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Preface

Shapes have been among man’s fascinations from the stone age to the space
age. The scientific study of shapes may indeed be traced back to D’Arcy
Thompson in his pioneering book On Growth and Form where shape was
shown to be dependent on functionality [6]. Numerous definitions of a notion
of a shape have been proposed in the past, each and every one highlighting
aspects relevant to a particular application of interest. The advent of digital
imagery, together with the ubiquitous exploitation of its characteristics in a
variety of applications, have triggered a renewed and keen interest in further
refining and possibly unifying the notion of shape. The present contributed
book is, to a large extent, motivated by this upsurge in activity and by the
need for an update on recent accomplishments and trends.

The research activity in shape analysis is distinguished by two main schools
of thought:

— The first approximates shapes by a finite-dimensional representation (a set
of landmarks), which is then subjected to various transformations to
account for variability and to subsequently derive models.

— The second, on the other hand, interprets shapes as closed contours in
an infinite-dimensional space, which, when subjected to transformations,
morph into other shapes, thereby yielding a notion of similarity in the
space of shapes.

1 Landmark-Based Shape Representation

Shape is about scale, orientation, and relationship among the so-called charac-
teristic points/landmarks of an object-delineating contour. Such information
about a data set better defines a shape. Equivalently, when such information
is taken out of two data sets, the resulting shapes may be compared. A planar
shape commonly coincides with a closed curve enclosed in a region of a plane
Ω ∈ R

2, bearing landmarks given by a vector τ = {(x1i , x2i )}i=1,...,N}. With
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additional constraints on these coordinates (e.g., centered and normalized),
they represent a constrained subset of R

2 also referred to as a preshape space.
If we subject a preshape τ (or rather the plane it lies in) to all rotations, we
obtain orbits O(τ) of a preshape. Equivalence classes of shapes τi are a space
of such orbits and form what is referred to as a shape space Σn

2 , which was
shown to form a Riemannian manifold by Kendall1 [3] (see Chapters 13 and
15). A metric (or a geodesic) on this manifold, which affords a comparison
of shapes, is induced by a metric on the preshape space (or a sphere of pre-
shapes), and may be written as

d[O(τ1),O(τ2)] = inf{d[θ1(τ1), θ2(τ2)] : 0 ≤ θ1, θ2 < 2π}. (1)

Related to landmark-based shapes, but independently proposed were graph-
based representations of shapes (See Chapters 1, 2, 3, 4), with more re-
cent extensions to 3D (or higher) shapes (See Chapters 6, 7, 8, 9, and 10).
The so-called Shock Medial and Topological graphs may in fact be thought
of as a collapse of a set of equivalent landmarks (an equivalence class) to
a graph edge. The nodes of the graph depict transitions among different
classes.

Another twist on landmark-oriented shapes is the pioneering work of
Grenander[2] on deformable templates, which instead simplifies a shape by us-
ing a polygonal approximation to a shape (i.e., using a linear spline between
two landmarks). The variability is addressed by rotation, translation, and
scaling of linear segments in tight coordination with their neighbors so as to
preserve a coherence of a shape in the course of its evolution. These deformable
models, together with those described above, have been extensively used in
shape classification and recognition, and more efficient and novel techniques
are continually being proposed.

Also related are particle-based models inspired by pattern formation in sta-
tistical physics. The particles may, for instance, be distributed over a region
and interact as a system of spin particles to yield a shape (see Chapter 11).
They may also model a limiting case of a landmark-based shape where a par-
ticle diffuses along a trajectory describing the shape in question (see Chap-
ter 12). Non-probabilistic versions of these limiting cases (infinite number of
points on a shape) form what is referred to as active contours, which is further
discussed below.

2 Infinite-Dimensional Shape Representation

An alternative to the landmark approach to shape representation and analysis
is the infinite-dimensional approach in which a shape is represented and ana-

1Similar ideas were independently proposed by Bookstein [1].
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lyzed in its entirety2 as the locus of an infinite number of points (as opposed to
a finite number of landmark points). A standard way to represent such a locus
is to associate to each point a value of a parameter p defined over a real interval
I (which is often chosen canonically to be the interval [0, 1]) and to encode the
coordinates of each such point by a mapping C : I → R

2, C(p) =
(
x(p), y(p)

)
.

This parametric representation was used in capturing object boundaries in
images by way of so-called snakes or active contours first proposed by Kass,
Witkin, and Terzopoulos [4].

While algorithmically convenient, this approach with its nonunique pa-
rameterization scheme presented a fundamental difficulty in developing a
systematic machinery for basic analysis, such as computation of averages,
distances, just to name a few.

An alternative implicit representation addresses the issue of nonunique
parameterization and may be found in the seminal work of Osher and Sethian
[5], namely that of level-set methods (see Chapters 5, 6, 7). Here, a real-valued
function ψ : Ω → R is defined over a domain Ω ∈ R

2 where all the contour
points reside. A given point (x, y) in this domain is then determined either to
belong to or be excluded from the contour based upon the value of ψ(x, y).
However, the problem of nonunique parameterizations is replaced here by
nonunique choices of ψ(x, y) for points that do not belong to the contour.

Both representations, therefore, suffer from an infinite-dimensional ambi-
guity if our goal is to do shape analysis in their respectively corresponding
functional spaces. The arbitrary parameterization of parametric approaches
or arbitrary choice of level-set functions make shape analysis difficult: its
evaluation for two different curves, for instance, may not necessarily be of
analytical utility. Attempts to “geometrize” the parameter space for explicit
representations (e.g., by using the arclength parameter) or the level-set func-
tion for implicit representations (e.g., by using the popular signed distance
function) are of little help since such geometric representations live in highly
nonlinear spaces: the arithmetic mean of two equal length curves parameter-
ized by arclength rarely yields a new curve parameterized by arclength, nor
does the arithmetic mean of the signed distance functions of two given curves
yield a new signed distance function.

2.1 Analysis in Infinite-Dimensional Space

While the ambiguities of implicit/explicit representations of shape may be
overcome by adopting a geometric formulation (signed distance function or arc
length parameterization), one’s inability to operate in convenient functional

2It is inevitable that any representation or calculation implemented on a com-
puter will ultimately be discretized and therefore be finite dimensional. We differ-
entiate between finite- and infinite-dimensional shape representations, therefore, in
terms of how they are mathematically modelled prior to final implementation on a
computer.
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spaces still persists. Towards mitigating such limitations, some recent research
has embarked on exploiting the machinery of Riemannian geometry.

The fundamental problem in collective shape analysis is to derive a mea-
sure of distance between different shapes. Such a metric in hand expedites the
derivation from first principles of various other statistics of shapes. To arrive
at a distance measure in the framework of Riemannian geometry, one uses a
differential approach. Failing to be a vector space, the space of shapes is a
manifoldM where two curves, C0 and C1, would lie as individual points. For
the sake of brief and simple exposition, letM be the space of all closed, simply
connected, smooth 3 planar curves. Next, consider a trajectory γ : [0, 1]→M
of smoothly varying curves (in M) between the two points C0 and C1 in M ,
starting from γ(0) = C0 and ending at γ(1) = C1. The next step is to assign
a length to any such trajectory. The standard way to do this is to imagine
dividing the trajectory γ into a large number of small incremental segments
whose individual lengths are summed together to obtain the total length of γ.
Since we consider smoothly varying trajectories, we may adopt the limiting
process by integrating the differential increment of γ from 0 to 1. The dif-
ferential increment dγ corresponds to an infinitesimal deformation of a curve
(recall that each point along the trajectory γ represents an entire curve taken
from the smooth morph from C0 to C1). We may represent this infinitesimal
deformation by a vector field along the curve itself, where each vector indi-
cates the direction and speed with which the corresponding point on the curve
will evolve as we progress along the trajectory γ. We will denote this entire
vector field along the curve by dγ

dt , where t ∈ [0, 1] represents the parameter
for the trajectory γ. The length of the trajectory is now given by the following
integral.

Length(γ) =
∫ 1

0

√〈
dγ

dt
,
dγ

dt

〉
dt (2)

Different adoptions of norms yield different algorithmic techniques (Chap-
ters 12, 13, 14, 15).

The final step is to consider all possible trajectories γ connecting two
curves C0 and C1 and to define the distance between C0 and C1 as the infimum
of the lengths of all such trajectories.

3 Goal of this Book

While the history of shape analysis is long, the topic remains wide open and
exciting. Fundamental problems in both schools of thought remain. This is

3For most of the contributed chapters in this volume, a sufficient notion of
smoothness is that parametric representations of the curve are twice differentiable,
thereby giving the curve a well-defined unit tangent and normal, as well as curvature
at every point.
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illustrated by the Riemannian framework where a definition of a natural norm
is yet to be found. The landmark-based representation of a shape is yet to have
a systematic, robust, and automatic choice of landmarks for an unambiguous
definition of a shape. Our goal in this book is to not only expose these dif-
ferent approaches to shape analysis, but also unveil the latest efforts in both
communities, thereby hopefully inspiring further research and creativity in
this surprisingly still young field of research.
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Summary. In an effort to articulate models for the intuitive representation and
manipulation of 2D and 3D forms, Blum invented the notion of a medial axis. His
insight was to consider a disk as a basic geometric primitive and to use it to describe
the reflective symmetries of an object. This representation became very popular in
a variety of fields including computer vision, computer aided design, graphics, and
medical image analysis. In this chapter we review the generic local structure of the
medial axis due to Giblin and Kimia. We then provide an overview of algorithms to
compute this representation; these algorithms are based on an integral measure of
the average outward flux of a vector field defined as the gradient of the Euclidean
distance function to the object’s boundary. Finally we examine the sensitivity of
medial loci to boundary perturbations by modeling this as a skeletal evolution.
We consider the common case where the maximal inscribed disk at a medial axis
point has first-order tangency to the object boundary at two bitangent points. We
derive an expression for the (local) velocity of a medial axis point as induced by
motions of these bitangent points. It turns out that the medial axis computation and
evolution are both closely connected by the object angle which measures the degree
of parallelism (locally) between the boundaries at the two bitangent points. Our
analysis provides some justification for the use of methods that consider measures
proportional to the object angle at a medial axis point to indicate their stability
under boundary deformation.

Key words: Medial axes, skeletons, average outward flux, skeletal evolution,
object angle.
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1 Introduction

Motivated largely by biological considerations, Blum introduced the notion of
a skeleton for representing two-dimensional (2D) and three-dimensional (3D)
forms [3, 4]. His essential idea was to consider a ball as a geometric primitive
placed within the volume occupied by the object and to dilate it until it could
no longer be grown without penetrating the object’s surface. The locus of all
such maximal inscribed balls along with their radii comprised the skeleton or
medial axis. Constructions related to the skeleton, such as the cut locus [6], had
been considered in the literature prior to Blum’s work. However, Blum’s efforts
served to revitalize interest in such descriptions and led to subsequent studies
on the properties of symmetry sets and central sets by mathematicians [23,
15, 17]. Blum’s intuition was driven by the insight that such representations
could offer significant advantages for the analysis and manipulation of 2D
and 3D forms. To enumerate a few: 1) as interior representations they could
be used to describe both geometric and mechanical operations applicable on
the object’s interior, such as bending, widening and elongation, 2) they could
provide positional, orientational, and metric (size) information in any locality
of the interior of an object, 3) their branching topology could be used to
describe the underlying “part” structure of the object, and 4) they could be
used to generate object-relative coordinate systems for object interiors and
their neighborhoods.

Over the past few decades skeletons have become popular tools for ob-
ject modeling in a variety of fields including computer vision, computer aided
design, graphics, and medical image analysis. A large number of algorithms
have been developed to compute skeletal representations, typically tailored to
specific applications in these domains. Nevertheless, the computation of skele-
tons in a way that is accurate, stable in the presence of slight perturbations to
the object, and numerically efficient remains a challenge. In this chapter we
detail our efforts toward the development of such algorithms, which are mo-
tivated by considerations of the behavior of an average outward flux measure
of a particular vector field. This measure is taken in the limit as the region
about which it is computed shrinks to zero. We also study the stability of
the medial axis when the underlying object boundary is deformed, focusing
on the common case where the Blum disk has first-order contact with the
boundary at two distinct boundary points. We do so by deriving an evolu-
tion equation for a medial axis point induced by the boundary motion of the
underlying bitangent points. A curious result is that there is a close connec-
tion between medial axis computation and evolution as revealed by the object
angle.

The chapter is organized as follows. In Section 2 we review the generic
local structure of the medial axis in two and three dimensions, as studied
recently by Giblin and Kimia [11, 12]. In Section 3 we provide an overview of
algorithms for computing medial axes based on average outward flux measures
[22, 9]. We derive medial axis evolution equations induced by arbitrary (local)
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motions of the boundary (bitangent) points in Section 4 and conclude with a
discussion in Section 5.

2 Local Structure of the Medial Axis

We now consider the local structure in the neighborhood of each medial axis
point x in the 2D and 3D cases. It turns out that only certain configurations
are generic, i.e., stable with respect to perturbations of the object’s boundary.
For example, in the 2D case, every point on the medial axis can be classified
as either an interior curve point, an endpoint of a curve, or a branch point
connecting three curves [11]. We begin with some necessary definitions.

Definition 1 (Object). An object X is a non-empty, bounded, open set
of R

n.

The skeleton can also be defined for larger classes of sets, including un-
bounded sets, but these are typically not meaningful in the context of most
applications in computer vision, image analysis, or computer aided design.
There are several definitions of medial loci in the literature, some of which
are equivalent. We focus on the most common two, both of which have been
popularized by Blum [4]. The first one, which we shall call the “skeleton,” is
based on the notion of a maximal inscribed ball (Fig. 1).

Definition 2 (Maximal Inscribed Ball). An open ball B = Br(x) included
in an object X is maximal if there is no other open ball B′ = Br′(x′) included
in X entirely containing B. Formally, B is a maximal inscribed ball if

∀B′, B ⊆ B′ ⊆ X⇒ B′ = B.

Definition 3 (Skeleton). The skeleton of an object X, Sk(X), is the locus
of the centers of all maximal inscribed balls of X:

Sk(X) = {x ∈ X, ∃r ≥ 0,Br(x) is a maximal ball of X}.

Definition 4 (Skeleton Transform). The skeleton transform of an object
X, ST(X), is the skeleton Sk(X) together with the radius function, defining
for each point in Sk(X) the radius of the maximal inscribed balls.

The second definition (see Definition 5), which we shall refer to as the
medial set, corresponds to Blum’s idea of a grass fire [4]. Assume that the
object is an isotropic homogeneous flammable material in a non-flammable
surrounding space and that its boundary is set on fire. The fire will propagate
inward until two or more flame fronts collide. The location of all such collisions
is the locus of the medial set (see Fig. 1). Interpreting the medial set this way
leads to the following definition.
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x3

x2

∂X

X

Me(X)

x1

Fig. 1. The subtle differences between skeletons, medial sets, and central sets:
x1, x2, x3 /∈ Me(X), x1 ∈ Sk(x) but x2, x3 /∈ Sk(X), and finally x1, x2, x3 ∈ Sk(X).

Definition 5 (Medial Set). The medial set (axis in 2D, surface in 3D) of X,
Me(X), is the set of points of X simultaneously reached by grass fires initiated
from at least two different points of ∂X. This is equivalent to the set of points
of X for which there are at least two closest points of ∂X, in the sense of
Euclidean distance.

These definitions lead to very similar objects; in fact the only difference
between the medial set and the skeleton is that some limit points of Me are
included in Sk but not in Me. At such points, it is possible to have a maximal
inscribed ball which has only one contact point with the boundary and thus
belongs to the skeleton but not the medial set. In 3D, this maximal ball
is called a sphere of curvature. We have the following relationship between
skeletons and medial sets [21, 16]:

Me(X) ⊂ Sk(X), (1)

Me(X) = Sk(X). (2)

Here e denotes the topological closure of a set e, i.e., the union of e and its
limit points. The set Sk(X), which we call the central set after [23], is also
closely related to the skeleton and medial set. Figure 1 illustrates some of the
subtle differences between central sets, medial sets, and skeletons in 2D.

2.1 Classification of 3D Skeletal Points

The local structure and classification of the 3D central set has recently been
reviewed in [12]. This classification is based on singularity theory and more
specifically on the notion of contact [1]. In all of the local structure analysis,
the object under study is Me(X) and the boundary of the object ∂X is assumed
to be a single, infinitely differentiable, closed surface.
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(a) A1 contact, κ = 0. (b) A2 contact, κ = t + 1.

(c) A3 contact, κ = − t2

2
+ 1. (d) A4 contact, κ = t3

6
+ 1.

Fig. 2. Cross sections of examples of the different types of contacts between a sphere
of radius 1 and a smooth surface patch. The curvature κ of the corresponding line
of curvature, parameterized by t, is given for each figure.

Let a sphere be in contact at a point x with a boundary element. We are
interested in classifying the generic types of contact between a sphere and
a surface. Our definition of genericity is based on the notion of degrees of
freedom.

Definition 6 (Degrees of Freedom). The number of degrees of freedom
in a problem, distribution, etc., is the number of parameters which may be
independently varied.

For example a sphere has 4 degrees of freedom, the 3D position (xc, yc, zc) of
its center and its radius r. Similarly, a point on a 3D surface S has 2 degrees
of freedom given by (u, v), the parameterization of the surface S(u, v).

Definition 7 (Generic Contact). A contact is generic if the number of
conditions to obtain it is less than or equal to the number of degrees of freedom
of the contact.

A sphere has 4 degrees of freedom, a point on a surface has 2. Thus, we
call a generic contact between a sphere and one surface point, any contact
which is defined by at most 6 conditions. For example, if a surface and a
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(a) A1 or A3 contact. (b) A1 contact. (c) A3 contact.

(d) A2 contact. (e) A4 contact. (f) D4 contact.

Fig. 3. The generic intersections between a sphere and a smooth surface patch.

sphere have one second-order contact, i.e., they touch, share tangent planes
and curvatures at a point, 4 degrees of freedom are used. One condition is to
have the sphere pass through the point, two are to have their tangent planes
coincide and the last one is to have the curvatures coincide. A more complex
example is a sphere touching and sharing tangent planes (first-order contact)
with n surface points. Here the number of degrees of freedom is 4 + 2n and
the number of conditions is 3n. Therefore, generically, a sphere can have at
most four first-order contact points with a surface in R

3. Any contact with
more conditions than degrees of freedom is non-generic and can be deformed
into a generic one by a small perturbation of the boundary element.

Following [12], the different generic types of contact between a sphere
and a surface at a point x and the local form of their intersection in the
neighborhood of x are as follows:

• A1: The tangent planes of the sphere and the boundary element coincide
at the contact point, but the sphere is not a sphere of curvature (1/r �= κ1)
and (1/r �= κ2) (Fig. 2(a)). Generically, the intersection between the sphere
and the surface patch in the neighborhood of the contact point is either a
point (Fig. 3(a)) or a cross (Fig. 3(b)).

• A2: The sphere is one of the spheres of curvature (1/r = κ1 and 1/r �= κ2)
or (1/r �= κ1 and 1/r = κ2), but 1/r is not an extremum of curvature along
the corresponding line of curvature (Fig. 2(b)). The generic intersection of
the sphere and the surface patch is a cusp (Fig. 3(d)).

• A3: The sphere is a sphere of curvature at a ridge point. ((1/r = κ1
and 1/r �= κ2) or (1/r �= κ1 and 1/r = κ2)) and 1/r is an extremum of
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curvature along the corresponding line of curvature, i.e., the first derivative
of the curvature in this direction is zero (Fig. 2(c)). The intersection is a
point if the larger curvature is a maximum or the smaller curvature is a
minimum (Fig. 3(a)) and is otherwise a cross (Fig. 3(c)).

• A4: The sphere is a sphere of curvature at a turning point. The curvature
has an inflexion point, i.e., its first and second derivatives in the direction
of the line of curvature are equal to zero (Fig. 2(d)). The intersection is a
cusp (Fig. 3(e)).

• D4: The sphere is a sphere of curvature at an umbilic point (1/r = κ1 =
κ2). The intersection is a line (Fig. 3(f)).

The 3D central set is the locus of the centers of all maximal inscribed
spheres with at least two contact points on the boundary of the object,
along with its limit points. Here the object X is assumed to be a non-empty,
bounded, open set of R

3 whose boundary ∂X is a smooth (infinitely differ-
entiable) closed surface. Intuitively, each point Q on the medial manifold is
associated with at least two distinct points P1, P2 on the object’s surface to
which it is closest in the sense of Euclidean distance (Fig. 4). Giblin and Kimia
classify the type of points on the 3D skeleton using the nature of contact be-
tween the maximal inscribed spheres within X and its boundary ∂X [12]. In
particular, the number of contact points and their order determine the type of
point (surface, curve, rim, point) that the center of the sphere represents on
the 3D skeleton. For a center of a sphere to be on Me, the sphere is required to
be maximal and at least bitangent. To be on Me, the sphere is only required

Q

P1

P2

Fig. 4. A medial manifold and the two surface patches to which it corresponds.
Each point Q on the medial manifold is associated with two distinct points P1, P2

on the object’s surface to which it is closest in the sense of Euclidean distance.
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to be maximal, but a higher-order contact is expected. A maximal inscribed
sphere is by definition completely included in the object. Thus, its intersection
with the boundary in the neighborhood of each contact point includes only
that contact point.

Therefore, the types A2, A4, and D4 cannot be 3D skeletal points (Fig. 3).
Let Akn represent a 3D skeletal point whose maximal sphere has k contact
points of the type An. According to [12], only points of the following type
occur generically on the 3D skeleton:

• A2
1: The sphere has A1 contact with two distinct points. The skeleton is

locally a smooth piece of surface, or medial manifold, whose tangent plane
bisects the chord linking the two surface points.

• A3: The sphere has A3 contact with the boundary. This is the limiting
case of A2

1 points as they approach the boundary of the medial manifold.
The medial surface is locally the border or rim of a medial manifold. We
call A3 points rim points.

• A3
1: The sphere has A1 contact with three distinct points on the boundary.

The skeleton is locally the intersection curve of three medial manifolds.
• A1A3: The sphere has A1 contact at one point and A3 contact at another

distinct point. The skeleton is locally the intersection point between an A3

curve and an A3
1 curve.

• A4
1: The sphere has A1 contact at four distinct points. The skeleton is

locally the intersection point of four A3
1 curves.

These types of 3D skeletal points are illustrated in Fig. 5. The formal classifi-
cation of 3D skeletal points and their local geometry leads to the following de-
scription: A 3D skeleton is generically organized into manifolds (A2

1) bounded
by one type of curve (A3) on their free end and attached to two other mani-
folds at another type of curve (A3

1). An A3 curve can only end at A1A3 points
where it must meet an A3

1 curve. An A3
1 curve can end at an A1A3 point or

intersect three other A3
1 curves at an A4

1 point. One can imagine a simple rep-
resentation where each node is a medial manifold (A2

1 connected component
along with its A3 boundary) connected to its neighboring manifolds with an
edge (A3

1 curves and A4
1 point). The latter description seems more intuitive

but does not capture entirely the structure of the medial surface. The formal
classification suggests, as pointed out in [12], a hypergraph medial represen-
tation of shape. The nodes are A4

1 or A1A3 points, connected by A3
1 or A3

edges, themselves connected by A2
1 hyper edges.

2.2 Classification of 2D Skeletal Points

Points on the 2D medial set can be classified in a similar manner as shown
in [11]. The classification in 2D relies on the following two types of generic
contacts between a circle and the bounding curve of the object:

• A1: The tangent to the circle and the boundary element coincide at the
contact point, but it is not a circle of curvature.
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A2
1

A3
1

A3

A1A3

A4
1

Fig. 5. The generic local structures of the 3D skeleton [12]. A2
1 points form a

smooth medial manifold, A3 points correspond to the rim of a medial manifold, A3
1

points represent the intersection curve of three medial manifolds, an A4
1 point is the

intersection point of four A3
1 curves, and an A1A3 point is the intersection point

between an A3 curve and an A3
1 curve.

• A3: The circle is a circle of curvature.

A 2D skeletal point is generically either the end of a branch (A3), an inte-
rior point of a branch (A2

1), or the junction of three branches (A3
1). We now

introduce the notion of an object angle which applies to points of type A2
1 in

2D and 3D.

Definition 8 (Object Angle). For an A2
1 medial axis point Q the object

angle is the angle that the inward normal to the boundary at each contact
point P makes with the tangent plane π at Q.
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For example, in Fig. 4 the object angle is half the angle between the vectors
P1Q and P2Q, since these vectors make the same angle with the tangent
plane π at Q. Intuitively the object angle measures the degree to which the
boundaries at the contact points are (locally) parallel.

3 Medial Axis Computation

We now present an overview of the skeletonization algorithm introduced in [22,
9]. Beginning with a binary 2D or 3D object as its input, this algorithm
produces a digitized version of the medial axis. We focus on the algorithm
for obtaining the 3D skeleton since the 2D case is obtained by dropping the
coordinate for the third dimension and using the appropriate 2D notions of
simple points and endpoints on a rectangular lattice, as explained in [22].

3.1 The Hamilton–Jacobi Formulation

Consider the grass fire flow
∂S
∂t

= N̂ (3)

acting on a closed 3D surface S, such that each point on its boundary is moving
with unit speed in the direction of the inward unit normal N̂. In physics, such
equations are typically solved by looking at the evolution of the phase space of
an equivalent Hamiltonian system. Let D be the Euclidean distance function
to the initial surface S0 [5]. The magnitude of its gradient, ‖∇D‖, is identical
to 1 in its smooth regime. With q = (x, y, z), p = (Dx, Dy, Dz), and ‖p‖ = 1,
the Hamiltonian system is given by

ṗ = (0, 0, 0), q̇ = (Dx, Dy, Dz) (4)

with an associated Hamiltonian function H = 1 + ‖∇D‖. The discrimination
of medial from non-medial surface points can be approached by computing
the “average outward flux” of the vector field q at a point. This quantity is
given by

Average Outward Flux (q) =

∫
δR〈q̇, N̂o〉dS
area(δR)

, (5)

where dS is a surface area element of the bounding surface δR of a volume
R and N̂o is the outward normal at each point on the surface. It can be
shown that as the volume shrinks to a point not on the medial axis, the
average outward flux approaches zero. In contrast, when the volume over
which it is computed shrinks to a medial axis point, the average outward flux
approaches a strictly negative number. A formal proof of this property relies
on an extended version of the divergence theorem, one that applies even at
medial axis points (where the vector field q is multi-valued). For a detailed
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treatment we refer the reader to [9, 7]. A remarkable fact is that when the
shape of the neighborhood is taken to be a sphere, precise statements can be
made about the limiting value that the average outward flux measure takes
on. In fact, it turns out that this calculation essentially reveals a quantity
directly related to the object angle for all generic medial axis points. These
results are summarized for the 2D case in Table 1; a more general treatment
via the notion of a medial density that applies also to higher-dimensional cases
is presented in [7].

Point Type lim
ε→0

Fε(Q)

2πε

A2
1 (Regular) Points − 2

π
sin ϕ

A3 (End) Points − 1
π
(sin ϕ − ϕ)

A3
1 (Junction) Points − 1

π

�n
i=1 sin ϕi

Non-Skeletal Points 0

Table 1. For each generic medial axis point in 2D, the limit values of the average
outward flux through a shrinking disk reveals a quantity related to the object angle
ϕ (see [9]). Here ε is the radius of the disk and Fε(Q)

2πε
is the average outward flux

through such a disk at point Q.

As a consequence of the above properties, the average outward flux mea-
sure is an effective way for distinguishing points which lie on the medial axis
and points which do not. In order to obtain medial axes that preserve homo-
topy type we use this measure to guide a thinning process in a cubic lattice,
while taking care to preserve the object’s topology.

3.2 Preserving Topology

A point is a simple point if its removal does not change the topology of the
object. Hence in 3D, its removal must not disconnect the object, create a hole,
or create a cavity. Malandain et al. have introduced a topological classification
of a point x in a cubic lattice by computing two numbers [13]:

• C∗: the number of 26-connected components 26-adjacent to x in O ∩N∗
26

• C̄: the number of 6-connected components 6-adjacent to x in Ō ∩N18,
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where O is the 26-connected object, Ō is its complement (the 6-connected
background), N∗

26 is the 26-neighborhood of x without x and N18 is the
18-neighborhood of x including x. Further, they have shown that if C∗ = 1
and C̄ = 1, the point is simple, and hence removable.

Our basic strategy now is to guide the thinning of the object by the aver-
age outward flux measure computed over a very small neighborhood. Points
with the most negative average outward flux are the strongest medial surface
points. The process is stopped when all surviving points are not simple, or
have an average outward flux below some chosen (negative) value, or both.
Unfortunately the result is not guaranteed to be a thin set, i.e., one without
an interior.

This last constraint can be satisfied by defining an appropriate notion of
an endpoint in a cubic lattice. In R

3, if there exists a plane that passes through
a point x such that the intersection of the plane with the object includes an
open curve which ends at x, then x is an endpoint of a 3D curve, or is on the
rim or corner of a 3D surface. This criterion can be discretized easily to 26-
connected digital objects by examining 9 digital planes in the 26-neighborhood
of x [20]. The thinning process proceeds as before, but the threshold criterion
for removal is applied only to endpoints. A full description of the procedure
is given in Algorithm 1.

3.3 Labeling the 3D Medial Axis

Points on the 3D medial axis can now be labeled as border points, curve
points, surface points, or junction points, using the classification of [13]. This
labeling is essentially the equivalent, on a cubic lattice, of the generic local
possibilities discussed in Section 2 (Fig. 5). Here A2

1 points correspond to
surface points, A3 points to border points, and all other points to junction
points. Curve points comprise a new class on a cubic lattice (these are not
generic in the continuum).

It should be pointed out that some care has to be taken when implementing
this labeling because certain special configurations of voxels can lead to a
misclassification of junction points as surface points. These cases have to be
dealt with using a definition for simple surfaces [13]. Let x be a surface point
(C̄ = 2 and C∗ = 1). Let Ax and Bx be the two connected components of
Ō ∩ N18 6-adjacent to x. Two surface points x and y are in an equivalence
relation if there exists a 26-path x0,x1, . . . ,xi, . . . ,xn with x0 = x and xn = y
such that for i ∈ [0, . . . , n − 1], (Axi ∩ Axi+1 �= ∅ and Bxi ∩ Bxi+1 �= ∅) or
(Axi ∩ Bxi+1 �= ∅ and Bxi ∩ Axi+1 �= ∅). A simple surface is defined as any
equivalence class of this equivalence relation.

All the distinct simple surfaces comprising the medial surface can be de-
tected automatically. The essential idea is to use a point on the medial surface
as a “source” and to build its corresponding simple surface via a depth-first
search strategy. This process is carried out recursively and terminates when
all medial surface points have been used.
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Algorithm 1: Average Outward Flux Ordered Thinning.

Part I: Average Outward Flux

Compute the Euclidean Distance Transform D of the object ;
Compute the gradient vector field ∇D;
Compute the average outward flux of ∇D using Eq. 5;
for (each point x in the interior of the object) do

Flux(x) =
1

n

26�

i=1

〈N̂i,∇D(xi)〉;

(where xi is a 26-neighbor of x and N̂i is the outward normal at xi of
the unit sphere centered at x)

Part II: Topology Preserving Thinning

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, Heap) with Flux(x) as the sorting key for insertion;

while (Heap.size > 0) do
x = HeapExtractMax(Heap);
if (x is simple) then

if (x is an end point) and (Flux(x) < Thresh) then
mark x as a skeletal (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, Heap);

3.4 Examples

Figures 6 and 7 show 2D and 3D examples of medial axes computed using
Algorithm 1 for a variety of objects. The labeling technique allows for me-
dial axis points belonging to distinct manifolds to be explicitly identified and
grouped, as illustrated by the part decomposition of the human object models.

The algorithms reviewed above have been compared to alternate ap-
proaches based on Voronoi tessellation as well as height ridges of intensity
functions in [19] and have been shown to have strong robustness properties.
Intuitively this occurs because the underlying average outward flux measure
is an integral one and thus does not suffer from numerical instability as do
approaches which attempt to find singularities of a scalar (or vector) field
by differentiation. In the following section we shift gears to study a related
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Fig. 6. Medial axes for a range of 2D objects, obtained using the average outward
flux based thinning algorithm [22, 9].

Fig. 7. Medial axes for different exemplars of a 3D human object model, ob-
tained using the average outward flux based thinning algorithm [22, 9]. The medial
axis is automatically partitioned into distinct parts, using the labeling technique of
Malandain et al. [13].

problem, that of the sensitivity of the medial axis to deformations of the
underlying boundary.

4 Medial Axis Evolution

It is a commonly held view that the medial axis is inherently unstable in
the presence of boundary perturbations. In order to address this concern we
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consider the case of an A2
1 medial axis point Q and its associated bitangent

points P1 and P2 (see Fig. 4). We consider arbitrary perturbations of the
bitangent points and derive expressions for the induced normal and tangential
velocities of the medial axis point Q. We begin by reviewing the 2D results
on this problem presented in [2] and then extend these results to 3D. It turns
out that this analysis highlights the important role that the object angle plays
with regard to the sensitivity of the medial axis to boundary perturbations,
and allows a link to be formed with the medial axis computation algorithm
in Section 3.

4.1 2D Case

Let C(., t) be an evolving closed curve of R
2 and let X be its interior. The

medial axis of X is composed of branches each of which is a curve Q = Q(s, t),
where s is the arc length of the medial segment. Let r(s, t) be the radius
of the maximal inscribed disk of X centered at Q(s, t) which touches the
boundary of X at two points C1 = C(s1, t) and C2 = C(s2, t), with s1 and s2
being arc-length parameterizations. The corresponding unit tangent vectors
are T̂ = ∂Q

∂s , T̂1 = ∂C1
∂s1

, T̂2 = ∂C2
∂s2

and the unit normal vectors are denoted
N̂, N̂1, and N̂2. The orientation of T̂ with respect to the x axis is θ and the
angle between T̂ and N̂2 is ϕ and is called the object angle. The setup of the
local coordinate frames is illustrated in Fig. 8.

Theorem 1 ([2]). Let an initial boundary curve Ci = C(si, 0) be given, where
the parameterization is denoted by i = 1, 2, as in Fig. 8. If the evolution for
the boundary is given by

∂Ci
∂t

= fiN̂i, (6)

where fi = fi(si) ∈ R is the velocity of Ci in its normal direction, then the
medial axis Q will evolve as

∂Q

∂t
= αT̂ + γN̂, (7)

where α and γ are the tangential and normal components of the medial axis
velocity and

α =
r

2 sin(ϕ)

(
∂f1
∂s1
− ∂f2
∂s2

)
(8)

γ =
f2 − f1
2 sin(ϕ)

. (9)

Moreover, the evolution of the radius r of the maximal inscribed disk at Q is
given by

∂r

∂t
= −f1 + f2

2
+
r cosϕ
2 sinϕ

(
∂f1
∂s1
− ∂f2
∂s2

)
. (10)
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Fig. 8. A maximal disk of radius r at a medial axis point Q touches the boundary
at points C1 and C2, adapted from [2]. T̂, T̂1, T̂2 are the unit tangent vectors of Q,
C1, and C2, respectively. The corresponding unit normal vectors are denoted N̂, N̂1,
and N̂2. ϕ is the object angle.

A pleasing application of this result is that, when the boundary is smoothed
by a geometric heat equation flow, ∂C∂t = κN̂, the medial axis evolves according
to a related geometric heat equation [2]. Thus, there is a sense of smoothing
of the medial axis as well.

4.2 3D Case

We now extend this analysis to 3D. In this context, let Q(u, v, t) be the evolv-
ing medial surface ∈ R

3, r = r(u, v, t) ∈ R be the radius of the maximal sphere
at Q(u, v, t), Tsk the tangent plane to the medial surface at Q and N̂sk the
normal to the medial surface at Q (see Fig. 9.).

In the simplest case the maximal sphere touches the boundary S at two
points S(x1) = S(u1, v1, t) ∈ R

3 and S(x2) = S(u2, v2, t) ∈ R
3. Let T1 and

T2 be the tangent planes to S at S(x1) and S(x2), respectively, N̂1 be the
inward normal to S at S(x1), and N̂2 the inward normal to S at S(x2). We
make two key observations:

Observation 0.1 By construction of the medial surface

Q− S(x1) = rN̂1, (11a)

Q− S(x2) = rN̂2. (11b)
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Tsk

T2

T1

N̂1

r

N̂2

S(x2)

N̂sk

S(x1)

Q

Fig. 9. The case of two bitangent points S(x1) and S(x2) generating a medial
surface point Q.

Observation 0.2 Tsk is the bisecting plane to the line segment [S(x1),S(x2)].

Now let us consider the plane P formed by the two tangent points and
the medial surface point P = (S(x1), Q,S(x2)). As Tsk is bisecting the chord
S(x1)S(x2), we have Tsk ⊥ P . Let (T̂a, T̂b) comprise a basis for Tsk. If we
set T̂a to be parallel to the line defined by the intersection of P and Tsk we
can set T̂b to be normal to P . This way we have N̂1, N̂2, N̂sk lying in the
same plane P and T̂b normal to P . The setup of the local coordinate frames is
shown in Fig. 10. The evolution of the surface S is described by the following
motion:

Ṡ =
∂S
∂t

= f(u, v, t)N̂, (12)
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N̂2

N̂1

Q
T̂a

Ŝv2

Ŝu1

T̂b

Ŝu2

S(x2)

N̂sk

S(x1)

Ŝv1

Fig. 10. Setting up the local coordinate frames: Because Tsk bisects the chord
S(x1),S(x2), we can set T̂b to be normal to the plane formed by S(x1), S(x2) and
Q. We also re-parameterize the surface S so that Ŝv1 and Ŝv2 are parallel to T̂b,
and Ŝu1 and Ŝu2 are in the plane formed by S(x1), S(x2), and Q. This simplifies
the calculation of ṙ and α.

where f is the velocity in the inward normal direction. The evolution of the
medial surface point Q is then given by

Q̇ =
∂Q

∂t
= αT̂a + βT̂b + γN̂sk, (13)

where α, β, and γ are functions of f1 = f(u1, v1, t) and f2 = f(u2, v2, t).
This setup and Observation 0.1 allow us to derive closed form expressions

describing the motion of the medial surface given an arbitrary normal motion
on the surface boundary. We now turn to the derivation of each component
of the motion starting with its normal velocity.

The Normal Motion γ of the Medial Surface

Taking the norm-squared of both sides of equation (11) we obtain

(Q− S(x1)) · (Q− S(x1)) = ‖Q− S(x1)‖2 = r2‖N̂1‖2 = r2 (14a)

(Q− S(x2)) · (Q− S(x2)) = ‖Q− S(x2)‖2 = r2‖N̂2‖2 = r2. (14b)
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Then differentiating with respect to time, we get

2(Q− S(x1)) · (Q̇− Ṡ(x1)) = 2rṙ (15a)

2(Q− S(x2)) · (Q̇− Ṡ(x2)) = 2rṙ. (15b)

Substituting (11), (13), and (12) into (15) and then simplifying, we obtain

ṙ = αN̂1 · T̂a + βN̂1 · T̂b + γN̂1 · N̂sk − f1 (16a)

ṙ = αN̂2 · T̂a + βN̂2 · T̂b + γN̂2 · N̂sk − f2. (16b)

Recall that N̂1, N̂2, N̂sk lie in the same plane P and T̂b is normal to P . Thus,
(T̂b · T̂a) = 0, (N̂1 · T̂b) = 0, and (N̂2 · T̂b) = 0. So (16) becomes

ṙ = αN̂1 · T̂a + γN̂1 · N̂sk − f1
ṙ = αN̂2 · T̂a + γN̂2 · N̂sk − f2.

We now introduce the angle ϕ = (S(x2),Q,S(x1)
2 , see Fig. 11, which is commonly

called the object angle. Observe that (N̂1 · T̂a) = cosϕ, (N̂2 · T̂a) = cosϕ,
(N̂1 · N̂sk) = − sinϕ and (N̂2 · N̂sk) = sinϕ. Substituting, we get

ṙ = α cosϕ− γ sinϕ− f1 (17a)

ṙ = α cosϕ+ γ sinϕ− f2. (17b)

N̂sk

N̂2

ϕ
T̂a−ϕ

N̂1

Ŝu1 Ŝu2

p

Fig. 11. The object angle ϕ is defined as half of the angle between the normals
at the two bitangent points. We have cos ϕ = (N̂2 · T̂a) = (N̂1 · T̂a), sin ϕ =
−(N̂1 · N̂sk) = (N̂2 · N̂sk). Similarly − cos ϕ = (Ŝu1 · N̂sk) = (Ŝu2 · N̂sk) and
sin ϕ = −(Ŝu1 · T̂a) = (Ŝu2 · T̂a).
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By subtracting these two equations, we obtain the normal velocity of the
medial surface point

γ =
f2 − f1
2 sinϕ

. (18)

If we add the two equations we get a relationship between α and ṙ:

ṙ = α cosϕ− f1 + f2
2

, (19)

which will later be useful for the computation of the tangential motion.

Tangential Velocities and the Rate of Change of Radius

To obtain the tangential velocities α, β and the rate of change of the radius
we take the first derivative with respect to time of equation (11):

Q̇− Ṡ(x1) = ṙN̂1 + r
∂N̂1

∂t

Q̇− Ṡ(x2) = ṙN̂2 + r
∂N̂2

∂t
.

Substituting for Q̇, Ṡ(x1), Ṡ(x2) using equations (12) and (13) we obtain

αT̂a + βT̂b + γN̂sk − f1N̂1 − ṙN̂1 − r∂N̂1

∂t
= 0 (20a)

αT̂a + βT̂b + γN̂sk − f2N̂2 − ṙN̂2 − r∂N̂2

∂t
= 0. (20b)

Before we try to solve for α, β, and ṙ we need to obtain an expres-
sion for ∂N̂1

∂t and ∂N̂2
∂t . If S(u, v, t) is a surface, then N̂(u, v, t) is given

by the (normalized) cross product of two distinct vectors in the tangent
plane:

N̂ =
(Su × Sv)
‖Su × Sv‖ .

Differentiating with respect to time gives

∂N̂
∂t

=
‖Su × Sv‖∂(Su × Sv)

∂t
− ∂‖Su × Sv‖

∂t
(Su × Sv)

‖Su × Sv‖2 . (21)

We first find an expression for ∂(Su×Sv)
∂t :

∂(Su × Sv)
∂t

=
(
∂

∂t
Su × Sv

)
+
(
Su × ∂

∂t
Sv
)



Medial Axis Computation and Evolution 21

=
(
∂

∂u
St × Sv

)
+
(
Su × ∂

∂v
St
)

=
∂f

∂u
(N̂× Sv) +

∂f

∂v
(Su × N̂) + f

(
∂N̂
∂u
× Sv

)
+ f

(
Su × ∂N̂

∂v

)
.

(22)

Both ∂N̂
∂u and ∂N̂

∂v lie in the tangent plane; thus there exists τ1, µ1, τ2, µ2, such
that ∂N̂

∂u = (τ1Su + µ1Sv) and ∂N̂
∂v = (τ2Su + µ2Sv). Substituting in (22):

∂(Su × Sv)
∂t

=
∂f

∂u
(N̂× Sv) +

∂f

∂v
(Su × N̂)

+ f((τ1Su + µ1Sv)× Sv) + f(Su × (τ2Su + µ2Sv))

=
∂f

∂u
(N̂× Sv) +

∂f

∂v
(Su × N̂) + fτ1(Su × Sv) + fµ2(Su × Sv)

=
∂f

∂u
(N̂× Sv) +

∂f

∂v
(Su × N̂) + f(τ1 + µ2)(Su × Sv). (23)

We then derive ∂‖Su×Sv‖
∂t :

∂‖Su × Sv‖
∂t

=
∂

∂t
[(Su × Sv) · (Su × Sv)]1/2

=
∂
∂t [(Su × Sv) · (Su × Sv)]

2((Su × Sv) · (Su × Sv))1/2

=
∂(Su×Sv)

∂t · (Su × Sv)
‖Su × Sv‖

=
[
∂f

∂u
(N̂× Sv) +

∂f

∂v
(Su × N̂)

+ f(τ1 + µ2)(Su × Sv)
]
· (Su × Sv)
‖Su × Sv‖

= f(τ1 + µ2)‖Su × Sv‖.

(24)

We combine (21), (23), and (24) to get an expression for ∂N̂
∂t :

∂N̂
∂t

=
1

‖Su × Sv‖
[
∂f

∂u
(N̂× Sv) +

∂f

∂v
(Su × N̂)

+ f(τ1 + µ2)(Su × Sv)− f(τ1 + µ2)(Su × Sv)
]

=
∂f
∂u (N̂× Sv) + ∂f

∂v (Su × N̂)
‖Su × Sv‖ .

(25)
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We would like to re-parameterize S such that Sū and Sv̄ and N̂ form an
orthonormal basis. Unfortunately, such a re-parameterization is time depen-
dent, and the previous derivation might not hold if u and v are functions of t.
Let ū and v̄ be a re-parameterization of S such that S(ū(u, v, t), v̄(u, v, t)) =
S(u, v, t). We can write

∂S(ū, v̄)
∂u

= Sū ∂ū
∂u

+ Sv̄ ∂v̄
∂u

∂S(ū, v̄)
∂v

= Sū ∂ū
∂v

+ Sv̄ ∂v̄
∂v
.

Substituting for Su and Sv in (25) we obtain

∂N̂
∂t

=
∂f
∂u

(
N̂× (Sū ∂ū∂v + Sv̄ ∂v̄∂v

))
+ ∂f

∂v

((Sū ∂ū∂u + Sv̄ ∂v̄∂u
)× N̂

)∥∥(Sū ∂ū∂u + Sv̄ ∂v̄∂u
)× (Sū ∂ū∂v + Sv̄ ∂v̄∂v

)∥∥
=

(N̂× Sv̄)
(
fu

∂v̄
∂v − fv ∂v̄∂u

)
+ (Sū × N̂)

(
fv

∂ū
∂u − fu ∂ū∂v

)
(
∂v̄
∂v

∂ū
∂u − ∂v̄

∂u
∂ū
∂v

))∥∥Sū × Sv̄∥∥ .

Similarly for f we have

∂f(ū, v̄)
∂u

= fū
∂ū

∂u
+ fv̄

∂v̄

∂u

∂f(ū, v̄)
∂v

= fū
∂ū

∂v
+ fv̄

∂v̄

∂v
.

Substituting for fu and fv we get

∂N̂
∂t

=

(
fū

∂v̄
∂v

∂ū
∂u − fū ∂v̄∂u ∂ū∂v + fv̄

∂v̄
∂u

∂v̄
∂v − fv̄ ∂v̄∂v ∂v̄∂u

)
(N̂× Sv̄)(

∂v̄
∂v

∂ū
∂u − ∂v̄

∂u
∂ū
∂v

)∥∥Sū × Sv̄∥∥
+

(
fū

∂ū
∂v

∂ū
∂u − fū ∂ū∂u ∂ū∂v + fv̄

∂v̄
∂v

∂ū
∂u − fv̄ ∂v̄∂u ∂ū∂v

)
(Sū × N̂)(

∂v̄
∂v

∂ū
∂u − ∂v̄

∂u
∂ū
∂v

)∥∥Sū × Sv̄∥∥
=

[
fū
(
∂v̄
∂v

∂ū
∂u − ∂v̄

∂u
∂ū
∂v

)]
(N̂× Sv̄) +

[
fv̄
(
∂v̄
∂v

∂ū
∂u − ∂v̄

∂u
∂ū
∂v

)]
(Sū × N̂)(

∂v̄
∂v

∂ū
∂u − ∂v̄

∂u
∂ū
∂v

)∥∥Sū × Sv̄∥∥
=

∂f
∂ū (N̂× Sv̄) + ∂f

∂v̄ (Sū × N̂)
‖Sū × Sv̄‖ .

(26)

We can therefore deduce that (21) is independent of the parameterization
chosen. This helps us simplify the derivation of tangential velocities by para-
meterizing S at S(x1) and S(x2) such that the tangent and normal vectors
form an orthonormal basis where one of the tangent vectors coincides with
T̂b. Formally, let (u1, v1) be a parameterization of S such that Ŝu1 , Ŝv1 , and
N̂1 are orthonormal at S(x1) and Ŝv1 is equal to T̂b. Similarly, let (u2, v2)
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be a parameterization such that Ŝu2 , Ŝv2 , and N̂2 are orthonormal at S(x2)
and Ŝv2 is equal to T̂b. The setup of the local coordinate frames is shown in
Fig. 10.

We now have (N̂ × Ŝv1) = −Ŝu1 , (Ŝu1 × N̂) = −Ŝv1 , (Ŝu1 × N̂) = −Ŝv1 ,
and ‖Ŝu1 × Ŝv1‖ = 1. Similarly (N̂ × Ŝv2) = −Ŝu2 , (Ŝu2 × N̂) = −Ŝv2 , and
‖Ŝu2 × Ŝv2‖ = 1. Thus we get

∂N̂1

∂t
= −

(
∂f1
∂u1
Ŝu1 +

∂f1
∂v1
Ŝv1
)

(27a)

∂N̂2

∂t
= −

(
∂f2
∂u2
Ŝu2 +

∂f2
∂v2
Ŝv2
)
. (27b)

We now turn back to (20), and take the inner product of both sides with T̂b

to obtain (28)

β = −r∂f1
∂v1

(28a)

β = −r∂f2
∂v2

. (28b)

We therefore deduce that
∂f2
∂v2

=
∂f1
∂v1

. (29)

Similarly, take the inner product of (20) with N̂sk to obtain

γ + f1 sinϕ+ ṙ sinϕ+ r
∂f1
∂u1
Ŝu1 · N̂sk = 0 (30a)

γ − f2 sinϕ− ṙ sinϕ+ r
∂f2
∂u2
Ŝu2 · N̂sk = 0. (30b)

Observe that (Ŝu1 · N̂sk) = − cosϕ and (Ŝu1 · N̂sk) = − cosϕ (see Fig. 11).
Hence we have

γ + f1 sinϕ+ ṙ sinϕ− r ∂f1
∂u1

cosϕ = 0

γ − f2 sinϕ− ṙ sinϕ− r ∂f2
∂u2

cosϕ = 0.

Subtracting the above two equations we get ṙ:

ṙ = −f1 + f2
2

+
r

2
cosϕ
sinϕ

(
∂f1
∂u1
− ∂f2
∂u2

)
. (31)
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Adding the two equations we obtain

2γ − r cosϕ
(
∂f1
∂u1

+
∂f2
∂u2

)
= 0. (32)

Substituting for γ in (32) yields

∂f1
∂u1

+
∂f2
∂u2

=
(f2 − f1)
r cosϕ sinϕ

. (33)

To obtain the tangential velocity, one can now substitute (31) in (19):

α =
r

2 sinϕ

(
∂f1
∂u1
− ∂f2
∂u2

)
. (34)

4.3 Summary

We now summarize the results presented in this section. Let the surface S be
parameterized by u, v, t and consider the following motion (12):

Ṡ =
∂S
∂t

= f(u, v, t)N̂,

where f is the inward normal velocity. Let Q be a medial surface point with
associated bitangent points S(x1) and S(x2) on the surface. Let S(x1),S(x2)
have normal velocities f1, f2, respectively. Let the coordinate frame be set up
as in Fig. 10. The medial surface will then evolve according to equation (13):

Q̇ =
∂Q

∂t
= αT̂a + βT̂b + γN̂sk,

if conditions (29) and (33) are satisfied

∂f2
∂v2
− ∂f1
∂v1

= 0, and

∂f1
∂u1

+
∂f2
∂u2

=
(f2 − f1)
r cosϕ sinϕ

.

The motion is then described by (34), (28), (18), and (31):

α =
r

2 sinϕ

(
∂f1
∂u1
− ∂f2
∂u2

)

β = −r∂f1
∂v1

= −r∂f2
∂v2

γ =
f2 − f1
2 sinϕ

ṙ = −f1 + f2
2

+
r

2
cosϕ
sinϕ

(
∂f1
∂u1
− ∂f2
∂u2

)
.
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We now interpret the medial axis evolution equations we have derived. It is
clear that the expressions for the 3D case bear a close resemblance to those for
the 2D case. In particular, the expression for the normal motion, γ , of the 3D
medial axis in the object plane, P = (Q,S(x1),S(x2)), is identical to the one
for the normal motion of the medial axis in 2D, equation (9). The expressions
for the tangential motion, α, of the medial axis in the object plane and the
rate of change of the radius function are identical up to a parameterization
to the one in 2D, Eqs. (8) and (10). In 2D the curve is parameterized by
arc length at both the boundary points (Fig. 8); in 3D the medial manifold
is parameterized such that the tangent to the surface at both the boundary
points is a unit vector lying in the object plane (Fig. 10). What is new is the
extra tangential velocity term β in the direction perpendicular to the object
plane. β is governed by the radius and the behavior of the speed f in the
vicinity of the bitangent points.

An important factor in the sensitivity of the medial axis to boundary
perturbations is the object angle ϕ. It appears in the denominator of the ex-
pressions for γ, α, ṙ and hence these terms can become infinite in the limit
as ϕ → 0. Moreover, when the normal velocities f1 and f2 are small, γ is
also small, provided that the sine of the object angle ϕ does not approach
zero. These results provide a theoretical foundation for approaches which use
(heuristic) functions based on this angle as criteria for pruning medial sur-
faces, including [18, 14]. It is curious that the limiting behavior of the average
outward flux measure reveals exactly a function of this angle, for all generic
medial axis point types, as pointed out in Section 3.

There are important conditions on the behavior of the speed in the neigh-
borhoods of S(x1) and S(x2), specifically (29) and (33). If these conditions
are not met, S(x1) and S(x2) will not be the bitangent points associated with
a medial surface point after the surface has evolved. In fact, although this is
not pointed out in [2], the following constraint:

∂f1
∂s1

+
∂f2
∂s2

=
(f2 − f1)
r cosϕ sinϕ

,

very similar to (33), must also hold in the 2D case for a medial point to
remain associated with two bitangent points after the bounding curve has
evolved. This can be shown by an argument analogous to the one we have
used for the 3D case. As a consequence, the results obtained in [2] on skeletal
evolution must be interpreted with some caution. Unfortunately, a geometric
interpretation of the constraints is not so straightforward. In particular, the
conditions under which we can have Ŝv1 = Ŝv2 normal to P and ∂f2

∂v2
− ∂f1
∂v1

= 0

on the one hand; and Ŝu1 , Ŝu2 in P and ∂f1
∂u1

+ ∂f2
∂u2

= (f2−f1)
r cosϕ sinϕ remain to be

investigated.
Given our expressions it is straightforward to look at the special case of

constant boundary motion, the grass fire flow, where f = 1. In this case, we
confirm the 2D result of [2], i.e., α = β = γ = 0 and ṙ = −1.
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5 Discussion

In this chapter we have reviewed the generic local structure of the medial
axis due to [11, 12], we have discussed average outward flux algorithms for
medial axis computation and finally have addressed the problem of medial axis
evolution by deriving the (local) velocity of points on the medial axis induced
by motions of the corresponding bitangent boundary points. The connection
between medial axis computation and evolution is provided by the notion of
an object angle which for a point of type A2

1 is one half the angle between
the vectors pointing in from the bitangent points.1 First, during medial axis
computation the average outward flux limit gives exactly a function of this
angle at each generic medial axis point. This suggests that the salience of a
medial axis point is proportional to this angle. Indeed, a closely related but
more formal notion of salience determined by a concept of medial density has
been provided in [7]. Second, during medial axis evolution the sine of the
object angle shows up as a denominator term in the medial axis velocities,
suggesting that the least “sensitive” points are precisely those for which the
object angle is high.

It is important to point out that the medial axis evolution we have covered
is different than the study of the skeleton under a one-parameter family of
deformations in [10, 11]. This latter works categorizes the various types of
transitions that can occur between generic medial axis point types but does
not explicitly address the likelihood of such transitions. We conjecture that a
more explicit connection between the evolution of medial axes and the notion
of medial axis stability can be made, in part because of the intimate connection
between medial geometry and boundary geometry revealed by Jim Damon’s
recent work [7, 8]. Investigating this conjecture remains the subject of ongoing
work.
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Summary. Statistical shape analysis of anatomical structures plays an important
role in many medical image analysis applications. For instance, shape statistics are
useful in understanding the structural changes in anatomy that are caused by growth
and disease. Classical statistical techniques can be applied to study shape represen-
tations that are parameterized by a linear space, such as landmark data or boundary
meshes, but they cannot handle more complex representations of shape. We have
been developing representations of geometry based on the medial axis description
or m-rep. While the medial representation provides a rich language for variability
in terms of bending, twisting, and widening, the medial parameters are elements of
a nonlinear Riemannian symmetric space. Therefore, linear statistical methods are
not applicable in the m-rep setting, and statistical methods for analyzing manifold
data are needed. This chapter presents a general method called principal geodesic
analysis (PGA) for computing the variability of manifold-valued data. PGA is a
direct generalization of principal component analysis (PCA) and is based solely on
intrinsic properties of the underlying manifold, such as the notion of geodesic curves
and distance. We demonstrate the use of PGA to describe the shape variability of
medial representations, and results are shown on a hippocampus data set. The app-
licability of PGA is also shown within a 3D image segmentation framework based
on a Bayesian posterior optimization of deformable medial models.

Key words: Shape analysis, Riemannian geometry, manifold statistics, medial
representations.

1 Introduction

Advances in medical imaging technology have provided the ability to acquire
high-resolution three-dimensional (3D) images of the human body. Imaging
technologies such as computed tomography (CT) and magnetic resonance
(MR) are noninvasive means for obtaining potentially life-saving informa-
tion. Statistical shape analysis [12, 28, 43] is emerging as a powerful tool
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for understanding the anatomical structures in medical images, and it is find-
ing applications in disease diagnosis, radiotherapy or surgery planning, and
tracking of anatomic growth. For example, a probability distribution of the
possible geometric configurations of an organ can be used as a prior to help
guide the automatic segmentation of anatomy in medical images. Statistical
characterizations of the differences between normal organ shape and diseased
organ shape can be used to improve the accuracy of disease diagnosis.

Several previous approaches to these problems have used linear models
of anatomic shape, and thus, linear statistical techniques to analyze shape
variability. Bookstein [4] uses landmarks to capture the important geometric
features in an image. The active shape model (ASM) of Cootes and Taylor
[10] represents an object’s geometry as a dense collection of boundary points.
Cootes et al. [9] have augmented their statistical models to include the vari-
ability of the image information as well as shape. Kelemen et al. [26] use a
spherical harmonic (SPHARM) decomposition of the object boundary.

In all of these approaches the underlying geometry is parameterized as a
Euclidean vector space. The training data is given as a set of vectors x1, . . . , xN
in a vector space V . For active shape models each vector is constructed by
concatenation of the boundary points in an object. For spherical harmonics
each vector is constructed as the concatenation of the coefficients of a spherical
harmonic surface representation of the object boundary. An average object
vector is computed as the linear average of the training set: µ = 1

N

∑N
i=1 xi.

Principal component analysis (PCA) [23] is then used to find an efficient
parameterization of the model variability. This is accomplished by computing
an eigenanalysis of the sample covariance matrix

S =
1
N

N∑
i=1

(xi − µ)(xi − µ)T .

If vk, k = 1, . . . , d are the ordered eigenvectors of the quadratic form S with
corresponding eigenvalues λk, then a new object within the realm of statisti-
cally feasible shapes is parameterized by

x = µ+
d∑
k=1

αkvk,

where the αk ∈ R are coefficients that control the modes of variation.
Shape is often defined as the geometry of objects that is invariant under

global translation, rotation, and scaling. To ensure that the variability being
computed is from shape changes only, an important preprocessing step of any
shape analysis technique is to align the training objects to a common position,
orientation, and scale. A common alignment technique used is Procrustes
alignment [19], which seeks to minimize, with respect to global translation,
rotation, and scaling, the sum of squared distances between corresponding
data points.
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While much of the work on the statistical analysis of shape has focused
on linear methods, there has been some work on statistical methods for
nonlinear geometric data. Kendall’s ground-breaking work formulates shape
spaces as complex projective spaces [27]. Related work includes the statistical
analysis of directional data [29]. Pennec [36] defines Gaussian distributions
on a manifold as probability densities that minimize information. The work
of Grenander and others [20, 31] constructs shapes as infinite-dimensional
manifolds and shape variations as actions by the diffeomorphism group. More
recently, Sharon and Mumford [42] as well as Mio and Srivastava [32] have
introduced metrics on the space of planar curves.

Linear shape models treat shape changes as combinations of local transla-
tions. However, richer models of shape and richer variations of shape can be
achieved with nonlinear models. The medial representation provides a power-
ful framework for describing shape variability in intuitive terms such as local
thickness, bending, and widening. However, the medial parameters are not
elements of a Euclidean space. Therefore, the standard linear techniques of
shape analysis, namely linear averaging and PCA, do not apply. In this chapter
we show that the medial parameters are in fact elements of a certain type of
manifold known as a Riemannian symmetric space. We then show how the
standard shape analysis techniques can be generalized to handle manifold
data. First, we describe how averages can be computed on a manifold. Next,
we develop a new method named principal geodesic analysis (PGA), a gen-
eralization of PCA, for describing the variability of data on a manifold. We
demonstrate how PGA can be used in a maximum posterior segmentation of
3D medical images via deformable m-reps models. The segmentation is based
on a Bayesian objective function that incorporates a geometric prior using
PGA. The optimization of this objective function uses the principal geodesic
modes of variation as a parameter space.

The remainder of this chapter is outlined as follows. In Section 2 we review
the medial shape representation and the deformable m-reps approach to seg-
mentation. Section 3 is a review of the necessary background on Riemannian
symmetric spaces and an explanation of how m-reps are parameterized as
such a space. Section 4 develops the general method of PGA for comput-
ing the statistical variability of manifold data. This framework is applied to
shape analysis using m-reps in Section 5. Finally, the application of m-rep
shape statistics to deformable model segmentation is presented in Section 6.

2 Medial Shape Representation

Medial representations of objects, or m-reps, are the foundation of the sta-
tistical shape analysis approach taken in this work. This section is a review
of the necessary background in medial geometry representations. The article
by Pizer et al. [40] provides an overview of the properties of the medial locus
and methods for extracting the medial locus from an object. The deformable
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m-reps approach to image segmentation is described in depth by Pizer et al.
[39]. The medial locus is a means of representing the “middle” or “skeleton” of
a geometric object. Psychophysical and neurophysiological studies have shown
evidence that medial relationships play an important role in the human visual
system [1, 6, 30]. The medial locus was first proposed by Blum in 1967 [2],
and its properties were later studied in two dimensions by Blum and Nagel
[3] and in three dimensions by Nackman [34]. Arising from the medial locus
definition is a surprisingly rich mathematical theory that incorporates many
aspects from differential geometry and singularity theory (see, for instance,
[11, 18]).

The medial locus of a 3D object consists of the centers of all spheres that
are interior to the object and tangent to the object’s boundary at two or more
points. In the m-reps framework, the medial description of an object is defined
by the centers of the inscribed spheres and by the associated vectors, called
spokes, from the sphere centers to the two respective tangent points on the
object boundary. A figure is a smooth 2D medial locus with a smooth edge,
i.e., it is diffeomorphic to a 2D disk. In this chapter we will only consider
objects that can be represented by a single medial figure. More complex ob-
jects can be represented as a collection of branching figures (see [39] for more
detail).

n

n

0

1

x

Fig. 1. A medial atom as a position, radius, and two spoke directions (left). A medial
end atom, adding a third bisector spoke with elongation parameter η (right).

A 3D medial atom (see Fig. 1) is a tuple (x, r, n0, n1) ∈ R
3×R

+×S2×S2.
The two unit length vectors, n0, n1, thought of as two points on the unit
sphere S2, represent the tangency points of the boundary with the inscribed
sphere. The spokes are the vectors pointing from the medial locus position to
the object boundary and are given by rn0 and rn1. Therefore, medial atoms
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Fig. 2. Two single figure m-rep models: a kidney (left) and a hippocampus (right).

give enough information to reconstruct the corresponding boundary points on
the object, y0, y1, given by the formulae

y0 = x+ rn0, y1 = x+ rn1. (1)

A sphere on the edge of the continuous medial locus has a single point of
third-order contact with the object boundary, i.e., it is an osculating sphere to
the boundary. However, this single point of contact can be an unstable feature
for image analysis tasks. The representation can be stabilized by modeling
the crest of the object with atoms that have three points of contact with the
boundary. An end atom (see Fig. 1) is a special type of medial atom that
models an atom shifted back from the edge of the medial locus. It has an
extra spoke in the bisector direction, b, along which the true edge of the medial
locus lies. This extra spoke points to the crest of the implied boundary and has
length ηr, where η is a parameter in the interval [1, 1/ cos(θ)]. A value of η = 1
gives a circular end cap, while at the other extreme a value of η = 1/ cos(θ)
gives a sharp corner.

In 3D a single figure object is represented by a quadrilateral mesh mij of
medial atoms (ref. Fig. 2). Atoms on the edge of the mesh are represented
by end atoms with three spokes as described above. The atoms in an m-rep
mesh can be thought of as control points implying a full continuous sheet of
medial atoms. The continuous medial locus extends beyond the end atoms to
the curve of atoms osculating the crest of the implied object’s boundary. The
implied boundary of an m-rep figure is interpolated from the boundary points
(y0, y1) and corresponding normals (n0, n1) implied by the medial atoms. This
also includes the crest points implied by the third spokes of the end atoms.
The surface interpolation used is due to Thall [46] and is an extension of the
Catmull–Clark subdivision method [8].
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An arbitrary medial mesh may not produce a smooth boundary surface,
as the spokes may cross one another and cause singularities in the implied
boundary. Damon [11] has formulated the necessary conditions on a medial
structure for the implied boundary to be free of such singularities. These
conditions are not currently enforced in m-rep models, but the mathemati-
cal foundation is there to ensure that m-rep models always generate legal
boundaries, and this is an area of current research.

2.1 Figural Coordinates

An m-rep sheet should be thought of as representing a continuous branch of
medial atoms with associated continuous implied boundary. This continuous
sheet of medial atoms can be parameterized by two real parameters (u, v).
Since each internal medial atom in a single figure implies two boundary points,
an extra parameter t ∈ {−1, 1} can be added to extend the medial coordinates
to a parameterization (u, v, t) of the implied boundary.

u
v

τ

τ
t

t = +1

t = -1

Fig. 3. The figural coordinate directions (u, v, t, τ ) demonstrated on an m-rep model
of the hippocampus. Sample order 1 medial atoms on the sheet are also shown.

The figural coordinates further extend the implied boundary coordinates
to a parameterization of the space inside and just outside the m-rep figure.
A figural coordinate (ref. Fig. 3) is a tuple (u, v, t, τ), where the τ pa-
rameter gives the r-proportional signed distance of the point in question
from the surface point at (u, v, t). That is, τ is given as the signed dis-
tance along the normal to the surface at (u, v, t) divided by the r value
at (u, v, t). This coordinate system is valid inside the entire solid repre-
sented by the m-rep figure (i.e., each point has a unique coordinate). It is
also valid outside the figure’s boundary up to the exterior shock set of the
distance function to the boundary. This is useful, for example, during seg-
mentation in comparing image intensity values of the target image with the
image intensity values of a template image with respect to the current m-rep
object.
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2.2 Segmentation via Deformable M-reps

Following the deformable models paradigm, a 3D m-rep model M is deformed
into an image I(x, y, z) by optimizing an objective function, which is defined
as

F (M|I) = L(I|M) + αG(M).

The function L, the image match, measures how well the model matches the
image information, while G, the geometric typicality, gives a prior on the possi-
ble variation of the geometry of the model. The relative importance of the two
terms is weighted by the nonnegative real parameter α. In the Bayesian setting
this objective function F with α = 1 can be seen as a log posterior probability
density, where the image match L is a log likelihood probability and the
geometric typicality G is a log prior probability. The segmentation strategy
described here is from Pizer et al. [39] and was also developed in previous
papers [37, 24]. Later, in Section 6, we describe how geometric statistics can be
incorporated into this segmentation strategy. This includes using a statistical
geometric prior for the geometric typicality, G, and using figural deformations
based on the statistical modes of variation.

The objective function F is optimized in a multiscale fashion. That is, it
is optimized over a sequence of transformations that are successively finer in
scale. In this chapter only segmentation of single figures is considered, which
includes three levels of scale: the figural level, the medial atom level, and the
dense boundary sampling level. We will concentrate on the figural level in
Section 6, where the PGA modes describe the figural level deformations. For
details on the other scale levels, see [39].

The computation of the image match term in the objective function is
based on a a template model M̂. Image values in a template image Î at a
particular figural coordinate of the template model are compared to image
values in the target image I at the corresponding figural coordinate of the
candidate model. The image match term of the objective function is computed
as a correlation over a collar (±ε in the normal direction) about the object
boundary:

L(M, I) =
∫
B

∫ ε

−ε
G(t)Î (̂s + (t/r̂)n̂) I (s + (t/r)n) dt dw.

In this equation a hat (̂ ) always denotes an entity associated with the tem-
plate model M̂, and the same entities without a hat are associated with the
candidate model M. The parameter w = (u, v, t) is a figural boundary co-
ordinate, and B is the parameter domain of the boundary coordinates. The
following are functions of the boundary figural coordinate w: s, ŝ are para-
meterizations of the boundaries, r, r̂ are the radius functions, and n, n̂ are
the boundary normals. The function Gσ is the Gaussian kernel with standard
deviation σ. The Gaussian kernel is used to weight the importance of the
image match so that features closer to the boundary are given higher weight.
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The values for the collar width and Gaussian standard deviation have been
set by experience to ε = 0.3 and σ = 0.15.

3 Mathematical Background

PGA is a general method for describing the variability of data that lies on a
Riemannian manifold. Medial representations, it will be shown, can be para-
meterized as a particular type of Riemannian manifold known as a symmetric
space. In this section we provide the necessary background to Riemannian
manifolds and symmetric spaces that will be needed later. We also describe
how the medial parameters are an element of a symmetric space.

3.1 Riemannian Manifolds

A Riemannian metric on a manifold M is a smoothly varying inner product
〈·, ·〉 on the tangent space TxM at each point x ∈ M . The norm of a vector
v ∈ TxM is given by ‖v‖ = 〈v, v〉 12 . Given a smooth curve segment in M ,
its length is computed by integrating the norm of the tangent vectors along
the curve. The Riemannian distance between two points x, y ∈ M , denoted
d(x, y), is defined as the minimum length over all possible smooth curves
between x and y. A geodesic curve is a curve that locally minimizes the length
between points. An isometry of M is a diffeomorphic map Φ : M → M
that preserves the Riemannian distance, i.e., d(x, y) = d(Φ(x), Φ(y)), for all
x, y ∈M . A manifold is said to be complete if all geodesics extend indefinitely.
This is an important property because it implies that between any two points
there exists a length-minimizing geodesic.

Given a tangent vector v ∈ TxM , there exists a unique geodesic, γv(t), with
v as its initial velocity. The Riemannian exponential map, denoted Expx, maps
v to the point at time one along the geodesic γv. The geodesic has constant
speed equal to ‖dγv/dt‖(t) = ‖v‖, and thus the exponential map preserves
distances from the initial point, i.e., d(x,Expx(v)) = ‖v‖. The exponential
map is a diffeomorphism in a neighborhood of zero, and its inverse in this
neighborhood is the Riemannian log map, denoted Logx. Thus for a point y
in the domain of Logx the geodesic distance between x and y is given by

d(x, y) = ‖Logx(y)‖. (2)

3.2 Lie Groups and Symmetric Spaces

Briefly, a Riemannian symmetric space is a connected manifold M such that
at each point the mapping that reverses geodesics through that point is an
isometry. For a detailed treatment of symmetric spaces see the standard texts
[5, 22]. A good concise introduction to Lie groups can be found in Chapter
1 of [35]. Common examples of symmetric spaces are Euclidean spaces, R

n,
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spheres, Sn, and hyperbolic spaces, Hn. Symmetric spaces, and the methods
for computing geodesics and distances on them, arise naturally from Lie group
actions on manifolds.

A Lie group G is a differentiable manifold that also forms an algebraic
group, where the two group operations,

µ : (x, y) �→ xy : G×G→ G Multiplication

ι : x �→ x−1 : G→ G Inverse

are differentiable mappings (the symbol µ used in this way should not be con-
fused with the mean). Many common geometric transformations of Euclidean
space form Lie groups. For example, rotations, translations, magnifications,
and affine transformations of R

n all form Lie groups. More generally, Lie
groups can be used to describe transformations of smooth manifolds.

Given a manifold M and a Lie group G, a smooth group action of G on
M is a smooth mapping G ×M → M , written (g, x) �→ g · x, such that for
all g, h ∈ G, and all x ∈ M we have e · x = x, and (gh) · x = (g · (h · x)),
where e is the identity element of G. The group action should be thought of
as a transformation of the manifold M , just as matrices are transformations
of Euclidean space.

The orbit of a point x ∈ M is defined as G(x) = {g · x : g ∈ G}. In the
case that M consists of a single orbit, we call M a homogeneous space and
say that the group action is transitive. The isotropy subgroup of x is defined
as Gx = {g ∈ G : g · x = x}, i.e., Gx is the subgroup of G that leaves the
point x fixed.

Let H be a closed Lie subgroup of the Lie group G. Then the left coset
of an element g ∈ G is defined as gH = {gh : h ∈ H}. The space of all such
cosets is denoted G/H and is a smooth manifold. There is a natural bijection
G(x) ∼= G/Gx given by the mapping g · x �→ gGx. Now let M be a symmetric
space and choose an arbitrary base point p ∈ M . We can always write M as
a homogeneous space M = G/Gp, where G is a connected group of isometries
of M , and the isotropy subgroup Gp is compact. The fact that G is a group
of isometries means that d(x, y) = d(g · x, g · y), for all x, y ∈M , g ∈ G.

As an example consider the symmetric space S2, the sphere in R
3.

Rotations of the sphere are a smooth group action by the Lie group SO(3),
the 3 × 3 rotation matrices. We choose the base point to be the north pole,
p = (0, 0, 1) ∈ S2. It is easy to see that the orbit of p is the entire sphere. Thus
S2 is a homogeneous space. Also, the isotropy subgroup of p is the group of
all rotations about the z-axis, which can be identified with the group of 2D
rotations, SO(2). Therefore, S2 is naturally identified with the quotient space
SO(3)/SO(2).

Finally, we turn to the symmetric space of medial atoms, M(1) = R
3 ×

R
+ × S2 × S2, where the components in the direct product represent the

position, radius, and two unit spoke directions for a medial atom. The group
G = R

3×R
+×SO(3)×SO(3) acts smoothly onM(1). Let g = (v, s,R0,R1)
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be an element of G and m = (x, r,n0,n1) be a medial atom. Then the group
action is given by

g ·m = (x + v, s · r,R0 · n0,R1 · n1).

This action is transitive, and we can choose a base atom p with center x = 0,
radius r = 1, and both spoke directions, n0,n1, equal to (0, 0, 1). The isotropy
subgroup, Gp, is given by {0}× {1}×SO(2)× SO(2). The medial atom space
can thus be thought of as the quotient M(1) = R

3 × R
+ × (SO(3)/SO(2))×

(SO(3)/SO(2)).

3.3 Geodesics

Geodesics on a symmetric space M = G/Gp are computed through the group
action. Since G is a group of isometries acting transitively on M , it suffices
to consider only geodesics starting at the base point p. For an arbitrary point
x ∈ M , geodesics starting at x are of the form g · γ, where x = g · p and
γ is a geodesic with γ(0) = p. A geodesic is the image of the action of a
one-parameter subgroup of G acting on the base point p.

Returning to the sphere, S2, the geodesics at the base point p = (0, 0, 1)
are the great circles through p, i.e., the meridians. These geodesics are realized
by the group action of one-parameter subgroups of SO(3). Such a subgroup
consists of all rotations about a fixed axis in R

3 perpendicular to p. We con-
sider a tangent vector in TpS

2 as a vector v = (v1, v2, 0) in the x-y plane.
Then the exponential map is given by

Expp(v) =
(
v1 · sin ‖v‖‖v‖ , v2 · sin ‖v‖‖v‖ , cos ‖v‖

)
, (3)

where ‖v‖ =
√
v2

1 + v2
2 . This equation can be derived as a sequence of two

rotations that rotate the base point p = (0, 0, 1) to the point Expp(v). The
first is a rotation about the y-axis by an angle of φy = ‖v‖. The second,
aligning the geodesic with the tangent vector v, is a rotation about the z-axis
by an angle of φz , where cos(φz) = v1/‖v‖ and sin(φz) = v2/‖v‖.

The corresponding log map for a point x = (x1, x2, x3) ∈ S2 is given by

Logp(x) =
(
x1 · θ

sin θ
, x2 · θ

sin θ

)
, (4)

where θ = arccos(x3) is the spherical distance from the base point p to the
point x. Notice that the antipodal point −p is not in the domain of the log
map.

Other examples of symmetric spaces are the compact Lie groups, such as
the rotation groups, SO(n), and the Euclidean groups, R

n. These groups act
on themselves transitively by their group multiplication. Thus the geodesics
for such a Lie group at the identity are its one-parameter subgroups.
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4 Principal Geodesic Analysis

In this section we present a novel framework for computing the statistical
variability of data on general manifolds. Principal component analysis (PCA)
is a standard technique for describing the statistical variability of data in
Euclidean space R

n. The method presented in this section, called principal
geodesic analysis (PGA), is a natural extension of PCA to manifold-valued
data.

In Section 4.1 we review existing definitions for the mean of manifold-
valued data. The definition of the mean used in this work is intrinsic to the
geometry of the manifold. In Section 4.2 we present PGA for describing the
variability of data on manifolds. This is based on generalizing the defini-
tion of PCA, using a variance-maximizing definition. We give an algorithm
for computing PGA as well as an algorithm for efficiently approximating it.
Finally, we compare both the PGA and approximation to PGA algorithms on
the sphere S2.

4.1 Means on Manifolds

The first step in extending statistical methods to manifolds is to define the
notion of a mean value. In this section we describe two different notions of
means on manifolds called intrinsic and extrinsic means, and we argue that
the intrinsic mean is a preferable definition. We then present a method for
computing the intrinsic mean of a collection of data on a manifold. Throughout
this section we consider only manifolds that are connected and have a complete
Riemannian metric.

Intrinsic versus Extrinsic Means

Given a set of points x1, . . . , xN ∈ R
n, the arithmetic mean x̄ = 1

N

∑N
i=1 xi is

the point that minimizes the sum of squared Euclidean distances to the given
points, i.e.,

x̄ = arg min
x∈Rn

N∑
i=1

‖x− xi‖2.

Since a general manifold M may not form a vector space, the notion of an
additive mean is not necessarily valid. However, like the Euclidean case, the
mean of a set of points on M can be formulated as the point which minimizes
the sum of squared distances to the given points. This formulation depends
on the definition of distance. One way to define distance on M is to embed
it in a Euclidean space and use the Euclidean distance between points. This
notion of distance is extrinsic to M , that is, it depends on the ambient space
and the choice of embedding. Given an embedding Φ : M → R

n, define the
extrinsic mean [21] of a collection of points x1, . . . , xN ∈M as
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µΦ = arg min
x∈M

N∑
i=1

‖Φ(x) − Φ(xi)‖2.

Given the above embedding of M , we can also compute the arithmetic
(Euclidean) mean of the embedded points and then project this mean onto
the manifold M . This projected mean is equivalent to the above definition of
the extrinsic mean (see [44]). Define a projection mapping π : R

n → G as

π(x) = arg min
y∈M

‖Φ(y)− x‖2.

Then the extrinsic mean is given by

µΦ = π

(
1
N

N∑
i=1

Φ(xi)

)
.

A more natural choice of distance is the Riemannian distance on M . This
definition of distance depends only on the intrinsic geometry of M . We now
define the intrinsic mean of a collection of points x1, . . . , xN ∈ M as the
minimizer in M of the sum of squared Riemannian distances to each point.
Thus the intrinsic mean is

µ = arg min
x∈M

N∑
i=1

d(x, xi)2, (5)

where d(·, ·) denotes Riemannian distance on M . This is the definition of a
mean value that we use in this chapter.

The idea of an intrinsic mean goes back to Fréchet [17], who defines it for
a general metric space. The properties of the intrinsic mean on a Riemannian
manifold have been studied by Karcher [25]. Moakher [33] compares the prop-
erties of the intrinsic and extrinsic mean for the group of 3D rotations. Since
the intrinsic mean is defined in (5) as a minimization problem, its existence
and uniqueness are not ensured.

We argue that the intrinsic mean definition is preferable over the extrin-
sic mean. The intrinsic mean is defined using only the intrinsic geometry of
the manifold in question, that is, distances that are dependent only on the
Riemannian metric of the manifold. The extrinsic mean depends on the geom-
etry of the ambient space and the imbedding Φ. Also, the projection of the
Euclidean average back onto the manifold may not be unique.

