i=

min{(Xi − M)+, L} − AAD

)
+

,AAL

}
. (..)

In the following we assume AAD =  for simplicity. A very common variant
(particularly in property and casualty insurance) is such a contract with k reinstate-
ments, that is, at the beginning only an initial premium P for the coverage of a first
“layer” (or “liability”) min{R(t), L} is paid. When a claim occurs, that layer is (partially)
used up, and it can be refilled with later premium payments (reinstatement premiums)
(see Example .). Altogether then AAL = (k + )L. More details on the respective
premium schemes are discussed in Section ...

Example . Figure . illustrates a  xs  treaty for an initial premium P with
one reinstatement (for an additional premium P). The light-grey bar depicts the current
reinsurance coverage of the layer throughout the claim history. For the first claim,
X = , the reinsurer pays the entire part in excess of the retention M = ,
which uses up half of the coverage of the layer. This half is now reinstated (using the
first half of the overall available reinstatement, here illustrated by a radially contured
area), so that again the entire layer is covered. At this point in time the additional
reinsurance premium payment P∕ takes place. For the second claim, X = , the
reinsurer will hence pay R = , which puts down the remaining coverage for a
next claim to . There is, however, still the second half of the reinstatement available
(for another premium payment P∕), raising the coverage again to . For the third
claim, X = , the reinsurer consequently pays R = . Since the contract contains
only one reinstatement, there is no further reinsurance coverage, and the last claim,
X = , is paid entirely by the cedent.

100

200

R1

R2 R3

D2D1

X2

D3

X3
D4

D3

X4X1

Figure 2.4 100 xs 100 treaty with one reinstatement and claims X = , X = , X = , and
X = .
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Note that with such a reinstatement clause, the premium payment is no longer
deterministic, but depends on the loss history during the contract. Such reinstatements
can be negotiated to be automatic or optional for the first-line insurer. Clearly, this
variant of XL contracts is attractive for the cedent, as some premiums only have to be
paid if more coverage is needed, and there is less financial burden for the cedent in the
beginning. With such clauses, it is easier to agree on premiums, and one can interpret
the setup as a loss participation scheme of the cedent, which also reduces moral hazard.
The actuarial analysis of such contracts is, however, more involved. Early discussions of
XL contracts with reinstatements can be found in Sundt [, ] and Rytgaard [].
The resulting distribution of aggregate claim sizes is studied in Walhin and Paris []
and Hürlimann [], and for corresponding ruin probabilities see Walhin and Paris
[] and Albrecher and Haas []. For the pricing of such contracts see Section ...

2.3.3 Further Practical Considerations

There are many issues to be taken care of in the concrete implementation of an XL treaty.
One is that the way in which inflation influences the retention may not be the same as for
the claim sizes, and corrections of inflation effects (and implementing respective clauses
in the contracts) are an integral part of XL treaty analysis (see also Chapter ). Walhin
et al. [] provide an overview of financial, economic, and commercial aspects in the
practical pricing of XL treaties. On the data side, particularly for the lines of business
relevant for XL treaties (such as liability), some claims take several or even many years
until settlement, so respective reserving techniques on an individual claims level have
to be set up and one faces statistical challenges (see Chapter ).

It is not uncommon to combine XL treaties with adjacent layers. In practice, one often
refers to the rate on line (ROL)

ROL =
premium for layer

size of layer

and the payback period /ROL, which reflects the average number of years it takes
to collect premiums for this layer so that one payment of the full layer is reimbursed
(one distinguishes working layers (small ROL), middle layers (medium ROL), and CAT
layers (high ROL); this terminology is mainly used for casualty risk). Finally, layers far in
the tail are sometimes referred to as capacity layers. For property losses the respective
expressions are frequency layer, estimated normal loss layer, PML layer, PML protection
layer, and CAT layer.

Whereas the usual XL treaty (..) is defined per risk, this may not be an effective
reinsurance form if one faces many (but possibly not excessively large) claims (frequency
risk). One way to deal with this problem is a cumulative XL (per-event XL, cat XL)
contract, where first all claims that can be attributed to the same event are aggregated
to Xc

j =
∑

i Xi and then the reinsurer pays the excess of that aggregate claim over a
specified priority Mc, that is,

R(t) =
∑

events

(
Xc

j − Mc

)
+
.
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Mathematically, this reduces again to an XL-type contract, with the number of claims
now replaced by the number of events and the individual claims replaced by the
aggregate claim per event. That is, if there are enough data available to model the event
process and the respective aggregate claim distribution for an event, one can again
use the same techniques as for the per risk XL. Cumulative XL treaties are popular in
property, marine hull, motor hull, personal accident, and natural catastrophe insurance.

It is evident that in XL reinsurance there is an adverse selection, namely that an insurer
seeks protection particularly for risks that are hard to model or have heavy tails, but
often with very limited past claim experience. Some aspects of this phenomenon will
be dealt with later in the book. Another issue in practice can be moral hazard in its
various forms. In addition to what was mentioned above, another example is that if a
claim is already larger than the retention, there may not be the same incentives for the
cedent to be very careful with the exact settlement of the claim (as this is costly). A finite
layer size L is already a partial remedy to this problem, another one is that the reinsurer
only pays a (pre-specified) fraction of the original reinsured amount in the XL treaty
(such contracts are sometimes referred to as change-loss contracts).

Variants of per-risk XL are adverse development covers (dealing with run-offs) and
industry-loss warranties (cf. Section .).

2.4 Stop-loss Reinsurance

A stop-loss (SL) reinsurance treaty is defined by

R(t) =

(N(t)∑
i=

Xi − C

)
+

,

that is, the aggregate loss that the cedent faces over the time interval is capped at
the priority C, and the reinsurer takes care of the excess. Although SL is a natural
alternative to XL reinsurance that relieves the cedent from tail risk completely, some of
the problems of XL (like the moral hazard issue) are even amplified for this reinsurance
form. In almost all cases implemented in practice there is also an upper limit U specified
in the contract:

R(t) = min

{(N(t)∑
i=

Xi − C

)
+

,U

}
. (..)

To avoid some of the problems, such a reinsurance form is typically combined with a
proportional and/or XL cover inuring to the SL treaty (i.e., the SL feature only applies
to the risk remaining after the other treaties) (cf. Section .). It is also common to
include an additional unconditional deductible in (..) to lower the administration
costs connected to very small losses.

A SL contract is particularly useful if the assignment of claims to a particular event for
a per-event XL is difficult (such as hail, agriculture or frostiness of waterpipes). However,
on the administrative side such a contract can be quite tedious, as all claims have to
be considered (and potentially agreed upon) by both parties and modelling for the
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aggregate tail can be a challenge. In addition, all small claims contribute to the reinsured
amount, a feature that makes this reinsurance form less effective. As a consequence,
such contracts are typically expensive and not so frequently applied (an exception
being, for example, German windstorm reinsurance). A SL cover is, however, a popular
reinsurance form between connected institutions. The distributional properties of a SL
contract can in principle be deducted from the corresponding ones of single risks in
an XL cover (cf. Section ..), but due to the clauses in the aggregation structure the
analysis can in concrete cases still look quite different.

2.5 Large Claim Reinsurance

Consider the ordering of the claims

X,N(t) ≤ X,N(t) ≤ ⋯ ≤ XN(t)−,N(t) ≤ XN(t),N(t).

In a large claim reinsurance contract the reinsurer agrees to cover the largest r claims,
where r ≥  is a fixed number, that is,

R(t) =
r∑

i=
XN(t)−i+,N(t).

This is an intuitive treaty against the risk of large claims for the cedent, and it leads
to challenging mathematical questions for the distribution of R(t) and D(t), which we
will discuss in some detail in Section ., particularly also with respect to asymptotic
properties. A variant is drop-down XL with

R(t) =
N(t)∑
i=

min{Li, (XN(t)−i+,N(t) − Mi)+}, (..)

where different retentions and layer sizes are applied to the respective order statistics
(e.g., see Ladoucette and Teugels [, ]). While the implementation of such treaties
seems quite reasonable, they are nevertheless not very popular in modern reinsurance
practice, probably due to the intricate mathematical details and the considerable model
risk, as particularly for the largest claims in the portfolio one only has limited means to
justify on a statistical basis assumptions on the claim distribution. A variant of (..)
that has some popularity is called second event retention (or DD), which is an XL cover,
where the retention and the size of the layer also vary for different claims over time, but
are then ordered by chronological appearance rather than size.

A further variant of large claim reinsurance that was implemented for some time in
certain countries is called ECOMOR (Excédent du Coût Moyen Relatif ). Introduced by
Thépaut [], it was defined by

R(t) ∶=
r∑

i=
XN(t)−i+,N(t) − rXN(t)−r,N(t) =

N(t)∑
i=

(
Xi − XN(t)−r,N(t)

)
+ ,
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that is, it is an XL-type treaty, where the retention is given by the (r + )th largest claim.
The respective mathematical analysis is slightly more complicated than for large claim
reinsurance contracts, and we will give some details in Section ... One motivation
for the introduction of such an (a priori) random retention was the advantage that it
is (by definition) prone to the same inflation forces as the claims themselves. At the
same time, there is an intuitive drawback of the ECOMOR construction: if during the
contract period an additional claim appears that raises the applied retention, it can
happen that the reinsured amount decreases, although the overall burden for the cedent
has increased by the arrival of this additional claim, a feature that is not desirable and
hence moral hazard can be a problem. Up to now ECOMOR treaties have enjoyed
some academic popularity due to their mathematical challenges, but these are also to
some extent the reason why this reinsurance form is not used in current practice. There
are, however, some reinsurance treaties in force that to some extent mimick ECOMOR
features, such as an SL cover on all claims that are larger than some threshold.

2.6 Combinations of Reinsurance Forms and Global Protections

Even for a relatively simple property portfolio a combination of different types of
reinsurance protections is quite common. Clearly, this complicates the analysis of the
contracts and makes it even more important to clearly understand the implications of
each type of contract on the shape of the retained and reinsured risk. One of the main
reasons for implementing such combinations is heterogeneity. Heterogeneity is induced
by the difference of sums insured per policy, but also differences in coverage (theft, third
party protection, etc.) and in type (simple, commercial or industrial risks, etc.).

Combinations of proportional and non-proportional reinsurance protections are
quite frequent. If one combines non-proportional reinsurance types, a logical order
needs to be respected: first a per-risk XL, second a per-event XL, and finally a SL. A QS
can be ceded in any order. When applied, a surplus treaty (possibly preceded by a QS)
should be the first in the series. A surplus after a per-event XL is logically impossible,
while a surplus after a per-risk XL will imply that the risks with higher sum insured,
which are systematically ceded to the surplus, also have a higher potential to lead to XL
payments. So one should recover parts of the XL premium on a pro rata basis from the
surplus reinsurers, which entails some challenges in practice.

There seems to be an increasing trend that ceding companies ask for global protections
of their portfolios. One example is the protection by the reinsurer of two (or more) lines
of business, for instance of fire and MTPL. This allows better advantage to be taken of
the diversification possibilities. In a multiline XL coverage, layers from different lines
of business are combined in one treaty with a global (or multiline) annual aggregate
deductible AAD which is taken to be rather large (to keep the reinsurer’s payments and
the respective reinsurance premium in a reasonable range).

As an example consider a classical fire treaty with three layers ( xs ;  xs
;  xs ) with reinstatements, and a MTPL treaty with three layers (
xs ;  xs ; ∞ xs ) and unlimited free reinstatements. An alternative
coverage could consist of a global multiline treaty combining a fire layer  xs 
with a  xs  MTPL layer with unlimited free reinstatements, and a multiline
retention of . These two layers then form one treaty with one global premium,
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which is complemented by the two remaining fire layers and the two remaining MTPL
layers. In order to price such a multiline coverage one needs to model the possible
dependence between the different components or lines of business. Analysis of the
Danish fire insurance data will be used to illustrate the multivariate joint modelling of
different components.

2.7 Facultative Contracts

Currently about % of reinsurance contracts (in terms of premium volume) are not of
an obligatory treaty form, but are contracts negotiated on individual risks. This includes
in particular coverage for non-standard risks such as reinsurance for skyscrapers,
powerplants etc. As there are virtually no a priori rules for such contracts and the
agreed risk-sharing mechanisms can vary widely, they cannot be treated systematically.
Due to their individual nature the premiums are typically considerably higher than
for standardized obligatory treaties. Often, the insurer tries to avoid including risks
in a treaty that are particularly prone to large losses as this may have a bad effect on
premiums in the following year, and so the insurer will aim for a facultative reinsurance
for those risks.

Further examples of non-standard reinsurance forms are discussed in Section ..

2.8 Notes and Bibliography

In addition to the general references already given at the end of Chapter , it should
be noted that some reinsurance companies regularly publish online information
on practical details and reinsurance market trends, see, for example, the webpages
http://www.swissre.com/sigma/ and http://www.munichre.com.
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3

Models for Claim Sizes

In this chapter we deal with models that are useful for describing individual and
collective claim size data and physical measurement data of natural hazards such as
earthquakes and floods. Because we want to give special attention to the modelling of
large claims we provide some general background on this topic. In what follows we will
try to distinguish between claims that are considered small and claims that are large.
It is intuitively clear that reinsurance contracts will depend heavily on whether or not
the individual claims should be considered large.

3.1 Tails of Distributions

One of the main reasons for taking reinsurance is the possible appearance of large
claims. While this sounds like an obvious statement, a useful and acceptable definition
of what is meant by a large claim is far from obvious. Among the possible examples
of distributions, some are better suited to model large claims than others. In view of
future applications to actuarial topics one definitely needs a way of making a differ-
ence between average claims and large claims. An acceptable guideline is to compare
claim distributions with the exponential distribution. In some sense the exponential
distribution acts as a splitting distribution between small and large. A first and rather
vague criterion would be to check whether the claim distribution under consideration
has a fatter tail than the exponential distribution or not. If it does not, then we
could call the distribution super-exponential; in the alternative case we might call the
distribution sub-exponential but unfortunately this term has already been standardized
in the probabilistic literature.

We will call a distribution F super-exponential if  − F(x) is bounded above by a
decreasing exponential. A more quantifiable definition can be given in terms of F̂ ,
the Laplace transform of F , in that F̂ has a strictly negative abscissa of convergence
𝜎F . Following Taylor [] we will indeed conclude that the super-exponential class of
distributions is a reliable family of light-tailed claim size distributions. The exponential
distribution itself also satisfies this criterion of super-exponentiality. The aggregate
claim distribution (but also other risk quantities such as ruin probabilities) often exhibit
exact or approximate exponential behavior when the underlying claim size distribution
is super-exponential.

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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For a distribution F with a fatter tail than any exponential the abscissa of convergence
𝜎F of F̂ will be zero. Unfortunately this property is not sufficiently specific to be useful
as a definition. Instead one uses some classes of distributions with 𝜎F =  that have a
bit more structure. In particular we will deal later with sub-exponential distributions,
Pareto-type distributions, extreme value distributions, etc. If we take the claim size
distribution from such a class, the corresponding aggregate risk and ruin quantities will
show no trace of exponential behavior.

3.2 Large Claims

Before we offer candidates for claim size distributions, we need to remind the reader
that one of our main objectives is to provide adequate models for large claims. This
section contains a few thoughts on what we might righteously call a large claim and
how one can perhaps distinguish it from others. For an early general discussion on the
role of large claims see the summary report by Albrecht []. For an attempt to define
the even more difficult concept of a catastrophic claim, see Ajne et al. [].

Consider all claims {X,X,… ,Xn} related to a specific portfolio. Let Sn =
∑n

i= Xi be
the total claim amount and consider the maximum value Xn,n. Under which conditions
should we consider this largest claim to be actually large? More generally, which of the
extreme order statistics could be considered to be large? For an attempt to define large,
see Teugels []. Beirlant et al. [] put large claims into a statistical and actuarial
context. Here are some interpretations, the first two theoretically inspired.

(i) A claim could be called large when the total claim amount is predominantly
determined by it. A possible interpretation would be to assume that Sn is large
because Xn,n is so. This might be interpreted by the condition

 − F∗n(x) ∶= P(Sn > x) ∼ P(Xn,n > x) , x ↑ ∞.

For n =  this is equivalent to

 − F∗(x) ∼  ( − F(x)) , x ↑ ∞. (..)

The last equivalence follows from

P{X, > x} =  − F(x) = ( − F(x))( + F(x)) ∼ ( − F(x)), x ↑ ∞.

The relation (..) is precisely the definition that F belongs to the class  of sub-
exponential distributions. A property of  , proved by Chistyakov [], is that if
F ∈  then for any non-negative integer n, as x → ∞,

lim
x→∞

 − F∗n(x)
 − F(x)

= n. (..)

In the sub-exponential case, the tail  − F∗n is (up to the quantity n) just as heavy
as that of  − F .
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Members of  are automatically members of the class of long-tailed distribu-
tions denoted by , which means that for all y ∈ R

lim
x→∞

 − F(x + y)
 − F(x)

=  .

The class  and its subclasses have been constantly used as candidates for claim
size distributions with a heavy tail but also in other probabilistic contexts like
branching processes, queueing theory, etc. The major drawback of  is that it is
only defined in terms of a limiting property, which is hard to verify in practice, and
that it is defined by a non-parametric condition. Up to now the sub-exponential
class has defied a representation. Actually, it remains a challenging problem to
decide whether a set of actuarial data comes from a sub-exponential distribution
or not. Further, it is known that  is not closed under convolution or under convex
combinations. Cline and Samorodnitsky [] have shown that nevertheless large
subclasses of  are closed under product operations (see also the work by Rosinski
et al. []). A variety of sufficient conditions for membership of  can be found
in the literature, for example see Pitman [], Teugels [], Klüppelberg [],
Pinelis [], Smith [], and Foss et al. [] for a recent survey. Refinements
are available in Chover et al. [] and Willekens [].

Henceforth, practitioners avoid the class as such, going for distributions that
are sub-exponential but that at the same time contain enough parameters. Only
then will they be able to use data. Among the many parametrized examples
in  we mention the log-normal distribution, the Pareto distribution and
Pareto-type distributions to be defined next, as well as non-normal stable
distributions.

(ii) Another way of defining large claims can start from the behavior of the maximum
claim, which is then also closely related to the concept of the PML (cf. Chapter ).
This mathematical problem was considered in the work by Fisher and Tippett []
and Gnedenko [], and was further streamlined by de Haan []. The main
question is the search for distributions of X for which there exist sequences an > 
and bn (n = , ,…) such that for all real values x (at which the limit is continuous)

lim
n→∞

P

(Xn,n − bn

an
≤ x

)
= G(x) (..)

for some non-degenerate distribution G. It was then shown that the extreme value
distributions

G
𝛾
(x) =

{
exp

(
−( + 𝛾x)−∕𝛾)

, if 𝛾 ≠ ,
exp (−e−x) , if 𝛾 = , (..)

are the only possible limits in (..), with 𝛾 ∈ R called the extreme value index
(EVI). It has to be understood that G

𝛾
has to be a proper distribution. This means

 Here the concept of long-tailedness should not be confounded with long-tailed insurance portfolios,
which refers to claims with long development times.
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in particular that the range of G
𝛾

extends over the interval (− 
𝛾
,+∞) if 𝛾 > 

(the Fréchet–Pareto case), over (−∞,− 
𝛾
) if 𝛾 <  (the extremal Weibull case), or

over (−∞,+∞) if 𝛾 =  (the Gumbel case).
For any specific 𝛾 , the max-domain of attraction, containing the distributions F

for which there exist sequences an >  and bn such that (..) holds, have also
been described. The class of distributions in the max-domain of attraction can be
defined in terms of the tail quantile function. Given that F is a distribution, its
quantile function is defined by the inverse function

Q(p) = inf{x|F(x) ≥ p}, p ∈ (, ).

The tail quantile function is defined and denoted by

U(t) = Q( − ∕t), t > .

The following condition is a necessary and sufficient condition for the existence
of normalizing and centering constants for the weak convergence (..) of the
maximum of a sample from the distribution F .

Definition . Let F be a distribution with tail quantile function U(t). The
distribution F belongs to the extremal class 

𝛾
(a) if there exists an EVI 𝛾 and

an ultimately positive function a such that

{U(xu) − U(x)}∕a(x) →
∫

u


𝜐
𝛾− d𝜐 (..)

for all u ≥  as x → ∞.

Here the restriction to u ≥  can be broadened to u > . It follows from the general
theory of regularly varying functions that a is automatically regularly varying at
infinity with index 𝛾 : a(x) = x𝛾𝓁(x) where 𝓁 is slowly varying, that is, a measurable
and ultimately positive function that satisfies

lim
x↑∞

𝓁(tx)
𝓁(x)

= ,

for all t > . For more information see Bingham et al. [].
It has been shown by de Haan in [] that the above definition can be

equivalently stated in terms of the original distribution. The alternative condition is

 − F(t + uh(t))
 − F(t)

→ ( + 𝛾u)−

𝛾 , as t → x+, (..)

for all u such that +𝛾u >  and where h◦U = a.For 𝛾 =  we read (+𝛾u)−

𝛾 = e−u

.

The above relation holds locally uniformly in u. Furthermore if 𝛾 > , then
a(x)∕U(x) → 𝛾 as x → ∞. However, if 𝛾 < , then F has a finite upper limit
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x+ = inf{y ∶ F(y) = } and a(x)∕(x+ − U(x)) → −𝛾. The limit distribution in
(..), that is,

F(u) =  − ( + 𝛾u)−

𝛾 ,

is called the generalized Pareto distribution (GPD).
In case 𝛾 > , the class 

𝛾
equals the class of Pareto-type distributions defined by

 − F(x) ∼ x−𝛼𝓁(x), x ↑ ∞, (..)

where 𝛼 = ∕𝛾 >  and 𝓁 is slowly varying. Note that  − F in (..) is regularly
varying with index −𝛼.

When 𝛾 ≤ , the underlying X has a tail that is lighter than Pareto-type
distributions. In case 𝛾 =  the tail of the distribution of X can have a finite
endpoint or infinite support.

Seemingly the first attempt to model large claims with a parameterized distri-
bution is due to Benckert et al. []. Here the authors assume that the claim size
distribution starts out as a Pareto distribution, this means that for large x, −F(x) ∼
c x−𝛼 for some positive 𝛼.The distribution is then “cut off” at the point correspond-
ing to the sum insured, in which the remaining mass of the Pareto distribution
is concentrated. This then yields a model with negative 𝛾 . A bit later, Benktander
[] pointed out how the Pareto distribution itself (or its variants) could be used to
model large claims. In particular he considered the Pareto class as a dividing class
between claim size distributions for which all moments are finite and those for
which most moments diverge. Pareto-type distributions have always been popular,
for instance when modelling fire, storm and liability data, as will be illustrated
in Chapter . For a survey of extreme value theory and relevant references, see
Embrechts et al. [], Beirlant et al. [], and de Haan and Ferreira [].

(iii) For statistical purposes one can make a distinction between tails that tend to 
faster or slower than the exponential distribution near infinity. When for any 𝜆 > 

P(X > x)
e−𝜆x →  as x → ∞

the tail of X is termed lighter than exponential (LTE), while for

P(X > x)
e−𝜆x → ∞ as x → ∞

the tail of X is termed heavier than exponential (HTE).
(iv) When an actuary looks at claim data, he might suspect that large claims are likely.

For example, when he tries to estimate the mean and/or the variance of the claim
size distribution in a sequential way, he notices that the sample estimates do not
converge. Even when he uses re-sampling techniques, the estimates fail to average
out to a limiting value. One possible reason might be that the mean or the variance
of the underlying claim size distribution actually does not exist because the tail
of the distribution is too heavy. This could mean that the law of large numbers
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does not apply, preventing ultimate stabilization. A possible parameterized form
to cope with such a phenomenon is to assume that F is a Pareto-type distribution
with a small index 𝛼, as considered above.

(v) One could call a distribution heavy tailed if the ratio Sn∕Xn,n converges in distribu-
tion to a non-degenerate limit law. This approach leads to the class of Pareto-type
distributions with  < 𝛼 < , as shown by Breiman []. If the distribution F has a
finite expected value 𝜇 then the analogous condition that (Sn −n𝜇)∕Xn,n converges
to a non-degenerate limit leads to a similar outcome but with  < 𝛼 < .

(vi) Another possibility is that a number of the largest claims consume a fair portion
of the total claim volume. In a formula, for some p ∈ (, ), Xn,n > pSn. Of course,
the value of p should be large enough since otherwise all order statistics could be
termed large. In a more general phrasing, one could look at


Sn

(
Xn,n + Xn−,n +…+ X[n𝛼],n

)
for a value of 𝛼 close to . For a quantification of this approach in terms of Lorenz
curves, see Aebi et al. [].

(vii) In a similar fashion we might interpret largeness by the condition that for some
finite constant c when n ↑ ∞,

E

{Sn − n𝜈
Xn,n

}
→ c

where 𝜈 is the mean 𝜇 if it is finite while otherwise 𝜈 is . As shown in Bingham
et al. [] this condition again leads to the Pareto-type distributions with
𝛼 ∈ (, ) ∪ (, ).

Before continuing we need to stress the difference between a large claim and an outlier.
While the first is a genuine member of the sample of claim sizes, an outlier is considered
an extraneous value. Next to clear misprints, events can occur which are completely
unexpected in view of all data before such an event. Using methods from extreme value
analysis (EVA) one can estimate how unlikely certain events are in view of all prior
information. When events with an extremely low likelihood do occur, however, one has
to be ready to change the statistical models.

3.3 Common Claim Size Distributions

In this section we state the traditional examples of claim size distributions that are
commonly considered in the actuarial literature. Some of these examples are simple
while others are more elaborated variations. For other surveys of common claim size
distributions, see Kupper [], Ammeter [] and Klugman et al. [].

In many cases, distributions can be derived from a simple original by a transformation.
Among the most popular are the following:
● replacement of the random variable X by a Box–Cox transformation, that is,

Y
𝜆
∶= (X𝜆 − )∕𝜆, which for the limit 𝜆 =  gives Y = logX
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● replacement of X by exp(X), where the resulting distribution is called a log-
distribution

● replacement of X by a normalized version aX + b for constants a >  and b ∈ R

● replacement of X by X
a+X

with a > , a so-called homeographic transformation.

Note that such transformations may dramatically change the tail behavior of the
distribution.

Because of the importance of extreme values in reinsurance, the extreme value
distribution G

𝛾
, 𝛾 ∈ R, and the generalized Pareto distribution are important candidates

for modelling purposes in view of the limit results (..) and (..). The sets of extreme
value distributions and generalized Pareto distributions are one-parameter families of
distributions ranging from light tails with a finite endpoint (with 𝛾 ≤ ), up to Pareto-
type tails (when 𝛾 > ). Applying a normalization to these families we obtain the
location-scale versions with 𝜇 ∈ R and 𝜎 > :

G
𝛾,𝜇,𝜎

(x) = exp
{
−
(

 + 𝛾
x − 𝜇

𝜎

)− 
𝛾

}
and

F
𝛾,𝜇,𝜎

(x) =  + logG
𝛾,𝜇,𝜎

(x) =  −
(

 + 𝛾
x − 𝜇

𝜎

)−∕𝛾
, (..)

where  + 𝛾
x−𝜇
𝜎

> . The latter distribution has been used to model aggregate
claim distributions in McNeil []. Condition (..) leads to the popular peaks-over-
threshold (POT) approach in EVA, as discussed in Chapter .

We now list a number of examples of models with tails that are exponentially bounded
and then turn to tails heavier than exponential.

3.3.1 Light-tailed Models

3.3.1.1 With EVI 𝜸 < 0
A classical example of a light-tailed distribution with finite endpount x+ is given by the
beta distribution with x+ =  and distribution function

F(x) = 
B(p, q) ∫

x


up−( − u)q−du,

with extreme value index 𝛾 = −∕q (here B(p, q) = Γ(p)Γ(q)∕Γ(p + q) denotes the beta
function). The uniform distribution on (, ) is of course a special case with p = q = .
This is then a possible model for loss degree data. Beta distributions can be constructed
starting from a Pareto-type random variable Y (cf. (..)) through the transformation
X = x+ − ∕Y leading to an extreme value index 𝛾 = −∕𝛼:

 − F(x) = P

(
Y >


x+ − x

)
= (x+ − x)𝛼𝓁((x+ − x)−), x < x+.
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Another way to produce a light tail with finite endpoint from a heavy-tailed distribu-
tion W is by conditioning on W < T for some value T :

X =d W |W < T .

Such an operation is called here upper-truncation. A first reference in this respect is
Benckert et al. []. See Clark [] for a reference in enterprise risk management.

With T fixed, one can show that X is then light tailed with EVI 𝛾 = −. When
modelling large claims it appears appropriate to consider T sufficiently large, possibly
with the meaning of a sum insured. Another example is found in the Gutenberg–Richter
model for earthquake magnitudes, as will be discussed when treating earthquake data
in Chapter .

3.3.1.2 With EVI 𝜸 = 0: the Gumbel Domain
) Our first set of examples starts from the exponential distribution given by

F(x) =  − exp(−𝜆x), x > , 𝜆 > .

The exponential distribution plays a central role in tail modelling, not least because
of its memoryless property, that is, for all s, t > 

P(X > s + t|X > t) = P(X > s).

Since the tail quantile function of the exponential distribution equals U(t) =
(log t)∕𝜆, the exponential distribution belongs to (a), where a(t) = ∕𝜆. From
the exponential distribution we get the following:
(i) A first Box–Cox transformation of the exponential distribution is known as the

Weibull distribution and is defined by

F(x) =  − exp(−𝜆 x𝜏), x > .

For 𝜏 >  the distribution is still super-exponential. Note the special case of
the Rayleigh distribution which is obtained by putting 𝜏 = . The Weibull

distribution has U(t) =
(


𝜆
log t

)∕𝜏
as the tail quantile function so that this

distribution belongs to (a), where a(t) ∼ 
𝜏
𝜆
− 

𝜏 (log t)−+ 
𝜏 .

(ii) An exponential change followed by a normalization yields the logistic distribu-
tion with explicit form

F(x) =  − { + e
x−𝜇
𝜎 }−

, x ∈ R,

where 𝜇 is a real parameter and 𝜎 > . Note that this distribution is taken on the
entire real line. One-sided versions are of course possible. The most common
choice of the latter is the one-sided logistic distribution

F(x) =  − ( + ex)−
, x > .

 This notion of truncation should not be confused with other truncation schemes, referring to missing
data, such as in the case of non-reported claims because they are below a reporting level (cf. Chapter ).
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) The gamma distribution also has a long tradition in claim size modelling. Its explicit
form is

F(x) = 
Γ(𝛼) ∫

𝜆x


e−uu𝛼−du, x > ,

where 𝛼, 𝜆 > . Further F̂(s) = ( + s
𝜆
)−𝛼 so that 𝜎F = −𝜆 and hence, the gamma

distribution is super-exponential. For integer values of 𝛼 the gamma distribution can
be characterized as a sum of independent exponential random variables (and is then
referred to as the Erlang distribution). For 𝛼 = n∕ and n an integer we find a chi-
squared distribution.

Many other special Box–Cox forms are available. We mention here the trans-
formed gamma distribution, obtained from the gamma distribution via a power
transformation. We find

F(x) = 
Γ(𝛼) ∫

𝜆x𝜏


e−uu𝛼−du, x > ,

a distribution with three parameters.
When there is good reason to believe that a claim comes from one of several

different risk classes and for each of these classes one has a good idea about the
claim size distribution, then a mixing distribution will be a natural model. In this
context, mixtures of Erlang distributions are very popular in claims modelling, for
example see Willmot and Woo []. Such mixed Erlang distributions are used in
Chapter  to produce global fits in combination with separate tail fits. A popular,
tractable and more general class of super-exponential type in such a probabilistic
construction context are phase-type distributions (see Bladt and Nielsen [], [,
Ch. IX] and Asmussen et al. [] for the statistical perspective). For a recent variant of
infinite-dimensional phase-type distributions with finitely many parameters leading
to a heavy-tailed distribution, see Bladt et al. [].

) When modelling claim size distributions, the normal distribution can hardly be
advocated as a valuable model because claim sizes are non-negative. Nevertheless
the distribution is still popular as an approximation. Some distributions derived from
it have also found their way into the actuarial literature:

(i) The one-sided normal distribution is a candidate, suggested already in Benk-
tander et al. []. It has the density function

f (x) =
√


𝜋

e−x
, x > .

(ii) The inverse Gaussian distribution is defined by the density function

f (x) =
√

𝛽𝜇

𝜋
x−


 e−

𝛽

x (x−𝜇)

, x > ,



44 Reinsurance: Actuarial and Statistical Aspects

where the two parameters 𝛽 and 𝜇 are positive. Its Laplace transform is given by

F̂(s) = exp
(
−𝛽𝜇

(√
 + s

𝛽
− 

))
,

from which it is easy to see that the density of the n-fold convolution is

f ∗n(x) =
√

𝛽n𝜇

𝜋
x−


 e−

𝛽

x (x−n𝜇)
, x > .

Hence 𝜎F = −𝛽∕ and the distribution is super-exponential. For further prop-
erties see Embrechts []. The closedness under convolution makes this dis-
tribution an interesting candidate for claim size modelling, probably Seal []
was the first to consider it for this purpose. Later applications can be found in
Gendron et al. [], ter Berg [] and Mack [].

3.3.2 Heavy-tailed Models

3.3.2.1 With EVI 𝜸 = 0: the Gumbel Domain
) Our first examples can be derived from the exponential distribution.

(i) The Weibull distribution

F(x) =  − exp(−𝜆 x𝜏), x > ,

is sub-exponential for  < 𝜏 < .
(ii) The second Benktander distribution is defined by the expression

F(x) =  − c a xb− exp
(
−a

b
xb
)
, x > ,

where a and c are positive constants and  < b < .

) Also the normal distribution can give rise to heavy tails after transformation.

(i) The most popular such distribution is the log-normal distribution, defined as a
two-parameter distribution of the form

F(x) =  − 
𝜎

√
𝜋 ∫

∞

x
exp

{
−
(log u − 𝜇)

𝜎

}
du
u

= Φ
(
log x − 𝜇

𝜎

)
.

Here 𝜇 ∈ R while 𝜎 > . This important distribution belongs to  , as shown
in Embrechts et al. [], and asymptotically has a tail heavier than the Weibull
distribution, namely

F(x) ∼ 𝜎

log x
√

𝜋
exp

{
− 



(
log x − 𝜇

𝜎

)
}

, x → ∞.

In , Benckert [] suggested the use of the log-normal distribution for
the modelling of industrial and non-industrial fire data. Ferrara [] fitted a
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log-normal distribution to fire claim data. Further specific examples have been
treated in the papers by Bennett et al. [] and Dickmann [], and Taylor []
also illustrated the use of the log-normal. For an early application to windstorm
and glass claims data see Ramlau-Hansen [].

(ii) The quasi-log-normal distribution is defined by the following class containing
three parameters

F(x) =  − b(x∕x){−𝛼−𝛽 log(x∕x)}, x > x,

where 𝛼, b and 𝛽 are positive parameters. It captures the dominant component
exp(−𝛽 log x) (for some 𝛽 > ) in the tail behavior of a log-normal distribution.

3.3.2.2 With EVI 𝜸 > 0
This class corresponds to the Pareto-type distributions as defined in (..).

) By far the most popular distribution to generate heavy claims is the Pareto dis-
tribution with its transformed versions. It is the prime example of heavy-tailed
distributions. The simplest possible definition is the strict Pareto distribution given
for 𝛼 >  by

F(x) =  − (x∕x)−𝛼, x > x > .

The strict Pareto is sub-exponential for all values of 𝛼. It can also be seen as a
log-distribution generated by an exponential random variable. The fact that this
distribution is only defined from a positive value x on, is often not considered
a problem since it is mainly used to model large claims. More than that, this
distribution is very popular in practice because of a certain type of lack-of-memory
property: for any threshold M > x one has

P(X > x|X > M) =

{(
x
M

)−𝛼
, x > M,

, else,
(..)

that is, the conditional excess is again Pareto-distributed, now with parameters
(𝛼,M), a property that is particularly attractive in XL reinsurance.

) The shifted Pareto distribution is a two-parameter family defined by

F(x) =  − 𝛽
𝛼(𝛽 + x)−𝛼, x > .

It can be obtained from the strict Pareto by a simple shifting and rescaling or from
the Pareto-type by a specialization of the slowly varying function. Note that its
support is now the entire positive axis. For a treatment in an actuarial context see
Seal []. It is also known as the US–Pareto distribution in actuarial circles. The
GPD is actually the special case 𝛽 = ∕𝛼.

) Adding an additional power to the shifted Pareto distribution yields the versatile
Burr distribution defined by

F(x) =  − 𝛽
𝛼(𝛽 + x𝜏)−𝛼, x > .
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This three-parameter distribution has received a lot of attention in the actuarial
literature. The tail quantile function of the Burr distribution is

U(t) = 𝛽
∕𝜏(t∕𝛼 − )∕𝜏

.

The distribution therefore belongs to  
𝛼𝜏

(a), where a(t) ∼ 𝛽
∕𝜏

𝛼𝜏
t∕𝛼𝜏

. For a gener-
alized Burr-gamma distribution, see Beirlant et al. []. For 𝛼 =  one finds the
log-logistic distribution.

) The Fréchet distribution defined by

F(x) = exp
(
−x−∕𝛾)

, x > ,

is directly derived from the extreme value distributions (..), replacing X by +𝛾X
when 𝛾 > , and is a popular model for heavy-tailed data on its own.

) The gamma distribution also leads to heavy-tailed distributions after a transfor-
mation. We mention in particular the log-gamma distribution, obtained via a log-
transformation from the gamma. We have

F(x) = 
Γ(𝛼) ∫

𝜆 log x


e−uu𝛼−du, x > .

The log-gamma distribution is a Pareto-type distribution since it belongs to
∕𝜆(a) with a(t) ∼ 

𝜆
U(t) (t → ∞). An illustration of the use of the log-gamma

distribution as a claim size distribution for fire claims of dwellings is given in
Ramlau-Hansen [].

) The t-distribution offers some possibilities to model heavy claims. Folding the two-
sided t-distribution onto the positive half line gives a family of candidates for claim
size distributions called the one-sided t-distributions. The density is given by

f (x) =
Γ

(
n+



)
√
𝜋nΓ

(
n


) (
 + x

n

)− n+


, x > .

This distribution is of Pareto-type with 𝛼 = n.
Hogg and Klugman [] have suggested the log t-distribution by applying first

a logarithmic transformation to be followed by a normalization. There results a
density with slightly more general parameters

f (x) =
𝜆
𝛼Γ

(
𝛼 + 



)
√

𝜋Γ(𝛼)

x
[𝜆 + (log x − 𝜇)]−

(
𝛼+ 



)
, x > .

As a special case one finds the one-sided Cauchy distribution with density

f (x) = 
𝜋


 + x , x > .
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) Even the beta distribution leads to heavy tails after proper transformation. The
long-tailed beta distribution is defined by the distribution

F(x) = 
B(p, q) ∫

x


up−( + u)−p−qdu, x > ,

where p, q > . The long-tailed beta distribution is a member of ∕q(a), where
a(t) ∼ 

q
U(t).

) A variation of the long-tailed beta distribution is obtained by a power transforma-
tion. This leads to a four-parameter family called GB by Cummins et al. [].
The distribution can be introduced by the explicit formula

F(x) = 
B(p, q) ∫

bx𝜏


up−( + u)−p−qdu, x > .

The distribution was introduced in an actuarial context by ter Berg in []
under the name power-ratio-gamma-distribution, where statistical diagnostics are
considered and references are given to theoretical properties. For an application of
beta densities to loss data see, for example, Corro [].

) The log-Pearson III distribution is obtained from a gamma distributed random
variable Y by the transformation X = exp(a + Y ), where a is a constant. Flood
distributions in the USA have been statistically modelled using this distribution.

) The Wakeby distribution is another distribution that is used in connection with
extremes in water studies. It is defined through the quantile function Q:

Q(p) = m + a( − ( − p)b) − c( − ( − p)−d),  < p < ,

where the constants a, b and c are non-negative while d is strictly positive. The best
way to look at this definition is through the eyes of the tail quantile function. For

U(ux) − U(x) = ax−b( − u−b) + cxd(ud − )

so that F ∈ d(c d xd).
) The first Benktander distribution is a three-parameter distribution with an

exponential, a power and a logarithmic component

F(x) =  − c x−ax−b log x(a + b log x), x > ,

where a, b and c are positive constants.

The list of distributions discussed above is summarized in Table ., where the models
are ordered from light to heavy classes, mentioning the sign of 𝛾 . For 𝛾 =  we also
indicate if the tail is HTE or LTE.
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Table 3.1

Sign of γ Distribution 1 − F(x) (x−, x+)

Beta 
B(p,q)

∫


x up−( − u)q−du (, )

𝛾 <  Reversed Burr 𝛽
𝛼(𝛽 + (x+ − x)−𝜏 )−𝛼 (, x+)

Upper-truncated Pareto (x−𝛼 − T−𝛼)∕(x−𝛼 − T−𝛼) (x,T)

Second Benktander caxb−e−
a
b xb

, b >  (,∞)

𝛾 = , LTE
Weibull e−𝜆x𝜏 , 𝜏 >  (,∞)

Inverse Gaussian
√

𝛽𝜇

𝜋
∫

∞
x u− 

 e−
𝛽

u (u−𝜇)

du (,∞)

𝛾 =  Gamma 
Γ(𝛼)

∫
∞
𝜆x e−uu𝛼−du (,∞)

Exponential e−𝜆x (,∞)

Second Benktander caxb−e−
a
b xb

,  < b <  (,∞)

Weibull e−𝜆x𝜏 , 𝜏 <  (,∞)

𝛾 = , HTE
Log-normal  − Φ

(
log x−𝜇

𝜎

)
(,∞)

Quasi-log-normal b(x∕x)−𝛼−𝛽 log(x∕x) (x,∞)

Strict Pareto (x∕x)−𝛼 (x,∞)

GPD
(

 + 𝛾

𝜎
x
)−∕𝛾

(−𝜎∕𝛾,∞)

𝛾 > 
Burr 𝛽

𝛼(𝛽 + x𝜏 )−𝛼 (,∞)

Fréchet  − exp
(
−x−∕𝛾) (,∞)



Models for Claim Sizes 49

Table 3.1 (Continued)

Sign of γ Distribution 1 − F(x) (x−, x+)

Log-gamma 
Γ(𝛼)

∫
∞
𝜆 log x e−uu𝛼−du (,∞)

One-sided t
Γ( n+

 )√
𝜋nΓ( n

 )
∫

∞
x ( + u

n
)−

n+
 du (,∞)

GB 
B(p,q)

∫
∞

bx𝜏 up−( + u)−p−qdu (,∞)

First Benktander c x−ax−b log x(a + b log x) (,∞)

3.4 Mean Excess Analysis

Under an unlimited XL treaty with retention u, the expected amount to be paid by the
reinsurer is given by e(u)F̄(u), where e(u) is the mean excess amount

e(u) = E(X − u|X > u).

Assuming E(X) < ∞, the mean excess function or mean residual life function e is well
defined, and its calculation for a random variable with tail function F starts from the
formula

e(t) =
∫

x+
t F(u)du

F(t)
. (..)

On the other hand, the distribution function F can also be calculated from e if it exists:

 − F(x) = ( − F())e()
e(x)

exp
(
−
∫

x



du
e(u)

)
. (..)

In fact the first Benktander distribution was derived by applying (..) to the mean
excess function e(t) = t(a + b log t)−.

Thanks to its memoryloss property, the exponential distribution plays a central role
when using e:

e(t) = E(X) = 
𝜆

for all t ≥ .

When the tail of the distribution of X is HTE, then we find that the mean excess function
ultimately increases while for LTE tails e ultimately decreases. For example, for the
Weibull distribution we obtain as t → ∞

e(t) = t−𝜏

𝜆𝜏
( + o())
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yielding an ultimately decreasing (respectively increasing) e in case 𝜏 >  (respectively
𝜏 < ). In the case of a Pareto-type distribution the function e ultimately has a linearly
increasing behavior since when 𝛼 > 

e(t) ∼ t
𝛼 − 

as t → ∞. (..)

Distributions with a finite endpoint x+ show a mean excess function that ultimately
decreases and e(x+) = .

Hence the mean excess function can play an important role in deciding for a HTE tail.
This will be exploited in Chapter .

3.5 Full Models: Splicing

A good fit of the severity model over the entire range of loss sizes, from the many
smaller to the few large ones, is essential in many practical situations. The traditional
models listed above are often not able to capture the entire severity range. If one is
restricted to the very large losses, the Pareto-like distributions frequently will be the
best choice, but these heavy-tailed distributions rarely have the right shape to fit well
below the tail area. One way to deal with this problem is by splicing a tail fit to the right
of some large threshold t, with a model which fits the bulk of the data. The basic idea
here is to stick pieces of two (or more) different models together. This fits in with mixing
models where, as in a classical actuarial collective model, different processes f,… , fm
act on different contracts with proportions p,… , pm (

∑m
j= pj = ) so that

fX(x) =
m∑

j=
pjfj(x).

Splicing concerns a specific kind of mixing reflecting that insurance data exhibit
different statistical behavior over some subintervals of the outcome set of loss amounts
due to different scrutinies. An m-component spliced distribution then has a density
expressed as

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜋
f(x)

F(c)−F(c)
, c < x ≤ c,

𝜋
f(x)

F(c)−F(c)
, c < x ≤ c,

…
𝜋m

fm(x)
Fm(cm)−Fm(cm−)

, cm− < x < cm,

(..)

with 𝜋j >  and
∑m

j= 𝜋j = , where fj, respectively Fj, (j = ,… ,m) denote densities
and distribution functions of random variables. Restrictions on the parameters can be
imposed, requiring continuity, or even differentiability, of the density f at the junction
points c,… , cm−.
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Several splicing models using m =  components have recently been proposed.
Motivated by the methods from EVA, Beirlant et al. [, Sec. ..] proposed a
composite exponential Pareto model for a motor insurance data set of the type

f (x) =
⎧⎪⎨⎪⎩
(

 − k
n

)
𝜆 exp(−𝜆(x−c))
−exp(−𝜆(t−c)) , c < x ≤ t,

k
n𝛾

(
x
t

)−∕𝛾−
, x > t,

where k is the number of extremes referring to the number of exceedances above an
appropriate threshold t.

An alternative version based on EVA developed in the next chapter consists of splicing
a generalized Pareto distribution with a bulk model:

 − F(x) =

{ − F(x), x ≤ t,

( − F(t))
(

 + 𝛾

𝜎
(x − t)

)−∕𝛾
, x > t,

(..)

where F is the distribution function of an appropriately chosen distribution for the
modal part of a loss distribution. If F is chosen to have a continuous density f, the
density of (..) is given by

f (x) =

{f(x), x ≤ t,

( − F(t))

𝜎

(
 + 𝛾

𝜎
(x − t)

)−−∕𝛾
, x > t.

Lee et al. [] considered a mixture of two exponentials

f(x) = p𝜆 exp(−𝜆x) + ( − p)𝜆 exp(−𝜆x), 𝜆, 𝜆 > .

Cooray and Ananda [] proposed a composite log-normal Pareto model, which
was suitably modified by Scollnik []. Scollnik and Sun [] considered spliced
Weibull–Pareto models, while Calderín-Ojeda and Kwok [] also introduce splicing
log-normal and Weibull models with a tail model. In Fackler [] a classification of
potential combinations for small and large losses is considered. Miljkovic and Grün
[] is another recent reference on this topic.

Following Scollnik [], consider as an example splicing a log-normal distribution
with density function

f(x) =
√

𝜋x𝜎
exp

(
− 



(
log x − 𝜇

𝜎

)
)
, x > 

and a Pareto distribution with density

f(x) =
𝛼t𝛼
x𝛼+ , x > t.
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The density of the composite model is then given by

f (x) =

{
𝜋

f(x)
Φ(𝜏)

,  < x ≤ t,
( − 𝜋)f(x), x > t,

with 𝜏 = (log t − 𝜇)∕𝜎.
Some authors require smoothness at t. When splicing a log-normal and a Pareto

distribution, imposing continuity at t leads to

𝜋 =
𝛼𝜎Φ(𝜏)∕𝜑(𝜏)

𝛼𝜎Φ(𝜏)∕𝜑(𝜏) + 
,

while differentiability at t leads to 𝜏 = 𝛼𝜎. Smoothness reduces parameters, which is
appropriate in case data are scarce. On the other hand it links the geometries of the
body and tail fits, reducing the flexibility the splicing is trying to offer.

Pigeon and Denuit [] considered a mixed composite log-normal Pareto model,
where one assumes that every observation Xi may have its own threshold ci (i =
,… , n), which are realizations of some non-negative random variable Θ. More specifi-
cally the case withΘ being gamma distributed was worked out in detail by these authors.

3.6 Multivariate Modelling of Large Claims

The max-domain of attraction in the multivariate case has been worked out in detail
for marginal ordering: for d-dimensional vectors 𝐱 = (x,… , xd) and 𝐲 = (y,… , yd)
the relation 𝐱 ≤ 𝐲 is defined as xj ≤ yj, j = ,… , d. Moreover we use the notations
𝐱𝐲 = (xy,… , xdyd), 𝐱− = (x−

 ,… , x−
d ) and 𝐱 + 𝐲 = (x + y,… , xd + yd). Considering

a sample of d-dimensional observations 𝐗i = (Xi,,… ,Xi,d) (i = ,… , n), we denote the
sample maximum by 𝐌n with components

𝐌n,j = max
i=,…,n

Xi,j, j = ,… , d.

The distribution function of𝐌n of an independent sample𝐗,… ,𝐗n from a distribution
function F(𝐱) = P(X ≤ x,… ,Xd ≤ xd) is given by

P(𝐌n ≤ 𝐱) = P(𝐗 ≤ 𝐱,… ,𝐗n ≤ 𝐱) = Fn(𝐱), 𝐱 ∈ R
d
.

As in the univariate case, one needs to normalize 𝐌n in order to obtain a non-trivial
limit distribution as n → ∞. The domain of attraction problem is then concerned
with finding sequences 𝐚n > 𝟎 = (,… , ) and 𝐛n such that there exists a d-variate
distribution function G for which

Fn (𝐚n𝐱 + 𝐛n
)
→ G(𝐱), n → ∞. (..)

Again, as in the univariate case, we say that F is in the max-domain of attraction of G,
and G is called a (multivariate) extreme value distribution.
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Let Fj and Gj denote the jth marginal distribution functions of F and G, respectively.
Then one easily derives from (..) that for j = ,… , d

Fn
j
(
an,jxj + bn,j

)
→ Gj(xj), n → ∞, (..)

that is, Gj itself is a univariate extreme value distribution and Fj is in its domain of
attraction. Below we will use the following general parametrization of Gj:

Gj(xj) =

{
exp

(
−
(
 + 𝛾j(xj − 𝜇j)∕𝛼j

)−∕𝛾j
)
, if 𝛾j ≠ ,

exp
(
−exp{−(xj − 𝜇j)∕𝛼j}

)
, if 𝛾j = ,

(..)

with 𝛾j the EVI for the jth margin.
Also, the notion of max-stability of G carries over from the univariate case, that is,

Gk(𝜶k𝐱 + 𝜷k) = G(𝐱),

for any positive integer k and 𝐱 ∈ Rd, with vectors 𝜶k >  and 𝜷k with 𝐚−
n 𝐚nk → 𝜶k and

𝐚−
n (𝐛nk − 𝐛n) → 𝜷k as n → ∞.
An extreme value distribution function G can be reconstructed from its margins and

its stable tail dependence function (STDF) l. This function is defined as

l(𝐯) = − logG
(
Q(e−v),… ,Qd(e−vd )

)
, 𝐯 ∈ R

d
+, (..)

with Qj the quantile function of the jth margin of G (j = ,… , d). One then gets

− logG(𝐱) = l
(
− logG(x),… ,− logGd(xd)

)
, 𝐱 ∈ R

d
. (..)

The expression for an extreme value copula

CG(u,… ,ud) ∶= G(Q(u),… ,Qd(ud))

then follows:

CG(𝐮) = exp
(
−l(− logu,… ,− logud)

)
, 𝐮 ∈ [, ]d

. (..)

Note that the STDF describes the dependence between the components after trans-
forming the margins to a standard exponential distribution, which is in contrast to the
use of copulas where the margins are transformed to uniform (, ) distributions.

A STDF l has the following properties:

(L) homogeneity: l(s⋅) = s l(⋅) for s >  (which follows from the max-stability)
(L) l(𝐞j) =  for j = ,… , d, where 𝐞j is the jth unit vector in Rd

(L) maxj=,…,d vj ≤ l(𝐯) ≤ v +…+ vd for 𝐯 ∈ Rd
+

(L) convexity: l(𝜆𝐯 + ( − 𝜆)𝐰) ≤ 𝜆l(𝐯) + ( − 𝜆)l(𝐰) for 𝜆 ∈ [, ].

On the basis of (L) it follows that an extreme value copula satisfies

Cs
G(𝐮) = CG(us

,… ,us
d), 𝐮 ∈ [, ]d

. (..)
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The upper and lower bounds in (L) are themselves STDFs: the lower bound corre-
sponds to complete dependence G(𝐱) = minj=,…,d Gj(xj), whereas the upper bound
corresponds to independence G(𝐱) = G(x)…Gd(xd).

Finally we note that properties (L) to (L) do not characterize the class of STDFs,
that is, a function l that satisfies (L)–(L) is not necessarily an STDF.

Classical examples of bivarate STDFs are

● the symmetric logistic model, with l(x, x) = (x∕𝜏
 + x∕𝜏

 )𝜏 , with  ≤ 𝜏 ≤ , where
𝜏 =  corresponds to the independence case and 𝜏 =  to the complete dependence
case

● the Student(𝜈) distribution for which

l(x, x) = xF
𝜈+

(√
𝜈 + 

(x∕x)∕𝜈 − 𝜃√
 − 𝜃

)

+ xF
𝜈+

(√
𝜈 + 

(x∕x)∕𝜈 − 𝜃√
 − 𝜃

)
,

where F
𝜈+ is the distribution function of the univariate t

𝜈+ distribution, and 𝜃 the
Pearson correlation coefficient

● the Archimax model with mixed generator l(x, x) = (x
 + x

 + xx)∕(x + y).

The copula of the distribution function Fn of the sample maximum 𝐌n is

CFn(𝐮) = Fn
(

Q

(
u∕n



)
,… ,Qd

(
u∕n

d

))
= Cn

F

(
u∕n

 ,… ,u∕n
d

)
.

If F is in the max-domain of attraction of G, then

lim
n→∞

Cn
F

(
u∕n

 ,… ,u∕n
d

)
= CG(𝐮), 𝐮 ∈ [, ]d

,

or, as n → ∞,

−n logCF

(
u∕n

 ,… ,u∕n
d

)
→ − logCG(𝐮) = l

(
− logu,… ,− logud

)
,

from which

n
{

 − F
(

Q

(
u∕n



)
,… ,Qd

(
u∕n

d

))}
→n→∞ l

(
− logu,… ,− logud

)
.

Setting now − loguj = vj (j = ,… , d) and approximating u∕n
j by  − vj∕n, we find that

a multivariate distribution function F is in the max-domain of attraction of an extreme
value distribution with STDF l if the tail dependence function  − F(Q( − v),… ,

Qd( − vd)) converges in the following way to the STDF l of G:

lim
u→∞

u
[
 − F(Q( − u−v),… ,Qd( − u−vd)

]
= l(𝐯),
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which can be rewritten as

lim
u→∞

uP
(
 − F(X) ≤ u−v or … or  − Fd(Xd) ≤ u−vd

)
= l(𝐯), (..)

or, when using the corresponding copula:

lim
u→∞

u
[
 − CF ( − u−v,… ,  − u−vd)

]
= l(𝐯). (..)

For more details concerning multivariate extreme value theory see Chapter  in Beirlant
et al. [].

Copulas and stable tail dependence functions which describe the dependence
between the components are infinite-dimensional objects and therefore not always
easy to handle. One can restrict to a parametric model, such as a logistic model, but
alternatively one can summarize the main properties of the dependence structure in a
number of well-chosen dependence coefficients. We restrict the list here to the bivariate
case.
● The extremal coefficient

𝜃 = l(, ) ∈ [, ],

which equals 𝜃 = 𝜏 in the logistic model.
● The coefficient of extremal dependence, defined as

𝜒 = lim
u→

P(U > u|U > u),

where Uj = Fj(Xj) (j = , ). One calls (X,X) asymptotic independent if 𝜒 =  and
asymptotic dependent if  < 𝜒 ≤ . Approximations can be obtained for u →  from

𝜒(u) =  −
logCF (u,u)

logu

=  −
 − CF (u,u)

 − u
+ o()

= P(U > u|U > u) + o().

From (..) with x = x =  we obtain that for a bivariate distribution in the
domain of attraction of an extreme value copula𝜒(u) →u→ −𝜃 ∈ [, ]. In particular,
𝜒(u) =  − 𝜃 is constant in u for a bivariate extreme value distribution. Hence in the
logistic model one obtains 𝜒 =  − 𝜏 .

● Transforming Xj to Zj = ∕(−Fj(Xj)) (j = , ), which are standard Pareto distributed,
P(Zj > z) = z−, Ledford and Tawn [] introduced a third dependence coefficient
by assuming that the joint survivor function of (Z,Z) is regularly varying

P(Z > z,Z > z) = P(min(Z,Z) > z) = (z)z−∕𝜂
, z > ,



56 Reinsurance: Actuarial and Statistical Aspects

with  a slowly varying function. The extreme value index 𝜂 of the random variable
min(Z,Z) is termed the coefficient of tail dependence. Note that

𝜒 = lim
z→∞

P(Z > z|Z > z) = lim
z→∞

(z)z−∕𝜂
.

We find that

– if 𝜂 =  and limz→∞ (z) = c ∈ (, ], then 𝜒 = c ∈ (, ]
– if 𝜂 ∈ (, ), or 𝜂 =  with limz→∞ (z) = , then 𝜒 = .

Hence 𝜂 increases with stronger dependence within the class of asymptotic indepen-
dence. If ∕ < 𝜂 <  we have positive tail dependence. If 𝜂 = ∕ then extremes
of Z and Z are nearly independent, and even exactly independent if (z) = . If
 < 𝜂 < ∕ then we have negative tail dependence.

As in the univariate case, the domain of attraction condition (..) can be cast in terms
of exceedances over a high threshold. The event {𝐗 ≰ 𝐭} is called an exceedance over
the (multivariate) threshold 𝐭. This means that there is at least one coordinate variable Xj
that exceeds the corresponding threshold tj, although the precise coordinate where this
happens remains unspecified. We are then interested in the asymptotic distribution of
the excess vector 𝐚−

n (𝐗−𝐭) conditionally on𝐗 ≰ 𝐭, as tj → ∞, j = ,… , d. It was shown,
for example Beirlant et al. [] or Rootzén and Tajvidi [], that if Fn (𝐚n𝐱 + 𝐛n

)
→

G(𝐱) as n → ∞, and  < G(𝟎) < ,

P
(
𝐚−

n (𝐗 − 𝐛n) ∨ 𝐭 l
≤ 𝐱|𝐗 ≰ 𝐛n

)
→ H(𝐱) = 

− logG(𝟎)
log G(𝐱)

G(𝐱 ∧ 𝟎)
, (..)

as n → ∞, where tl
j ∈ [−∞,∞) denotes the lower endpoint of Gj. H is then the

distribution function of the multivariate generalized Pareto distribution.
Based on (..), (..) and (..) we then obtain, when 𝛼j > 𝛾j𝜇j, j = ,… , d,

that

H(𝐱) =
l({ + 𝛾

x∧−𝜇
𝛼

}−∕𝛾 ,… , { + 𝛾d
xd∧−𝜇d

𝛼d
}−∕𝛾d )

l({ − 𝛾𝜇∕𝛼}−∕𝛾 ,… , { − 𝛾d𝜇d∕𝛼d}−∕𝛾d )

−
l({ + 𝛾

x−𝜇
𝛼

}−∕𝛾 ,… , { + 𝛾d
xd−𝜇d
𝛼d

}−∕𝛾d )

l({ − 𝛾𝜇∕𝛼}−∕𝛾 ,… , { − 𝛾d𝜇d∕𝛼d}−∕𝛾d )
.

Setting 𝜎j = 𝛼j − 𝛾j𝜇j and 𝜁j ∶= ( 𝜎j

𝛼j
)−∕𝛾j , j = ,… , d, we arrive at

H(𝐱) =
l(𝜁{ + 𝛾(x∧)

𝜎
}−∕𝛾 ,… , 𝜁d{ + 𝛾d(xd∧)

𝜎d
}−∕𝛾d )

l(𝜁,… , 𝜁d)

−
l(𝜁{ + 𝛾x

𝜎
}−∕𝛾 ,… , 𝜁d{ + 𝛾dxd

𝜎d
}−∕𝛾d )

l(𝜁,… , 𝜁d)
(..)
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for 𝐱 ∈ Rd such that 𝝈 + 𝜸𝐱 > 𝟎. Finally, when 𝐱 ≥ 𝟎 we obtain that

H̄(𝐱) =
l
(
𝜁

{
 + 𝛾x

𝜎

}−∕𝛾
,… , 𝜁d

{
 + 𝛾dxd

𝜎d

}−∕𝛾d
)

l(𝜁,… , 𝜁d)

and 𝜁j = H̄j() (j = ,… , d). Further note that with properties (L) and (L) for STDFs,
we obtain in case 𝐱 ≥ 𝟎

H̄j(xj) =
l(,… , , 𝜁j{ + 𝛾jxj

𝜎j
}−∕𝛾j , ,… , )

l(𝜁,… , 𝜁d)

= 𝜁j

{
 +

𝛾jxj

𝜎j

}−∕𝛾j l(𝐞j)
l(𝜁,… , 𝜁d)

= 𝜁j

{
 +

𝛾jxj

𝜎j

}−∕𝛾j

∕l(𝜁,… , 𝜁d),

with 𝜁j = H̄j(). Imposing the constraint l(𝜁,… , 𝜁d) =  we then have

H̄(𝐱) = l(H̄(x),… , H̄d(xd)). (..)

For further properties concerning multivariate generalized Pareto distributions see
Rootzén and Tajvidi [] and Kiriliouk et al. [].



59

4

Statistics for Claim Sizes

If there is any suspicion of heavy-tailed distributions, then it is advisable that the actuary
should make a number of different data plots. Modelling of large claims is quite an
uncertain undertaking, and hence the more graphs considered the better in order to
make a balanced conclusion.

As a baseline distribution one might depart from the exponential distribution and
inspect for HTE tails. If the right tail of the distribution is obviously heavier than
any exponential distribution, then Weibull, log-normal or Pareto quantile plots offer
potential improvements. Such a first step can be performed using different kinds of
quantile plots (exponential, log-normal, Weibull or Pareto) and their derivative plots.

After this large claims modelling using extreme value methodology comes into play.
Here the maximum likelihood methodology applied to the peaks over threshold (POT)
approach plays the central role. We also emphasize methods based on quantile plotting
in order to allow for graphical validation of the models and results. We first discuss the
classical case of independence and identically distributed data, followed by regression
settings, censored and multivariate data. In reinsurance, the development of large claims
can take several years. When evaluating a portfolio, not all the claims are fully developed
and the indexed payments at the last available development year are an underestimation
of the real final indexed payment. When historical incurred information per claim is
available, this should assist in the estimation of the tails of the payment distribution.

It remains desirable to construct a distribution with an appropriate tail fit but which at
the same time has enough parameters to fit also in the medium range. An early reference
here is Albrecht [], who pointed out that claim size data are often well described by a
Pareto distribution for large claims, while the log-normal distribution provides a good
fit for medium-sized claims. For a general review on the construction of mixture models
with tail components, see Scarott and MacDonald []. Here we discuss the method of
splicing different distributions in more detail, and in particular we propose combining
a mixed Erlang distribution with a tail fit.

All of this material will be illustrated using the data sets introduced in Chapter .
While the automobile liability data and the Dutch fire insurance data will be used
throughout, we end the chapter by analysing the Austrian storm risk, European flood
risk data, the Groningen earthquake data, and the Danish fire insurance case in order
to illustrate statistical methods for tail estimation.

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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For a more general survey and statistical methods of extreme value theory see
Embrechts et al. [], Reiss et al. [], Coles [], and Beirlant et al. []. These
references also contain more technical details that are omitted here.

4.1 Heavy or Light Tails: QQ- and Derivative Plots

As discussed in Section . the mean excess function offers a first tool to discriminate
between HTE and LTE tails. In practice, based on a sample X,X,… ,Xn, the mean
excess function e(t) = E(X − t|X > t) can be naively estimated when replacing the
expectation by its empirical counterpart:

ên(x) =
∑n

i= Xi (t,∞)(Xi)∑n
i= (t,∞)(Xi)

− t,

where for any set A, A(Xi) equals  if Xi ∈ A, and  otherwise. The value t is often
taken equal to one of the data points, say the (k + )-largest observation Xn−k,n for some
k = , ,… , n − . We then obtain

ek,n = ên(Xn−k,n) =

k

k∑
j=

Xn−j+,n − Xn−k,n. (..)

The mean excess values ek,n can be plotted as a function of the threshold xn−k,n or as a
function of the inverse rank k.

There is an interesting link between the values ek,n and exponential QQ-plots. For an
exponential distribution the quantile values yj = Q

(
j

n+

)
stand in linear relationship to

the corresponding quantiles of the standard exponential distribution xj = Q(j∕(n+)) =
− log( − j∕(n + )):

yj =

𝜆

xj, j = ,… , n.

Hence, when estimating yj = Q
(

j
n+

)
by the empirical quantiles Xj,n, we have that the

exponential QQ-plot, defined by(
− log

(
 − i

n + 

)
,Xi,n

)
, i = ,… , n,

should exhibit a linear pattern which passes through the origin for the exponential
model to be a plausible model. An estimator of the slope can then also be used as an
estimator of ∕𝜆.