Computing the Intrinsic Mean

Computation of the intrinsic mean involves solving the minimization problem
in (5). We will assume that our data x1, . . . , xn ∈M lies in a sufficiently small
neighborhood so that a unique solution is guaranteed. We must minimize the
sum of squared distance function
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f(x) =
1

2N

N∑
i=1

d(x, xi)2,

where d is the Riemannian distance given in (2). We now describe a gradient
descent algorithm, first proposed by Pennec [36], for minimizing f . Using the
assumption that the xi lie in a strongly convex neighborhood, i.e., a neigh-
borhood U such that any two points in U are connected by a unique geodesic
contained completely within U , Karcher [25] shows that the gradient of f is

∇f(x) = − 1
N

N∑
i=1

Logx(xi).

The gradient descent algorithm takes successive steps in the negative gradient
direction. Given a current estimate µj for the intrinsic mean, the equation for
updating the mean by taking a step in the negative gradient direction is

µj+1 = Expµj

(
τ

N

N∑
i=1

Logµj
(xi)

)
,

where τ is the step size.
Because the gradient descent algorithm only converges locally, care must

be taken in the choices of the initial estimate of the mean µ0 and the step
size τ . Since the data is assumed to be well localized, a reasonable choice
for the initial estimate µ0 is one of the data points, say x1. The choice of τ
is somewhat harder and depends on the manifold M . Buss and Fillmore [7]
prove for data on spheres that a value of τ = 1 is sufficient. Notice that if M
is a vector space, the gradient descent algorithm with τ = 1 is equivalent to
linear averaging and thus converges in a single step. If M = R

+, the Lie group
of positive reals under multiplication, the algorithm with τ = 1 is equivalent
to the geometric average and again converges in a single step.

In summary we have the following algorithm for computing the intrinsic
mean of manifold data.

Algorithm 1. Intrinsic Mean

Input: x1, . . . , xN ∈M
Output: µ ∈M , the intrinsic mean

µ0 = x1

Do

∆µ = τ
N

∑N
i=1 Logµj

xi

µj+1 = Expµj
(∆µ)

While ‖∆µ‖ > ε.
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4.2 PGA

Although averaging methods on manifolds have previously been studied, PCA
has not been developed for manifolds. We present a new method called prin-
cipal geodesic analysis (PGA), a generalization of PCA to manifolds. We
start with a review of PCA in Euclidean space. Consider a set of points
x1, . . . , xN ∈ R

n with zero mean. PCA seeks a sequence of linear subspaces
that best represent the variability of the data. To be more precise, the intent
is to find an orthonormal basis {v1, . . . , vn} of R

n that satisfies the recursive
relationship

v1 = arg max
‖v‖=1

N∑
i=1

(v · xi)2, (6)

vk = arg max
‖v‖=1

N∑
i=1

k−1∑
j=1

(vj · xi)2 + (v · xi)2. (7)

In other words, the subspace Vk = span({v1, . . . , vk}) is the k-dimensional
subspace that maximizes the variance of the data projected to that subspace.
The basis {vk} is computed as the set of ordered eigenvectors of the sample
covariance matrix of the data.

Now turning to manifolds, consider a set of points x1, . . . , xN on a manifold
M . Our goal is to describe the variability of the xi in a way that is analogous
to PCA. Thus we will project the data onto lower-dimensional subspaces that
best represent the variability of the data. This requires first extending three
important concepts of PCA into the manifold setting:

• Variance. Following the work of Fréchet, we define the sample variance of
the data as the expected value of the squared Riemannian distance from
the mean.

• Geodesic subspaces. The lower-dimensional subspaces in PCA are lin-
ear subspaces. For general manifolds we extend the concept of a linear
subspace to that of a geodesic submanifold.

• Projection. In PCA the data is projected onto linear subspaces. We define
a projection operator for geodesic submanifolds, and show how it may be
efficiently approximated.

We now develop each of these concepts in detail.

Variance

The variance σ2 of a real-valued random variable x with mean µ is given by
the formula

σ2 = E [(x − µ)2],
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where E denotes expectation. It measures the expected localization of the vari-
able x about the mean. When dealing with a vector-valued random variable
x in R

n with mean µ, the variance is replaced by a covariance matrix

Σ = E [(x − µ)(x− µ)T ].

However, this definition is not valid for general manifolds again since vector
space operations do not exist for such spaces.

The definition of variance we use comes from Fréchet [17], who defines the
variance of a random variable in a metric space as the expected value of the
squared distance from the mean. That is, for a random variable x in a metric
space with intrinsic mean µ, the variance is given by

σ2 = E [d(µ, x)2].

Thus given data points x1, . . . , xN on a complete, connected manifold M , we
define the sample variance of the data as

σ2 =
1
N

N∑
i=1

d(µ, xi)2 =
1
N

N∑
i=1

‖Logµ(xi)‖2, (8)

where µ is the intrinsic mean of the xi.
If M is a vector space, the variance definition in (8) is given by the trace

of the sample covariance matrix, i.e., the sum of its eigenvalues. It is in this
sense that this definition captures the total variation of the data.

Geodesic Submanifolds

The next step in generalizing PCA to manifolds is to generalize the notion
of a linear subspace. A geodesic is a curve that is locally the shortest path
between points. In this way a geodesic is the generalization of a straight line.
Thus it is natural to use a geodesic curve as the one-dimensional subspace
that provides the analog of the first principal direction in PCA.

In general if N is a submanifold of a manifold M , geodesics of N are not
necessarily geodesics of M . For instance the sphere S2 is a submanifold of
R

3, but its geodesics are great circles, while geodesics of R
3 are straight lines.

A submanifold H of M is said to be geodesic at x ∈ H if all geodesics of H
passing through x are also geodesics ofM . For example a linear subspace of R

n

is a submanifold geodesic at 0. Submanifolds geodesic at x preserve distances
to x. This is an essential property for PGA because variance is defined as
the average squared distance to the mean. Thus submanifolds geodesic at the
mean will be the generalization of the linear subspaces of PCA.

Projection

The projection of a point x ∈ M onto a geodesic submanifold H of M is
defined as the point on H that is nearest to x in Riemannian distance. Thus
we define the projection operator πH : M → H as
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πH(x) = arg min
y∈H

d(x, y)2. (9)

Since projection is defined by a minimization, there is no guarantee that
the projection of a point exists or that it is unique. However, if our data
is restricted to a small enough neighborhood about the mean, we can be
assured that projection is unique for any submanifold geodesic at the
mean.

Defining Principal Geodesic Analysis

We are now ready to define principal geodesic analysis for data x1, . . . , xN
on a connected, complete manifold M . Our goal, analogous to PCA, is to
find a sequence of nested geodesic submanifolds that maximize the projected
variance of the data. These submanifolds are called the principal geodesic
submanifolds.

Let TµM denote the tangent space of M at the intrinsic mean µ of the
xi. Let U ⊂ TµM be a neighborhood of 0 such that projection is well de-
fined for all geodesic submanifolds of Expµ(U). We assume that the data
is localized enough to lie within such a neighborhood. The principal geo-
desic submanifolds are defined by first constructing an orthonormal basis
of tangent vectors v1, . . . , vn ∈ TµM that span the tangent space TµM .
These vectors are then used to form a sequence of nested subspaces Vk =
span({v1, . . . , vk}) ∩ U . The principal geodesic submanifolds are the images
of the Vk under the exponential map: Hk = Expµ(Vk). The first principal di-
rection is chosen to maximize the projected variance along the corresponding
geodesic:

v1 = arg max
‖v‖=1

N∑
i=1

‖Logµ(πH(xi))‖2, (10)

where H = Expµ(span({v}) ∩ U).

The remaining principal directions are defined recursively as

vk = arg max
‖v‖=1

N∑
i=1

‖Logµ(πH(xi))‖2, (11)

where H = Expµ(span({v1, . . . , vk−1, v}) ∩ U).

Approximating Principal Geodesic Analysis

Exact computation of PGA, that is, solution of the minimizations (10) and
(11), requires computation of the projection operator πH . However, the pro-
jection operator does not have a closed-form solution for general manifolds.
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Projection onto a geodesic submanifold can be approximated linearly in the
tangent space of M . Let H ⊂M be a geodesic submanifold at a point p ∈M
and x ∈ M a point to be projected onto H . Then the projection operator is
approximated by

πH(x) = arg min
y∈H

‖Logx(y)‖2

≈ arg min
y∈H

‖Logp(x) − Logp(y)‖2.

Notice that Logp(y) is simply a vector in TpH . Thus we may rewrite the
approximation in terms of tangent vectors as

Logp (πH(x)) ≈ arg min
v∈TpH

‖Logp(x)− v‖2.

But this is simply the minimization formula for linear projection of Logp(x)
onto the linear subspace TpH . So, if v1, . . . , vk is an orthonormal basis for
TpH , the projection operator can be approximated by the formula

Logp (πH(x)) ≈
k∑
i=1

〈vi,Logp(x)〉. (12)

Analyzing the quality of the approximation to the projection formula
(12) is difficult for general manifolds. It obviously gives the exact projec-
tion in the case of R

n. For other manifolds of constant curvature, such
as spheres, Sn, and hyperbolic spaces, Hn, the projection formula can be
computed exactly in closed form. This makes it possible to get an idea of
how well the linear approximation does in these cases. The error computa-
tions for the sphere S2 are carried out at the end of this subsection as an
example.

If we use (12) to approximate the projection operator πH in (10) and (11),
we get

v1 ≈ arg max
‖v‖=1

N∑
i=1

〈v,Logµ(xi)〉2,

vk ≈ arg max
‖v‖=1

N∑
i=1

k−1∑
j=1

〈vj ,Logµ(xi)〉2 + 〈v,Logµ(xi)〉2.

The above minimization problem is simply the standard PCA in TµM of the
vectors Logµ(xi), which can be seen by comparing the approximations above
to the PCA equations, (6) and (7). Thus an algorithm for approximating
the PGA of data on a manifold is as follows.
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Algorithm 2. Principal Geodesic Analysis

Input: x1, . . . , xN ∈M
Output: Principal directions, vk ∈ TµM

Variances, λk ∈ R

µ = intrinsic mean of {xi} (Algorithm 1)

ui = Logµ(xi)

S = 1
N

∑N
i=1 uiu

T
i

{vk, λk} = eigenvectors/eigenvalues of S.

The approximation to PGA in the tangent space is similar to the tangent
space PCA introduced for Kendall’s shape spaces (see [12] for a discussion).
A major difference is that for PGA approximation we use the Riemannian log
map to put our points in the tangent space, whereas projection in Kendall’s
shape space is typically done as orthogonal projection onto the tangent space.
Using the Riemannian log map preserves distances to the mean value, while
orthogonal projection does not. This is an important feature of PGA approxi-
mation since it preserves the variance of the data, which is defined via squared
distance to the mean. Also, points generated from the approximate PGA can
be placed back onto the manifold via the Riemannian exponential map, again
preserving the distance to the mean.

Now we demonstrate the error computations for the projection operator
in the special case of the sphere S2. Since the sphere components (spoke
directions) are the source of positive curvature in the medial atom space, this
example can give us an idea of the error we can expect for m-reps. Let H be
a geodesic (i.e., a great circle) through a point p ∈ S2. Given a point x ∈ S2,
we wish to compute its true projection onto H and compare that with the
approximation in the tangent space TpS

2. Thus we have a spherical right
triangle as shown in Fig. 4. We know the hypotenuse length c = d(p, x) and
the angle θ, and we want to derive the true projection, which is given by the
side length a. We use the following two relations from the laws of spherical
trigonometry:

cos c = (cos a)(cos b),

sin b
sin θ

= sin c.

Solving for a in terms of the hypotenuse c and the angle θ, we have

a = arccos

(
cos c√

1− (sin θ sin c)2

)
.
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θ
µ

x

a

c

b

Fig. 4. The spherical triangle used to calculate the projection operator for S2.

The tangent-space approximation in (12) is equivalent to solving for the cor-
responding right triangle in R

2. Using standard Euclidean trigonometry, the
tangent-space approximation (12) gives

a ≈ c cos θ.

For nearby data, i.e., small values for c, this gives a good approximation. For
example, for c < π

4 the maximum absolute error is 0.07 rad. However, the
error can be significant for faraway points, i.e., as c approaches π

2 .

5 Application to M-reps

We now apply the statistical framework presented above for general manifolds
to the statistical analysis of m-rep models of anatomical objects. That is, we
will apply the mean and PGA algorithms to the symmetric space M(n),
representing m-rep models with n atoms. The initial data is a set of m-rep
models M1, . . . ,MN ∈M(n) that have been fit to a particular class of objects
in a training set of images. As is the case with other shape analysis methods,
since we are interested in studying the variability of shape alone, we must first
align the models to a common position, orientation, and scale. We present
an m-rep alignment algorithm that minimizes the sum of squared geodesic
distances between models, i.e., has the desirable property that it minimizes
the same metric as is used in the definition of the mean and principal geodesics,
but over the global similarity transformations of alignment. Next the mean
and PGA algorithms are adapted to the specific case of m-rep models.

The results of these techniques are demonstrated on a set of 86 m-rep
models of hippocampi from a schizophrenia study. A subset of 16 of these
models are displayed as surfaces in Fig. 5. The m-rep models were automat-
ically generated by the method described in [45], which chooses the medial
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Fig. 5. The surfaces of 16 of the 86 original hippocampus m-rep models.

topology and sampling that is sufficient to represent the population of ob-
jects. The models were fit to expert segmentations of the hippocampi from
magnetic resonance imaging (MRI) data. The average distance error from the
m-rep boundary to the original segmentation boundary ranged from 0.14mm
and 0.27mm with a mean error of 0.17mm. This is well within the original
MRI voxel size (0.9375 mm × 0.9375 mm × 1.5 mm). The sampling on each
m-rep was 3× 8, making each model a point on the symmetric spaceM(24),
which has dimension 192.

5.1 The Exponential and Log Maps for M-reps

Before we can apply the statistical techniques for manifolds developed in the
previous chapter, we must define the exponential and log maps for the sym-
metric spaceM(n), the space of m-rep models with n atoms. We begin with
a discussion of the medial atom space M(1) = R

3 × R
+ × S2 × S2. Let

p = (0, 1, p0, p1) ∈ M(1) be the base point, where p0 = p1 = (0, 0, 1) are the
base points for the spherical components. The tangent space forM(1) at the
base point p can be identified with R

8. We write a tangent vector u ∈ TpM(1)
as u = (x, ρ, v0, v1), where x ∈ R

3 is the positional tangent component, ρ ∈ R

is the radius tangent component, and v0, v1 ∈ R
2 are the spherical tangent

components. The exponential map forM(1) is now the direct product of the
exponential map for each component. The exponential map for R

3 is simply
the identity map, for R it is the standard real exponential function, and for
S2 it is the spherical exponential map given in (3). Thus forM(1) we have

Expp(u) = (x, eρ,Expp0(v0),Expp1(v1)),

where the two Exp maps on the right-hand side are the S2 exponential maps.
Likewise, the log map of a point m = (x, r,n0,n1) is the direct product map

Logp(m) = (x, log r,Logp0(n0),Logp1(n1)),
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where the two Log maps on the right-hand side are the spherical log maps
given by (4). Finally, the exponential and log maps for the m-rep model space
M(n) are just the direct products of n copies of the corresponding maps for
the medial atom space M(1). For end atoms there is an extra parameter
η representing the elongation of the bisector spoke that points to the crest
(see Section 2). This is treated as another positive real number under mul-
tiplication. Therefore, end atoms are represented as the symmetric space
R

3 × R
+ × S2 × S2 × R

+. The exponential and log maps for these atoms
are just augmented with another copy of the corresponding map for R

+.
Notice that the position, radius, and orientations are not in the same units.

For the PGA calculations in Section 4.2 we scale the radius and sphere com-
ponents (and η for end atoms) in the Riemannian metric to be commensurate
with the positional components. The scaling factor for both components is
the average radius over all corresponding medial atoms in the population.
The distance on the spheres must be scaled by the radius because the for-
mula for geodesic distance is for a sphere of unit radius. Scaling the log radius
by the average radius makes infinitesimal changes to the radius commensu-
rate, which can be seen by taking the derivative. Thus the norm of the vector
u = TpM(1) becomes

‖u‖ =
(‖x‖2 + r̄2(ρ2 + ‖v1‖2 + ‖v2‖2)

) 1
2 ,

where r̄ is the average radius over all corresponding medial atoms. Using this
norm and the formula for Riemannian distance, the distance between two
atoms m1,m2 ∈M(1) is given by

d(m1,m2) = ‖Logm1
(m2)‖. (13)

5.2 M-rep Alignment

To globally align objects described by boundary points to a common posi-
tion, orientation, and scale, the standard method is the Procrustes method
[19]. Procrustes alignment minimizes the sum of squared distances between
corresponding boundary points, the same metric used in defining the mean
and principal components. We now develop an analogous alignment proce-
dure based on minimizing sum of squared geodesic distances on M(n), the
symmetric space of m-rep objects with n atoms.

Let S = (s,R,w) denote a similarity transformation in R
3 consisting of a

scaling by s ∈ R
+, a rotation by R ∈ SO(3), and a translation by w ∈ R

3.
We define the action of S on a medial atom m = (x, r,n0,n1) by

S ·m = S · (x, r,n0,n1) = (sR · x + w, sr,R · n0,R · n1). (14)

This action is the standard similarity transform of the position x, and the
scaling and rotation of the spokes are transformations about the medial po-
sition x. Now the action of S on an m-rep object M = {mi : i = 1, . . . , n}
is simply the application of S to each of M’s medial atoms:
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S ·M = {S ·mi : i = 1, . . . , n}. (15)

It is easy to check from the equation for the implied boundary points (1) that
this action of S on M also transforms the implied boundary points of M by
the similarity transformation S.

Consider a collection M1, . . . ,MN ∈M(n) of m-rep objects to be aligned,
each consisting of n medial atoms. We write mαi to denote the ith medial
atom in the αth m-rep object. Notice that the m-rep parameters, which are
positions, orientations, and scalings, are in different units. Before we apply
PGA to the m-reps, it is necessary to make the various parameters commen-
surate. This is done by scaling the log rotations and log radii by the average
radius value of the corresponding medial atoms. The squared-distance metric
between two m-rep models Mi and Mj becomes

d(Mi,Mj)2 =
n∑
α=1

d(mαi,mαj)2, (16)

where the d(·, ·) for medial atoms on the right-hand side is given by (13).
The m-rep alignment algorithm finds the set of similarity transforms

S1, . . . ,SN that minimize the total sum of squared distances between the
m-rep figures:

d(S1, . . . ,SN ;M1, . . . ,MN) =
N∑
i=1

i∑
j=1

d(Si ·Mi,Sj ·Mj)2. (17)

Following the algorithm for generalized Procrustes analysis for objects in R
3,

minimization of (17) proceeds in stages, as shown in the following algorithm.

Algorithm 3. M-rep Alignment

1. Translations. First, the translational part of each Si in (17) is minimized
once and for all by centering each m-rep model. That is, each model is trans-
lated so that the average of its medial atoms’ positions is the origin.
2. Rotations and Scalings. The ith model, Mi, is aligned to the mean of the
remaining models, denoted µi. The alignment is accomplished by a gradient
descent algorithm on SO(3) × R

+ to minimize d(µi,Si ·Mi)2. The gradient
is approximated numerically by a central differences scheme. This is done for
each of the N models.
3. Iterate. Step 2 is repeated until the metric (17) cannot be further minimized.

The result of applying the m-rep alignment algorithm to the 86 hippocam-
pus m-rep models is shown in Fig. 6. The resulting aligned figures are displayed
as overlaid medial atom centers. Since the rotation and scaling step of the
alignment algorithm is a gradient descent algorithm, it is important to find a
good starting position. Thus the alignment was initialized by first aligning the
m-rep models with the Procrustes method applied to the implied boundary
points of the m-rep models.
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Fig. 6. The 86 aligned hippocampus m-reps, shown as overlaid medial atom centers
(left). The surface of the mean hippocampus m-rep (right).

5.3 M-rep Averages

Algorithm 1 can be adapted for computing means of m-rep models by taking
the manifold to be the symmetric spaceM(n). Recall that the gradient descent
algorithm for the mean, Algorithm 1, has a parameter τ , which is the step
size taken in the downhill gradient direction. For m-reps a step size of τ = 1 is
used. SinceM(n) is a direct product space, the algorithm will converge if each
of the components converges. Notice that each of the R

3 and R
+ components

inM(n) converges in a single iteration since they are commutative Lie groups.
The step size of τ = 1 is sufficient to ensure that the S2 components converge
as well. Also, care must be taken to ensure that the data is contained in a
small enough neighborhood that the minimum in (5) is unique. For the R

3

and R
+ components there is no restriction on the spread of the data. However,

for the S2 components the data must lie within a neighborhood of radius π
2

(see [7]), i.e., within an open hemisphere. This is a reasonable assumption
for the aligned m-rep models, whose spoke directions for corresponding atoms
are fairly localized, and we have not experienced in practice any models that
do not fall within such constraints. We now have the following algorithm for
computing the intrinsic mean of a collection of m-rep models.

Figure 6 shows the surface of the resulting intrinsic mean of the 86
aligned hippocampus m-rep models computed by Algorithm 4. The maximum

Algorithm 4. M-rep Mean
Input: M1, . . . ,MN ∈ M(n), m-rep models
Output: µ ∈ M(n), the intrinsic mean

µ0 = M1

Do
∆µ = 1

N

∑N
i=1 Logµj

Mi

µj+1 = Expµj
(∆µ)

While ‖∆µ‖ > ε.
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difference in the rotation angle from the mean in either of the S2 compo-
nents was 0.1276 for the entire data set. Thus the data falls well within a
neighborhood of radius π

2 as required.

5.4 M-rep PGA

The PGA algorithm for m-rep models is a direct adaptation of Algorithm 2.
The only concern is to check that the data is localized enough for the projec-
tion operator to be unique. That is, we must determine the neighborhood U
used in (10) and (11). Again there is no restriction on the R

3 and R
+ com-

ponents. For S2 components it is also sufficient to consider a neighborhood
with radius π

2 . Therefore, there are no further constraints on the data than
those discussed for the mean. Also, we can expect the projection operator to
be well approximated in the tangent space, given the discussion of the error
in Section 4.2 and the fact that the data lie within 0.1276 rad from the mean.
Finally, the PGA computations for a collection of m-rep models is given by
the following algorithm.

Algorithm 5. M-rep PGA

Input: M-rep models, M1, . . . ,MN ∈M(n)

Output: Principal directions, vk ∈ TµM(n)

Variances, λk ∈ R

µ = intrinsic mean of {Mi} (Algorithm 4)

ui = Logµ(Mi)

S = 1
N

∑N
i=1 uiuTi

{vk, λk} = eigenvectors/eigenvalues of S.

Analogous to linear PCA models, we may choose a subset of the principal
directions vk that is sufficient to describe the variability of the m-rep shape
space. New m-rep models may be generated within this subspace of typical
objects. Given a set of real coefficients α = (α1, . . . , αd), we generate a new
m-rep model by

M(α) = Expµ

(
d∑
k=1

αkvk

)
, (18)

where αk is chosen to be within [−3
√
λk, 3

√
λk].

The m-rep PGA algorithm was applied to the aligned hippocampus data
set. Figure 7 displays the first three modes of variation as the implied bound-
aries of the m-reps generated from PGA coefficients αk = −3

√
λk, −1.5

√
λk,

0, 1.5
√
λk, 3

√
λk. A plot of the eigenvalues and their cumulative sums is given

in Fig. 8. The first 30 modes capture 95 percent of the total variability, which
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Fig. 7. The first three PGA modes of variation for the hippocampus m-reps. From
left to right are the PGA deformations for −3, −1.5, 1.5, and 3 times
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Fig. 8. A plot of the eigenvalues from the modes of variation and their cumulative
sums.

is a significant reduction from the original 192 dimensions of the hippocampus
m-rep model.

In this statistical analysis of the hippocampus, the resulting mean model
(Fig. 6) and the models generated from the PGA (Fig. 7) qualitatively look
like hippocampi. Also, the generated models are legal m-reps, that is, they
produce valid meshes of medial atoms and smooth, nonfolding implied bound-
aries. There is, however, no guarantee of legality in the algorithms, and other
data sets might produce illegal m-reps. The mean and PGA algorithms have
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also been applied to populations of m-rep models of the kidney, prostate,
heart, and liver. In our experience so far, we have found that the mean and
PGA methods described in this chapter generate legal m-rep models when the
input models are legal. While we do not have quantitative results to say that
these methods produce legal models, our experiments indicate that they pro-
duce valid results for real-world data.

6 PGA in Deformable M-reps Segmentation

In this section we describe how the method of PGA can be used in a Bayesian
deformable models segmentation method based on m-reps. Recall from Sec-
tion 2 that m-reps segmentation proceeds in several stages corresponding to
different levels of scale. In this section we focus on the figure stage of the
optimization of a single figure model. PGA will be used in two aspects of the
segmentation process:

1. The principal geodesic components are used as a parameter space gener-
ating global deformations of the m-rep figure.

2. The geodesic Mahalanobis distance is used as the geometric prior term in
the Bayesian objective function.

In the segmentation problem we are given an image I, and we want to
fit an m-rep model to a particular object in the image. A statistical m-rep
model is trained on a population of known objects of the same class. The
training proceeds by fitting a set of m-rep models to binary segmentations
of objects from similar images. Next a mean m-rep model µ and a PGA are
computed as described above. The PGA results in a set of principal directions
vk ∈ TµM(n) and variances λk. The first d principal directions are chosen
depending on the amount of variation that is desired.

6.1 Principal Geodesic Deformations

The mean model µ is used as the initial model in the optimization. It is placed
within the image by the user applying a translation, rotation, and scale. As
described in the background section on m-reps (Section 2), the figure stage
proceeds by deforming the model by global transformations to optimize the
objective function. The difference is that we now use the principal geodesics
as the global deformations of the model. This is achieved by optimizing over
parameters c = (c1, . . . , cd) that generate deformed versions of the mean model
given by

M(c) = S · Expµ

(
d∑
i=1

ck
λk

vk

)
.

Here S represents the user-defined similarity transform used to place the
mean model into the image. Care must be taken with the order in which the
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similarity transform is applied with respect to the PGA transformations. The
two operations do not commute, and since the principal directions are defined
as tangent vectors to the mean model, it does not make sense to apply them to
a transformed version of the mean. Therefore, the similarity transform must
be applied after the principal geodesic deformation. An alternative would be
to apply the similarity transform to the mean and also apply the derivative
mapping of the similarity transform to the principal directions (since they are
after all tangent vectors). Then the vk can be replaced by the transformed
vectors, and the similarity transform need not be applied during the optimiza-
tion.

6.2 PGA-Based Geometric Prior

The next part of using principal geodesic analysis in the deformable m-reps
segmentation is to use the geodesic Mahalanobis distance as a geometric prior
in the objective function. Recall from Section 2 that the posterior objective
function used for m-reps segmentation is given by

F (M(c)|I) = L(I|M(c)) + αG(M(c)),

where L is the image match term and G is the geometric typicality. Again,
setting α = 1, this objective function can be thought of in Bayesian terms as a
log posterior probability density, where the image match L is a log likelihood
probability and the geometric typicality G is a log prior probability.

We focus on the geometric typicality term G. We define this term to be
the squared geodesic Mahalanobis distance, which is proportional to the log
prior probability

G(M(c)) =
d∑
i=1

(
ck
λk

)2

∝ log(p(M(c)).

The probability distribution p can be constructed as a truncated Gaussian
distribution in the tangent space to the intrinsic mean, µ ∈ M(n). If U ⊂
M(n) is the neighborhood in which PGA is well defined (recall Section 4.2),
then p is given by

p(M) =
1

V (U)(2π)
n
2 |Σ| 12 exp

(
−1

2
Logµ(M)TΣ−1 Logµ(M)

)
.

The statistical segmentation method presented in this section has been
implemented as a part of Pablo [39], the deformable m-reps segmentation tool
developed at the University of North Carolina (UNC). A study carried out by
Rao et al. [41] compared deformable m-rep and human segmentations of kid-
neys from CT. The m-rep segmentation process used was the one presented in
this section. The training set for the geometry statistics included 53 models of
the right kidney and 51 models of the left kidney (left and right kidneys were
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trained as two separate groups). The target images to be segmented were 12
CT images of the kidneys (left and right). Human segmentations were carried
out by manual slice-by-slice contour outlining by two different raters. The sta-
tistical m-rep segmentation gave reasonable results that compared favorably
with the human segmentations. The mean surface separations between the
human and m-rep segmentations were of subvoxel dimension. The differences
between the human and m-rep results were slightly larger than the differences
between the two human segmentations. However, the experiment was biased
towards this result since the humans used a slice-based segmentation while
the m-reps segmentation was a smooth 3D model. Shown in Fig. 9 is an exam-
ple result of the deformable m-rep segmentation process applied to a 3D CT
image of the kidney. For more details and quantitative analysis of the results,
see [41].

Fig. 9. An example result of a kidney segmentation in a 3D CT image using the
statistical deformable m-rep model segmentation. A coronal image slice with the
intersection of the boundary implied by the m-rep segmentation (left), the same
image slice with the overlaid implied surface in wireframe (middle), and the solid
3D implied surface (right).

7 Conclusion

We presented a new approach for describing shape variability through PGA of
medial representations. While m-rep parameters are not linear vector spaces,
we showed that they are elements of a Riemannian symmetric space. We de-
veloped PGA as a method for efficiently describing the variability of data
on a manifold. The statistical methods for computing averages and PGAs
were applied to the study of shape from m-rep models. The use of m-rep
shape statistics in a deformable model segmentation framework was demon-
strated. Additional material on medial representations including their appli-
cations and underlying mathematics will appear in the upcoming book by
Pizer and Siddiqi [38].

We believe that the methods presented in this chapter will have appli-
cation well beyond m-reps. PGA is a promising technique for describing the
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variability of data that is inherently nonlinear. As Lie groups such as trans-
lations, rotations, and scalings are common entities in image analysis and
computer vision, statistical analysis on Lie groups is a promising area for fu-
ture applications. For example, we have begun to apply these methods to the
statistical analysis of diffusion tensor magnetic resonance images (DT-MRI),
where diffusion tensors can be appropriately modeled in a symmetric space
[13, 14].
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Summary. Topology and geometry are the attributes that uniquely define a shape.
Two objects are said to have the same topological structure if one can be mor-
phed into the other without tearing and gluing, whereas geometry describes the
relative position of points on a surface. Existing shape descriptors pay little at-
tention to the topology of shapes and instead operate on a smaller subset, where
all shapes are assumed to have a genus of one. In this chapter, we will describe a
novel 2D shape modeling method that keeps track of the topology of a shape in
combination with its geometry for a robust shape representation. Using a Morse
theoretic approach and the 3D shape modeling technique in [2] as an inspiration, we
focus on representing planar shapes of arbitrary topology. The proposed approach
extends existing modeling techniques in the sense that it encompasses a larger class
of shapes.

In short, we represent a shape in the form of a topo-geometric graph, which
encodes both of its attributes. We show that the model is rigid transformation
invariant, and demonstrate that the original shape may be recovered from the model.
While classification is beyond the scope of this chapter and hence not explicitly
addressed, note that it may greatly benefit from such models.

Key words: Shape modeling, topology, geometric modeling, skeleton, shock
graph, medial axis, Morse theory, classification.

1 Introduction

The goal of shape modeling is to provide a mathematical formalism to repre-
sent a class of shapes, each with an ideally unique fingerprint. Our proposed
modeling technique is specifically based on weighted skeletal graphs. Exten-
sive research work on shape modeling has been based on statistical approaches
[8, 1, 4, 11, 6, 22, 24, 27], which attempt to capture the inherent variability of
shapes. Our approach here is, however, more algorithmic in nature. Numerous
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other techniques have been proposed in an algorithmic/computational geo-
metric setting. An overview of these techniques together with their contrast
to the proposed approach are, hence, also in order.

Point Correspondences

Many algorithmic approaches are based on establishing point correspondences
between two shapes [19, 3, 4].

In [19], Sclaroff and Pentland proposed a point correspondence method:
the correspondences were established in a generalized feature space which is
determined by eigenmodes of a finite element representation of a shape. The
resulting correspondence was shown to be invariant under affine transforma-
tions and insensitive to noise. This method, however, is highly global and
operates on a shape contour as a whole without taking local features into
account.

Basri et al. [3], on the other hand, base their shape matching method
on a correspondence between the outlining contour points so as to mini-
mize the cost of the bending and stretching energy of morphing one shape
into the other. This cost then constitutes a basis for comparison. In addition
to its limited efficiency, this approach heavily relies on a preordered set of
points/landmarks, which may turn out to be difficult in practice.

In [4], Belongie, Malik and Puzicha propose point correspondence for un-
ordered boundary points using shape contexts. Specifically, a shape context
evaluated at a point is a distribution of contour points relative to this point.
Shape contexts for two shapes are used in a χ2 test statistic-based cost func-
tion whose minimization yields point correspondence. Following the establish-
ment of point correspondences, a transformation is defined that yields a shape
distance metric for shape comparisons.

Medial Axis

Another class of computational geometry-based methods is that of medial axis
representation of shapes [5, 9]. These models owe much to their simplicity
which is also their limitation of capturing variability across various shapes.
Specifically, medial axis methods may lead to a non-unique representation of a
shape. Zhu and Yuille presented a method and referred to it as FORMS, which
is based on a variant of medial axis [26]. Their model involves two primitives,
which when deformed yield what are called mid-grained shapes which in turn
capture parts of an object. These mid-grained shapes are in the end assembled
to represent complete objects by using a custom grammar. The dependence of
such a model on primitives and its complexity due to the burden of grammar
rules reduces its flexibility.

Shape Axis

Liu et al. proposed a method for shape recognition via matching shape axis
trees which are derived from the shape axis [14]. The shape axis is similar
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to the medial axis and is defined as the locus of midpoints of corresponding
boundary points on two given shapes. Shape axis trees are then modified to
achieve the best match reflected by an associated cost which is based on the
approach in [3]. Although this method addresses articulations and occlusions,
it has limitations similar to those in [3].

Shock Graphs

Shock graphs are a variant of the medial axis, as they capture its evolution in
time. Specifically, the shock graph is a locus of singularities (shocks) formed
by a propagating wave (grass-fire) from the boundaries [12]. A shock graph
may be viewed as a medial axis endowed with additional information. Hence,
it may result in a unique representation over a wider class of shapes and
is, therefore, generally regarded as a better shape descriptor with numerous
variants.

Siddiqi et al. compare shock graph-based shapes by viewing them as trees
and employing subgraph isomorphism [21] or by finding the maximal clique of
association graphs [18]. They choose the oldest shock as the root node, which
is not always the most logical and may contribute to classification errors.

Sebastian et al. [20] simplified shape recognition through shock graphs
by partitioning the shape space where they group all shapes of the same
shock graph topology in an equivalence class. Subsequently, they discretize the
deformation space by describing all deformations with the same transitions
to be equivalent. Shape matching is carried out through graph edit distances
where an optimal sequence of transitions is found that deforms one graph to
the other.

Proposed Approach

Among all the methods mentioned above, our method is closet to those based
on shock graphs with a larger scope of applicability. To the best of our knowl-
edge, no previous attempt has been made to specifically address topologically
diverse shapes. In contrast, our method is also applicable to shapes which have
non-zero genus, while those in [21, 18], for example, will fall short, because
they view a shock graph as a tree, which is generally invalid in such cases.
We must mention that level set methods [17, 13, 23, 7] have also been proposed
for shape modeling, which employ distance fields for topology preservation.
While these low level modeling methods have remarkable segmentation ca-
pabilities, they have not been applied for shape classification. The proposed
method will use a shape (such as the segmented output of the level set tech-
nique) as an input for modeling to ultimately achieve a compact representation
suitable for subsequent storage and classification.

In contrast to our proposed approach, many of the previously described
methods, particularly those based on medial axis, minimally invoke the geo-
metric information and, hence, do not guarantee unicity of representation.
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The balance of this chapter is organized as follows. We start the next sec-
tion with motivation for our work, which we follow up with a background dis-
cussion of the mathematical framework of our proposed method. In Section 3,
we present our proposed skeletal model and its properties. Section 4 details
the geometric encoding of skeletal graphs. We conclude the chapter with sub-
stantiating examples in Section 5.

2 Motivation and Background

As noted above, little work to our knowledge has attempted to account for
topological features of shapes. In many practical instances, however, the
topological information is of paramount importance. Stripping a shape, for
instance, a nut as given in Fig. 1, of its topological information, makes recog-
nition difficult even for a human observer. Our goal of accounting for such
information (arbitrary topology) in shapes is to result in a model providing
a unique rigid transformation-invariant signature which will also be sufficient
to reconstruct a shape.

(a) (b) (c)

Fig. 1. Importance of topological information: (a) a nut; (b) silhouette of a nut with
minimal topological information; (c) segmented nut with all topological information.

In the proposed model, topology is captured by a Morse theoretic skeletal
graph constructed through the critical points of the distance function defined
on a shape. The resulting skeletal graph is such that it includes all geometric
information of a shape contour and also encodes the order in which it evolves.
In other words, it preserves the properties of shock graphs, with additional
characteristics to mitigate their limitations. In addition, we will demonstrate
that our graph is a unique signature of a shape in the sense that one may
reconstruct the original shape.

2.1 Morse Theory

In this section, we review some basic concepts of Morse theory [15, 16] as
a prelude to our proposed method. While Morse theory provides the basic
framework for topological analysis of smooth manifolds, we will be briefly
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discussing its role for the analysis of smooth compact surfaces embedded in
R
n before specializing the idea to planar shapes.

Morse theory relates the topology of a smooth manifold with the number of
critical points of a Morse function (see Definition 1) defined on this manifold.

A k-dimensional manifold M may be locally parameterized as

φ : Ω →M, (1)

that is, Ω � u �→ φ(u) ∈ M, where an open connected set Ω ⊂ R
k represents

the parameter space. Let f :M→ R be a real-valued function defined onM.
By definition, the function f is smooth if the composition f ◦ φ : Ω → R is
smooth for each local parameterization ofM. A point x = φ(u) ∈ M, where
u ∈ Ω is called a critical point of f if the gradient of f ◦ φ vanishes at u, i.e.,
�f ◦ φ(u) = 0, and f ◦ φ(u) is referred to as the corresponding critical value.
A critical point x ∈ M is called non-degenerate if the Hessian �2f ◦ φ(u) is
non-singular at φ(u). Note that this definition is independent of the choice of
the local parameterization in the neighborhood of the critical point.

The Morse Lemma states that there exists a parameterization of a neigh-
borhood of a non-degenerate critical point of f in which f ◦ φ attains a
quadratic form. For instance, the function f(x) = x2 has a non-degenerate
critical point at x = 0, which is in accordance with the local quadraticity of
the function.

If f is a smooth function on a two-dimensional manifoldM, three possible
types of non-degenerate critical points exist, namely the local minimum (index
0), the saddle point (index 1), and the local maximum (index 2).

Definition 1 (Morse function). A smooth function f : M → R on a
smooth manifold M is called a Morse function if all of its critical points
are non-degenerate.

A Morse function satisfies the following basic properties:

• Critical points of a Morse function are isolated.
• The number of critical points of a Morse function is stable, that is, a small

perturbation of the function neither creates nor destroys critical points.
• The number of critical points of a Morse function on a compact manifold

is finite.

The level set Lt = f−1(t) ⊂M of the Morse function f :M→ R is called
critical, if it contains a critical point of f . For instance, in Fig. 3, Lc is a
critical level of the surfaceM corresponding to the critical value c. According
to the Morse Deformation Lemma, if any two levels Lc1 and Lc2 have different
topological types, there is a number c ∈ (c1, c2) such that Lc is a critical level.
In other words, a change of topology occurs only at a critical point.

Example 1 (The Height Function on a Sphere). The height function defined
on a unit sphere M = S2 is a real-valued function h : M → R such that
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h(x, y, z) = z, ∀(x, y, z) ∈ M. This function has two critical points, minimum
at the south pole and maximum at the north pole. It is straightforward to
show that both are non-degenerate, indicating that h is a Morse function.

Fig. 2. Critical points of a height function defined on a manifold M.

Figure 2 illustrates the critical points of the height function on a double
torus. There are six critical points: a minimum, a maximum, and four saddle
points.

2.2 Handle Decomposition

Topological analysis can also be explained in terms of handle decompositions.
Consider a height function h defined on a surfaceM as shown in Fig. 3, map-
pingM onto the interval [a, b] where a and b correspond to the two extrema.
Studying the topology ofM is tantamount to looking at its intersections with
the level sets h = t ∈ [a, b] of h, where t is gradually increased.

Fig. 3. Study of a manifold M with handle decomposition.
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Starting at t = a, we figure out that the portion ofM that lies underneath
is an empty set. Clearly, there is a critical point p0 corresponding to the level
t = a and if viewed in an ε-neighborhood of a, we get a subsurface Mp0+ε,
illustrated in Fig. 4. This cup-shaped subsurface is diffeomorphic to a D2-disc,
referred to as a 0-handle in accordance with the index of the critical point.
Hence, whenever a minimum is encountered, we attach a 0-handle to the
portion of the surface that lies underneath, which, in turn, is an empty set in
this example.

Fig. 4. ε-Neighborhood of a 0-index critical point.

Consider the case when we are just about to encounter the saddle point c0,
as shown in Fig. 5(a), which corresponds to the level set Lc0−ε. The subsurface
Mc0−ε that lies under this level set contains two branches. As t is gradually
increased from Lc0−ε, we gradually move up the hill, eventually connecting the
two limbs at the critical point c0. In other words, a bridge is formed between
the two limbs, as shown in Fig. 5(b), which is diffeomorphic to a D1 × D1

disc, and is referred to as a 1-handle. Hence, whenever a 1-index critical point
is encountered, we attach a 1-handle to the portion of the surface that lies
underneath.

(a) (b)

Fig. 5. ε-Neighborhood of a 1-index critical point.

Similarly, the cup corresponding to the maximum gives rise to a 2-handle
(Fig. 6). Recall that a compact surface has finite critical points, hence it
can be decomposed in a finite set of handles. Another point that becomes
clear in this discussion is the fact that a change in topology occurs only at a
saddle point, where we actually get a bifurcation or a merger of branches in
a surface. The symbology for different handles is given in Fig. 7(a), while the
handle decomposition of the surface of Fig. 3 is given in Fig. 7(b).



68 S. H. Baloch and H. Krim

Fig. 6. ε-Neighborhood of a 2-index critical point.

(a) (b)

Fig. 7. (a) Symbology for different handles; (b) handle decomposition of the surface
given in Fig. 3.

2.3 Critical Points and Topology

We now briefly explain how the topology of a compact orientable surface can
be linked to the number of critical points of a Morse function defined on this
surface. This, however, requires defining two new interrelated concepts. First,
the genus of a surface is defined as the number of “handles” one needs to
add to a sphere to obtain the surface. Second, the Euler characteristics, χ, is
defined as the sum of the number of vertices and the number of faces minus
the number of edges of an arbitrary triangulation ofM. The topological type
of a compact orientable surface is in one-to-one correspondence with either of
these two numerical invariants. It follows from the previous section that the
genus is directly related to the topological type of a compact surface. On the
other hand, it can be shown that for any Morse function defined on a compact
orientable surface M, the Euler characteristic equals the number of maxima
plus the number of minima minus the number of saddle points. Thus, if a
Morse function onM is found, one can compute the Euler characteristics and
hence the genus, since both are interrelated by the formula χ = 2− 2g, which
in turn will determine the topological type ofM.

3 Topological Model

For topological analysis of 2D shapes, we use the distance function as a Morse
function, which may be shown to be invariant under rotation, translation and
scaling.
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3.1 The Distance Function

Consider a distance function d : p �→ ‖p‖ in R
2. Given a generic shape

M⊂ R
2, the restriction of the distance function onM,

d :M→ R+, (2)

is a Morse function. The distance function may, therefore, be used for con-
structing skeletal graphs.

To study a compact shape with a Morse distance function, we start at
d(p) = 0 and gradually increase the value of the distance function in K steps
to a sufficiently large value which we denote b. The integer K is called the
resolution of the skeletal graph. The larger the resolution, the greater the
precision of capturing the structural changes in the level sets of the distance
function. Recall that such changes only occur at critical level sets.

The level sets of d are concentric circles. We find the intersection of the
surface with circles of radius d, for all d ∈ [0, b] and assign a vertex to each
connected component in an intersection. This is illustrated in Fig. 8. Hence,
skeletal graphs associated with the distance function may be described as a
quotient spaceM/ ∼ where the equivalence relation ∼ is defined as follows:

(a) (b) (c)

Fig. 8. Skeletal graph of an eight shape: (a) shape analyzed with an evolving circle;
(b) intersections of the circle and the shape; (c) vertex assignment in the graph.

Definition 2 (Equivalence). Two points p and q ∈ M are equivalent, i.e.,
p ∼ q, if they belong to the same connected component of the level set of the
function d. Mathematically, p ∼ q if d(p) = d(q) and p ∈ ConnCompd(q).

The skeletal representation is, hence, a set of all such equivalence classes
with each equivalence class mapped to the same value through a distance
function. Mathematically, this quotient space is defined as M/ ∼:= {[p] :
p ∈ M}, where [p] = {q ∈ M : q ∼ p} and the equivalence relation ∼ is as
defined above.

Note that d, given by Eq. (2), is translation dependent. However, if the
origin is taken at the centroid µ of a shape, we achieve translation invariance:

dµ(p) := ‖p− µ‖. (3)
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We can introduce scale invariance through the following transformation:

d̃µ(p) =
dµ(p)− dmin

dmax − dmin
. (4)

Proposition 1 (Invariance). The distance function given by Eq. (4) is ro-
tation, translation and scale invariant [2].

The above proposition demonstrates the invariance of the distance function
to rigid body transformation under the condition that the centroid of the
manifold must be translated to the origin.

3.2 Analysis of Planar Shapes

In order to capture the topology of a shapeM, as shown in Fig. 9, we have to
identify the special landmarks marked on M. To exploit the Morse function
formalism, we concentrate on the boundary of M, which is composed of 3
disjoint sets M1,M2 and M3. Of course, if we were to use the distance
function as a Morse function we could have easily identified the maxima and
the minima of the independent curves. In practice, we have to identify the
critical points, represent them as graph vertices and subsequently establish
their mutual relationships, i.e., their connectivity to other critical points in a
graph.

(a) (b)

Fig. 9. Topological analysis of a 2D shape M, where M1,M2 and M3 define the
boundary of M. (a) Critical points of M1,M2 and M3; (b) handle decomposition
of M.

This requires a slightly different perspective where a shape is considered
as a whole. We focus on the neighborhood of Mmax

2 in Fig. 9(a), which is a
1-index critical point of a height function h. If we are moving in the decreasing
h direction, as we encounter Mmax

2 , we detect a bifurcation of the shape in
two branches. Although Mmax

2 is not a saddle point, it behaves in a similar
way here and we, therefore, call it a pseudo saddle point. Its similarity with a
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saddle point is evident from the fact that it defines a change in the topology
of a shape much like its actual counterpart on a surface. Clearly, if we look
at the neighborhood around this point, we notice that as we move towards
it, we indeed attach a 1-handle to the portion of the shape that lies above it.
The idea of handle decomposition is, therefore, still applicable and provides
the basic framework for capturing topology. In other words, it allows us to
establish the connectivity of vertices and, hence, to represent the topology of
a planar object in the form of a skeletal graph.

A handle decomposition of an eight shape is shown in Fig. 9(b). Note that
here we are using a height function to explain the idea, but the formalism is
valid for any Morse function, and, hence, for our choice of distance function.

3.3 Algorithm

The algorithm for computing a Morse theoretic skeletal graph is illustrated
in Fig. 10. Note that the level sets of the distance function are concentric
circles and their intersections with any shape will always be circular arcs. In
order to generate a topological graph, we start with a circle of smallest ra-
dius which is gradually increased. In the process, we monitor its intersections
with the shape. Each intersection arc is subsequently specified with a graph
vertex at its centroid defined as an arithmetic mean of the points in the arc.
Connectivity between the vertices is established by looking at the connectiv-
ity of the circular arcs at two different levels. For instance, at a particular
instant, we have a current circle Cc and a previous circle Cp as illustrated in
Fig. 10. Analyzing the shape with Cp and Cc gives two sets of intersection arcs
{Ap1 ,Ap2 ,Ap3 ,Ap4} and {Ac1 ,Ac2 ,Ac3 ,Ac4}, which respectively yield two
sets of vertices {NApi

}4
i=1 and {NAci

}4
i=1. To establish relationships between

the two sets of vertices, we look at the regions enclosed between the two cir-
cles, which in this example are {M1,M2,M3,M4}. Note that there is only
one arc at the current level that is connected to an arc at the previous level via
a shape region. For instance, it is only Ac1 that is connected to Ap1 through
M1. This allows us to add an edge (NAp1

, NAc1
) to the skeletal graph. Other

edges in this example are determined similarly, i.e., {(NApi
, NAci

)}4
i=2.

We may now summarize the algorithm as given in Algorithm 1.

A Sampling View

Aside from the Morse theoretic framework, there is an alternative interpre-
tation of the previously described methodology. The intersections of a shape
with concentric circles may be viewed as an isotropic sampling process. This
means that we need to define a point spread function (PSF) that allows us to
identify circular arcs. In polar coordinates, we represent the PSF by K(r, θ).
Analyzing a shape at a given point (r, θ) means convolving it with the PSF:

Λ = S ∗K(r, θ), (5)
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Fig. 10. Skeletonization of a 2D shape M. Note that Ãc = Ac1 ∪Ac2 ∪Ac3 ∪Ac4 ,
and Ãp = Ap1 ∪ Ap2 ∪ Ap3 ∪Ap4 , M̃ = M1 ∪M2 ∪M3 ∪M4.

Algorithm 1. Skeletonization of planar shapes

1. Find the centroid of the shape M as the arithmetic mean of the shape points
2. Find dmax as the maximum distance from the centroid
3. Given K, define:

rk := k
dmax

K
, k = 1, . . . , K (4)

4. Generate the previous circle CP with radius Rp = r1

5. Find ÃP = M∩ CP

6. Find the connected components in ÃP . Each connected component AP in ÃP

will be a circular arc. Assign a vertex NAP to each AP at its centroid
7. For k = 2 to K

• Generate the current circle CC with radius Rc = rk

• Find ÃC = M∩ CC

• If ÃC = CC , goto Step 7
• Find M̃C = M ∩ (�CC� ∩ �CP �), where �.� and �.� identify interior and

exterior of a closed contour. Hence, M̃C will be the portion of M that lies
in between CP and CC

• Find the connected components in ÃC

• For each connected component AC in ÃC do
– Assign a vertex NAC at the centroid of AC

– For each connected region MC in M̃C do:
· If the number of connected regions in MC ∪AC is one, find the arc

AP in ÃP such that (MC∪AC)∪AP has only one connected region.
Connect NAC to NAP

– end for
• end for
• CP = CC

• ÃP = ÃC

8. end for
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where S is a shape in polar coordinates. This convolution is computed at all
angles and all radii to get {{Λ(r, θ) : θ ∈ [−π, π]} : r ∈ [dmin, dmax]}, which
represents all intersection arcs and, therefore, defines all vertices in a skeletal
graph. Note that the inner set represents an intersection of a shape S with
a circle of radius r and, therefore, Mean (ConnComp ({Λ(r, θ) : θ ∈ [−π, π]}))
defines a graph vertex. The vertices whose degree is not two identify critical
points of the distance function.

Physical Interpretation

In addition to its location, each graph vertex attribute includes the radius
of the corresponding concentric circle. This allows us to keep track of the
order in which vertices originate. This process may intuitively be viewed as a
wavefront emanating at a point source located at a shape centroid and prop-
agating outwards. The shape itself may be viewed as a dense material with
some reflective index. For simplicity, we assume that the material has direc-
tional reflectivity, i.e., it can only reflect an outward propagating wave. Thus,
as the wave propagates through the material at each instance a portion of it
is reflected back to the source, which acts as the focal point of the reflecting
medium. The time to record a reflected wave is proportional to the distance
that it travels before reflection, which in turn equals the radius of the concen-
tric circles. Keeping track of the order of vertex evolution largely aligns this
method with the shock graph technique, which has a similar difference from
medial axis based methods.

Some illustrative skeletal graphs of shapes are given in Figs. 11 through
13 to demonstrate their topology capturing capabilities.

(a) (b) (c)

Fig. 11. Skeletonization of an eight shape with various graph resolutions K:
(a) K = 4; (b) K = 5; (c) K = 7.

4 Geometric Modeling

While the skeletal graphs presented in Section 3.3 demonstrate their capacity
to capture topological structure, they fall short of a complete shape represen-
tation, i.e., a shape cannot be reconstructed given its skeletal representation
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due to lack of geometric information. In this section, we investigate encoding
of the geometric information in a graph with no additional cost. To proceed,
first recall that graph vertices are assigned at the centroid of the circular arcs
which is defined as the arithmetic mean of the points in a given arc. We explore
an alternative definition of a centroid resulting from a geometric construction
which will lead to a complete shape representation.

(a) (b)

Fig. 12. Skeletonization of a kettle: (a) K = 4; (b) K = 16.

(a) (b) (c)

Fig. 13. Skeletonization of an airplane: (a) K = 4; (b) K = 16; (c) K = 64.

4.1 Geometric Encoding of Vertices

Suppose we are given an arc α as shown in Fig. 14, with end points A(x
A
, y

A
)

andB(x
B
, y

B
). This corresponds to an intersection arc of a level set of distance

function. Clearly, A and B lie on a shape boundary. Without loss of generality
we assume that the shape centroid lies at the origin, then:

α(x, y) : x2 + y2 = r2. (6)

1. Find the perpendicular bisector CD of the line segment AB, where D is
the point where it intersects the circular arc α.

2. Take the midpoint N(x
N
, y

N
) of CD as a new definition of the centroid.

In other words, a vertex coincides with N .

With the above construction, given a vertex N(x
N
, y

N
) at radius r, we can

always recover boundary/landmark points A and B using a simple geometric
manipulation (See the Appendix for details).

Recall that each shape is represented by a graph G which consists of a set
of vertices {N(ri) : i = 1, . . . , n} corresponding to radii {ri : i = 1, . . . , n}.
This means that we can recover the corresponding set of boundary points
{A(ri), B(ri) : i = 1, . . . , n}, and as the graph resolution goes to infinity we
get a continuous boundary.
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Fig. 14. New definition of graph vertex.

5 Experimental Results

To substantiate the preceding geometric encoding construction, we randomly
simulate arcs and subsequently evaluate them for specific shapes.

5.1 Examples

Randomly generated arcs α, parameterized as α(t) : t ∈ [0, 1], with end points
A = α(0) and B = α(1) are illustrated in Fig. 15. Let N0 denote a vertex
computed using the old definition of the centroid. If we use N = 0.5(C +D)
as indicated in Step 2 of Section 4.1, the resulting vertex N �= N0, indicating
an error. This will ultimately yield a skeletal graph that does not coincide
with the skeletal graph constructed with the old definition.

Fig. 15. Illustration of difference between two vertex definitions (N = 0.5(C +D)).

As illustrated in Fig. 15, the point N needs to be moved closer to N0

by adjusting the weights for C and D in N(γ) = γC + (1 − γ)D. γ should
be such that it minimizes the mean square error between N and N0 for all
cases. Such a minimization yields γ = 0.4. Note that decreasing γ may move
point N closer to N0 for some cases (see Fig. 16(a)), but may also overstep
N0 for other cases (see Fig. 16(c)). There should, therefore, be an equilibrium
between two forces that are pushing N in opposite directions, as illustrated
in the state given in Fig. 16(d) for γ = 0.4.
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(a) (b) (c) (d)

Fig. 16. Illustration of difference between two vertex definitions (N = 0.4C+0.6D).

We now reconstruct boundary points from a given vertex N , the results
for which are shown in Fig. 17.

(a) (b) (c) (d)

Fig. 17. Reconstructed boundary points A and B.

5.2 Application to Planar Shapes

Applying the methodology to shapes is illustrated in Figs. 18 and 19 where a
comparison of results for old and new vertex definitions is carried out. We
notice that there is no visual difference between the two sets of graphs. The
advantage of the new definition is that it allows shape reconstruction. Fig. 20
presents some additional results while Fig. 21 shows reconstructed shapes.
Although the results shown in Fig. 21 actually reconstruct landmarks on the
boundary, instead of the boundary itself, fitting a contour to these landmarks
may be trivially carried out in most cases. Since landmark points lie on the
boundary, active contours [25] or principal curves [10] may give reasonably
good results due to the fact that the images are noiseless. Some results are
given in Fig. 22.

Since we can reconstruct a shape from a graphical representation, we have
experimentally confirmed that our skeletal graph forms a unique signature of
the corresponding shape.
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(a)

(b)

Fig. 18. Skeletonization of a kettle: (a) old definition of a vertex; (b) new definition.
(Left) K = 4; (center) K = 5; (right) K = 16.

(a)

(b)

Fig. 19. Skeletonization: (a) old definition of a vertex; (b) new definition. (Left)
horse, K = 5; (right) airplane, K = 8.

6 Conclusions

In this chapter, we addressed a problem of modeling a topologically diverse
class of shapes, a previously unaddressed problem. Our approach, based on
Morse theoretic skeletal graphs, not only models topology but fully captures
the geometry of a shape. The model, which is inherently rotation, transla-
tion and scale invariant, is therefore, a simpler, unique and compact shape
representation. Applications include storage and shape classification.
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(a) (b) (c)

Fig. 20. Skeletonization: (a) frog, K = 16; (b) camel, K = 16; (c) airplane, K = 100.

(a) (b)

Fig. 21. Reconstruction of shape landmarks: (a) K = 8; (b) K = 100.

(a) (b)

Fig. 22. Contour fitting: (a) eight shape; (b) horse shape.

Appendix

The construction given in Section 4.1 allows the recovery of boundary points
from a given vertex. To that end, we first find the midpoint C of the desired
line segment AB (we do not know its length yet). The following steps are
involved (see Fig. 23):

1. Identify point D as an intersection between
−−→
ON and the circle β of ra-

dius r.
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Fig. 23. Reconstruction of shape.

2. Find point C(x
C
, y

C
) on OD such that CN = DN .

3. Find the intersection of β with the perpendicular to the segment CD
passing through C.

4. The two intersections, i.e., pointsA(x
A
, y

A
) andB(x

B
, y

B
) give the bound-

ary points.
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Summary. We present a novel approach to measuring similarity between shapes
and exploit it for object recognition. In our framework, the measurement of similarity
is preceded by (1) solving for correspondences between points on the two shapes, and
(2) using the correspondences to estimate an aligning transform. In order to solve
the correspondence problem, we attach a descriptor, the shape context, to each point.
The shape context at a reference point captures the distribution of the remaining
points relative to it, thus offering a globally discriminative characterization. Corres-
ponding points on two similar shapes will have similar shape contexts, enabling us
to solve for correspondences as an optimal assignment problem. Given the point
correspondences, we estimate the transformation that best aligns the two shapes;
regularized thin-plate splines provide a flexible class of transformation maps for this
purpose. The dissimilarity between the two shapes is computed as a sum of matching
errors between corresponding points, together with a term measuring the magnitude
of the aligning transform. We treat recognition in a nearest neighbor classification
framework as the problem of finding the stored prototype shape that is maximally
similar to that in the image. We also demonstrate that shape contexts can be used
to quickly prune a search for similar shapes. We present two algorithms for rapid
shape retrieval: representative shape contexts, performing comparisons based on a
small number of shape contexts, and shapemes, using vector quantization in the
space of shape contexts to obtain prototypical shape pieces. Results are presented
for silhouettes, handwritten digits and visual CAPTCHAs.

Key words: Shape distance, shape correspondence, thin-plate spline (TPS),
object recognition.

1 Introduction

Consider the two handwritten digits in Fig. 1. Regarded as vectors of pixel
brightness values and compared using L2 norms, they are very different. How-
ever, regarded as shapes they appear rather similar to a human observer. Our
objective in this chapter is to operationalize this notion of shape similarity,
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with the ultimate goal of using it as a basis for category-level recognition. We
approach this as a three-stage process:

1. solve the correspondence problem between the two shapes,
2. use the correspondences to estimate an aligning transform, and
3. compute the distance between the two shapes as a sum of matching errors

between corresponding points, together with a term measuring the magni-
tude of the aligning transformation.

Fig. 1. Examples of two handwritten digits. In terms of pixel-to-pixel comparisons,
these two images are quite different, but to the human observer, the shapes appear
to be similar.

At the heart of our approach is a tradition of matching shapes by defor-
mation that can be traced at least as far back as D’Arcy Thompson. In his
classic work On Growth and Form [41], Thompson observed that related but
not identical shapes can often be deformed into alignment using simple coordi-
nate transformations, as illustrated in Fig. 2. In the computer vision literature,
Fischler and Elschlager [15] operationalized such an idea by means of energy
minimization in a mass-spring model. Grenander et al. [18] developed these
ideas in a probabilistic setting. Yuille [44] developed another variant of the
deformable template concept by fitting hand-crafted parameterized models,
e.g., for eyes, in the image domain using gradient descent. Another well-known
computational approach in this vein was developed by von der Malsburg and
collaborators [25] using elastic graph matching.

Our primary contribution in this work is a robust and simple algorithm
for finding correspondences between shapes. Shapes are represented by a set
of points sampled from the shape contours (typically 100 or so pixel locations
sampled from the output of an edge detector are used). There is nothing
special about the points. They are not required to be landmarks or curvature
extrema, etc.; as we use more samples we obtain better approximations to
the underlying shape. We introduce a shape descriptor, the shape context,
to describe the coarse distribution of the rest of the shape with respect to
a given point on the shape. Finding correspondences between two shapes
is then equivalent to finding for each sample point on one shape the sample
point on the other shape that has the most similar shape context. Maximizing
similarities and enforcing uniqueness naturally leads to a setup as a bipartite
graph matching (equivalently, optimal assignment) problem. As desired, we
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can incorporate other sources of matching information readily, e.g., similarity
of local appearance at corresponding points.

Given the correspondences at sample points, we extend the correspondence
to the complete shape by estimating an aligning transformation that maps one
shape onto the other. A classic illustration of this idea is provided in Fig. 2.
The transformations can be picked from any of a number of families — we
have used Euclidean, affine and regularized thin-plate splines in various appli-
cations. Aligning shapes enables us to define a simple, yet general, measure of
shape similarity. The dissimilarity between the two shapes can now be com-
puted as a sum of matching errors between corresponding points, together
with a term measuring the magnitude of the aligning transform.

Fig. 2. Example of coordinate transformations relating two fish, from D’Arcy
Thompson’s On Growth and Form [41]. Thompson observed that similar biological
forms could be related by means of simple mathematical transformations between
homologous (i.e., corresponding) features. Examples of homologous features include
center of eye, tip of dorsal fin, etc.

Given such a dissimilarity measure, we can use nearest neighbor tech-
niques for object recognition. Philosophically, nearest neighbor techniques can
be related to prototype-based recognition as developed by Rosch and collab-
orators [37, 38]. They have the advantage that only a pairwise dissimilarity
measure — not a vector space structure — is required. To address the scaling
issues that arise in nearest neighbor matching, we propose a fast pruning
technique for quickly retrieving a shortlist of likely matches.

We demonstrate object recognition in a wide variety of settings. Results
are presented on the MNIST dataset of handwritten digits (Fig. 8), silhouettes
(Fig. 9), the Snodgrass and Vanderwart line drawings (Fig. 10), and the EZ-
Gimpy CAPTCHA (Fig. 12).

The structure of this chapter is as follows. We begin by introducing the
shape context descriptor in Section 2. In Section 3 we develop the shape
context-based matching framework. We provide experimental results in a
variety of application areas in Section 4, and we conclude in Section 5.
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2 The Shape Context

In our approach, we treat an object as a (possibly infinite) point set and we
assume that the shape of an object is essentially captured by a finite subset of
its points. More practically, a shape is represented by a discrete set of points
sampled from the internal or external contours on the object. These can be
obtained as locations of edge pixels as found by an edge detector, giving us a
set P = {p1, . . . , pn}, pi ∈ 2, of n points. They need not, and typically will
not, correspond to key points such as maxima of curvature or inflection points.
We prefer to sample the shape with roughly uniform spacing, although this
is also not critical. Fig. 3(a,b) shows sample points for two shapes. Assuming
contours are piecewise smooth, we can obtain as good an approximation to
the underlying continuous shapes as desired by picking n to be sufficiently
large.

For each point pi on the first shape, we want to find the “best” matching
point qj on the second shape. This is a correspondence problem similar to
that in stereopsis. Experience there suggests that matching is easier if one
uses a rich local descriptor, e.g., a gray-scale window or a vector of filter
outputs [23], instead of just the brightness at a single pixel or edge location.
Rich descriptors reduce the ambiguity in matching.

As a key contribution we propose a novel descriptor, the shape context, that
plays such a role in shape matching. Consider the set of vectors originating
from a point to all other sample points on a shape. These vectors express the
configuration of the entire shape relative to the reference point. Obviously, this
set of n−1 vectors is a rich description, since as n gets large, the representation
of the shape becomes exact.

The full set of vectors as a shape descriptor is much too detailed since
shapes and their sampled representation may vary from one instance to
another in a category. We identify the distribution over relative positions as a
more robust and compact, yet highly discriminative, descriptor. For a point
pi on the shape, we compute a coarse histogram hi of the relative coordinates
of the remaining n − 1 points,

hi(k) = # {q �= pi : (q − pi) ∈ bin(k)} . (1)

This histogram is defined to be the shape context of pi. We use bins that are
uniform in log-polar1 space, making the descriptor more sensitive to positions
of nearby sample points than to those of points farther away. An example is
shown in Fig. 3(c).

Consider a point pi on the first shape and a point qj on the second
shape. Let Cij = C(pi, qj) denote the cost of matching these two points. As

1This choice corresponds to a linearly increasing positional uncertainty with
distance from pi, a reasonable result if the transformation between the shapes around
pi can be locally approximated as affine.
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Fig. 3. Shape context computation and matching. (a,b) Sampled edge points of
two shapes. (c) Diagram of log-polar histogram bins used in computing the shape
contexts. We use 5 bins for log r and 12 bins for θ. (d–f) Example shape contexts
for reference samples marked by ◦, �, � in (a,b). Each shape context is a log-polar
histogram of the coordinates of the rest of the point set measured using the ref-
erence point as the origin. (Dark = large value.) Note the visual similarity of the
shape contexts for ◦ and �, which were computed for relatively similar points on
the two shapes. In contrast, the shape context for � is quite different. (g) Corres-
pondences found using bipartite matching, with costs defined by the χ2 distance
between histograms.

shape contexts are distributions represented as histograms, it is natural to use
the χ2 test statistic:

Cij ≡ C(pi, qj) =
1
2

K∑
k=1

[hi(k) − hj(k)]2

hi(k) + hj(k)
,

where hi(k) and hj(k) denote the K-bin normalized histogram at pi and qj ,
respectively.2 The set of costs Cij over all i and j provide us with a matrix
that can be used as the input to a variety of bipartite matching algorithms,
to be discussed in Section 3.

The cost Cij for matching points can include an additional term based
on the local appearance similarity at points pi and qj . This is particularly
useful when we are comparing shapes derived from gray-level images instead

2Alternatives include Bickel’s generalization of the Kolmogorov–Smirnov test for
2D distributions [7], which does not require binning, or treating the shape contexts
as vectors and comparing them using an Lp norm.
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of line drawings. For example, one can add a cost based on normalized corre-
lation scores between small gray-scale patches centered at pi and qj , distances
between vectors of filter outputs at pi and qj , tangent orientation difference
between pi and qj , and so on. The choice of this appearance similarity term is
application dependent, and is driven by the necessary invariance and robust-
ness requirements, e.g., varying lighting conditions make reliance on gray-scale
brightness values risky.

2.1 Invariance and Robustness

A matching approach should be (1) invariant under scaling and translation
and (2) robust under small geometrical distortions, occlusion and presence
of outliers. In certain applications, one may want complete invariance under
rotation, or perhaps even the full group of affine transformations. We now
evaluate shape context matching by these criteria.

Invariance to translation is intrinsic to the shape context definition since
all measurements are taken with respect to points on the object. To achieve
scale invariance we normalize all radial distances by the mean distance α
between the n2 point pairs in the shape.

Since shape contexts are extremely rich descriptors, they are inherently
insensitive to small perturbations of parts of the shape. While we have no
theoretical guarantees here, robustness to small nonlinear transformations,
occlusions and presence of outliers is evaluated experimentally in [4].

In the shape context framework, we can provide for complete rotation
invariance if this is desirable for an application. Instead of using the absolute
frame for computing the shape context at each point, one can use a rela-
tive frame, based on treating the tangent vector at each point as the positive
x-axis. In this way the reference frame turns with the tangent angle, and the
result is a completely rotation-invariant descriptor. However, it should be em-
phasized that in many applications complete invariance impedes recognition
performance, e.g., when distinguishing 6 from 9, rotation invariance would
be completely inappropriate. Another drawback is that many points will not
have well-defined or reliable tangents. Moreover, many local appearance fea-
tures lose their discriminative power if they are not measured in the same
coordinate system.

Additional robustness to outliers can be obtained by excluding the esti-
mated outliers from the shape context computation in an iterative fashion.
More specifically, consider a set of points that have been labeled as outliers
on a given iteration. We render these points “invisible” by not allowing them
to contribute to any histogram. However, we still assign them shape contexts,
taking into account only the surrounding inlier points, so that at a later iter-
ation they have a chance of re-emerging as an inlier.
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2.2 Generalized Shape Contexts

The spatial structure of the shape context histogram bins, with central bins
smaller than those in the periphery, results in a descriptor that is more precise
about the location of nearby features and less precise about those farther away.
When additional features, such as local edgel orientations, are available, this
same structure can be applied to construct a richer descriptor. We call these
extended descriptors generalized shape contexts.

We have experimented with an instantiation of generalized shape contexts
based on edgel orientations. To each edge point qj we attach a unit length
tangent vector tj that is the direction of the edge at qj . In each bin we sum
the tangent vectors for all points falling in the bin. The descriptor for a point
pi is the histogram ĥi:

ĥk
i =

∑
qj∈Q

tj, where Q = {qj �= pi, (qj − pi) ∈ bin(k)} .

Each bin now holds a single vector in the direction of the dominant orientation
of edges in the bin. When comparing the descriptors for two points, we convert
this d-bin histogram to a 2d-dimensional vector v̂i, normalize these vectors,
and compare them using the L2 norm:

v̂i = 〈ĥ1,x
i , ĥ1,y

i , ĥ2,x
i , ĥ2,y

i , . . . , ĥd,x
i , ĥd,y

i 〉
dGSC(ĥi, ĥj) = ‖v̂i − v̂j‖2,

where ĥj,x
i and ĥj,y

i are the x and y components of ĥj
i , respectively.

Note that these generalized shape contexts reduce to the original shape
contexts if all tangent angles are clamped to zero. Our experiments in Section 4
will compare these new descriptors with the original shape contexts.

2.3 Shapemes: Vector-Quantized Shape Contexts

Another extension we have explored uses vector quantization on the shape
contexts. Given a set | | of shapes, and shape contexts computed at s sample
points on these shapes, the full set of shape contexts for the known shapes
consists of | | · s d-dimensional vectors. A standard technique in compression
for dealing with such a large amount of data is vector quantization. Vector
quantization involves clustering the vectors and then representing each vector
by the index of the cluster that it belongs to. We call these clusters shapemes —
canonical shape pieces.

To derive these shapemes, all of the shape contexts from the known set are
considered as points in a d-dimensional space. We perform k-means clustering
to obtain k shapemes. Figure 4 shows the representation of sample points as
shapeme labels.
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(a) (b) (c) (d)

Fig. 4. (a,c) Line drawings. (b,d) Sampled points with shapeme labels. k = 100
shapemes were extracted from a known set of 260 shapes (26000 generalized shape
contexts). Note the similarities in shapeme labels (2,41 on left side, 24,86,97 on right
side) between similar portions of the shapes.

2.4 Related Descriptors

Local Patch Models

Recent years have seen the emergence of local patch models as approaches
[1, 12, 14, 28] for object recognition. These approaches capture appearance
information through a collection of local image patches, while shape infor-
mation is encoded via spatial relationships between the local patches. The
locations for the local patches are selected with various interest point opera-
tors and are represented either as raw pixel values [14] or histograms of image
gradients [12,28], termed scale invariant feature transform (SIFT) descriptors.

The major differences between our work using shape contexts and the
preceding methods are in the scope of the descriptor and the locations at
which they are computed. Shape contexts are a relatively large-scale point
descriptor. With a radius of approximately half the diameter of an object, each
shape context captures information from almost the entire shape. Second, the
shape contexts are computed at a dense set of locations spread over the entire
shape, as opposed to the interest points selected in the other approaches.

Extensions to Three Dimensions

As far as we are aware, the shape context descriptor and its use for matching
2D shapes is novel. The most closely related idea in past work is that due to
Johnson and Hebert [22] in their work on range images. They introduced a
representation for matching dense clouds of oriented 3D points called the “spin
image.” A spin image is a 2D histogram formed by spinning a plane around
a normal vector on the surface of the object and counting the points that fall
inside bins in the plane. The related problem of similarity-based 3D model
retrieval has also been explored extensively in the work of Osada et al. [33]
and Ben Hamza and Krim [20] who make use of a variety of histogram-based
shape descriptors.



Matching with Shape Contexts 89

Frome et al. [16] have extended the original 2D shape contexts for use in
matching 3D point sets such as those obtained via laser range finders. The
extension is a natural one — an oriented sphere centered at each point in 3D is
divided into bins with equally spaced boundaries in the azimuth and elevation
dimensions, and logarithmically spaced boundaries in the radial dimension.
Frome et al. present results showing that these 3D shape contexts outperform
spin images in 3D object recognition tasks.

Extension to the Continuous Case

Berg and Malik [6] developed a descriptor which is akin to a shape context for
gray-scale images. Their features are based on a spatially varying smoothing of
edge energy, termed “geometric blur,” which increases along with the distance
from the center of the descriptor. This variation in smoothing level is similar
to the increase in radial width of the shape context bins as one moves away
from the center of the shape context descriptor.

3 Matching Framework

We turn now to the use of shape contexts as part of a theory of object recogni-
tion based on shape matching. As stated earlier, it is desirable for such a theory
to support both accurate fine discrimination as well as rapid coarse discrimi-
nation. This suggests the following two-stage approach to shape matching.

1. Fast pruning: Given an unknown 2D query shape, we should be able to
quickly retrieve a small set of likely candidate shapes from a potentially very
large collection of stored shapes. We have developed two algorithms for this
problem.

2. Detailed matching: Once we have a small set of candidate shapes, we
can perform a more expensive and more accurate matching procedure to find
the best matching shape to the query shape.

In this work we will not address the problem of scale estimation. Shapes
will be presented in a setting that allows for simple estimation of scale via
the mean distance between points on a shape. In a natural setting, multi-
scale search could be performed, or scale-invariant interest point detection or
segmentation could be used to estimate scale.

3.1 Fast Pruning

Given a large set of known shapes, the problem is to determine which of these
shapes is most similar to a query shape. From this set of shapes, we wish
to quickly construct a shortlist of candidate shapes which includes the best
matching shape. After completing this coarse comparison step, one can then
apply a more time-consuming, and more accurate, comparison technique to
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only the shortlist. We leverage the descriptive power of shape contexts towards
this goal of quick pruning.

We have developed two matching methods that address these issues. In
the first method, representative shape contexts (RSCs), we compute a few
shape contexts for the query shape and attempt to match using only those.
The second method uses the shapemes defined above to efficiently compare
the entire set of shape contexts for a query shape to the set of known
shapes.

Representative Shape Contexts

Fig. 5. Matching individual shape contexts. Three points on the query shape (left)
are connected with their best matches on two known shapes. L2 distances are given
with each matching.

Given two easily discriminable shapes, such as the outlines of a fish and
a bicycle, we do not need to compare every pair of shape contexts on the
objects to know that they are different. When trying to match the dissimilar
fish and bicycle, none of the shape contexts from the bicycle has a good
match on the fish — it is immediately obvious that they are different shapes.
Figure 5 demonstrates this process. The first pruning method, representative
shape contexts, uses this intuition.

In concrete terms, the matching process proceeds in the following manner.
For each of the known shapes Si, we precompute a large number s (about
100) of shape contexts {SCj

i : j = 1, 2, . . . , s}. But for the query shape, we
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only compute a small number r (r ≈ 5–10 in experiments) of shape contexts.
To compute these r shape contexts we randomly select r sample points from
the shape via a rejection sampling method that spreads the points over the
entire shape. We use all the sample points on the shape to fill the histogram
bins for the shape contexts corresponding to these r points. To compute the
distance between a query shape and a known shape, we find the best matches
for each of the r RSCs.

Note that in cluttered images many of the RSCs contain noisy data, or are
not located on the shape Si. Hence, for each of the known shapes Si we find
the best k RSCs, the ones with the smallest distances. Call this set of indices
Gi. The distance between shapes Q and Si is then

dS(Q, Si) =
1
k

∑
u∈Gi

dGSC(SCu
Q, SC

m(u)
i )

Nu
,

where m(u) = argminjdGSC(SCu
Q, SCj

i ).

Nu is a normalizing factor that measures how discriminative the representative
shape context SCu

Q is:

Nu =
1
| |

∑
Si∈

dGSC(SCu
Q, SC

m(u)
i ),

where is the set of all shapes. We determine the shortlist by sorting these
distances.

Pruning with Shapemes

The second pruning method makes use of the vector quantization process
described earlier to reduce the complexity of comparing two shapes. We rep-
resent each shape as a collection of shapemes. Each d-bin shape context is
quantized to its nearest shapeme, and replaced by the shapeme label (an
integer in {1, . . . , k}). A shape is then simplified into a histogram of shapeme
frequencies. No spatial information among the shapemes is stored. We have
reduced each collection of s shape contexts (d bin histograms) to a single
histogram with k bins.

In order to match a query shape, we simply perform this same vector
quantization and histogram creation operation on the shape contexts from
each of the known shapes and the query shape. We then find nearest neighbors
in the space of histograms of shapemes to construct a shortlist of potential
matches.

3.2 Detailed Matching

The process of detailed matching consists of two basic steps, which we opera-
tionalize in an iterative fashion: (1) solving for correspondences and (2) trans-
formation into alignment.
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Correspondence

Given the set of costs Cij between all pairs of points pi on the first shape and
qj on the second shape, we wish to determine the one-to-one correspondences
between them. A number of algorithms can be used for this purpose. The
simplest method is nearest neighbor, consisting of one arg min pass on the
rows of C followed by another pass on the columns to break many-to-one
mappings. This is fast, but will in general leave a number of points unassigned.
A better approach is to find the permutation π that minimizes the total cost
of matching,

H(π) =
∑

i

C
(
pi, qπ(i)

)
(2)

subject to the constraint that the matching be one to one. This is an instance
of the square assignment (or weighted bipartite matching) problem, which
can be solved in O(N3) time using the Hungarian method [34]. In our experi-
ments, we use the more efficient algorithm of [24]. The input to the assignment
problem is a square cost matrix with entries Cij . The result is a permutation
π(i) such that (2) is minimized.

The above cost function can be augmented to incorporate mappings of
pairs of correspondences, so that geometric distortion can be taken into
account simultaneously with point-to-point matching cost. Berg et al. [5] take
such an approach, for which they employ an approximate solution of the
integer quadratic programming problem.

In order to have robust handling of outliers, one can add “dummy” nodes
to each point set with a constant matching cost of εd. In this case, a point
will be matched to a “dummy” whenever there is no real match available at
smaller cost than εd. Thus, εd can be regarded as a threshold parameter for
outlier detection. Similarly, when the number of sample points on two shapes
is not equal, the cost matrix can be made square by adding dummy nodes to
the smaller point set.

Transformation into Alignment

Given a finite set of correspondences between points on two shapes, one can
proceed to estimate a plane transformation T : 2 −→ 2 that may be used
to map arbitrary points from one shape to the other. This idea is illustrated by
the warped gridlines in Fig. 2, wherein the specified correspondences consisted
of a small number of landmark points such as the centers of the eyes, the
tips of the dorsal fins, etc., and T extends the correspondences to arbitrary
points.

We need to choose T from a suitable family of transformations. A standard
choice is the affine model, i.e.,

T (x) = Ax + o (3)
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with some matrix A and a translational offset vector o parameterizing the set
of all allowed transformations. Then the least squares solution T̂ = (Â, ô) is
obtained by

ô =
1
n

n∑
i=1

(
pi − qπ(i)

)
, (4)

Â = (Q+P )t, (5)

where P and Q contain the homogeneous coordinates of P and Q, respectively,
i.e.,

P =

⎛
⎜⎜⎝

1 p11 p12

...
...

...
1 pn1 pn2

⎞
⎟⎟⎠ . (6)

Here, Q+ denotes the pseudoinverse of Q.
In this work, we mostly use the thin plate spline (TPS) model [13, 30],

which is commonly used for representing flexible coordinate transformations.
Bookstein [9] found it to be highly effective for modeling changes in biologi-
cal forms. Powell applied the TPS model to recover transformations between
curves [35]. Chui and Rangarajan [10] use TPS in their robust point matching
algorithm. The thin-plate spline is the 2D generalization of the cubic spline.
In its regularized form, which is discussed below, the TPS model includes the
affine model as a special case. We will now provide some background infor-
mation on the TPS model.

We start with the 1D interpolation problem. Let vi denote the target
function values at corresponding locations pi = (xi, yi) in the plane, with
i = 1, 2, . . . , n. In particular, we will set vi equal to x′

i and y′
i in turn to

obtain one continuous transformation for each coordinate. We assume that the
locations (xi, yi) are all different and are not collinear. The TPS interpolant
f(x, y) minimizes the bending energy

If =
∫∫

2

(
∂2f

∂x2

)2

+ 2
(

∂2f

∂x∂y

)2

+
(

∂2f

∂y2

)2

dxdy

and has the form:

f(x, y) = a1 + axx + ayy +
n∑

i=1

wiU (‖(xi, yi) − (x, y)‖) ,

where the kernel function U(r) is defined by U(r) = r2 log r2 and U(0) = 0
as usual. In order for f(x, y) to have square integrable second derivatives, we
require that

n∑
i=1

wi = 0 and
n∑

i=1

wixi =
n∑

i=1

wiyi = 0. (7)
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Together with the interpolation conditions, f(xi, yi) = vi, this yields a linear
system for the TPS coefficients:(

K P

PT 0

) (
w

a

)
=

(
v

0

)
, (8)

where Kij = U(‖(xi, yi) − (xj , yj)‖), the ith row of P is (1, xi, yi), w and v
are column vectors formed from wi and vi, respectively, and a is the column
vector with elements a1, ax, ay. We will denote the (n+3)× (n+3) matrix of
this system by L. As discussed, e.g., in [35], L is nonsingular and we can find
the solution by inverting L. If we denote the upper left n×n block of L−1 by
A, then it can be shown that

If ∝ vT Av = wT Kw. (9)

When there is noise in the specified values vi, one may wish to relax the
exact interpolation requirement by means of regularization. This is accom-
plished by minimizing

H [f ] =
n∑

i=1

(vi − f(xi, yi))2 + λIf . (10)

The regularization parameter λ, a positive scalar, controls the amount of
smoothing; the limiting case of λ = 0 reduces to exact interpolation. As
demonstrated in [17,43], we can solve for the TPS coefficients in the regular-
ized case by replacing the matrix K by K + λI, where I is the n × n iden-
tity matrix. It is interesting to note that the highly regularized TPS model
degenerates to the least-squares affine model.

To address the dependence of λ on the data scale, suppose that (xi, yi)
and (x′

i, y
′
i) are replaced by (αxi, αyi) and (αx′

i, αy′
i), respectively, for some

positive constant α. Then it can be shown that the parameters w, a, If of
the optimal TPS are unaffected if λ is replaced by α2λ. This simple scaling
behavior suggests a normalized definition of the regularization parameter. Let
α again represent the scale of the point set as estimated by the median edge
length between two points in the set. Then we can define λ in terms of α
and λo, a scale-independent regularization parameter, via the simple relation
λ = α2λo.

We use two separate TPS functions to model a coordinate transformation,

T (x, y) = (fx(x, y), fy(x, y)) (11)

which yields a displacement field that maps any position in the first image to
its interpolated location in the second image.3

3One potential problem with the use of TPS is that it can admit local folds and
reflections in the mapping, and it may not have an inverse. Guo et al. [19] employ
an approach that addresses this problem by means of estimating a diffeomorphism
between the corresponding point sets.
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Fig. 6. Illustration of the matching process applied to the example of Fig. 1.
Top row: 1st iteration. Bottom row: 5th iteration. Left column: estimated corres-
pondences shown relative to the transformed model, with tangent vectors shown.
Middle column: estimated correspondences shown relative to the untransformed
model. Right column: result of transforming the model based on the current
correspondences; this is the input to the next iteration. The grid points illustrate the
interpolated transformation over 2. Here we have used a regularized TPS model
with λo = 1.

In many cases, the initial estimate of the correspondences contains some
errors which could degrade the quality of the transformation estimate. The
steps of recovering correspondences and estimating transformations can be
iterated to overcome this problem. We usually use a fixed number of itera-
tions, typically three in large-scale experiments, but more refined schemes are
possible. However, experimental experiences show that the algorithmic per-
formance is independent of the details. An example of the iterative algorithm
is illustrated in Fig. 6.

4 Applications

Given a measure of dissimilarity between shapes, we can proceed to apply it
to the task of object recognition. Specifically, we treat the problems of recog-
nizing handwritten digits, shape silhouettes, line drawings of common objects,
and visual CAPTCHAs (tests that most humans can pass, but that computers
are meant not to). Our approach falls into the category of prototype-based
recognition. In this framework, pioneered by Rosch and collaborators [38], cat-
egories are represented by ideal examples rather than a set of formal logical
rules. As an example, a sparrow is a likely prototype for the category of birds;
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category membership, meaning that as one moves farther away from the ideal
example in some suitably defined similarity space, one’s association with that
prototype falls off. When one is sufficiently far away from that prototype, the
distance becomes meaningless, but by then one is most likely near a different
prototype. As an example, one can talk about good or so-so examples of the
color red, but when the color becomes sufficiently different, the level of dissimi-
larity saturates at some maximum level rather than continuing on indefinitely.

Prototype-based recognition translates readily into the computational
framework of nearest neighbor methods using multiple stored views. Near-
est neighbor classifiers have the property [36] that as the number of examples
n in the training set goes to infinity, the 1-NN error converges to a value
≤ 2E∗, where E∗ is the Bayes risk (for K-NN, K → ∞ and K/n → 0, the
error → E∗). This is interesting because it shows that the humble nearest
neighbor classifier is asymptotically optimal, a property not possessed by sev-
eral considerably more complicated techniques. Of course, what matters in
practice is the performance for small n, and this gives us a way to compare
different similarity/distance measures.

4.1 Shape Distance

In this section we make precise our definition of shape distance and apply
it to several practical problems. We used a regularized TPS transformation
model and 3 iterations of shape context matching and TPS re-estimation.
After matching, we estimated shape distances as the weighted sum of three
terms: shape context distance, image appearance distance and bending energy.

We measure shape context distance between shapes P and Q as the sym-
metric sum of shape context matching costs over best matching points, i.e.,

Dsc (P ,Q) =
1
n

∑
p∈P

arg min
q∈Q

C (p, T (q))+
1
m

∑
q∈Q

arg min
p∈P

C (p, T (q)) , (12)

where T (·) denotes the estimated TPS shape transformation.
In many applications there is additional appearance information available

that is not captured by our notion of shape, e.g., the texture and color infor-
mation in the gray-scale image patches surrounding corresponding points.
The reliability of appearance information often suffers substantially from geo-
metric image distortions. However, after establishing image correspondences
and recovery of underlying 2D image transformation the distorted image can
be warped back into a normal form, thus correcting for distortions of the
image appearance.

We used a term Dac (P ,Q) for appearance cost, defined as the sum of
squared brightness differences in Gaussian windows around corresponding
image points,

Dac (P ,Q) =
n∑

i=1

∑
Δ∈Z2

G(Δ)
[
IP (pi + Δ) − IQ

(
T

(
qπ(i)

)
+ Δ

)]2
, (13)
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where IP and IQ are the gray-level images corresponding to P and Q, respect-
ively. Δ denotes some differential vector offset and G is a windowing function
typically chosen to be a Gaussian, thus putting emphasis to pixels nearby. We
thus sum over squared differences in windows around corresponding points,
scoring the weighted gray-level similarity.

This score is computed after the TPS transformation T has been applied
to best warp the images into alignment.

The third term Dbe (P ,Q) corresponds to the “amount” of transformation
necessary to align the shapes. In the TPS case the bending energy (9) is a
natural measure (see [8]).

4.2 Digit Recognition

Here we present results on the MNIST dataset of handwritten digits, which
consists of 60,000 training and 10,000 test digits [27]. See Fig. 7. In the
experiments, we used 100 points sampled from the Canny edges to represent
each digit. When computing the Cij ’s for the bipartite matching, we included
a term representing the dissimilarity of local tangent angles. Specifically, we
defined the matching cost as Cij = (1−β)Csc

ij +βCtan
ij , where Csc

ij is the shape
context cost, Ctan

ij = 0.5(1 − cos(θi − θj)) measures tangent angle dissimilar-
ity, and β = 0.1. For recognition, we used a K–NN classifier with a distance
function

D = 1.6Dac + Dsc + 0.3Dbe . (14)

The weights in (14) have been optimized by a leave-one-out procedure on a
3000 × 3000 subset of the training data.
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Fig. 7. Handwritten digit recognition on the MNIST dataset. Left: Test set errors
of a 1-NN classifier using SSD and Shape Distance (SD) measures. Right: Detail of
performance curve for Shape Distance, including results with training set sizes of
15,000 and 20,000. Results are shown on a semilog-x scale for K = 1, 3, 5 nearest
neighbors.
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210: 9 → 7 448: 4 → 9 583: 8 → 3 692: 8 → 9 717: 1 → 7 948: 8 → 9 1034: 8 → 0 1113: 4 → 6 1227: 7 → 2

1248: 9 → 5 1300: 5 → 7 1320: 8 → 3 1531: 8 → 7 1682: 3 → 7 1710: 9 → 5 1791: 2 → 7 1879: 8 → 3 1902: 9 → 4

2041: 5 → 6 2074: 5 → 6 2099: 2 → 0 2131: 4 → 9 2183: 1 → 2 2238: 5 → 6 2448: 4 → 9 2463: 2 → 0 2583: 9 → 7

2598: 5 → 3 2655: 6 → 1 2772: 4 → 9 2940: 9 → 7 3063: 8 → 6 3074: 1 → 2 3251: 2 → 6 3423: 6 → 0 3476: 3 → 7

3559: 5 → 0 3822: 9 → 4 3851: 9 → 4 4094: 9 → 7 4164: 9 → 7 4202: 1 → 7 4370: 9 → 4 4498: 8 → 7 4506: 9 → 7

4663: 9 → 7 4732: 8 → 9 4762: 9 → 4 5736: 5 → 3 5938: 5 → 3

6884: 1 → 2 8066: 8 → 0 8280: 8 → 4 8317: 7 → 2 8528: 4 → 9 9506: 7 → 2 9730: 5 → 6 9851: 0 → 6

Fig. 8. All of the misclassified MNIST test digits using our method (63 out of
10,000). The text above each digit indicates the example number followed by the
true label and the assigned label.

On the MNIST dataset nearly 30 algorithms have been compared (http:
//yann.lecun.com/exdb/mnist/). The lowest test set error rate published at
this time is 0.7% for a boosted LeNet-4 with a training set of size 60, 000× 10
synthetic distortions per training digit. Our error rate using 20,000 training
examples and 3-NN is 0.63%. The 63 errors are shown in Fig. 8.4

As mentioned earlier, what matters in practical applications of nearest
neighbor methods is the performance for small n, and this gives us a way
to compare different similarity/distance measures. In Fig. 7 (left) our shape
distance is compared to SSD (sum of squared differences between pixel bright-
ness values). In Fig. 7 (right) we compare the classification rates for diff-
erent K.

4DeCoste and Schölkopf [11] report an error rate of 0.56% on the same data-
base using virtual support vectors (VSVs) with the full training set of 60,000.
VSVs are found as follows: (1) obtain SVs from the original training set using
a standard support vector machine (SVM), (2) subject the SVs to a set of de-
sired transformations (e.g., translation), (3) train another SVM on the generated
examples.
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Fig. 9. Examples of shapes in the MPEG-7 database for three different categories.

4.3 MPEG-7 Shape Silhouette Database

Our next experiment involves the MPEG-7 shape silhouette database, specif-
ically Core Experiment CE-Shape-1 part B, which measures performance of
similarity-based retrieval [21]. The database consists of 1400 images: 70 shape
categories, 20 images per category. Figure 9 shows examples of the shapes.
The performance is measured using the “bullseye test,” in which each image
is used as a query and one counts the number of correct images in the top 40
matches.

As this experiment involves intricate shapes we increased the number of
samples from 100 to 300. In some categories the shapes appear rotated and
flipped, which we address using a modified distance function. The distance
dist(R, Q) between a reference shape R and a query shape Q is defined as

dist(Q, R) = min{dist(Q, Ra), dist(Q, Rb), dist(Q, Rc)},

where Ra, Rb and Rc denote three versions of R: unchanged, vertically flipped
and horizontally flipped.

With these changes in place but otherwise using the same approach as in
the MNIST digit experiments, we obtain a retrieval rate of 76.51%. Currently
the best published performance is achieved by Latecki et al. [26], with a
retrieval rate of 76.45%.

4.4 Snodgrass and Vanderwart

To illustrate our algorithms for fast pruning, we use the Snodgrass and
Vanderwart line drawings [39]. They are a standard set of 260 objects that
have been frequently used in the psycho physics community for tests with
human subjects.
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The Snodgrass and Vanderwart dataset has only one image per object.
We use these original images as the training set, and create a synthetic set of
distorted and partially occluded shapes for querying. We distort each shape
by applying a random TPS warp of fixed bending energy to a reference grid,
and use this warp to transform the edge points of the shape. Occlusions are
then generated using a random linear occluding contour.

We generated 5200 distorted and occluded images (20 per original image)
for use as a test set. The occluded images were split into levels of difficulty
according to the percentage of edge pixels lost under occlusion. Figures 10 and
11 show the results for our two pruning methods. The graphs plot error rate
versus pruning factor (on a log scale). The error rate computation assumes
a perfect detailed matching phase. That is, a query shape produces an error
only if there is no correctly matching shape in the shortlist obtained by the
pruning method. The abscissa on each of the graphs shows the pruning factor,
defined to be | |/length(Shortlist). For example, with | | = 260 known shapes,
if the pruning factor is 26 then the shortlist has 10 shapes in it.

Fig. 10. Shortlists for the distorted and occluded Snodgrass and Vanderwart dataset
using the representative shape contexts method. The first column is the query object.
The remaining 5 columns show closest matches to each query object.
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Fig. 11. Error rate vs. pruning factor on Snodgrass dataset. (a, b) Variation in per-
formance with respect to amount of occlusion in test image. (c) Comparative results
for all different methods. Results for best parameter settings from each method are
shown.

Note that on this dataset, the generalized shape contexts perform slightly
worse than the original shape context descriptors. The reason for this is that
the synthetic TPS distortions used to create the test set corrupt the tan-
gent vectors used in generalized shape contexts. The random TPS distortions
contain local scale warps that deform the tangent vectors greatly.

4.5 CAPTCHA

A CAPTCHA is a program [42] that can generate and grade tests that most
humans can pass, but current computer programs cannot. CAPTCHA stands
for Completely Automated Public Turing test to Tell Computers and Humans
Apart. EZ-Gimpy (Fig. 12) is a CAPTCHA based on word recognition in the
presence of clutter. The task is to identify a single word, chosen from a known
dictionary of 561 words, that has been distorted and placed in a cluttered
image.

(a) horse (b) jewel (c) weight

(d) sound (e) rice (f) space

Fig. 12. Results on EZ-Gimpy images. The best matching word is shown below
each image.

For our experiments, a training set of the 561 words, each presented
undistorted on an uncluttered background, was constructed. We applied the
representative shape contexts pruning method, using the 561 words as our
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objects, followed by detailed matching to recognize the word in each EZ-
Gimpy image. This algorithm is referred to as “Algorithm B” in our previous
work on breaking CAPTCHAs [32]. Two details are different from those in
the other experiments. First, we constructed generalized shape contexts that
are tuned to the shape of words: they are elliptical, with an outer radius of
about 4 characters horizontally, and 3

4 of a character vertically. Second, the
texture gradient operator [29] was used to select the placement of the RSCs,
while Canny edge detection is used to find edge pixels to fill the bins of the
shape contexts.

We generated 200 examples of the EZ-Gimpy CAPTCHA. Of these
examples, 9 were used for tuning parameters in the texture gradient modules.
The remaining 191 examples were used as a test set. Examples of the EZ-
Gimpy CAPTCHA images used and the top matching words are shown in
Fig. 12. The full set of test images and results can be viewed at http:
//www.cs.sfu.ca/∼mori/research/gimpy/ez/. In 92% (176/191) of these
test cases, our method identified the correct word. This success rate compares
favorably with that of Thayananthan et al. [40] who perform exhaustive search
using Chamfer matching with distorted prototype words.

Of the 15 errors made, 9 were errors in the RSC pruning. The pruning
phase reduced the 561 words to a shortlist of length 10. For 9 of the test
images the correct word was not on the shortlist. In the other 6 failure cases,
the deformable matching selected an incorrect word from the shortlist.

The generalized shape contexts are much more resilient to the clutter in
the EZ-Gimpy images than the original shape contexts. The same algorithm,
run using the original shape contexts, attains only a 53% success rate on the
test set.

5 Conclusion

We have presented a new approach to shape matching. A key characteristic of
our approach is the estimation of shape similarity and correspondences based
on a novel descriptor, the shape context. Our approach is simple and easy
to apply, yet provides a rich descriptor for point sets that greatly improves
point set registration, shape matching and shape recognition. To address the
computational expense associated with large-scale object databases, we have
also shown how a shape context-based pruning approach can construct an
accurate shortlist.
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Summary. The Achilles’ heel of most shape recognition systems is the decision
stage, whose goal is to clearly answer the question of whether two shapes look alike
or not. In this chapter we propose a method to address this issue, that consists in
pairing two shapes as soon as their proximity is unlikely to be observed “by chance.”
This is achieved by bounding the number of false matches between a query shape and
shapes from the database. The same statistical principle is used to extract relevant
shape elements from images, yielding a complete procedure to decide whether or not
two images share some common shapes.

Key words: Shape recognition, a contrario decision, background model,
number of false alarms, level lines, shape elements.

1 Introduction

This chapter is concerned with the problem of visual recognition of two-
dimensional planar shapes. Shape recognition methods usually combine three
stages: feature extraction, matching (the important point here being the defin-
ition of a distance or dissimilarity measure between features) and decision. The
first two stages have been largely studied in the literature (see for instance [41]
or [43] and the references therein), and will be addressed in Section 2. How-
ever, the decision problem for shape matching in a generic framework has been
much less studied. Moreover, complete procedures starting from raw images
and including this decision step are rarely exposed. In this chapter we show
that this program is realistic and, even though entering all details is beyond
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the scope of this chapter, we present the main ingredients of the proposed
method.

Let us briefly describe the content of this contribution. In Section 2, we
define the main atoms of our recognition procedure and explain how to extract
them from images. Invariance and stability requirements lead us to consider
shape elements, which are suitably selected, normalized and encoded pieces of
level lines. In Section 3, we introduce an abstract setting in which we build
decision rules for pairing two shape elements. This section is quite general
and the matching methodology is not restricted to the specific shape elements
introduced in Section 2. The decision rule relies on a framework introduced
by Desolneux, Moisan and Morel [12, 14], based on a statistical principle, the
Helmholtz principle. The adaptation of this principle to the shape matching
problem leads to an automatic decision rule. In Section 4, we present some
experiments that show the validity of the proposed model. It is verified that
the methodology satisfies the Helmholtz principle [15]: a meaningful match is
a match that is not likely to occur in noise (this notion will be given a precise
meaning). We the present experimental results in Section 5 and conclude in
Section 6.

Before proceeding, let us specify what is meant by an “automatic decision
rule” for shape matching and say a few words about the methodology to
be developed in Section 3. The situation is as follows. We are looking for a
query shape S in a shape database and we have chosen a distance between
shapes. We want to answer the question: how to threshold that distance to
ensure recognition? Observing two shapes at a small distance δ, there are two
possibilities:

1. δ is small because both shapes “match” (they are similar because they
are two instances of the same object, in the broadest sense).

2. Because the shape database is large, one of its shapes is close to S by
chance (there is no common cause between them).

If we can compute the probability of the second possibility and if this quantity
is very small for two given shapes, then the first possibility is certainly a better
explanation. In contrast to classical approaches to hypothesis testing, we will
see that we can build a decision rule only on the likelihood of the second
possibility, which is usually more simple to model than the first one. This a
contrario methodology will be detailed in Section 3, where we will also see that
the shape elements selection method of Section 2 follows the same principle.

2 From Images to Normalized Shape Elements

The recognition of shapes (in the widest sense) is invariant with respect to
a large set of transformations, as global or nonrigid deformation, contrast
change, corruption by noise, scaling, local occlusion, etc. Therefore, the atoms
of computational shape recognition should satisfy the same properties. An
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algorithm extracting pieces of Jordan curves corresponding to invariant local
representations of shapes in images was proposed by Lisani et al. [24, 25], and
mostly satisfies the above conditions. It proceeds with the following steps,
which will be detailed below.

1. Extraction of meaningful level lines.
2. Affine invariant smoothing of the extracted level lines.
3. Semi-local encoding of pieces of level lines after affine or similarity nor-

malization.

The conjunction of these three stages was first introduced by Lisani et al.
[24, 25]; the third stage is also based on the seminal work of Lamdan et al. [22],
followed by Rothwell’s work on invariant indexing [36]. For a more recent
application of similar ideas, see Orrite et al. [35].

2.1 Extracting Meaningful Curves from Images

In computer vision, extraction of shape information from images dates back to
Marr [27], but Attneave [5], as well as Wertheimer [42] and other Gestaltists
had already remarked that information in images is concentrated along con-
tours, and that shape perception is invariant to contrast changes (changes
in the color and luminance scales). As we will see in the next paragraph,
shapes can then be modeled as Jordan curves. However, as pointed out by
Kanisza [21], in everyday vision most objects are partially hidden by other
ones, and despite this occlusion phenomenon humans still can recognize shapes
in images. Consequently, the real atoms of shape representation should not
be the whole Jordan curves corresponding to objects boundaries, but pieces
of them. In this work we will adopt this atomic shape representation; we will
call a shape element any piece of a Jordan curve.

Topographic Map and Tree of Level Lines

Following the ideas of mathematical morphologists, the image information is
completely contained in a family of binary images that are obtained by thresh-
olding the images at given values [28, 38]. This is equivalent to considering
level sets; the (upper) level set of u at the value λ is

χλ(u) = {x ∈ R
2, u(x) ≥ λ}. (1)

Obviously, if we only consider a coarsely quantized set of different gray levels,
information is lost, especially in textures. Nevertheless, it is worth noticing
how large shapes are already present with as few as 5 or 6 levels. As remarked
by Serra [38], we can reconstruct an image from the whole family of its level
sets by

u(x) = sup{λ ∈ R, x ∈ χλ(u)}.
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Thus, the level sets provide a complete representation of images. Morpholo-
gists also noticed that boundaries of level sets fit parts of objects boundaries
very well. They call level lines the topological boundaries of connected com-
ponents of level sets, and the topographic map of an image the collection of
all its level lines. Note that, if the image u is C1, level lines coincide with
isophotes in the neighborhood of x such that Du(x) �= 0. The topographic
map also enjoys several important advantages [10]:

• It is invariant with respect to contrast change (a contrast change is the
composition of the image with an increasing real function). It is not invari-
ant to illumination change, since in this case the image is really different
although it represents the same scene. However, many pieces of level lines
remain the same under such illumination changes.

• In general, edge detectors lead to disconnected pieces of curves which are
too small to be individually relevant. A preliminary grouping step is nec-
essary to get shape elements. On the contrary, using level lines directly
yields long curves since, for almost all gray levels, level lines of images
with bounded variation are Jordan curves [17]. We consider it easier to
compute shape elements by locally encoding level lines.

• It is a hierarchical representation: since level sets are ordered by the inclu-
sion relation (as are their connected components), the topographic map
may be embedded in a tree structure.

• Most important regarding the main subject of this chapter, object con-
tours locally coincide with level lines very well. Basically, level lines are
everywhere normal to the gradient as edges. Contrarily to local edges, level
lines are accurate at occlusions. Whereas edge detectors usually fail near
T-junctions (and additional treatments are necessary), there are several
level lines at a junction (see Fig. 1).

Fig. 1. Level lines and T-junction. Depending on the gray-level configuration be-
tween shapes and background, level lines may or may not follow the objects’ bound-
ary. In any case, junctions appear where two level lines separate. Here, there are two
kinds of level lines: the occluded circle and the shape composed of the union of the
circle and the square. The square itself may be retrieved by difference.

However, level lines in textures are usually very complicated and are not al-
ways useful for shape recognition. Moreover, because of noise and interpolation,
many level lines may follow roughly the same contour. Thus it is useful, for
practical computational reasons, to select only the most meaningful level lines.
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Note that level lines are Jordan curves and, for continuous images, do
not intersect. Moreover, for almost all levels of a C1 image, the interior of
a closed level line is a simply connected set. Monasse and Guichard [32] call
such a set a Shape, and to avoid any confusion, we will write morphological
shape. Basically, morphological shapes are either connected components of
level sets whose holes have been filled, or connected components of holes of
level sets whose own holes have been filled. Actually, the situation is slightly
more complicated because of open level lines that meet the image border
and must be closed one way or another. Nevertheless, Monasse and Guichard
proved that these morphological shapes could be used to define a tree which
is called the tree of level lines. Each node of the tree is a morphological shape,
attached to a gray level, or equivalently the boundary of the morphological
shape, which is a level line of the image. In Fig. 2, we display an example of
such a tree for a simple synthetic image. An algorithm called Fast Level Set
Transform [32] allows one to efficiently compute this tree. It may be extended
to a bilinearly interpolated image, whose level lines suffer less from pixelization
effects than those of a pixelwise constant image. In this case, images become
continuous and have infinitely many level lines. Thus, there is a preliminary
choice of quantization of these lines. If the original image was encoded on 8
bits, we simply choose a quantization step equal to 1, since we know that 256
gray levels give fair enough visual quality. Moreover, the selection procedure
we describe below would not give more level lines with a thinner quantization
step.

Fig. 2. Top: a synthetic image. Middle: its morphological shapes. Bottom: the
corresponding tree.

Meaningful Boundaries

A very simple and efficient method to select the most meaningful level lines
in the topographic map has been introduced by Desolneux, Moisan and Morel
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in [13]. Recent improvements have been achieved in [9] but, for the sake of
simplicity, we only describe the original arguments which rely on an a contrario
detection principle which will be detailed in Section 3.

Let u : R
2 → R be a differentiable gray-level image. Assume that we have

a measure of contrast. To simplify, we take it here equal to the norm of the
gradient. Assume that we know the distribution of the gradient of u, given
by

Hc(µ) = P (|Du| > µ).

In practice, we shall take a finite difference approximation of the gradient.
The empirical histogram is used to approximate Hc. That is, we assume that
the gradient norm is distributed as the positive random variable X defined
by

∀µ > 0, P (X > µ) =
#{x ∈ Γ, |Du(x)| > µ}
#{x ∈ Γ, |Du(x)| > 0} , (2)

where the symbol # designs the cardinality of a set, Γ the finite sampling
grid and |Du| is computed by finite difference approximation.

Definition 1 ([13]). Let E be a finite set of Nll level lines of u. We say that
a level line C is an ε-meaningful boundary if

NFA(C) ≡ NllHc

(
min
x∈C
|Du(x)|

)l/2
< ε, (3)

where l is the length of C. This number is called the number of false alarms
(NFA) of C.

This definition will be explained in details in Section 3.4, since its justification
uses the a contrario framework that will be introduced in Section 3. Let us
take it for granted for now.

Maximal Boundaries

We know that all level lines are needed to perfectly reconstruct the image.
Nevertheless, only a few of them suffice to describe most shape information.
Because of interpolation and blur, level lines accumulate along edges, and
even meaningful level lines still are locally redundant, as far as shapes are
concerned. A very elegant way to eliminate some redundancy is to use the
structure of the tree of level lines which simply contains the topological inclu-
sion relation between level lines.

Definition 2 ([31]). A monotone section of a tree of level lines is a part of
a branch such that each node has a unique son and where the gray level is
monotone (no contrast reversal). A maximal monotone section is a monotone
section which is not strictly included in another one.
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Definition 3 ([13]). We say that a meaningful boundary is maximal mean-
ingful if it has a minimal NFA in a maximal monotone section of the tree of
meaningful level lines.

Note that this definition makes sense since meaningful level lines still enjoy
the same tree structure as level lines. In practice, meaningful level lines often
represent less than 10% of the total number of level lines (most of which are
actually very small and due to noise and texture). About one meaningful level
line over 10 is usually a maximal one. Hence, about 99% of all level lines are
eliminated.

Figure 3 illustrates that the loss of information resulting from the use
of meaningful level lines is negligible compared to the gain in information
compactness. This reduction is crucial in order to speed up the shape matching
stage that follows the encoding.

(a) (b) (c)

Fig. 3. Extraction of meaningful level lines. (a) original “La Cornouaille” image,
(b) level lines, represented here with gray-level quantization step equal to 10 (there
are 54,790 level lines for a quantization step of 1, and they fill the whole image),
(c) the 296 maximal meaningful level lines (there are 4342 meaningful level lines but
with no real additional information).

2.2 Level Lines Smoothing

The next step is to smooth meaningful level lines to get rid of noise and
aliasing effects. Since we are interested in affine invariance for the recognition,
the geometric affine scale space [2, 37] is convenient because it commutes
with special affine transformations. It is given by the following motion by
curvature:

∂x

∂t
= |Curv(x)| 13 n(x),

where x is a point on a level line, Curv(x) the curvature and n(x) the normal
to the curve, oriented towards concavity. We use a fast implementation by
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Moisan [29]. Logically, it would be interesting to use this equation in a true
multiscale recognition procedure: each extracted shape should be described
at several different scales. The price to pay is of course a higher numerical
complexity. In this chapter, we only use this equation as a way to wipe out
pixelization effects due to quantization, so that the invariance properties of the
equation are not used to their full potential. The scale at which the smoothing
is applied is fixed and given by the pixel size. Nevertheless, this is still very
useful: the aim is to reduce the complexity of meaningful level lines by sim-
plifying them. Indeed, smoothing reduces the number of bitangents on level
lines by eliminating those due to noise; consequently, it also reduces the num-
ber of encoded shape elements, as will become clear from the normalization
procedure that we now present.

2.3 Semi-local Normalization and Encoding

The last stage of the invariant shape encoding algorithm is semi-local normal-
ization and encoding. Roughly speaking, in order to build invariant representa-
tions (up to either similarity or affine transformations), we define local frames
for each level line, based on robust directions (tangent lines at flat parts, or
bitangent lines). Such a representation is obtained by uniformly sampling a
piece of curve in this normalized frame. The following section is devoted to
an improvement of Lisani’s algorithm.

The proposed semi-local normalization of level lines or, more generally
speaking, of Jordan curves is based on robust directions. These directions
are given by bitangent lines, or by tangent lines at flat parts (a flat part
is a portion of a curve which is everywhere unexpectedly close to the seg-
ment joining its endpoints, with respect to an adequate background model
[33, 40]).

We now detail the procedures used to achieve similarity invariance for
semi-local normalization and encoding of Jordan curves. In what follows
we consider direct Euclidean parameterization for level lines. We treat the
similarity invariant case and refer the reader to [25] for the affine invariant
encoding.

The procedure is illustrated and detailed in Fig. 4. Two implementation
parameters, F and M , are involved in this normalization procedure. The
value of F determines the normalized length of the shape elements and is
to be chosen keeping in mind the following trade-off: if F is too large, shape
elements will not deal well with occlusions, while if it is too small, shape
elements will not be discriminatory enough. One therefore faces a classical
dilemma in shape analysis: locality versus globality of shape representations.
The choice of M is less critical from the shape representation viewpoint, since
it is just a precision parameter. Its value is to be chosen as a compromise
between accuracy of the shape element representation and computational
load.
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In order to represent a level line L, for each
flat part, and for each couple of points on
which the same straight line is tangent to
the curve, do:

a) Let P1 and P2 be either the tangency
points when dealing with bitangency,
or the endpoints for the detected seg-
ment when dealing with flat parts.
Consider the tangent line D to these
points;

b) Starting backward from P1, call P1 the
previous tangent to L, orthogonal to D.
Starting forward from P2, call P2 the
next tangent to L, orthogonal to D;

c) Find the intersection points between P1

and D, and between P2 and D. Call
them R1 and R2, respectively;

d) Store the normalized coordinates of M
equidistributed points over an arc on
L of normalized length F , centered
at C, the intersection point of L with
the perpendicular bisector of [R1R2].
By “normalized coordinates” we mean
coordinates in the similarity invariant
frame defined by points R1, R2 mapped
to (− 1

2
, 0), ( 1

2
, 0), respectively.

Fig. 4. Similarity invariant semi-local encoding. On the left, an illustration based
on a flat part.

In Fig. 5 we show several normalized shape elements extracted from a
single line, taking F = 5 and M = 45. Notice that the representation is
quite redundant. While the representation is certainly not optimal because
of redundancy, it increases the possibility of finding common shape elements
when corresponding shapes are present in images, even if they are degraded
or subject to partial occlusions.

All experiments to be presented in Section 5 concerning matching based
on this semi-local encoding (or the affine invariant procedure detailed in [25])
were carried out using F = 5 and M = 45, since it seems to be a good
compromise solution. We observed that in general these parameters can be
fixed once and for all, and do not need to be tuned by the user. Note that
some curves cannot be coded with F = 5: when their length is too small with
respect to the length of the segment line [R1R2], the resulting shape element
will overlap itself.
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Fig. 5. Example of semi-local similarity invariant encoding. The line on the top
left generates 19 shape elements (F = 5, M = 45). Twelve of them are based on
bitangent lines, the other ones are based on flat parts. The representation is quite
redundant. Here are displayed three normalized shape elements, one deriving from
bitangent lines, and two from a flat part.

3 An a Contrario Decision Framework

By applying the procedures of the previous section, similarity invariant shape
elements are extracted from images. (Affine invariant shape elements may
be extracted as well, see [25].) These are the basic objects to be recognized.
Generally speaking, the recognition problem is difficult. Sorting the shape ele-
ments along a similarity measure to a query shape element is not enough and
we must decide whether two given shapes are alike or not. The problem con-
sists in automatically setting a threshold δ over the similarity measure and in
giving a confidence level to this decision. This is precisely the aim of the pro-
posed methodology. We shall first build up an empirical statistical model of the
shape elements database. The relevant matches will be detected a contrario as
rare events given this background model. This detection framework has been
recently applied by Desolneux et al. to the detection of alignments [12] or con-
trasted edges [13], by Almansa et al. to the detection of vanishing points [1],
by Stival and Moisan to stereo images [30], by Gousseau to the comparison
of image “composition” [19] and by Cao to the detection of good continua-
tions [7]. The main advantage of this technique is that the only parameter
which controls the detection is the number of false alarms, which has already
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been introduced for level lines selection in Section 2 and will be defined for
shape matching in Section 3.2.

3.1 Shape Model Versus Background Model

Let us first introduce some notation. Our aim is to compare a given query
shape element S with the N shape elements of a database B. We assume S to
be represented by a code, that is a set of K features x1(S), x2(S), . . . , xK(S),
each of them belonging to a set Ei endowed with a dissimilarity measure di.
We then define the product dissimilarity measure on E1 × E2 × · · · ×EK by

d(S,S′) = max
i∈{1,...,K}

di(xi(S), xi(S′)).

Observe that in order for this definition to be sound, the di’s are supposed
to have the same range, a property that will be satisfied by the dissimilarity
measures to be considered in this chapter. In what follows, we will call these
dissimilarity measures distances, although they are not necessarily metrics.

We assume no other information but the observed set of features, and we
are interested in shape elements which are close to the query shape element S
because their generation shares some common cause with the generation of S.
But what is the underlying common cause? We probably do not know, and
this is the point. Indeed, directly addressing this problem is not possible,
unless we have the exact model of S at hand. Such a model would imply an
extra knowledge (for instance some expert should have first designed it). We
are therefore unable to compute the probability that a shape element is near
S because it has been generated by the shape model of S.

Consequently, we wonder whether a database shape element is near the
query S casually and we detect correspondences as unexpected coincidences.
In order to address this latest point, we have to design a background model to
compute the probability of a casual match. We assume that shape elements
are defined on some probability space (Ω,A,Pr). A background model, at
fixed S, is defined as follows.

Definition 4. We call a background model any random model S′ for which
the following holds true:

(A) The random variables di(xi(S), xi(S′)) (i ∈ {1, . . . ,K}) from Ω to R
+

are mutually independent.

From now on, at fixed S, and for every i ∈ {1, . . . ,K}, we denote

Pi(S, δ) := Pr(di(xi(S), xi(S′)) ≤ δ).

3.2 A Detection Terminology

Number of False Alarms

In order to automatically set a threshold on the dissimilarity measures, we
will rely on the following quantities.
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Definition 5. The number of false alarms (NFA) of the shape element S at
a distance d is

NFA(S, d) := N
∏

i∈{1,...,K}
Pi(S, d).

We will see in Section 3.3 that this number can be seen as the average number
of false alarms that are expected in a statistical test framework, when we test
whether the distance from each shape element in the database to S is below d.

Definition 6. The number of false alarms of the query shape element S and
a database shape element S′ is the number of false alarms of S at a distance
d(S,S′):

NFA(S,S′) := NFA(S, d(S,S′)).
The number of false alarms between S and S′ corresponds to the expected
number of database shapes which are “false alarms” and whose distance to S
is lower than d(S,S′).
Remark 1. For simplicity, the same notation is used for both preceding def-
initions of the number of false alarms. Note also that the arguments of this
latest NFA (seen as a two-variable function) do not play a symmetric role.

Meaningful Matches

Next, we decide which shapes of the database match the query shape S by
bounding the number of false alarms.

Definition 7. A shape element S′ is an ε-meaningful match of the query
shape element S if their number of false alarms is bounded by ε:

NFA(S,S′) ≤ ε.
Notice that since the functions Pi(S, d) : d �→ Pr(y ∈ Ei s.t. di(xi(S), y) ≤ d)
are non-decreasing, the function d �→ NFA(S, d) is pseudo-invertible. That
is, there exists a unique positive real number δ(ε) (depending on the query
shape S) such that

δ(ε) := max{δ > 0,NFA(S, δ) ≤ ε}.
The proposition that follows is then straightforward.

Proposition 1. A shape element S′ is an ε-meaningful match of the query
shape element S if and only if

d(S,S′) ≤ δ(ε).
The decision rule we propose thus amounts, for a fixed S, to compare d(S,S′)
to the bound δ(ε). The justification behind this rule is that the expectation
of the number of shapes that match S “by chance” is then bounded by ε. The
following proposition makes this claim more formal.
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Proposition 2. Under the assumption that the database shape elements are
identically distributed following the background model, the expectation of the
number of ε-meaningful matches is less than ε.

Proof. Let S′j (1 ≤ j ≤ N) denote the shape elements in the database, and
let χj be the indicator function of the event ej : “S′j is an ε-meaningful match
of the query S ” (i.e., its value is 1 if S′j is an ε-meaningful match of S, and 0
otherwise). Let R =

∑N
j=1 χj be the random variable representing the number

of shapes ε-meaningfully matching S.
The expectation of R is E(R) =

∑N
j=1 E(χj). Using Proposition 1, it follows

that

E(χj) = Pr(S′j is an ε-meaningful match of S) = Pr(d(S,S′j) ≤ δ(ε)).
Since shape elements from the database are assumed to satisfy the assump-
tions of the background model, one has

E(χj) =
K∏
i=1

Pi(S, δ(ε)) =
1
N

NFA(S, δ(ε)).

Linearity of expectation implies E(R) = 1
N

∑N
j=1 NFA(S, δ(ε)). Hence, by

definition of δ, this yields E(R) ≤∑N
j=1 ε ·N−1; therefore E(R) ≤ ε. �

The key point is that the linearity of the expectation allows us to com-
pute E(R) without knowing the dependencies between events ej .

Let us now summarize. A reference shape S being given, we seek its ε-
meaningful matches, which by Proposition 1 amounts to a bound on distances.
For each matching shape S′, the number NFA(S,S′) quantifies the quality
of the match, and Proposition 2 gives a handy meaning to the number ε (we
will always use ε = 1 in subsequent experiments).

Recognition Threshold is Relative to the Context

Notice that the empirical probabilities take into account the “rareness” or
“commonness” of a possible match. Indeed the computed threshold δ is less
restrictive in the first case and stricter in the other one. If a query shape S1 is
rarer than another one S2, then the database contains more shapes close to S2

than shapes close to S1, below a certain fixed distance d′. Now, probabilities
will be estimated through empirical frequencies over the database (see Sec-
tion 3.6). As a consequence, if a query shape S1 is rarer than another one S2,
then we have, for i ∈ {1, . . . ,K} and d ≤ d′,

P̂i(S1, d) ≤ P̂i(S2, d).

This yields (with obvious notation) δS2 ≤ δS1 (provided both quantities are
below d′), i.e., the rarer the sought shape, the higher the recognition threshold.



120 P. Musé, F. Sur, F. Cao, Y. Gousseau and J.-M. Morel

All the same, if a given query shape is rarer among the shapes of a data-
base B1 than among the shapes of a database B2, then for every i ∈ {1, . . . ,K}
and for d “small enough”

P̂ 1
i (S, d) ≤ P̂ 2

i (S, d),

where P̂ 1
i and P̂ 2

i are respectively estimated over B1 and B2. This yields
δ2 ≤ δ1. This latest point is in fact one of the key points of the proposed
methodology, and should be the cornerstone of every shape recognition system.
Suppose that we seek a character, let us say an ‘a’ among different characters
from an ordinary scanned text. Then the recognition threshold (under which
a character matches the sought ‘a’) should be larger than the one obtained
when searching the same ‘a’ among other ‘a’ characters of various slightly
different fonts. Indeed, the sought shape would be relatively much rarer in the
latter case than in the former. The conclusion is that the distance threshold
proposed by our algorithm auto-adapts to the relative “rareness” of the query
shape among the database shapes. The “rarer” the query shape, the more
permissive the corresponding distance threshold, and conversely.

Observe also that the number of false alarms, and therefore the confidence
of a recognition, depends upon the size of the searched database. This is coun-
terintuitive, but only at first sight. Indeed, when the size of the searched data-
base grows, the probability that a piece of shape be created “just by chance”
grows too. Let us take a classical example. Images of vegetation can lead hu-
mans and computer vision algorithms to hallucinate faces. The explanation is
simple; such textured images create lots of casual spatial arrangements. Some
of them can look like a searched shape. The larger the database, the likelier
such false alarms.

Why an a Contrario Decision?

The advantages of the a contrario decision based on the NFA compared to the
direct setting of a distance threshold between shape elements are obvious. On
the one hand, thresholding the NFA is much more handy than thresholding the
distance. Indeed, we simply set ε = 1 and allow at most one false alarm among
meaningful matches (we simply refer to 1-meaningful matches as “meaningful
matches”) or ε = 10−1 if we want to impose a higher confidence in the obtained
matches. The detection threshold ε is set uniformly whatever the query shape
element and the database may be: the resulting distance threshold adapts
automatically according to them as explained in the preceding section. On the
other hand, the lower ε, the “surer” the ε-meaningful detections are. Of course,
the same claim is true when considering distances: the lower the distance
threshold δ, the surer the corresponding matches, but considering the NFA
quantifies this confidence level. Moreover, computing the NFA does not need
any shape model. This is a major advantage of the proposed method, since
having a shape model means that the query shape has already been recognized
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before somehow or other. We will see in Section 3.3 how this point relates to
the control of false positives in a classical hypothesis testing framework.

Comparing Two Databases

Let us end up with the definition of the number of false alarms when comparing
all shape elements in a database to all shape elements in another database.
This corresponds to the experiments of Section 5 where the shape contents of
two images are compared. When searching the shapes belonging to a database
B1, made of N1 shape elements, among the N2 shape elements belonging to
a database B2, we have the following definition.

Definition 8. The number of false alarms of a shape S (belonging to B1) at
a distance d is

NFA(S, d) = N1 ·N2 · Pr
(
S′, max

i∈{1...K}
di(xi(S), xi(S′)) ≤ d

)
.

The probabilities (depending on the searched shape S) are estimated as be-
fore, as a product of K empirical estimates over the database B2 among which
the query shapes are sought. For each shape in B1 we also define ε-meaningful
matches. The claim up to which we shall expect on the average ε false alarms
among the ε-meaningful matches over allN1 ·N2 tested pairs of shapes (Propo-
sition 2) still holds.

3.3 A Contrario Decision as Hypothesis Testing

In this section, we show how the proposed methodology can be interpreted
in a statistical testing framework [16, 39]. For a shape S′ being observed,
we are interested in hypothesis H1: “S′ has been generated by the shape
model of S.” However, as explained before, handling this hypothesis with our
assumption (no available shape model for S) is impossible. We are therefore
led to concentrate on an alternative hypothesisH0: “S′ follows the background
model.” We consider a test relying on the distance between shapes.

Definition 9. A query shape element S being given, the statistical test Tδ(S)
is defined as follows:

• if a database shape element S′ is such that d(S,S′) < δ, then hypothesis
H1 is accepted (S′ is near S because of some causality).

• Otherwise, H1 is rejected and the null hypothesis H0 is accepted (S′ is
near S casually).

The quality of a statistical test is measured by the probability of taking
wrong decisions: reject H0 for S although H0 is valid (type I error, false
positive) or reject H1 for an observation S for which H1 is actually true (type
II error, misdetection). A probability measure can be associated to each type
of error.
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• The probability of false alarms (associated with type I error)
α = Pr(d(S,S′) < δ|H0).

• The probability of non-detection or probability of a miss (associated with
type II error) α′ = Pr(d(S,S′) ≥ δ|H1).

It is clear that the lower α and α′, the better the test, but it is also clear
that α and α′ cannot be independently optimized. The problem is to find a
trade-off between these two probabilities. Two well-known approaches to this
problem are the Neyman–Pearson Theory and Bayesian tests. These theoret-
ical frameworks are limited in the sense that one must know the likelihood
of both H0 and H1, which is in general unrealistic if the aim is to recog-
nize an unspecified query shape (a generative model is indeed needed for the
query shape S to compute the likelihood of a shape S′ under hypothesis H1).
Moreover, the Bayesian approach needs prior information, which is either ar-
bitrary or is strongly related to a specific problem for which supplementary
information is provided.

Let us summarize the situation. We are not able to compute the probability
of non-detection Pr(d(S,S′) ≥ δ|H1). On the other hand, a straightforward
computation provides the value of the probability of false alarms of the sta-
tistical test Tδ(S), that is, Pr(d(S,S′) < δ|H0). Indeed, by the definition of d,

Pr(d(S,S′) < δ|H0) = Pr
(

max
i∈{1,...,K}

di(xi(S), xi(S′)) ≤ δ | H0

)
.

Now, by the definition of H0, the independence assumption (A) holds true so
that

Pr(d(S,S′) < δ|H0) =
∏

i∈{1,...,K}
Pr (di(xi(S), xi(S′)) ≤ δ)

=
∏

i∈{1,...,K}
Pi(S, δ). (4)

It is therefore straightforward (by the definition of δ(ε)) that the statistical
test Tδ(ε)(S) has a probability of false alarm bounded by ε/N :

Pr(d(S,S′) < δ|H0) ≤ ε/N.
The a contrario decision rule therefore consists in accepting hypothesis

H1 when the null hypothesis H0 is unlikely, this likeliness being quantified
by ε. Recall also that Proposition 2 shows that the average number of false
alarms when testing a shape against all shapes in the database is bounded
by ε, therefore giving a clear meaning to this bound. In short, we accept the
hypothesis “a database shape element S′ matches the query shape element
S ” as soon as it is not likely that S′ is near S “by chance.”

Several earlier works conceive the shape recognition problem in the same
spirit, being based on the computation of a probability of false alarms. This
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computation can be achieved by following several approaches. All of them
are of course based on the background modeling. For instance, Grimson and
Huttenlocher [20] estimate the probability that some features of the sought
shapes are retrieved only because of the so-called “conspiracy of random,”
by assuming that features are uniformly distributed. A more accurate ap-
proach consists in building a tighter background model. Examples can be
found in the literature on the detection of low-resolution targets over a clut-
tered background (see for example [11]). Such approaches are derived from
classical signal processing methods (where the noise is modeled as a Gaussian
process, thus enabling one to exactly compute the probability of false alarms
and derive the detection threshold, see, e.g., [4]). Specific background models
can also be built, depending on the considered problem. For instance, Amit
et al. [3] address a shape classification problem in this perspective. Another
approach is to simultaneously use a background and a shape model, as done by
Lindenbaum in [23] where performances of shape recognition algorithms are
studied in a fairly general context. Let us also mention statistical parametric
mapping (SPM), which is a popular method for analysis of brain imaging data
sequences: by integrating spatial dependences, large deviations with respect
to the SPM are attributed to the cognitive process of interest (see [18] for an
introduction).

3.4 Meaningful Boundaries and a Contrario Framework

Let us now interpret the definition of meaningful boundaries that we gave
in Section 2 in the a contrario decision framework. The implicit definition of
contours contained in Definition 1 is that the norm of the gradient should
be large everywhere along an edge. Again, we consider it hard to model the
dependence of the gradient values along a true edge and prefer to take the
decision by contradicting an independence hypothesis.

Assume that X is a real random variable described by the inverse distri-
bution function H(µ) = Pr(X ≥ µ). Assume that u is a random image such
that the values |Du| are independent with the same law as X . Let now E
be a set of random curves (Ci) in u such that #E (the cardinality of E) is
independent of each Ci. For each i, we note µi = minx∈Ci |Du(x)|. We also
assume that we can choose Li independent points on Ci (points that are afar
at least by Nyquist’s distance, a property which in particular bounds Li from
above). We can think of the Ci as random walks with independent increments
but since we choose a finite number of samples on each curve, the law of the
Ci does not really matter. We assume that Li is independent from the pixels
crossed by Ci.

By mimicking Definition 1, we say that Ci is ε-meaningful if

NFA(Ci) = #E ·H(µi)Li < ε.

Proposition 3. The expected number of ε-meaningful curves in a random set
E of random curves is smaller than ε.
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Proof. Let us denote by Xi the binary random variable equal to 1 if Ci is
meaningful and to 0 otherwise. Let also N = #E. Let us denote by E(X) the
expectation of a random variable X in the a contrario model. We then have

E

(
N∑
i=1

Xi

)
= E

(
E

(
N∑
i=1

Xi|N
))

.

We have assumed that N is independent from the curves. Thus, conditionally
to N = n, the law of

∑N
i=1Xi is the law of

∑n
i=1 Yi, where Yi is a binary vari-

able equal to 1 if nH(µi)Li < ε and 0 otherwise. By linearity of expectation,

E

(
N∑
i=1

Xi|N = n

)
= E

(
n∑
i=1

Yi

)
=

n∑
i=1

E(Yi).

Since Yi is a Bernoulli variable, E(Yi) = Pr(Yi = 1) = Pr(nH(µi)Li < ε) =∑∞
l=0 Pr(nH(µi)Li < ε|Li = l)P (Li = l). Again, we have assumed that Li is

independent of the gradient distribution in the image. Thus conditionally to
Li = l, the law of nH(µi)Li is the law of nH(µi)l. Let us finally denote by
(α1, . . . , αl) the l (independent) values of |Du| along Ci. We have

Pr
(
nH(µi)l < ε

)
= Pr

(
H( min

1≤k≤l
αk) <

( ε
n

)1/l
)

= Pr
(

max
1≤k≤l

H(αk) <
( ε
n

)1/l
)

since H is nonincreasing

=
l∏

k=1

Pr
(
H(αk) <

( ε
n

)1/l
)

by independence

≤ ε

n
,

since if H is the inverse distribution function of X , Pr(H(X) < t) ≤ t. The
last term in the above inequalities does not depend upon l, thus

∞∑
l=0

Pr(nH(µi)Li < ε|Li = l) Pr(Li = l) ≤ ε

n

∞∑
l=0

Pr(Li = l) =
ε

n
.

Hence,

E

(
N∑
i=1

Xi|N = n

)
≤ ε.

This finally implies E

(∑N
i=1Xi

)
≤ ε, which means exactly that the expected

number of meaningful curves is less than ε. �
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3.5 Building Statistically Independent Features

Why is it so important to consider independent features (cf. Assumption (A)
in Definition 4)? The reason is that using independent features is a way to
beat the curse of dimensionality [6]. Using a few independent features enables
one to reach very low numbers of false alarms without needing huge databases
to estimate the probability of false alarms. In his pioneering work Lowe [26]
presents this same viewpoint for visual recognition: “Due to limits in the ac-
curacy of image measurements (and possibly also the lack of precise relations
in the natural world) the simple relations that have been described often fail to
generate the very low probabilities of accidental occurrence that would make
them strong sources of evidence for recognition. However, these useful un-
ambiguous results can often arise as a result of combining tentatively-formed
relations to create new compound relations that have much lower probabilities
of accidental occurrence.”

Let us give a numerical example. If the considered database is made of N
shape elements, the lowest value reachable by each empirical probability,

P̂i(S, d) =
1
N
·# {S′ ∈ B, di(xi(S′), xi(S)) ≤ d} ,

is at least 1/N . Consequently, if the background model is built on K = 1 fea-
ture, and the database is made of N = 1000 shapes, then the lowest reachable
number of false alarms would be 1000 · 1/1000 = 1. This means that even
if two shape elements S and S′ are almost identical, based on the NFA we
cannot ensure that this match is not casual. Indeed, an NFA equal to 1 means
that, on the average, one of the shape elements in the database can match S
by chance. Assume now that the background model is built on K = 6 features
(and still N = 1000), then the lowest reachable number of false alarms would
be 1000 · 1/10006 = 10−18.

In practice, we observe a number of false alarms between similar shapes
as low as 10−10. This means that such matches would still be meaningful in
a database 1010 times larger.

To summarize, in our framework and in order to be reliable for the shape
recognition task, shape features have to meet the three following requirements.

1) Features provide a complete description: two shapes with the same features
are alike (so that shapes are accurately described).

2) Distances between features are mutually independent (so that we may
design the background model).

3) Their number is as large as possible (so that we may reach low NFAs).

Finding features that meet all three requirements is a hard problem. Indeed,
there must be enough features so that the first requirement is valid, but not
too many, otherwise the second requirement fails.

The decision framework we have been describing so far is actually com-
pletely general in the sense that it can be applied to find correspondences
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between any kind of structures for which K statistically independent features
can be extracted. In the following section, we concentrate on the problem of
extracting independent features from the normalized shape elements defined
in Section 2.

3.6 From Normalized Shape Elements to Independent Features

In this section, we detail a procedure to extract features from normalized shape
elements. After performing various experiments, we found that the best trade-
off in achieving simultaneously the three feature requirements of Section 3.5
is as follows (see Fig. 6 for an illustration). Each piece of Jordan curve C is
split into five subpieces of equal length. Each one of these pieces is normalized
by mapping the chord between its first and last points on the horizontal axis,
the first point being at the origin: the resulting “normalized small pieces of
curve” are five features C1, C2, . . . , C5 (each of those Ci being discretized with
9 points). These features ought to be independent; nevertheless, C1, . . . , C5

being given, it is impossible to reconstruct the shape they come from. For
completeness a sixth global feature C6 is therefore made of the endpoints of
the five previous pieces, in the normalized frame. For each piece of level line,
the shape features introduced in Section 3.1 are made of these six “generic”
shape features C1, . . . , C6. Using the notation introduced in the previous
sections, we have xi(S) = Ci (i ∈ {1, . . . , 6}). For every i ∈ {1, . . . , 5} and
Ei = (R2)9, E6 = (R2)6.

It now remains to define similarity measures di. As mentioned earlier, since
the distance d between shape elements is defined as the maximum over the

Fig. 6. Building independent features. Sketch a): example of a Jordan curve in a
normalized frame based on a bitangent line. The bold part corresponds to a shape
element; it is split into 5 pieces C1, C2, C3, C4, and C5. Sketch b): each piece is
normalized and a sixth feature C6 made of the endpoints of these pieces is added.
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di’s, we must choose distances having the same range. This will not be the
case with L∞-distances (the range of the L∞ distance between the features
C6 is clearly not the same as for the other features). We choose the following
normalization for the di’s:

di(xi(S), xi(S′)) = Pr(S′′ ∈ Ω s.t. ||xi(S)− xi(S′′)||∞ ≤ ||xi(S)− xi(S′)||∞).

Note that the di’s are not symmetrical. This normalization yields the following
result, whose proof is left as an exercise.

Proposition 4. Assume that, for i = 1, . . . ,K, the distribution functions δ �→
Pr(||xi − x||∞ ≤ δ) are invertible, then

NFA(S,S′) = N
(
max
i

di(xi(S), xi(S′))
)K

. (5)

In practice, NFAs are computed using formula (5), the di’s being computed
using empirical frequencies:

di(xi(S), xi(S′))= 1
N

#{S′′ ∈ B s. t. ||xi(S)−xi(S′′)||∞ ≤ ||xi(S)−xi(S′)||∞},

where as before N is the cardinality of the database.
We have also investigated the use of a principal component analysis

(PCA) [34]. The experimental NFAs we observed appeared to be valid, even
though PCA only provides decorrelated features and not independent ones.
However, results were disappointing. Indeed, the linearity assumption needed
by PCA is clearly not satisfied in the space of shapes. Results with the extrac-
tion of features we presented in this section are experimentally much more
reliable, in the sense that meaningful matches do mostly correspond to in-
stances of the same objects.

4 Testing the Background Model

The objective of this section is to test the independence assumption (A)
under which the probability for two shapes to be at a distance smaller than
δ has been computed. Of course, the accuracy of NFA(S, δ) (Definitions 5
and 8) strongly relies on this independence assumption. In most experiments,
we are not able to objectively separate false alarms and correct matches, so
that we cannot check whether the NFA is effectively bounded by ε. Now, the
Helmholtz principle [15] states that no detection in “noise” (the definition
of which has to be given) should be considered as relevant. All ε-meaningful
matches in the noise should thus be considered as false alarms; therefore, in
such a situation, there should be on the average about ε of them.

In this section we test the proposed procedure on shape element features
that are extracted from a white noise image. Observe that in this case the back-
ground model (independence of features) is not necessarily true. On the one
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hand, shape elements correspond to pieces of Jordan curves, and consequently
are constrained not to self-intersect. On the other hand, shape element fea-
tures derive from a normalization procedure (as explained in Section 2) which
introduces some structural similarities (for example, shape elements coming
from bitangent points show mostly common structures). Table 1 quantifies
the “amount of dependency” due to these two aspects. We can see that the
observed number of matches in white noise images is indeed very near to ε
and does not depend on the database size.

value of ε: 0.01 0.1 1 10 100 1, 000 10, 000
100, 000 shape elements 0.09 0.77 3.38 19.98 134.71 1, 073.23 9, 777.80
50, 000 shape elements 0.07 0.45 2.45 17.19 123.07 1, 038.41 9, 771.81
10, 000 shape elements 0.08 0.31 2.1 13.41 107.18 980.43 9, 997.85

Table 1. Normalized pieces of white noise level lines. Average (over 1000 queries)
number of ε-meaningful detections versus ε, for databases of various sizes.

5 Experiments

In this chapter, we illustrate the proposed matching methodology through
several experiments. A “query image” and a “database image” are given and
meaningful level lines from each of them are encoded. We then compare the
two databases, as explained at the end of Section 3.2. Then, 1-meaningful
matches (in the sense of Definition 8) are computed. More experiments can
be found in [33] and [40].

The reader should keep in mind that the decision rule deals with nor-
malized shape elements. However, the results for the corresponding pieces of
level lines (“de-normalized” shape elements in some sense) are shown here for
clarity, superimposed to images.

What we call “false matches” in the following sections are in fact mean-
ingful matches that do not correspond to the same “object” (in the broadest
sense). Only an a posteriori examination of the meaningful matches enables
us to distinguish them from matches which are semantically correct. As ex-
plained in the previous sections, we actually only detect matches that are
not likely to occur by chance, or more precisely, matches that are not ex-
pected to be generated more than once by the background model (by fixing
the NFA threshold to 1). We experimentally observed that most of the time
false matches have an NFA larger than 10−1. If we want very sure detections,
we simply set the NFA threshold to 10−1.

All the following experiments have been performed with the same values
for the parameters of the encoding stage (M = 45 and F = 5, see Section 2.3)
and by thresholding the NFAs to 1 (both for the extraction of meaningful
lines and the matching).
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5.1 Two Unrelated Images

The aim of this experiment is to check the main property of the proposed
method, namely that the NFA is an estimation of the expected number of
matches that are due to chance. In Fig. 7 one can see two different images
(results are representative of what is obtained when considering other images).
The similarity invariant normalized shape elements of the meaningful level
lines from the first one are searched among the normalized shape elements
from the second one. Only one 1-meaningful match is retrieved (i.e., the NFA
of this match is below 1). As stated in Proposition 2, one should expect at
most about one meaningful match. Although the method does not distinguish
between good and false matches, the NFA gives a good estimate on “how good
a match is.”

Fig. 7. Two unrelated images. Original images (left) and meaningful level lines
(middle). The 846 normalized shape elements from the top image are searched among
the 281 normalized shape elements from the bottom image. Only one 1-meaningful
match is detected (right). Its NFA is 0.2, which is very near to 1. This match actually
corresponds to pieces of level lines that look coarsely alike “by chance.”

5.2 Perspective Distortion

This second experiment illustrates the proposed matching method in the pres-
ence of weak perspective distortions. The target image is a photograph of Pi-
casso’s painting Les Demoiselles d’Avignon in a museum and from an angle,
whereas the database image is a poster of the same painting. They are shown
in Fig. 8, together with the corresponding maximal meaningful boundaries.

Using affine invariant encoding (detailed in [25]), 1727 and 1595 shape
elements were extracted, respectively, from the target image and from the
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Fig. 8. Les Demoiselles d’Avignon: original images and their corresponding maximal
meaningful boundaries to be encoded. The image on top is considered as “target”
image. In the target image, 889 level lines are detected, and 212 level lines are
detected in the database image.

database image. The number of 1-meaningful matches detected is 12. These
12 matched shape elements are shown, superimposed to images, in Fig. 9.
Only one false match is detected, with an NFA of 0.12. The best match has
an NFA of 2×10−8 and corresponds to the face in the upper right part of the
painting. Observe that ideal perfect matches in this experiment would have
an NFA of 1727×1595/15956 = 1.7×10−13 (when the empirical distributions
of distances to target codes are learned using the considered database image
only, as we do here).

5.3 Logo Recognition

In this experiment, we apply the method with a small logo image as target,
and an image containing the logo as database. We use similarity invariant
encoding. The number of target codes is 80, whereas the number of database
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Fig. 9. Affine invariant semi-local recognition method: the 12 meaningful matches
between shape elements. Only one false match is detected (other matches correspond
to the same “piece of object”), with an NFA of 0.12. The lowest NFA is 2 × 10−8

and corresponds to the contour of the face in the upper right part of the painting.

codes is 8866. As we can see in Fig. 10, there are no false matches, even though
the database image is complex and relatively cluttered. Recall also that, as
illustrated in the experiment of Section 5.1, the method not only enables us
to locate the logo, but also to decide whether the logo is present or not in an
image or a collection of images. We display a similar experiment in Fig. 11,
where pieces of a street nameplate are sought. In this experiment, there are
five false matches, and they all have an NFA between 0.1 and 1.

Fig. 10. The logo on the left is searched for in the image on the right, using a
similarity invariant encoding. There are 9 matches, and none of them is false, in the
sense that they correspond to the same pieces of the logo. The smallest NFA has a
value of 4.4 × 10−12.

5.4 Dealing with Partial Occlusions and Contrast Changes

The last experiment consists in comparing the codes extracted from two views
of Velzquez’ painting Las Meninas (see Fig. 12). The codes extracted from
the query image (11, 332 codes) are searched for among the codes extracted
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Fig. 11. Pieces of the street nameplate on the left are sought in the right image,
using a similarity invariant encoding. The two plates comes from different locations
in the street. There are 15 matches. Five of them are false but they all have an NFA
between 10−1 and 1.

Fig. 12. Las Meninas original images (on the left) and meaningful level lines (on
the right). Top: query image and its level lines. Bottom: database image and its
level lines. The codes from the query image are sought among the codes from the
database image. Normalization is here with respect to similarity transformations.
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from the database image (12, 833 codes). Shape elements are normalized with
respect to similarity transforms. Note that the target image is a photograph
which was taken in the museum: visitors’ heads hide a part of the painting.

Fig. 13 shows all 55 1-meaningful matches. Only 5 false matches can be
seen and they all have an NFA between 1 and 10−1. In fact, 36 matches show
an NFA lower than 10−1.

Fig. 13. Las Meninas. The 55 meaningful matches. Half of them have an NFA lower
than 10−3. The best match has an NFA equal to 4 × 10−14. To each bold piece of
level line on the right corresponds a bold piece of level line on the left.

6 Conclusion and Perspectives

In this chapter, we considered shape elements as pieces of long and sufficiently
contrasted level lines. This definition naturally comes from an analysis of the
requirements that shape recognition meets, namely robustness to “small” con-
trast changes, robustness to occlusions, and concentration of the information
along contours (i.e., regions where the gray level changes abruptly). The pur-
pose of this chapter is to propose a method to compute the NFA (number of
false alarms) of a match between some shape elements, up to a given class
of invariance. Computing this quantity is useful because it leads to an accep-
tance/rejection threshold for partial shape matching. The proposed decision
rule is to keep in consideration the matches with an NFA lower than 1 (or
10−1 if we are concerned with “surer” detections). This automatically yields
a distance threshold that depends on both the database and the query.

Of course, dealing only with pieces of level lines is not enough to decide
whether an object is present or not in a given image. Nevertheless, object
edges coincide well with pieces of level lines, so that it is worth taking them
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into account. A further step should thus combine the matches, by taking ac-
count of their spatial coherence. Indeed, as we can see in the experiments we
have presented, false matches (i.e., matches that do not actually correspond
to the same “object”) are not distributed over the images in a conspicuous
way, unlike “good” matches. Each pair of matching shape elements leads to
a unique transformation between images, which can be represented as a pat-
tern in a transformation space. Hence, spatially coherent meaningful matches
correspond to clusters in the transformation space, and their detection can
then be formulated as a clustering problem. To achieve this task, we have
developed an unsupervised clustering algorithm, still based on an a contrario
model [8]. Results in [8] show that combining the spatial information furnished
by matched shape elements strongly reinforces the recognition confidence of
the method.
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Summary. For shapes represented as closed planar contours, we introduce a class
of functionals which are invariant with respect to the Euclidean group, and which
are obtained by performing integral operations. While such integral invariants enjoy
some of the desirable properties of their differential cousins, such as locality of com-
putation (which allows matching under occlusions) and uniqueness of representation
(asymptotically), they do not exhibit the noise sensitivity associated with differen-
tial quantities and therefore do not require pre-smoothing of the input shape. Our
formulation allows the analysis of shapes at multiple scales. Based on integral invari-
ants, we define a notion of distance between shapes. The proposed distance measure
can be computed efficiently, it allows for shrinking and stretching of the boundary,
and computes optimal correspondence. Numerical results on shape matching demon-
strate that this framework can match shapes despite the deformation of subparts,
missing parts, and noise. As a quantitative analysis, we report matching scores for
shape retrieval from a database.

1 Introduction

Geometric invariance is an important issue in computer vision that has re-
ceived considerable attention in the past. The idea that one could compute
functions of geometric primitives of the image that do not change under
the various nuisances of image formation and viewing geometry was appeal-
ing; it held potential for application to recognition, correspondence, three-
dimensional (3D) reconstruction, and visualization. Toward the end of the last
millennium, the decrease in popularity of research on geometric invariance was
sanctioned mostly by two factors: the progress on multiple view geometry (one
way to achieve viewpoint invariance is to estimate the viewing geometry) and
noise. Ultimately, algorithms based on invariants did not meet expectations
because most entailed computing various derivatives of measured functions



138 S. Manay, D. Cremers, B.-W. Hong, A. Yezzi, Jr. and S. Soatto

Original Rotated Articulated Occluded Jagged

Fig. 1. Sample shapes.

of the image (hence the name “differential invariants”). As soon as noise was
present and affected the geometric primitives computed from the images, the
invariants were dominated by the small-scale perturbations. Various palliative
measures were taken, such as the introduction of scale-space smoothing, but
a more principled approach has so far been elusive. Nowadays, the field is
instead engaged in searching for invariant (or insensitive) measures of pho-
tometric (rather than geometric) nuisances in the image formation process.
Nevertheless, the idea of computing functions that are invariant with respect
to group transformations of the image domain remains important, because
it holds the promise to extract compact, efficient representations for shape
matching, indexing, and ultimately recognition.

1.1 Why Shape Distances?

Our ultimate goal is to compare objects represented as closed planar contours.
This has obvious implications in shape classification for object recognition,
content-based image retrieval, medical diagnosis, etc. At this level of general-
ity, this is a monumental task that admits no simple meaningful solution [55].
Therefore, before we proceed any further, we need to specify what we mean
by “objects,” explain how we describe their “shape,” and concentrate our at-
tention on particular ways in which they can “differ.” Within the scope of this
chapter, by objects we mean closed planar contours1 embedded in R

2. This is
the bounding contour of a silhouette and it does not admit internal contours.
An object’s shape is the equivalence class of objects obtained under the action
of a finite-dimensional group, such as the Euclidean, similarity, affine, or pro-
jective group [42]. Therefore, objects that are obtained from a closed planar
contour by rotating, translating, and scaling it, for example, have the same
(similarity) shape; all other objects have a different shape. However, in com-
paring shapes, we want to be insensitive to certain variations that can occur
to an object: for instance, in Fig. 1, we want rotated, jagged, articulated, and
occluded objects to be judged as having shapes that are similar to that of the
original object. We prefer not to use the word “noise” when referring to these
variations because, with the exception of the jaggedness, they are not obtained
with standard additive, zero-mean, small variance perturbations. For the case
1 Many of our considerations can be extended to compact surfaces embedded

in R
3.
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of the articulated and occluded objects, for instance, the perturbation can be
quite significant in energy, and highly localized along the contour. Our goal
is to define a distance with respect to which the occluded hand in Fig. 1 is
close to the the other hands in the same figure regardless of the value of their
set-symmetric difference.

The type of variations we want to be resistant to can be separated in three
categories: “small deformations” that result in small set-symmetric differences
between the interior of the curves being compared, “high-frequency noise”
that affects a large portion of the contour, and “localized changes” that sig-
nificantly affect the total arclength of the contour but are spatially localized,
such as spikes or wedges. Many researchers have addressed the comparison of
objects under small deformations in a way that is invariant with respect to
various transformation groups (see Section 2); fewer have addressed the sensi-
tivity to high-frequency noise and yet fewer have addressed localized changes
[75, 65]. In this chapter, we plan to develop a framework that will allow ad-
dressing all of these variations in one go. To this end, we plan to employ a
representation of shape in terms of integral invariants, so that the distance
between objects will by construction be invariant with respect to the action
of the chosen group; defining a multi-scale representation of such invariants
allows us to address high-frequency noise in a principled way. Finally, es-
tablishing point correspondence among contours allows us to handle localized
changes. All these approaches are integrated into a shape distance measure
that is designed to mimic natural shape matches as might be favored by
humans.

1.2 Differential versus Integral Invariants

Commonly, shape invariants are defined via differential operations. As a con-
sequence they are inherently sensitive to noise. As most practical applications
of invariants require some robustness to small perturbations of the shape,
it is necessary to revert to palliative smoothing and accept the unfortunate
side effect that meaningful information will be lost as well. In this work, we
first introduce invariants which are defined as integral functions of the shape.
We restrict our analysis to Euclidean invariants, although extensions to the
similarity and affine groups fit within the framework we propose. These in-
tegral invariants share the nice features of their differential cousins, being
invariant to certain group transformations and being local descriptors, which
makes them well suited for matching under occlusions. Yet, in contrast to
the differential invariants, the integral ones are inherently robust to noise and
therefore do not require any preprocessing of the input data. In addition,
they have the favorable feature that varying the size of the integration ker-
nel provides a natural multi-scale notion that, unlike differential scale spaces,
does not require destructive smoothing. This allows us to take into account
features at various scales on the shape for measuring similarity or finding
correspondence.
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1.3 From Invariants to Shape Distance Measures

Based on integral invariants, we define a shape distance between matching
parts. Here a meaningful shape matching, a dense correspondence mapping
the parameterized domains of one shape to another (and vice versa), is cru-
cial, as distance is defined as the integral (over the shape) of the difference
between the invariant values of corresponding points. By minimizing an ap-
propriate energy functional we compute the optimal correspondence, which
is affected both by differences in the local geometry of the two curves and
by the amount of stretching or shrinking of the shapes’ parameterization re-
quired to map similar points to each other. Given this dense correspondence,
the concepts of shape comparison, modeling, and interpolation can be natu-
rally derived. We compute the optimal correspondence by casting the problem
as one of identifying the shortest path in a graph structure, the nodes of which
label possible correspondences between the points of the two contours. Similar
shortest path concepts were exploited in the context of shape matching and
warping in [65, 75, 31, 41, 82, 4].

In this chapter, we briefly review the literature on shape analysis in this
context (Section 2) before defining integral invariants and giving a few exam-
ples (Section 3). We then explore an optimization framework for computing
shape distance and shape matching from invariants (Section 4), and we detail
the implementation of this framework in Section 6. In Section 5 we discuss the
extension of the proposed integral invariants to multi-scale analysis. Finally,
before concluding, we demonstrate our method for computing correspondence
and shape distance on noisy shapes (Section 7).

2 Previous Work and Our Contribution

Given the wealth of existing work on invariance, scale-space, and correspon-
dence, our work naturally relates with a large body of literature, as we describe
in the next subsection. The reader should notice that we consider each object
as one entity and perform no analysis or decomposition, so there is no no-
tion of hierarchy or compositionality in our representation, which is therefore
intrinsically low level.

2.1 Shape and Shape Matching

In the literature one finds various definitions of the term shape. Kendall for
example defines shape as whatever remains of an object once you factor out
a certain group transformation — for example the similarity group covering
translation, rotation, and scaling. We refer to [27] for a short review of the
history of shape research. In this work, we revert to a more specific notion
of shape as being a closed planar contour modulo certain group transfor-
mations. Moreover, we will denote by shape matching the process of putting
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into correspondence different parts of two given shapes. Applications of shape
matching in computer vision include the classification of objects and the re-
trieval of objects of the same class based on the similarity of the object bound-
ary [41]. In medical imaging, a given anatomical structure may be modeled by
a statistical shape representation [45]. Statistical representations of shape may
also be useful when modeling complex shape deformations, for example when
observing the silhouette of a 3D object in various 2D views [20]. In computer
graphics, intermediate shapes between two objects can be generally obtained
based on their correspondence.

There exists a vast literature on comparing shapes, represented as a col-
lection of points [3, 74, 84, 41], points augmented with tangents [15], curves
[86, 48, 89, 64, 5, 31, 90], and continuous curves reduced to various types of
graph representations [92, 76, 78, 63, 49, 38]; we represent curves as continuous
objects living in infinite-dimensional spaces. Within this choice, many have ad-
dressed matching curves under various types of motion [3, 74, 84] and deforma-
tions [48, 89, 64, 5, 31, 23, 90, 17, 80], some involving a mapping from one curve
to another that has some optimality property [6, 31, 48, 64, 89, 17, 80, 5, 90].

The role of invariants in computer vision has been advocated for vari-
ous applications ranging from shape representation [57, 8] to shape matching
[7, 46], quality control [85, 16], and general object recognition [66, 1]. Conse-
quently a number of features that are invariant under specific transformations
have been investigated [25, 39, 26, 86, 15, 34, 56, 79, 73].

In particular, one can construct primitive invariants of algebraic entities
such as lines, conics, and polynomial curves, based on a global descriptor of
shape [59, 29].

In addition to invariants to transformation groups, considerable attention
has been devoted to invariants with respect to the geometric relationship
between 3D objects and their 2D views; while generic viewpoint invariants do
not exist, invariant features can be computed from a collection of coplanar
points or lines [67, 68, 33, 10, 30, 93, 1, 77, 40].

An invariant descriptor of a collection of points that relates to our approach
is the shape context introduced by Belongie et al. [7], which consists in a radial
histogram of the relative coordinates of the rest of the shape at each point.

Differential invariants to actions of various Lie groups have been addressed
thoroughly [44, 37, 19, 58, 75, 31, 48, 64, 89]. An invariant is defined by an
unchanged subset of the manifold which the group transformation is acting
on. In particular, an invariant signature which pairs curvature and its first
derivative avoids parameterization in terms of arc length [14, 60]. Calabi and
co-workers suggested numerical expressions for curvature and first derivative
of curvature in terms of joint invariants. However, it is shown that the ex-
pression for the first derivative of curvature is not convergent, and modified
formulas are presented in [9].

In order to reduce noise-induced fluctuations of the signature, semi-
differential invariants methods are introduced by using first derivatives and
one reference point instead of curvature, thus avoiding the computation of
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high-order derivatives [62, 32, 43]. Another semi-invariant is given by trans-
forming the given coordinate system to a canonical one [87].

A useful property of differential and (some) semi-differential invariants is
that they can be applied to match shapes despite occlusions, due to the local-
ity of the signature [12, 11]. However, the fundamental problem of differential
invariants is that high-order derivatives have to be computed, amplifying the
effect of noise. There have been several approaches to decrease sensitivity to
noise by employing scale-space via linear filtering [88]. The combination of in-
variant theory with geometric multi-scale analysis is investigated by applying
an invariant diffusion equation for curve evolution [70, 71, 18]. A scale para-
meter is another way to build a scale-space which is determined by the size
of the differencing interval to approximate derivatives using finite differences
[13]. In [54], a curvature scale-space was developed for a shape matching prob-
lem. A set of Gaussian kernels was applied to build a scale-space of curvature
whose extrema were observed across scales.

To overcome the limitations of differential invariants, there have been at-
tempts to derive invariants based on integral computations. Some of the “mea-
suring functions” discussed in [86] fit our definition of integral invariants,
although the benefits of their integral properties were not explored. A statis-
tical approach to describe invariants was introduced using moments in [36].
Moment invariants under affine transformations were derived from the clas-
sical moment invariants in [28]. They have a limitation in that high-order
moments are sensitive to noise which results in high variances. The error
analysis and analytic characterization of moment descriptors were studied
in [47]. The Fourier transform was also applied to obtain integral invariants
[91, 52, 2]. A closed curve was represented by a set of Fourier coefficients
and normalized Fourier descriptors were used to compute affine invariants. In
this method, high-order Fourier coefficients are involved and they are not sta-
ble with respect to noise. Several techniques have been developed to restrict
the computation to local neighborhoods: the wavelet transform was used for
affine invariants using the dyadic wavelet in [81] and potentials were also
proposed to preserve locality [35]. Alternatively, semi-local integral invariants
are presented by integrating object curves with respect to arc length [72].
More recently attempts to develop invariants with the locality properties, but
without the sensitivity, of differential invariants have resulted in functions of
curves that are based not on differential operators, but on integral operators
applied to the contour or the characteristic function of its interior [51, 65].

In this manuscript, we introduce two general classes of integral invariants;
for one of them, we show its relationship to differential invariants (in the
limit), which allows us to conclude that the invariant signature curve obtained
from the integral invariant is in one-to-one correspondence with the original
shape, up to the action of the nuisance group. We use the invariant signature
to define various notions of distance between shapes, and we illustrate the
potential of our representation on several experiments with real and simulated
images.
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2.2 Implicit versus Explicit Contour Representations

In the context of image segmentation, the implicit representation of closed con-
tours as the zero-crossing of corresponding embedding functions has become
increasingly popular. The level set method [24, 61] provides a framework to
elegantly propagate boundaries in a way which allows for topological changes
of the embedded contour and does not require reparameterization. Recently,
shape dissimilarity measures and statistical shape models have been formu-
lated on the basis of the level set representation [45, 83, 69, 22, 21]. Yet,
such implicit representations do not provide an inherent notion of pointwise
correspondence. In order to model the psychophysically relevant notion of
corresponding features and parts and therefore a psychophysically relevant
notion of shape similarity (quantified by shape distance), we therefore revert
to explicit parameterizations of closed contours.

3 Integral Invariants

In this section we focus on the definition and examples of integral invariants.
Throughout this section we indicate with C : S

1 → R
2 a closed planar

contour with arclength ds, and G a group acting on R
2, with dx the area

form on R
2. We also use the formal notation C̄ to indicate either the interior

of the region bounded by C (a two-dimensional object), or the curve C itself
(a one-dimensional object), and dµ(x) the corresponding measure, i.e., the
area form dx or the arclength ds(x), respectively.

Definition 3.1 Let G be a transformation group acting on R
2. A function

I : R
2 → R is a G-invariant if it satisfies

I(C ) = I(g · C ), ∀g ∈ G.

The function I(·) associates to each point on the contour a real number.
In particular, if the point p ∈ C is parameterized by arclength, the invariant
can be interpreted as a function from [0, L], where L is the length of the
curve, to the reals:

{C : S
1 → R

2} �→ {IC (p(s)) : [0, L]→ R.}

Similarly, if p ∈ C is parameterized from [0, 1], the invariant can be interpreted
as a function from [0, 1] to the positive reals:

{C : S
1 → R

2} �→ {IC (p(s)) : [0, 1]→ R}.