Now ek,n can be viewed as an estimate of the slope ∕𝜆k of the exponential QQ-plot
to the right of an anchor point

(
− log k+

n+
,Xn−k,n

)
, and hence (xn−k,n, ek,n) or (k, ek,n) for

k = ,… , n, can be interpreted as a derivative plot of the exponential QQ-plot.
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When fitting a regression line which passes through the anchor point using least squares
regression minimizing

k∑
j=

(
log k + 

j

)− (
Xn−j+,n −

[
Xn−k,n + 𝜆

−
k

(
log n + 

j
− log n + 

k + 

)])

with respect to ∕𝜆k , one indeed obtains

∕�̂�k =
ek,n


k
∑k

j= log
k+

j

,

so that ek,n ≈ ∕�̂�k using the approximation 
k
∑k

j= log
k+

j
≈ , which is sharp even for

small k.
Also, when the data come from a distribution with a tail heavier than exponential,

the exponential QQ-plot will ultimately be convex and ultimately upcross the fitted
regression line for every k, so that the slopes ek,n will increase always with increasing
Xn−k,n (or decreasing k), while for a tail lighter than exponential, the QQ-plot will
ultimately be concave, ultimately appearing under the fitted regression line for every
k, and the slopes will decrease with increasing Xn−k,n (or decreasing k).

When modelling reinsurance claim data we expect convex exponential QQ-plots
linked with increasing mean excess plots (xn−k,n, ek,n). A popular second step is to
inspect log-normal or Pareto QQ-plots. Note that the mean excess plots of a Pareto-
type distribution ultimately will be linear increasing with slope ∕(𝛼 − ), as follows
from (..). Again, log-normal, respectively Pareto, tail fits appear appropriate when
the right upper end of the corresponding QQ-plot is linear from some point on. It is
advisable to accompany the QQ-plot with the corresponding derivative plots.
● Since logX is exponentially distributed with 𝜆 = 𝛼 when X is strict Pareto(𝛼)

distributed, the Pareto QQ-plot is defined as(
− log

(
 − i

n + 

)
, logXi,n

)
, i = ,… , n,

with derivative plot(
log xn−k,n,Hk,n

)
or

(
k,Hk,n

)
where

Hk,n = 
k

k∑
j=

logXn−j+,n − logXn−k,n. (..)

Hk,n is the estimator of ∕𝛼 introduced by Hill []. Indeed, if the data come from
a Pareto distribution, then the Pareto QQ-plot is linear and the derivative plot is
horizontal at the level ∕𝛼.
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● The normal QQ-plot based on the logarithms of the data provides the log-normal
QQ-plot(

Φ−
( i

n + 

)
, logXi,n

)
, i = ,… , n,

where Φ− denotes the standard normal quantile function. The derivative plot is then
given by(

log xn−k,n,
Hk,n

Nk,n

)
or

(
k,

Hk,n

Nk,n

)
with

Nk,n = n + 
k + 

𝜑

(
Φ−

(
 − k + 

n + 

))
− Φ−

(
 − k + 

n + 

)
,

since, with 𝜑 denoting the standard normal density,


k

k∑
j=

Φ−
(

 −
j

n + 

)
− Φ−

(
 − k + 

n + 

)
≈
∫




Φ−

(
 − u k + 

n + 

)
du − Φ−

(
 − k + 

n + 

)
= Nk,n.

● The quantile function of the Weibull distribution is given by

Q(p) =
(
− 
𝜆
log( − p)

)∕𝜏
,  < p < ,

so that for this model logQ(p) = 
𝜏
log[− log( − p)] + 

𝜏
log 

𝜆
. Again taking p = i

n+
(i = ,… , n) and estimating Q(i∕(n + )) by Xi,n leads to the definition of the Weibull
QQ-plot(

log
[
− log

(
 − i

n + 

)]
, logXi,n

)
, i = ,… , n.

The derivative plot is then given by(
log xn−k,n,

Hk,n

Wk,n

)
or

(
k,

Hk,n

Wk,n

)
with

Wk,n = 
k

k∑
j=

log log n + 
j

− log log n + 
k + 

.
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Insurance claim data often exhibit different statistical behavior over various subsets of
the outcome set which can be observed in mean excess plots, starting with components
in the center of the data followed by a Pareto tail. Sometimes such Pareto tails then turn
out to be upper-truncated, as defined in Section ....

Case studies. In Figures .–. the exponential, Pareto, log-normal, and Weibull
QQ-plot together with the corresponding derivative plots are given for the Dutch fire
insurance data, and the ultimate values for the car liability insurance from Companies
A and B. In Figure . the regression lines based on the top  Dutch fire claim
observations and passing through the corresponding anchor point at k =  are given.
The corresponding slope estimate can be traced back in the derivative plot through the
vertical coordinate of the anchor point in the QQ-plot, which then is the horizontal
coordinate of the slope estimate in the derivative plot.

The Dutch fire insurance data show a heavy-tailed behavior since the exponential QQ-
plot is convex, which is consistent with the mean excess plot being increasing over the
whole data range. However, in total at least three components can be detected with
different slopes in the QQ- and derivative plots, with Pareto behavior for log x ≤ ,
a decreasing Pareto derivative plot for log x ∈ (, ), and ultimately a heavy tail
piece at log x >  (approximately). Note the horizontal behavior of the Hk,n plot for
log x between  and , followed by constant Weibull derivatives for log x ∈ (, ).
However, ultimately at the largest data points again Pareto behavior appears.

With the ultimate data values for Company A a three-component spliced distribution
can be observed in Figure ., starting with a component with decreasing derivative
plots for log x ≤ , followed by a Pareto component when log x ∈ (, ) and a HTE tail
piece for x ∈ (, ). Finally, there is an ultimate section using the top eight data points
which shows a strong downward trend in each derivative plot, which could indicate
upper-truncation near some high value T . So here possible model candidates for tail
fits are log-normal, Pareto or an upper-truncated tail.

Finally, the ultimate data from Company B also show three components, log x ≤ ,
log x ∈ (, .) and log x ∈ (., .), ending with a short Pareto piece appearing at
the top  data points which follows from a linear increasing mean excess plot in that
area.

These QQ- and derivative plots give first indications which then should be studied
further using the extreme value and splicing methods developed next. □

4.2 Large Claims Modelling through Extreme Value Analysis

4.2.1 EVA for Pareto-type Tails

In order to model large claims, Pareto tail modelling is probably the most common
approach. Here we use the subset of models with tails heavier than exponential for which
the EVI 𝛾 is positive, as discussed in Section ..., which in fact equals the set of
Pareto-type models that can be defined through tail functions  − F , quantile functions
Q, or tail quantile functions U(x) = Q( − ∕x). Indeed

U(x) = x𝛾𝓁U (x), x ↑ ∞, (..)
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Figure 4.1 Dutch fire insurance data: exponential QQ-plot and mean excess plot (xn−k,n, ek,n) (top); Pareto QQ-plot and Hill plot (log xn−k,n,Hk,n) (second line);
log-normal QQ-plot and derivative plot (log xn−k,n,Hk,n∕Nk,n) (third line); Weibull QQ-plot and derivative plot (log xn−k,n,Hk,n∕Wk,n) (bottom). For each QQ-plot
the regression line through Xn−,n,… ,Xn,n is plotted.



−6 −4 −2 0 2

14

15

16

17

18

19

Weibull QQ−plot

Quantiles of standard Weibull

lo
g(

X
)

−3 −2 −1 0 1 2 3

14

15

16

17

18

19

Log−normal QQ−plot

Quantiles of standard normal

lo
g(

X
)

14 15 16 17 18

0.5

1.0

1.5

2.0

Derivative plot of log−normal QQ−plot

D
er

iv
at

iv
e

14 15 16 17 18
0

1

2

3

4

5

6
Derivative plot of Weibull QQ−plot

log(Xn−k,n)

log(Xn−k,n)

D
er

iv
at

iv
e

Figure 4.1 (Continued)
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Figure 4.2 MTPL data for Company A, ultimate data values at evaluation: exponential QQ-plot and mean excess plot (xn−k,n, ek,n) (top); Pareto QQ-plot and Hill
plot (log xn−k,n,Hk,n) (second line); log-normal QQ-plot and derivative plot (log xn−k,n,Hk,n∕Nk,n) (third line); Weibull QQ-plot and derivative plot
(log xn−k,n,Hk,n∕Wk,n) (bottom).
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Figure 4.2 (Continued)
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Figure 4.3 MTPL data for Company B, ultimate data values at evaluation: exponential QQ-plot and mean excess plot (xn−k,n, ek,n) (top); Pareto QQ-plot and Hill
plot (log xn−k,n,Hk,n) (second line); log-normal QQ-plot and derivative plot (log xn−k,n,Hk,n∕Nk,n) (third line); Weibull QQ-plot and derivative plot
(log xn−k,n,Hk,n∕Wk,n) (bottom).
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Figure 4.3 (Continued)
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where 𝛾 = ∕𝛼 >  and 𝓁U is a slowly varying function. Also (..) is equivalent to

F(ut)
F(t)

= P

(X
t
> u|X > t

)
→ u−∕𝛾

, t ↑ ∞ (..)

for every u > . In this section we discuss the estimation of 𝛾 = ∕𝛼, large quantiles
Q( − p) = U(∕p), and small tail probabilities F(x). We assume in this and the next
subsection that the data are independent and identically distributed (i.i.d.). Moreover
mathematical approximations of variances (AVar), bias (ABias), mean squared error
(AMSE), and distributions of estimators using k largest observations of the n data will
hold when k, n → ∞ and k∕n → .

4.2.1.1 Estimating a Positive EVI
The most popular estimator for 𝛾 is given by the Hill estimator Hk,n defined in (..), see
[]. In the preceeding section this estimator was retrieved through regression on the
Pareto QQ-plot. Here, we also show how the maximum likelihood method based on the
so-called POT approach leads to the same estimation method in the Pareto-type case.
● In Section . the Hill estimator was motivated as an estimator of the slope of a linear

Pareto QQ-plot to the right of an anchor point (log((n+)∕(k+)), logXn−k,n). In fact,
this interpretation can be carried over to the general case of Pareto-type distributions
since then ultimately for x → ∞ the Pareto QQ-plot is still linear with slope 𝛾 for a
small enough k or, equivalently, for a large enough Xn−k,n. Indeed, under (..),

logU(x) ∼ 𝛾 log x + log𝓁U (x), x → ∞.

It can now be shown that for every slowly varying function 𝓁

log𝓁(x)∕ log x → 

as x → ∞. Hence, whereas Pareto QQ-plots are hardly ever completely linear, they
are ultimately linear at some set of largest values. The speed at which the linearity
sets in depends on the underlying slowly varying function. Like many publications,
following Hall [], we assume here that

𝓁U (x) = C( + Dx−𝛽( + o()), x → ∞, (..)

for some C, 𝛽 > , and D a real constant. This can, however, be generalized to

𝓁U (tx)
𝓁U (x)

−  ∼ b(x)h−𝛽(t),

as x → ∞ with b essentially a power function or, more correctly, a regularly varying
function with index −𝛽, and h−𝛽(t) = ∫

t
 u−𝛽−du. Under (..)

logU(x) − logU
(n + 

k + 

)
∼ 𝛾

(
log x − log n + 

k + 

)
+ D

(
x−𝛽 −

(n + 
k + 

)−𝛽)
,

(..)
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from which Hk,n follows taking x = (n + )∕j (j = ,… , k), estimating U((n + )∕j)
by Xn−j+,n (j = ,… , k + ), and taking the average of both sides of (..) over
j = ,… , k after deleting the last term on the right-hand side. Omitting this final
term (or, equivalently, assuming a strict Pareto distribution with constant slowly
varying function) causes a bias which will be more important with smaller 𝛽. Adverse
situations for the Hill estimator are logarithmic slowly varying functions 𝓁U , as in case
of the log-gamma distribution. Such cases exhibit 𝛽 = .

● Alternatively, the Hill estimator is also a maximum likelihood estimator based on
(..). Indeed, extreme value methodology proposes fitting the limiting Pareto
distribution with distribution function  − x−∕𝛾 to the POT values Y = X∕t over
a high threshold t conditionally on X > t. Note that the use of the mathematical
limit in (..) to fit the exceedance data introduces an approximation error that leads
to estimation bias. Let Nt denote the number of exceedances over t. Then the log-
likelihood equals

log L(𝛾|Y,… ,YNt
) = −Nt log 𝛾 −

(
 + 

𝛾

Nt∑
j=

logYj

)

with

d log L(𝛾)
d𝛾

= −
Nt
𝛾

+ 
𝛾

Nt∑
j=

logYj,

leading to the maximum likelihood estimator

�̂� = 
Nt

Nt∑
j=

logYj.

Choosing an upper order statistic Xn−k,n for the threshold t (so that Nt = k) we obtain
Hk,n.

● From Section . it also follows that the Hill statistic can be interpreted as an estimator
of the mean excess function of the log-transformed data, that is, elogX(log t) =
E(logX − log t|X > t), with the threshold value t substituted by Xn−k,n. As in (..)
we here find

elogX(log t) =
∫

∞
t F(u)d logu

F(t)
.

Estimating F(u) using the empirical distribution function

F̂n(x) =

n

n∑
i=

{Xi≤x} (..)
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with value −F̂n(u) = j∕n over the interval [Xn−j,n,Xn−j+,n) we are led to the estimator

∫
Xn,n

Xn−k,n
( − F̂n(u))d logu

 − F̂n(Xn−k,n)
=

∑k
j=(j∕n)(logXn−j+,n − logXn−j,n)

k∕n
. (..)

Using summation by parts one observes that this final expression equals the Hill
estimator:

Hk,n = 
k

k∑
j=

Zj = Zk , (..)

with

Zj = j
(
logXn−j+,n − logXn−j,n

)
, j = ,… , n

(with logX,n = ).

To deduce approximate expressions for the variance and bias of the Hill estimator it is
helpful to consider the preceding interpretation in terms of the scaled log-spacings Zj.
Thanks to the Rényi representation j(En−j+,n − En−j,n) =d Ej (j = ,… , n) concerning
order statistics E,n ≤ E,n ≤ … ≤ En,n from a random sample E,E,… ,En of n
independent standard exponential random variables, we have in case of a strict Pareto
distribution (i.e., with 𝓁U constant), that

Zj =d 𝛾Ej, j = ,… , n. (..)

This representation is based on the memoryless property of the exponential distribution
and the fact that nE,n is standard exponentially distributed. From (..) and (..)
we expect that, as k → ∞,

AVar(Hk,n) =
𝛾



k
( + o()).

Concerning the bias due to the approximation error, we confine ourselves to the model
(..). Then the theoretical analogue of the Hill estimator is given by

EHk,n ∶= 
k

k∑
j=

logU
(

n + 
j

)
− logU

(n + 
k + 

)
= 𝛾


k

k∑
j=

log n + 
j

− log n + 
k + 

+ 
k

k∑
j=

log

(
 + D

(
j

n + 

)𝛽
)

− log

(
 + D

(
k + 
n + 

)𝛽
)
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≈ 𝛾

k

k∑
j=

log k + 
j

+ D
(

k + 
n + 

)𝛽 
k

k∑
j=

((
j

k + 

)𝛽

− 

)

≈ 𝛾 − D𝛽

 + 𝛽

(
k + 
n + 

)𝛽

= 𝛾 +
bk,n

 + 𝛽
,

with bk,n ∶= −D𝛽

(
k+
n+

)𝛽

. Hence, the approximate mean squared error is given by

AMSE(Hk,n) =
𝛾



k
+

(
D𝛽

 + 𝛽

) (k + 
n + 

)𝛽

,

while in order to construct confidence bounds we have that, as k, n → ∞ with k∕n → ,

√
k
(Hk,n

𝛾
− 

)
≈d  (, ). (..)

Case studies. In Figure . the Hill derivative values are plotted as a function of k
for the Dutch fire insurance claims, and for the ultimate values from Companies A
and B. Plotting (k,Hk,n) is the usual way to inspect the estimates of the extreme value
index 𝛾 > . In the case of the Dutch fire insurance data at each k we also put the
% confidence intervals for 𝛾 based on (..). From Figure . it follows that the
ultimate tail behavior in each of these three cases is non-standard. It is clear that the
interpretation of these plots – sometimes termed Hill horror plots – is difficult. This
motivates the search for bias reduction techniques, combined with different plotting
techniques, as discussed below. □

4.2.1.2 Estimating Large Quantiles and Small Tail Probabilities
One of the most important applications of EVA is the estimation of extreme quantiles
qp = Q( − p) with p small, also termed Value-at-Risk (VaR) in risk applications.
Alternatively, the return period for a high claim amount x given by r(x) = ∕P(X > x)
is another measure describing extreme risks.

The estimation of a high quantile under Pareto-type modelling can be performed by
extrapolating along a fitted regression line on the Pareto QQ-plot through the point
(log((n+)∕(k+)), logXn−k,n)with slope Hk,n. Following (..) with x = ∕p, estimating
U((n+)∕(k+)) by Xn−k,n and 𝛾 by Hk,n, and omitting the second term on the right-hand
side, that is, using

logQ( − p) ≈ logXn−k,n + Hk,n

(
log 

p
− log n + 

k + 

)
,
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Figure 4.4 Pareto QQ-plot and Hill plot (k,Hk,n): Dutch fire insurance data with 95% confidence
intervals for each k (top); MTPL data for Company A, ultimate values (middle); MTPL data for Company
B, ultimate values (bottom).

we arrive at the estimator

q̂+
k,p = Xn−k,n

(
k + 

(n + )p

)Hk,n

, (..)

which was first proposed by Weissman []. The estimator q̂+
k,p can also be retrieved

from (..), leading to the approximation U(vx)∕U(x) ≈ v𝛾 for large values of x. Setting
vx = ∕p, x = (n+)∕(k+) so that v = (k+)∕((n+)p), and estimating U((n+)∕(k+))
by Xn−k,n and 𝛾 by Hk,n, we obtain q̂+

k,p again.
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Estimation of return periods can be obtained using the inverse relationship on the
Pareto QQ-plot:

r̂+k,x = ∕p̂+
k,x = n + 

k + 

(
x

Xn−k,n

)∕Hk,n

. (..)

The expression for p̂+
k,x can also be deduced from (..), leading to the approximation

F̄(tu)∕F̄(t) ≈ u−∕𝛾 for large values of t. Setting tu = x, t = Xn−k,n so that u = x∕Xn−k,n,
and estimating F̄(t) by (k + )∕(n + ) we obtain p̂+

k,x.
Approximate confidence bounds for such parameters have been derived based on

asymptotic distributions of the estimators. In the case of the tail probability estimator
we find with px = P(X > x)

√
k∕

√
 + log(k∕(npx))

(
p̂+

k,x

px
− 

)
≈d  (, ),

when k, n → ∞, k∕n → , npx∕k → 𝜏 ∈ [, ) and k−∕ log(npx) → , while with
qp = Q( − p),

√
k∕

√
 + log(k∕(np))

(
q̂+

k,p

qp
− 

)
≈d  (, ),

when k, n → ∞, k∕n → , np∕k → 𝜏 ∈ [, ) and k−∕ log(np) → .

4.2.1.3 Bias Reduction
When constructing confidence intervals for risk measures such as px and qp, again
the approximation of the underlying conditional distribution by the simple Pareto
distribution entails a bias for all the existing estimators, next to the bias induced by
estimating 𝛾 . One approach to reduce the bias is to construct estimators based on
regression models of the values Zj. Indeed, under (..), using the approximation
j log j+

j
≈  and with the mean value theorem on x−𝛽 at the points j∕(n + ) and

(j+ )∕(n+ ), the theoretical analogue of a Zj random variable can be approximated by

j
(
logU

(
n + 

j

)
− logU

(
n + 
j + 

))
(..)

= 𝛾

(
j log

j + 
j

)
+ Dj

[(
n + 

j

)−𝛽

−
(

n + 
j + 

)−𝛽
]

≈ 𝛾 + bk,n

(
j

k + 

)𝛽

. (..)
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An alternative representation, using  + u ≈ eu for small values of u, is then

j
(
logU

(
n + 

j

)
− logU

(
n + 
j + 

))
≈ 𝛾 exp

(
𝛾
−bk,n

(
j

k + 

)𝛽
)
.

The more accurate approximation

Zj ≈

(
𝛾 + bk,n

(
j

k + 

)𝛽
)

Ej, j = ,… , k,

where Ej denotes a sequence of independent standard exponentially distributed random
variables, was derived in an asymptotic sense in Beirlant et al. []. For each k, model
(..) can be considered as a non-linear regression model in which one can estimate
the intercept 𝛾 , the slope bk,n, and the power 𝛽 with the covariates j∕(k + ). One
can estimate these parameters jointly, or by using an external estimate for 𝛽, or using

external estimation for 𝛽 and B = bk,n

(
k+
n+

)−𝛽
on the regression model

Zj = 𝛾 + B
(

k + 
n + 

)𝛽 ( j
k + 

)𝛽

, j = ,… , k. (..)

Gomes et al. found that external estimation for B and 𝛽 should be based on k extreme
order statistics where k = o(k) and 𝛽 − 𝛽 = op(∕ log n). Such an estimator for 𝛽 was
presented, for example, in Fraga Alves et al. []. Given an estimator 𝛽 for 𝛽, an estimator
for B was given in Gomes and Martins []:

B̂k,n =
(

k + 
n + 

)𝛽

(

k
∑k

j=(j∕(k + ))𝛽
)

Ĉ − Ĉ(

k
∑k

j=(j∕(k + ))𝛽
)

Ĉ − Ĉ

,

Ĉm = 
k

k∑
j=

(j∕(k + ))m𝛽Zj, m = , , .

When the three parameters are jointly estimated for each k, the asymptotic variance
turns out to be 𝛾

(( + 𝛽)∕𝛽), which is to be compared with the asymptotic variance

𝛾
 for the Hill estimator. Performing linear regression on

(
j

k+

)𝛽

importing an external
estimator for 𝛽, the asymptotic variance drops down to 𝛾

(( + 𝛽)∕𝛽). The original
variance 𝛾

 is retained when using the external estimators for B and 𝛽 in (..).
Bias reduction of the extreme quantile estimator q̂+

k,p should not be based solely on
replacing Hk,n by a bias-reduced estimator for 𝛾 . Here we use the fact that Xn−k,n =d
U(∕Uk+,n), where Uk+,n denotes the (k + )th smallest order statistic from a uni-
form (,) sample of size n. Then we obtain from (..) and (..) with x = ∕p,
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approximating Uk+,n by its expected value (k + )∕(n + ), and using  + u ≈ eu for
u small, that

Q( − p)
Xn−k,n

=
p−𝛾

U−𝛾
k+,n

𝓁U (∕p)
𝓁U (∕Uk+,n)

≈
(

k + 
(n + )p

)𝛾  + Dp𝛽

 + D
(

k+
n+

)𝛽

≈
(

k + 
(n + )p

)𝛾

exp

(
D(p𝛽 −

(
k + 
n + 

)𝛽
)

=
(

k + 
(n + )p

)𝛾

exp
(

bk,n
 − ((n + )p∕(k + ))𝛽

𝛽

)
,

so that a bias-reduced version of q̂+
k,p is given by

q̂BR
k,p = Xn−k,n

(
k + 

(n + )p

)�̂�

exp

(
b̂k,n

 − ((n + )p∕(k + ))𝛽

𝛽

)
,

where �̂� , b̂k,n, and 𝛽 are bias-reduced estimators based on the regression model (..).
Bias-reduced estimators can also be obtained by improving on the approximation

(..) of the POT distribution P(X∕t > u|X > t) by the simple Pareto distribution,
using an extension of the Pareto distribution as introduced in Beirlant et al. [].
Indeed, when 𝓁U satisfies (..), then

F(x) = C∕𝛾x−∕𝛾 ( + 𝛾
−DC𝛽∕𝛾x−𝛽∕𝛾 ( + o())

)
. (..)

The distribution of the POT’s X∕t (X > t) can then be approximated using the expansion
( + u)b ≈  + bu for u small:

F(tu)
F(t)

≈ u−∕𝛾  + 𝛾
−DC𝛽∕𝛾 t−𝛽∕𝛾u−𝛽∕𝛾

 + 𝛾−DC𝛽∕𝛾 t−𝛽∕𝛾

≈ u−∕𝛾 ( + 𝛾
−DC𝛽∕𝛾 t−𝛽∕𝛾 (u−𝛽∕𝛾 − )

)
≈ u−∕𝛾 ( + DC𝛽∕𝛾 t−𝛽∕𝛾 ( − u−𝛽∕𝛾 )

)−∕𝛾
.

This leads to the extended Pareto distribution (EPD) with distribution function

G
𝛾,𝛿,𝛽

(u) = {u( + 𝛿 − 𝛿u𝜏 )}−∕𝛾
, u > , (..)

(𝜏 < , 𝛿 > max(−, ∕𝜏)) with 𝛿 = 𝛿t = DC𝛽∕𝛾 t−𝛽∕𝛾 and 𝜏 = −𝛽∕𝛾 . Note that for
an EPD random variable Y with 𝜏 = − and 𝛿 = 𝛾

𝜎
− , it follows that Y −  is GPD

distributed with parameters 𝛾 and 𝜎.
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Using the density of the EPD g
𝛾,𝛿,𝜏

(y) = 𝛾
−y−∕𝛾−{+𝛿(−y𝜏 )}−∕𝛾−[+𝛿{−(+𝜏)y𝜏}],

maximum likelihood estimators are then derived through maximization of

Nt∑
i=

log g
𝛾,𝛿,𝜏

(Yi),

with respect to 𝛾, 𝛿 using an external estimator of 𝜏 through estimates of 𝛽 and 𝛾 , where
the values Y,… ,YNt

denote the POT values over the threshold t.
Bias-reduced estimation of return periods is then obtained using Xn−k,n again as a

threshold t:

r̂BR
k,x = n + 

k + 
∕G

�̂� ,𝛿,𝜏

(
x

Xn−k,n

)
.

4.2.1.4 Estimating the Scale Parameter
Finally, note that the scale parameter C in (..), or A = C∕𝛾 in (..), can be
estimated with

Âk,n = k + 
n + 

X∕Hk,n
n−k,n , (..)

Ĉk,n = Xn−k,n

(
k + 
n + 

)Hk,n

(..)

which follows, for instance, from (..) replacing x by Xn−k,n and estimating F(x) by
the empirical probability (k + )∕(n + ).

The estimator Ĉk,n can also be retrieved using least squares regression on the k top
points of the log–log plot(

log n + 
j

, logXn−j+,n

)
, j = ,… , k

minimizing

k∑
j=

(logXn−j+,n − 𝛾 log((n + )∕j) − logC)
. (..)

Substituting Hk,n for 𝛾 and taking the derivative with respect to logC indeed gives

log Ĉ = 
k

k∑
j=

logXn−j+,n − Hk,n

k

k∑
j=

log n + 
j

= Hk,n

(
 − 

k

k∑
j=

log n + 
j

)
+ logXn−k,n

≈ −Hk,n log
n + 
k + 

+ logXn−k,n

= log Ĉk,n.



Statistics for Claim Sizes 79

In Beirlant et al. [] it is shown that Âk,n is asymptotically normally distributed with
asymptotic variance (k𝜉)− log U((n + )∕(k + )) and asymptotic bias −bk,n{∕𝛽 +
logU((n + )∕(k + ))∕(𝛾( + 𝛽))}.

A bias-reduced estimator of the scale parameter A is then given by

ÂBR
k,n = k + 

n + 
X∕�̂�

n−k,n exp
(

b̂k,n∕𝛽
)
,

where �̂�
BR is a bias-reduced estimator of 𝛾 , and b̂k,n, 𝛽 estimators of bk,n and 𝛽.

Case studies. The Hill and bias-reduced estimators of a positive EVI are plotted
in Figure . as a function of k and log k. Estimators for extreme quantiles and
return periods are given in Figure ., while the scale estimates can be found in
Figure ..

For the Dutch fire insurance data set a level 𝛾 ≈ . is visible for k >  using the
bias-reduced estimators, while for the smallest k, values between . and . appear
when plotting the estimates as a function of log k. These plots are to be compared with
the plots on the second line in Figure ., where the Hk,n values are plotted against the
data values.

Concerning the estimation of the quantile Q(.) again two levels become appar-
ent, namely around .×  at k <  and ×  at k > . Correspondingly, for the
return period r̂+ million two values e. when k <  and e. for k >  are detected.
These components are found back again in the scale plots of Figure . with values
around  and . These two values correspond to extrapolating on the Pareto QQ-plot
using only the  largest values, compared to setting the anchor much deeper in the
QQ-plot. Of course this last choice leads to a much more conservative tail extrapolation
and eventually higher reinsurance premiums, as discussed below. Note that the scale
parameter “compensates” for the lower EVI value for k <  with a larger value for
the scale.

Concerning the ultimate values of Company A, note the three 𝛾 levels appearing from
Figure . (middle): �̂� ≈ . for k ≥ , �̂� ≈ . when k ∈ (; ), ending with �̂� ≈
. when k < . In fact, two Pareto components are also visible in the mean excess
plot in Figure . with two linear pieces with different slopes. Finally, the estimates drop
down to  when k → , which could be due to upper-truncation. For the estimates of
Q(.) notice an overall stable bias-reduced value at  million, with some slightly
higher value at k ∈ (; ). Note, however, that this value could be too large in
view of the possible upper-truncation. Concerning the return period for values over 
million, again we observe two levels: a return period close to e for smaller values of k
and a value somewhat larger than e for k ∈ (; ). We revisit the estimation of
this tail using a truncated Pareto model below. Note that the three segments are also
visible in the scale estimates in Figure . (middle).

For the ultimate values of Company B, a Pareto component with �̂� ≈ . is clearly
visible for k >  from Figure . (bottom). After a systematic decrease for k down
to , a level �̂� ≈ . is reached for k ∈ (; ). This corresponds to the graphs from
Figure ., where a Pareto component is followed by a light tail component, ending with
an ultimate Pareto section at the top data. The two Pareto levels are also visible at the
estimators of the quantile Q(.) with levels  and  million. This lowest level is of
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Figure 4.5 Hill estimates and bias-reduced versions, regression approach as a function of k (left) and log k (right), and EPD approach (middle) as a function of k:
Dutch fire insurance data (top); MTPL data for Company A, ultimate values (middle); MTPL data for Company B, ultimate values (bottom).
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Figure 4.6 Quantile estimates q̂+
k,. and q̂BR

k,. (left) and log-return periods log r̂+k,x and log r̂BR
k,x

(right), as a function of k: Dutch fire insurance data (x =  million, top); MTPL data for Company A,
ultimate values (x =  million, middle); MTPL data for Company B, ultimate values (x =  million,
bottom).

course only based on a few top observations. Finally, the return period over  million
is estimated at e. when k ∈ (, ) and a value around e when using only a few
exceedances. □

4.2.2 General Tail Modelling using EVA

In order to allow tail modelling with log-normal or Weibull tails, one has to incorporate
the case where the EVI 𝛾 can be , next to positive values. Estimation of 𝛾 , extreme
quantiles and return periods under the max-domains of attraction conditions 

𝛾
in

(..) or (..), with as few restrictions on the value of 𝛾 as possible, is the next step in
tail modelling. Again we have two possible approaches: using quantile plotting or using
a likelihood approach on POT values.
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Figure 4.7 Scale estimates Âk,n and ÂBR
k,n as a function of k: Dutch fire insurance data (top); MTPL data

for Company A, ultimate values (middle); MTPL data for Company B, ultimate values (bottom).
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● Here, several existing estimators start from the following condition, which follows
from (..): for all u ≥  as x → ∞

U(x)
a(x)

{logU(xu) − logU(x)} →

{
logu, 𝛾 ≥ ,
u𝛾−
𝛾

, 𝛾 < . (..)

From this it follows with 𝛾
− = min(𝛾, ), that as k, n → ∞, k∕n → 

EHk,n = 
k

k∑
j=

logU
(

n + 
j

)
− log

(
U

(n + 
k + 

))
= 

k

k∑
j=

logU
(

n + 
k + 

k + 
j

)
− logU

(n + 
k + 

)

≈
a
(

n+
k+

)
U

(
n+
k+

) 
k

k∑
j=

{(
j

k + 

)−𝛾−

− 
}

∕𝛾−

≈
a
(

n+
k+

)
U

(
n+
k+

) ( − 𝛾
−)−

. (..)

Hence estimating EHk,n by Hk,n, and U
(

n+
k+

)
by Xn−k,n, we find that for any estimator

�̂�k,n of 𝛾

â
(n + 

k + 

)
= Hk,nXn−k,n( − �̂�

−
k,n), (..)

leads to an estimator for a
(

n+
k+

)
.

Since a regularly varies with index 𝛾 ∈ R, it also follows from (..) that U((n +
)∕(k+))EHk,n = ((n+)∕(k+))𝛾𝓁((n+)∕(k+)) for some slowly varying function 𝓁.
Hence the approach using linear regression and extrapolation on linear tail patterns
on a QQ-plot can be generalized to the case of a real-valued EVI using the generalized
QQ-plot

(
log n + 

k + 
, log

(
Xn−k,nHk,n

))
, k = ,… , n − ,

which ultimately for smaller values of k will be linear with slope 𝛾 , whatever the
sign or values of 𝛾 . Hence if a generalized QQ-plot is ultimately horizontal, then tail
modelling using a distribution in the Gumbel domain of attraction is appropriate. An
ultimately decreasing generalized QQ-plot indicates a negative EVI, which can occur,
for instance, for truncated heavy-tailed distributions.
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A generalized Hill estimator of 𝛾 estimating the slopes at the last k points on the
generalized QQ-plot is then given by

�̂�
GH
k,n = 

k

k∑
j=

logUHj,n − logUHk+,n

= Hk+,n +

k

k∑
j=

(
logHj,n − logHk+,n

)
,

where UHj,n = Xn−j,nHj,n.
Another generalization of the Hill estimator to real-valued EVI was given in Dekkers

et al. [], termed the moment estimator:

�̂�
M
k,n = Hk,n +  − 



(
 −

H
k,n

H()
k,n

)−

,

where

H()
k,n = 

k

k∑
j=

(
logXn−j+,n − logXn−k,n

)
.

● Condition (..) for a distribution to belong to a domain of attraction of an extreme
value distribution means that the generalized Pareto law is the limit distribution of
the distribution of POT values X − t given X > t when t → x+: setting h(t) = 𝜎t

P(X−t > u𝜎t|X > t) →t→x+ (+𝛾u)−∕𝛾
, for all u such that +𝛾u > . (..)

Hence, we are led to modelling the tail functionP(Y > y) of POT values Y = X−t with
X > t using the GPD with survival function

(
 + y𝛾∕𝜎

)−∕𝛾 . Denoting the number of
exceedances over t again by Nt , the log-likelihood is given by

log L(𝛾, 𝜎|Y,… ,YNt
) = −Nt log 𝜎 −

(

𝛾
+ 

) Nt∑
i=

log
(

 + Yi
𝛾

𝜎

)
.

Using a reparametrization (𝛾, 𝜎) → (𝛾, 𝜏) with 𝜏 = 𝛾∕𝜎, leads to the likelihood
equations

{ 
�̂�t+

= 
Nt

∑Nt
i=


+𝜏tYi

,
�̂�t = 

Nt

∑Nt
i= log

(
 + 𝜏tYi

)
.
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Replacing t by an intermediate order statistic Xn−k,n again gives

⎧⎪⎨⎪⎩


�̂�
ML
k,n +

= 
k
∑k

i=


+𝜏ML
k,n (Xn−j+,n−Xn−k,n)

�̂�
ML
k,n = 

k
∑k

i= log
(

 + 𝜏
ML
k,n (Xn−j+,n − Xn−k,n)

)
.

In order to assess the goodness-of-fit of the GPD when modelling the POT values
Y = X − t for a given threshold t, one can use the transformation

R =

{

𝛾
log

(
 + 𝛾

𝜎
Y
)
, if 𝛾 ≠ ,

Y 
𝜎
, if 𝛾 = ,

so that R is standard exponentially distributed if the POT values do follow a GPD, and
the fit can be validated inspecting the overall linearity of the exponential QQ-plot(

− log
(

 − i
Nt + 

)
, R̂i,Nt

)
, i = ,… ,Nt

where R̂i,Nt
(i = ,… ,Nt) denote the ordered values of

R̂i =

{

�̂�
log

(
 + �̂�

�̂�
Yi

)
, if �̂� ≠ ,

Yi∕�̂� , if �̂� = .

For all these estimators �̂�
∙
k,n − 𝛾 is asymptotically normal under some regularity con-

ditions on the underlying distributions when k, n → ∞ and k∕n → , with mean 
if k is not too large (or, equivalently, if the threshold t = xn−k,n is not too small), and
asymptotic variances (or covariance matrix for (�̂�ML

k,n , �̂�
ML
k,n )) given by

Var(�̂�GH
k,n ) ∼

{ +𝛾

k
if 𝛾 ≥ ,

(−𝛾)(+𝛾+𝛾)
(−𝛾)k

if 𝛾 < ,

Var(�̂�M
k,n) ∼

{ +𝛾

k
if 𝛾 ≥ ,

(−𝛾)(−𝛾)(−𝛾+𝛾)
(−𝛾)(−𝛾)k

if 𝛾 < ,

𝛴(�̂�ML
k,n ,�̂�

ML
k,n )

∼ ( + 𝛾)
k

(
 + 𝛾 −𝜎
−𝜎 𝜎

)
.

Estimators for small tail probabilities or return periods can easily be constructed from
the POT approach. In fact, the approximation of P(X − t > y|X > t) by ( + (𝛾∕𝜎)y)−∕𝛾

for y > , setting t + y = x, leads to

p̂ML
x,k = k + 

n + 

{
 +

�̂�
ML
k,n

�̂�
ML
k,n

(x − Xn−k,n)

}−∕�̂�ML
k,n

.
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Inversion leads to an extreme quantile estimator

q̂ML
p,k = Xn−k,n +

�̂�
ML
k,n

�̂�
ML
k,n

{(
k + 

(n + )p

)�̂�
ML
k,n

− 

}
.

The estimators for high quantiles based on the approach used in the construction of the
moment estimator �̂�M

k,n are defined by

q̂M
p,k = Xn−k,n +

â
(

n+
k+

)
�̂�

M
k,n

{(
k + 

(n + )p

)�̂�
M
k,n

− 

}
,

with â defined in (..). Note that Xn−k,nHk,n

(
 − �̂�

−
k,n

)
can be seen as an alternative

estimator for 𝜎 when comparing the expressions of q̂ML
p,k and q̂M

p,k . This then in turn leads
to a moment tail probability estimator

p̂M
x,k = k + 

n + 

{
 +

�̂�
M
k,n

âM
k,n

(x − Xn−k,n)

}−∕�̂�M
k,n

.

The asymptotic distributions of these tail estimators have been derived in the literature.
For instance, for q̂M

p,k we have under some regularity conditions that with an = (k +

)∕(p(n + )) as npn → c ≥ , (log an)∕
√

k →  one has
● for 𝛾 > 

𝛾

√
k

a(n∕k)a𝛾

n log an

(
q̂M

p,k − Q( − p)
)
≈d  (, ( + 𝛾)),

● for 𝛾 < √
k

a(n∕k)

(
q̂M

p,k − Q( − p)
)
≈d 

(
, ( − 𝛾)( − 𝛾 + 𝛾)

𝛾( − 𝛾)( − 𝛾)( − 𝛾)

)
.

For further details see de Haan and Ferreira [].

Case studies. The estimators of the EVI, extreme quantiles and return periods, which
are consistent under all max-domains of attraction, are given in Figures . and ..

In the case of the Dutch fire example two linear increasing parts are clearly visible in
the generalized QQ-plot with a smaller slope at the largest values. These correspond
again to the two 𝛾 levels in the Hill derivative estimates, namely . for higher values of
k and . for k ↓ . The ML-GPD estimators are somewhat lower. The quantile estimates
q̂. and return period estimates r̂ million confirm two levels, as in Figure ., but the
quantile levels are somewhat lower than under the Pareto analysis.

In the case of the ultimate values from Company A, we find an ultimately decreasing
generalized QQ-plot and correspondingly negative values of the EVI estimators at the
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Figure 4.8 Generalized QQ-plot (middle) and estimators of EVI �̂�𝛾GH
k,n , �̂�𝛾M

k,n, �̂�𝛾ML
k,n as a function of k (left) and log k (right): Dutch fire insurance data (first and second

line); MTPL data for Company A, ultimate values (third and fourth line); MTPL data for Company B, ultimate values (bottom two lines).
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Figure 4.9 Large quantile estimators q̂GH
.,k , q̂M

.,k , q̂ML
.,k (left) and log-return period estimators

− log p̂GH
x,k , − log p̂M

x,k , − log p̂ML
x,k (right) as a function of k: Dutch fire insurance data (x =  million,

top); MTPL data for Company A, ultimate values (x =  million, middle); MTPL data for Company B,
ultimate values (x =  million, bottom).

smallest values of k. Concerning the quantile Q(.) estimates, here no stable pictures
appear for the estimates based on the generalized Hill estimator, with a decreasing plot
as k decreases, ending at approximately  million Euros. The quantile level at  million
appearing in the Pareto analysis is confirmed here for the smallest k values. The return
period corresponding to  million is higher than e in contrast to the Pareto analysis,
which hints at a value just below e.

In the case of the ultimate values from Company B, the segment with k ∈ (, ),
which was already visible through a decreasing mean excess plot in Figure ., corre-
sponds with a slightly decreasing generalized QQ-plot and negative EVI estimates in
that region. Given the ultimate Pareto tail at the top data in this case, the values of �̂�
return positive when k ↓ . In Figure . (bottom) the estimate of the quantile level
Q(.) of  million found from a Pareto analysis at the smallest k values is found back
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here. Note finally that the return periods for values over  million yield similar results
as with Pareto tail modelling. □

4.2.3 EVA under Upper-truncation

Practical problems can arise when using the strict Pareto distribution and its generaliza-
tion to the Pareto-type model because some probability mass can still be assigned to loss
amounts that are unreasonably large or even impossible. With respect to tail fitting of
an insurance claim data, upper-truncation is of interest and can be due to the existence
of a maximum possible loss. Such truncation effects are sometimes visible in data, for
instance when an overall linear Pareto QQ-plot shows non-linear deviations at only
a few top data. Let W be an underlying non-truncated distribution with distribution
function FW , quantile function QW and tail quantile function UW . Upper-truncation of
the distribution of W at some value T was defined in the preceding chapter through the
conditioning operation W |W < T . Let FT and UT be the distribution and tail quantile
function of this truncated distribution. In practice one does not always know if the
data X,… ,Xn come from a truncated or non-truncated distribution, and hence the
behavior of estimators should be evaluated under both cases, and a statistical test for
upper-truncation is useful. This section is taken from Beirlant et al. [].

Upper-truncation of the distribution of W at some truncation point T yields

FT (x) =
P(W > x) − P(W > T)

 − P(W > T)
=

FW (x) − FW (T)
FW (T)

.

The corresponding quantile function QT is then given by

QT ( − p) = QW ( − [FW (T) + p( − FW (T))]) = QW ({ − FW (T)}( − p))

while the tail function UT satisfies

UT (y) = UW

(
∕

{
FW (T) +

FW (T)
y

})
= UW

⎛⎜⎜⎝ 
FW (T)

[
 +

FW (T)

yFW (T)

]−⎞⎟⎟⎠ ,
(..)

or

UT (y) = UW

(


FW (T)

[
 + 

yDT

]−
)
, (..)

with DT ∶= FW (T)∕FW (T) the odds of the truncated probability mass under the
untruncated distribution W . Note also that for a fixed T , upper-truncation models are
known to exhibit an EVI 𝛾 = −. This follows from verifying (..) for UT as given
in (..). For instance when UW (x) = x𝛾 , we find (FW (T))𝛾UT (x) =

(
 + 

xDT

)−𝛾
=(

 − 𝛾

xDT
( + o())

)
as x → ∞. This final expression satisfies (..) with 𝛾 = −.
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4.2.3.1 EVA for Upper-truncated Pareto-type Distributions
We restrict attention to tail estimation for upper-truncated Pareto-type distributions:

 − FW (w) = w−∕𝛾𝓁F (w), 𝛾 > ,

where 𝓁F is a slowly varying function at infinity or, with W∕t denoting the peaks over a
threshold t when W > t,

P(W∕t > y|W > t) → y−∕𝛾 as t → ∞, for every y > .

Upper-truncation of a Pareto-type distribution at a high value T then necessarily
requires t < T → ∞ and

P(X∕t > y|X > t) = P(W∕t > y|t < W < T)

=
(yt)−∕𝛾𝓁F (yt) − T−∕𝛾𝓁F (T)

t−∕𝛾𝓁F (t) − T−∕𝛾𝓁F (T)

=
y−∕𝛾 𝓁F (yt)

𝓁F (t)
−

(
T
t

)−∕𝛾 𝓁F (T)
𝓁F (t)

 −
(

T
t

)−∕𝛾 𝓁F (T)
𝓁F (t)

.

One can now consider two cases as t,T → ∞:
● Rough upper-truncation with the threshold t when T∕t → 𝛽 >  and

P(X∕t > y|X > t) →
y−∕𝛾 − 𝛽

−∕𝛾

 − 𝛽−∕𝛾 ,  < y < 𝛽. (..)

This corresponds to situations where the deviation from the Pareto behavior due
to upper-truncation at a high value will be visible in the data from the threshold t
onwards, and an adaptation of the above Pareto tail extrapolation methods appears
appropriate.

● Light (or no) upper-truncation with the threshold t: when T∕t → ∞

P(X∕t > y|X > t) → y−∕𝛾
, y > , (..)

and hardly any truncation is visible in the data from the threshold t onwards, and the
Pareto-type model without truncation and the corresponding extreme value methods
for Pareto-type tails appear appropriate when restricted to excesses over t.

Under rough upper-truncation we have

P(X > x|X > t) ≈
(x∕t)−∕𝛾 − 𝛽

−∕𝛾

 − 𝛽−∕𝛾 , t < x < t𝛽,

with density

fX(x) =

𝛾

(x
t

)−−∕𝛾 (
 − 𝛽

−∕𝛾)−
.
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Estimating T by Xn,n and taking t = Xn−k,n so that 𝛽− = Rk,n = Xn−k,n∕Xn,n, we obtain
the following log-likelihood:

log Lk,n(𝛾) = logΠk
j=

(
Xn−j+,n∕Xn−k,n

)−−∕𝛾

𝛾

[
 −

(
Xn,n∕Xn−k,n

)−∕𝛾
]

= −k log 𝛾 −
(

 + 
𝛾

) k∑
j=

log
Xn−j+,n

Xn−k,n

− k log

(
 −

( Xn,n

Xn−k,n

)−∕𝛾)
.

Now

𝜕 log Lk,n(𝛾)
𝜕𝛾

= −k
𝛾
−

k∑
j=

log
Xn−j+,n

Xn−k,n
− k

(
Xn,n

Xn−k,n

)−∕𝛾
log Xn,n

Xn−k,n

 −
(

Xn,n

Xn−k,n

)−∕𝛾 ,

which leads to the defining equation for the likelihood estimator �̂�T
k,n:

Hk,n = �̂�
T
k,n +

R
∕�̂�T

k,n
k,n logRk,n

 − R
∕�̂�T

k,n
k,n

.

This estimator was first proposed in Aban et al. []. Beirlant et al. [] showed that with
𝜅 = 𝛽

∕𝛾 − 

AVar(�̂�T
k,n) =

⎧⎪⎨⎪⎩
𝛾



k

(
 − +𝜅

𝜅 log( + 𝜅)
)−

, as T∕t → 𝛽,

𝛾


k
, as T∕t → ∞.

From (..) it is clear that the estimation of DT is an intermediate step in important
estimation problems following the estimation of 𝛾 , namely of extreme quantiles and of
the endpoint T . When UW satisfies (..) it follows from (..) that as t,T → ∞ and
T∕t → 𝛽

QT ( − p) = UT (∕p) = T
(

 +
p

DT

)−𝛾

( + ot,T ()), (..)

so that

⎛⎜⎜⎜⎝
QT

(
 − k+

n+

)
QT

(
 − 

n+

)⎞⎟⎟⎟⎠
∕𝛾

≈
 + 

(n+)DT

 + k+
(n+)DT

= 
k + 

⎛⎜⎜⎝
 + (n + )DT

 + (n+)DT
k+

⎞⎟⎟⎠ . (..)
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Motivated by (..) and estimating QT ( − (k + )∕(n + ))∕QT ( − ∕(n + )) by Rk,n,
one arrives at

D̂T ∶= D̂T ,k,n = k + 
n + 

R
∕�̂�T

k,n
k,n − 

k+

 − R
∕�̂�T

k,n
k,n

(..)

as an estimator for DT . In practice one makes use of the admissible estimator

D̂()
T ∶= max

{
D̂T , 

}
to make it useful for truncated and non-truncated Pareto-type distributions.

For DT > , in order to construct estimators of T and extreme quantiles qp = QT (−
p), as in (..) we find that

⎛⎜⎜⎜⎝
QT ( − p)

QT

(
 − k+

n+

)⎞⎟⎟⎟⎠
∕𝛾

=
 + k+

(n+)DT

 + p
DT

=
DT + k+

n+

DT + p
. (..)

Then taking logarithms on both sides of (..) and estimating QT ( − (k + )∕(n + ))
by Xn−k,n we find an estimator q̂T

p ∶= q̂T
k,p of qp:

log q̂T
k,p = logXn−k,n + �̂�

T
k,n log

⎛⎜⎜⎝
D̂T + k+

n+

D̂T + p

⎞⎟⎟⎠ , (..)

which equals the Weissman estimator q̂W
k,p when D̂T = . An estimator T̂k,n of T follows

from letting p →  in the above expressions for q̂T
p,k,n:

log T̂k,n = max

{
logXn−k,n + �̂�

T
k,n log

(
 + k + 

(n + )D̂T

)
, logXn,n

}
. (..)

Here we take the maximum of logXn,n and the value following from (..) with p → 
in order for this endpoint estimator to be admissible. It has been shown that q̂T

k,p is
superefficient under rough upper-truncation, which means that the asymptotic variance
is o(∕k) and the asymptotic bias is also smaller than, for instance, that of the moment
quantile estimator q̂M

p,k .
However, q̂T

k,p is not a consistent estimator for qp under light upper-truncation and
when npn → . In that case one should use

log q̂∞
p,k,n = logXn−k,n + �̂�

T
k,n log

(
k + 

p(n + )

)
. (..)
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The estimation of tail probabilities px = P(X > x) can be based directly on (..) using
Rk,n as an estimator for ∕𝛽:

p̂T
x,k = k + 

n + 

(
x

Xn−k,n

)−∕�̂�T
k,n − R

∕�̂�T
k,n

k,n

 − R
∕�̂�T

k,n
k,n

. (..)

Of course, in order to decide between (..) and (..) one should use a statistical
test for deciding between rough and light upper-truncation.

4.2.3.2 Testing for Upper-truncated Pareto-type Tails
Aban et al. [] proposed a test for H()

 ∶ T = ∞ versus H ()
 ∶ T < ∞ under the strict

Pareto model, rejecting H at level q ∈ (, ) when

Xn,n <

(
nA

− log q

)𝛾

(..)

for some  < k < n with A the scale parameter in the Pareto model. In (..), 𝛾 is
estimated by Hk,n, the maximum likelihood estimator under H, while A is estimated
using Âk,n from (..). Note that the rejection rule (..) can be rewritten as

TA,k,n ∶= kR∕Hk,n
k,n > log 

q
, (..)

and the P-value is given by exp
(
−kR∕Hk,n

k,n

)
.

Considering the testing problem

H()
 ∶ X satisfies (..) versus H()

 ∶ X satisfies (..)

under the upper-truncated Pareto-type model, Beirlant et al. [] propose to reject
H()

 when an appropriate estimator of (n + )DT∕(k + ) is significantly different
from . Here we construct such an estimator generalizing R∕𝛾

k,n with an average of
ratios (Xn−k,n∕Xn−j+,n)∕𝛾

, j = ,… , k, which then possesses an asymptotic normal
distribution under the null hypothesis. Observe that with (..) under H()

 as k → ∞

Ek,n = 
k

k∑
j=

⎛⎜⎜⎜⎝
QT

(
 − k+

n+

)
QT

(
 − j

n+

)⎞⎟⎟⎟⎠
∕𝛾

≈ 
k

k∑
j=

 + j
k+

k+
(n+)DT

 + k+
(n+)DT

≈
 + 


k

nDT

 + k
nDT

.
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Estimating Ek,n by

Rk,n(𝛾) =

k

k∑
j=

( Xn−k,n

Xn−j+,n

)∕𝛾

leads now to

Lk,n(�̂�) ∶=
Rk,n(�̂�) −




 − Rk,n(�̂�)
(..)

as an estimator of (n+)DT∕(k+), with �̂� an appropriate estimator of 𝛾 . Under H ()
 , the

Hill estimator Hk,n is an appropriate estimator of 𝛾 . Moreover, it can be shown that under
some regularity assumptions on the underlying Pareto-type distribution, we have under
H ()

 for k, n → ∞ and k∕n → , that
√

kLk,n(Hk,n) is asymptotically normal with mean 
and variance /. It is then also shown under rough upper-truncation as k, n,T → ∞,
k∕n →  that Lk,n(Hk,n) tends to a negative constant so that an asymptotic test based on
Lk,n(Hk,n) rejects H()

 on level q when

TB,k,n ∶=
√

 kLk,n(Hk,n) < −zq, (..)

with P( (, ) > zq) = q. The P-value is then given by Φ(
√

 kLk,n(Hk,n)).

Case study. Given the fact that the mean excess function of the ultimate values from
Company A are ultimately decreasing at the largest values, an upper-truncated Pareto
model is a possible tail model. This is also clear from the Hill plot in Figure ., which
systematically decreases to  as k ↓ , and from the plots of the generalized Hill, moment
and POT estimators of 𝛾 , which decrease to − as k ↓ . The P-values of the TB test for
upper-truncation are lower than . in areas around k =  and k = . This means
that, at the corresponding thresholds t = QT ( − k∕n), the upper-truncated Pareto
model in (..) yields a more appropriate model than the strict Pareto model to fit
the distribution of the exceedances X∕t. This is illustrated on the Pareto QQ-plot in
Figure . overlaying this upper-truncated Pareto fit over the top  points. While
the strict Pareto fit corresponds to a regression line on these points, the concave curve
provided by modelling a truncation effect appears to provide a better fit.

The estimates �̂�T
k , − log p̂T

k,million and even more q̂T
k,. are quite stable as a function

of k leading to the approximate values, respectively �̂�
T ≈ ., − log p̂T

million just above
, and q̂+

k,. just below  million. This is a bit lower than the earlier estimates of the
. quantile, and leads to a return period corresponding with  million, which is close
to the values returned by the GPD-ML method. Note that the endpoint T is estimated
here at around  million at k =  and k = . □
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Figure 4.10 MTPL data for Company A, ultimate estimates: �̂�T
k and Hk,n as a function of k (top left),

P-value of TB,k as a function of k (top right), q̂T
k,. and q̂+

k,. as a function of k (middle left),

estimates of endpoint T̂k (middle right), − log p̂T
4 million,k as a function of k (bottom left), truncated Pareto

fit to Pareto QQ-plot based on top k =  observations (bottom right).

4.3 Global Fits: Splicing, Upper-truncation and Interval Censoring

Given an appropriate tail fit, the ultimate goal consists of fitting a distribution with a
global satisfactory fit. Rather than trying to splice specific parametric models such as
log-normal or Weibull models for the modal part of the distribution, one can rely on
fitting a mixed Erlang (ME) distribution, as discussed in Verbelen et al. []. We also
consider this set-up in the presence of truncation and censoring.

4.3.1 Tail-mixed Erlang Splicing

The Erlang distribution has a gamma density

fE(x; r, 𝜆) = 𝜆
r

(r − )!
xr−e−𝜆x

, x > ,
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where r is a positive integer shape parameter. Following Lee and Lin [] we consider
mixtures of M Erlang distributions with common scale parameter ∕𝜆 having density

fME(x; 𝐫, 𝛼, 𝜆) =
M∑
j=

𝛼j
𝜆

rj

(rj − )!
xrj−e−𝜆x

, x > ,

and tail function

 − FME(x; 𝐫, 𝛼, 𝜆) = e−𝜆x
M∑
j=

𝛼j

rj−∑
n=

(𝜆x)n

n!
,

where the positive integers 𝐫 = (r,… , rM) with r < r < … < rM are the shape
parameters of the Erlang distributions, and 𝛼 = (𝛼,… , 𝛼M) with 𝛼j >  and

∑M
j= 𝛼j = 

are the weights in the mixture. Tijms [] showed that the class of mixtures of Erlang
distributions with a common scale ∕𝜆 is dense in the space of positive continuous
distributions on R+. Moreover this class is also closed under mixtures, convolution and
compounding. Hence aggregate risks calculations are simple, and XL premiums and
risk measures based on quantiles can also be evaluated in a rather straightforward way.

For instance, a composite ME generalized Pareto distribution can be built using
(..), that is, a two-component spliced distribution with density

fME,GP(x) =
⎧⎪⎨⎪⎩
𝜋

fME(x;𝐫,𝛼,𝜆)
FME(t;𝐫,𝛼,𝜆)

,  < x ≤ t,

( − 𝜋) 
𝜎

(
 + 𝛾

𝜎
(x − t)

)−−∕𝛾
, x > t.

If a continuity requirement at t were imposed, this would lead to

𝜋 =
FME(t; 𝐫, 𝛼, 𝜆)

FME(t; 𝐫, 𝛼, 𝜆) + 𝜎fME(t; 𝐫, 𝛼, 𝜆)
.

The survival function of this spliced distribution is given by

 − FME,GP(x) =
⎧⎪⎨⎪⎩

 − 𝜋
FME(x;𝐫,𝛼,𝜆)
FME(t;𝐫,𝛼,𝜆)

,  < x ≤ t,

( − 𝜋)
(

 + 𝛾

𝜎
(x − t)

)−∕𝛾
, x > t.

Alternatively, one can take �̂� = −k∗∕n, where k∗ is an appropriate number of top order
statistics corresponding to an extreme value threshold t = xn−k∗,n.

Fitting ME distributions through direct likelihood maximization is difficult. A first
algorithm was proposed by Tijms [], but it turns out to be slow and can lead
to overfitting. Lee and Lin [] use the expectation-maximization (EM) algorithm
proposed by Dempster et al. [] to fit the ME distribution. Model selection criteria,
such as the Akaike information criterion (AIC) and Bayesian information criterion
(BIC) information criteria, are then used to avoid overfitting. Verbelen et al. []
extend this approach to censored and/or truncated data. The need for the EM algorithm
follows from the data incompleteness due to mixing and censoring.
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The EM algorithm is used to compute the maximum likelihood estimator (MLE) for
incomplete data where direct maximization is impossible. It consists of two steps that
are put in an iteration until convergence:
● E-step: Compute the conditional expectation of the log-likelihood given the observed

data and previous parameter estimates.
● M-step: Determine a subsequent set of parameter estimates in the parameter range

through maximization of the conditional expectation computed in the E-step.

Rather than proposing a data-driven estimator of the splicing point t, we use an expert
opinion on the splicing point t based on EVA as outlined above. Then,𝜋 can be estimated
by the fraction of the data not larger than t. Similarly, T is deduced from the EVA. The
extreme value index 𝛾 is estimated in the algorithm, starting from the value obtained
from the EVA at the threshold t. The final estimates for 𝛾 always turned out to be
close to the EVA estimates. Next, the ME parameters (𝛼, 𝜆) are estimated using the
EM algorithm as developed in Verbelen et al. []. The number of ME components
M is estimated using a backward stepwise search, starting from a certain upper value,
whereby the smallest shape is deleted if this decreases an information criterion such as
AIC or BIC. Moreover, for each value of M, the shapes 𝐫 are adjusted based on maxi-
mizing the likelihood starting from 𝐫 = (s, s,… , ...,M × s), where s is a chosen spread
factor.

Of course tail splicing of an ME can also be performed using a simple Pareto fit, or an
EPD fit, whether or not adapted for truncation. For instance, splicing an ME with an
upper-truncated Pareto approximation leads to

fME,TPa(x) =
⎧⎪⎨⎪⎩
𝜋

fME(x;𝐫,𝜶,𝜆)
FME(t;𝐫,𝜶,𝜆)

,  < x ≤ t,

( − 𝜋)

t𝛾

(
x
t

)−−∕𝛾

−
(

T
t

)−∕𝛾 , t < x < T .
(..)

Case study: MTPL data for Company A. When applying the splicing technique to
the ultimate data from Company A, we noted in the discussion of Figure . (middle)
that also in this case two Pareto tail pieces appear. When trying to splice one tail piece
with an ME, the algorithm here also leads to a three-component ME fit coupled with a
Pareto fit, with parameters tl = , 𝜋 = ., k = , and 𝛾 = ., while M = ,
𝜶 = (., ., .), 𝐫 = (, , ), and 𝜆

− =  , see Figure .. However
here the tail fit is satisfactory. Of course, splicing with two Pareto components and an
ME is another option. □

4.3.2 Tail-mixed Erlang Splicing under Censoring and Upper-truncation

In reinsurance data left truncation appears at some point, denoted here by tl, which
can be a deductible or a percentage of the retention u from an XL contract. Claims
leading to a cumulative payment below tl at a given stage during development are then
left truncated. Such a claim constitutes an IBNR claim. As discussed above, an upper-
truncation mechanism at some point T can appear.

We denote the ME density and distribution function by fME and FME, and similarly fEV
and FEV for the EVA distribution. We then define, omitting the model parameters from
the notation for the moment,
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f(x) =

{ fME(x)
FME(t)−FME(tl)

if tl ≤ x ≤ t,
 otherwise,

f(x) =

{ fEV (x)
FEV (T)−FEV (t)

if t ≤ x ≤ T ,

 otherwise,

with  ≤ tl
< t < T where T can be equal to ∞. The densities f and f are then valid

densities on the intervals [tl
, t] and [t,T], respectively. For the first density, this means

that it is lower truncated at tl and upper truncated at t, and the second density is lower
truncated at t and upper truncated at T . The corresponding distribution functions are

F(x) =
⎧⎪⎨⎪⎩

 if x ≤ tl
,

FME(x)−FME(tl)
FME(t)−FME(tl)

if tl
< x < t,

 if x ≥ t,

F(x) =
⎧⎪⎨⎪⎩

 if x ≤ t,
FEV (x)−FEV (t)
FEV (T)−FEV (t)

if t < x < T ,

 if x ≥ T .

We consider the splicing density and distribution function

f (x) =

⎧⎪⎪⎨⎪⎪⎩
 if x ≤ tl

,

𝜋f(x) if tl
< x ≤ t,

( − 𝜋)f(x) if t < x < T ,

 if x ≥ T ,

and

F(x) =

⎧⎪⎪⎨⎪⎪⎩
 if x ≤ tl

,

𝜋F(x) if tl
< x ≤ t,

𝜋 + ( − 𝜋)F(x) if t < x < T ,

 if x ≥ T .

(..)

Next to truncation, censoring mechanisms occur in reinsurance:
● right censoring occurs for instance when a claim has not been settled at the evaluation

date (RBNS claims). See Chapter  for the case of motor liability data. The final claim
amount xi will be larger than the lower censoring value li

● left censoring occurs when only an upper bound ui to the claim xi is given

 Note that the censoring definitions used here are different from others in the actuarial literature (e.g., see
Klugman et al. []).
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Figure 4.12 The different classes of censored observations.

● interval censoring means that the final claim value xi is only known to be inside an
interval [li,ui] ⊂ [tl

,T].

In the splicing context with an EVA component from a threshold t on, we have the
following five classes of observations:

(i) Uncensored observations with tl ≤ li = ui = xi ≤ t < T .
(ii) Uncensored observations with tl

< t < li = ui = xi ≤ T .
(iii) Interval censored observations with tl ≤ li < ui ≤ t < T .
(iv) Interval censored observations with tl

< t ≤ li < ui ≤ T .
(v) Interval censored observations with tl ≤ li < t < ui ≤ T .

These classes are shown in Figure .. In the conditioning argument in the E-step
of the algorithm, the fifth case is split into xi ≤ t and xi > t, as indicated in
Figure ..

For the Erlang mixture, the number M and the integer shapes 𝐫 are fixed when
estimating 𝚯 = (𝛼, 𝜆). Also, 𝚯 denotes the extreme value parameter 𝛾 (together with
𝜎 when using the GPD tail fit). The idea behind the EM algorithm in this context is to
consider the censored sample  in contrast to the complete data  which is not fully
observed. Given a complete version of the data, we can construct a complete likelihood
function as

complete(𝚯;) =
n∏

i=

(
𝜋f(Xi; tl

, t,𝚯)
){Xi≤t}

×
n∏

i=

(
( − 𝜋)f(Xi; t,T ,𝚯)

){Xi>t}
,
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where {Xi≤t} is the indicator function for the event {Xi ≤ t}. The corresponding
complete data log-likelihood function is

𝓁complete(𝚯;) =
n∑

i=
{Xi≤t}

(
log𝜋 + log f(Xi; tl

, t,𝚯)
)

+
n∑

i=
{Xi>t}

(
log( − 𝜋) + log f(Xi; t,T ,𝚯)

)
.

As we do not fully observe the complete version  of the data sample, it is not possible
to optimize the complete data log-likelihood directly. The intuitive idea for obtaining
parameter estimates in the case of incomplete data is to compute the expectation of
the complete data log-likelihood and then use this expected log-likelihood function
to estimate the parameters. However, taking the expectation of the complete data log-
likelihood requires the knowledge of the parameter vector, and so the algorithm has to
run iteratively. Starting from an initial guess for the parameter vector, the EM algorithm
iterates between two steps. In the hth iteration of the E-step the expected value of the
complete data log-likelihood is computed with respect to the unknown data  given
the observed data  and using the current estimate of the parameter vector Θ(h−) as
true values,

E
(
𝓁complete(𝚯;)| ;𝚯(h−))

.

In the M-step, one maximizes the expected value of the complete data log-likelihood
obtained in the E-step with respect to the parameter vector:

𝚯(h) = argmax
𝚯

E
(
𝓁complete(𝚯;)| ;𝚯(h−))

.

Both steps are iterated until convergence.
In the E-step we distinguish the five cases of data points again to determine the

contribution of a data point to this expectation:

(i) log𝜋 + E

(
log f(Xi; tl

, t,𝚯)| tl ≤ li = ui ≤ t < T ;𝚯(h−)


)
(ii) log( − 𝜋) + E

(
log f(Xi; t,T ,𝚯)|tl

< t < li = ui ≤ T ;𝚯(h−)


)
(iii) log𝜋 + E

(
log f(Xi; tl

, t,𝚯)|tl ≤ li < ui ≤ t < T ;𝚯(h−)


)
(iv) log( − 𝜋) + E

(
log f(Xi; t,T ,𝚯)|tl

< t ≤ li < ui ≤ T ;𝚯(h−)


)
(v) E

([
log𝜋 + log f(Xi; tl

, t,𝚯)
]

{Xi≤t}

+
[
log( − 𝜋) + log f(Xi; t,T ,𝚯)

]
{Xi>t}|tl

≤ li < t < ui ≤ T ;𝚯(h−))
Note that the event {tl ≤ li = ui ≤ t < T} indicates that we know tl, li = ui, t and T ,
and that the ordering tl ≤ li = ui ≤ t < T holds. Similar reasonings hold for the other
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conditional arguments in the expectations. Then, using the law of total probability, the
final case can be rewritten as

E

(
log𝜋 + log f(Xi; tl

, t,𝚯)|tl
≤ li < Xi < ui ≤ T ;𝚯(h−)



)
× P

(
Xi ≤ t|tl

≤ li < t < ui ≤ T ;𝚯(h−))
+ E

(
log( − 𝜋) + log f(Xi; t,T ,𝚯)|tl

≤ li ≤ t < Xi < ui ≤ T ;𝚯(h−)


)
× P

(
Xi > t|tl

≤ li < t < ui ≤ T ;𝚯(h−))
,

where {tl ≤ li < Xi ≤ t < ui ≤ T} denotes that tl, li, t, ui and T are known, that the
ordering tl ≤ li < t < ui ≤ T holds, and that {Xi ≤ t}. Using (..) we find that the
probability in the first term is then given by

P
(
Xi ≤ t|tl

≤ li < t < ui ≤ T ;𝚯(h−))
=

F
(
t; tl

, t,T ,𝚯(h−)) − F
(
li; tl

, t,T ,𝚯(h−))
F
(
ui; tl, t,T ,𝚯(h−)) − F

(
li; tl, t,T ,𝚯(h−))

=
𝜋
(h−) − 𝜋

(h−)F

(
li; tl

, t,𝚯(h−)


)
𝜋(h−) + ( − 𝜋(h−))F

(
ui; t,T ,𝚯(h−)



)
− 𝜋(h−)F

(
li; tl, t,𝚯(h−)



) ,
and similarly for the second term. The M-step with maximization with respect to 𝜋, 𝚯
and𝚯, and the choice of the initial values, is discussed in detail in Reynkens et al. [].

EVA is not available in the literature for interval censored data. The role of the
empirical survival and quantile functions in the construction of a tail analysis for
complete data (i.e., setting Xn−j+,n as an estimator of Q( − j∕(n + )), j = ,… , n)
is taken over by the Turnbull [] estimator  − F̂TB

n as an estimator of  − F and the
corresponding quantile function Q̂TB

n . The Turnbull estimator is an extension to interval
censoring of the Kaplan–Meier estimator or product-limit estimator [], that is, when
ui = ∞.

● The Kaplan–Meier estimator  − F̂KM
n of  − F is defined as follows: letting  = 𝜏 <

𝜏 < 𝜏 < … < 𝜏N (with N < n) denote the observed possible censored data, Nj the
number of observations Xi ≥ 𝜏j, and dj the number of values li equal to 𝜏j, then

 − F̂KM
n (t) = Π

𝜏j<t

[
 −

dj

Nj

]
.

This expression is motivated from the fact that

 − F(𝜏i) = P(X > 𝜏i|X > 𝜏i−)P(X > 𝜏i−|X > 𝜏i−)
…P(X > 𝜏|X > 𝜏)P(X > 𝜏|X > 𝜏)P(X > 𝜏).
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● Turnbull’s algorithm is then constructed as follows:
Let  = 𝜏 < 𝜏 < … < 𝜏m denote here the grid of all points li,ui, i = , ,… , n. Define
𝛿ij as the indicator whether the observation in the interval (li,ui] could be equal to 𝜏j,
j = ,… ,m. 𝛿ij equals  if (𝜏j−, 𝜏j] ⊂ (li,ui] and  otherwise. Initial values are assigned
to  − F(𝜏j) by distributing the mass ∕n for the ith individual equally to each possible
𝜏j ∈ (li,ui]. The algorithm is given as:
. Compute the probability pj that an observation equals 𝜏j by pj = F(𝜏j)−F(𝜏j−), j =

,… ,m.
. Estimate the number of observations at 𝜏j by

dj =
n∑

i=

𝛿ijpj∑m
k 𝛿ikpk

.

. Compute the estimated number of data with li ≥ 𝜏j by Nj =
∑m

k=j dk.
. Update the product-limit estimator using the values of dj and Nj found in the two

preceding steps. Stop the iterative process if the new and old estimate of  − F for
all 𝜏j do not differ too much.

In case of interval censored data we can then estimate the mean excess function e (see
(..)) substituting  − F by the Turnbull estimator  − F̂TB

n :

eTB
n (x) ∶=

∫
∞

x ( − F̂TB
n (u))du

 − F̂TB
n (x)

. (..)

As discussed in Section .., the mean excess function based on the log-data leads to an
estimator of a positive extreme value index 𝛾 . As in (..), using the Turnbull estimator
rather than the classical empirical distribution we obtain an estimator of 𝛾 >  in the
case of incomplete data:

HTB
n (x) ∶=

∫
∞

x ( − F̂TB
n (u))d logu

 − F̂TB
n (x)

. (..)

We then compute these statistics at the positions x = Q̂TB
n ( − (k + )∕(n + )), k =

,… , n − . Such plots will assist in choosing an appropriate threshold t and estimates
of the extreme value index 𝛾 to validate the tail component in the splicing.

Case study: Dutch fire insurance data. In this case no censoring is present, while the
EVA did not indicate any upper-truncation effect. However, there is a left truncation
point tl =  . Fitting (..) with T = ∞, 𝜋 = . and t =    on the
basis of the mean excess plot, setting 𝛾 = . to be compared with the Hill estimator
at the threshold t, combined with an ME component with M = , 𝜶 = (., .),
𝐫 = (, ), 𝜆− =    leads to the fit presented in Figure ..

Note, however, that the tail fit following from
(
− log

(
 − j

n+

)
,− log(−FME,Pa(Xj,n))

)
(j = ,… , n) (Figure ., bottom right) is unsatisfactory. This is expected from the EVA
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Figure 4.13 Dutch fire claim data: fit of spliced model mixed Erlang and Pareto with threshold t indicated on the mean excess plot (top left); empirical and
model survival function (top right); PP plot of empirical survival function against splicing model RTF (bottom left); idem with − log transformation
(bottom right).



Statistics for Claim Sizes 107

discussed above, where we found two Pareto tail pieces with a lower EVI value following
from the bias-reduced estimators �̂�+ at the top % of the data. This is also visible with
the extreme quantile estimates of Q(.) in Figure . (top). From this the following
splicing model was fitted:

fME,Pa,Pa
(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜋
fME(x;𝐫,𝛼,𝜆)

FME(t;𝐫,𝛼,𝜆)−FME(tl;𝐫,𝛼,𝜆)

= 𝜋

e−𝜆x ∑M
j= 𝛼j

𝜆
rj

(rj−)! xrj−

−e−𝜆t
∑M

j= 𝛼j
∑rj−

n=
(𝜆t )n

n!

, tl
< x ≤ t,

𝜋


t𝛾

(
x
t

)−−∕𝛾
∕
[

 −
(

t
t

)−∕𝛾
]
, t < x ≤ t,

( − 𝜋 − 𝜋)


t𝛾

(
x
t

)−−∕𝛾
, t < x.

with tl =  , 𝜋 = ., 𝜋 = ., t =   , t =   , 𝛾 = .
and 𝛾 = ., while M = , 𝜶 = (., .), and 𝐫 = (, ), 𝜆− =    (see
Figure .). □

Case study: MTPL data for Company A. The interval censoring approach is consid-
ered here with the indexed payments in  as a lower bound and upper bounds for
the non-closed claims which are derived from the indexed incurred values. Concerning
the upper bounds two methods are applied here.
● First, in Figure . (top) we plot the percentage of incurred values which correctly

act as upper bounds for the final payments of the closed claims as a function of the
development year. From this we observe that from the sixth year of development
the incurred values start to be reliable upper bounds with % confidence. We then
restrict attention to the claims with at least  years of development, that is, with
accident year before . This restricted data set contains  claims of which %
are censored.

First we inspect the tails within the interval censoring approach on the basis of eTB
n

and HTB
n from (..) with x taken in Q̂TB

n ( − (k + )∕(n + )). We conclude that
this mean excess plot adapted for interval censoring based on (..) has a shape
comparable to the mean excess plot based on the ultimate values, but with a different
horizontal scale and with a Hill-type estimate �̂� ≈ . (see (..)) that is situated
between the two levels found in Figure .. We coupled a ME with a Pareto (ME-Pa).
The parameters are:

ME-Pa ∶ 𝜋 = ., t =  , 𝜶 = (., .), 𝐫 = (, ), ∕𝜆 =  ,
𝛾 = ., T = ∞.

See Figure ..
● Another approach follows from Figure . (bottom) where, for every development

year d, we present the boxplots based on all claims, closed or non-closed in ,
of the ratios Ri,d of the final cumulative payment Zi in  over the incurred value
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Figure 4.14 Dutch fire claim data: fit of spliced model with a mixed Erlang and two Pareto components with thresholds t and t as indicated on the mean
excess plot (top left); empirical and model survival function (top right); PP plot of empirical survival function against splicing model RTF (bottom left); idem with
− log transformation (bottom right).
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Figure 4.15 MTPL data for Company A: percentage of closed claims with incurred value being a
correct upper bound for final payment as a function of the number of development years (DY) (top);
boxplots of Ri,d for every development year d and factor fd used in the interval censoring approach
(bottom).

Ii,d for the given development year for claim i: Ri,d = Zi∕Ii,d. When a claim is closed
before a particular development year d, the ratio for that claim in year d equals .
This plot yields relevant information on the possibility of using the incurred values as
an upper bound: if a ratio Ri,d is larger than , the incurred value is smaller than the
final available cumulative payment. The ratios Ri,d are also right censored in case the
cumulative payment is censored. Estimating the right endpoints of the distributions
of the Ri,d values per d using the methods developed in Einmahl et al. [] then
leads to factors fd so that Ĩi,d = fdIi,d provide more reliable upper bounds for the real
final cumulative payments. We then still deleted the claims from  since the upper
bounds for these losses are still not reliable. In Figure . (bottom) we also plot the
factors fd.

We then inspect the tails again within the interval censoring approach on the
basis of eTB and HTB from (..) with Ĩi,d serving as an upper bound for the final
cumulative payment of claim i. The corresponding tail fit and splicing results, given
in Figure ., compare well with the results in Figure .. However, the confidence
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Figure 4.16 MTPL data for Company A: fit of spliced mixed Erlang and Pareto models with interval
censoring based on upper bounds Ii,d , i = ,… , , d = ,… , , for non-closed claims: mean excess
plot based on (..) (top left); Hill plot based on (..) (top right); empirical and model survival
function (middle left); PP plot of empirical survival function against splicing model RTF (middle right);
idem with − log transformation (bottom).

intervals based on the Turnbull estimator are wider when using the larger upper
bounds Ĩi,d for larger claim sizes (see Figure ., bottom right).

The parameters of the splicing model here are:

ME-Pa ∶ 𝜋 = ., t =  , 𝜶 = (., .), 𝐫 = (, ), ∕𝜆 =  ,
𝛾 = ., T = ∞.

Case study: MTPL data for Company B. Again, the interval censoring approach is
considered here with the indexed payments in  as a lower bound and the indexed
incurred values as upper bound of the intervals for claims under development in .
Here we restrict attention to the claims with at least  years of development and use
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Figure 4.17 MTPL data for Company A (1995–2009): fit of spliced mixed Erlang and Pareto models
with interval censoring based on upper bounds Ĩi,d , i = ,… , , d = ,… ,  for non-closed claims:
mean excess plot based on (..) (top left); Hill plot based on (..) (top right); empirical and
model survival function (middle); PP plot of − log survival function, empirical against splicing mode
(bottom left); size of confidence intervals using interval censoring with upper bounds Ii,d and Ĩi,d
(bottom right).

the incurred values Ii,d as upper bounds. This restricted data set contains  claims, of
which % are censored.

On the basis of eTB and HTB from (..) and (..) with x in Q̂TB
n ( − (k + )∕

(n+)), we conclude that the mean excess plot adapted for interval censoring has a shape
comparable to the mean excess plot based on the ultimate values, but with a different
horizontal scale, and with a stable plot of the Hill type estimates for 𝛾 at .. This value
can be seen as a compromise between the two levels found in Figure .. We then splice
an ME with a Pareto (ME-Pa) tail. The parameters are:

ME-Pa ∶ 𝜋 = ., t =  , 𝜶 = (., .), 𝐫 = (, ), ∕𝜆 =  ,
𝛾 = ., T = ∞.

See Figure .. □



112 Reinsurance: Actuarial and Statistical Aspects

0 500000 1000000 1500000 2000000 2500000 3000000

400000

600000

800000

1000000

1200000

Mean excess plot

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0
Hill estimates of the EVI

k

ga
m

m
a

0e+00 1e+06 2e+06 3e+06
0.0

0.2

0.4

0.6

0.8

1.0

x

1−
F

(x
)

Fitted survival function
Turnbull estimator
95% confidence intervals

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Splicing PP−plot

Turnbull survival probability

F
itt

ed
 s

ur
vi

va
l p

ro
ba

bi
lit

y

0 1 2 3 4 5 6

0

1

2

3

4

5

Splicing PP−plot

−log(Turnbull survival probability)

−
lo

g(
fit

te
d 

su
rv

iv
al

 p
ro

ba
bi

lit
y)

e k
,n

Xn−k,n

Figure 4.18 MTPL data for Company B: mean excess plot based on (..) (top left) and Hill plot
based on (..)(top right) for interval censored data based on accidents from 1990 to 2005; fit of
spliced model mixed Erlang and Pareto models: empirical and model survival function (middle left);
PP plot of empirical survival function against splicing model RTF (middle right) left); idem with − log
transformation (bottom).

If the upper bounds are put to ∞, that is, if one uses the right censoring framework,
then, under the random right censoring assumption of independence between the real
cumulative payment at closure of the claim and the censoring variable C which is
observed in case the claim is right censored, estimators of 𝛾 >  have been proposed
in Beirlant et al. [, ], Einmahl et al. [], and Worms and Worms []. Using the
likelihood approach, Beirlant et al. [] proposed the estimator

H(c)
k,n =


k
∑k

j= logZn−j+,n − logZn−k,n

p̂k
, (..)
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with Zi = min(Xi,Ci) (i = ,… , n) and p̂k the proportion of non-censored data in
the top k Z-data. Einmahl et al. [] derived asymptotic results, while Beirlant et al.
[] proposed a bias-reduced version. Worms and Worms [] derived a tail index
estimator which is derived through the estimation of the mean excess function of the
log-data, comparable with the estimator derived in (..):

H(c)
k,n =

∑k
j=

(
 − F̂KM

n (Zn−j,n)
) (

logZn−j+,n − logZn−j,n
)

 − F̂KM
n (Zn−k,n)

, (..)

where the Kaplan–Meier estimator can be written as

 − F̂KM
n (x) = ΠZi,n≤x

(
 − 

n − i + 

)Δi,n
= ΠZi,n≤x

(
 −

Δi,n

n − i + 

)
,

with Δi,n equal to  if the ith smallest observation Zi,n is non-censored, and  otherwise.

Case study: MTPL data for Company A. In the MTPL application the validity of the
random right censoring assumption is questionable since censoring is informative here:
censoring is more likely to occur with larger claim sizes, which are also related to larger
development times. The estimates of 𝛾 using this approach also happen to be closer to
, which indicates over-estimation. In case of Company A, the results for the estimators
H(c)

k,n and HTB
n are compared in Figure .. □
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Figure 4.19 Hill plots adapted for interval censoring HTB
n with upper bounds Ii,d and Ĩi,d , and Hill

estimates based on random right censoring H(c)
k,n without upper bounds. The vertical line indicates

the splicing threshold t used above.
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4.4 Incorporating Covariate Information

In certain instances, the assumption of i.i.d. random variables, underlying the extreme
value methods discussed above, may be violated. When analysing claim data from
different companies, the tail fits may differ. Also, loss distributions may change over
calendar years or along the number of development years. Sometimes considering
covariates may remedy the situation. Let the covariate information, whether using
continuous or indicator variables, be contained in a covariate vector 𝐱 = (x,… , xp).
The extension of the POT approach based on (..) has been popular in literature,
starting with the seminal paper by Davison and Smith []. However, there are also
some methods available that focus on response random variables that exhibit Pareto-
type tails. Here we denote the response variables Zi (rather than Xi as in the preceding
sections) with the corresponding exceedances or POTs Y = Z∕t or Y = Z − t when
Z > t.

4.4.1 Pareto-type Modelling

When modelling time dependence or incorporating any other covariate information in
an independent data setting with Pareto-type distributed responses Zi, the exceedances
are defined through Yi = Zi∕t for some appropriate threshold t. Note that in many
circumstances the threshold should then also be modelled along x = xi, i = ,… , n. As
before, we assume that as z → ∞

 − Fn,i(z) = Aiz−∕𝛾i( + oi()), (..)

where Ai, 𝛾i > . Regression can be modelled through the scale parameter A and/or the
extreme value index 𝛾 .

Changes in 𝛾 can be modelled in a parametric way using likelihood techniques.
Suppose, for instance, that regression modelling of 𝛾 >  using an exponential link
function appears appropriate in a given case study:

𝛾i = exp
(
𝛽 + 𝛽 xi

)
, i = ,… , n.

The log-likelihood function is then given by

log L(𝛽, 𝛽) =
Nt∑
i=

log
(
exp[−𝛽 − 𝛽xi] Y−−exp(−𝛽−𝛽xi)

i

)
= −Nt𝛽 −

( Nt∑
i=

xi

)
𝛽 −

Nt∑
i=

(
 + exp(−𝛽 − 𝛽xi)

)
logYi,

leading to the likelihood equations

⎧⎪⎨⎪⎩
exp 𝛽 =


Nt

∑Nt
i=(logYi)e−𝛽xi


Nt

∑Nt
i= xi(logYi)e−𝛽xi =

(


Nt

∑Nt
i= xi

)(


Nt

∑Nt
i=(logYi)e−𝛽xi

)
.
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Beirlant and Goegebeur [] propose to inspect the goodness-of-fit of such a regression
model under constant scale parameter A on the basis of a Pareto QQ-plot using

R̂i ∶= Y ∕�̂�i
i , i = ,… ,Nt ,

which are indeed approximately Pareto distributed with tail index , when the regression
model is appropriate.

The case where 𝛾 does not depend on i, while A does depend on i, was formalized in
Einmahl et al. [] assuming that there exists a tail function  − F and a continuous,
positive function A defined on [, ] such that

lim
z→∞

 − Fn,i(z)
 − F(z)

= A
( i

n

)
, (..)

uniformly for all n ∈ N and all i = ,… , n with ∫


 A(s)ds = . A is then called the
skedasis function, which characterizes the trend in the extremes through the changes
in the scale parameter A. Under (..), Einmahl et al. [] showed that the Hill
estimator Hk,n is still a consistent estimator for 𝛾 . Assuming equidistant covariates
xi = i∕n, i = ,… , n, as in (..),

Â−F = k + 
n + 

Z∕Hk,n
n−k,n ,

Â−Fi
= 

n + 

[ n∑
j=

{Zj>Zn−k,n}Kh

(
xi −

j
n

)]
Z∕Hk,n

n−k,n ,

where
∑n

j= {Zj>Zn−k,n}Kh

(
xi −

j
n

)
denotes the number of Z values larger than the

threshold Zn−k,n with covariate value x in a neighbourhood of xi. The contribution of the
observations to Â−Fi

is governed by a symmetric density kernel function K on [−, ]
and Kh(x) = K(x∕h)∕h, so that K gives more weight to the observations with covariates
closer to xi. We hence obtain

Â(s) =
Â−Fi

Â−F
= 

k + 

n∑
i=

{Zi>Zn−k,n}Kh

(
s − i

n

)
.

Finally, estimators of small tail probabilities and large quantiles follow directly from
(..), (..) and (..):

̂Fi(z) = Â(xi)
k + 
n + 

(
z

Zn−k,n

)−∕Hk,n

,

Q̂i( − p) = Zn−k,n

(
(k + )Â(xi)
(n + )p

)Hk,n

,
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4.4.2 Generalized Pareto Modelling

Let Y,… ,Yn be independent GPD random variables and let 𝐱𝐢 denote the covariate
information vector, that is,

P(Yi ≤ y) =  −
(

 +
𝛾(𝐱i)
𝜎(𝐱i)

(y − 𝜇(𝐱i))
)−∕𝛾(𝐱i)

, i = ,… , n,

where 𝛾(𝐱), 𝜎(𝐱), 𝜇(𝐱) denote admissible functions of 𝐱, whether of parametric nature
using three vectors of regression coefficients 𝛽j (j = , , ) of length p with 𝛾(𝐱) = 𝛾

𝛽
(𝐱),

𝜎(𝐱) = 𝜎
𝛽
(𝐱) and 𝜇(𝐱) = 𝜇

𝛽
(𝐱), or of non-parametric nature. Again this model is used

as an approximation of the conditional distribution of excesses Y (𝐱) = Z − 𝜇(𝐱) over
a high threshold 𝜇(𝐱) given that there is an exceedance. The choice of an appropriate
threshold 𝜇(𝐱) is of course even more difficult than in the non-regression setting since
the threshold can depend on the covariates in order to take the relative extremity of the
observations into account.
● When parametric functions 𝛾(𝐱) = 𝛾

𝛽
(𝐱), 𝜎(𝐱) = 𝜎

𝛽
(𝐱) and 𝜇(𝐱) = 𝜇

𝛽
(𝐱) have

been chosen, the estimators of 𝛽j (j = , , ) can be obtained by maximizing the
log-likelihood function

log L
(
𝛽, 𝛽, 𝛽

)
=

N
𝜇∑

i=

{
− log 𝜎

𝛽
(𝐱)

−

(
 + 

𝛾
𝛽
(𝐱)

)
log

(
 +

𝛾
𝛽
(𝐱)

𝜎
𝛽
(𝐱)

Yi(𝛽)

)}
,

where N
𝜇

denotes the number of excesses over the threshold function 𝜇(𝐱).
● Alternatively, non-parametric regression techniques are available to estimate the

parameter functions 𝛾(𝐱), 𝜎(𝐱). Consider independent random variables Z,… ,Zn
and associated covariate information 𝐱,… , 𝐱n. Suppose we focus on estimating the
tail of the distribution of Z at 𝐱∗. Fix a high local threshold 𝜇(𝐱∗) and compute the
exceedances Yi = Zj − 𝜇(𝐱∗), provided Zj > 𝜇(𝐱∗), i = ,… ,N

𝜇𝐱∗
. Here j is the

index of the ith exceedance in the original sample, and N
𝜇𝐱∗

denotes the number of
exceedances over the threshold 𝜇𝐱∗ . Then re-index the covariates in an appropriate
way such that 𝐱i denotes the covariate associated with exceedance Yi.

Using local polynomial maximum likelihood estimation, one approximates 𝛾(𝐱) and
𝜎(𝐱) by polynomials, centered at 𝐱∗. Let h denote a bandwidth parameter and consider
a univariate covariate x. Assuming 𝛾 , respectively 𝜎, being m, respectively m, times
differentiable one has for |xi − x∗| ≤ h,

𝛾(xi) =
m∑
j=

𝛽j(xi − x∗)j + o(hm ),

𝜎(xi) =
m∑
j=

𝛽j(xi − x∗)j + o(hm),
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where

𝛽j =

j!
𝜕

j
𝛾(x)
𝜕xj

|||||x=x∗
and 𝛽j =


j!
𝜕

j
𝜎(x)
𝜕xj

|||||x=x∗
.

The coefficients of these approximations can be estimated by local maximum likeli-
hood fits of the GPD, with the contribution of each observation to the log-likelihood
being governed by a kernel function K . The local polynomial maximum likelihood
estimator (𝜷, 𝜷) = (𝛽,… , 𝛽m

, 𝛽,… , 𝛽m
) is then the maximizer of the kernel

weighted log-likelihood function

log L(𝜷, 𝜷)

=
N

𝜇(x∗)∑
i=

log g

(
Yi,

m∑
j=

𝛽j(xi − x∗)j
,

m∑
j=

𝛽j(xi − x∗)j

)
Kh(xi − x∗)

with respect to 𝛽,… , 𝛽m
, 𝛽,… , 𝛽m

, where g(y;𝜇, 𝜎) = (∕𝜎)(+(𝛾∕𝜎)y)−−∕𝛾 is
the density of the generalized Pareto distribution.

A more recent approach is using penalized log-likelihood optimization based on
spline functions. Let the covariates 𝐱 be one-dimensional within an interval [a, b]. The
goal is to fit reasonably smooth functions h

𝛾
and h

𝜎
with 𝛾(x) = h

𝛾
(x) and 𝜎(x) = h

𝜎
(x)

to the observations (Yi, xi), i = ,… ,N
𝜇

. The penalized log-likelihood is then given by

𝓁p(h
𝛾
, h

𝜎
;Yi, xi) =

N
𝜇∑

i=

{
log 

𝜎(x)
−

(
 + 

𝛾(x)

)
log

(
 + 𝛾(x)

𝜎(x)
Yi

)}
− 𝜆

𝛾
∫

b

a
(h′′

𝛾
(t))dt − 𝜆

𝜎
∫

b

a
(h′′

𝜎
(t))dt.

The introduction of the penalty terms is a standard technique to avoid over-fitting
when one is interested in fitting smooth functions (see Hastie and Tibshirani [] or
Green and Silverman []). Next ∙ stands for 𝛾 or 𝜎. Intuitively the penalty functions
∫

b
a (h′′

∙ (t))
dt measure the roughness of twice-differentiable curves and the smoothing

parameters 𝜆∙ are chosen to regulate the smoothness of the estimates ĥ∙ : larger values
of these parameters lead to smoother fitted curves.

Let a = s < s < … < sm < sm+ = b denote the ordered and distinct values among
{x,… , xN

𝜇

}. A function h defined on [a, b] is a cubic spline with the above knots if
the following conditions are satisfied:

– on each interval [si, si+], h is a cubic polynomial
– at each knot si, h and its first and second derivatives are continuous.

A cubic spline is a natural cubic spline if in addition to the two latter conditions it
satisfies the natural boundary condition that the second and third derivatives of h at
a and b are zero. It follows from Green and Silverman [] that for a natural cubic
spline h with knots s,… , sm one has
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∫

b

a
(h′′

∙ (t))
dt = 𝐡t

∙K𝐡∙,

where 𝐡∙ = (h∙(s),… , h∙(sm)), and K is a symmetric m×m matrix of rank m−  only
depending on the knots s,… , sm. Hence

𝓁p(𝐡
𝛾
, 𝐡

𝜎
;Yi, xi) =

N
𝜇∑

i=

{
log 

𝜎(x)
−

(
 + 

𝛾(x)

)
log

(
 + 𝛾(x)

𝜎(x)
Yi(xi)

)}
− 𝜆

𝛾
𝐡t
𝛾
K𝐡

𝛾
− 𝜆

𝜎
𝐡t
𝜎
K𝐡

𝜎
.

In order to assess the validity of a chosen regression model one can generalize the
exponential QQ-plot of generalized residuals defined before in the non-regression case:(

− log
(

 − i
N

𝜇
+ 

)
, R̂i,N

𝜇

)
,

with

R̂i =
⎧⎪⎨⎪⎩


�̂�(𝐱i)

log
(

 + �̂�(𝐱i)
�̂�(𝐱i)

Yi(𝐱i)
)
, �̂�(𝐱i) ≠ ,

Yi(𝐱i)


�̂�(𝐱i)
, �̂�(𝐱i) = , i = ,… ,N

𝜇
.

Finally, given regression estimators for (𝛾(x), 𝜎(x)) using an appropriate threshold
function 𝜇(x), extreme quantile estimators are given by

Q̂x( − p) =

⎧⎪⎪⎨⎪⎪⎩
𝜇(x) + �̂�(x)

�̂�(x)

([
p

̂̄FZ|x(𝜇(x))
]−�̂�(x)

− 

)
, �̂�(x) ≠ ,

𝜇(x) − �̂�(x) log
(

p
̂̄FZ|x(𝜇(x))

)
, �̂�(x) = ,

where ̂̄FZ|x can, for instance, be taken to be equal to the Nadaraya–Watson estimator

̂̄FZ|x(u) =
∑n

i= {Zi>u}Kh(xi − x)∑n
i= Kh(xi − x)

.

For more details and other non-parametric methods, refer to Davison and Ramesh
[], Hall and Tajvidi [], Chavez-Demoulin and Davison [], Daouia et al. []
[], Gardes and Girard [, ], Gardes and Stupfler [], Goegebeur, Guillou
and Osmann [], and Stupfler [], as well as Chavez-Demoulin et al. [] for other
non-parametric extreme value regression methods and applications.

Case study: Austrian storm claim data. We consider here the modelling of the
normalized historical losses of residential buildings from Section .. in Vienna and
the Upper Austria provinces as a function of the building value weighted wind index W .
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We model the conditional extreme value index 𝛾 = 𝛽 constant in W , while log 𝜎W is
considered to be linear in W :

log 𝜎W = 𝛽, + 𝛽,W .

Finally, we take here 𝜇W = , that is, we take all the data, since the data can already be
considered as exceedances. Hence the model is

normalized loss ∼ GPD
(
𝛽, e𝛽,+𝛽,W

, 
)
.

The results from a maximum likelihood analysis are
● Upper Austria: 𝛽 = ., 𝛽, = −., 𝛽, = .;
● Vienna: 𝛽 = ., 𝛽, = −., 𝛽, = .

(cf. Figure .). We also plot the estimates of the quantile Q(.|W ) using parametric
and non-parametric fits, jointly with the residual QQ-plots. From the residual QQ-plot
for the Vienna province we deduce that the storm with w =  is an outlier. Deleting
that storm from the data set leads to 𝛽 = −., 𝛽, = −. and 𝛽, = .. Hence
this particular storm has a high influence on the analysis. □

4.4.3 Regression Extremes with Censored Data

In Section . we discussed the problem when estimating the distribution of the final
payments based on censored data using the Kaplan–Meier estimator of the distribution
of the payment data. Here we propose to consider regression modelling of the final
payments given the development time at the closure of a claim. Note, however, that both
the final payments and development periods are right censored, both variables being
censored (or not censored) at the same time. We again use the notation Zi (i = ,… , n)
for the observed cumulative payment at the end of the study from that section, and
similarly nDYe,i for the observed number of development years at the end of .
Again Δi,n denotes the indicator of non-censoring corresponding to the ith smallest
observed value payment Zi,n. Akritas and Van Keilegom [] proposed the following
non-parametric estimator of the conditional distribution of X given a specific value of
nDY assuming that X and the censoring variable C (see Section .) are conditionally
independent given nDY :

 − F̂X|nDY (x|d) = ∏
Zi≤x

(
 −

Wi(d; h)∑n
j= Wj(d; h){Zj≥Zi}

)Δi

with weights

Wi(d; h) =

{
K

(
d−nDYe,i

h

)
∕
∑

Δj= K
( d−nDYe,j

h

)
if Δi = ,

 if Δi = .

Denoting the weight W corresponding to the ith smallest Z value Zi,n with Wi,n we then
arrive at the following Hill-type estimator of the conditional extreme value given nDY =
d, generalizing the unconditional Worms and Worms estimator H (c)

k,n defined in (..):
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Figure 4.20 Austrian storm claim data: plot of log �̂�W for Upper Austria and Vienna area (top);
Q̂(.|W ) (middle left) and residual QQ-plot (middle right) for Upper Austria; Q̂(.|W ) (bottom
left) with and without outlier and residual QQ-plot (bottom right) for Vienna.

H(c)
k,n(nDY = d)

=
∫

∞
Zn−k,n

(
 − F̂X|nDY (y|d)) d log y

 − F̂X|nDY (Zn−k,n|d)
=

∑k
j=

(∏n−j
i=

[(
 − Wi,n(d;h)

−
∑i−

l= Wl,n(d;h)

)Δi,n
]
log Zn−j+,n

Zn−j,n

)
∏n−k

i=

[(
 − Wi,n(d;h)

−
∑i−

l= Wl,n(d;h)

)Δi,n
]

Pareto QQ-plots adapted for censoring per chosen d value can then be defined as(
− log

(
 − F̂X|nDY (Zn−j+,n|d)) , logZn−j+,n

)
, j = ,… , n.
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Case study: MTPL data for Company A. In the MTPL application of Company A,
the change of the X distribution given the number of development period becomes
visible from the time plot of the claims in Figure . as a function of nDYe. We applied
the conditional Hill estimator adapted for censoring H(c)

k,n(nDY = d) with d = , , ,
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Figure 4.21 MTPL data for Company A: time plots of cumulative payments Zi as a function of nDYe
(top); Pareto QQ-plots (middle) and Hill estimates (bottom) adapted for right censoring at
development years nDY = , , .
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h = , and the bi-weight kernel K(u) = 

( − u) {|u|≤}. Note that the Pareto

QQ-plots show a heavier tail with increasing nDY , which is confirmed by the plots of
H(c)

k,n(nDY = d). □

In order to derive a full model for the complete payments X as a function of nDY = d a
local version of the splicing algorithm from Section .. can be developed considering
random right censoring on X with the kernel weights Wi = Wi(d; h) as introduced
above. The EM algorithm can then be applied using a kernel weighted log-likelihood,
comparable with the approach from Section ... For instance, given the complete
version of the data, the complete likelihood function is then given by

complete(𝚯;) =
n∏

i=

(
𝜋f(Xi; tl

, t,𝚯)
){Xi≤t}Wi

×
n∏

i=

(
( − 𝜋)f(Xi; t,T ,𝚯)

){Xi>t}Wi
.

The corresponding complete data weighted log-likelihood function then equals

𝓁complete(𝚯;) =
n∑

i=
{Xi≤t}Wi

(
log𝜋 + log f(Xi; tl

, t,𝚯)
)

+
n∑

i=
{Xi>t}Wi

(
log( − 𝜋) + log f(Xi; t,T ,𝚯)

)
.

Case study: MTPL data for Company A. The above method from Beirlant and
Reynkens [], when applied with d = , ,  years, yields the estimates given in
Table ..

The estimates of 𝛾 approximately correspond to the Hill estimates H (c)
k,n(nDY = d) at

k =  (see Figure ., bottom right). In Figure . the PP plots use the fitted survival
functions at nDY = ,  and  against the fitted RTF scale at nDY = , on the original
scale and using the − log transformation of the survival functions. From this graph one
observes also the increase in tail heaviness as a function of d. □

Table 4.1

nDY = 3 nDY = 8 nDY = 13

𝜋 . . .
t      
M   
𝜶 (.,.) (.,.) (.,.)
r (,) (,) (,)
𝜆
−      

𝛾 . . .
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Figure 4.22 MTPL data for Company A: fit of splicing model at development years nDY = , , ; PP
plot of empirical survival function against splicing model RTF at nDY =  (top); idem with − log
transformation (bottom).

4.5 Multivariate Analysis of Claim Distributions

Joint or multivariate estimation of claim distributions, for example originating from
different lines of business which are possibly dependent, requires estimation of each
component or marginal separately and of the dependence structure. The joint analysis
of loss and allocated loss adjustment expenses (ALAE) forms another example in
insurance. An early analysis of such a case is provided in Frees and Valdez [].
A detailed EVA of such a data set using the concept of extremal dependence is found in
Chapter  in Beirlant et al. [].

We first model the multivariate tails using data that are large in at least one
component, followed by a splicing exercise combining a tail and a modal fit. In a
multivariate setting this program is of course much more complex in comparison with
the univariate case. For the tail section we refer to the multivariate POT modelling
using the multivariate generalized Pareto distribution, as introduced in Section ..
The joint modelling of “small” losses will be based on a multivariate generalization of
the mixed Erlang distribution introduced by Lee and Lin []. Research in this matter
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has started only recently and here we only examine an ad hoc modelling for the Danish
fire insurance data.

4.5.1 The Multivariate POT Approach

From (..) and (..) one observes the importance of estimating the stable tail
dependence function l defined in Chapter . The estimation of the tail dependence can
be performed non-parametrically or using parametric models. We refer to Kiriliouk
et al. [] for fitting parametric multivariate generalized Pareto models using censored
likelihood methods.

A non-parametric estimator of an STDF is given by

l̂k(𝐱) =

k

n∑
i=

{there exists j=,…,d∶F̂ j(Xi,j)>− k
n xj}

, (..)

with

F̂ j(Xi,j) =
Ri,j − .

n
or

Ri,j

n + 

where Ri,j denotes the rank of Xi,j among X,j,… ,Xn,j:

Ri,j =
n∑

m=
{Xm,j≤Xi,j}, j = ,… , d.

The estimator l̂k is a direct empirical version of definition (..) of l with u = n∕k.
A slightly different version is given by

l̃k(𝐱) =

k

n∑
i=

{Xi,≥X()
n−[kx]+,n or … or Xi,d≥X(d)

n−[kxd ]+,n}
, (..)

where X(j)
i,n denotes the ith smallest observation of component j. Bias-reduced versions

of these estimators were proposed in Fougères et al. [] and Beirlant et al. []. In the
bivariate case, l̂k(, ) or l̃k(, ) then act as estimators of the extremal coefficient 𝜃.

An estimator of the extremal dependence coefficient 𝜒 can be constructed on the
basis of an estimator of 𝜒(u) for u →  using the estimator of C(u,u)

Ĉ(u,u) = 
n

n∑
i=

{Ui,<u,Ui,<u}, (..)

where Ui,j = F̂ j(Xi,j) (j = , ; i = ,… , n) with F̂ j denoting the empirical distribution
function of the jth marginal and Xi,j the ith observation of the jth component. Hence

�̂�(u) =  −
log Ĉ(u,u)

logu
.
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As an application note that an estimator of the parameter 𝜏 in the logistic dependence
model can be obtained from 𝜒(u) →  − 𝜏 as u → , from which

𝜏u =
log log Ĉ(u,u) − log logu

log 
.

Setting

Z̃i,j =
(
 − F̂ j(Xi,j)

)− =
(

 −
Ri,j

n + 

)−

, j = , ,

the Hill estimator based on min(Z̃i,, Z̃i,) (i = ,… , n) leads to an estimator �̂�k of the
coefficient of tail dependence 𝜂. Of course bias reduction techniques can be applied
here too.

4.5.2 Multivariate Mixtures of Erlangs

Lee and Lin [] defined a d-variate Erlang mixture where each mixture component
is the joint distribution of d independent Erlang distributions with a common scale
parameter ∕𝜆 > . The dependence structure is then captured by the combination
of the positive integer shape parameters of the Erlangs in each dimension. We denote
the positive integer shape parameters of the jointly independent Erlang distributions in
a mixture component by the vector 𝐫 = (r,… , rd) and the set of all shape vectors with
non-zero weight by . The density of a d-variate Erlang mixture evaluated in 𝐱 > 𝟎 can
then be written as

fMME(𝐱; 𝛼, 𝐫, 𝜆) =
∑
𝐫∈

𝛼𝐫 Πd
j=fE(xj, rj, 𝜆) =

∑
𝐫∈

𝛼𝐫 Πd
j=

𝜆
rj xrj−

j e−𝜆xj

(rj − )!
. (..)

Lee and Lin [] showed that, given any density f (𝐱), the d-variate Erlang mixture

fMME(𝐱; 𝜆) =
∞∑

r=
…

∞∑
rd=

𝛼𝐫(𝜆) Πd
j=fE(xj; rj, 𝜆)

with mixing weights

𝛼𝐫 =
∫

r∕𝜆

(r−)∕𝜆
…

∫

rd∕𝜆

(rd−)∕𝜆
f (𝐱)d𝐱

satisfies lim
𝜆→∞ FMME(𝐱; 𝜆) = F(𝐱). The weights 𝛼𝐫 of the components in the mixture

are defined by integrating the density over the corresponding d-dimensional rectangle
of the grid formed by the shape parameters multiplied with the common scale. When
the value of 𝜆 increases, this grid becomes more refined and the sequence of Erlang
mixtures converges to the underlying distribution function.

Verbelen et al. [] provided a flexible fitting procedure for multivariate mixed
Erlangs (MMEs), which iteratively uses the EM algorithm, by introducing a computa-
tionally efficient initialization and adjustment strategy for the shape parameter vectors.
Randomly censored and fixed truncated data can also be dealt with.
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Case study: Danish fire insurance data. Here we consider a bivariate splicing
model for the components building and contents, conditional on (building, contents)
𝐭 l = (, ). We first fitted a bivariate GPD based on a logistic extreme value distribution
based on excesses over the threshold vector 𝐭 = (., .) corresponding to k = 
in the univariate extreme value plots. Univariate EVA leads to 𝛾 values around .
for the building component and around . for the contents component. Fitting the
GPD to each component leads to initial 𝜎 estimates. The parameter 𝜏 in the logistic
dependence model can be estimated through estimating 𝜃 = l(, ) = 𝜏 or by
estimating 𝜒(u) →  − 𝜏 as u → . These estimates are plotted in Figure . (middle)
leading to 𝜏 = log l̂(, )∕ log  = . or log log Ĉ(u,u)−log logu

log 
= . taking u = . from

which Ĉ(., .) = .. We further consider this second estimate.
Concerning the tail dependence coefficient 𝜂, the level �̂� = . is dominating, while

at the smallest k values the estimates increase systematically with decreasing k. As the
�̂� plot appears to indicate asymptotic dependence corresponding with 𝜂 equal to , one
has to be cautious interpreting the �̂� plot which indeed ultimately for the smallest k
tends to values around .

The bivariate (c.d.f ) function of a splicing model with a bivariate mixed Erlang and a
bivariate GPD is now given by

F(𝐱) =
⎧⎪⎨⎪⎩

, if 𝐱 ≤ 𝐭 l
,

𝜋FMME(𝐱), if 𝐭 l ≤ 𝐱 ≤ 𝐭,
𝜋FMME(𝐱) + ( − 𝜋)FMGPD(𝐱), if 𝐱 ≰ 𝐭,

with FMGPD denoting the distribution function of the bivariate GPD as given in (..).
A bivariate mixed Erlang distribution was fitted along the method provided in

Verbelen et al. [] conditioned on [, .] × [, .], leading to 𝐫 vectors (,) and
(,) and 𝛼 weights . and ., and ∕𝜆 = .. The proportion for the bivariate
mixed Erlang fit is 𝜋 = .. The (c.d.f ) corresponding to f is then given by

F(𝐱; 𝐭 l
, 𝐭,𝚯) =

⎧⎪⎪⎨⎪⎪⎩
 if 𝐱 ≱ 𝐭 l∑

𝐫∈ 𝛼𝐫
∏d

j= FE(min{xj ,tj};rj ,𝜆)∑
𝐫∈ 𝛼𝐫

∏d
j=(FE(tj;rj ,𝜆)−FE(tl

j ;rj ,𝜆))
if 𝐱 ≥ 𝐭 l and 𝐱 ≱ 𝐭

 if 𝐱 ≥ 𝐭.

The bivariate distribution function of the fitted bivariate GPD is given by

F(x, y; 𝐭, 𝜸,𝝈, 𝜏)

= −∕𝜏

⎧⎪⎨⎪⎩
((

 + 𝛾
min{x − t, }

𝜎

)− 𝜏

𝛾

+
+

(
 + 𝛾

min{y − t, }
𝜎

)− 𝜏

𝛾

+

)∕𝜏
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−

((
 + 𝛾

x − t
𝜎

)− 𝜏

𝛾

+
+

(
 + 𝛾

y − t
𝜎

)− 𝜏

𝛾

+

)∕𝜏⎫⎪⎬⎪⎭ .

In order to guarantee that the marginal distributions have support on (,∞) one has to
impose the constraints  + 𝛾

𝜎
( − t) =  and  + 𝛾

𝜎
( − t) = , which then lead to the

parameter values (𝛾 = ., 𝜎 = .) and (𝛾 = ., 𝜎 = .).
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Figure 4.23 Danish fire insurance data, building and contents: Hill and bias-reduced Hill plots,
building (top left) and contents (top right), plot of l̂k(, ) against k (middle left) and Ĉ(u,u) against
u ∈ (, ) (middle right), plot of �̂�k (bottom left) and cumulative distribution function of the fitted
bivariate splicing model (bottom right).
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4.6 Estimation of Other Tail Characteristics

In Section ... using EVA we discussed the estimation of an extreme quantile or a VaR

VaR−p(X) = Q( − p) = inf{x|F(x) ≥  − p}

in detail. Another popular tail characteristic is the conditional tail expectation
CTE−p(X) defined by

CTE−p(X) = E(X|X > Q( − p))
= Q( − p) + E (X − Q( − p)|X > Q( − p))
= VaR−p(X) + e(Q( − p))

when E(X) < ∞, where e denotes the mean excess function defined in Section .. If X
is a continuous random variable, theCTE equals the Tail-VaR and the expected shortfall
(ES) (cf. Section .., where the role of these quantities for determining the solvency
capital is discussed).

For an unlimited XL treaty with retention u, recall from Chapter  that the expected
reinsured amount E(R) of a single claim X is given by

Π(u) ∶= E(X̃(u,∞)) =
∫

∞

u
( − F(z))dz = e(u)F(u),

which is also referred to as the pure premium for R (see Chapter  for details). One
immediately observes

CTE−p(X) = VaR−p(X) +
Π(VaR−p(X))

p
.

With a finite layer size v in the XL treaty, the pure premium becomes

E(X̃(u, v)) = E (min{max(X − u, ), v}) = Π(u) − Π(u + v).

Hence the estimation of VaR−p(X) and Π(u) at small and intermediate values of p, and
at high and intermediate values of u is an important building block in measuring and
managing risk.

When estimating VaR−p(X) for a two-component spliced distribution, we have
from (..)

Q(−p) =

{
Q(( − p)∕𝜋) if  ≤ p ≤ 𝜋,

Q(( − p − 𝜋)∕( − 𝜋)) = Q

(
 − p

−𝜋

)
if 𝜋 < p ≤ ,

(..)

where Q denotes the quantile function of the ME component and Q of the tail
component. Q can be obtained numerically. When the tail component is given by a
simple Pareto distribution we have

Q( − u) = t u−𝛾
,  < u < ,
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and hence with t = Xn−k,n and  − 𝜋 = (k + )∕(n + ), (..) yields q̂+
k,p from (..)

when 𝜋 < p ≤ . Using an upper-truncated Pareto or a generalized Pareto tail fit, one
can use q̂T

k,p or q̂ML
k,p , respectively, for 𝜋 < p ≤ .

When estimating Π(u) we again identify two cases: u ≤ t = xn−k,n and u > t = xn−k,n,
in which case the EVA modelling can be used.

When u > t, then from (..)

Π(u) =
∫

∞

u

{
 − (𝜋 + ( − 𝜋)F(z))

}
dz

= ( − 𝜋)
∫

∞

u
( − F(z))

=∶ ( − 𝜋)Π(u)

where Π(u) is given by the following expressions for the different possible EVA tail fits
with EVI estimate smaller than :
● Truncated Pareto fit:

Π̂TPa
,k (u) = ∫

T

u

(
z
t

)−∕�̂�
−

(
T
t

)−∕�̂�

 − (T∕t)−∕�̂� dz

=
(u − T)

(
T
t

)−∕�̂�
+

(
u−∕�̂� − T −∕�̂�) t∕�̂�

−+∕�̂�

 −
(

T
t

)−∕�̂� ;

● EPD fit: using the notation from (..)

Π̂EPD
,k (u) =

∫

∞

u
Ḡ

�̂� ,𝛿,𝜏
(z∕t)dz

≈ t−∕�̂�

{(
 − 𝛿

�̂�

)(

�̂�
− 

)−

u−�̂�− + 𝛿

�̂�t𝜏

(

�̂�
− 𝜏 − 

)−

u+𝜏−�̂�−

}
;

● Generalized Pareto fit:

Π̂GPD
,k (u) =

∫

∞

u

(
 + �̂�

�̂�
(z − t)

)−∕�̂�

dz

= �̂�

 − �̂�

(
 + �̂�

�̂�
(u − t)

)−∕�̂�

.
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When u < t, we have from (..) that

Π(u) =
∫

t

u

(
 − 𝜋F(z)

)
dz +

∫

+∞

t

(
 − (𝜋 + ( − 𝜋)F(z))

)
dz

= (t − u) − 𝜋
∫

t

u
F(z)dz + ( − 𝜋)

∫

+∞

t
( − F(z))dz

= (t − u) − (t − u)𝜋 + 𝜋
∫

t

u
( − F(z))dz + ( − 𝜋)Π(t)

= ( − 𝜋)(t − u) + 𝜋Π(u) + ( − 𝜋)Π(t).

Note that Π(u) =  for u ≥ T and Π(u) = Π(tl)+(tl −u) for u ≤ tl. For the mixed Erlang
distribution we get

Π(u) =
∫

t

u

(
 −

F∗
 (z) − F∗

 (t
l)

F∗
 (t) − F∗

 (tl)

)
dz

=
(
F∗

 (t) − 
)
(t − u) + (Π∗

 (u) − Π∗
 (t))

F∗
 (t) − F∗

 (tl)
,

with

F∗
 (x) =

M∑
j=

𝛼j

⎛⎜⎜⎝ −
rj−∑
n=

e−𝜆x (𝜆x)n

n!

⎞⎟⎟⎠
and, assuming that rn = n, n = ,… ,M,

Π∗
 (u) =


𝜆

e−𝜆u
M−∑
n=

M−∑
k=n

( M∑
j=k+

𝛼j

)
(𝜆u)n

n!
.

Case study: MTPL data for Company A. Based on the splicing model for the data
of Company A within the interval censored framework, using an unbounded Pareto,
the fit of which is shown in Figure ., we calculate the XL pure premium Π(u)
as a function of u in Figure .. We also add an estimate for Π(u) when taking
ui = ∞, that is, considering only the lower bounds for the censored claims. The
resulting value is significantly higher, which is consistent with the high estimates of the
extreme value index as indicated in Figure .. In order to compare with the classical
approach using a statistical model for the ultimate estimates of the open claims, we also
provide a comparison with the results based on the splicing model from Figure ..
This “classical” pure premium is also uniformly higher than the one obtained using
interval censoring. □
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Figure 4.24 MTPL data for Company A: XL pure premium Π(u) based on ME-Pa fit taking interval
censoring into account. Comparison with the result when the upper bounds are ignored (right
censoring) and when the premium is based on the ultimates.
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Figure 4.25 Austrian storm claim data: XL pure premium Π(exp(.w)) for Upper Austria based
based on a GPD regression fit with the wind index W as covariate.

Of course the estimation of Π(u) can be extended to a regression context. For instance,
when u = u(x) is larger than a threshold function 𝜇(x) of a one-dimensional covariate
x, and using the GPD modelling approach, one obtains for �̂�(x) < 

Π̂(u(x)) = ̂̄FZ|x(𝜇(x))
∫

∞

u(x)

(
 + �̂�(x)

�̂�(x)
(c − 𝜇(x))

)−∕�̂�(x)

dc

= ̂̄FZ|x(𝜇(x)) �̂�(x)
 − �̂�(x)

(
 + �̂�(x)

�̂�(x)
(u(x) − 𝜇(x))

)−∕�̂�(x)

.

The result of this procedure based on the GPD regression fit for the storm claim data of
Upper Austria, with GPD(., e−.+.w

, ), is shown in Figure ..
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4.7 Further Case Studies

We end this chapter by analysing the case studies on flood risk and earthquake risk
which were introduced in Chapter .
● Flood risk. Here we model the aggregate annual loss data introduced in Section ..

(given as a percentage of the building value) for Germany and the UK. All presented
derivative plots for Germany in Figure . based on the Pareto, log-normal, and
Weibull QQ-plots ultimately are decreasing, while for the UK in Figure . the
decrease in the Weibull derivative plot is small and this plot is closest to being constant
when log x > −. The systematic decrease in the different estimators of 𝛾 with
increasing threshold, together with the P-values of the TB test for upper-truncation
does indicate some evidence for a truncated Pareto tail. Indeed, for both countries the
truncated Pareto model fits well. The estimates T̂ of the right truncation point T are
situated around . for the UK and . for Germany. However, for the UK data, a
Weibull fit provides a valid alternative.

● Earthquake risk. We consider recent magnitude data of the  largest earthquakes
in the Groningen area (the Netherlands) which are caused by gas extraction. In
Figure . (top left), we present the exponential QQ-plot. A linear pattern is
visible for a large section of the magnitudes data, while some concave curvature
appears at the largest values. Along the Gutenberg–Richter () law the magni-
tudes of independent earthquakes are drawn from a doubly truncated exponential
distribution

P(M > m) = e−𝜆m − e−𝜆TM

e−𝜆m − e−𝜆TM
, m < m < TM.

Kijko and Singh [] provide a review of the vast literature on estimating the
maximum possible magnitude TM. The energy E released by earthquakes, expressed
in megaJoules, relates to the magnitude M by

M = log (E∕) ∕. + .

When transforming the magnitude data back to the energy scale, the Gutenberg–
Richter model predicts a truncated Pareto tail. In Figure ., plotting the Hill
estimates we observe a systematic decrease with decreasing k, while the moment and
ML-GPD estimators tend to − near k = . The estimates of �̂�T

k stay rather stable at a
level �̂� = . The P-values of the TB test for upper-truncation are boundary significant
at significance level . for k ∈ (, ). The amount of truncation is estimated
around D̂T ∈ (., .). The goodness of fit of the truncated Pareto fit is illustrated
on the Pareto QQ-plot of the energy data where the truncated Pareto-model is fitted
based on the top  values. The maximum magnitude T̂M = log

(
T̂E∕

)
∕. +  is

then estimated at . for the Groningen area.
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Figure 4.26 UK flood loss data: mean excess plot (xn−k,n, ek,n) (top left); Hill plot (log xn−k,n,Hk,n) (top right); log-normal derivative plot (log xn−k,n,Hk,n∕Nk,n)
(second line left); Weibull derivative plot (log xn−k,n,Hk,n∕Wk,n) (second line right); 𝛾𝛾 estimates (third line left); P-values of TB test (third line right); endpoint
estimates T̂k (bottom left); Pareto QQ-plot with truncated Pareto fit (full line) and Pareto fit (dashed line) (bottom right).
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Figure 4.26 (Continued)
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Figure 4.27 Flood loss data Germany: mean excess plot (xn−k,n, ek,n) (top left); Hill plot (log xn−k,n,Hk,n) (top right); log-normal derivative plot
(log xn−k,n,Hk,n∕Nk,n) (second line left); Weibull derivative plot (log xn−k,n,Hk,n∕Wk,n) (second line right); 𝛾𝛾 estimates (third line left); P-values of TB test (third line
right); endpoint estimates T̂k (bottom left); Pareto QQ-plot with truncated Pareto fit (full line), and Pareto fit (dashed line) (bottom right).
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Figure 4.28 Earthquake magnitude data from Groningen area. Exponential QQ-plot based on
magnitudes (top left); estimates of 𝛾 (top right); TB P-value plot (middle left); D̂T estimates (middle
right); Pareto QQ-plot of energy values with truncated Pareto fit (bottom right); estimates of
maximum magnitude T̂M (bottom right).

4.8 Notes and Bibliography

In case of the Gumbel domain of attraction with 𝛾 = , EVA based on fitting a
generalized Pareto distribution to POT values is known to exhibit slow convergence
rates in many cases. To this end more specific models have been proposed, for example
El Methni et al. [] and De Valk and Cai [].

In the last few decades some papers have appeared concerning robust estimation
methods. Robust methods can improve the quality of extreme value data analysis by
providing information on influential observations, deviating substructures and possible
mis-specification of a model while guaranteeing good statistical properties over a whole
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set of underlying distributions around the assumed one. On the other hand an EVA
precisely is performed to consider and emphasize the role of extremes. Hence in a
risk management context it can hardly be the purpose to delete the most extreme
observations when they were correctly reported. Robust and non-robust estimators
then yield different scenarios for risk assessment should be compared. An interesting
discussion on this can be found in Dell’Aquila and Embrechts [].

EVA is an active field of research. A notable recent contribution is Naveau et al.
[], which gives an alternative to splicing methods in order to produce full models
in a hydrological context. In De Valk [] and Guillou et al. [], some further new
modelling approaches in the multivariate case are introduced.

A Bayesian approach to estimate the total cost of claims in XL reinsurance has been
covered in Hesselager []. For the estimation of the Pareto index in XL treaties, see
Reiss et al. []. Leadbetter [] studied the connection between tail inference and
high-level exceedance modelling, which is relevant for the XL case. Examples of early
statistical analyses of large fire losses are Ramachandran [], Ramlau-Hansen [],
and Corradin et al. []. Resnick [] also studied the Danish fire insurance data set.
Data for coverages of homes are analyzed in Grace et al. []. For glass losses, see
Ramlau-Hansen []. Property reinsurance for the USA is covered in Gogol [],
for example.
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5

Models for Claim Counts

Models and statistics for the number of claims can be built on counts in either discrete or
continuous time. In practice, actuaries often look at the aggregate number of claims that
have occurred within a fixed time interval (e.g., one calendar year) rather than studying
the full stochastic process developing over time.

Whereas in real-life applications one only obtains information in discrete time, for
instance with information about the date of the claim events, continuous time modelling
can be a more flexible and tractable tool that also allows the implementation of stylized
features (such as lack of memory) in a transparent and elegant way. From the continuous
time stochastic process approach one can then go back to implications for the discrete
time intervals. For this reason, in this chapter we start with the general mathematical
treatment of claim number modelling in continuous time. Section . will then treat
the discrete case, and Section . deals with statistical procedures to fit such counting
models to data for both approaches. Finally, in Section .. we will discuss how to move
from models for a number of claims for the insurer to the ones for the reinsurer.

Assume that claims happen at specific time points {T,T,… ,Tn,…} that form an
increasing sequence of necessarily dependent random variables. The claim counting
process {N(t), t ≥ } can then be defined in terms of the claim instants by

{N(t) = n} = {Tn ≤ t < Tn+} .

5.1 General Treatment

A stochastic process N = {N(t); t ≥ } that counts the number of claims up to time
t has to be a counting process. This means that we require the process to satisfy the
following four and evident conditions:

(i) N(t) ≥ 
(ii) N(t) is integer valued
(iii) If s < t, then N(s) ≤ N(t)
(iv) for s < t, N(t) − N(s) equals the number of claims that have occurred in the time

interval (s, t].

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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We note that the sample paths of a counting process are non-decreasing and right-
continuous. In many cases one assumes that the jumps are only of size one so that
multiple claims at the same time instance are excluded.

5.1.1 Main Properties of the Claim Number Process

The distribution of N(t), the number of claims up to time t, can be given in explicit form

pn(t) = P (N(t) = n) , n ∈ N.

It can also be introduced via the (probability) generating function

Qt(z) ∶= E(zN(t)) =
∞∑

n=
pn(t)zn

, (..)

which is at least defined for |z| ≤ , but often the radious of convergence is larger. Apart
from the expression pn(t) we will introduce a (c.d.f ) of N(t), that is, the probability of at
most r claims up to time t:

FN(t)(r) ∶= P (N(t) ≤ r) =
r∑

n=
pn(t). (..)

Among the main characteristics of a claim number process we should mention a variety
of possible moments and derived quantities. The function Qt(z) can be used to evaluate
these consecutive moments of N(t). Here are a few of the most important qualitative
indices.

(i) For |z| < , the rth order derivative of Qt with respect to z is given by

Q(r)
t (z) =

∞∑
k=r

k!
(k − r)!

pk(t)zk−r
.

In terms of expectations this reads as

Q(r)
t (z) = r!E

{(
N(t)

r

)
zN(t)−r

}
. (..)

The factorial moments of N(t) can be obtained from this by letting z ↑ :

Q(r)
t () = E ([N(t)][N(t) − ]...[N(t) − r + ]) = r!E

(
N(t)

r

)
. (..)

In many cases Qt(z) will be analytic at z = R > . Then for  ≤ u < R − 

Qt( + u) =
∞∑

r=

ur

r!
Q(r)

t () =
∞∑

r=
ur
E

(
N(t)

r

)
. (..)
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(ii) From (..) one easily finds the successive moments of N(t). Most importantly we
begin with the mean number of claims, which is obtained from the first derivative
of Qt(z) at :

E(N(t)) = Q′
t(). (..)

(iii) The variance of the number of claims is obtained from (..) with r =  and r = 
and gives

Var(N(t)) = Q′′
t () + Q′

t() − {Q′
t()}


. (..)

(iv) The index of dispersion is defined by

IN(t) =
Var(N(t))
E(N(t))

. (..)

This quantity is popular among actuaries. As we will see soon, it is equal to  for the
Poisson process. As such, the value of the index of dispersion makes it possible to
call a claim number process overdispersed (with respect to the Poisson case) if its
index is greater than . The concept underdispersed is defined similarly. The index
of dispersion has been introduced to indicate that claim numbers in a portfolio
show a greater volatility than one could expect from a Poisson process; in particular
overdispersion appears regularly in actuarial portfolios.

In the following we collect a broad set of models. Some of them – like the Poisson and
the negative binomial model – are extremely popular while others are modifications
intended to allow better data fitting. Several examples are based on an underlying
probabilistic structure that has a natural actuarial context.

5.2 The Poisson Process and its Extensions

We start with some of the most popular examples of claim number processes, all
based on Poisson processes. Standard references where more mathematical details and
derivations can be found are Mikosch [], Rolski et al. [], and Grandell [].

5.2.1 The Homogeneous Poisson Process

A homogeneous Poisson process Ñ = Ñ
𝜆
= {Ñ(t); t ≥ } with intensity (or rate) 𝜆 >  is

a counting process that satisfies the following properties:

(i) Start at : Ñ() =  almost surely.
(ii) Independent increments: for any  ≤ t < t < … < tn < ∞, n ∈ N, the increments

ΔÑti
∶= Ñ(ti) − Ñ(ti−) are mutually independent for i = ,… , n.

(iii) Poisson increments: for any  ≤ s < t < ∞

Ñ(t) − Ñ(s) ∼ Poisson(𝜆(t − s)).

Without any doubt the homogeneous Poisson process Ñ(t) is the most popular among all
claim number processes in the actuarial literature. Because of its benchmark character



142 Reinsurance: Actuarial and Statistical Aspects

we deal with it first. We then offer a number of generalizations in which the homoge-
neous Poisson process acts as the main building block.

From the definition it follows that the increments are independent and also stationary,
that is

Ñ(t) − Ñ(s) =d Ñ(t − s),  ≤ s < t < ∞,

with

pn(t) = e−𝜆t (𝜆t)n

n!
, n ∈ N.

Consequently

FÑ(t)(r) =

r! ∫

∞

𝜆t
e−wwrdw,

while also Qt(z) = exp{−𝜆t( − z)} so that

Q(r)
t (z) = e−𝜆t(−z)(𝜆t)r

.

It further follows that

E(Ñ(t)) = 𝜆t ; Var(Ñ(t)) = 𝜆t.

Properties of the homogeneous Poisson process Ñ(t) and jump arrival times

Tj ∶= inf{t >  ∶ Ñ(t) ≥ j}, j ∈ N

are as follows:

. The inter-arrival times Wj ∶= Tj −Tj−, j ∈ N where T ∶= , are i.i.d. exponential
random variables with mean ∕𝜆:

FWj
(x) =  − exp(−𝜆x), j ∈ N, x ≥ .

. Order statistics property: the conditional distribution of (T,… ,Tn)
given {Ñ(t) = n} for some n ∈ N equals the distribution of the order statistics
U,n ≤ U,n ≤ … ≤ Un,n of independent uniform (, t) distributed random variables
(e.g., see Sato []).

. Memoryless property: it follows from the first property that the distribution of the
time until the next arrival is independent of the time t we have already been waiting for
that arrival:

P(Wj > t + y|Wj > t) = P(Wj > y) for all y, t ≥ .

This property gives the homogeneous Poisson process a special role among all claim
number processes and may be seen as one of the main reasons for its popularity from a
modelling perspective.
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. Jump sizes: as t ↓ 

P(Ñ(t) = k) =
⎧⎪⎨⎪⎩

 − 𝜆t + o(t), if k = ,
𝜆t + o(t), if k = ,
o(t), otherwise,

where the notation f (t) = o(t) means limt→ f (t)∕t = . Hence, at any point in time, no
more than one claim can occur with positive probability.

Finally, note that the homogeneous Poisson process can be constructed based on
the sequence of i.i.d. exponential random variables (with rate 𝜆 > ) {Wj, j ≥ },
that is,

Ñ(t) =
∞∑
j=

{W+…+Wj≤t}.

5.2.2 Inhomogeneous Poisson Processes

A more general definition of the Poisson process goes as follows:
A general Poisson process is a stochastic process N = N

𝜇
= {N

𝜇
(t); t ≥ } that satisfies

the following properties:

(i) Càdlàg paths: the paths of N are almost surely càdlàg functions, that is right-
continuous with existing left limits.

(ii) Start at : N
𝜇
() =  almost surely.

(iii) Independent increments: for any  ≤ t < t < … < tn < ∞, n ∈ N, the increments
ΔNti

∶= N
𝜇
(ti) − N

𝜇
(ti−) are mutually independent for i = ,… , n.

(iv) Poisson increments: for a càdlàg function 𝜇 ∶ [,∞) → [,∞) with 𝜇(t) < ∞ for all
t ≥ , the increments have the following distribution:

N
𝜇
(t) − N

𝜇
(s) ∼ Poisson(𝜇(t) − 𝜇(s)),  ≤ s < t < ∞.

The non-decreasing function 𝜇 is called the mean-value function of N
𝜇

.

It is natural to call 𝜇 the mean-value function as it describes the expectation of the
process increments:

E(N
𝜇
(t) − N

𝜇
(s)) = 𝜇(t) − 𝜇(s),  ≤ s < t < ∞.

The homogeneous Poisson process described in the preceding subsection is the special
case of a linear mean-value function,

𝜇(t) = 𝜆t, t ≥ ,

for some intensity 𝜆 > .
An inhomogeneous Poisson process can be defined through a deterministic time-

change of a homogeneous process.
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. Let Ñ(t) be a homogeneous Poisson process with intensity 𝜆 =  and let 𝜇(.) be
a valid mean-value function, then the process defined by {Ñ(𝜇(t)), t ≥ } is an
inhomogeneous Poisson process with mean-value function 𝜇.

. Conversely, every inhomogeneous Poisson process N has a representation as a time-
changed Poisson process, that is, {N

𝜇
(𝜇−(t)), t ≥ } is a standard homogeneous

Poisson process.

In other words, the intensity changing over time can equivalently be interpreted as going
through time with constant intensity but varying speed. For this reason𝜇 is also referred
to as operational time: whereas time runs linearly for a homogeneous Poisson process,
it can be seen to speed up or slow down according to 𝜇 for an inhomogeneous Poisson
process.