We abuse this generalized notation in our discussions.
This formal definition of an invariant includes some very familiar examples,

such as curvature.
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Example 3.1 (Curvature) ForG = SE(2), the curvature κ of C is G-invariant.

The profiles of the curvature for the rectangular shape in Fig. 2(a) and its
noisy version in (b) are shown in Fig. 2(c) and (d), respectively. The curvature
is called differential invariant since its calculation is based on differential op-
erations. The curvature is a useful feature for describing shapes and matching
due to its invariant property under a group transformation of SE(2), which
will be considered as a transformation group G for the following invariants.
However, it is sensitive to noise because the calculation of the curvature is
dependent on second-order derivatives as shown in Fig. 2(d). Thus, we intro-
duce an invariant that is robust to noise by employing integral operations for
its calculation. We begin with a general notion of integral invariant.

Definition 3.2 A function IC (p) : R
2 → R is an integral G-invariant if there

exists a kernel h : R
2 × R

2 → R such that

IC (p) =
∫
C̄

h(p, x)dµ(x), (1)

where h(·, ·) satisfies∫
C̄

h(p, x)dµ(x) =
∫
gC̄

h(gp, x)dµ(x) ∀ g ∈ G, (2)

where gC .= {gx | g ∈ G, x ∈ C}, and similarly for gC̄ .

The definition can be extended to vector signatures, or to multiple integrals.
Note that the point p does not necessarily lie on the contour C , as long as
there is an unequivocal way of associating p ∈ R

2 to C (e.g., the centroid of
the curve).

Note that a regularized version of curvature, or in general a curvature scale-
space, can be interpreted as an integral invariant, since regularized curvature
is an algebraic function of the first- and second-regularized derivatives [54].
Therefore, integral invariants are more general, but we will not exploit this
added generality, since it is contrary to the spirit of this manuscript, that is of
avoiding the computation of derivatives of the image data, even if regularized.

Example 3.2 (Distance integral invariant) Consider G = SE(2) and the fol-
lowing function, computed at every point p ∈ C :

IC (p) .=
∫
C

d(p, x)ds(x), (3)

where d(x, y) .= |y − x| is the Euclidean distance in R
2. This is illustrated in

Fig. 3(a).
One can immediately show that this is an integral Euclidean invariant,

since Euclidean transformations preserve distance. We note that, unlike cur-
vature, the range of values for the distance invariant is R

+. This invariant is
computed for a few representative shapes in Fig. 2.
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Fig. 2. Demonstration of the effect of noise on different invariants.

The profiles of the distance integral invariant for the shapes in Fig. 2(a)
and (b) are shown in Fig. 2(e) and (f), respectively. The distance integral
invariant is robust to noise, the effect of which is reduced as shown in Fig. 2(f).
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IrC (p)
�

2r2θ

(a) (b)

Fig. 3. (a) Distance integral invariant defined in Eq. (3), made local by means of a
kernel as described in Eq. (4). (b) Integral local area invariant defined by Eq. (5).
The approximations of the invariant shown in (b) are for the analysis in Section 3.1
and are not used for the computation of the invariant.

However, it is a global descriptor in that a local change of a shape affects the
values of the distance integral invariant for the entire shape.

A version of the invariant IC that preserves locality can be obtained
by weighting the integral in Eq. (1) with a kernel q(p, x), so that IC (p) .=∫
C h(p, x)ds(x) where

h(p, x) .= q(p, x)d(p, x). (4)

The kernel q(·, ·) is free for the designer to choose depending on the final
goal. This local integral invariant can be thought of as a continuous version
of the “shape context,” which was designed for a finite collection of points [7].
The difference is that the shape context signature is a local radial histogram
of neighboring points, whereas in our case we only store the mean of their
distance.

The local distance integral invariant is a local descriptor provided by the
integral kernel restricted on a circular neighborhood. It is also robust to noise
as shown in Fig. 2(g) and (h). Thus, it may be effective for both noise and
occlusion. However, this invariant is not discriminative in that it can have the
same value for different geometric features. This drawback is demonstrated
in Fig. 4. The two points marked by ◦ and � on different geometric fea-
tures of the shape in Fig. 4(a) have the same local distance integral invari-
ant, as shown in Fig. 4(b). This is a motivation to introduce the following
invariant.

Example 3.3 (Area integral invariant) Consider now the kernel h(p, x) =
χ(Br(p) ∩ C̄ )(x), which represents the indicator function of the intersection
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(a) (b) (c)

Fig. 4. (a) A rectangular shape with two mark points ◦ and �. (b) Local distance
integral invariant of (a) and corresponding mark points, which have the same invari-
ant value even though they have very different shapes (i.e., a corner and a straight
line). (c) Local area integral invariant of (a) and corresponding mark points.

of a small circle of radius r centered at the point p with the interior of the
curve C . For any given radius r, the corresponding integral invariant

IrC (p) .=
∫
Br(p)∩C̄

dx (5)

can be thought of as a function from the interval [0, L] to the positive reals,
bounded above by the area of the region bounded by the curve C . This is
illustrated in Fig. 3(b) and examples are shown in Fig. 2.

As shown in Fig. 2(i) and (j), the local area integral invariant is robust to
noise and has a locality property similar to the local distance integral invari-
ant. In addition, it has a strong descriptive power with respect to the shape
due to its relationship with the curvature as demonstrated in Fig. 4(c). Thus,
the local area integral invariant is an effective descriptor at shape matching,
and we rely on this integral invariant throughout this work.

Naturally, if we plot the value of IrC (p(s)) for all values of s and r ranging
from zero to a maximum radius so that the local kernel encloses the entire
curve Br(p) ⊃ C (at which point the invariant would be a constant), we can
generate a graph of a function that can be interpreted as a multi-scale integral
invariant, as shown in Fig. 5. We will return to this topic in Section 5. Fur-
thermore, χ(Br(p)) can be substituted by a more general kernel, for instance
a Gaussian centered at p with σ = r.

Note also that the integral invariant can be normalized via Ir/πr
2 for

convenience. The corresponding integral invariant is then bounded between 0
and 1.

3.1 Relation of Local Area Integral Invariant to Curvature

Curvature provides a useful descriptor for shape matching due to its invari-
ance and locality. It is considered as a complete invariant in the sense that
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(a) (b)

Fig. 5. Scale-space of the local area integral invariant for the shapes in Fig. 2(a)
and (b).

it allows the recovery of the original curve up to the action of the symme-
try group. Furthermore, all differential invariants of any order on the plane
are functions of curvature [87], and therefore linking our integral invariant to
curvature would allow us to tap into the rich body of results on differential
invariants without suffering from the shortcomings of high-order derivatives
at its computation.

We first assume that the curve C is smooth, so that a notion of curvature is
well defined, and the curvature can be approximated locally by the oscillating
circle2 BR(p) shown in Fig. 3(b). The invariant Ir(p) denotes the area of the
intersection of a circle Br(p) with the interior of C, and it can be approximated
to first-order by the area of the shaded sector in Fig. 3(b), i.e., Ir(p) 	 2r2θ.
Now, the angle θ can be computed as a function of r and R using the cosine
law: cos θ = r/2R, and since curvature κ is the inverse of R we have

Ir(p) 	 2r2 cos−1

(
1
2
rκ(p)

)
.

Now, since cos−1(x) is an invertible function, to the extent in which the ap-
proximation above is valid (which depends on r), we can recover curvature
from the integral invariant. The approximation above is valid in the limit
when r → 0.

4 Shape Matching and Distance

Given two shapes represented by curves C1,C2, we want to compute their
shape distance, a scalar that quantifies the similarity of the two contours, as
might be perceived by a human. Basing this computation on a group invari-
ant will ensure that the shape distance is not affected by group actions on
2 Notice that our invariant does not require that the shape be smooth, and this

assumption is made only to relate our results to the literature on differential
invariants.
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the shape; further basing it on an integral invariant will make the distance
computation robust to noise and local deformations of the contour. Naively,
we could define the shape distance to be the difference between the invariant
functions, but upon further reflection we see that this distance is meaningful
only if the computation somehow compares similar parts of the two shapes.
If we compare one (for example) rabbit’s ears to another’s leg, we will de-
cide (incorrectly) that the two shapes are very different. Yet this will be the
effect of computing a shape distance without first establishing a dense cor-
respondence between the points of the contours. Computing the difference of
invariant values between corresponding points is the equivalent of compar-
ing one rabbit’s ears to the second rabbit’s ears, a much more meaningful
metric.

Thus we wish to find an optimal correspondence between the contours
and concurrently measure the shape distance based on the correspondence.
Intuitively, two corresponding points on two contours should have similar
invariant values, which leads us to define the optimal correspondence in
terms of an energy functional E(I1, I2, d; s) for the discrepancy between
two integral invariants I1, I2, in terms of the disparity function d(s), as
follows:

E(I1, I2, d; s) = E1(I1, I2, d; s) + E2(d′; s)

=
∫ 1

0

‖I1(s− d(s)) − I2(s+ d(s))‖2ds+ α

∫ 1

0

‖d′(s)‖2ds, (6)

where α > 0 is a constant. The first term E1 of the energy functional mea-
sures the similarity of two curves by integrating the local difference of the
integral invariant at corresponding points. A cost functional based on a lo-
cal comparison minimizes the impact of articulations and local changes of
a contour because the difference in invariants is proportionally localized in
the domain of the integral; contrast this with a global descriptor where local
changes influence the descriptor everywhere.

The second term E2 of the energy functional is associated with the elas-
tic energy of the disparity function d(s) with the control parameter α that
penalizes stretching or shrinking of the disparity. When d(s) = 0, the para-
meterizations of the two contours instruct the matching (i.e., points on the
contour with the same parameter value correspond). d′(s) = 0 allows “shifts”
of the correspondence circularly. Other values of d(s) “stretch” or “shrink”
the length of segments of one contour onto the other; it is this action of d(s)
that the E2 energy term penalizes.

The shape matching of two curves is obtained by finding a correspondence
between their integral invariants. The correspondence between two curves is
determined by the disparity function d(s) that minimizes the energy functional
as follows:

d∗(s) = arg min
d(s)

E(I1, I2, d; s).
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(a) α = 100. (b) α = 30. (c) α = 1.

Fig. 6. Correspondences between two invariant signals I1(s) [top] and I2(s) [bottom]
with different values for the control parameter α in the energy functional. Smaller
values of the parameter α in (6) will facilitate contour shrinking and stretching in
the matching process.

Given the correspondence d∗, the shape matching between two curves (C1,C2)
is given as

C1(s− d∗(s)) ∼ C2(s+ d∗(s)), ∀s ∈ [0, 1] ⊂ R,

where ∼ denotes the pointwise correspondence between curves.
For the effect of the control parameter in the energy functional, one ex-

ample of the optimal correspondence between two integral invariants with
various values of the contour parameter is demonstrated in Fig. 6. One inte-
gral invariant is represented by a straight line shown on the bottom and the
other integral invariant is represented by a line with a pike shown on the top
in each figure. The larger the control parameter α, the more correspon-
dence is regularized, as shown in Fig. 6(a). Figure 6(c) shows that a fea-
ture characterized by the spiculation in one integral invariant on the top
is mapped to an infinitesimal portion in the other integral invariant on the
bottom. The difference of geometrical features is emphasized more with a
small α.

Ultimately, a notion of shape distance should be symmetric. It is gener-
ally undesirable to privilege one shape rather than the other when matching
two shapes. The energy functional defined in Eq. (6) is designed to satisfy a
symmetry property that gives

d∗(s) = arg min
d(s)

E(I1, I2, d; s)⇔ −d∗(s) = arg min
d(s)

E(I2, I1, d; s)

E(I1, I2, d∗(s); s) = E(I1, I2, d∗(s); s).

The shape distance D(C1,C2) between two curves C1,C2 is measured via
the optimal correspondence d∗(s) in the energy functional E between their
integral invariants I1, I2 as defined by

D(C1,C2) = E(I1, I2, d∗; s).

Since the energy functional is symmetric, the shape distances is as well.
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5 Shape Matching with Multi-Scale Integral Invariants

The integral invariant intrinsically introduces the notion of scale; varying
the size of the kernel naturally forms a multi-scale invariant. Motivated by
previous work on the connections between multi-scale invariant descriptions
and shape matching, in this section we discuss the properties of the natural
extension of the area integral invariant to multiple scales.

A shape matching approach based on a scale-space of differential invariants
was employed in [53]. Curvature is calculated from a curve that is convolved
with Gaussian kernels with different variances (scales) and the zero-crossings
of the curvature (which are equivalent to the inflection points of the curve) are
observed across scales. In this approach, the matching is obtained by minimiz-
ing the error of the corresponding inflection points by tracking them across
scales. The matching between inflection points in the curvature scale-space
is recursively performed from the coarsest scale to the finest scale. However,
mismatching in the first stage causes fatal errors because this algorithm recur-
sively finds matching points at finer scales based on points previously matched
at coarser scales. Since only inflection points of the curve are of interest in
this method, a dense correspondence between the curves cannot be derived.
Further, since curvature scale-space is derived from Gaussian smoothing, the
inflection points move with increased blurring, and re-parameterization is re-
quired to find correspondence between these inflection points across scales.
Matching at a coarse scale requires a re-parameterization to be applied at
a finer scale. In Fig. 7, the curvature scale-space and a multi-scale integral
invariant (more specifically, the local area invariant with varying kernel ra-
dius) for the shape in Fig. 2(a) are compared. The dislocation of the extrema
points occurs across scales in the curvature scale-space, as shown in Fig. 7(a).
In contrast to the curvature scale-space, the location of the extrema points
stays the same across scales in the multi-scale integral invariant, as demon-
strated in Fig. 7(b) since features at various scales are observed based on the

(a) (b)

Fig. 7. Scalogram of the shape in Fig. 2(a) and trace of local extrema across scales.
(a) Scalogram of the curvature scale-space. Note the dislocation of the extrema.
(b) Scalogram of the integral invariant scale-space.
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original shape with the integral invariant rather than on the blurred version
of the shape. Thus, re-parameterization for finding correspondence between
inflection points is unnecessary.

The notion of scale is involved in the matching process and the hierarchi-
cal description of features is represented by the multi-scale integral invariant.
The matching using the integral invariants at a fine scale provides a corre-
spondence taking into account detail features on the shapes, and the matching
using the integral invariants at a coarse scale considers large features on the
shapes. Figure 8 demonstrates how the matching is influenced by the choice
of scale for the integral invariant. The spiculated feature on the shapes is a
significant feature at a finer scale, as shown in Fig. 8(a). On the contrary, that
feature is ignored at the coarse scale as shown in Fig. 8(c).

(a) fine scale. (b) intermediate scale. (c) coarse scale.

Fig. 8. Demonstration of correspondences between two rectangular shapes with
spikes at different scales. The figures show the optimal point correspondence deter-
mined by our algorithm for increasing size of the kernel width r in (5). The two
spikes are identified as “corresponding” on a fine scale only.

6 Implementation

In Section 4 we presented a distance between invariants (and therefore shape)
that depends on the choice of a disparity function d(s). To complete the
calculation to distance, and to establish a local correspondence between
the curves, we must optimize distance with respect to d(s). This section
briefly outlines the implementation of the computation of the local area
integral invariant and a well-known approach to globally optimize the cor-
respondence for a discrete representation of the curves as ordered sets of
points.

To efficiently compute the local area integral invariant, consider the bi-
nary image χ(C̄ ) and convolve it with the kernel h(p, x) .= Br(p− x), where
p ∈ R

2, not just the curve C . Evaluating the result of this convolution on
p ∈ C yields IrC , without the need to parameterize the curve. However, we
retain a parameterized representation of the curve for the computation of the
correspondence. In Section 7 we also compute the differential invariant for
comparison, using the method outlined in [14, 9].
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(a) (b)

Fig. 9. Graph representation of correspondence between two invariants I1 and I2.
(a) Each node in a directed graph represents a pointwise correspondence. (b) Cor-
respondence between two invariants represented by the graph (a).

Our implementation is based on dynamic programming approaches similar
to those employed by many in the shape, stereo, and registration (for medical
imaging) communities [65, 75, 31, 41, 82, 4]. An intuitive algorithm would be
as follows. We first find an initial correspondence between a point on each
curve (discussed below). The “next” correspondence should be the choice of
action that minimizes the energy (Eq. 6); the possible actions are (1) locally
contracting the first curve onto the second, (2) locally contracting the second
curve onto the first, or (3) locally mapping the curves as one-to-one (Fig. 9).
This sketch of the algorithm lends itself to a graph formulation, where each
node of a periodic, directed graph is a correspondence between a point on
each curve, and each edge represents one of the possible actions, linking the
current node to the possible “next” nodes. The edges are weighted by the
distance between the invariants associated with the “next” node, c.f. Eq. 6.

In order to adopt a graph search framework, the representation of the
correspondence needs to be recast as a parameterized path. Thus we exchange
the disparity function d(s) for the warping function, µ(ξ) = (h1(ξ), h2(ξ)) for
curves (C1(s),C2(s)) in the energy functional defined in Eq. (6) by setting

s− d(s) = h1(ξ)

s+ d(s) = h2(ξ).

Then, the original energy functional in Eq. (6) becomes

Ẽ(I1, I2, h1, h2; ξ) =
∫ L

0

(‖I1(h1(ξ)) − I2(h2(ξ))‖2
)(h′1(ξ) + h′2(ξ)

2

)
dξ

+ α

∫ L

0

(∥∥∥∥h′2(ξ)− h′1(ξ)h′1(ξ) + h′2(ξ)

∥∥∥∥
2
)(

h′1(ξ) + h′2(ξ)
2

)
dξ,



154 S. Manay, D. Cremers, B.-W. Hong, A. Yezzi, Jr. and S. Soatto

where ξ is the parameter along the correspondence (represented as a pa-
rameterized curve in R

2) (h1(ξ), h2(ξ)) and L is its total length given by√
h′1(ξ)2 + h′2(ξ)2. In this way, the warping function µ(ξ) derives a formula

for the energy functional in terms of (h1(ξ), h2(ξ)),

µ : E(I1, I2, d; s)→ Ẽ(I1, I2, h1, h2; ξ).

Then, finding an optimal disparity function d∗(s) in the energy functional
E becomes equivalent to finding an optimal warping function µ∗(ξ) =
(h∗1(ξ), h

∗
2(ξ)) in the energy functional Ẽ as follows:

d∗(s) = argmin
d(s)

E(I1, I2, d; s)⇔ (h∗1(ξ), h
∗
2(ξ))

= arg min
h1(ξ),h2(ξ)

Ẽ(I1, I2, h1, h2; ξ).

The re-parameterized energy functional Ẽ is formulated in a graph representa-
tion G = (V,E). The domain Ω1 of I1 and the domain Ω2 of I2 are discretized
with equal spacing as follows:

Ω1 = [0, ∆s1, 2∆s1, . . . ,M∆s1 = 1], ∆s1 =
1
M
, M ∈ N

+

Ω2 = [0, ∆s2, 2∆s2, . . . , N∆s2 = 1], ∆s2 =
1
N
, N ∈ N

+.

The weighted, directed graph G = (V,E) is formed based on a grid structure
of the domain Ω = Ω1 × Ω2 as shown in Fig. 9. Each node v(i, j) ∈ V
in the graph represents a pointwise correspondence between I1(i∆s1) and
I2(j∆s2) (I1(i∆s1) ∼ I2(j∆s2)) where i ∈ [0,M ] ⊂ N and j ∈ [0, N ] ⊂
N. The adjacency relation of nodes is defined by an edge e(v(i, j), v(k, l))
that represents a directed relation v(i, j) → v(k, l) indicating the following
correspondence v(k, l) given the current correspondence v(i, j).

The minimization of the energy functional Ẽ is equivalent to finding a
shortest path p = 〈v0, v1, v2, . . . , vL〉 that gives a minimum weight from v0 =
v(0, 0) to vL = v(M,N):

w(p) =
L−1∑
t=0

w(vt, vt+1)

based on a weighting function w(vt, vt+1) defined by

w(v(i, j), v(k, l)) = ‖I1(k∆s1)− I2(l∆s2)‖2 (h′1 + h′2)
2

+α
∥∥∥∥h′2 − h′1h′1 + h′2

∥∥∥∥
2 (h′1 + h′2)

2
,
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where we set as follows:

h′1 =
∆s1
∆s1

= 1, h′2 =
0
∆s2

= 0, if k = i+ 1, l = j

h′1 =
0
∆s1

= 0, h′2 =
∆s2
∆s2

= 1, if k = i, l = j + 1

h′1 =
∆s1√

∆s21 +∆s22
, h′2 =

∆s2√
∆s21 +∆s22

, if k = i+ 1, l = j + 1.

The direction of edges in the graph is constrained so that the warping function
µ(ξ) is monotonic. The monotonicity of the warping function prevents cross
correspondence that causes a topological change in matching. This constraint
is implied by setting the weighting function as

w(v(i, j), v(k, l)) =∞, if k > i+ 1 or l > j + 1, k < i or l < j.

Dijkstra’s algorithm is used for finding a shortest path from a single source
node to a single destination node in a graph. Let p be a sequence for the
shortest path in the graph G = (V,E),

p = 〈v0, v1, v2, . . . , vL〉
= 〈v(i0, j0), v(i1, j1), v(i2, j2), . . . , v(iL, jL)〉,

where i0 = j0 = 0, iL = M, jL = N . Then the optimal warping function
µ(ξ) = (h1(ξ), h2(ξ)) is given by

h1(ξ) = (i0, i1, i2, . . . , iL)

h2(ξ) = (j0, j1, j2, . . . , jL).

For two curves with N points, the graph has N2 nodes and 3N2 edges.
An example of the result of this algorithm is shown in Fig. 10.

No fast algorithm exists to determine the best choice of the initial cor-
respondence. Previous implementations (cited above) choose a fixed a point
on the first curve and pair it with all possible choices of points on the sec-
ond curve, calculating the path for each pair to determine the shortest. (This
process can be thought of as exhaustively searching among all possible values
of d(0) or h1(0).) This exhaustive search can be avoided by observing that
strong features, such as corners or convex/concave points, provide a heuristic
way to propose point correspondences. These points are easily classified in the
invariant space. For instance, for the local area invariant, points with little or
no curvature are in a ball around I = .5. We find a subset of points outside
this ball, {s | |I1(s)− .5| > T } where T is some threshold (typically T = .1).
These points, with their nearest neighbors on I2, form a set of likely initial
correspondences. In this way, we can find an initial correspondence and com-
pute the warping function ρ and its associated distance for two curves with
100 points each in less than 1 second using MATLAB on a computer with an
Intel 800MHz processor.
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Fig. 10. Optimal path through the graph. The path warps the parameterization
of the hand (on the bottom of the graph) and the parameterization of the noisy
occluded (four-fingered) hand (on the left side of the graph). Both shapes are shown
in Fig. 1. The vertical stretch of the path corresponds to the missing finger. The
gray levels indicate the dissimilarity between points; lighter color indicates higher
dissimilarity. See text for more details.

7 Experimental Results

This section presents experiments that show the locality and noise robustness
properties of the integral invariant result in a shape description that is less
sensitive to occlusions or localized deformations, when compared to similarly
implemented differential invariant methods. We will begin with experiments
demonstrating the computation of shape distance and correspondences be-
tween two shapes before demonstrating the retrieval of matches for noisy
shapes from a database [75].

Figure 11 shows the shape matching induced via the local-area integral
invariant and via curvature between two different bunnies3 despite increasing
noise. Noise is added by perturbing all points on the contour in the normal
direction by a distance drawn from a Gaussian random variable with specified
σ. We indicate the correspondence by showing the mapping of the numbered
landmarks onto the noisy shape, although we emphasize that invariant values
from everywhere on the curve, and not just at feature points, are used to
compute shape matching and distance. Figure 12 is a plot of the shape distance
for the matching shown in Fig. 11. Note that the distance computed via the
integral invariant increases as σ increases, but in general added noise affects
the shape distance only slightly. Contrast this with the distance computed via
curvature, which increases drastically as a function of σ until the curves are
so noisy that a meaningful correspondence cannot consistently be computed
using differential invariants (e.g., the σ = 2.5 column of Fig. 11). The drastic
decrease in shape distance for values of σ beyond this “breakdown value”
further demonstrates the dangers of relying on differential invariants; even
though the distance value indicates that this correspondence is optimal, the
correspondence is subjectively incorrect.
3 Although the two bunnies look similar, closer examination shows that the noisy

bunny has a thicker body and a longer snout, in addition to differences in position.
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Fig. 11. Shape correspondence between Shape 24 [top] and Shape 20 with increasing
noise perturbation. [Middle] Correspondence computed via integral invariants and
[bottom] via differential invariants. Since the integral invariant is more robust to
noise than the differential one, it enables us to identify the corresponding parts, even
for contours which are strongly perturbed by noise. For the differential invariant,
on the other hand, the algorithm fails to capture the correct correspondence when
σ ≥ 2.5.
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Fig. 12. Shape distance as a function of noise. While the shape distance measure
based on differential invariants strongly varies with noise, the distance based on
integral invariants is much more insensitive to noise. (See text for details.)
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Fig. 13. Shape correspondence between Shape 24 [top] and several perturbations
of Shape 20 (with noise of scale σ = 2.5). [Middle] Correspondence computed via
integral invariants and [bottom] via differential invariants. In contrast to the distance
based on differential invariants, the integral invariant distance consistently provides
the correct correspondence.

Figure 13 again shows the noise robustness of the integral invariant, com-
pared to differential invariants, when used for shape matching. The variance
of the noise is held constant at σ = 2.5, however, the experiment is repeated
multiple times. Shape matching via the integral invariant provides a consistent
correspondence (as shown with the labeled features in the second row) and
a consistent shape distance, as shown in the plot in Fig. 14. Computation of
shape matching and shape distance via curvature results in a correspondence
that varies with the noise, as shown in the third row, and a more erratic shape
distance, shown in Fig. 14.

In Fig. 15 the results of matching and retrieving noisy shapes (shown on
the left side) from a database (shown across the top) are shown. We especially
highlight several pairs where representation by differential invariants leads to
mismatches, such as the third, fourth, and fifth fish (in the first group). Due
to the differential invariant’s sensitivity to noise, these fish have a lower shape
distance to the rabbits, where the shape distance based on integral invariants
orders the shapes correctly (fish are closer to themselves than to rabbits).
Examination of the data shows several such cases where integral invariants
are more robust than curvature on noisy shapes.

Figure 16 shows this same data in a more aggregate way, using shades
of gray to indicate distance. The distance matrix computed using integral
invariants (top) has low distances on the diagonal and the block-diagonal
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Fig. 14. Shape distance for multiple perturbations of Shape 20 with noise at scale
σ = 2.5. At a fixed noise scale, the computed shape distance based on integral
invariants remains essentially constant over all trials (in contrast to the distance
based on differential invariants).

structure, as expected in a database with grouped classes. Contrast this with
the curvature-based distance matrix (bottom) which clearly lacks lower dis-
tance on the diagonal and has a vertically banded structure opposed to the
desired block-diagonal structure, indicating that the added noise, and not the
shape, influences the shape distance.

8 Discussion and Conclusions

In this chapter, we address one of the key disadvantages of differential in-
variants for shape matching — namely their inherent sensitivity to noise.
We introduce a new distance for 2D shapes which is based on the notion of
multi-scale integral group-invariant descriptions of shape. Both theoretically
and experimentally we relate these integral invariant shape distances to pre-
viously proposed shape distances which are based on differential invariants.

While integral invariants are employed for robustness to high-frequency
noise and small deformations, shape warping by the computation of an op-
timal re-parameterization allows one to account for large localized changes
such as occlusions and configuration changes. We embed both of these con-
cepts in a formulation of a shape distance, and outline how distance and opti-
mal correspondence are jointly computed via efficient dynamic programming
algorithms.
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Fig. 15. Noisy shape recognition from a database of 24 shapes. The upper number
in each cell is the distance computed via the local-area integral invariant; the lower
number is the distance computed via curvature invariant. The bold, italic number
in each row represents the best match for the noisy shape at the left of that row;
the four remaining italic numbers represent the next four best matches. See text for
more details.

On a theoretical level, we prove that the proposed integral invariant as-
ymptotically converges to curvature which is commonly used in differential
invariants. On an experimental level, we demonstrate robustness of the in-
tegral invariant distances for shape matching and identifying corresponding
shape parts under perturbation by increasing amounts of noise. Our ongoing
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Fig. 16. Shape distance between noisy shapes (across top) and original shapes
(along left side) via [top] integral invariant and [bottom] differential invariant.
Lighter shade of gray indicates higher distance. See text for more details.
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research is focused on implementing the optimization in an optimal-transport
framework, and on integrating these “intelligent” shape distance measures as
shape priors into image segmentation processes [50].
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Summary. In this chapter, we explore shape representation, registration, and mod-
eling through implicit functions. To this end, we propose novel techniques for global
and local registration of shapes through the alignment of the corresponding dis-
tance transforms by defining objective functions that minimize metrics between the
implicit representations of shapes.

Registration methods in the space of implicit functions like the sum of squares
differences (SSD), which can account for primitive transformations (similarity), and
more advanced methods like mutual information, which are able to handle more
generic parametric transformations, are considered. To address local correspon-
dences we also propose an objective function on the space of implicit representa-
tions where the displacement field is represented with a free form deformation that
can guarantee one-to-one mapping. In order to address outliers as well as intro-
duce confidence in the registration process, we extend our registration paradigm
to estimate uncertainties through the formulation of local registration as a statisti-
cal inference problem in the space of implicit functions. Validation of the method
through various applications is proposed: (i) parametric shape modeling and seg-
mentation through active shapes for medical image analysis, (ii) variable bandwidth
non-parametric shape modeling for recognition, and (iii) object extraction through
a level set method. Promising results demonstrate the potentials of implicit shape
representations.

Key words: Distance transforms, implicit representations, sum of squares
differences, mutual information, free form deformations, gradient descent.
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1 Introduction

Shape modeling is a critical component in various applications of imaging and
vision, and registration [52] is its most challenging aspect. In the most general
case, given a source and a target shape, registration consists of recovering a
transformation that creates some correspondence between the two shapes.
Segmentation, recognition, indexing and retrieval, tracking and animation are
some examples where registration is needed. Often, segmentation consists of
deforming a prior shape model to the image while recognition consists of
element-wise comparison between structures of interest that were aligned.
A similar concept is applicable when addressing indexing and retrieval, while
tracking can be formulated as a registration problem [56] of the target from
one image to the next.

Global registration refers to parametric transformations with a small num-
ber of degrees of freedom, while non-rigid local registration aims to establish
dense correspondences between the two shapes and in principle can have an
infinite number of parameters. The importance of shape registration/modeling
in computational vision was a motivation for researchers and therefore one can
find extensive prior work [1, 2, 11, 13, 15, 33, 41, 57]. Given the definition of
the registration problem, one can classify existing methods according to three
aspects: (i) representation for the structures of interest, (ii) nature of plau-
sible transformations, and (iii) mathematical framework used to recover the
optimal registration parameters.

1. Shape representation refers to the selection of an appropriate repre-
sentation for the shapes. Clouds of points [1, 11], parametric curves and
surfaces [15], Fourier descriptors [46], medial axes [42], and implicit dis-
tance functions [33] have been considered.

2. Transformation can be either global or local. Global parametric models
like rigid, similarity, affine, and perspective among others are applicable to
the entire shape. On the other hand, local alignment is defined at the local
shape element level and used to represent non-rigid deformations leading
to dense correspondences between shapes. Optical flow [7, 33], thin-plate
spline (TPS) [1, 11], and space deformation techniques such as free form
deformations (FFDs) [40, 43] are some examples.

3. Registration criterion is a mathematical framework used to recover
the optimal registration parameters given the shape representation and
the nature transformation. One can find in the literature two dominant
techniques: (i) estimation of explicit geometric feature correspondences
that are used in a second stage to determine the transformation parame-
ters [1, 2, 11, 57], and (ii) recovery of the optimal transformation parame-
ters through the minimization of an objective function [7, 12, 33, 53].

Point clouds are a quite popular and rather intuitive generic shape rep-
resentation [1, 11] with certain strengths and numerous limitations. On one
hand one can adopt certain freedoms on the shape topologies either in two or
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three dimensions while on the other hand the sampling rule used to determine
the number of shape basic elements as well as their distribution can have a
substantial effect on the registration process. In particular, when addressing
local registration one should be cautious in introducing similar or quite dense
representations both for the source and the target shape. In the opposite case
correspondences could be meaningless in the presence of improper sampling
and lead to erroneous registration results.

Parametric curve representations of shapes [15, 27] are more appropriate
selections at least in the case of two and three dimensions. Parametric rep-
resentations could provide meaningful correspondences since shape structure
could be recovered through efficient interpolation techniques at the expense of
being quite inefficient when handling complex topologies or shapes in higher
dimensions. Fourier descriptors [46] and medial axes [42], although promising
shape representations to measure similarity between shapes, become quite in-
efficient for registration and in particular when seeking local correspondences
between the basic shape elements which is generally the case for parametric
representations. Local correspondences require proper selection of the basis
elements, the position, and the number of control points which in order to be
optimal has to be shape driven and cannot be done a priori.

Rigid (translation and rotation), similarity (translation, rotation, and
isotropic scaling), and affine (translation, rotation, isotropic or anisotropic
scaling, as well as shearing) are the most frequently used models to address
global registration. The case of local registration is more complex since the
number of constraints is inferior to the number of parameters to be recovered.
Therefore additional constraints are often introduced, as in the case of optical
flow estimation through a regularization process. However, shape registration
is a different problem than optical flow estimation since advanced regulariza-
tion and smoothness constraints [7, 33] can fail to preserve the topology of the
source shape and at the same time cannot guarantee a one-to-one mapping.
Such a limitation can be partially addressed through a TPS model [1, 11] with
the expense of recovering explicit correspondences between landmark points
along the source and the target shape. Once such correspondences are recov-
ered, one can estimate the local deformation field through a TPS interpolation
on the landmarks. Selection of landmark points as well as establishing corre-
spondences between these points are the most challenging steps within such
an approach.

Numerous shape alignment methods were proposed to address global as
well as local registration. The use of explicit feature correspondences in es-
timating the transformation [1, 57, 2, 11] is the most primitive approach for
recovering registration parameters through robust optimization techniques.
Such an approach is rather sequential and therefore it heavily depends on the
feature extraction process. Furthermore, the registration problem can become
underconstrained, especially in the case of non-rigid registration when many
reliable correspondences are needed in order to solve for the local deformation
parameters.
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A different approach consists of addressing registration as a statistical
estimation problem [24] through successive steps. Within each step the un-
certainty in the estimates is computed [48] and is used to guide further steps
of the overall algorithm [35]. In [47] the covariance matrix is used within
an iterated closest point (ICP) algorithm to sample the correspondences so
that registration is well constrained in all directions in parameter space. Last,
but not least, in [45] local deformations and uncertainties are simultaneously
recovered for the optical flow estimation problem through a Gaussian noise
assumption on the observation. Prior research leads to the conclusion that
shape modeling and registration are open research topics.

In this chapter we propose an alternative representation to the existing
methods that introduces novel elements in each component of the registra-
tion process. To this end, first we assume shape representations to be im-
plicit functions [33, 34] (Euclidean distance transforms). Such representations
are invariant to translation and rotation, can account for scale variations,
and can cope to some extent with noise and local deformations [59]. Reg-
istration is addressed in a complete fashion through a global and a local
component.

Objective functions that aim to account for global transformations in the
space of implicit representations are introduced. Global registration models of
increasing complexity are addressed like the rigid, similarity model [33] using
a SSD approach or the affine, homographic model [22] using a mutual infor-
mation criterion. FFDs and higher-order polynomials [22] are used to encode
local deformations in the space of implicit functions. Such a model is robust
to the presence of outliers, and can provide a one-to-one mapping between
the source and the target shape while also preserving their topologies. Shapes
refer to components of variable complexity and different degrees of freedom
which at the same time are often corrupted by noise. Such information is to be
accounted for, and therefore we propose a statistical inference approach that
associates certain uncertainties on the local deformation field [50], leading to
a complete local registration paradigm, as shown in Fig. 1.

Toward validation of the proposed method, we consider parametric shape
modeling for the segmentation of the left ventricle in ultrasound images, non-
parametric variable-bandwidth shape modeling for shape recognition, and im-
plicit active contours for knowledge-driven object extraction within a level set
approach.

The remainder of the chapter is organized as follows: In Section 2 we
present the implicit shape representation, its properties, and its use for global
alignment. Local registration is introduced in Section 3, along with the esti-
mation of the deformation uncertainties. Validation of the method is included
in Section 4, and applications are presented in Section 5. The discussion and
conclusions are presented in Section 6.
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(i)

(ii)
(1) (2) (3)

Fig. 1. Registration pipeline: (i.1) implicit representations of the source and the
target, (i.2) rigid registration, (i.3) affine registration, (ii.1) free form deforma-
tion of the grid, (ii.2) local correspondences between the source and the target,
(ii.3) uncertainties estimates of the registration process.

2 Implicit Representation of Shapes and Global
Registration

Distance transforms have been popular in image analysis for a while. One can
refer to the famous chamfer transform [3] often used for object extraction and
to the use of implicit representations (often called level set methods [16, 17,
30]) for curve propagation.

Such representations are heavily considered in the domain of computa-
tional vision because they have an intrinsic and parameter-free nature and
can also be used to describe multi-component shapes and structures. Finally,
they offer a straightforward estimation of various geometric properties of the
shape (normal, curvature, skeleton) often needed for registration, curve prop-
agation, etc. Let us consider a closed curve S that defines a bimodal image
partition of Ω. In such a partition [RS ] is the region that is enclosed by S, and
[Ω−RS ] the background. An implicit level set representation of S consists of

φS(x) =

⎧⎪⎨
⎪⎩

0, x ∈ S
+D(x,S) > 0, x ∈ RS
−D(x,S) < 0, x ∈ [Ω −RS ]

that embeds S in a higher-dimensional distance function φ : Ω → R+ that is
assumed to be a Lipschitz function of the Euclidean distance from the shape S,
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D(x,S) = min
y∈S
{‖x− y‖2} .

Such a representation can be constructed in various ways, simple two passes
in the image [3] could provide an approximate form, while more advanced
methods like the fast marching algorithm [44] or PDE-based techniques [49]
can also be considered.

Such implicit shape representation provides a feature space in which ob-
jective functions that are optimized using a gradient descent method can be
conveniently used. One can prove that the gradient of the embedding distance
function is a unit vector in the normal direction of the shape and the represen-
tation satisfies a sufficient condition for the convergence of gradient descent
methods, which requires continuous first derivatives. Furthermore, the use
of the implicit representation provides additional support to the registration
process around the shape boundaries and facilitates the imposition of smooth-
ness constraints, since one would like to align the original structures as well
as their clones which are positioned coherently in the image/volume plane.
Finally, implicit shape representations are invariant to rigid transformations
while the effect of isotropic scale changes can be accounted for.

Let us consider a global transformation A. Suppose that φ̂ is the level
set obtained after transformation of φ by A. The zero-crossing of φ̂ gives a
shape Ŝ which corresponds to the original shape S after being transformed
by A that refers to a rigid transformation with a translation vector T and a
rotation angle R:

A(x) = Rx + T.

One can prove that φ̂ is also the distance transform of Ŝ. Let x̂ be the location
of x after being displaced according to A. Then, for all x in the image domain
Ω, we have

D(x̂, Ŝ) = min
ŷ∈Ŝ
{‖x̂− ŷ‖2}

= min
y∈S
{‖Rx + T− (Ry + T)‖2} = min

y∈S
{‖R (x− y)‖2} = D(x,S),

which is equivalent to saying that distance transforms are invariant to trans-
lation and rotation:

φ̂(x̂) = φ(x) = D(x,S)

x̂ = Rx + T⇒ D(x̂, Ŝ) = D(x,S).

We can now also deduce the effect of adding a scale factor in the transforma-
tion: A(x) = sRx + T;

D(x̂, Ŝ) = min
ŷ∈Ŝ
{‖x̂− ŷ‖2} = min

y∈S
{‖sR (x− y)‖2} = sD(x,S).

Since for the directly transformed level set image representation φ̂ we have
φ̂(x̂) = D(x,S)1

sD(x̂, Ŝ), we can derive the distance transform of Ŝ by simply
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multiplying the scale factor s to φ̂. One can now address a similarity invariant
registration through the definition of an objective function in the space of
implicit representations of shapes.

Global parametric registration consists of recovering a transformation A
that creates pixel-wise intensity correspondences between the implicit rep-
resentation of the source φS and the target φT shape. Similarity or affine
transformations have been primarily considered with either 4 or 6 degrees of
freedom.

2.1 Similarity Registration of Shapes

In the case of similarity transformations [A(x) = sRx + T], given the ex-
plicit relation between the implicit representations of the source and the target
[φ̂(x̂) = D(x,S)1

sD(x̂, Ŝ)], a primitive criterion to recover registration para-
meters uses the SSD;

E(s,R,T) =
∫∫

Ω

(sφS(x)− φT (A(x)))2 dx,

which measures the dissimilarity between the intensity values (i.e., distance
values) of pixels in a sample image domain on the source representation and
that of the projected pixels on the target representation according to the
transformation A. This is a computationally expensive approach. One can
address such a concern through the adoption of a narrow band in the em-
bedding space as the sample domain. The use of a band indicator function
χα(φS(x)) can reduce the registration domain:

E(s,R,T) =
∫∫

Ω

χα(φS(x)) (sφS(x) − φT (A(x)))2
dx,

where χα(φS(x)) is given by

χα(φ) =

{
0, |φ| > α,

1, otherwise.

Such a modified function accounts for pixels (isophotes) within a range of
distance α from the source shape, and their projections on the target are
considered in the optimization process. One can consider the calculus of vari-
ations and a gradient descent-based method to recover the optimal registration
parameters:

d

dt
T = 2

∫∫
Ω

χα(φS(x))ψ(x)∇φT (A(x)) dx

d

dt
s = −2

∫∫
Ω

χα(φS(x))ψ(x)
(
φS(x) −∇φT (A(x)) ·Rx

)
dx

d

dt
θi = 2

∫∫
Ω

χα(φS(x))ψ(x)∇φT (A(x)) · ∇θi(A(x)) dx, 1 ≤ i ≤ p,
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(i)

(ii)

(i)

(ii)

(i)

(ii)

Fig. 2. Global registration using the similarity transformation model. (i) Initial
pose, (ii) similarity-invariant registration (the same target contour is used).

where (sφS(x) − φT (A(x))) is the residual error that has been replaced by
ψ(x) and p is the number of rotation angles [R = (θi)]. Examples of such a
registration process are shown in Fig. 2. Based on the experimental results
one can claim that shapes undergoing similarity transformations are properly
registered.

On the other hand, dealing with rather generic parametric transforma-
tions like the affine type is not straightforward. In principle the effect of such
transformations cannot be predicted in the space of implicit representations.
Therefore the distance function of the transformed shape is not available and
has to be recomputed, which is a rather inefficient procedure within iterative
processes like the one we have adopted. One can overcome such a limitation
through the consideration of an alternative affine-invariant objective func-
tion that does not seek point-to-point correspondences (like the SSD case)
between the implicit representations of the source and the target. Mutual
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information [36] is a convenient registration paradigm that satisfies such con-
straints, particularly when registering distance transforms [22, 21].

2.2 Affine-invariant Registration of Shapes

Scale variations can be considered as global illumination changes in the space
of distance transforms. Therefore, registration under scale variations is equiv-
alent to matching different modalities that refer to the same structure of
interest. Mutual information-based registration is an information theoretic
criterion that is an invariant technique based on a monotonic transformation
of the two input random variables. Such a criterion is based on the global
characteristics of the structures of interest. In order to facilitate the nota-
tion let us denote: (i) the source representation φS as f , and (ii) the target
representation φT as g.

In the most general case, registration is equivalent to recovering the para-
meters Θ = (θ1, θ2, . . . , θN ) of a parametric transformation A such that the
mutual information between fΩ = f(Ω) and gAΩ = g

(A(Θ;Ω)
)

is maximized
for a given sample domain Ω:

MI
(
XfΩ , XgAΩ

)
= H [

XfΩ
]
+H

[
XgAΩ

]
−H

[
XfΩ ,g

A
Ω

]
,

where H represents the differential entropy. Such a quantity represents a mea-
sure of uncertainty, variability, or complexity and consists of three compo-
nents: (i) the entropy of the model, (ii) the entropy of the projection of the
model given the transformation, and (iii) the joint entropy between the model
and the projection that encourages transformations where f explains g. One
can use the above criterion and an arbitrary transformation (rigid, affine,
homographic, quadratic) to perform global registration that is equivalent to
minimizing

E(A(Θ)) = −MI
(
XfΩ , XgAΩ

)

= −
∫∫

R2
pfΩ ,g

A
Ω (l1, l2)log

pfΩ ,g
A
Ω (l1, l2)

pfΩ (l1)pg
A
Ω (l2)

dl1dl2,

where (i) pfΩ corresponds to the probability density in fΩ
(
φS(Ω)

)
, (ii) pg

A
Ω

corresponds to the density in gAΩ
(
φT (A(Θ;Ω))

)
, and (iii) pfΩ ,g

A
Ω is the joint

density. This framework can account for various global motion models. To
achieve a continuous form of the criterion, a non-parametric Gaussian kernel
density model can be considered to approximate the joint density, leading to
the following expression:

pfΩ ,g
A
Ω (l1, l2)

1
V (Ω)

∫∫
Ω

G(l1 − f(x), l2 − g(A(Θ;x)))dx,
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(i)

(ii)

(i)

(ii)

(i)

(ii)

Fig. 3. Global registration using the affine transformation model. (i) Initial pose,
(ii) affine-invariant registration (the same target contour is used).

where V (Ω) represents the volume of Ω and G(l1− f(x), l2− g(A(Θ;x))) is a
two-dimensional (2D) zero-mean differentiable Gaussian kernel. A similar ap-
proach can be considered in defining pfΩ (l1) and pg

A
Ω (l2) using a 1D Gaussian

kernel. The calculus of variations with a gradient descent method [22] can be
used to minimize the cost function and recover the registration parameters θi:

∂E

∂θi
= −

∫∫
R2

(
1 + log

pfΩ ,g
A
Ω (l1, l2)

pfΩ (l1)pg
A
Ω (l2)

)

[
1

V (Ω)

∫∫
Ω

−Gβ(l1 − α, l2 − β)
(∇g(A(Θ;x)) · ∂

∂θi
A(Θ;x)

)
dx
]
dl1dl2
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= − 1
V (Ω)

∫∫
Ω

[∫∫
R2

(
1 + log

pfΩ ,g
A
Ω (l1, l2)

pfΩ (l1)pg
A
Ω (l2)

)

(
−Gβ(l1 − α, l2 − β)

)
dl1dl2

](∇g(A(Θ;x)) · ∂
∂θi
A(Θ;x)

)
dx.

The resulting global registration protocol is the following: given a source and
a target shape, implicit representations in the space of distance transforms
are recovered. Then, the mutual information criterion is used to estimate the
parameters of the optimal transformation between the source and the target
implicit representations. Examples of this approach for rigid as well as affine
registration are given in Fig. 3. However, in numerous application domains of
computational vision, global transformations are not a proper answer when
solving the registration problem, e.g., in the case of medical imaging [19].

3 Local Registration

Local deformations are a complementary component to the global registration
model. Dense local motion (warping fields) estimation is an ill-posed problem
since the number of variables to be recovered is larger than the number of
available constraints. Smoothness as well as other forms of constraints have
been employed to cope with this limitation.

In the proposed framework, a global motion model (A) is recovered using
different criteria. One can use such a model to transform the source shape S to
a new shape Ŝ = A(S) that is the projection of S to T . Then, local registration
is equivalent to recovering a pixel-wise deformation field that creates visual
correspondences between the implicit representation [φT ] of the target shape
S and the implicit representation [φŜ ] of the transformed source shape Ŝ.

3.1 Free Form Deformations

Such a deformation field L(Θ;x) can be recovered either by using standard
optical flow constraints [33, 34] or through the use of warping techniques like
the free form deformation (FFD) method, [40], which is a popular approach in
graphics, animation, and rendering [18]. In contrast to optical flow techniques
(where smoothness is introduced in the form of an additional constraint),
FFD techniques support smoothness constraints in an implicit fashion, ex-
hibit robustness to noise, and are suitable for modeling large and small non-
rigid deformations. Furthermore, under certain conditions, FFD can support
a dense registration paradigm that is continuous and guarantees a one-to-one
mapping. Such a concept and a primitive comparison with the optical flow
approach are presented in Fig. 4.

The essence of FFD is to deform an object by manipulating a regular
control lattice P overlaid on its volumetric embedding space. We consider an
incremental cubic B-spline FFD to model the local transformation L. To this
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Fig. 4. Comparison with the non-rigid shape registration algorithm presented in
[22]. (1) Results from the algorithm in [33, 34]. (2) Results from our algorithm.
(a) Initial poses of the source (in light) and target (in dark) shapes. (b) Alignment
after global registration. (1.c) Local registration result; (1.d) local registration with
regularization constraints. (2.c) Local registration result; (2.d) established corre-
spondences.

end, dense registration is achieved by evolving a control lattice P according to
a deformation improvement [δP]. The inference problem is solved with respect
to the parameters of FFD which are the control lattice coordinates.

Let us consider a regular lattice of control points

Pm,n = (Px
m,n,P

y
m,n); m = 1, . . . ,M, n = 1, . . . , N

overlaid to a structure

Γc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }

in the embedding space that is the distance transform of the source structure
once the global registration parameters have been applied. Let us denote the
initial configuration of the control lattice as P0 and the deforming control
lattice as P = P0 + δP. Under these assumptions, the incremental FFD
parameters are the deformations of the control points in both directions (x, y);

Θ = {(δPx
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ]× [1, N ].

The motion of a pixel x = (x, y) given the deformation of the control lattice
from P0 to P is defined in terms of a tensor product of the cubic B-spline:

L(Θ;x) = x + δL(Θ;x) =
3∑
k=0

3∑
l=0

Bk(u)Bl(v)(P0
i+k,j+l + δPi+k,j+l),

where
i =

⌊ x
X
·M

⌋
− 1, j =

⌊ y
Y
·N

⌋
− 1



On the Representation of Shapes Using Implicit Functions 179

and
u =

x

X
·M −

⌊ x
X
·M

⌋
, v =

y

Y
·N −

⌊ y
Y
·N

⌋
.

The terms of the deformation component are as follows:

• δPi+l,j+l, (k, l) ∈ [0, 3]× [0, 3] consists of the deformations of pixel x’s (16)
adjacent control points,

• δL(x) is the incremental deformation at pixel x, and
• Bk(u) is the kth basis function of a cubic B-spline (Bl(v) is similarly

defined):

B0(u) = (1− u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6, B3(u) = u3/6.

Local registration now is equivalent to finding the best lattice P configu-
ration such that the overlaid structures coincide. Since structures correspond
to distance transforms of globally aligned shapes, the SSD can be considered
as the data-driven term to recover the deformation field L(Θ;x)):

Edata(L(Θ)) =
∫∫

Ω

χα(φS(x))
(
φS(x) − φT (L(Θ;x))

)2
dx.

The use of such a technique to model the local deformation component
of the registration introduces in an implicit form some smoothness constraint
since displacement refers to a cubic spline interpolation. Therefore, it can deal
with a limited level of deformation. In order to further preserve the regularity
of the recovered registration flow, one can consider an additional smoothness
term on the deformation field δL. We consider a computationally efficient
smoothness term:

Esmoothness(L(Θ)) =
∫∫

Ω

(
|Lx(Θ;x)|2 + |Ly(Θ;x)|2

)
dx.

This smoothness term is based on a classic error norm that has certain known
limitations. One can replace this smoothness component with more elabo-
rated norms like a regularization term motivated by the thin-plate energy
functional [55]:

Esmoothness(L(Θ)) =
∫∫

Ω

(
|Lxx(Θ;x)|2 + 2 |Lxy(Θ;x)|2 + |Lyy(Θ;x)|2

)
dx,

which can be further simplified in the case of the cubic B-spline and reduced
to the quadratic form [50]. One can claim that second-order regularization
terms are more flexible than the ones of first order since they allow free affine
transformations. Within the proposed framework, an implicit smoothness con-
straint is also imposed by the spline FFD. Therefore there is no need to in-
troduce complex and computationally expensive regularization components.
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(i)

(ii)

(i)

(ii)

(i)

(ii)

Fig. 5. Global registration using the FFD local transformation model. (i) Initial
pose (after affine) (ii) deformation of the grid (the same target contour is used).

The data-driven term and the smoothness constraint component can now
be integrated to recover the local deformation component of the registration
to solve the correspondence problem:

E(Θ) = Edata(Θ) + βEsmoothness(Θ),

where β is the constant balancing the contribution of the two terms. The cal-
culus of variations and a gradient descent method can be used to optimize this
objective function [22] (the error-two norm is adopted to impose smoothness):

∂

∂θi
E(Θ) = −2

∫∫
Ω

(φS(x) − φT (L(Θ;x))
)∇φT (L(Θ;x)) · ∂

∂θi
δL(Θ;x)dx

+2α
∫∫

Ω

∂

∂x
δL(Θ;x)· ∂

∂θi

(
∂

∂x
δL(Θ;x)

)
+
∂

∂y
δL(Θ;x)· ∂

∂θi

(
∂

∂y
δL(Θ;x)

)
dx.
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Fig. 6. Established correspondences using incremental FFD. Source shapes after
global transformations, target mean shape, and correspondences (dark lines) for a
fixed set of points on the mean shape.

The flow consists of a data-driven update component and a diffusion term
that constrains the parameters of the FFD to be locally smooth. The perfor-
mance on recovering successful local deformations is demonstrated in charac-
ter registration (Fig. 5) and in cardiac shape registration (systolic left ventricle
dataset) (Fig. 6). Computational complexity is the most important limitation
of this method and it can be addressed through an efficient multi-level imple-
mentation, as shown in Fig. 5.

To this end, multi-resolution control lattices are used according to a coarse-
to-fine strategy. A coarser level control lattice is applied first to account for
relatively global non-rigid deformations; then the space deformation resulting
from the coarse level registration is used to initialize the configuration of a
finer resolution control lattice. On this finer level, the local registration process
continues to deal with highly local deformations and achieve better match-
ing between the deformed source shape and the target. Generally speaking,
the hierarchy of control lattices can have an arbitrary number of levels, but
typically 2 ∼ 3 levels are sufficient to handle both large and small non-rigid
deformations. The layout of the control lattices in the hierarchy can be com-
puted efficiently using a progressive B-spline subdivision algorithm [20]. At
each level, we can solve for the incremental deformation of the control lattice;
at the end, the overall dense deformation field is defined by these incremental
deformations from all levels. In particular, the total deformation δL(x) for a
pixel x in a hierarchy of r levels is
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δL(x) =
r∑

k=1

δLk(Θk;x),

where δLk(Θk;x) refers to the deformation improvement at this pixel due to
the incremental deformation Θk of the kth-level control lattice.

The proposed registration framework and the derivations can be straight-
forwardly extended to three dimensions. For global registration, parameters
of a 3D transformation model can be solved by optimizing the global regis-
tration criterion in the 3D sample domain; for local registration, FFDs can
be defined by the 3D tensor product of B-spline polynomials, and the SSD
energy functional is defined in the 3D volumetric domain. More details on
the 3D formulation for non-rigid FFD registration can be found in [23]. We
can use the 3D registration framework to align, register, and stitch 3D face
scans captured from range scanners. This problem plays an important role in
face modeling, recognition, etc. We show one set of such registration results

Fig. 7. Global-to-local registration for open 3D structures (both source and target
shapes are from face range scan data). (1) Global registration using the similarity
transformation model: (a) initial source shape; (b) target shape; (c) initial pose of the
source shape relative to the target shape; (d, e) globally transformed source shape
shown overlaid on the target—front view (d) and side view (e). (2,3) Local registra-
tion using FFD. The results are shown from both a 3D front view in the second row
and a side view in the third row. (Front view and side view): (a) Source shape after
rigid transformation; (b) target shape; (c) locally deformed source shape after FFD
registration; (d) locally deformed source shape shown overlaid on the target.
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from our framework in Fig. 7. The global transformation model consists of
translation, scaling, and quaternion-based rotation and the local incremental
FFD model uses control lattices in the 3D space and a 3D tensor product of
B-spline polynomials. Qualitatively, the result after local non-rigid registration
can be seen from two views: the front view and the side view. Quantitatively,
the FFD-based local registration reduced the average registration error from
8.3 to 1.2, using three resolutions and 20 iterations for each resolution. The
total time spent was 4.6 minutes.

However, one can claim that the local deformation field is not sufficient
to characterize the registration between two shapes. Often data is corrupted
by noise while at the same time outliers exist in the training set. Therefore
recovering measurements that do allow the characterization of the quality of
the registration process is an eminent condition of accurate shape modeling.

4 Estimation of Registration Uncertainties

Several attempts to build statistical models on noisy sets of data in order
to infer the properties of a certain model have been proposed in the liter-
ature. In [24], various techniques to extract feature points in images along
with uncertainties due to the inherent noise were reported while in [35] an
iterative estimation method was proposed to handle uncertainty estimates of
rigid motion on sets of matched points. Also, in [47] an iterative technique to
determine uncertainties within the iterated closest point [9] registration algo-
rithm was proposed. In a quite different context, [45] introduced uncertainties
within the estimation of dense optical flow, which can be seen as a form of
registration between images.

In the present case curves are considered using implicit representation,
therefore uncertainty does not lie in the relative position of points but in
an isosurface, and therefore one can seek equivalences with the “aperture
problem” in optical flow estimation. Inspired by the work in [4, 47] we attempt
to recover uncertainties on the vector Θ while using only the zero isosurface,
defining the shape itself. To this end, we use a discrete formulation of

Edata(L(Θ)) =
∫∫

Ω

χα(φS(x))
(
φS(x) − φT (L(Θ;x))

)2
dx,

which can be rewritten in the following fashion when α→ 0:

Edata(L(Θ)) =
∫∫

Ω

φ2
T (L(Θ;x))dx =

K∑
i=1

ρ (φT (L(Θ,xi))) =
K∑
i=1

ρ(φT (x′
i))

with x′ = L(Θ;x). Let us consider qi to be the closest point on the target
contour from x′

i. Since φT is assumed to be a Euclidean distance transform,
it satisfies the condition ‖∇φT (x′

i)‖ = 1. Therefore one can express the values
of φT (x′

i):
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φT (x′
i) = (x′

i − qi) · ∇φT (x′
i).

Then, one has a first-order approximation of φT (x) in the neighborhood of
x′
i, in the form

φT (x′
i + δx′

i) = φT (x′
i) + δx′

i · ∇φT (x′
i)

= (x′
i + δx′

i − qi) · ∇φT (x′
i)

that reflects the condition that a point-to-curve distance is adopted rather
than a point-to-point one. Under the assumption that E(L(Θ)) = ◦(1) we
can neglect the second-order term in the development of φT and therefore
write the following second-order approximation of E0 in quadratic form:

E(L(Θ)) =
∑

[(L(Θ,xi)− qi) · ∇φT (x′
i)]

2
.

FFD is a linear transformation with respect to the parameters Θ = δPi,j .
Therefore one can rewrite this transformation over the image domain in a
rather compact form:

L(Θ;x)=x + δL(Θ;x)=
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(P0
i+k,j+l+δPi+k,j+l)=x+X (x),

where X (x) is a matrix of dimensionality 2×N with N being the size of Θ.
One now can substitute this term in the objective function:

E(L(Θ)) = (X ·Θ − y)T (X ·Θ − y)

with

X =

⎛
⎜⎝
ηT1 X (x1)

...
ηTKX (xK )

⎞
⎟⎠ and y =

⎛
⎜⎝

ηT1 (q1 − x1)
...

ηTK(qK − xK)

⎞
⎟⎠

and [ηi = ∇φT (x′
i)] due to the distance transform nature of the implicit

function. We assume that y is the only random variable. This assumption is
equivalent to saying that errors in the point positions are only quantified along
the normal direction. This accounts for the fact that the point set is treated as
samples extracted from a continuous manifold. One can take the derivative of
the objective function in order to recover a linear relation between Θ and y:

X TXΘ = X Ty.

Last, assume that the components of y are independent and identically distrib-
uted. In that case, the covariance matrix of y has the form σ2I of magnitude
σ2 with I being the identity. In the most general case one can claim that the
matrix X TX is not invertible because the registration problem is undercon-
strained. Additional constraints are to be introduced toward the estimation
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Fig. 8. Examples of registration with uncertainty estimation at the FFD grid.

of the covariance matrix of Θ through the use of an arbitrarily small positive
parameter γ:

E(L(Θ)) = (XΘ − y)T (XΘ − y) + γ ΘTΘ.

Then the covariance matrix of the parameter estimate is

ΣΘ = σ2(X TX + αI)−1.

Some examples of such estimates are shown in Fig. 8. Once registration
between shapes has been addressed numerous computational vision tasks can
be considered. Shape modeling with applications to object extraction and
recognition are the more frequent ones.

5 Applications

In this section, we present three applications of the proposed global-to-local
registration framework to demonstrate its potential in the domains of grouping
and recognition.

5.1 Statistical (Gaussian) Modeling of Anatomical Structures and
Segmentation of the Left Ventricle in Ultrasound Images

Organ modeling is a critical component of medical image analysis. One would
like to obtain a compact representation that can capture the variation in an
anatomical structure of interest across individuals. Building such a representa-
tion requires establishing dense local correspondences across a set of training
examples. The registration framework proposed in this chapter can be used
to solve the dense correspondence problem.

As an example, we show the statistical modeling of systolic left ventricle
(LV) shapes from ultrasonic images, using 40 pairs of hand-drawn LV con-
tours. We first apply global rigid registration to align all contours to the same
target. Local registration based on FFD is then used to non-rigidly register
all these contours to the common target. In order to establish dense one-to-
one correspondences between all the aligned contours, we pick a set of sample
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points on the common target and compute their correspondences on each
training contour based on the local registration result (Fig. 6) for established
local correspondences. A similar procedure is applied for the endiastolic shape
of the left ventricle.

Principal component analysis (PCA) can be applied to capture the statis-
tics of the corresponding elements across the training examples. PCA refers to
a linear transformation of variables that retains, for a given number o1, o2 of
operators, the largest amount of variation within the training data, according
to

d = d′ +
o1∑
k=1

λdk (udk,v
d
k), s = s′ +

o2∑
k=1

λsk (usk,v
s
k),

where d′ (resp. s′) is the mean diastolic shape, o1 (resp. o2) is the number of
retained modes of variation, (udk,v

d
k) (resp. (usk,v

s
k)) are these modes (eigen-

vectors), and λdk (resp. λsk) are linear factors within the allowable range defined
by the eigenvalues.

Once average models for the systolic and diastolic cases are considered, one
can further assume that these models are registered; therefore there is a one-
to-one correspondence between the points that define these shapes. To this
end, their implicit representations φd, φs are aligned using first a similarity
transformation and then an FFD.

Let
(
d = (xd1 ,x

d
2, . . . ,x

d
m)
)

be the diastolic and (s = (xs1,x
s
2, . . . ,x

s
m)) the

systolic average model once global and local registration between them has
been recovered. Then one can define a linear space of shapes as follows:

c(a) = a s + (1− a) d, 0 ≤ a ≤ 1

=
(
axd1 + (1− a)xs1, . . . , αx

d
1 + (1− a)xsm

)
and a linear space of deformations that can account for the systolic and the
diastolic frames as well as the frames in between:

c(a, λdk, λ
d
s) = c(a) +

o1∑
k=1

λdk (udk,v
d
k) +

o2∑
k=1

λsk (usk,v
s
k).

The most critical issue to be addressed within this process is the global and
local registration between the systolic and diastolic average shapes. The ap-
proach proposed in [22], which performs registration in the implicit space of
distance functions using a combination of the mutual information criterion
and an FFD principle, is used. The resulting composite model has limited
complexity and can account for the systolic and the diastolic forms of the
endocardium as well as for the frames between the two extrema.

Rough Segmentation Through Registration

The central idea behind active shape models is to recover (i) an approxi-
mate solution through a global registration (a,A) between the time-varying
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average model and the image and (ii) the exact solution through a linear com-
bination of the principal modes of variation c(λdk, λ

d
s). To this end, given an

initial position of the average model and a number of control points ci, the
method seeks in a repetitive manner the most prominent correspondence of
each control point in the image plane pi. Once such correspondences have
been recovered, the registration parameters between the image and the model
are updated so that the recovered projection to the image approximates the
desired image features:

Edata(a,A) =
m∑
i=0

ρ (|A(ci(a)) − pi|), (1)

where A refers to translation, rotation, and scale, a dictates the model space,
and ρ is a robust error metric.

However, recovering the correspondences pi is a tedious task. Active shape
models are based on generating an intensity profile for each control point along
the normal to the model and seeking a transition from tissue to the ventricle.
We consider a probabilistic formulation of the problem. One would like to
recover a density pwall(; ) that can provide the probability of a given pixel ω
being at the boundaries of the endocardium.

Let ptissue(; ) be the probability of a given intensity being part of the endo-
cardium walls and pblood(; ) the density that describes the visual properties of
the blood pool. Then correspondences between the model and the image are
meaningful in places where there is a transition (tissue to blood pool) between
the two classes. Given a local partition one can define a transition probability
between these two classes.

Such a partition consists of two line segments [L(A(xi)),R(A(xi))] along
the normal [A(Ni)]. Their origin is the point of interest A(xi) and they have
opposite directions. Therefore in statistical terms one can write

pwall(ω) = p ([tissue|φ ∈ L(ω)] ∩ [blood|φ ∈ R(ω)]) .

Furthermore, independence between the two classes can be considered:

pwall(ω) = p (tissue|φ ∈ L(ω)) p (blood|φ ∈ R(ω))

=
∏

φ∈L(ω)

ptissue(I(φ))
∏

φ∈R(ω)

pblood(I(φ)).

One can evaluate this probability under the condition that the blood pool
and tissue densities are known. The use of the -log function can be considered
to overcome numerical constraints, leading to

E(ω) =
∑

φ∈L(ω)

λblood I(φ) +
∑

φ∈R(ω)

(I(φ)− µtissue)2

2σ2
tissue

.

after dropping the constant terms. Thus, the best correspondence (pi) is re-
covered by evaluating E(ω) for all ω (within a search window) that belong to
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the line segment that is normal to the latest solution A(Ni) at a given control
point ci.

Recovering the optimal transformation A can now be done in an incre-
mental manner by solving a linear system

(m,n),
∂

∂αm,n
Edata(a,A) = 0→

m∑
i=0

ρ′(|A(ci(a)) − pi|) ∂

∂αm,n
(|A(ci(a)) − pi|) = 0,

where (αm,n) are the parameters of the global transformation A, four in the
case of similarity that was considered. On the other hand, the estimation of
a is done through an exhaustive search. The process alternates between the
estimation of the transformation (A) and the blending parameter between
the systolic and the endiastolic model until convergence to the endocardium
boundaries. Then the distribution parameters for the tissue and blood case are
adaptively recovered using the latest position of the mean model. The inner
region is used to determine the Laplacian parameter (λblood) while a narrow
band in the outward direction dictates the estimates of (µtissue, σtissue).

Once appropriate models and similarity transformations have been recov-
ered, the next step is precise extraction of the endocardium walls. Such a task

(a) (b)

Fig. 9. (a) Diastole endocardium segmentation, (b) systole endocardium segmen-
tation: (i) apical 4 view, (ii) apical 2 view.
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is equivalent to finding a linear combination of the modes of variation that
globally deforms the model toward the desired image features. The space of
variations consists of the diastolic and the systolic models. We claim that the
need of a blending parameter between systolic and diastolic modes of varia-
tion is not present. It can be easily shown that adding such a factor leads to
a multiplication of the (λd0, . . . , λ

s
0, . . .) coefficients that are to be recovered,

and therefore such a multiplication factor can be omitted.
Under the assumption of existing correspondences pi and the global trans-

formation (a,A) these linear coefficients are recovered through

Erefine-data(λd0 , . . . , λ
s
0, . . .) =

m∑
i=0

ρ

(
|A (ci(a)) +

o1∑
k=1

λdk (udk,v
d
k) +

o2∑
k=1

λsk (usk,v
s
k)− pi|

)
.

The objective function is minimized using a robust incremental estimation
technique. The calculus of Euler–Lagrange equations with respect to the un-
known variables (λd0, . . . , λ

s
0, . . .) leads to a [o1 + o2]× [o1 + o2] linear system

that has a closed-form solution. This step is repeated until convergence. Ex-
amples of such a segmentation process are shown in Fig. 9. While the form of
the left ventricle can be well described using a Gaussian density, in the most
general case shapes that refer to objects of particular interest are non-linear
structures, and therefore the assumption of simple parametric models like the
Gaussian one is rather unrealistic. Therefore within our approach we propose
a non-parametric form of the pdf. Such a selection is enforced by the nature of
the proposed registration algorithm, which, along with the deformation field,
estimates confidence measures (uncertainties).

It is natural to assign less importance to the variations that appear in areas
with low registration confidence. Such areas in principle are not related to
the distribution of the training samples after registration. Kernels of variable
bandwidth can be used to encode such conditions and provide a structured
way for utilizing the variable uncertainties associated to the sample points.

5.2 Variable-Bandwidth Density Estimation and Shape
Recognition

Let {xi}Mi=1 denote a random sample with common density function f . The
fixed-bandwidth kernel density estimator consists of

f̂(x) =
1
M

M∑
i=1

KH (x− xi) =
1
M

M∑
i=1

1
‖H‖1/2 K

(
H−1/2(x− xi)

)
,

where H is a symmetric definite positive, often called a bandwidth matrix,
that controls the width of the kernel around each sample point xi. The fixed-
bandwidth approach often produces undersmoothing in areas with sparse ob-
servations and oversmoothing in the opposite case. The usefulness of varying
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bandwidths is widely acknowledged in estimating long-tailed or multi-modal
density functions with kernel methods.

In the literature, kernel density estimation methods that do rely on such
varying bandwidths are generally referred to as adaptive kernel density esti-
mation methods [54]. An adaptive kernel approach adapts to the sparseness
of the data by using a broader kernel over observations located in regions of
low density. Two useful state-of-the-art variable-bandwidth kernels consist of
the sample point estimator and the balloon estimator.

The first one refers to a covariance matrix depending on the repartition of
the points constituting the sample:

f̂S(x) =
1
M

M∑
i=1

1
‖H(xi)‖1/2 K

(
H(xi)−1/2(x− xi)

)
,

where a common selection of H refers to

H(xi) = h(xi) · I

with h(xi) being the distance of point xi from the kth nearest point. One
can consider various alternatives to determine the bandwidth function. This
estimator may be used directly with the uncertainties estimates H(xi) = µΣΘi
as proposed in [8].

Our registration method assumes an estimation of the uncertainty on the
point to be evaluated. In order to make use of this information, we introduce
the standard variable-bandwidth kernel method known as the balloon estima-
tor. It adapts the measures to the point of estimation depending on the shape
of the sampled data according to

f̂B(x) =
1
M

M∑
i=1

1
‖H(x)‖1/2 K

(
H(x)−1/2(x− xi)

)
,

where H(x) may be chosen with the same model as the sample point esti-
mator. This function may be seen as the average of a density associated to
the estimation point x on all the sample points xi. We point out that such
a process could lead to estimates on f̂(x) that do not refer to the density
function in terms of discontinuity, integration to infinity, etc.

Let us consider {xi}Mi=1 a multi-variate set of measurements where each
sample xi exhibits uncertainties in the form of a covariance matrix Σi. Our
objective can be stated as follows: estimate the probability of a new measure-
ment x that is associated with covariance matrix Σ.

Let X be the random variable associated to the training set and assume a
density function f . f may be estimated with f̂ in a similar fashion as for the
sample point estimator. Therefore f may be expressed in the form f =

∑
fi

where fi are densities associated to a single kernel xi. Let Y be a random
variable for the new sample with density g.
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Then one can claim that in order to estimate the probability of the new
sample, one should first determine for all possible u ∈ R

N their distance from
the existing kernels of the training set X, f(u) in a similar fashion as for the
sample point estimator and weight them according to their fit with the density
function of Y:

f(x) =
∫
f(u)g(u)du =

∫ [
M∑
i=1

fi(t)

]
g(t)dt =

M∑
i=1

[∫
fi(t)g(t)dt

]
.

This concept could be relaxed to address the case of non-Gaussian kernels
according to a hybrid estimator that is considered:

f̂H(x) =
1
M

M∑
i=1

1
‖H(Σ,Σi)‖1/2 K(H(Σ,Σi)1/2(x − xi)).

Such a density estimator takes into account the uncertainty estimates both
on the sample points themselves as well as on the estimation of point x,
as introduced in [28]. The outcome of this estimator may be seen as the
average of the probabilities that the estimation measurement is equal to the
sample measurement, calculated over all sample measurements. Consequently,
in directions of important uncertainties the density estimation decreases more
slowly when compared to the other directions.

This metric can now be used to assess for a new sample the probability of
being part of the training set through a process that evaluates the probabil-
ity for each of the examples in the training set. The resulting approach can
account for the non-parametric form of the observed density. However, the
evaluation of such, density with respect to a candidate x is time consuming
since it is linear with respect to the number of samples in the training set.
Therefore, there is an eminent need to decrease the cardinality of the set of
retained kernels.

The maximum likelihood criterion expresses the quality of approximation
from the model to the data. Consider a set ZK = {X1, X2, . . . , XK} of ker-
nels extracted from the training set with mean and uncertainties estimates
{xiΣi}|ZK|

i=1 . Then the probability of any registered shape with associated ker-
nel Y has the form

PZK(Y ) =
1
|ZK|

∑
X∈ZK

K(X,Y ).

and K(X,Y ) corresponds to the calculation of the hybrid kernel estimator.
For such a selection of kernels, one can evaluate the log-likelihood for the
entire training set with the associated kernels {Yi}Ni=1:

CK =
N∑
i=1

log(PZK(Yi))



192 N. Paragios, M. Taron, X. Huang, M. Rousson and D. Metaxas

(a) (b)

Fig. 10. (a) Distribution of the distance of the training set from the kernel-based
model built for 3 in logarithmic scale. (b) Distribution of the distance of the training
set from the kernel-based model built for 9 in logarithmic scale.

We use an efficient suboptimal iterative algorithm to update the set ZK.
A new kernel Y is extracted from the training set as the one maximizing
the quantity CK+1 associated to ZK+1 with ZK+1ZK

⋃
Y . One kernel may

be chosen several times in order to preserve a decreasing order of CK when
adding new kernels. Consequently the selected kernels Yi used to evaluate the
global density probability have prior weight.

The proposed method is indented to provide efficient models for a family
of shapes with important variations. Digits are an example where the shape of
the characters varies along individuals and therefore one can claim important
variability on the training set. Based on this observation and using an impor-
tant training set from the database, we have considered two digits (random
variables of 2000 samples each) that have a quite similar structure, 3 and 9.
Upon intraclass registration two models have been built of 100 kernels each
according to the maximum likelihood principle. Then, a cross-validation task
was performed where for all samples of the database (3 and 9) the probability
of being part of the classes 3 and 9 was estimated according to the presented
variable-bandwidth density function. In Fig. 10(a) one can see in a logarith-
mic scale the performance of the method using the model built for 3 and also
applied to the samples of 9. The opposite case is presented in Fig. 10(b). In
both cases one can see a clear separation of the two classes and a substantial
difference in terms of probabilities between the true and the non-true case. It
is important to note that the presented method is not indented for such an
application. However, given this validation we can claim that such a model
can capture samples of increasing complexity and that the use of deformations
along with uncertainties provides efficient density estimators.

5.3 Knowledge-Based Object Extraction Using Distance
Transforms and Level Set Methods

The idea of global as well as local registration can be explored to impose prior
knowledge within a level set [29, 30] segmentation process [10, 14, 25, 38, 51].
This method is based on the propagation of an initial contour (in practice, its
implicit function) toward the desired image characteristics [5, 6, 26, 31, 37].
Often, the signed distance function is considered to represent the evolving
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contour. In the most general case, one can assume a simplistic average shape
model [38] φM. Then, in order to constrain the segmentation process, one can
force the evolving curve φ to look like the prior, or

Eshape(φ, (s,R,T))
∫∫

Ω

(sφM(x) − φ(A(x)))2 dx.

One can further assume that the image refers to a bimodal partition (R,
Ω − R) where the distributions of the visual properties of the object pobj :
N (µobj , σobj) and the background pbcg : N (µbcg, σbcg) are assumed to be
Gaussian. Under the assumption of independence between hypotheses and
across pixels, the maximum posterior can be used to determine the optimal
segmentation results [32], or

Edata(φ,N (µobj , σobj),N (µbcg, σbcg)) = −
∫∫

R
log (pobj(I(x))) dx

−
∫∫

Ω−R
log (pbcg(I(x))) dx.

Within the level set framework, one can use the φ function to describe this
partition [58] according to

Edata(φ,N (µobj , σobj),N (µbcg, σbcg)) =

−
∫∫

Ω

Hα(φ)log (pobj(I(x))) dx−
∫∫

Ω

(1−Hα(φ))log (pbcg(I(x))) dx,

where H is the Heaviside function

Hα(φ) =

⎧⎪⎨
⎪⎩

1 , φ > α

0 , φ < −α
1
2

(
1 + φ

α + 1
π sin

(
πφ
α

))
, |φ| < α.

Finally, for smooth segmentation results one can impose a minimal length
curve constraint according to

Esmooth(φ) =
∫∫

Ω

δα(φ(x)) |∇φ(x)| dx,

where δα is the Dirac function

δα(φ) =

{
0 , |φ| > α
1
2α

(
1 + cos

(
πφ
α

))
, |φ| < α

with
[
∂
∂φHα(φ) = δα(φ)

]
. One can now integrate smoothness, data-driven,

and shape-driven terms toward object extraction according to
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E(φ, (µobj , σobj), (µbcg, σbcg)), (s,R,T)) = w1Eshape(φ, (s,R,T))

+ w2Edata(φ,N (µobj , σobj),N (µbcg , σbcg)) + w3Esmooth(φ),

where the object position, its visual properties, and the transformation be-
tween the object and the average model are to be recovered. The calculus of
variations with respect to the evolving interface (level set), its projection to
the mean model, and the statistical properties of appearance of the object
and the background can be considered to recover the lowest potential of the
designed cost function. We refer to Section 2 regarding the derivation with
respect to the pose parameters while the level set function evolves according to

∂φ

∂t
(x) = a δ(φ(x))

(
w2 div

∇φ(x)
|∇φ(x)| + w3 log

pobj (I(x))
pbcg (I(x))

)

− 2w1 s
(
sφM(x)− φ(A(x))

)
.

Fig. 11. Implicit representations, prior knowledge, and object extraction un-
der occlusions. The evolution of the contour is presented in a raster scan format.
(i) Original image from where the prior was extracted, (ii) changes of pose for the
object to be recovered, (iii) image with changes of scale, pose, illumination, noise,
and missing parts.
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One can also take the partial derivatives of the cost function with respect
to the mean and the standard deviation of the normal distributions describ-
ing the object and the background intensity properties [37]. This method is
demonstrated in Fig. 11 to address knowledge-based object extraction and can
be quite efficient when seeking objects of limited variations. More advanced
models that are based on the same principle can be considered to address
segmentation for cases of important deformations [39].

6 Discussion

In this chapter we have studied shape representations of implicit forms, in
particular distance transforms. We have demonstrated that such representa-
tions can be quite efficient for global and local one-to-one registration. Simple
similarity invariant (SSD) and more advanced registration metrics able to
account for various global transformations (mutual information) were consid-
ered in the space of implicit functions. Local registration was addressed using
FFDs and cubic splines in the space of distance transforms. Furthermore, we
have introduced the notion of uncertainties on the registration process to the
selected representation space.

Validation of the representation itself as well as the registration meth-
ods was done through parametric modeling of shapes and segmentation, non-
parametric modeling and recognition, and shape-driven level set based object
extraction with promising results.
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Summary. Point clouds are one of the most primitive and fundamental manifold
representations. A popular source of point clouds are three-dimensional shape ac-
quisition devices such as laser range scanners. Another important field where point
clouds are found is the representation of high-dimensional manifolds by samples.
With the increasing popularity and very broad applications of this source of data, it
is natural and important to work directly with this representation, without having
to go through the intermediate and sometimes impossible and distorting steps of
surface reconstruction. Under the assumption that the underlying object is a sub-
manifold of Euclidean space, we first discuss how to approximately compute geodesic
distances by using only the point cloud by which the object is represented. We give
probabilistic error bounds under a random model for the sampling process. Later
in the chapter we present a geometric framework for comparing manifolds given
by point clouds. The underlying theory is based on Gromov–Hausdorff distances,
leading to isometry invariant and completely geometric comparisons. This theory is
embedded in a probabilistic setting, as derived from random sampling of manifolds,
and then combined with results on matrices of pairwise geodesic distances to lead
to a computational implementation of the framework.