If 𝜇 is continuous and strictly increasing with 𝜇(t) → ∞, then the inverse function 𝜇
−

exists and the inhomogeneous Poisson process can be converted back to a homogeneous
one with intensity  by a time change using 𝜇

−.
In many applications it is even assumed that 𝜇 is absolutely continuous, that there

exists a non-negative function 𝜆(.) such that

𝜇(t) =
∫

t


𝜆(s)ds, t ≥ ,

where the function 𝜆(.) is called the intensity function. Note that for a homogeneous
Poisson process with intensity 𝜆 >  we have 𝜆(t) ≡ 𝜆, t ≥ .

5.2.3 Mixed Poisson Processes

A far-reaching generalization of the ordinary Poisson process is obtained when the
parameter 𝜆 is replaced by a random variable Λ with mixing or structure distribution
function FΛ. This increases the flexibility of the model due to additional parameters
while keeping some of the main properties of the Poisson case. A common interpre-
tation of this model extension is given in terms of a counting process which consists
of two or more different sub-processes that individually behave as a Poisson process
with a specific intensity value (e.g., with a heterogeneous group of policyholders each
producing claims according to a simple Poisson process but with different intensities).
Note, however, that here for each sample path of N(t) the realization ofΛ is chosen once
at the beginning (i.e., in the above interpretation all counts then come from one of these
sub-processes).

A mixed Poisson process can be represented as

NΛ(t) = Ñ (Λ t) , t ≥ ,

where Ñ(t) is a homogeneous Poisson process and Λ is a positive random variable, and

pn(t) =
∫

∞


e−𝜆t (𝜆t)n

n!
dFΛ(𝜆), (..)
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while the generating function is given by

Qt(z) =
∫

∞


e−𝜆t(−z) dFΛ(𝜆). (..)

We evaluate the characteristics of the mixed Poisson process. It follows from the above
equations that

Q(r)
t (z) =

∫

∞


e−𝜆t(−z)(𝜆t)rdFΛ(𝜆).

The latter relations immediately yield a linearly increasing expected growth

E(NΛ(t)) =
∫

∞


𝜆tdFΛ(𝜆) = tE(Λ),

if E(Λ) exists. Similarly,

Var(NΛ(t)) = tE(Λ) + tVar(Λ),

and more generally

E

(
NΛ(t)

r

)
= tr

r!
E(Λr)

(again given that the respective moments of Λ exist). The expression for the variance
shows that among all mixed Poisson processes the Poisson process has the smallest
variance. Actually the variance will be linear if and only if Λ is degenerate and this
happens exactly for the Poisson case. The index of dispersion here equals

INΛ(t) =  + t Var(Λ)
E(Λ)

,

which is constant in time for the homogeneous Poisson process. Since this index
is always greater than , mixed Poisson processes are natural candidates to model
overdispersed claim number processes.

Another way of highlighting the role of the random variable Λ is the observation that
for s ≥ ,

E

{
e−s NΛ(t)

t

}
=
∫

∞


e−𝜆t(−e−s∕t) dFΛ(𝜆),

which for t ↑ ∞ tends to the Laplace transform of F̂Λ(s) = E(e−sΛ) of FΛ. This in turn
implies that

NΛ(t)
t

→d Λ, t ↑ ∞. (..)
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Again, conditional on NΛ(t) = n, the occurrence times of the n claim events are
uniformly distributed on (, t), that is, mixed Poisson processes also satisfy the
order statistics property. It also essentially characterizes the mixed Poisson processes
(see [], page ). However, for a non-degenerate mixing variable, a mixed Poisson
process no longer has independent increments (but conditionally independent ones).

The mixed Poisson process NΛ = {NΛ(t) t ≥ } was introduced to actuaries by
Dubourdieu []. For a very thorough treatment of mixed Poisson processes and their
stochastic properties, see Grandell []. We give a few special cases that have found
their way into the actuarial literature.

Examples

(a) A mild extension of the classical Poisson process leads to discrete mixtures of Poisson
processes. Here the structure distribution FΛ has at most countably many different
points of increase {𝜆i, i ∈ N} with 𝜆i > , where ai ∶= FΛ(𝜆i) − FΛ(𝜆i−) >  and∑∞

i= ai = . Then

Q(r)
t (z) =

∞∑
i=

aie−𝜆it(−z)(𝜆it)r
.

We give a set of examples.
(i) For the special case of two points of increase, see Seal []. Here

pn(t) = p
(𝜆t)n

n!
e−𝜆t + q

(𝜆t)n

n!
e−𝜆t

where p + q = ,  < p < .
In order to illustrate the difference between the homogeneous Poisson

process and a mixed Poisson process of this kind, in Figure . we show
simulated paths from both models with the same expected number of claims
per time unit. The mixture process shows two clusters of Poisson paths with
different slopes.

(ii) If we take a binomial distribution as mixing law then 𝜆i = i while ai =(M
i

)
piqM−i, i = , ,… ,M. Then the generating function is

Qt(z) = (p e−t(−z) + q)M
,

which yields E(N(t)) = tpN and Var(N(t)) = tpqN + tpN .
(iii) If the mixing is according to a Poisson distribution, that is,𝜆i = i and ai = e−𝜇 𝜇

i

i!
,

i ≥ , then

Qt(z) = e−𝜇(e𝜇e−t(−z) − ).

This mixed Poisson process is then of the Neyman-type A. Here E(N(t)) = 𝜇t
and Var(N(t)) = 𝜇t( + t).

(b) Another very popular special case of the mixed Poisson process is the Pólya
(also Pascal) process, obtained by choosing a gamma distribution for the random
variable Λ, that is,
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Figure 5.1 10 simulated Poisson paths on [, ]: homogeneous Poisson Ñ (top) and discrete mixed
Poisson with 𝜆 = ., 𝜆 = ., and p = . (bottom).

dFΛ(𝜆) =
b𝛼

Γ(𝛼)
e−b𝜆

𝜆
𝛼−d𝜆.

By a simple calculation we find the distribution of the number of claims up to time
t to be

pn(t) =
(
𝛼 + n − 

n

) (
b

t + b

)𝛼 ( t
t + b

)n
, (..)

which is a negative binomial distribution. In this form the result is due to Thyrion
[]. For some decades the negative binomial distribution has found applications
in actuarial contexts. Thanks to the fact that the distribution contains two param-
eters, it naturally allows greater flexibility for data fitting than the single parameter
Poisson distribution.
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Here are the other characteristics of the process. First of all,

FN(t)(r − ) = Γ(r + 𝛼)
Γ(𝛼) ∫

t∕b



ur−

( + u)r+𝛼 du.

Then the probability generating function is given by Qt(z) =
(

b
b+t(−z)

)𝛼

from which

Q(r)
t (z) = Γ(𝛼 + r)

Γ(𝛼)
b𝛼tr

(b + t( − z))𝛼+r

follows. The first few moments are given by

E(N(t)) = 𝛼
t
b

; Var(N(t)) = 𝛼
t
b

(
 + t

b

)
.

The Pólya process has been the prototype model for counting processes that show
overdispersion, a property shared by many actual insurance data. Another reason
why the Pólya process is popular is that one of its limiting forms is the Poisson
process and so mentally also the latter seems close to the Pascal case. Indeed, if
𝛼 → ∞, b → ∞ while 𝛼

b
→ 𝜆, then the Pólya process turns into the Poisson process.

(c) In [], Sichel introduced a distribution that can be obtained from a Poisson
distribution by mixing it with a general inverse Gaussian distribution of the form

h(𝜆) =
dFΛ(𝜆)

d𝜆
= 𝜇

−𝜂
𝜆
𝜂−

K
𝜂

(
𝜇

𝛽

) exp
{
−𝜆

 + 𝜇


𝛽𝜆

}

where the three parameters 𝛽, 𝜂 and 𝜇 are non-negative. The function K
𝜃

is the
modified Bessel function of the third kind (or MacDonald function). An integral
property of the Bessel function yields the following expression for the generating
function

Qt(z) = ( + 𝛽t( − z))−𝜂∕
K
𝜂

(
𝜇

𝛽

√
 + 𝛽t( − z)

)
K
𝜂

(
𝜇

𝛽

) .

The outcome is called the Sichel process. From properties of the Bessel function one
can derive an expression for the factorial moments in that

Q(r)
t () = (𝜇t)r

K
𝜂+r

(
𝜇

𝛽

)
K
𝜂

(
𝜇

𝛽

) .

The case 𝜂 = −∕ is particularly interesting since then the general inverse
Gaussian distribution simplifies to the classical inverse Gaussian distribution. The
resulting mixed process is called the Poisson-inverse Gaussian process. Wilmot []
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illustrates the usefulness of the Poisson-inverse Gaussian process as an alternative
to the negative binomial distribution. In particular the distribution has been fitted
to automobile frequency data. The structure function has a density given by

h(𝜆) = 𝜇√
𝜋b𝜆

e−
(𝜆−𝜇)

b𝜆 ,

while the generating function is given by the expression

Qt(z) = exp
{
−𝜇

b

(√
 + bt( − z) − 

)}
.

(d) We shortly mention a few other choices that have been applied in specific
portfolios.
(i) The log-zero Poisson process was, for example, used by Douglas [] with

Qt(z) =  − 𝜃 − c𝜃 log( − pet(z−)).

(ii) The Poisson-beta processes take a bounded or unbounded beta-density for h.
For the general case where

h(𝜆) = (b − a)−(p+q)

B(p, q)
(𝜆 − a)p−(b − 𝜆)q−

, a < 𝜆 < b

see, for instance, Albrecht []. Special cases are given in Kupper [] and
Willmot [].

(iii) Similarly the Poisson-gamma processes depart from a gamma density. Ruoho-
nen [] advocates the Delaporte distribution, which is obtained as a mixed
Poisson with as structure density a generalized gamma of the form

h(𝜆) = 𝛽
𝛼

Γ(𝛼)
(𝜆 − 𝛾)𝛼− exp{−(𝜆 − 𝛾)𝛽} , 𝜆 > 𝛾.

See Delaporte [], Willmot et al. [], and Schröter [].
(iv) Kupper [] uses the structure density

h(𝜆) = 𝛽
𝛼

Γ(𝛼)
𝜆
−(𝛼+)e−

𝛽

𝜆 ,

whose resulting probabilities can be expressed in terms of Bessel functions.

5.2.4 Doubly Stochastic Poisson Processes

Whereas in mixed Poisson processes the constant (static) intensity of a homogeneous
Poisson process is randomized, in a doubly stochastic Poisson process the entire mean-
value function of an inhomogeneous Poisson process is randomized.

Generalities on doubly stochastic Poisson processes. Let Ñ = Ñ
𝜆
= {Ñ(t); t ≥ }

denote the homogeneous Poisson process with intensity 𝜆. Independently, let
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M = {M(t); t ≥ } be a stochastic process that has almost surely non-decreasing
càdlàg paths with M() =  and M(t) < ∞ for t < ∞. Then the process {N(t) =
Ñ

𝜆
(M(t)) ; t ≥ } is called a doubly stochastic Poisson process directed by M. Doubly

stochastic Poisson processes are also called Cox processes based on the paper []
where this concept appeared first in a general form (the first treatment of a specific
form of such a process for actuarial purposes goes back even further, to Ammeter [],
see the Notes at the end of the chapter).

Hereafter, unless otherwise stated, we assume the intensity 𝜆 of the underlying
homogeneous Poisson process to be .

If there exists a non-negative process Λ = {Λ(t); t ≥ } such that M has the
representation

M(t) =d
∫

t


Λ(s)ds, t ≥ ,

then Λ is called the intensity process.
If M(t) = Λ() ⋅ t for some non-negative random variable Λ(), then the transformed

process is again a mixed Poisson process.
Given a sample path 𝜇(t) of M(t), it holds that for s < t

P(N(t) − N(s) = k|M(t) = 𝜇(t),M(s) = 𝜇(s))

= 
k!
(𝜇(t) − 𝜇(s))ke−(𝜇(t)−𝜇(s)).

Note that we do not need information concerning the full path of Λ between s and t, but
rather the values at s and t. This is not the case if we write this in terms of the intensity
process {Λ(t); t ≥ }:

P(N(t) − N(s) = k|Λ(u) = 𝜆(u), s ≤ u ≤ t)

= 
k!

(
∫

t

s
𝜆(u)du

)k

e− ∫
t

s 𝜆(u)du
.

From the conditional distribution of N(t) given {Λ(u),  ≤ u ≤ t} we obtain

Qt(z) = EΛ

(
e−(−z) ∫ t

 Λ(u)du
)
.

For the first two moments of doubly stochastic Poisson processes, note that from the
conditional distribution of N(t) − N(s) given {Λ(u), s ≤ u ≤ t} we find

E(N(t) − N(s)|Λ(u) = 𝜆(u), s ≤ u ≤ t) =
∫

t

s
𝜆(u)du,

from which

E(N(t) − N(s)) =
∫

t

s
E(Λ(u))du,

while from

Var(N(t) − N(s)|Λ(u) = 𝜆(u), s ≤ u ≤ t) =
∫

t

s
𝜆(u)du,
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we obtain

Var(N(t) − N(s)) =
∫

t

s
E(Λ(u))du + Var

(
∫

t

s
Λ(u)du

)
,

from which the overdispersion for doubly stochastic Poisson processes follows.
A probabilistic construction of the claim arrival process of a doubly stochastic Poisson

process can be based on the one-to-one correspondence between the claim arrival times
and claim number process

N(t) =
∞∑
j=

{Tj≤t}, t ≥ . (..)

If Wj (j ∈ N) denote independent standard exponentially distributed random vari-
ables, then

Tj = inf{t >  ∶ W +…+ Wj ≤ M(t)}, j ∈ N, (..)

N(t) =
∞∑
j=

{W+…+Wj≤M(t)}, t ≥ .

For a fixed time horizon T > , a sample path {N̂(t); t ∈ [,T]} of N(t) can now be
generated using the following steps for a given stochastic model for M(t):

. Simulate a path {M̂(t); t ∈ [,T]} from M(t) according to some suitably fine
discretization grid.

. Repeatedly draw independent standard exponentially distributed random variables
until their sum exceeds the level M̂(T), and compute the claim arrival times according
to (..).

. Determine the sample path {N̂(t); t ∈ [,T]} from the sampled claim arrival times
using (..).

While this algorithm is constructed directly on the very nature of a doubly stochastic
Poisson process, more efficient algorithms are available. See Korn et al. [] for an
application of the acceptance/rejection method in this context.

Doubly stochastic Poisson processes directed by Lévy subordinators. In [],
Selch introduced Cox processes Ñ

𝜆
(M(t)) directed by a Lévy subordinator M. Lévy

processes are characterized by their independent and stationary increments. In com-
parison with linear functions which have constant increments, Lévy processes have i.i.d.
increments. Homogeneous Poisson processes hence are an example of Lévy processes.
In the following we only state some basic facts and properties that we need for later
purposes. For more mathematical details on Lévy processes, see, for example, Sato
[], Schoutens [], and Applebaum [].

A stochastic process X = {X(t); t ≥ } is called a Lévy process if it has the following
properties:

(i) Start at : X() =  almost surely.
(ii) Independent increments: for any  ≤ t < t < … < tn < ∞, n ∈ N, the increments

ΔXti
∶= X(ti) − X(ti−) are mutually independent for i = ,… , n.
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(iii) Stationary increments: for any  < s < t the increments satisfy X(t) − X(s) =d
X(t − s).

(iv) Stochastic continuity: for all t ≥  and 𝜖 >  one has lims→t P(|X(t)−X(s)| > 𝜖) = .

For every Lévy process X one can construct a version that has càdlàg paths almost surely,
and we can hence assume the càdlàg property (cf. []). A Lévy process with almost
surely non-decreasing paths is called a Lévy subordinator, denoted here by M.

Due to the stochastic continuity of the process, the jumps of a Lévy process cannot
appear at any fixed point in time with a positive probability. Furthermore, due to the
càdlàg property of the paths, only countably many jumps can occur in any finite time
interval and the number of jumps with size larger than some arbitrary 𝜖 >  is finite.

One then considers the jump measure

J(A) = |{t ≥  ∶ (t, dX(t−)) ∈ A}|, A ∈ ([,∞) × R)

where dX(t−) = X(t) − lims↑t X(s), and the so-called Lévy measure

𝜈X(B) = E (J([, ] × B) , B ∈ (R).

One typically imposes an integrability condition such as ∫|x|<𝜖 |x|𝜈X(dx) < ∞ for the
small jumps to be well behaved. The famous Lévy–Khintchine representation completely
characterizes the distribution of the Lévy process in terms of the Lévy measure and an
extra drift parameter bX under the above integrability condition:

Let M be a Lévy subordinator. The Laplace transform F̂M(t) of M(t) can be expressed in
terms of the so-called Laplace exponent ΨM ∶ [,∞) → [,∞) by

F̂M(t)(u) = exp
(
−tΨM(u)

)
,

where the Laplace exponent is a Bernstein function derived from the characteristics of
the subordinator as

ΨM(u) = u bX +
∫

∞


( − e−ux)𝜈M(dx), u ≥ .

We give here some classical examples of Lévy subordinators.

. The homogeneous Poisson process with intensity 𝜆 >  with Laplace exponent
ΨM(u) = 𝜆( − exp(−u)) and Lévy characteristics bM =  and 𝜈M = 𝜆{∈B}, B ∈
((,∞)).

. The gamma (𝛼, 𝛽) subordinator: with M(t) being gamma distributed with density

fM(t)(x) =
𝛽
𝛼t

Γ(𝛼t)
x𝛼t−e−𝛽x

, x > .



Models for Claim Counts 153

The Laplace exponent is

ΨM(u) = 𝛼 log
(

 + u
𝛽

)
, u ≥ ,

while F̂M(t)(u) =
(

 + u
𝛽

)−𝛼t
, bM =  and

𝜈M(dx) = 𝛼 exp(−𝛽x) 
x

(,∞)(x)dx.

Moreover

F̂N(t)(s) =
(

 + 𝜆

𝛽
( − e−s)

)−𝛼t

,

from which

E(N(t)) = 𝛼

𝛽
𝜆t.

. The inverse Gaussian (𝛽, 𝜂) subordinator: here M(t) is assumed to follow the classical
inverse Gaussian distribution as given in example (c) of a mixed Poisson process with
𝜇 = (𝛽∕𝜂)t and b = 𝜂

− (cf. Section ..):

fM(t)(x) =
𝛽t√
𝜋x

exp
(
− 

x
(𝜂x − 𝛽t)

)
, x > .

The Laplace exponent is

ΨM(u) = 𝛽

(√
u + 𝜂 − 𝜂

)
, u ≥ .

Then F̂M(t)(u) = exp
(
−𝛽t

{√
u + 𝜂 − 𝜂

})
, bM =  and

𝜈M(dx) = √
𝜋
𝛽x−∕ exp

(
− 


𝜂

x
)

(,∞)(x)dx. Moreover

F̂N(t)(s) = exp
(
−𝛽t

{√
𝜆( − e−s) + 𝜂 − 𝜂

})
,

from which

E(N(t)) = 𝛽

𝜂
𝜆t.

Due to the jumps of the subordinator, the basic Poisson model is here extended to
allow for simultaneous claim arrivals. The Lévy subordinator M serves as the (random)
operational time (also referred to as stochastic clock).
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The discontinuity of paths of M entails that M is not differentiable. It follows that
no random intensity Λ exists for these Cox processes. Also, the process cannot be
converted back to the underlying independent Poisson process by a time change with
the inverse of the directing process.

Moreover, Selch [] showed that Ñ
𝜆
(M(t)) is a Poisson cluster process, which means

that the cluster sizes are i.i.d. and their arrival times are determined by an independent
Poisson process:

{N(t) ∶ t ≥ } =d

{L(t)∑
j=

Yj ∶ t ≥ 

}
,

where {L(t) ∶ t ≥ } denotes a Poisson process with intensity 𝜆L = ΨM(𝜆), and where,
independent of L, Y,Y,… are i.i.d. copies of a cluster size random variable Y with
Laplace transform F̂Y (u) = − ΨM(𝜆[−exp(−u)])

ΨM(𝜆)
. Hence the waiting times between clusters

should be exponentially distributed for this model to be applicable.
It may be desirable that the operational time, although randomly running slower and

faster, behaves on average like real time, that is,

E(M(t)) = t, for all t ≥ ,

which by the properties of Lévy processes is equivalent to

E(M()) = . (..)

Condition (..) is referred to as time normalization.
Note that the marginal distributions of N(t) at a given time point t equal that of a

mixed Poisson process. For the finite-dimensional distribution of N with time points
 = t < t < … < tn and integers  = k ≤ k ≤ … ≤ km, Selch [] provides the
expression

P(N(t) = k,… ,N(tn) = kn) = (−𝜆)knΠn
j=


(Δkj)!

F̂ (Δkj)
M(Δtj)

(𝜆) (..)

with Δkj = kj − kj− and Δtj = tj − tj− (j = ,… , n).

For the marginal distribution of N(t) and a gamma (𝛼, 𝛽) subordinator, this formula
must reduce to a negative binomial distribution. Indeed, then the derivatives of the
Laplace transform F̂M(t)(𝜆) are

F̂ (k)
M(t)(𝜆) = (−)k(𝛼t + k − )… (𝛼t)

(


𝛽 + 𝜆

)k (
𝛽

𝛽 + 𝜆

)𝛼t
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so that

P(N(t) = k) = (−𝜆)k

k!
F̂ (k)

M(t)(𝜆) =
(
𝛼t + k − 

k

)(
𝛽

𝜆 + 𝛽

)𝛼t (
𝜆

𝜆 + 𝛽

)k

which corresponds to (..).
We summarize the four models based on Poisson processes (PP) in Table ..
To illustrate the differences between the inhomogeneous Poisson and doubly stochas-

tic Poisson counting process models, Figure . depicts a simulated path from each as
well as a sample path of a homogeneous Poisson process with the same number of
expected claims. We also give the expected value curve together with bands that are
four standard deviations wide in each case. While the inhomogeneous Poisson process
follows a non-linear trend but shows Poisson jumps, the doubly stochastic Poisson
example allows for larger jump sizes, but maintains the same expected claim number
per time unit throughout the realization.

We emphasize that a main difference between a Pólya process (i.e., mixed Poisson
process with gamma-distributedΛ) and a doubly stochastic Poisson process directed by
a gamma subordinator is that in the latter case for each new time interval the realization
of Λ is sampled anew, whereas for the Pólya process the same value is used throughout.
From this point of view, the interpretation of heterogeneous policies to motivate this
model is more intuitive for the doubly stochastic Poisson process, as at each time
instant the next claim(s) may come from a different group of policies with another
claim intensity. In particular, when considering model fitting to discrete claim counts in
Section . under an i.i.d. assumption for the available realizations of claim numbers,
the doubly stochastic Poisson process is arguably the more natural continuous-time
version of this model.

Table 5.1

Homogeneous PP Inhomogeneous PP

Ñ
𝜆
(t) N

𝜇
(t) = Ñ(𝜇(t))

𝜇(t) = 𝜆t, 𝜆(u) ≡ 𝜆 𝜇(t) = ∫
t

 𝜆(u)du
E(Ñ

𝜆
(t)) = Var(Ñ

𝜆
(t)) = 𝜆t E(N

𝜇
(t)) = Var(N

𝜇
(t)) = 𝜇(t)

Mixed PP Doubly stochastic PP

NΛ(t) = Ñ(Λt) NM(t) = Ñ(M(t))
M(t) = Λt M(t) = ∫

t
 Λ(u)du

E(NΛ(t)) = tE(Λ) E(NM(t)) = ∫
t

 E(Λ(u))du
Var(NΛ(t)) = tE(Λ) + tVar(Λ) Var(NM(t)) = ∫

t
 E(Λ(u))du
+Var

(
∫

t
 Λ(u)du

)
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Figure 5.2 Simulated path on [, ] with mean value and mean value +/- 2 standard deviation
curves: homogeneous Poisson Ñ (top); inhomogeneous Poisson with 𝜆(u) =  + sin(𝜋u∕) (middle);
doubly stochastic Poisson directed by a gamma subordinator (𝛼 = , 𝛽 = ) (bottom).
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Multivariate extensions. The general framework of Cox processes allows several
multivariate extensions. Multivariate Cox processes driven by shot-noise processes are
treated in Scherer et al. []. Another natural way to introduce dependence between
claim numbers of different lines of business or categories is to start with a priori
independent Poisson processes for each, but then direct them all by the same Lévy
subordinator. This causes simultaneous claim occurrences in the different business
lines in an intuitive way (cf. Selch []). To this end let Nj = {Nj(t); t ≥ } count
the claims arriving in each portfolio j = ,… , d up to time t ≥ . In a traditional
modelling approach claim arrivals in each portfolio j are assumed to follow independent
homogeneous Poisson processes Ñj = {Ñj,𝜆j

(t); t ≥ } with individual intensities
𝜆j > . Let �̃� = (Ñ,𝜆

,… , Ñd,𝜆d
) be the corresponding multivariate standard Poisson

process with independent marginals with intensity vector 𝝀 = (𝜆,… , 𝜆d). The multi-
variate Cox process 𝐍 = (N,… ,Nd) is then defined through

𝐍 = �̃�𝝀(M(⋅))
=
{(

Ñ,𝜆
(M(t)),… , Ñd,𝜆d

(M(t))
)
; t ≥ 

}
. (..)

This process naturally generates dependence between the d portfolios, as the stochastic
factor M similarly affects all components. Furthermore, while the underlying Poisson
process yields only jumps of size one, the subordinator and therefore time can now
jump, leading to simultaneous claim arrivals within and between the individual portfo-
lios in the time-changed process.

Expression (..) for the finite-dimensional distributions of 𝐍 with time points
 = t < t < … < tn and integer vectors 𝟎 = 𝐤 ≤ 𝐤 ≤ … ≤ 𝐤n with𝐤i = (k()

i ,… , k(d)
i )

now generalizes to (cf. []):

P(𝐍(t) = 𝐤,… ,𝐍(tn) = 𝐤n) = (−𝝀)𝐤nΠn
i=


(Δ𝐤i)!

F̂ (|Δ𝐤i|)
M(Δti)

(|𝝀|) (..)

with Δ𝐤i = (k(j)
i − k(j)

i−; j = ,… , d), Δti = ti − ti−, i = ,… , n, where we use the
notation |𝐱| = |(x,… , xd)| = |x| +…+ |xd|, 𝐱𝐤 = xk

 … xkd
d and 𝐤! = k!… kd!.

5.3 Other Claim Number Processes

In this section we deal with a number of examples of claim number processes which are
further extensions of the Poisson model in various directions.

5.3.1 The Nearly Mixed Poisson Model

A further generalization of the mixed Poisson model, hence of the Poisson process, is
obtained by the assumption that the counting process satisfies the following condition
(cf. (..)): there exists a non-negative random variable Λ such that as t ↑ ∞,

N(t)
t

→d Λ.
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A counting process that satisfies this condition will be called nearly mixed Poisson.
We mention that this definition lacks a dynamic background, while the mixed Poisson
process can be constructed using precise dependence rules between the successive
variables {Ti, i ≥ }. Nevertheless, the nearly mixed Poisson process encompasses quite
a number of other models.

The convergence in distribution is equivalent to pointwise convergence of the corre-
sponding Laplace transforms. Hence for all 𝜃 ≥  one has that

E{e−𝜃
N(t)

t } → E{e−𝜃Λ} = F̂Λ(𝜃) (..)

where F̂Λ(𝜃) is the Laplace transform of a distribution FΛ that we keep calling the mixing
distribution. By the continuity of the limit F̂Λ we see that (..) is equivalent to the
condition that for all values of 𝜃 ≥ ,

E

({
 − 𝜃

t

}N(t))
→ F̂Λ(𝜃).

By the definition of the generating function

Qt

(
 − w

t

)
→ F̂Λ(w)

for all w ≥ . The main difference to the mixed Poisson model is that for the latter
there is equality in the above relation while for the nearly mixed Poisson case, the
generating function attains the quantity F̂Λ(w) only in the limit. Clearly, conditioning
on the random variable Λ we see that, for any u ∈ R,

E

{
exp iu N(t) − tΛ√

t

}
=
∫

∞


E

{
exp

(
iu N(t) − t𝜆√

t
|Λ = 𝜆

)}
dFΛ(𝜆).

By the central limit theorem for the Poisson process one arrives at

P

{
N(t) − tΛ√

t
≤ x

}
→

∫

∞


Φ

(
x√
𝜆

)
dFΛ(𝜆),

where Φ is the standard normal distribution function. Also the infinitely divisible
processes and renewal processes discussed below are examples of nearly mixed Poisson
processes.

5.3.2 Infinitely Divisible Processes

The Poisson process directed by a Lévy subordinator discussed in Section .. is itself a
Lévy process (in fact, another Lévy subordinator), and as such has i.i.d. increments. The
general class of counting processes with i.i.d. increments is of interest. For this to hold
the distribution at each time point t has to be infinitely divisible (i.e., is the distribution
of a sum of n i.i.d. random variables for any n ∈ N), but from Sato [, Cor. .]
it follows that the class of discrete infinitely divisible distributions coincides with the
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one of compound Poisson distributions with integer-valued jump size distribution. The
probability generating function of an infinitely divisible counting process hence can be
expressed as

Qt(z) = e−𝜆t(−g(z))

where g(z) ∶= E(zG) is the probability generating function of a discrete random variable
G on the strictly positive integers. In the special case where g(z) = z one gets back to the
classical Poisson process. For other choices of g(z), the counting process should be called
a (discrete) compound Poisson process. Note that instead of “stretching” the time axis as
in the subordination approach one here specifies explicitly a discrete distribution for the
number of additional claims at each Poisson instant. In fact, all processes that can be
constructed this way correspond to a Lévy subordinator (e.g., see [, Thm. .]), but
the explicit alternative construction in terms of the random variable G is quite intuitive.

The probabilities are given in the form

pn(t) =
∞∑

k=
e−𝜆t (𝜆t)k

k!
g∗k

n

where {g∗k
n ; n = , ,…} is the k-fold convolution of the distribution {gn} with

probability generating function g(z). Needless to say the explicit evaluation of the above
probabilities is mostly impossible because of the complex form of the convolutions.

A general form for Q(r)
t (z) can be given by using Faa di Bruno’s formula

Q(r)
t (z) = Qt(z)

r∑
i=

(𝜆t)i
∑
{aj}

r!
a!… ar!

r∏
k=

{
g(k)(z)

k!

}ak

where the inside sum runs over all integers aj ≥  for which a + a +⋯ + ar = i and
simultaneously a + a + ⋯ + rar = r. From the first two r values one obtains the
expressions

E(N(t)) = 𝜆t E(G),Var(N(t)) = 𝜆t E(G).

Kupper [] gives some nice applications of such a construction of infinitely divisible
processes to model claim counts, where the Poisson process refers to the number of
accidents and the number of casualties in accident i is given by the random variable Gi.

Any infinitely divisible process provides an example of a nearly mixed Poisson process
as long as E(G) < ∞. Here F̂Λ(w) = exp{−𝜆wE(G)} so that the limiting mixing
distribution is again degenerate but now at the point 𝜆E(G).

Here are a few more explicit cases that have appeared in the actuarial literature.

(i) As a first particular case one finds a generalized Poisson–Pascal process introduced
by Kestemont and Paris [], where g(z) = ( − 𝛽(z − ))−𝛼 is the generating
function of a negative binomial random variable (this is not to be confounded with
the gamma-subordinated Poisson process, where the overall number of claims up
to time t is negative binomially distributed).

(ii) If g(z) = (e𝜃z − )(e𝜃 − )− then G is a truncated Poisson and the corresponding
claim process is of Neyman-type A.
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(iii) If g(z) = (( − 𝜃)z)( − 𝜃z)− with  < 𝜃 < , then G is a truncated geometric. The
generating function is

Qt(z) = exp
{
−𝜆t

(
 − ( − 𝜃)z

 − 𝜃z

)}
.

The probabilities can be evaluated explicitly in terms of Laguerre polynomials

pn(t) = P (N(t) = n} =

{
e−𝜆t if n = ,
e−𝜆t

𝜃
nL−

n

(
− 𝜆t(−𝜃)

𝜃

)
if n ≥ .

The latter counting process is called the Pólya–Aeppli process.

5.3.3 The Renewal Model

If the inter-claim times {Wi = Ti − Ti−; i = , ,…} (with T = ) are i.i.d. (non-
negative) random variables with cumulative distribution function (c.d.f.) FW , then the
corresponding claim number process N(t) is called a renewal process. This process was
introduced in risk theory by Sparre Andersen [], so that often this model is referred
to as the Sparre Andersen model. Since

{N(t) = n} = {Tn ≤ t < Tn+}

one has that

pn(t) = F∗(n)
W (t) − F∗(n+)

W (t).

In general, successive convolutions of a distribution cannot be evaluated explicitly.
The only simple exception is provided by the exponential case FW (t) =  − e−𝜆t , for
which N(t) is a Poisson process. The Poisson process is actually the only mixed Poisson
process that is simultaneously a renewal process.

The generating function is also cumbersome, since

Qt(z) =  +
(

 − 
z

) ∞∑
n=

F∗(n)
W (t)zn

. (..)

From (..), (..) and 𝜇 = E(W ) it follows that

E(N(t)) = Q′

t() =
∞∑

n=
F∗(n)

W (t) =∶ U(t) ∼ t
𝜇

where U(t) is the classical renewal function generated by W . The evaluation of the
variance is already somewhat tedious but leads to

Var(N(t)) =  U ∗ U(t) + U(t) − U(t) ∼ 𝜎


𝜇 t

where 𝜎
 = Var(W ).
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Any renewal process generated by a distribution with a finite mean is a nearly mixed
Poisson. This follows from the so-called weak law of large numbers from renewal theory:
if the mean 𝜇 of the interclaim time distribution is finite, then N(t)∕t →d Λ where Λ is
degenerate at the point ∕𝜇.

The renewal model is an extension of the Poisson process that allows for an elegant
mathematical treatment. We refer to Feller [] and Rolski et al. [] for detailed
accounts. At the same time, its practical importance is limited, as the implicitly intro-
duced particular memory pattern between claim times is typically hard to interpret or
justify in the insurance context.

5.3.4 Markov Models

Another model for the claim number process can be provided by a pure (non-
homogeneous) birth process. Here the probabilities {pn(t); n ≥ , t ≥ } satisfy a
system of Kolmogorov difference-differential equations, well-known from the theory
of continuous-time Markov chains. Then

dpn(t)
dt

= −𝜆n(t)pn(t) + 𝜆n−(t)pn−(t), n ≥ , (..)

where we take 𝜆−(t) = . The transition probabilities can sometimes be explicitly
evaluated.

(i) The first such example is the Poisson process where 𝜆n(t) = 𝜆.

(ii) The mixed Poisson process also has a representation of the above form, with

𝜆n(t) =
∫

∞
 𝜆

n+e−𝜆t dFΛ(𝜆)

∫
∞

 𝜆ne−𝜆t dFΛ(𝜆)
.

(iii) Another one is provided by the Yule process where 𝜆n(t) = n𝜆. It is then easy to
show that for n ≥ ,

pn(t) = e−𝜆t( − e−𝜆t)n
,

so that the generating function is given by

Qt(z) = e−𝜆t( − z( − e−𝜆t))−
.

For details and more examples, see [, Ch. ].

5.4 Discrete Claim Counts

In this section we consider models when fixing the time unit under consideration (which
typically will be one year). If the portfolio (and risk exposure) remains unchanged over
the years, this number is often assumed to be an i.i.d. random variable over the years
(otherwise, it is common to apply volume corrections to justify the assumption). Clearly,
sampling the counting process of Sections . and . at equidistant time instants gives
candidates for such discrete claim counts, and whenever the continuous-time process
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is of Lévy type then the resulting discrete counts will inherit the i.i.d. property. Whereas
this discussed approach gives the general picture, one can also start directly by fitting
a discrete distribution to (annual) aggregate claim counts (one may also argue that
a certain discretization is in any case natural, since exact claim times will often not
be available). The Poisson and negative binomial distribution then play a special role,
not only because of their interpretations originating from the continuous-time view,
but also due to the simplicity under which one can perform resulting aggregate claim
calculations, as we will see in Chapter .

So let us now take the (also traditional) viewpoint of modelling the discrete claim
counts directly. In this section we then omit to refer to time as a parameter.

A very popular set of claim number distributions is the (a, b, ) class.. It is based on
a simple recursion for pn ∶= P(N = n), namely

pn =
(

a + b
n

)
pn−, n ≥ . (..)

Note that the recursion does not specify the quantities p and p. Nevertheless the
requirement

∑∞
n= pn =  eliminates one of the latter two parameters, so that the (a, b, )

class may be used for data-fitting using the three parameters a, b and 𝜌 ∶= p.

One can rewrite Q(z) ∶=
∑∞

n= pnzn in the form Q(z) = 𝜌+(−𝜌)R(z)where 𝜌 ∈ [, ],
and R(z) is again a generating function of a discrete probability distribution {rn; n ≥ }.
The effect of the parameter 𝜌 is to introduce an eventual extra weight at the point .
This is often done by truncation in the sense that 𝜌 = P(N = ) while R(z) is the
generating function of the probabilities P(N = k|N > ). If we shift the distributions
one integer to the left and take 𝜌 =  then we of course get the classical unshifted
distributions.

Relation (..) can be solved in a variety of ways. We use generating functions
Q(z) = E(zN ). Then (..) turns into a first-order differential equation

( − az) Q′(z) = (a + b) Q(z) + p − (a + b)𝜌 (..)

where 𝜌 = p = P(N = ). We have to solve this equation with the side condition
Q() =  while we also know that Q() = 𝜌. These two conditions suffice to determine
the constant of integration as well as the unknown quantity p.

● Case : a = 
This case is rather easy and quickly leads to the expression

Q(z) = 𝜌 + ( − 𝜌)ebz − 
eb − 

.

From this it follows that

pn =  − 𝜌

 − e−b
bn

n!
e−b

, n ≥ ,

 We take this nomenclature from Klugman et al. []. It is also often referred to as the Panjer class or
Sundt–Jewell class (cf. []), as these scholars introduced it to actuarial circles. Note, however, that the
class had already been studied in detail in  by Johnson and Kotz [].
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which is a shifted Poisson distribution. To illustrate this, take rn = e−b bn

n!
then pn = rn

−r
.

Put another way, if 𝜌 = e−b then we fall back on the classical Poisson model with
parameter b.

● Case : a ≠ .
It seems advantageous to introduce an auxiliary quantity Δ ∶=  + b∕a. The solution
to the differential equation (..) is slightly more complicated.
– Subcase (a): Δ ≠ 

Then the generating function is given by

Q(z) = 𝜌 + ( − 𝜌) ( − az)−Δ − 
( − a)−Δ − 

. (..)

Here

R(z) = ( − az)−Δ − 
( − a)−Δ − 

.

This expression is akin to the probability generating function for a negative bino-
mial distribution with parameters Δ and a. Hence

rn =
(

Δ + n − 
n

)
an( − a)Δ

and with r = ( − a)Δ we see that the negative binomial distribution is a member
of the (a, b, ) class.

– Subcase (b): Δ = 
Now the solution is

Q(z) = 𝜌 + ( − 𝜌)
log( − az)
log( − a)

(..)

which easily leads to the logarithmic distribution

pn =  − 𝜌

− log( − a)
an

n
, n ≥ . (..)

Here a shift is unnecessary since the logarithmic distribution is concentrated on
the positive integers.

We consider two special cases.
(i) If Δ = −m, a negative integer, then we run into a distribution that is related to the

binomial distribution. Indeed, choosing

rn =
(

m
n

)
cn( − c)m−n

,

then with r = ( − c)m and c = a
a−

we see that the binomial distribution is also
a member of the (a, b, ) class.
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(ii) If Δ = −𝜃 ∈ (−, ) a similar calculation relates to the Engen distribution
introduced by Willmot in []

rn ∶= rn(𝜃, a) =
𝜃

( − a)𝜃 − 
anΓ(n − 𝜃)
n!Γ( − 𝜃)

, n ≥ 

which is again a distribution concentrated on the positive integers.

5.5 Statistics of Claim Counts

The statistical toolbox for modelling claim counts can be divided into two cases: whether
one only knows the number of claims in a given fixed time window, say one year,
or whether the specific arrival times or dates of the claims are known. Clearly, the
statistical information is much richer in the second case and procedures for fitting
Poisson, homogeneous or inhomogeneous, or even Cox processes, can, for instance,
be based on waiting times between subsequent claims.

5.5.1 Modelling Yearly Claim Counts

Statistical analysis of claim count data is typically performed by generalizing the normal
theory using the exponential family of distributions, which comprises popular models
for claim counts such as the Poisson, binomial and other models, and which can be
extended to important cases such as the negative binomial distribution.

The exponential family of distributions is defined through the probability density
functions f for which

log f (y; 𝜃, 𝜙) =
y𝜃 − b(𝜃)

a(𝜙)
+ c(y;𝜙)

for parametrization (𝜃, 𝜙) with 𝜃 the parameter of interest and 𝜙 a nuisance parameter,
and some functions b only depending on 𝜃, and a and c only depending on 𝜙.

Typical examples are

(i) the Poisson distribution with

log f (y; 𝜆) = y log 𝜆 − 𝜆 − log y! ,

for which 𝜃 = log 𝜆, a(𝜙) = 𝜙 = , b(𝜃) = exp(𝜃) = 𝜆, and c(y;𝜙) = − log y!
(ii) the binomial model with

log f (y; p) = y log
p

 − p
+ n log( − p) + log

(
n
y

)
,

for which 𝜃 = log p
−p

, a(𝜙) = 𝜙 = , b(𝜃) = −n log( − p) = n log( + e𝜃), and

c(y;𝜙) = log
(

n
y

)



Models for Claim Counts 165

(iii) the negative binomial model as introduced in (..) with t =  satisfies

log f (y; b, 𝛼) = −y log( + b) + 𝛼 log b
 + b

+ log
Γ(𝛼 + y)
Γ(𝛼)y!

,

so that 𝜃 = − log( + b), a(𝜙) = 𝜙 = , b(𝜃) = −𝛼 log b
+b

= −𝛼 log( − e𝜃),
and c(y;𝜙) = log Γ(𝛼+y)

Γ(𝛼)y!
. Hence the negative binomial example only belongs to the

exponential family for known 𝛼.

This family can be treated using classical likelihood theory stating that with

U ∶=
d log f (Y ; 𝜃)

d𝜃
and U′ ∶=

d log f (Y ; 𝜃)
d𝜃

one has

E(U) =  and Var(U) = E(U) = −E(U′),

from which we obtain that

E(Y ) = b′(𝜃) and Var(Y ) = b′′(𝜃)a(𝜙)

since U = (Y − b(𝜃))∕a(𝜙) and U ′ = −b′′(𝜃)∕a(𝜙). Hence 𝜙 is a dispersion parameter,
while b′(𝜃) gives the expected value of the variable Y :

(i) in the Poisson case we obtain the well-known results

𝜇 = E(Y ) = b′(𝜃) = e𝜃 = 𝜆 and Var(Y ) = b′′(𝜃)a(𝜙) = e𝜃 = 𝜆

(ii) in the binomial setting

𝜇 = E(Y ) = b′(𝜃) = n e𝜃
 + e𝜃

= np,

Var(Y ) = b′′(𝜃)a(𝜙) = n e𝜃
( + e𝜃) = np( − p) < E(Y )

(iii) in the negative binomial case

𝜇 = E(Y ) = b′(𝜃) = 𝛼
e𝜃

 − e𝜃
= 𝛼∕b,

Var(Y ) = b′′(𝜃)a(𝜙) = 𝛼
e𝜃

( − e𝜃) = 𝛼

b
 + b

b
= E(Y )

(
 + 

b

)
> E(Y ).

These results confirm the underdispersion in case of the binomial model and the
overdispersion in the negative binomial case as it was already found for all mixed
Poisson models.
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Now the expected value 𝜇 = E(Y ) can be modelled as a function of a covariate
(vector), either in a parametric or non-parametric way. Here we consider the application
with accident year or claim arrival year t as a covariate. While in practice the non-
parametric approach often gives a start, we first discuss here the parametric modelling
approach since the non-parametric solution uses the theory behind the parametric
analysis.
● Parametric modelling happens through generalized linear models (GLM). A standard

reference here is McCullagh and Nelder []. A GLM allows the transformation of
the systematic part of a model without changing the distribution of the variable under
consideration. The link function g connects the mean 𝜇i of the observed variables
Yi, i = ,… , n, with the covariate. Assuming a simple linear predictor we then
propose

g(𝜇i) = 𝛽 + 𝛽ti, i = ,… , n,

where g is a smooth monotonic function and t,… , tn are the values of the covariate.
For instance, when using the Poisson or negative binomial model for Y , g = log is a
popular link function. The linear predictors

𝜂i = 𝛽 + 𝛽ti, i = ,… , n,

are used in maximizing the log-likelihood based on the vector 𝐲 = (y,… , yn) of
observations

𝓁(Θ; 𝐲) =
n∑

i=
log fY (𝜃i, 𝜙, yi) =

n∑
i=

{yi𝜃i − b(𝜃i)
a(𝜙)

− c(yi, 𝜙)
}

,

where Θ = (𝜃,… , 𝜃n), and 𝜃i = (g◦b′)−(𝜂i) denotes the inverse function of the
composition of g and b′. The functions a, b and c may vary with i, for instance to allow
different binomial parameters n = ni for each observation of a binomial response or
to allow for different 𝛼 in the negative binomial model. Also, for practical work, it
suffices to consider ai(𝜙) = 𝜙∕𝜔i where the weights 𝜔i are known constants. It will
often be convenient to consider Var(Y ) as a function of E(Y ) = 𝜇, and then we can
define a function V such that V (𝜇) = b′′(𝜃)∕𝜔 so that Var(Y ) = V (𝜇)𝜙.

Likelihood maximization then proceeds by partial differentiation of 𝓁 with respect
to each 𝛽 parameter:

𝜕𝓁
𝜕𝛽j

= 
𝜙

n∑
i=

𝜔i
(
yi − b′

i(𝜃i)
) 𝜕𝜃i
𝜕𝛽j

.

Moreover

𝜕𝜃i
𝜕𝛽j

=
𝜕𝜃i
𝜕𝜇i

𝜕𝜇i
𝜕𝛽j

= 
b′′

i (𝜃i)
𝜕𝜇i
𝜕𝛽j

,
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where the last step follows from 𝜕𝜇∕𝜕𝜃 = b′′(𝜃). Hence

𝜕𝓁
𝜕𝛽j

= 
𝜙

n∑
i=

yi − 𝜇i

b′′
i (𝜃i)∕𝜔i

𝜕𝜇i
𝜕𝛽j

,

and the equations to solve are

n∑
i=

yi − 𝜇i
V (𝜇i)

𝜕𝜇i
𝜕𝛽j

= , j = , ,…

These equations are in fact the solving equations of non-linear least squares regression
analysis with objective function

∑n
i=(yi − 𝜇i)∕V (𝜇i), where 𝜇i depends non-linearly

on the 𝛽 parameters. This set of equations is then solved iteratively.
In many cases the nature of the response distribution is not known precisely, and

it is only possible to specify the relationship between the variance and the mean of
the responses, that is, the function V can be specified, but little more. Then, quasi-
likelihood using the log quasi-likelihood

q(𝜇,… , 𝜇n) =
n∑

i=
∫

𝜇i

yi

yi − z
𝜙V (z)

dz

leads to exactly the same equations as the full likelihood approach.
As a goodness-of-fit criterion the scaled deviance

D∗(𝐲,Θ) = 
(
𝓁(𝐲; 𝐲) − 𝓁(Θ̂; 𝐲)

)
is proposed, which constitutes twice the difference between the maximum achievable
log-likelihood obtained by setting �̂�i = yi, and that achieved by the model under
investigation. Moreover it can be shown that for large enough sample size n

D∗(𝐲,Θ) ≈d 𝜒

n−dim(𝛽)

, (..)

where dim(𝛽) denotes the number of regression parameters 𝛽. In our example
dim(𝛽, 𝛽) = .

The scaled deviance based on the fitted model can be written as

D∗(𝐲, Θ̂) = 
𝜙

n∑
i=

wi
(
yi(𝜃i − �̂�i) − b(𝜃i) + b(�̂�i)

)
=∶

D(𝐲, Θ̂)
𝜙

(..)

with 𝜃i denoting the estimates of the parameters 𝜃i based on the full model with n
parameters with maximum achievable likelihood 𝓁(𝐲; 𝐲). Here D(𝐲, Θ̂) is known as
the deviance for the current model.

Hence based on (..) and (..) we find an estimator for the parameter 𝜙:

�̂� =
D(𝐲, Θ̂)

n − dim(𝛽)
. (..)
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Another important goodness-of-fit measure for a given regression model is the
explained deviance

 −
D(𝐲, Θ̂)

D(no regression)

where D(no regression) denotes the deviance for the model with only an intercept
𝜂i = 𝛽 (i = ,… , n). This generalizes the adjustment coefficient in classical linear
regression and expresses which percentage of the total deviance before regression has
been explained by using a regression model, which is the complement of how much
unexplained deviance remains after using the postulated regression model.

Finally, when 𝜙 is unknown, nested GLMs with p and p (p < p) parameters
(and corresponding deviances denoted by D and D) can be compared with the
generalized likelihood ratio test, rejecting [H: model with p parameters holds] for
large values of

F =
(D − D)∕(p − p)

D∕(n − p)

with F ≈d Fp−p,n−p
under H.

(i) Poisson model: The deviance of the Poisson model is given by

D(𝐲, Θ̂) = 
n∑

i=

(
yi log

yi
�̂�i

− (yi − �̂�i)
)
.

If a constant term is included in the model it can be shown that
∑

i(yi − �̂�i) = ,
and hence then

D(𝐲, Θ̂) = 
n∑

i=
yi log

yi
�̂�i
,

which for large 𝜇 can be approximated by

D(𝐲, Θ̂) ≈
n∑

i=
(yi − �̂�i)∕�̂�i,

which is the so-called Pearson 𝜒
 statistic.

Overdispersion can be deduced from fitting a Poisson model with which the 𝜙

parameter using (..) is larger than .

(ii) Negative binomial model: here the log-likelihood is given by

𝓁 =
n∑

i=

(
yi log

𝜇i
𝜇i + 𝛼

− 𝛼 log
(

 +
𝜇i
𝛼

)
+ c(yi)

)
,
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from which a maximum likelihood estimator of 𝛼 can be traced back through
a non-linear equation involving the digamma function. The deviance is then
given by

D(𝐲, Θ̂) = 
n∑

i=

(
yi

[
log

yi
yi + �̂�

− log
�̂�i

�̂�i + �̂�

]
−�̂�

[
log

(
 +

yi
�̂�

)
− log

(
 +

�̂�i
�̂�

)])
.

● Non-parametric modelling can be performed using generalized additive modelling
(GAM) where the expected counts are modelled through a smooth non-parametric
function h ∶ [,T] → R not depending on specific parameters. Here the linear
predictor predicts through some smooth monotonic function of the expected value
of the response, and the response may follow any exponential family distribution,
or simply have a mean-variance relationship permitting to use the quasi-likelihood
approach. The resulting model is then of the kind

g(𝜇i) = h(ti), i = ,… , n.

Given knot locations s < s < … < sm, one defines a basis b(t) = , b(t) = t, bi+(t)
(i = ,… ,m − ) where bi+(t) denote cubic splines linked to the knots. Then, the
function h at ti is estimated through

𝜂i = 𝛽 + 𝛽ti + 𝛽b(ti) +… + 𝛽mbm(ti), i = ,… , n,

which yields a generalized linear model in the unknown parameters 𝛽,… , 𝛽m. This
then leads to minimizing the penalized objective function using a smoothing param-
eter 𝜆 which controls the weight to be given to the smoothing:

n∑
i=

(yi − 𝜇i)

V (𝜇i)
+ 𝜆𝛽

tS𝛽,

with 𝛽 = (𝛽,… , 𝛽m)t and S a symmetric m × m matrix only depending on the knots.
Such analysis allows to validate a parametric proposal for the shape of a parametric
regression function of 𝜆 or 𝜇. We refer to Wood [] for more details.

Case study: Dutch fire insurance data. The explained deviances for the Poisson GAM
fit is .% while for the negative binomial fit it is only %. Testing the null hypothesis
of constant means 𝜇i cannot be rejected using the negative binomial model, but can be
rejected under the Poisson model. Indeed, the horizontal line at the overall mean level
jumps out of the Poisson confidence bound in  (see Figure .).

Case study: MTPL data for Company A. The explained deviances of the Poisson
GAM fit is %, while for the negative binomial it is only .%. Testing the null
hypothesis of constant means 𝜇i over the different years cannot be rejected with a P-
value of .. Note that the horizontal line in Figure . at the overall mean level is
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Figure 5.3 Dutch fire insurance data, claim counts: time plot of the yearly occurrences (top);
non-homogeneous Poisson and negative binomial fits using GAM on 𝜇i, together with horizontal line
from Poisson fit with no regression 𝜇i = 𝜇 (bottom).

situated completely within the Poisson and negative binomial confidence bounds. In
this case the premium volume (not disclosed here) was also available from  on
as an exposure measure 𝜔t . Using the exposure as an offset, this is, considering the
GAM regression with response log(𝜇t∕𝜔t), the explained deviance of the Poisson fit on
this interval equals .% (see Figure .). Note that since the reinsurer only observes
claims reaching the reporting threshold, the Poisson distributions for year i is thinned
by a value P(T ≤ 𝜈i − ), where T denotes the reporting delay and 𝜈i is the number of
years separating evaluation date and the claim occurrence year. Here we can refer to
Figure . for estimates of these thinning probabilities. The delays being rather small in
this case study there was hardly any influence on the resulting estimates.

Case study: MTPL data for Company B. As discussed in Chapter  (see Figure .)
the reporting thresholds for this company changed drastically from  onwards,
from which one can expect some significant changes in the mean number of claims
reported to the reinsurer. The Poisson and negative binomial GAM fits hardly show any
difference. The Poisson and negative binomial explained deviances are both about %.
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Figure 5.4 MTPL data for Company A, claim counts: time plot of the yearly occurrences (top);
non-homogeneous Poisson and negative binomial fits using GAM on 𝜇i, together with horizontal line
from Poisson fit with no regression 𝜇i = 𝜇 (middle); Poisson and negative binomial fits with exposure
as offset (bottom).
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Figure 5.5 MTPL data for Company B, claim counts: time plot of the yearly occurrences (top);
non-homogeneous Poisson and negative binomial fits using GAM on 𝜇i, together with horizontal line
from Poisson fit with no regression 𝜇i = 𝜇 (bottom).

The test for constant mean is strongly rejected with a P-value equal to . × −

(see Figure .).

5.5.2 Modelling the Claim Arrival Process

If one has more refined information on the times of claim occurrences, and hence the
waiting times between these events, one can analyze the Poisson properties for these
data based on the order statistics property and the independence and exponentiality of
the waiting times Wi, i = ,… , n. To verify the order statistics property one plots the
time points Tj against j:

(j,Tj), j = ,… , n. (..)

This plot should closely follow the line f (j) = w̄ j, where w̄ denotes the average
waiting time, as an estimate of ∕𝜆. This line hence represents how the arrival
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times increase with the claim number if the intensity were constant. Linearity
corresponds to the uniform distribution of the arrival times over the interval
[,T] where T represents the end of the inspected time interval. Deviation from
this linear structure is then a first indication that the counting process is not
a homogeneous Poisson process. A formal statistical test on uniformity can, for
instance, be performed using the Kolmogorov–Smirnov test for uniformity comparing
the empirical distribution function Γ̂n(t) = n− ∑n

i= [,t](Ti) against the c.d.f. t∕T
of the uniform [,T] distribution, rejecting uniformity for too large values of
DKS = supt∈[,T] |Γ̂n(t) − t∕T|.

The exponentiality of the waiting times Wi can also be verified through the exponen-
tial QQ-plot of these inter-arrival times:(

− log
(

 − i
n + 

)
; logWi,n

)
, i = ,… , n. (..)

A formal test for exponentiality based on the exponential QQ-plot is given by the
Shapiro–Wilk test based on the correlation coefficient rQ of this QQ-plot and rejecting
exponentiality for too low values of rQ. Of course graphically one can also inspect for a
constant derivative of mean excess plot based on the observed W values.

In order to see how the intensity 𝜆 varies over time one can use a moving average
approach, plotting

∕�̂�i =


min(n, i + m) − max(, i − m) + 

min(n,i+m)∑
j=max(,i−m)

Wj. (..)

against i (i = ,… , n). Of course under a simple Poisson counting process no trends
should be visible in such plots. If deviations from a homogeneous Poisson behavior
are detected in the plots, one can start evaluating the inhomogenous Poisson behavior
and try to estimate the mean value function 𝜇(t) = ∫

t
 𝜆(u)du through (..). Then

after a time change using the inverse function 𝜇
−(t) one can validate the homogeneous

Poisson behavior of the time-changed process in order to inspect possible inhomoge-
neous Poisson behavior.

When large clusters of arrivals appear that cannot be predicted using an inho-
mogeneous Poisson behavior, a next option is to consider Cox process models, for
instance directed by a Lévy subordinator. In this setting Zhang and Kou [] proposed
estimating E(Λ(t)) using a kernel estimator based on the observed arrival times T̂ ≤

T̂ ≤ … ≤ T̂n in the observed time window [,T]

Ê(Λ(t)) =
n∑

i=


h

K
( 

h
(T̂i − t)

)
with bandwidth h.

For the estimation of a Cox process directed by a Lévy subordinator model such as the
gamma or inverse Gaussian subordinators, we assume that the process N is observed
up to a time horizon T >  on a discrete time grid  ∶= t < t < … < tm ∶= T with m
monitoring points. Moreover we assume an equidistant grid with step size h = T∕m,
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that is, ti = hi for i = , ,… ,m. For instance the grid size could be a day or  week. We
denote the observations of N , or the observed frequencies, at times ti as

f̂i = N̂(ti), i = , ,… ,m,

while f̂ = . Following the Lévy property of such process N the increments Δf̂i =
f̂i − f̂i− (i = ,… ,m) are i.i.d. observations of the infinitely divisible distribution N(h).
Using (..) we find that the log likelihood of the Cox process with the intensity
parameter 𝜆 of the underlying Poisson process Ñ and the parameter vector Θ of the
Lévy subordinator (i.e., Θ = (𝛼, 𝛽) in the gamma case, and Θ = (𝛽, 𝜂) in the inverse
Gaussian model) is given by

𝓁
(
𝜆,Θ|Δf̂i, i = ,… ,m

)
=

m∑
i=

log

{
(−𝜆)Δf̂i

Δf̂i!
F̂ (Δf̂i)

M(h)(𝜆,Θ)

}

= f̂m log(𝜆) −
m∑

i=
log(Δf̂i!) +

m∑
i=

log
(
(−)Δf̂i F̂ (Δf̂i)

M(h)(𝜆,Θ)
)
.

(..)

This results in optimizing

f̂m log(𝜆) +
m∑

i=
log

(
(−)Δf̂i F̂ (Δf̂i)

M(h)(𝜆,Θ)
)

with respect to (𝜆,Θ).
Note that the intensity parameter 𝜆 can be selected upfront assuming time normal-

ization as the sample mean of the process distribution

�̂� ∶= 
T

N̂(T).

Case study: Dutch fire insurance data. The results of the moving average plots in
Figure . with m = , with the yearly average waiting times added to it, clearly indicate
non-constant intensity, both in the short term but also over the different years. Hence
a homogeneous Poisson model is not appropriate for the entire time period.

Assume for the moment that the intensities were constant within each year. The
plot (..) clearly shows a deviation from uniformity (Kolmogorov–Smirnov P-value
.) (Figure ., top right) and the piecewise linear mean value function 𝜇 with
yearly levels equal to the estimated intensity in Figure . (top right) shows large
fluctuations. Then the time-changed arrival times �̂�(Ti) approximately will behave as
arrival times of a standard homogeneous Poisson process. The plot of (..) for the
time-changed waiting times �̂�(Ti) − �̂�(Ti−) corresponds better to the requested linear
pattern required for a homogeneous Poisson process, with Shapiro–Wilk P-value equal
to .. However, plotting the moving averages from (..) for the time-changed
process still shows a considerable amount of volatility through time. In fact a seasonal
effect is visible by plotting the boxplot of the time-changed waiting times per month
computed over the available years, with shorter waiting times in winter and summer,
hence higher intensity in winter and summer.
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Figure 5.6 Dutch fire insurance data: distribution of time points (..) (top left); moving average
estimates of intensity function (with m = ) (top right); estimated time transformation (middle left);
moving average estimates of intensity function after time transformation (middle right); exponential
QQ-plot (..) based on 𝜇-transformed waiting times (bottom left); boxplots of monthly mean
waiting times after time transformation (bottom right).

To explore the seasonality effect further, a seasonal ARIMA model is fitted to the
observed intensities (e.g., see Shumway [] or Box and Jenkins []). Given that
many days did not have a claim at all, the data were divided into one-week intervals.
The average waiting time per week is then used as an estimate of ∕𝜆 in that week.

A seasonal ARIMA process, or SARIMA(p, d, q)(P,D,Q)m process Xt , is an ARIMA
(p, d, q) process where the residuals 𝜖t are ARIMA(P,D,Q) with respect to lag m:

( −
p∑

i=
𝜙iLi)( − L)dXt = ( +

q∑
i=

𝜃iLi)𝜖t ,

( −
P∑

i=
ΦiLi

m)( − Lm)DXt = ( +
Q∑

i=
ΘiLi

m)𝜖t ,
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where LmXt = Xt−m, L = L, while 𝜙i,Φi are constants that determine the autocorre-
lation of the process with past values, and 𝜃i,Θi modulate how much past shocks have
impacted on the current value. All 𝜖t are assumed to be i.i.d. normally distributed with
mean  and constant variance 𝜎

. The seasonality of the data can be inspected using
an auto-correlation function (ACF), which is defined for any process with mean 𝜇t and
variance 𝜎


t as

R(s, t) =
E
[
(Xs − 𝜇s)(Xt − 𝜇t)

]
𝜎s𝜎t

.

In a seasonal process one expects significant auto-correlation with the data from the
previous corresponding season. The partial auto-correlation function (PACF) is defined
as the auto-correlation conditional on all values of the process between s and t, which
eliminates the correlation originating from the values of X between s and t. Using the
function auto.arima in R, an ARIMA(, , )(, , ) model with mean  is selected
given by

𝜆t = .𝜆t−−.𝜆t−−.𝜆t−+𝜖t−.𝜖t−+.𝜖t−−.𝜖t−,

with 𝜖t ∼  (, .). When looking for a seasonal ARIMA with lag  the resulting
model ARIMA(, , )(, , ) is

𝜆t = .𝜆t− − .𝜆t− − .𝜆t− + 𝜖t − .𝜖t−

+ .𝜖t− − .𝜖t− + .𝜖t− − .𝜖t−, (..)

with 𝜖t ∼  (, .). In Figure . we contrast the observed intensities with a
simulated process from model (..), and add the ACF and PACF plots as well as
a normal QQ-plot of the residuals of the fitted model. The observed data seem to
show larger clustering. Process (..) also generates negative intensity values, which
of course is not admissible. The normality of the residuals is also strongly rejected,
with a correlation of . on the normal QQ-plot of the residuals. Several power
transformations were therefore used, leading to an ARIMA(, , )(, , ) model
based on the log-transformed intensities:

log 𝜆t = . log 𝜆t− − . log 𝜆t− − . log 𝜆t− + 𝜖t − .𝜖t−

+ .𝜖t− − .𝜖t− + .𝜖t− − .𝜖t−, (..)

with 𝜖t ∼  (, .). Now the correlation coefficient of the normal QQ-plot of the
residuals is ., and the clusters are better approximated using (..), but still the
clustering is underestimated.

Applying the likelihood method based on (..) using a daily observation grid over
the entire observation period using a gamma and an inverse Gaussian model leads to
the following parameters:
● gamma: �̂� = ., �̂� = . and 𝛽 = .
● inverse Gaussian: �̂� = ., 𝛽 = . and �̂� = ..
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Figure 5.7 Dutch fire insurance data. Model (..) fit: observed and simulated intensities (top left); normal QQ-plot of residuals (top right); auto-correlation
(second line left); partial auto-correlation (second line right). Model (..) fit: observed and simulated intensities (third line left); normal QQ-plot of residuals
(third line right); auto-correlation (bottom left); partial auto-correlation (bottom right).
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Figure 5.8 Dutch fire insurance data. Simulated confidence intervals and observed cumulative
counting data for fitted Cox models directed by a gamma Lévy subordinator (top left) and an inverse
Gaussian Lévy subordinator (top right); mean values of locally fitted Cox gamma models using 30 days
moving windows (middle left) and exponential QQ-plot based on waiting times between clusters
(middle right); cluster sizes of a simulated claim number process following the Cox model with the IG
fitted parameters (bottom).

We simulated  sample paths from the fitted Cox models in order to construct
confidence intervals at each time point. Both models do fit inside these bands, while the
log-likelihood values in the fitted parameters are −. for the gamma model and
−. for the inverse Gaussian model. In order to evaluate the fit of these models,
the Cox models directed by the gamma model were applied locally using a moving
window of  days. The recorded mean values of the estimated local processes are also
given in Figure ., in which no stochastic structure was detected. The exponentiality of
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Figure 5.9 MTPL data for Company A: distribution of time points (..) (top left); moving average
estimates of intensity function (with m = ) (top right); estimated time transformation (middle left);
moving average estimates of intensity function after time transformation (middle right); exponential
QQ-plot (..) based on 𝜇-transformed waiting times (bottom left); boxplots of monthly mean
waiting times after time transformation (bottom right).

the waiting times between clusters also appears to be satisfied, and simulated processes
based on the inverse Gaussian fit show similar cluster sizes, as illustrated in Figure ..

Case study: MTPL data for Company A. We repeated the heterogeneous Poisson
analysis with a time transformation for the MTPL occurrence data of Company A.
The results are given in Figure .. The Kolmogorov–Smirnov P-value equals .,
indicating that the homogeneous Poisson process model can be rejected here. The
P-value of the Shapiro–Wilk test for exponentiality of the waiting times after time
transformation equals . so that a homogeneous Poisson process model cannot
be rejected. However, some seasonal effects do appear but could not be proven to be
significant, even with a time series analysis.
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Applying the likelihood method based on (..) to using a daily observation grid
over the entire observation period using a gamma and an inverse Gaussian model leads
to the following parameters:
● gamma: �̂� = ., �̂� = . and 𝛽 = .
● inverse Gaussian: �̂� = ., 𝛽 = . and �̂� = ..

Again we simulated  sample paths from the fitted Cox models in order to construct
confidence intervals at each time point. Both models do fit inside these bands, while
the log-likelihood values in the fitted parameters are almost equal: −. for the
gamma model and −. for the inverse Gaussian model. In order to evaluate the
fit of these models, the Cox models directed by the gamma model were applied locally
using a moving window of  days. The recorded mean values of the estimated local
processes are also given in Figure ., in which no stochastic structure was detected.
Also the exponentiality of the waiting times between clusters appears to be satisfied,
and simulated processes based on the inverse Gaussian fit (see Figure .) show similar
cluster sizes as in Figure ..

For the estimation of a multivariate Cox process directed by a Lévy subordinator we
again assume that the multivariate process 𝐍 is observed up to a time horizon T > 
on a discrete time grid  ∶= t < t < … < tm ∶= T with m monitoring equidistant
grid points with step size h = T∕m, that is, ti = hi for i = , ,… ,m. We denote the
observations of 𝐍, or the observed frequencies, at times ti as

𝐟i = (f̂ ()i ,… , f̂ (d)i ) = �̂�(ti), i = , ,… ,m,

while 𝐟 = 𝟎. Following the Lévy property of such a process 𝐍, the increments Δ𝐟j = 𝐟j −
𝐟j− (j = ,… ,m) are i.i.d. observations of the infinitely divisible distribution𝐍(h). Using
(..) optimizing the log likelihood of the Cox process with the intensity parameter
vector 𝝀 of the underlying Poisson process �̃�𝝀 and the parameter vector Θ of the Lévy
subordinator (i.e., Θ = (𝛼, 𝛽) in the gamma case, and Θ = (𝛽, 𝜂) in the inverse Gaussian
model) results in optimizing

d∑
j=

f̂ (m)
j log(𝜆j) +

m∑
i=

log
(
(−)|Δ𝐟i|F̂ (|Δ𝐟i|)

M(h) (𝝀,Θ)
)

(..)

with respect to 𝝀,Θ.
Here, the use of time normalization means

�̂� ∶= 
T
�̂�(T).

Case study: Danish fire insurance data. Selch [] applied the likelihood method
based on (..) to the complete Danish fire insurance data set using time normaliza-
tion, which leads to 𝛼 = 𝛽 in the case of the gamma subordinator and 𝛽 = 𝜂 for the
inverse Gaussian subordinator (Table .). Hence we only report �̂� for the gamma and
𝛽 for the inverse Gaussian model.
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Figure 5.10 MTPL data for Company A: Simulated confidence intervals and observed cumulative
counting data for fitted Cox models directed by a gamma Lévy subordinator (top left) and an inverse
Gaussian Lévy subordinator (top right); mean values of locally fitted Cox gamma models using 30 days
moving windows (second line) and exponential QQ-plot based on waiting times between clusters
(third line); cluster sizes of a simulated claim number process following the Cox model with the IG
fitted parameters (bottom).
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Table 5.2

𝜆 𝜆 𝜆

inverse Gaussian . . . �̂� = .
gamma . . . 𝛽 = .

It was observed that simulated cluster sizes are larger than the observed ones. Hence
there is room for further model improvements in this case.

5.6 Claim Numbers under Reinsurance

In this section we look at the number of claims when reinsurance has been taken. If
{N(t); t ≥ } denotes the number of original claims, then after reinsurance the insurer
keeps {ND(t); t ≥ } while the reinsurer gets {NR(t); t ≥ }. For all but XL reinsurance,
the latter quantities are easily determined in terms of the former. We therefore deal with
the XL case in a separate subsection.

) In the case of QS reinsurance the reinsurer accepts a portion a of all first-line claims
Xi, while the first-line insurer keeps  − a of these claims, but then

ND(t) = NR(t) = N(t) .

) When there is a SL reinsurance contract with retention C, then the first-line insurer
has to deal with all the incoming claims while for the reinsurer

NR(t) = {∑N(t)
i= Xi>C

}.
Indeed the reinsurer will only see one (aggregate) claim if the total claim amount in
the original portfolio exceeds the threshold. However, in practice the reinsurer may
also want to look into the settlement of (at least the larger) claims, leading to a big
aggregate loss.

) For surplus reinsurance the situation is somewhat more complex. The first-line
insurer has to deal with all incoming claims since he can only shift part of an
incoming claim to the reinsurer if the sum insured Q overshoots the retention line
M. Therefore ND(t) = N(t). The reinsurer will only see the claims for which Q > M.
This means that for the reinsurer the number of incoming claims equals the number
of original claims for which Q > M. Correspondingly, if we have a distribution of Q
available, NR(t) can be determined as in Section .., with sM = P(Q > M).

5.6.1 Number of Claims under Excess-loss Reinsurance

Under an XL contract, the first-line insurer has to pay the part of each claim that is
below the retention, so that ND(t) = N(t). On the other hand, the reinsurer only has to
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pay for claims which touch the reinsured layer. Let su = P(X > u) be the probability
that a claim exceeds the retention level u. Then

NR(t) = ♯{k ∶  ≤ k ≤ N(t)|Xk > u}

with

p̃n(t) ∶= P(NR(t) = n) =
∞∑

k=n
pk(t)

(
k
n

)
sn

u( − su)k−n
, n ∈ N. (..)

Here pk(t) = P(N(t) = k) denotes the probability that there are exactly k claims
occurring in the time interval from  to t.

An alternative expression can be obtained if we look at the generating function
Q̃t(z) = E(zNR(t)). It is a straightforward calculation to relate it to the generating function
Qt(z) = E(zN(t)) of the original claim number:

Q̃t(z) = Qt(( − su) + suz). (..)

Written in this fashion, the variable NR(t) can be considered as a thinned version of the
original N(t).

From the above, one can quickly derive information on the moments of NR(t). For any
non-negative integer k

E

(
NR(t)

k

)
= 

k!
Q̃(k)() = sk

u E

(
N(t)

k

)
.

In particular

E(NR(t)) = su E(N(t)),

Var(NR(t)) = s
u Var(N(t)) + su( − su) E(N(t)).

For the dispersion one has

Ĩ(t) = su I(t) + ( − su),

which indicates that the smaller su, the closer the dispersion gets to the value , which
constitutes the Poisson case (this, by the way, is a neat way to intuitively see why the
Poisson distribution is a natural model for rare events).

Let us illustrate the above procedure for a number of examples that have been
introduced in the previous part.

(i) Our first example refers to the mixed Poisson process. If we look at the reinsured
part then clearly,

Q̃t(z) =
∫

∞


exp{−𝜆t( − (( − su) + suz))}dFΛ(𝜆)

=
∫

∞


exp{−𝜆tsu( − z)}dFΛ(𝜆) = Qsut(z).
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This simple relation shows that we only need to replace the time-variable t by sut
(i.e., a “slowing down” of the original claim number process). All other ingredients
of the original mixed Poisson process remain the same. For example, generally

E

(
NR(t)

k

)
=

(sut)k

k!
E(Λk).

Let us illustrate the above with two special cases.
● For the Pólya process we have

p̃n(t) =
(

𝛼 + n − 
n

)(
b

sut + b

)𝛼 ( sut
sut + b

)n

.

● For the Sichel process we obtain the generating function

Q̃t(z) = [ + 𝛽sut( − z)]−𝜃∕
K
𝜃

(
𝜇

𝛽

√
 + 𝛽sut( − z)

)
K
𝜃
(𝜇
𝛽
)

.

(ii) For an infinitely divisible process we again look at what happens with the thinned
process. From (..) we get

Q̃t(z) = e−𝜆t(−g((−su)+suz))

which can be rewritten in the form

Q̃t(z) = e−�̃�t(−g̃(z))

where

�̃� = 𝜆( − g( − su))

and

g̃(z) =
g(( − su) + suz) − g( − su)

 − g( − su)
.

It takes a little extra calculation to see that g̃(z) = E(zG̃) where

g̃m ∶= P(G̃ = m) = 
 − g( − su)

∞∑
n=m

(
n
m

)
( − su)n−msm

u .

The latter formula can in itself be interpreted as a thinning of the original variable
G. We therefore see that the thinned process remains infinitely divisible.
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● For the Neyman-type A-process, the thinned process is of the same type but needs
𝜃 = su𝜃 as a new parameter.

● Similarly for the Pólya–Aeppli process, the thinned process is of the same type
with 𝜃 = 𝜃su

−𝜃(−su)
.

(iii) Next we deal with the Sparre Andersen model. In renewal theory thinning occurs
by deleting each epoch of the renewal process with a fixed probability su, indepen-
dently of the renewal process. The thinned process is a counting process that jumps
at the time points T̃ = inf{Ti ≥  ∶ Xi > u} and for n ≥ , T̃n+ = inf{Ti ≥ T̃n ∶
Xi > u}. This thinned process is again a renewal process, now generated by the
mixture

G̃(x) =
∞∑
j=

su( − su)j− G∗j(x).

(iv) Finally we return to the (a,b,) class of Section .. From the equations (..) and
(..), some elementary algebra leads to

Q̃(z) = �̃� + ( − �̃�) ( − ãz)−Δ − 
( − ã)−Δ − 

, (..)

where Δ̃ = Δ remains the same as before and where

ã ∶=
asu

 − a( − su)
,

b̃ ∶=
bsu

 − a( − su)

and

�̃� = 𝜌 + ( − 𝜌)
( − a( − su)q)−Δ − 

( − a)−Δ − 
= P(NR = ) = Q( − su).

Hence the three subcases in Section . remain invariant under the given type of
thinning, one just needs to adapt the parameters. Also, the binomial and the Engen
cases remain invariant. Correspondingly, the distributions of claim numbers for the
insurer and for the reinsurer then only differ by the applied parameters (and for this
parameter change the quantity su plays a crucuial role). This is a further reason for
the popularity of these claim count models in insurance and reinsurance modelling.
A convenient general class of probability generating functions that remain invariant
under thinning (including many zero inflated models) is discussed in Klugman
et al. [, Sec. .], where also strong mixed Poisson characterizations of the
class are given.
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5.7 Notes and Bibliography

Classical models for claim numbers have been studied in various textbooks on actuarial
science and statistics, for example Grandell [, ], Klugman et al. [], Denuit
et al. [], and Mikosch []. In terms of the probability generating functions, the
focus here was put on moments (i.e., z = ), whereas one may also like to consider
the probabilities (z = ), for example Sundt and Vernic []. Linking discrete-time
and continuous-time models is less commonly treated in actuarial circles even if it
has a long tradition in collective risk theory. Ammeter [] proposed a model where
at equidistant time instants the value of the intensity is sampled anew from some
given distribution. This model (often referred to as the Ammeter model) provides a
simple form of a Cox process which is another alternative to embed discrete claim
counts of mixed Poisson type within a continuous-time framework (with Cox processes
directed by Lévy subordinators being a somewhat more general approach to that end).
Björk and Grandell [] considered an extension of [] where the time instants of
changing the intensity value are randomized as well, and Asmussen [] studied a more
general version in a Markovian framework, where subsequent intensities can possibly be
dependent (see also Schmidli []). The concept of subordination is a classical topic in
the theory and application of Lévy processes, for example Schoutens [] or Kyprianou
[], but its explicit application to insurance claim processes was only taken up recently
by Selch [], even if infinitely divisible processes have been considered for many years.
For an application of this joint subordination approach in mathematical finance, see
Luciano and Schoutens [].

An interesting argument for the use of mixed Poisson distributions is that if the data
collected are thinned (e.g., due to a per claim deductible), then the mixed Poisson
distribution is the only distribution that guarantees that also the resulting distribution
of the original (non-thinned) number of claims is a valid probability distribution
(see [, p. ]). A discussion on different interpretations of Pólya processes can
also be found in Kozubowski and Podgorski []. The Pólya process also has been
advocated in situations where there is some kind of claim contagion (cf. Panjer
et al. []).

The order statistics property of the Poisson process actually holds more generally
for the mixed Poisson process as well as the Yule process (but not for many further
processes). It is very convenient for incorporating inflation and payment delays into the
analysis (cf. [, Ch. ]) and also appears implicitly in density representations (see also
Landriault et al. []). It can be useful to extend properties from the marginal to the
conditional setting.

Shot-noise driven processes are classical examples of Cox processes used in the
actuarial literature. For a recent reference in catastrophe modelling, see Schmidt []
(see also Albrecher and Asmussen [].

The (a, b, ) class has been introduced in an attempt to gather a variety of classical
claim number distributions under the same umbrella. Willmot [] reconsidered the
equation and added a number of overlooked solutions. We point out that the recursion
relation (..) can easily be generalized. For specific instances, see Willmot et al. [],
Schröter [], and Sundt []. For a recent contribution and further references, see
Hess et al. [] and Gerhold et al. [].
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The section on statistical approaches is developed alongside the considered models
and there is clearly a lot of potential for future research work.

There are conceptual links with approaches in the credit modelling context, for
example Duffie et al. []. Maximum likelihood estimation for compound claim count
distributions is quite tractable analytically with the help of generating functions (see
Douglas [] and Willmot and Sprott []). Badescu et al. [] suggest modelling the
claim number process together with its reporting delay as a marked Cox process, which
allows for fluctuations in the exposure.

Simultaneous modelling of dependent portfolios becomes an increasingly important
topic in practice. In addition to the recent contributions on multivariate Cox process
modelling mentioned in this chapter, we also refer to Sundt and Vernic [] for
an overview of higher-dimensional approaches in terms of recursions. See also to
Bäuerle and Grübel [] and Genest and Neslehova [] for early references to copula
models. For common shock models, see, Wang [], Lindskog and McNeil [],
and Meyers [].
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6

Total Claim Amount

After having modelled individual claim sizes and the number of claims, the next step
is now to aggregate the individual claims and determine the resulting distribution.
Even if the claim sizes are assumed to be independent (and independent of the number
of claims), this is already a challenging yet classical actuarial task. In this chapter
we will review the main techniques available for this purpose and then also discuss
implications for the methods under reinsurance. Section . then gives some numerical
illustrations and in Section . we will discuss some general aspects of the aggregation
of dependent risks.

6.1 General Formulas for Aggregating Independent Risks

For most of this chapter we will assume that the two processes {N(t); t ≥ } and
{Xi; i ∈ N} are independent. Recall from Chapter  that the total or aggregate claim
amount at time t is defined by

S(t) =
{∑N(t)

i= Xi if N(t) > ,
 if N(t) = .

Under the independence assumption, its c.d.f. then is

P(S(t) ≤ x) =
∞∑

n=
pn(t)F∗n

X (x), x ≥ . (..)

Whereas (..) fully specifies the total claim distribution, in this form it is not a
workable expression to numerically evaluate FS(t) and we typically will have to look
for ways to approximate FS(t). Since convolutions can efficiently be handled by Laplace
transforms, a first step to simplify the expression is to look at the Laplace transform
of S(t):

F̂S(t)(s) = E(e−sS(t)) =
∞∑

n=
pn(t)F̂n

X(s) = Qt(F̂X(s)), (..)

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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where Qt(z) is the generating function of the number of claims. From this expression
one now obtains general formulas for the first few moments of S(t).
● The most essential quantity related to the total claim amount is its expected value.

As a function of time it offers a global picture of what happens to the portfolio over
time. Taking the derivative with respect to s at s =  in (..) one easily obtains

E(S(t)) = E(X) ⋅ E(N(t)) (..)

for the mean total claim amount. This expression illustrates the complementary role of
the average claim size and the average claim number. Clearly, this formula is pleasant
and helpful when pricing according to the expected value principle, as dealing with
the claim sizes and claim frequency can be separated.

● For the variance, Faa di Bruno’s formula entails

Var(S(t)) = Var(X) ⋅ E(N(t)) + E
(X) ⋅ Var(N(t)). (..)

The role of the two ingredients comes out even better if we look at the dispersion. It
easily follows from the above that

IS(t) = IX + E(X) ⋅ IN(t) .

This illustrates that the variability is not only caused by the variability in claim sizes
but also by that in the claim numbers. The above expression is useful in premium
calculations that are based on the first two moments of S(t) (cf. Chapter ).

● Higher-order moments of S can be derived by taking the respective higher-order
derivatives of F̂S(t)(s) at s = . In general, the nth moment of S can be expressed
through combinations of the first n moments of X and of N .

Note that for the special case of a homogeneous Poisson process Ñ
𝜆
, one obtains

E(S(t)) = 𝜆t E(X), Var(S(t)) = 𝜆t E(X)

and more generally 𝜅n(S(t)) = 𝜆t E(Xn) for the nth cumulant of S(t). The sim-
plicity of these formulas is reason for the popularity of the compound Poisson
model.

Another general property of the total claim amount shows its direct dependence on
the claim size distribution. Since a sum of non-negative random variables is always
larger than the largest element in the sum, we note that F∗n

X (x) ≤ Fn
X(x) and hence

 − FS(t)(x)
 − FX(x)

≥
 − Qt(FX(x))

 − FX(x)
.

Letting x ↑ ∞ we notice that

lim inf
x↑∞

 − FS(t)(x)
 − FX(x)

≥ lim
FX (x)↑

 − Qt(FX(x))
 − FX(x)

= E(N(t)).

 For n =  one observes, however, that the skewness of S(t) in this model is always positive, which is a
disadvantage in terms of model flexibility.
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The above relation shows how the tail behavior of the total claim amount crucially
depends on the heaviness of the individual claim size distribution and on the expected
number of claims.

6.2 Classical Approximations for the Total Claim Size

A useful aggregate claim approximation should give reasonably accurate estimates and
at the same time clarify the specific role of the two ingredients, the claim size and the
claim number. We will now deal with several approximations for FS(t) that have been
used in this context. In Section . we will implement these methods in R and compare
their performance.

6.2.1 Approximations based on the First Few Moments

If the number of claims is large (which may be due to large t), then one can expect that
for the sum of independent random variables, in case of finite variance Var(X), a central
limit effect will be dominant. The normal approximation

FS(t)(x) ≈ Φ

{
x − E(S(t))√
Var(S(t))

}
(..)

may then be feasible. For this approximation to be useful, the number of terms in
the sum should indeed be large, and it has to be the larger, the more skewed the
distribution of the individual risks Xi is. Whereas this may work sufficiently well for
large time horizons, within the typical one-year timeframe and appropriate choice of
FX , approximation (..) is usually too coarse in the regions of interest. If the skewness
coefficient 𝜈S(t) is available, then a classical correction of (..) is the normal-power
approximation

P

[
S(t) − E(S(t))√

Var(S(t))
≤ z

]
≈ Φ

(√


𝜈

S(t)

+ z
𝜈S(t)

+  − 
𝜈S(t)

)
(..)

for z ≥ .
Alternatively, if the first three moments of S = S(t) are available, it has also been

suggested that S can be approximated by a shifted gamma distribution with the same
first three moments, that is,

S ≈ Γ

(

𝜈


S
,


𝜈S
√

Var(S)

)
+ E(S) −


√

Var(S)
𝜈S

.

Clearly, this can only be done if the skewness coefficient 𝜈S is positive.
Whenever there are higher moments available, one can use the rather elegant theory

of orthogonal polynomial expansions to improve the approximation. For that purpose,
starting from a reference density function fr(x) (defined on interval I) which one
suspects to already be a reasonable approximation for the density fS(x) of the aggregate
claim distribution, one adds correction terms based on moments of S. Concretely, if all
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moments for fr exist, then the Gram–Schmidt orthogonalization identifies a set (𝜋i)i≥,
where 𝜋i is a polynomial of degree i, for which

∫I
𝜋i(x)𝜋j(x) fr(x) dx =

{
 for i ≠ j,
 for i = j. (..)

If ∫I e𝛼|x|fr(x) dx < ∞ for some 𝛼 > , then this set of orthonormal polynomials is
complete in the respective L space, and hence if ∫I(fS(x)∕fr(x)) dx < ∞, one can express
fS(x)∕fr(x) as

∑∞
i= Ai𝜋i(x), where

Ai =
∫I

𝜋i(x)fS(x)dx = E(𝜋i(S)).

If K moments of S are available, one can correspondingly determine coefficients
A,… ,AK and approximate fS by

fS(x) ≈ fr(x)
K∑

i=
Ai𝜋i(x).

If the reference density fr has m parameters, one can choose them in such a way that
the first m moments corresponding to fr coincide with those of S(t). Let us consider two
concrete examples:
● If we want to improve the normal approximation above, we can choose fr(x) to be

the density of a normal  (E(S(t)),Var(S(t))) random variable. Here I = R and the
resulting polynomial family is

𝜋i(x) =


i!i∕ Hi

(
x − E(S(t))√

Var(S(t))

)
, i = , ,… ,

where Hi(x) = 𝜙
(i)(x)∕𝜙(x) are the Hermite polynomials, with 𝜙(x) denoting the

density of the standard normal distribution. This is also known as the Gram–Charlier
approximation. If we have (estimates for) the skewness 𝜈S(t) and the excess kurtosis
kS(t) = E(S(t)−E(S(t)))∕Var(S(t))− of S(t) available, the resulting approximation is

P(S(t) ≤ x) ≈ Φ (z) −
𝜈S(t)


Φ() (z) +

kS(t)


Φ() (z) , (..)

where z = (x − E(S(t)))∕
√
Var(S(t)). That is, we get a refinement of (..) using

the third and fourth moment. The three terms of (..) in fact coincide with the
first three terms of the so-called Edgeworth expansion, which builds on saddlepoint
approximations and also enjoys some popularity in actuarial circles.

● Choosing fr(x) to be a gamma(𝛼, 𝛽) density, one can improve on the gamma approxi-
mation for S(t). Here I = (,∞) and the respective orthogonal polynomial family is

𝜋i(x) = (−)i
[

Γ(i + 𝛼)
Γ(i + )Γ(𝛼)

]−∕

L𝛼−
i (𝛽 x), i = , ,… ,
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where (L𝛼−
i )i≥ denote the generalized Laguerre polynomials. Furthermore

𝛼 = E
(S(t))∕Var(S(t)) and 𝛽 = E(S(t))∕Var(S(t)). By construction, again A = A = .

The resulting approximation is referred to as Bower’s gamma approximation. Observe
that if we truncate the approximation after K terms, the tail of fS(t) is approximated
by the dominant order xK fΓ(𝛼,𝛽)(x), which is itself a gamma-type decay. It will turn out
that such a tail behavior is in fact quite appropriate under rather general conditions
(cf. Section ..).

● For situations with heavy tails, it is tempting to choose a heavy-tailed reference density
fr and then improve the approximation of S(t) with higher moments according to the
recipe above. For a log-normal density fr , the corresponding family of orthonormal
polynomials has recently been worked out in Asmussen et al. []. Note, however, that
the resulting family is not complete in the respective L space, so that fS(t)(x) cannot
be represented by the infinite series fr(x)

∑∞
i= Ai𝜋i(x). This is of course related to the

fact that the log-normal distribution is not determined by its moments. Nevertheless,
an approximation based on a few terms can be useful (see [] for an in-depth
study of this and for further aspects of orthonormal approximations in general).
Since Pareto distributions have only finitely many moments (and for many realistic
parameter settings even only a few), the approach via orthonormal approximation
lacks mathematical justification in that case.

Some further approximations with a similar flavor will be discussed in the Notes
at the end of the chapter. In some of the mentioned approximations, it may
happen that some probability mass is assigned to the negative half-line. However,
since the focus usually is on large values of x, this problem may be considered
negligible.

Approximations based on a few moments have the advantage that the simple expres-
sions allow the influence of the individual moments (for both claim sizes and numbers)
on the overall result to be assessed. This can be particularly useful if the estimates for
those moments are not very reliable (therefore such, albeit rough, approximations can
be a good complement to exact numerical values for the c.d.f. of S(t), as determined
in Sections . and ., which do not give immediate insight to sensitivities). At the
same time, moment-based approximations can perform quite poorly if one goes further
into the tail (cf. Section . for illustrations), but these tail regions are of substantial
importance in reinsurance applications. Moreover, if the number of claims that de
facto determine the distribution of the entire portfolio is small (which is the case for
large claims), a centralization of the claims is practically absent and approximations in
the spirit of central limit theory will be inaccurate. In what follows we discuss as an
alternative some asymptotic approximations which become increasingly accurate the
further one goes into the tail. For that purpose, we have to distinguish the cases of light-
and heavy-tailed claims.

6.2.2 Asymptotic Approximations for Light-tailed Claims

One of the important features of super-exponential distributions that distinguishes
them from heavy-tailed ones is the existence of a family of associated distributions
with arguments s < . These will enable a general procedure that leads to exponential
estimates for the tail of FS(t)(x).
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Recall from Chapter  that the Laplace transform F̂(s) of a light-tailed claim has a
strictly negative abscissa of convergence 𝜎F . Take any s > 𝜎F and define

Fs(x) =


F̂(s) ∫

x


e−st dF(t).

Then it is easy to prove that Fs is a proper distribution on R+. The full family of such
distributions {Fs; s > 𝜎F} is called the class of distributions associated to F (also referred
to as exponential tilting or Esscher transform). For each associated distribution one can
compute its Laplace transform. It is easy to see that

F̂s(u) =
F̂(u + s)

F̂(s)
. (..)

This equation can be raised to the nth power where n ∈ N, but F̂n
s is the Laplace

transform of F∗n
s . By the uniqueness of the Laplace transform the relation

F̂n(s)
∫

∞


e−ux dF∗n

s (x) = F̂n(u + s) =
∫

∞


e−ux e−sxdF∗n(x)

easily yields that for all x ≥ 

F̂n(s) dF∗n
s (x) = e−sx dF∗n(x).

Integration over the interval (y, ∞) gives the relation

 − F∗n(y) = F̂n(s)
∫

∞

y
esx dF∗n

s (x). (..)

The important feature of the above expression is that on the right-hand side there is a
parameter s which is only restricted by the inequality s > 𝜎F . In practical applications a
judicious choice of this parameter may rewrite intractable formulas into simpler ones.
Up to now the sign of 𝜎F has been unimportant. In the super-exponential case, however,
𝜎F <  and one still can go a bit further in the above analysis. It is not hard to see that
if 𝜎F < 𝜃 < , then

 − F∗n(x) = |𝜃|F̂n(𝜃) e−|𝜃|x
∫

∞


e−|𝜃|v {F∗n

𝜃
(x + v) − F∗n

𝜃
(x)

}
dv, (..)

which gives a rather explicit expression for the tail of the n-fold convolution of F in
terms of a decreasing exponential.

As  − FS(t)(x) =
∑∞

n= pn(t)( − F∗n
X (x)), we get

 − FS(t)(x) = |𝜃|e−|𝜃|x
∫

∞


e−|𝜃|v{M

𝜃
(x + v) − M

𝜃
(x)} dv (..)



Total Claim Amount 195

for the so-called weighted renewal function

M
𝜃
(x) ∶=

∞∑
n=

pn(t) F̂n
X(𝜃)F

∗n
𝜃
(x). (..)

The goal is now to get an asymptotic approximation of (..) for x → ∞. There is a
generalization of Blackwell’s theorem from renewal theory stating that for any weighted
renewal function M(x) =

∑∞
n= anK∗n(x), under appropriate conditions on the function

a(x) ∶= a[x] as x ↑ ∞, for any y ∈ R one has

M(x + y) − M(x) ∼
y
𝜇K

a
(

x
𝜇K

)
as x → ∞, (..)

where 𝜇K is the (finite) mean of K . Among the many possible sufficient conditions on
a(x) we mention those given by Embrechts et al. []. There it is assumed that

n∑
i=

ai ∼ n𝜌+𝓁(n) as n → ∞,

where 𝓁 is slowly varying and in addition one of the following conditions has to hold
(for weaker conditions and related results see Omey et al. []):
● 𝜌 > 
● 𝜌 =  and for some 𝛿 >  , x+𝛿{ − K(x)} →  when x ↑ ∞
● 𝜌 <  and  − K(x) = O(a(x)).

In the applications below, the regular variation of a(x) will be easily guaranteed, and
the extra condition on K(x) = F

𝜃
(x) is satisfied as well for 𝜃 > 𝜎FX

, since then the tail
of  − F

𝜃
(x) is still bounded above by a decreasing exponential. So the approximation

(..) can then be applied and Lebesgue’s theorem allows the limit to be brought inside
the integral in (..), as the difference M

𝜃
(x+v)−M

𝜃
(x) is bounded above by a regularly

varying function which itself is integrable with respect to exp(−|𝜃|x). That is, under the
condition on a(x) (which essentially translates into a condition on the decay of the claim
number distribution) we obtain

 − FS(t)(x) ∼
|𝜃|𝜇

𝜃

e−|𝜃|xa
(

x
𝜇
𝜃

)
, x → ∞, (..)

where 𝜎FX
< 𝜃 <  and 𝜇

𝜃
= ∫

∞
 xdF

𝜃
(x) = |F̂ ′

X (𝜃)|
F̂X (𝜃)

. The formula holds for an entire range
of 𝜃 values, and the idea is to pick a value for which the desired asymptotic condition
on a(x) can be achieved.

Formula (..) is remarkable in several ways. First, if it is applicable, it shows that
the exponentially bounded decay of the individual claim size distribution carries over
to an essentially exponentially bounded decay of the total claim size distribution, and
this explicit first-order term quantifies by how much the heaviness of the tail increases
through the aggregation. Second, for regularly varying a(x) one sees that the shape of the
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tail is essentially an exponentially decreasing term multiplied by a power term, which is
the decay pattern of a gamma random variable. This gives an additional motivation to
consider the Laguerre series expansion discussed in Section ...

6.2.2.1 Examples
i) Consider first the negative binomial distribution with

pn(t) =
(
𝛼 + n − 

n

)(
b

t + b

)𝛼 ( t
t + b

)n
.

One observes that the sequence an = pn(t) F̂n
X(𝜃) indeed is of regularly varying type,

if we choose 𝜃 = 𝜃
∗ in such a way that the geometric terms disappear, which is the

case for

F̂X(𝜃∗) =  + b
t
. (..)

For this value 𝜃∗ one then gets an ∼ n𝛼−
(

b
t+b

)𝛼

, while𝜇
𝜃∗ =

tF̂ ′(𝜃∗)
b+t

.Correspondingly,
(..) leads to

 − FS(t)(x) ∼

(
b|tF̂ ′

X(𝜃∗)|
)𝛼

|𝜃∗|Γ(𝛼)e−|𝜃∗|xx𝛼−
, x → ∞. (..)

This estimate can be found in Embrechts et al. []. By elaborating on further
refinements one even can give a sharpening of the above estimate of the form

 − FS(t)(x) = Cx𝛼−e−|𝜃∗|x
{

 +
C
x

+ o
( 

x

)}
, x → ∞,

where C is the constant resulting from the first approximation while C is another
constant depending on the variance of the associated distribution F

𝜃∗ .
From (..) we see that the determination of 𝜃∗ can still be tricky, in practice

one may need a rather precise information on the empirical Laplace transform
corresponding to F̂X(s). Note at the same time that the influence of the time horizon
t on the estimate appears rather explicitly.

ii) The logarithmic distribution has appeared as a candidate in the (a, b, ) class. It can
be treated similarly to the negative binomial distribution and is actually technically
simpler. Recall from (..) that

pn = (− log( − a))− an∕n, n > 

where a < . Here the essential power factor can again be removed by a choice of 𝜃
through F̂(𝜃∗) = ∕a. We then get

 − FS(x) ∼ (− log( − a)|𝜃∗|)−x−e−|𝜃∗|x, x → ∞.
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iii) The Paris–Kestemont distribution appeared as an example of a claim counting
process of the infinitely divisible type. More explicitly, the generating function for
the number of claims is

Qt(z) = exp{−𝜂[ − ( + t( − z))−𝛼]}.

From asymptotic analysis one can derive the following asymptotic expression for the
probabilities

pn(t) ∼ 𝜂e−𝜂( + t)−𝛼 
Γ(𝛼)

( t
 + t

)n
n𝛼−

, n → ∞.

As before we need 𝜃 = 𝜃
∗ to satisfy the condition F̂(𝜃∗) =  + t−

. A little algebra
then yields the expression

 − FS(t)(x) ∼
𝜂e−𝜂|𝜃∗|Γ(𝛼) (t|F̂ ′ (𝜃∗)|)−𝛼e−|𝜃∗|xx𝛼−

, x → ∞.

iv) Take a Sichel distribution with probability mass function

pn(t) =
(𝜇t)n

n!
( + 𝛽t)−


 (𝜂+n)

K
𝜂+n

(
𝜇

𝛽

√
 + 𝛽t

)
K
𝜂

(
𝜇

𝛽

) , n → ∞.

In the asymptotic theory for Bessel functions we find an approximation for the
modified Bessel function which leads to the asymptotic expression

pn(t) ∼
{

(𝜇t)𝜂K
𝜂

(
𝜇

𝛽

)}− ( 𝛽t
 + 𝛽t

)n

n𝜂−
.

Following the same path as in the previous examples, we are forced to take 𝜃 in such
a way that F̂X(𝜃∗) =  + (𝛽t)−. It then follows that

 − FS(t)(x) ∼


|𝜃∗|K
𝜂

(
𝜇

𝛽

) (
𝛽t

𝜇

 + 𝛽t
|F̂ ′

X(𝜃
∗)|)−𝜂

e−|𝜃∗|xx𝜂−
, x → ∞.

For the special case when 𝜂 = −∕ we have

 − FS(t)(x) ∼
𝜇t|𝜃∗|

√ |F̂ ′

X(𝜃∗)|
𝜋( + 𝛽t)

e−|𝜃∗|xx−

 , x → ∞,

a result due to Willmot [].

While these expressions are simple and transparent, one should keep in mind that they
only apply for large x values. Their appeal lies in the fact that one gets a first rough
impression on the sensitivity of the aggregate claim size distribution with respect to the
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model parameters for regions far in the tail (whereas the approximations of Section ..
are more appropriate around the mean). This can help to quantitatively support the
intuition, particularly in terms of robustness with respect to parameter uncertainty.

Note that the above approach does not apply for Poisson claim numbers, as the
factorial term in the denominator of its probability function cannot be removed by some
choice of 𝜃, so that the condition on a(x) is not fulfilled. In the Notes at the end of this
chapter we mention other methods to derive exponential estimates for cases where the
above method does not apply.

6.2.3 Asymptotic Approximations for Heavy-tailed Claims

Recall that for sub-exponential claims one has the asymptotic equivalence

 − F∗n
X (x) ∼ n( − FX(x))

as x ↑ ∞, which signifies that the largest claim asymptotically dominates an indepen-
dent sum of n claims. One would hope that for a stochastic number N(t) for the number
of summands it is possible to simply shift the limiting operation through the summation
to obtain the exceptionally simple result

 − FS(t)(x) ∼ E(N(t)) ⋅ ( − FX(x)), as x → ∞. (..)

This is indeed the case if the generating function Qt(z) is analytic in a neighborhood of
the point z = . This simple condition of analyticity essentially means that |pn(t)| ≤ r−n

for some value r > , that is, pn(t) has to decay geometrically fast with n. The asymptotic
result (..) is very elegant and also rather robust with respect to variations in the
model assumptions (even with respect to certain dependence among risks), which
contributes to its enormous popularity in academic research (see the references at
the end of the chapter). It also certainly adds to the intuition of dealing with large
claims. However, for practical use the important question is whether for relevant finite
magnitudes of x, the first-order asymptotic approximation (..) is already sufficiently
accurate for practical purposes, and unfortunately this is typically not the case (see also
Section .).

One way to improve the approximation is to add higher-order terms in the asymptotic
expansion. A classical result by Omey and Willekens [, ] establishes that if FX
has a density fX with finite mean 𝜇, Qt(z) is analytic at z = , and the refined asymptotic
behavior ( − F∗

X (x)) − ( − FX(x)) ∼ 𝜇f (x) holds, then this implies

 − FS(t)(x) − E(N(t))( − FX(x)) ∼ 𝜇f (x)E
((

N(t)


))
, as x → ∞. (..)

More generally, under suitable conditions and if the respective quantities exist, higher-
order correction terms are of the form

k−∑
j=

(−)jE{N(t) ⋅ (X +⋯ + XN−)j+}
(j + )!

f (j)(x).

Determining, however, the exact conditions under which such higher-order expansions
are justified is a challenging research topic and has been studied intensively in the
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academic literature (e.g., see Grübel [], Willekens and Teugels [], Barbe and
McCormick [], and Albrecher et al. [] for a recent account). In the latter reference it
is also shown how additional higher-order terms can be replaced by adding the degree
of freedom of shifting the argument x. For instance, the expression

 − FS(t)(x) ∼ E(N(t)) ⋅
{

 − FX

(
x −

(
E(N(t))
E(N(t))

− 
)
E(X)

)}
achieves (roughly) the same accuracy as (..). For Poisson claim numbers this
simplifies to the intuitive formula

 − FS(t)(x) ≈ E(N(t)) ⋅ ( − FX(x − E(S(t)))),

and this shift by the mean total claim has indeed been used sometimes as a rough
approximation in practice, even before the mathematical justification in [].

6.3 Panjer Recursion

When the claim sizes are discrete integers, then the expression (..) for the aggregate
claim size can be calculated explicitly, determining the convolutions directly. For an
aggregate claim of size m one needs to go up to n = m. However, this is extremely
inefficient and leads to a computational complexity of order O(m).

If, however, the claim number distribution pn = pn(t) = P(N(t) = n) is of (a, b, ) type
(..), that is, it satisfies the recurrence relation

pn =
(

a + b
n

)
pn− , n ∈ {, ,… , }

with a and b constants (which contains the Poisson and the negative binomial distribu-
tion, see Chapter ), then the famous Panjer recursion can be applied: for m = , ,…
one has

P(S = m) = 
 − aP(X = )

m∑
k=

(
a + bk

m

)
P(X = k)P(S = m − k), (..)

initiated by P(S = ) = Q(P(X = )). Here we exceptionally allow P(X = ) to be
positive, for reasons that become clear below (in any case, for P(X = ) =  one gets
P(S = ) = P(N = )). The recursion (..) speeds up the computations considerably,
leading to a computational complexity O(m), and is popular in practice still today.

As discussed in Chapter , in many situations the use of a continuous claim size
distribution FX is preferred. In that case, one can discretize FX according to

hj = FX(jΔ) − FX((j − )Δ), j = , ,… ,M

for some Δ > , so that the resulting c.d.f. H(x) =
∑

j≤x hj (with H() = ) provides a
lower bound for FX(x). Likewise,

h̃j = FX((j + )Δ) − FX(jΔ), j = , , ,… ,M − 
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Figure 6.1 Discretizing the claim size distribution with Δ = .

with c.d.f. H̃(x) =
∑

j≤x h̃j,, which provides an upper bound for FX(x) (cf. Figure .).
One can now use the Panjer recursion for the discrete bounds H(x) and H̃(x), leading

to a lower and upper bound for the true value FS(x):

PL(S ≤ x) ≤ FS(x) ≤ PU (S ≤ x).

By decreasing Δ one can then bring the upper and lower bound together with arbitrary
accuracy. This approach is very popular in practice, and there is a tradeoff between
sharpness of the bounds and increased computation time (for choosing smaller Δ).
Employing the estimate

FS(x) ≈ (PL(S ≤ x) + PU(S ≤ x − ))∕ (..)

in fact can give a quite satisfactory estimate already for medium-range values of
M. There is an enormous literature on problems with this numerical approach and
suggestions how to resolve them (for a survey paper including many references on the
history, refer to Sundt []). When FX is heavy tailed, an efficient implementation
can be quite tricky (e.g., see Hipp [, ] and also Gerhold et al. [] for a recent
treatment).

6.4 Fast Fourier Transform

As before, consider a discretized claim size random variable X with probability function
fX(xj), j = ,… ,M −  for some fixed M. Since the goal is to obtain the total claim
distribution fS(xj) = P(S = xj) (j = , ..,M − ), one could also start with the explicit
form of the characteristic function of S (cf. (..))

E
(
eizS) = Q

(
E
(
eizX))

,



Total Claim Amount 201

where i =
√
− is the imaginary unit, and aim to obtain fS directly by numerically

inverting this characteristic function. This can in fact be done very efficiently using fast
Fourier transform (FFT), the origin of which can be traced back to Gauss in  before
it was popularized and developed further by Cooley and Tukey [].

Consider the discrete Fourier transform of the probability function fS(xj) with xj = jΔ
for some Δ > :

f̃S(kΔ) =
M−∑
j=

fS(jΔ)e
𝜋i
M jk

, k = , , ...,M − ,

and the respective inverse transform

fS(jΔ) =


M

M−∑
k=

f̃S(kΔ)e
− 𝜋i

M kj
, j = , , ...,M − . (..)

The quantities f̃S(iΔ) are given by Q(f̃X(iΔ)) for all i = , ..,M − , where f̃X(kΔ) =∑M−
j= fX(jΔ)e

𝜋i
M jk

, k = , , ...,M − , that is, one needs to calculate (..). By using
symmetries in the complex plane, these computations can now be speeded up. If one
chooses M a power of , then the inverse transform of length M in (..) can be
written as two Fourier transforms of length M∕, etc. The resulting computational
complexity is O(M logM), which is much faster than the Panjer algorithm for large
values of M (see Section . for an illustration).

This method is nowadays the fastest available tool to determine total claim size dis-
tributions numerically, but the implementation of the algorithm is not straightforward,
and there can be numerical challenges with this method when M is not large (for the
aliasing problem, see Embrechts et al. [] and Grübel and Hermesmeier []). A nice
discussion of the advantages and disadvantages of the method and comparisons to the
Panjer algorithm can be found in Embrechts and Frei [].

A further numerical method to obtain an estimate for the aggregate claim distribution
is stochastic simulation (see Chapter ).

6.5 Total Claim Amount under Reinsurance

Since we have discussed in Chapters  and  how the claim size and claim number
distributions, respectively, change under the respective reinsurance contracts, one can
apply the techniques discussed in Sections .–. to the respective new distributions.
We discuss some aspects in this context in more detail here.

6.5.1 Proportional Reinsurance

For a QS contract, as already indicated in (..), it is straightforward to translate a result
on the distribution of S(t) into the corresponding one for R(t):

P(R(t) ∶= aS(t) > x) =  − FS(t)

(x
a

)
and correspondingly for the retained total claim amount D(t).
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For surplus reinsurance, in principle it is also conceptually simple to write down
the distribution of individual reinsured and retained claims for a given sum insured
(see (..)). The formulas for the aggregation to R(t) and D(t) are now, however, more
involved, and as discussed in Section . the most transparent approach may be to
treat the insured sum Q as a random variable (i.e., apply a collective view), cf. (..)
and (..).

6.5.2 Excess-loss Reinsurance

For an L xs M reinsurance contract, we discussed already in Chapter  that the total
claim size is given by

R(t) =
N(t)∑
i=

min{(Xi − M)+, L} =
N(t)∑
i=

X̃i, (..)

D(t) =
N(t)∑
i=

(
min{Xi,M}{Xi≤M+L} + (Xi − L){Xi>M+L}

)
,

for the two parties (cf. (..)). In Section .. it was also given that

F̃(x) = P(X̃ ≤ x) =
{

FX(M + x) if  ≤ x < L,
 if x ≥ L.

Note that an alternative approach for the reinsurer is to only count those claims that
lead to a positive reinsurance claim. Define R̆i by its tail

P(R̆i > x) = P(X̃i > x|X̃i > ), x > ,

then one can write

R(t) =
NR(t)∑
i=

R̆i, (..)

(cf. Section ..). Recall that in this case, the (a, b, ) class for N(t) is particularly
attractive, since NR(t) is then of the same kind, just with modified parameters ã and b̃.

Sticking to the formulation (..) and assuming i.i.d. claims independent of N(t),
one immediately gets

E(R(t)) = E(N(t)) ⋅ �̃� (..)

and

Var(R(t)) = E(N(t)) ⋅ Var(X̃) + Var(N(t)) ⋅ �̃�
 , (..)

where �̃� is given by (..).
Assume now, for illustration, that there is also a second reinsurer (third partner)

involved who pays the excess of each claim above M + L (in the absence of such
a second reinsurer, the sum of the first and third partners represents the situation
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for the first-line insurer in the L xs M treaty). Denote by U(t) =
∑N(t)

i= Ui with
Ui = (Xi − (M + L))+ the aggregate claim size of that second reinsurer. Since
E(DiRi) = M E(Ri), E(DiUi) = M E(Ui) and E(RiUi) = L E(Ui), one immediately
sees that the three covariances Cov(Di,Ri), Cov(Di,Ui) and Cov(Ri,Ui) are all positive.
For the aggregate level, by iterated expectations,

E(D(t) ⋅ R(t)) =
∞∑

k=
P(N(t) = k)

( k∑
i=

E(DiRi) +
k∑

i=

k∑
i≠j=

E(DiRj)

)

and hence

Cov(D(t),R(t)) = E(N(t)) ⋅ Cov(Di,Ri) + Var(N(t)) ⋅ E(Di) ⋅ E(Ri) .

In this equation one can replace the roles of D,R by D,U and R,U without any problem.
Using the expressions for the individual covariances one finds the expressions

Cov(D(t),R(t)) = E(Di)E(Ri) [Var(N(t)) − E(N(t))] + ME(N(t))E(Ri),

Cov(D(t),U(t)) = E(Di) E(Ui) [Var(N) − E(N(t))] + ME(N(t)) E(Di),

Cov(R(t),U(t)) = E(Ri) E(Ui) [Var(N(t)) − E(N(t))] + LE(N(t)) E(Ui).

Let now A and B be any two distinct letters from the set {D,R,U}. For the variances,
we get

Var (A(t) + B(t)) = E(N(t)) ⋅ Var (Ai + Bi) + Var(N(t)) ⋅ (E(Ai) + E(Bi))

and hence by a simple calculation

Var (A(t) + B(t)) − (Var(A(t)) + Var(B(t))) =  Cov(A(t),B(t)) > .

That is, there is an increase in variance if one combines different layers in the reinsurance
chain.

The situation is different for the standard deviations. Since

Cov(A(t),B(t)) < (Var(A(t)) Var(B(t)))∕

one obtains

(Var(A(t) + B(t)))∕
< (Var(A(t)))∕ + (Var(B(t)))∕

,

and therefore the standard deviation decreases by combining layers.
Let us look at the coefficient of variation of A(t). From general principles we know that

Var(A(t))
E

(A(t))
= 

(E(N(t)) E(Ai))

(
E(N(t))Var(Ai) + Var(N(t))E(Ai)

)
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so that

Var(A(t))
E

(A(t))
= Var(N(t))

E
(N(t))

+ 
E(N(t))

Var(Ai)
E

(Ai)

or

CoV(A(t)) = CoV(N(t)) + 
E(N(t))

CoV(Ai) . (..)

Correspondingly, the coefficient of variation of the aggregate claim size differs among
the partners only by the one of the single claim size entering the above formula in the
last element.

6.5.3 Stop-loss Reinsurance

In the case of an unbounded SL contract

R(t) = {S(t) − C}+ ,

it is again very simple to translate the tail of S(t) to the tail of R(t):

P(R(t) > x) =  − FS(t)(x + C).

This formula neatly shows that good estimates for the tail  − FS(t)(x) are immediately
relevant for the reinsurer, especially if C is large. Also, for unbounded SL, the property
of super-exponentiality or sub-exponentiality is passed on to the reinsurer.

Consider the stop-loss premium Π(y, t) = E(S(t) − y)+ (the expected reinsured
amount under a SL contract with retention y) and the generalized stop-loss premium

Πm(y, t) ∶= E(S(t) − y)m
+ =

∫

∞

y
(x − y)mdFS(t)(x), y ≥ , m ∈ N. (..)

Note that

Π(y, t) = P(S(t) > y) =  − FS(t)(y)

reduces to the tail of the total claim amount. Instead of (..) we can also use an
alternative which is derived from an integration by parts. So assume that 𝜇m = E(Xm)
< ∞, then it easily follows that for m > 

Πm(y, t) = m
∫

∞


vm−[ − FS(t)(y + v)]dv = m

∫

∞


vm−[Π(y + v, t)]dv. (..)

So if we know a way how to handle Π (i.e., the tail of S(t)), then a simple additional
integration gives all required insight into the generalized stop-loss premium. This also
applies to the asymptotic behavior (see below). For m = , detailed estimates have been
obtained by Teugels et al. [].
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In Section .. we could – for a number of situations – derive an estimate for x → ∞
of the form

 − FS(t)(x) ∼
e−|𝜃∗|x|𝜃∗| K(x) (..)

where K ∈ . Let us define a function K by the relation

 − FS(t)(x) =
e−|𝜃|x|𝜃| K(x).

When we introduce this expression into (..), a simple calculation tells us that

Πm(y, t) = m e−|𝜃|y|𝜃|m+ K(y)
∫

∞


bm−e−b K(y + b|𝜃|−)

K(y)
db.

Applying classical uniformity properties of functions from the class  we see that under
the conditions for K ∈  we get for y → ∞

Πm(y, t) ∼ m! e−|𝜃|y|𝜃|m+ K(y).

Alternatively, and for all m ≥ 

Πm(y, t) ∼
m!|𝜃|m { − FS(t)(y)}.

This relationship can now be applied to all the cases discussed in Section ...
Likewise, the sub-exponential estimates from Section .. lead to corresponding

estimates for the generalized SL premium. For instance, start from

 − FS(t)(x) = E(N(t))( − FX(x)) + R(t)f (x) − R(t)f ′X(x) + o(f ′X(x))

where

R(t) = 𝜇E
(

N(t)


)
and R(t) =

{
𝜇

E

(
N(t)



)
+ 𝜇E

(
N(t)



)}
.

Introduce this into the expression for Πm to find that

Πm(y, t) = mE(N(t))
∫

∞


vm−[ − FX(v + y)]dv

+ mR(t)
∫

∞


vm−fX(v + y)dv − mR(t)

∫

∞


vm−f ′X(v + y)dv.
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Now

m
∫

∞


vm−[ − FX(v + y)]dv = m

∫

∞


vm−dv

∫

∞

v+y
dFX(u)

= m
∫

∞

y
dFX(u)

∫

u−y


vm−dv

=
∫

∞

y
(u − y)mdFX(u)

= E(X − y)m
+ .

Similar calculations lead to

∫

∞


vm−f (v + y)dv = E(X − y)m−

+ ,

and

∫

∞


vm−f ′(v + y)dv = −(m − )E(X − y)m−

+ .

We ultimately find that

Πm(y, t) = E(N(t))E(X − y)m
+ + mR(t)E(X − y)m−

+

+ m(m − )R(t)E(X − y)m−
+ + o(f ′X(y)).

6.6 Numerical Illustrations

In this section we illustrate the use of the Panjer recursion and FFT, and also look into
the performance of the different approximations discussed earlier in this chapter. We
also investigate the quantitative influence of the choice of counting process model on
the distribution of the aggregate claim size for two of the case studies.

Case study: MTPL data, Company A. We first apply these techniques to the MTPL case
study from Company A, approximating the compound distribution S for one year (i.e.,
here t is in units of days). For the claim size distribution we use the model from Figure .,
while the claim number distribution is Poisson with 𝜆 = ., as discussed in Figure ..
Note that here the claims are heavy tailed with 𝛾 = ., so that the variance and the third
and fourth moment do not exist (and normal approximations cannot be applied). In order to
assess the sensitivity of the choice of counting model, in Table . we contrast the expected
values of N and S as well as resulting VaR levels (based on FFT), using the Poisson model
and a fitted Cox model based on an inverse Gaussian subordinator, respectively. □

Case study: Dutch fire claim data. Table . gives the corresponding figures for the
models fitted to the Dutch fire claim data in Chapter , again based on FFT calculations
(for the claim size distribution we use the model from Figure .). Figure . depicts
the upper and lower bound for the c.d.f. of S based on Panjer recursions together
with the average (..) for a lower and a higher discretization (M =  and M = ).
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Table 6.1 MTPL data for Company A: Key figures for models of X, N and S using Poisson and Cox
models with inverse Gaussian subordinator

E(⋅) Var(⋅) VaR0∶95 VaR0∶99 VaR0∶995

X , / ,, ,, ,,

N Poisson . .
N Cox-IG . .

S Poisson ,, / ,, ,, ,,
S Cox-IG ,, / ,, ,, ,,

Table 6.2 Dutch fire insurance claim data: Key figures for models of X, N and S using a Poisson
model (𝜆 = .) and a Cox model with inverse Gaussian subordinator (cf. Figure 5.8).

E(⋅) Var(⋅) VaR0∶95 VaR0∶99 VaR0∶995

X ,, .× ,, ,, ,,

N Poisson . .
N Cox-IG . .

S Poisson ,, .× ,, ,, ,,
S Cox-IG ,, .× ,, ,, ,,

One sees that the average (..) provides a very good estimate already for M = .
Using the same discretizations for the respective FFT procedure, one obtains a plot
that is practically identical to Figure . (but, just to have an impression in terms of
computation time, for M =  the computation via the Panjer recursion took 
seconds, whereas the FFT computation took . seconds on a usual PC, using an R
code in each case). One observes that the resulting values for the higher discretization
can safely be considered the exact values of FS(x) within the model assumptions. In
order to assess the accuracy of the approximations from the earlier subsections, Figure
. compares the FS(x) obtained by FFT with the normal approximation as well as
first- and second-order approximations for heavy-tailed distributions. As mentioned
in Section .., one sees that both asymptotic approximations are rather coarse for
practical use, even for values around the .% quantile (see the zoom on the right-hand
side). It is also quite clear from the plot that even if S is a sum of many i.i.d. random
variables with finite variance, the normal approximation is quite inappropriate, once the
distance to the mean is considerable. □

Note that on the basis of the splicing model conditional on the development period as
given in Section .., it is also possible to calculate the compound distribution for a
particular accident year and development year. Here a thinning of the number of claims
for accident year i towards a given development year d can then be based on Table ..

Illustration: Light-tailed claims. Finally, we would like to give an illustration of the
performance of the total claim approximations for exponentially bounded claim sizes.
None of the case studies introduced in Chapter  seem to fall into this class. Rather
than fitting an inappropriate model to the data, we therefore prefer to instead consider a
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Figure 6.2 Dutch fire insurance claim data: Panjer bounds (and equally FFT bounds) for FS based on
interval splicing loss model and Poisson counting model: M =  and Δ =   (top); M = 

and Δ =   (bottom).

simple example with a negative binomial claim number with parameters t = , 𝛼 =  and
b = , and gamma-distributed individual claim sizes with 𝛼 =  and 𝜆 = . Figure .
compares several approximations to the “exact” values of the c.d.f. FS(x) (approximated
by FFT). One sees that using all first four moments, the Gram–Charlier approximation
considerably improves on the normal approximation, both in the center and further
in the tails. As for heavy tails, the light-tailed asymptotic approximation only becomes
accurate for very large values of x, way beyond the % quantile. □

6.7 Aggregation for Dependent Risks

In the above sections, the focus was on the aggregation of i.i.d. claim sizes, which
are also independent from the claim number process. This is the classical and very
popular approach and a natural benchmark for all alternatives. For a discussion of the
assumption of identically distributed claim sizes, see the Notes at the end of the chapter.
The independence assumption is, however, a more challenging one. While in many
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Figure 6.3 Dutch fire insurance claim data: application of (..), (..) and (..), and FFT as
approximations of FS based on interval splicing loss model and Poisson counting model (top);
restricted graph with cumulative probabilities larger than 0.99 (bottom).

practical situations assuming independence will suffice the purpose, there will also often
be situations in reinsurance practice where it is essential to consider dependence among
the risks in the process of their aggregation. Dependence can enter in various ways:
● Dependence between claim sizes within a portfolio (line of business)

It may happen that subsequent claims in a line of business (LoB) are dependent
because their distribution is influenced by one or several shared external factor(s),
but conditional on these factors the risks are independent (such factors could, for
instance, be economic, weather or legal conditions). If such a dependence can be
described explicitly, then the aggregation can be done for each choice of the factor
under the independence assumption and the results then have to be mixed according
to the distribution of the factor. If only some of the claims are affected by such a
common factor, it may be appropriate to regroup (sum) them together to one large
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Figure 6.4 Compound negative binomial model with gamma-distributed claim sizes: normal
approximation (..), Gram–Charlier approximation (..), asymptotic approximation (..), and
FFT as approximations of FS (top); restricted graph with cumulative probabilities larger than 0.95
(bottom).

claim, which can then again be considered independent of all the other ones (like in
the per-event XL setting, where one does not consider individual claims, but the total
claim due to each external event). In that case, the independent aggregation can again
be applied for a correspondingly modified claim (and claim number) process.

Another possibility could be a causal dependence, for example that a large claim
size influences the distribution of the next claim size (like an afterquake claim after
an earthquake claim, or a storm loss after a previous storm loss when buildings
are already destroyed). In the presence of many data points, it may be possible to
formalize such dependence structures and then the aggregation procedure has to be
adapted according to the identified model.

Finally, one may “statistically” see dependence in the claim data (like in an
auto-correlation function), but not be able to attribute this to a concrete reason.
In such a case, great care is needed, as many of the statistical fitting procedures
for marginal distributions crucially rely on independence of the data points, so that
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then the consideration of dependence should already enter the model formulation
procedure.

● Dependence between claim numbers within an LoB
The algorithms discussed above in fact only use the distribution of the final
value N(t), so that dependence between claim numbers along the time interval
is neither a problem nor a restriction (and most of the claim number processes
discussed in Chapter  involve some sort of contagion or dependence). In fact,
from the viewpoint of inter-occurrence times between claims, only the renewal
model (with the homogeneous Poisson process being a special case) exhibits
independence.

● Dependence between claim sizes and frequency within an LoB
It is easy to imagine situations where the distribution of claims depends on the
frequency of their occurrence, indicating a different underlying nature or mechanism
to cause them. In Chapter  we discussed some recent approaches to use such
information in the model calibration in connection with GLM techniques. On a
causal level, one can again think that the length of the time between claims has an
influence on the next claim size (like in the above earthquake or storm scenario).
The implications for the aggregation of such structures will depend on the particular
assumption on the dependence. Particular examples are Shi et al. [] and Garrido
et al. [].

● Dependence between claim sizes and claim numbers of different LoBs
A scenario that will occur quite frequently in reinsurance practice is the occurrence
of events that simultaneously trigger claims in several LoBs (leading to dependence
between the respective claim number processes), and then the respective claim
sizes will most likely also not be independent of each other. In Chapters  and
 we discussed the fitting of multivariate models to claim data. It is indeed
preferable that in the presence of dependence of claim sizes the fitting is directly
done on the multivariate level. If this is not feasible, however, then one popular
approach is to combine the fitted marginals through some copula (which may
be chosen according to some structural understanding of the nature of the
dependence like common risk drivers or based on previous empirical dependence
patterns).

The final goal is often to obtain the distribution of the aggregate sum of all claims of
those dependent LoBs. If in fact all claim occurrence times in these LoBs coincide (i.e.,
N(t) represents the number of claims for all those LoBs), one can then first determine
(or approximate) the distribution of the sum of the dependent components, and for
this resulting (again scalar) claim distribution apply the techniques discussed in the
above sections, particularly Panjer recursion and FFT.

● Dependence in the company level aggregation
For solvency considerations, insurance and reinsurance companies finally have to
aggregate the portfolios of different LoBs and of different countries to obtain one
overall aggregate claim distribution. This is often done by determining the aggre-
gate claim distribution S(t),… , Sn(t) of each of the n risk units using the above
techniques under the independence assumption. In a second step the resulting
(marginal) sums S(t),… , Sn(t) are combined with a copula, which is then used
to determine the distribution of S(t) + ⋯ + Sn(t). This procedure may in fact be
iterated several times within the company hierarchy, leading to hierarchical copula
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structures. Clearly the choice of copula function will be crucial for the outcome of this
procedure.

While independence is a well-defined and unique concept, there is a (literally) infinitely
large class of dependence models available and the choice is inevitably also a matter of
purpose and taste. It is beyond the scope of this book to give a detailed exposition of
concrete dependence models proposed and used in (re)insurance practice, but we point
to comments and references in the Notes below.

6.8 Notes and Bibliography

The collective risk model with a random claim number N(t) already explicitly postulates
the identical distribution of all claim sizes. For an originally heterogeneous portfolio
one can think of FX as a mixture distribution with respective weights (see the classical
textbooks on risk theory mentioned in Chapter  for details). Correspondingly, the
assumption of identically distributed claims (within the same LoB) is not that restrictive.
When claim data are spread over longer time horizons, one needs, however, to be
particularly careful to adjust them so as to make them comparable (e.g., corrections for
inflation, market share, or – as in the case studies of aggregate storm and flood claims –
normalization by total building value).

In individual risk models (where the aggregate claim is determined as the sum of
losses of each policy and hence the number of summands is fixed), it is a decisive
computational advantage if the chosen individual loss distribution is closed under
convolution (like for the gamma and inverse Gaussian case). In the collective model we
have seen in this chapter that this property is not essential (in most cases the distribution
will anyway be discretized for the computational purposes of aggregation).

For surveys on classical aggregate claim approximations, see Teugels [], Chaubey
et al. [] and Papush et al. []. An early reference to the method of orthogonal
polynomials in actuarial science is Gerber [].

Approximations in the spirit of Berry–Esseen theory but using compound Poisson
distributions have, for example, been given in Panjer et al. [] and Hipp []. Also,
Stein’s method can be relevant for this purpose, see, for example, Barbour and Chen
[]. Further, the Wilson–Hilferty approximation and the Haldane approximation have
been advocated by Pentikäinen in [], where more references can be found. Refer also
to Willmot [], where even time-dependent claims are used. For an alternative gamma
series expansion, see [].

We indicate briefly here some other methods of deriving exponential estimates for
the tail of FS(t)(x):
● A traditional approach to get exponential estimates relies on the saddle-point method

that probabilistically can be viewed as an approximation by a normal distribution
whose mean and variance are chosen in some optimal way. This method is popular

 Note that the (in principle preferable) multivariate modelling of all these LoBs is, for practical reasons,
often not possible. In the standard model of Solvency II, this step is in fact even coarser, using prescribed
correlation coefficients between the business units.
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and its use is widespread. It also applies to the simple Poisson case (for which the
procedure of Section .. does not apply). An excellent source of information on
this method is Jensen [].

It should be mentioned that the asymptotic expressions obtained by the saddle-
point method can be slightly different from those obtained by the method described
in Section ... For example, for the Pólya model the saddle point method offers an
analogous but different estimate for the total claim distribution (e.g., see Embrechts
et al. []). For extensions of the saddle-point approximation to other risk models,
see Jensen [].

● In Den Isefer et al. [], projection pursuit methods are advocated to calculate the
distribution of the aggregate claim amount. For approximations using Lévy processes,
see Furrer et al. []. One may in fact interpret the use of a Lévy process as the
opposite approach: whereas the classical actuarial approach is to model individual
claims and aggregate them, in the Lévy setup one typically starts with the aggregate
distribution and strives to ponder the implications on the jump behavior on smaller
time intervals.

● An approximation of the distribution of the total claim amount by an inverse Gaussian
distribution has been advocated in Chaubey et al. []. We briefly show how one may
obtain results for specific distributions when the method of Section .. fails. For a
slightly different approach, see Gendron et al. []. Recall that the inverse Gaussian
distribution has the Laplace transform

F̂X(s) = exp
{
−𝛽𝜇

(√
 + s

𝛽
− 

)}
.

Hence 𝜎FX
= −𝛽∕ and F̂X(𝜎FX

) = e𝛽𝜇 (and due to the finiteness of this value there
will not always exist an appropriate 𝜃 value to apply the method of Section ..).
However, with the explicit form of the n-fold convolution FX , by reversing summation
and integration, one finds with 𝜂 ∶= (𝛽𝜇)∕

 − FS(t)(x) =
√

𝜂

𝜋 ∫

∞

x
y−∕e−𝛽y∕

{ ∞∑
n=

npn(t)e𝛽𝜇ne−n 𝜂

y

}
dy.

Write g(y) for the summation inside the integral. When x and henceforth y is large
enough, one can expand the function g(y) around the point y−. We find g(y) =∑∞

k= ck(t) y−k where

ck(t) =
(−𝜂)k

k!

∞∑
n=

nk+pn(t)e𝛽𝜇n
.

The latter quantities can of course be written in terms of the generating function Qt(z).
For example, c(t) = e𝛽𝜇Q′

t(e
𝛽𝜇). After a couple of easy calculations one finally obtains

for x ↑ ∞
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√

𝛽𝜋
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𝛽x


{
c(t) −


x

(
c(t) +

c(t)
𝛽

)
+…

}
.
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The above expansion is in contrast with an approximation suggested by Seal [],
where a moment fit is applied.

● If the claim number process is a mixed Poisson process, then Willmot developed
another procedure that works very well if the mixing distribution has a certain
asymptotic behavior (see []).

Early references to higher-order asymptotic approximations for heavy tails are
Embrechts et al. [, ] and Taylor [], see also Willmot []. As illustrated
in Section ., the first-order asymptotic approximation (..) is rather inaccurate
for not extremely large values of x, but it also turns out to be remarkably robust with
respect to dependence (e.g., see Asmussen et al. [], Albrecher et al. []), which may
be considered both an advantage and a disadvantage. Segers and Robert [] show that
if the claim number distribution is more heavy tailed than the claim size distribution,
then in certain situations one can replace the claim size (rather than the claim number)
by its mean in the first-order approximation.

The mathematical principle underlying the Panjer recursion can be traced back all
the way to Euler [] and has also reappeared early in computer science (see Exercise
. in Knuth []). For its first application in actuarial science, see Williams [] and
Panjer [, ]. For generalizations, see, for example, Willmot et al. [] and Dhaene
et al. []. For a detailed survey of recursive methods we refer to Klugman et al. []
and Sundt and Vernic [], who also discuss recursive methods in higher dimensions.
For a recent contribution see Rudolph []. Numerical inversion of characteristic
functions have a long history in risk theory (e.g., see Bohman [] and Seal []).
Early references for the FFT method in aggregate claim approximations are Bertram
[] and Bühlmann [].

Chains of XL treaties are covered, for example, in Albrecher and Teugels [].
We would like to emphasize that the calculation of the VaR values in Tables . and

. here for simplicity was done for the fitted distribution, as if this fitted distribution
is the true one. However, if the parameter uncertainty due to the estimation procedure
were taken into account, the resulting VaR values would be different. In fact, in most
applications this effect is overlooked or ignored. However, one should be aware that
this can lead to systematic underestimation of VaR values and other risk measures. See
Pitera and Schmidt [] for a recent analysis and illustration.