Key words: Point clouds, shape comparison, geodesic distance, random
coverings, Gromov–Hausdorff distance, isometry.

1 Introduction

One of the most popular sources of point clouds are three-dimensional (3D)
shape acquisition devices, such as laser range scanners, with applications in
geoscience, art (e.g., archival), medicine (e.g., prosthetics1), manufacturing
(from cars to clothes), and security (e.g., recognition), among other disciplines.
These scanners provide in general raw data in the form of (noisy) unorganized

1The surgical or dental specialty concerned with the design, construction, and
fitting of prostheses.
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point clouds representing surface samples. With the increasing popularity and
very broad applications of this source of data, it is natural and important
to work directly with this representation, without having to go through the
intermediate step of fitting a surface to it (a step that can add computational
complexity and introduce errors). See for example [BC01, DGH01, DFI02,
GPZ+, LP01, PG01, PGK02] for a few of the recent works with this type of
data. Note that point clouds can also be used as primitives for visualization
[BWK02, GPZ+, RL00] as well as for editing [ZPKG02].

Another important field where point clouds are found is the representation
of high-dimensional manifolds by samples. This type of high-dimensional and
general codimension data appears in almost all disciplines, from computa-
tional biology to image analysis to financial data. Due to the extremely high
dimensions, it is impossible to perform manifold reconstruction, and the work
needs to be done directly on the raw data, meaning the point cloud.

A variety of objects/shapes are then naturally represented as point clouds
in d. It is thereby important to be able to derive basic properties of the shape,
such as geodesic distances and curvatures, directly from this representation.
Also, one is often presented with the fundamental problem of deciding whether
two of the point clouds, and their corresponding underlying objects or man-
ifolds, represent the same geometric structure or not (object recognition and
classification). We are then concerned with questions about the underlying
unknown structures (objects), which need to be answered based on discrete
and finite measures taken between their respective point clouds. In greater
generality, we wonder what structural information we can gather about the
object itself by exploring the point cloud by which the object is represented.
Examples include intrinsic distances, curvatures, normals (see [MN03]), di-
mension (see [CH04]), spectrum of differential operators such as the intrinsic
Laplacian (see [Laf04] and references therein), and topological invariants (see
[CZCG04, NWS04]).

The first part of this chapter is devoted to setting some basic modeling
assumptions and presenting some basic results which will be used in later
sections. These results comprise mostly bounds on the probability of coverage
of a submanifold of d by Euclidean balls whose centers are distributed on
(or around) the submanifold according to a certain probability measure. This
probability measure, for example in the case of shapes acquired by a 3D
scanner, models the acquisition process itself.

The second part of this chapter addresses one of the most fundamental
operations in the study and processing of submanifolds of Euclidean space:
The computation of intrinsic distance functions and geodesics. We show that
this can be done by working directly with the point cloud, without the need to
reconstruct the underlying manifold. The results are valid for general dimen-
sions and codimensions, and for manifolds with or without boundaries. These
results include the analysis of noisy point clouds obtained from sampling the
manifold.
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In the third part of the chapter, a geometric framework for comparing
manifolds given by point clouds is presented. The underlying theory is based
on Gromov–Hausdorff distances, leading to isometry invariant and completely
geometric comparisons. This theory is embedded in a probabilistic setting, as
derived from random sampling of manifolds, and then combined with results
on matrices of pairwise geodesic distances to lead to a computational imple-
mentation of the framework. The theoretical and computational results here
are complemented with experiments for 3D shapes.

The work in this chapter compiles and extends results reported in [MS04,
MS01, MS05].

We conclude by introducing some basic notation that will be used through-
out the chapter. For a compact and connected set Ω ∈ d, dΩ(·, ·) denotes
the intrinsic distance between any two points of Ω, measured by paths con-
strained to remain in Ω. We assume the convention that if A ⊂ d is com-
pact, and x, y are not both in A, then dA(x, y) = D for some constant
D � maxx,y∈A dA(x, y). Given a k-dimensional submanifold M of d, Ωh

M

denotes the set {x ∈ d : d(M, x) ≤ h} (here the distance d(·, ·) is the
Euclidean one). This is basically an h-offset of M. Given two sets A, B ⊂ d

we define the Hausdorff distance between them, dH(A, B), as the infimum
δ > 0 such that A ⊂ Ωδ

B and B ⊂ Ωδ
A.

To state that the sequence of functions {fn(·)}n∈ + uniformly converges

to f(·) as n ↑ ∞, we write fn

n

⇒ f . For a given event E, (E) stands for its
probability of occurring. For a random variable (R.V. from now on) X , its
expected value is denoted by (X). We denote by X ∼ U[A] that the R.V.
X is uniformly distributed in the set A. For a function f : Ω → , and a subset
A of Ω, f |A : A → denotes the restriction of f to A. Given a point x on
the complete manifold S, BS(x, r) denotes the (intrinsic) open ball of radius
r > 0 centered at x, and B(y, r) denotes the Euclidean ball centered at y of
radius r. For a smooth submanifold S of d and A ⊂ S, a (A) will denote the
volume (Riemannian measure) of A.

2 Covering Submanifolds of d

In practice, we do not have much control over the way in which points are
sampled by the acquisition device (e.g., scanner), or given by the learned sam-
pled data. Therefore it is more realistic to make a probabilistic model of the
situation and then try to conveniently estimate the probability of achieving a
prescribed level of accuracy in the quantity we wish to estimate. This amounts
to assuming that the points were sampled on or around the manifold accord-
ing to some probability measure.2 Very often it is the case that we need to

2In the case of objects sampled using a 3D scanner, this probability measure
models the acquisition process itself. As we will see, one needs to require that the
acquisition process does not leave big holes.
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establish coverage properties for the point cloud with respect to the object
it represents. We propose a model for this task and derive some bounds that
will be useful ahead.

Let Pn
�
= {p1, . . . , pn} be a set of n different points sampled from the

compact k-dimensional submanifold S ⊂ d and define Ωh
Pn

�
=

⋃n
i=1 B(pi, h).3

In what follows we will first find an upper bound for
(
S � Ωh

Pn

)
and then

an upper bound for (dH(Pn, S) > h).
We now present our model for the current setting: We assume that

the points in Pn are independently and identically sampled on or around the
submanifold S with a probability law given by the measure ν.4 We will write
this as pi ∼ ν. As we will see, the fundamental quantities one must control
are fν(r)

�
= minx∈S ν(B(x, r)), which can be interpreted as an indicator of the

presence of holes at scale r, and gν(s)
�
= ν (Ωs

S), which measures how much
probability mass is located inside a (small) tube around S. We will further
assume that ν has no atoms.

Remark 1. It is possible to contemplate the case of pi having different proba-
bility laws νi but still being independent. In such a case, one should substitute
fν(r) by min1≤i≤n fνi(r) and gν(s) by min1≤i≤n gνi(s).

We now state a few lemmas; for proofs see [MS05].

Lemma 1. Let x ∈ S be a fixed point on S. Then under the hypotheses on Pn

described above for small enough h > 0,
({

x /∈ Ωh
Pn

∩ S
}) ≤ (1 − fν(h))n

.

Corollary 1. Under the hypotheses of Lemma 1, let δ ∈ (0, h), then(
BS(x, δ) � Ωh

Pn

) ≤ (1 − fν(h − δ))n
.

Proposition 1. Let the set of hypotheses sustaining all of the previous state-
ments hold. Then

(
S � Ωh

Pn

) ≤ NS

(
h

2

)
e−nfν( h

2 ), (1)

where NS(h
2 ) stands for the cardinality of an h

2 -covering net of S.

If a prescribed probability of coverage p is desired, given a certain covering
radius h, then we find a lower bound for the number of sample points needed,
n ≥ 1

fν( h
2 )

(
ln( 1

1−p ) + lnNS(h
2 )

)
, provided fν(h

2 ) > 0.

Lemma 2 (Bounding the Covering Number). Under the hypotheses of
the Lemma 1 and further assuming S to be compact, we have that for any
small δ > 0 there exists a δ-covering of S with cardinality NS (δ) ≤ 1

fν( δ
2 )

.

3The balls now used are defined with respect to the metric of d, they are not
intrinsic. Other covering shapes could be used as well, see comments ahead.

4This means that for any subset A ⊆ d, and any pi ∈ Pn, (pi ∈ A) = ν(A).
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Using Lemma 2, we find a somewhat simpler bound for the probability of
not achieving coverage (fh

ν = fν(h
2 )):

(
S � Ωh

Pn

) ≤ e−nfh
ν

fh
ν

. (2)

Remark 2. In general, or at least in the applications that follow, §3 and §4,
one will require h tending to 0.

Note that for {am}m∈ , am ↓ 0, e−mam

am
goes to zero as m ↑ ∞ if am

is asymptotically greater than or equal to log m
m . Then, in order to have the

right-hand side of (2) tend to zero we should have, for a sequence {hn}n with
hn ↓ 0 as n ↑ ∞:5

fh
ν � log n

n
. (3)

Let’s consider now the simple case of having a uniform probability mea-
sure on S.6 In this case, fν(r) = minx∈S

a(B(x,r)∩S)
a(S) ≥ minx∈S

a(BS(x,r))
a(S) .

Now, using Bishop’s volume comparison theorem (see [Cha97, Sak96, Gra90]),
we obtain minζ∈S a (BS(ζ, r)) ≥ ωkrk + θS(r), where θS(r)

rq → 0 when

r → 0 for q ≤ k + 1. Hence fν(r) ≥ ωkrk+θS(r)
a(S) and the condition relat-

ing h, k, and n should then be hk � (
a (S) 2k

ωk

)
log n

n . Also, under condition

(3) we can estimate the rate at which e−nfh
ν

fh
ν

approaches zero as n ↑ ∞.

For example, with fh
ν 
 log n

n , e−nfh
ν

fh
ν


 1
log n as n ↑ ∞. Of course, we can

speed up the convergence towards zero by choosing slower variations of fhn
ν

with n, for instance, with fhn
ν 
 log nγ

n , with γ ≥ 1 we have e−nfh
ν

fh
ν



1

γ(log n)nγ−1 as n ↑ ∞.
Bounds for

(
S � Ωh

Pn

)
similar to ours can be found in [FN77, HJ73].

We should finally point out that the problem of covering a certain domain
(usually S1) with balls centered at random points sampled from this domain
has been studied by many authors [Sol78, FN77, Fla73, Jan86, She72, KM63,
Hal88, HJ73], and even by Shannon in [Sha60].

To conclude this part, it will also be handy to obtain a lower bound for
(dH(Pn, S)≤δ).7 Clearly, this probability equals

({
S⊆Ωδ

Pn

}∩{
Pn⊆Ωδ

S

})
,

by definition of the Hausdorff distance. Now, using the union bound and in-
dependence of pi, pj when i �= j we immediately find:

5These kinds of conditions are common in the literature of random coverings,
[She72, Dvo56].

6For simplicity of exposition we will restrict ourselves to the case when S has
no boundary. The modifications needed in our arguments are of the same nature as
those in [BdSLT00].

7This is not necessary when the sampling is NOISELESS: Pn ⊆ S.
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(dH(Pn, S) ≤ δ) ≥ (
S ⊆ Ωδ

Pn

)
+

(
Pn ⊆ Ωδ

S

) − 1 ≥ −e−nfδ
ν

f δ
ν

+ (gν(δ))n .

(4)
In this section we have presented basic conditions for the (Euclidean) union

of balls centered at the point cloud to cover (with probability) the underlying
shape. When these conditions hold, we are then free to work with this Euclid-
ean structure, as done for example in the next section for computing intrinsic
geodesic distances without manifold reconstruction.

3 Distance Functions on Point Clouds

The goal of this part of the chapter is to show how to compute geodesic dis-
tances for point cloud data, which may be the most fundamental computation
for shape analysis. A number of key building blocks are part of the framework
here introduced. The first one is based on the fact that distance functions
intrinsic to a given submanifold of d can be accurately approximated by
Euclidean distance functions computed in a thin offset band that surrounds
this manifold. This concept was first introduced in [MS01], where convergence
results were given for codimension one submanifolds of d (hypersurfaces)
without boundary. In the paper [MS05], we extended these results to general
codimension and to deal with manifolds with or without boundary, see §3.2
ahead. We also showed that the approximation is true not only for the intrinsic
distance function but also for the intrinsic geodesic.

The approximation of intrinsic distance functions (and geodesics) by
extrinsic Euclidean ones permits us to compute them using computationally
optimal algorithms in Cartesian grids (as long as the discretization operation is
permitted, memory wise, see §3.5 and [MS05]). These algorithms are based on
the fact that the distance function satisfies a Hamilton–Jacobi partial differ-
ential equation (see §3.1), for which consistent and fast algorithms have been
developed in Cartesian grids [HPCD96, Set96a, Set96b, Tsi95]8 (see [KS98]
for extensions to triangular meshes and [TCOZ03] for other Hamilton–Jacobi
equations).

Once these basic results are available, we can then proceed and work with
point clouds. The basic idea here is to construct the offset band directly from
the point cloud and without the intermediate step of manifold reconstruction.
This is addressed in §3.3 and §3.4 for noise-free points which are manifold sam-
ples, and in §3.4 for points considered to be noisy samples of the manifold. For
this (random) case, we use the bounds for the probability that the constructed
offset band contains the underlying manifold, as presented in §2. In the exper-
imental section, §3.5, we present a number of important applications. These

8Tsitsiklis first described an optimal-control type of approach to solve the
Hamilton–Jacobi eqisomuation, while independently Sethian and Helmsen both de-
veloped techniques based on upwind numerical schemes.
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applications are given to show the importance of this novel computational
framework, and are by no means exhaustive.

We should note that, to the best of our knowledge, the only additional
works explicitly addressing the computation of distance functions and geo-
desics for point clouds are the ones reported in [BdSLT00, TdSL00]9 and,
more recently, the one reported in [GW03]. This last paper is also mesh
based, and follows the geodesics approach in ISOMAP with a novel neigh-
borhood/connectivity concept and a number of interesting theoretical results
and novel dimensionality estimation contributions. The comparison of perfor-
mances in the presence of noise between our framework and this mesh-based
one is given in [MS05], where we argue that our framework is more robust to
noise.

Very recently, some further work, in a very similar spirit to ours, has been
done to understand topological properties of a submanifold represented by a
point cloud under probabilistic assumptions on the sampling [NWS04]. Some
of the results there can be obtained following our approach.

3.1 Preliminary Results

In [MS01], we presented a new approach for the computation of weighted
intrinsic distance functions on hypersurfaces. A key starting computational
motivation is that distance functions satisfy the (intrinsic) eikonal equation,
a particular case of the general class of Hamilton–Jacobi partial differential
equations. Given p ∈ S (a hypersurface in d), we want to compute dS(p, ·) :
S → + ∪ {0}, the intrinsic distance function from every point on S to p. It is
well known that the distance function dS(p, ·) satisfies, in the viscosity sense
(see [MM03]), the equation

(∗)
{ ‖∇SdS(p, x)‖ = 1, ∀x ∈ S,

dS(p, p) = 0

where ∇S is the intrinsic differentiation (gradient). Instead of solving this
intrinsic eikonal equation on S, we solve the corresponding extrinsic one in
the offset band Ωh

S , {
‖∇xdΩh

S
(p, x)‖ = 1, ∀x ∈ Ωh

S ,

dΩh
S
(p, p) = 0

where dΩh
S
(p, ·) is the distance function measured by paths constrained to lie

in the flat (Euclidean) domain Ωh
S and therefore now the differentiation is the

usual one.
9In addition to studying the computation of distance functions on point clouds,

[BdSLT00, TdSL00] address the important combination of this topic with multidi-
mensional scaling for manifold analysis. Prior work on using geodesic distances and
multidimensional scaling can be found in [SSW89].
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It is the purpose of the next section to obtain bounds for the approximation
error ‖dS − dΩh

S
‖L∞ .

This simplification of the intrinsic problem into an extrinsic one permits
the use of the computationally optimal algorithms mentioned in the introduc-
tion. This makes computing intrinsic distances, and from them geodesics, as
simple and computationally efficient as computing them in Euclidean spaces.10

Moreover, as detailed in [MS01], the approximation of the intrinsic distance dS

by the extrinsic Euclidean one dΩh
S

is never less accurate than the numerical
error of these algorithms.

3.2 Approximation Results for Submanifolds of d

Theorem 1 below presents uniform convergence results for both distances
and geodesics in Ωh

S , under no conditions on ∂S except some smoothness.
Theorem 2 and Corollary 3 provide useful rate of convergence estimates (for
the uniform convergence of dΩh

S
towards dS), under convexity assumptions

on ∂S.

Theorem 1 ([MS05]). Let S be a compact C2 submanifold of d with (pos-
sibly empty) smooth boundary ∂S. Let x, y be any two points in S. Then we

have: (1) Uniform convergence of distances: dΩh
S
|S×S(·, ·)

h↓0
⇒ dS(·, ·); (2) Con-

vergence of geodesics: Let x and y be joined by a unique minimizing geodesic
γS : [0, 1] → S over S, and let γh : [0, 1] → Ωh

S be a Ωh
S-minimizing geodesic,

then γh

h↓0
⇒ γS.

We now present a uniform rate of convergence result for the distance in
the band in the case ∂S = ∅, and from this we deduce Corollary 3 below,
which deals with the case ∂S �= ∅.
Theorem 2 ([MS05]). Under the same hypotheses of Theorem 1, with ∂S =
∅, there exists H > 0 such that ∀h ∈ (0, H),
max(x,y)∈S×S

∣∣∣dΩh
S
|S×S(x, y) − dS(x, y)

∣∣∣ ≤ CS

√
h, where the constant CS does

not depend on h. Also, we have the following “relative” rate of convergence
bound, 1 ≤ sup x, y ∈ S

x �= y

dS(x,y)
d

Ωh
S
(x,y) ≤ 1 + CS

√
h.

Remark 3. Note that, as the simple case of a circle in the plane shows, the
rate of convergence is at most C · h. Check [MS01] for more details.

Corollary 2. Let p ∈ S, and r small enough, then B(p, r) ∩ S ⊆ BS(p, r(1 +
CS

√
r)).

10This was the initial motivation for developing this approach. There are currently
no “fast marching” methods that can be used to deal with the discretization of
equation (∗).
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Using the theorems above we obtain the following.

Corollary 3 ([MS05]). Under the smoothness assumptions of the previous
theorems, and assuming S to be strongly convex (see [dC92]), there exists
H > 0 such that for h ∈ (0, H) the same conclusions of Theorem 2 (rate of
convergence) hold.

We are now ready to present approximation results for manifolds repre-
sented as point clouds.

3.3 Distance Functions on Point Clouds

We are now interested in making distance and geodesic computations on man-
ifolds represented as point clouds, i.e., sampled manifolds.

Let h, h′, and Pn be such that S ⊆ Ωh
Pn

and Pn ⊆ Ωh′
S and max(h, h′) ≤ H .

Note that h′ represents a level of noise present in the sampling.
We then have S ⊆ Ωh

Pn
⊆ Ωh+h′

S . We want to consider dΩh
Pn

(p, q) for any
pair of points p, q ∈ S and prove some kind of proximity to the real distance
dS(p, q). The argument carries over easily since d

Ωh+h′
S

(p, q) ≤ dΩh
Pn

(p, q) ≤
dS(p, q), hence 0 ≤ dS(p, q) − dΩh

Pn
(p, q) ≤ dS(p, q) − d

Ωh+h′
S

(p, q), and the

rightmost quantity can be bounded by CS (h + h′)1/2 (see §3.2) in the case
that ∂S is either strongly convex or void. The key condition is dH(S, Pn) ≤ ĥ

for some prespecified ĥ. In the noiseless case (h′ = 0), the key condition is
S ⊂ ΩPh

n
, something that can obviously be coped with using the compactness

of S.11 We can then state the following.

Theorem 3 ([MS05]). (Uniform Convergence for Noiseless Point
Clouds) Let S be a compact smooth submanifold of d possibly with boundary
∂S. Then

1. General case: Given ε > 0, there exists hε > 0, such that ∀ 0 < h ≤ hε

one can find finite n(h) and a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)}
sampled from S such that maxp,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ ε.

2. ∂S is either convex or void: For every sufficiently small h > 0 one
can find finite n(h) and a set of points Pn(h)(h) = {p1(h), . . . , pn(h)(h)}
sampled from S such that maxp,q∈S

(
dS(p, q) − dΩh

Pn(h)(h)
(p, q)

)
≤ CS

√
h.

In practice, one must worry about both the number (n) of points and the
radii (h) of the balls. Obviously, there is a trade-off between these quantities.

11By compactness, given h > 0 we can find finite N(h) and points

p1, p2, . . . , pN(h) ∈ S such that S = ∪N(h)
i=1 BS(pi, h). But for p ∈ S, BS(p, h) ⊂

B(p, h) ∩ S, and we also get S ⊂ ∪N(h)
i=1 B(pi, h).
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If we want to use only a few points, in order to cover S with the balls we have
to increase the value of the radius. Clearly, there exists a value H such that
for values of h smaller than H we do not change the topology, see [ACK01,
DGH01, GW03]. This implies that the number of points must be larger than
a certain lower bound. This result can be generalized to ellipsoids which can
be locally adapted to the geometry of the point cloud.

3.4 Random Sampling of Manifolds

We have to define the way in which we are going to measure accuracy. A pos-
sibility for such a measure is (for each ε > 0)(

max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

)
.

Notice that we are somehow considering dΩh
Pn

to be defined for all pairs

of points in S × S, even if it might happen that S ∩ Ωh
Pn

�= S. In any case, we
extend dΩh

Pn
to all of d × d by a large constant say K · diam (S), K � 1.

Let us define the events

Eε
�
=

{
max
p,q∈S

(
dS(p, q) − dΩh

Pn
(p, q)

)
> ε

}
and

Ih,n
�
=

{
S ⊆ Ωh

Pn

} ∩ {
Pn ⊆ Ωh

S

}
.

Now, since Eε = (Eε ∩ Ih,n) ∪ (Eε ∩ Ic
h,n), using the union bound and the fact

that (Eε ∩ Ih,n) = (Eε | Ih,n) (Ih,n) we find

(Eε) ≤ (Eε | Ih,n) +
(
Ic
h,n

)
. (5)

It is clear now that we should use a convenient upper bound for the second
term in the previous expression. The first term can be easily dealt with using
the convergence theorems presented in previous sections.

Combining the preceding discussion with the results in §2 we obtain the
following convergence theorem, where the dependence of ν with n (written as
νn) means that there is a noise level present, which we require to vanish as
n ↑ ∞ in order to recover the true geodesic distance. In the noiseless case, the
support of ν is S and therefore νn = ν for all n.

Theorem 4 ([MS05]). Let S be a k-dimensional smooth compact subman-
ifold of d. Let Pn = {p1, . . . , pn} ⊆ d be an i.i.d. set of points such that
pi ∼ νn for 1 ≤ i ≤ n. Then if h = hn and νn are such that hn ↓ 0,
fνn(hn

2 ) � ln n
n , and |1 − gνn(hn)| � 1

n1+α for some α > 0 hold as n ↑ ∞, we

have that for any ε > 0, (Eε)
n↑∞−→ 0.
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Noiseless Sampling

Remark 4. As can be gathered from the preceding proof, for fixed ε > 0 and

large n ∈ , (Eε) can be upper bounded by e−nf
hn
ν

fhn
ν

. For example, setting

fhn
ν = γ log n

n for γ ≥ 1 yields (n large enough)

(Eε) ≤ 1
γ nγ−1 log n

. (6)

We also see that by requiring
∑

n≥1
e−nf

hn
ν

fhn
ν

< ∞ and using the Borel–
Cantelli lemma we obtain almost sure convergence, namely(

lim
n↑∞

max
p,q∈S

(
dS(p, q) − dΩhn

Pn

(p, q)
)

= 0
)

= 1.

This can be guaranteed (for example) by setting fhn
ν = γ log n

n for γ > 2.

Perhaps the following simple observation is of more practical value: Given
h > 0, p ∈ (0, 1), and ε ∈ (0, CS

√
h), if the number of samples needed is

provided, then (Eε) ≤ p.

Noisy Sampling of Manifolds

We now elaborate on a couple of noisy models for the sampling and derive
some rate estimates based on Remark 4 and Equation (4).

• pi ∼ U[ΩΔn

S ]. In this case, assuming r ≥ Δn we obtain fν(r) ≥ a(B(·,Δn))

a(ΩΔn
S )

and gν(r) = 1 since B(·, Δn) ⊂ B(·, r). Moreover, using Weyl’s tube
theorem (see [Gra90]), we find an explicit formula for the lower bound:
fν(r) ≥ ωdΔd

n

a(S)Δd−k
n +κ(Δn)

where κ(·) is a higher-order term. Hence, (6) holds

if we set ωdΔk
n

a(S)+ κ(Δn)

Δ
d−k
n


 γ log n
n , and hn ≥ 2Δn. Note that as hn vanishes,

the condition becomes Δk
n 
 γ′ log n

n for some constant γ′.
• pi = u + ζnu where u ∼ U[S] and ζ ∼ E(0, βn), u and ζ are inde-

pendent, and where nt is unit norm and uniformly distributed in the
normal space to S at the point t.12 Note that since {u ∈ S, |ζ| ≤
r} ⊆ {u + ζnu ∈ Ωr

S}, then gνn(r) ≥ 1 − e−βnr. Then, in order to
satisfy |1 − gνn(hn)| � 1

n1+α we can ask for the following condition to
hold (1): βn � (1 + α) log n

hn
to hold. Consider, for z ∈ S and r > 0

the set Cz,r = {y ∈ d y = t + w where t ∈ BS(z, r/2) and w =
Cnt, 0 ≤ C ≤ r/2}. It is then easy to check that Cz,r ⊂ B(z, r).

12E(0, βn) denotes the double-sided exponential density with parameter βn:

(ζ ∈ [a, b]) =
b

a
βn
2

e−βn|z| dz.
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Hence, (pi ∈ B(z, r)) ≥ (pi ∈ Cz,r) ≥ (u ∈ BS(z, r/2)) (|ζ| ≤ r/2)
and therefore fν(r) ≥ minz∈S

a(BS(z,r/2))
a(S) (1−e−hnβn). Now, assuming con-

dition (1) holds, we find fνn(hn

2 ) � ωhk
n(1 − c

n1+α ) for some constants c

and ω, which tells us that for n large enough, fνn(hn

2 ) � ω′hk
n. We then

see that we could still impose, as in Remark 2, that hk
n 
 C log n

n . The
resulting restriction for βn is βn � (log n)1−1/kn1/k.

Note that although the results in this and in previous sections were pre-
sented for Euclidean balls of the same radius, this can easily be extended
to more general covering shapes, e.g., following [Coi], or using minimal
spanning trees still for balls but with different radii, or from the local di-
rections of the data [PG01]. The band itself can be computed in several ways,
and for the examples below we have used constant radii. Locally adaptive radii
can be used, based for example on diameters obtained from minimal spanning
trees. Automatic and local estimation of h defining Ωh

Pn
was not pursued and

is the subject of current research; we are studying a multiscale approach.

3.5 Examples

We now present examples of distance functions and geodesics for point clouds,
Fig. 1, and use these computations to find intrinsic Voronoi diagrams; see also
[KWR97, LL00]. These exercises were done to exemplify the importance of
computing distance functions and geodesics on point clouds, and are by no
means exhaustive.

For further examples of our framework see [MS05] and for other appli-
cations [MD03] (for point cloud simplification) and [MMS+04] (for meshless
subdivision of point clouds).

4 Comparing Point Clouds

There have recently been many approaches for the task of object recogni-
tion. Examples related to or that partially inspired the work presented in this
chapter include [EK01, HK03, BK04].13

Performing a geometric comparison between point cloud objects requires
that one first compute the interpoint distance matrix for all the members of
the point cloud (or for a representative selected subset of them). If one is
interested in comparing two different objects, the problem can be reduced
to a comparison between the corresponding interpoint distance matrices (as
formally proved in the work presented here, and as used in works such as

13See [MS04] for more references and a more detailed presentation of the ideas
below. Also of interest is the work done by Patrizio Frosini and his collaborators in
which a theoretical framework for comparing Riemannian manifolds is put forward
[Fro90].
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Fig. 1. Left: Intrinsic distance function for a point cloud. (See the color figures
at http://mountains.ece.umn.edu/∼guille/BirkChapter.) A point is selected in the
head of the David statue, and the intrinsic distance is computed following the frame-
work introduced here. The point cloud is colored according to intrinsic distance to
the selected point, going from bright red (close) to dark blue (far). The offset band,
given by the union of balls, is shown next to the distance figure. Right: Voronoi dia-
gram for point clouds. Four points are selected on the cloud, and the point cloud is
divided (colored) according to their geodesic distance to these four points. Note that
this is a surface Voronoi, based on geodesics computed with our proposed framework,
not a Euclidean one. Datasets are courtesy of the Digital Michelangelo Project.

those mentioned above). If the distance we use is the Euclidean one, these
matrices only provide information about their rigid similarity, and (assuming
that they have the same size) if they are equal (up to a permutation of the
indices of all elements), we can only conclude that there exists a rigid isometry
(rotation, reflection, translation) from one point cloud to the other. After
adding compactness considerations, we can also say something about the true
underlying (sampled) objects. Being a bit more precise, let the point clouds
Pi ⊂ Si be εi-coverings of the surfaces Si in 3, for i = 1, 2 (this will be
formally defined below). Then assuming that there exists a rigid isometry
τ : 3 → 3 such that τ(P1) = P2, we can bound the Hausdorff distance
(which we will also formally define below) between τ(S1) and S2 as follows:

dH(τ(S1), S2) ≤ dH(τ(S1), τ(P1)) + dH(τ(P1), P2) + dH(P2, S2) (7)

= dH(S1, P1) + dH(τ(P1), P2) + dH(P2, S2) ≤ ε1 + 0 + ε2.

And of course the same kind of bound holds for the Hausdorff distance between
the point clouds once we assume that the underlying continuous objects are
rigidly isometric (see §4.1 below, where we show that rigid isometries are also
contemplated by our approach).

If S1 and S2 happen to be isometric, thereby allowing for bends and not
just rigid transformations, we wonder whether we will be able to detect this by
looking at (finite) point clouds Pi sampled from each Si. This problem is much
harder to tackle. We approach this problem through a probabilistic model, in
part because in principle, there might exist, even for the same object, two
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different samplings that look quite dissimilar (under the discrete measures we
can cope with computationally) for arbitrarily fine scales (see below).

With the help of the theory presented here we recast these considerations
in a rigorous framework and address the case where the distances considered to
characterize each point cloud (object) are more general. We concentrate on the
situation when we know the existence of an intrinsic notion of distance for each
object we sample. For the applications of isometric invariant shape (surfaces)
recognition, one must consider the distance as measured by paths constrained
to travel on the surface of the objects, better referred to as geodesic distance.
These have been used in [EK01] for bending invariant recognition in 3D (the
theoretical foundations developed here include a justification of their work),
and in [GW03, TdSL00] to detect intrinsic surface dimensionality. This intrin-
sic framework not only has applications for, e.g., the recognition of articulated
objects, but also leads to comparing manifolds in a completely geometric way
and without being influenced by the embedding space (and as mentioned
above, rigid isometries being just a particular case covered by our results).

In this chapter, the fundamental approach used for isometric invariant
recognition is derived then from the Gromov–Hausdorff distance [Gro99],
which we now recall. If two sets (objects) X and Y are subsets of a com-
mon bigger metric space (Z, dZ), and we want to compare X to Y in order to
decide whether they are/represent the same object or not, then an idea one
might come up with very early on is that of computing the Hausdorff distance
between them (see for example [CFK03, HKR93] for an extensive use of this
method for shape statistics and image comparison):

dZ
H(X, Y )

�
= max

(
sup
x∈X

dZ(x, Y ), sup
y∈Y

dZ(y, X)
)

.

But, what happens if we want to allow for certain deformations to occur and
still decide that the manifolds are the same? More precisely, we are interested
in being able to find a distance between metric spaces that is blind to isomet-
ric transformations (“bends”). This will permit a truly geometric comparison
between the manifolds, independently of their embedding and bending posi-
tion. Following [Gro99], we introduce the Gromov–Hausdorff distance between
metric spaces

dGH(X, Y )
�
= inf

Z,f,g
dZ

H(f(X), g(Y )),

where f : X → Z and g : Y → Z are isometric embeddings (distance preserv-
ing) into the metric space Z. It turns out that this measure of metric proximity
between metric spaces is well suited for our problem at hand and will allow us
to give a formal framework to address the isometric shape recognition problem
(for point cloud data). However, this notion of distance between metric spaces
encodes the “metric” disparity between the metric spaces, at first glance, in
a computationally impractical way. We derive below new results that connect
this notion of disparity with other more computationally appealing expres-
sions.
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Remark 5. In [EK01] the authors proposed using multidimensional scaling
(MDS) applied to the geodesic distance matrices of each point cloud to obtain
a new pair of point clouds in 3 such that the Euclidean distance matrices of
these new point clouds will resemble as well as possible (according to some cri-
terion) the geodesic distance matrices between the original point clouds. The
comparison then proceeds by computing some metric in 3 to measure the
dissimilarity between the new point clouds. One could use, for example, the
rigid-isometries invariant Hausdorff distance d

3,rigid
H (·, ·), see §4.1 ahead. This

can be rewritten in a more appealing way as follows. Let P1 ⊂ 3 and P2 ⊂ 3

be the original point clouds and Q1 ⊂ 3 and Q2 ⊂ 3 the corresponding new
point clouds. Let also f̂ : 3 → 3 and ĝ : 3 → 3 be such that f̂(P1) = Q1

and ĝ(P2) = Q2. Then, the number we compute is d
3,rigid

H (f̂(P1), ĝ(P2))
which has an interesting resemblance to the formula in the definition of the
Gromov–Hausdorff distance.14

Since we have in mind specific applications and scenarios such as those de-
scribed above, and in particular surfaces and submanifolds of some Euclidean
space d, we assume that we are given as input points densely sampled from
the metric space (surface, manifold). This will manifest itself in many places
in the theory described below. We will present a way of computing a discrete
approximation to (or a bound for) dGH(, ) based on the metric information
provided by these point clouds. Due to space limitations, most of the proofs
are omitted, see [MS04].

4.1 Theoretical Foundations

This section covers the fundamental theory behind the bending invariant
recognition framework we develop. We use basic concepts of metric spaces,
see for example [Kah75] for a detailed treatment of this and [BBI01, Gro99,
Gro87, KO99, Pet98, Pet93] for proofs of the different parts in Proposition 2
below.

Definition 1 (Metric Space). A set M is a metric space if for every pair
of points x, y ∈ M there is a well-defined function dM (x, y) whose values are
non-negative real numbers, such that (a) dM (x, y) = 0 ⇔ x = y, and (b)
dM (x, y) ≤ dM (y, z) + dM (z, x) for any x, y, z ∈ M . We call dM : M × M →

+ ∪ {0} the metric or distance. For clarity we will specify a metric space as
the pair (M, dM ).

Definition 2 (Covering). For a point x in the metric space (X, dX) and
r > 0, we will denote by BX(x, r) the set {z ∈ X : dX(x, z) < r}. For
a subset A of X, we use the notation BX(A, r) = ∪a∈ABX(a, r). We say that
a set C ⊂ X is an R-covering of X if BX(C, R) = X. We will also frequently
say that the set A is an n-covering of X if A constitutes, for some r > 0, a
covering of X by n-balls with centers in points of A.

14Of course, f and g are not isometries, in general.
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Definition 3 (Isometry). We say the metric spaces (X, dX) and (Y, dY )
are isometric when there exists a bijective mapping φ : X → Y such that
dX(x1, x2) = dY (φ(x1), φ(x2)) for all x1, x2 ∈ X. Such a φ is an isometry
between (X, dX) and (Y, dY ).

Proposition 2. 1. Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces. Then
dGH(X, Y ) ≤ dGH(X, Z) + dGH(Z, Y ).

2. If dGH(X, Y ) = 0 and (X, dX), (Y, dY ) are compact metric spaces, then
(X, dX) and (Y, dY ) are isometric.

3. Let {x1, . . . , xn} ⊂ X be an R-covering of the compact metric space
(X, dX), then dGH(X, {x1, . . . , xn}) ≤ R.

4. For compact metric spaces (X, dX) and (Y, dY ), 1
2 |diam (X) − diam (Y )|

≤ dGH(X, Y ) ≤ 1
2 max (diam (X) ,diam (Y )), where diam (X)

�
=

maxx,x′∈X dX(x, x′) is the diameter of the metric space X.
5. For bounded metric spaces (X, dX) and (Y, dY ),

dGH(X, Y ) = inf
φ : X → Y

ψ : Y → X

sup
x1, x2 ∈ X

y1, y2 ∈ Y

(xi, yi) ∈ G(φ, ψ)

1
2
|dX(x1, x2) − dY (y1, y2)|,

where G(φ, ψ) = {(x, φ(x)), x ∈ X} ∪ {(ψ(y), y), y ∈ Y } and the infimum
is taken over all arbitrary maps φ : X → Y and ψ : Y → X.

From these properties, we can easily prove the following important result.

Corollary 4. Let X and Y be compact metric spaces. Let moreover m be
an r-covering of X (consisting of m points) and m′ be an r′-covering of Y
(consisting of m′ points). Then |dGH(X, Y ) − dGH( m, m′)| ≤ r + r′.

We can then say that if we could compute dGH(, ) for discrete metric spaces
which are sufficiently dense samplings of the continuous underlying ones, then
that number would be a good approximation to what happens between the
continuous spaces. Currently, there is no computationally efficient way to di-
rectly compute dGH(, ) between discrete metric spaces in general. This forces
us to develop a roundabout path, see §4.1 ahead. Before going into the gen-
eral case, we discuss next the application of our framework to a simpler but
important case.

Warming up: The Case of Rigid Isometries

When we are trying to compare two subsets X and Y of a larger metric
space Z, the situation is less complex. The Gromov–Hausdorff distance be-
comes a somewhat simpler Hausdorff distance between the sets. In more de-
tail, one must compute dZ,rigid

GH (X, Y )
�
= infΦ dZ

H(X, φ(Y )), where Φ : Z → Z
ranges over all self-isometries of Z. If we know an efficient way of comput-
ing infΦ dZ

H(X, Φ(Y )), then this particular shape recognition problem is well
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posed for Z, in view of Corollary 4, as soon as we can give guarantees of
coverage. This can be done in the case of submanifolds of d by imposing a
probabilistic model on the samplings m of the manifolds, and a bound on the
curvatures of the family of manifolds as explained in §2 (see computational
details in [MS04]).

In the case of surfaces in Z = 3, Φ sweeps all rigid isometries, and
there exist good algorithms which can actually solve the problem approx-
imately. For example, in [GMO99] the authors report an algorithm which
for any given 0 < α < 1 can find Φ̂α such that d

3

H ( m, Φ̂α( m′)) ≤ (8 +
α) infΦ d

3

H ( m, Φ( m′)), with complexity O(s4 log s) where s = max(m, m′).
This computational result, together with our theory, makes the problem
of surface recognition (under rigid motions) well posed and well justified.
In fact, just using (an appropriate version of) Corollary 1 and the trian-
gle inequality, we obtain a bound between the distance we want to esti-
mate d

3,rigid
H (X, Y ) and the observed (computable) value d

3

H ( m, Φ̂α( m′)),

with d
3,rigid

H (X, Y )− (r + r′) ≤ d
3

H ( m, Φ̂α( m′)) ≤ 10
(

d
3,rigid

H (X, Y )+
(r + r′)). This bound gives a formal justification for the surface recognition
problem from point samples, showing that it is well posed. To the best of our
knowledge, this is the first time that such formality is shown for this very
important problem, both in the particular case just shown and in the general
one addressed next. In any case, if dR is the measure of similarity we are
considering, and d̂R is the computable approximate measure of similarity, the
kind of relation we seek to establish is

A(dR(X, Y ) − α) ≤ d̂R( m, m′) ≤ B(dR(X, Y ) + β) (8)

for some constants A, B and numbers α and β which can be made small by
refining the samplings. Moreover, it may happen that relation (8) holds with
a certain controllable probability.

The General Case

The theory introduced by Gromov permits us to address the concept of
(metric) proximity between metric spaces. When dealing with discrete met-
ric spaces, as those arising from samplings or coverings of continuous ones,
it is convenient to introduce a distance between them, which ultimately is
the one we compute for point clouds, see computational details in [MS04].
For discrete metric spaces (both of cardinality n) ( = {x1, . . . , xn}, d ) and
( = {y1, . . . , yn}, d ) we define the distance:

dI( , )
�
= min

π∈Πn

max
1≤i,j≤n

1
2
|d (xi, xj) − d (yπi , yπj)|, (9)

where Πn stands for the set of all n × n permutations of {1, . . . , n}. A per-
mutation π provides the correspondence between the points in the sets, and
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|d (xi, xj)−d (yπi , yπj)| gives the pairwise distance/disparity once this corre-
spondence has been assumed. It is evident that one has dGH( , ) ≤ dI( , ),
from Property 5 from Proposition 2. Moreover, we easily derive the follow-
ing easy result, whose usefulness is evident from the computational details in
[MS04].

Corollary 5. Let (X, dX) and (Y, dY ) be compact metric spaces. Let =
{x1, . . . , xn} ⊂ X and = {y1, . . . , yn} ⊂ Y , such that BX( , RX) = X and
BY ( , RY ) = Y (the point clouds provide RX and RY coverings, respectively).
Then dGH(X, Y ) ≤ RX + RY + dI( , ), with the understanding that d =
dX | × and d = dY | × .

Remark 6. This result tells us that if we manage to find coverings of X and Y
for which the distance dI is small, then if the radii defining those coverings are
also small, the underlying manifolds X and Y sampled by these point clouds
must be close in the Gromov–Hausdorff sense. Another way of interpreting
this is that we will never see a small value of dI( , ) whenever dGH(X, Y ) is
big, a simple statement with practical value, since we will be looking at values
of dI, which depend on the point clouds. This happens because, in contrast
with dGH(, ), the distance dI is (approximately) computable from the point
clouds. See the computational details in [MS04].

We now introduce some additional notation regarding coverings of metric
spaces. Given a metric space (X, dX), the discrete subset N

(r,s)
X,n denotes a

set of points {x1, . . . , xn} ⊂ X such that (1) BX(N (r,s)
X,n , r) = X , and (2)

dX(xi, xj) ≥ s whenever i �= j. In other words, the set provides a coverage
and the points in the set are not too close to each other (the coverage is
efficient).

The following proposition will also be fundamental for our computational
framework reported in [MS04], leading us to work with point clouds.

Proposition 3 ([Gro99]). Let (X, dX) and (Y, dY ) be any pair of given com-
pact metric spaces and let η = dGH(X, Y ). Also, let N

(r,s)
X,n = {x1, . . . , xn} be

given. Then, given α > 0 there exist points {yα
1 , . . . , yα

n} ⊂ Y such that: 1.
dI(N

(r,s)
X,n , {yα

1 , . . . , yα
n}) ≤ (η + α); 2. BY ({yα

1 , . . . , yα
n}, r + 2(η + α)) = Y ;

and 3. dY (yα
i , yα

j ) ≥ s − 2(η + α) for i �= j.

Remark 7. This proposition tells us that if the metric spaces happen to
be sufficiently close in a metric sense, then given an s-separated covering on
one of them, one can find an (s′-separated) covering in the other metric space
such that dI between those coverings (point clouds) is also small. This, in
conjunction with Remark 6, proves that our goal of trying to determine the
metric similarity of metric spaces based on discrete observations of them is,
so far, a (theoretically) well-posed problem.

Since by Tychonoff’s theorem the n-fold product space Y × · · · × Y is
compact, if s − 2η ≥ c > 0 for some constant c, by passing to the limit
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along the subsequences of {yα
1 , . . . , yα

n}{α>0} as α ↓ 0 (if needed) above
one can assume the existence of a set of different points {ȳ1, . . . , ȳn} ⊂ Y

such that dI({ȳ1, . . . , ȳn}, N (r,s)
X,n ) ≤ η, mini�=j dY (ȳi, ȳj) ≥ s − 2η > 0, and

BY ({ȳ1, . . . , ȳn}, r + 2η) = Y .

Since we are given the finite sets of points sampled from each metric space,
the existence of {ȳ1, . . . , ȳn} guaranteed by Proposition 3 does not seem to
make things a lot easier: Those points could very well not be contained in
our given finite datasets m and m′ . The simple idea of using a triangle
inequality (with metric dI) to deal with this does not work in principle, since
one can find, for the same underlying space, two nets whose dI distance is not
small, see [BK98, McM98]. Let us explain this in more detail. Assume that as
input we are given two finite sets of points m and m′ on two metric spaces,
X and Y , respectively, which we assume to be isometric. Then the results
above ensure that for any given N

(R,s)
X,n ⊂ m there exists an N

(R,s)
Y,n ⊂ Y

such that dI(N
(R,s)
X,n , N

(R,s)
Y,n ) = 0. However, it is clear that this N

(R,s)
Y,n has no

reason to be contained in the given point cloud m′ . The obvious idea would
be to try to rely on some kind of independence property on the sample which
represents a given metric space, namely that for any two different covering
nets N1 and N2 (of the same cardinality and with small covering radii) of X
the distance dI(N1, N2) is also small. If this were granted, we could proceed
as follows:

dI(N
(R,s)
X,n , N

(R̂,ŝ)
Y,n ) ≤ dI(N

(R,s)
X,n , N

(R,s)
Y,n )+dI(N

(R̂,ŝ)
Y,n , N

(R,s)
Y,n ) = 0+small(R, R̂),

(10)
where small(R, R̂) is a small number depending only on R and R̂. The property
we fancy to rely upon was a conjecture proposed by Gromov in [Gro93] (see
also [Tol96]) and disproved in [BK98, McM98] (see [Nek97] for some positive
results). Their counterexamples are for separated nets in 2. It is not known
whether we can construct counterexamples for compact metric spaces, or if
there exists a characterization of a family of n-points separated nets of a given
compact metric space such that any two of them are at a small dI-distance
which can be somehow controlled with n. A first step towards this is the
density condition introduced in [BK02].

If counterexamples do not exist for compact metric spaces, then the above
inequality should be sufficient. Without assuming this, we give below an argu-
ment which tackles the problem in a probabilistic way. In other words, we use
a probabilistic approach to bound dI for two different samples from a given
metric space. For this, we pay the price, for some applications, of assuming
the existence of a measure which comes with our metric space. On the other
hand, probabilistic frameworks are natural for (maybe noisy) random samples
of manifolds as obtained in real applications.
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A Probabilistic Setting for Submanifolds of d

We now limit ourself to smooth submanifolds of d, although the work can
be extended to more general metric spaces (see further comments in §4.3).

Let Z be a smooth and compact submanifold of d with intrinsic (geo-
desic) distance function dZ(·, ·). We can now speak more freely about points
{zi}m

i=1 sampled uniformly from X : We say that the random point ẑ is uni-
formly distributed on Z if for any measurable C ⊂ Z, (ẑ ∈ C) = a(C)

a(Z) .
15

This uniform probability measure can be replaced by other probability mea-
sures which, e.g., adapt to the geometry of the underlying surface, and the
framework developed here can be extended to those as well. See the comments
in §4.3.

Let = {z1, . . . , zn} and ′ = {z′1, . . . , z′n} be two discrete subsets of
Z (two point clouds). For any permutation π ∈ Pn and i, j ∈ {1, . . . , n},
|dZ(zi, zj) − dZ(z′πi

, z′πj
)| ≤ dZ(zi, z

′
πi

) + dZ(zj , z
′
πj

), and therefore we have

dZ
B( , ′)

�
= min

π∈Pn

max
k

dZ(zk, z′πk
) ≥ dI( , ′). (11)

This is known as the bottleneck distance between and ′, both being subsets
of Z. This is one possible way of measuring distance between two different
samples of the same metric space.16

Instead of dealing with (10) deterministically, after imposing conditions
on the underlying metric spaces X and Y , we derive probabilistic bounds
for the left-hand side. We also make evident that by suitable choices of the
relations among the different parameters, this probability can be chosen at
will. This result is then used to bound the distance dI between two point
cloud samples of a given metric space, thereby leading to the type of bound
expressed in Equation (10) and from this, the bounds on the original Gromov–
Hausdorff distance between the underlying objects.

We introduce the Voronoi diagram V( ) on Z, determined by the points in
(see for example [LL00]). The ith Voronoi cell of the Voronoi diagram defined

by {z1, . . . , zn} ⊂ Z is given by Ai
�
= {z ∈ Z| dZ(zi, z) < minj �=i dZ(zj , z)}.

We then have Z =
⊔n

k=1 Ak.

Lemma 3. 1. If the points {z1, . . . , zn} are s-separated, then for any 1 ≤ i ≤ n,
BZ(zi,

s
2 ) ⊂ Ai. 2. If the points {z1, . . . , zn} constitute an R-covering of Z,

then Ai ⊆ BZ(zi, R) for all i = 1, . . . , n.

We consider to be fixed, and we assume ′ = {z′1, . . . , z′n} to be chosen
from a set m ⊂ Z consisting of m � n i.i.d. points sampled uniformly
from Z.

15Remember that a (B) denotes the area of the measurable set B ⊂ Z.
16In [Nek97], this distance is used to establish the equivalence (according to this

notion) of separated nets in certain hyperbolic metric spaces.



Computing with Point Cloud Data 221

We first want to find, amongst points in m, n different points {zi1 , . . . , zin}
such that each of them belongs to one Voronoi cell, {zik

∈ Ak for k =
1, . . . , n}. We provide lower bounds for (# (Ak ∩ m) ≥ 1, 1 ≤ k ≤ n), the
probability of this happening.

We can see the event as if we collected points inside all the Voronoi cells,
a case of the coupon collecting problem, see [Fel71]. We buy merchandise at
a coupons-giving store until we have collected all possible types of coupons.
The next lemma presents the basic results we need about this concept. These
results are due to Von Schilling ([Sch54]) and Borwein and Hijab ([BH]).

Lemma 4 (Coupon Collecting). If there are n different coupons one wishes
to collect, such that the probability of seeing the kth coupon is pk ∈ (0, 1), (let
p = (p1, . . . , pn)), and one obtains samples of all of them in an independent
way, then:

1. ([Sch54]) The probability Pp(n, m) of having collected all n coupons after
m trials is given by

Pp(n, m) = 1 − Sn

⎛⎝ n∑
j=2

(−1)j

⎛⎝ n∑
k=j

pk

⎞⎠m⎞⎠ , (12)

where the symbol Sn means that we consider all possible combinations of
the n indices in the expression being evaluated.17

2. ([BH]) The expected value of the number of trials needed to collect all the
coupons is given by

Ep(n) =
(

max
1≤i≤n

Xi

pi

)
, (13)

where Xi are independent positive random variables satisfying (Xi > t) =
e−t for t ≥ 0 and 1 ≤ i ≤ n.

Corollary 6. For n ∈ let Hn
�
=

∑n
i=1 i−1. Then, Pp(n, m) ≥ 1− Hn

m·mink pk
.

We now directly use these results to bound the bottleneck distance.

Theorem 5. Let (Z, dZ) be a smooth compact submanifold of d. Given a
covering N

(R,s)
Z,n of Z with separation s > 0 and a number p ∈ (0, 1), there

exists a positive integer m = mn(p) such that if m = {zk}m
k=1 is a sequence of

i.i.d. points sampled uniformly from Z, with probability p one can find a set of

n different indices {i1, . . . , in} ⊂ {1, . . . , m} with dZ
B(N (R,s)

Z,n , {zi1 , . . . , zin}) ≤
R and Z =

⋃n
k=1 BZ(zik

, 2R). Moreover, mn(p) ≤
[

Hn

minz a(BZ(z, s
2 ))

a(Z)
1−p

]
+1.18

17For example, S3((p1 + p2)
k) = (p1 + p2)

k + (p1 + p3)
k + (p2 + p3)

k.
18For real x, [x] stands for the largest integer not greater than x.
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This result can also be seen the other way around: For a given m, the
probability of finding the aforementioned subset in m is PpZ

(n, m) as given
by (12), for suitably defined pZ . The precise form of pZ can be understood
from the proof.

Corollary 7. Let X and Y be compact submanifolds of d with dGH(X, Y ) =
η. Let N

(R,s)
X,n be a covering of X with separation s such that for some pos-

itive constant c, s − 2η > c. Then, given any number p ∈ (0, 1), there
exists a positive integer m = mn(p) such that if m = {yk}m

k=1 is a se-
quence of i.i.d. points sampled uniformly from Y , we can find, with proba-
bility at least p, a set of n different indices {i1, . . . , in} ⊂ {1, . . . , m} such
that dI(N

(R,s)
X,n , {yi1 , . . . , yin}) ≤ 3 η + R and Y =

⋃n
k=1 BY (yik

, 2(R + 2η)).

Moreover, mn(p) ≤
[

Hn

miny a(BY (y, c
2 ))

a(Y )
1−p

]
+ 1.

Remark 8. 1. The preceding corollary deals with the case of positive detection:
X and Y are nearly isometric and we wish to detect this by only accessing
the point clouds. The constant c quantifies this metric proximity as encoded
by the phrase nearly isometric. For instance, for a recognition task where
for any two similar objects X and Y , dGH(X, Y ) ≤ ηmax, one could choose
c = s − 2ηmax.
2. Note that the probability PpY

(n, m) itself (or mn(p)) depends on dGH(X, Y )
through the constant c; see an example of the application of this idea
in [MS04]. Note also that one can write down the following useful bound
PpY

(n, m) ≥ 1 − Hn

m·miny∈Y a(BY (y, c
2 ))a (Y ), which was implicitly used in the

proof of Theorem 5. It is sensible to assume that one is interested in performing
the recognition/classification task for a number of objects which satisfy cer-
tain conditions, that is, to tune the framework to a particular class of objects.
In particular, suppose that the class is characterized, among other conditions,
by an upper bound on the sectional curvatures. For small r > 0 this allows
us, via the Bishop–Günther theorem [Sak96, Cha97, Gra90], to obtain a lower
bound on minz a (BZ(z, r)) valid for all objects Z in the class. This in turn
can be used to calibrate the system to provide any prespecified probability p
as in Corollary 7 for any two objects within the class, see [MS04].

A rougher estimate of the value of mn(p) alluded to in Corollary 7 can
be obtained using the value of Ep(n) when all the coupons are equally likely:
m 
 E 1

n
(n) = n · Hn 
 n lnn.

This concludes the main theoretical foundation of our proposed framework.
Now, we must devise a computational procedure which allows us to actually
find the subset NY,n inside the given point cloud m′ when it exists, or at
least find it with a large probability. Note that in practice we can only access
metric information, that is, interpoint distances. A stronger result in the same
spirit of Theorem 5 should take into account possible self-isometries of X (Y ),
which would increase the probability of finding a net which achieves small dI
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distance to the fixed one. We present details on this computational framework,
which still contains important theoretical results, in [MS04].

4.2 Examples

We present experiments with real data. We have 4 sets of 3D shapes (the
datasets were kindly provided to us by Prof. Kimmel and his group at the
Technion), each one with their corresponding bends. We ran the algorithm
N = 6 times with n = 70, m = 2000, using the 4 nearest neighbors to compute
the geodesic distance using isomap’s Dijkstra engine. The data description
and results are reported in Fig. 2. We note not only that the technique is
able to discriminate between different object, but as expected, it doesn’t get
confused by bends. Moreover, the distances between a given object and the
possible bends of another one are very similar, as it should be for isometric
invariant recognition. More examples are provided in [MS04].

4.3 Scale-Dependent Comparisons and Future Developments

In some applications it might be interesting to compare objects in a more
local way, or in other words, in a scale-dependent way. For example, given
two objects S1 and S2 (with corresponding geodesic distance functions d1 and
d2) one might wonder whether they resemble one another under the distance

dGH(, ) when each of them is endowed with the metric dε
i

�
= ε(1 − e−

di
ε ), i =

1, 2.19 This choice for the new metrics imposes a scale-dependent comparison.
This situation has an important consequence: When ε is small enough one
might choose to replace di by their Euclidean counterparts since, for nearby
points x and x′ on the submanifold S ⊂ d, dS(x, x′) 
 d d(x, x′),20 and this
dispenses with the possible computational burden of having to approximate
the geodesic distance.

The extension to more general metric spaces can be made, in principle,
once one agrees upon some definition of uniform probability measure, some-
thing that could be done using the Hausdorff measure, which is defined from
the metric.

Another related possible extension is that of admitting the points to be
sampled from the manifolds with probability measures other than uniform.
Actually, in the case of surfaces in 3 acquired by a 3D Scanner, the prob-
ability measure models the acquisition process itself. In this case, the frame-
work presented here can be extended for a wide family a probability measures,
namely those that admit a density function which vanishes at most in sets of
0-uniform measure; that is, there are no holes in the acquisition process.

In other situations it might simply make more sense to consider the recog-
nition problem for triplets (X, d, μ), where (X, d) is a metric space and μ is a
(probability) measure defined on sets of X .

19Note that dε
i 	 di when di is small with respect to ε.

20A more precise statement could be given by making use of Corollary 2.



224 F. Mémoli and G. Sapiro

M
o
d
e
l

1
9
3
9

1
9
2
9

1
2
5
8

1
2
5
8

3
1
2
1

3
1
2
1

7
1
9
0

7
1
9
0

7
1
9
0

∗
∗

∗
∗

∗
∗

∗
∗

∗

<
1
0
−

4
∗

∗
∗

∗
∗

∗
∗

∗

2
.8

8
7

2
.8

8
7

∗
∗

∗
∗

∗
∗

∗

2
.8

8
7

2
.8

8
7

8
.0

5
×

1
0
−

2
∗

∗
∗

∗
∗

∗

5
.9

×
1
0
−

1
5

.9
×

1
0
−

1
3

.4
7
7

3
.4

5
9

∗
∗

∗
∗

∗

5
.9

5
×

1
0
−

1
5

.9
5

×
1
0
−

1
3

.4
8
2

3
.4

6
4

1
.1

2
×

1
0
−

2
∗

∗
∗

∗

4
.1

9
×

1
0
−

1
4

.1
9

×
1
0
−

1
3

.3
1

3
.2

9
1

.6
2

×
1
0
−

1
1

.5
9

×
1
0
−

1
∗

∗
∗

4
.2

5
×

1
0
−

1
4

.2
5

×
1
0
−

1
3

.3
1

3
.2

9
1

.5
6

×
1
0
−

1
1

.1
5

×
1
0
−

1
5

.5
3

×
1
0
−

2
∗

∗

4
.1

6
×

1
0
−

1
4

.1
6

×
1
0
−

1
3

.3
0

3
.2

8
1

.6
5

×
1
0
−

1
1

.6
2

×
1
0
−

1
4

.8
5

×
1
0
−

2
5

.7
7

×
1
0
−

2
∗

D
ia

m
e
t
e
r
s

1
.2

2
3

1
.2

2
3

6
.9

9
6

6
.9

6
0

6
.1

×
1
0
−

2
6

.8
×

1
0
−

2
3

.8
6

×
1
0
−

1
3

.7
3

×
1
0
−

1
3

.9
1

×
1
0
−

1

F
ig

.
2
.

C
o
m

p
a
ri
so

n
re

su
lt
s
fo

r
co

m
p
le

x
o
b
je

ct
s.

T
h
e

n
u
m

b
er

o
f
p
o
in

ts
p
er

m
o
d
el

a
re

in
d
ic

a
te

d
in

th
e

fi
rs

t
ro

w
u
n
d
er

th
e

co
rr

es
p
o
n
d
in

g
fi
g
u
re

.



Computing with Point Cloud Data 225

An interesting extension which might make the computational analy-
sis easier would be working with other definitions of Hausdorff distance.
For example, remember that the Hausdorff distance between X, Y ⊂ Z,
((Z, d, μ) a metric space with probability measure μ) is defined as dZ

H(X, Y )
�
=

max(supx∈X d(x, Y ), supy∈Y d(y, X)). Then, one can consider substituting
each of the suprema inside the max(, ) by an Lp-approximation (for p ≥ 1),
for example, supx∈X d(x, Y ) ↔ (∫

dp(x, Y )μ(dx)
)1/p and similarly for the

other supremum to obtain, also allowing for an Lq-approximation of the max
(q ≥ 1):

dZ
Hp,q

(X, Y )
�
=

((∫
dp(x, Y )μ(dx)

)q/p

+
(∫

dp(y, X)μ(dy)
)q/p

)1/q

and then also defining the corresponding notion of (p, q)-Gromov–Hausdorff
distance. In particular, it would be interesting to know what the (p, q) version
of property 5 of Proposition 2 would be.

All these topics are subjects of current efforts and progress will be reported
elsewhere.
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Summary. Generalized weak perspective is a common camera model describing
the geometric projection for many common scenarios (e.g., 3D to 2D). This chapter
describes a metric constructed for comparing (matching) configurations of object
features to configurations of image features that is invariant to any affine transfor-
mation of the object or image. The natural descriptors are the Plücker coordinates
because the Grassmann manifold is the natural shape space for invariance of point
features under affine transformations in either the object or image. The object-
image equations detail the relation between the object descriptors and the image
descriptors, and an algorithm is provided to compute the distances for all cases.

Key words: Object-image metric, object recognition, ATR, weak perspec-
tive, Grassmann manifolds, affine transformations, image understanding,
Plücker coordinates, invariants.

1 Introduction

“Shape is all the geometrical information that remains when location, scale
and rotation are filtered out from an object” [7], or more generally, when the
appropriate or desired group action is factored out. The study of shape is a
core component of the study of invariance. From the computer vision perspec-
tive, invariants are key to ignoring nuisance parameters and making search
algorithms computationally tractable (because they have fewer parameters
over which to search). However, not all invariants or shape descriptors are
created equal. While many invariants (correctly) claim to be “shape descrip-
tors,” the shape invariants that satisfy the standard metric properties have
the greatest potential for solving computer vision problems.

The study of “shape” focuses on the geometric aspects of the object recog-
nition problem, thus “shape” has the benefit of being more intuitively obvious
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and having more stability across viewpoint and time than reflectivity measure-
ments. Many approaches provide a metric for comparing objects to objects or
images to images. This chapter presents a metric that enables one to compute
the distances between objects and images for a common camera projection
model.

A fundamental issue in object recognition is how to efficiently conclude a
congruence between an object and an image. The solution to this problem is
dependent upon the representation chosen for the objects and images. This
chapter considers “objects” and “images” to be a collection of ordered point
features that are represented by matrices. Using this simplification, the con-
gruence issue becomes: Does there exist a projection map from the object
representation to the image representation? Because the “projection map”
itself depends upon the sensor or camera to be modeled, the form of the
projection map is model dependent.

In the absence of noise, it is possible to quantitatively formulate this con-
gruence property using incidence relationships. Specifically, these relationships
characterize when an object could have produced an image, or dually, when
an image could have come from an object.Unfortunately, such a noise-free for-
mulation has limited practical use. What is needed is a metric (or a measure)
that says how close an object is to congruence with an image.

This chapter derives and explains an object-image metric for the (gener-
alized) weak perspective camera model. This model is appropriate as a gen-
eralization of orthographic projection, for objects viewed from a distance,
and for projections of projections. A “metric duality” property between met-
rics in object space and metrics in image space is introduced. This prop-
erty shows that a canonical metric defined in object space and a canonical
metric defined in image space yield the same object-image metric. A non-
trivial object-image incidence relationship corresponds to a metric distance of
zero.

2 Background

2.1 Pinhole Camera Projection

This chapter focuses on n points in space, thought of as feature points on
some object as illustrated in Fig. 1. After selecting an image plane in space,
one “takes a picture” by projecting the points orthogonally onto the plane
and then scaling the image by some factor. Figure 2 shows an example of this
weak perspective projection.

The ultimate goal is to completely characterize the geometric relationships
that exist between the object and image points. This requires introducing
coordinates in space and in the image plane. However, this choice is delayed
as long as possible, and carefully constructed so that the final results (while
not coordinate free) are coordinate independent.
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X

X X

X

X

Fig. 1. Points can be local or global. A typical approach would be to consider the
points as extracted global features, i.e., nose or wing tips, but the points could also
represent local measurements, i.e., local contours, extrema, or depth.

q1 q2

q3

q4 q5

P1 P2

P3

P4 P5

Fig. 2. A cartoon of perspective projection. A pinhole camera can be approximated
by weak perspective if the perceived object depth is small (< 10%) compared to the
distance from the camera to the object. Here, five points on a 3D object are imaged
to produce a 2D image.

Generalized weak perspective projection is a slight generalization of the
weak perspective that we have described. This generalization has several im-
portant features that subsequently prove useful.

For more details on the camera model, see [2]. The summary is that (up
to affine transformations of both object and image) the object points can be
projected to the image points by a 3 by 4 matrix:

⎛
⎝u
v
1

⎞
⎠ =

⎛
⎝ A

ξ1
ξ2

0 0 0 1

⎞
⎠
⎛
⎜⎜⎝
x
y
z
1

⎞
⎟⎟⎠ ,

where ξ1, ξ2 ∈ R are translations, and at least one 2 × 2 minor of the 2 by 3
matrix A is non-zero, so that the rank of the projection matrix is 3.

2.2 Invariants

The metrics of interest for object recognition are invariant to the modeled
group action (for example, rotation and translation). This is necessary because
the distance (measurement of shape difference) between two objects or two
images should not change when they have, for example, been rotated.
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The impact of this approach is that objects and images are defined only up
to an affine transformation. The affine transformations define an equivalence
relation on the set of all objects and images. Thus, the objects and images used
in this chapter represent equivalence classes (under the equivalence relations).

Additionally, the features’ group invariants must be combined into func-
tions that are invariant to the camera projection. Similar to the equivalence
classes discussed above, this implies that the objects and images define an
equivalence class, and one can determine whether a given image could have
come from a particular object without determining the corresponding projec-
tion. This concept, called “object-image relations,” is described in Section 2.4.

Different forms of the invariants have different properties. Invariant func-
tions that are globally valid, i.e., they do not have singularities, yield more
stable algorithms, and invariant expressions that form a metric distance are
better suited for object recognition.

Completely independent descriptions of the quotient space occur in special
cases, but in general the invariant coordinates are overdetermined. A simple
example is the circle. While a circle is a one-dimensional curve, it is often
easier to describe a location on the circle by x and y coordinates that sat-
isfy the relationship x2 + y2 = 1. Such overdetermined descriptions have the
advantage of being better behaved near degeneracies. Ill-conditioned invari-
ant functions convinced many researchers that invariants were an untenable
approach.

The following sections will describe the use of the invariants to make metric
comparisons. An interesting phenomenon is that the metrics can often be
computed without explicitly computing the invariants. The disappearance of
explicit calculations at higher levels of abstraction makes the computations
simpler, but the insight into the invariants is still required to understand
the results. The equivalence relations are a good example of this. One might
compare the images of two different rectangles and wonder why the distance
is zero. This would occur because the first rectangle could be translated,
rotated, and scaled such that it overlaid the second perfectly. Understanding
the invariant properties provides a better understanding of the metric.

There have been numerous metrics, measures, and distances proposed
throughout the history of object recognition, computer vision, and pattern
recognition. Alternative 3D pseudometrics are presented in [16] and [12]. More
general metrics can be found in [15] which provides a nice summary of differ-
ent metrics. Csiszár argues for a unique choice of metrics in [6]. Finally, [17]
questions whether human perception satisfies any of the axioms of a metric,
and [28] contains an excellent summary of what is known about biological
vision systems.

2.3 Procrustean Metrics

Metrics for object recognition that are computationally tractable and globally
optimal have been notoriously difficult to derive. An exception comes from
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the field called statistical shape analysis or morphometrics [7, 19, 14]. The
goal in this field is to develop a shape metric based on “landmark” features.
From the object recognition point of view, these are simply pixel locations
of extracted features. Since shape is of fundamental interest, two objects are
considered similar, independent of their translation, rotation, and scale. In
other words, two objects (or images) are considered equivalent if they can
be brought into correspondence by translating, rotating, and scaling. This is
called the similarity group.

The metric developed for statistical shape analysis is commonly called the
Procrustes, Procrustean, or (in one specific case) the Fubini-Study metric. The
Procrustes metric is a quotient metric. Intuitively, it is easy to conceptualize
considering the space of objects modulo the similarity group. Quotienting the
group action out of objects can be very difficult both analytically and numer-
ically. Despite these difficulties, this does provide a constructive approach to
developing metrics invariant to other group actions.

Two comparisons between Procrustes and the object-image metrics are
worth noting. First, Procrustes metrics can only be used to compare objects
(or images). They cannot be used to compare an object to an image. Second,
Procrustes metrics are defined in the original parameter space and descended
onto the shape space, whereas the metrics defined herein are defined in the
quotient space and do not necessarily have an equivalent definition in the
original parameter space.

Given two objects, O1 and O2, that are represented by sets of points, the
Procrustes distance is defined by

dP (O1,O2) = inf
R1,R2∈SO(m)

‖R1W1 −R2W2‖2, (1)

where W∗ = (O∗−C[O∗])/‖O∗ − C[O∗]‖2, and C[O∗] represents the centroid
of O∗, and SO(m) is the set of rotation matrices of dimensionm (m = 2 for 2D
and m = 3 for 3D). Thus Procrustes explicitly removes the translation and
scale group actions, and then optimizes over the rotation. It can be shown
that only one rotation is required, so without loss of generality, R2 = Id. The
metric is computed from the singular values of W1WT

2 .
The properties of a metric can be found in any standard math reference

book [30]. The properties of the Procrustes metric are ultimately induced by
the properties of the norm. In particular, the triangle inequality property of
the metric follows from the triangle inequality for the norm

dP (X1,X3) = inf
R∈SO(m)

‖RW1 −W3‖2

= inf
R,R2∈SO(m)

‖RW1 −R2W2 + R2W2 −W3‖2

≤ inf
R,R2∈SO(m)

(‖RW1 −R2W2‖2 + ‖R2W2 −W3‖2),
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and substituting R1 = RT2 R,

dP (X1,X3) ≤ inf
R1,R2∈SO(m)

(‖R1W1 −W2‖2 + ‖R2W2 −W3‖2).

The triangle inequality is what is missing from most “distance measures”
between objects and images. Its application will be discussed in Section 3.2.
A preliminary study on the fundamental separability of objects (sets of land-
marks) based on this metric can be found in [4].

2.4 Object-Image Relations

Object-image relations express the geometric relations (constraints) between
an object and its image. These relations can be expressed algebraically as
invariant functions of the coordinates of the points. The particular invariants
and number of points required for an object-image relation to exist depend
upon the transformation group associated with the sensor model. For gener-
alized weak perspective projection from 3D to 2D, 5 points is the minimum
number of points required to construct nontrivial object-image relations.

The object-image relations can be viewed as the result of elimination of the
unknown parameters in the model describing the projection of the object onto
the sensor (image). Object-image relations for orthographic, weak perspective,
and full perspective points and lines have been reported [20, 25, 24, 27, 26, 29].

Object-image relations are closely related to early work started by Basri,
Ullman, Weinshall, Jacobs, and others detailed in [11]. Results were recently
demonstrated in [13]. “Transformation metrics,” an early error analysis, and
trilinear tensors provide additional insight into this work [5, 9, 18].

Object 1

Object 2
Image 1

Image 2

Fig. 3. One object can produce two different images that are inequivalent (because
the image “lost” the out-of-plane projection information). Similarly, two distinct
objects can be found that produce a common image. This many-to-one and one-to-
many relationship is the impetus for object-image relations.
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Object-image relations overcome a major stumbling block to standard
invariant-based object recognition that was discovered by several authors in
the early 1990’s. Jacobs concisely summarizes the problem in [11]. Two issues
arise: one object does not have a single image invariant to describe it, and
worse still, a particular image invariant can be associated with many objects.
This was the first indication that pure image-image metrics would have very
limited applications. Figure 3 illustrates the many-to-one and one-to-many
relationship that exists between objects and images.

Object-image relations are precisely the generating equations to describe
these one-to-many and many-to-one relations. Specifically, object-image re-
lations provide a formal way of asking, What are all the possible images of
this object? and What are all the possible objects that could have produced
this image? This is a very powerful formalism, and it is fundamental to object
recognition.

Object-image relations do not provide all the desired capabilities. The re-
lations that have been reported to date do not satisfy all the metric properties.
Specifically, object-image relations provide the first property of a metric, i.e.,
d(O, I) = 0 if and only if O is congruent with I. However, if d(O, I) �= 0, then
an object recognition system typically needs to know how close it is to match-
ing. This property is provided by the triangle inequality, and the object-image
metric approach is required to attain it.

3 Approach

Object-image metrics affect the approach to almost every component of the
recognition process. This chapter is focused on indexing, but detection, recon-
struction, grouping or categorizing, and final hypothesis validation steps are
prime areas for applying metrics.

Although an object recognition system must eventually make a hard de-
cision (i.e., make a binary decision as to whether an image is consistent with
a particular hypothesized object), the concept is that this decision will occur
in the final stages of the algorithm when a pixel-level validation and back-
ground consistency is performed. The indexer should not predetermine how
many candidates the algorithm will examine before making a final decision.
The metric will naturally rank order the models based on their similarity to
the image. Therefore the system will validate the best matches first (based
on the extracted data or features) and continue until the validation is highly
confident in a match, it rejects all the potential matches, or a time constraint
is exceeded.

3.1 Object-Image Metrics

Figure 4 is an abstract diagram for conceptualizing how the object-image
metrics are formed. The left part of the diagram represents the object’s quo-
tient space. A point in this space, x, represents an object and all the 3D
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affine variations of the object. The right part of the diagram represent the
image’s quotient space. Similarly, a point in this space, u, represents an im-
age and all the 2D affine variations of the image. The object-image rela-
tions indicate the one-to-many relationships. Specifically, the image, u, on
the right maps to many different objects, xu, that could produce the image.
The object, x, on the left maps to many different images, ux, that it could
produce.

Fig. 4. Object-image metrics can be defined in the object’s quotient space (left) or
the image’s quotient space (right). A point in the quotient space represents all affine
versions of the object, x, or image, u, respectively, and the object-image relations
indicate all the objects that could produce a given image, or all the images that could
come from a given object. The object-image metric accounts for the many-to-one
relationships.

A standard metric is defined on two objects (or images) in the same space
(such as the Procrustes metric). Since object-image metrics are to be con-
structed from an object and an image, the metric could be constructed in
either space. Figure 4 illustrates these two ways of deriving an object-image
metric.

The first way to define the metric is in the object quotient space. Thus
the distance is computed as the infimum between x and the locus xu. The
second way to define the metric is in the image quotient space. Here, the dis-
tance is computed as the infimum between u and the locus ux. Theorem 7
states that identical results can be obtained from either calculation. This is
a key observation because it allows working in the space that is the most
convenient for the problem at hand. It also bypasses the potentially meddle-
some problem of having two different definitions for comparing objects and
images.

The object-image metric for generalized weak perspective projection is
constructed in Section 4.3.

3.2 Exploiting the Triangle Inequality

Given a measured image, u, and a database of k objects, {x1, . . . , xk}, the first
step in object recognition is to sort the database by their relative similarity to
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the image. Thus the sorting (heretofore called indexing) step would calculate
each distance

{dOI [u, x1] , dOI [u, x2] , dOI [u, x3] , . . . , dOI [u, xk]}

and then sort the list based on the computed values. This exhaustive approach
is necessary with standard pattern recognition techniques because no reusable
knowledge is available about the relation between the objects in the database.

(a) (b)

Fig. 5. The triangle inequality is the fundamental reason for developing object-
image metrics. (a) Without a metric, the matching process must compare an image,
u, to each object for an exact match. (b) The triangle inequality enables a tree or
index search by lumping similar objects that can be pruned from the search if their
prototype, X∗, is sufficiently different from the image.

Figure 5 illustrates the advantage of using the triangle inequality. Without
this metric property, the common answer to achieve efficiency is to assume
“closeness” and use principal component analysis or other techniques. Many of
these approaches have inherent shortcomings including assuming the “distance
function” satisfies metric properties, optimizing the representation instead of
the discrimination, and having no concept of how an “unknown” will compare.
In contrast, the object-image metric provides a theoretical basis for achieving
computational efficiency. In the context of the object-image metric, many of
these existing techniques can be utilized effectively.

The triangle inequality is the tool for making database indexing efficient.
Since the metric is defined such that both the image and the object are con-
sidered in the same domain, the triangle inequality can be used to greatly
simplify the computational process. For any two objects and an image the
triangle inequality

dOI [u, x1] ≤ dOI [u, x2] + dOI [x1, x2] (2)

implies
|dOI [u, x1]− dOI [x1, x2] | ≤ dOI [u, x2] . (3)
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Given the computed value, dOI [u, x1], and the quantity, dOI [x1, x2], that can
be computed offline, the quantity dOI [u, x2] can be bounded from below.

Distance functions that do not have the triangle inequality property cannot
reliably make the above inference. Thus the triangle inequality fulfills both a
philosophical and a practical need. For more information, see [3].

The benefit is that it is no longer necessary to sort the entire database
(although it is possible if desired). A by-product of this matching approach is
that the transformation parameters that map the model to the image and vice
versa can be estimated. This information can be passed on to the verification
process.

How close to zero is close enough? One answer is to identify a close, but
distinguishable object, and draw the threshold midway. Another answer to this
question is to collect and analyze the set of distances that are achieved from a
multitude of measurements of the images. Discretization will certainly affect
this as well as any noise in the system. This analysis provides one method for
defining an acceptance threshold. Mathematically, if

dOI

[
u, xmodel

] ≤ Thresholdnoise, (4)

then one accepts that the image is similar enough to the modeled object
to be indistinguishable. It is still possible that the measurement did not, in
fact, come from the given model. There are objects that have identical images.
Fortunately, the metric enables a theoretical analysis that provides insight into
when this is the case. In other words, while the metric can not separate two
things that are indistinguishable, it can definitively prove when an “unknown”
measurement does not look like any of the other things in the database. Thus
robust, reliable, and predictable unknowns rejection is achievable.

We note again that the Metric Duality Theorem (Theorem 7) plays an
important role here. Without it, it would be unclear whether the noise analysis
should be performed in object space or image space. With it, it is clear that
the results will be equivalent regardless of which space one chooses to analyze.

4 Object-Image Metrics

This section constructs certain natural metrics for the generalized weak per-
spective case. All of the results are independent of the choice of coordinates
and the camera parameters. Moreover, the results are formulated using the
global differential and algebraic geometry of the spaces involved so as to avoid
troublesome special position assumptions.

4.1 Affine Shape Invariants

We begin by introducing a new type of affine invariant for a set of point
features. Unlike the familiar numerical invariants commonly used in object
recognition, this invariant is a linear subspace of a particular vector space.
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It is in many respects the most natural invariant. It is certainly more gen-
eral and more robust than the standard numerical invariants, avoiding, as it
does, the need for any kind of general position assumptions. Moreover, since
the numerical invariants can be completely recovered from the subspace, no
information is lost.

Significant detail is provided on finding equations that describe the actual
shape space within projective space. This might seem like a minor point, but
it is generally more convenient to work with global homogeneous coordinates
(in projective space). In certain problems, especially those involving multi-
ple views of the same object, this will require finding solutions to systems
of homogeneous polynomials. It is necessary to have a way to check that a
particular solution is actually in the object shape space, as opposed to being
a spurious solution.

Point Features on 3D Objects

Let Pi = (xi, yi, zi) for i = 1, . . . , n, and n ≥ 5, be an ordered set of n
non-coplanar points in R

3, and consider the 4× n matrix

M =

⎛
⎜⎜⎝
| | |
P1 P2 . . . Pn
| | |
1 1 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
x1 x2 xn
y1 y2 yn
z1 z2 . . . zn
1 1 1

⎞
⎟⎟⎠ ∈ R

4×n. (5)

A 3D object whose feature set consists of the points P1, . . . , Pn is associated
with an (n − 4)-dimensional linear subspace Kn−4 of R

n, namely the null
space of M viewed as a linear map from R

n to R
4 which sends an n-vector

w to the 4-vector Mw. Thus, Kn−4 = {w = (w1, . . . , wn)T ∈ R
n, such that

Mw = (0, 0, 0, 0)T}. The fact that Kn−4 has dimension n − 4 follows from
the observation that at least one 4× 4 minor of M has non-zero determinant
because the points are not all coplanar.

Notice that if one applies an affine transformation B to the set of points
one obtains a new 4× n matrix

M ′ =

⎛
⎜⎜⎝
x′1 x′2 x′n
y′1 y′2 y′n
z′1 z′2 . . . z

′
n

1 1 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a b c δ1
d e f δ2
g h k δ3
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
B

⎛
⎜⎜⎝
x1 x2 xn
y1 y2 yn
z1 z2 . . . zn
1 1 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
M

, (6)

but the subspace Kn−4 does not change. Thus Kn−4 is an “affine invari-
ant” representation of M . Moreover, since Kn−4 ⊂ Hn−1 = {w such that
w1 + · · · + wn = 0} one can assign to the n-tuple of points the unique point
determined by Kn−4 in the Grassmannian, GrR(n−4, Hn−1) of (n−4)-planes
in the (n−1)-dimensional space Hn−1. The space GrR(n−4, Hn−1) is a well-
understood compact manifold of dimension 3n − 12 [8]. It can be identified
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with GrR(n− 4, n− 1), the Grassmannian of all linear subspaces of dimension
n− 4 in R

n−1 once a basis for Hn−1 is chosen. (For metric reasons, it will be
important to choose an orthonormal basis for Hn−1 ⊂ R

n when making the
identification Hn−1 ∼= R

n−1.)