For an embedding of risk models with causal dependence between claim sizes and
their inter-occurrence times into a semi-Markovian framework, see, for example,
Albrecher and Boxma []. Albrecher and Teugels [] propose a dependence structure
between claim sizes and inter-occurrence times that still preserves a certain random
walk structure and is hence quite tractable. For an illustration on how conditional
independence of risks given a common random parameter can lead to Archimedean
dependence structures, see Albrecher et al. [] and Constantinescu et al. []. A possi-
ble source of dependence in data is also a hidden common trend (like neglected inflation
etc.); for a study of the consequences of failing to detect such trends on quantiles of
compound Poisson sums with heavy-tailed summands, see Grandits et al. [].

Classical references for copula techniques are Joe [] and Nelsen [] and for an
early insurance application Frees and Valdez []. A rich source for the application
of copulas in risk management is McNeil et al. []. For a general approach to a
hierarchical pair-copula construction, see, for example, Aas et al. []. Since particularly
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in the reinsurance context often the number of available data points is not sufficient
to identify an appropriate copula for given marginal distributions, it is natural to look
for best-case and (particularly) worst-case bounds for quantiles (the VaR) of the sum
of dependent risks, see, for example, Embrechts et al. [–] and Bernard et al.
[]. For the practical computation of such bounds, Puccetti and Rüschendorf []
developed the so-called rearrangement algorithm. Since these bounds will in general
be quite wide, there has been quite a lot of research activity in how to narrow these
bounds under additional information such as higher moments of the sum, see, for
example, Bernard et al. [, , ] and Puccetti et al. []. Bignozzi et al. []
investigated the asymptotic behavior of theVaR of the sum of risks relative to the sum of
the individual VaRs under dependence uncertainty. For an assessment of the robustness
of VaR and ES with respect to dependence uncertainty, see Embrechts et al. [] and
also Cai et al. [] for more general risk measures. The tradeoff between robustness and
consistent risk ranking is investigated in Pesenti et al. []. Filipović [] compares
a bottom-up approach for risk aggregation to the multi-level aggregation structure
inherent in some standard models of regulators.

In some situations with dependence one can avoid formulating and calibrating
the dependence model directly. As an example, for storm risk modelling in Austria,
Prettenthaler et al. [] used a building-value-weighted wind index for each region for
which aggregate claim data were available to relate the losses to wind speed during the
storm. Using the suitably normalized claim data, and implementing a region-specific
correction factor (taking into account the topography and type of buildings of each
region) as well as a storm-specific correction factor (considering the different duration,
torsion etc. of each storm), such a relationship could be established. One could then use
previous wind field data (that go back in time much longer than the storms for which
claim data are available) to create additional loss scenarios and then use resampling
techniques to determine global and local loss quantiles. For flood loss modelling, one
can alternatively sometimes use concrete risk zonings (produced by experts on-site)
that assign return periods of floods to each local region throughout a country (such
zonings exist with remarkable resolution). Together with a map of buildings one can
assign losses to each return period, and the dependence modelling then reduces to
model the joint occurrence of return periods across these regions, see Prettenthaler
et al. [] for a case study in Austria.

Finally, note that for most of the models exhibiting some sort of dependence between
the individual risks, the only way to approximate the aggregate claim distribution or,
more particularly, its quantiles, is stochastic simulation, which is discussed in Chapter .
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7

Reinsurance Pricing

An important question when setting up a reinsurance contract with

R(t) = S(t) − D(t) (..)

is to determine the appropriate premium PR(t) that the cedent has to pay to the reinsurer
for entering the contract. If P(t) is the premium that the cedent received from the
policyholders for risk S(t), then PD(t) = P(t) −PR(t) is the part of P(t) that compensates
the cedent for keeping D(t), that is, we have to identify the premium sharing that goes
along with the risk-sharing mechanism (..). Since reinsurance is after all a form
of insurance, one can expect similar principles to be applied for reinsurance pricing
as there are for first-line insurance. There are, however, also substantial differences to
pricing for first-line insurance, for instance with respect to
● the available data situation underlying a decision about the premium
● the degree of asymmetry of information between the two parties in the contract on

the underlying risk and the corresponding data
● the way in which the long-term relationship between the parties influences the

pricing (profit participation, adaptations of risk-sharing rules in case of severe claim
experience, etc.)

● the demand and supply pattern for finding reinsurance coverage (particularly also the
availability of alternatives to reinsurance, cf. Section .)

● the risk of moral hazard for certain reinsurance forms.

Also, there has to be an agreement of how to share administrative costs for the
acquisition of insurance policies and the settlement of claims, which is usually done
by the cedent. In proportional reinsurance, this is taken into account in the form of
a reinsurance commission, which will reduce the reinsurance premium (cf. Section
.). Due to the nature of the reinsurance market (with less available loss experience,
fewer companies, limited diversification possibilities etc.), premiums will in general be
adapted much faster to the loss experience than in the primary insurance market, and
correspondingly market cycles (e.g., caused by the occurrence or the lack of catastrophic
events) play a prominent role (e.g., see Meier and Outreville [, ]).

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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As for premiums in primary insurance markets, an actuarial reinsurance premium
will typically consist of the expected loss of the underlying risk plus a safety loading.
In Section . we review the classical principles to determine such a safety loading,
and Section .. discusses how to include the cost of capital and solvency require-
ments in these considerations. We will then deal with pricing issues for propor-
tional reinsurance in Section ., and study challenges of non-proportional treaties in
Section ..

The final reinsurance premium also has to contain a margin for additional costs like
administrative costs, participation in acquisition expenses, runoff expenses, taxes, asset
management fees, and finally profit.

We mention that there are further factors particular to reinsurance that will influence
the size of the loading in the premium. In Chapter , a list of possible motivations to
take reinsurance was given, and the relative importance of these in a particular situation
will clearly have a considerable impact on the premium level that can be agreed on. In
addition to that, there is a possible remaining basis risk for the cedent, that even if the
reinsurance treaty is designed on an indemnity principle, there can be clauses to fix a
participation amount for future corrections of the original claim size, and so the actual
costs may differ from the respective reinsured amount. This risk may also be priced
in. Another issue is counterparty risk: the necessary solvency capital for a cedent with
respect to counterparty risk (e.g., as required in Solvency II) is influenced by the rating
of the reinsurance company, and if this rating is not favorable, the cedent may ask for a
premium reduction or a deposit (e.g., see Sherris []). Also, the concrete risk appetite
of the top management on both the cedent’s and the reinsurer’s side will have an impact
on the willingness to enter a treaty for a certain premium. Finally, under competitive
conditions the market demand will determine which premiums can be charged, and
the premium calculation procedures based on the stochastic nature of the risks will
then mainly serve as lower limit prices at which offering the product becomes viable for
the reinsurer. In the sequel we will not explicitly deal with these additional factors (but
see Antal [] for more details).

In this chapter we mainly focus on the (traditional) actuarial approach to pricing,
dealing with the liabilities from the underwriting of risks. For the final implementation,
this approach will have to be combined with financial pricing techniques, also taking
into account the capital investments and its management, potential further regula-
tory constraints as well as economic valuation principles. Among the key drivers to
determine prices will then be to maximize the resulting market value of the company,
for instance using capital asset pricing models and their adaptations to insurance or
option pricing techniques explicitly taking into account the possible default of the
company (e.g., see Bauer et al. []). Some further comments on this will be given in
Section ..

 Not employing such a safety loading will lead to bankruptcy in the long run, and this is also the classical
argument to justify it. In recent years, however, due to changes in the regulatory framework, the focus has
gradually moved towards considerations involving the cost of capital, which one may consider as a change of
paradigm (see Section ..).
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7.1 Classical Principles of Premium Calculation

Before selling insurance and buying reinsurance, the insurer has to adopt some kind
of assessment of the riskiness of the overall position. In particular, if a rule can be
formulated that assigns to the claim S(t) a premium P(t) = 𝜓(S(t)) for some functional𝜓
under which the position becomes acceptable (in terms of both profitability and safety),
then this defines a premium calculation principle. After reinsurance, the same analysis
has to be done for the remaining position D(t). The reinsurer will have to do a similar
analysis for the risk R(t), albeit with a possibly different function 𝜓 reflecting a different
risk attitude, different access to markets and hence diversification possibilities etc. In
order to discuss this in general, consider the risk Y with c.d.f. FY , where Y could be any
of the above quantities or also a single risk that is considered. If we denote the premium
by P(Y ), then this functional might satisfy a variety of properties that make the premium
principle acceptable. Examples include:
● positive loading: E(Y ) ≤ P(Y )
● no-ripoff: P(Y ) ≤ QY () = inf{x ∶ FY (x) = }
● no unjustified risk loading: P(Y = b) =  implies that P(Y ) = b
● positive homogeneity: P(aY ) = aP(Y ) for any real constant a > 
● translation invariance: P(Y + b) = P(Y ) + b for any real constant b.

Other properties are phrased in terms of two risks Y and Y with c.d.f. FY
and FY

,
respectively:
● monotonicity: P(Y) ≤ P(Y) if FY

(x) ≥ FY
(x) for all x

● subadditivity: P(Y + Y) ≤ P(Y) + P(Y)
● additivity: P(Y + Y) = P(Y) + P(Y) if Y and Y are independent
● comonotonic additivity: P(Y +Y) = P(Y)+P(Y) if Y and Y are comonotonic (i.e.,

they can both be expressed as an increasing function of one single random variable)
● convexity: P(p Y + ( − p)Y) ≤ p P(Y) + ( − p)P(Y) for any  < p < .

Not all of these properties are necessarily desirable in all situations. As an example, while
positive homogeneity may look natural in terms of switching between currencies, it will
often not make sense when one thinks of a as a huge number reflecting a scaled-up risk.

We now list some popular examples of premium principles.
● The expected value principle is given by

P(Y ) = ( + 𝜃) E(Y ), (..)

where 𝜃 >  is a fixed constant. So here the safety loading is proportional to the
expected claim size. This principle is very popular, both due to its transparency and
simplicity, and especially in reinsurance portfolios the reliability of information on

 Note that in the mathematical finance literature, such axiomatic properties were reconsidered intensively
in the context of risk measures, where positive homogeneity, translation invariance, monotonicity, and
subadditivity together became popular under the term coherence (see Artzner et al. []). While
subadditivity for coherent risk measures is considered crucial, the unconditional appropriateness of
subadditivity in the insurance context is not so clear (see Dhaene et al. []).
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the risk beyond the first moment is often limited. For 𝜃 =  one talks about the pure
premium.

● If information on the variance of Y is available, then another common principle is to
choose the safety loading proportional to that variance:

P(Y ) = E(Y ) + 𝛼V Var(Y ), (..)

which is called the variance principle, where 𝛼V is a positive constant (for a guideline
on how to choose this constant see Section .).

● If the variance is replaced by the standard deviation, we get the standard deviation
principle

P(Y ) = E(Y ) + 𝛼S
√

Var(Y ) (..)

where again 𝛼S is a positive quantity. The switch from the variance to the standard
deviation may be considered natural in view of underlying (currency) units: if the
expectation is in €, the variance will be in €, whereas the standard deviation is also
in units of € (on the other hand, one may also assume the constant 𝛼V to be in units
of /€, see Section . for a concrete example). Eventually, measuring variability by
variance or by standard deviation gives just different weight to “additional” risk and
in that sense is a matter of taste and choice. In any case, the resulting properties of
the two principles differ substantially. Both are in fact used extensively, depending on
the context.

● The above principles use only the first two moments of Y . If information on the entire
Laplace transform of Y is available, then the exponential principle

P(Y ) = 
a
log E(eaY ) (..)

(for some fixed risk aversion coefficient a > ) has many appealing properties.
One notices, however, that such a principle can only be applied to risks Y with an
exponentially bounded tail, as the Laplace transform has to be finite at the positive
value a.

● Classical utility theory suggests using the zero utility principle, under which the
premium is determined as the solution of the equation

u(w) = E(u(w + P(Y ) − Y )), (..)

where u(x) is the utility (for the entity offering insurance) of having capital x, whereas
w is the (deterministic) current surplus and P(Y ) is the premium for which this entity
is indifferent about entering the contract in the sense of expected utility. The utility
function is usually non-decreasing, indicating that larger risks should be counteracted

 Depending on the context, the terms net premium and risk premium are also often used to denote the
expected value of the claim size, but the terminology is sometimes ambiguous and we will use the term pure
premium throughout.
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by larger premiums; it is also typically concave, indicating risk aversion. If Var (Y ) is
small, one can approximate

P(Y ) ≈ E(Y ) + |u′′(w)|
 u′(w)

Var (Y ),

that is, the utility principle has some similarity to the variance principle (cf. []).
For a linear utility function u, (..) gives back the pure premium, and for u(x) =

−e−ax the value of w becomes irrelevant and one finds the exponential principle again.
Other frequent choices for u are power functions and logarithmic functions.

If u is a refracted linear function with u(x) = ( + 𝜃)x for x <  and u(x) = x for
x ≥  for some parameter 𝜃 > , then for w =  the criterion (..) gives the expectile
principle

P(Y ) = E(Y ) + 𝜃 E((Y − P)+),

that is, the loading is proportional to the expected loss. Another way to write this is
(+𝜃)E((Y −P)+) = E((P−Y )+), that is, the premium is determined in such a way that
when entering the contract, the “expected gain” is a multiple ( + 𝜃) of the “expected
loss” (e.g., see Gerber et al. []).

In the presence of other risks in the portfolio, it is actually more natural to assume
that the current surplus is not a deterministic quantity, but itself a random variable
W . In this case (..) translates into

E(u(W )) = E(u(W + P(Y ) − Y ))

and the resulting premium will depend on the joint distribution of Y and W (i.e., on
the diversification potential of adding Y to the portfolio). For instance, exponential
utility u(x) = −e−ax then gives

P(Y ) = 
a
log E(ea(Y−W ))

E(e−aW )
,

which for small risk aversion a leads to the approximation

P(Y ) ≈ E(Y ) + a


Var (Y ) − a Cov(Y ,W ),

(e.g., see Gerber and Pafumi []).
While the idea of this approach is theoretically quite attractive (since under the weak

assumptions stated in the classical von Neumann–Morgenstern theory a preference
among two random future cash-flows can always be expressed as a larger respective
expected utility), the determination of the appropriate utility function describing the
risk attitude for all magnitudes will in practice typically not be feasible. For a recent
approach for insurance pricing involving utility functions beyond a concave shape see
Bernard et al. [].

● The mean value principle is defined by

P(Y ) = v←(E(v(Y ))) (..)
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where v an increasing and convex valuation function with inverse v←. For v(x) = erx

we get again the exponential principle, while for v(x) = x we find the pure premium.
● Another approach is to distort the distribution of Y by transforming some of its

probability mass to the right, in that way making the risk more dangerous. Then
the premium can be obtained by taking the expected value of the modified random
variable. If this distortion is done by an exponential function, one obtains the Esscher
premium principle

P(Y ) =
E
(
Y ehY)

E
(
ehY

)
for some positive parameter h. It is clear that the Esscher principle can only be invoked
for claims which have an exponentially bounded tail.

● A more general toolkit arises from distorting the distribution tail of Y . Let g be a non-
negative, non-decreasing, and concave function such that g() = , g() = . Then
the risk-adjusted premium principle is defined by

P(Y ) =
∫

∞


g( − FY (x)) dx .

The choice g(t) = t𝛽 is referred to as proportional hazard transform (e.g., see Wang
[]). Note that this principle can also be applied for heavy-tailed risks.

Distorting the loss random variable provides a natural link to arbitrage-free pricing
when integrating financial aspects in the pricing mechanism (cf. Section .).

Needless to say there are many other premium principles, each with some merits and
defects (see the further references at the end of the chapter).

7.2 Solvency Considerations

The premium principles discussed in Section . are guidelines that can be applied to the
individual risks, but also to the aggregate risk in the portfolio. However, the question of
premium calculation is also intimately connected with solvency considerations, and on
the aggregate level there has to be an appropriate interplay between received premiums
and additionally available capital to ensure a solvent business. Then, in a next step,
the aggregate premium can be sub-divided on the individual policies. The premium
principle used for this second sub-dividing step does not necessarily have to coincide
with the one applied for determining the aggregate premium (cf. Section . below).

We will now discuss two solvency criteria for determining the aggregate premium, the
first one mainly for intuitive and historical reasons, the second one being the currently
relevant one for many regulatory systems in practice.

 After appropriate incorporation of this interplay, one may finally interpret (and justify) a premium
principle for the aggregate risk along such lines, for example the constants in the principles above being
determined by the available capital and the target capital for solvency purposes (see also Section .).
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7.2.1 The Ruin Probability

A traditional approach to look at the safety of an insurance portfolio is to consider
its surplus process C(t) as a function of time, and observe whether this process ever
becomes negative (an event that is referred to as ruin)., If at time t = , one starts
with capital w, then the (infinite-time) ruin probability is defined as

𝜓(w) = P (inf
t≥

C(t) <  |C() = w),

and the finite-time ruin probability up to time T is correspondingly

𝜓(w,T) = P ( inf
≤t≤T

C(t) <  |C() = w).

Concretely, the ruin probability quantifies the risk of “running out of money” in the
portfolio within the considered time period. In order to determine this quantity, one
needs to specify the properties of the stochastic process C(t). The simpler the chosen
model for C(t), the more explicit expressions one can expect for𝜓(w) and𝜓(w,T). If one
assumes stationarity (or some sort of regenerative property) for C(t) as well as a certain
degree of independence between increments of this process, then one can often apply
recursive techniques, leading to integral (or integro-differential) equations for 𝜓(w) and
𝜓(w,T), which in some cases can be solved explicitly. Such explicit formulas are then
helpful to determine model parameters (in particular the invoked premium) in such a
way that a target value 𝜖 for the ruin probability can be achieved.

The classical model for C(t) in this context is the Cramér–Lundberg model

C(t) = w + c t −
N(t)∑
i=

Xi, (..)

where the premiums are assumed to arrive continuously over time according to a
constant premium intensity c and the aggregate claim size up to time t follows a
compound Poisson process with rate 𝜆 (see Figure . for a sample path). Infinite-time
ruin can only be avoided if the drift of the process is positive, that is,

c = ( + 𝜃)𝜆E(X) (..)

for some (relative) safety loading 𝜃 > . This model is clearly very simplistic, but it
enables an explicit expression for the ruin probability of the form

𝜓(w) =
(

 − 𝜆E(X)
c

) ∞∑
n=

(
𝜆E(X)

c

)n

( − F∗n
I (w)) (..)

 Clearly, ruin in this context does not necessarily mean bankruptcy, as there may be ways to still bail out
the situation, but it is a natural and helpful decision criterion to assess the safety of the portfolio over time.
 The ruin theory approach discussed in this section can in principle be applied to both a portfolio of an
insurer (seeking for reinsurance to modify the resulting safety 𝜓(w,T)) as well as to the portfolio of a
reinsurer addressing the question which reinsurance premiums can be offered so that the resulting safety for
the reinsurer is acceptable.
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C(t)

t

ruin

w

Figure 7.1 Sample path of a Cramér–Lundberg process C(t).

for each w ≥ , where F∗n
I is the n-fold convolution of the integrated tail (or equilibrium)

c.d.f.

FI(x) =


E(X) ∫

x


( − FX(y))dy. (..)

For particular models for the claim size distribution, this expression can simplify further
significantly, for example if X is exponentially distributed with parameter 𝜈, then for
each w ≥ 

𝜓(w) = 𝜆

𝜈c
e−(𝜈−𝜆∕c)w

,

which is a simple and fully explicit formula in terms of the model parameters. In
particular, for a fixed bound 𝜓(w) ≤ 𝜖, one can – for given initial capital – determine the
necessary (relative) safety loading 𝜃 in the premiums in view of (..). Alternatively,
for a fixed premium c one can determine the necessary initial capital w to ensure the
bound 𝜖.

If the so-called adjustment equation

𝜆 + r c = 𝜆E(erX) (..)

has a positive solution r = 𝛾 >  (which requires an exponentially bounded tail of the
claim size distribution,), then one can show that for all w ≥ 

𝜓(w) ≤ e−𝛾w
. (..)

 Note that one can interpret the premium principle implied by this approach as an expected value
principle (cf. Section .).
 This is particularly the case if all policies have an upper coverage limit per claim.
 The quantity 𝛾 in this context should not be confused with the extreme value index in other chapters (this
notation is very common for both objects).
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This is the famous Lundberg inequality and 𝛾 is referred to as the adjustment coefficient
(or Lundberg coefficient). If the Lundberg coefficient exists, by combining (..) and
(..) one can write

P(t) = c t = 
𝛾
logE(e𝛾S(t))

for the aggregate claim S(t) =
∑N(t)

i= Xi up to time t, that is, the premium principle
in this model can be interpreted also as an exponential principle with risk aversion
coefficient 𝛾 .

If one now wants to ensure an upper bound 𝜓(w) ≤ e−𝛾 w = 𝜖, then one can translate
the given security level 𝜖 and the initial capital w into the corresponding necessary
adjustment coefficient 𝛾

𝜖
= | log 𝜖|∕w, which leads to the premium requirement

P(t) = 
𝛾
𝜖

logE(e𝛾𝜖S(t)).

Consequently, the use of the exponential premium principle and the concrete choice
of its risk aversion coefficient have a motivation in the framework of infinite-time ruin
probabilities (cf. Dhaene et al. []).

The above considerations rely on the assumptions of the Cramér–Lundberg model,
which – for the sake of simplicity and mathematical elegance – ignores many aspects
that are relevant in insurance practice, including the claim settlement procedure and
loss reserving (claims are not paid immediately), inflation and interest, investments in
the financial market, varying portfolio size, dependence between risks, later capital
injections, dividend payments etc. Many variants of the Cramér–Lundberg model
which include such features have been developed in the academic literature over recent
decades, leading to nice and challenging mathematical problems. However, the resulting
formulas (or algorithms) typically become much more complicated, even if some driving
principles can be extended to models with surprising generality (see Asmussen and
Albrecher [] for a detailed survey).

If the model incorporates so many factors that analytical or even numerical tractabil-
ity is lost, one can still simulate sample paths of the resulting process C(t) and approx-
imate 𝜓(w) or 𝜓(w,T) numerically (see also Chapter ). However, apart from the
complexity of the resulting calculations, there are other reasons that make the direct
application of the ruin theory approach for solvency considerations less appealing. One
of them is that it may be very difficult to formulate the dynamics of the stochastic process
C(t) sufficiently explicitly so that the result can reflect the company’s situation (and the
resulting model uncertainty may be considerable). This also includes the discrete nature
of many model ingredients (the data situation may be sufficient to model a one-year
aggregate view, but not the dynamics within the year). Furthermore, for infinite-time

 In fact, under weak conditions the (Cramér–Lundberg) approximation

𝜓(w) ∼ C e−𝛾w
, w → ∞ (..)

holds for some constant C < , such that the inequality captures the qualitative behavior of 𝜓(w) in terms of
w and is often reasonably sharp (e.g., see []).
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ruin considerations, there may not be a good reason to believe that business will
continue in the long term in the same way as it does in the short term. Yet, the ruin
probability can still provide insight into the portfolio situation: to value a certain strategy
says something about how robust such a strategy is in the long run if it were continued
that way (and this is a relevant question for sustainable risk management, even if one
adapts the strategies later). In addition, the ruin probability quantifies the diversification
possibilities of risks over time. Whereas the accounting standards in place in many
countries nowadays do not allow for time diversification (e.g., equalization reserves),
they can be an indispensable tool in the management of risks with heavy tails or
risks where the diversification possibilities in space are limited, a situation that can be
quite typical for reinsurance companies. In that sense, ruin probability calculations (or
simulations) can be a valuable complement in the assessment of reinsurance solutions
and their consequences.

We will come back to ruin theory considerations in Chapter  when the choice of
reinsurance is discussed, particularly because it played a considerable role historically
and is still implicitly behind the intuition of certain choices of reinsurance treaties
nowadays.

7.2.2 One-year Time Horizon and Cost of Capital

The current regulatory approach employed in most countries is simpler and considers
a time horizon of one year only. Let Z(t) denote the available capital (assets minus
liabilities) at time t. In broad terms, the criterion at time  is to hold sufficient capital
so that the risky position Z() becomes acceptable according to some risk measure 𝜌.
Concretely, if L() = Z() − Z() denotes the loss during the following year (leaving
aside discounting), then the capital requirement is 𝜌(L()). For Solvency II, which has
been implemented in the European Union since  January , this risk measure
determining the required capital is the Value-at-Risk

𝜌(L()) = VaR
𝛼
(L()) = QL()(𝛼)

for 𝛼 = .. That is, under this requirement the probability that the loss of next year
can not be covered by the available capital is bounded by .. The Swiss Solvency
Test, in contrast, uses the conditional tail expectation

𝜌(L()) = CTE
𝛼
(L()) ∶= E[L()|L() > VaR

𝛼
(L())] (..)

for 𝛼 = . (see also Section .). In this case, even when one of the scenarios beyond
the % quantile happens, the expected loss then still can be covered by the available
capital.

There are many sources of risk that influence the distribution of L() in practice, so
that its determination is complex. This includes also the challenge of the valuation of

 In the technical document [] of the SST the risk measure (..) is referred to as the expected
shortfall, which usually is defined as the average ES

𝛼
(L()) ∶= ∫


𝛼
VaR

𝜂
(L()) d𝜂∕( − 𝛼) (also often called

Tail-VaR). While for some discrete random variables L() the two concepts can lead to different numbers,
they coincide for continuous random variables L(), which is the case of our interest (for details see []).
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the assets and of the liabilities, which is supposed to be done in a market-consistent
way. Among the risk sources are market risk (volatility of equity prices, interest rates,
exchange rates, etc.), counterparty risk (the risk of default or rating changes of counter-
parties), and insurance risk. Typically these risks are investigated separately and then
combined using some assumptions on their dependence.

For the purpose of pricing, we now focus on the insurance risk in a non-life portfolio
and for simplicity assume that there is only new insurance business, which is also settled
within the year (the arguments can then be adapted to include the loss development of
business from previous years). Let us hence assume that the loss L() here is determined
by the aggregate insurance loss S() minus the collected premium P() received for the
respective policies. This will lead to a regulatory solvency capital requirement SCR() =
𝜌(L()), which the insurance company needs to hold. The capital SCR() will typically
be provided by the shareholders of the company or external investors. For this risky
investment they will demand a certain return rate rCoC , leading to costs rCoC ⋅ SCR().

One can now interpret P() as being composed of the expected claim size E(S()) =
BE() (referred to as best estimate) and the safety loading RM() (referred to as risk
margin). Following the regulatory view, one can see the necessary safety loading as the
amount to finance the needed capital, that is,

RM() = rCoC ⋅ SCR(),

since then the regulatory requirement for pursuing the insurance business is fulfilled
(see also Section .). If the investors are the shareholders of the company and any
premium in excess of claim payments at the end of the year is their profit, then rCoC
can also be interpreted as the expected return rate on their investment SCR().

Summarizing, with such a premium P() both the expected scenario and “adverse”
claim situations up to the safety level of the regulatory capital requirement are covered.
The need and size of the safety loading can accordingly be interpreted this way (rather
than considerations of long-term safety, as in classical ruin theory).

Entering a reinsurance treaty, the insurer’s aggregate claim switches from S() to
D(), and correspondingly he will face a reduced expected claim size BED() and
correspondingly smaller SCRD(), with a respective capital cost reduction. If this cost
reduction exceeds the reinsurance premium which one has to invest to achieve this
reduction, the resulting contract is worthwhile entering for the insurer.

Let us now look more closely at the pricing of different reinsurance forms.

 Both Solvency II and the Swiss Solvency Test suggest a rate of rCoC = % to be used in the calculations,
particularly for loss reserving (e.g., see [, ]), whereas rates in the market are typically higher. See
Albrecher et al. [] for an approach to justify the size of rCoC from an economic equilibrium perspective
and in view of the limited liability of investors.
 In fact, since (in the VaR case) every year the solvency capital is set to the level that avoids ruin with
probability 𝛼, one can consider consecutive years as independent realizations of a random variable that each
year leads to ruin with probability  − 𝛼. Correspondingly, the resulting infinite-time ruin probability is ,
that is, the company will become bankrupt with certainty, and (as a geometric random variable) the
expected lifetime of the company is ∕( − 𝛼). However, the actual capital held by the insurance company
will typically be larger than this minimal requirement SCR() (i.e., the so-called solvency ratio will be larger
than ). Nevertheless, discussing the matter in terms of the minimally prescribed SCR() provides a basis for
reasoning, and adaptations can then be made as seen fit.
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7.3 Pricing Proportional Reinsurance

For proportional reinsurance treaties, the premium calculation is a priori quite simple,
as it is natural to share the premium P(t) according to the same proportion as the risk
S(t), and this is indeed the driving guiding principle. For a QS treaty R(t) = a ⋅ S(t) one
correspondingly has

PR(t) = a ⋅ P(t),

and for surplus treaties one can determine the premium share in line with the respective
proportionality factor that applies for each policy (or rather class of policies). However,
a number of additional items have to be considered in practice. The most important
is the reinsurance commission that will be subtracted from the reinsurance premium.
It compensates the cedent for the fact that acquisition costs of policies, costs for
the estimation, and settlement of the claims as well as other administrative costs
are carried by the cedent, and the reinsurer will participate in those to some extent.
The concrete amount of participation is often made dependent on the actual loss
experience:
● sliding scale commissions: after setting a provisional commission (in terms of a

percentage) and a reference loss ratio, for each percentage point that the actual loss
ratio deviates from that reference point, the commission percentage is adapted (not
necessarily :) inversely with the loss ratio, but within upper and lower limits

● profit sharing provisions: if the reinsurer’s participation in a given year is very success-
ful (i.e., there are few losses), the reinsurer passes back some of the premium, again
along predefined terms

● loss corridors: to further protect the reinsurer, an agreement may be that the reinsurer
only covers a% of the reinsurer’s loss ratio, and then again on from b% (b > a), whereas
the cedent retains the part in between.

When these loss-dependent features are defined in a piecewise linear fashion, then the
calculation of their impact is still fairly straightforward, but depend on the distribution
of the loss ratio. So to settle the amount of the commission, this distribution needs
to be estimated from information on historical data. Here some care is needed. If
the treaty is of a “losses occurring” type, then the earned premium and the accident
year losses are relevant. On the other hand, a treaty can be of the “risks attaching”
type, in which case losses on policies written during the treaty period are covered,
and the written premium and the losses of all those policies should be considered. In
a next step, catastrophe losses (which caused many claims) and shock losses (which
caused single very large claims) are then most often removed from the set of collected
data. Then the remaining historical losses have to be developed to ultimate values,
both for the number of claims (IBNR) and the sizes of claims (IBNR and IBNER) (see
also Section ...). In addition, the historical premiums have to be adjusted to the
future level, including the rate changes that are expected during the treaty period.
Finally, the losses also have to be trended to the future period. From all these obtained

 The loss ratio is defined as the incurred claims (together with expenses associated to their investigation
and settling) divided by the earned premium and is a popular performance measure in practice.
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data points, the expected loss ratio is then estimated by the arithmetic average of the
respective historical loss ratios adjusted to the future level. At this point, a catastrophe
loading then has to be added to the expected non-catastrophe loss ratio, for which
various methods are used, including simulation models (e.g., see Clark [, ] for
details).

Finally, in certain lines of business the reinsurer may actually have a lot, some-
times more, experience in the nature of the claims, and may want to adapt or cor-
rect the premium amount collected by the cedent to the size that he deems more
appropriate.

7.4 Pricing Non-proportional Reinsurance

From an actuarial point of view, the pricing of non-proportional reinsurance is con-
siderably more involved than that for proportional treaties. As mentioned before,
the more reliable information one has about the claim size distribution, the more
flexibility one gains in terms of using a premium principle like the ones mentioned in
Section .. In typical non-proportional reinsurance treaties, one often has difficulties in
determining more than the first one or two moments, so that an expected value principle
or variance principle is quite common. In addition, a number of clauses (including
reinstatement constructions etc.) often even make the determination of the first two
moments a non-straightforward assignment. We will therefore discuss some guiding
principles for determining the pure reinsurance premium. Two main approaches can
be distinguished. The first is mainly based on the reinsurer’s own experience and
assessment of the underlying risks, normalized to the volume of the exposure (reflected
by the premium that the cedent collected from policyholders for this portfolio (exposure
method)). The second relies on the previous loss experience of that particular reinsured
portfolio (experience method).

We focus here on XL treaties (for SL the same principles apply). For more information
on large claim reinsurance forms, refer to Section ..

7.4.1 Exposure Rating

7.4.1.1 The Exposure Curve
Consider an individual claim X, which is subdivided into X = D+R. Recall from (..)
that under an ∞ xs M contract we have

E(D) =
∫

M


( − FX(z)) dz, E(R) =

∫

∞

M
( − FX(z)) dz. (..)

This shows that if one is interested in the pure reinsurance premium in such a treaty,
the function

rX(M) ∶= 
E(X) ∫

M


( − FX(z)) dz

is particularly useful, as it gives for each retention M >  the fraction E(D)∕E(X) of the
risk X that stays with the cedent. rX(M) is called the exposure curve. Mathematically,
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one immediately recognizes rX(M) as the equilibrium distribution function of X, which
leads to nice properties. For instance, for the Laplace transform one has

∫

∞


e−sx drX(x) =

 − F̂X(s)
sE(X)

,

where F̂X(s) is the Laplace transform of X. In particular, there is a one-to-one correspon-
dence between FX and rX . From r′X(x) > , r′′X(x) <  one sees that the exposure curve
is an increasing and concave function (and, as the c.d.f. of a positive random variable, it
starts in  and tends to  for M → ∞).

Even if in light of this one-to-one correspondence one does not gain directly from
modelling the exposure curve (instead of the distribution of X), it will turn out to be
a quite useful description below, and actuaries have developed a remarkable intuition
about the shape of this curve for certain lines of business. Note that for the aggregate
claim size S(t) =

∑N(t)
i= Xi in a portfolio with i.i.d. risks Xi, one can use the same exposure

curve as for X:

rS(M) ∶= E(D(t))
E(S(t))

= E(N(t))E(D)
E(N(t))E(X)

= rX(M),

as the influence of N(t) cancels out. For the direct modelling of exposure curves, one
often uses discrete shapes. A continuous one-parameter family of such curves that still
enjoys some popularity was given by Bernegger []:

Gb,g(x) =

⎧⎪⎪⎨⎪⎪⎩

x g =  or b = 
log(+(g−)x)

log g
b = , g > 

−bx

−b
bg = , g > 

log (g−)b+(−gb)bx

−b
log(gb)

b > , b ≠ , bg ≠ , g > 

with b(c) = e.−.(+c)c and g(c) = e(.+.c)c for a parameter c (which is often chosen
to be one of the values c ∈ {., , , }, but other values are used as well). Note that
here x is in % of the size of the risk, measured, for example, by the sum insured or the
PML (see Section ...).

The exposure curve plays a crucial role in determining the pure reinsurance
premium.

7.4.1.2 Pure Premiums
The idea in exposure rating for the reinsurer is to consider the insurer’s pure premium Pj
for each different risk group j and then use own experience (that the reinsurer may have
gained through previous treaties in that market), experience from related portfolios or
market statistics to determine the premium. That “experience” is reflected in the choice
of the exposure curve. For an ∞ xs M contract on risk group j one then gets

PR,j = Pj( − rj(M))
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and for an L xs M contract correspondingly

PR,j = Pj(rj(M + L) − rj(M)).

That is, one has intuitive and simple adaptations of the insurer’s premiums available.
Such an approach is only feasible if the chosen exposure curve rj applies to all risks of
that risk group, an assumption that may only be fulfilled if the sizes Qi of the risks in the
policies underlying the claims Xi are sufficiently similar. If this is not the case, there are
two common adaptations:

a) If the loss degree Vi = Xi∕Qi can be assumed to be i.i.d. across the policies (which
seems a reasonable assumption in property, marine hull and personal accident
insurance), then one can estimate (or use from past sources) the exposure curve
rV for the loss degree directly to get for an ∞ xs M treaty

PR,i = Pi(Qi)
(

 − rV

(
M
Qi

))
.

A particular advantage in this case is the fact that rV is inflation-invariant and
currency-invariant (as inflation will affect M and Qi in the same way).

b) In liability insurance the sum insured will often be chosen arbitrarily and is typically
much smaller than the maximum claim size, so that the above assumption is not
reasonable. One may then, however, assume that the original risk X is identically
distributed within the same risk class, and that the claim for each policy is just
truncated at different values Qi, that is, Xi = min(X,Qi) for some generic non-
truncated X with exposure curve rX . One then obtains

rQi
(M) =

{
E(min(X,M))
E(min(X,Qi))

= rX (M)
rX (Qi)

,  < M ≤ Qi,

, M > Qi,

which is referred to as the increased limits factors curve (ILF curve). But here rX is
not inflation- and currency-invariant, which is undesirable. An alternative reasoning
going back to Riebesell [] proposes that when doubling any insured sum, the
pure premium should be multiplied by  + z for some fixed  < z < , that is,
E(min(X, Q)) = (+ z)E(min(X,Q)) (in contrast to property insurance above where
the insured sum is a measure of the size of the risk, here the pure premium increases
less than the sum insured). This rule then implies

rQi
(M) =

(
M
Qi

)log(+z)

,

which is again inflation- and currency-invariant (see Mack and Fackler [] for
a characterization of distributions of X for which this logarithmic scaling rule of

 In property insurance the risk size is typically measured by the PML or (for small risks) by the sum
insured. In personal accident and marine hull the sum insured is used.
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E(min(X,Q)) can indeed be fully justified). The resulting reinsurance premium then
again is

PR,i = Pi(Qi)
(
 − rQi

(M)
)
.

For further extensions and discussions see Riegel [] and Fackler [].

As for proportional treaties, in addition the reinsurer may want to correct the used
values of Pi if he does not consider them appropriate.

7.4.1.3 Safety Loadings
To determine the safety loading, it is often the variance that is of interest (if available).
For this purpose, for an L xs M contract a natural possibility is to use the representation

R(t) =
NR(t)∑
j=

R̆j

introduced in (..), where NR(t) is the number of claims that the reinsurer faces, and
R̆j is the reinsured amount of the jth claim that concerns the reinsurer. Let �̃�R,k ∶= E(R̆k

j )
(note that this differs from �̃�k introduced in Section .., as R̆j does not have an atom
at ). If one assumes i.i.d. claim sizes, then

Var(R(t)) = E(NR)�̃�R, + (Var (NR) − E(NR))�̃�
R,

= E(NR)�̃�R,

(
�̃�R,

�̃�R,
+
(Var (NR)

E(NR)
− 

)
�̃�R,

)
= Ppure

R

(
 ∫ M+L

M (rX(M + L) − rX(x))dx
rX(M + L) − rX(M)

+
(Var (NR)

E(NR)
− 

)
�̃�R,

)

where Ppure
R is the pure premium from the previous section. Hence, the variance can

be expressed in terms of the exposure curve in the region of the layer. Note that
(particularly for higher layers) Var (NR)∕E(NR) will often be close to , so the second
term in the above sum can be quite small.

In Section . we will deal with the determination of safety loadings from an aggregate
point of view.

7.4.2 Experience Rating

In contrast to the exposure method, in experience rating one bases the calculations on
the loss experience of the concrete portfolio. This can work if there is sufficient credible
claim experience available. In this context the techniques introduced in Chapter  can
be very useful. As already discussed there, the insurer will typically not pass on the
entire series of previous claims, but only those that are immediately relevant for the layer
under consideration (so that the reinsurer faces the statistical challenge of data analysis
under truncation). For instance, only past claims larger than half of the deductible over
the last – years would be communicated. In order to make those past data points
comparable, they have to be suitably adjusted. Each considered factor may influence
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the size of the claims, the number of the claims or both. Besides changes in legislation,
technical changes or changing insurance market conditions (which are sometimes not
easy to incorporate), the following three factors need to be considered and can typically
be quantified to a satisfactory degree.

7.4.2.1 Inflation
Data points spreading over several years need to be inflation-corrected. Depending on
the line of business, there may also be other adjustment indices that are more suitable
(like the building cost index). This makes the data points comparable, but there is also
another important aspect of inflation in XL treaties: a claim that previously did not
touch the layer under consideration may nowadays be above M, that is, relevant for
the treaty (this is the main reason for the reporting threshold for past claim sizes to be
considerably below M and not at M). To see this, consider the expectation E(RM,L

i ) =
∫

M+L
M (−FX(z))dz in an L xs M contract. After inflation with factor 𝛿 >  this changes to

∫

M+L

M
( − F

𝛿X(z))dz = 𝛿
∫

(M+L)∕𝛿

M∕𝛿
( − FX(z))dz = 𝛿 E(RM∕𝛿,L∕𝛿

i ),

that is, the latter corresponds to the (scaled) expected reinsured claim size in the layer
[M∕𝛿, (M+L)∕𝛿]. In typical cases this resulting expectation is larger than the inflation-
corrected original expected value. For instance, if X is strict Pareto with parameters
𝛼 >  and x, a simple calculation gives 𝛿 E(RM∕𝛿,L∕𝛿

i ) = 𝛿 ⋅ 𝛿𝛼− E(RM,L
i ) > 𝛿 ⋅ E(RM,L

i ).
The inflation may affect the claim sizes and the claim number in different ways, which

complicates the analysis. Inflation can be a major issue in MTPL lines (for a detailed
discussion see Fackler []).

7.4.2.2 Portfolio Size Changes
In a next step, all data points have to be adjusted to the portfolio volume of the present
year. After correcting for tariff adjustments, the premium amount is often considered
a suitable measure for the volume, particularly in fire and motor liability portfolios
(although inflation may affect premiums and claim sizes differently, which also has
to be taken into account). For fire, the sum insured (or PML) is also used (see also
Section ..). In other lines of business, other measures may be considered more
natural (like passenger kilometers flown in aviation liability). Whether the claim sizes
are assumed to increase proportionally with volume or with respect to some other
functional relationship, and whether this affects both the sizes and the number of
claims, strongly depends on the line of business and the type of cover (e.g., for per-
risk XL, volume will typically affect the number of claims and not the size, whereas for
cumulative XL it will rather influence the size of the (aggregate) claims per event).

7.4.2.3 Loss Development
In some lines of business (and particularly so in liability), it can take many years until a
claim payment is finally settled. In such a case, one has – for all claims that are not
fully developed yet – only development patterns and current estimates of the final
loss burden available. The reinsurer then needs to use loss reserving techniques on an
individual claim basis in order to make the data points of different years comparable.
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This needs to be done both for the number of claims (IBNR) and the sizes of the claims
(IBNR and IBNER) (see Chapters  and , where this is discussed in detail and illustrated
with data). One may finally also have to discount the data according to the typical
payment patterns, as later payments enable to invest the premiums until the payments
are due.

If all these adaptations are done and one is left with comparable data points, then
the simplest procedure is to build the empirical c.d.f. and use it for the pricing (this is
called burning cost rating). The resulting expected claim size (i.e., the arithmetic mean
of the data points, correspondingly referred to as burning cost) is often considered
quite useful, but clearly the empirical distribution will typically not be sufficient to
model the entire risk (using the empirical c.d.f. implies that the largest possible claim
size has already occurred!). Also, one often has rather few data points in the layer. We
refer to Chapter  where we have discussed and illustrated respective EVT techniques
extensively. Also, a Bayesian approach with an a priori guess for model parameters (such
as the extremal index) is sometimes implemented. Finally, credibility techniques can
be quite useful, where a weighted average is taken between the own claim experience
and the one of related portfolios. The weights are chosen according to how “credible”
the respective claim information is, and the development of respective algorithms is a
classical actuarial technique (see the references at the end of the chapter).

If there is no relevant claim experience available at all, but one has an estimate of how
frequently a loss occurs (say once in n years), then a crude way to state a pure premium
is to divide the layer size L by n. This leads to a payback tariff (the contract is said to
have an n-years payback, see also Section ..).

7.4.3 Aggregate Pure Premium

If one finally has distributions for the individual reinsured claim sizes Ri and the claim
number N(t) available, then the aggregate claim size distribution for the reinsurer can
be determined just as for the first-line insurer. In the presence of an aggregate (typically
annual) deductible AAD and an aggregate limit AAL we have

R(t) ∶= min

{(N(t)∑
i=

min{(Xi − M)+, L} − AAD

)
+

,AAL

}

(cf. (..)). For instance, if all risks are i.i.d. and N(t) is Poisson or negative binomial,
then the distribution of SR =

∑N(t)
i= min{(Xi − M)+, L} can be determined by Panjer

recursion (cf. Section .). The aggregate pure premium for the XL treaty is then
obtained through

E(R(t)) =
∫

AAD+AAL

AAD
( − FSR

(x)) dx. (..)

As discussed before, in XL practice often the premium is not fixed in advance, but
dependent on the loss experience during the contract. In that case, the (pure) premium
rule is then the function P which satisfies

E(P(X,X,…)) = E(R(t)). (..)
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Examples are contracts with the following:
● Slides: For a slide with a fixed loading Ls, the agreement is of the form

P(R(t)) = min{Pmin + (R(t) + Ls − Pmin)+,Pmax},

that is, the reinsurance premium actually is the aggregate claim experience R(t) of the
reinsurer plus the loading Ls, but capped at a minimal and maximal premium values
Pmin and Pmax, respectively. One way to implement this is that for given Pmin, loading
Ls and distribution of R(t), the value of Pmax is determined such that (..) holds.

Alternatively, a slide with proportional loading b is a contract of the form

P(R(t)) = min{Pmin + (b ⋅ R(t) − Pmin)+,Pmax}.

● Reinstatements: This variant of XL contracts has already been discussed in Section
... The sequence (cn)≤n≤k is fixed in advance and called a premium plan, that is,
further liabilities may have a different price than the first one. The values cn may be
fixed (pro-rata capita) or depend on the time when the reinstatements are paid (pro-
rata temporis). The latter variant is intuitive, since close to the expiry of a contract it
will be less likely that the next liability will be used up, but this is nowadays not so
common anymore. For the reinstatement of the nth such liability (n ≤ k) one then
has

Pj = cn
P
L

min{reinstatement of liability n, L}.

For pricing under different premium schemes, see Mata [] and Hess and Schmidt
[].

7.5 The Aggregate Risk Margin

The risk margin that the reinsurer needs to put on top of the pure premium and the
expenses will of course also depend on the other risks in the reinsurer’s portfolio (in view
of diversification possibilities etc.). We will take here the viewpoint of Section .. and
assume that the reinsurer has a required cost-of-capital rate rCOC (i.e., a return target on
risk-adjusted capital), which in view of his overall situation leads to the aggregate risk
margin RM ∶= RM(). This amount now has to be sub-divided onto the risk margins of
all m treaties that the reinsurer has in the portfolio:

RM =
m∑

j=
RMj,

where RMj denotes the risk margin of treaty j with risk Rj (so R() =
∑m

j= Rj).
Theoretically, the classical rule

RMj =
RM

Var (R())
Cov(Rj,R())
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appears natural. However, knowledge about the covariance between treaty j and
the aggregate risk R() will most often be out of reach, so one has to resort
to simpler rules. A typical compromise for such a simpler rule is to consider
the fluctuations of each treaty stand-alone, for example in terms of the variance
principle

RMj =
RM∑m

k= Var (Rk)
Var (Rj) ∶= 𝛼V ⋅ Var (Rj)

(which is exactly the above covariance principle for independent reinsurance treaties)
or in terms of the standard deviation principle

RMj =
RM∑m

k= 𝜎(Rk)
𝜎(Rj) ∶= 𝛼S ⋅ 𝜎(Rj).

A further possibility is the square root rate on-line (ROL) principle: if Lj denotes the
aggregate upper limit of the reinsurer in treaty j, then for the ROL rj ∶= E(Rj)∕Lj (cf.
Section ..), one divides according to

RMj =
RM∑

k Lk
√

rk
Lj
√

rj ∶= 𝛼R ⋅ Lj
√

rj.

Recall that the philosophy behind the ROL is that it approximates the probability of a
total loss Lj of the layer. If one assumes that either no claim or the total loss Lj occurs for

treaty j, then one would get 𝜎(Rj) = Lj

√
rj( − rj), and (for small rj) the principle then

resembles the standard deviation principle above.

A challenge in the implementation of the above approach in practice is that at the time
of the pricing of treaty j, one often does not yet know which other treaties will be added
to the portfolio, so that one has to estimate the constant 𝛼V , 𝛼S or 𝛼R, respectively, for
the future portfolio on the basis of the current composition and planned modifications.
The resulting constant can then be used to price each of the treaties according to the
respective premium principle (so this provides a concrete guideline for the choice of the
constants 𝛼V and 𝛼S in Section .).

One issue that remains is the following inconsistency: if the layer Lj of treaty j were
subdivided into two layers, then (due to the positive dependence of the loss in these two
layers) the variance of the loss of the entire layer would be larger than the sum of the
variances of the two sublayers (and similarly for standard deviation and ROL). That is,
there is (at least theoretically) an incentive for the cedent to chop the layers into smaller
and smaller pieces whenever such a premium principle is applied. One suggestion to

 For an exception for Cat-XL see Bernegger [].
 Indeed, it is observed in practice that the square root ROL principle approximates the standard
deviation principle remarkably well, particularly if the layer is not too large and the distribution is heavy
tailed – in which case claim payments are more likely to be close to Lj.
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mitigate this non-additivity is the so-called infinitesimal ROL principle: starting again
from the aggregate pure premium (..)

E(Rj) =
∫

Mj+Lj

Mj

( − FS(j)
R
(x)) dx,

where S(j)
R is the aggregate reinsured claim size in treaty j in the absence of aggregate

deductible and limit, the idea is to apply the ROL principle separately for each small
part (z, z + Δz) ∈ [Mj,Mj + Lj], that is,

rj(z) =

Δz ∫

z+Δz

z
( − FS(j)

R
(x)) dx,

and in the limit Δz →  one gets rj(z) = −FS(j)
R
(z). The infinitesimal contribution to the

premium according to the ROL principle then is 𝛼∗
R

√
 − FS(j)

R
(z) dz, so that the overall

contribution amounts to

RMj = 𝛼
∗
R ∫

Mj+Lj

Mj

√
 − FS(j)

R
(z) dz,

and the constant 𝛼∗
R is analogously RM divided by the sum of all these m integrals. By

construction this method to allocate the risk margins does not suffer from the non-
additivity problem.

The idea of deriving the individual risk margins (loadings) from its marginal capital
requirements can be traced back to Kreps []. The capital allocation for the individual
layers is often done using the so-called capacity appetite limit (CAL) curve, which
assigns the risk weights to different tranches of capital. This CAL curve can be seen
as the reinsurer’s implicit utility function and is provided to the pricing team by
overall capital considerations. For more refined pricing techniques in view of capital
considerations see [].

7.6 Leading and Following Reinsurers

In many realizations of reinsurance contracts there are in fact several reinsurers
involved in a treaty. A leading reinsurer negotiates the premium, but finally only takes
a certain proportional share of both the premium and the risk, and other reinsurers
take the remaining proportions. If we again assume that there are m treaties and the
reinsurer’s share in treaty j is aj ≤ , then the aggregate risk for the reinsurer is

R =
m∑

j=
ajRj.
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As a consequence, the risk margin then is determined by the premium calculation of
the leading reinsurer.

If an overall premium Pj for a reinsurance treaty Rj is already negotiated, a (following)
reinsurer has to determine on the basis of his internal premium principle, if and to what
extent a participation in that treaty is feasible. For fixed costs k involved in entering the
contract, one gets the condition

P(aj ⋅ Rj) + k ≤ aj Pj

for the internal premium rule P, on the basis of which one can determine which share aj
is appropriate (or optimal). When the reinsurer internally employs a standard deviation
principle, this leads to a linear inequality for aj (such that the optimal share is the
maximum available share), whereas for a variance principle the resulting inequality is
quadratic in aj.

In terms of leading and following reinsurers it is quite common that all reinsurers
equally participate in all layers (“across the board”). If one of the reinsurers does not
want to take the equal share in the upper layers (e.g., due to internal limits) or lower
layers (because of high administrative costs due to the large number of claims there),
then this can be passed on to one of the other reinsurance partners or a reinsurance
broker looks for an external additional reinsurer to take part in only those layers.

7.7 Notes and Bibliography

For general classical accounts on premium calculation in risk theory we refer to Gerber
[], Goovaerts et al. [], and Kaas et al. []. For a more applied view see Mack
[] and Parodi []. An early discussion of convexity in the context of premium
calculation is Deprez and Gerber []. An ordering using Lorenz curves was discussed
in Denuit et al. [], see also Heilmann []. An extension of the expected value
principle to a quasi-mean value principle with its properties is given in Hürlimann
[].

Reich [] has shown that the standard deviation principle enjoys some fundamental
properties. Benktander [] suggests a linear combination of expected value, variance,
standard deviation principles.

The distortion principle can be found in Denneberg [] and turns out to be quite
general, in the sense that many pricing rules (and risk measures) can be expressed that
way for an appropriate distortion function (see Wang [, ], and Pflug and Römisch
[] for a general overview in the context of risk measures). Duality concepts play
a major rule in this context (see Yaari [] for a classical influential contribution).
Furman and Zitikis [] discuss the general and intuitive concept of actuarial weighted
pricing functionals, which contain many pricing rules (also when related risks are
considered) and propose implications for capital allocation.

 If, for instance, the present reinsurer under consideration is the leading reinsurer for treaty j with share
aj and uses a variance principle with some constant 𝛼V , then the risk margin is RMj = 𝛼V a

j Var (Ri), so that
the total risk margin for that treaty amounts to RMj∕aj = 𝛼V ajVar (Rj). That is, the degree of participation
of the leading reinsurer here impacts the risk margin.
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Principles for calculating premiums are of course choices to measure risk, and
the research area of risk measures, their axiomatic foundations, and entailed capital
allocations has seen an enormous activity over the last two decades, boosted by the
paper of Artzner et al. [] on coherent risk measures. We do not give an overview of
the correspondingly vast academic literature, which is often primarily targeted towards
financial applications. An early axiomatic approach for insurance pricing can be found
in Wang et al. [], Venter [], and Young []. An interpretation of the ruin
probability concept in the context of risk measures can be found in Dhaene et al. [],
Cheridito et al. [], and Trufin et al. []. As mentioned earlier, for (re)insurance
purposes theVaR plays a central role in regulation, and also theCTE is a much discussed
measure (and implemented in the Swiss insurance regulation). A survey of what can
happen to VaR calculations when the claim size distribution has heavy-tailed or time-
dependent behavior is given in Bams et al. []. Danielsson [] covers the role of
the VaR in connection with extreme returns, see also Neftci [] and Luciano et al.
[]. The performance of extreme value theory in VaR calculations is compared to
other techniques by Gençay et al. []. For risk measures with a pricing undertone,
see Van der Hoek et al. []. For more details on ES as a risk measure, see Acerbi et al.
[] and Fischer []. Necessary and sufficient conditions for coherence are covered by
Wirch and Hardy []. A rather general risk measure for the super-exponential case
has been developed in Goovaerts et al. [] and is based on a generalization of the
classical Markov inequality from probability theory. Siu and Yang [] introduced a
set of subjective risk measures based on a Bayesian approach. For other alternatives,
see, for example, Balbás et al. []. Powers [] suggests the use of the third and fourth
moments to measure risk.

Despite the toolkit of techniques discussed throughout this book, the data situation
on the losses of certain reinsurance portfolios often does not provide sufficient reliable
distributional information beyond a few moments (if at all), and this is one of the
main reasons why simple rules based on one or two moments are still abundantly used
in pricing. We point out, however, that one has to be very careful when estimating
empirical moments from the data points directly. As amply illustrated in Chapter ,
it may easily happen in reinsurance applications that the underlying moments that one
wants to estimate do in fact not exist. For instance, when one tries to estimate the sample
dispersion or (particularly) the sample coefficient of variation directly from a set of i.i.d.
data points with a distribution for which the first or second moment do in fact not
exist, the erratic behavior of their estimates may somewhat cancel out in the estimator
of the ratio, and so one may not “see” the problem immediately and proceed with the
estimate, even if the true value is not finite. This problem is illustrated in some detail in
Albrecher et al. [, ], where asymptotic properties of the corresponding estimators
in such situations are also worked out.

Brazauskas [] deals with the effects of data uncertainty on the estimation of the
expected reinsured amount under various reinsurance treaties from the viewpoint of
robust statistics.

Historically, Beard [] claimed that the most troublesome premium calculation likely
to arise in practice would be the determination of an XL reinsurance premium based
only on the largest claims experience. A first attempt on the use of extreme value
techniques for pricing of XL treaties was made by Jung []. For an early practical
approach including IBNR techniques, see Lippe et al. []. For a treatment of large
claims within credibility, see BÃ¼hlmann and Jewell [] and Kremer []. For
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information and references on credibility techniques, refer to Dannenburg et al. [],
Kaas [], and Bühlmann and Gisler []. Alternative estimation procedures can be
found in Schnieper []. The effect of contract terms on the pricing of a reinsurance
contract is discussed in Stanard et al. [].

A standard reference on stochastic ordering is Shaked et al. [], see also Kaas et al.
[] and in particular Denuit et al. []. For a general account on the concept of
comonotonicity, refer to Dhaene et al. [, ].

A rich source for practical issues in pricing of proportional reinsurance is Clark
[]. Antal [] discusses pricing from the reinsurance perspective in detail. For
refinements of exposure rating techniques for fire portfolios, see Riegel []. Mata
[] gives more information on burning cost methods. Verlaak et al. [] develop a
regression technique to form a benchmark market price out of individual MTPL XL
prices. Desmedt and Walhin [] suggest a method of combining exposure rating and
experience rating for pricing rarely used layers through using exposure techniques on
the experience rates of working layers.

The final aggregate combined ratio (defined as the ratio of the sum of incurred
losses and operating expenses divided by earned premium) of reinsurance companies
naturally varies widely across reinsurance companies and years, but a realistic average
magnitude reported in practice is –% (e.g., see []). Loading factors 𝜃 (cf. (..))
of individual reinsurance treaties in practice again can vary considerably, the range from
𝜃 = . in lower layers to 𝜃 = . in more extreme layers (and also outer contracts when
combining reinsurance forms) is, however, typical in competitive reinsurance markets
(e.g., see Verlaak and Beirlant []).

Pricing is also conceptually quite different between property and casualty lines:
whereas the former is dominated by prefunding losses, the idea of postfunding losses
underlies the pricing of casualty losses, see [] for details on this and many other
practical matters.

In life reinsurance, the standard model for pricing Cat XL layers goes back to Strickler
[], for a recent refinement see Ekheden and Höossja [].

Note that the stop-loss premium (defined as the expected claim size of a reinsurer
in an unlimited SL cover, cf. (..)) corresponds to E(Ri) from (..), but applied
to the c.d.f. of the aggregate claim size. Even if such unlimited covers are not often
applied in reinsurance practice, the stop-loss premium has been studied intensively in
terms of its theoretical properties, and these results can be used as benchmarks. For
instance, bounds on stop-loss premiums have been studied by Bühlmann et al. [],
and Runnenburg et al. [] under heavy- and light-tailed assumptions (see also Kremer
[]). For bounds where the claim distribution is unknown but in the proximity of the
empirical distribution of past claims, see Xu et al. []. For numerical and algorithmic
aspects, see Kaas [], and recursive methods are discussed in Dhaene et al. []. Also,
it is of particular interest to look into robustness of stop-loss premiums with respect to
dependence of the individual claims. First studies in this direction include Dhaene and
Goovaerts [], Albers [], and Denuit et al. []. The interplay between maximal
stop-loss premiums and comonotonicity is dealt with by Dhaene et al. []. Various
approximations are compared in Reijnen et al. [].

Pure premiums for drop-down XL covers as introduced in Chapter  can be found in
Kremer []. For a general analysis of various risk measures for reinsurance layers, see
Ladoucette and Teugels [].
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8

Choice of Reinsurance

An insurer has to make a choice among all feasible reinsurance treaties. For exam-
ple, he might want to maximize his expected profit after reinsurance. Or he could
minimize the probability of ruin after reinsurance. Or he may want to modify the
risk profile in such a way that the needed solvency capital after reinsurance becomes
affordable.

It is impossible to completely formalize the decision process on the choice of a
reinsurance form and its concrete specification. Many factors will influence such a
decision, which involves experience in the market (and with the contract partner) as
well as availability of requested contract forms for a reasonable premium. Eventually
there may even be an element of personal taste involved. On the other hand, when
the objective function (to be maximized or minimized) and possible constraints can
be defined together with a premium rule that assigns a reinsurance premium to every
available contract form, the identification of the optimal reinsurance treaty becomes a
purely mathematical problem, and sometimes leads to quite tractable and at times even
simple solutions. Over the last few decades there has been an enormous amount of
academic activity on this topic, and this could easily be the subject of an entire book on
its own. For a direct implementation of such results in practice, however, the involved
assumptions in such theoretical results will usually be a too coarse description of the real
situation. Also, reinsurance will often be only one tool in a more general framework
of optimal capital and risk transfer between market participants, where other than
actuarial principles can play a prominent role (see the Notes at the end of the chapter).
However, the mathematical results described below can help to foster the intuition and
comprehension of the consequences of certain choices of contracts, and hence may
serve as guiding principles and possible justifications of treaties.

The goal of this chapter is to present some classical lines of reasoning for rationalizing
the choice of reinsurance forms, link them to some more recent contributions and
provide pointers to the specialized academic literature.

From a cedent’s perspective, the choice of a reinsurance form will intrinsically depend
on the aggregate portfolio risk S(t), on the premium P(t) that he gets for bearing S(t), on
the reinsurance premium and on the costs involved in the transaction of the potential
reinsurance contract. Let us put together the relevant quantities.

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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● Recall that the total claim amount S(t) is subdivided into the retained amount D(t)
and the reinsured quantity R(t):

S(t) = D(t) + R(t).

For simplicity of notation we will drop the reference to t in the notation of this chapter
and write

S = D + R.

Implicitly, one may think of t = , as most (non-life) reinsurance treaties are signed on
a yearly basis (note that correspondingly D and R here refer to the aggregate retained
and ceded amount, and not to the respective parts of single claims as in other parts
of this book). Considering R as a function of S, we assume throughout  ≤ R(S) ≤ S
for any reinsurance form of interest (see the Notes for a discussion on this). From a
moral hazard perspective, it is also reasonable to only look for forms R(S) that do not
increase faster than S itself (i.e.,  ≤ R′(x) ≤ , where R(x) is differentiable).

● The total premium P collected by the first insurer will be subdivided into

P = PR + PD,

where PR refers to the premium required by the reinsurer while PD is the premium
retained by the first insurer to cope with D. In Chapter  we discussed in detail possible
guidelines on how to determine PR for a given risk R. In this chapter we will typically
assume the premium rule PR as given, and also the premium P that the first insurer
received from the policyholders for covering S (note that the principles behind the
calculation of P and PR may differ substantially). That is, the viewpoint here is that the
first-line business is already underwritten before a reinsurance solution is considered
(while in practice certain first-line policies may only be accepted together with a con-
nected reinsurance arrangement). We also assume here that P is already the “actuarial
premium”, that is, the part of P that concerns administrative expenses like acquisition
costs of policies etc. has already been subtracted; likewise PR is here already net
of commissions that the reinsurer pays to participate in these administration costs
(cf. Chapter ). There are, however, also transaction costs involved in the transfer
of R from the first-line insurer to the reinsurer that arise through the instalment of
the contract (acquisition and administration of the reinsurance treaty, etc.). These
costs are possibly also shared between the first insurer and the reinsurer, and for
simplicity we tacitly assume here that such transaction costs are already included
in the specification of PR (i.e., in the respective safety loading, even if that part of
PR will not arrive at the reinsurer). Since such transaction costs are basically lost in
the reinsurance process, the (joint) benefit from reinsurance has to exceed the total
involved transaction costs for a treaty to make sense.

Whereas it is typically the first-line insurer (possibly through a broker) who approaches
the reinsurer for a particular treaty, seeking protection R, it will mainly be the reinsurer
who decides about the amount PR for which he is willing to offer this protection. In
view of the limited number of reinsurers in the market, the issue of market competition



Choice of Reinsurance 243

driving the pricing rules is less prominent than in the primary insurance business
(although it is still present of course). Accordingly, when deciding about optimal
reinsurance forms it therefore seems reasonable to assume that for each possible shape
R, a rule (or premium principle) PR is available and the first insurer then determines
which form of D will be the most suitable. This is the viewpoint pursued for most parts
of this chapter. It should be noted, however, that the portfolio composition, and hence
diversification possibilities, of the reinsurer will finally also play a role (cf. Section .)
so that the fixing of a rule PR for all forms of R is a considerable simplification of reality.
Yet, as discussed in Chapter , often the reinsurer will only assume a part of that risk
by himself and search for participating (following) reinsurers, so that a desirable treaty
for the cedent may be organized by looking for optimal proportional participation of
reinsurance partners.

Finally, note that here we do not consider interest rates. This makes the exposition
more transparent and respective adaptations will not significantly influence the results
(in particular when the time horizon is only one year).

8.1 Decision Criteria

There is a natural compromise between the complexity of the considered decision crite-
ria and the mathematical tractability of a possible solution of the resulting optimization
problem. We will start with the criteria that have typically been considered in the
academic literature so far and that will form the basis for most results discussed in the
rest of this chapter. We will then discuss how to possibly complement or modify these
criteria to bring them closer to the decision processes that are employed in current
actual reinsurance practice.

A reasonable criterion for the first insurer is to choose the reinsurance form R (with
premium PR) which maximizes his expected income after reinsurance, that is,E(PD−D).
Of course, this should not be done without considering at the same time the safety of the
resulting strategy. The latter can, for instance, be realized by introducing a respective
penalty term in the objective function or in a side constraint for the choice of R.
Examples include the following:

(i) The security level condition asks to ensure P(D− PD ≥ w) ≤ 𝜖 for a predetermined
small constant 𝜖. The quantity w will then typically be related to the capital position
(and the costs to hold the resulting regulatory solvency capital) of the insurer (see
also Section ..).

(ii) The variance condition requires that Var (D) ≤ d for some fixed threshold d. Here
d replaces the role of the security level; this criterion is attractive because of its
simplicity (and often there may be a reasonable estimate for Var (D) available,
whereas the entire tail is hard to estimate, particularly if there are only a few data
points available). If a normal approximation for D is justified, then the variance
condition is closely related to the security level condition above. Note that in
many situations a certain duality holds that maximizing the expected value under
a variance constraint is equivalent to minimizing the variance under a constraint
on the expected value.

(iii) In the spirit of utility theory, instead of maximizing E(PD − D) one can consider
maximizing the expected utility E(u(w + PD − D))) of the insurer, where w is the
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present capital position. Here one unites the profitability and safety aspect in the
analysis, as (un)favorable scenarios are weighed differently when determining D.
This approach is classical and quite elegant. However, while theoretically (under
very mild conditions) it is always possible to express the risk preferences by
comparing expected utilities, it may be difficult to actually determine the utility
function u which reflects the risk attitude of the insurer. The usual assumption
is that the insurer is risk-averse, that is, that u is increasing and concave. A
particularly popular assumption then is exponential utility u(x) = −e−𝛼x for a risk
aversion coefficient 𝛼 > , leading to transparent calculations and dropping the
influence of the current surplus w (see also the exponential premium principle in
Section .).

(iv) Whereas all the above criteria are based on a one-year time horizon, it may also
be interesting to consider the long-term solvency of a reinsurance strategy R. This
can be done by considering a ruin condition 𝜓D(w) ≤ 𝜖 for some fixed small 𝜖,
where 𝜓D(w) is the ruin probability of the insurer after entering the reinsurance
contract (cf. Section ..). Alternatively, one may also consider the finite-time
ruin probability 𝜓D(w,T). Whereas this is typically not the considered criterion
in practical applications, it can still be quite useful to assess the riskiness of the
resulting portfolio beyond the one-year time horizon. We will discuss this criterion
further in Section ...

In fact, many of the above safety criteria lead to comparable expressions for the
optimal quantities R. Of course, if no satisfactory candidate for R can be found
according to these criteria, either the offered premium PR or the security level of
the insurer may be too large, and one will have to look for compromises.

When looking at decision criteria from the perspective of practice, we may
return to Section . where possible motivations for taking reinsurance were listed,
and the relative importance of those criteria in a particular situation will help to
suitably combine them and shape a final objective. We mention a few respective
amendments of the criteria given above:

(v) A variant of (i) is to maximize the expected profit relative to the required solvency
capital needed for running the portfolio, called the RORAC criterion. This criterion
is considered very relevant in practical implementations nowadays, and we will
deal with it in more detail in Section ..

(vi) As a variant of (iv), in addition to absolute ruin (i.e., terminal death of the firm)
shareholders of the company may be concerned about regulatory ruin, which
is the event that the actual capital goes below the minimum solvency capital
requirement, at which point the managers lose control over the company. Further
variations of that may be that one is interested in the event that the capital falls
below a higher threshold (like . times the minimum solvency capital require-
ment), which can lead to financial distress, changes in rating etc.). Also, one may
look for strategies so that for a sequence of such triggers one specifies allowed small
probabilities to be underrun. Finally, in combination with (v) one may be interested
in maximizing RORAC subject to some of these regulatory trigger constraints. The
corresponding optimization problems will of course quickly become very complex.

(vii) Rather than fixing the reinsurance premium PR for each reinsurance form R a
priori, one should also notice that the reinsurer himself will want to optimize his
portfolio according to certain (and possibly similar) criteria. This may lead to a
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multi-objective optimization problem. An analytical solution is then beyond what
one can hope for, but numerical implementations can be feasible. For instance,
a simplified optimization procedure may consider various shapes R and their
interplay with the (already existing) remaining portfolio of the reinsurer, who then
will optimize his resulting portfolio and assign premiums to each R according to
a procedure like the one described in Section .. If a utility approach is used for
this step, the utility function of the reinsurer may for instance be approximated by
the CAL curve.

As mentioned before, the actual choice of a reinsurance form will finally often be
triggered by intuition and experience as well as simplicity and transparency (rather
than concrete calculations according to some of the above criteria). In particular, one
may look for concrete protection against many claims or against large claims and
choose a corresponding form among the (few) choices offered. Also, the actual criteria
driving a reinsurance decision will often not be as “formal” or simple as the above
list suggests (additional factors will include consequences of a reinsurance treaty on
taxation, dividends etc.). These consequences can then serve as an additional guideline
in the choice, and also help to pin down the parameters within the agreed reinsurance
form (such as layer sizes, proportionality factors etc.).

In fact, a certain part of the academic theory on the topic was and is motivated
also by the reverse direction: are there objectives and constraints under which one can
identify a practically implemented reinsurance form as optimal? If yes, are the respective
identified criteria indeed in line with what the insurer (or reinsurer) intends to use as
guidelines? This approach may then also help to identify inconsistencies in implemented
strategies.

8.2 Classical Optimality Results

A classical point of departure is the concept of Pareto-optimality that within this setup
was proposed by Borch [].

8.2.1 Pareto-optimal Risk Sharing

Reinsurance is a particular form of risk sharing, and one may view a reinsurance solution
as a redistribution of random collective wealth between the partners. Assume in general
m involved companies (if m > , then this is the case of several reinsurers involved in
the contract) with a total wealth of W = W +⋯ + Wm, where Wi denotes the wealth
of company i (comprising current capital and future random cash-flows, i.e. a random
variable). The risk-sharing mechanism will lead to the redistribution W = Z +⋯+Zm,

where Zi is the new random position of company i (the total wealth stays the same). A
risk sharing is then called Pareto-optimal if there cannot be an improvement for one
party without worsening the situation of another. Such an equilibrium is a quite natural
concept if there are no transaction costs for shifting risk and if the situation is symmetric
(i.e., no priority for one party in the decision-finding process). If we measure the value

 In an efficient and complete risk market, such an optimum can be achieved in a decentralized way, see, for
example Deelstra and Plantin []. One should keep in mind, however, that the reinsurance market cannot
be described as being complete.
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of each position in terms of expected utility (where ui is the utility function of company
i), then each solution Z̃,… , Z̃m which maximizes

m∑
i=

kiE(ui(Zi)) (..)

is Pareto-optimal (where ki >  are the weight factors of each company in the process).
Borch’s theorem then states that Z̃,… , Z̃m is Pareto-optimal if and only if

kiu′
i(Z̃i) ≡ Λ (..)

is the same random variable for all i = ,… ,m (a simple proof for this is based on a
perturbation argument, e.g. Gerber and Pafumi []).

Example. Assume that W is light-tailed and all companies have an exponential utility
function

ui(x) = −e−𝛼ix∕𝛼i, x ∈ R (..)

(dividing by 𝛼i will not alter any decision, but simplifies the exposition). Then (..)
translates into

Z̃i = −
logΛ
𝛼i

+
log ki
𝛼i

and summing over all these terms yields

W = − 
𝛼

m∑
i=

logΛ +
m∑

i=

log ki
𝛼i

,

where 𝛼 = (
∑m

i= ∕𝛼i)− is the harmonic mean of the risk aversion coefficients.
Combining the last two expressions one obtains for each i = ,… ,m

Z̃i =
𝛼

𝛼i
W + bi, (..)

where bi = (log ki)∕𝛼i − 𝛼∕𝛼i ⋅
∑m

j=(log kj)∕𝛼j are deterministic payments between the
partners (for bi < , company i pays this amount to the collective, for bi >  it receives
this amount) with

∑m
i= bi = . That is, together with that side payment bi, company i

will take a fraction of the total wealth W , and this proportion is determined by the risk
aversion of company i relative to those of the other companies, and is smaller for larger
risk aversion. Remarkably, this proportion does not depend on the weights ki. If one
further chooses equal weights k = … = km = , then bi =  for all i = ,… ,m, that is,
there are no side payments at all.

One interpretation of this result is now as follows: If a consortium of m companies has
received the premium P for covering the total loss S, one can ask how to share the total
wealth W = P − S. By the nature of exponential utilities, ignoring other (deterministic)
capital positions of the individual companies does not influence the risk preferences.
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The structure of the Pareto-optimal risk sharing (..) then exactly corresponds to a QS
treaty, in which company i accepts the proportion 𝛼∕𝛼i of both the received premium P
and the risk S, plus deterministic side payments in case of bi ≠ . These side payments
are hence corrections to the proportional premium (𝛼∕𝛼i)P enforced by the different
weight of companies in the identification of a Pareto-optimal solution.

As a further consequence, since
∑m

i= bi =  and the proportions of each company do
not depend on weights, the cheapest premium P across all Pareto-optimal solutions
which policyholders can be offered for an aggregate risk S from a consortium of m
companies with utility functions (..) is

P =
m∑

i=


𝛼i

logE(e𝛼i
𝛼

𝛼i
S) = 

𝛼
logE(e𝛼S),

that is, an exponential premium with risk aversion 𝛼. □

An implicit assumption in the above example was that any redistribution of W is
accepted by all partners unconditionally (whereas in reinsurance applications there is
often the asymmetry that the cedent has already accepted S and needs to find partners
willing to participate in bearing S). Also, for other than exponential utility functions, the
initial capital position will influence the result. If in the above example one considers
power utility functions, the optimal risk sharing still turns out to be of QS type, whereas
in that case not only the side payments but also the proportions depend on the weights ki
(cf. []). Nevertheless, the above result (here for m = ) identifies a framework under
which a QS treaty is an optimal solution, and this can serve as an intuitive background
for such a treaty.

8.2.2 Stochastic Ordering

Since optimizing the shape of a reinsurance form is equivalent to identifying an extremal
element in some class of c.d.f. (typically for the retained claim size), it is helpful to
formalize the comparison of c.d.f. (respectively their underlying random variables)
according to the needs of the situation. Among the many stochastic ordering concepts
and results available (e.g., see Shaked et al. [] and Denuit et al. [] for excellent
surveys), we restrict ourselves here to some basic notions that will be relevant in the
later sections.

To start with, a random variable X is said to be smaller than a random variable Y in
stochastic dominance (X≺stY ), if VaR

𝛼
(X) ≤ VaR

𝛼
(Y ) for all levels 𝛼 ∈ [, ]. Hence

X≺stY is equivalent to FX(y) ≥ FY (x) for all y ∈ R, so this order compares the size of
the random variables. Alternatively, a random variable X is said to be smaller than a
random variable Y in stop-loss order (X≺slY ), if

E(X − y)+ ≤ E(Y − y)+ for all y ∈ R, (..)

that is, the (pure) stop-loss premium of risk X is smaller than the one for Y for all
retentions y. This ordering concept is particularly useful for our purposes, and not only
compares the size, but also the variability of the random variables. One can show that
X≺slY is equivalent to

E(v(X)) ≤ E(v(Y )) (..)
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for all non-decreasing convex functions 𝜈 such that the expectations exist. Moreover,
X≺slY is equivalent to CTE

𝛼
(X) ≤ CTE

𝛼
(Y ) for all levels 𝛼 ∈ [, ] (e.g. see [, Prop.

..]). If (..) holds for all convex functions (such that the expectations exist), then
X is said to be smaller than Y in convex order (X≺cxY ), and one can show that

X≺cxY ⇔ X≺slY and E(X) = E(Y ).

Choosing the convex function v(x) = x (and using the property of equal means), it
immediately follows that

X≺cxY ⇒ Var (X) ≤ Var (Y ), (..)

so the convex order compares variability for random variables with equal mean.
A c.d.f. FY is said to be more dangerous than FX , if E(X) ≤ E(Y ) and there exists a

constant c such that FX(y) ≤ FY (y) for all y < c and FX(y) ≥ FY (y) for all y ≥ c. In
this case, one writes X≺daY . This ordering concept serves as a sufficient criterion for
stop-loss order, which will turn out to be very useful below:

X≺daY ⇒ X≺slY ; (..)

(this result it is also known as Ohlin’s Lemma or the Karlin–Novikov cut criterion).
Correspondingly, X≺daY and E(X) = E(Y ) imply X≺cxY .

By choosing different functions v(x), we will see in the next sections that the search for
an optimal shape of the retained risk D = S − R often translates into looking for D that
is minimal in terms of stop-loss order, which provides a unifying concept for several of
the safety criteria applied below.

8.2.3 Minimizing Retained Variance

Assume in the following that Var (S) < ∞. Before we embark in more specific results, a
simple argument shows that, for given E(R), any R that minimizes Var (D) must depend
on the aggregate risk S (and not in a more complicated form on the individual claims
Xi). If this were not the case, then one could define

R ∶= E(R|S), D ∶= E(D|S).
But clearly E(R) = E(R) and E(D) = E(D), whereas

Var (R) = Var (E(R|S)) ≤ Var (E(R|S)) + E(Var (R|S)) = Var (R).

8.2.3.1 Optimality of a SL Contract
For a fixed available premium amount PR and an expected value principle PR =
( + 𝜃)E(R) for determining the reinsurance premium (i.e., E(R) is fixed as well),
a classical result of Borch, Kahn, and Pesonen (e.g., see []) states that if the
insurer wants to minimize Var (D) after reinsurance, a SL contract is the best possible
choice.
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A direct way to see this goes as follows. Note first that we only have to look for a
reinsurance form R that depends on S (see discussion above). Denote with Ra ∶= (S−a)+
and

Da ∶= min(S, a) (..)

the reinsured and retained amount, respectively, of a SL treaty with retention a. Then
we can choose a such that

E(Ra) = E(R) = PR∕( + 𝜃), (..)

the given value (this is always possible since E(Ra) is a decreasing function of a, E(R) =
E(S) ≥ E(R) and E(R∞) =  ≤ E(R)). Condition (..) automatically also entails
E(Da) = E(D). It remains to be shown that Var (Da) ≤ Var (D) for any other form D. But
since the first moment of D and Da coincide, this is equivalent to

E(Da − a)
≤ E(D − a)

. (..)

The inequality |Da − a| ≤ |D − a| even holds for each realization of S: it is obvious for
S ≥ a, and for S < a we have Da = S and so D − a ≤ S − a = Da − a < , establishing
(..).

Another way to prove the optimality of a SL contract, but using the considerations
of Section .., is to observe that under a fixed PR which is calculated according
to an expected value principle (hence also E(D) is fixed), for Da in (..) (with a
necessarily determined by (..)) one has Da≺daD for any alternative D. Indeed,
for x < a and any D it holds that FDa

(x) ≤ FD(x), whereas for x ≥ a we have
FDa

(x) =  ≥ FD(x). Hence Da is the smallest feasible retained D in stop-loss order:
Da≺slD, cf. (..). Since the premium is fixed, so is E(Da) = E(D), which entails
Da≺cxD, and by (..) Da minimizes the variance of the retained risk under the given
restrictions.

8.2.3.2 Optimality of a QS Contract
If, instead, the reinsurance premium is calculated according to a variance principle, and
the safety loading (i.e., Var (R)) is fixed, then a QS contract minimizes Var (D) (e.g.,
see []). To see this, note first that for any candidate R we have Var (R) < Var (S)
(otherwise a QS treaty with a =  is optimal anyway, since that would lead to Var (D) =
). Choose a <  with Var (a S) = Var (R), that is, the proportionality factor for which
the QS treaty satisfies the Var (R) condition on the safety loading. Using the Cauchy–
Schwarz inequality, one then realizes that for any reinsurance form D

Var (D) = Var (S − R) = Var (S) − Cov(S,R) + Var (R) (..)

≥ Var (S) − 
√

Var (S) Var (R) + Var (R)
= ( − a) Var (S),

so that, for the same safety loading, the QS contract R = aS yields the smallest retained
variance.
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8.2.3.3 Optimality of a Change-loss Contract
In Section ..., Var (R) was fixed, which due to the employed variance principle
prespecified the safety loading PR − E(R), but not the premium amount PR itself (in
contrast to Section ..., where PR was fixed by specifying E(R) under the expected
value principle). If we want to find the optimal choice among all reinsurance forms for
fixed PR under a variance (or related) principle, one can proceed in a different way.

For any b >  we have

Cov(S,R) = Cov(S − b,R)
= Cov((S − b)+,R) − E((b − S)+ ⋅ R) + E((b − S)+)E(R)
≤ Cov((S − b)+,R) + E((b − S)+)E(R),

with equality if R(S) =  whenever  ≤ S ≤ b. Using this bound in (..), and applying
the Cauchy–Schwartz inequality for the resulting covariance, we get

Var(D) ≥ Var(S)−
√

Var (S − b)+ Var (R)−E((b−S)+)E(R)+Var (R). (..)

If we now postulate

E(R) = f (PR,
√
Var(R)) (..)

for a sufficiently regular function f , then R only appears through its variance in the above
inequality and with

t =
√
Var(R)∕

√
Var (S − b)+ (..)

it can be reexpressed as

Var(D) ≥ Var(S) + (t − t)Var (S − b)+ (..)

− E(b − S)+ ⋅ f
(

PR, t
√

Var (S − b)+
)
.

At the same time, we see from the Cauchy–Schwartz inequality that equality is achieved
in (..) when

R(S) = a(S − b)+ (..)

for some positive constant a, which from the requirement R(S) ≤ S is also bounded by .
Hence we have identified the optimal reinsurance form and it only remains to determine
the constants  < a ≤  and b ≥ , which we get by minimizing the right-hand side of
(..) w.r.t. t. Under weak conditions on f (which are fulfilled for our cases of interest
here), one can show that the right-hand side is convex in t attaining a minimal value,
which then by (..) has to be equal to a.

We hence obtained that whenever PR is fixed and the premium principle can be
described by (..), then a change-loss contract (..) minimizes the retained
variance, where the optimal constants a and b are determined by the two equations
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aE((S − b)+) = f
(

PR, a
√

Var(S − b)+
)

and

(a − )
√

Var (S − b)+ = E(b − S)+
𝜕f (PR, t)

𝜕t
|||t=a

√
Var (S−b)+

. (..)

Let us consider three examples:
● For the expected value principle we have f (PR, t) = PR∕( + 𝜃) and we obtain R(S) =
(S − b)+ with E(S − b)+ = PR∕( + 𝜃), which brings us back to Section ... (cf.
(..)).

● For the standard deviation principle we have f (PR, t) = PR−𝛼S t, and (..) simplifies
to ( − a)

√
Var (S − b)+ = 𝛼SE(b − S)+.

● Finally, for the variance principle the function is f (PR, t) = PR − 𝛼V t, and (..)
simplifies to  − a = −a𝛼VE(b − S)+.

The rigorous proof of the above result can be found in Kaluszka [], where also
an adaptation for identifying the optimal XL treaty under minimizing the aggregate
retained variance is given (which is again of change-loss type) and further premium
principles satisfying (..) are discussed (for the standard deviation principle (see also
Gajek and Zagrodny [])).

If, in addition to the above problem formulation, we ask for a prespecified target value
E(D) = m (and hence also E(R) = E(S) − m is fixed), then in (..) the expression for
E(R) can be replaced by that fixed quantity directly, and when now implementing the
substitution (..), the last term in (..) does not depend on t. Correspondingly,
the right-hand side is minimized either by t =  or the largest possible t value that still
is in line with the constraint E(D) = m (if that value is smaller than ). Correspondingly,
the optimal reinsurance form minimizing Var (D) then is

R(S) = E(S) − m
E(S − b)+

(S − b)+,

and hence again of change-loss type, where the constant b depends on the distribu-
tion of S and is determined by a suitably adapted equation (see Kaluszka [] for
details).

There are many variants of these types of results (see the Notes at the end of the
chapter for more information).

8.2.4 Maximizing Expected Utility

In a number of cases the utility framework of Section .. is considered for one party
marginally, and in particular one may ask for the reinsurance treaty that maximizes the
expected utility of the cedent, that is,

max
R

E[u(w − PR − (S − R))], (..)

where u denotes the utility function of the cedent, and w his current wealth (here
considered a deterministic number which includes already the received premiums from
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the policyholders). The concrete optimal solution will now depend on the imposed
conditions (e.g., the premium rule PR and the class of admissible reinsurance forms R
under consideration).

For instance, if the cedent has a risk-averse (i.e., concave and increasing) utility
function u(x), and if the reinsurance premium PR is fixed, then the function v(x) =
−u(w − PR − x) is increasing and convex. As a consequence, in (..) we in fact look
for D = S − R that is minimal in terms of stop-loss order. If the reinsurance premium
is calculated according to the expected value principle, the argument of Section ...
in terms of the ≺da-order applies in the same way, again identifying the SL contract as
optimal. The optimality of a SL treaty in the context of risk-averse utility functions was
already established by Arrow [] (see also Borch []). If in addition there is an upper
limit on the reinsurance coverage, then a SL contract with that upper limit is optimal
(cf. Cummins and Mahul []). For an adaptation of Arrow’s result when the reinsurer
imposes an upper limit of its expected loss, see Zhou and Wu [].

As another example, consider a cedent facing total risk S and receiving an offer PS
as reinsurance premium for the entire risk S. On that basis the cedent now decides
about the extent (fraction a) to which he wants to enter this treaty (assuming that the
reinsurance premium scales according to the proportionality factor a of the resulting
QS treaty). Then (..) turns into

max
a

E(u(w − a ⋅ PS − ( − a)S)).

For exponential utility u(x) = −e−𝛼x and normally distributed risk S ∼  (𝜇, 𝜎), this
leads to a remarkably simple expression for the optimal retained fraction:

 − a∗ =
PS − 𝜇

𝛼𝜎 .

It is proportional to the safety loading of the reinsurance premium offer, and inversely
proportional both to the risk aversion coefficient and the variance of the risk S. Even if
for QS treaties the pricing often works slightly differently (cf. Section .), this formula
is of particular interest, as it has a striking resemblance to the Merton ratio in optimal
portfolio theory (although there S is log-normally distributed and u is a power function)
(cf. Gerber and Pafumi []).

Deprez and Gerber [] consider (..) for convex, Gâteaux-differentiable pre-
mium rules PR = H(R), and show for any risk-averse utility function u by a simple
perturbation argument that the general solution of this maximization problem then is
the reinsurance form R∗ that satisfies

H′(R∗) = u′(w − H(R∗) + R∗ − S)]
E[u(w − H(R∗) + R∗ − S)

(..)

(the argument in fact also applies when w is replaced by a random initial position W
that is independent of S). Note that the random variable H′(R) is a gradient for which

d
dt

H(R + tV )|t= = E(H′(R)V )
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for any random variable V and hence measures the sensitivity of the premium for small
changes of the underlying risk.

Particular principles of premium calculation for which the above result applies are
the pure premium principle H(R) = E(R) with H′(R) = , the variance principle (..)
with H′(R) =  + 𝛼V (R − E(R)), the standard deviation principle (..) with Gâteaux
derivative H′(R) = +𝛼S(R−E(R))∕

√
Var (R) and the exponential principle (..) with

H′(R) = eaR∕E(eaR). For example, if the utility function of the insurer is exponential with
risk aversion b and the premium principle of the reinsurer is (..) with risk aversion
a, then (..) turns into

ebR∗

E(ebR∗ )
= ea(S−R∗)

E(ea(S−R∗))
,

which specifies R∗ up to an additive constant. Choosing the latter in such a way that
R∗() = , we then get

R∗(S) = a
a + b

S,

that is, a QS contract where the proportion is determined by the risk aversion of the
insurer and reinsurer. Note that this exactly corresponds to the risk-sharing agreement
of the example in Section .., as both the insurer and reinsurer here essentially make
decisions based on exponential utility.

Finally note that if the reinsurer offers a pure premium principle H(R) = E(R), then
by (..) R∗ − S must be a constant, for example leading to R∗(S) = S. That is, with
risk averse utility, the insurer should exploit the “cheap” premium offer of the reinsurer
to the largest possible extent.

8.2.5 Minimizing the Ruin Probability

8.2.5.1 One-year Time Horizon View
Let us first stick to the discrete setting of the previous sections and look for the
reinsurance form that minimizes the ruin probability at that future time point (say, one
year from now), that is,

min
R

P(w − PR − (S − R) ≤ ) = max
R

E({w−PR−(S−R)≥}). (..)

Clearly, if this is the criterion and we can afford full protection, then a SL contract will
lead to a ruin probability equal to . If for a premium PR we can purchase the cover
R = (S − (w − PR))+, then this is optimal. However, there are two issues to note here.
First, in many situations this will not be feasible, that is, one may only be able to afford
a SL contract R = (S − b)+ with w − PR < b, and in that case the cover does not help at
all to improve the survival probability. And secondly, if such a cover costs already more
than the earned premium P on the original policies and if one’s goal is to minimize ruin,
then it is preferable to stay out of those policies altogether, as one then stays positive
(with the capital w − P available before writing policies) with probability  (one may
indeed question in general the suitability of the criterion of minimizing ruin from this
perspective).
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Let us still take the viewpoint that the first-line business is already written (with
the collected premium being already contained in w) and the goal is to minimize the
remaining ruin probability. Assume also that the reinsurer offers protection according
to an expected value principle, that the reinsurance premium amount PR is fixed and
the above full protection can not be afforded (note that Arrow’s result on the optimality
of an SL treaty does not apply here, since the indicator function on the right-hand side
of (..), interpreted as a utility, is not concave). Gajek and Zagrodny [] showed
that then, if S is a continuous random variable, the best possible contract is of the form

R∗(S) =
⎧⎪⎨⎪⎩

, S ≤ w − PR
S − (w − PR), w − PR ≤ S ≤ c∗
, S ≥ c∗,

(..)

where c∗ is the largest value that can be afforded for this contract with the amount PR,
that is, a truncated SL contract minimizes the ruin probability. The result is somewhat
intuitive, as one tries to get full protection for an as large claim size as possible (for
empirical evidence and a discussion of the popularity of such treaties in catastrophe
reinsurance, see Froot []). The proof is based on an application of the Neyman–
Pearson lemma (cf. [] for details. See also Bernard and Tian []).

8.2.5.2 Infinite-time Ruin Probability
Let us continue the viewpoint that first-line business is already written and the insurer
wants to identify for a given premium rule of the reinsurer the reinsurance strategy
that minimizes the probability of getting ruined. However, now consider the long-
term view of the probability of never getting ruined (the infinite-time ruin probability).
The underlying risk model can be in discrete time (aggregate claims and premiums
are checked at the end of each time period, say a year) or in continuous time when
the monitoring is done continuously. The idea is to fix a reinsurance strategy in the
beginning that is then kept through time. As argued in Chapter , the underlying
philosophy is not to indeed follow that same strategy forever, but to get a feeling of the
effects of such a strategy on the safety in the long run. Note again that the problem is
only non-trivial, when one assumes that reinsurance premiums are higher than first-line
premiums (otherwise the entire portfolio could be passed on to the reinsurer, leading
to zero ruin probability).

The Lundberg bound (..) was shown to hold for a continuous-time model with
adjustment coefficient defined in (..). For a risk model in discrete time, (..) also
holds, where the adjustment coefficient is then the positive solution 𝛾 of

∫

∞


e−𝛾(P−S) dFS(x) = ,

with P the premium income and S the aggregate claim per time unit (e.g., see []).
The bound (..) turns out to be a quite good approximation for the true value

of the ruin probability 𝜓(w) in many cases and due to its simplicity it is often used
as a (conservative) approximation 𝜓(w) ≈ e−𝛾w. Then, for both continuous- and
discrete-time models the problem of minimizing the ruin probability is translated into
maximizing the adjustment coefficient.
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In a number of situations, maximizing the adjustment coefficient can be translated
back to minimizing convex order. For instance, consider the Cramér–Lundberg process
and its adjustment equation (..). Then one sees immediately that by the convexity
of the function v(x) = erx, the retained risk that maximizes 𝛾 in (..) is the one that
is minimal with respect to convex order (under the assumption that the reinsurance
premium is calculated according to an expected value principle with fixed loading,
which leaves the left-hand side of (..) invariant for all considered forms D). By
the arguments of Section ... the latter brings us to the result that an XL treaty
maximizes 𝛾 (as the optimality of the SL treaty translates into XL, when only individual
treaties are considered) (e.g., see Gerber []). Centeno [] gives an algorithm to
calculate the optimal retention for this XL treaty. The result by Gerber is extended
by Hesselager [] in the sense that, if the insurer can freely choose among global
and individual reinsurance contracts with the same pure premium and reinsurance
loading, then the adjustment coefficient will be maximized by a SL treaty. Waters []
investigates the dependence of the adjustment coefficient on the retention. He does
this for proportional, SL and XL reinsurance contracts and under a variety of different
premium schemes (see also Hald and Schmidli []).

In [], Centeno considers change-loss contracts on individual claims, that is,

R(t) = a
N(t)∑
i=

(Xi − M)+,

and for a compound Poisson model studies the combination of parameters a and M that
maximizes the adjustment coefficient for the first-line insurer, also when a target value
on the expected income is fixed.

An intimate connection between maximization of the adjustment coefficient and
maximizing expected utility for an exponential utility function is exploited in Guerra
and Centeno [, ], who establish optimal reinsurance treaties when the premium
principle of the reinsurer is a convex functional. It turns out that for an expected
value principle, the optimal form is of SL type, whereas for variance and standard
deviation principles the optimal R(S) is a non-linear function of S, which is not among
the reinsurance forms typically employed in practice. For strategies restricted to the
individual claim level, see [].

For heavy-tailed claims, the adjustment coefficient does not exist, but with an unlim-
ited XL cover the maximum retained claim size is upper-bounded by the retention, so
that then 𝛾 exists again for the first-line insurer and the above approach to maximize
𝛾 still makes sense. One should keep in mind, however, that maximizing 𝛾 is only
an approximate solution for minimizing the ruin probability 𝜓(w). Under certain
model assumptions one can go in fact much further. In the following, we give an
illustration.

Consider the Cramér–Lundberg model and compare any two c.d.f. F and F for the
claim size through convex ordering. From the Pollaczeck–Khintchine formula (..),
which gives an exact expression for 𝜓(w) for any claim size distribution, one then sees
that F≺cxF implies 𝜓(w) ≤ 𝜓(w), since convex order is preserved under convolution
and compounding (e.g., see [, Prop. IV..] for details). As for previous instances,
this result can then be used to show in a simple way that if the reinsurance premium is
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calculated with an expected value principle, an unlimited XL treaty minimizes the ruin
probability among all reinsurance forms applied to individual claims. Indeed, compare
any reinsurance form candidate D = X−R with an XL treaty, the retention M of which is
chosen in such a way that E(D(X)) = E(min(X,M)) (i.e., the two treaties have the same
premium). Denote by FD the c.d.f. of D(X) and by FXL the c.d.f. of min(X,M). Indeed, by
the same arguments as in Section ..., one gets FXL≺daFD and by the identical mean
subsequently FXL≺cxFD, so that

𝜓XL(w) ≤ 𝜓D(w)

for all capital values w.
With the same technique one can also show that if the reinsurer poses the additional

constraint that R(X) ≤ L, then an L xs M treaty is optimal. Indeed, consider again
any alternative D = X − R for a premium PR and choose M such that E(D(X)) =
E(min(X,M) + (X − M + L)+), so that the two reinsurance premiums coincide. Let
FD and FXL again denote the c.d.f. of the retained claim. Then FXL≺daFD, because for
x < M, FXL(x) = FX(x) ≤ FD(x) as above, whereas for x ≥ M one has FXL(x) = FX(x+L).
However, the limit X − D ≤ L leads to D ≥ X − L, that is, FD(x) ≤ FX(x + L) (even
for all x). Consequently, FXL≺slFD and since the retained amounts have the same mean,
further FXL≺cxFD. However, the latter again implies that for all w ≥ 

𝜓XL(w) ≤ 𝜓D(w)

that is, an XL treaty with layer L minimizes the ruin probability 𝜓(w). This result holds
for any claim size distribution (which is relevant to note, as due to the finite layer L
a heavy-tailed claim stays here also heavy tailed after reinsurance, so the adjustment
coefficient does not exist at all).

Section . will discuss dynamic reinsurance strategies for continuous-time risk
models.

8.2.6 Combining Reinsurance Treaties over Subportfolios

The first insurer often needs to deal with many (sub)portfolios simultaneously. It is
then natural to look for an optimal combination of reinsurance forms to achieve an
overall objective. In this section we will consider two classical approaches (one on
a combination of proportional treaties and one on the non-proportional case) that
originally go back to de Finetti [].

Assume that the insurer has to deal with I subportfolios with total claim amounts
{Si,  ≤ i ≤ I} that will be divided into deductible and reinsured amounts by Si =
Ri + Di,  ≤ i ≤ I . For simplicity we assume that the portfolios are independent and
that the type of reinsurance is the same for all of them. If the premium received for
covering Si is Pi and the reinsurance premium is PRi

, then the total income amounts to

U ∶=
I∑

i=

(
Pi − Di − PRi

)
.
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The following results are obtained now under the objective to maximize E(U), given a
constraint on Var (U).

8.2.6.1 Proportional Reinsurance
If we look for the best combination of QS treaties across the subportfolios, then Ri =
aiSi. For the premium principle of the reinsurer consider an expected value principle

PRi
= ( + zi)E(Ri) ,  ≤ i ≤ I (..)

for (possibly different) positive constants zi,  ≤ i ≤ I. Maximizing E(U) under the
condition Var (U) = c for a fixed constant c can now be done by the method of Lagrange
multipliers. Let 𝜆 be such a multiplier. We need to maximize the expression

E

( I∑
i=

{
Pi − ( − ai)Si − ( + zi)E(ai Si)

})

+ 𝜆

(
c − Var

I∑
i=

{
Pi − ( − ai)Si − ( + zi)E(ai Si)

})

by choosing the proportions ai,  ≤ i ≤ I properly. The expression becomes

I∑
i=

(
Pi − ( + ziai)E(Si)

)
+ 𝜆

(
c −

I∑
i=

( − ai) Var (Si)

)
.

Equating the partial derivative with respect to ai with zero leads to

ziE(Si) − 𝜆( − ai)Var (Si) =  ,  ≤ i ≤ I,

so that

 − ai = min
( zi E(Si)

𝜆Var (Si)
, 
)
,  ≤ i ≤ I, (..)

where the constant 𝜆 is determined by the side condition on the variance. Concretely,
if ai >  for all i = ,… , I, then

𝜆
 = 

c

I∑
i=

(zi E(Si))

Var (Si)
.

Note that the retained proportion  − ai depends in a crucial way on the value of the
dispersion of Si (the greater the dispersion of Si, the smaller the retained proportion
 − ai). Also, the retained proportion is higher if reinsurance is more expensive.

This result has an interesting consequence: interpret each risk Xi in a portfolio as
a subportfolio on its own (containing only one risk). In that case, of course the claim
history will not be sufficient to estimate the first two moments of each such claim size.
However, as discussed in Section ..., for certain lines of business (like property lines)
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it is reasonable to assume that the loss degree V with respect to the sum insured (or
PML) Qi is identically distributed (here it is in fact sufficient that the first two moments
coincide), i.e. E(V ) = E(Xi∕Qi) = 𝜇 and Var (V ) = 𝜎

,  ≤ i ≤ I. It is also reasonable to
assume that all safety loadings zi are equal, and then (..) simplifies to

 − ai =
√

c
𝜎I


Qi

,  ≤ i ≤ I.

That is, the resulting proportionality factors are a constant M ∶=
√

c∕I∕𝜎 divided by Qi
(and ai =  if Qi < M), but this is the structure of a surplus reinsurance contract! Hence
the present setting suggests a situation and criterion within QS strategies for which a
surplus treaty is optimal, and one may in fact use the above reasoning as a guideline for
the choice of the retention M. For an extension of this result to include cost-of-capital
considerations, refer to Section ..

If the reinsurance premium principle (..) is extended to include a variance
component

PRi
= ( + z)E(Ri) + 𝛽Var (Ri) ,  ≤ i ≤ I (..)

for some 𝛽 > , then a similar calculation yields the adaptation

 − ai =
z

(𝜆 + 𝛽)
E(Si)

Var (Si)
+ 𝛽

𝜆 + 𝛽
,  ≤ i ≤ I,

so the variance term in the premium principle adds a fixed proportion for all subport-
folios.

8.2.6.2 Excess-of-loss Reinsurance
Let us now look for the best choice of retention ai of an XL treaty for subportfolio i with
total risk Si, which is assumed compound Poisson distributed with rate𝜆i and claim sizes
X(i)

 ,… ,X(i)
Ni

and c.d.f. Fi (in contrast to above, here the result will not only depend on the
first two moments, but on the entire distribution). The deducted part of subportfolio i
then is

Di =
Ni∑
j=

min(X(i)
j , ai) ,  ≤ i ≤ I.

Let us consider a reinsurance premium principle of the general form (..). Then
under the same variance condition as above we have to maximize the expression

I∑
i=

(
Pi − E(Si) − zE(Ri) − 𝛽 Var (Ri)

)
+ 𝜆

(
c −

I∑
i=

Var (Di)

)
.

By the Poisson assumption we see that for  ≤ i ≤ I (cf. also Section ..),

𝜕

𝜕ai
E(Ri) = −𝜆i( − Fi(ai)),
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𝜕

𝜕ai
Var (Ri) = −𝜆iE(Xi − ai)+,

𝜕

𝜕ai
Var (Di) = 𝜆iai( − Fi(ai)).

The equation for ai is therefore given by

z( − Fi(ai)) + 𝛽E(X(i) − ai)+ − 𝜆ai ( − Fi(ai)) =  .

This leads quickly to the solution

𝜆ai = z + 𝛽E(X(i) − ai|X(i)
> ai),  ≤ i ≤ I (..)

where 𝜆 is determined by the condition

c =
I∑

i=
𝜆iE(min(X(i)

, ai(𝜆)))
.

Equation (..) can be rewritten as

E(X(i) − ai|X(i)
> ai) =

𝜆ai − z
𝛽

,

which is an equation for ai in terms of the mean excess function of the individual claim
sizes. The existence and the value of the solution depend heavily on the form of this
mean excess function. The right-hand side is a straight line in the variable ai, starting
at the value −z∕(𝛽) and increasing with slope 𝜆∕𝛽. The function on the left starts
at the positive value E(X(i)) but behaves differently depending on the tail behavior of
the distribution. If the tail is exponentially bounded, then a unique solution exists. If,
however, the distribution is strict Pareto with index 𝛼, then a solution only exists if
𝛼 >  + 𝛽∕𝜆.

It is interesting to see that an increase in E(X(i)) results in a similar increase of the
retention ai. Also note that in the absence of a variance component in the premium
principle (..), that is, 𝛽 = , it follows from (..) that there is a constant retention
ai = z∕(𝜆) across the subportfolios. Indeed, in practice it seems rather common not to
vary the retention of XL treaties across different subportfolios.

8.3 Solvency Constraints and Cost of Capital

In Section .. we discussed how the safety loading in insurance premiums may be
determined in order to meet capital costs arising from regulatory solvency constraints.
At the same time, for the final first-line insurance premium P() further factors will play
a role, (prominently) including market competition. Let us therefore now assume that
the premium P = P() is already given and fixed, and we look for reinsurance to improve
the overall situation.
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Recall that the solvency capital requirement for the annual loss is determined by some
risk measure 𝜌 (typically VaR or CTE). In addition to the viewpoint of Section .., let
us now assume that the capital costs increase the annual loss (e.g., because they are paid
to external investors). Then, instead of S − P, the annual loss is

Loss = S − P + rCoC ⋅ 𝜌(Loss),

and the final necessary solvency capital will be higher than 𝜌(S − P), leading to the
recursive relationship

𝜌(Loss) = 𝜌(S) − P + rCoC ⋅ 𝜌(Loss),

which yields

𝜌(Loss) = 𝜌(S) − P
 − rCoC

(we use here that 𝜌 is positively homogeneous and translation-invariant, cf. Section .).
The resulting gain (i.e., negative loss) at the end of the year (without reinsurance) then
is

P
 − rCoC

− S −
rCoC

 − rCoC
⋅ 𝜌(S). (..)

If a reinsurance treaty is entered for a premium PR, this changes to

P − PR
 − rCoC

− (S − R) −
rCoC

 − rCoC
⋅ 𝜌(S − R), (..)

and one can now again try to find optimal reinsurance forms R according to the criteria
discussed in the previous sections, now with the correction factor for cost of capital
(and hence the solvency constraint) included.

For instance, if P is fixed and the goal is to maximize the expected income after
reinsurance, one obtains from (..) that the goal is to identify R for which

min
R

(
PR − ( − rCoC)E(R) + rCoC ⋅ 𝜌(S − R)

)
(..)

is attained. This approach of looking at the capital cost problem can be found, for
example, in Kull [], who gives a variety of optimal reinsurance results under this
setup. For an expected utility approach of (..) in the spirit of (..), see Haas [].

It may also frequently happen that the amount of available risk capital is fixed (a risk
budget is available), and then one has to identify the reinsurance form that maximizes
some objective (e.g., expected profit) given this capital constraint. Also, sometimes the
overall risk capital of a company is fixed (by some general considerations) and then
the question is how to most efficiently allocate this capital to subportfolios, that is,
to design reinsurance arrangements on the individual subportfolios whose risk capital
implications aggregate to the overall target. In this context, an extension of the problem
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of optimal proportions of subportfolios of Section ... to the case with capital costs
was developed by Kull []. Capital and its allocation have recently become crucial in
the light of risk-based management of insurance companies, so the criteria discussed
in the present section can be regarded as particularly relevant for applications (cf.
Dacorogna []).

A variant of the above criterion is to focus on the expected profit relative to the
required solvency capital. The goal then is to maximize the return on risk-adjusted
capital (RORAC), which in the notation of Section .. translates into

max
D

PD − BED
SCRD

= max
R

P − PR − E(S − R)
𝜌(S − R) − P + PR

(..)

for given first-line premium P, aggregate claim size S, reinsurance premium rule PR and
risk measure 𝜌. That is, here rCoC is not prespecified, but the quantity to be maximized.
One immediately sees that under this criterion a QS treaty R = aS with PR = aP is not
of interest at all, as it does not change the ratio (only PR < aP would be of interest).

Lampaert and Walhin [] use the RORAC criterion (..) to compare quota share
and surplus treaties with both fixed and variable proportions (lines, respectively). Per-
forming an empirical study on a large data set from reinsurance practice, they conclude
under some additional assumptions (including expected value premium principles for
both P and PR, with fixed safety loading for all risk sizes) that it is not beneficial to use
tables of lines constructed by an inverse rate method (cf. Section .), which is contrary
to what one may intuitively expect. It is, however, beneficial for the RORAC criterion
to construct a table of lines according to the method of Section ....

It will be useful finally to adapt the obtained results to include claims reserves,
market risk, counterparty risk etc. in the calculation of the solvency capital requirement
and respective cost of capital. However, the resulting optimization problems then
quickly become complex, and their solutions heavily depend on the respective posed
assumptions.

8.4 Minimizing Other Risk Measures

In recent years many variants of the optimization problem

min
R

𝜌(PR + S − R) (..)

have been studied in the literature. For instance, Cai and Tan [] studied the subprob-
lem of optimizing retention levels within SL contracts for (..) when 𝜌 is the VaR or
CTE and PR is determined by an expected value principle. Cai et al. [] then extended
this analysis to a larger class of contracts, indicating that change-loss contracts (and
QS and SL as special cases) are optimal. For a comparison across reinsurance premium
principles, see Tan et al. []. An extension to optimal treaties in the presence of several
reinsurers can be found in Asimit et al. [].

Balbas et al. [] provide an in-depth study on characterizing optimal reinsurance
forms under (..) for a general class of risk measures 𝜌 by exploiting duality theory
in functional analysis. It is shown that a SL treaty is often optimal when PR is an
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expected value principle. For investigations on the stability of optimality results when
switching from one risk measure to another, see Balbás et al. []. Also, Balbás et al.
[] identified optimal reinsurance forms when there is uncertainty about the involved
claim distribution (see also Asimit et al. [] and Bernard et al. []).

Another risk measure that has recently gained considerable attention due to discus-
sions on backtesting issues for risk measures is the expectile, see, for example, Ziegel
[], Bellini et al. [], and Bellini and Bignozzi []. Cai and Weng [] show that
for certain reinsurance premium rules a superposition of two limited XL treaties is then
optimal, where the reinsurer takes over two disjoint layers.

The criterion (..) is not likely to directly be a driving criterion in practice, as then
(akin to minimizing the ruin probability in Section ..) it is optimal to stay out of
the insurance business altogether, resulting in a zero value for 𝜌. However, if one takes
the viewpoint that the primary business is already written and reinsurance premiums
are more expensive than premiums in primary markets, then the identification of
reinsurance forms minimizing such risk measures leads to interesting mathematical
problems. Moreover, minor modifications can embed the solutions into the cost-of-
capital framework of Section .. To see this, note that by translation-invariance of 𝜌,
the optimization problem (..) can be rewritten as

min
R

𝜌
(
PR − ( − rCoC)E(R) + rCoC ⋅ (S − R)

)
, (..)

and so the goal of maximizing the expected gain under regulatory solvency constraints
translates into minimizing the risk measure 𝜌 of a weighted sum of the safety loading
PR −E(R) in the reinsurance premium, the retained risk S −R and E(R). If, for instance,
PR = ( + 𝜃R)E(R), then (..) simplifies to the problem

min
R

𝜌
(
( + 𝜃R∕rCoC)E(R) + S − R

)
,

so that results for (..) can be interpreted within the framework of (..) for a
modified value of 𝜃R.

For optimal risk-sharing rules for convex risk measures expressed in the framework
of monetary utility functions, see Jouini et al. [], Barrieu and El Karoui [], as well
as Acciaio [], who studied optimal risk sharing under non-monotone risk measures.
A general solution to this problem is provided by Filipović and Svindland [], who
showed that for law-invariant convex risk measures on the model space Lp, where  ≤

p ≤ ∞, the optimal risk allocation always exists and is composed of increasing Lipschitz
continuous functions of the aggregate risk. For a study based on spectral risk measures,
see Brandtner and Kürsten []. Barrieu and Scandolo [] extend the Pareto-optimal
allocation analysis to a multi-period situation by dealing with preference functionals on
general vector spaces.

8.5 Combining Reinsurance Treaties

We have seen above that in some cases a change-loss contract turns out to be optimal,
where a SL (or XL) feature is put on top of a QS arrangement. Apart from defining a
contract with such a structure, the first-line insurer can also apply different reinsurance



Choice of Reinsurance 263

treaties simultaneously, which together lead to (or approximate) the desired coverage
structure. For instance, a reinsurer may offer only a certain lower layer in an XL
treaty, and another reinsurer specializing in catastrophe reinsurance may offer a treaty
for a higher layer. Sometimes also the premium offer from a reinsurer may only be
attractive for a certain part of the coverage, and a combination of two separate treaties
is then preferable. Such combinations are frequently applied in reinsurance practice.
Naturally, however, it is difficult (if not impossible) to formalize such a demand/supply
situation together with the premium rules and objectives in order to identify a certain
combination as optimal. One may rather be restricted to choosing an optimal parameter
of an already pre-specified reinsurance form. For a study of this kind, see Verlaak []
and Verlaak and Beirlant [], where a variety of different combinations are tried out
under a mean-variance optimality condition. We list here a few further examples:
● Suppose that there are n independent portfolios and that the claims in the ith portfolio

are given by {Xi,j,  ≤ j ≤ Ni}. A QS treaty with factor ai is applied to this portfolio
together with an XL treaty with retention Mi. The overall retained risk for the first-line
insurer then is

n∑
i=

Ni∑
j=

min(ai Xi,j,Mi) .

In Centeno and Simões [], the determination of the factors ai, ( ≤ i ≤ n) and
the retentions Mi, ( ≤ i ≤ n) under a minimization of the adjustment coefficient is
treated (for an early reference, see also []).

● For a combination of surplus and XL treaties, see Benktander and Ohlin [].
● Combinations of proportional and SL contracts are treated by, for example, Schmitter

[]. As another form to combine these two reinsurance forms, Hürlimann []
uses a mixture qX + ( − q)(X − C)+. Under some reasonable optimization criteria,
one of the two reinsurance types prevails.

8.6 Reinsurance Chains

Another way of introducing more than one insurer is to deal with the risk in a
hierarchical cascade (retrocession). Let the original risk be denoted by X. The first
company faces the risk X, gets a premium P and buys reinsurance for a part X from
a first reinsurer for a premium P. This company itself accepts X as its own risk but
in turn takes reinsurance for a part X for a premium P. Ultimately, the nth reinsurer
keeps the remaining part Xn. If one studies the question of optimal sharing in a utility
framework, then the ith partner with utility function ui will try to maximize

E
(
ui((Pi − Pi+) + (Xi+ − Xi))

)
,

where X = X and Pn+ = . Note that the Pareto-optimal risk sharing discussed
in Section .. has a similar flavor, but here the sequential character of the decision
process leads to different results. For an early contribution on this problem for propor-
tional treaties, certain choices for utility functions and premium rules, see Gerber [].
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Substantial generalizations of this problem have been investigated in d’ Ursel et al. [],
Lemaire et al. [], and Heijnen et al. [, ].

A critical question in the distribution of reinsurance is the optimal number of
reinsurers and their respective responsibilities (e.g., see Powers et al. []). It also needs
to be ensured that through repackaging of risks, retrocession does not lead to a cycle.
One unfortunate such case in history is the so-called LMX spiral in the early s (see
Baluch et al. []).

8.7 Dynamic Reinsurance

In Section ... we discussed the criterion of minimizing the ruin probability for a
discrete-time or continuous-time surplus process through an optimal form of reinsur-
ance. There the assumption was that the concrete form of the reinsurance treaty has
to be chosen in the beginning, and then does not change over time. In the academic
literature it has also been studied by how much the overall target (of minimal ruin
probability) could be improved if one were allowed to adapt the reinsurance form along
the way. When the surplus process is of Markovian type, the optimal strategy is typically
a feedback strategy, which for the ruin probability criterion at each time point only
depends on the current value of the surplus process.

For a discrete-time risk process, the respective optimal adaptation at each time point
can be obtained by stochastic dynamic programming. In most cases one cannot obtain
explicit results, but approximate the optimal solution numerically (see Schäl [] for a
theoretically sound basis of respective numerical algorithms). In the setting of classical
continuous-time risk models (like the compound Poisson model), from a mathematical
point of view somewhat more explicit results can be obtained if the times at which one
can adapt the reinsurance form are not fixed (e.g., annual) time points, but are the claim
occurrence times, as then the underlying process is a random walk with much simpler
increment distribution. However, this little advantage comes at the expense of a less
realistic model setup, as adapting the contract at every single claim occurrence will not
be feasible in applications.

If, instead, one switches to the possibility of continuous-time adaptation of the
contract, the analysis becomes more transparent. Mathematically, the minimal ruin
probability (value function) can then often be determined by solving a Hamilton–
Jacobi–Bellman (HJB) equation and in a number of cases also the corresponding
optimal dynamic reinsurance strategy can be identified. It should be noted that an actual
implementation of such a continuous-time adaptive strategy is even less “realistic”,
but this approach allows the potential improvement through continuous-time action
(compared to a static strategy) to be quantified, and also gives some intuition for the
suitability (and long-term consequences) of parameter choices within certain types of
contracts.

When trying to solve such a stochastic control problem, a number of challenges arise.
The solution of the HJB equation usually can only be obtained numerically and is just
a possible candidate for the value function, and a separate verification step is needed.
Also, the solution of the HJB equation may not be unique, and the value function may
not be as regular as is needed for the equation. Correspondingly the actual calculations
can be highly involved, and it is beyond the scope of this book to provide details on
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these aspects (see Schmidli [] and Azcue and Muler [] for profound surveys on all
the mathematical aspects in such an approach). Instead, for illustration we simply state
here the results one obtains for the classical risk model.

Consider the Cramér–Lundberg model (..) with a dynamic reinsurance strategy
ut = ut(Xi), where ut(Xi) is the retained amount of claim Xi for the cedent when the
claim occurs at time t. Let cR(ut) be the reinsurance premium intensity for strategy ut
and assume that more reinsurance is more expensive as well as cR() > c (otherwise
it would be optimal to reinsure the entire portfolio, see also Section ..). Then the
optimal control problem is to identify ut such that the ruin probability for the process

C(t) = w +
∫

t


(c − cR(us)) ds −

N(t)∑
i=

uTi
(Xi)

is minimized, where Ti is the occurrence time of the ith claim.
● Dynamic proportional reinsurance: u(y) = u y with  ≤ u ≤ 

If one can dynamically adapt the proportionality constant in a QS contract, then
(under the weak condition lim infu↑ cR(u)∕( − u) > ) it turns out to be optimal
for the cedent not to purchase any proportional reinsurance as long as the current
surplus is below a threshold value w (i.e., u =  for any w < w). This may at first sight
not look intuitive, as particularly for small surplus values reinsurance can be useful,
but since reinsurance is expensive, for the long-term goal of minimal ruin probability
it is then preferable to not pay reinsurance premiums and use the premium income
from primary insurance to more quickly decrease the ruin probability before one can
“afford” reinsurance again. Furthermore, if a solution 𝛾R >  to the equation

inf
u∈[,]

{
𝜆E(er⋅u⋅X) − 𝜆 −

(
c − cR(u)

)
r
}
=  (..)

exists, then (under mild assumptions) the asymptotic behavior of the ruin probability
improves (from the Cramér–Lundberg approximation (..) without reinsurance)
to

𝜓R(w) ∼ C e−𝛾Rw
, w → ∞ (..)

for some constant C > . If the optimal value u∗ for which the infimum in
(..) is attained is moreover unique, then limw→∞ u(w) = u∗, that is, the optimal
proportionality factor converges to a constant for increasing surplus.

Note that due to the continuity and convexity properties of the involved functions,
𝛾R defined through (..) is also the supremum across all fixed u of the maximal
solution of 𝜆E(er⋅u⋅X)−𝜆−

(
c−cR(u)

)
r = . Hence the adjustment coefficient obtained

by optimal dynamic proportional reinsurance is the same as the one obtained from
determining the static u for a QS treaty that maximizes the adjustment coeffi-
cient (cf. Section ...). Correspondingly, dynamic reinsurance cannot improve the
optimal adjustment coefficient among static QS treaties. However, for moderately
sized surplus values, dynamic reinsurance can of course outperform the best static
counterpart.
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● Dynamic XL reinsurance: u(y) = min(y,u)
If it is possible to dynamically adapt the retention level u, then for exponentially
bounded claims one can show (under some mild additional conditions) that also here
an asymptotic behavior of the form (..) holds, if a solution 𝛾R >  to

inf
u∈[,∞]

{
𝜆
∫

u



(
 − FX(z)

)
erz dz −

(
c − cR(u)

)}
= 

exists. If the minimizer u∗ is unique, then limx→∞ u(x) = u∗, that is, the optimal
retention again converges to a constant value for increasing surplus. As for the
proportional case, the resulting adjustment coefficient of the best static strategy
cannot be improved through dynamic adaptation.

Several variants of the stochastic control problems of the above type have been studied
extensively in the literature, in particular also in connection with optimal investment
of parts of the surplus in the financial market and optimal dividend payments (see the
Notes at the end of the chapter).

8.8 Beyond Piecewise Linear Contracts

One observes that almost all contracts identified as optimal in this chapter exhibit
a piecewise linear shape of R(X) (or R(S)) and likewise the corresponding retained
amount. This is nicely in line with the fact that most of the reinsurance forms imple-
mented in practice are of such a form. However, the question arises whether there
could not exist more efficient ways for risk sharing, particularly since one may be
inclined to think that smoother transitions between two regions are preferable to non-
differentiable kinks (at junction points of linear pieces, like at the retention). This line
of reasoning of course hinges on the underlying objectives and constraints for the
optimization procedure. When using first and second moments of the retained risk
as criteria, then piecewise linear solutions are no surprise. Note that for some other
criteria in this chapter, such as in Sections .. and ., one sometimes also received
optimal shapes of piecewise linear form because – in loose terms – on from a certain
point (determined by some constraint) maximal coverage was needed until the available
reinsurance premium is used up. It is natural to expect that in more general models or
under different criteria non-linear shapes will be optimal. Among the cases for which
this was already explicitly studied and shown, are:
● in the presence of default risk of the reinsurer (e.g., see Bernard and Ludkovki [])
● in some cases when maximizing a linear combination of insurer’s and reinsurer’s

utility (e.g., see Albrecher and Haas [])
● taking into account cost-of-capital considerations (cf. Section .)
● maximizing the adjustment coefficient under a variance principle or standard devia-

tion principle for the reinsurance premium (cf. Section ...).

Even if non-linear retention functions are clearly non-standard in practice in an explicit
form, they do appear implicitly as a result of certain combinations of reinsurance
contracts and profit-sharing mechanisms.
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Using non-linear shapes is also quite conceivable from a general viewpoint: reinsur-
ance is about reshaping the insurer’s loss distribution (often referred to as tapering
in engineering circles), and if one has a target distribution for the retained amount,
then one can define a respective retention function that leads to the desired target. For
instance, if the goal after reinsurance of X is an exponential distribution with parameter
𝜆 for D, then

D(X) = log( − FX(X))−∕𝜆 (..)

serves the purpose, since

P(D(X) < x) = P(FX(X) ≤  − e−𝜆x) =  − e−𝜆x
, x > ,

and FX(X) is uniformly distributed on [, ]. Note that (..) ensures  ≤ D(X) ≤ X as
long as we have FX(x) ≤ − e−𝜆x for x ≥  (which, for large x, is the case of interest). For
instance, if X is a strict Pareto random variable with FX(x) =  − (x∕x)−𝛼, x ≥ x > ,
then

D(X) = log(X∕x)𝛼∕𝜆

has the desired exponential distribution. Intuitively, rather than accepting the entire
tail of X like in unlimited XL, the reinsurer accepts a larger proportion of the claim,
the larger its size is. In a practical implementation, both the XL contract and such a
contract (..) would only be written with an upper limit, but the latter can result in
a considerably cheaper reinsurance form for the cedent than passing on an entire layer.
Depending on the employed objectives and constraints, this may also be the formal
solution of an optimization problem, in particular when involving capital costs in the
criteria.

Finally, we mention another non-standard reinsurance form that is not implemented,
but which could have nice properties in terms of reshaping the tail. In a randomized
reinsurance contract, the reinsured amount R(X) is not a deterministic function of X,
but the mapping R is a random variable itself, that is, once X is known, there is an
additional random mechanism to determine the reinsured amount according to some
given distribution (e.g., a lottery under the supervision of a notary). While there may
be several practical (and psychological) arguments against such a type of treaty, it can
serve as an interesting thought experiment, since randomization is another effective
tool for reshaping a loss distribution (in a possibly cost-effective way) (see Albrecher
and Cani []). For the criteria of Section ..., Gajek and Zagrodny [] showed that
for certain discrete loss variables, a randomized reinsurance form in fact outperforms
the deterministic ones.

A final general comment is in order. Even if one is able to formalize the objectives
and constraints, and identify a corresponding optimal reinsurance form, in practice this
particular contract may not be available or negotiable. In that case, one will look at all
available reinsurance forms, determine the parameters (like the retention) such as to
match the safety criterion and then choose the cheapest among those. In fact, some
of the approaches discussed above dealt with identifying the best parameters within a
given reinsurance form. It should be mentioned, however, that in such a procedure one
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should also be careful with model risk and estimation risk. At the same time, from the
viewpoint of capital costs, whenever the resulting reduction of capital costs exceeds the
reinsurance premium, the reinsurance contract will be of interest, even if the underlying
model may have a certain degree of inaccuracy.
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utility and stop-loss to the reinsurance problem for inflation compensation for current
old age annuities, see Lüthy []. There are still other optimality criteria for a single
insurance risk, for example see the paper by Young [], which has interpretations
within a reinsurance context as well.

For an early reference on dynamic programming to identify optimal reinsurance
schemes, see Pechlivanides []. Schmidli [] first solved the continuous-time
stochastic control problem with variable QS, and the XL case was tackled for the first
time in Hipp and Vogt []. For a combination with an optimal dividend problem see
Azcue and Muler []. Using dynamic reinsurance to minimize capital injections over
time was studied by Eisenberg and Schmidli [, ], see also Schäl [] and Bulin-
skaya et al. [] for a discrete-time model. For modifications of optimal reinsurance
in the presence of investments, see Schmidli [], Asmussen et al. [], Højgaard and
Taksar [], Irgens and Paulsen [], and Hipp and Taksar [], as well as Romera
and Runggaldier [] for a discrete-time approach. Since then many extensions of this
problem have been studied. For a recent treatment of a two-dimensional case with
dependence see Liang and Yam []. Meng et al. [] allow for several reinsurers.
Optimal reinsurance in a Markov-modulated environment when the states are not
observable, but have to be filtered from observations is studied in Liang and Bayraktar
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maximizes the surplus level at an exogeneously determined future exponential time.
In addition to the concise general texts Schmidli [] and Azcue and Muler [] on
the topic of stochastic control, we also refer to Hipp [, ] and Asmussen and
Albrecher [, Ch. XIV] for short surveys providing the intuition behind the concepts.

A dynamic approach to worst-case reinsurance is proposed in Korn et al. []. As
an alternative to minimizing the probability of ruin, for an upper bound on number
and sizes of claims the authors maximize the expected utility of surplus at a fixed
time horizon for the worst-case claim scenario by a dynamic QS contract and treat
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offered premium principle. Borch’s result on Pareto-optimal risk exchanges, which in
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to premium rules etc., see, for example, Albrecher and Haas [], leading to non-
linear retention functions. Cai et al. [] considered the minimization of a convex
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combination of risk measures of the insurer and reinsurer (see also Jiang et al. []).
Another formulation of combining the views of market participants is given in Assa
[], see also Zhuang et al. []. An approach considering joint survival probabilities
of insurer and reinsurer can be found in Ignatov et al. [], Kaishev and Dimitrova
[, ], and Cai et al. [], as well as Kchouk and Mailhot []. The setting of
Ivanovs and Boxma [] can also be interpreted in this context.
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9

Simulation

In many practical situations, particularly also in reinsurance, the model assumptions
or the number of model ingredients and their interactions are too complex to allow
for an explicit calculation (or direct approximation) of quantities of interest. Many
such quantities can, however, be expressed as expectations of a random variable X,
for which the distribution is specified through the model assumptions (albeit typically
as a complicated interaction of other random variables, so that the direct calculation is
impossible). For such situations, one can generate independent samples of that random
variable and estimate the expectation by the arithmetic mean of those sample values.
This is the core idea of Monte Carlo (MC) simulation. In view of its importance in
reinsurance applications, we will discuss some of the main ideas in this chapter. For
links to more detailed surveys on the topic see the Notes at the end of the chapter.

9.1 The Monte Carlo Method

Assume that for some random variable X we want to estimate E(X), and we know that
this value is finite. If we are able to generate n independent sample values Xi, then the
strong law of large numbers guarantees that, with probability ,

𝜇n ∶= 
n

n∑
i=

Xi
n→∞
⟶ E(X).

The estimator 𝜇n is unbiased and strongly consistent. If also Var (X) < ∞, then by the
Central Limit Theorem, in distribution,

√
n√

Var (X)

(

n

n∑
i=

Xi − E(X)

)
n→∞
⟶  (, ).

 In this chapter X does not necessarily refer to a claim size. In fact, X may even be a function of hundreds
of other random variables.
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That is, for large n the sample mean has the approximate distribution


n

n∑
i=

Xi ∼ 

(
E(X), 

n
Var (X)

)
,

respectively


n

n∑
i=

Xi ≈ E(X) + Z with Z ∼ 

(
, 

n
Var (X)

)
.

This shows that the convergence rate of the Monte Carlo method is of the order

O
(√

Var (X)
n

)
= O

(
√
n

)
.
 Clearly, the error bounds for the Monte Carlo estimator

will by construction always be probabilistic (i.e., not certain). From Φ(.) = . for
the standard normal c.d.f. one then receives the approximate % confidence interval
for E(X):

P

(
𝜇n − .

√
Var (X)

n
≤ E(X) ≤ 𝜇n + .

√
Var (X)

n

)
≈ ., (..)

and this confidence interval is the usual way Monte Carlo estimates are reported. In
order to state this interval, one therefore needs to estimate the variance, and this is
done by the (unbiased) sample variance of the generated replications:

Var (X) ≈ 𝜎

n = 

n − 

( n∑
i=

X
i − n𝜇


n

)
.

Note that adding one decimal place of precision requires  times as many replications,
so for a high accuracy of the estimate very large sample sizes are needed, which can be
very time-consuming. One alternative to reduce the size of the confidence interval is
to reduce the variance of the estimator, which is sometimes possible with some smart
ideas and workarounds. We will discuss such possibilities in Section ..

In many cases relevant for reinsurance purposes, one in fact wants to estimate a
probability for a certain event A (e.g., the event that the aggregate loss exceeds some
threshold). However, such a probability can also be expressed as the expectation over
the indicator function of the event A, that is, P(A) = E(A). The corresponding Monte
Carlo estimate for P(A) is then simply the relative frequency of the occurrence of A
among n independent experiments

rfn(A) ∶=

n

n∑
i=

Ai
.

 If X is a function of s other random variables, this error bound is still independent of s, unlike classical
numerical integration methods, which makes MC a popular alternative also in numerical integration,
particularly for dimensions s ≥ .
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Since the variance of a Bernoulli random variable is given by

Var (A) = P(A)( − P(A)) (..)

the sample variance is 𝜎
n = rfn(A)(−rfn(A)) and we then obtain the approximate %

confidence interval for P(A) in the form[
rfn(A) −

.√
n
𝜎n, rfn(A) +

.√
n
𝜎n

]
. (..)

For the implementation of the Monte Carlo method, one needs to produce random
numbers through a deterministic algorithm (“pseudorandom numbers”) which imitates
randomness to such a degree that the result is practically indistinguishable from truly
random numbers, that is, that the respective statistical tests for randomness are passed.
Since FX(X) is uniform(,) distributed, the random number F−

X (U) has distribution
FX and so it typically suffices to focus on the generation of uniform pseudorandom
numbers (even if in many circumstances there are more efficient algorithms than
this inversion method available to generate a random sample with distribution FX ,
particularly when the inverse function F−

X is cumbersome to work with). Since for
the generation of one sample value of X one may in fact need many pseudorandom
numbers (either X can be generated more efficiently by combining several variables or,
more typically, X itself depends on many further random variables which all need to
be generated for one realization of X), it is also important that there are no significant
deterministic patterns in a produced pseudorandom sequence if one looks at certain
blocks of numbers. Developing pseudorandom number generators and studying their
properties is a classical topic of mathematical research, and nowadays there are very
efficient and quick pseudorandom number generators available, so that we can generally
take it for granted that the generation of “sufficiently” random and independent samples
is possible (see Korn et al. [] for an overview). The computational bottleneck in this
context is hence typically not the generation of the pseudorandom sequence, but the
evaluation of the functions that need to be applied to these numbers.

Another interpretation of the MC method is as follows: if the distribution of X (e.g.,
as a function of many other, possibly dependent, random variables) is not available
explicitly, one can simulate n realizations X,… ,Xn and build up an empirical c.d.f.
F̂n from these n points by assigning a weight of ∕n to each (cf. (..)). Using F̂n as
an approximation of the true FX in calculations (e.g., for quantiles, expectations of
functions of X, etc.) exactly corresponds to the MC estimator of the respective quantity.