Definition 4.1 The point [Kn−4] in the Grassmannian GrR(n− 4, Hn−1) of
(n − 4)-planes in Hn−1 ⊂ R

n is called the geometric affine invariant, object
shape, or affine shape of the ordered n-tuple of feature points P1, . . . , Pn in R

3.

This point does not depend on the choice of coordinates in 3-space, and it
is invariant under any affine transformation, as mentioned.

Definition 4.2 The manifold X = GrR(n−4, Hn−1) is called the affine shape
space for n-tuples of points in R

3, or object space for short.

Every point in X is of the form [Kn−4] for some n-tuple of non-coplanar
points P1, . . . , Pn ∈ R

3, and most importantly, if two sets of non-coplanar
points, P1, . . . , Pn and P ′

1, . . . , P
′
n in R

3, give rise to the same point in X ,
then these sets of points differ by a unique affine transformation of 3-space.

The Plücker Embedding and Global Shape Coordinates

One can obtain global coordinates (albeit homogeneous coordinates) for the
(3n − 12)-dimensional affine shape space X = GrR(n − 4, Hn−1) by first
choosing a basis for Hn−1. This allows us to identify GrR(n − 4, Hn−1) with
GrR(n − 4, n− 1). Then one can map GR(n − 4, n− 1) into projective space

P
(n−1

n−4)−1

R
via the usual Plücker embedding. This gives us a set of global homo-

geneous coordinates to use in computations. Specifically, given a point [Kn−1]
in GR(n−4, n−1), one takes any n−4 vectors in R

n−1 which span that (n−4)-
plane in Hn−1 ∼= R

n−1 and uses them to form an (n − 1) × (n − 4) matrix.
(This requires a choice of basis for Hn−1, identifying it with R

n−1, so that
Kn−4 can be identified with a subspace of R

n−1.) The determinants (usually
listed in lexicographic order) of the

(
n−1
n−4

)
minors of size (n − 4) × (n − 4)

provide the map into projective space P
(n−1

n−4)−1

R
and serve as the homogeneous

coordinates in P
(n−1

n−4)−1

R
of a point in shape space X . These are called the

Plücker coordinates of the linear subspace Kn−4 in Hn−1 ∼= R
n−1.

The metric on the object space, X , is the well-known Fubini-Study metric
on the Grassmannian that provides (up to scale) an invariant metric for the
action of the orthogonal group O(n) on the right of the 4 × n data matrix,
M , and for affine actions on the left. To obtain a description of this metric,
one needs to choose an orthonormal basis for Hn−1 ⊂ R

n, however there
is no convenient choice. Fortunately, an important property of the Plücker
embedding will help. Considering the diagram of embeddings:

GrR(n− 4, Hn−1) ↪→ GrR(n− 4, n)

←↩ ψ1 ←↩ ψ2

PR(
n−4

Λ Hn−1) ↪→ P
( n

n−4)−1

R
,

(7)
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where
n−4

Λ Hn−1 is the usual exterior power of the vector space H . The
vertical maps ψ∗ are Plücker embeddings, the bottom horizontal map is a
linear embedding, and the top horizontal map is induced by the inclusion
Kn−4 ⊂ Hn−1 ⊂ R

n. The respective dimensions of the manifolds are

3n− 12 ↪→ 4n− 16

←↩ ←↩(
n−1
n−4

)− 1 ↪→ (
n
n−4

)− 1

so that the codimension of PR(
n−4

Λ Hn−1) in P
( n

n−4)−1

R
is
(
n
n−4

) − (n−1
n−4

)
=(

n−1
n−5

)
=
(
n−1

4

)
. This diagram of embeddings provides a method to avoid

choosing a basis in H .

Dual Plücker Coordinates

Consider any subspace Kn−4 of dimension n − 4 in R
n represented by an

n × (n − 4) matrix whose columns form a basis for Kn−4. This n × (n − 4)
matrix is denoted by

K = (kij)

for 1 ≤ i ≤ n and 5 ≤ j ≤ n. If 1 ≤ i5 < · · · < in ≤ n is a set of n − 4 row
indices, define

[i5 . . . in] = det

⎛
⎜⎝
ki55 . . . ki5n

...
...

kin5 . . . kinn

⎞
⎟⎠ (8)

i.e., the determinant of the (n− 4)× (n− 4) minor obtained by selecting rows
i5, . . . , in of K.

Definition 4.3 The [i5 . . . in] are the
(
n
n−4

)
Plücker coordinates of Kn−4 in

R
n. Notice that representing Kn−4 by a different matrix via a different choice

of basis, will cause the Plücker coordinates to all change by the same non-zero
multiple, namely the determinant of the change of basis matrix. The Plücker
coordinates thus provide a map

GrR(n− 4, n)
ψ2
↪→ P

( n
n−4)−1

R

[Kn−4] 
−→ (. . . : [i5 . . . in] : . . .)
(9)

which can be shown to be an embedding. This is the vertical map on the right
in (7).

There is a well-understood relationship between the Plücker coordinates
of a linear subspace of R

n and the Plücker coordinates of its orthogonal com-
plement. In the case where Kn−4 is the affine shape of n points in R

3, the
orthogonal complement (Kn−4)⊥ is just the row span of the original data
matrix, M . The next result states this relationship.
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Theorem 1. Let i1, . . . , in be a permutation of the indices 1, . . . , n and as-
sume i1 < i2 < i3 < i4 and i5 < · · · < in. Then

[i1 i2 i3 i4] = cεi1···in [i5 . . . in] (10)

for some fixed constant c independent of i1, . . . , in. Here [i1 . . . i4] are the
determinants of the 4 × 4 minors of M and [i5 . . . in] are those of the
(n− 4)× (n− 4) minors of K. Also εi1...in = ±1 depending on whether
i1, . . . , in is an even (+1) or odd (−1) permutation of 1, . . . , n.

The following notation is used to simplify the presentation of the determi-
nants. Given M, for 1 ≤ i1 < i2 < i3 < i4 ≤ n,

[i1 i2 i3 i4] = det

⎛
⎜⎜⎝
xi1 xi2 xi3 xi4
yi1 yi2 yi3 yi4
zi1 zi2 zi3 zi4
1 1 1 1

⎞
⎟⎟⎠ .

Example 4.4 For n = 5, Theorem 1 becomes

[1 2 3 4] = c[5]

[1 2 3 5] = −c[4]

[1 2 4 5] = c[3]

[1 3 4 5] = −c[2]

[2 3 4 5] = c[1]

where K is the span of a single vector ([1], [2], [3], [4], [5])T in R
5. In this case

the Plücker embedding
GrR(1, 5) ↪→∼= P

4
R

is an isomorphism, and it can be regarded as sending an object M (and all
objects equivalent by an action of the affine group on the left) to the point

([2 3 4 5] : −[1 3 4 5] : [1 2 4 5] : −[1 2 3 5] : [1 2 3 4]) ∈ P
4
R
. (11)

Again, K1 is the null space of M and is the span of ([1], [2], [3], [4], [5])T ⊂
H4 ⊂ R

5. The inclusion in H4 is equivalent to saying [1]+[2]+[3]+[4]+[5] = 0.
This is also equivalent to

[2 3 4 5]− [1 3 4 5] + [1 2 4 5]− [1 2 3 5] + [1 2 3 4] = 0,

which can be seen by expanding det

( x1 x2 x3 x4 x5
y1 y2 y3 y4 y5
z1 z2 z3 z4 z5
1 1 1 1 1
1 1 1 1 1

)
= 0 along the bottom

row. The actual shape space in this case is the hyperplane in P
4
R

defined by
the condition that the sum of the homogeneous coordinates be equal to 0. It is
three dimensional and X3 ∼= P

3
R
.
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Example 4.5 Consider two sets of five feature points: P1 = (4, 0, 0), P2 =
(5/3, 1/2,−7/6), P3 = (14/3,−1,−5/3), P4 = (2,−3, 0), P5 = (4,−12, 2),
and P ′

1 = (1,−1, 0), P ′
2 = (3/2, 1/2,−1/2), P ′

3 = (2, 0, 1), P ′
4 = (0, 0, 0),

P ′
5 = (−3,−1, 2). The corresponding 4× 5 object data matrices are

objectDataZ2 =

�
���

4 5/3 14/3 2 4
0 1/2 −1 −3 −12
0 −7/6 −5/3 0 2
1 1 1 1 1

�
��� objectDataY =

�
���

1 3/2 2 0 −3
−1 1/2 0 0 −1
0 −1/2 1 0 2
1 1 1 1 1

�
��� .

In the case of the second object (objectDataY) the determinants of the minors
are

[1 2 3 4] = 3 [1 2 3 5] = 10 [1 2 4 5] = −2 [1 3 4 5] = −8 [2 3 4 5] = 1.

This means K1, the null space of objectDataY, is spanned by the 5-vector
(1, 8,−2,−10, 3) and the shape coordinates of the feature points P1, . . . , P5

are (1 : 8 : −2 : −10 : 3) ∈ P
4
R
. For objectDataZ2 the shape coordinates are

(−6 : −48 : 12 : 60 : −18) ∈ P
4
R
. Notice that these two give the same point in

projective 4-space since they differ by a scalar factor. This means that they are
the same affine shape and it follows that P1, . . . , P5 can be moved to P ′

1, . . . , P
′
5

by an affine transformation. See the appendix in [2] for details.

Now rather than make a choice of basis for Hn−1, one simply works with
the embedding of the shape space X into the larger projective space P

( n
n−4)−1

by regarding the affine shapeKn−4 as a subspace of R
n (as opposed toHn−1 ⊂

R
n).

Definition 4.6 The Plücker coordinates [i5 . . . in] of Kn−4 are referred to as
the shape coordinates of the n-tuple of points P1, . . . , Pn ∈ R

3. (For all choices
1 ≤ i5 < · · · < in ≤ n.)

As explained, these shape coordinates can be computed from the original
data matrix, M , via Theorem 1 above. One can also show that all affine
invariants for n points can be expressed in terms of ratios of various Plücker
coordinates [i5, . . . , in] of Kn−4, the null space of M . This just confirms that
Kn−4 is the “right” invariant to consider since it captures all the fundamental
invariants and does not depend on a general position assumption, such as a
certain set of four of the points not being coplanar. The only requirement is
that all n points in R

3 not be coplanar. This even allows for duplicates—an
important issue when considering images.

Example 4.7 For n = 6

[1 2 3 4] = c[56] [1 2 5 6] = c[34] [2 3 4 5] = c[16]
[1 2 3 5] = −c[46] [1 3 4 5] = −c[26] [2 3 4 6] = −c[15]
[1 2 3 6] = c[45] [1 3 4 6] = c[25] [2 3 5 6] = c[14]
[1 2 4 5] = c[36] [1 3 5 6] = −c[24] [2 4 5 6] = −c[13]
[1 2 4 6] = −c[35] [1 4 5 6] = c[23] [3 4 5 6] = c[12]
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The Plücker embedding of the eight-dimensional Grassmannian GrR(2, 6) is
given by

GrR(2, 6)
ψ2
↪→ P

14
R

[K2] 
−→ ([3 4 5 6],−[2 4 5 6], . . . ,−[1 2 3 5], [1 2 3 4])

in terms of the
(
6
4

)
= 15 Plücker coordinates of the 6 points given by M . Here

the brackets [12] etc. are the
(
6
2

)
= 15, 2× 2 minors of the 6× 2 matrix whose

two columns as 6-vectors span K2, the null space of M. The actual shape space
X6 = GrR(2, H5) is six dimensional, inside the eight-dimensional GrR(2, 6),

and it embeds in the projective space PR(
2

ΛH5) ∼= P
9
R

of dimension 9, which is
in turn linearly embedded in P

14
R

.

One needs to clarify how the shape space X3n−12 sits in P
( n

n−4)−1

R
.

Proposition 4.8 P
( n

n−4)−1

R
contains X as an intersection of the standard

Grassmannian with a linear subspace

X = GrR(n− 4, Hn−1) = GrR(n− 4, n) ∩ PR

(
n−4

Λ Hn−1

)
⊂ P

( n
n−4)−1

R
.

Proof. See [22, 23]. �

Shape Space and Plücker Relations

One can now explicitly describe the shape spaceX ⊂ P
( n

n−4)−1

R
by giving linear

equations in the coordinates of P
( n

n−4)−1

R
that determine the linear subspace

PR(
n−4

Λ Hn−1) and quadratic equations (the Plücker relations) that cut out

GrR(n− 4, n) in P
( n

n−4)−1

R
. Together by Proposition 4.8 these equations define

the shape space X as a subvariety of P
( n

n−4)−1

R
. Moreover these equations can

be interpreted as certain relations among the determinants [i1 i2 i3 i4] of the
minors of M via Theorem 1.

Let Xi1...in−4 for 1 ≤ i1 < · · · < in−4 ≤ n be homogeneous coordinates on

P
( n

n−4)−1

R
.

Theorem 2. The linear subspace PR(
n−4

Λ Hn−1) ↪→ P
( n

n−4)−1

R
is determined

by the following system of
(
n
n−5

)
linear equations:

∑n
λ=1Xλβ1...βn−5 = 0 for

every choice of indices 1 ≤ β1 < β2 < · · · < βn−5 ≤ n. Here it is understood
that one treats the coordinates as skew symmetric in the indices. Note that the
codimension here is

(
n−1
n−5

)
, so equations are redundant.

Proof. This result makes use of Theorem I, §5, Chapter VII of Hodge and
Pedoe [10], which, among other things, provides necessary and sufficient
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conditions for a subspace Kn−4 in R
n to be contained in Hn−1. Specifically

the Plücker coordinates of Kn−4 in R
n must satisfy

∑n
λ=1[λβ1 . . . βn−5] = 0

for every choice of indices 1 ≤ β1 < β2 < · · · < βn−5 ≤ n. Thus these linear
relations characterize GrR(n − 4, Hn−1) in GrR(n − 4, n) ⊂ P

( n
n−4)−1. To see

that they actually cut out PR(
n−4

Λ Hn−1), it is enough to show the result in a
particular coordinate system. Consult [22, 23] for more details. �

Theorem 2 provides the linear relations in the Plücker coordinates of Kn−4

viewed in R
n, and Theorem 1 provides a way to convert those to linear rela-

tions in the Plücker coordinates of M .

Corollary 4.9 Given that β1, . . . , βn are a permutation of 1, . . . , n with
1 ≤ β1 < · · · < β5 ≤ n and 1 ≤ β6 < · · · < βn ≤ n, then

n∑
λ=1

[λβ6 . . . βn] = 0

is a relation among the Plücker coordinates of Kn−4 in R
n. Moreover if

Kn−4 ⊂ R
n satisfies these relations it will be in Hn−1. This relation can

be written as a 5-term relation

0 = [β1β6 . . . βn] + [β2β6 . . . βn] + · · ·+ [β5β6 . . . βn].

Using Theorem 1, this gives

0 = [β2β3β4β5]− [β1β3β4β5] + [β1β2β4β5]− [β1β2β3β5] + [β1β2β3β4]. (12)

The source of this relation is the expansion of the 5× 5 determinant

det

⎛
⎜⎜⎜⎜⎝
xβ1 xβ5

yβ1 yβ5

zβ1 . . . zβ5

1 1
1 1

⎞
⎟⎟⎟⎟⎠ = 0

along the bottom row. For arbitrary Kn−4 ⊂ R
n, this result says that if

(Kn−4)⊥ = M4 ⊂ R
n has Plücker coordinates satisfying the

(
n
n−5

)
=
(
n
5

)
relations (12), then (1, . . . , 1)T ∈ M4 and M is the data matrix of some n-
tuple of points in R

3.

For example, consider the case of 6 points (n = 6). There are six linear
relations, one of which is 0 = [16]+[26]+[36]+[46]+[56]. This implies, for ex-
ample, that the 2-planeK2, spanned by (1, 0, 4,−1, 2, 0) and (−1,−1, 0, 1, 0, 1)
and viewed as a point [K2] in GrR(2, 6) ⊂ P

14
R

with homogeneous coordinates
([12] : [13] : . . . : [56]) = (−1 : 4 : . . . : 2), will not be the affine shape of any
collection of 6 points in 3 space, because

[16] = 1 [26] = 0 [36] = 4 [46] = −1 [56] = 2

and these do not sum to zero as the above relation requires.
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The classical quadratic Plücker relations that cut out GrR(n − 4, n) ⊂
P
( n

n−4)−1

R
are given next.

Theorem 3. Given an (n − 4)-dimensional subspace Kn−4 ⊂ R
n and an

n× (n− 4) matrix
K = (ki�)

whose columns span Kn−4, the Plücker coordinates of K will satisfy the fol-
lowing relations:

[i1 . . . in−4][̃i1 . . . ĩn−4] =
n−4∑
λ=1

[i1 . . . is−1̃iλis+1 . . . in−4][̃i1 . . . ĩλ−1isĩλ+1 . . . ĩn−4]

for any choices of i1, . . . , in−4 and ĩ1, . . . , ĩn−4 between 1 and n and any choice
of s between 1 and n− 4. The brackets are to be regarded as skew symmetric
as usual. Using Theorem 1 these relations can be converted to relations in the
determinants of the 4× 4 minors of the original data matrix M .

Example 4.10 For n = 5 points there are no quadratic relations. One would
have

[i1][̃i1] = [̃i1][i1]

as n−4 = 1 and s = 1, λ = 1 are the only possibilities. This is correct because
GrR(1, 5) is the entire projective space P

( n
n−4)−1 ∼= P

4.
For n = 6 the relations on the Plücker coordinates of K2 are like

[12][56] = [52][16] + [62][51]

[12][56] = [15][26] + [16][52],

where i1 = 1, i2 = 2, ĩ1 = 5, ĩ2 = 6, and s = 1 and 2 respectively. Note that
by skew symmetry these are the same relation.

X is cut out by the combined set of linear and quadratic equations
since the quadratic Plücker relations cut out GrR(n − 4, n) in P

( n
n−4)−1

and the linear relations discussed above cut out P(
n−4

Λ Hn−1) ⊂ P
( n

n−4)−1

and, by Proposition 4.8, the shape space is X = GrR(n − 4, Hn−1) =

GrR(n − 4, n) ∩ GrR(
n−4

Λ Hn−1) ⊂ P
( n

n−4)−1. This characterizes which
(
n
n−4

)
-

tuples (homogeneous coordinates) are actual object shapes in P
( n

n−4)−1.

Point Features in 2D Images

Now consider the analogous constructions for 2D images. Let Qi = (ui, vi)
for i = 1, . . . , n, n ≥ 5, be an ordered set of n non-collinear points (pixels
perhaps) in R

2, the image plane. Similar to the 3D case for object feature
points, arrange them in a 3× n matrix
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N =

⎛
⎝u1 u2 un
v1 v2 . . . vn
1 1 1

⎞
⎠ ,

and associate to this set of image feature points the (n−3)-dimensional linear
subspace Ln−3 of R

n which is the null space of N ; viewing N as a linear map
R
n → R

3:

Ln−3 = {w = (w1 . . . wn)T ∈ R
n such that Nw = (0, 0, 0)T}.

The non-collinearity of the points Qi guarantees that N has at least one 3×3
minor with non-zero determinant.

The subspace Ln−3 is invariant under affine transformations of the points
{Qi} and Ln−3 ⊂ Hn−1 =

{
w = (w1 . . . , wn)T ∈ R

n such that
∑n
i=1 wi = 0

}
.

The n-tuple of image points is assigned the unique point [Ln−3] determined by
Ln−3 in the Grassmannian GrR(n−3, Hn−1). The manifold GrR(n−3, Hn−1)
can be identified with GrR(n− 3, n− 1), the Grassmannian of all linear sub-
spaces of dimension n − 3 in R

n−1, by choosing a basis for Hn−1. (Again
for metric reasons, one desires an orthonormal basis for Hn−1 ⊂ R

n when
identifying it with R

n−1.)

Definition 4.11 The point [Ln−3] in GrR(n−3, Hn−1) is called the geometric
affine invariant, image shape, or affine shape of the n-tuple of image feature
points Q1, . . . , Qn in R

2.

Definition 4.12 The manifold Y = GrR(n − 3, Hn−1) is called the affine
shape space for n-tuples of points in R

2, or image space for short.

Every point in Y is of the form [Ln−3] for some n-tuple of non-collinear
points in R

2, and if two sets of non-collinear points,Q1, . . . , Qn andQ′
1, . . . , Q

′
n

in R
2, give rise to the same point in Y , then they differ by a unique affine

transformation.

The Plücker Embedding and Global Shape Coordinates

Just as in the 3D case, the numerical affine invariants of Q1, . . . , Qn ∈ R
2 can

be recovered from [Ln−3] and vice versa. Likewise, one can obtain global shape
coordinates via the Plücker embedding of GrR(n − 3, Hn−1) into P

( n
n−3)−1.

Specifically, if one represents Ln−3 by an n × (n − 3) matrix L = (
jk) with
1 ≤ j ≤ n and 4 ≤ k ≤ n, then the shape coordinates

[j4 . . . jn] = det

⎛
⎜⎝

j44 . . . 
j4n
...

...

jn4 . . . 
jnn

⎞
⎟⎠

for 1 ≤ j4 < · · · < jn ≤ n give the embedding. These are the determinants of
the (n − 3) × (n − 3) minors obtained by selecting various rows j4, . . . , jn of
L. The embedding is
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Y ↪→ P
( n

n−3)−1

[Ln−3] 
→ (. . . : [j4 . . . jn] : . . .).

As a subvariety of P
( n

n−3)−1, Y is cut out by a set of linear equations and
quadratic Plücker relations similar to the way object space X is cut out in
P
( n

n−4)−1. Moreover these relations can all be expressed in terms of the quan-
tities

[j1j2j3] = det

⎛
⎝uj1 uj2 uj3
vj1 vj2 vj3
1 1 1

⎞
⎠ ,

which are the determinants of the 3× 3 minors of the image data matrix

N =

⎛
⎝u1 un
v1 . . . vn
1 1

⎞
⎠ .

Theorem 4. Let j1, . . . , jn be a permutation of the indices 1, . . . , n and as-
sume j1 < j2 < j3 and j4 < · · · < jn. Then

[j1j2j3] = cεj1...jn [j4 . . . jn]

for some constant c independent of j1, . . . , jn and εj1...jn is ±1, the sign of
the permutation j1 . . . jn. See Theorem 1.

As an example, for n = 5 points, in 2D, [123] = c[45], [124] = −c[35],
[125] = c[34], [134] = c[25], [135] = −c[24], [145] = c[23], [234] = −c[15],
[235] = c[14], [245] = −c[13], and [345] = c[12].

4.2 Object-Image Relations

Given an n-tuple of feature points P1, . . . , Pn on an object, M , and an n-tuple
of feature points Q1, . . . , Qn in an image, N , we would like to find necessary
and sufficient conditions for the Qi to be a generalized weak perspective pro-
jection of the Pi. How should these conditions be expressed? In describing
the subvariety V ⊂ X × Y ⊂ P

( n
n−4)−1 × P

( n
n−3)−1 of matching object-image

pairs, it is expected that the relations describing V will be bihomogeneous
polynomials in the shape coordinates, both object and image. The goal is to
describe a complete set of generators for the ideal of all such polynomial rela-
tions. Using Zariski open sets in X and Y , where certain numerical invariants
serve as coordinates, these relations will reduce to equations in the numerical
invariants [21]. By using the global shape coordinates, the derived equations
do not depend on any general positions assumptions and can be evaluated
for every object-image pair (i.e., there are no denominators that could be
zero).
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Theorem 5. Given M = {P1, . . . , Pn} an n-tuple of object feature points in
R

3 and N = {Q1, . . . , Qn} an n-tuple of image feature points in R
2, then N

will be a weak perspective projection of M if and only if the object shape Kn−4

is contained in the image shape Ln−3:

Kn−4 ⊂ Ln−3 ⊂ Hn−1 ⊂ R
n.

These incidence relations can be expressed in terms of the Plücker coor-
dinates. Theorems 1 and 4 are then used to write everything in terms of the
matrices M and N .

Theorem 6. Let M be an n-tuple of object feature points, and N be an n-
tuple of image feature points for n ≥ 5. For 1 ≤ i1 < i2 < i3 < i4 ≤ n and
1 ≤ j1 < j2 < j3 ≤ n, define the object shape coordinates and the image shape
coordinates as before:

[i1i2i3i4] = det

⎛
⎜⎜⎝
xi1 xi2 xi3 xi4
yi1 yi2 yi3 yi4
zi1 zi2 zi3 zi4
1 1 1 1

⎞
⎟⎟⎠ , and [j1j2j3] = det

⎛
⎝uj1 uj2 uj3
vj1 vj2 vj3
1 1 1

⎞
⎠ .

Then N is an image of M under a generalized weak perspective projection if
and only if the following relations (called object-image relations):

n∑
λ1,λ2=1

[α1α2λ1λ2][λ1λ2β1 . . . βn−5] = 0

hold for all choices of α1, α2 and β1, . . . , βn−5. Without loss of generality one
can take 1 ≤ α1 < α2 ≤ n, 1 ≤ β1 < · · · < βn−5 ≤ n, and 1 ≤ λ1 < λ2 ≤ n.
The expressions [α1α2λ1λ2] and [λ1λ2β1 . . . βn−5] should be treated as skew
symmetric in the entries. Observe that repeated indices result in a zero term.

In this formula [λ1λ2β1 . . . βn−5] are the Plücker coordinates of Ln−3, i.e.,
the dual coordinates of N . One may use Theorem 4 to determine the relations
in terms of the Plücker coordinates of N ,

n∑
λ1,λ2=1

ελ1,λ2 [α1α2λ1λ2][γ1γ2γ3] = 0,

for all choices of 1 ≤ α1 < α2 ≤ n and all choices of 1 ≤ β1 < · · · < βn−5 ≤ n
where 1 ≤ γ1 < γ2 < γ3 ≤ n is the complement of {λ1, λ2, β1 . . . βn−5} in
{1, . . . , n} when λ1, λ2, β1, . . . , βn−5 are distinct (the term is 0 otherwise) and
ελ1λ2 is the sign of the permutation (γ1γ2γ3λ1λ2β1 . . . βn−5) of the numbers
1 to n.

Example 4.13 For n = 5 points, and for α1 = 1, and α2 = 2 (no choices
are possible for β),
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0 =
∑

3≤λ1<λ2≤5

[12λ1λ2][λ1λ2] = [1234][34] + [1235][35] + [1245][45].

0 = [1234][125]− [1235][124] + [1245][123]

Upon considering all the possibilities for α1 and α2, Theorem 4 yields the
complete set

0 = [1234][125]− [1235][124] + [1245][123]

0 = [1234][135]− [1235][124] + [1345][123]

0 = [1234][145]− [1245][124] + [1345][124]

0 = [1235][145]− [1245][124] + [1345][125]

0 = [1234][235]− [1235][124] + [2345][123]

0 = [1234][245]− [1245][124] + [2345][124]

0 = [1235][245]− [1245][124] + [2345][125]

0 = [1234][345]− [1345][124] + [2345][134]

0 = [1234][345]− [1345][124] + [2345][135]

0 = [1245][345]− [1345][124] + [2345][145]

Note that V 5 ⊂ X3×Y 4 ⊂ P
4×P

9 has codimension 2 in X×Y and codimen-
sion 8 in P

4× P
9. Here X × Y is all object/image pairs and V is the locus of

matching pairs.

4.3 Riemannian Metrics

How far apart are two object shapes or two image shapes? Since the shape
spaces are Grassmannians, one can use the natural Riemannian metric
on these manifolds, known as the Fubini-Study metric to define dis-
tances [1].

Object-Object and Image-Image Metrics

Given two objects, i.e., two n-tuples P1, . . . , Pn and P̃1, . . . , P̃n of points in
R

3, we define the distance between objects, or more specifically, the distance
between their shapes Kn−4 and K̃n−4, as follows. First choose orthonormal
bases for Kn−4 and K̃n−4 as subspaces of R

n and arrange those vectors as
the columns of two n×(n−4) orthonormal matrices K and K̃. Then compute
the singular values of the (n − 4) × (n − 4) matrix K̃TK and denote by θi
(i = 1, . . . , n−4) the arc cosines of the singular values. These angles are called
the principal angles between the subspaces.
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Definition 4.14 The affine shape distance in object space between two n-tuples
of object feature points is defined to be

dObj(Kn−4, K̃n−4) =

√√√√n−4∑
i=1

θ2i =

√√√√n−4∑
i=1

(arccosλi)2,

where λi are the singular values of K̃TK for the orthonormal matrices K and
K̃ created by choosing orthonormal bases of the subspaces Kn−4 and K̃n−4

in R
n.

Definition 4.15 Given two n-tuples of points Q1, . . . , Qn and Q̃1, . . . , Q̃n in
the plane representing certain image features, define the affine shape distance
in image space between them to be

dIm(Ln−3, L̃n−3) =

√√√√n−3∑
j=1

ϕ2
j =

√√√√n−3∑
j=1

(arccos τi)2,

where τi are the singular values of L̃TL for orthonormal matrices L and L̃
created by choosing orthonormal bases for Ln−3 and L̃n−3 in R

n.

Note that these distances are the natural metric distances on the shape
spaces X and Y which are the Grassmannian manifolds GrR(n−4, Hn−1) and
GrR(n − 3, Hn−1), because they are geodesic submanifolds of GrR(n − 4, n)
and GrR(n− 3, n) respectively.

Object-Image Metric

Finally, one can compute a “distance” between an object [Kn−4] ∈ X and
an image [Ln−3] ∈ Y . This can be done in two ways. First working in object
space, set

d1
OI([K

n−4], [Ln−3]) = min
�Kn−4

dObj(Kn−4, K̃n−4),

where K̃n−4 runs over all objects capable of producing image Ln−3, i.e., all
subspaces K̃n−4 ⊂ Ln−3. The object-image relations provide the K̃n−4’s ex-
plicitly, but it is handled implicitly here.

Alternately, working in image space, set

d2
OI([K

n−4], [Ln−3]) = min
�Ln−3

dIm(Ln−3, L̃n−3),

where L̃n−3 runs over all images of the objectKn−4, i.e., all subspaces L̃n−3 ⊂
Hn−1 which contain Kn−4.

In both cases these values work out to be the square root of the sum of
the squares of the principal angles between Kn−4 and Ln−3 computed from
the arc cosines of the singular values of LTK in the same manner as above.
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Theorem 7 (Object-Image Metric Duality). The distance between a set
of object features P1 . . . Pn and a set of image features Q1 . . . Qn can be com-
puted either in object space by minimizing the affine shape distance between
P1, . . . , Pn and all object n-tuples which are capable of being projected to
Q1, . . . , Qn (via a generalized weak perspective projection), or in image space
as the minimum affine shape distance between Q1, . . . , Qn and all generalized
weak perspective projections of P1, . . . , Pn. Moreover, these two minimums are
equal, i.e., d1

OI = d2
OI. This common distance will be denoted dOI.

Proof. See [3]. �

Consistent with the underlying object-image relations, dOI = 0 if and only
if P1, . . . , Pn can be projected to Q1, . . . , Qn via a generalized weak perspec-
tive projection. These metrics can also be computed directly from the data
matrices M and N in a similar fashion, resulting in smaller matrices (inde-
pendent of n) when computing the singular values.

4.4 Mathematica Code

The metric defined in this chapter is straightforward to code in high-level
languages such as Mathematica. A detailed notebook is available (see [2]).
affMetric[Obj1 ,Obj2 ] := Module[{SS1,SS2},

SS1 = QRDecomposition[Transpose[Obj1]][[1]];
SS2 = QRDecomposition[Transpose[Obj2]][[1]];
Norm[ArcCos[

SingularValueList[N[SS1.Transpose[SS2]],Tolerance → 0] ]] ];
The metric is defined the same regardless of whether it is applied to two
objects, two images, or an object and an image. For example,

Chop[affMetric[ objectDataY, objectDataZ2 ]] = 0
shows objectDataY and objectDataZ2 are zero distance apart (because they
only differ by an affine transformation of 3-space). Similarly,

Chop[affMetric[ objectDataY, proj . objectDataZ2 ]] = 0
for any valid affine projection matrix, proj.

5 Summary

Object-image metrics provide a formalism for understanding and comparing
images to models (measured or constructed). This chapter is focused on in-
dexing, but detection, reconstruction, grouping or categorizing, and final hy-
pothesis validation steps are prime areas for applying metrics. Utilizing this
theory will enable more robust applications in each of these areas.

This chapter explores the generalized weak perspective camera model. This
model represents a nice middle ground of the spectrum of available cameras.
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In particular, the results in this chapter are relatively straightforward, whereas
the orthographic and full perspective cases are much more difficult.

Additional problems remain to be addressed. This theory was constructed
independent of the dimensions and number of points being considered, but it
did not address

1. Differing numbers of points between the object and the image
2. Discrete-to-continuous representations
3. Statistics and choosing the appropriate metric
4. Intrinsic separability and performance prediction
5. The theory for other camera projections (e.g., orthographic, full perspec-

tive, or multi-bounce), and finally
6. Degenerate cases (i.e., all the points on a line, plane, or surface).

We are beginning to understand the last three problems in the study of
the orthographic and full perspective cases. The choice of appropriate metric
should depend upon the noise in the system, and we have preliminary evidence
demonstrating how one could choose the metric that best fits the expected
noise model.

The discrete-to-continuous representation is a key problem. Conceptually,
since the data will approach the distribution of the real world as more and
more densely packed samples are taken, the ultimate question is to determine
what (locally continuous) modeled surfaces could have produced the set of
discrete samples that were collected.

Statistics are a major component of this shape analysis in three aspects.
The most obvious need for statistics is in the noise analysis of objects and im-
ages through the lens of metrics. Also, prior probabilities on the most likely or
reasonable shapes could be generated for various scenarios. Finally, the sta-
tistics to make random draws for Monte Carlo experiments are an important
evaluation tool. We believe that these aspects of the exploitation problems are
ripe for solution based on the object-image metrics developed in this chap-
ter. In particular, the ability to calculate probabilities on the quotient spaces
(shape spaces) is one of the key benefits of this approach. Ad hoc techniques
for developing prior probabilities can be avoided.

The motivation for metrics is illustrated by the questions: What is the po-
tential efficacy of this sensor to my application? and How close is my algorithm
to achieving the performance limit? Answering these questions requires a the-
ory analogous to that of information theory for communications systems. Ob-
ject recognition is fundamentally driven by the ability to differentiate objects.
Alternately, a method is needed to measure the difference between objects.
Shape metrics provide a basis for answering these questions.

The first steps toward measuring the distances between objects and images
have been taken.
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Summary. In this chapter, we study isotropic properties of some Gibbs fields used
for image segmentation. We consider ferromagnetic models defined by 3 × 3 inter-
actions. We compute the Wulff shape of these models at zero temperature. A clas-
sification of the considered models with respect to this shape is given. We also give
some conjectures which provide conditions necessary to obtain a regular shape. Fi-
nally, the influence of the Wulff shape of a given model is shown on real data in the
context of magnetic resonance image segmentation.

Key words: Gibbs model, Wulff construction, isotropy, image segmentation.

1 Introduction

Numerous problems related to image processing (e.g., image restoration,
image segmentation, shape from shading) are known to be ill-posed problems.
To make these problems well posed, some regularization constraints must be
added. Translated into a probalistic modeling, we can represent these prob-
lems in a Bayesian framework. The models are then decomposed as a likeli-
hood term, reflecting the knowledge given by the data, and a prior, reflecting
some a priori knowledge of the solution. Finding the solution is then equiv-
alent to an optimization problem which usually consists in maximizing the
posterior (maximum a posteriori criterion denoted by MAP). In this context,
Gibbs fields are widely used to define priors. Being initially developed in the
statistical physics community, the Gibbs field approach has been revisited for
image processing purposes. A number of models based on the Gibbs random
field representation have been proposed for image processing (for example,
see [7, 8, 4]). Unlike the models exploited in statistical physics, a multibody
interaction was the main feature of the new models. Uncertainty in the prior
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choice which is a common disadvantage of the Bayesian approach, can be
partly recovered by natural properties of images. One of these is the isotropy.

This chapter is devoted to studies of the model isotropy. We study a class of
binary models having two ground states (phases) which are the uniform black
and white configurations. The models are studied in the canonical ensemble,
where the ratio of number of pixels (spins) of a given value (one phase) is
fixed. It is proved that the typical configurations consist of one droplet of one
phase in the other phase. The shapes of this droplet are studied.

We choose droplet shapes as a measure for estimates of the model isotropy.
The basic tool for the droplet shape studies is the Wulff construction ([12]).
The Wulff construction was originally developed to study crystal shapes at
equilibrium. In [1], the authors give a mathematically rigorous justification
of the Wulff construction by using the methods developed to study lattice
spin systems. The studied example is the two-dimensional Ising model under
periodic boundary conditions at sufficiently low temperature.

In this chapter, we restrict ourselves to an optimization problem by com-
puting the Wulff shape at zero temperature. However, we consider a more
general class of models with attractive (ferromagnetic) multibody interactions
(see [5]). Our contribution is to derive a classification of the different Wulff
shapes at zero temperature for this class of models. Some of these models are
widely used as priors in image processing problems [8, 9, 10]. We show that
the derived classification allows us to predict the model behavior in the case
of image segmentation and the shape distortion that occurs on the solution.

2 Considered Models

In this section, we derive a classification of the Wulff shapes at zero temper-
ature for a class of binary models. The details of the proofs are omitted here
and can be found in [5].

2.1 General Description

We study models on Z
2 with spin spaceX = {0, 1}. Generally, the definition of

models is based on a set of functions called potential functions. The potential
functions are parameterized by the set of finite subsets of Z

2. For any finite
A from Z

2, denoted by A ⊂⊂ Z
2, the potential function ΦA(·) is a map

ΦA : XA → R.

It means that a configuration xA ∈ XA, that is a map xA : A→ X prescribing
to any site t ∈ A a value xA(t) equal to either 0 or 1, has an energy equal
to ΦA(xA). In the translation-invariant case the set of the potential functions
can be remarkably reduced since the following equalities hold:

ΦA(xA) = ΦA+t(xA+t),

where A+ t = {u : u− t ∈ A} and xA+t(u) = xA(u − t) for u ∈ A+ t.
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The models we consider are Gibbs random fields. The notion was rigorously
introduced in the 1960s (see [3]). The core of the definition is the Gibbs
distribution, which is given by the Gibbs formula

P (xΛ)
e−βH(xΛ)

ZΛ
. (1)

In this formula β is a positive constant with a physical sense of inverse tem-
perature, β = 1

T , Λ ⊂⊂ Z
2, and xΛ is a configuration on Λ,

H(xΛ) =
∑
A⊆Λ

ΦA(xA), (2)

where xA(t) = xΛ(t) if t ∈ A, and ZΛ is a normalizing constant such that

∑
xΛ∈XΛ

e−βH(xΛ)

ZΛ
= 1.

It means that the expression (1) gives the probability of the configuration xΛ
with no connections to what is outside of Λ. One can also define the Gibbs
distribution conditionally to the neighborhood of Λ (see details in [3]). The
expression (1) or its conditional counterpart give a conditional distribution
of Gibbs field in the finite volume Λ. If we consider a sequence (Λn) of finite
volumes increasing to Z

2, Λn ↑ Z
2, then the sequence of the conditional distri-

butions e−βH(xΛn )

ZΛn
converges (in the weak sense) in some cases to a probabilis-

tic distribution on XZ
2
. This measure is called the Gibbs measure or Gibbs

random field. This limiting procedure is called the thermodynamical limit.
The Gibbs distribution is the result of the thermodynamical limit. There are
cases when the thermodynamical limit does not give a limit measure. How-
ever, in the case we study, that is for X = {0, 1}, there exists a limit if we
take the thermodynamical limit along a properly chosen subsequence (Λn′) of
(Λn) such that Λn′ ↑ Z

2. Different subsequences (Λn′) and (Λn′′) might give
different limits. It means that we have at least two Gibbs fields corresponding
to the same system of conditional distributions. Such a situation describes
phase transition in the model. More details can be found in [3] and [2].

Next we shall recall additional notions and constructions of statistical
physics.

A configuration x̂ : Z
2 → {0, 1} is a local perturbation of a configuration

x : Z
2 → {0, 1} if the set {t : x̂(t) �= x(t)} is finite. A configuration x : Z

2 →
{0, 1} is a ground state of a model if any local perturbation x̂ of x enlarges
the energy, that is

H(x̂)−H(x) > 0. (3)

We remark that H(x̂) and H(x) alone are senseless since we consider x̂ and
x on whole Z

2, however the difference in (3) is finite.
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The important information on a model is contained in the set of all peri-
odical ground states. We now restrict this general construction to our case.
Namely, we assume that the considered models have only two periodic ground
states which are x0(t) = 0 and x1(t) = 1 for all t. It means that the ground
states are more than periodic, they are constant.

Let x : Z
2 → X = {0, 1} be a configuration. A site t ∈ Z

2 belongs to the
ground state x0 (or x1) if x(u) = 0 (x(u) = 1) for all u such that |u− t| ≤ √2.
A site t ∈ Z

2 belongs to the boundary of x if it does not belong to any ground
state. The set of all sites belonging to this boundary is called the boundary B
of configuration x.

Let x̂0 be a local perturbation of x0. The energy

H(x̂0)−H(x0) =
∑
t∈B

∑
A: t∈A,

diamA≤√
2

[Φ(x̂0A)− Φ(x0A)] > 0.

A similar relation holds for a perturbation x̂1 of the ground state x1. A model
satisfies the Peierls condition if there exists a constant c > 0 such that for
any ground state xi and any local perturbation x̂i the inequality

H(x̂i)−H(xi) ≥ c|B| (4)

holds, where |B| is the number of sites in the boundary B of x̂i.
Next we define a droplet. Let x̂0 be a local perturbation of the ground state

x0 and A1 the set of all sites t belonging to ground state x1. The set A1 is
the union of the (maximal) connected components. Any of these components
is called a droplet of phase (state) x1 in phase x0. A similar definition holds
for droplets of phase x0 in phase x1.

2.2 3 × 3 Interaction Models

In the case we study here the only potential functions which can take non-zero
values are

ΦWt : XWt → R, (5)

where
W0 = {t = (t1, t2) ∈ Z

2 : |ti| ≤ 1, i = 1, 2}, (6)

and Wt = W0 + t. A subset Wt is called a plaquette. We consider translation-
invariant models. Hence ΦWt(·) = ΦW0(·) for all t in Z

2.
We consider the Gibbs distribution defined by Φ in a standard way as

sketched above. Let Λ ⊂⊂ Z
2 be a finite volume and PΛ be the set of all

plaquettes in Λ. Then the energy of any configuration x : Λ→ X is (see (2))

H(x) =
∑

W∈PΛ

Φ(xW ). (7)
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The Gibbs probability of x in the volume Λ is (see (1))

PΛ,β(x) =
exp{−βH(x)}

ZΛ,β
, (8)

where ZΛ,β =
∑

y∈XΛ exp{−βH(y)}. The Gibbs distribution in Z
2 is defined

by the thermodynamical limit of the specification (8). Further we use a dif-
ferent form of the thermodynamical limit for a specification with boundary
conditions. The definition will be given later.

Next we give the main assumptions on Φ. A tile is a table of nine numbers:

r =
(
r11 r12 r13
r21 r22 r23
r31 r32 r33

)
, (9)

where rij ∈ {0, 1}. Let v0 =
(

0 0 0
0 0 0
0 0 0

)
and v1 =

(
1 1 1
1 1 1
1 1 1

)
. We center the values

of Φ by assuming that
Φ(v0) = Φ(v1) = 0. (10)

Generally there are 29 different tiles and the same number of different values
of Φ. However, we require Φ to be invariant with respect to the natural tile
symmetries. Namely, all rotations of r by π

2 and reflections with respect to
horizontal and vertical axes generate a group Ĝ of tile transformations. We
also add to Ĝ flips of r taking every rij to 1 + rij (mod 2). Let G be the
complete group of the described transformations of r.

We assume that the following conditions on the function Φ are satisfied:
Φ1 For any g ∈ G and any r

Φ(r) = Φ(g(r)).

This condition reduces the 29 possible different values of Φ to 51.
The next condition ensures that the models are of ferromagnetic type

(i.e., we consider attractive interactions). Let k1, k2 ∈ Z+ be such that ki ≥ 3,
i = 1, 2. Consider a table ŝ = (sij)1≤i≤k1,

1≤j≤k2
, where sij ∈ {0, 1}. Let T

�s = {r}
be the set of all tiles r which can be extracted from ŝ. We assume that

Φ2 If ŝ is not constant (0 or 1), then∑
r∈T

�s

Φ(r) > 0.

It follows from (10) and Φ2 that every local perturbation of the configu-
ration x0(t) ≡ 0 (or x0(t) ≡ 1), t ∈ Z

2, has a finite positive energy. Therefore
the configurations x0(t) ≡ 0 and x1(t) ≡ 1 are the only periodic ground states.
Of course, there is an infinite number of non-periodic ground states. It is also
easy to see that the Peierls conditions are satisfied [2, 3]. Therefore, there
exists a critical temperature separating the case of a unique Gibbs state and
the case of two (at least) Gibbs states. Following the adopted in the chapter
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direction we do not give proofs of all assertions made above. We only remark
that the constant configurations have “minimal” energy “equal” to 0, and any
local perturbation of the configurations adds positive energy by Φ2.

We use the thermodynamical limit in the following form. Let Λ = {λ =
(λ1, λ2) ∈ R

2 : |λi| ≤ 1, i = 1, 2} be the square in R
2 and let 1

nZ
2 ⊂ R

2

be the natural embedding of the lattice Z
2, scaled by 1

n , into R
2. Let Λn =

Λ ∩ 1
nZ

2. The p-boundary of Λn is ∂Λn = {t ∈ Λcn : dist(t, Λn) ≤ 2
√

2
n } and

Λn = Λn
⋃
∂Λn, where dist is the Euclidean metric in R

2. We use the term
p-boundary to outline the difference from the usual definition of boundary.
Denote by Xn = XΛn the set of all configurations on Λn. We use the notation
Pn(x) for the Gibbs distribution on Xn generated by PΛ,β (see equation 8).

Further we study the canonical ensemble with boundary conditions. There-
fore all configurations are extended out of Λn. We consider the only boundary
condition such that x(t) = 1 for t /∈ Λn. The canonical ensemble is a Gibbs
distribution defined on 1

nZ
2 as follows. Let D1, D2 be any positive constants,

γ ∈]0, 1[. Consider the set

X̂γ
n =

{
x ∈ Xn : γ − D1

n
≤ |x|

(2n+ 1)2
≤ γ +

D2

n

}
,

where |x| is the number of sites in Λn equal to 0. Further define Xγ
n to be the

subset of X
1
nZ

2
such that every configuration of Xγ

n is a configuration of X̂γ
n

extended by 1’s out of Λn. Then the Gibbs distribution P γn (·) of the canonical
ensemble on Xγ

n with the introduced boundary condition is

P γn (A) =
∑

x∈A exp{−βH(x)}
Zγn

, (11)

where A ⊆ Xγ
n, Zγn =

∑
x∈Xγ

n
exp{−βH(x)} and H is the Hamiltonian of the

model corresponding to Φ (see equation (2)).
For any model of the considered class and every n, let Yγ

n ⊆ Xγ
n be the

set of all configurations having minimal energy. We call every configuration of
Yγ
n a ground state of the canonical ensemble or simply a ground state. We use

the same term ground state for both the canonical ensemble and the grand
ensemble, however it will not cause confusion. The simple lemma below shows
that any configuration of Yγ

n has a droplet composed of 0’s. In order to avoid
problems arising because of boundary effects we consider the case where γ is
small enough.

Next, we introduce several notions. If x ∈ Xn then the set Ωx(0) = {t ∈
Λn : xWt ≡ 0} is called the 0-phase of x and the set Ωx(1) = {t ∈ Λn : xWt ≡
1} is called the 1-phase of x. The p-contour Ωx = Λn \ (Ωx(0) ∪Ωx(1)) of x
is the subset of sites in Λn such that xWt is not constant. We use the term
p-contour because later we shall use the term contour in the usual sense of a
bond with different configuration values on its ends.
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Lemma 1. There exist positive constants C1 and C2 such that for large n and
for any x ∈ Yγ

n we have
C1n ≤ |Ωx| ≤ C2n.

See [5] for the proof.
Therefore there exists a constant C0 > 0 such that |Ωx(0)| > C0n

2 for any
x ∈ Yγ

n.

Two sites t1, t2 ∈ 1
nZ

2 are p-neighbors if t2 ∈ Wt1 or equivalently if t1 ∈
Wt2 . A set ∆ ⊆ 1

nZ
2 is p-connected if for any pair t1, t2 ∈ ∆ there exists a

sequence of p-neighbor sites in ∆ linking t1 and t2. The 0-phase Ωx(0) of x is
divided into p-connected components.

Any p-connected component of Ωx(0) is called a micro-droplet.
Let x ∈ Yγ

n. It follows from Lemma 1 that x has a micro-droplet with
boundary length of order n. Since x is a ground state of the canonical ensemble
there is only one micro-droplet, any configuration with more micro-droplets
having a higher energy. This micro-droplet and the potential function Φ have
the same properties of invariance (see Φ1).

Next we introduce the notion of macro-droplet following [1]. We map
any configuration x ∈ Xn to a measure µx defined on Λ in the following
way:

µx =
1

(2n+ 1)2
∑
t∈Λn

x(t)δt, (12)

where δt is the unique atom at t. This map generates distributions on the set
of all measures µx by the Gibbs distribution (8). We use the same symbol Pn
for the generated distribution on the set Mn = {µx : x ∈ XΛn}. The map (12)
also generates a distribution P γn on Mγn = {µx : x ∈ Xγ

n} (see (11)). Recall
that for x ∈ Xγ

n the measure µx is formally defined on R
2 but its support is

in Λ.
Let (xn) be a sequence of configurations of Xγ

n. The corresponding
sequence of measures (µxn) is compact in Mγn since their support is the com-
pact set Λ. Let µ be a limiting measure of (µxn). We say that ∆ ⊆ Λ is a
macro-droplet for µ if

1. µ(∆) = 0,
2. |∆| > 0,

3.
◦
∆= ∆, where ∆ is the closure of ∆ and

◦
∆ is the interior of ∆.

4. |∆′| = |∆| for any ∆′ ⊇ ∆ satisfying 1.

If xn ∈ Yγ
n then any limiting measure µ has a unique macro-droplet (see [6]).

Our goal is to find the ground state of the models satisfying conditions
Φ1 and Φ2 for the canonical ensemble. We study the shape of the droplets
and give a classification of the models with respect to the macro-droplet
shape.
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3 Model Classification

3.1 Regular Models

Let us consider the tiles which compose edges of objects:

u0 =
(

0 0 0
1 1 1
1 1 1

)
,

u1
1 =

(
1 1 0
1 1 1
1 1 1

)
, u2

1 =
(

1 0 0
1 1 0
1 1 1

)
,

u1
2 =

(
1 0 0
1 1 1
1 1 1

)
, u2

2 =
(

0 0 0
1 1 0
1 1 1

)
.

Further we use the following notation:

Ũ =
{
u0, u

1
1, u

2
1, u

1
2, u

2
2

}
. (13)

U = GŨ.

The p-contour Ωx is regular if it is composed of plaquettes with configu-
rations belonging to U. Let M be the class of all the models satisfying the
conditions Φ1 and Φ2.

A model of M is called regular if for any configuration x we have the
following:

If t, s ∈ Λn belong to a connected component of Ωx then there exists a
configuration y such that one of the connected components of Ωy includes s
and t; all tiles of this component belong to U and H(y) ≤ H(x).

Let Mr be the class of regular models.
We derive a classification of the macro-droplet shapes for the models of

this class. In order to formulate the corresponding theorem we introduce the
following notation:

E0 = 2Φ
(

0 0 0
1 1 1
1 1 1

)
,

E1/2 = Φ
(

0 1 1
1 1 1
1 1 1

)
+ Φ

(
0 0 0
0 1 1
1 1 1

)
+ Φ

(
0 0 0
0 0 0
0 1 1

)
, (14)

E1 = 2
(
Φ
(

0 1 1
1 1 1
1 1 1

)
+ Φ

(
0 0 1
0 1 1
1 1 1

))
,

and

e1/2 =
E1/2

E0
, e1 =

E1

E0
. (15)

The meaning of the subscripts will be clarified later.
It follows from Φ2 that E0 > 0, E1/2 > 0, and E1 > 0. This can be easily

proved by considering configurations y0, y1/2, and y1 on a big rectangular
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volume as follows. For large n consider functions gi0, g
i
1/2, g

i
1, i = 1, 2, defined

on [−1, 1]:
dgiε
dt

= −ε, g1
ε(0) =

m

n
, g2

ε(0) = −m
n
, (16)

where ε ∈ {0, 1
2 , 1
}

and m is a fixed integer greater than 5. Consider the
configurations yε on 1

nZ
2 defined by

yε(t) =

{
0, if t = (t1, t2) ∈ Λn and g1

ε(t1) ≤ t2 ≤ g2
ε(t1),

1, otherwise.
(17)

Because of Φ2 every yε has a positive energy. It is easy to check that if n is
large then 4nEε gives the main contribution to the energy of yε and therefore
Eε > 0.

The subscript in Eε and eε means that the derivative of the functions
in equation (16) is −ε and that the corresponding configurations defined in
equation (17) have the main contribution to energy given by Eε.

We partition Mr in the following regions defined by the values of e1/2, e1:

A17 =
{

(e1/2, e1) : e1/2 ≥ 3
2
, e1 ≥ 2

}
,

A15 =
{
(e1/2, e1) : e1 ≤ 2e1/2 − 1, 1 ≤ e1 ≤ 2

}
,

A45 =
{
(e1/2, e1) : e1 ≤ e1/2, e1 ≤ 1

}
,

A13 =
{

(e1/2, e1) : e1 ≥ 2e1/2 − 1, 1 ≤ e1/2 ≤ 3
2

}
,

A23 =
{
(e1/2, e1) : e1 ≥ e1/2, e1/2 ≤ 1

}
,

A35 =
{

(e1/2, e1) : e1 ≤ 4
3
e1/2, e1 ≥ e1/2, e1 ≥ 2e1/2 − 1

}
,

A36 =
{

(e1/2, e1) : e1 ≥ 4
3
e1/2, e1/2 ≤ 3

2

}
.

(18)

Every region Aij defines a subset of Mr containing all models for which
(e1/2, e1) lie in the corresponding domain.

We describe the macro-droplet shapes by determining their boundaries in
the domain {(λ1, λ2) : λ2 ≥ λ1 ≥ 0}. The boundaries are defined as a function
d having its graph stretched between the axis λ1 = 0 and the diagonal λ1 = λ2.
We consider the droplets with an area equal to 1. Therefore, the portion of
the droplet area in the pointed domain is equal to 1

8 . The coefficients δ in the
following theorem must be chosen such that the droplet area would be equal
to 1. Of course, those coefficients may easily be computed. However, in order
not to overload the formulae for d we left them non-computed. It is clear that
δ takes different values in the different areas; however, for ease of notation,
we do not use subscripts.
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Theorem 1. For the models of Mr the macro-droplet shapes are as follows:

1. in A17

d(λ1) = 2δ, if λ1 ∈ [0, 2δ] (19)

2. in A45

d(λ1) = −λ1 + 2δ, if λ1 ∈ [0, δe1]. (20)

3. in A15

d(λ1) =

{
2δ, if λ1 ∈ [0, 2δ(e1 − 1)],

−λ1 + 2δe1, if λ1 ∈ [2δ(e1 − 1), δe1],
(21)

4. in A13 ∩A35

d(λ1) =

⎧⎪⎪⎨
⎪⎪⎩

2δ, if λ1 ∈ [0, 4δ(e1/2 − 1)],

− 1
2λ1 + 2δe1/2, if λ1 ∈ [4δ(e1/2 − 1), 4δ(e1 − e1/2)],
−λ1 + 2δe1, if λ1 ∈ [4δ(e1 − e1/2), δe1].

(22)

5. in A13 ∩A36

d(λ1) =

{
2δ, if λ1 ∈ [0, 4δ(e1/2 − 1)],

− 1
3λ1 + 2δe1/2, if λ1 ∈

[
4δ(e1/2 − 1), 4

3δe1/2
]
,

(23)

6. in A23 ∩A36

d(λ1) = −1
2
λ1 + 2δ, if λ1 ∈

[
0,

4
3
δ

]
, (24)

7. in A23 ∩A35

d(λ1) =

{− 1
2λ1 + 2δe1/2, if λ1 ∈ [0, 4δ(e1 − e1/2)],
−λ1 + 2δe1, if λ1 ∈ [4δ(e1 − e1/2), δe1],

(25)

The result is illustrated in Fig. 1, where the macro-droplet shapes are
shown for the regions Aij .

The subscripts in the region notation come from the linear programming
problem we solve to find the macro-droplet shape. There are seven coefficients
and two relations between the coefficients in the problem. Every coefficient
corresponds to a slope of a straight line defining the macro-droplet shape. The
two integers of a region notation subscript refer to the slopes from which the
macro-droplet boundary is built.

Observe that in A17, A45, and A23

⋂
A36 the polygons do not depend on

their boundary energy. We call them pure polygons. In other regions the
polygon shape is a function of the energy. They can be considered as a mixture
of pure polygons.

The coordinates of the Ising model in the plane (e1/2, e1) are (3
2 , 2), which

leads to the familiar shape presented in A17.
We introduce a class of models determined as follows:

1. Φ(v0) = Φ(v1) = 0;
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Fig. 1. Wulff shape classification for 3 × 3 interaction binary models.

2. min
u∈U

Φ(u) > 0;

3. max
u∈U

Φ(u) < min
w/∈U

w �=v0andv1

Φ(u).

These models belong to Mr. Intuitively this is clear since any tile in the micro-
droplet contour which does not belong to U can be “substituted” by tiles from
U which decreases the energy. The proof can be found in [5]. The set of all of
these models covers the plane (e1/2, e1). The most interesting of these models
are those for which the value of (e1/2, e1) lies within the region A13 ∩ A35,
where the droplets are 16-edge polygons. In particular, a model for which
(e1/2, e1) = (

√
5

2 ,
√

2) and referred to as the Chien model was introduced in
[4] and used in image processing applications (see [9, 10]).

3.2 Some Non-Regular Models

In this section we give several examples of models for which the behavior of the
droplet micro-boundaries is dramatically different from the regular behavior.
We also discuss sufficient conditions for regularity.
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Examples

The regularity requirement we have used is essential for the proof of the main
theorem. The following examples show that there exist models satisfying Φ1
and Φ2 with non-regular micro-droplet boundaries.

In all the following examples, when we assign an energy value to a tile, we
assume that all the tiles obtained from the first one by symmetrical transfor-
mations have the same energy.

Example 1 (“frightened cat” model). Let 0 < a < b. As usual,

Φ(v0) = 0.

Let

Φ

(
1 1 1
0 1 0
0 0 0

)
= Φ

(
1 1 1
1 1 1
0 1 0

)
= Φ

(
1 1 1
1 1 1
1 0 1

)
= a.

All other tiles have energy equal to b. It easy to understand that for large b
a

the square composed of 0’s with boundary as shown below has the minimal
energy of all possible shapes.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example 2 (“shaggy dog” model). Let c > b > a > 0. The potential function
is

1) Φ(v0) = 0,

2) Φ
(

1 1 1
1 0 1
1 0 1

)
= Φ

(
1 1 1
0 1 0
0 1 0

)
= −a

3) Φ
(

1 1 1
1 1 1
0 1 0

)
= Φ

(
1 1 1
1 1 1
1 0 1

)
= b

4) Φ(u) = c for all tiles u not listed above.

For large c
b the micro-droplet boundary is as follows,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The conditions Φ1 and Φ1 hold since b > a.
Note that we must have a negative value of potential function for some

tiles. If the energy value of the tiles listed in 2) is positive then the energy of
the boundary in the picture above is not minimal.
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We can not directly continue this idea for new examples having non-regular
boundaries. It seems that there is no model having droplet micro-boundary
as shown below and satisfying Φ2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

However, a more sophisticated example can be found.

Example 3 (“wet dog” model). Let a > 0 and c > b > 0 be such that

8b > a (26)

and c is large enough. We consider a model with

1) Φ(v0) = 0

2) Φ
(

1 1 1
1 0 1
1 1 1

)
= −a

3) Φ
(

1 1 1
1 1 1
1 1 0

)
= Φ

(
1 1 1
1 1 0
1 1 1

)
= Φ

(
0 0 0
1 1 1
1 1 0

)
= Φ

(
0 0 0
1 1 1
1 0 1

)
= b

4) for all other tiles u not listed above Φ(u) = c.

The relation (26) gives Φ2. Then the boundary has one of the forms shown
below.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

There is a freedom in the boundary construction.

Example 4. Let Φ be equal to a > 0 for the following tiles:(
1 1 1
1 1 1
0 1 1

)
,
(

1 1 1
1 1 1
0 0 1

)
,
(

1 1 1
0 0 1
1 1 0

)
,
(

1 1 1
0 1 1
1 0 0

)
,
(

0 0 1
1 1 0
0 0 1

)
,
(

0 0 1
1 0 0
1 0 0

)
.

All other tiles have an energy value equal to b > a except, as usual, the tiles
v0, v1 have energy 0. If b

a is large then the droplet boundary is as follows.
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0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Conjectures About the Regularity

In this section we present two sufficient conditions of regularity. We assume
that Φ1, Φ2 are satisfied.

It seems that both conditions cover a rather limited type of models. We
formulate them as theorems, however no proof has been given. One can con-
sider these theorems as conjectures.

Both conditions are based on an energy prevailing assumption. The Ising
model and some of the Gerzik–Dobrushin (see [3]) models satisfy the first
condition and the Chien model (see [4]) satisfies the second one.

Let us consider the following set of tiles:

T̃ =
{(

1 1 1
1 0 1
r31 r32 r33

)
,
(

1 1 0
1 0 1
1 0 1

)
,
(

1 0 1
1 0 1
1 0 1

)
,
(

1 1 0
1 0 1
1 0 0

)
,
(

1 1 0
1 0 1
0 1 1

)
,
(

1 1 0
1 0 1
0 0 1

)
,
(

1 1 0
0 0 0
1 1 1

)
,

(
1 1 1
1 0 0
1 0 0

)
,
(

1 1 1
1 0 0
0 0 1

)}
,

where rij ∈ {0, 1}, i, j = 1, 2, 3. Let T = GT̃. We introduce the map κ of T to
a set κT as follows:

κ :
(
r11 r12 r13
r21 r r23
r31 r32 r33

)
→
( r11 r12 r13
r21 1⊕r r23
r31 r32 r33

)
, (27)

where 1 ⊕ r = 1 + r mod(2). For any tile r let q(r) be a 5 x 5 matrix such
that r is the central tile of q(r). More precisely, let

q(r) =
( q11 ... q15

...
q51 ... q55

)
,

where qij ∈ {0, 1}. Then qij = ri−1j−1 for 2 ≤ i, j ≤ 4. The energy of q(r) is

H(q(r)) =
∑
p⊆q(r)

Φ(p),

where p is a tile and p ⊆ q(r) means that p is a tile which is included in q(r).
Obviously there are 9 tiles included in q(r).
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Assume that
R1. for any r ∈ T and any q(r)

H(q(r)) ≥ H(q(κr)). (28)

Then

Conjecture 1. Any model of M satisfying condition R1 is regular.
The next conjecture must provide another condition ensuring the regular-

ity:

Conjecture 2. Assume that for a model of M the following inequality holds

c1 = max
u∈U
{Φ(u)} < c2 = min

r �∈U
{Φ(r)}. (29)

If c2 − c1 is large enough then the model is regular.

4 Wulff Shapes Simulation

4.1 Kawasaki Dynamic and Simulated Annealing

The different Wulff shapes can be obtained by sampling the Gibbs distribu-
tion defined by equation (8), when β tends to infinity. This sampling is per-
formed by a Kawasaki dynamic embedded in a simulated annealing scheme.
The Kawasaki dynamic is a particular Markov chain Monte Carlo (MCMC)
algorithm which allows us to work in the canonical ensemble. The well-known
Metropolis dynamic is based on a spin-flip procedure which consists of chang-
ing the spin value of a site (the label of a pixel). The Kawasaki dynamic is
based on a spin-exchange procedure which consists of exchanging the spin
values of two sites. Thus, the ratio of the number of spins equal to 0 to the
number of spins equal to 1 remains unchanged. The induced algorithm is
written as follows.

Algorithm 1
1 Initialize a random configuration X = (xs) with γ percent of spins equal

to 0, set T = 1
β = T0

2 During N iterations:
2.a Choose randomly two sites s and t, denote curs (resp. curt) the current

value of xs (resp. xt)
2.b Compute the difference ∆ = H(xu, u /∈ {s, t}, xs = curt, xt = curs) −

H(xu, u /∈ {s, t}, xs = curs, xt = curt),
2.c If ∆ < 0 set xs to curt and xt to curs, otherwise set xs to curt and yt

to curs with probability exp−[∆T ].
3 If the stopping criterion is not reached decrease T and go to 2



296 X. Descombes and E. Pechersky

4.2 Regular Shapes

Figure 2 shows some simulation using the Kawasaki dynamic embedded in a
simulated annealing scheme. We can see that the obtained shapes are consis-
tent with the classification derived in Fig. 1. Some small perturbations relative
to the perfect polygons can be observed due to simulation effects. In practice,
we can not use a logarithmic decrease of the temperature in the simulated
annealing because that would require too much computation time. We use a
geometric decrease which induces some small perturbations with respect to
the optimal shape.

Fig. 2. Wulff shape simulation at zero temperature. Top left: (e1/2, e1) = (5, 3), Top
right: (e1/2, e1) = (3, 0.5), Bottom left: (e1/2, e1) = (1, 2), Bottom right: (e1/2, e1) =
(0.5, 3).

4.3 Non-Regular Shapes

Figure 3 shows non-regular shapes obtained with a Kawasaki dynamic. We
have considered periodic boundary conditions, which explain the shapes ob-
tained with the “shaggy dog” model.
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Fig. 3. Wulff shape simulation at zero temperature for non-regular models. Left:
“frightened cat” model, Middle: “shaggy dog” model, Right: “wet dog” model.

5 Application to Image Segmentation

5.1 Bayesian Framework

Herein we consider the problem of image segmentation using a Bayesian frame-
work. Denote Y = {ys} the data on the lattice S = {s} and X = {xs} the
segmented image.

The segmentation problem consists in optimizing the a posteriori proba-
bility P (X |Y ) using the Bayesian rule, which gives

P (X |Y ) ∝ P (Y |X)P (X). (30)

P (Y |X) refers to the likelihood and P (X) to the prior.
We consider the pixels to be conditionally independent, i.e.,

P (Y |X) =
∏
s∈S

p(ys|xs). (31)

The different classes are assumed to be Gaussian, i.e.,

p(ys|xs) =
∑
l∈Λ

1√
2πσ2

l

exp− (ys − µl)2
2σ2

l

∆(xs, l), (32)

where l indexes the different classes and (µl, σ2
l ) are the mean and variance

of the corresponding Gaussian distribution. ∆(a, b) is equal to 1 if a = b and
to 0 otherwise.

We consider a prior defined by a Gibbs distribution as defined in equa-
tion (8). Therefore the posterior distribution can be written as a Gibbs dis-
tribution with an external field:

P (X |Y ) ∝ exp− [H(Y |X) +H(X)] , (33)

and the local conditional probabilities are written as follows.
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We maximize the a posteriori distribution P (X |Y ) (MAP criterion) using
a Metropolis dynamic embedded in a simulated annealing scheme [8]:

Algorithm 2
1 Initialize a random configuration X = (xs), set T = T0

2 For each site s:
2.a Choose a random value new different from the current value cur
2.b Compute the difference ∆ = H(xt, t �= s, xs = new) + (ys−µnew)2

2σ2
new

+

log σnew −H(xt, t �= s, xs = cur)− (ys−µcur)2
2σ2
cur

− log σcur
2.c If ∆ < 0 set xs to new, otherwise set xs to new with probability

exp−[∆T ].
3 If the stopping criterion is not reached decrease T and go to 2

5.2 Results for MRI

We compare the results obtained with two different priors: the Potts model [8]
for which (e1, e1/2) = (5, 3) and the Chien model [4] for which (e1, e1/2) =
(
√

2,
√

5
2 ). Two examples are shown in Figs. 4 and 5 representing one brain slice

obtained by two acquisitions of magnetic resonance images (MRI). The results
obtained with a maximum likelihood classifier show that some prior model is
necessary to remove the misclassifications due to noise. The results obtained
by the Chien model show that the shape is better preserved with this model
than with the Potts model. This more accurate description of the shapes can
be important when computing features such as grey or white matter volumes
for a medical interpretation.

6 Conclusion

Since the 1980s, Gibbs fields have been widely use in image processing. The
first models, employed for tasks such as image segmentation, were directly
inspired from models studied in statistical physics such as the Ising or the
Potts models. Later, new models, more appropriate to image processing, were
proposed. The tools, developed in statistical physics, to study the properties of
these models have been investigated to better understand the influence of these
models, considered as priors, on the solution. In this chapter, we have studied
the isotropic properties of these priors by deriving a classification of a class of
models with respect to their Wulff shape at zero temperature. We have shown
that, using 3 × 3 interaction models, these shapes are defined by polygons.
The most isotropic obtained shape is a regular 16-edge polygon. We have also
shown that, even in the case of ferromagnetic models, one can obtain non-
regular Wulff shapes. Finally, some experiments in image segmentation prove
that the Wulff shape associated with a prior has some impact on the shapes
present in the image, obtained as the solution of the segmentation problem.
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Fig. 4. Segmentation of an MRI slice. Top left: initial image (echo T2), Top right:
maximum likelihood classification, Middle left: segmentation with the Potts model,
Middle right: segmentation with the Chien model, Bottom left: detail of the Potts
model segmentation, Bottom right: detail of the Chien model segmentation.
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Fig. 5. Segmentation of an MRI slice. Top left: initial image (echo T1), Top right:
maximum likelihood classification, Middle left: segmentation with the Potts model,
Middle right: segmentation with the Chien model, Bottom left: detail of the Potts
model segmentation, Bottom right: detail of the Chien model segmentation.
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This work provides some criteria to choose a prior for a given image
processing task depending on the properties of the images under study. Herein,
we have focused our work on isotropy. Different criteria can be found, for ex-
ample, when considering the limiting size of objects which can be segmented
depending on the level of noise in the data. These criteria can be obtained by
considering the phase diagram of the models at low temperature, taking into
account an inhomogeneous external field. The first results in this direction
can be found in [11].
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Summary. Curvature driven flows have been extensively considered from a deter-
ministic point of view. Besides their mathematical interest, they have been shown to
be useful for a number of applications including crystal growth, flame propagation,
and computer vision. In this paper, we describe a new stochastic approximation of
curve shortening flows valid for arbitrary embedded planar curves.

Key words: Curvature driven flows, Markov processes, hydrodynamic limits,
interacting particle systems.

1 Introduction

In this paper, we propose a new stochastic interpretation of curve shortening
flows based on the theory of interacting particle systems. This work brings
together the theories of curve evolution and hydrodynamical limits and as such
may impact the growing use of joint methods from probability and partial
differential equations in image processing and computer vision. Our approach
here is strongly related to that of [2], but employs a different model which is
valid for general embedded planar curves. The model of [2] only worked in the
strictly convex case.

We should note that there have been other stochastic interpretations of
geometric flows and active contours flows; see [12] and the references therein.
In [8], the authors consider stochastic perturbations of mean curvature flows
and applications to computer vision. These approaches are very different from
ours. Their model is continuous (macroscopic). Our model is inherently micro-
scopic, as we will elucidate. Moreover, in our case we are giving a stochastic
approximation of a deterministic system. Our limiting system is deterministic,
while the systems described above remain stochastic.
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We will set the background for our results following [2], to which we refer
the reader for all the technical details. Let C(p, t) : S1×[0, T ) �→ R

2 be a family
of embedded curves where t parameterizes the family and p parameterizes each
curve. We consider stochastic models of certain curvature driven flows, i.e.,
starting from an initial embedded curve C0(p) we consider the solution (when
it exists) of an equation of the form

∂C(p, t)
∂t

= V̂ (κ(p, t))N , C(·, 0) = C0(·) , (1)

where κ(p, t) denotes the curvature and N denotes the inner unit normal of
the curve C(·, t) at p. Of particular interest is the case in which V̂ (x) = ±xα.
Note that the case V̂ (x) = x corresponds to the Euclidean curve shortening
flow [5, 6] while V̂ (x) = x1/3 corresponds to the affine curve shortening, which
is of strong relevance in computer vision and image processing [13].

Since in both cases we get gradient flows and resulting heat equations, a
stochastic interpretation seems quite natural. This is what we propose in this
paper in the Euclidean curve shortening case, by interpreting the evolution
as a semilinear diffusion equation. This leads to a coupled system of interact-
ing particle systems whose limiting behavior is the desired curve shortening
flow. The methods will only be outlined here. The proofs and simulations will
appear in the full journal version of this chapter.

2 Curve Shortening as a Semilinear Diffusion Equation

Let C : T × [0, T )→ R
2 be a family of plane curves. Such a family moves by

curve shortening
∂C

∂t
=
∂2C

∂s2
(2)

iff its curvature k(p, t) satisfies [5]

∂k

∂t
= kss + k3. (3)

The partial derivative with respect to the arclength variable s is defined by

∂f

∂s
=

1
g(p, t)

∂f

∂p
, with g(p, t) =

∥∥∥∥∂C

∂p

∥∥∥∥ . (4)

One has [5]
∂g

∂t
= −k2g.

The length

L(t) =
∫

C

ds =
∫ 1

0

g(p, t)dp
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evolves by

L′(t) = −
∫

C

k2ds = −
∫ 1

0

k(p, t)2g(p, t)dp. (5)

We introduce the renormalized arclength

σ(p, t) =
1

L(t)

∫ p

0

ds =
1

L(t)

∫ p

0

g(p′, t)dp′. (6)

It evolves by

∂σ

∂t
= −L

′

L
σ − 1

L

∫ p

0

k2ds

= −L
′

L
σ −

∫ p

0

k2dσ

= −
∫ p

0

k2dσ + σ

∫ 1

0

k2dσ.

We will use σ to parameterize the curves. We denote the curvature, as a
function of σ, by k̂, so that

k̂(σ(p, t), t) = k(p, t).

Some calculus involving the chain rule shows that

∂k̂

∂t
=
∂k

∂t
− ∂σ

∂t
k̂σ,

and hence

∂k̂

∂t
=

1
L2
k̂σσ +

(∫ σ

0

k̂2dσ′ − σ
∫ 1

0

k̂2dσ
)
k̂σ + k̂3.

Multiply both sides by L(t)3,

L3 ∂k̂

∂t
=
(
Lk̂
)
σσ

+
(∫ σ

0

(
Lk̂
)2

dσ′ − σ
∫ 1

0

(
Lk̂
)2

dσ
)(

Lk̂
)
σ

+
(
Lk̂
)3

.

Define
K(σ, t) = L(t)k̂(σ, t).

One has
∂K

∂t
= L

∂k̂

∂t
+ L′k̂.

By (5),

L′(t) = −
∫ 1

p=0

k2ds = −L
∫ 1

0

k̂(σ, t)2dσ ,
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and hence we get

L2 ∂K

∂t
= L3∂k̂

∂t
+K(σ, t)

∫ 1

0

K(σ′, t)2dσ′

= Kσσ +
(∫ σ

0

K2dσ′ − σ
∫ 1

0

K2dσ′
)
Kσ +K

(
K2 −

∫ 1

0

K2dσ′
)

=
∂

∂σ

{
∂K

∂σ
+
(∫ σ

0

K2dσ′ − σ
∫ 1

0

K2dσ′
)
K

}
.

If we let

bK(σ, t) =
∫ σ

0

K2dσ′ − σ
∫ 1

0

K2dσ′

be the “drift coefficient,” then this equation can be written as

L2 ∂K

∂t
= Kσσ + (bKK)σ .

Note that the total curvature of an embedded closed curve is always 2π, so
that we have the conservation law∮

kds =
∫ 1

0

K(σ, τ)dσ = 2π. (7)

One can turn this into an autonomous system by introducing a new time
variable

τ(t) =
∫ t

0

dt′

L(t′)2
,

so that L2 ∂
∂t = ∂

∂τ . Note that this has the effect of pushing the singularity to
infinity, i.e., the equation does not blow up at all. From the results of [5, 6],
this means that there is no blowup as long as τ(t) is finite.

One gets

∂K

∂τ
= Kσσ + (bKK)σ

dL
dτ

= −L
∫ 1

0

K2dσ

dt
dτ

= L2.

To obtain a system which only contains positive or non-negative densities one
sets K = λ− µ, and lets λ and µ both evolve by the following system:

∂λ

∂τ
= λσσ + (bλ−µλ)σ (8)

∂µ

∂τ
= µσσ + (bλ−µµ)σ (9)
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dL
dτ

= −L
∫ 1

0

(λ− µ)2dσ (10)

dt
dτ

= L2 (11)

in which

bλ−µ(σ, τ) =
∫ σ

0

{λ(σ′, τ)− µ(σ′, τ)}2 dσ′ − σ
∫ 1

0

{λ(σ′, τ)− µ(σ′, τ)}2 dσ′

(12)
and

(bλ−µ)σ = (λ− µ)2 −
∫ 1

0

(λ− µ)2dσ (13)

is simply the average free part of (λ− µ)2.
The maximum principle will keep both λ and µ positive, as long as

λ(·, t0), µ(·, t0) ≥ 0. For any given initial K(·, t0) we can take

λ(σ, t0) = max(K(σ, t0), 0), µ(σ, t0) = max(−K(σ, t0), 0)

(which have disjoint support), or we can take

µ(σ, t0) = µ = − min
0≤σ≤1

K(σ, t0), λ(σ, t0) = µ+K(σ, t0).

Recovering the Curve I

Equations (8, 9, 10, 11) will only determine the curve itself up to rotation
and translation. Therefore given the initial curve C0 we must couple these
equations with the evolution equation

∂C

∂τ
= (λ− µ)N, (14)

where N denotes the (inner) unit normal. We decompose the evolving curve
C(τ) into translational T(τ) and rotational R(τ) components composed with
an evolving curve C(τ) whose evolution reflects no overall translation or ro-
tation, i.e.,

C(τ) = R(τ)C(τ) + T(τ).

According to this decomposition, the evolution of C is given by

∂C

∂τ
= R′C + R

∂C

∂τ
+ T′ = (λ− µ)N. (15)

Thus, starting from an initial C (and initial R = I and T = 0), we may solve
for R′ and T′ using equation (15) at two or more points on the curve in order
to completely specify the evolution of C.
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Recovering the Curve II

Instead of reconstructing the curve from the curvature once the curvature
has been computed, one can also evolve the curve along with the curvature
K(σ, τ), length L(τ), and time t(τ).

Since the parameterization C(p, t) satisfies

∂C

∂t

∣∣∣∣
p const

=
∂2C

∂s2
,

we find that the arclength parameterization Ĉ(t, σ(p, t)) = C(t, p) satisfies

∂Ĉ

∂t

∣∣∣∣∣
σ const

=
∂2C

∂s2
− ∂σ

∂t
Ĉσ,

whence
∂Ĉ

∂τ
= L(t)2

∂Ĉ

∂t
=
∂2Ĉ

∂σ2
+ bK(σ, τ)

∂Ĉ

∂σ
.

Here bK = bλ−µ is as in (12).

3 Stochastic Interpretations

Since we are interested in a stochastic interpretation, we consider the evo-
lution of a “density” corresponding to equations (8, 9). Accordingly, using
parameterization σ, we interpret the quantities λ and µ as densities.

The approximations we use are based on interacting particle systems, as
described in [11]. Notice that because of our special parameterization the
diffusion terms of equations (8) and (9) are linear. In our case, there will be
two types of particles, one simulating the λ, one the µ, with the interaction
being through the drift rate.

Let TN = Z/NZ denote the discrete torus. The configuration of particles
at time τ is given by the pair of functions (ηλτ (·), ηµτ (·)) : TN → N

2, and the
construction is such that (ηλτ ([σN ]), ηµτ ([σN ])) converges to (λ(σ, τ), µ(σ, τ)).

Let the diffusion rates g : N → R+ (with g(0) = 0) and the drift rate
hλ, hµ : TN × R

N
2

+ → R be given, and define the Markov generator on the
particle configuration EN = N

TN × N
TN by

(LNf)(ηλ, ηµ) = N2(L0f)(ηλ, ηµ) +N(L1f)(ηλ, ηµ) , f ∈ Cb(EN ) ,

where

(L0f)(ηλ, ηµ) =
1
2

∑
i∈TN

g(ηλ(i))
[
f(ηi,i+1,λ, ηµ)+f(ηi,i−1,λ, ηµ)−2f(ηλ, ηµ)

]

+
1
2

∑
i∈TN

g(ηµ(i))
[
f(ηλ, ηi,i+1,µ)+f(ηλ, ηi,i−1,µ)−2f(ηλ, ηµ)

]
,
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and

(L1f)(ηλ, ηµ) =
∑
i∈TN

hλ(i, ηλ, ηµ)
[
f(ηi,i+sgn(hλ(i,ηλ,ηµ)),λ, ηµ)−f(ηλ, ηµ)

]

+
∑
i∈TN

hµ(i, ηλ, ηµ)
[
f(ηλ, ηi,i+sgn(hµ(i,ηλ,ηµ)),µ)−f(ηλ, ηµ)

]
,

where, with � ∈ {λ, µ},

ηi,i±1,�(j) =

⎧⎪⎨
⎪⎩
η�(j) + 1, j = i± 1, η�(i) �= 0,

η�(j)− 1, j = i, η�(i) �= 0,

η�(j), else

ηi,+,�(j) =

{
η�(j) + 1, j = i,

η�(j), else

ηi,−,�(j) =

{
η�(j)− 1, j = i, η�(i) > 0,

η�(j), else
.

L0 will be used to approximate the diffusion term of equations (8, 9) while
L1 will be used to approximate the drift term.

A slightly non-standard feature of the system (8, 9) is that the drift term is
non-local. We proceed however with the standard ansatz, namely that because
the diffusion term is constant, the local equilibrium measure for the particle
system is a product of Poisson measures. A full justification of this ansatz,
following closely the derivation in [11], does require some work and will be
detailed elsewhere.

Recall that for a Poisson random variable X of parameter α, one has

E(X2) = α2 + α, EX = α.

Thus, referring to equation (13), in order to define the rates, set the function
B : EN × TN → R+ as

B(η, η′)(j) =
1
N

j∑
i=1

(
[η(i)− η′(i)]2 − [η(i) + η′(i)]− c) ,

c =
1
N

N−1∑
i=0

(
[η(i)− η′(i)]2 − [η(i) + η′(i)]

)
. (16)

Note that if η(j), η′(j) are taken as independent Poisson variables of rates
λ(j/N, τ), µ(j/N, τ), respectively, then

E(B(η, η′)(j)) = bλ(j/N,τ)−µ(j/N,τ) .
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Following [11, 2], for (8), the rates can be taken as follows:

g(k) = k, hλ(i, η, η′) = −B(η, η′)(i)η(i),

hµ(i, η, η′) = −B(η, η′)(i)η′(i),

Note that we take the minus sign in the drift since we have a forward
diffusion. The rate for g is of course classical, and the drift rate h is similar
to [11], when one takes into account the extra averaging due to the non-local
nature of the function bλ−µ.

Remark. Another possible approach toward the definition of the stochas-
tic system proceeds as follows. Take a neighborhood of size Nβ for some
β ∈ (1/2, 1). Then compute the average of η, η′ on that stretch around the
site i of interest, and call these averages λ̄(i), µ̄(i). These local averages ap-
proximate well (with a negligible fluctuation) the solution λ(i/N), µ(i/N).
These approximations may then be used to approximate the drift term.

4 Future Work

We are interested in applying our methods to problems in computer vision.
Accordingly, we will first extend the models derived above to a stochastic
model of geodesic (conformal) active contours [4, 9]. This should be quite
straightforward.

We then will derive computer implementations of the resulting stochastic
snake models. The hope is that these models will be more robust to noise
than those implemented using conventional level set approaches. There is also
a major thrust now in vision to incorporate more global statistical information
into the curvature driven flow framework; see [7] and the references therein. It
seems that it may be more natural to use our stochastic models of geometric
flows for this enterprise. Of course, all of this needs to be tested on real
imagery.

Finally, a rigorous justification of the convergence of the stochastic system
to the system (8, 9) should be provided.

Acknowledgments

This research was supported in part by grants from NSF, AFOSR, ARO,
MURI, and MRI-HEL. This work is part of the National Alliance for Medical
Image Computing (NAMIC), funded by the National Institutes of Health
through the NIH Roadmap for Medical Research, Grant U54 EB005149. This
work was also supported by a grant from NIH (NAC P41 RR-13218 through
Brigham and Women’s Hospital.



Curve Shortening 311

References

1. B. Andrews, Evolving convex curves, Calc. Var. 7 (1998), pp. 315–371.
2. G. Ben Arous, A. Tannenbaum, and O. Zeitouni, Stochastic approximations of

curve shortening flows, Journal of Differential Equations 195 (2003), pp. 119–
142.

3. H. Buseman, Convex Surfaces, Interscience Publ., New York (1958).
4. V. Caselles, R. Kimmel, and G. Sapiro, Geodesic snakes, Int. J. Computer Vision

22 (1997), pp. 61–79.
5. M. Gage and R. S. Hamilton, The heat equation shrinking convex planar curves,

J. Differential Geometry 23 (1986), pp. 69–96.
6. M. Grayson, The heat equation shrinks embedded plane curves to round points,

J. Differential Geometry 26 (1987), pp. 285–314.
7. S. Haker, G. Sapiro, and A. Tannenbaum, Knowledge-based segmentation of

SAR data with learned priors, IEEE Trans. on Image Processing 9 (2000),
pp. 298–302.

8. O. Juan, R. Keriven, and G. Postelnicu, Stochastic mean curvature motion in
computer vision: stochastic active contours, INRIA Report, France (2004).

9. S. Kichenesamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, Conformal
curvature flows: from phase transitions to active contours, Archive for Rational
Mechanics and Analysis 134 (1996), pp. 275–301.

10. B. B. Kimia, A. Tannenbaum, and S. W. Zucker, On the evolution of curves via a
function of curvature, I: the classical case, J. of Math. Analysis and Applications
163 (1992), pp. 438–458.

11. C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems,
Springer-Verlag, New York (1999).

12. H. Krim, G. Unal, and A. Yezzi, Stochastic differential equations and geometric
flows, IEEE Trans. on Image Processing 11 (2002), pp. 1405–1417.

13. G. Sapiro and A. Tannenbaum, On affine plane curve evolution (with G. Sapiro),
Journal of Functional Analysis 119 (1994), pp. 79–120.

14. T. K. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the mo-
tion of a closed convex curve by a power of curvature V = Kα SIAM. J. Numer.
Anal. 37 (2000), pp. 500–522.



Riemannian Structures on Shape Spaces:
A Framework for Statistical Inferences

Shantanu Joshi,1 David Kaziska,2 Anuj Srivastava3 and Washington Mio4

1 Department of Electrical Engineering, Florida State University, Tallahassee,
FL 32310, USA. joshi@eng.fsu.edu

2 Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.
kaziska@stat.fsu.edu

3 Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.
anuj@stat.fsu.edu

4 Department of Mathematics, Florida State University, Tallahassee, FL 32306,
USA. mio@math.fsu.edu

Summary. Shape features are becoming increasingly important for inferences in
image analysis. Shape analysis involves choosing mathematical representations of
shapes, deriving tools for quantifying shape differences, and characterizing imaged
objects according to the shapes of their boundaries. In this paper, we focus on char-
acterizing shapes of continuous curves, both open and closed, in R

2. Under appro-
priate constraints that remove shape-preserving transformations, these curves form
infinite-dimensional, non-linear spaces, called shape spaces, on which inferences are
posed. We impose two Riemannian metrics on these spaces and study properties of
the resulting structures. An important tool in Riemannian analysis of shapes is the
construction of geodesic paths in shape spaces. Not only do the geodesics quantify
shape differences, but they also provide a framework for computing intrinsic shape
statistics. We will present algorithms to compute simple shape statistics — means
and covariances — and will derive probability models on shape spaces using local
principal component analysis (PCA), called tangent PCA (TPCA). These concepts
are demonstrated using a number of applications: (i) unsupervised clustering of im-
aged objects according to their shapes, (ii) developing statistical shape models of
human silhouettes in infrared surveillance images, (iii) interpolation of endo- and
epicardial boundaries in echocardiographic image sequences, and (iv) using shape
statistics to test phylogenetic hypotheses.

Key words: Riemannian metrics, shape statistics, shape clustering, TPCA.

1 Introduction

A rich variety of features can be used to analyze contents of images. Color,
textures, edges, boundaries, vertices, spatial frequencies, and locations are
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among the prominent examples. In the case of dynamic scenes, with video
measurements, the temporal features also come into play. Over the last few
years, shape has emerged as an important feature in detection, extraction, and
recognition of imaged objects. Shape analysis can provide valuable insights in
image understanding. As an example, consider the top row of Fig. 1, which
displays five images taken from diverse applications: human surveillance using
infrared camera, electrocardiograph of human heart, video images of animals,
and images of dinosaur bones. The lower panels show the corresponding sil-
houettes of the objects present in these images. It is apparent that the shapes
of these silhouettes can help characterize, or sometimes even identify, the ob-
jects present in these images.

Tools for shape analysis have proven important in several applications
including medical image analysis, human surveillance, military target recog-
nition, fingerprint analysis, space exploration, and underwater search. One
reason for pursuing shape analysis is the possibility that an efficient repre-
sentation and analysis of shapes can help even in situations where the obser-
vations are corrupted, e.g., when objects are partially obscured or corrupted
by excess clutter. This possibility, along with the development of statistical
methods, has led to the idea of Bayesian shape analysis. In this approach, con-
textual knowledge is used to impose prior probabilities on shape spaces, fol-
lowed by the use of posterior probabilities to perform inferences from images.
The following items form important ingredients in Bayesian shape analysis.

Fig. 1. Shape analysis of object boundaries in images can help in computer vision
tasks such as detection and recognition.

1. One needs efficient representations of shapes of planar curves (closed and
open) modulo shape-preserving transformations (rigid motion and uni-
form scaling) acting on the shape.

2. In order to perform an intrinsic analysis of shapes, one needs to under-
stand the differential geometry of shape spaces. In particular, one needs
definitions of tangent spaces, integral curves, one-parameter flows, and
geodesic paths. The choice of a Riemannian metric on tangent spaces
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results in a Riemannian structure that is needed for defining geodesic
paths.

3. One needs tools for defining and computing simple shape statistics, such
as the means and covariances, in a manner that is intrinsic to shape spaces.

With these fundamental tools, one can seek more advanced ideas in sta-
tistical shape analysis, by posing the following questions:

a. What family of probability models can be used to describe variability in
an observed collection of shapes?

b. How can we perform Bayesian inferences on a shape space? The tasks may
include estimation of a maximum a posteriori (MAP) shape, or sampling
from a posterior density.

c. Given an observed shape, how do we decide which family of shapes it
belongs to? In other words, how do we perform hypothesis testing on the
shape space?

A comprehensive shape theory that addresses the above-mentioned issues will
also provide tools for representation, comparison, clustering, learning, esti-
mating, and testing of shapes. Before we present our approach to statistical
shape analysis, we summarize some past approaches.

A large part of the previous efforts has been restricted to finite-dimensional
or “landmark-based” analysis of shapes. Here shapes are represented by a
coarse, discrete sampling of the object shape [4, 13] and key points or land-
marks are defined on the contour. This process however requires an expert
intervention, as the automatic detection of landmarks is not straightforward.
Since the analysis depends heavily on the landmarks chosen, this approach is
limited in its scope. Also, shape interpolation with geodesics in this framework
lacks a physical interpretation. A statistical approach, called active shape mod-
els, uses principal component analysis (PCA) of landmarks to model shape
variability [3]. Despite its simplicity and efficiency, this approach is rather lim-
ited because it ignores the nonlinear geometry of the shape space. Grenander’s
formulation [5] considers shapes as points on infinite-dimensional manifolds,
where the variations between the shapes are modeled by the action of Lie
groups (diffeomorphisms) on these manifolds [6]. Miller et al. [19] use actions
of high-dimensional diffeomorphic groups for non-elastic shape matching. In
[20], a Riemannian metric is introduced which matches shapes via elastic de-
formations based on group actions. A recent geometric approach [18] computes
PCA in the tangent space of diffeomorphisms to analyze shape variations in
a landmark setting. In summary, the majority of previous work on analyzing
shapes of planar curves involves either a discrete collection of points or dif-
feomorphisms on R

2. Seldom have shapes been studied as curves! In contrast,
a recent approach [10] considers the shapes of continuous, closed curves in
R

2, without any need for landmarks, diffeomorphisms, or level sets to model
shape variations. As described later, this idea also applies to shapes of open
curves.
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An important question in studying shapes of curves is: How does one
choose metrics that facilitate quantitative shape analysis? Second, what phys-
ical interpretations can be associated with these metrics? In this paper, we
present two Riemannian metrics (on spaces of curves) and resulting shape
comparisons. Similar to the approach taken in [10, 14], one choice is to as-
sume the L

2 metric on spaces tangent to shape spaces. In cases where curves
are represented by arclength or unit speed parameterizations, this metric has
a nice physical interpretation that results in a purely non-elastic analysis of
shapes of curves. The curves are allowed to bend freely but are not allowed
to stretch or compress at all. Another idea is to allow for variable speed para-
meterizations of curves, with the physical interpretation that curves are now
allowed to stretch and compress when being compared. In this case, a curve is
represented by two functions: a shape function and a speed function, and the
curves are allowed to bend and stretch according to a chosen metric. On the
joint space formed by these two functions, we impose a product L

2 metric,
graded by the speed function. This metric combines the contributions of shape
and speed functions by parameters that regulate the cost of bending versus
stretching. We term this approach as analysis of elastic shapes [12].

The rest of this chapter is organized as follows. In Section 2, we describe
representations, metrics, and geodesics for the two cases: non-elastic and elas-
tic shapes. Section 3 presents various examples of geometric tools derived for
non-elastic shapes. It describes computation of statistical means, clustering,
probability modeling, and their applications to image analysis. In particu-
lar, we present: (i) clustering of video images according to shapes of objects
contained in them, (ii) interpolating cardiac boundaries in echocardiographic
image sequences, (iii) modeling shapes of human silhouettes in infrared sur-
veillance, and (iv) using geodesic lengths for phylogenetic shape clustering.
We conclude this chapter with a summary and discussion in Section 4.

2 A Geometrical Approach to Planar Shape Analysis

In this section, we will specify spaces of curves, impose Riemannian struc-
tures on them, and present tools for computing geodesic paths in these spaces.
As mentioned earlier, we will present two cases: (i) shapes of non-elastic curves
assuming arclength parameterization, and (ii) shapes of elastic curves, allow-
ing for non-uniform speeds in curve parameterization. In the former case we
will treat closed curves and in the latter case we will focus on closed as well
as open curves.

2.1 Geometric Representation of Non-Elastic Shapes

Non-elastic shapes include all curves that are represented using arclength pa-
rameterizations. Matching between such shapes is carried out by continuously
bending one shape into the other. This approach was presented in a recent
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paper by Klassen et al. [10]. We will summarize the main ideas here and refer
to that paper for details.

Shape Representations

Consider the boundaries or silhouettes of the imaged objects as closed, planar
curves in R

2 (or equivalently in C) parameterized by the arclength s. Define
an angle function or direction function, associated with a curve by measuring
the angle made by the velocity vector with the positive x-axis as a function
of arclength. The coordinate function of the curve α(s) relates to this angle
function θ(s) according to α̇(s) = ej θ(s), j =

√−1. The curvature function
of this curve is given by κ(s) = θ̇(s). A curve can be represented by its
coordinate function α, the angle function θ, or the curvature function κ, as
shown in Fig. 2.

Fig. 2. Alternate representations of a planar curve (left panel) via x and y coordinate
functions α (second panel), angle function θ (third panel), or curvature function κ
(last panel).

In this approach, we choose angle functions to represent and analyze
shapes. Let the direction function θ be an element of L

2, where L
2 stands

for the space of all real-valued functions with period 2π and square integrable
on [0, 2π]. The next issue is to account for equivalence of shapes. As shown in
Fig. 3, shape is a characteristic that is invariant to rigid motions (translation
and rotation) and uniform scaling. Additionally, for closed curves, shape is
also invariant to the placement of origin (or starting point) on the curves.
To build representations that allow such invariance, we proceed as follows.
We remove the scale variation by forcing the curves to be of length 2π. The
translation is already removed since the angle function θ is invariant to trans-
lation. To make the shape invariant to rotation, restrict the angle function
to θ ∈ L

2 such that 1
2π

∫ 2π

0 θ(s)ds = π. Also, for a closed curve, θ must sat-
isfy the closure condition:

∫ 2π

0
exp(j θ(s))ds = 0. In short, one restricts to

the set C1 = {θ ∈ L
2| 1

2π

∫ 2π

0 θ(s)ds = π,
∫ 2π

0 ejθ(s)ds = 0}. Furthermore, to
remove the re-parameterization group (relating to different placements of the
origin), define the quotient space S1 ≡ C1/S1 as the space of continuous, pla-
nar shapes, where S

1 denotes the unit circle in R
2. C1 is called the pre-shape

space and S1 is called the shape space.
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Fig. 3. Shape is a characteristic that is invariant to rigid rotation, translation, and
uniform scaling. All the objects above are considered to have the same shape.

For the purpose of shape analysis, the incidental variables such as scale,
location, orientation, etc., are termed nuisance variables, and are removed
as described above. In contrast, the detection and recognition of objects in
images requires estimation of both their shapes and nuisance variables. In such
cases, the shape and the nuisance variables may have independent probability
models. Let Z = (SE(2) × R+) be the space of nuisance variables, where
SE(2) = SO(2) � R

2, and let (θ, z) be a representation of a closed curve α
such that θ ∈ S1 is its shape and z ∈ Z are its nuisance variables.

Riemannian Metric

We choose the L
2 inner product on the tangent spaces of S1 to quan-

tify shape difference. In other words, for any g1, g2 ∈ Tθ(S1), we have
〈g1, g2〉 =

∫ 2π

0 g1(s)g2(s)ds. This metric has a nice physical interpretation
that the resulting geodesics between shapes denote paths of minimum bend-
ing energy in going from one shape to another.

Geodesic Paths Between Shapes in S1

An important tool in Riemannian analysis of shapes is construction of such
paths between arbitrary shapes. Klassen et al. [10] approximate geodesics in
S1 by successively drawing infinitesimal line segments in L

2 and projecting
them onto S1. For any two shapes θ1, θ2 ∈ S1, one uses a shooting method to
construct a geodesic between them. Since S1 is a quotient space of C1, we con-
struct a geodesic in S1 by constructing geodesics in C1 that are perpendicular



Riemannian Metrics on the Space of Shapes 319

Fig. 4. A cartoon diagram of a shooting method to find geodesics in shape space.

to the equivalence classes in C1. The construction of geodesics in the quotient
space of C1 is similar to exercise 2(i) on p. 226 in [21]. The basic idea is to
search for a tangent direction g at the first shape θ1, such that a geodesic in
that direction reaches the second shape θ2 (called the target shape) in unit
time. This search is performed by minimizing a “miss function,” defined as the
chord length or the L

2 distance between the shape reached and θ2, using a
gradient process. This process is illustrated in Fig. 4. This choice implies that
a geodesic between two shapes is the path that uses minimum energy to
bend one shape into the other. Shown in Fig. 5 are examples of geodesic
paths depicting the evolution between two end shapes. A desktop PC pow-
ered by a single Pentium IV processor currently takes less than 0.04 second
to compute a geodesic path.

Fig. 5. Examples of a few geodesic paths in S1.
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To fix notation, let Ψt(θ, g) be a geodesic path starting from θ ∈ S1, in the
direction g ∈ Tθ(S1), as a function of time t. Here Tθ(S1) denotes the space of
functions tangent to S1 at the point θ. If g ∈ Tθ1(S1) is the shooting direction
to reach θ2 in unit time from θ1, then the following holds: Ψ0(θ1, g) = θ1,
Ψ1(θ1, g) = θ2, and Ψ̇0(θ1, g) = g. The length of this geodesic is given by
d(θ1, θ2) =

√〈g, g〉. The use of geodesic paths in computing shape statistics
and other applications is demonstrated in Section 3.

2.2 Geometric Representation of Elastic Shapes

In this section, we allow for curves to have variable-speed parameterizations,
resulting in local stretching and compression of curves when they are being
compared. The framework is similar to the earlier case, except that the shape
representation now includes a speed function φ, in addition to the angle func-
tion θ. Additionally, the Riemannian metric is modified to account for this
change in representation. Another difference here is that we study shapes of
open curves. The closed curves can be handled with an additional constraint
for closure, as was demonstrated in the previous section.

Shape Representations

Let α : [0, 2π] → R
2 be a smooth, non-singular parametric curve in the

sense that α̇(s) �= 0, ∀s ∈ [0, 2π]. We can write its velocity vector as
α̇(s) = eφ(s)ejθ(s), where φ : [0, 2π] → R and θ : [0, 2π] → R are smooth,
and j =

√−1. The function φ is the speed of α expressed in logarithmic scale,
and θ is the angle function as earlier. φ(s) is a measurement of the rate at
which the interval [0, 2π] was stretched or compressed at s to form the curve α;
φ(s) > 0 indicates local stretching near s, and φ(s) < 0 local compression. The
arclength element of α is ds = eφ(s) ds. Curves parameterized by arclength,
i.e., traversed with unit speed, are those with φ ≡ 0. We will represent α via
the pair (φ, θ) and denote by H the collection of all such pairs.

Parametric curves that differ by rigid motions or uniform scalings of the
plane, or by orientation-preserving re-parameterizations represent the same
shape. Since the functions φ and θ encode properties of the velocity field of
the curve α, the pair (φ, θ) is clearly invariant to translations of the curve. The
effect of a rotation is to add a constant to θ keeping φ unchanged, and scaling
the curve by a factor k > 0 changes φ to φ + log k, leaving θ unaltered. To
obtain invariance under uniform scalings, we restrict pairs (φ, θ) to those rep-
resenting curves of length 2π. To get rotational invariance, we fix the average
value of the angle function with respect to the arclength element to be, say,
π. In other words, we restrict shape representatives to pairs (φ, θ) satisfying
the conditions

C2 =
{

(φ, θ) ∈ H :
∫ 2π

0

eφ(s) ds = 2π and
1
2π

∫ 2π

0

θ(s) eφ(s) ds = π

}
,

(1)
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where C2 is called the pre-shape spaces of planar elastic strings. Re-parameteri-
zations of α that preserve orientation and non-singularity of the curve α are
those obtained by composing α with an orientation-preserving diffeomorphism
γ : [0, 2π] → [0, 2π]; the action of γ on α is to produce the curve β which is
represented by (φ◦γ+log γ̇, θ◦γ), where ◦ denotes composition of maps. Hence,
re-parameterizations define an action (a right action, to be more precise) of
the group DI of orientation-preserving diffeomorphisms of the interval [0, 2π]
on H by

(φ, θ) · γ = (φ ◦ γ + log γ̇ , θ ◦ γ). (2)

The shape space of planar elastic strings is defined as the quotient space
S2 = C2/DI , which identifies all curves that differ by a re-parameterization.

Riemannian Metric

In order to compare curves quantitatively, we assume that they are made
of an elastic material and adopt a metric that measures the resistance to
reshape a curve into another taking into account the elasticity of the string.
Infinitesimally, this can be done using a Riemannian structure on H. Since H

is a linear space, its tangent space at any point is the space H itself. Thus, for
each (φ, θ), we define an inner product 〈 , 〉(φ,θ) on H. We adopt the simplest
Riemannian structure that will make diffeomorphisms γ ∈ DI act by “rigid
motions” (or isometries) on H, much like the way translations and rotations
act on standard Euclidean spaces. Given (φ, θ) ∈ H, let hi and fi, i = 1, 2,
represent infinitesimal deformations of φ and θ, resp. , so that (h1, f1) and
(h2, f2) are tangent vectors to H at (φ, θ). For a, b > 0, define

〈(h1, f1), (h2, f2)〉(φ,θ) = a

∫ 2π

0

h1(s)h2(s) eφ(s) ds+ b

∫ 2π

0

f1(s)f2(s) eφ(s) ds.
(3)

It can be shown that re-parameterizations preserve the inner product, i.e., DI

acts on H by isometries, as desired.
The elastic properties of the curves are built in the model via the para-

meters a and b, which can be interpreted as tension and rigidity coefficients,
respectively. Large values of the ratio χ = a/b make the elastic strings offer
higher resistance to stretching and compression than to bending; the opposite
holds for a small χ.

Geodesic Paths Between Shapes in S2

As earlier, shortest paths in S2 are those geodesics in H that are perpendicular
to the orbits of DI . Similar to the non-elastic shapes, we use a shooting
method to construct geodesic paths on S2. Figure 6 shows a few examples
of geodesic paths traversed from left to right for different values of χ in this
framework.
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Fig. 6. Geodesic paths in S2. In each row the left panel shows a geodesic path
between the end shapes. The right panel in each row shows the diffeomorphism� s

0
exp(φ(t))dt versus s for the end shape.

For the first row of Fig. 6, χ is rather large. In this case the graph of the
diffeomorphism

∫ s
0

exp(φ(t))dt versus s is identity and there is virtually no
stretching or compression. Hence this evolution is similar to the ones shown in
Fig. 5. For the second row, a low value of χ favors stretching and compression,
and it can be seen that the only change in the shape is the local compression
of the middle finger. This demonstrates the strength of this method to match
features in shapes via local deformations.

3 Applications

We now demonstrate the use of geodesic paths in various applications such as
statistical shape analysis, shape learning, medical image analysis, and human
surveillance. For the purposes of these demonstrations, we will restrict our
analysis to S1, although similar results can be obtained on S2 as well.

3.1 Mean Shape in S1

There are various techniques to compute a mean of a collection of shapes. One
way is to compute an extrinsic mean, which involves embedding the non-linear
manifold in a linear vector space, computing the Euclidean mean in that
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space, and then projecting it down to the manifold. However, a more natural
way involves the use of an intrinsic notion of mean (Karcher mean) that
does not require a Euclidean embedding. For a collection θ1, . . . , θn in S1 and
d(θi, θj), the geodesic length between θi and θj , the Karcher mean is defined
as the element µ ∈ S1 that minimizes the quantity

∑n
i=1 d(θ, θi)

2. A gradient
based, iterative algorithm for computing the Karcher mean is presented in
[11, 9] and is particularized to S1 in [10]. Figure 7 shows a few sample means
computed for a given set of shapes. In each row, the first four shapes are
samples and the last shape is their Karcher mean.

Fig. 7. Karcher means of different shapes. For each row of shapes, the mean shape
is displayed in the last column.

3.2 Clustering of Shapes in S1

Learning probability models for shape families involves the training stage as
an initial step. Clustering provides an automatic way to organize the observed
shapes into groups of similar shapes. One of the popular techniques for clus-
tering points in Euclidean spaces is k-means clustering [8]. In this method,
n given points are clustered into k groups, in such a way that the sum of
within-cluster variances is minimized. Since computing means of shapes is ex-
pensive, we modify this procedure so that it avoids computing cluster means
at every iteration.

We view clustering as a problem of partitioning given n shapes into k
clusters in such a way that the total variance within the clusters is minimized.
Let a configuration C consist of clusters denoted by C1, C2, . . . , Ck. If ni
is the size of Ci, then the cost Q associated with a cluster configuration



324 S. Joshi, D. Kaziska, A. Srivastava and W. Mio

C is given by [7]:

Q(C) =
k∑
i=1

2
ni

⎛
⎝ ∑
θa∈Ci

∑
b<a,θb∈Ci

d(θa, θb)2

⎞
⎠ . (4)

We seek configurations that minimize Q, i.e., C∗ = argminQ(C). This cost
function differs from the usual variance function and avoids the need for up-
dating means of clusters at every iteration.

In order to avoid local solutions, we utilize a stochastic search process
to find an optimal configuration. The basic idea is to start with a random
configuration of n shapes into k clusters and use a sequence of moves, per-
formed probabilistically, to rearrange that configuration into an optimal one.
The moves are restricted to two kinds: movement of a shape from one clus-
ter to another, and swapping two shapes from two different clusters. The
probabilities of performing these moves are set to the negative exponential of
the resulting Q function. Additionally, a temperature variable T is decreased
slowly in each iteration to simulate annealing so that this process converges to
an optimal configuration in due time. For the detailed algorithm and various
results, the reader is referred to [14].

Displayed in Fig. 8 is a clustering result for a collection of 50 shapes from
the ETH-80 dataset. Additional examples of clustering databases, consisting
of thousands of shapes, are presented in [14]. The idea of clustering can be
further extended to form a hierarchy, where one organizes shapes into a tree
structure. This is particularly important to run queries for shape retrieval
from a large database of shapes.

3.3 Interpolation of Shapes in Echocardiographic Image Sequences

Image-based shape analysis plays an ever-increasing role in medical diagnosis
using non-invasive imaging. Shapes and shape variations of anatomical parts
are often important factors in deciding normality/abnormality of imaged pa-
tients. For example, the two images displayed in Fig. 9 were acquired as the
end diastolic (ED) and end systolic (ES) frames from a sequence of echocar-
diographic images during systole, taken from the apical four-chamber view.
Note that systole is the squeezing portion of the cardiac cycle and that the
typical acquisition rate in echocardiography is 30 image frames/second. Super-
imposed on both images are expert tracings of the epicardial (solid lines) and
endocardial borders (broken lines) of the left ventricle of the heart. From these
four borders, indices of cardiac health, including chamber area, fractional area
change, and wall thickness, can be easily computed. Since a manual tracing
of these borders is too time consuming to be practical in a clinical setting,
these borders are currently generated for research purposes only. The current
clinical practice is to estimate these indices subjectively or (at best) make a
few one-dimensional measurements of wall thickness and chamber diameter.
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Fig. 8. 50 shapes of the ETH-80 dataset clustered into 7 groups. Each row is a
cluster.

Fig. 9. Expert generated boundaries, denoting epicardial (solid lines) and endo-
cardial (broken lines) borders, drawn over ED (left) and ES (right) frames of an
echocardiographic image sequence.

A major goal in echocardiographic image analysis has been to develop and
implement automated methods for computing these two sets of borders as well
as the sets of borders for the 10–12 image frames that are typically acquired
between ED and ES. Important aspects of past efforts [15, 2, 1] include both
the construction of geometric figures to model the shape of the heart as well
as validation. While it is difficult for cardiologists to generate borders for all
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the frames, it is possible for them to provide borders for the first and the last
frames in a cardiac cycle. Since it is not uncommon for the heart walls to
exhibit dyskinetic (i.e., irregular) motion patterns, the boundary variations
in the intermediate frames can be important in a diagnosis. Our goal is to
estimate epicardial and endocardial boundaries in the intermediate frames
given the boundaries at the ED and ES frames.

As stated earlier, a closed contour α has two sets of descriptors associated
with it: a shape descriptor denoted by θ ∈ S1 and a vector z ∈ Z of nuisance
variables. In our approach, interpolation between two closed curves is per-
formed via interpolations between their shapes and nuisance components, re-
spectively. The interpolation of shape is obtained using geodesic paths, while
that of the nuisance components is obtained using linear methods. Given
α1 = (θ1, z1) and α2 = (θ2, z2) as the two closed curves, our goal is to find
a path Φ : [0, 1] 
→ S1 × Z such that Φ0 = (θ1, z1) and Φ1 = (θ2, z2). For
example, in Fig. 9, the endocardial boundary (broken curves) of the ED and
ES frames can form α1 and α2, respectively. Alternatively, one can treat the
epicardial boundaries (solid curves) of ED and ES frames as α1 and α2 as
well. The different components are interpolated as follows.

1. Shape Component: Given the two shapes θ1 and θ2 in S1, we use
the shooting method to find the geodesic that starts from the first
and reaches the other in unit time. This results in the flow Ψt(θ1, g)
such that Ψ0(θ1, g) = θ1 and Ψ1(θ1, g) = θ2. This also results in a re-
parameterization of θ2 such that the origins (points where s = 0) on
the two curves are now registered. With a slight abuse of notation we
will also call the new curve θ2. Let a shape along this path be given by
θt = Ψt(θ1, g). Since the path θt lies in S1, the average value of θt for all
t is π.

2. Translation: If p1, p2 represent the locations of the initial points on the
two curves, i.e., pi = αi(0), i = 1, 2, then the linear interpolation between
them is given by p(t) = (1− t)p1 + tp2.

3. Orientation: For a closed curve αi, the average orientation is defined
by φi = 1

2π

∫ 2π

0
1
j log(α̇i(s))ds, i = 1, 2, j =

√−1. Given φ1 and φ2,
a linear interpolation between them is φ(t) = (1 − t)φ2 + tφ̃2, where
φ̃2 = argminφ∈{φ2−2π,φ2,φ2+2π} |φ− φ1|.

4. Scale: If ρ1 and ρ2 are the lengths of the curves α1 and α2, then a linear
interpolation on the lengths is simply ρ(t) = (1− t)ρ1 + tρ2.

Using these different components, the resulting geodesic on the space of closed
curves is given by {Φt : t ∈ [0, 1]}, where

Φt(s) = p(t) + ρ(t)
∫ s

0

exp(j(θt(τ) − π + φ(t)))dτ.

Shown in Fig. 10 is a sequence of 11 image frames for the same patient
as displayed in Fig. 9. Again, each image frame has a set of epicardial and
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endocardial borders overlaid on the image. In Fig. 10, borders in the first
and last frames have been traced by an expert, while the borders on the
intermediate frames have been generated using the path Φt, one each for
epicardial and endocardial boundaries. Note that the endocardial border is
more distorted than the epicardial border in the transition. In view of the
geodesic paths in S1 relating to the minimum bending energy, this method
provides a smoother interpolation for the endocardial borders, as compared
to a direct linear interpolation of coordinates.

Fig. 10. Geodesically interpolated endo- and epicardial shapes overlaid on an
echocardiographic image sequence.

3.4 Human Silhouette Shape Model from Infrared Images

Various security and surveillance applications have generated a great inter-
est in detection and recognition of humans using static images and video
sequences. While most applications use visible-spectrum cameras for imaging
humans, certain limitations, such as large illumination variability, has gar-
nered interest in other imaging modalities that operate in bandwidths beyond
the visual spectrum. In particular, night vision cameras, or infrared cameras,
have been found important in human detection and tracking, especially in
military applications. These cameras capture emissivity, or thermal states, of
the imaged objects, and are largely invariant to ambient illumination. In this
section, we investigate the use of infrared images in detection of human silhou-
ettes. Although we are generally interested in the full problem of detection,
tracking, and recognition, here we restrict ourselves to a specific subproblem:
building statistical shape models for human silhouettes.

Using a hand-held Raytheon Pro250 IR camera, we have hand-generated a
database of human silhouettes. Shown in Fig. 11 are some image captures from
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a video sequence: the top panel shows five IR images and the bottom panel
shows the corresponding hand-extracted human silhouettes. Furthermore, the
database has been partitioned into clusters of similar shapes. These clusters
correspond to front views with legs appearing together, side views with legs
apart, side views with legs together, etc. An example cluster is shown in
Fig. 12.
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Fig. 11. Top panel: Examples of infrared images of human subjects. Bottom panel:
hand-extracted boundaries for analyzing shapes of human silhouettes.

Fig. 12. An example of a cluster of human silhouettes.

TPCA Shape Model

Our goal here is to “train” probability models by assuming that elements in
the same cluster are samples from the same probability model. These models
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can then be used for future Bayesian discoveries of shapes or for classifica-
tion of new shapes. To train a probability model amounts to estimating a
probability density function on the shape space S1, a task that is rather dif-
ficult to perform precisely. The two main difficulties are: non-linearity and
infinite-dimensionality of S1, and they are handled here as follows. S1 is a
non-linear manifold, so we impose a probability density on a tangent space
instead. For a mean shape µ ∈ S1, Tµ(S1) ⊂ L

2, is a vector space where
conventional statistics can be easily applied. Next, we approximate a tangent
function g by a finite-dimensional vector, e.g., a vector of Fourier coefficients,
and thus characterize a probability distribution on Tµ(S1) as that on a finite-
dimensional vector space. Let a tangent element g ∈ Tµ(S1) be represented by
its approximation: g(s) =

∑m
i=1 xiei(s), where {ei} is a complete orthonor-

mal basis of Tµ(S1) and m is a large positive integer. Using the identification
g ≡ x = {xi} ∈ R

m, one can define a probability distribution on elements of
Tµ(S1) via one on R

m. The simplest model is a multivariate normal proba-
bility imposed as follows. Using principal component analysis (PCA) of the
elements of x, we determine variances of the principal coefficients, and impose
independent Gaussian models on these coefficients with zero means and esti-
mated variances. This imposes a probability model on Tµ(S1), and through
the exponential map (expµ : Tµ(S1) 
→ S1, defined by expµ(g) = Ψ1(µ, g)),
leads to a probability model on S1. We term this model “tangent PCA” or
TPCA.

Consider the set of 40 human silhouettes displayed in Fig. 12. Their
Karcher mean µ is shown in the left panel of Fig. 13. For each observed
shape θi, we compute a tangent vector gi, such that Ψ1(µ, gi) = θi. Using
the TPCA model we obtain a normal probability model on the tangent space
Tµ(S1). Shown in the right panel of Fig. 13 are a few examples of random
shapes generated by this probability model.
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Fig. 13. Left panel: Mean shape (left) and singular values (right) of covariance in
Tµ(S1). Right panel: Random samples from a Gaussian probability model on the
principal coefficients of g ∈ Tµ(S1).
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3.5 Tools for Phylogenetic Inference using Shape Statistics

Phylogenetic systematics is an approach to explain the evolutionary relation-
ships of different living organisms. The theory is based on similarity between
traits and the fact that similarity among individuals or species is attributable
to common descent, or inheritance from a common ancestor. The evolutionary
relationships inferred from phylogenetic systematics often describe a species’
evolutionary history and help in taxonomical classification. A phylogenetic
tree, also known as a cladogram, depicts a particular organization of species
in a hierarchical fashion.

Morphometry has been used in the past to infer phylogenetic trees of
species. The use of shape also has been complemented by development of
various methods designed to statistically infer phylogenies from quantitative
morphological data [17]. Recently, Swiderski et al. [16] used landmarks and
thin-plate splines to perform phylogenetic analysis of skull shape evolution in
marmotine squirrels. However the previous approaches have borrowed heav-
ily from the landmark-based shape analysis techniques. This is sometimes a
drawback, especially when the imaged objects such as bones, shells, or other
objects that constitute a fossilized evidence are incomplete or only partially
available. Furthermore, scattering of such objects over large geographical lo-
cations, hinders a systematic and controlled data collection. Sometimes, the
researcher may have to be content with pre-existing image captures, which
may even be noisy and thus obstruct any conclusive deduction.

In this section, we look at comparison of shapes of pubis bones of the
hadrosaur dinosaur. A few such images are displayed in Fig. 14. Note that
the bones in the second and the last images are missing important anatomical
pieces. All the shapes in this study belong to the same species and correspond
to pubes from the hadrosaur dinosaurs.

Fig. 14. Images of pubis bones of Hadrosauridae.

After the contours are manually extracted from the images, pairwise geo-
desic distances are computed between each of the shapes and the shapes are
clustered automatically. One such cluster configuration is given in Fig. 15.
From Fig. 15, we can see that the bones with sharp extensions have clustered
together and shapes with missing extensions have been grouped together. We
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Fig. 15. Shapes of 17 hadrosaurid bones clustered into 6 groups. Each row is a
cluster.

also observe that the shape in the last row is excluded from all other groups
because it appears different from the others. Such clustering of shapes is the
first step towards building shape models of a similar class of species. Ad-
vanced probability models of shapes can then be applied towards inferring
phylogeny.

4 Discussion and Conclusion

We have formulated a differential-geometric approach for analysis of pla-
nar shapes and its use in statistical inferences. Two cases are presented:
(i) non-elastic shapes with uniform-speed parameterizations, allowing only
bending, and (ii) elastic shapes with variable-speed parameterizations, allow-
ing both bending and local stretching. Shapes of curves are represented by
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their angle functions and speed functions, and shape-preserving transforma-
tions are removed to result in shape spaces. Riemannian metrics are imposed
on the resulting shape space to compute geodesic paths between shapes. The
use of geodesic paths also leads to a framework for statistical modeling of
shape variability, including an intrinsic technique to compute sample statis-
tics (means, covariances, etc.). We have demonstrated this framework using
applications of shape analysis to clustering, medical image analysis, human
surveillance, and tools for phylogenetic inference based on shapes.
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Summary. The application of the theory of deformable templates to the study of
the action of a group of diffeomorphisms on deformable objects provides a powerful
framework to compute dense one-to-one matchings on d-dimensional domains. In this
paper, we derive the geodesic equations that govern the time evolution of an optimal
matching in the case of the action on 2D curves with various driving matching terms,
and provide a Hamiltonian formulation in which the initial momentum is represented
by an L2 vector field on the boundary of the template.
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tems, shape representation and recognition.

1 Introduction

This paper focuses on the study of plane curve deformation, and how it can
lead to curve evolution, comparison and matching. Our primary interest is
in diffeomorphic deformations, in which a template curve is in one-to-one
smooth correspondence with a target curve. This correspondence will be ex-
pressed as the restriction (to the template curve) of a two-dimensional (2D)
diffeomorphism, which will control the quality of the matching.

This point of view, which is non-standard in the large existing literature
on curve matching, emanates from the general theory of “large deformation
diffeomorphisms,” introduced in [9, 6, 16], and further developed in [13, 12].
This is a different approach than the one which only considers the restriction of
the diffeomorphisms to the curves, starting with the introduction of dynamic
time warping algorithms in speech recognition [14], and developed in papers
like [7, 3, 21, 17, 22, 11, 15, 18].
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Like in [21, 11], however, our approach is related to geodesic distances be-
tween plane curves. In particular, we will provide a Hamiltonian interpretation
of the geodesic equations (which in this case shares interesting properties with
a physical phenomenon called solitons [10]), and exhibit the structure of the
momentum, which is of main importance in this setting.

The deformation will be driven by a data attachment term which measures
the quality of the matching. In this paper, we review three kinds of attach-
ments. The first one, which we call measure-based, is based on the similarity
of the singular measures in R

2 which are supported by the curves. The second,
which is adapted to Jordan curves, corresponds to the measure of the sym-
metric differences of the domains within the curves (binary shapes). The last
one is for data attachment terms based on a potential, as often introduced in
the theory of active contours.

The paper is organized as follows. Section 2 provides some definition and
notation, together with a heuristic motivation of the approach. Section 3 de-
velops a first version of the momentum theorem, which relates the momentum
of the Hamiltonian evolution to the differential of the data attachment term.
Section 4 is an application of this framework to measure-based matching. Sec-
tion 5 deals with binary shapes and provides a more general version of the
momentum theorem, which will also be used in Section 6 for data attachment
terms based on a potential. Finally, Section 7 proves an existence theorem for
the Hamiltonian flow.

2 Diffeomorphic Curve and Shape Matching with Large
Variability

In this paper, a shape Sγ ⊂ R
2 is defined as the interior of a sufficiently

smooth Jordan curve (i.e., continuous, non-intersecting) γ : T→ R
2 where T

is the 1D torus. (Hence, γ is a parameterization of the boundary of S.)1

The emphasis will be on the action of global non-rigid deformation, for
which we introduce some notation. Assume that a group G of C1 diffeomor-
phisms of R

2 provides a family of admissible non-rigid deformations. The
action of a given deformation ϕ on a shape S ⊂ R

2 is defined by

Sdef = ϕ(S). (1)

Selecting one shape as an initial template Stemp = Sγtemp , we will look for
the best global deformation of the ambient space which transforms Stemp into
a target shape Starg (see Fig. 1). The optimal matching of the template on
the target will be defined as an energy minimization problem

ϕ∗ = argminϕ∈GR(ϕ) + g(ϕ(Stemp), Starg) (2)

1 Obviously, the mapping γ → Sγ is not one to one since Sγ = Sγ′ as soon as
γ′ = γ ◦ ζ and ζ is a parameter change.
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Fig. 1. Comparing deformed shapes.

where R is a regularization term penalizing unlikely deformations and g is
the data term penalizing bad approximations of the target Starg. In the
framework of large deformations, the group G of admissible deformations
is equipped with a right invariant metric distance dG and the regulariza-
tion term R(ϕ) is designed as an increasing function of dG(Id, ϕ) where
Id is the identity (x → x) mapping. One of the strengths of this diffeo-
morphic approach, which introduces a global deformation of the ambient
space, is that it allows us to model large deformations between shapes while
preserving their natural non-overlapping constraint. This is very hard to
ensure with boundary-based methods, which match the boundaries of the
region based on their geometric properties without involving their situa-
tion in the ambient space. Then, singularities may occur when, for exam-
ple, two points which are far from each other for the arclength distance on
the boundary are close for the Euclidian distance in the ambient space (see
Fig 2).

Another issue in the context of large deformations is that smoothness con-
straints acting only on the displacement fields (point displacements from the
initial configuration to the deformed one) cannot guarantee the invertibility of
the induced mapping, creating, for instance, loops along the boundary. Even
if there may be ad hoc solutions to fix this (like penalties on the Jacobian,
[5]), we argue that considering the deformation itself ϕ as the variable instead
of linearizing with respect to the displacement field u = Id−ϕ leads to a more
natural geometrical framework. There is a high overhead in such an approach,
since such ϕ’s live in an infinite-dimensional manifold, whereas the displace-
ment fields belong in a more amenable vector space. However, this turns out to
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Fig. 2. Violation of the non-overlapping constraint for usual curve-based ap-
proaches.

be manageable, if one chooses a computational definition of diffeomorphisms
in G as the solutions at time 1 of flow equations

∂ϕt
∂t

= ut ◦ ϕt, ϕ0 = id , (3)

where at each time t, ut belongs to a vector space of vector fields on the
ambient space. To be slightly more precise, assume that the ambient space
is a bounded open domain with smooth boundary Ω ⊂ R

2 and that V is a
Hilbert space of vector fields continuously embedded in Cp0 (Ω,R2) with p ≥ 1
(the set of Cp vector fields on mR2 which vanish outside Ω). Then, a unique
solution of such flows exists for t ∈ [0, 1] for any time-dependent vector field
u ∈ L2([0, 1], V ) ([6]) and we can define for any t ∈ [0, 1], the flow mapping

u→ ϕut , u ∈ L2([0, 1], V ). (4)

We finally define G as

G = {ϕu1 | u ∈ L2([0, 1], V )}, (5)

which is a subgroup of the C1 diffeomorphisms on Ω (they all coincide with
the identity on ∂Ω because of the boundary condition that has been imposed
on V ). In the following, we will use the notation H1 = L2([0, 1], V ). This is
the basic Hilbert space on which the optimization is performed: any problem
involving a diffeomorphism in G as its variable can be formulated as a problem
over H1 through the onto map u �→ ϕu1 . In our setting, the regularization term
R(ϕ) is taken as a squared geodesic distance between ϕ and id on G, this
distance being defined by

dG(ϕ,ϕ′)2 = inf
{∫ 1

0

|ut|2V dt | u ∈ H1, ϕ
u
1 ◦ ϕ = ϕ′

}
. (6)

The variational problem (2) becomes

u∗ = argminu∈H1

(∫ 1

0

|ut|2V dt+ g(ϕu1 (Stemp), Starg)
)

(7)



Modeling Planar Shape Variation via Hamiltonian Flows of Curves 339

Note that the reformulation of the problem from an infinite-dimensional man-
ifold to a Hilbert space comes at the cost of adding a new (time) dimension.
One can certainly be concerned by the fact that the initial problem, which was
essentially matching 1D shape outlines, has become a problem formulated in
terms of time-dependent vector fields on Ω. However, this expansion from 1D
to 3D is only apparent. An optimal solution u∗ ∈ H1 minimizes the kinetic
energy

∫ 1

0 |ut|2V dt over the set of {u ∈ H1 : ϕu∗
1 = ϕu1} (for such u, the data

term stays unchanged). This means that t → ϕu∗
t is a geodesic path from id

to ϕu∗
1 , so that t → u∗,t satisfies an evolution equation which allows for the

whole trajectory and the final sϕ∗ = ϕu∗
1 to be reconstructed from initial data

u∗,0 ∈ V . Moreover, the main results in this paper show that this initial data
can in turn be put into a form u∗,0 = Kp∗,0, where K is a known kernel
operator and p∗,0 is a bounded normal vector field on the boundary of Stemp,
therefore reducing the problem to its initial dimension.

Let us summarize this discussion: comparing shapes via a region-based
approach and global action of non-rigid deformations of the ambient space
is natural for modeling deformations of non-rigid objects. The estimation of
large deformations challenges the usual linearized approaches in terms of dense
displacement fields. The large deformation approach via the ϕ variable, more
natural but apparently more complex, has in fact potentially the same coding
complexity: a normal vector field p∗,0 on the ∂Stemp from which the optimal
ϕ∗, and thus the deformed template shape ϕ∗(Sa), can be reconstructed.

3 Optimal Matching and Geodesic Shooting for Shapes

3.1 Hypotheses on the Compared Shapes

The compared shapes Stemp and Starg are assumed to correspond to the fol-
lowing class of Jordan shapes. We let T be the unit 1D torus T = [0, 1]{0=1}.

Definition 1 (Jordan Shapes). Let k ≥ 1 be a positive integer.

1. We say that γ is a non-stopping piecewise Ck Jordan curve in Ω if γ ∈
C(T, Ω), γ has no self-intersections and there exists a subdivision 0 =
s0 < s1 < · · · < sn = 1 of T such that the restriction γ|[si,si+1] is in
Ck([si, si+1],R2) on each interval and γ′(s) �= 0 for any si < s < si+1.
Such a subdivision will be called an admissible subdivision for γ. We denote
Ck� (Ω), the set of non-stopping piecewise Ck Jordan curves in Ω.

2. Let Sk(Ω) be the set of all subsets Sγ where Sγ is the interior (the unique
bounded connected component of R

2 \ γ(T)) of γ ∈ Ck� (Ω).

Introducing a parameterization γ of the boundary of a Jordan shape S (S =
Sγ), and considering the action of ϕ on curves2 defined by

γdef = ϕ ◦ γ, (8)

2 We check immediately that ϕ′ ◦ (ϕ ◦ γ) = (ϕ′ ◦ ϕ) ◦ γ so that we have an action.
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we get
ϕ(Sγ) = Sϕ◦γ , (9)

so that we can work as well with the curve representation of the boundary
of a shape. A variational problem on Jordan shapes can be translated to
a variational problem on Jordan curves because of the γ → Sγ mapping.
Conversely, if gc(γ) is a driving matching term in a variational problem on
Jordan curves, this term reduces to a driving matching term in a variational
problem on Jordan shapes if

gc(γ) = gc(γ ◦ ζ) (10)

for any C∞ diffeomorphic change of variable ζ : T → T. Such a driving
matching term gc will be called a geometric driving matching term.

3.2 Momentum Theorem for Differentiable Driving Matching
Term

We first study the case of a differentiable gc, in the following sense.

Definition 2. 1. Let (γn)n≥0 be a sequence in Ck� (Ω). We say that γn con-

verges to γ∞ in Ck� (Ω), and write γn
Ck� (Ω)−→ γ∞, if there exists a common

admissible subdivision 0 = s0 < s1 < · · · < sn = 1 of T for all the γn,
n ∈ N ∪ {+∞} such that for any j ≤ k

sup
i,s∈[si,si+1]

∣∣∣∣ djdsj (γn − γ∞)
∣∣∣∣→ 0.

2. We say that Γ : T×]− η, η[ is a smooth perturbation of γ in Ck� (Ω) if
a) Γ (s, 0) = γ(s), for any s ∈ T,
b) Γ (·, ε) ∈ Ck� (Ω), for any |ε| < η,
c) there exists an admissible subdivision 0 = s0 < s1 < · · · < sn = 1 of
γ such that for any 0 ≤ i < n, Γ|[si,si+1]×]−η,η[ ∈ Ck,1([si, si+1]×] −
η, η[,R2).

3. Let gc : Ck� (Ω) → R and γ ∈ Ck� (Ω). We say that gc is Γ -differentiable
(in L2(T,R2)) at γ if there exists ∂gc(γ) ∈ L2(T,R2) such that for any
smooth perturbation Γ in Ck� (Ω) of γ, q(ε) .= gc(Γ (·, ε)) has a derivative
at ε = 0 defined by q′(0) =

∫
T
〈∂gc(γ)(s), (∂Γ/∂ε)(s, 0)〉ds.

Our goal in this section is to prove the following.

Theorem 1. Let p ≥ k ≥ 0 and assume that V is compactly embedded in
Cp+1

0 (Ω,R) and let gc : Ck� (Ω)→ R be lower semi-continuous on Ck� (Ω), i.e.,

lim inf gc(γn) ≥ gc(γ) for any sequence γn
Ck� (Ω)−→ γ.
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1. Let H1 = L2([0, 1], V ). There exists u∗ ∈ H1 such that J(u∗) = minu∈H1

J(u) where

J(u) =
∫ 1

0

|ut|2V dt+ λgc(ϕu1 ◦ γtemp).

2. Assume that gc is Γ -differentiable in Ck� (Ω) at γ∗ = ϕu∗
1 ◦γtemp. Then, the

solution u∗ is in fact in C1([0, 1], V ) and there exists (γt, pt) ∈ Ck� (Ω) ×
L2(T,R2) such that
a) γ0 = γtemp, p1 = −λ∂gc(γ∗) and for any t ∈ [0, 1]

u∗,t(m) =
∫

T

K(m, γt(s))pt(s)ds,

γt = ϕu∗
t ◦ γtemp and pt = (dϕu∗

t,1(γt))
∗(p1),

where ϕut′,t = ϕut ◦ (ϕut′)
−1 and K is the reproducing kernel 3associated

with V 4.
b) γt and pt are solutions in C1([0, 1], L2(T,R2)) of⎧⎨

⎩
∂γ
∂t = ∂

∂pH(γ, p)

∂p
∂t = − ∂

∂γH(γ, p)
, (11)

where H(γ, p) =
1
2

∫
t
p(y)K(γ(y), γ(x))p(x)dxdy.

Moreover, if k ≥ 1 and gc is geometric, then for any t ∈ [0, 1], the mo-
mentum pt is normal to γt, i.e., 〈pt(s), (∂γ1/∂s)(s)〉 = 0 a.e.

Remark 1. Not surprisingly, H can be interpreted as the reduced Hamiltonian
associated with the following control problem on L2(T,R), with control vari-
able u ∈ V : ⎧⎨

⎩
γ̇ = f(γ, u)

γ̇0 = f0(γ, u)
,

where f(γ, u) = u(γ(·)) and f0(γ, u) = 1
2 |u|2V .

3.3 Proof

We give in this section a proof of Theorem 1. Let us recall a regularity result
we borrow from [18] (lemma 11). If V is compactly embedded in Cp+1

0 (Ω,R2),
then for any u, h ∈ H1, Φ : Ω × [−η, η] → R

2 defined by Φ(x, ε) = ϕu+εh
1 (x)

3 K : Ω × Ω → M2(R) (the set of 2 by 2 matrices) is defined by 〈K(·, x)a, v〉V =
〈a, v(x)〉R2 for (a, v) ∈ R

2 × V and its existence and uniqueness are guaranteed
by Riesz’s theorem on continuous linear forms in a Hilbert space.

4 We have used the notation dϕu
t′,t(x) for the differential at x and (dϕu

t′,t(x))∗ for
the adjoint of dϕu

t′,t(x).
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is a map in Cp,1(Ω × [−η, η],R2). From it, we deduce easily for u = u∗ and
h ∈ H1 that Γ (s, ε) .= Φ(γtemp(s), ε) is a smooth perturbation of γtemp in
Ck� (Ω).

Let us denote γ0 = γtemp. The first step is the decomposition of J as G◦F
where F : H1 →M with H1 = L2([0, 1], V ), M = R× Ck� (Ω),

F (u) =
(

1
2

∫ 1

0

|ut|2V dt, γu1
)

where γut = ϕut ◦ γ0 (12)

and G : M → R is given by

G(x, γ) = x+ λgc(γ) (13)

so that

J(u) = G ◦ F (u) =
1
2

∫ 1

0

|ut|2V dt+ λgc(γ). (14)

With this decomposition, we emphasize with F that we have an underlying
curve evolution structure and G appears as a terminal cost from an optimal
control point of view [20].

Point (1) of Theorem 1 follows from the strong continuity of the mapping
u → ϕu1 for the weak convergence in H1 [18] (Theorem 9): if un ⇀ u in

H1, then ϕun1 → ϕu1 in Cp(Ω,R2) so that γn
Ck� (Ω)−→ γ where γn = ϕun1 ◦ γ0 and

γ = ϕu1 ◦γ0. Using the lower semi-continuity property of gc for the convergence
in Ck� (Ω) and the lower semi-continuity of 1

2

∫ 1

0 |ut|2V dt for weak convergence in
H1, we deduce that J is lower semi-continuous for the weak convergence inH1.
Thus, the existence of u∗ comes then from a standard compactness argument
of the strong balls in H1 for the weak topology.

Point (2) of Theorem 1: For any h ∈ H1, F admits a Gâteaux derivative
in H2 = R × L2(T,R2) in the direction h , denoted ∂F (u)(h), and given by
(cf. [18], lemma 10)

∂F (u)(h) = lim
ε→0

1
ε
(F (u + εh)− F (u)) =

(∫ 1

0

〈ut, ht〉dt, vh ◦ γu1
)
, (15)

where γu1 = ϕu1 ◦ γ0 and

vh =
∫ 1

0

dϕut,1(ϕ
u
1,t)ht ◦ ϕu1,tdt. (16)

Considering u = u∗, η > 0, |ε| < η and Γ (s, ε) = γu∗+εh
1 (s), Γ is a smooth

perturbation of γ∗ = γu∗
1 so that if Q(ε) = J(u∗ + εh) = 1

2

∫ 1

0 |u∗,t+ εht|2V dt+
λq(ε), we get

Q′(0) =
∫ 1

0

〈u∗,t, ht〉V dt+ λ

∫
T

〈
∂gc(γ∗)(s),

∂Γ

∂ε
(s, 0)

〉
R2

ds

=
∫ 1

0

〈u∗,t, ht〉V dt+ λ

∫
T

〈∂gc(γ∗)(s), vh ◦ γu∗
1 〉R2ds.
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Using (16), we deduce that

∫
T

〈∂gc(γ∗)(s), vh ◦ γu∗
1 〉ds =

∫ 1

0

∫
T

〈(dϕu∗
t,1(γt))

∗(∂gc(γ∗)(s)), ht(γu∗
t (s))〉dsdt.

Hence, introducing pt(s) = −λ(dϕu∗
t,1(γt))

∗(∂gc(γ∗)(s)), we get

Q′(0) =
∫ 1

0

〈
u∗,t −

∫
T

K(·, γu∗
t (s))pt(s)ds , ht

〉
V

dt.

Since J(u∗) is the minimum of J , Q′(0) = 0 for any h ∈ H1 and we have

u∗,t(m) =
∫

T

K(m, γu∗
t (s))pt(s)ds.

Since t → ϕu∗
t (resp. t → dϕu∗

t ) is a continuous path in C1(Ω,Ω) (resp.
in C(Ω,M2(R))), as soon as V is compactly embedded in C1

0 (Ω,R2) [18],
we deduce that t → γu∗

t is continuous in C(T, Ω), t → pt in L2(T,R2) and
t→ u∗,t in V . Thus, (2a) is proved.

The part (2b) is straightforward: Let us denote γt = γu∗
t . We first check

that
u∗,t(γt) = (∂/∂p)H(γt, pt)

so that ∂γt/∂t(s) = u∗,t(γt(s)) = (∂/∂p)H(γt, pt). Now, from

pt(s) = −(dϕu∗
t,1(γt))

∗(∂gc(γ∗)(s)) = (dϕu∗
t,1(γt))

∗(p1(s))

we get

∂pt
∂t

(s) =
∂

∂t
(dϕu∗

t,1(γt))
∗(p1(s)) = −(dut(γt(s)))∗(pt(s)). (17)

Since V is continuously embedded in C1
0 (Ω,R2), the kernel K is in C1

0 (Ω ×
Ω,M2(R)) and

du∗,t(m) =
∫

T

∂1K(m, γt(s′))pt(s′)ds′,m ∈ Ω

so that5

(dut(γt(s)))∗(pt(s)) =
∫

T

tpt(s)∂1K(γt(s), γt(s′))pt(s′)ds′ =
∂

∂γ
H(γt, pt)

and this combined with (17) provides the required evolution of p.

5 Here and in the following, when α is a function of several variables, the notation
∂1α refers to the partial derivative or differential with respect to the first variable.
We will use this notation in particular when the variables in α are not identified
with a specific letter, which makes notation like ∂/∂x ambiguous.
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Now, from the previous expression of ∂γt/∂t and ∂pt/∂t, one deduces easily
that t→ γt and t→ pt belong to C1([0, 1], L2([0, 1],R2)).

The last thing to be proved is the normality of the momentum for geomet-
ric driving matching terms. Indeed, let α ∈ C∞(T,R) such that α(si) = 0 for
any 0 ≤ i < n where 0 = s0 < · · · < sn = 1 is an admissible subdivision for
γ∗. Let ζ(s, ε) be the flow defined for any s ∈ T by ζ(s, 0) = s and

∂

∂ε
ζ(s, ε) = α(ζ(s, ε)).

Obviously the flow is defined for ε ∈ R and ζ ∈ C∞(T × R,T) and satisfies
ζ(si, ε) = si for any 0 ≤ i ≤ n so that Γ (s, ε) = γ∗(ζ(s, ε)) is a smooth
perturbation in Ck� (Ω) of γ∗. Since gc is geometric, gc(Γ (·, ε)) ≡ gc(γ∗) so
that ∫

T

〈
∂gc(γ∗)(s),

∂Γ

∂ε
(s, 0)

〉
ds =

∫
T

〈∂gc(γ∗)(s), ∂
∂s
γ∗(s)α(s)〉ds = 0.

Considering all the possible choices for α, we deduce that

〈∂gc(γ∗)(s), (∂γ∗/∂s)〉 = 0

a.e. so that 〈p1(s), ∂∂sγ∗(s)〉 = 0 a.e. Since pt(s) = (dϕu∗
t,1(γt))

∗(p1(s)), we get

〈
pt(s),

∂

∂s
γt(s)

〉
=
〈
p1(s), dϕu∗

t,1(γt)
(
∂

∂s
γt(s)

)〉
=
〈
p1(s),

∂

∂s
γ∗(s)

〉

so that 〈pt(s), ∂∂sγt(s)〉 = 0 a.e.

4 Application to Measure-Based Matching

4.1 Measure Matching

We present here a first application of Theorem 1 for shape matching. This is
a particular case of a more general framework introduced in [8] for measure
matching.

Let Ms(Ω) be the set of signed measures on Ω and consider I, a Hilbert
space of functions on Ω, such that I is continuously embedded in Cb(Ω,R),
the set of bounded continuous functions. SinceMs(Ω) is the dual of Cb(Ω,R)

and I
cont.
↪→ Cb(Ω,R), we haveMs(Ω)

cont.
↪→ I∗ where I∗ is the dual of I. Define

the action of diffeomorphisms on I∗, (ϕ, µ)→ ϕ · µ, by (ϕ · µ, f) = (µ, f ◦ ϕ),
which, in the case when µ is a measure, yields

(ϕ · µ, f) .=
∫
fd(ϕ · µ) =

∫
f ◦ ϕdµ, ∀f ∈ I ⊂ Cb(Ω,R).
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The dual norm on I∗ provides a nice way to compare two signed measures µ
and ν:

|µ|I∗ = sup
f∈I,|f |I≤1

∫
Ω

fdµ.

Introduce the reproducing kernel (x, y) �→ kI(x, y) on I, which is such that,
for f ∈ I and x ∈ Ω,

f(x) = 〈f, kI(x)〉I
with kI(x) : y �→ kI(x, y). We have

〈µ, ν〉I∗ =
∫
Ω×Ω

kI(x, y)dµ(x)dν(y). (18)

Indeed,∫
Ω

f(x)dµ(x) =
∫
Ω

〈f, kI(x)〉I dµ(x) =
〈
f,

∫
Ω

kI(x, ·)dµ(x)
〉
I

,

which is maximized for f(y) = 1
C

∫
Ω kI(x, y)dµ(x) with

C =
∣∣∣∣
∫
Ω

kI(·, x)dµ(x)
∣∣∣∣
I

so that |µ|I∗ = C. Now, we have

C2 =
∫
Ω

∫
Ω

〈kI(x), kI(y)〉Idµ(x)dµ(y) =
∫
Ω

∫
Ω

kI(x, y)dµ(x)dµ(y)

from the properties of a reproducing kernel. This proves (18).
Coming back to the shape matching problem, for any curve γ : T → R

2,
we define µγ ∈Ms(Ω) by∫

Ω

fdµγ =
∫

T

f ◦ γ(s)ds.

For example, when S is a Jordan shape and γ is a parameterization with con-
stant speed, µγ is a uniform measure on ∂S (a probability measure if properly
normalized). More generally, given a compact submanifold M of dimension k,
one can associate with M the uniform probability measure denoted µM . This
measure framework is also useful to represent finite unions of submanifolds of
different dimensions or more irregular structures (see [8]). Moreover, this al-
lows various approximation schemes since for any reasonable sampling process
over the manifold M , µn = 1

n

∑n
i=1 δxi → µM . We focus on the simple case

of 2D shape modeling but instead of working with the approximation scheme
µn = 1

n

∑n
i=1 δxi (by uniform sampling on the curve) we will work with a

continuous representation as a 1D measure µγ where S = Sγ . We introduce
as in [8] the following energy:
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J(u) .=
1
2

∫ 1

0

|ut|2V dt+
λ

2
|ϕu1 · µ∂Stemp − µ∂Starg|2I∗

=
1
2

∫ 1

0

|ut|2V dt+
λ

2
|ϕu1 · µγtemp − µγtarg|2I∗ ,

where γtemp (resp. γtarg) is a constant speed parameterization of Stemp (resp.
Starg).

Note that for any f ∈ I,∫
fd(ϕ · µγ) =

∫
f ◦ ϕdµγ =

∫
f ◦ ϕ ◦ γds =

∫
fd(µϕ◦γ)

so that, with

gc(γ) =
1
2
|µγ − µγtarg |2I∗ ,

minimizing J is a variational problem which is covered by Theorem 1. It is
clear that gc is not geometric since, in general, µγ◦ζ �= µγ for a change of
variable ζ : T → T. However, this approach provides a powerful matching
algorithm between unlabelled sets of points and submanifolds.

Let p ≥ k ≥ 0 and consider Γ a smooth perturbation of a curve γ ∈ Ck� (Ω).
Then if v(s) = (∂Γ/∂ε)(s, 0) and q(ε) = gc(Γ (·, ε)) we get immediately

q′(0) =
∫

T×T

〈∂1kI(γ(s), γ(s′))− ∂1kI(γ(s), γtarg(s′)), v(s)〉 dsds′

giving

∂gc(γ)(s) =
∫

T

(∂1kI(γ(s), γ(s′)) − ∂1kI(γ(s), γtarg(s′))) ds′.

Theorem 1 can therefore be directly applied, yielding the following.

Theorem 2. Let p ≥ k ≥ 0 and assume that V is compactly embedded in
Cp+1

0 (Ω,R). Let I be a Hilbert space of real-valued functions on Ω and as-
sume that I is continuously embedded in Ck(Ω,R). Let Stemp and Starg be
two Jordan shapes in Sk(Ω). Then the conclusions of Theorem 1 are true,
with

p1(s) = −λ∂gc(γ1)(s) =
∫

T

(∂1kI(γ1(s), γtarg(s′))− ∂1kI(γ1(s), γ1(s′))) ds′.

From Theorem 1, we have pt = (dϕu∗
t,1(γt))

∗(p1), and since p ≥ k, it inherits
the smoothness properties of p1. Now, if 0 ≤ s0 < · · · < sn = 1 is an admissible
partition of γtemp (i.e., Stemp has a Ck boundary except at a finite number
γtemp(s0), . . . , γtemp(sn) of possible “corners”) then p1 is continuous and p1

restricted to [si, si+1] is Ck, and this conclusion is also true for all pt.
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4.2 Geometric Measure-Based Matching

As said before, the previous formulation is not geometric and, in particular,
µγ∗ is not generally the uniform measure on S∗ = ϕu∗

1 (Stemp), i.e., µγ∗ �= µS∗ .
If we want to consider a geometric action, we can propose a new data term,
derived from the previous one, which is now fully geometric:

gc(γ) =
1
2
|µ∂Sγ − µ∂Starg|2I∗

or equivalently

gc(γ) =
1
2

∫
T×T

kI(γ(s), γ(r)) |γ′(s)| |γ′(r)| dsdr

+
1
2

∫
T×T

kI(γtarg(s), γtarg(r)) |γ′targ(s)| |γ′targ(r)| dsdr

−
∫

T×T

kI(γ(s), γtarg(r)) |γ′(s)| |γ′targ(r)| dsdr. (19)

The main difference from the previous non-geometric matching term is the
introduction of the speed of γ and γtarg in the integrals (with the notation
γ′(s) = ∂γ(s)/∂s).

The derivative of gc(γ) under a smooth perturbation Γ of γ in Ck� (Ω) for
k ≥ 2 can be computed. Note first that for γ ∈ Ck� (Ω) and k ≥ 2, we can
define for any s ∈ T \ {s0, . . . , sn} (where 0 = s0 < · · · < sn = 1 is an
admissible subdivision of γ), the Frenet frame (τs, ns) along the curve, and
the curvature κs. In the following we will use the relations γ′(s) = |γ′(s)|τs
and ∂τs/∂s = κs|γ′(s)|ns. Let Γ be a smooth perturbation of γ in Ck� (Ω) for
k ≥ 2. As previously, we will denote v(s) = (∂Γ/∂ε)(s, 0). Since Γ is C1, we
have (∂v/∂s) = (∂γ′/∂ε)(s, ε)|ε=0. Then, if q(ε) = gc(Γ (·, ε)), assuming that
kI ∈ C1(Ω ×Ω,R),

q′(0) =
∫

T×T

[〈∂1kI(γ(s), γ(r)), v(s)〉 |γ′(s)|

+ kI(γ(s), γ(r)) 〈τs, ∂v/∂s〉] |γ′(r)| dsdr

−
∫

T×T

[〈∂1kI(γ(s), γtarg(r)), v(s)〉 |γ′(s)|

+ kI(γ(s), γtarg(r)) 〈τs, ∂v/∂s〉] |γ′targ(r)| dsdr.

Consider the term
∫

T
kI(γ(s), γ(r)) 〈τs, ∂v/∂s〉 ds. Integrating by parts on

each [si, si+1] yields
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T

kI(γ(s), γ(r)) 〈τs, ∂v/∂s〉 ds =
n∑
i=0

kI(γ(si), γ(r)) 〈−δτi, v(si)〉

−
∫

T

〈[〈∂1kI(γ(s), γ(r)), τ(s)〉 τs + kI(γ(s), γ(r)) κsns] , v(s)〉 |γ′(s)| ds,
(20)

where δτi = lim
r→0

τsi+r − lim
r→0

τsi−r (note that v is always continuous). Since
we have allowed corners in our model of shapes, the boundary terms of the
integration do not vanish, and consequently gc is not Γ -differentiable, unless
we allow singular terms (Dirac measures) in the gradient, which is possible
but will not be addressed here. In the case of smooth curves, the singular
terms cancel and we have the following.

Theorem 3. Let p ≥ k ≥ 2 and assume V
comp.
↪→ Cp+1

0 (Ω,R) and I
cont.
↪→

Ck(Ω,R). Let Stemp and Starg be two Ck Jordan shapes. Then, the conclusions
of Theorem 1 are valid for

J(u) =
1
2

∫ 1

0

|ut|2V dt+
λ

2
|µ∂Sγ − µ∂Starg|2I∗

with

p1(s) = −λ
[∫

T

[〈∂1kI(γ1(s), γ1(r)), ns〉 − kI(γ1(s), γ1(r))κs] |γ′1(r)| dr

−
∫

T

[〈∂1kI(γ1(s), γtarg(r)), ns〉−kI(γ1(s), γtarg(r))κs] |γ′targ(r)| dr
]
|γ′1(s)|ns.

(21)

Moreover, pt is at all times normal to the boundary of γt.

The normality of pt at all times is a consequence of Theorem 1, but can be
seen directly from the fact that p1 is normal to γ1 and from the equations
pt = (dϕu∗

t,1(γt))
∗(p1) and γt = ϕ1,t(γ1).

4.3 Geometric Measure-Based Matching, Second Formulation

The following version of the driving term has a non-singular gradient, at the
difference of the previous one. Define

gc(γ) =
1
2

∫
T×T

kI(γ(s), γ(r)) 〈γ′(s), γ′(r)〉 dsdr

+
1
2

∫
T×T

kI(γtarg(s), γtarg(r))
〈
γ′targ(s), γ

′
targ(r)

〉
dsdr

−
∫

T×T

kI(γ(s), γtarg(r))
〈
γ′(s), γ′targ(r)

〉
dsdr, (22)
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i.e., we replace products of scalar velocities by dot products of vector velocities.
This expression may be interpreted as follows: given a curve γ, one may define
the vector-valued Borel measure −→µ γ such that for any continuous vector field
v : Ω → R

2,
−→µ γ(v) =

∫
T

〈v(γ(s)), γ′(s)〉 ds.

Now extend the | · |I norm introduced in the Section 4.1 to vector-valued maps
v = (vx, vy) : Ω → R

2 by defining |v|I =
√|vx|2I + |vy|2I . One may check that

the corresponding matrix-valued kernel is the scalar kernel kI(x, y) times the
identity matrix. Consequently, formula (22) corresponds in this setting to the
dual norm squared error |−→µ γ −−→µ γtarg|2I∗ .

Let Γ be a smooth perturbation of γ in Ck� (Ω) for k ≥ 1, and denote
v(s) = (∂Γ/∂ε)(s, 0) and q(ε) = gc(Γ (·, ε)) as before. We have

q′(0) =
∫

T×T

[〈∂1kI(γ(s), γ(r)), v(s)〉 〈γ′(s), γ′(r)〉

+ kI(γ(s), γ(r)) 〈∂v/∂s, γ′(r)〉] dsdr

−
∫

T×T

[〈∂1kI(γ(s), γtarg(r)), v(s)〉
〈
γ′(s), γ′targ(r)

〉
+ kI(γ(s), γtarg(r))

〈
∂v/∂s, γ′targ(r)

〉
] dsdr.

Integrating by parts on each [si, si+1] the second part of each integral,

q′(0) =
∫

T×T

[〈∂1kI(γ(s), γ(r)), v(s)〉 〈γ′(s), γ′(r)〉

− 〈∂1kI(γ(s), γ(r)), γ′(s)〉 〈v(s), γ′(r)〉] dsdr

−
∫

T×T

[〈∂1kI(γ(s), γtarg(r)), v(s)〉
〈
γ′(s), γ′targ(r)

〉
− 〈∂1kI(γ(s), γtarg(r)), γ′(s)〉

〈
v(s), γ′targ(r)

〉
] dsdr.

Hence in this case we get a Γ -derivative

∂gc(γ)(s) =
∫

T

[〈γ′(s), γ′(r)〉 ∂1kI(γ(s), γ(r))

− 〈∂1kI(γ(s), γ(r)), γ′(s)〉 γ′(r)] dr

−
∫

T

[
〈
γ′(s), γ′targ(r)

〉
∂1kI(γ(s), γtarg(r))

− 〈∂1kI(γ(s), γtarg(r)), γ′(s)〉 γ′targ(r)] dr.
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As expected, this can be rewritten to get an expression which is purely normal
to the curve γ. Indeed,

∂gc(γ)(s) =
[∫

T

〈nr, ∂1kI(γ(s), γ(r))〉 |γ′(r)| dr

−
∫

T

〈
ntargr , ∂1kI(γ(s), γtarg(r))

〉 |γ′targ(r)| dr
]
|γ′(s)| ns.

This implies the following.

Theorem 4. Let p ≥ k ≥ 1 and assume V
comp.
↪→ Cp+1

0 (Ω,R) and I
cont.
↪→

Ck(Ω,R). Let Stemp and Starg be two Jordan shapes in Sk(Ω). Then the con-
clusions of Theorem 1 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt+
λ

2
|−→µ ϕu1 ◦γtemp −−→µ γtarg |2I∗

with

p1(s) = −λ
[∫

T

〈nr, ∂1kI(γ1(s), γ1(r))〉 |γ′1(r)| dr

−
∫

T

〈
ntargr , ∂1kI(γ1(s), γtarg(r))

〉 |γ′targ(r)| dr
]
|γ′1(s)| ns. (23)

Moreover, pt is at all times normal to the boundary of γt, continuous and
Ck−1 on any interval on which γtemp is Ck.

5 Application to Shape Matching via Binary Images

5.1 Shape Matching via Binary Images

Another natural way to build a geometric driving matching term is to consider,
for any shape S, the binary image χS such that χS(m) = 1 if m ∈ S and 0
otherwise. Then the usual L2 matching term between images (

∫
Ω(Itemp◦ϕ−1−

Itarg)2dm) leads to the area of the set symmetric difference
∫
Ω
|χϕ(Stemp) −

χStarg |dm. Introducing

gc(γ) =
∫
Ω

|χSγ − χStarg |dm

we get an obviously geometric driving matching term leading to the definition
of

J(u) =
∫ 1

0

|ut|2V dt+ λ

∫
Ω

|χSγu1 − χStarg|dm,
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where γu1 = ϕu1 ◦γtemp. The problem of diffeomorphic image matching has been
thoroughly studied in the case of sufficiently smooth images in ([13], [18], [1]).
It has been proved that the momentum, p0, is a function defined on Ω of the
form p0 = α∇Itemp, where α = |dϕu∗

0,1|(Itemp − Itarg ◦ ϕu∗
0,1) ∈ L2(Ω,R). This

particular expression α∇Itemp shows that the momentum is normal to the
level sets of the template image and vanishes on regions over which Itemp is
constant. (This property is conserved over time for the deformed images It.
This is what we called the normal momentum constraint [12].) In the case
of binary images, we lose the smoothness property since ∇Itemp is singular
and much less was known except that the momentum is a distribution whose
support is concentrated on the boundary of Stemp. We show in this section that
this distribution is as simple as it can be, and is essentially an L2 function on
the boundary of the template, or using a parameterization (and with a slight
abuse of notation), an element of p0 ∈ L2(T,R2) which is everywhere normal
to the boundary.

The main idea is to proceed like in Theorem 1, but here we have to deal
with the fact that gc is not Γ -differentiable in Ck� (Ω) (it is still lower semi-
continuous for k ≥ 1). We need to introduce for this the weaker notion of
Γ -semi-differentiability and a proper extension of Theorem 1.

5.2 Momentum Theorem for Semi-Differentiable Driving
Matching Term

We start with the definition of the Γ -semi-differentiability.

Definition 3. Let gc : Ck� (Ω)→ R and γ ∈ Ck� (Ω). We say that gc is Γ -semi-
differentiable at γ if for any smooth perturbation Γ in Ck� (Ω) of γ, q(ε) .=
gc(Γ (·, ε)) has left and right derivatives at ε = 0. We say that gc has Γ -semi-
derivatives upper bounded by B if B is a bounded subset of L2(T,R2) such
that for any smooth perturbation Γ in Ck� (Ω) of γ, there exists b ∈ B such
that

∂+q(0) ≤
∫

T

〈b(s), (∂Γ/∂ε)(s, 0)〉ds,

where ∂+q(0) denotes the right derivative of q at 0.

Under this weaker condition, we can prove the following extension of Theo-
rem 1.

Theorem 5. Let p ≥ k ≥ 0 and assume that V is compactly embedded in
Cp+1

0 (Ω,R) and let gc : Ck� (Ω)→ R be lower semi-continuous on Ck� (Ω), i.e.,

lim inf gc(γn) ≥ gc(γ) for any sequence γn
Ck� (Ω)−→ γ.

1. Let H1 = L2([0, 1], V ). There exists u∗ ∈ H1 such that J(u∗) = minu∈H1

J(u) where

J(u) =
∫ 1

0

|ut|2V dt+ λgc(ϕu1 ◦ γtemp).
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2. Assume that gc is Γ -semi-differentiable in Ck� (Ω) at γ∗ = ϕu∗
1 ◦ γtemp with

Γ -semi-derivatives upper bounded by B ⊂ L2(T,R2). Then, the solution
u∗ is in fact in C1([0, 1], V ) and there exist (γt, pt) ∈ Ck� (Ω) × L2(T,R2)
such that
a) γ0 = γtemp, p1 = −λb with b ∈ conv(B) and for any t ∈ [0, 1]

u∗,t(m) =
∫

T

K(m, γt(s))pt(s)ds,

γt = ϕu∗
t ◦ γtemp and pt = (dϕu∗

t,1(γt))
∗(p1)

where ϕus,t = ϕut ◦ (ϕus )
−1 and K is the reproducing kernel associated

with V .
b) γt and pt are solutions in C1([0, 1], L2(T,R2)) of{ ∂γ

∂t = ∂
∂pH(γ, p)

∂p
∂t = − ∂

∂γH(γ, p)
(24)

where H(γ, p) = 1
2

∫ t
p(y)K(γ(y), γ(x))p(x)dxdy.