Example . (Estimation of VaR) In Section . we discussed how to estimate quan-
tiles from data. In applications, many risk factors can contribute to the distribution of
the final random variable X of interest for which the high quantile Q(𝛼) = VaR

𝛼
(X)

 An alternative interpretation is that the domain of the integration in the expression for E(X) can be
transformed into the unit interval (or unit cube) by a suitable substitution, and any non-uniform density
function is considered as a part of the function of which the expectation is calculated, that is, one can
sample from a uniform distribution.
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needs to be approximated. The crude MC estimator is obtained by simulating n
replicates X,… ,Xn with c.d.f. FX , and reading off the quantile

Q̂n(𝛼) = inf{x ∶ F̂n(x) ≥ 𝛼}

from the respective empirical c.d.f. F̂n(x) (cf. (..)). Assume that the density function
fX of X exists. Applying the central limit theorem for quantiles, one gets the %
confidence interval for the true value of Q(𝛼) by[

Q̂n(𝛼) − .
√
𝛼( − 𝛼)

fX(Q(𝛼))
√

n
, Q̂n(𝛼) + .

√
𝛼( − 𝛼)

fX(Q(𝛼))
√

n

]
.

However, the expression fX(Q(𝛼)) is hard to approximate (fX is not available explicitly
and Q(𝛼) needs to be approximated by Q̂n(𝛼)). Even if fX were available, the resulting
interval length can be huge (e.g., if X ∼  (, ), the simulation of Q(.) =
VaR.(X) = . needs more than  million replications, if we want the confi-
dence interval to be of length .).

9.2 Variance Reduction Techniques

If Var (X) (respectively its estimate) in the confidence interval (..) is large, it can take
a large number of replications to arrive at a satisfactory confidence interval. If we can
replace the original estimate by another one with the same expectation, but smaller
variance, then we can achieve an efficiency gain.

Example . An example where the need for variance reduction becomes particularly
obvious is rare event sampling, where one needs to estimate the probability z = P(A) of
an event A which occurs with very low probability (a situation that frequently occurs in
reinsurance applications). From (..), the variance of the crude MC estimator Z = A
is 𝜎

Z = z( − z), and clearly 𝜎

Z ∼ z →  as z ↘ . However, what matters is the relative

error (coefficient of variation)

𝜎Z
z

=
√

z( − z)
z

∼ √
z
,

and the latter grows beyond any bound when z ↘ . If one wants to guarantee a certain
relative precision of the MC estimate (in terms of the width of the confidence interval
(..)), the sample size n needs to grow according to n ∼ const. z− as z ↘ , and
this can be infeasible for small z. The techniques illustrated in the examples below will
lead to estimators Z′ for z with bounded relative error 𝜎Z′∕z < ∞ or (slightly weaker)
logarithmic efficiency lim supz→ 𝜎Z′∕z−𝜖

< ∞ for any 𝜖 > .

 However, the development and implementation of such improvements also takes effort, and for each
application one finally needs to find the appropriate tradeoff between developing such techniques or just
running the crude MC algorithm with more replications.
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In the following we briefly discuss three popular variants of variance reduction.

9.2.1 Conditional Monte Carlo

Let Y be another random variable and E(X|Y ) can be calculated. Then

Y ∶= E(X|Y )

is an unbiased estimator of E(X), and from

Var (X) = Var (E(X|Y )) + E(Var (X|Y ))

it follows that Var (Y) ≤ Var (X). Consequently, this always leads to a reduction of
variance, but it will not always be easy to find an appropriate Y to serve the purpose.

We illustrate this approach with an impressive example for the simulation of tail
probabilities of compound sums of heavy-tailed risks:

Example . (Asmussen–Kroese estimator)
Assume that one wants to simulate an estimate of z(u) = P (S(t) > u), where S(t) =∑N(t)

i= Xi and Xi are i.i.d. and heavy tailed. Crude MC suggests simulation of n replicates
of S(t) and reporting the fraction of the cases where the result exceeded u. This is clearly
not efficient, particularly for large values of u (which, however, is often the region of
interest in practical applications). If the claims Xi are subexponential, then we know
from Chapter  that for large u the largest summand dominates the sum and is the
crucial ingredient in the calculation. The ingenious idea is now to condition on the fact
that the last term XN(t) is the largest, simulate all but that largest term, and estimate z(u)
from those terms, “calculating” rather than simulating that largest (crucial) term. If we
denote Sk ∶=

∑k
i= Xi and Mk ∶= max{X,… ,Xk}, then by symmetry

P(Sk > u) = k ⋅ P(Sk > u,Mk = Xk)

and one can formulate the conditional Monte Carlo estimator

Z(u) = N(t) ⋅ P(S(t) > u,MN(t) = XN(t)|N(t),X,… ,XN(t)−)

= N(t) ⋅ FX

(
max

{
MN(t)−,u −

N(t)−∑
i=

Xi

})
.

Case study: Dutch fire insurance data. Figure . illustrates how this conditional MC
estimator improves the % confidence intervals of crude MC for the simulated tail
probability of the compound Poisson random variable S() =

∑N()
i= Xi beyond

,, (which was calculated explicitly to be the VaR.(S()) in Table .).
□

9.2.2 Importance Sampling

One of the problems of crude MC estimation is that many generated sample points will
not really be in the relevant region for the quantity to be approximated. For instance,
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Figure 9.1 Dutch fire insurance data: confidence intervals for the simulation of
P(S() ≥ , , )) for the compound Poisson case of Figure 6.2 as a function of n for crude
MC and the Asmussen–Kroese estimator.

in Example . for the estimation of the quantile, for very small or very large 𝛼, there
will not be enough sample points close to the quantile (it is inefficient to determine
the exact value of a replication if it is in any case far to one side of the quantile; only
the fact that it lands on that side is relevant), and this adds to the variance of the
estimator.

Assume again that FX allows for a density fX . The idea of importance sampling is now
to switch from fX to another density fX̃ that concentrates more strongly on the region
of interest (in Example . this would mean that fX̃ has a lot of probability mass around
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the suspected value of Q(𝛼)). Such a new density fX̃ can be obtained from fX by shifting,
rescaling, twisting etc. The quantity fX(x)∕fX̃(x) is called the likelihood ratio function.
We then have

E(X) =
∫

x fX(x)dx =
∫

(
x

fX(x)
fX̃(x)

)
fX̃(x)dx = E

(
X̃

fX(X̃)
fX̃(X̃)

)
.

We instead simulate n independent replicates X̃,… , X̃n from the new random variable
X̃ (with density fX̃) and use the importance sampling estimator

𝜇
I
n = 

n

n∑
i=

X̃i
fX(X̃i)

fX̃(X̃i)
. (..)

This represents a weighted MC estimator for E(X) with weights according to the
likelihood ratio function, in order to “correct” for using the new density fX̃ . The variance
of this estimator is

Var (𝜇I
n) =


n

(
∫

xfX(x)
fX̃(x)

fX(x)dx − E
(X)

)
,

so that we achieve a variance reduction whenever E[XfX(X)∕fX̃(X)] < E(X). Corre-
spondingly, importance sampling will be most efficient, if heuristically
● fX̃(x) is large whenever xfX(x) is large,
● fX̃(x) is small whenever xfX(x) is small.

Furthermore, fX̃(x) should be easy to evaluate and X̃ should be easy to simulate. The
following example illustrates the efficiency gain.

Illustration: VaR of a gamma-distributed random variable. Consider the simulation
of VaR.(X) for the case where X has a gamma(.,.) density. If one has an a
priori guess for that value, then one can use importance sampling to concentrate the
probability mass into that region. For instance, a large deviation argument may suggest
that the final value is .. If one decides to use exponential twisting

fX̃(x) = e𝜃xfX(x)∕E(e𝜃X)

(which is in essence an Esscher transform of X, cf. Chapter ), then one can identify the
value of 𝜃 for which E(X̃) = ., which turns out to be 𝜃 = .. Figure . illustrates
the efficiency gain of using the importance sampling estimate (..) compared to crude
MC as a function of number of simulations. Note that although the first guess . on
the true value was actually quite bad, the resulting twist of X is still much better than
using the original distribution. □

Let us now turn to estimating the tail probability z(u) = P(S(t) > u) of an aggregate sum
S(t) =

∑N(t)
i= Xi for large u and light-tailed claims Xi. Then one can apply the exponential

twisting idea described in the above illustration to the entire random variable S(t)
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Figure 9.2 Estimation of VaR.(X) for a gamma(3.3,0.9)-distributed X as a function of n for crude
MC and an importance sampling estimator.

(which modifies the distribution of both N(t) and Xi), to get the importance sampling
estimate

Z∗(u) = exp

{
−𝜃(u)

N(t)∑
i=

Xi

}
e𝜅S(𝜃(u)) {∑N(t)

i= Xi>u},

where 𝜅S(𝜃(u)) = logE(e𝜃(u)S(t)) is the cumulant-generating function of S(t). We can
now choose 𝜃(u) (i.e., define the amount of tilting) in such a way that under the new
measure we expect S(t) to be equal to the threshold value u, so that

EX̃(S(t)) = 𝜅
′
S(𝜃(u))

!
= u.

Illustration: VaR of a compound Poisson sum of gamma-distributed claims. If N(t)
is a homogeneous Poisson process with rate 𝜆, then 𝜅S(𝜃(u)) = 𝜆t(MXi

(𝜃(u))− ), where
MXi

(𝜃(u)) = E(e𝜃(u)Xi ) denotes the moment-generating function of the individual claims
Xi. Fix now t = . Correspondingly we can choose 𝜃(u) as the solution of 𝜆M′

Xi
(𝜃(u)) =

u. Due to E(er+𝜃(u)S())∕E(e𝜃(u)S()) = e𝜆MXi (𝜃(u))(MXi (r+𝜃(u))∕MXi (𝜃(u))−), we thus simulate a
compound Poisson process with rate 𝜆 ⋅ MXi

(𝜃(u)) and individual claims with density
e𝜃(u)xfXi

(x)∕E(e𝜃(u)Xi) and calculate Z∗(u). Figure . illustrates the remarkable efficiency
improvement for a particular compound Poisson sum of gamma-distributed random
variables. □

For heavy-tailed claim sizes, exponential twisting is not applicable because the moment-
generating function MXi

(r) does not exist for any r > . For such cases it is popular to

 The rationale behind this choice can also be seen in terms of a saddlepoint approximation for u → ∞,
since S(t) under the new measure is then increasingly well approximated by a normal distribution with
mean 𝜅

′
S(𝜃(u)) and variance 𝜅

′′
S (𝜃(u)).
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Figure 9.3 Confidence intervals for the simulation of P(
∑N()

i= Xi ≥ ), where Xi are gamma(3.3,2)
distributed, as a function of n for crude MC and the importance sampling estimator (..).

twist the hazard rate fX(x)∕FX(x) instead (further refinements are so-called asymmetric
hazard rate twisting and delayed hazard rate twisting, see Juneja and Shahabuddin
[]).

9.2.3 Control Variates

Assume that a random variable Y is available for whichE(Y ) is known exactly and which
is positively correlated with X. Then the deviation of the simulated from the exact value
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of Y may be used to correct the estimate for X. The identity E(X) = E(X − Y ) + E(Y )
indeed suggests the control variate MC estimator

XY = 
n

n∑
i=

(Xi − Yi) + E(Y ),

where (Xi,Yi) are independent copies of (X,Y ). One immediately gets

Var (XY ) =

n
(Var (X) + Var (Y ) −  Cov(X,Y )) ,

so that using XY instead of the crude MC estimator will reduce the resulting variance
whenever  Cov(X,Y )−Var (Y ) ≥ . In particular, the closer Y is to X, the more variance
of crude MC can be eliminated. If a suitable Y can be identified and the additional
computation time for simulating Y is not excessive, this variance reduction technique
can perform remarkably well.

Note that if Y is a control variate, so is a Y for any constant a >  and this suggests to
choose a in the most favorable way, namely such that

n Var (XaY ) = Var (X) + aVar (Y ) − aCov(X,Y )

is minimized. This leads to the optimal constant

a∗ = Cov(X,Y )
Var (Y )

and a resulting overall variance reduction of Cov(X,Y )∕(nVar (Y )). The corresponding
relative variance reduction then amounts to 𝜌


X,Y , where 𝜌X,Y is the correlation coeffi-

cient. In most cases, Cov(X,Y ) and Var (Y ) will not be known explicitly, so typically the
latter values will be simulated as well (in a smaller pre-run simulation or in parallel).

If a further control variate is available, one can iteratively apply the same procedure
again and use

XY ,Z = XY − 
n

n∑
i=

Zi + E(Z),

which will lead to a further reduced variance if

n Var (XY ,Z) = Var (XY ) + Var (Z) − Cov(XY ,Z) < Var (XY ).

Example . Let us reconsider Example ., but now consider the simulation of the
stop-loss premium E(S(t) − u)+. Then for subexponential FX one has the first-order
asymptotic approximation

E(S(t) − u)+ ∼ E(N(t))eX(u)FX(u), u → ∞,
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where eX(u) denotes the mean excess function of X. In the spirit of Example ., one
then can formulate the Asmussen–Kroese estimator

ZSL(u) = N(t) ⋅ E((S(t) − u)+{MN(t)=XN(t)}|N(t),X,… ,XN(t)−)

= N(t)

[(
MN(t)− +

N(t)−∑
i=

Xi − u

)
+

+ eX(W (u))

]
FX(W (u))

with W (u) = max
{

MN(t)−,u −
∑N(t)−

i= Xi

}
. In order to control the variability of N ,

one can now introduce the control variate N(t)eX(u)FX(u). This leads to the improved
estimator

Zc
SL(u) = ZSL(u) − N(t)eX(u)FX(u) + E(N(t)) eX(u)FX(u).

Case study: Dutch fire insurance data. Figure . illustrates the stop-loss premium
E((S() − C)+), where the retention C = , ,  is the VaR.(S())
calculated in this model. One sees that the Asmussen–Kroese estimator is an impressive
improvement over the crude MC estimator, but the control variate is a very minor
additional improvement in this case. The reason for this is that the variability of N(t),
which the control estimate ZSL(u) improves upon, only makes up a small part of the
overall variance, so that the efficiency gain is not considerable. □

Illustration: SL premium for another compound Poisson sum. In order to show
how the control variate estimate Zc

SL(u) can improve the Asmussen–Kroese estimator
substantially, Figure . gives the the Asmussen–Kroese estimator for the SL premium
E((

∑N()
i= Xi − .)+), where the individual claims are Pareto-distributed with tail

 − FX(x) = ( + x)−. and N() is Poisson-distributed with 𝜆 = . One sees that in
this case the importance of the variance of N() is considerable, and correspondingly
the control variate improvement is pronounced. □

For further details on the above methods and further variance reduction techniques like
antithetic variables and stratified sampling, see, for example, Asmussen and Glynn [].

9.3 Quasi-Monte Carlo Techniques

The simulation of one replicate of
∑k

i= Xi in fact involves k random variables (or even
more if Xi is generated with the help of several pseudo-random numbers). If the number
of summands is itself random (as for S(t) =

∑N(t)
i= Xi), then, for each replicate, N(t)

needs to be simulated first and the outcome determines the resulting number of needed
pseudo-random numbers for this replicate. If s such pseudo-random numbers are
needed, one can interpret that each replication needs an s-dimensional pseudorandom
number, that is, (after suitable transformation) one uses a uniformly distributed point
in the s-dimensional unit cube [, ]s. One advantage of MC methods (and partly the
reason why they are so popular) is that the error bound does not depend on s. However,
the error bound is (by construction) only probabilistic and the convergence rate of ∕

√
n

is not overly fast.
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Figure 9.5 Confidence intervals for the simulation ofE((
∑N()

i= Xi −.)+) for −FX(x) = (+ x)−.

and 𝜆 =  as a function of n for ZSL(u) and its control variate improvement Zc
SL(u).

To improve the performance of the MC method, an alternative to reducing the
variance is to improve the convergence speed of the method. This can be achieved
by replacing the pseudorandom numbers with deterministic point sequences in [, ]s

which imitate the properties of the uniform distribution in this unit cube well. The
construction of such point sequences with good distribution properties is a classical
topic in mathematics and nowadays there is a plethora of available algorithms to quickly
generate such quasi-Monte Carlo (QMC) sequences (𝐱j)j=,…,n in [, ]s, for example see
Dick and Pillichshammer [] for a recent survey.
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One way to measure the distribution properties of such a deterministic sequence is
the star discrepancy

D∗
n(𝐱,… , 𝐱n) = sup

𝐲∈[,]s
||| 
n

n∑
j=

[,𝐲)(𝐱j) −
s∏

i=
yi
|||,

where [, 𝐲) = [, y) × … × [, ys). That is, one considers the worst-case devia-
tion of the empirical fraction of points from the theoretical fraction

∏n
i= yi over all

intervals [, 𝐲) ∈ [, ]s. Correspondingly, (𝐱j)j=,,…,
is called uniformly distributed if

lim
n→∞

D∗
n(𝐱,… , 𝐱n) = . If such a sequence is now used for approximating ∫[,]s f (𝐮) d𝐮

(which in our context represents the expected value of a random variable), then an upper
bound for the approximation error is given by the Koksma–Hlawka inequality|||||| 

n

n∑
j=

f (𝐱𝐣) −
∫[,]s

f (𝐮) d𝐮
|||||| ≤ V (f )D∗

n(𝐱,… , 𝐱n),

where V (f ) is the variation of the function f . Hence, one can split the error into a term
that only depends on the integrand and a second term that only depends on the quality
of the used point sequence. The star discrepancy of the best known sequences has an
asymptotic order of O

(
logs n

n

)
, so that for not too large values of s the convergence rate

of QMC integration can considerably outperform MC. The actual performance can then
even be better than this upper bound, but it also depends on the constant involved in
the O term for the concrete QMC sequence. Typically, it can be a significant advantage
to use QMC sequences for up to  or  dimensions.

Example . A simple example for a QMC sequence is the Halton sequence. Choose
an integer b and define for each integer j the sequence ak(j) as the digits of j w.r.t. to base
b, that is, j =

∑∞
j= ak(j)bk . Then the radical inverse function 𝜙b(j) =

∑∞
k= ak(j)b−k− is

the reflection of this representation at the decimal point. If one repeats this procedure
now for relatively prime integers b,… , bs ≥ , one receives the s-dimensional Halton
sequence with bases b,… , bs

𝐱j =
(
𝜙b

(j),… , 𝜙bs
(j)
)
∈ [, ]s

, j ≥ .

This sequence is uniformly distributed and satisfies D∗
n(𝐱,… , 𝐱n) = O

(
logs n

n

)
. Figure

. depicts (for dimension s = )  MC points and the first  points from a Halton
sequence with bases b =  and b = . One sees how the QMC sequence fills up the
space much more regularly.

While the construction of Halton sequences is extremely simple, their properties
in higher dimensions are not favorable (the constant in the upper discrepancy bound

 Concretely, the total variation in the sense of Hardy and Krause.
 If more dimensions are needed, the remaining dimensions can, for instance, be filled with regular MC
points, leading to a so-called hybrid MC algorithm.
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Figure 9.6 Two-dimensional sequence of 250 pseudorandom numbers (left), Halton numbers with
b =  and b =  (middle) and Sobol numbers (right).

increases fast as s grows). Better alternatives are, for example, (t,s) sequences (with Sobol
sequences [] as particular examples, cf. Figure . (right) for a plot of the first 
points in the first two dimensions). Their construction is more involved, but respective
codes for a quick generation are nowadays available in many computer packages (see
the next section for references).

Case study: Dutch fire insurance data. Figure . shows the performance of a QMC
implementation of the Asmussen–Kroese estimator of Figure . (right) for a Halton
and a Sobol sequence. As can be observed, the performance of the Halton sequence (in
the plot the bases b,… , bs are the first s prime numbers) is somewhat disappointing for
this particular application. Note that each individual simulation run is generated from
one high-dimensional point, where the first dimension of the point is used to determine
the number N() of claims to be generated for that run; in the present case the largest
dimension finally needed is s = . But as mentioned above, in such high dimensions
the uniformity properties of Halton sequences deteriorate, and it takes many simulation
runs to approximate the exact value well. At the same time, one sees that the estimate
based on a Sobol sequence is excellent already for a low number of simulation runs.
In both cases one can achieve further improvements using hybrid MC methods, as
mentioned above. This illustrates that a judicious choice of an appropriate sequence is
crucial (and will depend on the quantity to be approximated), yet the Sobol plot shows
that the potential of QMC sequences to speed up computations is very promising. □

Since the first dimensions of a QMC sequence typically have better properties (an
effect known as curse of dimensionality), one strategy to increase the efficiency of QMC
algorithms is to use the low dimensions of the sequence for the generation of realizations
of those random variables that are particularly important for the outcome (like N(t) in
the simulation of

∑N(t)
i= Xi). One way to formalize this is by means of a refined version

of the Koksma–Hlawka inequality:

||||| 
n

n∑
j=

f (𝐱j) −
∫[,)s

f (𝐮)d𝐮
||||| ≤

s−∑
l=

∑
Fl

D∗
n

(
𝐱(Fl)

n

)
V (s−l)(f (Fl)),
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Figure 9.7 Dutch fire insurance data: QMC simulation of P(S() ≥ , , )) for the
compound Poisson case of Figure 6.2 as a function of n for the Asmussen–Kroese estimator.

where Fl are (s − l)-dimensional faces, 𝐱(Fl)
j are points in those faces with xi

= ⋯ =
xil

=  elsewhere, and V (s−l)(f (Fl)) are the respective lower-dimensional variations of
the function f . Hence, one can try to keep the overall error bound low by assigning the
“good” dimensions (with lower discrepancy) of the sequence to those variables that have
a higher (low-dimensional) variation and hence contribute most to the overall variation
of f . In particular, it is often observed that only some dimensions of the function f are
really crucial for the total variability (leading to the notion of the effective dimension of
the integrand, cf. Wang and Fang []).

9.4 Notes and Bibliography

Excellent surveys on stochastic simulation techniques are Asmussen and Glynn [],
Korn et al. [], Glasserman []. See also Asmussen and Albrecher [, Ch. XV]. The
first logarithmically efficient rare event simulation algorithm can be found in Asmussen
and Binswanger [], and the Asmussen–Kroese estimator was proposed in []. For
the study of rare event simulation algorithms for stop-loss premiums, see also Hartinger
and Kortschak [] and Asmussen and Kortschak [, ] for further performance
improvements. An important contribution for rare event sampling is Blanchet and
Glynn [].

Classical texts on the theory of QMC methods are Niederreiter [] and Drmota
and Tichy []. For more recent accounts see, for example, Dick and Pillichshammer
[] and Lemieux []. Since, by its deterministic nature, the QMC method does
not provide a confidence interval for the obtained estimate, it is sometimes common to
sequentially use randomized QMC sequences (e.g., choosing different starting values)
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and then providing a statistical error estimate, as for MC (e.g., see L’Ecuyer and Lemieux
[]). QMC techniques have been used in various application areas in insurance (for
classical risk models see Albrecher and Kainhofer [] and Preischl et al. [], and for
an application to CAT bond pricing see Albrecher et al. []). One further advantage
of QMC methods is that due to its deterministic construction an entire simulation run
can easily be replicated, whereas this can be more tricky for a MC implementation.

In recent years there also has been a lot of research activity on simulation techniques
for dependent risks (see Mai and Scherer [] for a survey). QMC techniques for
dependent scenarios are now being studied in more detail (see Cambou et al. [] and
Preischl [] for some first contributions).

Whenever a model admits an explicit expression (or an explicit approximation) in
terms of the parameters, model sensitivities and respective tuning can be done in a very
efficient way, and then such an approach is preferable to simulation, since the latter only
gives one number and changing parameters entails an entirely new simulation exercise.
However, when it comes to aggregating the entire portfolio (which, for instance, is
needed for the determination of the solvency capital of a company), the number
and type of involved risks will be too complex to allow for explicit expressions, and
simulations are the essential tool to assess the resulting profit and loss distribution, and
particularly its tail. For sensitivity analysis in connection with simulation techniques
in semi-explicit situations see, for example, Glasserman []. It is also conceptually
easy to add particular additional scenarios in a simulation approach (see Mack []
for early suggestions in that direction). The regulator in fact often asks to store all
the simulated values for potential control purposes, which in view of the enormous
number of data can be a challenge. In this connection Arbenz and Guevara [] recently
proposed a data compression technique that allows such empirical c.d.f. to be stored
much more efficiently, keeping in mind the reproducability of the concrete implemented
risk measures.
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10

Further Topics

10.1 More on Large Claim Reinsurance

While large claim treaties as discussed in Section . are not popular in practice (even if
in particular on the facultative basis such contracts can occasionally be found), we want
to illustrate here that from a mathematical perspective there are a number of elegant
results on the quantities of interest available. We first deal with larger order statistics
and subsequently look into large claims reinsurance and ECOMOR.

10.1.1 The Ordered Claims

The sizes of the largest claims also depend on the random number of claims. Recall our
notation for the order statistics

X,N(t) ≤ ⋯ ≤ XN(t)−s−,N(t) ≤ XN(t)−s,N(t) ≤ ⋯ ≤ XN(t),N(t). (..)

Distribution. Consider an XL treaty with unbounded layer and retention x, and NR(t)
denoting the number of claims for the reinsurer. The number of claims overshooting a
retention x is at least equal to r if and only if the r largest order statistics overshoot the
level x. Consequently

P{XN(t)−r+,N(t) ≤ x} =
r−∑
n=

P(NR(t) = n)

and

P{XN(t)−r,N(t) ≤ x < XN(t)−r+,N(t)} = P(NR(t) = r).

(which can already be found in Galambos []). Correspondingly, if N(t) comes from
a Poisson process or Pascal process, so does NR(t) and these formulas lead to simple
expressions for the c.d.f. of order statistics in terms of the respective sums (see Franckx
[] and Benktander [] for the Poisson case and Kupper [] as well as Ciminelli
[] for the Pascal case).

Reinsurance: Actuarial and Statistical Aspects, First Edition.
Hansjörg Albrecher, Jan Beirlant and Jozef L. Teugels.
©  John Wiley & Sons Ltd. Published  by John Wiley & Sons Ltd.
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Let us consider the general case with independent claim number and claim size
processes, and use the notation

Πr(t) ∶= P{N(t) ≤ r − } =
r−∑
n=

pn(t) (..)

for the probability of having fewer than r claims up to time t. Then from (..) we can
write

P{XN(t)−r+,N(t) ≤ x} =
r−∑
n=

∞∑
k=n

pk(t)
(

k
n

)
( − FX(x))nFk−n

X (x).

Let us denote q =  − p = FX(x). Then by reversing the order of summation we easily
find that

P{XN(t)−r+,N(t) ≤ x} = Πr(t) +
∞∑

k=r
pk(t)

r−∑
n=

(
k
n

)
pnqk−n

where the first term corresponds to the fact that not even r claims have turned up by
time t. For the second term we use the well-known equality


r

r−∑
n=

(
k
n

)
pnqk−n =

(
k
r

)
∫



p
vr−( − v)k−rdv

together with the definition (..) to obtain

P{XN(t)−r+,N(t) ≤ x} = Πr(t) +


(r − )! ∫



−FX (x)
Q(r)

t ( − v)vr−dv, (..)

where

Q(r)
t (z) =

∞∑
k=r

k!
(k − r)!

pk(t) zk−r
.

If X is a continuous random variable with density fX , the corresponding density part
(apart from a jump of size Πr(t) at the origin) is

fXN(t)−r+,N(t)
(x) = 

(r − )!
[ − FX(x)]r−Q(r)

t (FX(x))fX(x).

Limit distribution. We now look into the one-dimensional limit distribution of the
rth largest order statistics (where r is kept fixed). Assume that there exist deterministic
functions d(t) >  and c(t) such that when t ↑ ∞

d−(t){XN(t)−r+,N(t) − c(t)}


→ Vr (..)
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where Vr is a non-degenerate random variable. It is natural to assume here that FX ∈

𝛾
(a). In terms of the tail quantile function U(x) = QX

(
 − 

x

)
this means that for an

extreme value index 𝛾 ∈ R and some auxiliary function a(x) > ,

U(vu) − U(v)
a(v)

→ h
𝛾
(u) ∶=

∫

u


w𝛾− dw,

cf. Definition .. Take x ∈ R fixed. From (..),

P{XN(t)−r+,N(t) ≤ c(t) + x d(t)}

= Πr(t) +


(r − )! ∫

t

𝜓t(x)
wr−

( 
tr Q(r)

t

(
 − w

t

))
dw

where

𝜓t(x) = t
{

 − FX(c(t) + xd(t))
}
.

When t ↑ ∞ both the integrand and the lower limit should tend to a reasonable limit.
For the integrand it therefore seems natural to assume that the claim number process
is nearly mixed Poisson, as defined in Section ... Note, however, that the integrand
is actually independent of the quantity t if the claim number process is mixed Poisson.

The remaining convergence condition can then be formulated in the form that when
t ↑ ∞

𝜓t(x) = t
(
 − FX(c(t) + xd(t))

)
→ 𝜓(x)

for a function 𝜓(x) to be determined. The latter condition can be identified with the
extremal condition in terms of U if we choose 𝜓t() = , c(t) = U(t) and d(t) = a(t) as
in the condition on U . Under the two conditions we see that when t → ∞

P{XN(t)−r+,N(t) − U(t) ≤ x a(t)} →


(r − )! ∫

∞

(+𝛾x)−𝛾−
wr−qr(w)dw.

This result follows since for any fixed r, Πr(t) →  with t ↑ ∞ while qr(w) = E(Λre−Λw).
Rewriting the extremal laws by an affine transformation, the result can be expressed in
the following easier form:

For X ∈ 
𝛾
(a) and {N(t); t ≥ } near mixed Poisson, one has

P{XN(t)−r+,N(t) − c(t) ≤ y d(t)} →


(r − )! ∫

∞

𝜓(y)
wr−qr(w)dw,

where one of the three following cases emerges necessarily:

(i) 𝛾 > , c(t) = , d(t) = U(t) and 𝜓(y) = y−∕𝛾
, y ≥ 

(ii) 𝛾 = , c(t) = U(t), d(t) = a(t) and 𝜓(y) = e−y

(iii) 𝛾 < , c(t) = x+ ∶= U(∞), d(t) = x+ − U(t) and 𝜓(y) = |y|∕|𝛾|, y ≤ .
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Notice that for a deterministic N(t) this result reduces to the classical extreme value
laws discussed in Chapter . For the case r =  and N(t) discrete, see Galambos [].
In this form the result is a special case of a more general weak convergence result in
Silvestrov et al. [] where even the independence condition between claim number
and claim size processes is weakened considerably. It seems possible to derive more
explicit statements in the case where FX is assumed to belong to 

𝛾
with remainder

conditions. In the mixed Poisson case particularly, no further complications should
show up.

Moments. Of course a full treatment of the behavior of the moments under a max-
domain of attraction is possible. We restrict our attention to a few direct results.
Equation (..) can also be used to derive the consecutive moments of the order
statistics. For 𝛽 ∈ N we have

E{XN(t)−r+,N(t)}𝛽 = 
(r − )! ∫

t


U𝛽

( t
w

)
wr− 

tr Q(r)
t

(
 − w

t

)
dw. (..)

The easiest way to prove this is by noticing that for a non-negative random variable W
and 𝛽 > ,

E(W 𝛽) = 𝛽
∫

∞


x𝛽−

P(W > x) dx

and that by (..)

P{XN(t)−r+,N(t) > x} = 
(r − )! ∫

−FX (x)


Q(r)

t ( − v)vr−dv.

The appearance of the quantile function is of course pleasing. It indicates precisely what
information on the underlying two processes is needed. For the claim number process
we need 

tr Q(r)
t (− w

t
)while the quantity U𝛽

(
t
w

)
incorporates the information requested

on the claim size distribution.
The asymptotic expression of the moments under the domain of attraction condition

is then easy if the claim number process is also near mixed Poisson. Indeed if FX ∈ 
𝛾

with 𝛾 > , then for 𝛽 ≥  and r
𝛽
> 𝛾

E(XN(t)−r+,N(t))𝛽 ∼ U𝛽(t)Γ(r − 𝛾𝛽)
(r − )!

E(Λ𝛾𝛽).

When 𝛾 =  one can sharpen this result while using the full strength of the domain of
attraction condition.

Combinations of order statistics. In this section we state a versatile formula that will
allow us later to derive almost all desired expressions as special cases. In (..) we see
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that the first part of this ordered sample contains the small claims while on the right-
hand side of the scale we find the large claims; they are separated by intermediate claims.
Let us use the following two abbreviations:

Σs(t) =
N(t)−s−∑

j=
Xj,N(t)

and

Λs(t) =
N(t)∑

j=N(t)−s+
Xj,N(t).

Here Σ refers to small while Λ refers to large. We easily arrive at properties of the claim
fragments through the joint Laplace transform

Ωs(u, v,w; t) = E(exp[−u Λs(t) − v XN(t)−s,N(t) − w Σs(t)])

where u, v,w ≥ . Conditioning on the number of claims at the time epoch t and
interpreting Xr,N(t) =  whenever r ≤ , one can derive

Ωs(u, v,w; t) =
s∑

n=
F̂n

X(u)pn(t)

+ 
s! ∫

∞


e−vy{

∫

∞

y
e−uzdFX(z)}sQ(s+)

t (
∫

y


e−wxdFX(x))dFX(y). (..)

Many special cases can be derived from this formula by properly choosing s,u, v and w.
We give a couple of examples.
● For one order statistic. Choose u = w =  and take s = r − . Then we fall back on the

Laplace transform of the order statistic XN(t)−r+,N(t) as treated in (..).
● For all but the largest claims. Take now u = v =  and s = r − . Then

E(exp{−w
N(t)−r∑

i=
Xi,N(t)})

= Πr(t) +


(r − )! ∫

∞


[ − FX(y)]r−Q(r)

t (
∫

y


e−wxdFX(x))dFX(y).

For the special case where r =  we find the formula

E(exp{−w(SN(t) − XN(t),N(t))}) = p(t) +
∫




Q′

t(∫

v


e−wQX (b)db)dv

for the transform of the sum of all but the largest claim. In the case of the Poisson
claim number process this result goes back to Ammeter [].
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● For the smallest claims. Take u =  and again s = r − . Then

E

(
exp

{
−vXN(t)−r+,N(t) − w

N(t)−r∑
j=

Xj,N(t)

})

= Πr(t) +


(r − )! ∫

∞


e−vy[ − FX(y)]r−Q(r)

t

(
∫

y


e−wxdFX(x)

)
dFX(y).

If we invert this with respect to v we obtain the hybrid expression containing the
distribution of XN(t)−r+,N(t) and the transform ofΣr−(t). From the latter relation one
can, for example, derive a further relation that gives information on the ratio between
any of the claims and all the smaller ones. The resulting formula might be used to
normalize that portion of the portfolio that corresponds to the smaller claims.

10.1.2 Large Claim Reinsurance

We can now use the above formulae to describe some general properties of quantities
relevant in large claim reinsurance.

Distributional aspects. Denote the reinsured amount by

Lr(t) ∶=
r∑

i=
XN(t)−i+,N(t)

on the set {N(t)≥r}. By putting u = 𝜃, s = r, and v = w =  in (..) we deduce

E(exp[−𝜃Lr(t){N(t)≥r}])

= Πr(t) +

r! ∫




Q(r+)

t ( − v)
(
∫

v


e−𝜃U(∕y)dy

)r

dv.

For the case of exponential claim sizes more explicit results can be obtained, as shown
by Kremer in [].

Weak limit. The above formula can be used to obtain the general form for the limit
in distribution for the appropriately normalized expression Lr(t) when t ↑ ∞. As is the
case of the limit behavior for the extreme order statistics we will assume that FX ∈ 

𝛾
(a)

for 𝛾 ∈ R and that the counting process is mixed Poisson. A little reduction yields

r!E
(
exp

[
−𝜃

Lr(t) − c(t)
d(t)

{N(t)≥r}

]
− Πr(t)

)
=
∫

t


qr+(w)

(
∫

w


e−𝜃𝜒t(z) dz

)r

dw
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where

𝜒t(z) ∶=


d(t)

[
U
( t

z

)
− c(t)

r

]
.

It is now quite obvious what we should do. We choose c(t) = rU(t) and d(t) = a(t); then
𝜒t(z) → h

𝛾
(∕z). Therefore the right-hand side tends to the limit

∫

∞


qr+(w)

(
∫

w


e−𝜃h

𝛾
(∕z)dz

)r

dw.

Let us specialize a bit.

(i) If 𝛾 > , then one can replace a(t)∕U(t) by its limit 𝛾 , yielding the somewhat simpler
result

exp
[
−𝜃

Lr(t)
U(t)

]
→


r! ∫

∞


qr+(w)

(
∫

w


e−𝜃z−𝛾 dz

)r

dw.

For r =  the right-hand side can also easily be written as a Laplace transform. The
resulting expression for the limit in distribution coincides with that of the maximum
from the previous section.

(ii) For 𝛾 = , the inner integral reduces to

∫

w


z𝜃 dz = w𝜃+

𝜃 + 
.

Using the structure variable we find for t ↑ ∞

E

{
exp

[
−𝜃

Lr(t) − rU(t)
a(t)

{N(t)≥r}

]}
→

Γ(r(𝜃 + ) + )
Γ(r + )

E(Λ−r𝜃)
( + 𝜃)r .

The mean. From the above Laplace transform we can immediately deduce the first few
moments. We restrict attention to the mean. An easy deduction yields

E(Lr(t)) =


(r − )! ∫




Q(r+)

t ( − v)vr−
∫

v


U
(

z

)
dzdv. (..)

We link the above expression with our knowledge about the classes 
𝛾

used in the
treatment of one order statistic. First make the change of variable v = w∕t. Then replace
z = w

t
y. One easily finds that

E(Lr(t))
U(t)

= 
(r − )! ∫

t



wr

tr+ Q(r+)
t

(
 − w

t

)
∫





U
(

t
wy

)
U(t)

dydw.
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Taking limits for t ↑ ∞ shows that we need to assume that 𝛾 < . It then follows that

E(Lr(t))
U(t)

→


(r − )!( − 𝛾) ∫

∞


wr−𝛾qr+(w) dw.

Further comments.
● As can be expected, the calculation of premiums quickly runs into mathematically

intractable formulas. This has been recognized by Benktander [], who deals with
a relation between XL and the largest claim situations. For the calculation of the pure
premium, see Berglund [] and references therein.

● Kupper [] compares the pure premium for the XL cover at retention M with that
of the largest claims cover at retention r. He specifically deals with the case where the
claim size distribution is strict Pareto. For example, the effect of truncation on the
largest claims depends strongly on the index of this claim, as shown in [].

● Berliner [] considers a set of interesting problems connected with the largest claims
covers. He assumes the claim number process to be Poisson and derives the joint
distribution of two large claims XN(t)−r+,N(t) and XN(t)−s+,N(t), and computes their
covariance for the case of a strict Pareto law, as well as Cov(Lr(t), S(t)).

● Kremer [] gives crude upper bounds for the pure premium under a Pareto claim
distribution. The asymptotic efficiency of the largest claims reinsurance treaty is
discussed in Kremer [].

● Some practical aspects of large claim distributions have been treated by Schnieper
[]. Albrecher et al. [] studied the joint distribution of larger and smaller claims
for regularly varying claim distributions (see also Ladoucette and Teugels [] for an
overview).

10.1.3 ECOMOR

In some sense the ECOMOR treaty rephrases the largest claims treaty by giving it an
additional SL character. However, one can also consider ECOMOR as an XL treaty with
a random retention that follows the oscillations showing up, for example, by inflation.

Distributional aspects. As defined in Chapter , the reinsured amount in an ECOMOR
treaty is

Er(t) =
r∑

i=
XN(t)−i+,N(t) − rXN(t)−r,N(t).

Again the expression of the reinsured amount equals  if N(t) ≤ r. The special choice
s = r, w =  and v = −ru in (..) gives us the following expression for the Laplace
transform of the reinsured amount:

E{exp[−𝜃Er(t)]} = Πr+(t)

+ 
r! ∫




Q(r+)

t ( − v)
(
∫

v


exp{−𝜃(U(∕w) − U(∕v))}dw

)r

dv.
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Weak limit. We use a procedure similar to the one for the largest claims reinsurance.
So we start from the expression above where we normalize by the auxiliary function
a(t) from the max-domain of attraction. We have

r!E
{
exp

[
−𝜃

Er(t)
a(t)

]
− Πr+(t)

}
=
∫

t




tr+ Q(r+)

t ( − w
t
)
(
∫

w


e−𝜃𝜙t(z,w) dz

)r

dw,

where

𝜙t(z,w) ∶=
U(t∕z) − U(t∕w)

a(t)
.

Note that the very definition of Er(t) makes further centering unnecessary. We again
assume that FX ∈ 

𝛾
and that the counting process is mixed Poisson. It then easily

follows that

E

{
exp

[
−𝜃

Er(t)
a(t)

]}
→


r! ∫

∞


wr qr+(w)

(
∫




e
{
−𝜃 ∫ ∕wb

∕w z𝛾−dz
}

db
)r

dw.

In general the resulting limit distribution seems very hard to recover. However, in the
integrand we find for a fixed w a power of a Laplace transform(

∫




e
{
−𝜃 ∫ ∕wb

∕w z𝛾−dz
}

db
)

=∶
∫

∞


e−𝜃v dGw(v) .

For  < 𝛾 ≤  it is not difficult to show that then

Gw(v) =  − ( + 𝛾vw𝛾 )−∕𝛾
,

which looks very much like a generalized Pareto distribution.
Still two values of 𝛾 seem to give something special.

(i) When 𝛾 =  then we get a simple expression in that then

E

{
exp

[
−𝜃

Er(t)
a(t)

]}
→

( 
𝜃 + 

)r
,

which can be directly interpreted as the Laplace transform of a gamma distribution.
(ii) When 𝛾 = − (as for the uniform distribution on [, ]) a simple calculation yields

E

{
exp

[
−𝜃

Er(t)
a(t)

]}
→ E

{ r∏
j=

Λ
Λ + j𝜃

}
.

For degenerate Λ the limit distribution is a product of independent exponentials.
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The mean. From the above relation we derive the expression for the first moment.

E(Er(t)) =


(r − )! ∫




Q(r+)

t ( − v)vr−
∫

v


(U(∕y) − U(∕v))r dy dv.

We again indicate what happens when the 
𝛾
-classes are in force. With the notation

introduced for one order statistic, we see that we again need 𝛾 < . Then, as before,

E(Er(t))
a(t)

→


(r − )!( − 𝛾) ∫

∞


qr+(w)wr−𝛾dw = Γ(r − 𝛾 + )

(r − )!( − 𝛾)
E(Λ𝛾 ),

illustrating the role played by the structure variable Λ.

Further comments. As for the ECOMOR treaty, a few more explicit results can be
found in the actuarial literature.
● Ammeter [] points out how the exclusion of one or more of the largest claims

has the result of reducing the expected amount of the remaining aggregate claim
amount. In some cases even an infinite expectation becomes finite after such a
reduction. He also points out how in a portfolio with Pareto distributed claim
sizes there is a preponderance of small claims. See Albrecher et al. [] for
generalizations.

● For a general study of ECOMOR treaties, see Ladoucette and Teugels []. Crude
bounds for the pure premium go back to Kremer []. For a study of LCR and
ECOMOR treaties for more general claim number processes, see also Asimit and
Jones [].

● Here is another possibility for a large claims reinsurance treaty that imitates an
ECOMOR treaty but that has a different kind of retention. Accumulating information
on the largest claims, one can first get an estimate for the number of claims t(a)
falling within a fixed distance a from the observed record claim within the time
slot [, t]. The average over this number of claims yields an alternative large claim
reinsurance treaty. Information on the quantity t(a) can be found in Li et al. []
and Hashorva []. For studies on the asymptotic behavior of the tail probability of
Er(t) for exponentially bounded claim sizes, see Jiang and Tang [] and Hashorva
and Li []. Peng [] studied the joint tail of the reinsured amounts in ECOMOR
and large claim treaties.

● For a bivariate version of ECOMOR, see Hashorva [, ].

10.2 Alternative Risk Transfer

There are several alternatives to traditional reinsurance available in the market,
summarized under the term alternative risk transfer (ART). They increase the efficiency
of the marketplace and can also be particularly helpful at times when traditional
reinsurance capacity is limited (e.g., after major natural catastrophes such as Hurricane
Andrew in  or Hurricane Katrina in ). Some ART solutions take a more
integrated approach to reduce the risk over time (rather than treating the various types
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of risks separately), providing additional diversification over time in connection with
underwriting cycles, counterparty risk, and coverage of large catastrophes. Others
provide alternatives in the nature of the relationship between insurer and reinsurer
by creating a secondary market where one can enter or leave coverage in a more
flexible way than in classical reinsurance treaties. In terms of volume, ART nowadays
constitutes about % of the total reinsurance business, measured in terms of dedicated
capital (Source: JLT Re).

In this section we briefly discuss some of these alternative possibilities, and for more
details see the references at the end of the section. In general, the risk transfer can be
via alternative risk carriers and alternative products.

Alternative carriers. Next to self-insurance (which can be both regulated and non-
regulated and is particularly popular in the USA), reinsurance pools act like a mutual,
where each insurance company can cede its risk and its premiums of a specific risk
class, for instance for very large risks. Risk-retention groups are based on a similar
concept of pooling for companies to get access to certain types of liability insurance.
As another example, captives are popular vehicles to lower insurance premiums as
well as transaction costs. Typically located in a tax-friendly environment, captives are
insurance or reinsurance companies which insure the risks of their parent company
in a cost-effective manner. In that way, access to the global reinsurance market can be
obtained, which due to the larger diversification possibilities of reinsurers may lower
premiums through reduced capital cost. In addition, this allows a certain degree of
time diversification (captives are usually allowed to hold equalization reserves, whereas
according to the current accounting standards insurance companies are not). For
smaller captives, it is also popular to operate as a reinsurance captive, which insures the
risk of its parent as a reinsurer of a first-line insurance company, to which the risk was
first transferred. A particular advantage of such a construction is that from a regulatory
perspective it will then be treated as a reinsurer, for which different rules apply.

Particularly in times when traditional reinsurance premiums are very high or coverage
is not available at all (which happened after Hurricane Katrina), an alternative are so-
called reinsurance side-cars, where investors deposit funds and in turn participate in
the premiums and claims of the insurance company (typically in the form of a QS-type
treaty for a line of business, with a retention for the company that ensures alignment
of interests of the two parties). The deposit equals the reinsurance contract limit (so it
is a fully collateralized reinsurance form where counterparty risk is eliminated), so the
investors’ liability is limited to the amount of the deposit.

Sidecars are only one way for capital market investors to gain exposure to insurance
risk. In general, the capital market is a major alternative risk carrier, particularly
through insurance-linked securities (see below).

Finite risk reinsurance. If in addition to insurance risk transfer there is also a significant
weight on other goals in a product, one speaks of structured reinsurance. A particular
example is finite risk reinsurance, which is a combination of risk transfer and risk
financing between an insurer and a reinsurer in a form that is tailored towards the
concrete needs of the insurer. While a substantial goal of the transfer is to enhance
the insurer’s financial results, for tax reasons it has to contain a (limited) amount of
insurance risk transferred to the reinsurer in order to be classified as reinsurance. Such
contracts have a duration of several years and combine loss experience and investment
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returns. They formalize a longer-term relationship between the two parties which has a
time diversification component, as the reinsurer can count on incoming premiums and
the insurer on agreed coverage to known conditions over a longer time horizon.

There are retrospective and prospective variants. An example of the former is a loss
portfolio transfer, where the insurer transfers outstanding claims from some long-tailed
business of previous years to the reinsurer, and in turn pays a premium consisting of the
net present value of these claims plus fees. In that way he passes on risks related to the
timing and amount of loss development. In adverse development covers the IBNR losses
are also included. Here the claims reserves are not transferred to the reinsurer, but the
reinsurer only covers losses that exceed the reserves which the insurer has already built
up, and for this transfer a premium is paid (this can be set up like an XL or SL contract
on the adverse loss development and is also very convenient in cases of mergers or take-
overs of a company).

Prospective variants of finite risk reinsurance include spread loss treaties, where
for the transfer of specified losses (with annual and overall limits) the insurer pays
premiums to the reinsurer onto an “experience account” and these premiums (minus
fees and expenses) are then invested. At the end of the contract period, the balance
is settled with the insurer, exposing the reinsurer to the counterparty risk that the
insurer may not be able to pay a potential negative balance. Finally, finite quota share
arrangements can include over- or undercompensation of claims over prespecified
periods of time.

Integrated products. In multi-year/multi-line products several business lines are
bundled together and/or over a longer time horizon, which leads to a smoothing of
the aggregate risk and hence to lower premiums. A disadvantage is counterparty risk
for the insurer, and it can also be non-trivial to cooperate across business lines within
the insurance company.

Multi-trigger products. Here the reinsurer pays losses only contingent on a second
event, which typically is correlated to the insurer’s financial result. For instance, the
reinsurer will only pay if the losses exceed a certain threshold and at the same time a
stock index, commodity price, exchange rate etc. is below a prespecified level. Such an
arrangement will lead to considerably lower premiums, but still may serve the overall
financial result of the insurer well. At the same time, the reinsurer can also benefit from
this variant, as resulting capital needs will decrease, particularly if there are several such
contracts with independent triggers in the portfolio.

Contingent capital. This refers to the option for the insurance company to raise debt or
equity capital for prespecified conditions, in case there is a severe aggregate insurance
loss experience or another prespecified event occurs. It can be seen as a put option
on the own shares with a predefined strike value. By setting up the conditions before
financial distress, fresh capital can in such a case be acquired in a much cheaper way than
on the market. In fact, this is a means of financing rather than a transfer of insurance
risk. As a variant of this idea, in recent years contingent convertible bonds (“CoCo”
bonds) have become increasingly popular (particularly since in many countries this is
now considered as regulatory-efficient capital), and recently products have been issued
that as a trigger combine the occurrence of natural catastrophes and the solvency ratio
of the company.
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Industry loss warranties (ILW). These contracts resemble reinsurance contracts, but
the loss under consideration is the loss of the entire insurance industry arising from an
event (measured through some index) rather than the individual loss experience. The
market for such contracts has considerably grown over the last years, with reinsurance
companies and hedge funds being typical protection providers. A disadvantage for the
insurer is that the reinsured amount is not based on their own loss experience, even if the
industry index will usually be reasonably correlated. However, the resulting discrepancy
(referred to as basis risk) may lead to inefficiencies.

Insurance-linked securities (ILS). In broad terms, these are financial instruments
whose values are driven by insurance loss events. They enable insurance risk to be
(directly) placed on the capital market (insurance securitization). Among the most
important examples are catastrophe bonds (CAT bonds), which are bonds with the
additional feature that the investor will not receive the coupon (or even not the
principal) if a certain trigger related to the occurrence of natural catastrophes is hit.
In turn, the coupon in the absence of that trigger is substantially higher. Such bonds are
traded over the counter and can increase the insurance capacity for risks for which it is
difficult to find traditional reinsurance. The initiator of the CAT bond is the insurance
company that seeks this protection. The trigger can be the individual loss experience
of the issuer due to a catastrophe or (more often) an index representing the average
catastrophe loss experienced by the insurance sector in a prespecified time interval and
business line. Finally, it is very common nowadays to have parametric triggers, that is,
a physical measurement (such as wind speed, magnitude of an earthquake etc.), as this
is a reliable, “objective”, and usually easily accessible trigger for investors (whereas for
a trigger linked to the individual loss experience of the issuer there are obvious moral
hazard issues and the final settlement can take much longer). One then speaks of an
index transaction (instead of an indemnity transaction). However, triggers based on an
index or parametric triggers again introduce basis risk for the issuer (on the plus side,
the insurer does not have to pass on the actual claim data to the outside in this case).

In practice, there is usually a special-purpose vehicle (SPV) that acts as an inter-
mediary (located in a tax-friendly environment), which then issues a conventional
reinsurance policy to the insurance company. The SPV uses the premium payments of
the insurance company to pay the coupons to the investor, and if the event is triggered
(or maturity of the bond is reached without the trigger), the amount in the SPV is paid
out to the insurer and the investors according to the bond specifications. One particular
advantage of the CAT bond is that – in contrast to traditional reinsurance – there is
no counterparty risk for the insurer (unless the construction involves further parties
like swap providers), since the reinsured amount is already available in the SPV (or the
trust account). At the same time, for investors this can be an attractive product, since
the underlying trigger event will typically be independent of other investments and the
excess coupon can be considerable (in the long run, it will of course be determined
by demand and supply, as well as the concrete loss experience of previous years).
Conceptually, CAT bonds represent a secondary reinsurance market, where the investor
(who takes the reinsurer’s role here) has more flexibility to leave or enter the “contract”

 The most common indices are the Property Claims Service (PCS) index for US perils and the PERILS
index for European ones (cf. Lane [] for details).
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along the way. In recent years the CAT bond market has increased considerably in size.
Further ILS products (with, however, a much smaller market) are, for example, longevity
swaps and products related to embedded-value securitization and extreme mortality
securitization. Altogether, the global ILS risk capital outstanding in  exceeded 
billion US$ (Source: Artemis).

10.2.1 Notes and Bibliography

The first implementation of a contract that resembles a CAT bond can be traced back
to about  BC (and hence long before the first insurance policy was issued!), when
the Babylonians issued maritime loans in which the borrower did not have to repay
the loan in case of a loss due to certain accidents (see Holland []). CAT bonds and
other insurance derivatives in their modern forms started to be traded in the USA
after Hurricane Andrew in . In Europe, the concept became popular when the
WinCAT coupon (a convertible bond with a trigger related to hail or storm) was issued
by Winterthur Insurance in . The model risk related to that product was studied
by Schmock []. For early descriptions of the developments and discussions, refer to
Doherty [, ], Gorvett [], Swiss Re [], Munich Re [], and Doherty and
Richter [].

Excellent general surveys on alternative risk transfer are Lane [], Culp [],
Liebwein [], and the handbook edited by Barrieu and Albertini []. See also Gastel
[, Ch.], Mürmann [], and Banks []. For a rich source on convertible bonds,
refer to De Spiegeleer and Schoutens []. Niedrig and Gründl [] studied the
effects of CoCo bonds on the solvency capital situation of insurance companies. Gibson
et al. [] investigated the choice between reinsurance and securitization of natural
catastrophes from the viewpoint of information flow.

The ILS market did not grow as fast as anticipated in the beginning. For an attempt
to explain this from a behavioral economics perspective, see Bantwal and Kunreuther
[]. Barrieu and Loubergé [] suggested possible modifications of the product struc-
ture. For general reflections about the tradeoff between traditional reinsurance and
securitization see Doherty and Schlesinger [] and Cummins and Trainar []. The
valuation of ILS products naturally is an interesting academic topic, since actuarial
and financial pricing techniques have to be merged in a meaningful way. An early
paper in this direction was Embrechts and Meister []. Time change techniques in
catastrophe option pricing can be found in Geman et al. []. Later discussions include
Cox et al. [], Cox and Pedersen [, ], Embrechts [], Dassios and Jang [],
Jaimungal and Wang [], Lee and Yu [], and Mürmann [, ] as well as Haslip
and Kaishev [] and Gatzert et al. []. For adaptations to models based on Cox
processes, see Lin et al. []. A game-theoretic approach is given in Subramanian and
Wang []. An empirical analysis of pricing practice of CAT bonds over a long time
horizon can be found in Braun []. For computational issues in relation to the pricing
of CAT bonds, see, for example, Vaugirard [], and for QMC simulation refer to
Albrecher et al. [, ]. Dieckmann [] discusses a consumption-based equilibrium
model for pricing CAT bonds. Bäuerle [] studied the stochastic control problem to
dynamically mix reinsurance and CAT bonds under basis risk. Securitization is also
becoming an important instrument for risks in life insurance. For a recent study on the
design and pricing of an inverse survivor bond for annuity securitization, see Lorson
and Wagner [].
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An early discussion on finite risk reinsurance can be found in Hess [], see also
Von Dahlen []. Time diversification is an important element in these constructions,
particularly since equalization reserves are nowadays typically not exempted from tax).
Dacorogna et al. [] studied the quantitative effect of time diversification for catas-
trophe risk from a shareholder perspective. For consideration of time diversification in
terms of self-insurance on the individual level, see Gollier [].

10.3 Reinsurance and Finance

As the title suggests, the focus of this book is on actuarial and statistical aspects of
reinsurance. We want to emphasize that the concrete implementation of reinsurance
in practice also has a considerable financial function for the ceding company. While
some financial aspects of the risk transfer have entered the discussion at various places
in the book, it is beyond its scope to provide a representative treatment of this element.
Instead, we give some references and remarks here.

An excellent book for this topic is Liebwein []. Wilson [] is a rich recent
source concerning the formalization of the concepts of value and capital of financial
institutions, and also contains sections that are specific to (re)insurance. Klaasen and
Van Eeghen [] give a detailed account of the concept of economic capital. The
role of capital and capital management for insurers and reinsurers in view of risk-
based regulation is discussed in Dacorogna []. For an introduction to dynamic
financial analysis and its connections with reinsurance, see Kaufmann et al. [], De
Waegenaere et al. [], and Eling and Parnitzke [].

An early discussion of the influence of reinsurance on the stock value of an insurance
company is given by Doherty and Tinic []. Zanjani [] studied the effects of
capital costs on catastrophe insurance markets, see also Harrington et al. [] for
a discussion of the extent to which insurance derivatives can reduce the need for
equity capital. Froot [] suggests a framework for capital structure decisions of
(re)insurers. For a discussion of the valuation effects of reinsurance purchases in terms
of firm leverage see Garven and Lamm-Tennant [] and Garven []. Blazenko
[] provides an early study of reinsurance from an economic perspective. For an
equilibrium model in reinsurance and capital markets in which professional reinsurers
arise endogenously, see Plantin []. Upreti and Adams [] investigated reinsurance
as a strategic function in insurance markets through its impact on product-market
outcomes, whereas Garven et al. [] provide empirical evidence how the lengths of
the relationship between insurer and reinsurer have positive effects on the insurer’s
profitability and credit quality. Altuntas et al. [] investigated the capital structure of
insurance companies and concluded that on the global level it is quite heterogeneous,
as it also entails heterogeneous reinsurance demands. Rymaszewski et al. [] discuss
the benefits of pooling risks in the context of insurance guarantee funds, which can be
interpreted as obligatory reinsurance (see also Schmeiser et al. []).

The impact of foreign exchange risks on reinsurance decisions is studied in Blum et al.
[] and Jacque et al. [].

Financial pricing of (re)insurance contracts (i.e., applying financial asset pricing
theory, empirical asset pricing, and mathematical finance tools to price insurance
products) has become quite a prominent topic in the last two decades. Chang et al.
[] determined equilibrium reinsurance premiums within an option framework in
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terms of the underwritten risks by the ceding company and the first-line premiums.
Incompleteness of the reinsurance market is the starting point of Kroll et al. []. A
discussion on its effect on insurance pricing is given in Castagnolli et al. []. Financial
pricing by line of business is discussed in Phillips and Cummins [], as well as Gründl
and Schmeiser []. It is quite natural to look for arbitrage-free pricing also in the
context of reinsurance contracts. In loose terms, the Fundamental Theorem of Asset
Pricing asserts that in the absence of arbitrage possibilities, the pricing functional 𝜓
must be a positive and linear functional defined in the Hilbert space L. Then, by
virtue of the Riesz representation theorem, one can express 𝜓 as an expectation with
respect to a modified (distorted) random variable (for some heuristic explanations in
this application context, see Sherris []), that is, one looks for a corresponding risk-
neutral probability measure. The reinsurance market is incomplete (illiquid), and so
there is no unique choice for such an adjustment of the physical probability measure.
There are, however, various justifications for certain choices of a risk-neutral proba-
bility measure, including the minimal martingale measure and the minimal entropy
martingale measure, for example see Møller [] and Jang and Krvavych [], as
well as Kreps [], Sondermann [], and Schweizer [] for earlier work. Venter
[] and Venter et al. [] provide further explanations from a practical perspective.
For a combined model where trading can occur on financial as well as on reinsurance
markets, see De Waegenaere et al. []. The pricing of CAT bonds also falls into this
category, so we also refer to the references in the previous section. A unifying recent
overview on the topic is Bauer et al. [], see also Zweifel and Eisen []. For a survey
on hybrid (re)insurance/financial instruments and their pricing, see Cummins and
Weiss [].

10.4 Catastrophic Risk

We have dealt with catastrophic risk already in earlier sections (particularly in the
context of CAT bonds in Section .), but due to its importance for reinsurance
companies, we would like to finish with some more comments and references on the
topic. There is first the difficult task of describing the concept itself in a quantitative
way. It is not straightforward to agree on a concrete definition of a catastrophic
claim; an early attempt can be found in Ajne et al. []. Clearly, a catastrophic claim
falls into the category of large claims, where from the statistical side one may see
an additional challenge in the fact that usually there are very few data points for a
systematic study available, and the available ones are often only rough estimates of the
true value, even long after the catastrophe has occurred. At the same time, it will often be
difficult to make the data points comparable. For some general observations about links
between catastrophes and insurability, see Schnieper [], Zeckhauser [], Gollier
[], Smith [], and Punter []. Paudel et al. [] is a comparative study on
implemented public and private insurance systems for natural catastrophes.

A general survey on modelling and managing catastrophic risk is Banks [], but
see also Kozlowski et al. [], Meyers [], and more recently Woo [] as well
as Krvavych []. Pricing of financial products solely from knowing the aggregate
amount of catastrophic claims is covered in Christensen and Schmidli []. For surveys
see Epstein [], Anderson and Dong [], Aase [], and d’Arcy et al. []. In
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O’Brien [] hedging strategies are introduced to deal with catastrophe insurance
options. The appearance of such options on the financial market has given rise to
interesting discussions. Securitization of catastrophe risks by capital, CAT options, and
reinsurance has been dealt with by Krieter et al. [], Albrecht et al. [], Pentikäinen
[], Balford et al. [], and Meyers et al. []. For a general approach, see Jones and
Casti []. Forecasting using extreme value methods has been illustrated in Coles and
Pericchi [], and see also Lescourret and Robert [].

Insurability of natural catastrophes can only be achieved in a sustainable way if
there is an equilibrium between losses and premium income, over both time and in
space. However, the geographical distribution of the claims is often difficult to assess.
Insurance companies therefore typically use a bottom-up approach in which they use
scientific/expert knowledge in connection with the time and size of a natural catastro-
phe (e.g., with high-resolution physical models for weather parameters), and calibrated
in terms of risk exposure (this can involve very detailed information from engineering
on building structures, see Heneka and Ruck [] for an illustration). Missing data
are often estimated by expert knowledge, and parameters in the model are sometimes
hard to determine in the presence of sparse and inaccurate loss data. Nevertheless, in
recent decades scientists have built up an impressive toolkit to quantify respective risks,
and nowadays there exist several commercial firms who professionally assess the risk
for certain natural catastrophes in specific regions and who offer their services to the
(re)insurance industry. When studying the patterns of natural catastrophes and building
models, one also needs to carefully consider and incorporate systematic changes in
risks due to climate change (see Botzen [] for a general discussion). When possible
covariates for a partial explanation of systematic changes can be identified, extreme
value techniques with covariates, as discussed in Chapter , can be very helpful in the
analysis. Here there is also still a lot of potential for future research.

In view of the above, techniques from credibility theory can be appropriate, but
from the point of view of heavy-tailed distributions. Also, alternative proposals to
the credibility paradigm have to be developed. Moreover, many data from the realm
of catastrophic risk are censored, so that techniques as discussed in Chapter  can
be helpful. For some further statistical issues, including the influence of inflation, see
Cozzolino et al. []. For USA-based natural disasters and their impact on reinsurance,
see Patrat et al. []. Maccaferri et al. [] is a survey of the relevance of the
various natural disaster risks for European countries and the development of the
respective insurance markets, particularly focusing on flood, storm, earthquake, and
drought. A long-term empirical study of adaptive premium strategies for catastrophe
insurance can be found in Born and Viscusi []. Niehaus [] summarized research
contributions on the question to what extent the allocation of catastrophe risk is
consistent with notions of optimal risk sharing, and how respective efficiency could be
increased.

We mention here some examples of models or collections of claim data for specific
types of natural catastrophes.
● Catastrophic wind losses and connected XL covers have been considered in Sanders

[]. For Japan, see Mayuzumi [] and for Europe refer to Matulla et al. []. For
concrete models of country-wide storm losses see, for example, Dorland et al. [],
Donat et al. [], Klawa and Ulbrich [], and Prettenthaler et al. [].
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● Hurricanes are treated in Burger et al. [], Watson and Johnson [], Cole et al.
[], and Pita et al. [].

● Hail insurance is dealt with by Benktander [] and Brown et al. [], and for a
recent hail model, see Mohr et al. [].

● Flood losses have been studied in Merz et al. [, ], Jongman et al. [], and
Prettenthaler et al. [, ]. For a study of the implications of climate change on
flood risks in Europe, see Feyen et al. [].

● For earthquakes, see Ryder et al. [], Wakuri et al. [], Bertogg et al. [],
Crowley et al. [], Asprone et al. [], and Chen et al. [].

● Business interruptions are dealt with in Zajdenweber [], and see also Rose and
Lim [] and Rose and Huyck [].

Man-made and other types of catastrophes are equally challenging to deal with. We list
a few examples below.
● For risk assessment of terrorism, see Monahan []. For the role of insurance in

covering such risks see, for instance, Kunreuther [], Ericson and Doyle [],
Thomas [], and Swiss Re [].

● A recent overview of the field of cyber risk is given in Eling and Wirfs []. For an
empirical analysis of the insurability of cyber risk see Biener et al. []. While the
size of some of such claims can be moderate, there is a considerable potential for
catastrophic cyber losses, for example see Coburn et al. [].

● Actuarial risks related to pandemic diseases also have potential to be disastrous, for
examples see Swiss Re [] and Van Broekhoven et al. []. For integration of
pandemic risk into an internal model, see Planchet [], and a general actuarial
modelling approach to this topic can be found in Feng and Garrido [].

Some reinsurance companies offer interesting illustrative material to catastrophes,
see, for instance, the web-sites http://www.swissre.com and http://www.munichre.com,
where information on recent catastrophes and their actuarial consequences is regularly
updated. For recent general reflections on the development of reinsurance and its role
in dealing with catastrophes, see Haueter and Jones [].
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