Proof. The proof of Theorem 5 follows closely the lines of the proof of The-
orem 1. In particular, introduce F and G as in equations (12) and (13),
and for u ∈ H1, consider ∂F (u) defined by (15) and (16). We focus on
the proof of point (2), since point (1) does not differ from Theorem 1. Let
h ∈ H1 , η > 0, |ε| < η and Γ (s, ε) = γu∗+εh

1 (s) where γut = ϕut ◦ γtemp.
The mapping Γ is a smooth perturbation of γ∗ = γu∗

1 in Ck� (Ω) and if
Q(ε) = J(u∗ + εh) = 1

2

∫ 1

0
|u∗,t + εht|2V dt + λq(ε) where q(ε) .= gc(Γ (·, ε)),

we deduce from the hypothesis that there exists b ∈ B such that

∂+Q(0) ≤
∫ 1

0

〈ut, ht〉dt+
∫

T

〈b(s), (∂Γ/∂ε)(s, 0)〉ds = 〈∂F (u∗)h, b〉H2 ,

where H2 = R× L2(T,R2) and b = (1, b). We need now the following lemma.

Lemma 1. Let F : H1 →M and G : M → R∪{+∞} be two mappings where
H1 is a separable Hilbert space. Let us assume the following:

(H1) There exists u∗ ∈ H1 such that

G ◦ F (u∗) = inf
u∈H1

G ◦ F (u) < +∞.

(H2) For any h ∈ H1, the function ρh(ε) = G ◦ F (u∗ + εh) has left and right
derivatives at 0 and the following holds for a separable Hilbert space H2

and a bounded subset D of H2: there exists a linear mapping ∂F (u∗) :
H1 → H2 such that, for any h ∈ H1, there exists b̄ ∈ D with

∂+ρh(0) ≤ 〈b, ∂F (u∗)h〉. (25)
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Then, there exists b∗ ∈ conv(D), the closure in H2 of the convex hull of D,
such that for any h ∈ H1

〈b∗, ∂F (u∗)h〉 = 0. (26)

Proof. Let Ẽ be the closure in H2 of the linear space ∂F (u∗)(H1) and π the
orthogonal projection on Ẽ. Now, let C = conv(D). From (H2), we get that
C is a non-empty bounded closed convex subset of H2 so that we deduce from
corollary III.19 in [2] that C is weakly compact. Now, π is continuous for the
weak topology so that C̃ = π(C) is weakly compact and thus strongly closed.
From the projection theorem on closed non-empty convex subsets of Hilbert
spaces (Theorem V2 in [2]), we deduce that there exist b̃∗ ∈ C̃ such that
|b̃∗| = inf b̃∈C̃ |b̃| and 〈b̃∗, b̃ − b̃∗〉 ≥ 0 for any b̃ ∈ C̃. Considering b∗ ∈ C such
that π(b∗) = b̃∗ we deduce eventually that for any b ∈ C,

|b̃∗|2 = 〈b̃∗, b∗〉 ≤ 〈b̃∗, b〉. (27)

Assume that b̃∗ �= 0, and let h ∈ H1 such that |b̃∗ + ∂F (u∗)h| ≤ |b̃∗|2/2M
where supb∈C |b| ≤M <∞. From (H2), there exists b ∈ C such that

∂+
0 ρh ≤ 〈b, ∂F (u∗)h〉 ≤ (|b̃∗|2/2− 〈b, b̃∗〉)

so that using (27), we get

∂+
0 ρh ≤ −|b̃∗|2/2 < 0,

which is in contradiction with (H1).
Hence b̃∗ = 0 and b∗ is orthogonal to Ẽ which gives the result.

Using the lemma, we deduce that there exists b ∈ B such that for any h ∈ H1,∫ 1

0

〈u∗,t, ht〉V dt+ λ

∫
T

〈b(s), vh(γ(s))〉R2ds = 0,

where
vh =

∫
dϕu∗

t,1(ϕ
u∗
1,t)ht ◦ ϕu∗

1,tdt.

Denoting pt(s) = −λ(dϕu∗
t,1(γt(s)))

∗(b(s)), we get eventually for any h ∈ H1

∫ 1

0

〈u∗,t −
∫

T

K(·, γu∗
t (s))pt(s)ds, ht〉V dt = 0

so that
u∗,t(m) =

∫
T

K(m, γu∗
t (s))pt(s)ds. (28)

Given this representation of u∗,t the remainder of the proof of Theorem 5 is
identical to that of Theorem 1.
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5.3 Momentum Description for Shape Matching via Binary Images

Coming back to the case of the driving matching term gc defined by

gc(γ) =
∫
Ω

|χSγ − χStarg|dm,

the Γ -semi-differentiability is given in the following proposition. For a shape
S in Sk(Ω), denote by dS the function equal to −1 within S and to 1 outside.

Proposition 1. Let p ≥ k ≥ 1 and assume that V is compactly embedded in
Cp+1

0 (Ω,R). Let Starg be a Jordan shape in Sk(Ω) and gc : Ck� (Ω) → R such
that

gc(γ) =
∫
Ω

|χSγ − χStarg|dm.

Let γ1 ∈ Ck� (Ω) be positively oriented. Denote T0 = {s ∈ T | γ1(s) /∈ ∂Starg}
and

T+ = {s ∈ T \ T0| ntarg(γ1(s)) and n1(γ1(s))

exist and n1(γ1(s)) = ntarg(γ1(s))},
n1 and ntarg being the outward normals to the boundaries of Sγ1 and Starg

(which are well defined except at a finite number of locations).
Then, gc is Γ -semi-differentiable at γ1 and for any smooth perturbation Γ

of γ1 in Ck� (Ω), if q(ε) = gc(Γ (·, ε)), we have

∂+q(0) ≤
∫

T0

dStarg(γ1(s))〈(∂Γ/∂ε)(s, 0), n1(γ1(s))〉|∂γ1/∂s|ds

+
∫

T+

|〈(∂Γ/∂ε)(s, 0), n1(γ1(s))〉||∂γ1/∂s|ds.

Moreover, if

B = {b ∈ L2(T,R2) |
b(s) = dStarg(γ1(s))n1(γ1(s)) when γ1(s) /∈ ∂Starg and |b(s)| ≤ 1 otherwise},

then the Γ -semi-derivatives of gc at γ1 are upper bounded by B.

Proof. Let Γ be a smooth perturbation of γ1 in Ck� (Ω) and let v(s) =
(∂Γ/∂ε)(s, 0). Denote for any ε ∈] − η, η[, Sε = SΓ (·,ε), S′

ε = Ω \ Sε so that
S0 = Sγ1 and∫

Ω

|χSε − χStarg|dm =
∫
Sε

|1− χStarg|dm+
∫
S′
ε

|0− χStarg |dm

=
∫
Sε

(1− 2χStarg)dm+ Cst.
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The proof relies on the following remark: for any bounded measurable
function f on Ω, we have∫

Sε

f(m)dm−
∫
S0

f(m)dm

=
∫ ε

0

∫
T

f ◦ Γ (s, α)|(∂Γ/∂α), (∂Γ/∂s)|(s, α)dsdα,

where |a, b| denotes det(a, b) for a, b ∈ R
2. If Γ is C1 and f is smooth, one

can assume that there exists a diffeomorphism ϕε such that ϕ0 = id and
for Γ (s, ε) = ϕε(Γ (s, 0)), in which case the result is a consequence of the
divergence theorem [4]. The general case can be derived by density arguments
that we skip to avoid technicalities.

Denote, for any a,m ∈ R
2,

χaStarg
(m) = lim sup

t→0,t>0
χStarg(m+ ta).

Since Starg ∈ Sk(Ω), we can define nm, the outwards normal to the bound-
ary of Starg everywhere except in a finite number of locations and we get
immediately that χaStarg

(m) = χStarg(m) for m /∈ ∂Starg and χaStarg
(m) =

(1− sgn(〈a, ntarg(m)〉))/2 for 〈a, nm〉 �= 0.
Let T

′ = {s ∈ T | γ1(s) ∈ ∂Starg, 〈v(s), ntarg(γ1(s))〉 = 0 }. There can be
at most a finite number of points s ∈ T

′ such that 〈(∂γ1/∂s), ntarg(γ1(s))〉 �=
0, since this implies that s is isolated in T

′. For all other s ∈ T
′, we have

〈(∂γ1/∂s), ntarg(γ1(s))〉 = 0 and |v(s), (∂γ1/∂s)| = 0 so that

0 = lim
α→0,α>0

(
1− 2χStarg ◦ Γ (s, α)

)|(∂Γ/∂α), (∂Γ/∂s)|(s, α)

=
(
1− 2χv(s)Starg

◦ γ1(s)
)|v(s), (∂γ1/∂s)|. (29)

We check easily that if s /∈ T
′, then γ1(s) /∈ ∂Starg or γ1(s) ∈ ∂Starg and

〈v(s), ntarg(γ1(s))〉 �= 0, so that

lim
α→0,α>0

(
1− 2χStarg ◦ Γ (s, α)

) |(∂Γ/∂α), (∂Γ/∂s)|(s, α)

=
(
1− 2χv(s)Starg

◦ γ1(s)
)|v(s), (∂γ1∂s)|. (30)

Using the dominated convergence theorem and equations (29) and (30), we
deduce

lim
ε→0,ε>0

1
ε

(∫
Sε

dStargdm−
∫
S0

dStargdm

)

=
∫

T

(
1− 2χv(s)Starg

◦ γ1(s)
)|v(s), (∂γ1/∂s)|ds. (31)
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(We have dStarg = 1− 2χStarg.) Considering T0, T+ and T− = T \ (T0 ∪T+) as
introduced in Theorem 1, we get

∂+q(0) =
∫

T0

dStarg(γ1(s))〈v(s), n1(γ1(s))〉|∂γ1/∂s|ds

+
∫

T+

|〈v(s), n1(γ1(s))〉||∂γ1/∂s|ds

−
∫

T−
|〈v(s), n1(γ1(s))〉||∂γ1/∂s|ds, (32)

which ends the proof of Proposition 1.

Given Proposition 1, we can immediately apply Theorem 5 and get a
precise description of the initial momentum.

Theorem 6. Let p ≥ k ≥ 1 and assume that V is compactly embedded in
Cp+1

0 (Ω,R). Let Stemp and Starg be two Jordan shapes in Sk(Ω). Then the
conclusions of Theorem 5 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt+ λ

∫
Ω

|χSγu1 − χStarg|dm

with
p1(s) = λβ1(s)|∂γ1/∂s|n1(s),

where
β1(s) = (2χStarg − 1) ◦ γ1(s) if γ1(s) ∈ Ω \ ∂Starg (33)

and |β1(s)| ≤ 1 for all s. Here n1 is the outwards normal to the boundary
∂Sγ1 (which is defined everywhere except on a finite number of points).

Proof. This is a direct consequence of Proposition 1 and Theorem 5.

Using the fact that pt(s) = (dϕu∗
t,1(γt(s)))

∗(p1(s)), a straightforward compu-
tation gives

p0(s) = λβ1(s)|dϕu∗
0,1(γ0(s))||∂γ0/∂s|n0

γ0(s)
,

where n0 is the outwards normal to ∂Stemp. In particular, assuming an arc-
length parameterization of the boundary of Stemp, we get that the norm of the
initial momentum is exactly equal to the value of the Jacobian of the optimal
matching at any location s ∈ T0 (see Proposition 1) along the boundary.

6 Application to Driving Terms Based on a Potential

In this section, we consider the case

gc(γ) =
∫
γ

Utarg(x)dx =
∫

T

Utarg(γ(s))|γ′(s)|ds,
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where Utarg ≥ 0 is a function, depending on the target shape, which van-
ishes only for x ∈ ∂Starg, the main example being the distance function
Utarg(x) = dist(∂Starg, x).6 However, before dealing specifically with the dis-
tance function, we first address the simpler case of smooth Utarg. We moreover
restrict to smooth templates (without corners) to avoid the introduction of
additional singularities. Then, an easy consequence of Theorem 1 is the fol-
lowing.

Theorem 7. Let p ≥ k ≥ 2 and assume that V is compactly embedded in
Cp+1

0 (Ω,R). Let Stemp be a C2 Jordan shape and Utarg be a C1 function in
R

2. Then the conclusions of Theorem 1 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt+ λ

∫
T

Utarg(γ1(s))|∂γ1|/∂sds

with
p1 = −λ|γ′1(s)|

(∇⊥
γ1(s)

Utarg − Utarg(γ1(s))κ1(s)n1(s)
)
,

where n1 is the normal to γ1, κ1 is the curvature on γ1 and ∇⊥
γ1(s)Utarg is the

normal component of the gradient of Utarg to γ1.

Proof. The hypothesis on Utarg obviously implies the continuity of gc. Let γ
be a C2 curve and Γ a smooth perturbation of γ. The derivative at 0 of the
function q(ε) = gc(Γ (·, ε)) is (letting v(s) = (∂Γ/∂ε)(s, 0)):

q′(0) =
∫

T

(〈∇γ(s)Utarg , v(s)
〉|γ′1(s)|+ Utarg(γ(s))〈τs , ∂v/∂s〉

)
ds

=
∫

T

(〈∇γ(s)Utarg −
〈∇γ(s)Utarg , τs

〉
τs , v(s)

〉
−〈Utarg(γ(s))κsns , v(s)〉) |γ′1(s)|ds

=
∫

T

(〈∇⊥
γ(s)Utarg, v(s)〉 − 〈Utarg(γ(s))κsns , v(s)〉

)|γ′1(s)|ds
where the second equation comes from an integration by parts. This proves
Theorem 7.

Now, consider the case Utarg = dist(∂Starg, ·). This function has singulari-
ties on ∂Starg and on the medial axis, denoted Σ̂targ, which consists of points
m ∈ R

2 which have at least two closest points in ∂Starg. Denote

∂+
mUtarg(h) .= lim

ε→0,ε>0
(Utarg(m+ εh)− Utarg(m))/ε

when the limit exists. We assume that there is a subset Σtarg ⊂ Σ̂targ such
that
6 This can be seen as a form of diffeomorphic active contours since the potential

Utarg can obviously arise from other contexts, for example, from the locations of
discontinuities within an image.
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• Σ̂targ \Σtarg has a finite or number of points.
• Σtarg is a union of smooth disjoint curves in R

2.
• The directional derivatives

∂+
mUtarg(h) .= lim

ε→0,ε>0
(Utarg(m+ εh)− Utarg(m))/ε = |〈h , ntarg(m)〉|

exist for m ∈ Σtarg and h ∈ R
2, and are negative if h is not tangent to

Σtarg. If h is tangent to Σtarg, the function U(m+ εh) is differentiable at
ε = 0, with derivative denoted ∂mUtarg · h.

Let Rtarg = R
2 \ (∂Starg ∪ Σtarg). The gradient of Utarg on this set is well

defined and has norm 1. On ∂Starg, we have Utarg = 0 and

∂+Utarg(m)(h) = |〈h , ntarg(m)〉| .
We have

q′(0) =
∫

T

∂+Utarg(γ(s))(v(s))|γ′(s)|ds+
∫

T

Utarg(γ(s))〈τs , ∂v/∂s〉ds.

Denote T0 = γ−1(Rtarg), T+ = γ−1(∂Starg) and

T∗ = {s ∈ T, γ(s) ∈ Σtarg, v(s) tangent to Σtarg}
with the convention that 0 is always tangent to Σtarg. For the remaining points
in T (up to a finite number), ∂+Utarg(m)(v(s)) ≤ 0 so that the first integral
is bounded by∫

T0

〈∇γsUtarg , v(s)〉|γ′(s)|ds+
∫

T+

|〈n(s) , v(s)〉| |γ′(s)|ds

+
∫

T∗
∂γ(s)Utarg(v(s))|γ′(s)|ds.

We now address the integration by parts needed for the second integral. This
leads us to compute the derivative, with respect to s, of Utarg(γ(s)). Consider
the three cases: (i) γ(s) ∈ Rtarg; (ii) γ(s) ∈ ∂Starg and γ′(s) is tangent to
∂Starg; (iii) γ(s) ∈ Σtarg and γ′(s) is tangent to Σtarg. Points which are in
none of these categories are isolated in T and therefore do not contribute to
the integral. In all these cases, the function s �→ Utarg(γ(s)) is differentiable.
Moreover, in case (ii), the differential is 0, and in case (iii), the resulting term
cancels with the integral over T∗ above. All this together implies that

∂+q(0) ≤
∫

T0

〈∇⊥
γsUtarg , v(s)

〉|γ′(s)|ds+
∫

T+

|〈n(s) , v(s)〉| |γ′(s)|ds

−
∫

T

Utarg(γ(s))κsnsds.

This finally implies the following.
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Theorem 8. Let p ≥ k ≥ 2 and assume that V is compactly embedded in
Cp+1

0 (Ω,R). Let Stemp and Starg be two Ck Jordan shapes. Then the conclu-
sions of Theorem 5 hold for

J(u) =
1
2

∫ 1

0

|ut|2V dt+ λ

∫
T

Utarg(γu1 (s))|∂γu1 /∂s|ds

with Utarg = dist(∂Starg, ·) and

p1(s) = −λ|γ′1(s)|(β1(s)− Utarg(γ1(s))κ1(s))n1(s)

with β1(s) =
〈∇⊥

γsUtarg , n1(s)
〉

if γ1(s) ∈ Rtarg, β1(s) = 0 if γ1(s) ∈ Σtarg

and |β1(s)| ≤ 1 if γ1(s) ∈ ∂Starg.

7 Existence and Uniqueness of the Hamiltonian Flow

In this short section, we show that the Hamiltonian flow exists globally in
time for any initial data in the phase space.

Theorem 9 (Flow Theorem). Assume that V is continuously embedded in
C1

0 (Ω,R2) with a C2 kernel K having bounded second-order derivatives. Let
H : L2(T,R2)× L2(T,R2)→ R be defined by

H(γ, p) =
1
2

∫
t
p(y)K(γ(y), γ(x))p(x)dxdy.

Then for any initial data (γ0, p0) there exists a unique solution (γ, p) ∈
C1(R, L2(T,R2)× L2(T,R2)) of the ODE⎧⎨

⎩
γ̇ = ∂

∂pH(γ, p)

ṗ = − ∂
∂γH(γ, p)

, (34)

where ∂H(γ, p)/∂p =
∫
K(γ(·), γ(y))γ(y)dy and

∂H(γ, p)/∂γ =
∫

t
p(·)∂1K(γ(·), γ(y))p(y)dy.

Here, the notation tu∂1K(α0, β)v refers to the gradient at α0 of the function
α �→ tuK(α, be)v.

Proof. The existence of a solution over small time intervals is straightforward
since the smoothness conditions on the kernel imply that there exists M >
0 such that |∂H(γ, p)/∂p − ∂H(γ′, p′)/∂p|2 ≤ M(|p − p′|2 + |p|2|γ − γ′|2)
and |(∂/∂γ)H(γ, p) − (∂/∂γ)H(γ′, p′)|2 ≤ M(|p|22|γ − γ′|2 + |p|2|p − p′|2).
Thus ∂H/∂γ and ∂H/∂p are uniformly Lipschitz on any ball in L2(T,R2) ×
L2(T,R2). This implies obviously the local existence and uniqueness of the
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solution for any initial data but also that for any maximal solution defined on
[0, T [ with T >∞, then

lim
t→T

(|γt|2 + |pt|2) = +∞. (35)

The global existence in time follows from standard arguments: Assume
that (γt, pt) is a maximal solution defined on [0, T ] with T < ∞. Since
V is continuously embedded in C1

0 (Ω,R2), we deduce that m → v(m) =∫
K(m, γt(s′))pt(s′)ds defines an element v ∈ V with continuous differ-

ential and such that |dv|∞ ≤ M |v|2 with M independent of v. Hence
|∂H(γt, pt)/∂γ|2 = |dv(γt)(pt)|2 ≤ M |v|V = MH(γt, pt)1/2. Since H is con-
stant along the solution, we get |γt − p0|2 ≤ MT

√
H(γ0, p0) so that |γ̇t|2 ≤

|K|∞(|p0|2+MT
√
H(γ0, p0)) and |γt−γ0|2 ≤ |K|∞T (|p0|2+MT

√
H(γ0, p0)).

This is in contradiction with (35).

8 Conclusion

We have spent some time providing, for specific examples of interest, the
Hamiltonian structure of large deformation curve matching. The central ele-
ment in this structure is the momentum pt, t ∈ [0, 1], and the fact that the
deformation can be reconstructed exactly from the template and the knowl-
edge of the initial momentum p0.

This implies that p0 can be considered as a relative signature for the de-
formed shape with respect to the template. In all cases, it is a vector-valued
function defined on the unit circle, characterized in fact by a scalar when the
data attachment term is geometric. Because the initial momenta are always
supported by the template, it is possible to add them, or average them with-
out any issue of registering the data, since the work is already done. This fact
leads to simple procedures for statistical shape analysis, when they are based
on the momentum, and some developments have already been provided in [19]
in the case of landmark-based matching.

This paper therefore provides the theoretical basis for the computation of
this representation. Future works will include the refinement and development
of numerical algorithms for its computation. Such algorithms already exist, for
example, in the case of measure-based matching, but still need to be developed
in the other cases.
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19. M. Vaillant, M. I. Miller, A. Trouvé, and L. Younes, Statistics on diffeo-
morphisms via tangent space representations, Neuroimage, 23 (2004), pp. S161–
S169.

20. T. L. Vincent and W. J. Grantham, Nonlinear and optimal control systems,
Wiley, 1997.

21. L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math,
58 (1998), pp. 565–586.

22. , Optimal matching between shapes via elastic deformations, Image and
Vision Computing, 17 (1999), pp. 381–389.



Approximations of Shape Metrics and
Application to Shape Warping and Empirical

Shape Statistics

Guillaume Charpiat,1 Olivier Faugeras,2 Renaud Keriven3 and
Pierre Maurel4

1 Odyssée Laboratory, ENS, 45 rue d’Ulm, 75005 Paris, France.
Guillaume.Charpiat@ens.fr

2 Odyssée Laboratory, INRIA Sophia Antipolis, 2004 route des Lucioles,
BP 93 06902, Sophia-Antipolis Cedex, France. faugeras@sophia.inria.fr

3 Odyssée Laboratory, ENPC, 6 av Blaise Pascal, 77455 Marne la Vallée, France.
Renaud.Keriven@ens.fr

4 Odyssée Laboratory, ENS, 45 rue d’Ulm, 75005 Paris, France.
Pierre.Maurel@ens.fr

Summary. This chapter proposes a framework for dealing with two problems re-
lated to the analysis of shapes: the definition of the relevant set of shapes and that
of defining a metric on it. Following a recent research monograph by Delfour and
Zolésio [8], we consider the characteristic functions of the subsets of R

2 and their
distance functions. The L2 norm of the difference of characteristic functions and
the L∞ and the W 1,2 norms of the difference of distance functions define inter-
esting topologies, in particular that induced by the well-known Hausdorff distance.
Because of practical considerations arising from the fact that we deal with image
shapes defined on finite grids of pixels, we restrict our attention to subsets of R

2

of positive reach in the sense of Federer [12], with smooth boundaries of bounded
curvature. For this particular set of shapes we show that the three previous topolo-
gies are equivalent. The next problem we consider is that of warping a shape onto
another by infinitesimal gradient descent, minimizing the corresponding distance.
Because the distance function involves an inf, it is not differentiable with respect
to the shape. We propose a family of smooth approximations of the distance func-
tion which are continuous with respect to the Hausdorff topology, and hence with
respect to the other two topologies. We compute the corresponding Gâteaux deriva-
tives. They define deformation flows that can be used to warp a shape onto another
by solving an initial value problem. We show several examples of this warping and
prove properties of our approximations that relate to the existence of local minima.
We then use this tool to produce computational definitions of the empirical mean
and covariance of a set of shape examples. They yield an analog of the notion of
principal modes of variation. We illustrate them on a variety of examples.



364 G. Charpiat, O. Faugeras, R. Keriven and P. Maurel

Key words: Shape metrics, characteristic functions, distance functions, de-
formation flows, lower semi continuous envelope, shape warping, empirical
mean shape, empirical covariance operator, principal modes of variation.

1 Introduction

Learning shape models from examples and using them to recognize new
instances of the same class of shapes are fascinating problems that have at-
tracted the attention of many scientists for many years. Central to this prob-
lem is the notion of a random shape which in itself has occupied people for
decades. Fréchet [15] was probably one of the first mathematicians to develop
some interest for the analysis of random shapes, i.e., curves. He was followed
by Matheron [27] who founded with Serra the French school of mathematical
morphology and by David Kendall [19, 21, 22] and his colleagues, e.g., Small
[35]. In addition, and independently, a rich body of theory and practice for
the statistical analysis of shapes has been developed by Bookstein [1], Dry-
den and Mardia [9], Carne [2], and Cootes, Taylor and colleagues [5]. Except
for the mostly theoretical work of Fréchet and Matheron, the tools devel-
oped by these authors are very much tied to the pointwise representation of
the shapes they study: objects are represented by a finite number of salient
points or landmarks. This is an important difference with our work which
deals explicitly with curves as such, independently of their sampling or even
parameterization.

In effect, our work bears more resemblance to that of several other authors.
As in Grenander’s theory of patterns [16, 17], we consider shapes as points
of an infinite-dimensional manifold but we do not model the variations of the
shapes by the action of Lie groups on this manifold, except in the case of
such finite-dimensional Lie groups as rigid displacements (translation and ro-
tation) or affine transformations (including scaling). For infinite-dimensional
groups such as diffeomorphisms [10, 40] which smoothly change the objects’
shapes, previous authors have depended on the choice of parameterizations
and origins of coordinates [43, 44, 42, 41, 28, 18]. For them, warping a shape
onto another requires the construction of families of diffeomorphisms that use
these parameterizations. Our approach, based on the use of the distance func-
tions, does not require the arbitrary choice of parameterizations and origins.
From our viewpoint this is already very nice in two dimensions but becomes
even nicer in three dimensions and higher where finding parameterizations
and tracking origins of coordinates can be a real problem: this is not required
in our case. Another piece of related work is that of Soatto and Yezzi [36]
who tackle the problem of jointly extracting and characterizing the motion
of a shape and its deformation. In order to do this they find inspiration in
the preceding work on the use of diffeomorphisms and propose the use of a
distance between shapes (based on the set-symmetric difference described in
Section 2.2). This distance poses a number of problems. We address these
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problems in the same section, proposing two other distances which we believe
to be more suitable.

Some of these authors have also tried to build a Riemannian structure on
the set of shapes, i.e., to go from an infinitesimal metric structure to a global
one. The infinitesimal structure is defined by an inner product in the tangent
space (the set of normal deformation fields) and has to vary continuously
from point to point, i.e., from shape to shape. The Riemannian metric is
then used to compute geodesic curves between two shapes: these geodesics
define a way of warping either shape onto the other. This is dealt with in
the work of Trouvé and Younes [43, 44, 40, 42, 41, 45] and, more recently,
in the work of Klassen and Srivastava [24], again at the cost of working with
parameterizations. The problem with these approaches, besides that of having
to deal with parameterizations of the shapes, is that there exist global metric
structures on the set of shapes (see Section 2.2) which are useful and relevant
to the problem of the comparison of shapes but that do not derive from an
infinitesimal structure. Our approach can be seen as taking the problem from
exactly the opposite viewpoint from the previous one: we start with a global
metric on the set of shapes and build smooth functions (in effect smooth
approximations of these metrics) that are dissimilarity measures, or energy
functions. We then minimize these functions using techniques of the calculus
of variation by computing their gradient and performing infinitesimal gradient
descent: this minimization defines another way of warping either shape onto
the other. In this endeavor we build on the seminal work of Delfour and
Zolésio who have introduced new families of sets, complete metric topologies
and compactness theorems. This work is now available in book form [8]. The
book provides a fairly broad coverage and a synthetic treatment of the field
along with many new important results, examples and constructions which
have not been published elsewhere. Its full impact on image processing and
robotics has yet to be fully assessed.

In this chapter we also revisit the problem of computing empirical sta-
tistics on sets of shapes and propose a new approach by combining several
notions such as topologies on sets of shapes, calculus of variations, and some
measure theory. Section 2 sets the stage and introduces some notation and
tools. In particular in Section 2.2 we discuss three of the main topologies that
can be defined on sets of shapes and motivate the choice of two of them. In
Section 3 we introduce the particular set of shapes we work with in this paper,
showing that it has nice compactness properties and that the three topologies
defined in the previous section are in fact equivalent on this set of shapes.
In Section 4 we introduce one of the basic tools we use for computing shape
statistics, i.e., given a measure of the dissimilarity between two shapes, the
curve gradient flow that is used to deform a shape into another. Having moti-
vated the introduction of the measures of dissimilarity, we proceed in Section 5
with the construction of classes of such measures which are based on the idea
of approximating some of the shape distances that have been presented in
Section 2.2; we also prove the continuity of our approximations with respect
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to these distances and compute the corresponding curve gradient flows. This
being settled, we are in a position to warp any given shape onto another
by solving the partial differential equation (PDE) attached to the particular
curve gradient flow. This problem is studied in Section 6 where examples are
also presented. In Section 7.1 we use all these tools to define a mean shape
and to provide algorithms for computing it from sample shape examples. In
Section 7.2, we extend the notion of covariance matrix of a set of samples to
that of a covariance operator of a set of sample shape examples from which
the notion of principal modes of variation follows naturally.

2 Shapes and Shape Topologies

To define fully the notion of a shape is beyond the scope of this chapter in
which we use a limited, i.e., purely geometric, definition. It could be argued
that the perceptual shape of an object also depends on the distribution of
illumination, the reflectance and texture of its surface; these aspects are not
discussed in this paper. In our context we define a shape to be a measurable
subset of R

2. Since we are driven by image applications we also assume that
all our shapes are contained in a hold-all open bounded subset of R

2 which
we denote by D. The reader can think of D as the “image.”

In the next section we will restrict our interest to a more limited set of
shapes but presently this is sufficient to allow us to introduce some methods
for representing shapes.

2.1 Definitions

Since, as mentioned in the introduction, we want to be independent of any
particular parameterization of the shape, we use two main ingredients, the
characteristic function of a shape Ω

χΩ(x) = 1 if x ∈ Ω and 0 if x /∈ Ω,
and the distance function to a shape Ω

dΩ(x) = inf
y∈Ω
|y − x| = inf

y∈Ω
d(x, y) if Ω �= ∅ and +∞ if Ω = ∅.

Note the important property [8, Chapter 4, Theorem 2.1]

dΩ1 = dΩ2 ⇐⇒ Ω1 = Ω2. (1)

Also of interest is the distance function to the complement of the shape, d�Ω
and the distance function to its boundary, d∂Ω. In the case where Ω = ∂Ω
and Ω is closed, we have

dΩ = d∂Ω d�Ω = 0.
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We use Cd(D) to denote the set of distance functions of nonempty sets of
D. Similarly, Ccd(D) denotes the set of distance functions to the complements
of open subsets of D (for technical reasons which are irrelevant here, it is
sufficient to consider open sets).

Another function of great interest is the oriented distance function bΩ
defined as

bΩ = dΩ − d�Ω .

Note that for closed sets such that Ω = ∂Ω, one has bΩ = dΩ .
We briefly recall some well-known results about these two functions. The

integral of the characteristic function is equal to the measure (area) m(Ω) of
Ω: ∫

Ω

χΩ(x) dx = m(Ω).

Note that this integral does not change if we add to or subtract from Ω a
measurable set of Lebesgue measure 0 (also called a negligible set).

Concerning the distance functions, they are continuous, in effect Lipschitz
continuous with a Lipschitz constant equal to 1 [6, 8]:

|dΩ(x) − dΩ(y)| ≤ |x− y| ∀x, y, ∈ D.
By the Rademacher theorem [11], this implies that dΩ is differentiable almost
everywhere in D, i.e., outside of a negligible set, and that the magnitude of
its gradient, when it exists, is less than or equal to 1

|∇dΩ(x)| ≤ 1 a.e.

The same is true of d�Ω and bΩ (if ∂Ω �= ∅ for the second), [8, Chapter 5,
Theorem 8.1].

Closely related to the various distance functions (more precisely to their
gradients) are the projections associated withΩ and �Ω. These are also related
to the notion of a skeleton [8, Chapter 4, Definition 3.1].

2.2 Some Shape Topologies

The next question we want to address is that of the definition of the similarity
between two shapes. This question of similarity is closely connected to that
of metrics on sets of shapes which in turn involves what are known as shape
topologies. We now briefly review three main similarity measures between
shapes which turn out to define three distances.

Characteristic Functions

The similarity measure we are about to define is based on the characteristic
functions of the two shapes we want to compare. We denote by X(D) the set
of characteristic functions of measurable subsets of D.
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Given two such sets Ω1 and Ω2, we define their distance

ρ2(Ω1, Ω2) = ‖χΩ1 − χΩ2‖L2 =
(∫

D

(χΩ1(x)− χΩ2(x))
2 dx

)1/2

.

This definition also shows that this measure does not “see” differences between
two shapes that are of measure 0 (see [8, Chapter 3, Figure 3.1]) since the
integral does not change if we modify the values of χΩ1 or χΩ2 over negligible
sets. In other words, this is not a distance between the two shapes Ω1 and
Ω2 but between their equivalence classes [Ω1]m and [Ω2]m of measurable sets.
Given a measurable subset Ω of D, we define its equivalence class [Ω]m as
[Ω]m = {Ω′|Ω′ is measurable and Ω∆Ω′ is negligible}, where Ω∆Ω′ is the
symmetric difference

Ω∆Ω′ = �ΩΩ′ ∪ �Ω′Ω.

The proof that this defines a distance follows from the fact that the L2

norm defines a distance over the set of equivalence classes of square integrable
functions (see, e.g., [32, 11]).

This is nice, and it gets even better ([8, Chapter 3, Theorem 2.1]: the set
X(D) is closed and bounded in L2(D) and ρ2(·, ·) defines a complete metric
structure on the set of equivalence classes of measurable subsets of D. Note
that ρ2 is closely related to the symmetric difference:

ρ2(Ω1, Ω2) = m(Ω1∆Ω2)
1
2 .

The completeness is important in applications: any Cauchy sequence of char-
acteristic functions {χΩn} converges for this distance to a characteristic func-
tion χΩ of a limit set Ω. Unfortunately in applications not all sequences are
Cauchy sequences (for example the minimizing sequences of the energy func-
tions defined in Section 5), and one often requires more, i.e., that any sequence
of characteristic functions contains a subsequence that converges to a charac-
teristic function. This stronger property, called compactness, is not satisfied
by X(D) (see [8, Chapter 3]).

Distance Functions

We therefore turn to a different similarity measure which is based on the
distance function to a shape. As in the case of characteristic functions, we
define equivalent sets and say that two subsets Ω1 and Ω2 of D are equivalent
iff Ω1 = Ω2. We call [Ω]d the corresponding equivalence class of Ω. Let T (D)
be the set of these equivalence classes. The application

[Ω]d → dΩ T (D)→ Cd(D) ⊂ C(D)

is injective according to (1). We can therefore identify the set Cd(D) of dis-
tance functions to sets of D with the just-defined set of equivalence classes of
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sets. Since Cd(D) is a subset of the set C(D) of continuous functions on D, a
Banach space1 when endowed with the norm

‖f‖C(D) = sup
x∈D
|f(x)|,

it can be shown (e.g., [8]), that the similarity measure

ρ([Ω1]d, [Ω2]d) = ‖dΩ1 − dΩ2‖C(D) = sup
x∈D
|dΩ1(x)− dΩ2(x)| (2)

is a distance on the set of equivalence classes of sets which induces on this
set a complete metric. Moreover, because we have assumed D bounded, the
corresponding topology is identical to the one induced by the well-known
Hausdorff metric (see [27, 33, 8])

ρH([Ω1]d, [Ω2]d) = max
{

sup
x∈Ω2

dΩ1(x), sup
x∈Ω1

dΩ2(x)
}
. (3)

In fact we have even more than the identity of the two topologies, see [8,
Chapter 4, Theorem 2.2]:

Proposition 1 If the hold-all set D is bounded ρ = ρH .

An important improvement with respect to the situation in the previous sec-
tion is the following (see [8, Chapter 4, Theorem 2.2]).

Theorem 2 The set Cd(D) is compact in the set C(D) for the topology de-
fined by the Hausdorff distance.

In particular, from any sequence {dΩn} of distance functions to sets Ωn one
can extract a sequence converging toward the distance function dΩ to a subset
Ω of D.

It would appear that we have reached an interesting stage and that the
Hausdorff distance is what we want to use to measure shape similarities.
Unfortunately this is not so because the convergence of areas and perimeters
is lost in the Hausdorff metric, as shown in the following example taken from
[8, Chapter 4, Example 4.1 and Figure 4.3].

Consider the sequence {Ωn} of sets in the open square ]− 1, 2[2:

Ωn =
{

(x, y) ∈ D :
2k
2n
≤ x ≤ 2k + 1

2n
, 0 ≤ k < n

}

Fig. 1 shows the sets Ω4 and Ω8. This defines n vertical stripes of equal
width 1/2n each distanced 1/2n apart. It is easy to verify that, for all n ≥ 1,
m(Ωn) = 1/2 and |∂Ωn| = 2n + 1. Moreover, if S is the unit square [0, 1]2,
for all x ∈ S, dΩn(x) ≤ 1/4n, hence dΩn → dS in C(D). The sequence {Ωn}
converges to S for the Hausdorff distance but since m(Ωn) = m(Ωn) = 1/2 �

1 = m(S), χΩn � χS in L2(D) and hence we do not have convergence for the
ρ2 topology. Note also that |∂Ωn| = 2n+ 1 � |∂S| = 4.

1A Banach space is a complete normed vector space.
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0 1

0

1

0 1

0

1

Fig. 1. Two shapes in the sequence {Ωn}, see text: (left) Ω4 and (right), Ω8.

Distance Functions and their Gradients

In order to recover continuity of the area one can proceed as follows. If we
recall that the gradient of a distance function is of magnitude equal to 1 except
on a subset of measure 0 of D, one concludes that it is square integrable on D.
Hence the distance functions and their gradients are square integrable, they
belong to the Sobolev space W 1,2(D), a Banach space for the vector norm

‖f − g‖W 1,2(D) = ‖f − g‖L2(D) + ‖∇f −∇g‖L2(D),

where L2(D) = L2(D) × L2(D). This defines a similarity measure for two
shapes

ρD([Ω1]d, [Ω2]d) = ‖dΩ1 − dΩ2‖W 1,2(D),

which turns out to define a complete metric structure on T (D). The corre-
sponding topology is called the W 1,2 topology. For this metric, the set Cd(D)
of distance functions is closed in W 1,2(D), and the mapping

dΩ → χΩ = 1− |∇dΩ| : Cd(D) ⊂W 1,2(D)→ L2(D)

is “Lipschitz continuous”:

‖χΩ1
− χΩ2

‖L2(D) ≤ ‖∇dΩ1 −∇dΩ2‖L2(D) ≤ ‖dΩ1 − dΩ2‖W 1,2(D), (4)

which indeed shows that areas are continuous for the W 1,2 topology, see [8,
Chapter 4, Theorem 4.1].

Cd(D) is not compact for this topology, but a subset of it of great practical
interest is; see Section 3.

3 The Set S of all Shapes and its Properties

We now have all the necessary ingredients to be more precise in the definition
of shapes.
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3.1 The Set of all Shapes

We restrict ourselves to sets of D with compact boundary and consider three
different sets of shapes. The first one is adapted from [8, Chapter 4, Defini-
tion 5.1].

Definition 3 (Set DZ of sets of bounded curvature) The set DZ of sets
of bounded curvature contains those subsets Ω of D, Ω, �Ω �= ∅ such that ∇dΩ
and ∇d�Ω are in BV (D)2, where BV (D) is the set of functions of bounded
variations.

This is a large set (too large for our applications) which we use as a “frame of
reference.” DZ was introduced by Delfour and Zolésio [6, 7] and contains the
sets F and C2 introduced below. For technical reasons related to compactness
properties (see Section 3.2) we consider the following subset of DZ.

Definition 4 (Set DZ0) The set DZ0 is the subset of DZ such that there
exists c0 > 0 such that, for all Ω ∈ DZ0,

‖D2dΩ‖M1(D) ≤ c0 and ‖D2d�Ω‖M1(D) ≤ c0,
where M1(D) is the set of bounded measures on D and ‖D2dΩ‖M1(D) is de-
fined as follows. Let Φ be a 2× 2 matrix of functions in C1(D), we have

‖D2dΩ‖M1(D) = sup
Φ∈C1(D)2×2, ‖Φ‖C≤1

∣∣∣∣
∫
D

∇dΩ · divΦdx
∣∣∣∣ ,

where
‖Φ‖C = sup

x∈D
|Φ(x)|R2×2 ,

and
divΦ = [divΦ1, divΦ2],

where Φi, i = 1, 2 are the row vectors of the matrix Φ.

The set DZ0 has the following property (see [8, Chapter 4, Theorem 5.2]).

Proposition 5 Any Ω ∈ DZ0 has a finite perimeter upper-bounded by 2c0.

We next introduce three related sets of shapes.

Definition 6 (Sets of smooth shapes) The set C0 (resp. C1, C2) of smooth
shapes is the set of subsets of D whose boundary is nonempty and can be locally
represented as the epigraph of a C0 (resp. C1, C2) function. One further
distinguishes the sets Cci and Coi , i = 0, 1, 2 of subsets whose boundary is
closed and open, respectively.

Note that this implies that the boundary is a simple regular curve (hence
compact) since otherwise it cannot be represented as the epigraph of a C1

(resp. C2) function in the vicinity of a multiple point. Also note that C2 ⊂
C1 ⊂ DZ ([6, 7]).

The third set has been introduced by Federer [12].
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Definition 7 (Set F of shapes of positive reach) A nonempty subset Ω
of D is said to have positive reach if there exists h > 0 such that ΠΩ(x) is a
singleton for every x ∈ Uh(Ω). The maximum h for which the property holds
is called the reach of Ω and is noted reach(Ω).

We will also be interested in the subsets, called h0-Federer’s sets and noted
Fh0 , h0 > 0, of F which contain all Federer’s sets Ω such that reach(Ω) ≥ h0.
Note that Ci, i = 1, 2 ⊂ F but Ci �⊂ Fh0 .

We are now ready to define the set of shapes of interest.

Definition 8 (Set of all shapes) The set, noted S, of all shapes (of inter-
est) is the subset of C2 whose elements are also h0-Federer’s sets for a given
and fixed h0 > 0.

S def
= C2 ∩ Fh0 .

This set contains the two subsets Sc and So obtained by considering Cc2 and
Co2 , respectively.

Note that S ⊂ DZ . Note also that the curvature of ∂Ω is well-defined and
upper-bounded by 1/h0, noted κ0. Hence, c0 in Definition 4 can be chosen in
such a way that S ⊂ DZ0.

Ω

∂Ω

Ω = ∂Ω

d > h0

d > h0

κ ≤ κ0 = 1
h0

Fig. 2. Examples of admissible shapes: a simple, closed, regular curve (left); a sim-
ple, open regular curve (right). In both cases the curvature is upper-bounded by κ0

and the pinch distance is larger than h0.

At this point, we can represent regular (i.e., C2) simple curves with and
without boundaries that do not curve or pinch too much (in the sense of κ0

and h0, see Fig. 2.
There are two reasons why we choose S as our frame of reference. The

first one is that our implementations work with discrete objects defined on
an underlying discrete square grid of pixels. As a result we are not able to
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describe details smaller than the distance between two pixels. This is our unit
and h0 is chosen to be smaller than or equal to it. The second reason is that
S is included in DZ0 which, as shown in Section 3.2, is compact. This will
turn out to be important when minimizing shape functionals.

The question of the deformation of a shape by an element of a group of
transformations could be raised at this point. What we have in mind here
is the question of deciding whether a square and the same square rotated
by 45 degrees are the same shape. There is no real answer to this question,
more precisely the answer depends on the application. Note that the group in
question can be finite dimensional, as in the case of the Euclidean and affine
groups which are the most common in applications, or infinite dimensional.
In this work we will, for the most part, not consider the action of groups of
transformations on shapes.

3.2 Compactness Properties

Interestingly enough, the definition of the set DZ0 (Definition 4) implies that
it is compact for all three topologies. This is the result of the following theo-
rem. The proof can be found in [8, Chapter 4, Theorems 8.2, 8.3].

Theorem 9 Let D be a nonempty bounded regular2 open subset of R
2 and

DZ the set defined in Definition 3. The embedding

BC(D) = {dΩ ∈ Cd(D) ∩ Ccd(D) : ∇dΩ , ∇d�Ω ∈ BV (D)2} →W 1,2(D)

is compact.

This means that for any bounded sequence {Ωn}, ∅ �= Ωn of elements of DZ ,
i.e., for any sequence of DZ0, there exists a set Ω �= ∅ of DZ such that there
exists a subsequence Ωnk such that

dΩnk → dΩ and d�Ωnk → d�Ω in W 1,2(D).

Since bΩ = dΩ−d�Ω, we also have the convergence of bΩnk to bΩ, and since the
mapping bΩ → |bΩ| = d∂Ω is continuous in W 1,2(D) (see [8, Chapter 5, Theo-
rem 5.1 (iv)]), we also have the convergence of d∂Ωnk to d∂Ω. The convergence
for the ρ2 distance follows from equation (4):

χΩnk → χΩ in L2(D),

and the convergence for the Hausdorff distance follows from Theorem 2, taking
subsequences if necessary.

In other words, the set DZ0 is compact for the topologies defined by the
ρ2, Hausdorff and W 1,2 distances.

Note that, even though S ⊂ DZ0, this does not imply that it is compact
for either one of these three topologies. But it does imply that its closure S
for each of these topologies is compact in the compact set DZ0.

2Regular means uniformly Lipschitzian in the sense of [8, Chapter 2, Defini-
tion 5.1].
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3.3 Comparison Between the Three Topologies on S
The three topologies we have considered turn out to be closely related on S.
This is summarized in the following.

Theorem 10 The three topologies defined by the three distances ρ2, ρD and
ρH are equivalent on Sc. The two topologies defined by ρD and ρH are equiv-
alent on So.

This means that, for example, given a set Ω of Sc, a sequence {Ωn} of
elements of Sc converging toward Ω ∈ Sc for any of the three distances ρ2, ρ
(ρH) and ρD also converges toward the same Ω for the other two distances.

We refer to [3] for the proof of this theorem.
An interesting and practically important consequence of this theorem is the

following. Consider the set S, included in DZ0, and its closure S for any one
of the three topologies of interest. S is a closed subset of the compact metric
space DZ0 and is therefore compact as well. Given a continuous function
f : S → R we consider its lower semi-continuous (l.s.c.) envelope f defined on
S as follows:

f(x) =

{
f(x) if x ∈ S

lim infy→x, y∈S f(y)
.

The useful result for us is summarized in the following.

Proposition 11 f is l.s.c. in S and therefore has at least one minimum in
S.
Proof. In a metric space E, a real function f is said to be l.s.c. if and only if

f(x) ≤ lim inf
y→x

f(y) ∀x ∈ E.

Therefore f is l.s.c. by construction. The existence of a minimum of an l.s.c.
function defined on a compact metric space is well known (see e.g., [4, 11])
and will be needed later to prove that some of our minimization problems are
well posed.

4 Deforming Shapes

The problem of continuously deforming a shape so that it turns into another
is central to this chapter. The reasons for this will become more clear in the
sequel. Let us just mention here that it can be seen as an instance of the
warping problem: Given two shapes Ω1 and Ω2, how do we deform Ω1 onto
Ω2? The applications in the field of medical image processing and analysis
are immense (see for example [39, 38]). It can also be seen as an instance of
the famous (in computer vision) correspondence problem: Given two shapes
Ω1 and Ω2, how do we find the corresponding point P2 in Ω2 of a given point
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P1 in Ω1? Note that a solution of the warping problem provides a solution of
the correspondence problem if we can track the evolution of any given point
during the smooth deformation of the first shape onto the second.

In order to make things more quantitative, we assume that we are given a
function E : C0×C0 → R

+, called the Energy, which is continuous on S×S for
one of the shape topologies of interest. This Energy can also be thought of as
a measure of the dissimilarity between the two shapes. By smooth, we mean
that it is continuous with respect to this topology and that its derivatives are
well defined in a sense we now make more precise.

We first need the notion of a normal deformation flow of a curve Γ in S.
This is a smooth (i.e., C0) function β : [0, 1]→ R (when Γ ∈ So, one further
requires that β(0) = β(1)). Let Γ : [0, 1] → R

2 be a parameterization of Γ ,
n(p) the unit normal at the point Γ (p) of Γ ; the normal deformation flow β
associates the point Γ (p) + β(p)n(p) to Γ (p). The resulting shape is noted
Γ +β, where β = βn. There is no guarantee that Γ +β is still a shape in S in
general but if β is C0 and ε is small enough, Γ +β is in C0. Given two shapes
Γ and Γ0, the corresponding Energy E(Γ, Γ0), and a normal deformation flow
β of Γ , the Energy E(Γ + εβ, Γ0) is now well defined for ε sufficiently small.
The derivative of E(Γ, Γ0) with respect to Γ in the direction of the flow β is
then defined, when it exists, as

GΓ (E(Γ, Γ0),β) = lim
ε→0

E(Γ + εβ, Γ0)− E(Γ, Γ0)
ε

. (5)

This kind of derivative is also known as a Gâteaux semi-derivative. In our case
the function β → GΓ (E(Γ, Γ0),β) is linear and continuous (it is then called
a Gâteaux derivative) and defines a continuous linear form on the vector
space of normal deformation flows of Γ . This is a vector subspace of the
Hilbert space L2(Γ ) with the usual Hilbert product 〈β1, β2〉 = 1

|Γ |
∫
Γ
β1 β2 =

1
|Γ |
∫
Γ β1(x)β2(x) dΓ (x), where |Γ | is the length of Γ . Given such an inner

product, we can apply Riesz’s representation theorem [32] to the Gâteaux
derivative GΓ (E(Γ, Γ0),β): There exists a deformation flow, noted∇E(Γ, Γ0),
such that

GΓ (E(Γ, Γ0),β) = 〈∇E(Γ, Γ0), β〉.
This flow is called the gradient of E(Γ, Γ0).

We now return to the initial problem of smoothly deforming a curve Γ1

onto a curve Γ2. We can state it as that of defining a family Γ (t), t ≥ 0 of
shapes such that Γ (0) = Γ1, Γ (T ) = Γ2 for some T > 0 and for each value
of t ≥ 0 the deformation flow of the current shape Γ (t) is equal to minus
the gradient ∇E(Γ, Γ2) defined previously. This is equivalent to solving the
following PDE:

Γt = −∇E(Γ, Γ2)n (6)

Γ (0) = Γ1.



376 G. Charpiat, O. Faugeras, R. Keriven and P. Maurel

In this paper we do not address the question of the existence of solutions
to (6).

Natural candidates for the Energy function E are the distances defined in
Section 2.2. The problem we are faced with is that none of these distances is
Gâteaux differentiable. Therefore the next section is devoted to the definition
of smooth approximations of some of them.

5 How to Approximate Shape Distances

The goal of this section is to provide smooth approximations of some of these
distances, i.e., approximations that admit Gâteaux derivatives. We start with
some notation.

5.1 Averages

Let Γ be a given curve in C1 and consider an integrable function f : Γ → R
n.

We denote by 〈f〉Γ the average of f along the curve Γ :

〈f〉Γ =
1
|Γ |

∫
Γ

f =
1
|Γ |

∫
Γ

f(x) dΓ (x). (7)

For a real positive integrable function f , and for any continuous strictly
monotonous (hence one to one) function ϕ from R

+ or R
+∗ to R

+ we will
also need the ϕ-average of f along Γ which we define as

〈f〉ϕΓ = ϕ−1

(
1
|Γ |

∫
Γ

ϕ ◦ f
)

= ϕ−1

(
1
|Γ |

∫
Γ

ϕ(f(x)) dΓ (x)
)
. (8)

Note that ϕ−1 is also strictly monotonous and continous from R
+ to R

+ or
R

+∗. Also note that the unit of the ϕ-average of f is the same as that of f ,
because of the normalization by |Γ |.

The discrete version of the ϕ-average is also useful: let ai, i = 1, . . . , n be
n positive numbers, we note

〈a1, . . . , an〉ϕ = ϕ−1

(
1
n

n∑
i=1

ϕ(ai)

)
(9)

their ϕ-average.

5.2 Approximations of the Hausdorff Distance

We now build a series of smooth approximations of the Hausdorff distance
ρH(Γ, Γ ′) of two shapes Γ and Γ ′. According to (3) we have to consider the
functions dΓ ′ : Γ → R

+ and dΓ : Γ ′ → R
+. Let us focus on the second one.
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Since dΓ is Lipschitz continuous on the bounded hold-all set D it is certainly
integrable on the compact set Γ ′ and we have [32, Chapter 3, Problem 4]

lim
β→+∞

(
1
|Γ ′|

∫
Γ ′
dβΓ (x′) dΓ ′(x′)

) 1
β

= sup
x′∈Γ ′

dΓ (x′). (10)

Moreover, the function R
+ → R

+ defined by β →
(

1
|Γ ′|

∫
Γ ′ d

β
Γ (x′) dΓ ′(x′)

) 1
β

is monotonously increasing [32, Chapter 3, Problem 5].
Similar properties hold for dΓ ′ .
If we note pβ the function R

+ → R
+ defined by pβ(x) = xβ we can rewrite

(10) as
lim

β→+∞
〈dΓ 〉pβΓ ′ = sup

x′∈Γ ′
dΓ (x′).

〈dΓ 〉pβΓ ′ is therefore a monotonically increasing approximation of
supx′∈Γ ′ dΓ (x′). We go one step further and approximate dΓ ′(x).

Consider a continuous strictly monotonously decreasing function ϕ : R
+ →

R
+∗. Because ϕ is strictly monotonously decreasing,

sup
x′∈Γ ′

ϕ(d(x, x′)) = ϕ

(
inf
x′∈Γ ′

d(x, x′)
)

= ϕ(dΓ ′ (x)),

and moreover

lim
α→+∞

(
1
|Γ ′|

∫
Γ ′
ϕα(d(x, x′)) dΓ ′(x′)

) 1
α

= sup
x′∈Γ ′

ϕ(d(x, x′)).

Because ϕ is continuous and strictly monotonously decreasing, it is one to one
and ϕ−1 is strictly monotonously decreasing and continuous. Therefore

dΓ ′(x) = lim
α→+∞ϕ−1

((
1
|Γ ′|

∫
Γ ′
ϕα(d(x, x′)) dΓ ′(x′)

) 1
α

)
.

We can simplify this equation by introducing the function ϕα = pα ◦ ϕ:

dΓ ′(x) = lim
α→+∞〈d(x, ·)〉

ϕα
Γ ′ . (11)

Any α > 0 provides us with an approximation, noted d̃Γ ′ , of dΓ ′ :

d̃Γ ′(x) = 〈d(x, ·)〉ϕαΓ ′ . (12)

We have a similar expression for d̃Γ .

Note that because
(

1
|Γ ′|

∫
Γ ′ ϕ

α(d(x, x′)) dΓ ′(x′)
) 1
α

increases with α toward

its limit supx′ ϕ(d(x, x′)) = ϕ(dΓ ′(x)), ϕ−1

((
1

|Γ ′|
∫
Γ ′ ϕ

α(d(x, x′))dΓ ′(x′)
) 1
α

)
decreases with α toward its limit dΓ ′(x).
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Examples of functions ϕ are

ϕ1(z) =
1

z + ε
, ε > 0, z ≥ 0

ϕ2(z) = µ exp(−λz)µ, λ > 0, z ≥ 0

ϕ3(z) =
1√

2πσ2
exp

(
− z2

2σ2

)
, σ > 0, z ≥ 0.

Putting all this together we have the following result:

sup
x∈Γ

dΓ ′(x) = lim
α, β→+∞

〈〈d(·, ·)〉ϕαΓ ′ 〉pβΓ

sup
x∈Γ ′

dΓ (x) = lim
α, β→+∞

〈〈d(·, ·)〉ϕαΓ 〉pβΓ ′ .

Any positive values of α and β yield approximations of supx∈Γ dΓ ′(x) and
supx∈Γ ′ dΓ (x).

The last point to address is the max that appears in the definition of the
Hausdorff distance. We use (9), choose ϕ = pγ and note that, for a1 and a2

positive,
lim

γ→+∞〈a1, a2〉pγ = max(a1, a2).

This yields the following expression for the Hausdorff distance between two
shapes Γ and Γ ′:

ρH(Γ, Γ ′) = lim
α, β, γ→+∞

〈〈〈d(·, ·)〉ϕαΓ ′ 〉pβΓ , 〈〈d(·, ·)〉ϕαΓ 〉pβΓ ′
〉pγ

.

This equation is symmetric and yields approximations ρ̃H of the Hausdorff
distance for all positive values of α, β and γ:

ρ̃H(Γ, Γ ′) =
〈〈〈d(·, ·)〉ϕαΓ ′ 〉pβΓ , 〈〈d(·, ·)〉ϕαΓ 〉pβΓ ′

〉pγ
. (13)

This approximation is “nice” in several ways, the first one being the obvious
one, stated in the following.

Proposition 12 For each triplet (α, β, γ) in (R+∗)3 the function ρ̃H : S ×
S → R

+ defined by equation (13) is continuous for the Hausdorff topology.

The complete proof of this proposition can be found in [3].

5.3 Computing the Gradient of the Approximation to the
Hausdorff Distance

We now proceed with showing that the approximation ρ̃H(Γ, Γ0) of the Haus-
dorff distance ρH(Γ, Γ0) is differentiable with respect to Γ and compute its
gradient∇ ρ̃H(Γ, Γ0), in the sense of Section 4. To simplify notation we rewrite
(13) as

ρ̃H(Γ, Γ0) =
〈〈〈d(·, ·)〉ϕΓ0

〉ψ
Γ
, 〈〈d(·, ·)〉ϕΓ 〉ψΓ0

〉θ
, (14)

and state the result. We refer the interested reader to the proof in [3].
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Proposition 13 The gradient of ρ̃H(Γ, Γ0) at any point y of Γ is given by

∇ρ̃H(Γ, Γ0)(y) =
1

θ′(ρ̃H(Γ, Γ0))
(α(y)κ(y) + β(y)) , (15)

where κ(y) is the curvature of Γ at y, and the functions α(y) and β(y) are
given by

α(y) = ν

∫
Γ0

ψ′

ϕ′ (〈d(x, ·)〉ϕΓ ) [ ϕ ◦ 〈d(x, ·)〉ϕΓ − ϕ ◦ d(x, y) ] dΓ0(x)

+ |Γ0|η
[
ψ
(〈〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
− ψ (〈d(·, y)〉ϕΓ0

) ]
, (16)

β(y) =
∫
Γ0

ϕ′ ◦ d(x, y)
[
ν
ψ′

ϕ′ (〈d(x, ·)〉ϕΓ ) + η
ψ′

ϕ′
(〈d(·, y)〉ϕΓ0

)]

× y − x
d(x, y)

· n(y) dΓ0(x), (17)

where ν =
1

|Γ | |Γ0|
θ′

ψ′
(
〈〈d(·, ·)〉ϕΓ 〉ψΓ0

)
and η =

1
|Γ | |Γ0|

θ′

ψ′
(〈〈d(·, ·)〉ϕΓ0

〉ψ
Γ

)
.

Note that the function β(y) is well defined even if y belongs to Γ0 since the
term y−x

d(x,y) is of unit norm.
The first two terms of the gradient show explicitly that minimizing the

energy implies homogenizing the distance to Γ0 along the curve Γ , that is,
the algorithm will first deal with the points of Γ which are the furthest from
Γ0.

Also note that the expression of the gradient in Proposition 13 still stands
when Γ and Γ0 are two surfaces (embedded in R

3), if κ stands for the mean
curvature.

5.4 Other Alternatives Related to the Hausdorff Distance

There exist several alternatives to the method presented in the previous sec-
tions if we use ρ (equation (2)) rather than ρH (equation (3)) to define the
Hausdorff distance. A first alternative is to use the following approximation:

ρ̃(Γ, Γ ′) = 〈|dΓ − dΓ ′ |〉pαD ,

where the bracket term 〈 f(.) 〉ϕD is defined the obvious way for any integrable
function f : D → R

+

〈 f 〉ϕD = ϕ−1

(
1

m(D)

∫
D

ϕ(f(x)) dx
)
,

and which can be minimized, as in Section 5.6, with respect to dΓ . A second
alternative is to approximate ρ using
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ρ̃(Γ, Γ ′) = 〈|〈d(·, ·)〉ϕβΓ ′ − 〈d(·, ·)〉ϕβΓ |〉pαD , (18)

and to compute its derivative with respect to Γ as we did in the previous
section for ρ̃H .

5.5 Approximations to the W 1,2 Norm and Computation of their
Gradient

The previous results can be used to construct approximations ρ̃D to the dis-
tance ρD defined in Section 2.2:

ρ̃D(Γ1, Γ2) = ‖d̃Γ1 − d̃Γ2‖W 1,2(D), (19)

where d̃Γi , i = 1, 2 is obtained from (12).
This approximation is also “nice” in the usual way and we have the fol-

lowing.

Proposition 14 For each α in R
+∗ the function ρ̃D : S × S → R

+ is con-
tinuous for the W 1,2 topology.

The proof is left to the reader.
The gradient ∇ρ̃D(Γ, Γ0) of our approximation ρ̃D(Γ, Γ0) of the distance

ρD(Γ, Γ0) given by (19) in the sense of Section 4 can be computed. The
interested reader is referred to the appendix of [3]. We simply state the result
as follows.

Proposition 15 The gradient of ρ̃D(Γ, Γ0) at any point y of Γ is given by

∇ρ̃D(Γ, Γ0)(y) =
∫
D

[
B(x, y)

(
C1(x)− ϕ′′

ϕ′ (d̃Γ (x))
(
C2(x) · ∇d̃Γ (x)

))

+ C2(x) · ∇B(x, y)
]

dx, (20)

where

B(x, y) = κ(y) (〈ϕ ◦ d(x, ·)〉Γ − ϕ ◦ d(x, y)) + ϕ′(d(x, y))
y − x
d(x, y)

· n(y),

κ(y) is the curvature of Γ at y,

C1(x) =
1

|Γ | ϕ′(d̃Γ (x))
‖d̃Γ − d̃Γ0‖−1

L2(D)

(
(d̃Γ (x) − d̃Γ0)(x)

)
,

and

C2(x) =
1

|Γ | ϕ′(d̃Γ (x))
‖∇(d̃Γ − d̃Γ0)‖−1

L2(D) ∇(d̃Γ − d̃Γ0)(x).
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5.6 Direct Minimization of the W 1,2 Norm

An alternative to the method presented in the previous section is to evolve not
the curve Γ but its distance function dΓ . Minimizing ρD(Γ, Γ0) with respect
to dΓ implies computing the corresponding Euler–Lagrange equation EL. The
reader will verify that the result is

EL =
dΓ − dΓ0

‖dΓ − dΓ0‖L2(D)
− div

( ∇ (dΓ − dΓ0)
‖∇(dΓ − dΓ0 )‖L2(D))

)
. (21)

To simplify notation we now use d instead of dΓ . The problem of warping Γ1

onto Γ0 is then transformed into the problem of solving the following PDE:

dt = −EL
d(0, ·) = dΓ1(·).

The problem that this PDE does not preserve the fact that d is a distance
function is alleviated by “reprojecting” at each iteration the current function
d onto the set of distance functions. This is done by running a few iterations
of the “standard” restoration PDE [37]

dt = (1− |∇d|) sign(d0)

d(0, ·) = d0.

6 Application to Curve Evolutions: Hausdorff Warping

In this section we show a number of examples of solving equation (6) with the
gradient given by equation (15). Our hope is that, starting from Γ1, we will
follow the gradient (15) and smoothly converge to the curve Γ2 where the min-
imum of ρ̃H is attained. Let us examine these assumptions more closely. First,
it is clear from the expression (13) of ρ̃H that in general ρ̃H(Γ, Γ ) �= 0, which
implies in particular that ρ̃H , unlike ρH , is not a distance. But worse things can
happen: there may exist a shape Γ ′ such that ρ̃H(Γ, Γ ′) is strictly less than
ρ̃H(Γ, Γ ) or there may not exist any minima for the function Γ → ρ̃H(Γ, Γ ′)!
This sounds like the end of our attempt to warp a shape onto another using
an approximation of the Hausdorff distance. But things turn out not to be so
bad. First, the existence of a minimum is guaranteed by Proposition 12 which
says that ρ̃H is continuous on S for the Hausdorff topology, Theorem 9 which
says that DZ0 is compact for this topology, and Proposition 11 which tells us
that the l.s.c. extension of ρ̃H(·, Γ ) has a minimum in the closure S of S in
DZ0.

We show in the next section that phenomena like the one described above
are for all practical matters “invisible” since they are confined to an arbitrarily
small Hausdorff ball centered at Γ .
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6.1 Quality of the Approximation ρ̃H of ρH

In this section we state more precisely the idea that ρ̃H can be made arbitrarily
close to ρH . Because of the form of (14) we seek upper and lower bounds of
such quantities as 〈f〉ψΓ , where f is a continuous real function defined on Γ .
We use fmin to denote the minimum value of f on Γ .

The expression

〈f〉ψΓ = ψ−1

(
1
|Γ |

∫
Γ

ψ ◦ f
)

yields, if ψ is strictly increasing, and if f � fmean on a set F of the curve Γ ,
of length |F | (� |Γ |):

〈f〉ψΓ = ψ−1

(
1
|Γ |

∫
F

ψ ◦ f +
1
|Γ |

∫
Γ\F

ψ ◦ f
)

� ψ−1

( |F |
|Γ |ψ ◦ fmean +

|Γ | − |F |
|Γ | ψ ◦ fmin

)

� ψ−1

( |F |
|Γ |ψ ◦ fmean

)
.

To analyze this lower bound, we introduce the following notation. Given
∆, α � 0, we use P(∆,α) to denote the following property:

P(∆,α) : ∀x ∈ R
+, ∆ψ(x) � ψ(αx).

This property is satisfied for example for ψ(x) = xβ , β ≥ 0. The best pairs
(∆,α) verifying P are such that ∆ = αβ . In the sequel, we consider a function
ψ which satisfies

∀∆ ∈]0; 1[, ∃α ∈]0; 1[,P(∆,α),

and, conversely,
∀α ∈]0; 1[, ∃∆ ∈]0; 1[,P(∆,α).

Then for ∆ψ = |F |
|Γ | and a corresponding αψ such that P(∆ψ, αψ) is satis-

fied, we have
〈f〉ψΓ � ψ−1 (∆ψ ψ(fmean)) � αψ fmean

and deduce from that kind of consideration the following property (see the
complete proof in [3]).

Proposition 16 ρ̃H(Γ, Γ ′) has the following upper and lower bounds:

αθαψ

(
ρH(Γ, Γ ′)−∆ψ

|Γ |+ |Γ ′|
2

)
≤ ρ̃H(Γ, Γ ′)

≤ αϕ
(
ρH(Γ, Γ ′) +∆ϕ

|Γ |+ |Γ ′|
2

)
.

(22)
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Here αθ, αψ and αϕ are constants depending on functions θ, ψ and ϕ and
can be set arbitrarily close to 1 with a good choice of these functions, while
∆ψ and ∆ϕ are positive constants depending on functions ψ and ϕ and can be
set arbitrarily close to 0 in the same time. Consequently, the approximation
ρ̃H(Γ, Γ ′) of ρH(Γ, Γ ′) can be arbitrarily accurate.

We can now characterize the shapes Γ and Γ ′ such that

ρ̃H(Γ, Γ ′) < ρ̃H(Γ, Γ ). (23)

Theorem 17 The condition (23) is equivalent (see [3] again) to

ρH(Γ, Γ ′) < 4c0∆,

where the constant c0 is defined in Definition 4 and Proposition 5, and ∆ =
max(∆ψ, ∆ϕ).

From this we conclude that, since ∆ can be made arbitrarily close to 0,
and the length of shapes is bounded, strange phenomena such as a shape Γ ′

closer to a shape Γ than Γ itself (in the sense of ρ̃H) cannot occur or rather
will be “invisible” to our algorithms.

6.2 Applying the Theory

In practice, the Energy that we minimize is not ρ̃H but in fact a “regular-
ized” version obtained by combining ρ̃H with a term EL which depends on
the lengths of the two curves. A natural candidate for EL is max(|Γ |, |Γ ′|)
since it acts only if |Γ | becomes larger than |Γ ′|, thereby avoiding undesirable
oscillations. To obtain smoothness, we approximate the max with a Ψ -average:

EL(|Γ |, |Γ ′|) = 〈|Γ |, |Γ ′|〉Ψ . (24)

We know that the function Γ → |Γ | is in general l.s.c. It is in fact continuous
on S (see the proof of Proposition 12) and takes its values in the interval
[0, 2c0], hence we have the following.

Proposition 18 The function S → R
+ given by Γ → EL(Γ, Γ ′) is continu-

ous for the Hausdorff topology.

Proof. It is clear since EL is a combination of continuous functions.

We combine EL with ρ̃H the expected way, i.e., by computing their Ψ̃ average
so that the final energy is

E(Γ, Γ ′) = 〈ρ̃H(Γ, Γ ′), EL(|Γ |, |Γ ′|)〉Ψ̃ . (25)

The function E : S × S → R
+ is continuous for the Hausdorff metric because

of Propositions 12 and 18 and therefore we have the following.
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Fig. 3. The result of Hausdorff warping of two hand silhouettes. The two hands
are represented in continuous line while the intermediate shapes are represented in
dotted lines.

Fig. 4. Hausdorff warping a fish onto another.

Proposition 19 The function Γ → E(Γ, Γ ′) defined on the set of shapes S
has at least one minimum in the closure S of S in L0.

Proof. This is a direct application of Proposition 11 applied to the function E.

We call the resulting warping technique Hausdorff warping. An example,
the Hausdorff warping of two hand silhouettes, is shown in Fig. 3.

We have borrowed the example in Fig. 4 from the database of fish sil-
houettes (www.ee.surrey.ac.uk/Research/ VSSP/imagedb/demo.html) col-
lected by the researchers of the University of Surrey at the Centre for Vision,
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Speech and Signal Processing (www.ee.surrey.ac.uk/Research/VSSP). This
database contains 1100 silhouettes. A few steps of the result of Hausdorff
warping one of these silhouettes onto another are shown in Fig. 4.

Figs. 5 and 6 give a better understanding of the behavior of Haus-
dorff warping. A slightly displaced detail “warps back” to its original place
(Fig. 5). Displaced further, the same detail is considered as another one
and disappears during the warping process while the original one reappears
(Fig. 6).

Fig. 5. Hausdorff warping boxes (i). A translation-like behavior.

Fig. 6. Hausdorff warping boxes (ii). A different behavior: a detail disappears while
another one appears.

Finally, Figs. 7 and 8 show the Hausdorff warping between two open curves
and between two closed surfaces, respectively.
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Note also that other warpings are given by the minimization of other
approximations of the Hausdorff distance. Figure 9 shows the warping of a
rough curve to the silhouette of a fish and bubbles given by the minimization
of the W 1,2 norm as explained in Section 5.6. Our “level sets” implementation
can deal with the splitting of the source curve while warping onto the target
one. Mainly, when we have to implement the motion of a curve Γ under a
velocity field v: Γt = v, we use the level set method introduced by Osher and
Sethian in 1987 [30, 34, 29].

Fig. 7. Hausdorff warping an open curve to another one.

Fig. 8. Hausdorff warping a closed surface to another one.
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Fig. 9. Splitting while W 1,2 warping.

7 Application to the Computation of the Empirical
Mean and Covariance of a Set of Shape Examples

We have now developed the tools for defining several concepts relevant to a
theory of stochastic shapes as well as providing the means for their effective
computation. They are based on the use of the function E defined by (25).

7.1 Empirical Mean

The first one is that of the mean of a set of shapes. Inspired by the work of
Fréchet [13, 14], Karcher [20], Kendall [23] and Pennec [31], we provide the
following (classical) definition.

Definition 20 Given Γ1, . . . , ΓN , N shapes, we define their empirical mean
as any shape Γ̂ that achieves a local minimum of the function µ : S → R

+

defined by

Γ → µ(Γ, Γ1, . . . , ΓN ) =
1
N

∑
i=1,...,N

E2(Γ, Γi).

Note that there may exist several means. We know from Proposition 19 that
there exists at least one. An algorithm for computing approximations to an
empirical mean of N shapes readily follows from the previous section: start
from an initial shape Γ0 and solve the PDE

Γt = −∇µ(Γ, Γ1, . . . , ΓN )n (26)

Γ (0, .) = Γ0(.).

We show some examples of means computed by this algorithm in Fig. 10.
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Fig. 10. Examples of means of several curves: a square and a circle (left), two
ellipses (middle) and two hands (right).

When the number of shapes grows larger, the question of the local minima
of µ may become a problem and the choice of Γ0 in (26) can be an important
issue.

An example of mean is obtained from the previous fish silhouettes data-
base: we have used eight silhouettes, normalized them so that their cen-
ters of gravity and principle axes are aligned, and computed their mean,
as shown in Fig. 11. The initial curve, Γ0 was chosen to be an enclosing
circle.

Fig. 11. The mean of eight fishes.
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7.2 Empirical Covariance

We can go beyond the definition of the mean and in effect define something
similar to the covariance matrix of a set of N shapes.

The function S → R
+ defined by Γ → E2(Γ, Γi) has a gradient which

defines a normal velocity field, noted βi, defined on Γ , such that if we con-
sider the infinitesimal deformation Γ − βindτ of Γ , it decreases the value of
E2(Γ, Γi). Each such βi belongs to L2(Γ ), the set of square integrable real
functions defined on Γ . Each Γi defines such a normal velocity field βi. We
consider the mean velocity β̂ = 1

N

∑N
i=1 βi and define the linear operator

Λ : L2(Γ ) → L2(Γ ) such that β → ∑
i=1,N < β, βi − β̂ > (βi − β̂). We have

the following.

Definition 21 Given N shapes of S, the covariance operator of these N
shapes relative to any shape Γ of S is the linear operator of L2(Γ ) defined
by

Λ(β) =
∑
i=1,N

< β, βi − β̂ > (βi − β̂),

where the βi are defined as above, relative to the shape Γ .

This operator has some interesting properties which we study next.

Proposition 22 The operator Λ is a continuous mapping of L2(Γ ) into
L2(Γ ).

Proof. We have ‖∑i=1,N < β, βi − β̂ > (βi − β̂)‖2 ≤
∑

i=1,N | < β, βi −
β̂ > |‖βi − β̂‖2 and, because of the Schwarz inequality, | < β, βi − β̂ > | ≤
‖β‖2‖βi− β̂‖2. This implies that ‖∑i=1,N < β, βi − β̂ > (βi− β̂)‖2 ≤ K‖β‖2
with K =

∑
i=1,N ‖βi − β̂‖22.

Λ is in effect a mapping from L2(Γ ) into its Hilbert subspace A(Γ ) generated
by the N functions βi− β̂. Note that if Γ is one of the empirical means of the
shapes Γi, by definition we have β̂ = 0.

This operator acts on what can be thought of as the tangent space to the
manifold of all shapes at the point Γ . We then have the following.

Proposition 23 The covariance operator is symmetric positive definite.

Proof. This follows from the fact that < Λ(β), β >=< β,Λ(β) >=
∑

i=1,N <

β, βi − β̂ >2.

It is also instructive to look at the eigenvalues and eigenvectors of Λ. For this
purpose we introduce the N×N matrix Λ̂ defined by Λ̂ij =< βi− β̂, βj− β̂ >.
We have the following.
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Proposition 24 The N × N matrix Λ̂ is symmetric semi-positive definite.
Let p ≤ N be its rank, σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

p > 0 its positive eigenvalues,
u1, . . . ,uN the corresponding eigenvectors. They satisfy

ui · uj = δij i, j = 1, . . . , N

Λ̂ui = σ2
i ui i = 1, . . . , p

Λ̂ui = 0 p+ 1 ≤ i ≤ N.
Proof. The matrix Λ̂ is clearly symmetric. Let now α = [α1, . . . , αN ]T be a
vector of R

N , αT Λ̂α = ‖β‖22, where β =
∑N
i=1 αi(βi − β̂). The remainder of

the proposition is simply a statement of the existence of an orthonormal basis
of eigenvectors for a symmetric matrix of R

N .

The N -dimensional vectors uj , j = 1, . . . , p and the p eigenvalues σ2
k, k =

1, . . . , p define p modes of variation of the shape Γ . These modes of variation
are normal deformation flows which are defined as follows. We note uij , i, j =
1, . . . , N the ith coordinate of the vector uj and vj the element ofA(Γ ) defined
by

vj =
1
σj

N∑
i=1

uij(βi − β̂). (27)

In the case Γ = Γ̂ , β̂ = 0. We have the following proposition.

Proposition 25 The functions vj, j = 1, . . . , p are an orthonormal set of
eigenvectors of the operator Λ and form a basis of A(Γ ).

The velocities vk, k = 1, . . . , p can be interpreted as modes of variation
of the shape and the σ2

k’s as variances for these modes. Looking at how the
mean shape varies with respect to the kth mode is equivalent to solving the
following PDEs:

Γt = ±vk n (28)

with initial conditions Γ (0, .) = Γ̂ (.). Note that vk is a function of Γ through
Λ which has to be reevaluated at each time t. One usually solves these PDEs
until the distance to Γ̂ becomes equal to σk.

An example of this evolution for the case of the fingers is shown in Fig. 12.
Another interesting case, drawn from the example of the eight fish of Fig. 11,
is shown in Fig. 13 where the first four principal modes of the covariance
operator corresponding to those eight sample shapes are displayed.

8 Further Comparison with Other Approaches and
Conclusion

We have presented in Section 1 the similarities and dissimilarities of our work
with that of others. We would like to add to this presentation the fact that ours
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Fig. 12. The first three modes of variation for nine sample shapes and their mean.
The mean is shown in thick continuous line, the solutions of equation (28) for k =
1, 2, 3 are represented in dotted lines.

is an attempt to generalize to a nonlinear setting the work that has been done
in a linear one by such scientists as Cootes, Taylor and their collaborators
[5] and by Leventon et al. who, like us, proposed to use distance functions
to represent shapes in a statistical framework. However Leventon et al. used
a first-order approximation by assuming that the set of distance functions
was a linear manifold [26, 25] which of course it is not. Our work shows that
dropping the incorrect linearity assumption is possible at reasonable costs,
both theoretical and computational. Comparison of results obtained in the
two frameworks is a matter of future work.
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Fig. 13. The first four modes of variation for the eight sample shapes and their
mean shown in Fig. 11. The mean is shown in thick continuous line, the solutions
of equation (28) for k = 1, . . . , 4 are represented in dotted lines.



Approximations of Shape Metrics for Shape Warping and Statistics 393

In this respect we would also like to emphasize that in our framework
the process of linear averaging shape representations has been more or less
replaced by the linear averaging of the normal deformation fields which are
tangent vectors to the manifold of all shapes (see the definition of the covari-
ance operator in Section 7.2) and by solving a PDE based on these normal
deformation fields (see the definition of a mean in Section 7.1 and of the
deformation modes in Section 7.2).

It is also interesting to recall that our approach can be seen as the op-
posite of that consisting in first building a Riemannian structure on the set
of shapes, i.e., going from an infinitesimal metric structure to a global one.
The infinitesimal structure is defined by an inner product in the tangent space
(the set of normal deformation fields) and has to vary continuously from point
to point, i.e., from shape to shape. As mentioned before, this is mostly dealt
with in the work of Miller, Trouvé and Younes [28, 40, 45]. The problem with
these approaches, besides that of having to deal with parameterizations of the
shapes, is that there exist global metric structures on the set of shapes (see
Section 2.2) which are useful and relevant to the problem of the comparison
of shapes but that do not arise from an infinitesimal structure.

Our approach can be seen as taking the problem from exactly the opposite
viewpoint from the previous one: we start with a global metric on the set of
shapes (ρH or the W 1,2 metric) and build smooth functions (in effect smooth
approximations of these metrics) that we use as dissimilarity measures or
energy functions and we then minimize using techniques of the calculus of
variation by computing their gradient and performing infinitesimal gradient
descent. We have seen that in order to compute the gradients we need to
define an inner product of normal deformation flows and the choice of this
inner product may influence the way our algorithms evolve from one shape
to another. This last point is related to but different from the choice of the
Riemaniann metric in the first approach. Its investigation is also a topic of
future work.

Another advantage of our viewpoint is that it apparently extends gra-
ciously to higher dimensions because we do not rely on parameterizations of
the shapes and work intrinsically with their distance functions (or approxi-
mations thereof). This is clearly also worth pursuing in future work.
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